
Arie Gurfinkel
Vijay Ganesh (Eds.)

LN
CS

 1
46

81

36th International Conference, CAV 2024
Montreal, QC, Canada, July 24–27, 2024
Proceedings, Part I

Computer Aided
Verification

Lecture Notes in Computer Science 14681
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Arie Gurfinkel · Vijay Ganesh
Editors

Computer Aided
Verification
36th International Conference, CAV 2024
Montreal, QC, Canada, July 24–27, 2024
Proceedings, Part I

Editors
Arie Gurfinkel
University of Waterloo
Waterloo, ON, Canada

Vijay Ganesh
Georgia Institute of Technology
Atlanta, GA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-65626-2 ISBN 978-3-031-65627-9 (eBook)
https://doi.org/10.1007/978-3-031-65627-9

© The Editor(s) (if applicable) and The Author(s) 2024. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0002-5964-6792
https://orcid.org/0000-0002-6029-2047
https://doi.org/10.1007/978-3-031-65627-9
http://creativecommons.org/licenses/by/4.0/

Preface

It was our privilege to serve as the program chairs for CAV 2024, the 36th International
Conference on Computer-Aided Verification. CAV 2024 was held in Montreal, Canada,
on July 24–27, 2024, and the pre-conference workshops were held on July 22–23, 2024.

CAV is an annual conference dedicated to the advancement of the theory and practice
of computer-aided formal analysis methods for hardware and software systems. The
primary focus of CAV is to extend the frontiers of verification techniques by expanding
to new domains such as security, quantum computing, and machine learning. This puts
CAV at the cutting edge of formal methods research. This year’s program is a reflection
of this commitment.

CAV 2024 received 317 submissions. We accepted 16 tool papers, 2 case-study
papers, and 51 regular papers, which amounts to an acceptance rate of roughly 26%
in each category. The accepted papers cover a wide spectrum of topics, from theoret-
ical results to applications of formal methods. These papers apply or extend formal
methods to a wide range of domains such as concurrency, machine learning and neural
networks, quantum systems, as well as hybrid and stochastic systems. The program fea-
tured keynote talks by Noriko Arai (National Institute of Informatics, Japan), Leonardo
de Moura (Amazon Web Services, USA), and Erika Abraham (RWTH Aachen Univer-
sity, Germany). In addition to the contributed talks, CAV 2024 also hosted the CAV
Award ceremony, and a report from the Synthesis Competition (SYNTCOMP) chairs.
Furthermore, we continued the tradition of Logic Lounge, a series of discussions on
computer science topics targeting a general audience. This year’s Logic Lounge speaker
was Scott J. Shapiro (Yale Law School) who spoke about topics at the intersection of
formal methods and the law.

In addition to the main conference, CAV 2024 hosted the following workshops: Ver-
ificationMentoringWorkshop (VMW), Correct Data Compression (CoDaC),Workshop
on Synthesis (SYNT), Workshop on Verification of Probabilistic Programs (VeriProP),
Developing an Open-Source, State-of-the-Art Symbolic Model-Checking Framework
for the Model-Checking Research Community (OSSyM), Formal Reasoning in Dis-
tributed Algorithms (FRIDA), Workshop on Hyperproperties: Advances in Theory
and Practice (HYPER), Symposium on AI Verification (SAIV), Deep Learning-aided
Verification (DAV), and International Workshop on Satisfiability Modulo Theories
(SMT).

Organizing a flagship conference like CAV requires a great deal of effort from the
community. The Program Committee for CAV 2024 consisted of 90 members—a com-
mittee of this size ensures that each member has to review only a reasonable number of
papers in the allotted time. In all, the committee members wrote over 900 reviews while
investing significant effort to maintain and ensure the high quality of the conference
program. We are grateful to the CAV 2024 Program Committee for their outstanding
efforts in evaluating the submissions and making sure that each paper got a fair chance.

vi Preface

Like recent years in CAV, we made artifact evaluation mandatory for tool paper submis-
sions, but optional for the rest of the accepted papers. This year we received 54 artifact
submissions, all of which received at least one badge. The Artifact Evaluation Commit-
tee consisted of 92 members who put in significant effort to evaluate each artifact. The
goal of this process was to provide constructive feedback to tool developers and help
make the research published in CAV more reproducible. We are also very grateful to
the Artifact Evaluation Committee for their hard work and dedication in evaluating the
submitted artifacts.

CAV 2024 would not have been possible without the tremendous help we received
from several individuals, and we would like to thank everyone who helped make CAV
2024 a success. We would like to thank Mirco Giacobbe and Milan Ceska for chairing
the Artifact Evaluation Committee. We also thank Temegshen Kahsai for chairing the
workshop organization. Norine Coenen and Hadar Frenkel for leading publicity efforts,
Eric Koskinen and Grigory Fedyukovich as the fellowship chairs, Grigory Fedyukovich
as sponsorship chair, and John (Zhengyang) Lu as the website chair. Hari Govind V. K.
helped prepare the proceedings. We also thank Grigory Fedyukovich, Eric Koskinen,
UmangMathur, Yoni Zohar, and JingboWang for organizing the VerificationMentoring
Workshop. Last but not least, we would like to thank the members of the CAV Steering
Committee (Kenneth McMillan, Aarti Gupta, Orna Grumberg, and Daniel Kroening)
for helping us with several important aspects of organizing CAV 2024.

We hope that you will find the proceedings of CAV 2024 scientifically interesting
and thought-provoking!

June 2024 Arie Gurfinkel
Vijay Ganesh

Organization

Steering Committee

Aarti Gupta Princeton University
Daniel Kroening University of Oxford
Kenneth McMillan University of Texas at Austin
Ornal Grumberg Technion

Conference Co-chairs

Arie Gurfinkel University of Waterloo
Vijay Ganesh Georgia Institute of Technology

Artifact Evaluation Co-chairs

Mirco Giacobbe University of Birmingham
Milan Ceska Brno University of Technology

Local Chair

Xujie Si University of Toronto

Area Chairs

Alexandra Silva Cornell University
Anthony Widjaja Lin Technical University of Kaiserslautern
Borzoo Bonakdarpour Michigan State University
Corina Pasareanu NASA
Kristin Yvonne Rozier Iowa State University
Laura Kovacs TU Wien

viii Organization

Workshop Chair

Temesghen Kahsai Amazon

Fellowship Chairs

Grigory Fedyukovich Florida State University
Eric Koskinen Stevens Institute of Technology

Publicity Chairs

Norine Coenen CISPA Helmholtz Center for Information Security
Hadar Frenkel CISPA Helmholtz Center for Information Security

Publication Chair

Hari Govind V. K. University of Waterloo

Website Chair

John (Zhengyang) Lu University of Waterloo

Program Committee

Aditya Thakur University of California, Davis
Ahmed Bouajjani IRIF
Aina Niemetz Stanford University
Akash Lal Microsoft Research
Alan Hu University of British Columbia
Alessandro Cimatti Fondazione Bruno Kessler
Alexander Nadel Technion & Intel
Alexandra Silva Cornell University
Amir Goharshady Hong Kong University of Science and Technology
Anastasia Mavridou KBR Inc.
Andrew Reynolds University of Iowa
Anna Slobodova Intel

Organization ix

Anthony Widjaja Lin Technical University of Kaiserslautern
Azadeh Farzan University of Toronto
B. Srivathsan Chennai Mathematical Institute
Benjamin Kaminski Saarland University
Bernd Finkbeiner CISPA Helmholtz Center for Information Security
Bettina Könighofer Graz University of Technology
Bor-Yuh Evan Chang University of Colorado
Borzoo Bonakdarpour Michigan State University
Caterina Urban Inria
Cezara Dragoi Inria
Christopher Hahn Google
Constantin Enea Ecole Polytechnique
Corina Pasareanu NASA
Deepak D’Souza Indian Institute of Science
Dejan Jovanović Amazon
Elizabeth Polgreen University of Edinburgh
Elvira Albert Universidad Complutense de Madrid
Erika Abraham RWTH Aachen University
Eunsuk Kang Carnegie Mellon University
Florin Manea University of Göttingen
Gagandeep Singh University of Illinois Urbana-Champaign
Grigory Fedyukovich Florida State University
Guy Amir Hebrew University of Jerusalem
Hadar Frenkel CISPA Helmholtz Center for Information Security
Hongce Zhang Hong Kong University of Science and

Technology, China
Ichiro Hasuo National Institute of Informatics
Isil Dillig University of Texas at Austin
Jana Hofmann Azure Research, Microsoft
Jianwen Li East China Normal University
Jingbo Wang University of Southern California
Jorge A. Navas Certora
Ken McMillan University of Texas at Austin
Kristin Yvonne Rozier Iowa State University
Kshitij Bansal Google
Kuldeep Meel University of Toronto
Kumar Madhukar Indian Institute of Technology Delhi
Laura Kovacs TU Wien
Liana Hadarean Amazon
Loris D’Antoni University of Wisconsin-Madison
Mathias Preiner Stanford University
Matthias Heizmann University of Freiburg

x Organization

Mihaela Sighireanu Université Paris-Saclay
Mirco Giacobbe University of Birmingham
Naijun Zhan Chinese Academy of Sciences
Natasha Sharygina University of Lugano
Nathalie Sznajder Sorbonne Université
Nikolaj Bjørner Microsoft Research
Ning Luo Northwestern University
Oded Padon VMware Research
Orna Grumberg Technion
Pascal Fontaine Université de Liège
Peter Schrammel University of Sussex
Qirun Zhang Georgia Institute of Technology
Ranjit Jhala University of California, San Diego
Ravi Mangal Carnegie Mellon University
Rayna Dimitrova CISPA Helmholtz Center for Information Security
Rohit Dureja Advanced Micro Devices, Inc.
Roland Yap National University of Singapore
Rose Bohrer Worcester Polytechnic Institute
Ruzica Piskac Yale University
S. Akshay Indian Institute of Technology Bombay
Sebastian Junges Radboud University
Serdar Tasiran Amazon
Sharon Shoham Tel Aviv University
Shuvendu Lahiri Microsoft Research
Sorav Bansal Indian Institute of Technology Delhi
Sriram Sankaranarayanan University of Colorado Boulder
Subhajit Roy Indian Institute of Technology Kanpur
Subodh Sharma Indian Institute of Technology Delhi
Suguman Bansal Georgia Institute of Technology
Supratik Chakraborty Indian Institute of Technology Bombay
Temesghen Kahsai Amazon
Umang Mathur National University of Singapore
Xujie Si University of Toronto
Yakir Vizel Technion
Yann Thierry-Mieg LIP6
Yu-Fang Chen Academia Sinica
Zvonimir Rakamaric Amazon

Organization xi

Artifact Evaluation Committee

Abhinandan Pal University of Birmingham
Adwait Godbole UC Berkeley
Akshatha Shenoy Tata Consultancy Services Ltd.
Alejandro Hernández-Cerezo Complutense University of Madrid
Alvin George IISc Bangalore
Ameer Hamza Florida State University
Andreas Katis KBR Inc. at NASA Ames Research Center
Anna Becchi Fondazione Bruno Kessler
Benjamin Mikek Georgia Institute of Technology
Bohua Zhan Institute of Software, Chinese Academy of

Sciences
Chenyu Zhou University of Southern California
Daniel Dietsch University Freiburg
Daniel Riley Florida State University
Diptarko Roy University of Oxford
Edoardo Manino University of Manchester
Ennio Visconti TU Wien
Enrico Magnago Amazon Web Services
Filip Cano Graz University of Technology
Filip Macák Brno University of Technology
Florian Renkin IRIF
Francesco Parolini Sorbonne Université
Francesco Pontiggia TU Wien
Gianluca Redondi Fondazione Bruno Kessler
Giulio Garbi University of Molise
Haoze Wu Stanford University
Jacqueline Mitchell University of Southern California
Jialuo Chen Zhejiang University
Jie An National Institute of Informatics
Jiong Yang National University of Singapore
Julia Klein University of Konstanz
Kartik Nagar IIT Madras
Kaushik Mallik Institute of Science and Technology Austria
Kazuki Watanabe National Institute of Informatics, Tokyo
Kevin Cheang Amazon Web Services
Konstantin Kueffner Institute of Science and Technology Austria
Lelio Brun National Institute of Informatics
Lorenz Leutgeb Max Planck Institute for Informatics
Luca Arnaboldi University of Birmingham
Lucas Zavalia Florida State University

xii Organization

Malinda Dilhara University of Colorado Boulder
Marcel Moosbrugger TU Wien
Marck van der Vegt Radboud University
Marco Casadio Heriot-Watt University
Marco Lewis Newcastle University
Marek Chalupa Institute of Science and Technology Austria
Mário Pereira NOVA University Lisbon
Marius Mikučionis Aalborg University
Mathias Fleury University of Freiburg
Matteo Marescotti Meta Platforms
Matthias Schlaipfer Amazon Web Services
Maximilian Weininger Institute of Science and Technology Austria
Mertcan Temel Intel Corporation
Mihir Mehta University of Texas at Austin
N. Ege Saraç Institute of Science and Technology Austria
Natasha Jeppu Amazon Web Services
Neea Rusch Augusta University
Neta Elad Tel Aviv University
Nham Le University of Waterloo
Oliver Markgraf Max Planck Institute Kaiserslautern
Omar Inverso Gran Sasso Science Institute
Omri Isac Hebrew University of Jerusalem
Oyendrila Dobe Michigan State University
P. Habeeb Indian Institute of Science
Patrick Trentin Amazon Web Services
Philippe Heim CISPA Helmholtz Center for Information Security
Po-Chun Chien LMU Munich
Ranadeep Biswas Informal Systems
Remi Desmartin Heriot-Watt University
Roman Andriushchenko Brno University of Technology
Samuel Pastva Institute of Science and Technology Austria
Sayan Mukherjee Université libre de Bruxelles
Shengping Xiao East China Normal University
Shubham Ugare University of Illinois Urbana-Champaign
Shufang Zhu University of Oxford
Shuo Ding Georgia Institute of Technology
Siddharth Priya University of Waterloo
Sidi Mohamed Beillahi University of Toronto
Stefan Pranger Graz University of Technology
Tobias Meggendorfer Lancaster University Leipzig
Tobias Winkler RWTH Aachen University
Tzu-Han Hsu Michigan State University

Organization xiii

Wael-Amine Boutglay Université Paris Cité and Mohammed VI
Polytechnic University

Xidan Song University of Manchester
Xindi Zhang Institute of Software, Chinese Academy of

Sciences
Xiyue Zhang University of Oxford
Yannan Li Oracle
Yannik Schnitzer University of Oxford
Yizhak Elboher Hebrew University of Jerusalem
Yuzhou Fang University of Southern California
Zhe Tao University of California, Davis
Zhendong Ang National University of Singapore
Zhiwei Zhang Rice University

Additional Reviewers

Albarghouthi, Aws
Amarilli, Antoine
Ang, Zhendong
Antal, László
Banerjee, Subarno
Batz, Kevin
Becchi, Anna
Ben Shimon, Yoav
Biagiola, Matteo
Blicha, Martin
Bossut, Camille
Britikov, Konstantin
Campion, Marco
De Palma, Alessandro
Ding, Shuo
Dobe, Oyendrila
Eeralla, Ajay
Elad, Neta
Elboher, Yizhak
Emmi, Michael
Frenkel, Eden
Georgiou, Pamina
Gerlach, Carolina
Gürtler, Tobias
Hartmanns, Arnd
Hoad, Stuart
Hong, Chih-Duo

Hsu, Tzu-Han
Hunt, Warren
Hyvärinen, Antti
Ivrii, Alexander
Karmarkar, Hrishikesh
Koll, Charles
Labbaf, Faezeh
Lester, Martin Mariusz
Lotan, Raz
Luo, Ziyan
Magnago, Enrico
Metta, Ravindra
Metzger, Niklas
Mikek, Benjamin
Moosbrugger, Marcel
Morris, Jason
Mover, Sergio
Mukhopadhyay, Diganta
Nalbach, Jasper
Otoni, Rodrigo
Pailoor, Shankara
Patterson, Zachary
Piskachev, Goran
Promies, Valentin
Quatmann, Tim
Rappoport, Omer
Ravitch, Tristan

xiv Organization

Rawson, Michael
Ritzert, Martin
Saatcioglu, Goktug
Shenoy, Akshatha
Shetty, Abhishek
Shi, Zheng
Tarrach, Thorsten
Trivedi, Ashutosh
Tunç, Hünkar Can
Verscht, Lena

Visconti, Ennio
Winkler, Tobias
Zhang, Minjian
Kaivola, Roope
Kaufmann, Daniela
Kolárik, Tomáš
Le, Nham
Li, Yong
Lu, Zhengyang
Löding, Christof

Invited Talks

How to Solve Math Problems Without Talent

Noriko Arai

National Institute of Informatics, Japan

The desire to solve mathematical problems without inherent talent has been a long-
standing aspiration of humanity since ancient times. In this lecture, we delve into the
complexity theory of proofs, examining the relationship between talent and the cost
of proof. Additionally, we discuss the possibilities and limitations of using a fusion
of computational methods, including computer algebra and natural language process-
ing, to solve mathematical problems with machines. Join us as we explore the fron-
tier of machine-enabled mathematical problem-solving, reflecting on its potential and
boundaries in fulfilling this age-old human ambition.

Bridging Formal Mathematics and Software Verification

Leonardo de Moura

Amazon Web Services, USA

This talk will explore the dual applications of Lean 4, the latest iteration of the
Lean proof assistant and programming language, in advancing formal mathematics and
software verification. We begin with an overview of its design and implementation. We
will detail how Lean 4 enables the formalization of complex mathematical theories and
proofs, thereby enhancing collaboration and reliability in mathematical research. This
endeavor is supported by a philosophy that promotes decentralized innovation, empow-
ering a diverse community of researchers, developers, and enthusiasts to collaboratively
push the boundaries of mathematical practice. Simultaneously, we will discuss software
verification applications using Lean 4 at AWS. By leveraging Lean’s dual capabilities
as both a proof assistant and a functional programming language, we achieve a cohesive
approach to software development and verification. Additionally, the talk will outline
future directions for Lean 4, including efforts to expand its user community, enhance
user experience, and further integrate formal methods into both academic research and
industrial applications.

The Art of SMT Solving

Erika Ábrahám

RWTH Aachen University, Germany

Satisfiability Modulo Theories (SMT) solving [3, 4, 9] is a technology for the fully
automated solution of logical formulas. SMT solvers can be used as general-purpose off-
the-shelf tools. Due to their impressive efficiency, they are nowadays frequently used in
a wide variety of applications [2]. A typical application encodes real-world problems as
logical formulas, whose solutions can be decoded to solutions of the original real-world
problem.

Besides its unquestionable practical impact, SMT solving has another great merit:
it inspired truly elegant ideas, which do not only enable the construction of efficient
software tools, but provide also interesting theoretical insights.

For propositional logic where each formula has a finite number of Boolean variables,
we could enumerate and check all possible variable assignments, but due to its bad
average complexity, this exploration approach is not applicable in practice. Alternatively,
the proof system of Boolean resolution can be applied, but the applicability of this
method is also restricted to rather small problems. However, in the 90s, SAT solvers
succeeded to become impressively powerful due to an elegant combination of these two
methods, where the proof construction is guided by an exploration of the assignment
space equipped with a smart look-ahead mechanism [5, 6, 10].

The effectivity of SAT solvers gave motivation to extend the scope of solver tech-
nologies to formulas of quantifier-free first-order logic over different theories. On the
one hand, eager SMT solving approaches have been proposed for certain theories to
transform their formulas to propositional logic and use SAT solving to check the result
for satisfiability. On the other hand, (full/less) lazy SMT solving uses SAT solving to
explore the Boolean structure of the formula, and employs theory solvers to check the
consistency of Boolean assignments in the theory domains.

Recently, the idea of symbiotic combination of exploration and proof construction
has been also generalized to theories, most notably quantifier-free real algebra [7], in
the framework of the model constructing satisfiability calculus (MCSAT) [11]. In this
approach, exploration-guided proof construction is designed to run both in the Boolean
space and in the theory domain, simultaneously in a consistent manner.

Both the SAT and theMCSAT approaches are based on the generalization of “wrong
guesses”, made during exploration, into pieces of a proof, which are collected and used
to synthesize a global proof during the solving process. While being one of the currently
best approaches, for large or complex formulas, a large number of “proof pieces” cause
high effort for their processing and restrict scalability.

Thus the question comes up whether there are also other ways to store such infor-
mation in a more structured way, allowing a less costly processing. This idea is taken

xxii E. Ábrahám

up by the cylindrical algebraic covering method [1, 8], developed for the satisfiability
check of conjunctions of polynomial constraints.

In this talk we give an introduction to the mechanisms of SAT and SMT solving,
discuss the above ideas, and illustrate the usage of SMT solvers on a few application
examples.

References

1. Ábrahám, E., Davenport, J.H., England, M., Kremer, G.: Deciding the consistency
of non-linear real arithmetic constraints with a conflict driven search using cylindri-
cal algebraic coverings. J. Log. Algebraic Methods Program. 119, 100633 (2021).
https://doi.org/10.1016/j.jlamp.2020.100633

2. Ábrahám, E., Kovács, J., Remke, A.: SMT: something you must try. In: Herber,
P., Wijs, A. (eds) iFM 2023. LNCS, vol. 14300, pp. 3–18. Springer, Cham (2024).
https://doi.org/10.1007/978-3-031-47705-8_1

3. Ábrahám, E., Kremer, G.: SMT solving for arithmetic theories: theory and tool
support. In: Proceedings SYNASC 2017, pp. 1–8. IEEE (2017). https://doi.org/10.
1109/SYNASC.2017.00009

4. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories.
In: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications,
vol. 185, chap. 26, pp. 825–885. IOS Press (2009)

5. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3), 201–215 (1960)

6. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-
proving. Commun. ACM 5(7), 394–397 (1962). https://doi.org/10.1145/368273.
368557

7. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_27

8. Kremer, G., Ábrahám, E., England, M., Davenport, J.H.: On the implementation of
cylindrical algebraic coverings for satisfiability modulo theories solving. In: Pro-
ceedings SYNASC 2021, pp. 37–39. IEEE (2021). https://doi.org/10.1109/SYN
ASC54541.2021.00018

9. Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-662-50497-0

10. Moskewicz, M., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering
an efficient SAT solver. In: Proceedings 38th DesignAutomation Conference (2001)

11. de Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In:
Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol.
7737, pp. 1–12. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
35873-9_1

https://doi.org/10.1016/j.jlamp.2020.100633
https://doi.org/10.1007/978-3-031-47705-8_1
https://doi.org/10.1109/SYNASC.2017.00009
https://doi.org/10.1145/368273.368557
https://doi.org/10.1007/978-3-642-31365-3_27
https://doi.org/10.1109/SYNASC54541.2021.00018
https://doi.org/10.1007/978-3-662-50497-0
https://doi.org/10.1007/978-3-642-35873-9_1

Contents – Part I

Decision Procedures

Split Gröbner Bases for Satisfiability Modulo Finite Fields 3
Alex Ozdemir, Shankara Pailoor, Alp Bassa, Kostas Ferles,
Clark Barrett, and Işil Dillig

Arithmetic Solving in Z3 . 26
Nikolaj Bjørner and Lev Nachmanson

Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 42
Peter Habermehl, Vojtěch Havlena, Michal Hečko, Lukáš Holík,
and Ondřej Lengál

Distributed SMT Solving Based on Dynamic Variable-Level Partitioning 68
Mengyu Zhao, Shaowei Cai, and Yuhang Qian

Quantified Linear Arithmetic Satisfiability via Fine-Grained Strategy
Improvement . 89

Charlie Murphy and Zachary Kincaid

From Clauses to Klauses . 110
Joseph E. Reeves, Marijn J. H. Heule, and Randal E. Bryant

CaDiCaL 2.0 . 133
Armin Biere, Tobias Faller, Katalin Fazekas, Mathias Fleury,
Nils Froleyks, and Florian Pollitt

Formally Certified Approximate Model Counting . 153
Yong Kiam Tan, Jiong Yang, Mate Soos, Magnus O. Myreen,
and Kuldeep S. Meel

Scalable Bit-Blasting with Abstractions . 178
Aina Niemetz, Mathias Preiner, and Yoni Zohar

Hardware Model Checking

The MoXI Model Exchange Tool Suite . 203
Chris Johannsen, Karthik Nukala, Rohit Dureja, Ahmed Irfan,
Natarajan Shankar, Cesare Tinelli, Moshe Y. Vardi,
and Kristin Yvonne Rozier

xxiv Contents – Part I

SMLP: Symbolic Machine Learning Prover . 219
Franz Brauße, Zurab Khasidashvili, and Konstantin Korovin

Avoiding the Shoals - A New Approach to Liveness Checking 234
Yechuan Xia, Alessandro Cimatti, Alberto Griggio, and Jianwen Li

Toward Liveness Proofs at Scale . 255
Kenneth L. McMillan

Software Verification

Strided Difference Bound Matrices . 279
Arjun Pitchanathan, Albert Cohen, Oleksandr Zinenko,
and Tobias Grosser

The Top-Down Solver Verified: Building Confidence in Static Analyzers 303
Yannick Stade, Sarah Tilscher, and Helmut Seidl

End-to-End Mechanized Proof of a JIT-Accelerated eBPF Virtual Machine
for IoT . 325

Shenghao Yuan, Frédéric Besson, and Jean-Pierre Talpin

A Framework for Debugging Automated Program Verification Proofs
via Proof Actions . 348

Chanhee Cho, Yi Zhou, Jay Bosamiya, and Bryan Parno

Verification Algorithms for Automated Separation Logic Verifiers 362
Marco Eilers, Malte Schwerhoff, and Peter Müller

SMT-Based Symbolic Model-Checking for Operator Precedence
Languages . 387

Michele Chiari, Luca Geatti, Nicola Gigante, and Matteo Pradella

On Polynomial Expressions with C-Finite Recurrences in Loops
with Nested Nondeterministic Branches . 409

Chenglin Wang and Fangzhen Lin

Breaking the Mold: Nonlinear Ranking Function Synthesis Without
Templates . 431

Shaowei Zhu and Zachary Kincaid

Hevm, a Fast Symbolic Execution Framework for EVM Bytecode 453
Dxo, Mate Soos, Zoe Paraskevopoulou, Martin Lundfall,
and Mikael Brockman

Contents – Part I xxv

SolTG: A CHC-Based Solidity Test Case Generator . 466
Konstantin Britikov, Ilia Zlatkin, Grigory Fedyukovich, Leonardo Alt,
and Natasha Sharygina

Interactive Theorem Proving Modulo Fuzzing . 480
Sujit Kumar Muduli, Rohan Ravikumar Padulkar, and Subhajit Roy

Author Index . 495

Contents – Part II

Concurrency

The VerCors Verifier: A Progress Report . 3
Lukas Armborst, Pieter Bos, Lars B. van den Haak, Marieke Huisman,
Robert Rubbens, Ömer Şakar, and Philip Tasche

Parsimonious Optimal Dynamic Partial Order Reduction . 19
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Sarbojit Das,
Bengt Jonsson, and Konstantinos Sagonas

Collective Contracts for Message-Passing Parallel Programs 44
Ziqing Luo and Stephen F. Siegel

Distributed Systems

mypyvy: A Research Platform for Verification of Transition Systems
in First-Order Logic . 71

James R. Wilcox, Yotam M. Y. Feldman, Oded Padon, and Sharon Shoham

Efficient Implementation of an Abstract Domain of Quantified First-Order
Formulas . 86

Eden Frenkel, Tej Chajed, Oded Padon, and Sharon Shoham

Verifying Cake-Cutting, Faster . 109
Noah Bertram, Tean Lai, and Justin Hsu

Runtime Verification and Monitoring

General Anticipatory Runtime Verification . 133
Raik Hipler, Hannes Kallwies, Martin Leucker, and César Sánchez

Proactive Real-Time First-Order Enforcement . 156
François Hublet, Leonardo Lima, David Basin, Sr -dan Krstić,
and Dmitriy Traytel

Predictive Monitoring with Strong Trace Prefixes . 182
Zhendong Ang and Umang Mathur

xxviii Contents – Part II

Case Studies and Tools

Monitoring Unmanned Aircraft: Specification, Integration,
and Lessons-Learned . 207

Jan Baumeister, Bernd Finkbeiner, Florian Kohn, Florian Löhr,
Guido Manfredi, Sebastian Schirmer, and Christoph Torens

Testing the Migration from Analog to Software-Based Railway
Interlocking Systems . 219

Anna Becchi, Alessandro Cimatti, and Giuseppe Scaglione

soid: A Tool for Legal Accountability for Automated Decision Making 233
Samuel Judson, Matthew Elacqua, Filip Cano, Timos Antonopoulos,
Bettina Könighofer, Scott J. Shapiro, and Ruzica Piskac

Machine Learning and Neural Networks

Marabou 2.0: A Versatile Formal Analyzer of Neural Networks 249
Haoze Wu, Omri Isac, Aleksandar Zeljić, Teruhiro Tagomori,
Matthew Daggitt, Wen Kokke, Idan Refaeli, Guy Amir, Kyle Julian,
Shahaf Bassan, Pei Huang, Ori Lahav, Min Wu, Min Zhang,
Ekaterina Komendantskaya, Guy Katz, and Clark Barrett

Monitizer: Automating Design and Evaluation of Neural Network Monitors . . . 265
Muqsit Azeem, Marta Grobelna, Sudeep Kanav, Jan Křetínský,
Stefanie Mohr, and Sabine Rieder

Guiding Enumerative Program Synthesis with Large Language Models 280
Yixuan Li, Julian Parsert, and Elizabeth Polgreen

Enchanting Program Specification Synthesis by Large Language Models
Using Static Analysis and Program Verification . 302

Cheng Wen, Jialun Cao, Jie Su, Zhiwu Xu, Shengchao Qin, Mengda He,
Haokun Li, Shing-Chi Cheung, and Cong Tian

Verifying Global Two-Safety Properties in Neural Networks
with Confidence . 329

Anagha Athavale, Ezio Bartocci, Maria Christakis, Matteo Maffei,
Dejan Nickovic, and Georg Weissenbacher

Certified Robust Accuracy of Neural Networks Are Bounded Due to Bayes
Errors . 352

Ruihan Zhang and Jun Sun

Contents – Part II xxix

Boosting Few-Pixel Robustness Verification via Covering Verification
Designs . 377

Yuval Shapira, Naor Wiesel, Shahar Shabelman,
and Dana Drachsler-Cohen

Unifying Qualitative and Quantitative Safety Verification
of DNN-Controlled Systems . 401

Dapeng Zhi, Peixin Wang, Si Liu, C.-H. Luke Ong, and Min Zhang

Author Index . 427

Contents – Part III

Synthesis and Repair

Syntax-Guided Automated Program Repair for Hyperproperties 3
Raven Beutner, Tzu-Han Hsu, Borzoo Bonakdarpour,
and Bernd Finkbeiner

The SemGuS Toolkit . 27
Keith J. C. Johnson, Andrew Reynolds, Thomas Reps, and Loris D’Antoni

Relational Synthesis of Recursive Programs via Constraint Annotated
Tree Automata . 41

Anders Miltner, Ziteng Wang, Swarat Chaudhuri, and Isil Dillig

Information Flow Guided Synthesis with Unbounded Communication 64
Bernd Finkbeiner, Niklas Metzger, and Yoram Moses

Synthesis of Temporal Causality . 87
Bernd Finkbeiner, Hadar Frenkel, Niklas Metzger, and Julian Siber

Dynamic Programming for Symbolic Boolean Realizability and Synthesis 112
Yi Lin, Lucas Martinelli Tabajara, and Moshe Y. Vardi

Localized Attractor Computations for Infinite-State Games 135
Anne-Kathrin Schmuck, Philippe Heim, Rayna Dimitrova,
and Satya Prakash Nayak

Learning

Bisimulation Learning . 161
Alessandro Abate, Mirco Giacobbe, and Yannik Schnitzer

Regular Reinforcement Learning . 184
Taylor Dohmen, Mateo Perez, Fabio Somenzi, and Ashutosh Trivedi

LTL Learning on GPUs . 209
Mojtaba Valizadeh, Nathanaël Fijalkow, and Martin Berger

Safe Exploration in Reinforcement Learning by Reachability Analysis
over Learned Models . 232

Yuning Wang and He Zhu

xxxii Contents – Part III

Cyberphysical and Hybrid Systems

Using Four-Valued Signal Temporal Logic for Incremental Verification
of Hybrid Systems . 259

Florian Lercher and Matthias Althoff

Optimization-Based Model Checking and Trace Synthesis for Complex
STL Specifications . 282

Sota Sato, Jie An, Zhenya Zhang, and Ichiro Hasuo

Inner-Approximate Reachability Computation via Zonotopic Boundary
Analysis . 307

Dejin Ren, Zhen Liang, Chenyu Wu, Jianqiang Ding, Taoran Wu,
and Bai Xue

Scenario-Based Flexible Modeling and Scalable Falsification
for Reconfigurable CPSs . 329

Jiawan Wang, Wenxia Liu, Muzimiao Zhang, Jiaqi Wei, Yuhui Shi,
Lei Bu, and Xuandong Li

Probabilistic Systems

Playing Games with Your PET: Extending the Partial Exploration Tool
to Stochastic Games . 359

Tobias Meggendorfer and Maximilian Weininger

What Should Be Observed for Optimal Reward in POMDPs? 373
Alyzia-Maria Konsta, Alberto Lluch Lafuente, and Christoph Matheja

Stochastic Omega-Regular Verification and Control with Supermartingales 395
Alessandro Abate, Mirco Giacobbe, and Diptarko Roy

Lexicographic Ranking Supermartingales with Lazy Lower Bounds 420
Toru Takisaka, Libo Zhang, Changjiang Wang, and Jiamou Liu

Probabilistic Access Policies with Automated Reasoning Support 443
Shaowei Zhu and Yunbo Zhang

Compositional Value Iteration with Pareto Caching . 467
Kazuki Watanabe, Marck van der Vegt, Sebastian Junges,
and Ichiro Hasuo

Contents – Part III xxxiii

Quantum Systems

Approximate Relational Reasoning for Quantum Programs 495
Peng Yan, Hanru Jiang, and Nengkun Yu

QReach: A Reachability Analysis Tool for Quantum Markov Chains 520
Aochu Dai and Mingsheng Ying

Measurement-Based Verification of Quantum Markov Chains 533
Ji Guan, Yuan Feng, Andrea Turrini, and Mingsheng Ying

Simulating Quantum Circuits by Model Counting . 555
Jingyi Mei, Marcello Bonsangue, and Alfons Laarman

Author Index . 579

Decision Procedures

Split Gröbner Bases for Satisfiability
Modulo Finite Fields

Alex Ozdemir1,2(B), Shankara Pailoor2, Alp Bassa2, Kostas Ferles2,
Clark Barrett1, and Işil Dillig2

1 Stanford University, Stanford, USA
aozdemir@cs.stanford.edu
2 Veridise, Stanford, USA

Abstract. Satisfiability modulo finite fields enables automated verifica-
tion for cryptosystems. Unfortunately, previous solvers scale poorly for
even some simple systems of field equations, in part because they build a
full Gröbner basis (GB) for the system. We propose a new solver that uses
multiple, simpler GBs instead of one full GB. Our solver, implemented
within the cvc5 SMT solver, admits specialized propagation algorithms,
e.g., for understanding bitsums. Experiments show that it solves impor-
tant bitsum-heavy determinism benchmarks far faster than prior solvers,
without introducing much overhead for other benchmarks.

1 Introduction

Finite fields are critical to many cryptosystems. They underlie the AES-
GCM cipher and ECDH key-exchange, which are used in over 80% of web
requests [2,42]. They also underlie zero-knowledge proof systems (ZKPs) and
multi-party computation protocols that are used in billion-dollar private cryp-
tocurrencies [27,28,40,46], private DNS filters [34], agricultural auctions [8], dis-
crimination studies [5], and US inter-agency data sharing [3].

Since (finite-)field-based cryptosystems are so prevalent, bugs in their imple-
mentations can have serious consequences. Furthermore, such bugs are not hypo-
thetical. They routinely cause CVEs in OpenSSL [18,19,48] and compromise
cryptocurrencies [1,57,62].

Motivated by this problem, recent research has explored automated verifi-
cation for field-based computations [50,53]. However, these techniques inherit
scalability challenges from the field-solving capabilities of current Satisfiability
Modulo Theories (SMT) solvers. The best SMT solver [50] for fields of crypto-
graphic size (≈ 2256) uses Gröbner bases (GBs) [10]. A GB can answer many
questions about a system of equations, but the GB itself must first be computed.

Unfortunately, computing a GB has high theoretical complexity: doubly expo-
nential in the worst case [45]. In practice, computing a GB can be feasible for some
systems [50], but it is intractable for others, even simple ones. For example, con-
sider a prime field—representable as the integers modulo a prime p. Suppose that
p ≥ 2b and consider the following system in variables X1, . . . , Xb, Z:
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 3–25, 2024.
https://doi.org/10.1007/978-3-031-65627-9_1

https://doi.org/10.5281/zenodo.10917330
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65627-9_1&domain=pdf
https://doi.org/10.1007/978-3-031-65627-9_1

4 A. Ozdemir et al.

b∧

i=1

Xi(1 − Xi) = 0 ∧ X1 + 2X2 + 4X3 + · · · + 2b−1Xb = 0 ∧ XbZ = 1

In some sense, this system is simple: the first equation forces each Xi to be 0
or 1, and the second equation forces every Xi to be 0, which then contradicts
the final equation. However, computing a GB for this system using current algo-
rithms takes exponential time. We investigate systems like this in Sect. 3, but
essentially there are two conclusions: first, a GB is hard to compute because of
the combination of the bitsum

∑
i 2i−1Xi and the bit constraints Xi(1−Xi) = 0;

second, bitsums and bit constraints are common when verifying systems that use
ZKPs. So, the scalability of GB-based reasoning with bitsums is a real problem
for ZKP verification.

To overcome this problem, we present a new approach for solving or refuting
a system S of finite field equations. The key idea is that of a split Gröbner basis.
If S is split into (possibly overlapping) subsystems S1 ∧ · · · ∧ Sk = S, and Bi is
a GB for Si, then we call the sequence B1, . . . , Bk a split GB for S. A split GB
approximates a full GB for S: it gives detailed information about each subsystem
Si, but more limited information about S. In exchange for this approximation,
if each Si is “small” or “simple,” then the split GB might be easier to compute.

In this paper, we present a decision procedure for finite field arithmetic based
on the idea of iteratively refining a split GB. It starts with some split of S
and then refines it as necessary by sharing equations between the Si’s. We also
add an extensible propagation algorithm for deducing new equations. Sharing
equations increases the cost of computing the split basis but also improves the
approximation that it offers. The key advantage is that the procedure can often
solve or refute S before any Si becomes too hard to compute a basis for.

We implement our approach as a solver for prime fields within the cvc5 SMT
solver [4]. Our solver (a) splits bitsums and their bit constraints across two
subsystems and (b) includes a specialized propagator for bitsum reasoning. This
is particularly effective for important, bitsum-heavy verification problems related
to ZKPs. For these problems, experiments show that our solver exponentially
improves on prior work; for other problems, it has low overhead.

One application we consider is verifying field blaster (F-blaster) rules in a
ZKP compiler: these rules encode Boolean and bit-vector operations as (con-
junctions of) field equations (see Sect. 2). We give a new SMT encoding for
rule correctness, prove our encoding is correct, and show that combining it with
our new solver improves the state of the art for F-blaster verification [52]. To
summarize, our key contributions are:

1. Split: an abstract decision procedure for field solving using a split Gröbner
basis instead of a full Gröbner basis.

2. BitSplit: an instantiation of Split, optimized for bitsums and implemented in
cvc5. It is exponentially faster than prior solvers on important benchmarks.

3. An application: a new encoding for F-blaster verification conditions that
improves the state of the art for F-blaster verification by leveraging BitSplit.

Split Gröbner Bases for SMFF 5

The rest of the paper is organized as follows. First, we review related work
(Sect. 1.1), give background (Sect. 2), and present a motivating example (Sect. 3).
Then, we explain our abstract and concrete decision procedures (Sect. 4) and
present experiments (Sect. 5). Last, we apply our solver to the problem of verified
F-blasting (Sect. 6).

1.1 Related Work

There are two prior finite field solvers for SMT: Hader et al. [36,38,39] use
subresultant regular subchains [58], and Ozdemir et al. [50] use Gröbner bases.
As we will see (Sect. 5), only the latter scales to large fields. Our work builds on
it.

Other prior works propose verification and linting tools for ZKPs. QED2 [53]
checks whether an output variable Y in some system is uniquely determined by
the values of input variables X1, . . . , Xm. Another project [52] verifies that a ZKP
compiler’s F-blaster is correct. These both use satisfiability modulo finite fields
and could benefit from our work. Other tools are purely syntactic [20,59,60].

Further afield, others consider finite fields in interactive theorem provers,
applied to mathematics [9,16,31,41], to program correctness [25,26,54,55], and
even to ZKPs [13,15,29,43]. In contrast, our work is fully automatic.

2 Background

Here we summarize necessary definitions and facts about finite fields
[21, Part IV], computer algebra [17], satisfiability modulo finite fields
(SMFF) [47,50], and applications of SMFF [52,53]. See the references for further
details.
Finite Fields and Polynomials. For naturals a ≥ 1, [a] denotes {1, . . . , a}. In
general, x denotes a list of elements x1, . . . , xm. Let p be a prime. Fp (abbreviated
F when p is clear) denotes the unique finite field of order p, represented as
{0, . . . , p − 1} with addition and multiplication modulo p. A field of prime order
is also called a prime field. Let X be a list of n variables: (X1, . . . , Xn). F[X] is
the set of polynomials in X with coefficients from F. For f ∈ F[X], let deg(f) be
its degree and vars(f) be the set of variables appearing in it.
Ideals and Their Zeros. Let S = {s1, . . . , sm} be a set of polynomials in F[X].
〈S〉 denotes the ideal that is generated by S: the set {∑i fisi : fi ∈ F[X]}. Let
S = (S1, . . . , Sk) be a list of sets of polynomials. Then, we define 〈S〉 � 〈∪iSi〉.

Let M : X → F be a map from variables X to values in F. For f ∈ F[X],
denote the evaluation of f on M by f [M]; a zero of f is an M with f [M] = 0.
The common zeros of S are denoted VF(S) (abbreviated V(S)). Note that V(S) =
V(〈S〉). When studying polynomial systems, one generally considers the system
given by the ideal it generates, as it has more structure and has the same set
of zeros. For any f ∈ F[X], if f ∈ 〈S〉, then V({f}) ⊇ V(S). One implication of
this is that 1 ∈ 〈S〉 implies that VF(S) is empty. However, the converse does not
hold: for example, the polynomial X2 + 1 has no zero in F3, but 1 /∈ 〈X2 + 1〉.

6 A. Ozdemir et al.

Gröbner Bases. A Gröbner basis (GB) is a kind of polynomial set that is
often used for solving polynomial systems. Two facts about GBs are relevant
to this paper. First, there is an algorithm, GB, that for any polynomial set S,
computes a GB B such that 〈B〉 = 〈S〉. In this case, we say that B is a GB for
S or for 〈S〉. (But: note that in this paper, B does not always refer to a GB!)
Second, there is an algorithm InIdeal(f,B) that determines whether f ∈ 〈B〉 for
polynomial f and GB B.1 Thus, if InIdeal(1,GB(S)) returns true, this shows that
V(S) is empty. Moreover, InIdeal(1, B) is computable in polytime if B is a GB
since 1 reduces by B iff B contains a non-zero constant [17].
Satisfiability Modulo Finite Fields (SMFF). Previous work [38,50] defines
the theory of finite fields, which we summarize here using the usual terminology
of many-sorted first order logic with equality [24]. For every finite field F, let
the signature Σ include: sort FF, binary function symbols +F and ×F, constants
n ∈ {0, . . . , |F| − 1} ⊂ N, and the inherited equality symbol ≈F. The theory of
finite fields requires that any Σ-interpretation interprets FF as F, n as the nth

element of F, and +, ×, and ≈ as addition, multiplication, and equality in F.
Previous work reduces the satisfiability problem for this theory to the problem
of finding an element of V(S) given S or determining that there is no such
element [50]. In this work, we consider the latter problem.
Applying SMFF to ZKPs. Prior work applies SMFF to verification for zero-
knowledge proof systems (ZKPs) [50,52,53]. Practical ZKPs [11,30,33] allow one
to prove knowledge of a solution to a system of field equations Φ(X,Y), while
keeping all or part of the solution secret. Since Φ is usually meant to encode
a function from X to Y, recent tools attempt to verify determinism: that the
value of X uniquely determines the value of Y [53,56,59,60]. Determinism can
be written as a single satisfiability query solved with SMFF:

Φ(X,Y) ∧ Φ(X′,Y′) ∧ X = X′ ∧ Y �= Y′ (1)

The formula (1) is satisfiable if and only if Φ is nondeterministic. Determinism
is important for two reasons. First, constructing (1) only requires identifying the
inputs and outputs, making the specification task trivial and automatable. Sec-
ond, determinism violations are frequent; one caused the Tornado Cash bug [57],
and they are part of over half of the bugs in the ZK Bug Tracker [1]. Third,
determinism violations cause real vulnerabilities. A recent survey of ZKP vul-
nerabilities concludes that insufficient constraints (which typically manifest as
non-determinism) account for 95% of constraint-system-level vulnerabilities [12].
In Sect. 6, we give another reason why determinism is important: it can imply
stronger properties.

3 Motivating Example

In this section, we explore a class of problems that is both important and
challenging for existing SMFF solvers. First (Sect. 3.1), we explain the source
1 The definition of GB and these algorithms depends on a monomial order. Throughout

the paper, we use grevlex order. We discuss monomial orders in Appendix A.

Split Gröbner Bases for SMFF 7

1 template Num2Bits(b) { // split ‘in’ into ‘b’ bits.
2 signal input in;
3 signal output out[b];
4 var bitSum = 0;
5 for (var i = 1; i <= b; i++) {
6 out[i] * (out[i] -1) === 0; // ‘out[i]’ is 0 or 1
7 bitSum += out[i] * 2 ** (i - 1); // add a term to the accumulating bitsum
8 }
9 bitSum === in; // ‘in’ is the bitsum of ‘out’

10 }

Fig. 1. Num2Bits: a widely-used circomlib library function. It converts a prime field
element into an b-bit binary representation (assuming this is possible).

and prevalence of these problems—determinism queries with bit-splitting. Sec-
ond (Sect. 3.2), we explore why they are hard for GB-based reasoning, and we
present evidence that the core challenge is the combination of bitsums and bit-
constraints. Third (Sect. 3.3), we sketch the design of a decision procedure that
can meet this challenge.

3.1 Verifying the Determinism of Num2Bits

The circom language is used to synthesize field equations for ZKPs. Figure 1
shows a slice of the circom program Num2Bits. It relates an input signal in to its
binary representation as an array of signals out. The code generates a set of field
equations that encode this relationship. The === operator generates equations.
Line 6 generates the equation forcing out [i] to be either 1 or 0, line 7 adds
out [i] to the expression that is accumulating terms in the bitsum, and line 9
generates the equation equating the bitsum to in. Thus, the equations are:

Φ(in, out) :=
(
in =

∑b
i=1 2i−1out[i]

)
∧ ∧b

i=1 out[i](out[i] − 1) = 0 (2)

Here, b is constant. For any j ∈ [b], the output out[j] is deterministic if the
following SMFF query is unsatisfiable:

∃ in, in′, out, out′. Φ(in, out) ∧ Φ(in′, out′) ∧ in = in′ ∧ out[j] �= out′[j] (3)

Importance. Nearly every circom project uses Num2Bits or similar templates that
bit-split field elements. This is because bit encodings are a natural way to encode
common operations like range-checks (x ∈ {l, . . . , u}) and comparisons (<, >) as
field equations. In fact, in a crawl of all public circom Github projects, we found
that 98% of projects use Num2Bits or other circuits with bitsums. Furthermore,
bitsums are very common in many programs; for example, in circomlib’s SHA2
implementation, 64% of the variables appear in some bitsum. We describe our
methodology for these measurements in Appendix B.

8 A. Ozdemir et al.

Table 1. Different ideal families with bitsums and bit-constraints.

Ideal Family Generators

I2,det(b) BΣP(Y,X) ∪ BΣP(Y ′,X′) ∪ {Y − Y ′} ∪ {(Xb − X ′
b)Z − 1}

I2(b) BΣP(Y,X) ∪ BΣP(Y ′,X′) ∪ {Y − Y ′}
I1(b) BΣP(Y,X)

I1,val(b) BΣP(Y,X) ∪ {Y }

Fig. 2. GB computation time for different systems at different bitsum lengths.

3.2 The Challenge of Bit-Splitting

Unfortunately, state-of-the-art SMFF solvers struggle with (3). The solver of
Hader et al. [38] scales poorly with field size (Sect. 5), and ZKP security typically
requires |F| ≈ 2255. It fails for (3), even when b = 1. The GB-based solver of
Ozdemir et al. [50] scales better with |F|, but poorly with b. It can handle many
large-field benchmarks, but it cannot solve (3) for b = 32, even in a week.

To understand the problem, consider how a GB-based solver handles (3).
First, it computes a polynomial set S such that V(S) encodes solutions to (3):

S = {Y − Y ′, Y − ∑b
i=1 2i−1Xi, Y ′ − ∑b

i=1 2i−1X ′
i,

X2
1 − X1, . . . , X

2
b − Xb, X ′2

1 − X ′
1, . . . , X

′2
b − X ′

b,

(X ′
j − Xj)Z − 1}

(4)

In this system, in, in′, out, and out′ are represented by variables Y , Y ′, X, and
X′ respectively. The inequality Xj �= X ′

j becomes the polynomial (X ′
j −Xj)Z−1

(for fresh Z) which can be zero only if Xj �= X ′
j . Next, the solver attempts to

compute a GB for (4). But this takes time exponential in b, as we will see.
To empirically investigate the cause of the slowdown, we consider other fam-

ilies of ideals generated by sets similar to (4). Table 1 shows four ideal families
of increasing simplicity that all include bit-splitting. The polynomials are in
variables (X1, . . . , Xb,X

′
1, . . . , X

′
b, Y, Y ′, Z), and we define the set BΣP(Y,X) as:

BΣP(Y, (X1, . . . , Xb)) � {Y − ∑b
i=1 2i−1Xi,X

2
1 − X1, . . . X

2
b − Xb}.

The first family, I2,det(b), is exactly (4), for j = b. The second, I2, removes the
polynomial that enforces disequality. The third, I1, removes one of the bitsum

Split Gröbner Bases for SMFF 9

Fig. 3. High-level information flow in BitSplit: our concrete decision procedure.

and bit-constraint sets. The fourth, I1,val, fixes the lone bitsum to a specific value
(Y = 0). Computing a GB for any of these families takes time exponential in
b.2

Figure 2 shows the times (using Singular [32]; others are similar). I1,val is
easiest to compute a GB for, and I2 is the hardest, but all take exponential
time.

Interestingly, the singleton set of just the bitsum {Y −∑b
i=1 2i−1Xi} and the

set of bit-constraints without the bitsum {X2
1 −X1, . . . X

2
b −Xb} are both already

GBs. It appears that the combination of the bitsum and the bit-constraints is
what makes computing a GB hard.
Translation to Bit-Vectors: a Dead End. Since ZKPs process finite-field
equations, the system (2) has coefficients in a finite field. Yet, the appearance
of the bitsum pattern makes it tempting to attempt some kind of translation
into the bit-vector domain. After all, in that domain, bit-decomposition is easy
to reason about! However, this intuitive appeal is misleading. In practice, the
approach is not trivial, since (in the general case) the system Φ includes other
(non-bitsum) equations too. In fact, previous attempts to solve finite-field equa-
tions by translation to bit-vectors have been shown to be very ineffective [50].
Thus, performing some finite-field reasoning seems crucial.

3.3 Cooperative Reasoning: A Path Forward

We have seen that verifying Num2Bits is hard with only GBs. Yet, Num2Bits is
easy to verify when we combine GBs with other kinds of reasoning. Consider
the following inferences about 〈S〉 (Eq. 4): Since X,X′ are bit representations of
Y, Y ′ respectively and Y − Y ′ is in 〈S〉, every X ′

i − Xi must be too. This is the
congruence rule for the function from a number to its bit representation. Then,
since f = X ′

j − Xj and g = (X ′
j − Xj)Z − 1 are both in 〈S〉 a GB shows that

1 = fZ − g is also in 〈S〉. But, if 1 ∈ 〈S〉, then S can have no common zeros. So,
(3) is UNSAT, and Num2Bits is deterministic. The key here is to use GB-based
reasoning and non-GB-based reasoning (congruence for bit representations).
2 For Fig. 2, we work in Fp, where p is the smallest prime greater than 2b−1. However,

the results are similar for other values of p as well.

10 A. Ozdemir et al.

Our decision procedure BitSplit mixes GB-based and non-GB-based reasoning
to understand the contents of an ideal 〈S〉. Figure 3 illustrates its architecture.
There are three modules: each learns new polynomials in 〈S〉 and potentially
shares them with other modules. The sparse module computes a GB for all poly-
nomials except bitsum polynomials (or bitsums): those of form Y − ∑

i 2i−1Xi.
Its name refers to the fact that bitsums are dense: they have many terms. The
linear module computes a GB for all linear polynomials (including all bitsums).
The unique bit representation module infers bit equalities using congruence.

This architecture has three key features. First, it includes non-GB-based rea-
soning. Second, every polynomial is handled by some GB-based module (either
the sparse or linear module); this will play a role in correctness. Third, by split-
ting bitsums (which go into the linear module) and bit-constraints (which go
into the sparse module), it avoids computing a GB for both simultaneously.

4 Approach

In this section, we present our decision procedure. Given a set of polynomials G,
our procedure either finds a common zero M ∈ V(G) or determines that none
exists. Recall from Sect. 2 that satisfiability modulo F reduces to this problem.

To explain our decision procedure, we first introduce a split Gröbner basis
(Sect. 4.1), which can be easier to compute than a full GB, but can also be less
useful when deciding satisfiability. Next, we present our abstract decision pro-
cedure Split, which manipulates split Gröbner bases (Sect. 4.2). Split is parame-
terized by the number of bases k and also by some subroutines. We show that
if the subroutines meet suitable conditions, then Split is sound and terminating
(Theorem 3). Finally, we instantiate Split with k = 2 by defining the necessary
subroutines (Sect. 4.3). The result is a concrete decision procedure BitSplit which
is optimized for reasoning about bitsums.3 We evaluate BitSplit experimentally
in Sect. 5.

4.1 Split Gröbner bases

Definition 1 (Split Gröbner basis). A split Gröbner basis for ideal I is
a sequence (B1, . . . , Bk) of Gröbner bases such that I = 〈B〉.
We make a few relevant observations about this definition.

1. A split GB generalizes a GB: that is, (GB(S)) is always a split GB for 〈S〉.
2. Split GBs for an ideal I are not unique.
3. The split GB definition relaxes the GB definition: while GBs can be hard to

compute, split GBs need not be. For example, the ideal 〈f1, . . . , fn〉 has split
GB ({f1}, . . . , {fn}).

3 We use the name “BitSplit” because the procedure is optimized for bitsums (used
in bit-splitting) and because the name suggests an instantiation of the “Split”
procedure.

Split Gröbner Bases for SMFF 11

Fig. 4. The prior decision procedure (Monolithic) [50] and our framework (Split).

Informally, a split GB allows one to navigate a trade-off between the com-
putational expense of computing GBs and the power of their ideal member-
ship tests. Generally, a smaller split GB where each individual GB represents
more of I makes InIdeal(·, Bi) more informative. On the other hand, a bigger
split GB where each GB represents less of I makes the split basis easier to
compute. Section 3 gave an example of this: it is hard to compute a GB for
〈∑b

i=1 2i−1Xi,X
2
1 − X1, . . . , X

2
b − Xb〉, but ({∑b

i=1 2i−1Xi}, {X2
1−X1, . . . , X

2
b −

Xb}) is already a split GB.

1 Function SplitGB:
In: G = (Gi)

k
i=1: a list of generator sets

Out: B = (Bi)
k
i=1: a split GB; initially each Bi is empty.

2 while ∪iGi is not empty do
3 for i ∈ [k] do Bi ← GB(Gi ∪ Bi);Gi ← ∅;
4 for p ∈ (∪jBj) ∪ extraProp(B), i ∈ [k] do
5 if admit(i, p) ∧ p /∈ 〈Bi〉 then Gi ← Gi ∪ {p};

6 return B

Algorithm 1: SplitGB computes a split Gröbner basis, with propagation.

4.2 Abstract Procedure: Split

Our starting point is a prior solver based on Gröbner bases [50]. Figure 4a shows
the prior procedure, which we call Monolithic, and Fig. 4b shows our new proce-
dure, which is named Split. Monolithic begins by computing a GB B and return-
ing ⊥ if 1 ∈ 〈B〉. Recall that 1 ∈ 〈B〉 implies V(G) is empty, but the converse
does not hold; thus, this is a sound but incomplete test for unsatisfiability. If
the problem remains unsolved, then Monolithic proceeds to FindZero, which is a
(complete) backtracking search over elements of F.

The key difference in Split is that it works with a split GB B for 〈G〉. First
(line 2), we split G into subsets G1∪· · ·∪Gk = G; these may overlap. Second (line
3), we compute a Gröbner basis Bi for each subset Gi (and perform additional
propagations, discussed later). If some 〈Bi〉 contains 1, we return ⊥. Third (line

12 A. Ozdemir et al.

5), we fall back to a (complete) backtracking search based on B. We will now
discuss each phase in more detail.
Splitting. Splitting is done with a function init(i, p) that decides whether poly-
nomial p should initially be included in basis i. The function init is a parameter
of Split. The only requirement of init is that no polynomial can be ignored:

Definition 2 (Covering init). The function init is covering when for all p ∈
F[X], there exists an i ∈ [k] such that init(i, p) = �.

Computing a Split GB and Propagating. In the second stage, we compute
a split GB B using SplitGB (Algorithm 1). To start, SplitGB sets each Bi to be
a GB for 〈Gi〉. However, SplitGB also adds to each Bi additional polynomials
called propagations. Propagations can be inter-basis (from a different Bj) or extra
(from a subroutine extraProp). Through extraProp, one can extend SplitGB with
specialized reasoning (e.g., for bitsums). Whether a propagation p is admitted
into Bi is controlled by a subroutine admit(i, p). Through admit, a basis can
reject a polynomial p that would slow down future GB computations.

Now, we explain SplitGB in detail. In each iteration of the outer loop, Bi is
a current basis and Gi is a set of polynomials that will be added in the next
round. First, Bi is computed from the previous Gi and Bi. Then, polynomials
from each Bj are added to each Gi if admit(i, ·) accepts them and 〈Bi〉 doesn’t
contain them already. Any propagations from extraProp(B) are added in the
same way. The loop iterates until there are no new additions.

The correctness of SplitGB depends on extraProp, but not admit. As cap-
tured by Definition 3, extraProp(B) must only return polynomials in 〈B〉. If
extraProp obeys this requirement, then SplitGB terminates and preserves the gen-
erated ideal, as stated in Theorem 1. The proof is in Appendix C; correctness is
straightforward, and termination follows from the same theory that guarantees
termination for Buchberger’s algorithm [10]. We discuss efficiency later.

Definition 3 (Sound extraProp). The function extraProp is sound when for
all B ∈ (2F[X])k, extraProp(B) ⊆ 〈B〉.
Theorem 1. If extraProp is sound, then SplitGB(G) terminates and returns a
split Gröbner basis B such that 〈B〉 = 〈G〉 and 〈Bi〉 ⊇ 〈Gi〉 for all i.

Backtracking Search. SplitFindZero (Algorithm 2) is our conflict-driven search.
Given a split basis B, it returns M ∈ V(〈B〉) if possible, and ⊥ if V(〈B〉) is empty.
It uses a subroutine SplitZeroExtend(B) which searches for an M ∈ V(〈B〉)
by focusing on B1, as we explain below. SplitZeroExtend returns one of three
possibilities: an M ∈ V(〈B〉); ⊥, indicating that V(〈B〉) is empty; or a conflict
polynomial p ∈ (∪iBi)\〈B1〉 that it failed to account for in its B1-focused search.
In the last case, SplitFindZero adds p to B1 and tries SplitZeroExtend again. Each
conflict is new information that is added to B1 from some other Bi.

SplitZeroExtend is based on the FindZero algorithm of prior work [50].
FindZero is a backtracking search based on a GB B. In each recursive step, it
assigns a single variable to a single value. Rather than doing an exhaustive case

Split Gröbner Bases for SMFF 13

1 Function SplitFindZero:
In: B = (Bi)

k
i=1: a split GB

Out: A zero M ∈ V(〈B〉) or ⊥
2 while conflict p ← SplitZeroExtend(B) do
3 B ← SplitGB(B1 ∪ {p}, B2, . . . , Bk);
4 return SplitZeroExtend(B)

5 Function SplitZeroExtend:
In: B = (Bi)

k
i=1: the current split GB

In: G ⊂ F[X]: the original generators; if omitted, equal to ∪iBi

In: A partial map M : X → F; if omitted, empty
Out: A total map M or a conflict polynomial p or ⊥

6 if ∃ i. 1 ∈ 〈Bi〉 then
7 if ∃ p ∈ G \ 〈B1〉, vars(p) ⊆ vars(M) ∧ p[M] �= 0 then return p;
8 else return ⊥;

9 if |M | = n then return M ;
10 for (Xji �→ zi) ∈ ApplyRule(B1,M) do

11 r ← SplitZeroExtend(SplitGB((Bj ∪ {Xji − zi})kj=1), G,M ∪ {Xji �→ zi});
12 if r �= ⊥ then return r;

13 return ⊥
Algorithm 2: SplitFindZero finds zeros using split Gröbner bases.

split for each variable, a subroutine ApplyRule analyzes B and constructs a list
(an implicit disjunction) of single-variable assignments Xj1 �→ z1, . . . , Xj�

�→ z�

that cover V(B). That is, for each M ∈ V(B), there exists i such that
M [Xji

] = zi. Thus, we know that if a solution exists, it must agree with at
least one of these assignments. For example, with B = {X2

1 − X2,X1(X2 − 1)},
every solution must assign X1 to 0 or X2 to 1, so any set of assignments including
these would do. ApplyRule might, for instance, return exactly {X1 → 0,X2 → 1}.
For each i, FindZero recurses on B ← GB(B∪{Xji

−zi}). It backtracks if 1 ∈ 〈B〉
and succeeds if every variable has been assigned.

SplitZeroExtend adapts FindZero to a split GB, essentially by running
FindZero on B1 and using SplitGB instead of GB. It also uses a limited notion of
conflicts to prune the search space. It is given a split basis B (that changes in
each recursion), a generator set G (that is fixed across recursions and is initially
equal to ∪iBi), and a partial map M from variables to values. First (lines 6–8),
it checks whether 1 is in any 〈Bi〉. There are two cases here. If some polynomial
p ∈ G \ 〈B1〉 fully evaluates to a non-zero value, p is returned as a conflict.
Otherwise, ⊥ is returned. Second (line 9), if M is total, then it is returned as
a common zero. Third (lines 10–12), SplitZeroExtend uses ApplyRule (from [50])
to obtain a list of single-variable assignments that cover V(B1). For each assign-
ment in the list, it attempts to construct a solution by adding that assignment
to M and to each Bi and recursing. If no branch succeeds, it returns ⊥.

For each conflict that SplitZeroExtend returns, SplitFindZero will call it again
with a new starting split basis. Theorem 2 states the correctness of SplitFindZero.
The correctness of Split (Theorem 3) is a corollary. The proofs are in Appendix D
(Table 2).

14 A. Ozdemir et al.

Table 2. The functions that parameterize Split.

Function signature Semantics

init(i ∈ [k], p ∈ F[X]) → {�,⊥} whether to initialize basis Bi with p

admit(i ∈ [k], p ∈ F[X]) → {�,⊥} whether to accept p into Bi during propagation

extraProp(B ∈ (2F[X])k) → 2F[X] additional polynomials to propagate

Table 3. Which polynomials our bases accept. The linear basis accepts linear polyno-
mials. The sparse basis accepts non-bitsums initially, and then equalities.

Basis # (i) Name init(i, p) definition admit(i, p) definition

1 Sparse ¬isBitsum(p) isEq(p)

2 Linear deg(p) ≤ 1 deg(p) ≤ 1

Theorem 2. Let B be a split GB. If extraProp is sound then SplitFindZero(B)
terminates and returns an element of VF(〈B〉) iff one exists.

Theorem 3. Let G be a polynomial set. If extraProp is sound and init is cov-
ering, then Split(G) terminates and returns an element of VF(G) iff one exists.

4.3 Concrete Procedure: BitSplit

Bases. To construct BitSplit, we instantiate Split with k = 2. We call B1 the
sparse basis and B2 the linear basis, and we define init and admit as shown in
Table 3. We explain extraProp later.

We carefully avoid allowing a bitsum X − ∑k
i=0 2iXi and its bit constraints

(X2
i − Xi)k

i=1 in the same basis. Initially, the sparse basis rejects only bitsums
(isBitsum(p) is defined as ∃ � > 1, ∃Y,X1, . . . X� ∈ X, p = Y − ∑�

i=0 2iXi).
During propagation, the sparse basis accepts polynomials that encode equalities
(isEq(p) is defined as ∃X,Y ∈ X, z ∈ F, p = X −Y ∨p = X −z). The linear basis
accepts (in initialization and propagation) any linear polynomial. Our definition
of admit is quite narrow (to accelerate calls to GB), but we ensure that both
ideals accept equalities, since extraProp generates these. In our experiments, we
consider some other definitions of admit, but they do not improve performance.
Extra Propagation. Our extraProp subroutine simply implements congruence
for bitsums. That is, consider the following polynomials, with m < log2 |F|:

Y − ∑m
i=1 2i−1Xi Y ′ − ∑m

i=1 2i−1X ′
i

If all Xi and X ′
i′ are known to have value zero or one (because X2

i − Xi is in
some 〈Bj〉) and Y and Y ′ are known to be equal (Y − Y ′ is in some 〈Bj〉), then
it propagates Xi −X ′

i for all i. Similarly, if Y is known to be a constant c (Y − c
is in some 〈Bj〉), then each Xi must be equal to the jth bit of c as an unsigned
integer. Soundness for extraProp follows from bit representation uniqueness.

Split Gröbner Bases for SMFF 15

Inter-basis Interactions. SplitGB treats each Bi as a source of polynomials
that might be added to other Bj . It does not use 〈Bi〉 as the source; this would be
sound, but enumerating the infinite set 〈Bi〉 is impossible. The natural question
is whether inter-basis propagation within SplitGB is nevertheless complete, that
is, whether all polynomials p ∈ 〈Bi〉 that are admissible to Bj are in the ideal
generated by the polynomials actually added to Bj .

We have both positive and negative results for BitSplit: Lemma 1 shows that
propagation from the sparse basis to the linear basis is complete. The proof is
in Appendix E. Example 1 shows that propagation from the linear basis to the
sparse basis is not complete. There is a natural way to fix this: enumerate each
variable pair X,Y , and propagate X − Y to the sparse basis if X − Y is in the
ideal generated by the linear basis. However, our experiments (Sect. 5) show that
this doesn’t empirically improve solver performance for our benchmarks.

Lemma 1. Let B be a Gröbner basis under a graded order (a degree compatible
order, i.e., for all monomials p, q, deg(p) < deg(q) =⇒ p < q); then, every
linear p ∈ 〈B〉 is in the ideal generated by the linear elements of B.

Example 1. Consider F5[W,X, Y, Z] in grevlex order. Then B1 = {W −X −Y +
Z, Y − Z} is a GB. The only polynomial in B1 that is admissible to the sparse
basis is Y −Z. Now consider W −X. It is in 〈B1〉 (it is the sum of B1’s elements)
and it is admissible to the sparse basis. However, it is not in 〈Y − Z〉; i.e., it is
not generated by the subset of B1 that is admissible to the sparse basis.

Connections. In some respects, our F-solver resembles two prior SMT ideas:
theory combination and portfolio solving with clause sharing. As in theory com-
bination [6], we reduce a problem (a system of field equations) to sub-problems
(subsets of the original system) that are handled by loosely-coupled sub-solvers
(bases and propagators), each using different reasoning. As in portfolio solving
with clause sharing [44,61], each sub-solver derives lemmas in a common lan-
guage (not clauses, but polynomials) that they share with one another. Our work
also resembles a prior combination of algebraic and propositional reasoning for
preprocessing Boolean formulas by sharing F2 equations between algebraic and
propositional modules [14]. However, our focus is on solving equations in a very
large finite field with constraints of different structure.
Efficiency. In the worst case, BitSplit builds a GB for the full system (similar to
Monolithic). A GB for degree-d polynomials in n variables can have size d2

n

[45],
so the worst-case complexity of BitSplit (and Monolithic) is doubly exponential.

However, in the next section we will see that BitSplit is efficient on a number
of problems of practical interest. For these problems it improves exponentially
on Monolithic. Here, we give intuition for the source of the advantage. Consider
a bitsum-heavy determinism problem. As discussed in Sect. 3, computing a full
GB is hard, so Monolithic performs poorly. However, BitSplit can use extraProp
to reason about the uniqueness of the bit-splitting and use its split GB to reason
about other parts of the system. This might allow it to refute the system of
equations without ever directly computing a GB for the full system.

16 A. Ozdemir et al.

5 Experiments

Now we present our experiments, which answer three empirical questions:

1. How does BitSplit perform when solving bitsum-heavy determinism queries?
(Exponentially better than the prior state of the art.)

2. How does BitSplit perform when solving other queries?
(Similar to the prior state of the art.)

3. How do BitSplit’s components impact its performance? (Propagation is key.)

We implement BitSplit in cvc5 [4] as a solver for the theory of finite fields. This
includes preprocessing that identifies bitsums in larger polynomials and isolates
them for use in BitSplit. Our test bed is a cluster with Intel Xeon E5-2637 v4
CPUs. Each run gets one CPU, 8GB memory, and a time limit of 300 s. After
presenting the benchmarks, we compare BitSplit to prior SMT F-solvers ffsat [38]4

and Monolithic [50], and we compare BitSplit to variants of itself.

5.1 Benchmarks

Table 4 shows our benchmarks, most of which concern the correctness of ZK
libraries (circomlib [7]) and compilers (ZoKrates [23] and CirC [49]). There are
six families. The CirC-D benchmarks verify the determinism of operator encod-
ing rules in CirC, at bitwidths up to 32. As we discuss in the next section
(Sect. 6), these benchmarks are important to CirC’s correctness, but are hard
to solve. The Seq benchmarks verify the determinism of constraint systems with

Table 4. Our benchmark families. QED2 [53], Small [38], TV [50], and CirC-S [52]
are from prior work. CirC-D is a set of large determinism benchmarks based on prior
work [52]; see Sect. 6. Seq is a set of determinism benchmarks for computations that
perform a sequence of bit-splits; see Appendix F.

Family # Description

CirC-D 640 Determinism for CirC F-blaster rules of bitwidth ≤ 32 (Sect. 6)

Seq 100 Determinism for sequenced bit-splits (Appendix F)

QED2 100 Determinism for circomlib, generated by QED2 [53]

CirC-S 100 Soundness for CirC F-blaster rules of bitwidth ≤ 4 [52]

TV 100 Translation validation for ZKP compilers on boolean programs [50]

Small 100 Randomly generated with a small field: |F| ≤ 211 [38]

4 At the time of our experiments, ffsat was a Sage-based Python tool for solving
conjunctions of equations [35]. We wrapped it with a simple SMT-LIB parser
that invokes ffsat if the query is sufficiently simple. Since then, ffsat has been re-
implemented in Yices [22,37]; future work should compare against that implemen-
tation.

Split Gröbner Bases for SMFF 17

sequences of bit-splits. We discuss them further in Appendix F. The QED2 bench-
marks are determinism queries for circomlib generated by QED2 [53]. The CirC-
S benchmarks are soundness tests for CirC’s operator rules, at bitwidths up to
4 [52]. The TV benchmarks are translation validation queries for ZoKrates and
CirC, as applied to boolean functions [50]. Finally, the Small benchmarks are
random, small-field (i.e., |F| < 28) benchmarks from the evaluation of ffsat [38].
To keep the benchmark set from being too big, all families from prior work are
sampled at random from that work’s benchmarks.

5.2 Comparison to Prior Solvers

First, we compare BitSplit against prior solvers Monolithic [50] and ffsat [38].
Table 5 shows the number of solved benchmarks by family and result. ffsat is
successful only when the field is small. BitSplit improves on Monolithic on families
that test determinism (QED2 and CirC-D) but suffers slightly on other bench-
marks. BitSplit is slightly worse on SAT instances but better at UNSAT ones.
Figure 5 presents the same results as cactus plots for the determinism families
and the other families.

To better understand BitSplit’s advantage, we focus on the CirC-D family.
Each CirC-D benchmark tests the determinism of an operator rule at a specific
bitwidth. We consider how the solve time scales with bitwidth. Figure 6 shows the
results for arithmetic, shift, and comparison operators. Monolithic’s solve time
grows exponentially for all of these, while BitSplit’s time is generally insignificant.

Table 5. Solved benchmarks, by family and result. BitSplit’s gains are on determinism
queries (the QED2 and CirC-D families) and unsatisfiable benchmarks.

Solver Solved By Family By Result

CirC-D Seq QED2 CirC-S TV Small SAT UNSAT

BitSplit 969 582 100 59 92 70 66 88 881

Monolithic 475 191 13 38 94 72 67 90 385

ffsat 67 0 0 0 0 0 67 54 13

Fig. 5. On determinism benchmarks, BitSplit dominates Monolithic; on other bench-
marks, they perform similarly.

18 A. Ozdemir et al.

BitSplit struggles only with division and remainder; verifying their determinism
would require understanding that integer division is deterministic, as encoded in
field constraints. We omit bitwise operators (e.g., bvor) from this experiment.
Their operator rules assume that the input bit-vectors are already represented
as bits, so their benchmarks do not include any bitsums. To summarize, BitSplit
can verify many operators exponentially faster than Monolithic.

5.3 Comparison to Variants

To better understand BitSplit, we compare it against six variants of itself:

– BS-LinFirst: make the linear basis (not the sparse basis) B1

– BS-NoIntProp disable inter-basis propagation
– BS-NoExtProp disable extraProp
– BS-FullIntProp: complete linear-to-sparse propagation (Sect. 4.3, fixes Exam-

ple 1)
– BS-DenseProp for the sparse basis, use admit(p) = deg(p) ≤ 1∧|vars(p)| ≤ 16.
– BS-QuadProp for the linear basis, use admit(p) = deg(p) ≤ 2.

Fig. 6. Solve time for CirC-D benchmarks for different operators. Monolithic’s solve
time grows exponentially, while BitSplit’s solve time usually does not.

Table 6. BitSplit v. variants of itself. Weaker propagation (BS-NoExtProp, BS-
NoIntProp) gives worse results, but other changes have less impact.

Solver Solved By Family By Result

CirC-D Seq QED2 CirC-S TV Small SAT UNSAT

BitSplit 969 582 100 59 92 70 66 88 881

BS-LinFirst 959 576 100 58 92 69 64 84 875

BS-NoIntProp 877 576 24 58 86 70 63 84 793

BS-NoExtProp 344 131 0 34 45 69 65 85 259

BS-FullIntProp 953 576 97 56 92 69 63 83 870

BS-DenseProp 898 580 33 58 92 70 65 85 813

BS-QuadProp 898 580 32 59 92 71 64 86 812

Monolithic 475 191 13 38 94 72 67 90 385

Split Gröbner Bases for SMFF 19

Table 6 shows how many benchmarks each variant solves, with both BitSplit
and Monolithic for comparison. First, changing the basis order (BS-LinFirst) has
little effect. Second, disabling propagation (BS-NoIntProp and BS-NoExtProp)
significantly hurts performance. Third, making inter-basis propagation complete
(BS-FullIntProp) actually hurts performance slightly, perhaps because it takes
quadratic time. Finally, defining admit more admissibly (BS-DenseProp and BS-
QuadProp) makes little difference for many families, but significantly hurts per-
formance on sequential bit-splits.

These results justify the key role that propagation plays in BitSplit. They
also suggest that BitSplit would be a good choice for cvc5’s default field solver.

6 Application

Prior work uses Monolithic to do bounded verification for a zero-knowledge
proof (ZKP) compiler pass [52]. In this section, we improve their results using
BitSplit. Thus, this section is a case study that shows the utility of BitSplit for a
downstream verification task. Our improvement relies not just on a new solver
(BitSplit), but also on a new verification strategy. First (Sect. 6.1), we give back-
ground on the verification task. Second (Sect. 6.2), we state our new strategy,
prove it is correct, and show that it is more efficient—when using BitSplit.

6.1 Background on Verifiable Field-Blasting

We consider the finite field blaster in a ZKP compiler: its responsibilities include
encoding bit-vector operations as field equations [52]. At a high level, the field
blaster is a collection of encoding rules. Each rule is a small algorithm that is
specific to some operator (e.g., bvadd). It is given field variables that encode
the operator’s inputs according to some encoding scheme. A rule defines new
variables, creates equations, and ultimately returns a field variable that encodes
the output of the rule’s operator.

As an example, we describe an encoding scheme for bit-vectors and a rule
for bit-vector addition. The scheme encodes a length-b bit-vector x as a field
variable x′ with value in {0, . . . , 2b − 1} ⊆ F (assuming |F| � 2b). If x′ and x
have the same (unsigned) integer value, we say that valid(x′, x) holds. Suppose
our rule applies to the addition of x and y, encoded as x′ and y′. Our rule defines
the following field variables. First, for each i ∈ {1, . . . , b + 1}, it defines z′

i to 1 if
the ith bit of the integer sum of the unsigned values of x′ and y′ is one, and zero
otherwise. Second, it defines z′ =

∑b
i=1 2i−1z′

i. Then, it enforces these equations:

x′ + y′ =
∑b+1

i=1 2i−1z′
i ∧ z′ =

∑b
i=1 2i−1z′

i ∧ ∧b+1
i=1 z′

b(z
′
b − 1) = 0

Finally, it returns z′. Informally, the idea of this rule is to bit-decompose the
sum x′ + y′ and then use the bit-decomposition to reduce that sum modulo 2b.
For example, if b = 2, x′ = 3, and y′ = 1, then the unique solution for the z′

i is
z′
1 = 0, z′

2 = 0, z′
3 = 1, and then z′ must be 0.

20 A. Ozdemir et al.

In general, an encoding rule for operator o maps a sequence of input encodings
(field variables) e to three outputs: F , A, and e.5 Each field variable ei encodes
some bit-vector variable ti. The first output, F = {z1 �→ s1, . . . z� �→ s�}, is a
mapping that defines � fresh field variables: z1, . . . , z�. Variable zi is mapped to
a term si (in variables e) that defines what value zi is intended to take. The
second output, A, is conjunction of field equations in variables e and z. The
final output is e: a distinguished variable that encodes the rule’s output o(t).

Prior work defines correctness for encoding rules as the conjunction of two
properties: completeness and soundness. If all rules are correct, then they con-
stitute a correct F-blaster [52]. Completeness says that if each ei validly encodes
ti and the zi take the values prescribed by F , then e validly encodes o(t) and A
holds. That is, completeness requires the following formula to be valid:

((
∧

i valid(ei, ti)) =⇒ (A ∧ valid(e, o(t)))) [F]

Soundness says that if each ei validly encodes ti and A holds, then e validly
encodes o(t). That is, the following must be valid:

(A ∧ ∧
i valid(ei, ti)) =⇒ valid(e, o(t))

Verifier Performance. After fixing the sorts of the ti (e.g., to bit-vectors of size
4), one can encode soundness and completeness as SMT queries. This enables
automatic, bounded verification: one checks these properties up to some input
bitwidth bound b using an SMT solver. However, the soundness query is espe-
cially challenging for the SMT solver. In prior work, some soundness queries for
b = 4 could not be solved in 5 min with Monolithic. More generally, solving time
grew exponentially with bit-width for most operators [52].

6.2 A New Strategy for Verifying Operator Rules

We propose a different strategy for automatically verifying operator rules. We
define determinism for operator rules. It says that an operator rule applied to
equal inputs should yield equal outputs. That is, if (A, e) and (A′, e′) are rule
outputs for inputs e and e′ respectively, then the following must be valid:

(A ∧ A′ ∧ e = e′) =⇒ e = e′

We prove the following theorem in Appendix G:

Theorem 4. An operator rule that is deterministic and complete is also sound.

5 Actually, in prior work [52] and in our implementation, encodings are type-tagged
sequences of field terms. In this paper we treat them as single variables to simplify
the exposition. Generalization is straightforward, but notationally tedious.

Split Gröbner Bases for SMFF 21

Fig. 7. The best way to verify that CirC rules are fully correct is to prove completeness
using exhaust and prove determinism (D) using BitSplit.

Thus, to verify rule correctness, it suffices to verify completeness and deter-
minism. This approach is promising because BitSplit is very effective on deter-
minism queries (they were the CirC-D benchmarks in Sect. 5). So, a verification
strategy comprises two choices: whether to prove soundness (S) or determinism
(D) and whether to use BitSplit or Monolithic. In all cases, we prove completeness
using exhaust (a specialized approach from prior work) [52]. For each strategy,
we try to verify every bit-vector rule up to width 32. We limit SMT queries to
5 min each, using the same test bench as before.

Figure 7 shows verification time using different strategies. The best strategy
is our new one. This approach verifies 66% more rule-bitwidth pairs than the
next best strategy: proving soundness with Monolithic. More importantly, in
our new strategy, verifying determinism (using BitSplit) is not the bottleneck:
the bottleneck is proving completeness (using exhaust). Whereas, when proving
soundness with Monolithic, Monolithic is the bottleneck. Further improvements
will require new ideas for proving completeness.

7 Conclusion

We have presented a new approach for F-solving in SMT. Our contributions are
three-fold. First, we proposed an abstract decision procedure Split that avoids
computing a full Gröbner basis. Second, we described an instantiation of it
(BitSplit) that is highly effective for bitsum-heavy determinism queries. Third,
we applied BitSplit to a problem in ZKP compiler verification.

There are many directions for future work. First, we believe other instantia-
tions of Split (beyond BitSplit) might be useful, for example, by considering other
kinds of propagations (extraProp) and other conditions under which propagation
is allowed (admit). Second, Split makes very limited use of CDCL(T) features
that are known to improve performance: it acts only once a full propositional
assignment is available; it constructs no theory lemmas; and it propagates no
literals. Third, in this paper, we focus on applications of the theory of finite fields
to ZKPs. Finite fields should also be relevant to many other kinds of cryptosys-
tems, including algebraic multi-party computation and those based on elliptic
curves. We leave these opportunities to future work.

22 A. Ozdemir et al.

Acknowledgements. We appreciate the help, support, and advice of Cesare Tinelli,
Daniela Kaufmann, Haniel Barbosa, Mathias Preiner, Matthew Sotoudeh, Thomas
Hader, the CAV reviewers, and all of the cvc5 developers.

This work was funded in part by NSF grant number 2110397, the Stanford Center
for Automated Reasoning, and the Simons Foundation.

A Additional Background

This appendix is available in the full version of the paper [51].

B Computing Bitsum Usage in Real World Projects

This appendix is available in the full version of the paper [51].

C Proof of Theorem 1

This appendix is available in the full version of the paper [51].

D Proof of Theorems 2 and 3

This appendix is available in the full version of the paper [51].

E Proof of Lemma 1

This appendix is available in the full version of the paper [51].

F The Seq Benchmark Family

This appendix is available in the full version of the paper [51].

G Proof of Theorem 4

This appendix is available in the full version of the paper [51].

Split Gröbner Bases for SMFF 23

References

1. 0xPARC. ZK bug tracker. https://github.com/0xPARC/zk-bug-tracker. Accessed
5 Sept 2023, via archive.org

2. Anderson, B., McGrew, D.: TLS beyond the browser: Combining end host and
network data to understand application behavior. In: IMC (2019)

3. Archer, D., O’Hara, A., Issa, R., Strauss, S.: Sharing sensitive department of edu-
cation data across organizational boundaries using secure multiparty computation
(2021)

4. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: TACAS
(2022)

5. Barlow, R.: Computational thinking breaks a logjam (2015). https://www.bu.edu/
cise/computational-thinking-breaks-a-logjam/

6. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Model
Checking, pp. 305–343. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-10575-8 11

7. Bellés-Muñoz, M., Isabel, M., Muñoz-Tapia, J.L., Rubio, A., Baylina, J.: Circom: a
circuit description language for building zero-knowledge applications. IEEE Trans.
Dependable Secure Comput. (2022)

8. Bogetoft, P., et al.: Secure multiparty computation goes live. In: FC (2009)
9. Braun, D., Magaud, N., Schreck, P.: Formalizing some “small” finite models of

projective geometry in coq. In: International Conference on Artificial Intelligence
and Symbolic Computation (2018)

10. Buchberger, B.: A theoretical basis for the reduction of polynomials to canonical
forms. SIGSAM Bulletin (1976)

11. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: IEEE S&P (2018)

12. Chaliasos, S., Ernstberger, J., Theodore, D., Wong, D., Jahanara, M., Livshits, B.:
Sok: what don’t we know? understanding security vulnerabilities in snarks (2024).
https://arxiv.org/abs/2402.15293

13. Chin, C., Wu, H., Chu, R., Coglio, A., McCarthy, E., Smith, E.: Leo: a program-
ming language for formally verified, zero-knowledge applications (2021). Preprint
at https://ia.cr/2021/651

14. Choo, D., Soos, M., Chai, K.M.A., Meel, K.S.: Bosphorus: Bridging anf and cnf
solvers. IEEE, In DATE (2019)

15. Coglio, A., McCarthy, E., Smith, E., Chin, C., Gaddamadugu, P., Dellepere, M.:
Compositional formal verification of zero-knowledge circuits (2023). https://ia.cr/
2023/1278

16. Cohen, C.: Pragmatic quotient types in coq. In: ITP (2013)
17. Cox, D., Little, J., OShea, D.: Ideals, varieties, and algorithms: an introduction to

computational algebraic geometry and commutative algebra. Springer Science &
Business Media (2013)

18. CVE-2014-3570. https://nvd.nist.gov/vuln/detail/CVE-2014-3570
19. CVE-2017-3732. https://nvd.nist.gov/vuln/detail/CVE-2017-3732
20. Dahlgren, F.: It pays to be Circomspect (2022). https://blog.trailofbits.com/2022/

09/15/it-pays-to-be-circomspect/. Accessed 15 Oct 2023
21. Dummit, D.S., Foote, R.M.: Abstract algebra, vol. 3. Wiley Hoboken (2004)
22. Dutertre, B.: Yices 2.2. In: CAV (2014)
23. Eberhardt, J., Tai, S.: ZoKrates—scalable privacy-preserving off-chain computa-

tions. In: IEEE Blockchain (2018)

https://github.com/0xPARC/zk-bug-tracker
https://www.bu.edu/cise/computational-thinking-breaks-a-logjam/
https://www.bu.edu/cise/computational-thinking-breaks-a-logjam/
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://arxiv.org/abs/2402.15293
https://ia.cr/2021/651
https://ia.cr/2023/1278
https://ia.cr/2023/1278
https://nvd.nist.gov/vuln/detail/CVE-2014-3570
https://nvd.nist.gov/vuln/detail/CVE-2017-3732
https://blog.trailofbits.com/2022/09/15/it-pays-to-be-circomspect/
https://blog.trailofbits.com/2022/09/15/it-pays-to-be-circomspect/

24 A. Ozdemir et al.

24. Enderton, H.B.: A mathematical introduction to logic. Elsevier (2001)
25. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Systematic generation

of fast elliptic curve cryptography implementations. Technical report, MIT (2018)
26. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Simple high-level code

for cryptographic arithmetic: With proofs, without compromises. ACM SIGOPS
Operating Syst. Rev. 54(1) (2020)

27. Y. Finance. Monero quote (2023). https://finance.yahoo.com/quote/XMR-USD/.
Accessed 13 Oct 2023

28. Y. Finance. Zcash quote (2023). https://finance.yahoo.com/quote/ZEC-USD/.
Accessed 13 Oct 2023

29. Fournet, C., Keller, C., Laporte, V.: A certified compiler for verifiable computing.
In: CSF (2016)

30. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge (2019). https://ia.
cr/2019/953

31. Gonthier, G., et al.: A machine-checked proof of the odd order theorem. In: ITP,
pp. 163–179 (2013)

32. Greuel, G.-M., Pfister, G., Schönemann, H.: Singular-a computer algebra system for
polynomial computations. In: Symbolic Computation and Automated Reasoning,
pp. 227–233. AK Peters/CRC Press (2001)

33. Groth, J.: On the size of pairing-based non-interactive arguments. In: EURO-
CRYPT (2016)

34. Grubbs, P., Arun, A., Zhang, Y., Bonneau, J., Walfish, M.: Zero-knowledge mid-
dleboxes. In: USENIX Security (2022)

35. Hader, T.: Ffsat. https://github.com/Ovascos/ffsat, commit 67fecde
36. Hader, T.: Non-linear SMT-reasoning over finite fields (2022). MS Thesis (TU

Wein)
37. Hader, T., Kaufmann, D., Irfan, A., Graham-Lengrand, S., Kovács, L.: Mcsat-

based finite field reasoning in the yices2 smt solver (2024)
38. Hader, T., Kaufmann, D., Kovács, L.: SMT solving over finite field arithmetic. In:

LPAR (2023)
39. Hader, T., Kovács, L.: Non-linear SMT-reasoning over finite fields. In: SMT (2022).

Extended Abstract
40. Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specification (2013).

https://raw.githubusercontent.com/zcash/zips/master/protocol/protocol.pdf
41. Komendantsky, V., Konovalov, A., Linton, S.: View of computer algebra data from

coq. In: International Conference on Intelligent Computer Mathematics (2011)
42. Kotzias, P., Razaghpanah, A., Amann, J., Paterson, K.G., Vallina-Rodriguez, N.,

Caballero, J.: Coming of age: a longitudinal study of TLS deployment. In: IMC
(2018)

43. Liu, J., et al.: Certifying zero-knowledge circuits with refinement types (2023).
https://ia.cr/2023/547

44. Marescotti, M., Hyvärinen, A.E.J., Sharygina, N.: Clause sharing and partitioning
for cloud-based SMT solving. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA
2016. LNCS, vol. 9938, pp. 428–443. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46520-3 27

45. Mayr, E.W., Meyer, A.R.: The complexity of the word problems for commutative
semigroups and polynomial ideals. Adv. Math. 46(3), 305–329 (1982)

46. Monero technical specs (2022). https://monerodocs.org/technical-specs/

https://finance.yahoo.com/quote/XMR-USD/
https://finance.yahoo.com/quote/ZEC-USD/
https://ia.cr/2019/953
https://ia.cr/2019/953
https://github.com/Ovascos/ffsat
https://raw.githubusercontent.com/zcash/zips/master/protocol/protocol.pdf
https://ia.cr/2023/547
https://doi.org/10.1007/978-3-319-46520-3_27
https://doi.org/10.1007/978-3-319-46520-3_27
https://monerodocs.org/technical-specs/

Split Gröbner Bases for SMFF 25

47. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories:
From an abstract davis–putnam–logemann–loveland procedure to DPLL(T). J.
ACM (2006)

48. OpenSSL bug 1953. https://www.mail-archive.com/openssl-dev@openssl.org/
msg23869.html

49. Ozdemir, A., Brown, F., Wahby, R.S.: CirC: compiler infrastructure for proof sys-
tems, software verification, and more. In: IEEE S&P (2022)

50. Ozdemir, A., Kremer, G., Tinelli, C., Barrett, C.: Satisfiability modulo finite fields.
In: CAV (2023)

51. Ozdemir, S., Pailoor, A., Bassa, A., Ferles, K., Barrett, C., Dillig, I.: Split Gröbner
bases for satisfiability modulo finite fields (2024). https://ia.cr/2024/572. Full ver-
sion

52. Ozdemir, A., Wahby, R.S., Brown, F., Barrett, C.: Bounded verification for finite-
field-blasting. In: CAV (2023)

53. Pailoor, S., et al.: Automated detection of under-constrained circuits in zero-
knowledge proofs. In: PLDI (2023)

54. Philipoom, J.: Correct-by-construction finite field arithmetic in Coq. Ph.D. thesis,
Massachusetts Institute of Technology (2018)

55. Schwabe, P., Viguier, B., Weerwag, T., Wiedijk, F.: A coq proof of the correctness
of x25519 in tweetnacl. In: CSF (2021)

56. Soureshjani, F.H., Hall-Andersen, M., Jahanara, M., Kam, J., Gorzny, J., Ahmad-
vand, M.: Automated analysis of halo2 circuits (2023). https://ia.cr/2023/1051

57. Tornado.cash got hacked. by us (2019). https://tornado-cash.medium.com/
tornado-cash-got-hacked-by-us-b1e012a3c9a8. Accessed 13 Oct 2023

58. Wang, D.: Elimination methods. Springer Science & Business Media (2001)
59. Wang, F.: Ecne: automated verification of zk circuits (2022). https://0xparc.org/

blog/ecne
60. Wen, H., et al.: Practical security analysis of zero-knowledge proof circuits (2023)
61. Wintersteiger, C.M., Hamadi, Y., de Moura, L.: A concurrent portfolio approach to

SMT solving. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp.
715–720. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-
4 60

62. Zcash counterfeiting vulnerability successfully remediated (2019). https://
electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/.
Accessed 13 Oct 2023

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://www.mail-archive.com/openssl-dev@openssl.org/msg23869.html
https://www.mail-archive.com/openssl-dev@openssl.org/msg23869.html
https://ia.cr/2024/572
https://ia.cr/2023/1051
https://tornado-cash.medium.com/tornado-cash-got-hacked-by-us-b1e012a3c9a8
https://tornado-cash.medium.com/tornado-cash-got-hacked-by-us-b1e012a3c9a8
https://0xparc.org/blog/ecne
https://0xparc.org/blog/ecne
https://doi.org/10.1007/978-3-642-02658-4_60
https://doi.org/10.1007/978-3-642-02658-4_60
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
http://creativecommons.org/licenses/by/4.0/

Arithmetic Solving in Z3

Nikolaj Bjørner(B) and Lev Nachmanson

Microsoft, Redmond, USA

nbjorner@microsoft.com

Abstract. The theory of arithmetic is integral to many uses of SMT
solvers. Z3 has implemented native solvers for arithmetic reasoning since
its first release. We present a full re-implementation of Z3’s original
arithmetic solver. It is based on substantial experiences from user feed-
back, engineering and experimentation. While providing a comprehensive
overview of the main components we emphasize selected new insights we
arrived at while developing and testing the solver.

1 Introduction

The theory of arithmetic is among the most prolific theories used in SMT solvers.
It is used across a wide set of applications, and they have a wide range of
demands. Supporting efficient theory solvers for arithmetic requires balancing
feature support, ranging from linear, difference logic, to linear real, linear inte-
ger, non-linear polynomial arithmetic and in cases transcendental functions such
as exponentiation. The aim of this paper is to provide a high-level, yet self-
contained, overview of internal ingredients of the arithmetic solver. It seeks to
explain tool users what to expect of solving methodologies when using Z3 for
arithmetic. We assume familiarity of basics of SMT solving using CDCL(T),
e.g., [5]. While make an effort to cover all features for completeness, we devote
attention to highlight a selection that to our knowledge are unique for arithmetic
solvers. These highlights include (1) how the solver patches linear real program-
ming solutions to find solutions to integer variables, (2) heuristics that are new
in how the solver finds Gomory cuts, and (3) the solver’s integration of Gröbner
basis computation for solving non-linear constraints. User pain points around
SMT have to our experience centered dominantly around quantifiers and non-
linear arithmetic. A complete (for non-linear reals) solver that integrates with
other theories and quantifier reasoning becomes relevant. The new arithmetic
solver that we describe here was first integrated in version 4.8.8 of z3, turned
on as default in the next release, and subjected to later significant revisions.
To evaluate the contribution of each feature we use benchmarks drawn from
SMTLIB benchmark sets [3] and benchmarks supplied by a user, Certora [12].

In overview, the arithmetic solver uses a waterfall model for solving arith-
metic constraints. It is illustrated with additional details in Fig. 1.

– First, it establishes feasibility with respect to linear inequalities. Variables
are solved over the rationals; Sect. 3.

c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 26–41, 2024.
https://doi.org/10.1007/978-3-031-65627-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65627-9_2&domain=pdf
https://doi.org/10.1007/978-3-031-65627-9_2

Arithmetic Solving in Z3 27

Fig. 1. Overview of Z3’s Arithmetic Theory Solver

– Second, it establishes feasibility with respect to mixed integer linear con-
straints; Integer variables are considered solved if they are assigned integer
values while satisfying linear inequalities; Sect. 4.

– Finally, it establishes feasibility with respect to non-linear polynomial con-
straints; Sect. 5.

The rest of the paper elaborates on the components of the solver. For com-
pleteness, we go through all relevant pieces. We highlight parts that to our
knowledge are novel.

2 Design Goals and Implementation Choices

The SMT formalism for arithmetic in many cases subsumes formalisms used by
mixed integer, MIP, solvers. However, there are several fundamental differences
between the workloads we have tuned the arithmetic solver for compared to
workloads seen by MIP solvers. Z3 uses infinite precision “big-num” numeral
representations, in contrast to using floating points. The drawback is that the
arithmetic solver is impractical on linear programming optimization problems,
but the engine avoids having to compensate for rounding errors and numerical
instability. The solver uses a sparse matrix representation for the Dual Simplex
tableau. We also created a version that uses an LRU decomposition and floating
point numbers but found that extending this version with efficient backtracking
was not practical compared to the straight-forward sparse matrix format. Finally,
the solver remains integrated within a CDCL engine that favors an eager case
split strategy leaving it to conflict analysis to block infeasible branches. This
contrasts mainstream MIP designs that favor a search tree of relatively few
branches where the engine performs significant analysis before case splits.

28 N. Bjørner and L. Nachmanson

3 Linear Real Arithmetic

The solver first determines whether arithmetic constraints are feasibility over
the reals. It also attempts to propagate equalities eagerly for shared variables
and infer stronger bounds of variables.

3.1 Linear Solving

Based on [21] the solver for real linear inequalities uses a dual simplex solver.
It partitions the variables into basic and non-basic variables, and maintains a
global set of equalities of the form xbi +

∑
j aijxj = 0, where i refers to the

i’th row, xbi is basic and xj range over non-basic variables. It also maintains an
evaluation β, such that β(xbi) +

∑
j aijβ(xj) = 0 for each row i. Each variable

xj is assigned lower and upper bounds during search. The solver then checks
whether loj ≤ β(xj) ≤ hij , for bounds loj , hij that are dynamically added and
removed by Boolean decisions xj ≤ hij , xj ≥ loj . If the bounds are violated, it
updates the evaluation and pivots if necessary. We recall the approach using an
example.

Example 1. For the following formula

y ≥ 0 ∧ (x + y ≤ 2 ∨ x + 2y ≥ 6) ∧ (x + y ≥ 2 ∨ x + 2y > 4)

the solver introduces auxiliary variables s1, s2 and represents the formula as

x + y − s1 = 0, x + 2y − s2 = 0, x ≥ 0, (s1 ≤ 2 ∨ s2 ≥ 6), (s1 ≥ 2 ∨ s2 > 4)

Only bounds (e.g., s1 ≤ 2) are asserted during search. The slack variables
s1, s2 are initially basic (dependent) and x, y are non-basic. In dual Simplex
tableaux, values of a non-basic variable xj can be chosen between loj and hij .
The value of a basic variable is a function of non-basic variable values. Piv-
oting swaps basic and non-basic variables and moves basic variables within
their bounds to bounds violations. For example, assume we start with a set
of initial values x = y = s1 = s2 = 0 and bounds x ≥ 0, s1 ≤ 2, s1 ≥ 2.
Then s1 has to be 2 and it is made non-basic. Instead, y becomes basic:
y + x − s1 = 0, s2 + x − 2s1 = 0. The new tableau updates the assignment
of variables to x = 0, s1 = 2, s2 = 4, y = 2. The resulting assignment is a model
for the original formula.

3.2 Finding Equal Variables - Cheaply

It is useful to have the arithmetic solver propagate implied equalities when arith-
metic is used in combination with other theories, or even when it solves non-linear
arithmetic constraints. Equality propagation is disabled for pure arithmetic the-
ories, such as QF LIA, QF LRA [3]. Z3 originally used a method based on storing
offset equalities in a hash table. An offset equality is of the form xi = y + k,
where k is a numeric constant. Offset equalities are extracted from rows that

Arithmetic Solving in Z3 29

contain xi as a basic variable, and contains only one other non-fixed variable y,
while other variables are fixed and their lower (upper) bounds add up to k. It
turns out that computing k is expensive when the tableau contains large numeric
constants. Hash table operations contribute with additional overhead. It turns
out that neither the offset hash-table, nor computing k, is really necessary. We
describe our new method, using an example. We first described the method for
avoiding to compute offsets in [8]. The description there relies on building a
tree data-structure for connecting variables and fails to leverage that the dual
simplex tableau can be used directly.

Example 2. From equalities x + 1 = y, y − 1 = z infer that x = z. Based on the
tableau form, the solver is presented with the original equality atoms via slack
variables

s1 = x + u − y, s2 = y − u − z, 1 ≤ u ≤ 1

The tableau can be solved by setting x = 0, y = 0, z = 0, s1 = 1, s2 = −1, u = 1.
The slack variables are bounded when the equalities are asserted

s1 = x + u − y, s2 = y − u − z, 1 ≤ u ≤ 1, 0 ≤ s1 ≤ 0, 0 ≤ s2 ≤ 0

The original solution is no longer valid, the values for s1, s2 are out of bounds.
Pivoting re-establishes feasibility using a different solution, for example

x = y − u − s1, y = z − u − s2, 1 ≤ u ≤ 1, 0 ≤ s1 ≤ 0, 0 ≤ s2 ≤ 0

with assignment z = 0, x = y = −1. The variables x and y have the same value,
but must they be equal under all assignments? We can establish this directly
by subtracting the right-hand sides z − u − s1 and z − u − s2 from another
and by factoring in the constant bounds to obtain the result 0. But subtraction
is generally expensive if there are many bounded constants in the rows. Such
arithmetical operations are not required to infer that x = y.

Z3 uses the following conditions to infer an equality between variables x, y
having the same values in the current assignment:

– x is basic, and the tableau has row x − y + α = 0,
– x, y are connected through a non-basic variable z in a pair of the tableau

rows in one of the following forms (1) x − z + α = 0, y − z + α′ = 0, (2)
x + z + α = 0, y + z + α′ = 0,

where α, α′ are linear combinations of fixed variables.
We experimented with generalizing the connection between equal variables

to allow non-unit coefficients on z, but it did not result in measurable improve-
ments.

3.3 Bounds Propagation

It is not uncommon that SMT formulas contain different bounds for the same
variable, such as one atom x ≥ 2 and another atom x ≥ 3. When the atom x ≥ 3

30 N. Bjørner and L. Nachmanson

is assigned to true, the solver can directly propagate x ≥ 3. Bounds can also
be inferred indirectly. With a row x − 2y = 0 and bound y ≥ 1, it follows that
x ≥ 2. To implement direct bounds propagation, the solver maintains an index
that maps each variable to the set of bounds atoms where it occurs. To implement
indirect bounds propagation, the solver queries updated rows for whether they
imply bounds that are stronger than the currently asserted bounds. If so, these
stronger bounds are used by the index for direct bounds propagation.

4 Integer Linear Arithmetic

The mixed integer linear solver consists of several layers that first attempt to
patch integer variables form solutions over reals to solutions over integers. Then,
if patching fails to correct all integer variables, it checks for integer infeasibility by
checking light-weight Diophantine feasibility criteria and then resort to variants
of Gomory Cuts and Branch and Bound.

4.1 Patching

In a feasible tableau we can assume that all non-basic variables are at their
bounds and therefore if they have integer sort they are assigned integer values.
Only the basic variables could be assigned non-integer values. Patching seeks
changing values of non-basic values in order to assign integer values to basic
variables. A related method, that diversifies values of variables using freedom
intervals was described in [18], but we found it does not preserve integral assign-
ments.

Thus, we patch rows with basic variables xb �∈ Z. We use a process that seeks
a δ, such that |δ| is minimal and the row with xb is of the form xb+αy+α′x′ = 0,
where α �∈ Z, such that the update β(y) := β(y)+δ is within the bounds of y, xb

is assigned an integer value and such that xb becomes integer without breaking
any bounds in the tableau.

Example 3. Suppose we are given a tableau of the form y − 1
2x = 0, z − 1

3x = 0
where y, z are basic variables and x has bounds [3, 10], y has bounds [−3, 4], z
has bounds [−5, 12]. The variable x is initially assigned at the bound β(x) = 3.
Then β(y) = 3

2 and β(z) = 1. But neither y nor z is close to their bounds. We
can move x to 8 without violating the bound for y because of y − 1

2x = 0. Thus,
the freedom interval for x is the range [3, 8] and within this range there is a
solution, x = 6, where y, z are integers and within their bounds.

4.2 Cubes

An important factor in solving more satisfiable integer arithmetic instances is
a method by Bromberger and Weidenbach [9,10]. It allows detecting feasible
inequalities over integer variables by solving a stronger linear system. Their
method relies on the following property: The inequalities Ax ≤ b are integer

Arithmetic Solving in Z3 31

feasible, for matrix A and vectors x, b, if Ax ≤ b − 1
2 ||A||1 has a solution over the

reals. We use the 1-norm ||A||1 of a matrix as a column vector, such that each
entry i is the sum of the absolute values of the elements in the corresponding
row Ai.

Example 4. Suppose we have 3x+y ≤ 9∧−3y ≤ −2 and wish to find an integer
solution. By solving 3x + y ≤ 9 − 1

2 (3 + 1) = 7,−3y ≤ −2 − 1
23 = −3.5 we find

a model where y = 7
6 , x = 0. After rounding y to 1 and maintaining x at 0 we

obtain an integer solution to the original inequalities.
Z3 includes a twist relative to [10] that allows to avoid strengthening on

selected inequalities [6]. First, we note that difference inequalities of the form
x − y ≤ k, where x, y are integer variables and k is an integer offset need not be
strengthened: they have a solution over reals if and only if they have a solution
over integers. For octagon constraints ±x±y ≤ k, there is a boundary condition:
they need only require strengthening if x, y are assigned at mid-points between
integral solutions. For example, if β(x) = 1

2 and β(y) = 3
2 , for x + y ≤ 2.

4.3 GCD Consistency

A basic test for integer infeasibility is by enforcing divisibility constraints.

Example 5. Assume we are given a row 5/6x + 3/6y + z + 5/6u = 0, where x, y
are fixed at 2 ≤ x ≤ 2, −1 ≤ u ≤ −1, and z is the base variable. Then it follows
that 5 + 3(y + 2z) = 0 which has no solution over the integers: The greatest
common divisor of coefficients to the non-fixed variables (3) does not divide the
constant offset from the fixed variables (5).

The basic test is extended as follows. For each row ax + by + c = 0, where

– a, b, c and x, y are vectors of integer constants and variables, respectively.
– the coefficients in a are all the same and smaller than the coefficients in b
– the variables x are bounded

Let l := a · lb(x), u := a · ub(x). That is, the lower and upper bounds for a · x
based on the bounds for x. If � u

gcd(b,c)	 >
 l
gcd(b,c)�, then there is no solution for

x within the bounds for x.

4.4 Branching

Similar to traditional MIP branch-and-bound methods, the solver creates some-
what eagerly case splits on bounds of integer variables if the dual simplex solver
fails to assign them integer values. For example, Simplex may assign an integer
variable x, the value 1

2 , in which case z3 creates a literal x ≤ 0 that triggers two
branches x ≤ 0 and ¬(x ≤ 0) ≡ x ≥ 1.

4.5 Cuts

The arithmetic solver produces Gomory cuts from rows where the basic vari-
ables are non-integers after the non-basic variables have been pushed to the

32 N. Bjørner and L. Nachmanson

bounds. Z3 implements Chvátal-Goromy cuts described in [21]. It also imple-
ments algorithms from [13,20] to generate cuts after the linear systems have
been transformed into Hermitian matrices. It is a long-standing and timely chal-
lenge [1] to harness the effectiveness of selecting cuts. While the solver takes [21]
as starting point, it incorporates a few heuristics and enhancements.

Recall that a row
∑k

j=0 aj · xj + xb = 0 from the tableau is called a Gomory
row, and is eligible for Gomory cut, if xb is a basic variable and xj are non-basic
variables, xb is an integral variable, but β(xb) is not integral, and for each xj we
have β(xj) = loj or β(xj) = hij , and the bounds are not strict.

We use a relaxed definition of Gomory rows. For a non-basic integral variable
xj we allow for value β(xj) to be not at a bound when β(xj), and aj are both
integers: Let us call such xj row integral.

To select a cut variable, our main heuristic sorts all Gomory rows from
the tableau by the distance of β(xb) from the nearest integer, that is
min{β(xb) − �β(xb)	,
β(xb)� − β(xb)}, and pick a few of them having the min-
imal distance to produce the cuts. We break the ties by preferring the variables
that are used in more terms. Heuristics used previously relied on distances to
bounds.

We also look for the case when xb is at an extremum. For example, if for all
xj we have β(xj) = loj , and aj > 0 then xb is at the maximum, and we deduce
xb ≤ �β(xb)	. The explanations of the Gomory term do not include constraints
on xj for j ∈ A from the relaxed definition, but in case of an extremum these
constraints should be added.

Cuts are consequences of the current bounds. By default the solver adds
new rows to the Dual Simplex tableau corresponding to cuts, but makes an
exception when the new rows include large numerals. In analogy the solver avoids
bounds propagation, Sect. 3.3, when computation of bounds relies on big-num
arithmetic. Similarly, cuts that involve large coefficients are first added to a
temporary scope where the tableau is checked for feasibility. The cuts are only
re-added within the main scope if the temporary tableau is infeasible.

5 Non-linear Arithmetic

Similar to solving for integer feasibility, the arithmetic solver solves constraints
over polynomials using a waterfall model for non-linear constraints. At the basis
it maintains, for every monomial term x · x · y, a definition m = x · x · y, where
m is a variable that represents the monomial x · x · y. The module for non-
linear arithmetic then collects the monomial definitions that are violated by the
current evaluation, that is β(m) �= β(x) · β(x) · β(y). It attempts to establish a
valuation β′ where β′(m) = β′(x) · β′(x) · β′(y), or derive a consequence that no
such evaluation exists.

5.1 Patch Monomials

A patch for a variable x is admissible if the update β(x) := v does not break
any integer linear constraints and x does not occur in monomial equations that
are not already false under β.

Arithmetic Solving in Z3 33

– Set β(m) := β(x) · β(x) · β(y) and check if the patch of m is admissible.
– Try to set β(y) := β(m)/(β(x) · β(x)), provided βx is not 0, and check that

the patch for x is admissible.
– When β(m) = r2 for a rational and m := x · x try patching x by setting

β(x) := ±r.

5.2 Bounds Propagation

A relatively inexpensive step is to propagate and check bounds based on non-
linear constraints. For example, for y ≥ 3, then m = x · x · y ≥ 3, if furthermore
x ≤ −2, we have the strengthened bound m ≥ 12. Bounds propagation can also
flow from bounds on m to bounds on the variables that make up the monomial,
such that when m ≥ 8, 1 ≤ y ≤ 2, x ≤ 0, then we learn the stronger bound
x ≤ −2 on x. It uses an interval arithmetic abstraction, that understands bounds
propagation over squares. Thus, if −2 ≤ x ≤ 2, then 0 ≤ x2 ≤ 4 instead of
−4 ≤ x2 ≤ 4.

The solver also performs Horner expansions of polynomials to derive stronger
bounds. For example, if x ≥ 2, y ≥ −1, z ≥ 2, then y + z ≥ 1 and therefore
x · (y +z) ≥ 2, but we would not be able to deduce this fact if combining bounds
individually for x · y and x · z because no bounds can be inferred for x · y in
isolation. The solver therefore attempts different re-distribution of multiplication
in an effort to find stronger bounds.

5.3 Adding Bounds

Non-linear bounds propagation only triggers if all variables are either bounded
from above or below or occur with an even power. The solver includes a pass
where it adds a bound case split x ≥ 0 to variables x where lox = −∞, hix =
+∞. The added case split may help trigger bounds propagation, such as detect-
ing conflicts on xy > 0, xz > 0, y > 0 > z.

5.4 Gröbner reduction

Z3 uses a best effort Gröbner basis reduction to find inconsistencies, cheaply,
and propagate consequences. While Gröbner basis heuristics are not new to Z3,
they have evolved and to our knowledge the integration is unique among SMT
solvers. Recall that reduced Gröbner basis for a set of polynomial equations p1 =
0, . . . , pk = 0 is a set q1 = 0, . . . , qm = 0, such that every pi is a linear sum of qj ’s,
and the leading monomials of every pair qi, qj , i �= j, have no common factors.
Since Z3 uses completion as a heuristic to make partial inferences, it does not seek
to compute a basis. The Gröbner module performs a set of partial completion
steps, preferring to eliminate variables that can be isolated, and expanding a
bounded number of super-position steps (reductions by S-polynomials).

Z3 first adds equations m = x1 . . . xk for monomial definitions that are vio-
lated. It then traverses the transitive cone of influence of Simplex rows that

34 N. Bjørner and L. Nachmanson

contain one of the added variables from monomial definitions. It only consid-
ers rows where the basic variable is bounded. Rows where the basic variable is
unbounded are skipped because the basic variable can be solved for over the
reals. Fixed variables are replaced by constants, and the bounds constraints
that fixes the variables are recorded as dependencies with the added equation.
Thus, the equations handled by the Gröbner basis reduction are of the form
〈pi : xy+3z+3 = 0, di : {3 ≤ u ≤ 3}〉, where pi is a polynomial and di is a set of
dependencies corresponding to fixed variables that were replaced by constants
in pi. In the example, we replaced u by 3 and the definition 〈m = xy, ∅〉 resolved
m by xy. Dependencies are accumulated when two polynomials are resolved to
infer a new derived equality. Generally, when 〈xy + p1 = 0, d1〉, 〈xz + p2 = 0, d2〉
are two polynomial equations, then 〈zp1 − yp2 = 0, d1 ∪ d2〉 can be derived
accumulating the premises d1, d2.

Finally, equations are pre-solved if they are linear and can be split into two
groups, one containing a single variable that has a lower (upper) bound, the
other with more than two variables with upper (lower) bounds. This avoids
losing bounds information during completion.

After (partial) completion, the derived equations are post-processed:

Constant Propagation. For equalities of the form x = 0 or ax + b = 0. If the
current assignment to x does not satisfy the equation, then the equality is
propagated as a lemma.

Linear Propagation. As a generalization of constant propagation, if the com-
pletion contains linear equations that evaluate to false under the current
assignment, then these linear equations are added to the Simplex Tableau.
Example 6 illustrates a use where this propagation is useful.

Factorization. Identify factors of the form xyp � 0 where x, y are variables an
p is linear. We infer the clause xyp � 0 ⇒ x � 0 ∨ y � 0 ∨ p � 0.

Example 6 (Combining Gröbner completion and Linear Solving). We include
an example obtained from Yoav Rodeh at Certora. The instance was not solv-
able prior to adding simplex propagation. To solve it, Certora relied on treating
multiplication as an uninterpreted function and including selected axioms for
modular arithmetic and multiplication that were instantiated by E-matching.
The distilled example is:

L ≤ x · y ≤ U ∧ 1 ≤ x ∧ mr ≤ U ∧ x · y �= mr

where L = N div 2, U = 1 + L, mr = (x · (ite(y ≥ 0, y,N + y))) mod N . We
assume N is even, such as N = 2256. The solver associates a variable m with x ·y
and m′ with x · y′ and y′ with ite(y ≥ 0, y,N + y) and includes the constraints
0 ≤ mr < N,mq · N + mr = m′, where mq is an integer variable. The most
interesting case is where y < 0, so y′ = y + N . Gröbner basis completion then
allows to derive mqN + mr = m′ = x(y + N) = xy + xN = m + xN , which by
integer linear arithmetic reasoning (the extended GCD test) contradicts m �= mr

because the absolute value of both variables is below N .

Arithmetic Solving in Z3 35

Our extraction of linear constraints represents a partial integration of lin-
ear programming and polynomial arithmetic, that favors only including linear
inequalities over variables and monomials that are already present. Our imple-
mentation does not include any variables for new monomials produced by com-
pletion. In comparison, the approach in [25] proposes a domain for abstract
interpretation that populates a linear solver with all equations produced by a
completion. We have not experimented in depth with extending our approach
with a full basis, or use it as a starting point for finding lemmas based on Posi-
tivstellensatz or other extension mechanisms [32,34].

x

x

y y

5 0 1 1

Fig. 2. PDD representation of
5x2y + xy + y + x + 1

We use an adaptation of ZDD (Zero sup-
pressed decision diagrams [29,30]) to rep-
resent polynomials. The representation has
the advantage that polynomials are stored
in a shared data-structure and operations
over polynomials are memorized. A polyno-
mial over the real is represented as an acyclic
graph, where nodes are labeled by variables
and edges are labeled by coefficients. Figure 2
shows a polynomial stored in a polynomial
decision diagram, PDD.

The root node labeled by x represents the
polynomial x · l+r, where l is the polynomial
of the left sub-graph and r the polynomial of the right sub-graph. The left sub-
graph is allowed to be labeled again by x, but the right sub-graph may only
have nodes labeled by variables that are smaller in a fixed ordering. The fixed
ordering used in this example sets x above y. Then the polynomial for the right
sub-graph is y + 1, and the polynomial with the left sub-graph is 5xy + (y + 1).

5.5 Incremental Linearization

Following [14] we incrementally linearize monomial definitions that currently
evaluate to false. For example, we include lemmas of the form x = 0 → m = 0 and
x = 1 → m = y, for m = x2y. Incremental linearization proceeds by first apply-
ing linearizations that are considered cheap, such as case splitting on whether
variables take values 0, 1, −1, when these boundary conditions are exhausted,
instantiates lemmas based on monotonicity of multiplication and tangents. It is
possible that there are overlapping monomial definitions, such as m′ = x · y.
Then incremental linearization takes into account that the definition for m can
be factored into m′ · x. It also uses specialized congruence closure reasoning,
recognizing equalities modulo signs, such that when m = x · y,m′ = z · y and
x = −z in the current context, then m ∼ −m′.

To find all factorizations of monomial m =
∏

i∈A xi as m = m0 · m1, we
choose a ∈ A and enumerate over all proper subsets B of A containing a. For
each B we check that m0 =

∏
i∈B xi and m1 =

∏
i∈A\B xi are monomials.

To support floating point arithmetic reasoning we also include incremental
linearization lemmas for special cases of exponentiation [15]. We also added

36 N. Bjørner and L. Nachmanson

rules for incremental linearization of divisibility operations. The front-end to
the core arithmetic solver axiomatizes integer and real division operations using
multiplication and addition, so that the solver does not have to reason about
division. Nevertheless, we found use cases for instantiating axioms of the form
y > 0 ∧ x > z ⇒ x/y > z/y (when the input contains terms x/y, z/y) bypassing
indirect reasoning around constraints created by axioms.

5.6 NLSat

As an end-game attempt, the solver attempts to solver the non-linear constraints
using a complete solver for Tarski’s fragment supported by the NLSat solver [24].
NLSAT is complete for non-linear arithmetic and includes branch-and-bound
to handle cases of integer arithmetic. It can therefore sometimes be used to
solve goals, bypassing the partial heuristics entirely. The solver therefore includes
selected calls to NLSat with a small resource bound to close branches before
attempting incomplete heuristics such as incomplete linearization. The results
in Sect. 7 suggests that our use of NLSat with a resource bound currently incurs
significant overhead on easy problems, but overall is an advantage. We found
that it is sometimes the case that turning off NLSat all-together can speed up
the solver significantly, but is overall a disadvantage.

6 Shared Equalities

Z3 uses model-based theory combination [18] for sharing equalities between the-
ories. In the context of arithmetic it means that in a satisfiable state shared
variables where β(x) = β(y) it also holds that the literal x � y is assigned to
true. For larger benchmarks we observed that there can be a significant over-
head in checking whether a term occurs in a shared context because it relies
on properties of which parent terms it occurs. We therefore introduced a way to
cache the property of being shared in the E-nodes. The property gets invalidated
when the a new parent E-node is added or the congruence class of the E-node
is merged.

7 Evaluation

To get an idea of how the new solver compares and how the individual fea-
tures of weigh on performance we conducted a set of measurements. They
are based on three benchmark sets: QF LIA, SMTLIB2 benchmarks for the
theory of quantifier-free integer linear arithmetic, QF NIA, SMTLIB2 bench-
marks for the theory of quantifier-free non-linear integer arithmetic, and
benchmark-submission, a smaller set of verification conditions obtained from
Certora. Data associated with the measurements summarized in this Section are
available from [7]. We ran the solvers for 600 s and measured how many prob-
lems are solved within 600 s. We compared default settings of the solvers with

Arithmetic Solving in Z3 37

CVC5 [2,17,26], MathSat5 [16,28], and Yices2 [22,37], and Z3’s legacy arith-
metic solver, which is available by setting the option smt.arith.solver=2. The
advances relative to the legacy solver are noticable. Compared to other solvers,
Yices2 and MathSat5 shine as fast out of the gates solving relatively more prob-
lems within 1 s. The are mainly limited by the set of supported features, such
as lack of support for algebraic data-types. We compare how many instances
the solvers handle within 1 s, within 1–10 s, 10–100 s, and 10–600 s. We also list
timeouts and cases where the solver returns unknown because of incompleteness,
and cases where benchmarks are unhandled, either because the solver runs out
of allocated virtual memory set to 2 GB, or due to unsupported features. The
version of Z3 used for the experiments corresponds to 4.12.5.

Figure 3 shows results of evaluating z3 when disabling selected features. It
suggests that using NLSat to eagerly close branches comes with a steep cost for
easy benchmarks. It can likely be tuned in future versions of Z3. The eager use of
NLSat still provides an overall benefit. Z3 also uses tactics that run a few strate-
gies with a 5 s resource bounds early on to find models using SAT encodings and
selected branch-and-bound strategies. They are also a cause of relatively slow
startup. The default tactics can be overridden. The feature with overall biggest
impact is incremental linearization. While it is run after gcd tests, bounds prop-
agation and Gröbner saturation, it has a significant effect. Other features have
each a relative minor effect in isolation. The solver relies on their cumulative
effect.

Solver < 1s 1 to 10s 10 to 100s 100 to 600s > 600s unknown/unhandled solved

CVC5 3082 4564 3578 1693 10959 0/0 12917

MathSat5 3304 6022 3894 2047 8607 0/2 15267

Yices2 6372 6284 2176 852 8192 0/0 15684

z3 4597 7440 4826 1504 5505 0/4 18367

z3legacy 3504 6881 4081 1577 6923 891/19 16043

(a) Comparison among solvers on QF NIA

Solver < 1s 1 to 10s 10 to 100s 100 to 600s > 600s unknown/unhandled solved

CVC5 1540 1071 529 416 3391 0/0 3556

MathSat5 2995 1065 1124 1184 577 0/2 6368

Yices2 3638 2001 276 120 909 0/3 6035

z3 2840 1161 1521 754 669 0/2 6276

z3legacy 2714 1059 1619 702 851 0/2 6094

(b) Comparison among solvers on QF LIA

Solver < 1s 1 to 10s 10 to 100s 100 to 600s > 600s unknown/unhandled solved

CVC5 11 23 54 33 183 4/0 121

MathSat5 147 17 19 32 70 0/23 215

Yices2 13 21 16 12 90 0/156 62

z3 26 88 86 17 91 0/0 217

z3legacy 36 69 55 8 133 7/0 168

(c) Comparison among solvers on Certora Benchmarks

38 N. Bjørner and L. Nachmanson

(a) Certora Benchmarks (b) Sample of 2313 QF-NIA benchmarks

Fig. 3. Impact of selected features turned off

8 Summary and Discussion

We presented the architecture and a cross-cut of system innovations in a new
arithmetic solver in Z3. It is shown to provide good advances relative to the
legacy arithmetic solver, and our evaluation suggests it compares very well
with other state-of-art SMT solvers. The new solver enabled us to addresses
some design choices with the previous solver that limited extensibility. Notably,
the new solver separates its representation of arithmetic constraints from terms
shared by other solvers through an E-graph. We noticed that limitation of using
shared terms is that the boundary for when to treat a sub-term as a variable or a
polynomial is inherently ambiguous. The legacy solver is also highly incomplete
for non-linear reasoning (over the reals).

Many avenues for further innovations and tuning remain. Another important
aspect is trust. Implementing the many features of the arithmetic solver is inher-
ently a complex task. Many bugs get uncovered by fuzzing [11,23,27,31,33,35,36]
both in the legacy and new solver, bearing witness to the difficulty of creating
a correct solver. The solver therefore supports a number of ways to validate
results. The easiest validation is for satisfiable formulas, where the satisfiable
formula is model checked against the returned model. The main difficulty with
satisfiable models is to correctly track interpretations of under-specified opera-
tions, such as division by 0. To check that consequences produced by the solver
are valid, there is a self-validator enabled by the smt.arith.validate=true. It
uses the legacy arithmetic solver to check lemmas and propagations. There is
also a mechanism for creating certificates that can be processed offline or online.
With each theory axiom and propagation produced by the solver, it produces a
certificate object that can be used to validate inferences by the arithmetic solver.
The certificates are exposed in proof objects [19] and also as annotations in proof
logs [4]. Z3 contains a built-in proof checker for proof logs. The proof checker for
arithmetic certificates validates conflicts that can be justified by using Farkas
lemma and bounds propagations that use cuts. It currently falls back to invok-
ing Z3 on lemmas (using the legacy arithmetic solver) for non-linear lemmas and
other cases not covered by the built-in checker. Certificates created for QF LRA

Arithmetic Solving in Z3 39

are fully handled, while self-contained or independent proof checking for more
expressive fragments of arithmetic is future work.

References

1. Balcan, M.-F., Prasad, S., Sandholm, T., Vitercik, E. Structural analysis of
branch-and-cut and the learnability of gomory mixed integer cuts. In: Koyejo,
S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A. (eds.) Advances in
Neural Information Processing Systems 35: Annual Conference on Neural Informa-
tion Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November
28–December 9 2022 (2022)

2. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: TACAS
2022, Part I. LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.
org/10.1007/978-3-030-99524-9 24

3. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2016)

4. Bjørner, N.: Proofs for SMT (2022). https://z3prover.github.io/slides/proofs.html
5. Bjørner, N., et al.: Z3 internals (2023). https://z3prover.github.io/papers/

z3internals.html
6. Bjørner, N., Nachmanson, L.: Theorem recycling for theorem proving. In: Vampire

(2017)
7. Bjørner, N., Nachmanson, L.: Supplementary data (2024). https://github.com/

z3prover/doc/arithmetic
8. Bjørner, N., Nachmanson, L.: Navigating the universe of Z3 theory solvers. In:

Carvalho, G., Stolz, V. (eds.) SBMF 2020. LNCS, vol. 12475, pp. 8–24. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-63882-5 2

9. Bromberger, M., Weidenbach, C.: Fast cube tests for LIA constraint solving. In:
IJCAR (2016)

10. Bromberger, M., Weidenbach, C.: New techniques for linear arithmetic: cubes and
equalities. Formal Methods Syst. Des. 51(3), 433–461 (2017)

11. Brummayer, R., Lonsing, F., Biere, A.: Automated testing and debugging of SAT
and QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175,
pp. 44–57. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-
7 6

12. Certora: Certora Benchmarks (2023). https://github.com/jar-ben/benchmark-
submission

13. Christ, J., Hoenicke, J.: Cutting the mix. In: CAV (2015)
14. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Experimenting on

solving nonlinear integer arithmetic with incremental linearization. In: SAT (2018)
15. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Incremental lin-

earization for satisfiability and verification modulo nonlinear arithmetic and tran-
scendental functions. ACM Trans. Comput. Log. 19(3), 19:1–19:52 (2018)

16. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93–107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 7

17. CVC5: CVC5 executable (2024). https://github.com/cvc5/cvc5/releases/. For
the experiments we used the newest available version at the time https://cvc5.
stanford.edu/downloads/builds/x86 64-win64-production/cvc5-2024-01-08-x86
64-win64-production.exe. It is no longer available for download, but would have

https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://z3prover.github.io/slides/proofs.html
https://z3prover.github.io/papers/z3internals.html
https://z3prover.github.io/papers/z3internals.html
https://github.com/z3prover/doc/arithmetic
https://github.com/z3prover/doc/arithmetic
https://doi.org/10.1007/978-3-030-63882-5_2
https://doi.org/10.1007/978-3-642-14186-7_6
https://doi.org/10.1007/978-3-642-14186-7_6
https://github.com/jar-ben/benchmark-submission
https://github.com/jar-ben/benchmark-submission
https://doi.org/10.1007/978-3-642-36742-7_7
https://github.com/cvc5/cvc5/releases/
https://cvc5.stanford.edu/downloads/builds/x86_64-win64-production/cvc5-2024-01-08-x86_64-win64-production.exe
https://cvc5.stanford.edu/downloads/builds/x86_64-win64-production/cvc5-2024-01-08-x86_64-win64-production.exe
https://cvc5.stanford.edu/downloads/builds/x86_64-win64-production/cvc5-2024-01-08-x86_64-win64-production.exe

40 N. Bjørner and L. Nachmanson

to be recreated from Git state. We reran experiments using the current release,
March 2024 with degraded results

18. de Moura, L.M., Bjørner, N.: Model-based theory combination. Electron. Notes
Theor. Comput. Sci. 198(2), 37–49 (2008)

19. de Moura, L.M., Bjørner, N.: Proofs and refutations, and Z3. In: Rudnicki, P.,
Sutcliffe, G., Konev, B., Schmidt, R.A., Schulz, S. (eds.) Proceedings of the LPAR
2008 Workshops, Knowledge Exchange: Automated Provers and Proof Assistants,
and the 7th International Workshop on the Implementation of Logics, Doha, Qatar,
22 November 2008, volume 418 of CEUR Workshop Proceedings. CEUR-WS.org
(2008)

20. Dillig, I., Dillig, T., Aiken, A.: Cuts from proofs: a complete and practical technique
for solving linear inequalities over integers. In: CAV (2009)

21. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: CAV
(2006)

22. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9 49

23. Hwang, D.: Z3 Issue tracker (2024). https://github.com/z3prover/z3
24. Jovanovic, D., de Moura, L.M.: Solving non-linear arithmetic. In: IJCAR (2012)
25. Kincaid, Z., Koh, N., Zhu, S.: When less is more: consequence-finding in a weak

theory of arithmetic. Proc. ACM Program. Lang. 7(POPL), 1275–1307 (2023)
26. Kremer, G., Reynolds, A., Barrett, C., Tinelli, C.: Cooperating techniques for

solving nonlinear real arithmetic in the cvc5 SMT solver (system description). In:
Blanchette, J., Kovács, L., Pattinson, D. (eds.) IJCAR 2022. LNCS, vol. 13385,
pp. 95–105. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10769-6 7

27. Mansur, M.N., Christakis, M., Wüstholz, V., Zhang, F.: Detecting critical bugs
in SMT solvers using blackbox mutational fuzzing. In: Devanbu, P., Cohen, M.B.,
Zimmermann, T. (eds.) ESEC/FSE 2020: 28th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing, Virtual Event, USA, 8–13 November 2020, pp. 701–712. ACM (2020)

28. MathSat5: MathSat5 executable (2024). https://mathsat.fbk.eu/download.php?
file=mathsat-5.6.10-win64-msvc.zip

29. Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems.
In: Dunlop, A.E. (ed.) DAC (1993)

30. Nishino, M., Yasuda, N., Minato, S., Nagata, M.: Zero-suppressed sentential deci-
sion diagrams. In: AAAI (2016)

31. Park, J., Winterer, D., Zhang, C., Su, Z.: Generative type-aware mutation for
testing SMT solvers. Proc. ACM Program. Lang. 5(OOPSLA), 1–19 (2021)

32. Platzer, A., Quesel, J.-D., Rümmer, P.: Real world verification. In: Schmidt, R.A.
(ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 485–501. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02959-2 35

33. Sun, M., Yang, Y., Wang, Y., Wen, M., Jia, H., Zhou, Y.: SMT solver validation
empowered by large pre-trained language models. In: 2023 38th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), pp. 1288–1300
(2023)

34. Tiwari, A.: An algebraic approach for the unsatisfiability of nonlinear constraints.
In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 248–262. Springer, Heidelberg
(2005). https://doi.org/10.1007/11538363 18

35. Winterer, D., Zhang, C., Su, Z.: On the unusual effectiveness of type-aware operator
mutations for testing SMT solvers. Proc. ACM Program. Lang. 4(OOPSLA):193:1–
193:25 (2020)

https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://github.com/z3prover/z3
https://doi.org/10.1007/978-3-031-10769-6_7
https://mathsat.fbk.eu/download.php?file=mathsat-5.6.10-win64-msvc.zip
https://mathsat.fbk.eu/download.php?file=mathsat-5.6.10-win64-msvc.zip
https://doi.org/10.1007/978-3-642-02959-2_35
https://doi.org/10.1007/11538363_18

Arithmetic Solving in Z3 41

36. Winterer, D., Zhang, C., Su, Z.: Validating SMT solvers via semantic fusion. In:
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 718–730 (2020)

37. Yices2. Yices2 executable (2024). https://yices.csl.sri.com/releases/2.6.4/yices-2.
6.4-x86 64-pc-mingw32-static-gmp.zip

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://yices.csl.sri.com/releases/2.6.4/yices-2.6.4-x86_64-pc-mingw32-static-gmp.zip
https://yices.csl.sri.com/releases/2.6.4/yices-2.6.4-x86_64-pc-mingw32-static-gmp.zip
http://creativecommons.org/licenses/by/4.0/

Algebraic Reasoning Meets Automata in Solving
Linear Integer Arithmetic

Peter Habermehl2 , Vojtěch Havlena1 , Michal Hečko1 , Lukáš Holı́k1 ,

and Ondřej Lengál1(B)

1 Faculty of Information Technology, Brno University of Technology,
Brno, Czech Republic

lengal@fit.vutbr.cz
2 Université Paris Cité, IRIF, Paris, France

Abstract. We present a new angle on solving quantified linear integer arithmetic
based on combining the automata-based approach, where numbers are under-
stood as bitvectors, with ideas from (nowadays prevalent) algebraic approaches,
which work directly with numbers. This combination is enabled by a fine-grained
version of the duality between automata and arithmetic formulae. In particular,
we employ a construction where states of automaton are obtained as deriva-
tives of arithmetic formulae: then every state corresponds to a formula. Opti-
mizations based on techniques and ideas transferred from the world of algebraic
methods are used on thousands of automata states, which dramatically amplifies
their effect. The merit of this combination of automata with algebraic methods
is demonstrated by our prototype implementation being competitive to and even
superior to state-of-the-art SMT solvers.

1 Introduction

Linear integer arithmetic (LIA), also known as Presburger arithmetic, is the first-order
theory of integers with addition. Its applications include e.g. databases [60], program
analysis [61], synthesis [59], and it is an essential component of every aspiring SMT
solver. Many other types of constraints can either be reduced to LIA, or are decided
using a tight collaboration of a solver for the theory and a LIA solver, e.g., in the theory
of bitvectors [71], strings [19], or arrays [37]. Current SMT solvers are strong enough
in solving large quantifier-free LIA formulae. Their ability to handle quantifiers is, how-
ever, problematic to the extent of being impractical. Even a tiny formula with two quan-
tifier alternations can be a show stopper for them. Handling quantifiers is an area of
lively research with numerous application possibilities waiting for a practical solution,
e.g., software model checking [46], program synthesis [67], or theorem proving [49].

Among existing techniques for handling quantifiers, the complete approaches based
on quantifier elimination [23,64] and automata [13,17,79] have been mostly deemed
not scalable and abandoned in practice. Current SMT solvers use mainly incomplete
techniques originating, e.g., from solving the theory of uninterpreted functions [66] and
algebraic techniques, such as the simplex algorithm for quantifier-free formulae [25].

c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 42–67, 2024.
https://doi.org/10.1007/978-3-031-65627-9_3

https://doi.org//10.5281/zenodo.10996343
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65627-9_3&domain=pdf
http://orcid.org/0000-0002-7982-0946
http://orcid.org/0000-0003-4375-7954
http://orcid.org/0009-0003-2428-8547
http://orcid.org/0000-0001-6957-1651
http://orcid.org/0000-0002-3038-5875
https://doi.org/10.1007/978-3-031-65627-9_3

Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 43

This work is the first step in leveraging a recent renaissance of practically competi-
tive automata technology for solving LIA. This trend that has recently emerged in string
constraint solving (e.g. [2,7,8,18,20]), processing regular expressions [21,24,74], rea-
soning about the SMT theory of bitvectors [54], or regex matching (e.g. [40,53,62,78]).
The new advances are rooted in paradigms such as usage of non-determinism and alter-
nation, various flavours of symbolic representations, and combination with/or integra-
tion into SAT/SMT frameworks and with algebraic techniques.

We particularly show that the automata-based procedure provides unique opportu-
nities to amplify certain algebraic optimizations that reason over the semantic of for-
mulae. These optimizations then boost the inherent strong points of the automata-based
approach to the extent that it is able to overcome modern SMT solvers. The core strong
points of automata are orthogonal to those of algebraic methods, mainly due to treat-
ing numbers as strings of bits regardless of their numerical values. Automata can thus
represent large sets of solutions succinctly and can use powerful techniques, such as
minimization, that have no counterpart in the algebraic world. This makes automata
more efficient than the algebraic approaches already in their basic form, implemented
e.g. in [13,79], on some classes of problems such as the Frobenius coin problem [41].

Fig. 1. Comparison of the peak intermediate
automaton size and the size of the minimized
DFA for the entire formula on the SMT-LIB

benchmark (cf. Sect. 9).

In many practical cases, the automata
construction, however, explodes. The
explosion usually happens when con-
structing an intermediate automaton for
a sub-formula, although the minimal
automaton for the entire formula is
almost always small. The plot in Fig. 1
shows that the gap between sizes of final
and intermediate automata in our bench-
mark is always several orders of mag-
nitude large, offering opportunities for
optimizations. In this paper, we present
a basic approach to breaching this gap
by transferring techniques and ideas
from the algebraic world to automata
and using them to prune the vast state
space.

To this end, we combine the classical inductive automata construction with con-
structing formula derivatives, similar to derivatives of regular expressions [3,15,74]
or WS1S/WSkS formulae [32,45,77]. Our construction directly generates states of an
automaton of a nested formula, without the need to construct intermediate automata
for sub-formulae first. Although the derivative construction is not better than the induc-
tive construction by itself, it gives an opportunity to optimize the state space on the
fly, before it gets a chance to explode. The optimization itself is negotiated by the fine-
grained version of the well-known automaton-formula duality. In the derivative con-
struction, every state corresponds to a LIA formula. Applying equivalence-preserving
formula rewriting on state formulae has the effect of merging or pruning states, similar
to what DFA minimization could achieve after the entire automaton were constructed.

44 P. Habermehl et al.

Our equivalence-preserving rewriting uses known algebraic techniques or ideas
originating from them. First, we use basic formula simplification techniques, such as
propagating true or false values or antiprenexing. Despite being simple, these simplifi-
cations have a large impact on performance. Second, we use disjunction pruning, which
replaces ϕ1∨ϕ2∨· · ·∨ϕk by ϕ2∨· · ·∨ϕk if ϕ1 is entailed by the rest of the formula (this
is close to the state pruning techniques used in [28,32,38]). We also adopt the principle
of quantifier instantiation [26,36,68], where we detect cases when a quantified vari-
able can be substituted by one or several values, or when a linear congruence can be
simplified to a linear equation. We particularly use ideas from Cooper’s quantifier elim-
ination [23], where a quantifier is expanded into a disjunction over a finite number of
values, and from Omega test [65], where a variable with a one-side unbounded range is
substituted by the least restrictive value.

It is noteworthy that in the purely algebraic setting, the same techniques could only
be applied once on the input formula, with a negligible effect. In the automata-based
procedure, their power is amplified since they are used on thousands of derivative states
generated deep within automata after reading several bits of the solution.

Our prototype implementation is competitive with the best SMT solvers on bench-
marks from SMT-LIB, and, importantly, it is superior on quantifier-intensive instances.
We believe that more connections along the outlined direction, based on the fine-grained
duality between automata and formulae, can be found, and that the work in this paper
is the first step in bridging the worlds of automata and algebraic approaches. Many
challenges in incorporating automata-based LIA reasoning into SMT solvers still await
but, we believe, can be tackled, as witnessed e.g. within the recent successes of the
integration of automata-based string solvers [7,18,19].

2 Preliminaries

We use Z to denote the set of integers, Z+ to denote the set of positive integers, and B to
denote the set of binary digits {0, 1}. For x, y ∈ Z and m ∈ Z

+, we use x ≡m y to denote
that x is congruent with y modulo m, i.e., there exists z ∈ Z s.t. z · m + x = y; and x|y
to denote that there exists z′ ∈ Z s.t. y = z′ · x. Furthermore, we use [x]m to denote the
unique integer s.t. 0 ≤ [x]m < m and x ≡m [x]m. The following notation will be used for
intervals of integers: for a, b ∈ Z, the set {x ∈ Z | a ≤ x ≤ b} is denoted as [a, b], the set
{x ∈ Z | a ≤ x} is denoted as [a,+∞), and the set {x ∈ Z | x ≤ b} is denoted as (−∞, b].
The greatest common divisor of a, b ∈ Z, denoted as gcd(a, b), is the largest integer
such that gcd(a, b)|a and gcd(a, b)|b (note that gcd(a, 0) = |a|); if gcd(a, b) = 1, we say
that a and b are coprime. For a real number y, 	y
 denotes the floor of y, i.e., the integer
max{z ∈ Z | z ≤ y}, and �y� denotes the ceiling of y, i.e., the integer min{z ∈ Z | z ≥ y}.

An alphabet Σ is a finite non-empty set of symbols and a word w = a1 . . . an of
length n over Σ is a finite sequence of symbols from Σ. If n = 0, we call w the empty
word and denote it ε. Σ+ is the set of all non-empty words over Σ and Σ∗ = Σ+ ∪ {ε}.

Finite Automata. In order to simplify constructions in the paper, we use a varia-
tion of finite automata with accepting transitions instead of states. A (final transi-
tion acceptance-based) nondeterministic finite automaton (FA) is a five-tuple A =

Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 45

(Q, Σ, δ, I,Acc) where Q is a finite set of states, Σ is an alphabet, δ ⊆ Q×Σ×Q is a tran-
sition relation, I ⊆ Q is a set of initial states, and Acc : δ→ {true, false} is a transition-
based acceptance condition. We often use q

a−→ p to denote that (q, a, p) ∈ δ. A run ofA
over a word w = a1 . . . an is a sequence of states ρ = q0q1 . . . qn ∈ Qn+1 such that for

all 1 ≤ i ≤ n it holds that qi−1
ai−→ qi and q0 ∈ I. The run ρ is accepting if n ≥ 1 and

Acc(qn−1
an−→ qn) (i.e., if the last transition in the run is accepting)1. The language ofA,

denoted as L(A), is defined as L(A) = {w ∈ Σ∗ | there is an accepting run ofA on w}.
We further use LA(q) to denote the language of the FA obtained from A by setting its
set of initial states to {q} (if the context is clear, we use just L(q)).

A is deterministic (a DFA) if |I| ≤ 1 and for all states q ∈ Q and symbols a ∈ Σ, it
holds that if q

a−→ p and q
a−→ r, then p = r. On the other hand, A is complete if |I| ≥ 1

and for all states q ∈ Q and symbols a ∈ Σ, there is at least one state p ∈ Q such that

q
a−→ p. For a deterministic and completeA, we abuse notation and treat δ as a function
δ : Q × Σ → Q. A DFAA is minimal if ∀q ∈ Q : L(q) � ∅ ∧ ∀p ∈ Q : p � q⇒ L(q) �
L(p). Hopcroft’s [51] and Brzozowski’s [14] algorithms for obtaining a minimal DFA
can be modified for our definition of FAs .

Linear Integer Arithmetic. Let X = {x1, . . . , xn} be a (finite) set of integer variables. We
will use �x to denote the vector (x1, . . . , xn). Sometimes, we will treat �x as a set, e.g.,
y ∈ �x denotes y ∈ {x1, . . . , xn}. A linear integer arithmetic (LIA) formula ϕ over X is
obtained using the following grammar:

ϕatom ::= �a · �x = c | �a · �x ≤ c | �a · �x ≡m c | ⊥
ϕ ::= ϕatom | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃y(ϕ)

where �a is a vector of n integer coefficients (a1, . . . , an) ∈ Z
n, c ∈ Z is a constant,

m ∈ Z
+ is a modulus, and y ∈ X (one can derive the other connectives �,→,↔, ∀, . . . in

the standard way)2. Free variables of ϕ are denoted as fv(ϕ). Given a formula ϕ , we
say that an assignment ν : X→ Z is a model of ϕ , denoted as ν |= ϕ , if ν satisfies ϕ in
the standard way. Note that we use the same symbols =,≤,≡m,¬,∧,∨,∃, . . . in the syn-
tactical language (where they are not to be interpreted, with the exception of evaluation
of constant expressions) of the logic as well as in the meta-language. In order to avoid
ambiguity, we use the style ϕ for a syntactic formula. W.l.o.g. we assume that variables
in ϕ are unique, i.e., there is no overlap between quantified variables and also between
free and quantified variables.

In our decision procedure we represent integers as non-empty sequences of binary
digits a0 . . . an ∈ B

+ using the two’s complement with the least-significant bit first
(LSBF) encoding (i.e., the right-most bit denotes the sign). Formally, the decoding of
a binary word represents the integer

1 Note that our FAs cannot accept the empty word ε, which corresponds in our use to the fact
that in the two’s complement encoding of integers, one needs at least one bit (the sign bit) to
represent a number, see further.

2 Although the modulo constraint �a · �x ≡m c could be safely removed without affecting the
expressivity of the input language, keeping it allows a more efficient automata construction
and application of certain heuristics (cf. Sect. 7.1).

46 P. Habermehl et al.

Fig. 2. Definition of the transition function Post for atomic formulae. Note that the right-hand
sides contain constant expressions, so they will be evaluated.

〈a0 . . . an〉 =
n−1∑

i=0

ai · 2i − an · 2n. (1)

For instance, dec(0101) = −6 and dec(010) = 2. Note that any integer has infinitely
many representations in this encoding: the shortest one and others obtained by repeating
the sign bit any number of times. In this paper, we work with the so-called binary
assignments. A binary assignment is an assignment ν : X → B

+ s.t. for each x1, x2 ∈ X

the lengths of the words assigned to x1 and x2 match, i.e., |ν(x1)| = |ν(x2)|. We overload
the decoding operator 〈·〉 to binary assignments such that 〈ν〉 : X → Z is defined as
〈ν〉 = {x �→ 〈y〉 | ν(x) = y}. A binary model of a formula ϕ is a binary assignment ν
such that 〈ν〉 |= ϕ. We denote the set of all binary models of a LIA formula ϕ as �ϕ�
and we write ϕ1 ⇒ ϕ2 to denote �ϕ1 � ⊆ �ϕ2 � and ϕ1 ⇔ ϕ2 to denote �ϕ1 � = �ϕ2 �.

3 Classical Automata-Based Decision Procedure for LIA

The following classical decision procedure is due to Boudet and Comon [13] (based
on the ideas of [16]) with an extension to modulo constraints by Durand-Gasselin and
Habermehl [29]. Given a set of variables X, a symbol σ is a mapping σ : X → B and
ΣX denotes the set of all symbols over X. For a symbol σ ∈ ΣX and a variable x ∈ X we
define the projection πx(σ) = {σ′ ∈ ΣX | σ′|X\{x} = σ|X\{x} }where σ|X\{x} is the restriction
of the function σ to the domain X \ {x}.

For a LIA formula ϕ, the classical automata-based decision procedure builds an
FA Aϕ encoding all binary models of ϕ. We use a modification which uses automata
with accepting edges instead of states. It allows to construct deterministic automata for
atomic formulae, later in Sect. 4 also for complex formulae, and to eliminate an artificial
final state present in the original construction that does not correspond to any arithmetic
formula. The construction proceeds inductively as follows:

Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 47

Base Case. First, an FA Aϕatom is constructed for each atomic formula ϕatom in ϕ. The
states ofAϕatom are LIA formulae with ϕatom being the (only) initial state.Aϕatom’s struc-
ture is given by the transition function Post, implemented via a derivative Post(ϕatom , σ)
of ϕatom w.r.t. symbols σ ∈ ΣX as given in Fig. 2 (an example will follow).

Intuitively, for Post(�a · �x = c , σ), the next state after readingσ is given by taking the
least significant bits (LSBs) of all variables (�x) after being multiplied with the respective
coefficients (�a) and subtracting this value from c. If the parity of the result is odd, we
can reject the input word (�a · �x and c have a different LSB, so they cannot match),
otherwise we can remove the LSB of the result, set it as a new c, and continue. One can
imagine this process as performing a long addition of several binary numbers at once
with c being the result (the subtraction from c can be seen as working with carry). The
intuition for a formula �a · �x ≤ c is similar. On the other hand, for a formula �a · �x ≡2m c ,
i.e., a congruence with an even modulus, if the parity of the left-hand side (�a · �x) and the
right-hand side (c) does not match (in other words, c − �a · �x is odd), we can reject the
input word (this is because the modulus is even, so the parities of the two sides of the
congruence need to be the same). Otherwise, we remove the LSB of the modulus (i.e.,
divide it by two). Lastly, let us mention the second case for the rule for a formula of the
form �a · �x ≡2m+1 c . Here, since κ is odd, we cannot divide it by two; however, adding
the modulus (2m + 1) to κ yields an even value equivalent to κ.

The states of Aϕatom are then all reachable formulae obtained from the application
of Post from the initial state. The reachability from a set of formulae S using symbols
from Γ is given using the least fixpoint operator μ as follows:

Reach(S , Γ) = μZ : S ∪ {Post(ψ , a) | ψ ∈ Z, a ∈ Γ} (2)

Lemma 1. Reach({ϕatom }, ΣX) is finite for an atomic formula ϕatom .

Proof. The cases for linear equations and inequations follow from [13, Proposition 1]
and [13, Proposition 3] respectively. For moduli, the lemma follows from the fact that
in the definition of Post, the right-hand side of a modulo is an integer from [0,m− 1]. ��

Fig. 3. Acceptance for atomic formulae.

Post is deterministic, so it suffices to
define the acceptance condition for the deriva-
tives only for each state and symbol, as
given in Fig. 3. E.g., a transition from
2x1 − 7x2 = 5 over σ =

[1
1
]
is accepting; the

intuition is similar as for Post with the differ-
ence that the last bit is the sign bit (cf. Eq.
(1)), so it is treated in the opposite way to
other bits (therefore, there is the “+” sign on the right-hand sides of the definitions
rather than the “−” sign as in Fig. 2). If we substitute into the example, we obtain
2 · (−1) − 7 · (−1) = −2 + 7 = 5. The acceptance condition Acc is then defined as

Acc(ϕ1
σ−→ Post(ϕ1 , σ))

def
= Fin(ϕ1 , σ) andAϕatom is defined as the FA

Aϕatom = (Reach({ϕatom }, ΣX), ΣX,Post, {ϕatom },Acc). (3)

Note that if an FA accepts a word w, it also accepts all words obtained by appending
any number of copies of the most significant bit (the sign) to w.

48 P. Habermehl et al.

Fig. 4. Examples of FAs for atomic formulae. The notation for symbols is
[x
y

]
; red background

denotes accepting transitions. (Color figure online)

Example 1. Figure 4 gives examples of FAs for x + 2y ≤ 1 and x + 2y ≡6 2 . For the
case of the FA for x + 2y ≤ 1 , consider for instance the state x + 2y ≤ −1 (denoted
by the state “−1” in Fig. 4a). We show computation of the Post of this state over the
symbol σ =

[1
0
]
. From the definition in Fig. 2, we have Post(x + 2y ≤ −1 , [10

]
) =

x + 2y ≤ k where k = 	 12 (−1 − (1, 2) · [10
]
)
 = 	 12 (−2)
 = −1. Moreover, since

Fin(x + 2y ≤ −1 , [10
]
)⇔ −1+(1, 2) ·[10

]
= 0 ≥ 0, this transition is marked as accepting

(cf. Fig. 3).
For the case of the second FA, consider for instance the state x + 2y ≡3 0 (denoted

by the state “0≡3” in Fig. 4b). Similarly to the previous example, we show computa-
tion of Post of this state over the symbol σ =

[1
0
]
. From the definition in Fig. 2, we

have Post(x + 2y ≡3 0 ,
[1
0
]
) = x + 2y ≡3 � where � =

[
1
2 (0 − (1, 2) · [10

]
+ 3)
]
3
= 1.

Fin(�x + 2y ≡3 0 ,
[1
0
]
)⇔ 0 + (1, 2) · [10

] ≡3 1, so this transition is not accepting. ��

Inductive Case. The inductive cases for Boolean connectives are defined in the stan-
dard way: conjunction of two formulae is implemented by taking the intersection of the
two corresponding FAs, disjunction by taking their union, and negation is implemented
by taking the complement (which may involve determinization via the subset construc-
tion). Formally, let Aϕi = (Qϕi , ΣX, δϕi , Iϕi ,Accϕi) for i ∈ {1, 2} with Qϕ1 ∩ Qϕ2 = ∅ be
complete FAs. Then,

– Aϕ1∧ϕ2 = (Qϕ1 × Qϕ2 , ΣX, δϕ1∧ϕ2 , Iϕ1 × Iϕ2 ,Accϕ1∧ϕ2) where
• δϕ1∧ϕ2 = {(q1, q2)

σ−→ (p1, p2) | q1 σ−→ p1 ∈ δϕ1 , q2
σ−→ p2 ∈ δϕ2 } and

• Accϕ1∧ϕ2 ((q1, q2)
σ−→ (p1, p2))

def⇔ Accϕ1 (q1
σ−→ p1) ∧ Accϕ2 (q2

σ−→ p2).
– Aϕ1∨ϕ2 = (Qϕ1 × Qϕ2 , ΣX, δϕ1∨ϕ2 , Iϕ1 × Iϕ2 ,Accϕ1∨ϕ2) where

• δϕ1∨ϕ2 = {(q1, q2)
σ−→ (p1, p2) | q1 σ−→ p1 ∈ δϕ1 , q2

σ−→ p2 ∈ δϕ2 } and
• Accϕ1∨ϕ2 ((q1, q2)

σ−→ (p1, p2))
def⇔ Accϕ1 (q1

σ−→ p1) ∨ Accϕ2 (q2
σ−→ p2).

– A¬ϕ1 = (2Qϕ1 , ΣX, δ¬ϕ1 , {Iϕ1 },Acc¬ϕ1) where
• δ¬ϕ1 = {S

σ−→ T | T = {p ∈ Qϕ1 | ∃q ∈ S : q
σ−→ p ∈ δϕ1 } and

Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 49

• Acc¬ϕ1 (S
σ−→ T)

def⇔ ∀q ∈ S ∀p ∈ T : ¬Accϕ1 (q
σ−→ p).

Existential quantification is more complicated. Given a formula ∃x(ϕ) and the FA
Aϕ = (Qϕ, ΣX, δϕ, Iϕ,Accϕ), a word w should be accepted byA∃x(ϕ) iff there is a word w′
accepted by Aϕ s.t. w and w′ are the same on all tracks except the track for x. One can
perform projection of x out of Aϕ, i.e., remove the x track from all its transitions. This
is, however, insufficient. For instance, consider the model {x �→ 7, y �→ −4}, encoded
into the (shortest) word

[1
0
][1

0
][1

1
][0

1

]
(we use the notation

[x
y
]
). When we remove the x-

track from the word, we obtain [0][0][1][1] , which encodes the assignment {y �→ −4}. It is,
however, not the shortest encoding of the assignment; the shortest encoding is [0][0][1] .
Therefore, we further need to modify the FA obtained after projection to also accept
words that would be accepted if their sign bit were arbitrarily extended, which we do by
reachability analysis on the FA. Formally,A∃x(ϕ) = (Qϕ, ΣX, δ∃x(ϕ), Iϕ,Acc∃x(ϕ)) where

– δ∃x(ϕ) = {q σ
′

−−→ p | ∃q σ−→ p ∈ δϕ : σ′ ∈ πx(σ)} and
– Acc∃x(ϕ)(q

σ−→ p)
def⇔
∨

σ′∈πx(σ)
Accϕ(q

σ′−−→ p) ∨ ∃r, s ∈ Reach({p}, πx(σ)) :
∨

σ′∈πx(σ)
Accϕ(r

σ′−−→ s).

After defining the base and inductive cases for constructing the FA Aϕ, we can
establish the connection between its language and the models of ϕ. For a word w =
a1 . . . an ∈ ΣX and a variable x ∈ X, we define wx = a1(x) . . . an(x), i.e., wx extracts
the binary number assigned to variable x in w. For a binary assignment ν of a LIA
formula ϕ, we define its language as L(ν) = {w ∈ Σ∗

X
| ∀x ∈ X : wx = ν(x)}. We lift the

language to sets of binary assignments as usual.

Theorem 1. Let ϕ be a LIA formula. Then L(Aϕ) = L(�ϕ�).
Proof. Follows from [13, Lemma 5].

4 Derivative-Based Construction for Nested Formulae

Fig. 5. Post and Fin for non-atomic formulae.

This section lays down the basics
of our approach to interconnect-
ing automata with the algebraic
approach for quantified LIA. We
aim at using methods and ideas
from the algebraic approach to
circumvent the large intermedi-
ate automata constructed along
the way before obtaining the
small DFAs (cf. Fig. 1). To do
that, we need a variation of
the automata-based decision pro-
cedure that exposes the states of
the target automata without the
need of generating the complete

50 P. Habermehl et al.

Fig. 6. Example of rewriting formulae in the FA for x ≤ 1000 ∧ −x ≤ 0 ∧ x ≡257 255 .

state space of the intermediate automata first. To achieve this, we generalize the
post-image function Post (and the acceptance condition Fin) from Sect. 3 to general
non-atomic formulae using an approach similar to that of [32,45,76], which intro-
duced derivatives of WS1S/WSkS formulae. Computing formula derivatives produces
automata states that are at the same time LIA formulae, and can be manipulated as such
using algebraic methods and reasoning about their integer semantics. We will then use
basic Boolean simplification, antiprenexing, and also ideas from Cooper’s quantifier
elimination algorithm and Omega test [23,65] to prune and simplify the state-formulae.
The techniques will be discussed in Sects. 5 to 7.

Example 2. In Fig. 6, we show an intuitive example of rewriting state formulae when
constructing the FA for 0 ≤ x ≤ 1000 ∧ x ≡257 255 (which is written in the basic syntax
as x ≤ 1000 ∧ −x ≤ 0 ∧ x ≡257 255). After reading the first symbol [0], the obtained
formula is a conjunction of the three following Posts:

– Post(x ≤ 1000 , [0]) = x ≤ 	 12 (1000 − 1 · 0)
 = x ≤ 500 ,

– Post(−x ≤ 0 , [0]) = −x ≤ 	 12 (0 + 1 · 0)
 = −x ≤ 0 , and

– Post(x ≡257 255 , [0]) = x ≡257

[
1
2 (255 − 1 · 0 + 257)

]
257
= x ≡257 256 .

We can write the resulting formula as 0 ≤ x ≤ 500 ∧ x ≡257 256 , which is satisfied only
by x = 256. We can therefore rewrite the formula into an equivalent formula x = 256 .
Similar rewriting can be applied to the state obtained after reading [1][0] and [1][1] .
The rest of the automaton constructed from the rewritten states x = 256 , x = 192 , and
x = 63 is then of a logarithmic size (each state in the rest will have only one successor
based on the binary encoding of 256, 192, or 63 respectively, while if we did not perform
the rewriting, the states would have two successors and the size would be linear). ��

In Fig. 5, we extend the derivative post-image function Post and the acceptance
condition Fin (cf. Figs. 2 and 3) to non-atomic formulae. The derivatives mimic the
automata constructions in Sect. 3, with the exception that at every step, the derivative
(and therefore also the state in the constructed FA) is a LIA formula and can be treated
as such. One notable exception is Post(∃x(ϕ) , σ), which, since the Post function is
deterministic, in addition to the projection, also mimics determinisation. One can see
the obtained disjunction-structure as a set of states from the standard subset construction
in automata. Correctness of the construction is stated in the following.

Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 51

Lemma 2. Let ϕ be a LIA formula and letAϕ be the FA constructed by the procedure
in this section or any combination of it and the classical one. Then L(Aϕ) = L(�ϕ�).
Proof. Follows from preservation of languages of the states/formulae. ��

Without optimizations, the derivative-based construction would generate a larger FA
than the one obtained from the classical construction, which can perform minimization
of the intermediate automata. The derivative-based construction cannot minimize the
intermediate automata since they are not available; they are in a sense constructed on
the fly within the construction of the automaton for the entire formula. Our algebraic
optimizations mimic some effect of the minimization on the fly, while constructing the
automaton, by simplifying the state formulae and detecting entailment between them.

In principle, when we construct a state q of Aψ as a result of Post, we could test
whether some state p was already constructed such that ϕq ⇔ ϕp and, if so, we could
merge p and q (drop q and redirect the edges to p). This would guarantee us to directly
obtain the minimal DFA for ψ (no two states would be language-equivalent).

Solving the LIA equivalence queries precisely is, however, as hard as solving the
original problem. Even when we restrict ourselves to quantifier-free formulae, the
equivalence problem is co-NP-complete. Our algebraic optimizations are thus a cheaper
and more practical alternative capable of merging at least some equivalent states. We
discuss the optimizations in detail in Sects. 5 to 7 and also give a comprehensive exam-
ple of their effect in Sect. 8.

5 Simple Rewriting Rules

The simplest rewriting rules are just common simplifications generally applicable in
predicate logic. Despite their simplicity, they are quite powerful, since their use enables
to apply the other optimizations (Sects. 6 and 7) more often.

1. We apply the propositional laws of identity (ϕ ∨ ⊥ = ϕ and ϕ ∧ � = ϕ) and anni-

hilation (ϕ ∧ ⊥ = ⊥ and ϕ ∨ � = �) to simplify the formulae.
2. We use antiprenexing [30,44] (i.e., pushing quantifiers as deep as possible using

inverses of prenexing rules [69, Chapter 5]). This is helpful, e.g., after a range-based
quantifier instantiation (cf. Sect. 7.2), which yields a disjunction. Since our formula
analysis framework (Sect. 7) only works over conjunctions below existential quan-
tifiers, we need to first push existential quantifiers inside the disjunctions to allow
further applications of the heuristics.

3. Since negation is implemented as automaton complementation, we apply De Mor-
gan’s laws (¬(ϕ1 ∧ ϕ2) ⇔ (¬ϕ1) ∨ (¬ϕ2) and ¬(ϕ1 ∨ ϕ2) ⇔ (¬ϕ1) ∧ (¬ϕ2))
to push negation as deep as possible. The motivation is that small subformulae
are likely to have small corresponding automata. As complementation requires
the underlying automaton to be deterministic, complementing smaller automata
helps to mitigate the exponential blow-up of determinization.

Moreover, we also employ the following simplifications valid for LIA:

52 P. Habermehl et al.

4. We apply simple reasoning based on variable bounds to simplify the formula,
e.g., x ≥ 0 ∧ x ≤ 10 ∧ x � 0 ⇔ x ≥ 1 ∧ x ≤ 10 , and to prune away some parts of
the formula, e.g., x ≥ 3 ∧ (ϕ ∨ (x = 0 ∧ ψ)) ⇔ x ≥ 3 ∧ ϕ .

5. We employ rewriting rules aimed at accelerating the automata construction by
minimizing the number of variables used in a formula, and, thus, avoiding con-
structing complicated transition relations, e.g., ∃x1, x2(ay + b1x1 + b2x2 ≡K 0) ⇔
∃x(ay + bx ≡K 0) where b = gcd(b1, b2), or ∃x(ay + bx = 0) ⇔ ay ≡|b| 0 .

6. We detect conflicts by identifying small isomorphic subformulae, i.e., subformulae
that have the same abstract syntax tree, except for renaming of quantified variables,
for example, ∃x(x > 3 ∧ x + z ≤ 10) ∧ ¬(∃y(y > 3 ∧ y + z ≤ 10) ⇔ ⊥ . One can
see this as a variant of DAGification used in Mona [57].

6 Disjunction Pruning

Fig. 7. Definition of the subsumption preorder !s (we omit cases
implied by reflexivity).

We prune disjunctions
by removing disjunct
implied by other dis-
juncts. That is, if it holds
that ϕ2 ∨ · · · ∨ ϕk ⇒
ϕ1 , then ϕ1 ∨ ϕ2 ∨ · · · ∨ ϕk
can be replaced by just
ϕ2 ∨ · · · ∨ ϕk . Testing the
entailment precisely is
hard, so we use a stronger
but cheaper relation of
subsumpion. Our subsumption is a preorder (a reflexive and transitive relation) !s

between LIA formulae in Fig. 73. When we encounter the said macrostate and establish
ϕ1 !s ϕ2 ∨ · · · ∨ ϕk , we perform the rewriting. This optimization has effect mainly in
formulae of the form ∃x(ψ) : their Post contains a disjunction of formulae of a similar
structure.

Lemma 3. For LIA formulae ϕ1 and ϕ2 , if ϕ1 !s ϕ2 , then ϕ1 ⇒ ϕ2 .
Example 3. In Fig. 8, we show an example of pruning disjunctions in the FA for the
formula ∃x(7x ≤ 1000) . ��

3 The subsumption is similar to the one used in efficient decision procedures for
WS1S/WSkS [32,45] with two important differences: (i) it can look inside atomic formu-
lae and use semantics of states and (ii) it does not depend on the initial structure of the initial
formula. (iii) Both of these make the subsumption relation larger.

Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 53

Fig. 8. Example of disjunction pruning in the FA for ∃x(7x ≤ 1000) .

7 Quantifier Instantiation

The next optimization is an instance of quantifier instantiation, a well known class of
algebraic techniques. We gather information about the formulae with a focus on the way
a particular variable, usually a quantified one, affects the models of the whole formula.
If one can find “the best” value for such a variable (e.g., a value such that using it pre-
serves all models of the formula), then the (quantified) variable can be substituted with
a concrete value. For instance, let ϕ = ∃y(x − y ≤ 33 ∧ y ≤ 12 ∧ y ≡7 2) . The vari-
able y is quantified so we can think about instantiating it (it will not occur in a model).
The first atom x − y ≤ 33 says that we want to pick y as large as possible (larger y’s
have higher chance to satisfy the inequation), but, on the other hand, the second atom
y ≤ 12 says that y can be at most 12. The last atom y ≡7 2 adds an additional constraint
on y. Intuitively, we can see that the best value of y—i.e., the value that preserves all
models of ϕ—would be 9, allowing to rewrite ϕ to x ≤ 42 .

To define the particular ways of gathering such kind of information in a uniform
way, we introduce the following formula analysis framework that uses the function FA
to extract information from formulae. Consider ameet-semilattice (D,�) where undef ∈
D is the bottom element. Let atom be a function that, given an atomic formula ϕatom
and a variable y ∈ X, outputs an element of D that represents the behavior of y in ϕatom
(e.g., bounds on y). The function FA then aggregates the information from atoms into
an information about the behavior of y in the whole formula using the meet operator �
recursively as follows:

FA(ϕatom , y, atom,�) = atom(ϕatom , y) (4)

FA(ϕ1 ∧ ϕ2 , y, atom,�) = FA(ϕ1 , y, atom,�) � FA(ϕ2 , y, atom,�) (5)

(By default, a missing case in the pattern matching evaluates to undef .) We note that
the framework is defined only for conjunctions of formulae, which is the structure of
subformulae that was usually causing troubles in our experiments (cf. Sect. 9).

The optimizations defined later are based on substituting certain variables in a for-
mula with concrete values to obtain an equivalent (simpler) formula. For this, we
extend standard substitution as follows. Let ϕ(�x, y) be a formula with free vari-
ables �x = (x1, . . . , xn) and y � �x. For k ∈ Z, substituting k for y in ϕ yields the formula
ϕ[y/k] obtained in the usual way (with all constant expressions being evaluated). For
k = ±∞, the resulting formula is obtained for inequalities containing y as

(�a · �x + ay · y ≤ c)[y/k] = � if ay · k = −∞ (6)

and is undefined for all other atomic formulae.

54 P. Habermehl et al.

7.1 Quantifier Instantiation Based on Formula Monotonicity

The first optimization based on quantifier instantiation uses the so-called monotonicity
of formulae w.r.t. some variables (a similar technique is used in the Omega test [65]).
Consider the following two formulae:

ϕ1 = ∃y(ψ ∧ 3y − x ≥ z) and ϕ2 = ∃y(ψ ∧ 3y − x ≥ z ∧ 5y ≤ 42) (7)

where ψ does not contain occurrences of y, and x, z are free variables in ϕ1 , ϕ2 .
For ϕ1 , since y is existentially quantified, the inequation 3y − x ≥ z can be always
satisfied by picking an arbitrarily large value for y, so ϕ1 can be simplified to just ψ .
On the other hand, for ϕ2 , we cannot pick an arbitrarily large y because of the other

inequation 5y ≤ 42 . We can, however, observe, that 	 425
 = 8 is the largest value that
we can substitute for y to satisfy 5y ≤ 42 . As a consequence, since the possible value
of y in 3y − x ≥ z is not bounded from above, we can substitute y by the value 8, i.e.,
ϕ2 can be simplified to ψ ∧ 24 − x ≥ z .

Formally, let c ∈ Z ∪ {+∞} and y ∈ X. We say that a formula ϕ(�x, y) is c-best from
below w.r.t. y if (i) �ϕ[y/y1]� ⊆ �ϕ[y/y2]� for all y1 ≤ y2 ≤ c (for c ∈ Z) or for all
y1 ≤ y2 (for c = +∞) and (ii) �ϕ[y/y′]� = ∅ for all y′ > c. Intuitively, substituting
bigger values for y (up to c) in ϕ preserves all models obtained by substituting smaller
values, so c can be seen as the most conservative limit of y (and for c = +∞, this means
that y does not have an upper bound, so it can be chosen arbitrarily large for concrete
values of other variables). Similarly, ϕ(�x, y) is called c-best from above (w.r.t. y) for
c ∈ Z ∪ {−∞} if (i) �ϕ[y/y1]� ⊆ �ϕ[y/y2]� for all y1 ≥ y2 ≥ c (for c ∈ Z) or for all
y1 ≥ y2 (for c = −∞) and (ii) �ϕ[y/y′]� = ∅ for all y′ < c. If a formula is c-best from
below or above, we call it c-monotone (w.r.t. y).

Lemma 4. Let c ∈ Z ∪ {±∞} and ϕ(�x, y) be a formula c-monotone w.r.t. y such that
ϕ[y/c] is defined. Then the formula ∃y(ϕ(�x, y)) is equivalent to the formula ϕ[y/c] .

Moreover, the following lemma utilizes formula monotonicity to provide a tool for
simplification of formulae containing a modulo atom.

Lemma 5. Let c ∈ Z and ϕ(�x, y) be a formula c-monotone w.r.t. y for c ∈ Z. Then,
the formula ∃y(ϕ(�x, y) ∧ y ≡m k) is equivalent to the formula ϕ[y/c′] where (i) c′ =
max{� ∈ Z | � ≡m k, � ≤ c} if ϕ is c-best from below, and (ii) c′ = min{� ∈ Z | � ≡m

k, � ≥ c} if ϕ is c-best from above.

In general, it is, however, expensive to decide whether a formula is c-monotone and
find the tight c. Therefore, we propose a cheap approximation working on the structure
of LIA formulae, which uses the formula analysis function FA introduced above. First,
we propose the partial function blwatom(ϕ , y) (whose result is in Z ∪ {+∞}) estimating
the c for atomic formulae c-best from above w.r.t. y:

blwatom(a · y ≤ c , y) =
⌊
c
a

⌋
if a > 0 (8)

blwatom(�a · �x ≤ c , xi) = +∞ if ai = 0 ∨ ∃ j : i � j ∧ a j � 0 ∧ ai < 0 (9)

Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 55

Intuitively, if y is in an inequation a · y ≤ c without any other variable and a > 0, then

y’s value is bounded from above by
⌊
c
a

⌋
. On the other hand, if y = xi is in an inequation

�a · �x ≤ c where �a has at least two nonzero coefficients and y’s coefficient is negative,
or y does not appear in the inequation at all, then y’s value is not bounded (larger values
of y make it easier to satisfy the inequation). The value for other cases is undefined.

Similarly, abvatom(ϕ , y) (with the result in Z ∪ {−∞}) estimates the c for atomic
formulae c-best from above:

abvatom(a · y ≤ c , y) =
⌊
c
a

⌋
if a < 0 (10)

abvatom(�a · �x ≤ c , xi) = −∞ if ai = 0 ∨ ∃ j : i � j ∧ a j � 0 ∧ ai > 0 (11)

Based on blwatom and abvatom and using the FA framework, we define the functions
blw and abv estimating the c for general formulae c-best from below and above as

blw(ϕ , y) = FA(ϕ , y, blwatom,min), abv(ϕ , y) = FA(ϕ , y, abvatom,max). (12)

For a formula ψ = ∃y(ϕ(�x, y) ∧ y ≡m k) , the simplification algorithm then deter-
mines whether ϕ is c-monotone for some c, which is done using the abv and blw func-
tions. In particular, if blw(ϕ , y) = c for some c ∈ Z ∪ {±∞}, we have that ϕ is c-best
from below w.r.t. y (analogously for abv). Then, in the positive case and if c ∈ Z, we
apply Lemma 5 to simplify the formula ψ . If ψ is of the simple form ∃y(ϕ(�x, y)) where
ϕ is c-monotone w.r.t. y, we can directly use Lemma 4 to simplify ψ to ϕ[y/c] .

Example 4. Consider the formula ψ = ∃y(x − y ≤ 1 ∧ y ≤ −1 ∧ y ≡5 0) . In order to
simplify ψ, we first need to check if the formula ϕ(x, y) = x − y ≤ 1 ∧ y ≤ −1 is c-
monotone. Using blw, we can deduce that blw(x − y ≤ 1 , y) = ∞, blw(y ≤ −1 , y) = −1,
and hence blw(ϕ , y) = −1 meaning that ϕ is (−1)-best from below w.r.t. y (abv(ϕ , y) is

undefined). Lemma 5 yields that ψ is equivalent to x ≤ −4 (using c′ = −5). ��

7.2 Range-Based Quantifier Instantiation

Similarly as in Cooper’s elimination algoroithm [23], we can compute the range of
possible values for a given variable y and instantiating y with all values in the range.
For instance, ∃y(y ≤ 2 ∧ 2y ≥ 3 ∧ x + 3y = 42) can be simplified into x = 36 .

To obtain the range of possible values of y in the formula ϕ , we use the formula
analysis framework with the following function rangeatom (whose result is an interval
of integers) defined for atomic formulae as follows:

rangeatom(a · y ≤ c , y) =
(
−∞,
⌊
c
a

⌋]
if a > 0 (13)

rangeatom(a · y ≤ c , y) =
[⌈

c
a

⌉
,+∞
)

if a < 0 (14)

rangeatom(�a · �x ≤ c , xi) =
(
−∞,+∞

)
if ∃ j, k : j � k ∧ a j � 0 ∧ ak � 0 (15)

We then employ our formula analysis framework to get the range of y in ϕ using the
function range(ϕ , y) = FA(ϕ , y, rangeatom,∩).

56 P. Habermehl et al.

Lemma 6. Let ψ = ∃y(ϕ(�x, y)) be a formula such that range(ϕ , y) = [a, b] with
a, b ∈ Z. Then ψ is equivalent to the formula

∨
a≤c≤b ϕ[y/c] .

Proof. It suffices to notice that for all c � [a, b] we have �ϕ(�x, c)� = ∅. ��
In our decision procedure, given a formula ψ = ∃y(ϕ(�x, y)) , if range(ϕ , y) = [a, b]

for a, b ∈ Z and b − a ≤ N for a parameter N (set by the user), we simplify ψ to∨
a≤c≤b ϕ[y/c] . In our experiments, we set N = 0.

7.3 Modulo Linearization

The next optimization is more complex and helps mainly in practical cases in the bench-
marks containing congruences with large moduli. It does not substitute the value of
a variable by a constant, but, instead, substitutes a congruence with an equation.

Let ϕ = ∃y∃m(ψ ∧ y + m ≡37 12) such that ψ is 17-best from below w.r.t. y
and range(ψ ,m) = [1, 50]. Since the modulo constraint y + m ≡37 12 contains two

Fig. 9. Modulo linearization.

variables (y and m), we cannot use the optimiza-
tion from Sect. 7.1. From the modulo constraint
and the fact that ψ is 17-best from below w.r.t. y,
we can infer that it is sufficient to consider y
only in the interval [−19, 17] (we obtained −19
as 17 − 37 + 1). The reason is that any other y
can be mapped to a y′ from the same congru-
ence class (modulo 37) that is in the interval and,
therefore, gives the same result in the modulo
constraint. This, together with the other fact (i.e.,
range(ψ ,m) = [1, 50]) tells us that it is suffi-
cient to only consider the (possibly multiple) lin-
ear relations between y and m in the rectangle
[−19, 17] × [1, 50] (cf. Fig. 9). The modulo con-
straint can, therefore, be substituted by the linear
relations to obtain the formula

∃y∃m(ψ ∧ ((y ≥ −19 ∧ y ≤ 11 ∧ y + m = 12) ∨ (y ≥ −1 ∧ y ≤ 17 ∧ y + m = 49))) . (16)

Although the formula seems more complex than the original one, it avoids the large
FA to be generated for the modulo constraint (a modulo constraint with ≡k needs an FA
with k states) and, instead, generates the usually much smaller FAs for the (in)equalities.

The general rewriting rule can be given by the following lemma:

Lemma 7. Let ψ(�x, y,m) be a formula s.t. range(ψ ,m) = [r, s] for r, s ∈ Z, let ϕ =

∃y∃m(ψ ∧ ay · y + am · m ≡M k) , with ay � 0 � am, and α = M
gcd(ay,M) . If ψ is c-best

from below w.r.t. y, then ϕ is equivalent to the formula

∃y∃m
(
ψ ∧
(∨N−1

i=0 ay · y + am · m = k + (�1 + i) · α
))

(17)

Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 57

Fig. 10. Fragment of the generated space for the formula in the example.

where

�1=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⌈ ay·(c−α+1)+am·r−k
α

⌉
for am

ay
>0

⌈ ay·(c−α+1)+am·s−k
α

⌉
for am

ay
<0
, y1=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

k+�1·α−am·r
ay

for am
ay
>0

k+�1·α−am·s
ay

for am
ay
<0
, (18)

and

N =

⌈
ay(c − y1) + am(s − r) + 1

α

⌉
. (19)

Due to space constraints, we omit a similar lemma for the case when ψ is c-best
from above. In our implementation, we use the linearization if the N from Lemma 7
is 1, which is sufficient with many practical cases with large moduli.

8 A Comprehensive Example of Our Optimizations

Consider the formula

∃y,m(x + 3m − y ≤ 9 ∧ y ≤ −1 ∧ m ≤ 6 ∧ −m ≤ 0 ∧ y − m ≡7 0) (20)

and see Fig. 10 for a part of the generated FA (for simplicity, we only consider a frag-
ment of the constructed automaton to demonstrate our technique).

58 P. Habermehl et al.

Let us focus on the configuration after reading the word x : [0][0]: ϕ1 ∨ ϕ2 ∨ ϕ3 .
First, we examine the relation between ϕ2 and ϕ3 . We notice that the two formu-
lae look similar with the only difference being in two pairs of atoms: x + 3m − y ≤ 1
and x + 3m − y ≤ 0 , and m ≤ 1 and m ≤ 0 respectively. Since 0 ≤ 1 there are struc-
tural subsumptions x + 3m − y ≤ 0 !s x + 3m − y ≤ 1 and m ≤ 0 !s m ≤ 1 , which
yields ϕ3 !s ϕ2 , and we can therefore use disjunction pruning (Sect. 6) to simplify
ϕ1 ∨ ϕ2 ∨ ϕ3 to ϕ1 ∨ ϕ2 .

Next, we analyze ϕ1 = ∃y,m(ψ1) . First, we compute range(ψ1 ,m) = [0, 0]
(cf. Sect. 7.2) and, based on that, perform the substitution ψ1[m/0] , obtaining (after
simplifications) the formula ψ′1 = x − y ≤ 0 ∧ y ≤ −1 ∧ y ≡7 6 . Then, we analyze the

behaviour of y in ψ′1 by computing blw(x − y ≤ 0 ∧ y ≤ −1 , y) = −1. Based on this,
we know that x − y ≤ 0 ∧ y ≤ −1 is (−1)-best from below (cf. Sect. 7.1), so we can use
Lemma 5 to instantiate y in ψ′1 with −5 (the largest number less than −1 satisfying the

modulo constraint), obtaining the (quantifier-free) formula x ≤ −1 .
Finally, we focus on ϕ2 = ∃y,m(ψ2) again. First, we compute range(ψ2 ,m) =

[0, 1] and rewrite ϕ2 to ∃y(ψ2[m/0] ∨ ψ2[m/1]) . After antiprenexing, this will be
changed to ∃y(ψ2[m/0]) ∨ ∃y(ψ2[m/1]) . Using similar reasoning as in the previous
paragraph, we can analyze the two disjuncts in the formula to obtain the formula
x ≤ −6 ∨ x ≤ −8 . With disjunction pruning, we obtain the final result of simplifica-
tion of ϕ2 as the formula x ≤ −6 . In the end, again using disjunction pruning (Sect. 6),
the whole formula ϕ1 ∨ ϕ2 ∨ ϕ3 can be simplified to x ≤ −1 .

9 Experimental Evaluation

We implemented the proposed procedure in a prototype tool called Amaya [48]. Amaya
is written in Python and contains a basic automata library with alphabets encoded using
multi-terminal binary decision diagrams (MTBDDs), for which it uses the C-based
Sylvan library [27] (implementation details can be found in [42]). We ran all our exper-
iments on Debian GNU/Linux 12 system with Intel(R) Xeon(R) CPU E5-2620 v3 @
2.40GHz and 32GiB of RAM with the timeout of 60 s.

Tools. We selected the following tools for comparison: Z3 [63] (version 4.12.2),
cvc5 [4] (version 1.0.5), Princess [70] (version 2023-06-19), and Lash [80] (ver-
sion 0.92). Out of these, only Lash is an automata-based LIA solver; the other tools
are general purpose SMT solvers with the LIA theory.

Benchmarks. Our main benchmark comes from SMT-LIB [5], in particular, the cate-
gories LIA [72] and NIA (nonlinear integer arithmetic) [73]. We concentrate on formu-
lae in directories UltimateAutomizer and (20190429-)UltimateAutomizer
Svcomp2019 of these categories (the main difference between LIA and NIA is that LIA
formulae are not allowed to use the modulo operator) and remove formulae from NIA
that contain multiplication between variables, giving us 372 formulae. We denote this
benchmark as SMT-LIB. The formulae come from verification of real-world C programs
using Ultimate Automizer [46]. Other benchmarks in the categories, tptp and psyco,

Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 59

were omitted. Namely, tptp is easy for all tools (every tool finished within 1.3 s on
each formula). The psyco benchmark resembles Boolean reasoning more than integer
reasoning. In particular, its formulae contain simple integer constraints (e.g., x = y+1 or
just x = y) and complex Boolean structure with ite operators and quantified Boolean
variables. Our prototype is not optimized for these features, but with a naive imple-
mentation of unwinding of ite and with encoding of Boolean variables in a special
automaton track, Amaya could solve 46 out of the 196 formulae in psyco.

Our second benchmark consists of the Frobenius coin problem [41] asking the fol-
lowing question: Given a pair of coins of certain coprime denominations a and b, what
is the largest number not obtainable as a sum of values of these coins? Or, as a formula,

ϕ(p)
def⇔ (∀x, y : p � ax + by) ∧ (∀r(¬∃u, v : r = au + bv)⇒ r ≤ p). (21)

Each formula is specified by a pair of denominations (a, b), e.g., (3, 7) for which the
model is 11. Apart from theoretical interest, the Frobenius coin problem can be used,
e.g., for liveness checking of markings of conservative weighted circuits (a variant
of Petri nets) [22] or reasoning about automata with counters [50,52,78]. We created
a family of 55 formulae encoding the problem with various increasing coin denomina-
tions. We denote this benchmark as Frobenius. The input format of the benchmarks is
SMT-LIB [5], which all tools can handle except Lash—for this, we implemented a sim-
ple translator in Amaya for translating LIA problems in SMT-LIB into Lash’s input
format (the time of translation is not included in the runtime of Lash).

Results. We show the results in Table 1. For each benchmark we show the run time
statistics together with the number of timeouts and the number of wins/losses for each
competitor of Amaya (e.g., the value “354 (40)” in the row for Princess in SMT-LIB

means that Amaya was faster than Princess on 354 SMT-LIB formulae and in 40 cases
out of these, this was because Princess timed out). Note that statistics about times tend
to be biased in favour of tools that timed out more since the timeouts are not counted.

The first part of the table contains automata-based solvers and the second part con-
tains general SMT solvers. We also measure the effect of our optimizations against
Amayanoopt, a version of the tool that only performs the classical automata-based proce-
dure from Sect. 3 without our optimizations.

Table 1. Comparison of solvers on formulae from the SMT-LIB and the Frobenius benchmark.
Times are given in seconds. The columns wins and losses show numbers of formulae where
Amaya performed better and worse (wins/losses caused by timeouts are in parentheses).

SMT-LIB (372) Frobenius (55)

solver timeouts mean median std. dev. wins losses timeouts mean median std. dev. wins losses

Amaya 17 1.12 0.26 3.58 5 11.79 3.54 16.03

Amayanoopt 73 2.32 0.27 8.16 232 (56) 113 (0) 5 11.54 4.06 14.65 27 (0) 21 (0)

Lash 114 3.04 0.01 9.94 178 (98) 178 (1) 9 15.72 5.74 20.32 37 (5) 14 (0)

Z3 31 0.11 0.01 1.35 31 (28) 338 (14) 51 1.66 0.49 2.69 48 (46) 2 (0)

cvc5 28 0.20 0.02 2.42 32 (28) 340 (17) 54 0.05 0.05 — 49 (49) 1 (0)

Princess 50 4.14 1.14 9.31 354 (40) 8 (7) 13 46.32 45.92 29.03 50 (8) 0 (0)

60 P. Habermehl et al.

Discussion. In the comparison with other SMT solvers, from Table 1, automata-based
approaches are clearly superior to current SMT solvers on Frobenius (confirming the
conjecture made in [41]). cvc5 fails already for denominations (3, 5) (where the result
is 7) and Z3 follows suite soon; Princess can solve significantly more formulae than Z3
and cvc5, but is still clearly dominated by Amaya. Details can be found in [42].

On the SMT-LIB benchmark, Amaya can solve the most formulae among all tools. It
has 17 timeouts, followed by cvc5 with 28 timeouts (out of 372 formulae). On individual
examples, the comparison of Amaya against Z3 and cvc5 almost always falls under one
of the two cases: (i) the solver is one or two orders of magnitude faster than Amaya or
(ii) the solver times out. This probably corresponds to specific heuristics of Z3 and cvc5
taking effect or not, while Amaya has a more robust performance, but is still a prototype
and nowhere near as optimized. The performance of Princess is, however, usually much
worse. Amaya is often complementary to the SMT solvers and was able to solve 6
formulae that no SMT solver did.

Comparison with Amayanoopt (cf. Fig. 11) shows that the optimizations introduced
in this paper have a profound effect on the number of solved cases (which is a proper
superset of the cases solved without them). This is most visible on the SMT-LIB bench-
mark, where Amaya has 56 TOs less than Amayanoopt. On the Frobenius benchmark,
the results of Amayanoopt and Amaya are comparable. Our optimizations had limited
impact here since the formulae are built only from a small number of simple atoms
(cf. Eq. (21)). In some cases, Amaya takes even longer than Amayanoopt; this is because
the lazy construction explores parts of the state space that would be pruned by the clas-
sical construction (e.g., when doing an intersection with a minimized FA with an empty
language). This could be possibly solved by algebraic rules tailored for lightweight
unsatisfiability checking.

Fig. 11. Comparison of automata-based LIA solvers on formulae from SMT-LIB:
• UltimateAutomizer (153), • UltimateAutomizerSvcomp2019 (219) and • Frobenius
Coin Problem (55). Times are in seconds, axes are logarithmic. Dashed lines represent timeouts
(60 s).

Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 61

We also tried to evaluate the effect of individual optimizations by selectively turning
them off. It turns out that the most critical optimizations are the simple rewriting rules
(Sect. 5; when turned off, Amaya gave additional 33 timeouts) and quantifier instantia-
tion (Sect. 7; when turned off, Amaya gave additional 28 timeouts). On the other hand,
surprisingly, turning off disjunction pruning (Sect. 6) did not have a significant effect on
the result. By itself (without other optimizations), it can help the basic procedure solve
some hard formulae, but its effect is diluted when used with the rest of the optimiza-
tions. Still, even though it comes with an additional cost, it still has a sufficient effect to
compensate for this overhead.

Comparing with the older automata-based solver Lash, Amaya solves more exam-
ples in both benchmarks; Lash has 123 TOs in total compared to 22 TOs of Amaya.
The lower median of Lash on SMT-LIB is partially caused by the facts that (i) Lash is
a compiled C code while Amaya uses a Python frontend, which has a non-negligible
overhead and (ii) Lash times out on harder formulae.

10 Related Work

The decidability of Presburger arithmetic was established already at the beginning of
the 20th century by Presburger [64] via quantifier elimination. Over time, more effi-
cient quantifier-elimination-based decision procedures occurred, such as the one of
Cooper [23] or the one used within the Omega test [65] (which can be seen as a variation
of Fourier-Motzkin variable elimination for linear real arithmetic [58, Section 5.4]). The
complexity bounds of 2-NEXP-hardness and 2-EXPSPACE membership for satisfia-
bility checking were obtained by Fischer and Rabin [35] and Berman [6] respectively.
Quantifier elimination is often considered impractical due to the blow up in the size of
the resulting formula. Counterexample-guided quantifier instantiation [66] is a proof-
theoretical approach to establish (one-shot) satisfiability of LIA formulae, which can be
seen as a lazy version of Cooper’s algorithm [23]. It is based on approximating a quan-
tified formula by a set of formulae with the approximation being refined in case it is
found too coarse. The approach focuses on formulae with one alternation, but is also
extended to any number of alternations (according to the authors, the procedure was
implemented in CVC4).

The first automata-based decision procedure for Presburger arithmetic can be
obtained from Büchi’s decision procedure for the second-order logic WS1S [17] by
noticing that addition is WS1S-definable. A similar construction for LIA is used by
Wolper and Boigelot in [79], except that they avoid performing explicit automata prod-
uct constructions by using the notion of concurrent number automata, which are essen-
tially tuples of synchronized FAs.

Boudet and Comon [13] propose a more direct construction of automata for atomic
constraints of the form a1x1+. . .+anxn ∼ c (for ∼ ∈ {=,≤}) over natural numbers; we use
a construction similar to theirs extended to integers (as used, e.g., in [29]). Moreover,
they give a direct construction for a conjunction of equations, which can be seen as
a special case of our construction from Sect. 4. Wolper and Boigelot in [80] discuss
optimizations of the procedure from [13] (they use themost-significant bit first encoding
though), in particular how to remove some states in the construction for automata for

62 P. Habermehl et al.

inequations based on subsumption obtained syntactically from the formula representing
the state (a restricted version of disjunction pruning, cf. Sect. 6). The works [9–12]
extend the techniques from [80] to solve the mixed linear integer real arithmetic (LIRA)
using weak Büchi automata, implemented in Lash [1].

WS1S [17] is a closely related logic with an automata-based procedure similar to the
one discussed in this paper (as mentioned above, Presburger arithmetic can be encoded
into WS1S). The automata-based decision procedure for WS1S is, however, of nonele-
mentary complexity (which is also a lower bound for the logic), it was, however, pos-
tulated that the sizes of the obtained automata (when reduced or minimized) describing
Presburger-definable sets of integers are bounded by a tower of exponentials of a fixed
height. (3-EXPSPACE). This postulate was proven by Klaedtke [55] (refined later by
Durand-Gasselin and Habermehl [29] who show that all automata during the construc-
tion do not exceed size 3-EXP). The automata-based decision procedure for WS1S
itself has been a subject of extensive study, making many pioneering contributions in
the area of automata engineering [31–34,39,44,45,47,56,57,75], showcasing in the
well-known tool Mona [31,47,56,57].

Acknowledgments. This work has been supported by the Czech Ministry of Education, Youth
and Sports ERC.CZ project LL1908, the Czech Science Foundation project 23-07565S, and the
FIT BUT internal project FIT-S-23-8151.

Data Availability Statement. An environment with the tools and data used for the experimental
evaluation in the current study is available at [43].

References

1. The Liège automata-based symbolic handler (Lash). https://people.montefiore.uliege.be/
boigelot/research/lash/

2. Abdulla, P.A., et al.: Trau: SMT solver for string constraints. In: Bjørner, N.S., Gurfinkel, A.
(eds.) 2018 Formal Methods in Computer Aided Design, FMCAD 2018, Austin, TX, USA,
October 30 – November 2, 2018, pp. 1–5. IEEE (2018). https://doi.org/10.23919/FMCAD.
2018.8602997

3. Antimirov, V.: Partial derivatives of regular expressions and finite automaton con-
structions. Theoret. Comput. Sci. 155(2), 291–319 (1996). https://doi.org/10.1016/0304-
3975(95)00182-4, http://www.sciencedirect.com/science/article/pii/0304397595001824

4. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: Fisman, D., Rosu,
G. (eds.) ETAPS 2022, Part I. LNCS, vol. 13243, pp. 415–442. Springer (2022). https://doi.
org/10.1007/978-3-030-99524-9 24

5. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB)
(2016). www.SMT-LIB.org

6. Berman, L.: The complexity of logical theories. Theoret. Comput. Sci. 11(1), 71–77 (1980).
https://doi.org/10.1016/0304-3975(80)90037-7

7. Berzish, M., et al.: Towards more efficient methods for solving regular-expression heavy
string constraints. Theor. Comput. Sci. 943, 50–72 (2023). https://doi.org/10.1016/j.tcs.2022.
12.009

https://people.montefiore.uliege.be/boigelot/research/lash/
https://people.montefiore.uliege.be/boigelot/research/lash/
https://doi.org/10.23919/FMCAD.2018.8602997
https://doi.org/10.23919/FMCAD.2018.8602997
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1016/0304-3975(95)00182-4
http://www.sciencedirect.com/science/article/pii/0304397595001824
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
www.SMT-LIB.org
https://doi.org/10.1016/0304-3975(80)90037-7
https://doi.org/10.1016/j.tcs.2022.12.009
https://doi.org/10.1016/j.tcs.2022.12.009

Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 63

8. Blahoudek, F., et al.: Word equations in synergy with regular constraints. In: Chechik, M.,
Katoen, J.P., Leucker, M. (eds.) FM 2023. LNCS, vol. 14000, pp. 403–423. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-27481-7 23

9. Boigelot, B., Jodogne, S., Wolper, P.: On the use of weak automata for deciding linear arith-
metic with integer and real variables. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR
2001. LNCS, vol. 2083, pp. 611–625. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-45744-5 50

10. Boigelot, B., Jodogne, S., Wolper, P.: An effective decision procedure for linear arithmetic
over the integers and reals. ACM Trans. Comput. Log. 6(3), 614–633 (2005). https://doi.org/
10.1145/1071596.1071601

11. Boigelot, B., Rassart, S., Wolper, P.: On the expressiveness of real and integer arithmetic
automata. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443,
pp. 152–163. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055049

12. Boigelot, B., Wolper, P.: Representing arithmetic constraints with finite automata: an
overview. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 1–20. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45619-8 1

13. Boudet, A., Comon, H.: Diophantine equations, Presburger arithmetic and finite automata.
In: Kirchner, H. (ed.) CAAP 1996. LNCS, vol. 1059, pp. 30–43. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-61064-2 27

14. Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for definite events.
In: Proceedings of the Symposium Mathematics Theory of Automata (New York, 1962),
Microwave Research Institute Symposia Series, Brooklyn, NY, vol. XII, pp. 529–561. Poly-
technic (1963)

15. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964). https://
doi.org/10.1145/321239.321249

16. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proceedings of
International Congress on Logic, Method, and Philosophy of Science 1960. Stanford Univ.
Press, Stanford (1962)

17. Büchi, J.R.: Weak second-order arithmetic and finite automata. Zeitscrift fur mathematische
Logic und Grundlagen der Mathematik 6, 66–92 (1960)

18. Chen, T., et al.: Solving string constraints with regex-dependent functions through transduc-
ers with priorities and variables. Proc. ACM Program. Lang. 6(POPL), 1–31 (2022). https://
doi.org/10.1145/3498707

19. Chen, Y.F., Chocholatý, D., Havlena, V., Holı́k, L., Lengál, O., Sı́č, J.: Solving string con-
straints with lengths by stabilization. Proc. ACM Program. Lang. 7(OOPSLA2) (oct 2023).
https://doi.org/10.1145/3622872

20. Chen, Y.F., Chocholatý, D., Havlena, V., Holı́k, L., Lengál, O., Sı́č, J.: Z3-noodler: an
automata-based string solver (technical report). CoRR abs/2310.08327 (2023). https://doi.
org/10.48550/arXiv.2310.08327

21. Chocholatý, D., et al.: Mata: a fast and simple finite automata library (technical report).
CoRR abs/2310.10136 (2023). https://doi.org/10.48550/arXiv.2310.10136, To appear at
TACAS’23

22. Chrzastowski-Wachtel, P., Raczunas, M.: Liveness of weighted circuits and the diophantine
problem of Frobenius. In: Ésik, Z. (ed.) FCT 1993. LNCS, vol. 710, pp. 171–180. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-57163-9 13

23. Cooper, D.: Theorem proving in arithmetic without multiplication. Mach. Intell. 7, 91–99
(1972)

24. Cox, A., Leasure, J.: Model checking regular language constraints. CoRR abs/1708.09073
(2017)

25. Dantzig, G.B.: Inductive proof of the simplex method. IBM J. Res. Dev. 4(5), 505–506
(1960). https://doi.org/10.1147/RD.45.0505

https://doi.org/10.1007/978-3-031-27481-7_23
https://doi.org/10.1007/3-540-45744-5_50
https://doi.org/10.1007/3-540-45744-5_50
https://doi.org/10.1145/1071596.1071601
https://doi.org/10.1145/1071596.1071601
https://doi.org/10.1007/BFb0055049
https://doi.org/10.1007/3-540-45619-8_1
https://doi.org/10.1007/3-540-61064-2_27
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/3498707
https://doi.org/10.1145/3498707
https://doi.org/10.1145/3622872
https://doi.org/10.48550/arXiv.2310.08327
https://doi.org/10.48550/arXiv.2310.08327
https://doi.org/10.48550/arXiv.2310.10136
https://doi.org/10.1007/3-540-57163-9_13
https://doi.org/10.1147/RD.45.0505

64 P. Habermehl et al.

26. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J.
ACM 52(3), 365–473 (2005). https://doi.org/10.1145/1066100.1066102

27. van Dijk, T., van de Pol, J.: SYLVAN: multi-core framework for decision diagrams. Int. J.
Softw. Tools Technol. Transf. 19(6), 675–696 (2017). https://doi.org/10.1007/s10009-016-
0433-2

28. Doyen, L., Raskin, J.-F.: Antichain algorithms for finite automata. In: Esparza, J., Majumdar,
R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 2–22. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-12002-2 2

29. Durand-Gasselin, A., Habermehl, P.: On the use of non-deterministic automata for Pres-
burger arithmetic. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269,
pp. 373–387. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4 26

30. Egly, U.: On the value of antiprenexing. In: Pfenning, F. (ed.) LPAR 1994. LNCS, vol. 822,
pp. 69–83. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58216-9 30

31. Elgaard, J., Klarlund, N., Møller, A.: MONA 1.x: new techniques for WS1S and WS2S. In:
Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 516–520. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0028773

32. Fiedor, T., Holı́k, L., Janků, P., Lengál, O., Vojnar, T.: Lazy automata techniques for WS1S.
In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 407–425. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5 24

33. Fiedor, T., Holı́k, L., Lengál, O., Vojnar, T.: Nested antichains for WS1S. In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 658–674. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 59

34. Fiedor, T., Holı́k, L., Lengál, O., Vojnar, T.: Nested antichains for WS1S. Acta Informatica
56(3), 205–228 (2019). https://doi.org/10.1007/s00236-018-0331-z

35. Fischer, M.J., Rabin, M.O.: Super-exponential complexity of Presburger arithmetic. In: Pro-
ceedings of the SIAM-AMS Symposium in Applied Mathematics, vol. 7, pp. 27—41 (1974)

36. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfiabiliby mod-
ulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 306–320.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 25

37. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Decision procedures for extensions of the
theory of arrays. Ann. Math. Artif. Intell. 50(3–4), 231–254 (2007). https://doi.org/10.1007/
s10472-007-9078-x

38. van Glabbeek, R., Ploeger, B.: Five determinisation algorithms. In: Ibarra, O.H., Ravikumar,
B. (eds.) CIAA 2008. LNCS, vol. 5148, pp. 161–170. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-70844-5 17

39. Glenn, J., Gasarch, W.: ImplementingWS1S via finite automata. In: Raymond, D., Wood, D.,
Yu, S. (eds.) WIA 1996. LNCS, vol. 1260, pp. 50–63. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-63174-7 5

40. Google: RE2. https://github.com/google/re2
41. Haase, C.: A survival guide to Presburger arithmetic. ACM SIGLOG News 5(3), 67–82

(2018). https://doi.org/10.1145/3242953.3242964
42. Habermehl, P., Havlena, V., Holı́k, L., Hečko, M., Lengál, O.: Algebraic reasoning meets

automata in solving linear integer arithmetic (technical report). CoRR abs/2403.18995
(2024). https://doi.org/10.48550/arXiv.2403.18995

43. Habermehl, P., Havlena, V., Holı́k, L., Hečko, M., Lengál, O.: Artifact for the cav’24 paper
“Algebraic reasoning meets automata in solving linear integer arithmetic” (2024). https://doi.
org/10.5281/zenodo.10996343

44. Havlena, V., Holı́k, L., Lengál, O., Vales, O., Vojnar, T.: Antiprenexing for WSkS: a little
goes a long way. In: Albert, E., Kovács, L. (eds.) LPAR 2020: 23rd International Conference

https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1007/s10009-016-0433-2
https://doi.org/10.1007/s10009-016-0433-2
https://doi.org/10.1007/978-3-642-12002-2_2
https://doi.org/10.1007/978-3-642-12002-2_2
https://doi.org/10.1007/978-3-642-15375-4_26
https://doi.org/10.1007/3-540-58216-9_30
https://doi.org/10.1007/BFb0028773
https://doi.org/10.1007/978-3-662-54577-5_24
https://doi.org/10.1007/978-3-662-46681-0_59
https://doi.org/10.1007/s00236-018-0331-z
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/s10472-007-9078-x
https://doi.org/10.1007/s10472-007-9078-x
https://doi.org/10.1007/978-3-540-70844-5_17
https://doi.org/10.1007/978-3-540-70844-5_17
https://doi.org/10.1007/3-540-63174-7_5
https://doi.org/10.1007/3-540-63174-7_5
https://github.com/google/re2
https://doi.org/10.1145/3242953.3242964
https://doi.org/10.48550/arXiv.2403.18995
https://doi.org/10.5281/zenodo.10996343
https://doi.org/10.5281/zenodo.10996343

Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 65

on Logic for Programming, Artificial Intelligence and Reasoning, Alicante, Spain, May 22–
27, 2020. EPiC Series in Computing, vol. 73, pp. 298–316. EasyChair (2020). https://doi.
org/10.29007/6bfc

45. Havlena, V., Holı́k, L., Lengál, O., Vojnar, T.: Automata terms in a lazy WSkS decision pro-
cedure. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 300–318. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-29436-6 18

46. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who love
automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 36–52.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 2

47. Henriksen, J.G., et al.: Mona: monadic second-order logic in practice. In: Brinksma, E.,
Cleaveland, W.R., Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995. LNCS, vol.
1019, pp. 89–110. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60630-0 5

48. Hečko, M.: Amaya (2024). https://github.com/MichalHe/amaya
49. Hieronymi, P., Ma, D., Oei, R., Schaeffer, L., Schulz, C., Shallit, J.O.: Decidability for Stur-

mian words. In: Manea, F., Simpson, A. (eds.) 30th EACSLAnnual Conference on Computer
Science Logic, CSL 2022, February 14-19, 2022, Göttingen, Germany (Virtual Conference).
LIPIcs, vol. 216, pp. 24:1–24:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022).
https://doi.org/10.4230/LIPICS.CSL.2022.24

50. Holı́k, L., Lengál, O., Saarikivi, O., Turoňová, L., Veanes, M., Vojnar, T.: Succinct deter-
minisation of counting automata via sphere construction. In: Lin, A.W. (ed.) APLAS 2019.
LNCS, vol. 11893, pp. 468–489. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
34175-6 24

51. Hopcroft, J.: An n log n algorithm for minimizing states in a finite automaton. In: Theory of
Machines and Computations (Proc. Internat. Sympos., Technion, Haifa, 1971), pp. 189–196.
Academic Press, New York-London (1971)

52. Hu, D., Wu, Z.: String constraints with regex-counting and string-length solved more effi-
ciently. In: Hermanns, H., Sun, J., Bu, L. (eds.) SETTA 2023. LNCS, vol. 14464, pp. 1–20.
Springer, Cham (2023). https://doi.org/10.1007/978-981-99-8664-4 1

53. Hyperscan.io (2021). https://www.hyperscan.io/
54. Jonáš, M., Strejček, J.: Q3B: an efficient BDD-based SMT solver for quantified bit-vectors.

In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 64–73. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25543-5 4

55. Klaedtke, F.: Bounds on the automata size for presburger arithmetic. ACM Trans. Comput.
Log. 9(2), 11:1-11:34 (2008). https://doi.org/10.1145/1342991.1342995

56. Klarlund, N.: A theory of restrictions for logics and automata. In: Halbwachs, N., Peled, D.
(eds.) CAV 1999. LNCS, vol. 1633, pp. 406–417. Springer, Heidelberg (1999). https://doi.
org/10.1007/3-540-48683-6 35

57. Klarlund, N., Møller, A., Schwartzbach, M.I.: Mona implementation secrets. Int. J. Found.
Comput. Sci. 13(4), 571–586 (2002)

58. Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of View, Second
Edition. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-50497-0

59. Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Software synthesis procedures. Commun. ACM
55(2), 103–111 (2012). https://doi.org/10.1145/2076450.2076472

60. Kuper, G.M., Libkin, L., Paredaens, J. (eds.): Constraint Databases. Springer, Heidelberg
(2000). https://doi.org/10.1007/978-3-662-04031-7

61. Monniaux, D.: Automatic modular abstractions for linear constraints. In: Shao, Z., Pierce,
B.C. (eds.) Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2009, Savannah, GA, USA, January 21-23, 2009. pp. 140–
151. ACM (2009). https://doi.org/10.1145/1480881.1480899

https://doi.org/10.29007/6bfc
https://doi.org/10.29007/6bfc
https://doi.org/10.1007/978-3-030-29436-6_18
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/3-540-60630-0_5
https://github.com/MichalHe/amaya
https://doi.org/10.4230/LIPICS.CSL.2022.24
https://doi.org/10.1007/978-3-030-34175-6_24
https://doi.org/10.1007/978-3-030-34175-6_24
https://doi.org/10.1007/978-981-99-8664-4_1
https://www.hyperscan.io/
https://doi.org/10.1007/978-3-030-25543-5_4
https://doi.org/10.1145/1342991.1342995
https://doi.org/10.1007/3-540-48683-6_35
https://doi.org/10.1007/3-540-48683-6_35
https://doi.org/10.1007/978-3-662-50497-0
https://doi.org/10.1145/2076450.2076472
https://doi.org/10.1007/978-3-662-04031-7
https://doi.org/10.1145/1480881.1480899

66 P. Habermehl et al.

62. Moseley, D., et al.: Derivative based nonbacktracking real-world regex matching with back-
tracking semantics. Proc. ACM Program. Lang. 7(PLDI), 1026–1049 (2023). https://doi.org/
10.1145/3591262

63. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78800-3 24

64. Presburger, M.: Über die vollständigkeit eines gewissen systems der arithmetik ganzer
zahlen, in welchem die addition als einzige operation hervortritt. In: Comptes Rendus du
I congrès de Mathématiciens des Pays Slaves, pp. 92—101 (1929)

65. Pugh, W.W.: The omega test: a fast and practical integer programming algorithm for depen-
dence analysis. In: Martin, J.L. (ed.) Proceedings Supercomputing ’91, Albuquerque, NM,
USA, November 18–22, 1991, pp. 4–13. ACM (1991). https://doi.org/10.1145/125826.
125848

66. Reynolds, A., King, T., Kuncak, V.: Solving quantified linear arithmetic by counterexample-
guided instantiation. Formal Methods Syst. Des. 51(3), 500–532 (2017). https://doi.org/10.
1007/s10703-017-0290-y

67. Reynolds, A., Kuncak, V., Tinelli, C., Barrett, C.W., Deters, M.: Refutation-based synthesis
in SMT. Formal Methods Syst. Des. 55(2), 73–102 (2019). https://doi.org/10.1007/S10703-
017-0270-2

68. Reynolds, A., Tinelli, C., de Moura, L.: Finding conflicting instances of quantified formulas
in SMT. In: Proceedings of the 14th Conference on Formal Methods in Computer-Aided
Design. FMCAD ’14, Austin, Texas, pp. 195-202. FMCAD Inc. (2014)

69. Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning (in 2 volumes).
Elsevier and MIT Press (2001). https://www.sciencedirect.com/book/9780444508133/
handbook-of-automated-reasoning

70. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer arithmetic.
In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp.
274–289. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89439-1 20

71. Schuele, T., Schneider, K.: Verification of data paths using unbounded integers: automata
strike back. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS, vol. 4383, pp. 65–80.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70889-6 5

72. SMT-LIB: LIA (2023). https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LIA
73. SMT-LIB: NIA (2023). https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/NIA
74. Stanford, C., Veanes, M., Bjørner, N.: Symbolic Boolean derivatives for efficiently solving

extended regular expression constraints. In: Proceedings of the 42nd ACM SIGPLAN Inter-
national Conference on Programming Language Design and Implementation. PLDI 2021,
New York, NY, USA, pp. 620–635. Association for Computing Machinery (2021). https://
doi.org/10.1145/3453483.3454066

75. Topnik, C., Wilhelm, E., Margaria, T., Steffen, B.: jMosel: a stand-alone tool and jABC plu-
gin for M2L(Str). In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 293–298. Springer,
Heidelberg (2006). https://doi.org/10.1007/11691617 18

76. Traytel, D.: A coalgebraic decision procedure for WS1S. In: Kreutzer, S. (ed.) 24th EACSL
Annual Conference on Computer Science Logic, CSL 2015, September 7-10, 2015, Berlin,
Germany. LIPIcs, vol. 41, pp. 487–503. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2015). https://doi.org/10.4230/LIPIcs.CSL.2015.487

77. Traytel, D., Nipkow, T.: Verified decision procedures for MSO on words based on
derivatives of regular expressions. J. Funct. Program. 25 (2015). https://doi.org/10.1017/
S0956796815000246

78. Turonová, L., Holı́k, L., Lengál, O., Saarikivi, O., Veanes, M., Vojnar, T.: Regex matching
with counting-set automata. Proc. ACM Program. Lang. 4(OOPSLA), 218:1–218:30 (2020).
https://doi.org/10.1145/3428286

https://doi.org/10.1145/3591262
https://doi.org/10.1145/3591262
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/125826.125848
https://doi.org/10.1145/125826.125848
https://doi.org/10.1007/s10703-017-0290-y
https://doi.org/10.1007/s10703-017-0290-y
https://doi.org/10.1007/S10703-017-0270-2
https://doi.org/10.1007/S10703-017-0270-2
https://www.sciencedirect.com/book/9780444508133/handbook-of-automated-reasoning
https://www.sciencedirect.com/book/9780444508133/handbook-of-automated-reasoning
https://doi.org/10.1007/978-3-540-89439-1_20
https://doi.org/10.1007/978-3-540-70889-6_5
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LIA
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/NIA
https://doi.org/10.1145/3453483.3454066
https://doi.org/10.1145/3453483.3454066
https://doi.org/10.1007/11691617_18
https://doi.org/10.4230/LIPIcs.CSL.2015.487
https://doi.org/10.1017/S0956796815000246
https://doi.org/10.1017/S0956796815000246
https://doi.org/10.1145/3428286

Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic 67

79. Wolper, P., Boigelot, B.: An automata-theoretic approach to Presburger arithmetic con-
straints. In: Mycroft, A. (ed.) SAS 1995. LNCS, vol. 983, pp. 21–32. Springer, Heidelberg
(1995). https://doi.org/10.1007/3-540-60360-3 30

80. Wolper, P., Boigelot, B.: On the construction of automata from linear arithmetic constraints.
In: Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 1–19. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-46419-0 1

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1007/3-540-60360-3_30
https://doi.org/10.1007/3-540-46419-0_1
http://creativecommons.org/licenses/by/4.0/

Distributed SMT Solving Based
on Dynamic Variable-Level Partitioning

Mengyu Zhao, Shaowei Cai(B), and Yuhang Qian

Key Laboratory of System Software (Chinese Academy
of Sciences) and State Key Laboratory of Computer Science,

Institute of Software, Chinese Academy of Sciences, Beijing, China
{zhaomy,caisw,qianyh}@ios.ac.cn

Abstract. Satisfiability Modulo Theories on arithmetic theories have
significant applications in many important domains. Previous efforts
have been mainly devoted to improving the techniques and heuristics in
sequential SMT solvers. With the development of computing resources, a
promising direction to boost performance is parallel and even distributed
SMT solving. We explore this potential in a divide-and-conquer view and
propose a novel dynamic parallel framework with variable-level partition-
ing. To the best of our knowledge, this is the first attempt to perform
variable-level partitioning for arithmetic theories. Moreover, we enhance
the interval constraint propagation algorithm, coordinate it with Boolean
propagation, and integrate it into our variable-level partitioning strat-
egy. Our partitioning algorithm effectively capitalizes on propagation
information, enabling efficient formula simplification and search space
pruning. We apply our method to three state-of-the-art SMT solvers,
namely CVC5, OpenSMT2, and Z3, resulting in efficient parallel SMT
solvers. Experiments are carried out on benchmarks of linear and non-
linear arithmetic over both real and integer variables, and our variable-
level partitioning method shows substantial improvements over previous
partitioning strategies and is particularly good at non-linear theories.

Keywords: Satisfiability Modulo Theories · Parallel Computing ·
Partitioning Strategy · Interval Constraint Propagation

1 Introduction

Satisfiability Modulo Theories (SMT) is a critical area of research focusing on
the satisfiability of first-order logic formulas. The growth of SMT springs from
the success of propositional Satisfiability (SAT) solving in the early 1960s. SMT
aims to generalize the achievements of SAT solvers from propositional logic to
fragments of first-order logic. The research in SMT has broadened the scope to
include more complex logic, such as the theory of equalities and uninterpreted
functions, array theory, bit-vector, floating-point arithmetic, difference logic, and
linear and non-linear arithmetic.

Our research focuses on Arithmetic Theories, which comprise arithmetic
atomic formulas of polynomial equations or inequalities over real or integer vari-
ables. Arithmetic Theories can be categorized into four distinctive sets based
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 68–88, 2024.
https://doi.org/10.1007/978-3-031-65627-9_4

https://doi.org/10.5281/zenodo.10948392
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65627-9_4&domain=pdf
https://doi.org/10.1007/978-3-031-65627-9_4

Distributed SMT Solving Based on Dynamic Variable-Level Partitioning 69

on the form of formulas and the domain of variable definitions, including Lin-
ear Real Arithmetic (LRA), Linear Integer Arithmetic (LIA), Non-linear Real
Arithmetic (NRA), and Non-linear Integer Arithmetic (NIA). In widespread
terms, considering all four subsets, the SMT problems of Arithmetic Theories
are collectively denoted as SMT(Arithmetic). SMT(Arithmetic) is fundamental
in numerous applications such as program verification [6], termination analysis
[9], symbolic execution [11], test-case generation [26], program synthesis, opti-
mization [23], and scheduling [31]. Formal verification of embedded software
and hybrid systems [5] often requires deciding the satisfiability of quantifier-free
first-order formulas involving arithmetic. For many users of SMT solvers, the
solver’s performance is a bottleneck for their application, so improving solver
performance remains a top priority for solver developers.

Today, most state-of-the-art SMT solvers remain single-threaded, and previ-
ous efforts have been mainly devoted to improving the techniques and heuristics
in sequential SMT solvers. In addition to enhancing the efficiency of the sequen-
tial solver, it is a natural idea to boost the solver performance by employing dis-
tributed SMT solving, considering the increasing availability of computational
resources. Current research in distributed SMT solving can be divided into two
main directions: portfolio and divide-and-conquer. Extensive investigations on
partitioning strategies have been predominantly spearheaded by the OpenSMT2
team and are well-documented in [32]. A recent study in [32] has explored hybrid
strategies that combine both methods and show improvements.

Portfolio solvers deploy multiple solvers or varying configurations of a single
solver that attempt to solve identical or perturbed but equivalent SMT prob-
lems concurrently [33]. Portfolio solvers are limited by the best possible sequen-
tial performance. Consequently, the alternative divide-and-conquer method is a
compelling approach. In this approach, the original problem is partitioned into
sub-problems so that solving the sub-problems provides a solution to the orig-
inal problem. The underlying assumption is that the smaller search spaces of
the sub-problems allow for faster parallel solving than addressing the original
problem in its entirety.

Our research focuses on the partitioning strategy for divide-and-conquer.
While divide-and-conquer potentially outperforms the best sequential perfor-
mance, it hinges heavily on discovering an effective partitioning algorithm, which
still needs to be explored. Conventionally, a lookahead heuristic [21] is employed,
opting for variables that reduce most exploration space, which is also stud-
ied in parallel MIP solving [29,30]. Most partitioning algorithms adopt a pre-
partitioning approach, partitioning the problem into sub-problems before par-
allel solving [32]. This pre-partitioning approach inevitably leads to a waste of
computational resources, although the multijob strategy [15] can alleviate this
issue to some extent. Also, such partition-at-one-time strategies need to pay high
costs to create sub-problems that are as balanced as possible. Beyond the pre-
partitioning strategy, OpenSMT2 implements a dynamic partitioning method
[1,24]. The parallel solver partitions the instance dynamically on-demand and
allows clauses to be shared between solvers working on different instances.

70 M. Zhao et al.

Existing partitioning strategies for SMT mainly follow those for SAT, parti-
tioning at the Boolean level (dividing the problem with different assignments to
Boolean encoders), also known as the SMT term-level [20,32]. For formulas with
complex logical structures, sufficient sub-problems can be generated by parti-
tioning only at the term-level. However, these term-level partitioning strategies
become futile for formulas with a simple Boolean structure, such as almost pure
conjunction formulas, usually appearing in program verification and theorem-
proving involving complex theories. Note that for the bit-vector theory, both
bit-level and term-level partitioning have been studied in PBoolector [27].

In view of these shortcomings, we propose a dynamic parallel framework
based on arithmetic variable-level partitioning. This framework ensures full uti-
lization of computing resources, preventing idle core resources from lacking exe-
cutable tasks. The dynamic parallel framework provides flexibility for parallel
trees to grow. Thus, it can easily collaborate with other partitioning strategies
— any sub-problem yielded previously by pre-partitioning strategies can be par-
titioned further. (Section 3)

What is more important, this is the first attempt to perform variable-level
partitioning for arithmetic theories. Each time it picks a variable and partitions
the problem by dividing the feasible domain of the variable, leading to (typically
two) sub-problems, which can be further simplified via constraint propagation.
Our proposed variable-level partitioning permits robust, comprehensive parti-
tioning. Regardless of the Boolean structure of any given instance, our partition-
ing algorithm can keep partitioning to the last moment of the solving process.
The variable-level partitioning strategy can be easily applied to other theories.
(Section 4.2)

The effectiveness of our partition strategy is closely related to the underly-
ing constraint propagation techniques to simplify the sub-problems. We propose
an improved version of Interval Constraint Propagation (ICP) [22,28], named
Boolean and Interval Constraint Propagation (BICP), and integrate it within
our variable-level partitioning strategy. The BICP conducts arithmetic feasi-
ble interval reasoning and successfully integrates Boolean propagation, allowing
stronger propagation. (Section 4.3)

We apply our techniques to three state-of-the-art SMT solvers as our base
solvers, including CVC5 [2], OpenSMT2 [18] and Z3 [25]. Experiments are con-
ducted to evaluate the resulting parallel solvers on four benchmarks, includ-
ing QF LRA, QF LIA, QF NRA, and QF NIA instances from SMT-LIB1. Fur-
thermore, we compare our variable-level partitioning strategy to the default
partitioning strategies in CVC5 [32] and OpenSMT2 [19]. Overall, the exper-
imental results show our techniques significantly improve the performance of
the sequential SMT solvers, leading to a remarkable increase in total solved
instances. Besides, our variable-level partitioning strategy exhibits superior per-
formance and diversity compared to best term-level strategies, particularly in
pure-conjunction instances.

1 http://smtlib.cs.uiowa.edu.

http://smtlib.cs.uiowa.edu

Distributed SMT Solving Based on Dynamic Variable-Level Partitioning 71

2 Preliminaries

2.1 Definitions and Notations

A monomial m is an expression of the form
∏

i x
ei
i where ei ∈ N, xi is a real

(or integer) variable. A polynomial p is a linear combination of monomials, an
arithmetic expression with

∑
i aimi where ai are rational numbers and mi are

monomials. If all its monomials are linear in a polynomial, it is linear; otherwise,
it is non-linear. A quantifier-free arithmetic formula is a first-order formula whose
atoms are either propositional variables of equalities, disequalities, or inequalities
of the form: p ∼ b, where ∼∈ {<,≤, >,≥,=}, b ∈ R.

A Conjunctive Normal Form (CNF) formula is a conjunction of clauses
∧

i ci,
each clause ci being a disjunction of literals

∨
j lj , and each literal lj being either

an quantifier-free arithmetic formula v or its negation v̄. A clause containing
only one literal is called a unit clause. The length of a clause is the number of
literals in it. The length of a SMT formula is the sum of the length of the clauses
in the formula. A key procedure in SAT and SMT solvers is the unit clause rule:
if a clause is unit, then its sole unassigned literal must be assigned value true
for the clause to be satisfied. The iterated application of the unit clause rule is
referred to as unit propagation or Boolean constraint propagation (BCP).

2.2 Parallel SMT Solving with Partitioning

A typical parallel method is divide-and-conquer, which is based on partitioning.
The satisfiability of a formula φ can be determined in parallel by dividing it into
n independent sub-problems φ1, . . . , φn. Provided the disjunction φ1, . . . , φn is
equi-satisfiable with φ if any of the sub-problems are satisfiable, then the original
problem is satisfiable, and if all of the sub-problems are unsatisfiable, then the
original problem is unsatisfiable. No synchronization is necessary during solving
in this simple scenario because the sub-problems are independent.

There are two main partitioning strategies, including cube-and-conquer and
scattering. In the cube-and-conquer [15] partitioning strategy, a set of N atoms
is selected, and each of the 2N possible cubes using these atoms is used as a
partitioning formula, resulting in 2N partitions. Scattering [17] is an alternative
strategy that differs from cube-and-conquer in that it creates partitioning for-
mulas that are not cubes. Instead, scattering produces a series of N partitioning
formulas as follows. The first partitioning formula is some cube C1. The second
is ¬C1∧C2 for some new cube C2. The next is ¬C1∧¬C2∧C3 for a new cube C2,
and so on. The N th partitioning formula is simply ¬C1 ∧ · · · ∧ ¬CN−1. The par-
titioning formulas by construction are disjoint, and the partitioning algorithm
has considerable freedom in selecting cube variables.

2.3 Interval Constraint Propagation

Interval Constraint Propagation (ICP) is an efficient numerical method for find-
ing interval over-approximations of solution sets of SMT formulas, and it is par-
ticularly beneficial for non-linear systems [3,12,28]. The fundamental principle

72 M. Zhao et al.

of ICP is to maintain a feasible interval for every variable and shrink these inter-
vals using relatively simple constraint propagation. This technique can effectively
exclude extensive portions of the search space, sometimes proving unsatisfiabil-
ity. ICP has been successfully implemented in various solvers such as dReal [13],
HySAT [10], and SMT-RAT [7]. The primary method of using ICP is to quickly
shrink the space of solution candidates and then exploit these additional bounds
in the algebraic methods. We use a straightforward example to show how ICP
works.

Example 1 (Interval constraint propagation).
Case 1. Consider the constraint set S = {x > 1, x < 4, xy > 4, yz2 ≤ 4}.

ICP contracts the feasible interval by the constraint set in the following way:
Step 1. We derive x ∈ (1, 4) from x > 1 ∧ x < 4. Step 2. By applying interval
arithmetic, y ∈ (1,∞) is procured from x ∈ (1, 4)∧xy > 4. Step 3. We can further
narrow the interval on z by maintaining its consistency with y ∈ (1,∞)∧yz2 ≤ 4,
and obtain z ∈ (−2, 2). The resultant feasible intervals of variables after ICP are
x ∈ (1, 4), y ∈ (1,∞), and z ∈ (−2, 2).

Case 2. Consider the constraint set S′ = S ∪ {2xz + y2 < −20}. As in
case 1, ICP yields x ∈ (1, 4), y ∈ (1,∞), and z ∈ (−2, 2). We can obtain
2xz + y2 = 2 × (1, 4) × (−2, 2) + (1,∞)2 ∈ (−15,∞) by interval arithmetic. The
intersection of (−15,∞) and (−∞,−20) results in an empty set. Thereby, ICP
detects the unsatisfiability of the constraint set S′.

3 Dynamic Parallel Framework Based on Arithmetic
Partitioning

This section introduces our dynamic parallel framework that leverages arithmetic
variable-level partitioning. We first present the framework, including the main
components and how they cooperate together. Two related techniques in the
framework will also be introduced, followed by an illustration example. The
partitioning algorithm will be introduced in Sect. 4.2.

3.1 The Framework

As illustrated in Fig. 1, in the parallel framework, there are three classes of
threads, namely, the partitioner thread, the master thread, and worker threads.
The master thread schedules tasks with a pivotal data structure: task buffer.
Partitioner. The partitioner generates sub-problems (also known as tasks) and
puts them into the task buffer. It receives a formula from the task buffer and
picks a variable (using heuristics and information from the master) to partition
the formula. This would result in two sub-problems. The sub-problems are then
simplified using constraint propagation techniques. Finally, the simplified sub-
problems are put into the task buffer.
Master. The master plays a crucial role in task scheduling, including task
assignments, on-demand terminations, and UNSAT propagation. It receives

Distributed SMT Solving Based on Dynamic Variable-Level Partitioning 73

Fig. 1. Our dynamic parallel framework.

tasks generated by the partitioner, storing them in a task buffer for future
assignments. The task buffer usually stores more tasks than the computation
cores available. This strategy ensures the immediate task assignment by the
master as soon as a computational resource is available, from the task buffer to
worker threads. Simultaneously, worker threads keep the master informed of the
status of running tasks. There are three possible statuses of ongoing tasks F :

– UNSAT: it does not necessarily mean the original problem is unsatisfied.
Nonetheless, the master can perform UNSAT propagation (Sect. 3.2) if pos-
sible to speed up solving.

– SAT: the algorithm can confirm the original problem is SAT. A solution
to the original SMT formula can be easily constructed by combining the
solution of F and previous assignments to the variables being removed due
to simplifications.

– Running: the master will analyze the information on tasks and send a termi-
nation signal to the workers that are solving problems that are unlikely to be
resolved in the near future. The specific strategies and details of termination
will be elaborated later in this section.

During the solving, if the root task is proven UNSAT, it marks the end of
the algorithm, regardless of whether the UNSAT is the product of solving the
problem by itself or UNSAT propagating upwards from sub-tasks.
Workers. The worker threads mainly call a base SMT solver to solve the prob-
lem assigned to it by the master. It communicates the result to the master
when it succeeds in solving the problem. Additionally, a worker thread may also
receive a termination signal from the master. In this case, it terminates the run-
ning task and releases its computational resources to make room for other tasks.
Notably, worker threads have high flexibility in selecting and configuring their
base solvers, thereby fostering diversified solving.

We would like to remark that the flexible task scheduling and partitioning
strategy significantly enhance the capabilities of our framework. We can explore
various scheduling heuristics when deciding which tasks require further parti-
tioning. By designing the scheduling heuristic, we can extend the parallel tree

74 M. Zhao et al.

in the way of BFS-like cube or DFS-like scattering strategy. We can also extend
the parallel tree with dynamic scheduling.

3.2 Partition Tree Maintenance and UNSAT Propagation

To perform UNSAT propagation, the master maintains a partition tree, which
records the history of formula partitioning. The partition tree consists of task
nodes containing information such as the simplified SMT formula, the parent
and children tasks, and the task’s execution status (Waiting, Running, Termi-
nated, SAT, UNSAT). Additionally, it keeps track of event timelines, including
creation, execution, and termination times. As the solving progresses, the tree
dynamically updates the state of its nodes. When the partitioner creates new
subtasks through partitioning, they are added to the partition tree and subse-
quently updated with the related information.

When the master is notified of an UNSAT result of a task, it performs UNSAT
propagation, if possible, to speed up solving. The UNSAT propagation can occur
in two distinct directions: upward and downward.

– The upward propagation: if a task has a parent task and all the subtasks
of the parent task are UNSAT, the master can infer the parent task as UNSAT
and continue propagating this UNSAT upwards.

– The downward propagation: the master should terminate all of its sub-
tasks since the parent task being proven UNSAT implies that all subtasks are
UNSAT.

3.3 Terminate on Demand

In our framework, there are situations where a subtask and its parent task run
concurrently. Allowing tasks with overlap to be solved simultaneously could
inevitably result in exploring some identical search space, which we prefer to
avoid. Furthermore, terminating these despairing tasks can help preserve avail-
able resources for more promising tasks. Based on these considerations, we pro-
pose a heuristic to determine if a running task should be terminated.

– If both subtasks of the task are in waiting states, the task is allowed a
sufficient runtime duration.

– However, the task’s runtime should be limited if both subtasks of the task
have entered or been in a running state. Since the search space of the task
entirely covers its descendant tasks, we should avoid unnecessary duplication
of search wherever possible.

– The runtime limitation for the other scenarios should lie between these two
situations.

3.4 A Running Example

Consider a running state in our framework as depicted in Fig. 2(a). In this
scenario, the partitioner has generated 13 tasks with running statuses. With 5
computational cores, the size of the task buffer is set to 4.

Distributed SMT Solving Based on Dynamic Variable-Level Partitioning 75

Fig. 2. A possible scheduling of our framework.

Step 1. Task 7 finishes with an UNSAT result and notifies the master. At this
point, the computational resource previously allocated to task 7 is released, and
the master performs both upward and downward propagation of the UNSAT
result.

– During the upward propagation, the master determines that the status of
task 6 is UNSAT by emerging the UNSAT result of its sub-tasks.

– With the downward propagation, the master updates the status of tasks 11
and 12 to UNSAT.

Step 2. The master sends a termination signal to task 4 according to the heuris-
tic in Sect. 3.3, and task 4 is terminated, and the computational resource is
released.
Step 3. Currently, the number of waiting tasks is fewer than the number of
cores, prompting the partitioner to partition task 9 with variable z, subsequently
adding new subtasks 13 and 14 to the task buffer.
Step 4. Recent result notification, UNSAT propagation, and task termination
free up three computational cores. Subsequently, tasks 3, 5, and 13 are assigned
to the worker threads based on the master’s scheduling strategy. So, we arrive
at the final running state shown in Fig. 2(b).

We omit these further task partitioning for clarity and brevity in our illus-
tration. One may notice that the “SAT” label is missing from the tree. In fact,
whenever any worker thread returns a SAT result, we know the answer to the
original formula is SAT, and the model can be constructed easily.

4 Variable-Level Partitioning for Arithmetic Theories

Partitioning strategies are crucial in the paradigm of divide-and-conquer parallel
solving and have a significant impact on the overall efficiency of parallel solving
[16,19–21,32]. This section explores a variable-level partitioning strategy based
on the BICP method, making a deeper and more comprehensive exploration of
arithmetic theories.

76 M. Zhao et al.

4.1 Preprocessing

For convenience of constraint propagation, we preprocess the original formula
to a standard form. Note that the preprocessing is performed only once for
the original formula. All sub-formulas obtained from partitioning inherit this
form. We utilize preprocessing techniques including but not limited to if-then-else
operators elimination, constants elimination, equality propagation, flattening of
nested operations, and normalizing polynomial formats.

As done in [8,12,28], we preprocess our formulas to maintain constraints
in an easily-managed form of x ∼ b. The preprocessing introduces two sets of
auxiliary variables: polynomial and monomial. Whenever a monomial mi first
occurs, an associated monomial variable vm

i is introduced. We substitute mi with
vm
i , augmenting the original formula with the clause vm

i = mi. Likewise, for each
non-monomial atomic formula pi ∼ bi, a new variable vp

i is defined. pi is replaced
by vp

i in the formula, and the associated clause vp
i = pi is added. Moreover, we

performed an enhanced normalization as follows. For convenient notation, we
assume that each constraint embeds constants and coefficients, which can be
expressed as fractions. Consider a non-linear constraint c of the following form:

|p|∑

i=1

an
i

ad
i

vm
i ∼ bn

bd
, an

i , ad
i , bn and bd ∈ Z.

To simplify and normalize the polynomial form, allowing shared variable bound-
aries that enhance efficiency in interval contraction, we transform the constraints
into the standard form:

|p|∑

i=1

a′
iv

m
i ∼ b′, a′

i ∈ Z, b′ ∈ Q and gcd
(
a′
1, . . . , a

′
|p|

)
= 1.

This leads to vp =
∑|p|

i=1 a′
iv

m
i with the adjusted bound vp ∼ b. To summarize,

for each distinctive non-linear monomial and linear left-hand side (excluding
constants), a single vm and vp are introduced, respectively. This way, the pro-
cedures facilitate the construction of necessary equations for the ICP algorithm
and generate bounds of introduced variables to express potential inequalities.

4.2 The Partitioning Algorithm

When the master notifies the partitioner to perform partitioning, the partitioner
runs Algorithm 1 to generate two subtasks and sends them to the task buffer.
The partition tree is then updated accordingly.
Choose a Formula to Partition. The partitioner thread maintains a partition
tree as the master does. It iteratively chooses a leaf node from the tree and
performs partitioning to the corresponding formula in the node, following the
below heuristic:

– prefers a leaf node of the lowest level (that is, a leaf node closest to the root
node)

Distributed SMT Solving Based on Dynamic Variable-Level Partitioning 77

Algorithm 1: Arithmetic Variable-level Partitioning
1 φ ← choose a leaf node from the partition tree
2 x ← choose a partitioning variable for the node φ
3 {φl, φr} ← perform interval partitioning on variable x within φ

4 {Rl, φ̂l} ← perform the BICP on φl

5 if Rl �= UNSAT then

6 Add node φ̂l into the partition tree

7 Send φ̂l to the task buffer

8 {Rr, φ̂r} ← perform the BICP on φr

9 if Rr �= UNSAT then

10 Add node φ̂r into the partition tree

11 Send φ̂r to the task buffer

– if there are more than one such leaf nodes, ties are broken by preferring the
one with the most clauses, and further ties are broken by the length of the
formula.

We would like to note that it is not mandatory for the partitioner to maintain
the partition tree, as we already have the tree in the master. The reason we
choose to also maintain the partition tree in the partitioner thread is mainly to
reduce the communication cost and thus improve efficiency.

Choose an Arithmetic Variable for Partitioning. Given a formula, a spe-
cific variable is selected for partitioning. In the following, we discuss selecting
partitioning variables and conducting our variable-level partitioning in arith-
metic theories. The selection of arithmetic variables avoids auxiliary variables
introduced in the preprocessing for ICP. When selecting the partitioning vari-
able, we consider the following variable features in the formula. Our experimental
validation has led us to prioritize these features based on their importance. We
design a multi-tier heuristic, in which if the primary indicator is identical, the
secondary indicator is considered, and so forth.

1. The highest degree of the variable in the constraints.
2. The occurrence frequency of the variable in the simplified formula.
3. The partitioning times of the variable.

With our implementation and evaluation, we rarely encounter variables that fall
back to the third indicator, which means that the first two features are crucial
indicators within our selection procedure.

Create Two Sub-Formulas via Interval Partitioning. Once the partition-
ing variable has been decided, creating partitions with reference to this variable
is another pivotal aspect of the variable-level partitioning. In this context, ub
and lb represent the existing upper bound and lower bound of the selected vari-
able. The partitioner performs partitioning depending on the feasible interval of
the variable as follows:

78 M. Zhao et al.

1. Strictly containing 0: A partitioning is made at the value 0.
2. Both an upper and a lower bound: Proportionate partitioning is per-

formed in demand, usually at the midpoint (lb + ub)/2.
3. Only an upper bound or a lower bound: Partitioning at (ub− penalty),

penalty is a parameter. The case for the lower-bound-only variable is similar.
4. No upper or lower bound: Containing 0, thereby satisfying condition 1.

4.3 BICP in Arithmetic Partitioning

This section proposes an enhanced constraint propagation method called
Boolean and Interval Constraint Propagation (BICP). Typically, the ICP is
implemented within the theory solver in SMT, which is used for performing
constraint propagation on conjunctive arithmetic constraints, sometimes lead-
ing to an UNSAT result.

We extend ICP to handle constraints with disjunctive structure by combining
it with Boolean constraint propagation. This algorithm collects variable infor-
mation from Boolean constraint propagation, including the feasible intervals of
arithmetic variables, monomials, and polynomials, as well as the assignments of
Boolean variables. BICP uses the feasible intervals of arithmetic variables to cal-
culate the feasible intervals of monomials and polynomials encompassing these
variables, which is straightforward. Additionally, the algorithm exploits the fea-
sible intervals of monomials and polynomials to update the interval of variables
within them. BICP involves both Boolean constraint propagation and numerical
computation algorithms, a typical example being Newton’s method for interval
arithmetic [14]. During the propagation, BICP efficiently contracts the feasible
interval of integer variables. Sometimes, BICP can lead to an UNSAT result,
and in this case the task is directly discarded. An intuitive explanation is that
BCP could lead to potential unit propagation and collect more arithmetic con-
straints, thus enhancing propagation ability. Without BCP, the ICP process may
terminate early. Some examples of the techniques mentioned in BICP are listed
in Table 1.

Table 1. Techniques implemented in BICP.

Technique Example Input Example Output

Unit Propagation x ∈ (1, 4), (¬a ∨ x < −2) ¬a

¬a, y = 4, (a ∨ x2 ≥ 4 ∨ y < 3) x2 ≥ 4

Interval Propagation x ∈ (1, 4), y > 1, z ∈ (−2, 2) 2xz + y2 > −15

x ∈ (1, 4), xy > 4 y > 1

UNSAT Inference x ∈ (1, 4), y ∈ (2, 3), UNSAT

(x < −2 ∨ y ≥ 3)

Integer Contraction x ∈ Z, x2 < 5 x ∈ [−2, 2]

Distributed SMT Solving Based on Dynamic Variable-Level Partitioning 79

Exhaustive propagation takes a lot of work due to the “slow convergence” of
ICP [4]. In practice, the algorithm follows a predefined number of iterations or
ignores the negligible improvement within a given threshold.

The SMT formula (i.e., a task) is then simplified according to the result of
BICP, which may change the domains of the variables. The simplification proce-
dure comprises three sub-procedures: clause reduction, feasible domain contrac-
tion of variables, and literal propagation.

– Reduce Clauses. We examine each clause of the original formula. This
involves examining the truth value of the literals in the clause. For arithmetic
literals, recalling that after preprocessing (Sect. 4.1), the polynomial in any
arithmetic literal � has been replaced with an auxiliary arithmetic variable
x, we calculate the truth value of � as follows: if the feasible interval of x is
a subset of the feasible interval represented by the literal �, then � is True;
if there is no intersection between these two domains, then literal � is False;
in other cases, we do not know the value of the literal. If a clause contains
any literal whose value is True (due to propagation), the clause is satisfied,
and thus it is removed. Conversely, we formulate a new clause from all literals
with unknown status and add it to the task. If some clause becomes empty,
it means the formula is UNSAT, and thus, the formula can be discarded.

– Express Feasible Domains as Constraints. We gather all assignments
of Boolean variables and feasible intervals of arithmetic variables obtained
from the constraint propagation. Each of them is expressed by a constraint
and added to the formula.

– Address Literals Assigned by BCP. We avoid adding constraints about
the feasible intervals of auxiliary variables, which stand for monomials and
polynomials, into the task. To ensure that the simplified task has the same
solution as the given formula, we need to collect the literals assigned by
Boolean constraint propagation. This part could lead to redundancies within
the task. So, we eliminate constraints dominated by others through a simple
detection, ensuring the accuracy and conciseness of the task.

Example 2 (BICP and formula simplification). Consider the SMT formula (x >
1)∧(x < 4)∧(xy > 4)∧(yz2 ≤ 4)∧(¬a∨x < −2)∧(y > 0∨x2z+y = 3)∧(a∨x2 ≥
4∨y > 5). From Example 1 in Sect. 2.3, we can derive x ∈ (1, 4), y ∈ (1,∞), and
z ∈ (−1, 1) by Boolean constraint propagation and interval arithmetic. Then,
we infer (x < −2)
→ False and propagate ¬a. After the BICP, the status of the
given formula is:

(xy > 4 ∧ yz2 ≤ 4)
→ (True ∧ True),
(¬a ∨ x < −2)
→ (True ∨ False),

(y > 0 ∨ x2z + y = 3)
→ (True ∨ Unknown),

(a ∨ x2 ≥ 4 ∨ y > 5)
→ (False ∨ Unknown ∨ Unknown).

So, the task after simplification is:

80 M. Zhao et al.

(x2 ≥ 4 ∨ y > 5)
︸ ︷︷ ︸

Reduced Clauses

∧ (¬a ∧ x ∈ (1, 4) ∧ y ∈ (1, ∞) ∧ z ∈ (−2, 2))
︸ ︷︷ ︸

Feasible Domain of Variables

∧ (xy > 4 ∧ yz2 ≤ 4)
︸ ︷︷ ︸

Propagated Literals

.

5 Evaluation

5.1 Evaluation Preliminaries

In this work, we use our method to improve SMT solvers and conduct extensive
experiments to evaluate the method’s effectiveness. This subsection introduces
the experiment setup, including implementation, benchmarks, base solvers, run-
ning environment, and reporting methodology.

Implementation: The partitioner is efficiently developed from the developing
module of Z3 named “subpaving” in C++. We refined the code to support our
variable-level partitioning and constraint propagation needs and fixed several
bugs. Moreover, we implemented targeted adaptations and performance enhance-
ments within the “subpaving” module to improve the capability of our method.
The master is implemented by Python for task management and scheduling in
parallel solving.

Benchmarks: The experiments are carried out on four non-incremental
arithmetic benchmarks from SMT-LIB: 1753 instances from QF LRA, 13226
instances from QF LIA, 12134 instances from QF NRA, and 25358 instances
from QF NIA.

Base Solvers: For the foundation of our research, we choose three state-of-
the-art SMT solvers as the base solvers (i.e., the worker threads) for our stud-
ies, including CVC5 (v1.0.8) [2], OpenSMT2 (v2.5.2) [18], and Z3 (v4.12.1)
[25]. CVC5 and Z3 have persistently demonstrated superior performance across
numerous theories and tracks in the SMT-COMP over several consecutive years.
Conversely, OpenSMT2 is a solver specifically oriented towards parallel and dis-
tributed solving and exhibits commendable efficacy in the theories of linear arith-
metic. CVC5 and Z3 support all theories in benchmarks, and OpenSMT2 sup-
ports QF LRA and QF LIA of the four theories. As for comparisons, we also
test the previous parallel versions of these solvers.

Experiment Setup: All experiments are conducted on servers running Ubuntu
20.04.4 LTS, each with 1T RAM and two AMD EPYC 7763 CPUs with 64 cores
per CPU. Each solver performed one run for each instance with a cutoff time of
1200 CPU seconds. For each solver for each benchmark, we report our number of
solved SAT/UNSAT instances, total failed instances, and total solved instances,
denoted as “SAT”, “UNSAT”, “Failed”, and “Solved”. Furthermore, we present
the penalized run-time “PAR-2”, as used in SAT Competitions, where the run
time of a failed run is penalized as twice the cutoff time, and the PAR-2 score
improvement “Improve” compared to sequential solving. We use the PAR-2 score
because it provides a single metric that incorporates both run time and the

Distributed SMT Solving Based on Dynamic Variable-Level Partitioning 81

number of benchmarks solved. The CPU time consumed by the experiments is
more than 20 CPU years. Our experiments primarily use sequential and parallel
solving with 8 and 16 cores. Although our method supports parallelism for an
arbitrary number of cores, we elected to use powers of 2 for our core number.
This decision was made considering that some existing comparative strategies
like cube-and-conquer can only accommodate parallelism for cores numbering
to the powers of 2. Moreover, the choice of the core number aims to balance
the advantage of the dynamic parallel framework against the practical time
and equipment constraints. The framework’s benefits might not be adequately
exhibited in cases involving fewer cores, and employing a more significant number
of cores may result in an unacceptable CPU time cost.

At last, we have provided our solver, evaluation scripts, and related exper-
imental results in a GitHub repository2. For those interested, it is possible to
utilize our solver and explore the experimental details further.

5.2 Comparison to Sequential Solving

This part of the evaluation focuses on testing the effectiveness of our variable-
level partitioning in augmenting and accelerating the solving capabilities of dif-
ferent sequential solvers across various theories. The notation Solver(S) means
sequential solving of the SMT solver “Solver”, and Solver(AP-pX) is the notation
for employing “Solver” within our method AP with X cores.

Table 2. Comparison to sequential solving in benchmarks of linear theories, where the
solvers employing our partitioning method are denoted with “AP-p”, followed by the
number of cores.

QF LRA(1753) QF LIA(13226)

SAT UNSAT Failed PAR-2 Improve SAT UNSAT Failed PAR-2 Improve

CVC5(S) 958 685 110 354714 0% 7046 3212 2968 7562277 0%

CVC5(AP-p8) 980 689 84 287256 19.02% 7321 3252 2653 6791509 10.19%

CVC5(AP-p16) 980 689 84 281524 20.63% 7350 3274 2602 6678936 11.68%

CVC5(AP-p32) 982 690 81 275957 22.20% 7365 3285 2576 6603235 12.68%

OpenSMT2(S) 991 700 62 173971 0% 7985 4645 596 1994585 0%

OpenSMT2(AP-p8) 1008 701 44 132925 23.59% 8116 4660 450 1629696 18.29%

OpenSMT2(AP-p16) 1008 701 44 133043 23.53% 8138 4663 425 1555190 22.03%

OpenSMT2(AP-p32) 1009 701 43 127489 26.72% 8160 4665 401 1489780 25.31%

Z3(S) 966 680 107 316097 0% 7862 3903 1461 4025347 0%

Z3(AP-p8) 995 683 75 235645 25.45% 8055 4152 1019 3031732 24.68%

Z3(AP-p16) 996 683 74 231738 26.69% 8066 4157 1003 2983526 25.88%

Z3(AP-p32) 998 684 71 225268 28.73% 8076 4160 990 2945091 26.84%

The results from different base solvers and their performance within our
method are summarized in Table 2 and Table 3. From sequential to parallel

2 https://github.com/shaowei-cai-group/AriParti.

https://github.com/shaowei-cai-group/AriParti

82 M. Zhao et al.

Table 3. Comparison to sequential solving in benchmarks of non-linear theories.

QF NRA(12134) QF NIA(25358)

SAT UNSAT Failed PAR-2 Improve SAT UNSAT Failed PAR-2 Improve

CVC5(S) 5485 5811 838 2100561 0% 9460 4803 11095 27485835 0%

CVC5(AP-p8) 5709 5864 561 1425236 32.15% 13030 5504 6824 17250199 37.24%

CVC5(AP-p16) 5731 5864 539 1372485 34.66% 13045 5513 6800 17186305 37.47%

CVC5(AP-p32) 5743 5864 527 1343006 36.06% 13691 5588 6079 15346228 44.17%

Z3(S) 5626 5375 1133 2770153 0% 13779 5836 5743 14636656 0%

Z3(AP-p8) 5744 5686 704 1741660 37.13% 14191 6785 4382 11225626 23.30%

Z3(AP-p16) 5766 5705 663 1637352 40.89% 14193 6789 4376 11206526 23.44%

Z3(AP-p32) 5789 5712 633 1561862 43.62% 14320 6884 4154 10610746 27.51%

solving with 8 cores by applying our parallel method for all base solvers, the
number of solved instances is increased, and the PAR-2 scores are signifi-
cantly improved. Specifically, the parallel solvers with 8 cores solve 25.3, 301,
353, and 2816 more instances compared to sequential versions on average for
QF LRA(1753), QF LIA(13226), QF NRA(12134) and QF NIA(25358) theories
respectively. Moreover, the PAR-2 scores are improved by 22.4%, 15.7%, 35.0%,
and 32.4% on average. Overall, our parallel method with 8 cores solves 1211
additional instances (out of 6247) that any single solver could not solve without
our partitioner, improving the solving ability essentially.

From 8 to 32 cores parallel solving results with our proposed method, we
observed significant performance improvement. This preliminary evidence under-
scores the promising potential of our approach in terms of scalability. Time
and computational resources, unavoidable constraints in our parallel experimen-
tation, have limited us to exploring up to 32 cores. Nevertheless, our current
experimental results do not display a solving performance saturation with the
present number of cores. Extending the parallel cores beyond 32 would continue
to improve the solving performance. In other words, the improvement is even
worth the resource usage cost beyond 32 cores.

Further, we discover that the improvement across distinct theories varied
considerably. The improvements are more significant in non-linear arithmetic
instances than linear ones. This result aligns with the intention of ICP, which is
mainly designed to speed up solving non-linear arithmetic constraints. For linear
instances, the capacity of SAT instances is predominantly enhanced. For non-
linear instances, the improvement is also noticeable in UNSAT instances. From
the standpoint of solvers, improvements using our method are evenly distributed
in both instances in Z3, whereas in CVC5 and OpenSMT2, the enhancements
are primarily evident within SAT instances.

5.3 Comparison to State-of-the-art Partitioning Strategies

We compare our variable-level partitioning strategy to state-of-the-art par-
titioning strategies evaluated in [32]: including decision-cube, the best strategy

Distributed SMT Solving Based on Dynamic Variable-Level Partitioning 83

Table 4. Comparison to state-of-the-art partitioning strategy.

QF LRA(1753) QF LIA(13226)

SAT UNSAT Solved PAR-2 SAT UNSAT Solved PAR-2

CVC5(p8) 964 677 1641 347087 7288 3199 10487 7004216

CVC5(AP-p8) 980 689 1669 287256 7321 3252 10573 6791509

OpenSMT2(p8) 998 701 1699 147360 8169 4698 12867 1384618

OpenSMT2(AP-p8) 1008 701 1709 132925 8116 4660 12776 1629696

CVC5(p16) 965 676 1641 346435 7316 3225 10541 6895797

CVC5(AP-p16) 980 689 1669 281524 7350 3274 10624 6678936

OpenSMT2(p16) 997 698 1695 157708 8097 4623 12720 1778020

OpenSMT2(AP-p16) 1008 701 1709 133043 8138 4663 12801 1555190

Z3(AP-p8) 995 683 1678 235645 8055 4152 12207 3031732

Z3(AP-p16) 996 683 1679 231738 8066 4157 12223 2983526

QF NRA(12134) QF NIA(25358)

SAT UNSAT Solved PAR-2 SAT UNSAT Solved PAR-2

CVC5(p8) 5559 5798 11357 1948280 12503 4480 16983 20716252

CVC5(AP-p8) 5709 5864 11573 1425236 13030 5504 18534 17250199

CVC5(p16) 5575 5796 11371 1920929 12821 4405 17226 20123111

CVC5(AP-p16) 5731 5864 11595 1372485 13045 5513 18558 17186305

Z3(AP-p8) 5744 5686 11430 1741660 14191 6785 20976 11225626

Z3(AP-p16) 5766 5705 11471 1637352 14193 6789 20982 11206526

in CVC5, and scattering, the best strategy in SMTS [1,24], which is the paral-
lel version of OpenSMT2. The notation CVC5(pX) refers to the decision-cube
strategy in CVC5 with X cores. OpenSMT2(pX) stands for the scattering strat-
egy in OpenSMT2 with X cores. Solver(AP-pX) is the notation for employing
Solver within our method AP with X cores.

Our evaluation compares the results of our method with both best competi-
tor strategies in Table 4, ensuring fairness by comparing both strategies with our
strategy based on the same SMT solver. Considering that Z3 lacks an appro-
priate divide-and-conquer parallel strategy for testing, we have independently
demonstrated the performance of employing Z3 within our method in the table
for reference.

Overall, our method is obviously the best, outperforming all the other strate-
gies, only except for 8-core execution on the QF LIA theory. Our method per-
forms particularly well for non-linear theories and shows significant improve-
ments over the competitors. For example, when using 8 cores, CVC5 with our
method solved 216 (out of 777 unsolved) and 1551 (out of 8375 unsolved) more
instances for QF NRA and QF NIA theories than decision-cube strategy, respec-
tively.

For the QF LIA theory, our method shows competitive and complementary
to OpenSMT2. This is indicated by 51 instances where OpenSMT2 fails, yet
our method solves quickly, and there are 181 instances where our method solves

84 M. Zhao et al.

more than 10 times faster. We discover the performance of OpenSMT2 degrades
a little from 8 to 16 cores for the QF LRA and QF LIA benchmarks. A possible
explanation is the lack of selection for parallel-friendly solving instances from
the benchmark, resulting in performance decrement for specific instances.

5.4 Improvement on Pure-Conjunction Formulas

Lastly, we focus on pure-conjunction instances to empirically validate the effec-
tiveness of our proposed variable-level partitioning strategy. Notably, the term-
level partitioning strategies fall short of partition generation and parallel accel-
eration in these instances. We filter out instances where, after Z3 preprocessing
and Boolean constraint propagation, all abstract Boolean variables have already
been assigned. In other words, the propositional engine in SMT makes no or
almost no decisions for the original formula during sequential solving.

For more details, pure-conjunction instances account for 22.8% (11957 out of
52471) of all across arithmetic theories, 19.2% (337 out of 1753) within QF LRA,
30.7% (4066 out of 13226) with QF LIA, a significant 49.7% (6034 out of 12134)
within QF NRA, and 6.0% (1520 out of 25358) within QF NIA. Our forthcoming
experiments compare the run time between our variable-level partitioning strat-
egy and state-of-the-art strategies in CVC5 and OpenSMT2 on pure-conjunction
instances.

Fig. 3. Run time comparison with partitioning strategies in pure-conjunction instances.

As displayed in Fig. 3(a), a comparison of run time for linear instances
between our strategy and the best strategy in CVC5 indicates differences. We
observe a speed-up of over 10X (10 times faster) on 92 instances and a slowdown
of over 0.1X on 12 instances compared to our counterpart. For comparison with
OpenSMT2, as presented in Fig. 3(b), our partitioning strategy is competitive
with OpenSMT2 on linear instances. Our solution exceeds 10 times faster and
slower in 152 and 12, respectively. Finally, our method significantly improves
non-linear instances against CVC5, shown in Fig. 3(c). Our method succeeds in

Distributed SMT Solving Based on Dynamic Variable-Level Partitioning 85

265 instances where CVC5 fails, while it fails in only 11 instances where CVC5
succeeds. Performance improvement is impressive: the number of instances where
the solving speed exceeds 100X, 10X, 0.1X, and 0.01X are 322, 533, 91, and 32,
respectively.

In summary, the evaluation results confirm the potential of the variable-level
partitioning strategy in pure-conjunction instances. Beyond pure-conjunction
instances, our method also stands out in almost-pure-conjunction instances,
which occupy a higher percentage in benchmarks.

6 Conclusion and Future Work

In this paper, we proposed the first variable-level partitioning strategy for par-
allel solving in arithmetic theories of SMT. Two main ideas include a dynamic
parallel framework and a variable-level partitioning strategy with enhanced con-
straint propagation. We developed parallel solvers of 3 leading SMT solvers using
our partitioning strategy. Extensive experiments showed that our variable-level
partitioning strategy outperformed the best divide-and-conquer parallel strate-
gies on all arithmetic theories and was significantly better on nonlinear arith-
metic theories.

Our strategy can be extended to other theories within SMT with the need for
customized specifics. Further research remains necessary to devise a comprehen-
sive, variable-level partitioning strategy applicable across various SMT theories.
Besides, it is interesting to combine our method with term-level partitioning to
improve the performance of divide-and-conquer parallel further.

Acknowledgements. This work is generously supported by the NSFC under grant
No. 62122078. We would like to thank Yiyuan Wang from Northeast Normal University
for proofreading the paper and the artifact documents.

References

1. Asadzade, M., Blicha, M., Hyvärinen, A., Otoni, R., Sharygina, N.: The opensmt
solver in SMT-COMP 2022. In: 17th International Satisfiability Modulo Theories
Competition (SMT-COMP 2022) (2022)

2. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: TACAS
2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99524-9 24

3. Benhamou, F., Granvilliers, L.: Chapter 16 - continuous and interval constraints.
In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming,
Foundations of Artificial Intelligence, vol. 2, pp. 571–603. Elsevier (2006)

4. Bordeaux, L., Hamadi, Y., Vardi, M.Y.: An analysis of slow convergence in inter-
val propagation. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 790–797.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7 56

5. Cimatti, A., Mover, S., Tonetta, S.: SMT-based verification of hybrid systems. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 26, pp. 2100–
2105 (2012)

https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-540-74970-7_56

86 M. Zhao et al.

6. Cordeiro, L., Fischer, B.: Verifying multi-threaded software using SMT-based
context-bounded model checking. In: 2011 33rd International Conference on Soft-
ware Engineering (ICSE), pp. 331–340 (2011)

7. Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E.: SMT-RAT: An Open
Source C++ Toolbox for Strategic and Parallel SMT Solving. In: Heule, M., Weaver,
S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 360–368. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24318-4 26

8. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006). https://doi.org/10.1007/11817963 11

9. Esparza, J., Meyer, P.J.: An SMT-based approach to fair termination analysis. In:
2015 Formal Methods in Computer-Aided Design (FMCAD), pp. 49–56 (2015)

10. Fränzle, M., Herde, C.: HySAT: an efficient proof engine for bounded model check-
ing of hybrid systems. Formal Methods Syst. Des. 30, 179–198 (2007)

11. Franzén, A., Cimatti, A., Nadel, A., Sebastiani, R., Shalev, J.: Applying SMT in
symbolic execution of microcode. In: Formal Methods in Computer Aided Design,
pp. 121–128 (2010)

12. Gao, S., Ganai, M., Ivančić, F., Gupta, A., Sankaranarayanan, S., Clarke, E.M.:
Integrating ICP and LRA solvers for deciding nonlinear real arithmetic problems.
In: Formal Methods in Computer Aided Design, pp. 81–89 (2010)

13. Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT solver for nonlinear theories over
the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208–
214. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2 14

14. Herbort, S., Ratz, D.: Improving the efficiency of a nonlinear-system-solver using
a componentwise newton method (1997)

15. Heule, M.J.H., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer: guiding
CDCL SAT solvers by lookaheads. In: Eder, K., Lourenço, J., Shehory, O. (eds.)
HVC 2011. LNCS, vol. 7261, pp. 50–65. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-34188-5 8

16. Huang, C., Kong, S., Gao, S., Zufferey, D.: Evaluating branching heuristics in
interval constraint propagation for satisfiability. In: Zamani, M., Zufferey, D. (eds.)
NSV 2019. LNCS, vol. 11652, pp. 85–100. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-28423-7 6

17. Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: A distribution method for solving SAT
in grids. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 430–435.
Springer, Heidelberg (2006). https://doi.org/10.1007/11814948 39

18. Hyvärinen, A.E.J., Marescotti, M., Alt, L., Sharygina, N.: OpenSMT2: an SMT
solver for multi-core and cloud computing. In: Creignou, N., Le Berre, D. (eds.)
SAT 2016. LNCS, vol. 9710, pp. 547–553. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-40970-2 35

19. Hyvärinen, A.E.J., Marescotti, M., Sharygina, N.: Search-space partitioning for
parallelizing SMT solvers. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS,
vol. 9340, pp. 369–386. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24318-4 27

20. Hyvärinen, A.E., Wintersteiger, C.M.: Parallel satisfiability modulo theories. In:
Handbook of Parallel Constraint Reasoning, pp. 141–178 (2018)

21. Hyvärinen, A.E.J., Marescotti, M., Sharygina, N.: Lookahead in partitioning SMT.
In: 2021 Formal Methods in Computer Aided Design (FMCAD), pp. 271–279
(2021)

https://doi.org/10.1007/978-3-319-24318-4_26
https://doi.org/10.1007/978-3-319-24318-4_26
https://doi.org/10.1007/11817963_11
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/978-3-642-34188-5_8
https://doi.org/10.1007/978-3-642-34188-5_8
https://doi.org/10.1007/978-3-030-28423-7_6
https://doi.org/10.1007/978-3-030-28423-7_6
https://doi.org/10.1007/11814948_39
https://doi.org/10.1007/978-3-319-40970-2_35
https://doi.org/10.1007/978-3-319-40970-2_35
https://doi.org/10.1007/978-3-319-24318-4_27
https://doi.org/10.1007/978-3-319-24318-4_27

Distributed SMT Solving Based on Dynamic Variable-Level Partitioning 87

22. Kulisch, U.W.: Complete interval arithmetic and its implementation on the com-
puter. In: Cuyt, A., Krämer, W., Luther, W., Markstein, P. (eds.) Numerical Val-
idation in Current Hardware Architectures. LNCS, vol. 5492, pp. 7–26. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01591-5 2

23. Li, Y., Albarghouthi, A., Kincaid, Z., Gurfinkel, A., Chechik, M.: Symbolic opti-
mization with SMT solvers. SIGPLAN Not. 49(1), 607–618 (2014)

24. Marescotti, M., Hyvärinen, A.E., Sharygina, N.: SMTS: Distributed, visualized
constraint solving. In: LPAR, pp. 534–542 (2018)

25. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

26. Peleska, J., Vorobev, E., Lapschies, F.: Automated test case generation with SMT-
solving and abstract interpretation. In: Bobaru, M., Havelund, K., Holzmann, G.J.,
Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 298–312. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20398-5 22

27. Reisenberger, C.: PBoolector: a parallel SMT solver for QF BV by combining bit-
blasting with look-ahead. Ph.D. thesis, Master’s thesis, Johannes Kepler Univesität
Linz, Linz, Austria (2014)

28. Schupp, S., Ábrahám, E., Rossmanith, P., Loup, D.I.U.: Interval constraint prop-
agation in SMT compliant decision procedures. Master’s thesis, RWTH Aachen
(2013)

29. Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T., Winkler, M.: Solving
open MIP instances with paraSCIP on supercomputers using up to 80,000 cores. In:
2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pp. 770–779 (2016). https://doi.org/10.1109/IPDPS.2016.56

30. Shinano, Y., Heinz, S., Vigerske, S., Winkler, M.: Fiberscip-a shared memory par-
allelization of scip. INFORMS J. Comput. 30(1), 11–30 (2018)

31. Steiner, W.: An evaluation of SMT-based schedule synthesis for time-triggered
multi-hop networks. In: 2010 31st IEEE Real-Time Systems Symposium, pp. 375–
384 (2010)

32. Wilson, A., Noetzli, A., Reynolds, A., Cook, B., Tinelli, C., Barrett, C.W.: Par-
titioning strategies for distributed SMT solving. In: 2023 Formal Methods in
Computer-Aided Design (FMCAD), pp. 199–208 (2023)

33. Wintersteiger, C.M., Hamadi, Y., de Moura, L.: A concurrent portfolio approach to
SMT solving. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp.
715–720. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-
4 60

https://doi.org/10.1007/978-3-642-01591-5_2
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-20398-5_22
https://doi.org/10.1109/IPDPS.2016.56
https://doi.org/10.1007/978-3-642-02658-4_60
https://doi.org/10.1007/978-3-642-02658-4_60

88 M. Zhao et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Quantified Linear Arithmetic Satisfiability
via Fine-Grained Strategy Improvement

Charlie Murphy1(B) and Zachary Kincaid2

1 University of Wisconsin-Madison, Madison,
WI 53706, USA

tcmurphy4@wisc.edu
2 Princeton University, Princeton, NJ 08540, USA

zkincaid@cs.princeton.edu

Abstract. Checking satisfiability of formulae in the theory of linear
arithmetic has far reaching applications, including program verification
and synthesis. Many satisfiability solvers excel at proving and disprov-
ing satisfiability of quantifier-free linear arithmetic formulas and have
recently begun to support quantified formulas. Beyond simply checking
satisfiability of formulas, fine-grained strategies for satisfiability games
enables solving additional program verification and synthesis tasks.
Quantified satisfiability games are played between two players—SAT and
UNSAT—who take turns instantiating quantifiers and choosing branches
of boolean connectives to evaluate the given formula. A winning strategy
for SAT (resp. UNSAT) determines the choices of SAT (resp. UNSAT)
as a function of UNSAT’s (resp. SAT’s) choices such that the given for-
mula evaluates to true (resp. false) no matter what choices UNSAT (resp.
SAT) may make. As we are interested in both checking satisfiability and
synthesizing winning strategies, we must avoid conversion to normal-
forms that alter the game semantics of the formula (e.g. prenex normal
form). We present fine-grained strategy improvement and strategy syn-
thesis, the first technique capable of synthesizing winning fine-grained
strategies for linear arithmetic satisfiability games, which may be used
in higher-level applications. We experimentally evaluate our technique
and find it performs favorably compared with state-of-the-art solvers.

Keywords: Quantified Satisfiability · SMT · Game Semantics ·
Strategy Improvement

1 Introduction

Checking satisfiability of quantified formulae modulo the theory of linear (inte-
ger or real) arithmetic (LA) has applications to a broad class of problems (e.g.,
program verification and synthesis). Satisfiability modulo theory (SMT) solvers
excel at deciding satisfiability of the ground (quantifier free) fragment of first
order theories (e.g., LA). Other techniques like first order theorem solvers work
well for quantified formulae but have limited support for theories. Typically,
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 89–109, 2024.
https://doi.org/10.1007/978-3-031-65627-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65627-9_5&domain=pdf
http://orcid.org/0000-0003-4813-7578
http://orcid.org/0000-0002-7294-9165
https://doi.org/10.1007/978-3-031-65627-9_5

90 C. Murphy and Z. Kincaid

SMT solvers either perform quantifier elimination, which is often computation-
ally expensive, or heuristically instantiate quantifiers, which is sound but incom-
plete for deciding satisfiability [19]. Recently, decision procedures have been
developed to check satisfiability of quantified LA formulae directly [4,5,8,18].
Notably, both Bjørner and Janota [4]’s and Farzan and Kincaid [8]’s decision
procedures are based on the game semantics of first-order logic.

The game semantics of first-order logic gives meaning to a formula as a two
player game [12]. Every (LA) formula induces a game between two players, SAT
and UNSAT. SAT tries to prove the formula satisfiable, while UNSAT tries to
prove it unsatisfiable. The players take turns instantiating quantifiers or choosing
a sub-formula of boolean connectives. SAT controls existential quantifiers and
disjunctions, while UNSAT controls universal quantifiers and conjunctions. SAT
wins the game if the chosen model satisfies the chosen sub-formula; otherwise,
UNSAT wins. A (LA) formula is satisfiable exactly when SAT has a winning
strategy—a function determining how SAT should instantiate existential quan-
tifiers and choose sub-formulae of disjuncts to prove the formula satisfiable—to
the induced game.

The game-theoretic view of formulae suggests a variation of the satisfiability
problem, in which the goal is not (just) to check satisfiability of a formula, but to
synthesize a winning strategy for one of the two players. Strategy synthesis can
be used as a decision procedure, but can also used for other tasks where a simple
yes or no is insufficient (e.g., program synthesis, angelic symbolic execution, or
invariant generation).

While the game semantics of first-order logic gives meaning to both quanti-
fiers and connectives, both Bjørner and Janota [4]’s and Farzan and Kincaid [8]’s
decision procedures only make use of the game semantics of quantifiers. To do
so, both techniques require the input formula to be in prenex normal form—the
formula is a sequence of quantifiers followed by a quantifier free formula. While
any formula may be converted into a prenex normal form, doing so is undesirable
for two reasons: (1) conversion to prenex normal form may increase the number
of quantifier alternations within the formula and (2) conversion to prenex normal
form may change the game semantics of the formula. Since prenex conversion
does not preserve game semantics, it cannot be used in applications that rely on
strategy synthesis rather than a yes/no answer.

Existing techniques for checking satisfiability of LA formulas are incapable
of producing strategies for both quantifiers and Boolean connectives [4,5,8,18].
While both Bjørner and Janota [4]’s and Farzan and Kincaid [8,9] use the game
semantics of LA formulas, they limit their scope to quantifiers via conversion to
prenex normal form. Furthermore, the procedure by Bjørner and Janota does
not produce an explicit term used to instantiate quantifiers. On the other hand,
while the techniques of both Reynolds et al. [18] and Bonacina et al. [5] exploit
the fine-grained (quantifier and Boolean connectives) structure of formulas, they
do not produce a winning strategy.

This paper presents a decision procedure for checking satisfiability of quanti-
fied LA formulae that exploits the fine-grained structure of a formula to produce

QLA Satisfiability via Fine-Grained Strategy Improvement 91

a winning strategy for SAT or UNSAT for both quantifiers and Boolean connec-
tives. Our technique Fine-grained Strategy Improvement uses the fine-grained
structure of LA formulas to formulate a recursive procedure that iteratively
improves a candidate strategy via computing winning strategies to induced sub-
games. We generalize the notion of strategies and counter-strategy computation
from Farzan and Kincaid [8] to handle quantifiers and connectives as well as
allowing computing counter-strategies with a fixed prefix (to enable the recursive
nature of fine-grained strategy improvement). Fine-grained strategy improve-
ment improves upon existing techniques by (1) avoiding conversion to prenex
normal form or (2) allowing extraction of a proof object (a winning strategy)
that determines exactly how the formula is proven to be (un)satisfiable.

For simplicity, the remainder of this paper provides details for linear rational
arithmetic (LRA); however, the algorithmic details and game semantics provided
in this paper are directly applicable to any theory that admits an appropriate
term-selection function (cf. Sect. 5.1) including linear integer arithmetic (LIA).
In Sect. 2, we review the game semantics for linear arithmetic [12], and its relation
with LRA satisfiability. Sections 3, 4, and 5 present the procedure to compute
winning strategy skeletons, whose existence proves or disproves LRA satisfiabil-
ity. Section 6 shows how to compute a winning strategy from a strategy skeleton.
Sections 7 and 8 compares this work to others. The extended version1 contains
implementation details, proofs, and extended experimental results.

2 Fine-Grained Game Semantics for LRA Satisfiability

This section reviews the syntax (Sect. 2.1) of Linear Rational Arithmetic
(LRA) and its game semantics (Sect. 2.2).

2.1 Linear Rational Arithmetic

The syntax of LRA is formed from two sets—Terms and Formulas. The grammar
for terms and formulae parameterized over a set of variables X is as follows:

s, t ∈ Term(X) ::= c ∈ Q | x ∈ X | s + t | c · t

ϕ, ψ ∈ Formula(X) ::= t < 0 | t = 0 | ϕ ∧ ψ | ϕ ∨ ψ | ∀x. ϕ | ∃x. ϕ

Without loss of generality, this paper considers negation free formulae and
assumes that every variable bound by a quantifier within a formula to be distinct.
For a formula ϕ, FV (ϕ) denotes its free variables. Similarly, FV (t) denotes the
free variables of term t. A sentence is a LRA formula with no free variables. A
ground formula is a quantifier-free formula which may contain free variables.

A valuation, M : V → Q, maps a finite set of variables, V ⊆ X, to the
rationals. We use �t�M to denote the value of t within the valuation M—assuming
1 The extended version of this paper is available at https://pages.cs.wisc.edu/

∼tcmurphy4/docs/fine grained strategy synthesis.pdf.

https://pages.cs.wisc.edu/~tcmurphy4/docs/fine_grained_strategy_synthesis.pdf
https://pages.cs.wisc.edu/~tcmurphy4/docs/fine_grained_strategy_synthesis.pdf

92 C. Murphy and Z. Kincaid

FV (t) ⊆ dom(M)—with the usual interpretation. M |= ϕ denotes that M
satisfies the formula ϕ (we say M is a model of ϕ).

For a valuation M , a variable x, and a rational constant c, M{x 	→ c} denotes
the valuation M except with x mapped to c.

M{x 	→ c} � λy.if y = x then c else M(y)

For a formula ϕ, variable x, and term t, ϕ[x 	→ t] represents the formula
obtained by substituting every free occurrence of x with t.

2.2 Fine-Grained Game Semantics

For a more thorough introduction, Hintikka describes the game semantics for
first-order formulae [12]. Every LRA sentence defines a satisfiability game, which
is played between two players: SAT and UNSAT. The players take turns choos-
ing instantiations for quantifiers and sub-formulae of connectives. SAT controls
the choices for existential quantifiers and disjunctions, while UNSAT controls
universal quantifiers and conjunctions.

Formally, a state of a LRA-satisfiability game for a LRA-sentence ϕ is
G(ψ,M), where ψ is a sub-formula of ϕ and M is a valuation. The initial state
of the satisfiability game for ϕ is G(ϕ, ∅). Below gives the rules of the game with
the assumption that FV (ψ) ⊆ dom(M).

G(t < 0,M) SAT wins if M |= t < 0 . Otherwise, UNSAT wins.
G(t = 0,M) SAT wins if M |= t = 0 . Otherwise, UNSAT wins.
G(ϕ ∧ ψ,M) UNSAT chooses to either play G(ϕ,M) or G(ψ,M).
G(ϕ ∨ ψ,M) SAT chooses to either play G(ϕ,M) or G(ψ,M).
G(∀x.ϕ,M) UNSAT picks c ∈ Q and then plays G(ϕ,M{x 	→ c}).
G(∃x.ϕ,M) SAT picks c ∈ Q and then plays G(ϕ,M{x 	→ c}).

A strategy for SAT or UNSAT determines that player’s next move as a
function of all the moves previously played. In the above definition of a LRA-
satisfiability game, the state G(ψ,M) implicitly represents the moves made so
far. This is made explicit by representing a play of the game as a sequence of
rational numbers (instantiating quantifiers) and the labels L and R (choosing
the left or right branch of a disjunction or conjunction). For the formula ϕ and
play π, we represent the sub-formula and valuation forming the state of the game
after playing π as ϕπ and mπ, respectively. Both are defined as follows:

ϕε � ϕ (∀x.ϕ)c·π � ϕπ (∃x.ϕ)c·π � ϕπ

M ε � ∅ M c·π � Mπ{x 	→ c} M c·π � Mπ{x 	→ c}

(ϕ ∧ ψ)L·π � ϕπ (ϕ ∧ ψ)R·π � ψπ (ϕ ∨ ψ)L·π � ϕπ (ϕ ∨ ψ)R·π � ψπ

ML·π � Mπ MR·π � Mπ ML·π � Mπ MR·π � Mπ

QLA Satisfiability via Fine-Grained Strategy Improvement 93

If ϕπ does not evaluate using the above rules, then π is an illegal play and
ϕπ is undefined. In the remainder of this paper, we use “play” to mean “legal
play.” A play π is complete when ϕπ is an atom (neither player has any move
to make). For any complete play π, SAT wins if and only if Mπ |= ϕπ. Similarly,
UNSAT wins if and only if Mπ �|= ϕπ.

For any formula ϕ, ¬ϕ denotes the negation-free formula equivalent to the
negation of ϕ. The sentence ¬ϕ, induces the dual satisfiability game of ϕ – a
game played in the same manner as ϕ but with the roles of SAT and UNSAT
swapped. This duality is used to define terminology and algorithms explicitly
for SAT and implicitly for UNSAT as the corresponding SAT version for ¬ϕ.

Definition 1 (Strategy). Let M = Q ∪ {L,R} be the set of all moves, f :
M∗ → M be a partial function from sequences of moves to a move, and π a
sequence of moves. The play π conforms to f exactly when πi = f(π1, . . . , πi−1)
whenever f(π1, . . . , πi−1) is defined.

Let ϕ be a LRA-sentence, a SAT strategy for ϕ is a partial function f :
M∗ → M , which has the property that for any play π that conforms to f , (1) if
ϕπ is F ∨ G then f(π) is defined and f(π) ∈ {L,R} and (2) if ϕπ is ∃x.F then
f(π) is defined and f(π) ∈ Q.

The SAT strategy f is winning if every complete play that conforms to f
is won by SAT. It is well-known that ϕ is satisfiable if and only if SAT has a
winning strategy.

3 Fine-Grained Strategy Skeletons

This section defines fine-grained SAT strategy skeletons that form the basis
of our fine-grained strategy improvement algorithm (cf. Algorithm 1). A SAT
strategy skeleton is an abstraction that represents multiple possible strategies
that SAT may choose. Recall that in Sect. 2.2, we defined strategies to be a
function that maps a play of a satisfiability game to the next move of the game. A
strategy skeleton similarly maps a play of the satisfiability game to a finite set of
possible moves to play next. At a high-level, the strategy improvement algorithm
iteratively finds better and better strategy skeletons via the computation of
counter-strategy skeletons (cf. Sect. 5).

Example 1. To illustrate fine-grained strategy skeletons and the algorithms pre-
sented in this paper consider the formula ϕ which we use as a running example
throughout this paper:

ϕ � ∀x, z. (x = z ∨ (∃y. (x < y ∧ y < z) ∨ (z < y ∧ y < x)))

•
•

L

∀x̄

∀z̄

x̄ = z̄

The formula ϕ expresses the fact that for any pair of rational
numbers x and z, either x and z are equal or there is some value y
between x and z. To the right, we display a SAT strategy skeleton
for ϕ which we call S. The two • symbols act as placeholders for
the values chosen by UNSAT for the quantified variables x and z.

94 C. Murphy and Z. Kincaid

The skeleton encodes that no matter what values (x̄ and z̄) UNSAT
chooses to instantiate x and y with, SAT chooses to play the left branch of the
disjunction leading to the atom x = z—at the end of the path we display x̄ = z̄,
which is this atom after substituting the placeholder values for UNSAT’s choice
for the formally bound variables.

As seen in Examples 1 and 4, SAT skeletons are tree-like structures that fol-
low the structure of ϕ. Formally, SAT strategy skeletons for a LRA-satisfiability
game ϕ, are represented as a set of paths. We use SKEL(ϕ, vars) to denote the set
of SAT strategy skeletons for ϕ whose terms may range over the set of variables
vars. For a sub-skeleton of a sentence, vars represents the set of variables that
in-scope in ϕ. The set of strategy skeletons for a sentence is thus SKEL(ϕ, ∅).
For a set of paths S, �·S = {�·π : π ∈ S} denotes the set obtained by prepending
each path in S with the label �. Similarly, we define π ⇓ S = {π′ : π · π′ ∈ S}
to be the set of suffixes of π appearing in S. Formally, a skeleton is a subset
of (Term(X) ∪ {•, L,R})∗ (whose specific form depends on the formula ϕ). We
define SKEL as the least solution to the following set of rules:

ϕ is atomic

{ε} ∈ SKEL(ϕ, vars)

S ∈ SKEL(ϕ, vars)

L · S ∈ SKEL(ϕ ∨ ψ, vars)

S ∈ SKEL(ψ, vars)

R · S ∈ SKEL(ϕ ∨ ψ, vars)

S ∈ SKEL(ϕ, vars) T ∈ SKEL(ψ, vars)

(L · S) ∪ (R · T) ∈ SKEL(ϕ ∧ ψ, vars)

S ∈ SKEL(ϕ, vars ∪ {x})

• · S ∈ SKEL(∀x. ϕ, vars)

t ∈ Term(vars) S ∈ SKEL(ϕ, vars ∪ {x})

(t · S) ∈ SKEL(∃x. ϕ, vars)

S, T ∈ SKEL(ϕ, vars)

(S ∪ T) ∈ SKEL(ϕ, vars)

Just as strategies can be thought of as a collection of plays, strategy skeletons
can be thought of as a collection of strategies. Similar to strategies and plays,
we can determine when a strategy conforms to a strategy skeleton. We say a
SAT strategy f conforms to a strategy skeleton S when every complete play π
conforming to f conforms to S. A play π conforms to S, if there is some path
ρ ∈ S such that |π| = |ρ| and for each i we have (1) ϕπ0,...,πi−1 = ∃x.ψ for some
ψ and �x�Mπ

= �ρi�
Mπ

, or (2) ϕπ0,...,πi−1 is a disjunctive or conjunctive formula
and πi = ρi, or (3) ϕπ0,...,πi−1 is a universally quantified formula and ρi = •. A
strategy skeleton is winning if there is a winning strategy that conforms to it.

In order to develop a decision procedure that produces a winning strategy
skeleton, we first turn to the problem of determining if a SAT skeleton S for the
LRA satisfiability game G(ϕ,M) is winning. To determine if S wins the game
G(ϕ,M) we check if the losing formula lose(S, ϕ) is not satisfied by M (i.e., S
wins G(ϕ,M) if M �|= lose(S, ϕ)). This formulation results in a formula that is
existentially quantified and can be easily Skolemized to a quantifier free formula
and checked with an off-the-shelf SMT solver. Furthermore, we show in Sect. 5
that a model of the Skolemized formula can be used to construct an UNSAT

QLA Satisfiability via Fine-Grained Strategy Improvement 95

strategy skeleton for ϕ that beats S. We define lose(S, ϕ) as follows:

lose(∅, ϕ) �true

lose({ε}, ϕ) �¬ϕ

lose(S, ϕ ∨ ψ) �lose(L ⇓ S, ϕ) ∧ lose(R ⇓ S, ψ)

lose(S, ϕ ∧ ψ) �lose(L ⇓ S, ϕ) ∨ lose(R ⇓ S, ψ)

lose(S,∃x.ϕ) �
∧

t·π∈S

lose(t ⇓ S, ϕ)[x 	→ t]

lose(S,∀x.ϕ) �∃x.lose(• ⇓ S, ϕ)

If M satisfies the losing formula lose(S, ϕ), then S is not a winning strategy
skeleton for the game G(ϕ,M). Intuitively, this implies that UNSAT can beat
SAT if SAT plays according to any strategy conforming to S. We use the intuition
to formalize when an UNSAT strategy skeleton U beats the SAT skeleton S.

Definition 2 (Counter Strategy). Fix a LRA-satisfiability game ϕ, play π
of ϕ, SAT skeleton S for ϕπ, and UNSAT skeleton U for ϕπ. U is a counter-
strategy of S (U beats S), if there is some strategy g conforming to U such
that for every strategy f conforming to S, UNSAT wins every complete play ππ′

such that π′ conforms to both f and g.

Crucially, it cannot be the case that U beats S and S beats
U . This asymmetry is ensures that the strategy improvement algo-
rithm makes progress towards verifying or falsifying the formula ϕ.

U

0

1

∧L R

•
∧L R

L L

∃x

∃z

∀ȳ0 �= 1

0 ≥ ȳ 1 ≥ ȳ

Example 2. Recall the initial strategy S from
Example 1, in which SAT always chose the
branch with the atom x = z no matter what
values UNSAT chose for x and z. The losing for-
mula of S is lose(S) � x̄ �= z̄ which summa-
rizes the choices of x̄ and z̄ that UNSAT may
make to falsify the atom x = z SAT choose. The
losing formula of S is satisfiable—e.g., with the
model M = {x̄ 	→ 0, z̄ 	→ 1}. Since the losing for-
mula is satisfiable, there must be some counter-
strategy that beats S. One such counter-strategy
U is depicted to the right—remember that the
UNSAT strategy U is a SAT strategy to the for-
mula ¬ϕ. As in Example 1, U is annotated with additional labels: terms are
labeled with the existential quantifier they are instantiating, each • is annotated
with the corresponding Skolem constants from lose(S, ϕ), and conjunctions are
grouped and highlighted to visually distinguish conjunctive branches from dis-
junctive branches. Finally, each leaf of the skeleton is labeled with the atomic
formula reached after substituting the terms and Skolem constants for each quan-
tified variable.

96 C. Murphy and Z. Kincaid

The skeleton U states that UNSAT will always choose 0 to instantiate x and
1 to instantiate z. If SAT chooses the left branch, then the play is over and
UNSAT wins. Otherwise, SAT chooses the right branch and a symbolic value ȳ
to instantiate y. Then SAT chooses to either play the left or right branch of the
resulting sub-game. If SAT chose left then UNSAT will chose to play the left
sub-game and the play ends in the atom 0 ≥ ȳ. Otherwise, when SAT plays the
right sub-game, UNSAT chooses to play the resulting left sub-game and play
ends in the atom 1 ≥ ȳ.

Proposition 1. Let S be a SAT strategy for the game G(ϕ,M). S is winning
if and only if M |= lose(S, ϕ).

Algorithm 1: Satisfiability modulo LRA

Function Solve(ϕ,Mπ,S)
Input: LRA Formula ϕ = ψπ for

some sentence ψ.
Valuation Mπ : (x0, . . . , xn) → Q such
that FV (ϕ) ⊆ dom(Mπ).
S a SAT skeleton for ϕ.
switch has-counter-strategy(S, Mπ, ϕ) do

case Counter-strategy U do
〈π′, U ′〉 ← peel(ϕ, U);

switch Solve(¬ϕπ′
, Mπ ∪ Mπ′

, U ′) do
case Sat U ′′ do

return Unsat π′ · U ′′

case Unsat S′ do
return Solve(ϕ, Mπ, S ∪ (¬π′) · S′)

case default do
return Sat S

Function Strategy-Improvement(ϕ)
Let S ∈ SKEL(ϕ, ∅) be any skeleton
for ϕ;

switch Solve(ϕ, λx. ⊥, S) do
case Sat S′ do

return true
case Unsat U do

return false

4 Fine-Grained Strategy Improvement

This section presents an algorithm for deciding LRA satisfiability (Algorithm 1).
At a high level, the algorithm produces a winning strategy skeleton via fine-
grained strategy improvement. Algorithm 1 iteratively improves the current
player (SAT)’s strategy. Each iteration attempts to compute a counter-strategy
for the opposing player (UNSAT), fixes the opposing player’s initial moves and
recursively solves the resulting sub-game. If the opposing player wins the sub-
game, then they win the game, and a winning strategy can be constructed using
the synthesized initial moves and the winning strategy for the subgame. If the
opposing player loses the subgame, the current player’s winning strategy for the
subgame is used to improve their strategy. The algorithm then proceeds to the

QLA Satisfiability via Fine-Grained Strategy Improvement 97

next iteration of the current game and repeats until a winning player can be
determined.

Algorithm 1 assumes that UNSAT makes the first move in the game G(ϕ,M).
If SAT would instead play first, Algorithm 1 may be applied to ¬ϕ and the result
negated. The first step of the strategy improvement algorithm initializes a SAT
skeleton. Any SAT skeleton S ∈ SKEL(ϕ, ∅) may be used.

After initialization, the algorithm will check if a counter-strategy exists (cf.
Sect. 5). If there is no counter-strategy, then necessarily SAT’s current skeleton
S must be winning. Otherwise, UNSAT has a counter-strategy U that beats S.
The auxiliary function peel uses ϕ and U to compute π′—the leading universal
and conjunctive moves—and U ′—the remaining skeleton (i.e. U = π′ · U ′). The
algorithm continues by fixing the moves in π′ and having the players swap places
while solving the resulting sub-game ¬ϕπ′

. Formally, peel is defined as follows:

peel(∀x.F, U) �
〈
t · π, U ′〉 where

〈
π, U ′〉 = peel(F, U ′′) and U = t · U ′′

peel(F ∧ G, U) �
〈
L · π, U ′〉 where

〈
π, U ′〉 = peel(F, U ′′) and U = L · U ′′

peel(F ∧ G, U) �
〈
R · π, U ′〉 where

〈
π, U ′〉 = peel(G, U ′′) and U = R · U ′′

peel(ϕ, U) � 〈ε, U〉 otherwise

By construction, the leading UNSAT moves of a counter-strategy must form
a single path—Algorithm 3 only chooses a single term or conjunct when con-
structing a counter-strategy. This ensures that peel is properly defined. After
peeling off the leading universal and conjunctive moves from U , the algorithm
recursively solves the resulting sub-game (from the point-of-view of UNSAT by
recursing on ¬ϕπ′

instead of ϕπ′
).

After the recursive call, either SAT or UNSAT has a winning skeleton to
G(¬ϕπ′

,Mπ′
). If SAT wins G(¬ϕπ′

,Mπ′
) with the skeleton U ′′, then UNSAT

must win G(ϕπ′
,Mπ′

) with the UNSAT skeleton U ′′. Since UNSAT controls the
initial moves π′, we may conclude that UNSAT wins the entire game G(ϕ,M)
and return the winning UNSAT skeleton π′ · U ′′.

Otherwise, UNSAT wins G(¬ϕπ′
,Mπ′

) with the skeleton S′. The sub-
skeleton S′ can be extended to counter U by prepending every path of S′ with
the “negation” of π′ the initial moves of UNSAT. Note that by construction, π′

consists only of terms instantiating universal quantifiers or L or R denoting a
choice of a conjunctive branch. We define the negation of π′ as follows: each term
in π′ is replaced with a •—i.e. (¬π′)i = π′

i if π′
i ∈ {L,R}, otherwise (¬π′)i = •.

Technically, (¬π′) ·S′ is not a skeleton when π′ contains conjunctive moves—the
resulting set of paths only covers one of the branches, while a SAT skeleton must
cover both branches of a conjunction—however, when unioned with S the initial
skeleton for SAT, the final result is a skeleton that counters U .

98 C. Murphy and Z. Kincaid

Example 3.

Continuing Example 1, let us suppose that we begin Algorithm 1 with the
SAT strategy skeleton S depicted in Example 1 (which simply takes the left
branch of the disjunction). S is not winning, since the UNSAT player may choose
different values for x and z to invalidate the equality—one such counter-strategy
U for S appears above. After using peel to construct π′ and U ′, Algorithm 1
recursively solves the sub-game ¬ϕπ′ � x �= z ∧ ∀y. (x ≥ y) ∨ (y ≥ z) ∧ (z ≥
y) ∨ (y ≥ x) starting with U ′ and the model Mπ′

= {x 	→ 0, z 	→ 1}. The sub-
game is played with the role of the two players switched—the recursive call uses
the formula ¬ϕπ′

rather than ϕπ′
—thus, U ′ is a SAT skeleton for the resulting

sub-game and the assumption that the top-level connective of ϕ is controlled by
UNSAT is maintained.

The recursive call returns that UNSAT won the game G(¬ϕπ′
,Mπ·π′

) with
the skeleton S′. The skeleton S′ will instantiate y with the average of x and z
and chose the left disjunct x < y < z, which clearly beats U ′ when x is 0 and z
is 1.

While S1 counters U , it is not yet winning. SAT will lose any play where
UNSAT instantiates x and z such that z < x. On the next iteration of the game
the algorithm finds U1 a counter-skeleton to S1. Just as before the procedure
splits apart U1 and solves the induced sub-game. The procedure finds that SAT
wins the sub-game with the skeleton S′

1. The new skeleton is extended and

QLA Satisfiability via Fine-Grained Strategy Improvement 99

Algorithm 2: Check if a given strategy skeleton has a counter-strategy

Function has-counter-strategy(S, M0, ϕ)

Input: LRA formula ϕ.
Valuation M0 : (x0, . . . , xn) → Q s.t.
FV (ϕ) ⊆ dom(M0)
S a SAT strategy skeleton for ϕ
foreach π such that π • π′ ∈ S for some π′ do

H[π•] ← fresh rational variable
foreach π such that πLπ′ ∈ S for some π′ and
ϕπ is a conjunction do

H[πL] ← fresh Boolean variable
H[πR] ← fresh Boolean variable

lose ← true

foreach π ∈ S do
win ← ϕπ{x �→ M0(x) : x ∈ dom(M)}
conds ← true
for i ← |π| to 1 do

π′ ← π1, . . . , πi−1

if ϕπ′
= F ∧ G then

conds ← conds ∧ (win ⇒ H[π′ · πi])
win ← H[π′ · L] ∧ H[π′ · R]

else if ϕπ′
= ∃x.F then

win ← win[x �→ πi]
conds ← conds[x �→ πi]

else if ϕπ′
= ∀x.F then

win ← win[x �→ H [π′•]]
conds ← conds[x �→ H [π′•]]

lose ← lose ∧ (¬win) ∧ conds
if lose is satisfiable then

Let M be an extension of M0 satisfying lose
〈U, G〉 ← CSS(ϕ, M, M0, ε, S)
return Counter-strategy U

return None

combined with S1 to form S2 and the current game ϕ continues starting from
S2; however, on the next iteration, the procedure determines that S2 has no
counter-strategy and is thus a winning SAT skeleton for the game ϕ.

Theorem 1. Algorithm 1 is a decision procedure for LRA satisfiability.

5 Computing Counter-Strategies

When a strategy skeleton is not winning—its losing formula is satisfiable—the
opposing player must have a counter-strategy that beats every strategy that
conforms to the strategy skeleton. Given a model of the losing formula, this
section shows how to construct such a counter-strategy skeleton.

At a high level, Algorithm 1 uses Algorithm 2 to (1) determine if a strategy
skeleton S is winning and (2) if S is not winning to return a counter-strategy
U that beats S (and returning none if S is winning). Given a LRA satisfiability
game G(ϕ,M) and skeleton S, Algorithm 2 computes (a formula equisatisfiable
to) lose(S, ϕ), then uses Algorithm 3 to synthesize a counter-strategy to S if
lose(S, ϕ) is satisfied by M .

Algorithm 2 first constructs the losing formula. The first step of which intro-
duces a new Herbrand constant for each path to a universal quantifier and a fresh
Boolean variable for each path to a conjunct within ϕ. The produced formula is
equisatisfiable to the losing formula described in Sect. 3. By existentially quan-
tifying the introduced Boolean variables and Skolem constants lose becomes

100 C. Murphy and Z. Kincaid

Algorithm 3: Constructing a counter-strategy

Function CSS(ϕ, M , Mπ, π, S)

Input: LRA formula ϕ.
Valuation M : Image(H) → (Q ∪ B)

with M |= lose(ϕπ, S)
Valuation Mπ : (x0, . . . , xn) → Q s.t.

FV (ϕπ) ⊆ dom(Mπ)
π a path fixing SAT’s initial moves
S the strategy skeleton for ϕπ

Output: 〈U, F 〉 where Mπ |= F and
U is an unsat skeleton that beats S on
G(ϕπ, M ′) for any M ′ satisfying F
if S = ∅ then

return 〈Any skel ∈ SKEL(¬ϕπ, dom(Mπ)), �〉
else if ϕπ is atomic then

return 〈{ε}, ¬ϕπ〉
else if ϕπ = ϕl ∧ ϕr then

if ¬�H[π · L]�M then
〈Ul, Fl〉 ← CSS(ϕl, M, Mπ, π · L, L ⇓ S)
return 〈L · Ul, Fl〉

else
〈Ur, Fr〉 ← CSS(ϕr, M, Mπ, π · R, R ⇓ S)
return 〈R · Ur, Fr〉

else if ϕπ = ϕl ∨ ϕr then
〈Ul, Fl〉 ← CSS(ϕl, M, Mπ, π · L, L ⇓ S)
〈Ur, Fr〉 ← CSS(ϕr, M, Mπ, π · R, R ⇓ S)
return 〈(L · Ul) ∪ (R · Ur), Fl ∧ Fr〉

else if ϕπ = ∀x.ϕ′ then
Mπ• ← Mπ{x �→ �H[π•]�M}
〈U, F 〉 ← CSS(ϕ′, M, Mπ•, π•, • ⇓ S)
t ← select(Mπ•, x, F)
return 〈t · U, F [x �→ t]〉

else if ϕπ = ∃x.ϕ′ then
U ← ∅
G ← true
foreach t such that t · π′ ∈ S for some π′ do

Mπ·t ← Mπ{x �→ �t�Mπ }〈
U+, F+

〉 ← CSS(ϕ′, M, Mπ·t, π · t, t ⇓ S)
F ← F ∧ (F+[x �→ t])
U ← U ∪ U+

return 〈•U, F 〉

logically equivalent to lose(S, ϕ). The introduced Boolean variables enable an
explicit encoding of UNSAT’s choice of conjunct within the losing formula. This
allows a model of the losing formula (if one exists) to explicitly track which
branch UNSAT has a counter-strategy for. The algorithm computes the losing
formula on a path-by-path basis. It does so by computing when SAT could win
the given path and taking its negation (i.e., (¬win) ∧ conds). We use win to
denote if the path could be won by SAT—note that for conjunctions SAT must
be able to win both of the conjuncts—and conds to constrain the introduced
Boolean variables (i.e., H(π) represents if the sub-skeleton rooted at π is win-
ning). After constructing lose, Algorithm 2 checks if the formula is satisfiable. If
lose is unsatisfiable, then S is a winning skeleton for the (sub-)game ϕ and has
no counter-strategy. Otherwise, there is a model of lose, that can be used with
Algorithm 3 to produce an UNSAT skeleton that beats S.

Algorithm 3 recursively decomposes S and ϕ to produce a counter-strategy.
Before recursing, a model of the bound variables (Mπ) and the path-prefix π is
constructed. For universals, the valuation is extended using the model of lose,
and for existentials the valuation is extended by evaluating the term instantiating
the quantifier using the model of the previously bound variables. To ensure that
the recursive call produces a counter-skeleton that beats the sub-skeleton of S,
M must be a model of the losing formula of the sub-skeleton. Whenever ϕ is
not conjunctive this is trivially true, as lose(ϕ, S) is a conjunction of the losing
formulae for the sub-skeletons. This ensures that the model of the parent formula
is also a model of all sub-formulae. In the case when ϕ is a conjunction, the
Boolean variables introduced to construct the losing formula determine which of

QLA Satisfiability via Fine-Grained Strategy Improvement 101

the subformulae are also modeled by M . If the introduced Boolean variable for a
given conjunct is false in the model M , then it must be that the given conjunct
also evaluates to false in the given model. This condition ensures that M is also
model of the losing formula of the sub-skeleton and thus that the recursive call
computes a counter-strategy to the given sub-skeleton. The algorithm then goes
back up and constructs a counter-strategy. For atomic formula, there is only
one possible strategy, the empty strategy. For conjuncts, the counter-strategy
simply extends a counter-strategy for the left or right branch of the conjunct
depending on which branch has a counter-strategy in model M—it is possible
both have a counter strategy in model M , taking either or both counter-strategies
produces a counter-strategy. For disjunctions, a counter-strategy combines a
counter-strategy for both the left and right disjuncts. If the strategy S only takes
one of the two branches, then any skeleton for the disjunct may be returned. For
universal quantifiers, we use model based term selection to select a term t to
instantiate x such that t satisfies the same atoms of G within the given module
Mπ• (cf. Sect. 5.1). For existentials, we construct a counter-strategy as the union
of a counter-strategy for each choice SAT had made.

5.1 Term Selection

When generating a counter-strategy, Algorithm 3 makes use of the auxiliary
function select to select a term t to instantiate x. The function select is a
(model-guided) term selection function [8].

Given a formula F , a variable x ∈ FV (F) free in F , and a model M |= F
of F , we require select(M,x, F) to return a term t over the free variables of
F excluding x (i.e., FV (t) ⊆ FV (F) \ {x}) such that M satisfies F when t is
substituted for x (i.e., M |= F [x 	→ t]). Furthermore, to ensure that Algorithm 1
is a decision procedure, we require that for any formula F and variable x ∈
FV (F) select has finite image (i.e., the set {select(M,x, F) : M |= F} is
finite).

For LRA, we define select as follows. Without loss of generality, we assume
that any atom of F that contains x is written as x = s, x < s, or x > s for some
s. Let EQ(M,x, F) contain the term s if and only if x = s is an atom of F and
�x�M = �S�M . Similarly UB(M,x, F) contains the term s if and only if x < s is
an atom of F and �x�M < �s�M . Finally, let LB(M,x, F) contain the term s if
and only if x > s is an aotm of F and �x�M > �s�M . Furthermore, if EQ(M,x, F)
is not empty, let eq(M,x, F) be any s ∈ EQ(M,x, F). If UB(M,x, F) is not
empty, then let lub(M,x, F) be a term s ∈ UB(M,x, F) such that for any
other s′ ∈ UB(M,x, F), �s�M ≤ �s′�M . Similarly, if LB(M,x, f) is not empty,
then let glb(M,x, F) be a term s ∈ LB(M,x, F) such that for any other s′ ∈
LB(M,x, F), �s�M ≥ �s′�M .

select =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

eq(M, x, F) if EQ(M, X, F) �= ∅
1
2
(lub(M, x, F) + glb(M, x, F)) if UB(M, x, F) �= ∅ and LB(M, x, F) �= ∅

lub(M, x, F) − 1 if UB(M, x, F) �= ∅
glb(M, x, F) + 1 if LB(M, X, F) �= ∅
0 otherwise

102 C. Murphy and Z. Kincaid

For further details on model-guided term selection (including term selection
for linear integer arithmetic), we refer the reader to Farzan and Kincaid [8]. While
this paper so far has focused on satisfiability of LRA, we note that Algorithm 1
is a decision procedure for any theory that admits a term selection function
with finite image. In fact, the only change required is to swap select with an
appropriate term selection function for the desired theory.

6 Synthesizing Fine-Grained Strategies

Section 4 presents an algorithm that computes a winning strategy skeleton that
either proves or refutes satisfiability of a LRA sentence. This section shows how
to generalize the technique of [8] to compute a winning fine-grained strategy from
a winning fine-grained strategy skeleton. As described in Sect. 2 a SAT strategy
is a function from plays to either a rational number (for existential quantifiers)
or the labels L and R (for disjunctions).

Strategies vs Skeletons. In Sects. 3, 4, and 5, our techniques and discussion
focused on how to compute a winning strategy skeleton. While computing a
winning strategy skeleton is sufficient to determine satisfiability of a formula, it
may be insufficient for other tasks. For example for use in program verification
and synthesis tasks (e.g., to determinize non-deterministic choices, synthesize
safety conditions, etc.). By definition, a strategy skeleton S is winning if some
strategy g that conforms to S is winning.

Computing Winning Strategies. This section focuses on how to extract a winning
strategy from a winning strategy skeleton S for the game G(ϕ,M). To do so,
we construct a system of constrained horn clauses (CHCs) whose solution we
use to produce a winning strategy from a winning skeleton. The produced CHC
rules represent when the strategy skeleton is losing. Since the strategy skeleton
is winning, the rules are satisfiable and a model satisfying the CHCs exists. The
process starts by labeling each leaf of S with the atom reached, substituting
each of the terms instantiating existential quantifiers. Formally, for any path π
of S (from the root to a leaf), we label the leaf (rooted at π) with the formula
substϕ(¬ϕπ, π). The function substϕ applies a substitution based on the given
path in reverse order of the appearance of each existential quantifier.

substϕ(G, ε) � G

substϕ(G, π · L) � substϕ(G, π)

substϕ(G, π · R) � substϕ(G, π)

substϕ(G, π•) � substϕ(G, π)

substϕ(G, π · t) � substϕ(G[x 	→ t], π) where ϕπ = ∃x.F

QLA Satisfiability via Fine-Grained Strategy Improvement 103

For a strategy skeleton S, define its nodes N = {π : ∃π′. ππ′ ∈ S} to be
prefixes of paths in S. Furthermore, define Succ : N → 2N to the set of imme-
diate suffixes. For each node π of S, we introduce an uninterpreted relation
Rπ(x1, . . . , xn) where x1, ..., xn = FV (ϕπ) are the free variables of ϕπ. We pro-
duce the following rules:

substϕ(¬ϕπ, π) ⇒Rπ(. . .) if ϕπ is atomic
(∨

π′∈Succ(π)

Rπ′(. . .)
)

⇒Rπ(. . .) if ϕπ is conjunctive

(∧

π′∈Succ(π)

Rπ′(. . .)
)

⇒Rπ(. . .) otherwise

Rε(x1, . . . , xn) ⇒x1 �= M(x1) ∨ · · · ∨ xn �= M(xn)

For each π ∈ N , Rπ represents the set of all M ′ such that π ⇓ S loses the
game G(ϕπ,M ′). Of note, the last rule requires that Rε does not contain M (i.e.,
that S must win the game G(ϕ,M)). Since the overall skeleton is winning, the
rules are satisfiable. A solution for each relation Rπ may be computed using an
off-the-shelf CHC solver. Applying the negated solution as a guard for each path
of the skeleton, produces a winning strategy. Technically, the guards should be
determinized to produce a function; however, any such determinization will result
in a winning strategy. Formally, for each node π such that ϕπ is an existential
or disjunctive formula, we produce the function:

fπ(x1, ..., xk) if ¬Rπ′
1

then l1 elif . . . else lm

where FV (ϕϕ) � {x1, . . . , xk}, Succ(π) � {π′
1, . . . , π

′
m}, and where each child

π′
i is reached with label li in S. Furthermore, for each path π ∈ (Q∪{L,R})∗ such

that ϕπ is an existential or disjunctive formula, define f ′(π) to be fπ(c1, . . . , cn)
where each ci = Mπ(xi) for each free variable xi ∈ FV (ϕπ). Finally define f(π)
to be f ′(π) if f ′(π) ∈ {L,R} and otherwise define f(π) to be �f ′(π)�Mπ

. The
function f is a strategy conforming to S that wins the game G(ϕ,M).

Consider the winning skeleton S2 from Example 3. The left side of Example 4
shows the set of rules to label S2, depicted as a tree (whose shape follows exactly
from the shape of S2). The graph should be interpreted as saying that a node’s
label is implied by the combination of each of its children’s labels. For nodes 5
and 6, the labels of its children should be combined using disjunctive, otherwise,
the label of its children should be combined conjunctively. For example, the rule
for node 1, should be read as R2(x̄, z̄) ∧ R3(x̄, z̄) ⇒ R1(), while the rule for
node 5 should be read as R7(x̄, z̄) ∨ R8(x̄, z̄) ⇒ R5(x̄, z̄). The middle column
of Example 4 shows a possible solution to the set of rules, and the left-hand
side shows the winning strategy extracted from S2 using the given solution. The
strategy f•• states that given UNSAT’s choices of x̄ and z̄ to instantiate x and z,
if UNSAT chose equal values for x and y then SAT will chose the left branch—
which results in SAT’s immediate win—otherwise SAT will chose to play the
right branch. f••R and f••R x̄+z̄

2
are interpreted similarly.

104 C. Murphy and Z. Kincaid

Example 4.

Rules:
R0()

R1()

R2(x̄, z̄) R3(x̄, z̄)

R4(x̄, z̄)

R5(x̄, z̄) R6(x̄, z̄)

R7(x̄, z̄) R8(x̄, z̄) R9(x̄, z̄) R10(x̄, z̄)

x̄ �= z̄

x̄ ≥ x̄+z̄
2

x̄+z̄
2 ≥ z̄ z̄ ≥ x̄+z̄

2
x̄+z̄
2 ≥ x̄

Labels:
R0() 	→ ⊥
R1() 	→ R0()
R2(x̄, z̄) 	→ x̄ �= z̄

R3(x̄, z̄) 	→ x̄ = z̄

R4(x̄, z̄) 	→ x̄ = z̄

R5(x̄, z̄) 	→ x̄ ≥ x̄+z̄
2 ∨ x̄+z̄

2 ≥ z̄

R6(x̄, z̄) 	→ z̄ ≥ x̄+z̄
2 ∨ x̄+z̄

2 ≥ x̄

R7(x̄, z̄) 	→ x̄ ≥ x̄+z̄
2

R8(x̄, z̄) 	→ x̄+z̄
2 ≥ z̄

R9(x̄, z̄) 	→ z̄ ≥ x̄+z̄
2

R10(x̄, z̄) 	→ x̄+z̄
2 ≥ x̄

Strategy:

f••(x̄, z̄) � if x̄ = z̄ then L else R

f••R(x̄, z̄) � x̄ + z̄

2
f••R x̄+z̄

2
(x̄, z̄) � if x̄ < z̄ then L else R

7 Experimental Evaluation

We extend the tool SimSat—a prototype implementation of the coarse-grained
strategy improvement algorithm from Farzan and Kincaid [9]—with the fine-
grained strategy improvement procedureSimSat is implemented in OCaml using
Z3 [7] to handle ground formulas.

Our experiments aim to answer the following questions: (1) is fine-grained
SimSat competitive with state-of-the-art SMT solvers? (2) how much of the
difference between coarse-grained SimSat and fine-grained SimSat is driven by
considering non-prenex normal form formulas and how much is due to the new
strategy improvement algorithm? (3) what is the overhead of computing a win-
ning fine-grained strategy after checking satisfiability of a formula?

We compare fine-grained SimSat to coarse-grained SimSat as well as to Z3
(version 4.11.2) [7], CVC5 (version 1.0.0) [1], and YicesQS [11]. Z3 implements
the procedure from Bjørner and Janota [4], CVC5 implements the procedure
from Reynolds et al. [18], and YicesQS implements the procedure from Bonacina
et al. [5].

We evaluate each tool on three suites of benchmarks: SMT-LIB2, Termina-
tion, and Simulation. Each benchmark is described in detail below. All experi-
ments were conducted on a desktop running Ubuntu 18.04 LTS equipped with
a 4 core Intel(R) Xeon(R) processor at 3.2GHz and 12 GB of memory. Each
experiment was allotted a maximum of five minutes to complete.

To answer (1), fine-grained SimSat is compared to coarse-grained SimSat,
CVC5, YicesQS, and Z3. This section does not consider other solvers and meth-
ods (e.g. quantifier elimination) as Reynolds et al. [18], Bjørner and Janota [4],
and Bonacina et al. [5] show that their methods outperform other existing solvers
and methods for quantified LIA and LRA formulas. To answer (2) we consider
three variants of fine-grained SimSat. The first variant, “prenex,” first converts
the input formula to prenex-normal form before running the decision procedure.
The second variant, “miniscope,” miniscopes (reduces the scope of quantifiers)
the formula before running the decision procedure, and the final variant, “fine,”

QLA Satisfiability via Fine-Grained Strategy Improvement 105

Fig. 1. (a) A cactus plot showing x instances solved within y seconds per solver. (b)
Log scale plot of strategy synthesis time (y-axis) vs satisfiability time (x-axis) (Color
figure online)

applies the decision procedure without modifying the input formula. Finally, to
answer (3) we wish to measure the efficacy of our algorithm for strategy syn-
thesis, but we know of no other algorithm capable of synthesizing strategies for
fine-grained games with which to establish a baseline. Instead, we measure the
overhead of synthesizing a strategy on top of synthesizing a strategy skeleton.
SMT-LIB2. This suite of benchmarks consists of 2419 LRA and 616 LIA bench-
marks. All benchmarks come from SMT-LIB2 [3]. All LIA benchmarks come from
industrial problems. The LRA benchmarks consists of 1800 randomly generated
formulas in prenex normal form with varying quantifier depth (see Monniaux
[15] for detailed descriptions) and 619 industrial benchmarks.
Termination. This suite of benchmarks consists of 200 LIA formulas. The for-
mulas are derived from Zhu and Kincaid’s [21] method for proving termination of
programs (see Sects. 5 and 6 for details on how formulas are constructed). Each
formula encodes a sufficient condition for which a program is terminating—the
program terminates if the formula is valid. The suite of benchmark consists of
a formula for each program in the “polybench” and “termination” benchmarks
from Zhu and Kincaid’s evaluation section [21].
Simulation. This suite of benchmarks consists of 2060 LIA formulas. The formu-
las represent when the state of two integer message passing programs are weakly
similar for the next n instructions. For complete details see Chap. 4 of [16], which
uses fine-grained strategy synthesis to determinize angelic choice when proving
weak simulation between two integer message passing programs.
Results. Table 1 and Figs. 1a 1b summarize the results of the experiments.
Figure 1a is a cactus plot. Each line represents a solver’s performance. Each
point (x, y) within the line for a solver represents that x instances were indi-
vidually solved in under y seconds by the given solver. The closer the line is
to the x-axis the better the solver performed. Table 1 breaks down the results
a little further by (sub-)suite of benchmarks. Each entry shows the number of

106 C. Murphy and Z. Kincaid

Table 1. Number of instances solved per suite of benchmarks—UltimateAutomizer,
psyco, tptp, Mjollnir, keymaera, and Scholl are sub-categories of SMT-LIB2.

Benchmarks Miniscope Fine Prenex Coarse CVC5 YicesQS Z3 Any All Total

Simulation 2060 2060 2060 2059 2059 1972 2060 2060 1972 2060

UltimateAutomizer 316 316 315 315 345 82 242 349 60 372

psyco 189 189 189 189 189 146 189 189 146 189

tptp (LIA) 46 46 46 46 46 42 46 46 42 46

Termination 200 200 200 196 195 0 166 200 0 200

All LIA 2811 2811 2810 2805 2834 2242 2703 2850 2220 2867

Mjollnir 1597 1584 1586 1578 1300 1800 1541 1800 1177 1800

keymaera 222 222 222 222 222 222 222 222 222 222

Scholl 372 373 372 373 362 374 372 374 359 374

tptp (LRA) 23 23 23 23 23 23 0 23 0 23

All LRA 2214 2202 2203 2196 1907 2419 2135 2419 1781 2419

All 5025 5013 5013 5001 4741 4661 4861 5269 4001 5286

instances from the given suite of benchmarks by the given solver. The “Any”
column counts the number of instances solved by any of the solvers, while the
“All” column counts the number of instances solved by every solver. The “total”
column details the total number of instances (solved and unsolved) within the
suite of benchmarks. For each suite of benchmark, bolded values highlight which
solver(s) solved the most instances of that set of benchmarks.

Overall, all solvers performed well. In fact, Fig. 1a shows that all solvers solved
the first 4200 instances in under a second. The Figure zooms into the x-axis after
this point to highlight the differences between solvers. The experiments show
that the SimSat variants all behaved similarly and out-performed CVC5, Z3,
and YicesQS overall. Of the SimSat variants, the miniscoped variant performed
best, followed by the normal fine-grained variant, then the fine-grained prenex
variant and lastly the coarse-grained variant.

Looking into each suite of benchmarks further, Table 1 shows that while
YicesQS solved the fewest instances overall, it actually solved all LRA formulas.
Similarly, while CVC5 performed the worst on LRA, it was the best performer
on LIA instances, solving 23 more LIA instances than the miniscoped SimSat
variant—the next best performer. In both scenarios, the miniscoped SimSat
variant placed a close second. CVC5 performed well on the industrial bench-
marks; however, struggled with the randomly generated Mjollnir benchmarks,
perhaps due to the bottom-up instantiation strategy of its implemented deci-
sion procedure [18]. YicesQS excelled at the LRA formulas but failed to solve
many of the simulation and termination benchmarks. Overall, Z3 performed well
but struggled more with the UltimateAutomizer and Termination benchmarks—
benchmarks where conversion to prenex normal form increased quantifier alter-
nations significantly.

Finally, Fig. 1b summarizes the cost of computing a winning fine-grained
strategy after checking satisfiability of the given formula—i.e. how much time in
seconds did it take to compute a winning strategy from a winning strategy skele-

QLA Satisfiability via Fine-Grained Strategy Improvement 107

ton. Figure 1b, plots a point for each formula within the Simulation benchmark.
A point has four associated values: (1) its x position represents how much time
is required to prove the formula Sat or Unsat (e.g. time to run “Fine” SimSat
variant), (2) its y position represents the amount of time in seconds required to
compute a winning strategy from a winning strategy skeleton, (3) its size visually
quantifies the number of AST-nodes within the produced winning strategy, and
(4) a node is blue if the formula is won by SAT and red if it is won by UNSAT.
The smallest computed strategy consisted of a single node (move), while the
largest strategy consisted of 448 nodes. Across all instances, the it took roughly
18.4% extra time to additionally compute a winning strategy over just deter-
mining satisfiability of a formula. The maximum time to compute a strategy is
1.4 s.

8 Discussion and Related Works

The closest techniques to Algorithm 1 are the QSMA algorithm of Bonacina et
al. [5] and the coarse-grained strategy improvement algorithm of Farzan and Kin-
caid [8]. Fine-grained and course-grained strategy improvement algorithms are
similar in that they both use model-based term selection to synthesize counter-
strategies to find better and better strategies for each player; however, they differ
in a few key ways. Fine-grained strategy synthesis works for formulae that are not
in prenex normal form. Additionally, while the coarse-grained strategy improve-
ment iterates between skeletons for the two players computing a counter-strategy
to the previous player’s most recent skeleton, the fine-grained strategy improve-
ment algorithm chooses a sub-game to focus on and solve before returning to
the current game. The coarse-grained algorithm iterates over “global” strate-
gies, where the fine-grained algorithm builds up a strategy by recursively solving
sub-games. While Algorithm 1 and QSMA share a similar high-level recursive
structure and used model-based techniques, the method of solving sub-formulae
differ. The QSMA algorithm uses over- and under-approximations to abstract
quantified sub-formulae when determining satisfiability of the current formula
whereas Algorithm 1 uses winning strategies of sub-games and model-based term
selection to synthesize counter-strategies and ultimately yield a winning strategy
to the current formula.

Algorithm 1 also shares some similarities with QSAT the quantified satis-
fiability algorithm of Bjørner and Janota [4] which is also based on the game
semantics of FOL. For formulas in prenex normal form, QSAT and Algorithm 1
both fix a strategy for the first quantifier and then recursively compute a strat-
egy for the remaining quantifiers and back-tracks if no winning strategy exists
for the current player; however, the notion of strategy used differs. In QSAT,
a strategy selects a subset of the literals in the formula—whose free variables
belong to the prefix of quantifiers already explored—that constrains the possible
strategies of the remaining quantifiers.

Finally, Algorithm 1 shares similarities with the counter-example instanti-
ation method of Reynolds et al. [18]. Both methods work for formulas beyond

108 C. Murphy and Z. Kincaid

prenex normal form and use model based projection techniques to instantiate
quantifiers; however, Algorithm 1 uses a top-down approach to synthesize win-
ning strategies, while counter-example instantiation uses a bottom-up technique
to instantiate and eliminate quantifiers one quantifier block at a time.

Other methods for LRA/LIA formulas include heuristic instantiation and
quantifier elimination. Heuristic instantiation is sound but incomplete and was
traditionally the method of choice for many SMT solvers (e.g. CVC4 [2]). Tra-
ditional quantifier elimination methods (e.g. Fourier-Motzkin elimination [14],
Ferrante-Rackoff [10], and Weispfenning [20] algorithms for LRA, and Cooper’s
algorithm [6], and Pugh’s Omega test [17] for LIA) are sound and complete for
LRA/LIA but are extremely costly. Monniaux developed a lazy quantifier elim-
ination method for LRA based on polyhedral projection that performs better in
practice [15]. However, Bjørner and Janota show that their algorithm dominates
the use of Monniaux’s method as a [4]. Finally, Komuravelli et al. [13] intro-
duced model-based projection which under-approximates quantifier elimination
for LA and is closely related to the model-based term selection function we use
in Sect. 5.1.

Acknowledgements. This work was supported in part by the NSF under grant num-
ber 1942537. Opinions, findings, conclusions, or recommendations expressed herein are
those of the authors and do not necessarily reflect the views of the sponsoring agencies.

References

1. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: TACAS
2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99524-9 24

2. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

3. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2016). www.SMT-LIB.org

4. Bjørner, N.S., Janota, M.: Playing with quantified satisfaction. LPAR (short
papers) 35, 15–27 (2015)

5. Bonacina, M.P., Graham-Lengrand, S., Vauthier, C.: Qsma: a new algorithm for
quantified satisfiability modulo theory and assignment. In: International Confer-
ence on Automated Deduction, pp. 78–95. Springer (2023). https://doi.org/10.
1007/978-3-031-38499-8 5

6. Cooper, D.C.: Theorem proving in arithmetic without multiplication. Mach. Intell.
7(91–99), 300 (1972)

7. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

8. Farzan, A., Kincaid, Z.: Linear arithmetic satisfiability via strategy improvement.
In: IJCAI, pp. 735–743 (2016)

9. Farzan, A., Kincaid, Z.: Strategy synthesis for linear arithmetic games. In: Pro-
ceedings of the ACM on Programming Languages 2(POPL), pp. 1–30 (2017)

https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
www.SMT-LIB.org
https://doi.org/10.1007/978-3-031-38499-8_5
https://doi.org/10.1007/978-3-031-38499-8_5
https://doi.org/10.1007/978-3-540-78800-3_24

QLA Satisfiability via Fine-Grained Strategy Improvement 109

10. Ferrante, J., Rackoff, C.: A decision procedure for the first order theory of real
addition with order. SIAM J. Comput. 4(1), 69–76 (1975)

11. Graham-Lengrand, S.: Yices-qs 2022, an extension of yices for quantified satisfia-
bility (2022)

12. Hintikka, J.: Game-theoretical semantics: insights and prospects (1982)
13. Komuravelli, A., Gurfinkel, A., Chaki, S.: Smt-based model checking for recursive

programs. Formal Methods Syst. Des. 48, 175–205 (2016)
14. Kroening, D., Strichman, O.: Decision procedures. Springer (2016)
15. Monniaux, D.: Quantifier elimination by lazy model enumeration. In: Touili, T.,

Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 585–599. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 51

16. Murphy, T.C.: Relational Verification of Distributed Systems Via Weak Simula-
tions. Ph.D. thesis, Princeton University (2023)

17. Pugh, W.: The omega test: a fast and practical integer programming algorithm for
dependence analysis. In: Supercomputing’91: Proceedings of the 1991 ACM/IEEE
Conference on Supercomputing, pp. 4–13. IEEE (1991)

18. Reynolds, A., King, T., Kuncak, V.: Solving quantified linear arithmetic by
counterexample-guided instantiation. Formal Methods Syst. Des. 51(3), 500–532
(2017)

19. Reynolds, A., Tinelli, C., Goel, A., Krstić, S., Deters, M., Barrett, C.: Quantifier
instantiation techniques for finite model finding in SMT. In: Bonacina, M.P. (ed.)
CADE 2013. LNCS (LNAI), vol. 7898, pp. 377–391. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38574-2 26

20. Weispfenning, V.: The complexity of linear problems in fields. J. Symb. Comput.
5(1–2), 3–27 (1988)

21. Zhu, S., Kincaid, Z.: Termination analysis without the tears. In: Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation, pp. 1296–1311 (2021)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-14295-6_51
https://doi.org/10.1007/978-3-642-38574-2_26
http://creativecommons.org/licenses/by/4.0/

From Clauses to Klauses∗

Joseph E. Reeves(B) , Marijn J. H. Heule , and Randal E. Bryant

Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
{jereeves,mheule,randy.bryant}@cs.cmu.edu

Abstract. Satisfiability (SAT) solvers have been using the same input format for
decades: a formula in conjunctive normal form. Cardinality constraints appear
frequently in problem descriptions: over 64% of the SAT Competition formulas
contain at least one cardinality constraint, while over 17% contain many large
cardinality constraints. Allowing general cardinality constraints as input would
simplify encodings and enable the solver to handle constraints natively or to
encode them using different (and possibly dynamically changing) clausal forms.
We modify the modern SAT solver CADICAL to handle cardinality constraints
natively. Unlike the stronger cardinality reasoning in pseudo-Boolean (PB) or
other systems, our incremental approach with cardinality-based propagation
requires only moderate changes to a SAT solver, preserves the ability to run
important inprocessing techniques, and is easily combined with existing proof-
producing and validation tools. Our experimental evaluation on SAT Competition
formulas shows our solver configurations with cardinality support consistently
outperform other SAT and PB solvers.

Keywords: Cardinality constraints · SAT solving · CNF Encoding

1 Introduction

Satisfiability (SAT) solvers have become remarkably effective automated reasoning
engines in the last 25 years, with many applications in verification including bounded
model checking [7] and automatic test generation [4]. Although many aspects of the
solvers have changed, the top-tier solvers continue using conjunctive normal form (CNF)
formulas as their input. There exist richer representations that allow for stronger reason-
ing techniques and make encoding problems much simpler. The most successful is Sat-
isfiability Modulo Theories (SMT), which enables high-level reasoning (theory propa-
gation). Higher-level reasoning is not always necessary, and for theories like strings [33]
and bit vectors [39] a so-called eager SMT approach works well. This involves trans-
forming the problem from SMT to SAT and using an off-the-shelf SAT solver.

Various groups have proposed a more modest deviation from CNF: a conjunction
of cardinality constraints [20,34,43]. A cardinality constraint asserts that the sum of a

∗Supported by the U.S. National Science Foundation under grant CCF-2108521, and in part
by a fellowship award under contract FA9550-21-F-0003 through the National Defense Science
and Engineering Graduate (NDSEG) Fellowship Program, sponsored by the Air Force Research
Laboratory (AFRL), the Office of Naval Research (ONR) and the Army Research Office (ARO).

c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 110–132, 2024.
https://doi.org/10.1007/978-3-031-65627-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65627-9_6&domain=pdf
http://orcid.org/0000-0002-4585-0565
http://orcid.org/0000-0002-5587-8801
http://orcid.org/0000-0001-5024-6613
https://doi.org/10.1007/978-3-031-65627-9_6

From Clauses to Klauses 111

set of literals exceeds a given bound, e.g., �1 + �2 + · · · + �s ≥ k. Note that cardinal-
ity constraints generalize clauses because a clause �1 ∨ �2 ∨ · · · ∨ �s is equivalent to
�1 + �2 + · · · + �s ≥ 1. Cardinality constraints appear frequently in problem descrip-
tions, whether as at-most-one (AMO) constraints that may force some k-valued variable
to be unique (e.g., the color of a vertex), or general at-least-k (ALK)/at-most-k (AMK)
constraints that place a lower or upper bound on some resource, e.g., for optimiza-
tion. In our evaluation of 5,354 SAT Competition formulas, we found that over 64%
contained at least one cardinality constraint and over 17% contained at least 10 large
cardinality constraints (see Section 7). There exist pseudo-Boolean (PB) solvers with
stronger reasoning techniques than SAT solvers, but similar to strings and bit vectors,
an eager approach transforming cardinality constraints into clauses is often desirable.
SAT solvers work well across a wide range of problems and have a more developed
verification toolchain. This work attempts to bridge the gap between cardinality con-
straints and clauses. We introduce an infrastructure for a cardinality-based input for
SAT solving that makes encoding problems easier and significantly improves the per-
formance on some problems with many cardinality constraints. These changes come
without throwing away the well-developed verification toolchain and high-performance
solving of modern SAT solvers.

Attempts to improve solver performance on problems with cardinality constraints
have focused on either strengthening the underlying proof system, improving encod-
ings, or natively propagating on constraints. Solvers can make use of stronger proof
systems both on formulas with richer input structure and on formulas in CNF. The
solver RoundingSAT [21] exploits the strength of the cutting planes proof system [16],
allowing it to efficiently solve various problems that are hard for resolution. The solver
SAT4J [5] implements cardinality extraction [10] and generalized resolution [26] in a
preprocessing step to quickly solve formulas in CNF that contain cardinality constraints,
with additional native handling for finding hamiltonian cycles [43]. Additionally, to
make writing formulas simpler, solver engineers have provided support for cardinality-
based representations. The solver MINISAT+ [20] supports cardinality-based input
transforming the formula into clauses, and the solver package PYSAT [27] provides
API calls for converting constraints into clauses. Lastly, the solver MiniCARD [34]
substantially reduces the memory footprint and improves propagation by handling car-
dinality constraints natively. However, most of the recent work has focused on stronger
proof systems or better encodings. This is partly because implementation details for
cardinality-constraint propagation [34,47] came before the development of modern
inprocessing, did not account for proof generation, and were only evaluated on some
crafted formulas. We revisit native cardinality constraint handling in the context of mod-
ern CDCL, showing that performance can be improved on some problems without com-
promising the verification toolchain (assuming no cutting planes are used).

First, consider propagation, the well-known bottleneck of SAT solvers. Improving
propagation speed can boost solver performance on both satisfiable and unsatisfiable
formulas. Cardinality constraint propagation can be supported with limited overhead
by generalizing the watch-pointer data-structure [34]. Moreover, with modest-sized
changes a cardinality-based representation can work with some other reasoning tech-
niques in modern solvers, ranging from learned clause minimization to vivification.

112 J. E. Reeves et al.

These important techniques can be kept because cardinality-based propagation does
not alter the relevant properties of the implication graph during conflict analysis. These
changes do not require cutting planes or a new proof checker such as VERIPB [45], and
are compatible with standard DRAT proofs. This is in contrast to other forms of native
reasoning in CDCL solvers such as XOR parity reasoning. For example, to communi-
cate propagated units and conflicts between XOR clauses and a CNF formula, the solver
CRYPTOMINISAT makes use of BDD packages [13] to generate checkable proofs [44],
adding overhead to the solving and producing large proofs.

Second, a cardinality-based representation allows for alternative ways to encode
and reencode constraints. The choice of encoding can have a large impact on perfor-
mance [38]. Alternatively, handling cardinality constraints separately, or dynamically
encoding partial constraints [2], may also improve performance through faster prop-
agation on frequently visited constraints and the lack of propagation on unimportant
constraints. Modern CDCL solvers constantly switch between a SAT and UNSATmode
with differing heuristics [40]. We implement a hybrid solver that maintains reencoded
clauses throughout solving but only propagates on cardinality constraints natively dur-
ing SAT mode. The solver has access to auxiliary variables in the reencoded clauses
along with the capability to propagate on cardinality constraints, improving perfor-
mance on both satisfiable and unsatisfiable formulas.
Contributions.We incorporated cardinality-constraint handling into the modern CDCL
SAT solver CADICAL, while still allowing several important inprocessing techniques
including clause vivification and local search. We ensure clause learning from propaga-
tion on cardinality constraints produces valid proof steps.

We implemented a tool to extract cardinality constraints with a “guess and verify”
approach that heuristically identifies possible encoded cardinality constraints in CNF
formulas and then uses BDDs to validate and characterize them.We provide three solver
configurations: one that uses cardinality-based CDCL reasoning, one that reencodes the
cardinality constraints into CNF, and a hybrid approach that combines the two former
configurations via. mode-switching. This hybrid configuration (HYBRID) represents a
novel approach for incorporating both encoded clauses that are useful for unsatisfi-
able formulas and native cardinality constraints that are useful for satisfiable formulas.
Proofs generated from the three solving configurations are checked with DRAT-TRIM.

We evaluated the cardinality extractor and solving configurations on the SAT Com-
petition Anniversary Track formulas, finding cardinality constraints in over half the
formulas, and many large cardinality constraints in over 17% of formulas. On these for-
mulas, CDCL solvers outperformed PB solvers and the cardinality constraint handling
further improved the CDCL solver performance. Additionally, solvers were evaluated
on the Magic Squares and Max Squares problems, highlighting the importance of a
good reencoding and the power of native cardinality constraint propagation.

2 Background

We consider propositional formulas in conjunctive normal form (CNF). A CNF formula
F is a conjunction of clauses where each clause is a disjunction of literals. A literal � is

From Clauses to Klauses 113

either a variable x (positive literal) or a negated variable x (negative literal). The phase
of a literal indicates whether it is positive or negative.

An assignment α is a mapping from variables to truth values 1 (true) and 0 (false).
Assignment α satisfies a positive (negative) literal � if α maps var(�) to true (α maps
var(�) to false, respectively), and falsifies it if α maps var(�) to false (α maps var(�) to
true, respectively). An assignment satisfies a clause if the clause contains a literal satis-
fied by the assignment, and satisfies a formula if every clause in the formula is satisfied
by the assignment. A formula is satisfiable if there exists a satisfying assignment, and
unsatisfiable otherwise. Two formula are logically equivalent if they share the same set
of satisfying assignments. Two formulas are satisfiability equivalent if they are either
both satisfiable or both unsatisfiable.

A unit is a clause containing a single literal. Unit propagation applies the following
operation until a fixed point: take all units α in a formula F and remove from F clauses
containing a literal in α, remove from clauses all literals negated in α. In cases where
unit propagation yields the empty clause (⊥) we say it derived a conflict.

2.1 Cardinality Constraints

A cardinality constraint on Boolean variables has the form �1 + �2 + · · · + �s ≥ k and
is satisfied by a partial assignment if the sum of the assigned literals is at least k. The
size of the cardinality constraint is the number of literals (s) it contains. For this work,
we do not permit duplicate literals in cardinality constraints as it would complicate
the implementation of unit propagation seen in Section 5. Variables occurring in the
cardinality constraint are data variables, and new variables added in a clausal encoding
are auxiliary variables. The introduction of auxiliary variables is known to be beneficial
to solvers for some problems, and has been studied in the context of the preprocessing
technique bounded variable addition [35].

We refer to cardinality constraints as klauses, containing a bound k and the literals
in the constraint. All clauses can be written as klauses with k = 1, corresponding to
at-least-one (ALO) constraints. Throughout the rest of the paper, we refer to klauses
with k = 1 as clauses. When k = s − 1, the klause can be viewed as an at-most-one
(AMO) constraint by negating the literals, i.e., �1 + �2 + · · ·+ �s ≥ s − 1 is equivalent
to AMO(�1, . . . , �s). There are multiple ways to encode an AMO constraint into CNF.

Pairwise Encoding for an AMO constraint is given by a set of binary clauses with
negative literals and no auxiliary variables. AMO(�1, . . . , �s) is encoded as the con-
junction of (�i ∨ �j) with 1 ≤ i < j ≤ s, resulting in s(s − 1)/2 binary clauses.

Linear Encoding (an instance of the commander encoding [30]) for AMO(�1, . . . ,
�s) uses the pairwise encoding for s ≤ 4 and splits on s > 4 using fresh auxiliary
variables (y) according to the following recursion:

Linear(�1, . . . , �s) : Pairwise(�1, �2, �3, y) ∧ Linear(y, �4, . . . , �s) (1)

The encoding uses (s−3)/2 auxiliary variables and 3s−6 clauses. The cutoff of s = 4
(commonly used in practice) was selected as the “optimal” value to minimize the sum
of the number of variables and the number of clauses.

For a general klause with 1 < k < s − 1, an efficient encoding to CNF requires
Θ(s · k) auxiliary variables to keep track of the count of data variables that have been

114 J. E. Reeves et al.

assigned. When s−k+1 literals in the klause are falsified, unit propagation should lead
to a conflict. For these klauses we use the sequential counter (or Sinz) encoding [42].

A clausal encoding of a klause �1 + �2 + · · · + �s ≥ k is consistent if assigning
any s − k + 1 literals to false will always result in a conflict by unit propagation. It
is arc-consistent [24] if it is consistent and unit propagation will assign all unassigned
literals to true if exactly s − k literals are assigned to false. There are many encodings
for cardinality constraints [3,20,28]. We use the Linear and Sinz encodings as a proof
of concept, but these could easily be substituted with other arc-consistent encodings.

2.2 Conflict-Driven Clause Learning and Proofs of Unsatisfiability

To evaluate the satisfiability of a formula, a CDCL solver [36] iteratively performs the
following operations: First, the solver performs unit propagation and tests for a con-
flict. Two-literal watch pointers [37] enable efficient unit propagation. If there is no
conflict and all variables are assigned, the formula is satisfiable. Otherwise, the solver
chooses an unassigned variable through a variable decision heuristic [9,32], assigns a
truth value to it through a phase selection heuristic, and performs unit propagation. The
selected variables are decision variables, and the assignment including decision vari-
ables and propagated variables is called the trail. If, however, there is a conflict, the
solver performs conflict analysis potentially learning a short clause. In case this clause
is the empty clause, the formula is unsatisfiable. In case it is not the empty clause, the
solver revokes some of its variable assignments (“backjumping”) and then repeats the
whole procedure. Additionally, modern solvers incorporate pre- and inprocessing tech-
niques that change the formula in some way, usually reducing the number of variables
and clauses or shrinking the sizes of clauses.

CDCL solvers produce satisfying assignments for satisfiable formulas and proofs of
unsatisfiability for unsatisfiable formulas. A clause C is redundant w.r.t. a formula F
if F and F ∪ {C} are satisfiability equivalent. The clause sequence F,C1, C2, . . . , Cm

is a clausal proof of Cm if each clause Ci (1 ≤ i ≤ m) is redundant w.r.t. F ∪
{C1, C2, . . . , Ci−1}. The proof is a refutation of F if Cm is ⊥. Clausal proof systems
may also allow deletion.

The strength of a clausal proof systems is determined by the syntactic criterion it
enforces when checking clause redundancy. The standard SAT solving paradigm CDCL
learns clauses that are logically implied by the formula and fall under the reverse unit
propagation (RUP) proof system. A clause is RUP if unit propagation on the falsified
literals of the clause results in a conflict. The Resolution Asymmetric Tautology (RAT)
proof system generalizes RUP. We make use of RAT proof steps in our derivations (see
Section 6), but refer the reader to [29] for more details. Proofs are typically transformed
to a format with hints, e.g. LRAT, before being passed to a formally-verified checker
like CAKE-LPR [46].

3 At-Least-K Conjunctive Normal Form (KNF)

x1 + x2 + x3 + x4 ≥ 2 k 2 x1 x2 x3 -x4 0 (2)

From Clauses to Klauses 115

Cardinality
Extraction

Encoder CDCL

CCDCL
DRAT
Proof
Checker

Encoder CCDCL

CNF
KNF

CNF

REENCODE

CCDCL

HYBRID

CNF
Verified

Derivation

Derivation

Fig. 1. Three configurations for solving a KNF formula extracted from an input CNF formula.

We propose enriching the input of SAT solvers and proof checkers to accept a conjunc-
tion of klauses (KNF). As an initial step, we provide backwards compatibility with CNF
formulas, so KNF solvers can be used on existing benchmarks. Consistent AMO car-
dinality constraints can be extracted from the input CNF formula (see Section 4), then
converted to klauses in the KNF format. In Equation (2) if the cardinality constraint on
the left appears as clauses in a CNF formula, those clauses can be replaced by a single
klause, shown on the right, in the corresponding KNF formula. Klauses with k > 1 are
written with a ‘k’ followed by the bound and then the literals. All other clauses in the
CNF formula can be placed directly in the KNF formula.

In Figure 1 we present three independent configurations for solving a KNF extracted
from a CNF formula: REENCODE, CCDCL, and HYBRID. Each configuration pro-
duces a DRAT proof (or satisfying assignment) for the input CNF formula.

REENCODE, the encoder reencodes the klauses into clauses, and the resulting CNF
formula is solved by a CDCL solver. Since the CDCL solver is using reencoded clauses
that do not appear in the original CNF formula, a DRAT derivation for the clausal
reencoding must be prepended to the solver’s DRAT proof. This derivation explains
how the reencoded clauses can be added to the original CNF formula.

CCDCL, cardinality-CDCL (CCDCL) seen in Section 5 is used to solve the formula
in KNF directly by natively propagating on klauses. The DRAT proof generated by the
CCDCL solver can be verified against the input CNF formula if the extracted constraints
were arc-consistent (otherwise a derivation is added).

HYBRID, a CCDCL solver takes in both the formula in KNF along with a clausal
reencoding of klauses as input. The reencoded clauses are kept throughout solving as
irredundant formula clauses (never deleted by the solver). The klauses are only watched

116 J. E. Reeves et al.

Guesser VerifierCNF

Delete Clauses

Continue

Data Vars
Aux. Vars
Clauses

Verified

Not Verified

Constraint
DB

Fig. 2. Guess and verify framework for extracting cardinality constraints from an input CNF
formula. The guesser selects a set of data variables, auxiliary variables, and clauses representing
a candidate cardinality constraint. If the verifier verifies the constraint, it is added to the constraint
database and the constraint’s clauses are removed from subsequent guesses.

and propagated on during SAT mode. So, while the solver is in UNSAT mode when
propagating on cardinality constraints it exclusively makes use of the reencoded clauses.
This gives the solver access to auxiliary variables within the encoding and these vari-
ables can be extremely important for finding short proofs of unsatisfiable formulas.
While the solver is in SAT mode it can propagate natively on klauses, allowing faster
propagation that bypasses the auxiliary variables. This can be important for quickly
solving satisfiable formulas. In general the solver moves back and forth between SAT
and UNSAT modes with increasing limits, and will roughly spend half of its time in
either mode. Clauses learned in either mode can be kept during the mode switch, but
certain heuristics are modified for each mode. The proof requires a derivation as in
REENCODE. Further details on verification are found in Section 6.

The three different solving configurations highlight the flexibility provided by the
KNF format. In some cases, a smaller representation and fast propagation on klauses is
beneficial. In other cases, reencoding klauses introducing auxiliary variables can lead
to a much shorter proof. And a combination of the two approaches may work best
for unknown problems. These configurations can be implemented with straightforward
changes to a CCDCL solver, and the proof checker DRAT-TRIM is used as is.

4 Cardinality Constraint Extraction and Analysis

4.1 Extraction

Several researchers have devised techniques for automatically extracting cardinality
constraints from CNF representations either as part of a preprocessing step [10] or
dynamically within a pseudo-Boolean constraint solver [22]. We implemented our own
preprocessor that detects cardinality constraints within a CNF file, converts these into
klauses, and emits both these and the remaining clauses as a KNF file.

AMO constraints with pairwise constraints can be detected by finding cliques in the
graph having a node for each literal and an edge between two literals if they occur in the

From Clauses to Klauses 117

same binary clause [10]. Although finding maximal cliques is NP-hard, simple greedy
approaches work well for this task.

We use a “guess-and-verify” approach for detecting non-pairwise constraints,
shown in Figure 2. Our method of guessing looks for patterns of clauses in the CNF
representation that could be cardinality constraints, including classifying the variables
in these clauses as either data or auxiliary variables. To do this it examines the binary
clauses in the formula and classifies each variable as being either unate—always having
the same phase, or binate—occurring with both phases. Data variables are assumed to
be unate, while auxiliary variables must be binate. Starting with a binate variable, the
extractor forms the transitive closure of all binate variables that occur in clauses with
other variables in the set. It then selects as data variables all unate variables that occur
in these clauses.

We have found this approach to guessing effective at detecting standard encodings
of AMO constraints, including all of those handled by previous extractors [10]. It can
fail when a data variable is used with one phase for some constraint and with some other
phase for another. It will also find patterns that meet the phase requirements but do not
encode cardinality constraints. Fortunately, these will be rejected in the “verify” stage.
Although our verifier could determine whether a set of clauses encodes a non-AMO
cardinality constraint, we have been unable to devise a reliable strategy for distinguish-
ing these clauses from the other clauses in a file. We plan to extend the extraction to
general cardinality constraints in the future.

4.2 Analysis with BDDs

We use a BDD-based analysis to verify that our guessed cardinality constraints are in
fact cardinality constraints. Given a set of clauses and a classification of the variables
into a set of data variables X and a set of auxiliary variables Y , we construct the rep-
resentation of the associated Boolean function f(X) as an Ordered Binary Decision
Diagram (BDD) [12]. We generate the BDD for f(X) using bucket elimination, a sys-
tematic way to perform conjunctions and quantifications [17,41]. That is, we create a
total ordering of the data and auxiliary variables, described below, and use this ordering
for the BDDs and as the bucket ordering. For each y ∈ Y , we associate a set By , which
we refer to as the “bucket” for variable y. We also have a set Bd, which we refer to as
the “data bucket”. At each point in the processing, we maintain a set of terms, where
each term T is a BDD depending on a set of variables D(T) ⊆ X∪Y . Term T is placed
in bucket By when y = min(D(T) ∩ Y) and in the data bucket when D(T) ∩ Y = ∅.
The initial set of terms consists of the BDD representations of the clauses.

Bucket elimination processes the terms via conjunction and quantification opera-
tions until the only nonempty bucket is Bd. That is, let y be the maximum variable for
which By is nonempty. While this bucket contains more than one element, we remove
two, compute their conjunction, and place the result in the proper bucket. This must be
in some bucket By′ such that y′ ≤ y or in the data bucket Bd. When bucket By con-
tains a single term, we form its existential quantification with respect to y and place the
result in the proper bucket. This will either be in some bucket By′ for which y′ < y or
in the data bucket. Eventually, the only terms will be in the data bucket. We form their
conjunction to get the BDD representation of f(X).

118 J. E. Reeves et al.

Building BDDs and performing bucket elimination requires defining a total ordering
of all of the variables in X ∪ Y . Our approach targets the layered structure that arises
in many encodings of cardinality constraints. We start with the auxiliary variables in Y
by building an undirected graph with a node for each variable y and an edge (y, y′) of
length 1.0 when some clause contains a literal of y and a literal of y′. In addition, we
add an edge (y, y′) with length 0.75 when there is some data variable x such that there
is some clause containing literals of x and y and another clause containing literals of x
and y′.

We identify a “source” node s and a “sink” node t and (conceptually) view the edges
as elastic, enabling us to stretch the graph between these two endpoints into a single line
and order the nodes according to where they lie on this line. The two edge types will
tend to group the auxiliary variables first by their occurrence in clauses with matching
data variables and second by their occurrence with each other. Our implementation of
this idea starts by looking for endpoints s and t for which the shortest path between the
two nodes is maximal. Starting with some random node, we jump to the most distant
node (in terms of shortest path), and from there to the most distant node, iterating as
long as the distance increases. We perform these iterations from multiple starting points
and take the most distant pair as the graph endpoints. Then, we order the variables first
in terms of their proximity to s and secondarily in terms of their distance from t. Finally,
each data variable x ∈ X is inserted into the ordering to be near the first variable y for
which some clause contains a literal of x and a literal of y. For a layered graph, this
approach will tend to find opposite corners as endpoints s and t and generate a layered
ordering of the variables. For a graph having a tree structure, it will produce an ordering
that approximates what would be obtained via an inorder traversal of the tree. Both of
these make good BDD orderings.

Once the BDD for the function f(X) has been constructed, detecting whether it
encodes a cardinality constraint and the parameters of that constraint can readily be
inferredfromthestructureof theBDD.Letusnumber thedatavariablesasx1, x2, . . . , xN .
For a set of literals{�1, �2, . . . , �N},where each �i ∈ {xi, xi}, functionf canencodeboth
a lower boundL and an upper boundH , giving a two-sided constraint:

L ≤ �1 + �2 + · · · + �N ≤ H (3)

Lower bound L can degenerate to L = 0, while upper bound H can degenerate to
H = N . As examples, an at-most-one constraint has L = 0 and H = 1, while a clause
has L = 1 and H = N .

Our task is to determine the two bounds and the phase of each literal, or to reject
f as not encoding a cardinality constraint. The BDD encoding of the constraint (3) has
a simple, layered structure [1,13]. In detail, let us say that the pair of integers (i, j) is
feasible if there is some satisfying assignment for the constraint where the first i − 1
variables have j literals assigned to true. More precisely, the following conditions must
be satisfied for (i, j) to be feasible:

– i satisfies 1 ≤ i ≤ N + 1
– j satisfies 0 ≤ j ≤ i − 1
– There must be some value k such that 0 ≤ k ≤ N − i + 1 and L ≤ j + k ≤ H .

From Clauses to Klauses 119

Table 1. Detecting size 10 AMO constraints on the 9 PySAT exactly-one clausal encodings:
pairwise, sequential counter, cardinality network, sorting network, totalizer, modulo totalizer,
modulo k-totalizer, bitwise, and ladder. The table shows the number of data variables/auxiliary
variables in the largest AMO constraint detected by the extraction tool on a given encoding. A
10/0 represents the full constraint on all of the data variables. No approach detected an AMO
constraint in the bitwise encoding.

Tool Pair SCnt CNet SNet Tot mTot mkTot Bit Lad

Guess-and-Verify 10/0 10/0 10/0 10/0 10/0 10/0 10/0 – 9/0

LINGELING (Syntactic) 10/0 1/2 2/1 2/1 2/1 2/1 2/1 – 1/2

RISS (Semantic) 10/0 3/2 4/2 4/1 3/2 3/2 3/2 – 3/2

The BDD will have a node ui,j for each feasible pair (i, j). This node can either be L1,
the leaf node representing Boolean constant 1, or it can be a nonterminal node labeled
by variable xi. When ui,j is nonterminal and �i = xi, then its positive (respectively,
negative) child will be node ui+1,j+1 (resp., ui+1,j) if pair (i+1, j+1) (resp., (i+1, j))
is feasible and leaf node L0 (representing Boolean constant 0) otherwise. If �i = xi,
then the two children will be reversed. Starting with the root node, the literal assign-
ments and values of L and H can be determined by examining the BDD level-by-level,
while also determining whether or not the structure matches that of an cardinality BDD.

4.3 PySAT Encodings Experimental Evaluation

In this section we compare our Guess-and-Verify G&V tool against the two extrac-
tion techniques presented in [10]. LINGELING implements the static detection of pair-
wise constraints and RISS implements the static pairwise and two product encoding
detection along with the merging operation and semantic detection. The merging oper-
ation involves taking two AMO constraints of the form −x + �1 + �2 + · · · + �s ≥ s
and x + j1 + j2 + · · · + jn ≥ n and resolving on the opposing literal x to produce
�1+�2+· · ·+�s+j1+j2+· · ·+jn ≥ n+s−1 (where duplicate literals are removed and
the bound is updated appropriately). The semantic detection involves using unit propa-
gation to detect AMK cardinality constraints with an arc-consistent encoding. In short,
starting from a clause, unit propagation is used to determine if literals can extend the
candidate cardinality constraint. This approach may be disrupted by auxiliary variables
within the encoding such that the unit propagation produces only truncated versions of
the cardinality constraints.

For this evaluation, we modified LINGELING and RISS to run cardinality detection,
print the detected constraints, then exit. Neither solver provides command line options
for this operation, or the ability to produce a formula in any format similar to KNF
with clauses and auxiliary variables from the extracted cardinality constraints removed.
PySAT [27] provides a Python API for encoding cardinality constraints into clausal
form. It supports 9 different encodings, and these contain the most common AMO
encodings. We performed unit propagation and pure literal elimination on the gener-
ated PySAT encodings, and added an ALO constraint on the data variables, making the
constraint exactly-one. We add this clause because data variables will appear in both

120 J. E. Reeves et al.

polarities in a typical formula (otherwise they would be propagated by pure literal elim-
ination and removed from the AMO constraint). Table 1 shows a comparison between
G&V, LINGELING, and RISS [10] on the PySAT encodings for AMO constraints of
size 10. Our G&V tool found the the original AMO constraints for 7 of the PySAT
encodings, and found the core of the original AMO constraint for the Ladder encoding
(missing a single data variable). The other tools found small nested AMO constraints of
sizes 3-6, but they could not find the core of the AMO constraint for any encoding other
than pairwise. Finding many small AMO constraints is less useful, since the propagation
power is weaker and a reencoding would only consider the sub constraints individually;
whereas finding a larger AMO constraint on a majority of the data variables is far more
effective for applying native cardinality constraint handling or reencoding.

The semantic detection from RISS detects some AMO2 constraints among the
encodings, but they do not use a majority of the original data variables. The merge
operation from RISS can generate constraints of size 4-6, but this operation is less help-
ful in our setting since it does not allow the deletion of the smaller constraints used in
the merge. We plan to explore additional heuristics to encapsulate all commonly used
encodings in subsequent iterations of the extraction tool.

In future work we plan to extend the G&V framework to general cardinality con-
straint extraction. The general case is much more difficult than the AMO case, and
is relatively unexplored in the literature. Our tool would require more sophisticated
heuristics for guessing since general cardinality constraint encodings may contain data
variables in varying polarities as well as varying clause structures. The verifier would
also require modifications. It is well-known that BDDs have size limitations, and this
could be a factor for large general cardinality constraints. In addition, it would be impor-
tant to have a verifier that could dynamically adapt the constraint it is characterizing so
that the guessing algorithm could provide an under approximation of a given constraint
(e.g., providing a set of clauses to the verifier that contains all of the clauses used in a
cardinality constraint as well as other clauses not used in the cardinality constraint).

5 Cardinality Conflict-Driven Clause Learning

In this section we describe cardinality-CDCL (CCDCL), an extension of CDCL with
propagation on klauses. For problems with many large klauses, handling them natively
will significantly reduce the size of the formula and increase the speed at which cardi-
nality constraints propagate.

K1 : x1 + x2 + x3 + x4 + x5 ≥ 3 C1 : x1 + x2 + x3 + x4 + x5 ≥ 1

Example 1. The partial assignment x1 x2 forces the extension x3 x4 x5 forK1 to be sat-
isfied. The partial assignment x1 x2 x3 x4 forces the extension x5 for C1 to be satisfied.
K1 can propagate at most 3 literals, whereas C1 can propagate at most 1 literal.

Example 1 shows the added propagation power of klauses over clauses, not to men-
tion the many auxiliary variables that must be propagated in a clausal encoding. Klauses

From Clauses to Klauses 121

K : �1 · · · �k+1 �k+2 · · · �s C : �1 �2 �3 · · · �s

w1 · · · wk+1 w1 w2

Fig. 3.Klause (left) of the form �1+ · · ·+�s ≥ k and clause (right) of the form �1+ · · ·+�s ≥ 1,
with watch pointers for the first k + 1 literals in the clause.

can be handled natively with minimal changes to a CDCL solver, and no changes to the
proof logging.

CCDCL incurs a few tradeoffs. Some inprocessing techniques need to be restricted
or disabled, and the propagation/analysis algorithms become more complicated. More
importantly, the auxiliary variables in clausal encodings may be important for learning
useful clauses. These limitations are further discussed in the experimental evaluation.

5.1 Implementation Details

A klause requires more watch pointers (k + 1) than a clause (Figure 3), since s − k
literals must be falsified in order to propagate the klause [34]. The invariant on a non-
conflicting klause is that at least k watched literals are either unassigned or satisfied. If
this is not the case, then at least s− (k+1) literals are falsified and therefore the klause
is falsified.

Propagation on clauses is unchanged. For a klause, assuming the watch pointer in
question is wi for assigned literal �i, the first unassigned or satisfied literal starting from
�k+2 is swapped with �i, then wi is released and a new watch is created for the swapped
literal. If no such literal exists, then the watched literals �1, . . . , �k+1 (not including
�i) are assigned to true, and their reason is all of the literals �i, �k+2, . . . , �s that are
falsified. If any of the would-be propagated literals is already falsified, then there is a
conflict and the propagation algorithm breaks. The conflict clause contains the reason
literals, �i, and first falsified watched literal other than �i.

Conflict analysis works the same as in CDCL, where the implication graph is tra-
versed backwards from the conflict clause to the first unique implication point in order
to produce a learned clause. An implication graph is a data structure capturing the
ordering and dependencies of decided or propagated literals, where each node is a lit-
eral assigned to true and incoming edges to a node are the reason literals for why the
node was propagated. Intuitively, the clauses learned by CDCL are RUP because they
represent a cut in the implication graph, from which unit propagation will derive a con-
flict. It is similar for CCDCL. Consider a literal propagated by a klause. In the impli-
cation graph, the reason for the literal is exactly the literals that propagated the klause.
Since important properties of the implication graph are unchanged, clause minimiza-
tion can be applied to learned clauses. We have not considered the effect of klauses on
chronological backtracking, and therefore only allow backjumping.

122 J. E. Reeves et al.

5.2 Inprocessing Techniques

In order to support a selection of the most important inprocessing techniques, we split
the klause database into clauses (k = 1) and klauses (k > 1). When one clause is a
subset of another clause it can subsume (or replace) the other clause. This operation can
be performed on all clauses, without considering klauses. We allow bounded variable
elimination (BVE) [18] on all variables not occurring in klauses. Variables in klauses are
frozen [19] so they are not selected as candidates for BVE. Variable elimination relies
on resolving the clauses containing a variable with themselves. This would not work
with klauses since we provide no corresponding inference rule for klausal resolution.
We allow vivification [31] on all clauses. During the vivification procedure, the literals
in a clause are falsified and propagated. If a conflict is derived, conflict analysis is used
to strengthen the clause. We enable propagation on klauses during vivification.

We support Stochastic Local Search (SLS) for phase saving [8]. The SLS algorithm
within CADICAL is simple and only relies on break values, i.e., the number of clauses
falsified after flipping a literal. In our implementation, a falsified cardinality constraint
adds additional weight to the break value of a literal depending on how many falsified
literals are contained within the cardinality constraint.

There are additional inprocessing techniques that we plan to include in future work,
but are less important than the implemented techniques. These include failed literal
probing [23] and Equivalent Literal Substitution (ELS). While we do not allow dupli-
cate literals in a klause, ELS could be performed by adding clauses for literal equiva-
lence, then substituting literals in all clauses but not in klauses.

6 Proof Checking

A formula is transformed from CNF to KNF by iteratively detecting cardinality con-
straints and replacing the clauses encoding the constraint with a corresponding klause,
leaving the remaining clauses unchanged. We only detect consistent clausal encodings
to ensure correct proof generation. We did not encounter any non-consistent AMO con-
straints during extraction; however, if this were the case or if it occurred for general
cardinality constraints, we could use a BDD to generate a derivation of a consistent
constraint from the extracted constraint [14]. There are two possible results produced
by the solver: a satisfying assignment or a clausal proof of unsatisfiability. And for
each there are three cases to consider: propagating natively on the KNF, reencoding the
klauses into clauses, or a hybrid approach.

6.1 Satisfying Assignments

It is possible that some variables from the original formula are removed when generat-
ing the KNF formula since certain extracted constraints use auxiliary variables that will
not appear in the corresponding klause. This will not affect proof generation for unsat-
isfiable problems but will affect satisfying assignments. If a solver produces a satisfying
assignment for the KNF formula, the auxiliary variables from the original CNF formula
will be unassigned. Every partial assignment that satisfies a cardinality constraint must

From Clauses to Klauses 123

be extendable to an assignment that satisfies the clausal encoding of the constraint. So,
calling a secondary SAT solver on the original CNF formula under the partial assign-
ment given by the solver will produce a satisfying assignment that includes the auxiliary
variables. For configurations where klauses are reencoded, the new clauses may con-
tain auxiliary variables not appearing in the original CNF formula. These can simply be
removed from the satisfying assignment produced by the solver, then the same proce-
dure for calling a secondary SAT solver is followed.

6.2 Clausal Proofs

For configurations that make use of reencoded constraints, we must generate a deriva-
tion of these constraints proving they are redundant and can be added to the original
CNF formula. To derive the pairwise encoding, we add the clauses from the encoding
to the formula. Each binary clause is RUP since assigning two literals in the constraint
to true must propagate a conflict. The derivation of the linear encoding is similar to its
clausal encoding, with an additional clause for each auxiliary variable:

Deriv(�1, . . . , �s) = Pairwise(�1, �2, �3, y), (�1 ∨ �2 ∨ �3 ∨y),Deriv(y, �4, . . . , �s) (4)

The Linear derivation makes use of so-called RAT proof steps since new auxiliary vari-
ables are being added to the formula. Then, the proof produced by the solver with
reencoded clauses is appended to the derivation, and this serves as a complete proof for
the original CNF formula.

For configurations that propagate natively on cardinality constraints, the clauses
learned by the solvers are RUP with respect to an arc-consistent clausal encoding of the
cardinality constraints. To see this, consider when a propagation on an AMO cardinality
constraint occurs – exactly when one literal is set to true – and this will propagate the
remaining literals to false for both the native propagation and an arc-consistent clausal
encoding. So, for formulas with arc-consistent encodings (the vast majority), the proof
produced by our natively propagating configurations can be checked against the original
CNF formula as is. In the special case where the clausal encoding is consistent but not
arc-consistent, a derivation is prepended to the proof.

6.3 Starting with KNF Input

Finally, we consider the case when the original formula is in KNF. A satisfying assign-
ment can be verified by checking if each klause in the KNF is satisfied. If the formula
is unsatisfiable, we can use any of the three solver configurations above to produce
a DRAT proof. We then transform the KNF formula to a CNF formula using an arc-
consistent encoding. The proof can be checked against this CNF formula. To increase
trust, one can use a formally verified KNF to CNF encoder [15]. Alternatively, one
could verify the transformation from KNF to CNF with a PB checker [25]. As a long-
term solution, existing DRAT proof checkers can be modified to accept KNF formulas
as input, with moderate changes to parsing and unit propagation. This approach would
avoid the overhead required to check a KNF to CNF translation since propagation on
klauses would be handled natively by the checker.

124 J. E. Reeves et al.

7 Experimental Evaluation

All experiments were performed in the Pittsburgh Supercomputing Center on nodes
with 128 cores and 256 GB RAM [11]. We ran 64 experiments in parallel per node with
5,000 second timeouts. Therefore, each process held approximately 4GB of memory.
This was not a limiting factor except for the only Java based solver SAT4J which failed
frommemory outs more than timeouts. We report the PAR-2 score for each solver. PAR-
2 is the sum of completed runtimes added to the number of timeouts and memory outs
multiplied by two times the timeout (10,000), averaged over the number of formulas
solved by some configuration.

We implemented the CCDCL algorithm on top of the award winning CDCL solver
CADICAL [6]. The base CADICAL is run with all default inprocessing enabled, in
contrast with the CCDCL-based approaches that disable some reasoning techniques.
Converting the KNF formulas to the pseudo-Boolean input format OPB format is purely
syntactical. As such, we are able to run both ROUNDINGSAT [21] and SAT4J [5] (with
cutting planes enabled) after extracting cardinality constraints. These two solvers pro-
vide a baseline for comparing stronger reasoning techniques against our resolution-
based CDCL solvers. We use the following configurations, given an input CNF formula,
an extracted KNF formula, and an OPB formula from the KNF formula:

– CADICAL : run CADICAL on the input CNF formula.
– REENCODE : run CADICAL on reencoded formula (Linear encoding for AMOs).
– CCDCL : run CCDCL on the extracted KNF formula.
– HYBRID : run CCDCL on the extracted KNF formula plus linearly encoded AMO
constraints. Klauses are present during SAT mode.

– ROUNDINGSAT : run ROUNDINGSAT on the extracted KNF formula (converted to
OPB).

– SAT4J : run SAT4J with combined cutting planes and resolution on the extracted
KNF formula (converted to OPB).

The runtimes presented in the experimental evaluation include only each solver’s
runtime when given the proper input formula. We do not include the extraction time
or translation time because we intend to compare solvers as if a user had generated the
input formula in different formats. From our experience, when a user has a CNF formula
generator, it is simple to modify the generator to output both KNF or OPB formulas.
The repository containing our solver, experiment configurations, and experiment data
can be found at https://github.com/jreeves3/Cardinality-CDCL.

7.1 SAT Competition Benchmarks

We evaluated solvers and the cardinality extraction tool on the SAT Competition
Anniversary Track formulas. First we performed unit propagation, removing one from
the set that was solved immediately, leaving 5,354 formulas. We applied cardinality
extraction on each formula with a timeout of 1,000 seconds per AMO constraint type
(pairwise or non-pairwise), producing a correspondingKNF formula. For the PB solvers,
we translated theKNF formula into anOPB formula (a line-by-line syntactic translation).

https://github.com/jreeves3/Cardinality-CDCL

From Clauses to Klauses 125

Table 2. Statistics running the cardinality extractor with a 1,000 second timeout for pairwise
and then non-pairwise constraints on the 5,354 competition formulas. Found is the number of
formulas containing extracted cardinality constraints (64%), Pairwise is the count with exclu-
sively pairwise encodings, Non-Pairwise is the count with exclusively non-pairwise encodings,
and Both is the count with a mixture of encodings. geq5 is the percent of formulas with at least
one constraint of at least size 5, and ≥ 10 × 10 is with at least 10 constraints of at least size 10.
We show the average runtime and the percentage of these formulas that took ≤ 15 seconds.

Found Pairwise Non-Pairwise Both ≥ 5 ≥ 10 × 10 Average. (s) ≤ 15 s

3,415 3,090 55 270 36% 17% 69.0 78.0 %

Table 2 shows that of the 3,415 formulas with cardinality constraints the vast major-
ity contained pairwise encoded constraints and we extracted non-pairwise encoded con-
straints from only a few hundred formulas. While an expert may know that for many
problems the pairwise encoding can be improved for unsatisfiable problems with more
compact encodings, these results show that many formulas still implement the pairwise
encoding. Furthermore, we log the sizes of constraints extracted, and found that 1,946
formulas contained a cardinality constraint of at least size 5, and 933 formulas con-
tained at least 10 cardinality constraints of size 10 or more. A large fraction of formulas
appearing in the SAT Competitions contained many large cardinality constraints, indi-
cating our approach could impact many potential users. By breaking down the formula
set in this way, we are able to gauge the performance of the various solving config-
urations on general formulas versus formulas with many large cardinality constraints.
Cardinality constraint extraction was fast (less than 15 seconds) for the majority of
formulas, but again, we expect it would be easy for benchmark authors to rewrite the
problems in KNF.

Table 3 shows the performance of solvers on two increasingly more restrictive for-
mula sets. It is expected that a reencoding approach or native cardinality propagation
would work better on problems with many large cardinality constraints, where the dif-
ference between encodings or propagation is more pronounced. This motivated the
curation of the formula sets.

At a high-level, the table shows the separation of our three cardinality-based con-
figurations from the default CDCL and PB solvers. For each of the PAR-2 scores,
a cardinality-based configuration has the best result. While there are some crafted
instances in the formula set that SAT4J and ROUNDINGSAT can solve instantly, nei-
ther solver performs well over all formulas. As expected, for a general set of formulas
with only AMO constraints extracted the CDCL solvers perform better. The PB solvers
are more suited for special cases where formulas contain many general cardinality con-
straints.

REENCODE performs best for unsatisfiable formulas but does not perform as well
as CADICAL on satisfiable formulas. Since many of the formulas originally use the
pairwise encoding, this result suggests that for some satisfiable formulas the pairwise
encoding outperforms the more compact Linear encoding. CCDCL and HYBRID solve
the most satisfiable formulas. The cardinality-based propagation is more effective when
the formula contains larger cardinality constraints, seen in the larger difference in PAR-

126 J. E. Reeves et al.

Table 3. From top to bottom, the first set of results are for the 1,946 (847 SAT, 716 UNSAT) for-
mulas with at least one cardinality constraint of at least size 5. The second set of results are for the
933 (405 SAT, 345 UNSAT) formulas with at least 10 cardinality constraints of at least size 10.
PAR-2 score is the sum of all completed solving times plus twice the timeout for each unsolved
benchmark that was solved by another configuration, averaged over the number of solved for-
mulas. Combined is both SAT and UNSAT formulas. Solving times do not include constraint
extraction.

Configuration SAT / UNSAT SAT PAR-2 UNSAT PAR-2 Comb. PAR-2

At least one constraint of size 5

CADICAL 790 / 619 931.68 1850.31 1352.5

CCDCL 789 / 593 953.19 2292.22 1566.59

HYBRID 795 / 585 897.54 2427.31 1598.31

REENCODE 787 / 636 965.55 1560.70 1238.18

ROUNDINGSAT 647 / 475 2592.14 3823.39 3156.17

SAT4J 373 / 240 5676.72 6720.69 6154.95

At least 10 constraints of size 10

CADICAL 373 / 269 1062.52 2824.08 1872.84

CCDCL 380 / 254 928.64 3315.55 2026.62

HYBRID 377 / 262 1017.63 3104.27 1977.49

REENCODE 372 / 282 1108.04 2297.03 1654.98

ROUNDINGSAT 294 / 185 2975.97 4924.31 3872.21

SAT4J 166 / 103 5953.62 7065.07 6464.89

2 score between CADICAL and CCDCL at the bottom set of the table. HYBRID solves
many more unsatisfiable formulas than CCDCL on the second formula set, showing the
possible benefit of a configuration that targets both satisfiable and unsatisfiable formulas
with many cardinality constraints.

Figure 4 presents the tradeoff between cardinality-based propagation and encodings.
HYBRID implements mode-switching that trades approximately half the time between
the cardinality-based propagation, leading to a slow down on average for solving unsat-
isfiable formulas. This is made clear by the 2×’s line in the scatter plot containing
many of the unsatisfiable formulas. On the other hand, HYBRID is able to solve the
satisfiable instances with many cardinality constraints much faster due to the native car-
dinality propagation. Our heuristic-based extraction only works for AMO constraints,
so many general cardinality constraints may have been missed. If the problems were
first encoded in KNF containing general cardinality constraints, we expect the results
to improve significantly. We explore this possibility in the following section with two
problems encoded directly in KNF.

7.2 Magic Squares and Max Squares

In this section we explore the Magic Squares and Max Squares problems. These prob-
lems demonstrate the effectiveness of cardinality-based propagation on satisfiable for-
mulas with general cardinality constraints, as well as the importance of good encodings

From Clauses to Klauses 127

Fig. 4. Comparison between solver configurations on the 933 formulas with at least 10 extracted
constraints of size 10 or more. The size of a mark is proportional to the number of extracted
constraints of size 10 or more, i.e., formulas with many large AMO constraints have large marks.

for unsatisfiable formulas. Both problems were generated in KNF, so no cardinality
extraction is necessary.

The Magic Squares problem asks whether the integers from 1 to n2 can be placed
on an n × n grid such that the sum of integers in each row, column, and diagonal all
have the same value (a.k.a. the magic number M) see Table 5. Problem variables denote
the integer value of a cell. We add a unary encoding of values such that the pop count of
these encoded values in a row, column, or diagonal is the corresponding sum.We use the
following constraints: (a) ALO constraints stating each cell is assigned to a value, (b)
AMO constraints stating no two nodes can have the same value, (c) klausal constraints
stating the sum of each row, column, and diagonal is at least M , (d) klausal constraints
stating the difference between the total n × n and the sum of each row, column, and
diagonal is at least the total n × n − M .

128 J. E. Reeves et al.

1 9 12 20 23

17 25 3 6 14

8 11 19 22 5

24 2 10 13 16

15 18 21 4 7 65

65

65

65

65

65 65 65 65 65 6565

Fig. 5. Left a magic square (n = 5) and right an optimal solution of a max square (n = 10,
m = 61).

Table 4. Solving times for Magic Squares (top) and Max Squares (bottom), timeout of 5,000 s.

Magic Squares

Configuration n

5 6 7 8 9 10 11 12

CCDCL 0.18 1.42 6.56 12.01 46.37 460.82 164.61 766.07

HYBRID 2.54 37.04 1070.97 887.71 – – – –

REENCODE 58.75 246.55 1099.65 4487.79 – – – –

ROUNDINGSAT 3.88 8.24 4.41 264.83 631.46 4212.7 1150.16 –

SAT4J 0.78 8.3 5.31 23.45 17.99 958.56 247.94 3177.64

Max Squares

SAT (n,m) UNSAT (n,m)

(7,32) (8,41) (9,51) (10,61) (7,33) (8,42) (9,52) (10,62)

CCDCL 0.12 15.01 539.88 660.25 217.62 – – –

HYBRID 0.02 0.92 17.0 101.42 1.07 1.27 58.53 –

REENCODE 0.01 0.62 57.83 24.33 0.18 0.72 22.82 –

ROUNDINGSAT 0.06 1582.62 – – 2.31 1046.83 – –

SAT4J 5.75 – – – 26.24 – – –

When encoding the problem with the correct magic number, it is satisfiable for
any n × n grid. Table 4 shows the solving times on the Magic Squares formulas of
increasing size. CCDCL configuration significantly outperforms the solvers, finding
satisfying assignments for large values of n. Only the PB solvers SAT4J and ROUND-
INGSAT get close to the performance of CCDCL. This shows that for some crafted
instances with many cardinality constraints, improved propagation alone can perform
better than a stronger reasoning system like cutting planes. Still, the addition of encoded
constraints in REENCODE and HYBRID can significantly worsen the performance. The
mode-switching of HYBRID gives it a slight edge over REENCODE.

TheMax Squares problem [48] asks whether you can set m cells to true in an n×n
grid such that no set of four true cells form the corners of a square. There exists an

From Clauses to Klauses 129

optimal value opt for each grid such that the Max Squares problem on opt is satisfiable
and on opt+1 is unsatisfiable. Problem variables denote whether a cell is in the solution.
We use the following constraints: (a) clauses with 4 literals blocking the 4 corners of
each possible square in the grid, (b) a klausal constraint stating at least m cells are set
to true.

The results in Table 4 show the solving times on several configurations with satisfi-
able formulas (m = opt) and unsatisfiable formulas (m = opt+1). For these formulas,
both cardinality-based propagation and PB reasoning are ineffective. The two config-
urations with encoded constraints, REENCODE and HYBRID are able to solve much
larger unsatisfiable formulas. This problem is unique in that it contains one large car-
dinality constraint unlike Magic Squares with many cardinality constraints. This may
explain the worse performance of CCDCL on even the satisfiable formulas.

The problems above highlight the main difficulty with handling klauses and reen-
codings: sometimes encoded constraints make the problem much easier, yet sometimes
keeping the cardinality constraints abstract makes the problems easier. We attempt
to address this dilemma with the combined configuration HYBRID that has access
to auxiliary variables throughout solving, and klauses during SAT modes. For Magic
Squares, HYBRID outperforms REENCODE, and for Max Squares HYBRID outper-
forms CCDCL. For future work, we plan to improve the combined approach HYBRID

by modifying solver heuristics. For example, variable scores can be modified to prefer
deciding on auxiliary variables at different stages of the search. With these and other
changes, we believe HYBRID can get closer to the performance of a virtual portfolio of
REENCODE and CCDCL.

8 Conclusion and Future Work

We argue the input format for SAT solvers and proof checkers should be enriched
with klauses. In this work, we present several solver configurations that take as input
KNF formulas extracted from CNF formulas. In an experimental evaluation we show
that with modifications to the state-of-the-art solver CADICAL, our three cardinality-
based configurations outperform default CDCL and PB solvers on SAT Competition
and Magic/Max Squares formulas. The CCDCL configuration performs well on satis-
fiable formulas, the REENCODE configuration on unsatisfiable formulas, and HYBRID

on a mixture of both. We plan to extend this further by incorporating partial encodings
dynamically during runtime. By partially encoding the cardinality constraints as the
solver runs, we can guide the solver to focus on cardinality constraints that appear more
important, and provide auxiliary variables for those cardinality constraints in case the
problem appears to be unsatisfiable.

This initial step opens many avenues for future work. We plan to incorporate more
complex propagation-based cardinality constraint detection in the extractor in order
to go beyond AMO constraints. We plan to modify a DRAT proof-checker to take
KNF formulas as input and propagate on klauses, comparing the verification tool chain
against corresponding pseudo-Boolean toolchains. And finally, we plan to explore the
possibility of using KNF to enhance other paradigms including local search and parallel
solving.

130 J. E. Reeves et al.

References

1. Abı́o, I., Nieuwenhuis, R., Oliveras, A., Rodrı́guez-Carbonell, E.: A new look at BDDs for
pseudo-Boolean constraints. Journal of Artificial Intelligence Research 45, 443–480 (2012)

2. Abı́o, I., Stuckey, P.J.: Conflict directed lazy decomposition. In: Principles and Practice of
Constraint Programming (CP) (2012)

3. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of boolean cardinality constraints. In:
Principles and Practice of Constraint Programming (CP). pp. 108–122. Springer (2003)

4. Becker, B., Drechsler, R., Eggersglüß, S., Sauer, M.: Recent advances in SAT-based ATPG:
Non-standard fault models, multi constraints and optimization. In: Design and Technology
of Integrated Systems in Nanoscale Era (DTIS). pp. 1–10 (2014)

5. Berre, D.L., Parrain, A.: The sat4j library, release 2.2. Journal on Satisfiability, Boolean
Modeling and Computation 7, 59–6 (2010)

6. Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling, and YalSAT entering the SAT com-
petition 2017 (2017)

7. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without bdds. In:
Tools and Algorithms for Construction and Analysis of Systems (TACAS) (1999)

8. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba, Plingeling
and Treengeling entering the SAT competition 2020 (2020)

9. Biere, A., Fröhlich, A.: Evaluating CDCL variable scoring schemes. In: Theory and Appli-
cations of Satisfiability Testing (SAT). LNCS, vol. 9340, pp. 405–422 (2015)

10. Biere, A., Le Berre, D., Lonca, E., Manthey, N.: Detecting cardinality constraints in CNF.
In: Theory and Applications of Satisfiability Testing (SAT). LNCS, vol. 8561, pp. 285–301.
Springer (2014)

11. Brown, S.T., Buitrago, P., Hanna, E., Sanielevici, S., Scibek, R., Nystrom, N.A.: Bridges-
2: A Platform for Rapidly-Evolving and Data Intensive Research, pp. 1–4. Association for
Computing Machinery, New York, NY, USA (2021)

12. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Com-
puters 35(8), 677–691 (1986)

13. Bryant, R.E., Biere, A., Heule, M.J.H.: Clausal proofs for pseudo-Boolean reasoning. In:
Tools and Algorithms for the Construction and Analysis of Systems (TACAS). LNCS, vol.
12651, pp. 76–93 (2022)

14. Bryant, R.E., Biere, A., Heule, M.J.H.: Clausal proofs for pseudo-boolean reasoning. In:
Tools and Algorithms for the Construction and Analysis of Systems (TACAS). p. 443–461.
Springer (2022)

15. Codel, C.: Verifying SAT Encodings in Lean. Master’s thesis, Carnegie Mellon University
Pittsburgh, PA (2022)

16. Cook, W., Coullard, C.R., Turán, G.: On the complexity of cutting-plane proofs. Discrete
Applied Mathematics 18(1), 25–38 (1987)

17. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial Intelligence
113(1–2), 41–85 (1999)

18. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination.
In: Theory and Applications of Satisfiability Testing (SAT). LNCS, vol. 3569, pp. 61–75.
Springer (2005)

19. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electron. Notes
Theor. Comput. Sci. 89(4), 543–560 (2003)

20. Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. Journal on Satis-
fiability, Boolean Modeling and Computation, 2(1-4), 1–26 (2006)

21. Elffers, J., Nordström, J.: Divide and conquer: Towards faster pseudo-Boolean solving. In:
Lang, J. (ed.) International Joint Conference on Artificial Intelligence (IJCAI). pp. 1291–
1299. ijcai.org (2018)

From Clauses to Klauses 131

22. Elffers, J., Nordström, J.: A cardinal improvement to pseudo-Boolean solving. In: Confer-
ence on Artificial Intelligence (AAAI). pp. 1495–1503. AAAI Press (2020)

23. Freeman, J.W.: Improvements to Propositional Satisfiability Search Algorithms. Ph.D. thesis,
University of Pennsylvania, USA (1995)

24. Gent, I.P.: Arc consistency in sat. In: European Conference on Artificial Intelligence (2002)
25. Gocht, S., Martins, R., Nordström, J., Oertel, A.: Certified CNF translations for pseudo-

Boolean solving. In: Meel, K.S., Strichman, O. (eds.) Theory and Applications of Satisfia-
bility Testing (SAT). LIPIcs, vol. 236, pp. 16:1–16:25. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2022)

26. Hooker, J.: Generalized resolution and cutting planes. Annals of Operations Research 12,
217–239 (1988)

27. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: A Python toolkit for prototyping with
SAT oracles. In: Theory and Applications of Satisfiability Testing (SAT). pp. 428–437 (2018)

28. Jabbour, S., Sais, L., Salhi, Y.: A pigeon-hole based encoding of cardinality constraints.
Theory and Practice of Logic Programming 13 (2013)

29. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: International Joint Conference
on Automated Reasoning (IJCAR). LNCS, vol. 7364, pp. 355–370. Springer (2012)

30. Klieber, W., Kwon, G.: Efficient CNF encoding for selecting 1 from n objects. In: Constraints
in Formal Verification (CFV). p. 39 (2007)

31. Li, C.M., Xiao, F., Luo, M., Manyà, F., Lü, Z., Li, Y.: Clause vivification by unit propagation
in CDCL SAT solvers. Artificial Intelligence 279(C) (2020)

32. Liang, J., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching heuristic for
SAT solvers. In: Theory and Applications of Satisfiability Testing (SAT). LNCS, vol. 9710,
pp. 123–140 (2016)

33. Lotz, K., Goel, A., Dutertre, B., Kiesl-Reiter, B., Kong, S., Majumdar, R., Nowotka, D.:
Solving string constraints using sat. In: Enea, C., Lal, A. (eds.) Computer Aided Verification
(CAV). pp. 187–208. Springer, Cham (2023)

34. Maglalang, J.C.: Native cardinality constraints: More expressive, more efficient constraints
(2019)

35. Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of Boolean formulas. In: Haifa
Verification Conference (HVC). LNCS, vol. 7857, pp. 102–117 (2013)

36. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In:
Handbook of Satisfiability, pp. 131–153. IOS Press (2009)

37. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
efficient SAT solver. In: Proceedings of the 38th Annual Design Automation Conference, p.
530–535. ACM (2001)

38. Nguyen, V.H., Nguyen, V.Q., Kim, K., Barahona, P.: Empirical study on SAT-encodings of
the at-most-one constraint. In: Conference on Smart Media and Applications. p. 470–475.
Smart Media and Applications (SMA), ACM, New York, NY, USA (2021)

39. Niemetz, A., Preiner, M.: Bitwuzla. In: Computer Aided Verification (CAV). p. 3–17.
Springer (2023)

40. Oh, C.: Between SAT and UNSAT: The fundamental difference in CDCL SAT. In: Theory
and Applications of Satisfiability Testing (SAT). pp. 307–323. Springer International Pub-
lishing (2015)

41. Pan, G., Vardi, M.Y.: Search vs. symbolic techniques in satisfiability solving. In: Theory and
Applications of Satisfiability Testing (SAT). LNCS, vol. 3542, pp. 235–250 (2005)

42. Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In: Principles
and Practice of Constraint Programming (CP). LNCS, vol. 3709, pp. 827–831 (2005)

43. Soh, T., Le Berre, D., Roussel, S., Banbara, M., Tamura, N.: Incremental SAT-based method
with native boolean cardinality handling for the hamiltonian cycle problem. In: European
Conference on Logics in Artificial Intelligence. vol. 8761, p. 684-693. Springer (2014)

132 J. E. Reeves et al.

44. Soos, M., Bryant, R.E.: Combining CDCL, Gauss-Jordan elimination, and proof generation.
In: Pragmatics of SAT (2022)

45. Stephan Gocht, Ciaran McCreesh, J.N.: Veripb: The easy way to make your combinatorial
search algorithm trustworthy. In: From Constraint Programming to Trustworthy AI (2020)

46. Tan, Y.K., Heule, M.J.H., Myreen, M.O.: cake lpr: Verified propagation redundancy check-
ing in CakeML. In: Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), Part II. LNCS, vol. 12652, pp. 223–241 (2021)

47. Whittemore, J., Kim, J., Sakallah, K.: Satire: A new incremental satisfiability engine. In:
Design Automation Conference (DAC). p. 542–545. DAC ’01, ACM, New York, NY, USA
(2001)

48. Wynn, E.: A comparison of encodings for cardinality constraints in a SAT solver. ArXiv
abs/1810.12975 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

CaDiCaL 2.0

Armin Biere1,2(B) , Tobias Faller1 , Katalin Fazekas3 , Mathias Fleury1,2 ,
Nils Froleyks2 , and Florian Pollitt1

1 University Freiburg, Freiburg, Germany
2 Johannes Kepler University Linz, Linz, Austria

biere@cs.uni-freiburg.de
3 TU Wien, Vienna, Austria

Abstract. The SAT solver CaDiCaL provides a rich feature set with a
clean library interface. It has been adopted by many users, is well doc-
umented and easy to extend due to its effective testing and debugging
infrastructure. In this tool paper we give a high-level introduction into
the solver architecture and then go briefly over implemented techniques.
We describe basic features and novel advanced usage scenarios. Experi-
ments confirm that CaDiCaL despite this flexibility has state-of-the-art
performance both in a stand-alone as well as incremental setting.

1 Introduction

Progress in SAT solving has a large impact on model checking, SMT, theorem
proving, software- and hardware-verification, and automated reasoning in gen-
eral, and, according to “The SAT Museum” [20], SAT solvers get faster and
faster, at least on benchmarks consisting of a single formula. For incremental
SAT solving it was less clear, particularly as preprocessing [24] and inprocess-
ing [69] heavily contributing to this improvement were considered incompatible
with incremental solving (the winners of the SAT competition main track rely
on inprocessing since 2009 except in 2011/2012/2016 and since 2005 all on pre-
processing).

A simple and elegant solution to this problem is due to the award win-
ning incremental SAT solving approach [39] first implemented in CaDiCaL. It
reverts clause removal, i.e., restores clauses removed during pre- and inprocess-
ing, restrictively on a case-by-case basis. It allows incremental solving to make
full use of pre- and inprocessing techniques, in contrast to less general solu-
tions [87,89,90,112], without reducing their effectiveness nor burden the user to
“freeze” and “melt” variables (“Don’t Touch” variables in [74]) as necessary with
MiniSat [37].

This is the first tool paper on CaDiCaL, while previous, actually well cited,
descriptions appeared only as system description in non-peer-reviewed SAT com-
petition proceedings [14–16,18,21,22]. In general, even though “SAT is consid-
ered a killer app for the 21st century” (Donald Knuth), there are few tool papers
on SAT solvers, with the prominent exception of MiniSat [37], which appeared
in 2003 and was awarded the test-of-time award at SAT’22. The descriptions of
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 133–152, 2024.
https://doi.org/10.1007/978-3-031-65627-9_7

https://doi.org/10.5281/zenodo.10943125
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65627-9_7&domain=pdf
http://orcid.org/0000-0001-7170-9242
http://orcid.org/0000-0002-0864-077X
http://orcid.org/0000-0002-0497-3059
http://orcid.org/0000-0002-1705-3083
http://orcid.org/0000-0003-3925-3438
http://orcid.org/0009-0001-4337-6919
https://doi.org/10.1007/978-3-031-65627-9_7

134 A. Biere et al.

CryptoMiniSat [106], Glucose [5] and IntelSAT [86] introduce the corre-
sponding SAT solver and can be considered to be tool papers too though.

Development of CaDiCaL was triggered by discussions at the “Theoreti-
cal Foundations of SAT Solving Workshop” in 2016 at the Fields Institute in
Toronto, where it became apparent that both theoreticians and practitioners in
SAT have a hard time understanding how practical SAT solving evolved, what
key components there are in modern SAT solvers and, most importantly, that
it was apparently getting harder and harder to modify state-of-the-art solvers
for controlled experiments or to try out new ideas. With CaDiCaL we tried to
change this, thus the main objective was to produce a clean solver, with well-
documented source code, which is easy to read, understand, modify, test, and
debug, without sacrificing performance too much.

The first goals were achieved from the beginning and performance improved
over the years. After its introduction in 2017 CaDiCaL continued to achieve high
rankings in yearly SAT competitions, e.g., in 2019 it solved the largest number
of instances in the main track, but scored less than the winner. It never won
though except for the most recent SAT competition in 2023 where CaDiCaL was
combined with a strong preprocessor employing bounded variable addition [55,
82]. The competition organizers paraphrased this as “CaDiCaL strikes back”.

Moreover, with the show-case of our new incremental approach [39] we
invested in increasing the feature set supported by CaDiCaL culminating for
now in supporting “user propagators”. This for instance allowed to replace the
original but highly modified MiniSat based SAT engine in cvc5 by CaDiCaL,
as described in a recent well-received SAT’23 paper [40].

The users of CaDiCaL fall into three categories. A first group applies the
solver out of the box on benchmarks where CaDiCaL turns out to have superior
performance. As an example consider solving mathematical problems with the
help of SAT solving such as [78,91,108,114]. Second, there is an increasing user
base, including [6,11,23,39,40,65,92,95,101], which relies on the rich application
programmable interface (API) provided by CaDiCaL, particularly its incre-
mental features. Third, there are research prototypes modifying or extending
CaDiCaL to achieve new features, including [7,17,43,55,64,71]. Some of these
modifications have been integrated [44,100] but others remain future work [55].

Finally, CaDiCaL is used as a blue-print for understanding, porting, and
integrating state-of-the-art techniques into other solvers. In this regard we are in
contact with companies in cloud services, hardware design, and eletronic design
automation. It was also consulted in developing IsaSAT [45], the only competi-
tive fully verified SAT solver. Furthermore CaDiCaL was adopted as template
solver for the “hack track” of the yearly SAT competition since 2021 as an “easy
to hack” state-of-the-art SAT solver.

Related SAT solvers in the SAT competition often lack documentation, are
hard to extend and modify, and, most importantly, do not provide such a rich and
clean library interface as CaDiCaL. For instance our SAT solver Kissat [18]
falls into this category. It has been dominating the SAT competition 2020–2022
(in 2022 all top-ten solvers were descendants of Kissat), is more compact in

CaDiCaL 2.0 135

memory usage and often faster on individual instances, but is lacking support
for even the most basic incremental features such as assumptions.

The majority of the solvers in the SAT competition are restricted in their
feature set as they are tuned for stand-alone usage, i.e., running the solver on
a single formula stored in a file in DIMACS format [76], even though there is
occasionally an incremental track in the SAT competition (last one that really
took place was in 2020 as the one announced in 2021 was later cancelled).

Prominent SAT solvers with a richer feature set and particularly support-
ing incremental solving, beside the rather out-dated MiniSat [37], are newer
versions of CryptoMiniSat [106], and Glucose [4]. The former is actively
developed and in terms of implemented techniques has quite some overlap with
CaDiCaL. In addition it offers special support for XOR reasoning, solution
sampling and model counting [105]. The Glucose solver has been improved for
incremental solving [3] but is not comparable in terms of implemented techniques
nor features.

Unique and non-common features of CaDiCaL include: literal flipping [23],
single clause assumption [46], incremental solving without freezing [39], extensive
logging support, record & play of API calls, model-based testing, internal proof
and solution (model) checking, termination and clause learner interfaces, various
preprocessing techniques, an online proof tracing interface, formula extraction
(after simplification), support of many external proof formats (DRAT, LRAT,
FRAT, VeriPB) [100], and last but not least the user propagator [40].

This paper is structured by describing in the next section the architecture of
CaDiCaL, which also acts as a summary of integrated techniques and provided
features. The rest of the paper consists of highlighting recently added features
of the solver or features not presented before, followed by experiments showing
that CaDiCaL has state-of-the-art performance, before concluding.

2 Architecture

CaDiCaL is a modern SAT solver with many features written in C++. It can
be used as stand-alone application through the command-line interface (CLI) or
as library through its application programming interface (API) in C++ (or in lim-
ited form in C). Figure 1 depicts a structural overview. The central component,
called Internal, implements CDCL search [83,103] and formula simplification
techniques [24,69]. On top of it, the External facade hides the internals while
maintaining the proofs and solutions (aka models) of solved problems.

The heart of the solver is the function cdcl_loop_with_inprocessing in
Internal which interleaves the CDCL loop with formula simplification steps (i.e.,
with inprocessing [69]). During Search, CaDiCaL supports several techniques,
like chronological backtracking [84,88], rephasing [32], and shrinking [44], which
are only some of the important features. See Fig. 1 for more references.

The CDCL loop [83] is scheduled to be preempted in regular intervals to
let the solver apply various formula simplification [24] and inprocessing tech-
niques [69]. Each technique is implemented separately (e.g., in file subsume.cpp)

136 A. Biere et al.

Fig. 1. An overview of the main components of CaDiCaL.

and has (i) a corresponding function which determines if the solver should pre-
empt CDCL search and apply the technique (e.g., subsuming()) and (ii) a
function that actually applies the technique (e.g., subsume()).

As Fig. 1 shows, CaDiCaL implements a variety of preprocessing/inprocess-
ing techniques, including bounded variable elimination (BVE) [36], arguably
the most effective one. As further examples, CaDiCaL also supports vivifica-
tion [79,98] and instantiation [1]. Combining them [22] won the CaDiCaL “hack
track” 2023.

The External component communicates with Internal by mapping active
variables into a consecutive sequence of integers (compacting) and extends inter-
nal solutions back to complete solution of the input problem with the help of
the reconstruction stack [67]. In incremental use cases External also keeps the
reconstruction stack clean [39] by “undoing” previous inprocessing steps. Beyond
that, External connects internal and external proof generation (see Sect. 4).

We distinguish two types of API usage in CaDiCaL: static and dynamic. The
static API provides access to standard solver functionalities between SAT solving
calls (like IPASIR [8], parsing DIMACS, or iCNF files). With ILB as proposed by
IntelSAT [86], we try to keep the trail unchanged between incremental calls.

The dynamic API interacts and controls the solver during Search. The
solver provides dynamic access to clauses learned during conflict analysis to
connected Learner instances. The Terminator class interface allows users to
asynchronously terminate the solving procedure. Through the Iterator inter-

CaDiCaL 2.0 137

face of CaDiCaL, the user can iterate over the irredundant (simplified) clauses
of the problem or can iterate through clauses on the reconstruction stack, sup-
porting simplified formula extraction and external model reconstruction.

3 External Propagator

Applications of CaDiCaL, for example within the SMT solver cvc5 [11] (and
maybe in the future within other lazy SMT solvers, such as Z3 [85] or Yices [35]),
or to support Satisfiability Modulo Symmetries (SMS) [40,116], require more
control over the solver than provided by the standard incremental IPASIR inter-
face [8]. To this purpose CaDiCaL supports a more fine-grained and tighter inte-
gration into larger systems by allowing an external user propagator [26,48,49]
to be connected to it through the Ipasir-Up interface [40].

This abstract interface is defined in the ExternalPropagator class which
provides corresponding notification and callback functions. Inheriting from this
class allows users to implement dedicated external propagators which for instance
import and export learned clauses or suggest decisions to the SAT solver. The full
description of functionalities supported by the Ipasir-Up interface is available
in [40]. Here we focus on CaDiCaL-specific implementation details.

First, CaDiCaL ensures that only external variables appear in the
Ipasir-Up interactions, thereby allowing users to ignore the internal (compacted)
details. Furthermore, CaDiCaL employs preprocessing and inprocessing even
when an external propagator is connected. To avoid the need to restore clauses
during the CDCL loop and to ensure that solution reconstruction [67] does not
change assignments of observed variables (i.e., relevant to the external prop-
agator), every observed variable is automatically frozen. As a side effect, the
external propagator can only set clean [39] variables as new observed variables
during search. As fresh variables are always clean, this is acceptable and mostly
sufficient in practice.

Finally, CaDiCaL, by default, considers every external clause as irredun-
dant, exactly as the original input clauses of the problem. Thus, during clause
database reduction they are not candidates for removal and so can be deleted
only when implied by the rest of the formula. In future work we plan to allow
users to specify the redundancy of the external clauses and to support incremen-
tal inprocessing [39] even for variables observed by the external propagator.

4 Proofs

Unsatisfiability proof certificates are an integral part of SAT solving [59,60]. Even
though clausal proofs were introduced in 2003 [37,52], checking large proofs only
became viable with deletion information [58]. The most prominent format today
is DRAT [111] which was mandatory in the SAT competition from 2016 [10] to
2022. In 2023 both DRAT [111] and VeriPB [28] were allowed in the competi-
tion [9].

138 A. Biere et al.

Fig. 2. Tracer virtual callback function to add a derived clause to the proof.

The proof formats GRAT [75] and LRAT [34] were proposed to allow even
faster proof checking, i.e., by trading time for space, but also to facilitate for-
mally verified proof checkers (e.g., Cake_Lpr [110]). They require hints for
clause additions in form of antecedent clause identifiers (ids). External tools like
Drat-Trim [111] can add such hints in a post-processing step to DRAT proofs.

The proof formats DRAT [111], FRAT [7], LRAT [34], and VeriPB [28] are
supported by CaDiCaL. It is the first solver to support LRAT natively. Without
the need for post-processing this reduces proof checking time [100] substantially.

Recent diversification of proof formats in the SAT competition [9] moti-
vated us to add VeriPB. It is a general proof format for various applica-
tions [28,50,51]. The tool-chain for checking SAT solver proofs with the veri-
fied VeriPB backend [28] is under development and not fast enough yet. Actu-
ally, BreakID-Kissat [9], one of the top performers in the SAT competition
2023, lost due to multiple timeouts during proof checking. Similarly to FRAT,
CaDiCaL can provide antecedents in VeriPB proofs. We expect this to speed
up VeriPB proof checking considerably.

5 Tracer Interface

The dynamic API allows to extract proof information from CaDiCaL online
without files by connecting user-defined tracers as instances of the virtual C++

class Tracer. It provides notifications and callbacks for proof-related events,
such as addition and deletion of clauses. Proof writers for all formats (Sect. 4)
as well as both internal proof checkers (Sect. 8) go through the Tracer class.
Furtheremore, there is ongoing work to produce VeriPB proofs for the MaxSAT
solver Pacose [97] using the Tracer interface in CaDiCaL.

We support a large set of event types covering a multitude of use cases.
Information provided includes antecedent ids and literals of clauses, separation
between original, derived, and restored [39] clauses, and information of clause
redundancy, as well as weakening [69] and strengthening [28,69]. For example,
Fig. 2 shows the callback function for the proof event of adding a derived clause,
where “derived” means entailed by the formula (i.e., not original input clause).
Additional notifications include reserving ids for original clauses, as used for
generating file based proof formats, such as VeriPB and LRAT.

For each solve call, a concluding event gives precise information about the
result: a model concludes satisfiable instances, whereas for unsatisfiable instances
we provide information about the final conflict clause. We have recently started
to explore incremental proof tracing as well [41,42].

CaDiCaL 2.0 139

6 Constraints and Flipping

SAT solvers are used in a wide range of applications in many different ways.
For incremental solving, MiniSat has been the predominant choice. However, in
recent years, CaDiCaL has begun to replace MiniSat in numerous applications,
most prominently cvc5. This can be attributed to its overall better performance
and various application-specific features unique to CaDiCaL.

A prime example is the constraint feature [46], which allows users to define
a temporary clause with the same lifespan as assumptions. It was initially
developed to support the SAT based model checking algorithm IC3 [29], which
requires often millions of incremental SAT calls during a single run, where each
query needs to assume a single clause valid only for that call.

Constraints do not introduce new functionality per se, as temporary clauses
can be simulated by activation literals. But they do allow the solver to employ
a more efficient implementation, as they particularly avoid to introduce those
assumption variables. Beyond IC3, constraints have also proven useful in our
backbone extractor CadiBack [23]. The purpose of using constraint in backbone
extraction is to find maximally diverging models in order to eliminate backbone
candidates fast. CadiBack uses constraints to ensure that each new model
includes at least one literal not observed in previous models. If this is not possible,
all unseen literals are immediately determined to be in the backbone.

Once a model is found, we use another feature called literal flipping [19] to
eliminate further backbone candidates [23]. A literal is flippable if toggling its
value also results in a model. This concept was employed to speed-up backbone
MiniBones [66] before and also MUS extraction [13]. In these earlier works it
was implemented by iterating over all clauses outside the SAT solver, searching
for literals that can be flipped in the model provided by the solver. Using clause
watching our implementation inside of CaDiCaL is much more efficient.

7 Interpolation

Software-based test generation targeting RISC-V in the Scale4Edge project [38]
relied on interpolation-based model checking and MiniCraig to generate inter-
polants. It uses MiniSat as SAT solver and in this application constitutes a
performance bottleneck. Therefore we developed a new more scalable solver
CaDiCraig based on CaDiCaL and its proof tracer API (Sect. 5).

The implementation of CaDiCraig is external to CaDiCaL. It uses the
same interpolant construction as in MiniCraig but is now seperated from
MiniSat. We are not aware of any other modern open-source SAT solver which
allows to build interpolants through a generic API without being forced to write
the whole proof to a file, trimming and prost-processing it on disk, such as in [53].

The CaDiCraig tracer constructs partial interpolants as usual, e.g., see [73].
Through the proof tracer API the tracer is notified by CaDiCaL about each
new clause and its antecedents needed to derive it by resolution. It then builds a
partial interpolant for that clause using previously computed partial antecedent

140 A. Biere et al.

interpolants. When the solver concludes deriving an empty clause and thus show-
ing unsatisfiability (Sect. 5) the final interpolant is built from the antecedents of
the empty clause. It can then be retrieved by via the CaDiCraig API.

8 Testing and Debugging

Such a sophisticated and complex software as CaDiCaL necessitates rigorous
testing to ensure correctness of interactions between its multitude of features. In
this section we discuss our arsenal of essential testing and debugging techniques.

First, we primarily rely on logging for debugging purposes. For instance, when
enabled, CaDiCaL will print every single step from its creation to its deletion.
From an implementation perspective, logging features are not compiled in by
default to avoid performance overhead in release builds. Furthermore, if enabled
at run-time, CaDiCaL prints verbose information about the inprocessing sched-
ule, useful for debugging performance regressions (e.g., inprocessor scheduling).

Further useful debugging tools are the built-in checkers. The LRAT and DRAT
checkers are optional and ensure that every learned clause is properly derived.
The new LRAT checker [100] was crucial for achieving LRAT support.

Last but not least we want to mention the API fuzzer Mobical, which
generates random API calls and minimizes failing runs. Internally, Mobical

implements a state machine issuing API calls. It also performs option fuzzing by
varying available options. This approach is extremely useful to produce short fail-
ing API call traces focusing on the actual defect, e.g., like picking a low garbage
collection limit to trigger a defect in the garbage collector. Combining checkers
with Mobical greatly increases its strength. During development it is advisable
to build Mobical and CaDiCaL with assertions and checkers enabled.

Mobical is similar in spirit to the related model-based tester of
Lingeling [2] for SAT and BtorMBT [94] and Murxla [93] targeting SMT.
Note that other SMT fuzzers [27,30,96,102] focus on non-incremental usage or
only support incremental “push & pop” [80]. For non-incremental SAT solving,
there is also cnffuzz fuzzer and the cnfdd delta-debugger [2,31].

Accordingly, we have implemented a MockPropagator class in Mobical

to test the ExternalPropagator API. It fuzzes the Ipasir-Up implementa-
tion in combination with all options and features of the solver. It revealed several
corner-cases which we believe would have been very hard to trigger otherwise.

Mobical targets only incremental SAT problems and could not help when
incorrect interpolants showed up in earlier experiments with MiniCraig and
CaDiCraig. Therefore, we have built an external interpolation fuzzer in Python.
It checks interpolants and an accompanying delta-debugger minimizes problems
by deleting command line options, clauses, and variables.

9 Experiments

The performance of CaDiCaL 2.0 was evaluated in three experiments. We first
follow the non-incremental setup of the main track of the SAT competition,

CaDiCaL 2.0 141

where solvers are run on benchmark files in DIMACS format. The second exper-
iment focuses on incremental usage, i.e., following the incremental track of the
competition. Finally we show the effectiveness of CaDiCaL in the context of
interpolation via its Tracer API. All experiments were conducted on our cluster
with Intel Xeon E5-2620 v4 CPUs running at 2.10 GHz (turbo-mode disabled).

Non-Incremental. The winner Sbva-CaDiCaL [54] of the main track of the SAT
Competition 2023 combined a novel technique for bounded variable addition [82]
with CaDiCaL 1.5.3. In their implementation preprocessing was limited to 200 s
which yields different preprocessed formulas over multiple runs. Therefore, we ran
the preprocessor of Sbva-CaDiCaL separately for 200 s, and then gave the same
formulas to CaDiCaL 1.5.3 and our new version CaDiCaL 2.0. Running them
for 5000 s as in the competition (ignoring preprocessing time in essence) gave
very similar results. We provide more details in the artifact. This confirms that
CaDiCaL (also in version 2.0) is state-of-the-art in non-incremental solving.

Incremental. How to assess the incremental performance of a SAT solver is less
established. To present an unbiased evaluation, we follow the principles set out
by the last incremental track of the SAT competition in 2020 [47]: The solvers
are evaluated in six different applications, each featuring 50 benchmarks, with
a 2000 s timeout and 24 GB memory limit. Four applications are carried over
directly from the 2020 competition: the CEGAR-based QBF solver Ijtihad,
the simple backbone extractor Bones, the longest simple-path search LSP, and
the MaxSAT solver Max. However, we exclude two applications: the essential
variable extractor and the classical planner Pasar. Both use features that are
not present in all solvers. The former queries ipasir_learned, which is missing
from CaDiCaL 1.0, and the latter relies on limiting the number of conflicts.
Instead, we include the bounded model checker for bit-level hardware designs
CaMiCaL [39] and the sophisticated backbone extractor CaDiBack [23].

The benchmarks from the incremental track from the 2020 SAT Competition
remain unchanged. For CaMiCaL, we randomly select 50 Boolean circuits used
in HWMCC’17 [25]. Although CaDiBack solves the same problem as Bones,
we opt for a distinct set of benchmarks. In 2020 the “smallest and easiest sat-
isfiable” [47] CNF formulas were selected and even though backbone extraction
is harder than mere solving, they were rather easy. Conversely, we compile a
non-trivial set of benchmarks by randomly selecting satisfiable formulas from
past competitions (2004–2022) [23] that take Kissat 3.0.0 [19] more than 20 s
to solve. We use Kissat as it is not incremental and hence does not compete.

The artifact has a comparison of CryptoMiniSat and CaDiCaL on 1798
formulas [23] and indicates that our selection does not impact the outcome. As
detailed in Sect. 6, CaDiBack utilizes constraints, which are only available in
recent versions of CaDiCaL and are simulated with activation literals otherwise.

Our evaluation includes all solvers that competed in 2020: Riss 7.1.2 [81],
CryptoMiniSat 5 (CMS) [104,107], and abcdSat i20 [33]. The CaDiCaL

version from that year is referred to as CaDiCaL 2020. The other two versions
are 1.0 from 2019 and our latest release 2.0. We also include MiniSat 2.2 and

142 A. Biere et al.

the latest version of Glucose 4.2.1. Table 1 presents for each SAT solver and
application: the PAR2 score, which is the average runtime in seconds with a
penalty of 4000 for unsolved instances; and the number of solved instances.

Table 1. Performance comparison of six incremental solvers, with three versions of
CaDiCaL (2000 s timeout). For each solver, we report PAR2 score over 50 benchmarks
per application and number of solved instances (“PAR2|#solved”). The four applications
to the right have been used in the incremental track of the 2020 SAT competition. The
best results per application are marked in bold. The last row presents the hypothetical
Virtual Best Solver which always picks the best performing backend for each instance.

CaDiBack CaMiCaL Bones LSP Max Ijtihad Total
CaDiCaL 2.0 3297|11 2606|18 494|45 1898|27 1976|26 2980|13 2209|140

2020 3409|9 2677|17 622|43 1955|26 2015|25 2986|13 2277|133
1.0 3495|7 2627|18 595|44 2011|26 2028|25 2989|13 2291|133
CMS 3491|8 2701|17 397|46 1773|29 2021|25 3057|12 2240|137
MiniSat 3678|5 2807|16 687|43 1993|26 2094|24 3123|11 2397|125
Riss 3665|6 2836|15 892|40 1835|28 2017|25 3140|11 2398|125
abcdSat 3582|7 2966|13 535|46 2493|21 2037|26 3207|10 2470|123
Glucose 3778|4 2981|13 948|40 2078|25 2117|24 3206|10 2518|116
VBS 3127|14 2546|19 257|48 1765|29 1856|28 2896|14 2075|152

Our results show that CaDiCaL 2.0 reaches state-of-the-art performance,
demonstrating a distinct improvement over previous versions. Also, differing
from the findings in [72], we see a significant advantage of the newer CaDiCaL

and CryptoMiniSat, over the older MiniSat, further substantiated below.

Interpolants. To validate CaDiCraig using CaDiCaL, we converted all 400
benchmarks of the SAT Competition 2023 into interpolation problems split into
A and B parts chosen with the goal to assign related clauses to the same part in
order to keep the number of global variables limited. The index of the smallest
variable of each clause determines the probability of the clause being assigned
to A. On our crafted benchmarks (5000 s timeout, 7 GB), CaDiCraig signifi-
cantly outperforms MiniCraig, solving 117 benchmarks, compared to only 75.

10 Conclusion

In this very first conference paper on CaDiCaL we reviewed its most important
components and features as well as its testing and debugging infrastructure.
We highlighted its use as SAT engine in SMT solving via the user propagator
interface and how the tracer API can be used to compute interpolants. Our
experiments show that CaDiCaL remains efficient despite this flexibility.

Producing incremental proofs is ongoing work [41,42]. Further future work
consists of producing incremental proofs for all features supported by CaDiCaL,

CaDiCaL 2.0 143

avoiding to freeze observed variables by the user propagator, and porting into
the main branch features provided by other users.

Acknowledgements. This work was supported in part by the Austrian Science
Fund (FWF) under project T-1306, W1255-N23, and S11408-N23, the state of Baden-
Württemberg through bwHPC, the German Research Foundation (DFG) through grant
INST 35/1597-1 FUGG, the German Federal Ministry of Education and Research
(BMBF) within the project Scale4Edge under contract 16ME0132, and by a gift from
Intel Corporation.

References

1. Andersson, G., Bjesse, P., Cook, B., Hanna, Z.: A proof engine approach to solving
combinational design automation problems. In: Proceedings of the 39th Design
Automation Conference, DAC 2002, New Orleans, LA, USA, 10–14 June 2002,
pp. 725–730. ACM (2002). https://doi.org/10.1145/513918.514101

2. Artho, C., Biere, A., Seidl, M.: Model-based testing for verification back-ends. In:
Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS, vol. 7942, pp. 39–55. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38916-0_3

3. Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental SAT
solving with assumptions: application to MUS extraction. In: Järvisalo, M., Van
Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39071-5_23

4. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Boutilier, C. (ed.) IJCAI 2009, Proceedings of the 21st International Joint
Conference on Artificial Intelligence, Pasadena, California, USA, 11–17 July 2009,
pp. 399–404. Morgan Kaufmann Publishers Inc., San Francisco (2009). http://
ijcai.org/Proceedings/09/Papers/074.pdf

5. Audemard, G., Simon, L.: On the glucose SAT solver. Int. J. Artif.
Intell. Tools 27(1), 1840001:1–1840001:25 (2018). https://doi.org/10.1142/
S0218213018400018

6. Bacchus, F.: MaxHS in the 2022 MaxSat evaluation. In: Bacchus, F., Berg, J.,
Järvisalo, M., Martins, R. (eds.) Proceedings of MaxSAT Evaluation 2020 – Solver
and Benchmark Descriptions. Department of Computer Science Series of Publica-
tions B, vol. B-2022-2, p. 17. University of Helsinki (2022)

7. Baek, S., Carneiro, M., Heule, M.J.H.: A flexible proof format for SAT solver-
elaborator communication. In: TACAS 2021. LNCS, vol. 12651, pp. 59–75.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72016-2_4

8. Balyo, T., Biere, A., Iser, M., Sinz, C.: SAT race 2015. Artif. Intell. 241, 45–65
(2016)

9. Balyo, T., Heule, M.J.H., Iser, M., Järvisalo, M., Suda, M. (eds.): Proceedings
of SAT Competition 2023: Solver, Benchmark and Proof Checker Descriptions.
Department of Computer Science Series of Publications B, Department of Com-
puter Science, University of Helsinki, Finland (2023)

10. Balyo, T., Heule, M.J.H. (eds.): Proceedings of SAT Competition 2016 – Solver
and Benchmark Descriptions. Department of Computer Science Series of Publica-
tions B, vol. B-2016-1. University of Helsinki (2016)

11. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: Fis-
man, D., Rosu, G. (eds.) TACAS 2022. LNCS, vol. 13243, pp. 415–442. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-99524-9_24

https://doi.org/10.1145/513918.514101
https://doi.org/10.1007/978-3-642-38916-0_3
https://doi.org/10.1007/978-3-642-39071-5_23
http://ijcai.org/Proceedings/09/Papers/074.pdf
http://ijcai.org/Proceedings/09/Papers/074.pdf
https://doi.org/10.1142/S0218213018400018
https://doi.org/10.1142/S0218213018400018
https://doi.org/10.1007/978-3-030-72016-2_4
https://doi.org/10.1007/978-3-030-99524-9_24

144 A. Biere et al.

12. Barnett, L.A., Cerna, D., Biere, A.: Covered clauses are not propagation redun-
dant. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI),
vol. 12166, pp. 32–47. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
51074-9_3

13. Belov, A., Marques-Silva, J.: Accelerating MUS extraction with recursive model
rotation. In: Bjesse, P., Slobodová, A. (eds.) International Conference on Formal
Methods in Computer-Aided Design, FMCAD ’11, Austin, TX, USA, 30 October–
02 November 2011, pp. 37–40. FMCAD Inc. (2011)

14. Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT entering the SAT
competition 2017. In: Balyo, T., Heule, M.J.H., Järvisalo, M. (eds.) Proceedings of
SAT Competition 2017 – Solver and Benchmark Descriptions. Department of
Computer Science Series of Publications B, vol. B-2017-1, pp. 14–15. University
of Helsinki (2017)

15. Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT entering the
SAT competition 2018. In: Heule, M.J.H., Järvisalo, M., Suda, M. (eds.) Proceed-
ings of SAT Competition 2018 – Solver and Benchmark Descriptions. Department
of Computer Science Series of Publications B, vol. B-2018-1, pp. 13–14. University
of Helsinki (2018)

16. Biere, A.: CaDiCaL at the SAT race 2019. In: Heule, M.J.H., Järvisalo, M., Suda,
M. (eds.) Proceedings of SAT Race 2019 – Solver and Benchmark Descriptions.
Department of Computer Science Series of Publications B, vol. B-2019-1, pp. 8–9.
University of Helsinki (2019)

17. Biere, A., Chowdhury, M.S., Heule, M.J.H., Kiesl, B., Whalen, M.W.: Migrating
solver state. In: SAT. LIPIcs, vol. 236, pp. 27:1–27:24. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2022). https://doi.org/10.4230/LIPICS.SAT.2022.27

18. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M.J.H., Iser, M., Järvisalo, M., Suda, M. (eds.) Proceed-
ings of SAT Competition 2020 – Solver and Benchmark Descriptions. Depart-
ment of Computer Science Report Series B, vol. B-2020-1, pp. 51–53. University
of Helsinki (2020)

19. Biere, A., Fleury, M.: Gimsatul, IsaSAT and Kissat entering the SAT competition
2022. In: Balyo, T., Heule, M.J.H., Iser, M., Järvisalo, M., Suda, M. (eds.) Proc. of
SAT Competition 2022 – Solver and Benchmark Descriptions. Department of
Computer Science Series of Publications B, vol. B-2022-1, pp. 10–11. University
of Helsinki (2022)

20. Biere, A., Fleury, M., Froleyks, N., Heule, M.J.: The SAT museum. In: Järvisalo,
M., Le Berre, D. (eds.) Proceedings of the 14th International Workshop on Prag-
matics of SAT Co-located with the 26th International Conference on Theory
and Applications of Satisfiability Testing (SAT 2003), Alghero, Italy, 4 July
2023. CEUR Workshop Proceedings, vol. 3545, pp. 72–87. CEUR-WS.org (2023).
http://ceur-ws.org/Vol-3545/paper6.pdf

21. Biere, A., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba entering the
SAT competition 2021. In: Balyo, T., Froleyks, N., Heule, M.J.H., Iser, M.,
Järvisalo, M., Suda, M. (eds.) Proceedings of SAT Competition 2021 – Solver
and Benchmark Descriptions. Department of Computer Science Report Series B,
vol. B-2021-1, pp. 10–13. University of Helsinki (2021)

22. Biere, A., Fleury, M., Pollitt, F.: CaDiCaL_vivinst, IsaSAT, Gimsatul, Kissat,
and Tabulara SAT entering the SAT competition 2023. In: Balyo, T., Froleyks,
N., Heule, M.J.H., Iser, M., Järvisalo, M., Suda, M. (eds.) Proceedings of SAT

https://doi.org/10.1007/978-3-030-51074-9_3
https://doi.org/10.1007/978-3-030-51074-9_3
https://doi.org/10.4230/LIPICS.SAT.2022.27
http://ceur-ws.org/Vol-3545/paper6.pdf

CaDiCaL 2.0 145

Competition 2023 – Solver and Benchmark Descriptions. Department of Com-
puter Science Report Series B, vol. B-2023-1, pp. 14–15. University of Helsinki
(2023)

23. Biere, A., Froleyks, N., Wang, W.: CadiBack: extracting backbones with CaDiCaL.
In: Mahajan, M., Slivovsky, F. (eds.) 26th International Conference on Theory and
Applications of Satisfiability Testing, SAT 2023, Alghero, Italy, 4–8 July 2023.
LIPIcs, vol. 271, pp. 3:1–3:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2023). https://doi.org/10.4230/LIPICS.SAT.2023.3

24. Biere, A., Järvisalo, M., Kiesl, B.: Preprocessing in SAT solving. In: Biere, A.,
Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Fron-
tiers in Artificial Intelligence and Applications, 2nd edn., vol. 336, pp. 391–435.
IOS Press (2021)

25. Biere, A., van Dijk, T., Heljanko, K.: Hardware model checking competition 2017.
In: 2017 Formal Methods in Computer Aided Design (FMCAD), pp. 9–9. IEEE
(2017)

26. Bjørner, N.S., Eisenhofer, C., Kovács, L.: Satisfiability modulo custom theories in
Z3. In: Dragoi, C., Emmi, M., Wang, J. (eds.) VMCAI. LNCS, vol. 13881, pp. 91–
105. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-24950-1_5

27. Blotsky, D., Mora, F., Berzish, M., Zheng, Y., Kabir, I., Ganesh, V.: StringFuzz:
a fuzzer for string solvers. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018.
LNCS, vol. 10982, pp. 45–51. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96142-2_6

28. Bogaerts, B., Gocht, S., McCreesh, C., Nordström, J.: Certified symmetry and
dominance breaking for combinatorial optimisation. J. Artif. Intell. Res. 77, 1539–
1589 (2023)

29. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4_7

30. Bringolf, M., Winterer, D., Su, Z.: Finding and understanding incompleteness
bugs in SMT solvers. In: ASE, pp. 43:1–43:10. ACM (2022)

31. Brummayer, R., Lonsing, F., Biere, A.: Automated testing and debugging of SAT
and QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol.
6175, pp. 44–57. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14186-7_6

32. Cai, S., Zhang, X., Fleury, M., Biere, A.: Better decision heuristics in CDCL
through local search and target phases. J. Artif. Intell. Res. 74, 1515–1563 (2022).
https://doi.org/10.1613/jair.1.13666

33. Chen, J.: optsat, abcdsat and solvers based on simplified data structure and hybrid
solving strategies. In: Proceedings of SAT Competition 2020: Solver and Bench-
mark Descriptions, p. 25 (2020)

34. Cruz-Filipe, L., Heule, M.J.H., Hunt, W.A., Kaufmann, M., Schneider-Kamp,
P.: Efficient certified RAT verification. In: de Moura, L. (ed.) CADE 2017. LNCS
(LNAI), vol. 10395, pp. 220–236. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63046-5_14

35. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol.
8559, pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08867-9_49

36. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005). https://doi.org/10.1007/11499107_5

https://doi.org/10.4230/LIPICS.SAT.2023.3
https://doi.org/10.1007/978-3-031-24950-1_5
https://doi.org/10.1007/978-3-319-96142-2_6
https://doi.org/10.1007/978-3-319-96142-2_6
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-14186-7_6
https://doi.org/10.1007/978-3-642-14186-7_6
https://doi.org/10.1613/jair.1.13666
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/11499107_5

146 A. Biere et al.

37. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3_37

38. Faller, T., Deligiannis, N.I., Schwörer, M., Reorda, M.S., Becker, B.: Constraint-
based automatic SBST generation for RISC-V processor families. In: IEEE Euro-
pean Test Symposium, ETS 2023, Venezia, Italy, 22–26 May 2023, pp. 1–6. IEEE
(2023).https://doi.org/10.1109/ETS56758.2023.10174156

39. Fazekas, K., Biere, A., Scholl, C.: Incremental inprocessing in SAT solving. In:
Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 136–154. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-24258-9_9

40. Fazekas, K., Niemetz, A., Preiner, M., Kirchweger, M., Szeider, S., Biere, A.:
IPASIR-UP: user propagators for CDCL. In: Mahajan, M., Slivovsky, F. (eds.)
26th International Conference on Theory and Applications of Satisfiability Test-
ing, SAT 2023, Alghero, Italy. LIPIcs, vol. 271, pp. 8:1–8:13. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2023). https://doi.org/10.4230/LIPICS.SAT.
2023.8

41. Fazekas, K., Pollitt, F., Fleury, M., Biere, A.: Certifying incremental sat solving.
In: Bjorner, N., Heule, M., Voronkov, A. (eds.) Logic for Programming, Artificial
Intelligence, and Reasoning - 25th International Conference, LPAR-25, Balaclava,
Mauritius, 26–31 May 2024. Proceedings (2024)

42. Fazekas, K., Pollitt, F., Fleury, M., Biere, A.: Incremental proofs for bounded
model checking. In: Kunz, W., Große, D. (eds.) Workshop on Methods and
Description Languages for Modelling and Verification of Circuits and Systems,
MBMV 2024, Kaiserslautern, Germany, 14–15 February 2023. ITG Fachberichte,
VDE Verlag (2024)

43. Feng, N., Bacchus, F.: Clause size reduction with all-UIP learning. In: Pulina, L.,
Seidl, M. (eds.) SAT 2020. LNCS, vol. 12178, pp. 28–45. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-51825-7_3

44. Fleury, M., Biere, A.: Efficient All-UIP learned clause minimization. In: Li, C.-
M., Manyà, F. (eds.) SAT 2021. LNCS, vol. 12831, pp. 171–187. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-80223-3_12

45. Fleury, M., Lammich, P.: A more pragmatic CDCL for isasat and targetting
LLVM (short paper). In: Pientka, B., Tinelli, C. (eds.) Automated Deduction -
CADE 29 - 29th International Conference on Automated Deduction, Rome, Italy,
1–4 July 2023, Proceedings. Lecture Notes in Computer Science, vol. 14132, pp.
207–219. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-38499-
8_12

46. Froleyks, N., Biere, A.: Single clause assumption without activation literals to
speed-up IC3. In: Formal Methods in Computer Aided Design, FMCAD 2021,
New Haven, CT, USA, 19–22 October 2021, pp. 72–76. IEEE (2021). https://doi.
org/10.34727/2021/ISBN.978-3-85448-046-4_15

47. Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M.: SAT competition 2020.
Artif. Intell. 301, 103572 (2021). https://doi.org/10.1016/J.ARTINT.2021.103572

48. Ganesh, V., O’Donnell, C.W., Soos, M., Devadas, S., Rinard, M.C., Solar-Lezama,
A.: Lynx: a programmatic SAT solver for the RNA-folding problem. In: Cimatti,
A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 143–156. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-31612-8_12

49. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:
Theory solving made easy with clingo 5. In: ICLP (Technical Communications).
OASIcs, vol. 52, pp. 2:1–2:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2016)

https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1109/ETS56758.2023.10174156
https://doi.org/10.1007/978-3-030-24258-9_9
https://doi.org/10.4230/LIPICS.SAT.2023.8
https://doi.org/10.4230/LIPICS.SAT.2023.8
https://doi.org/10.1007/978-3-030-51825-7_3
https://doi.org/10.1007/978-3-030-80223-3_12
https://doi.org/10.1007/978-3-031-38499-8_12
https://doi.org/10.1007/978-3-031-38499-8_12
https://doi.org/10.34727/2021/ISBN.978-3-85448-046-4_15
https://doi.org/10.34727/2021/ISBN.978-3-85448-046-4_15
https://doi.org/10.1016/J.ARTINT.2021.103572
https://doi.org/10.1007/978-3-642-31612-8_12

CaDiCaL 2.0 147

50. Gocht, S.: Certifying Correctness for Combinatorial Algorithms by Using
Pseudo-Boolean Reasoning. Ph.D. thesis, Lund University, Lund, Swe-
den (2022). https://portal.research.lu.se/en/publications/certifying-correctness-
for-combinatorial-algorithms-by-using-pseu

51. Gocht, S., Nordström, J.: Certifying parity reasoning efficiently using pseudo-
Boolean proofs. In: Proceedings of the 35th AAAI Conference on Artificial Intel-
ligence (AAAI ’21), pp. 3768–3777 (2021)

52. Goldberg, E., Novikov, Y.: Verification of proofs of unsatisfiability for cnf formulas.
In: 2003 Design, Automation and Test in Europe Conference and Exhibition, pp.
886–891 (2003). https://api.semanticscholar.org/CorpusID:10504432

53. Gurfinkel, A., Vizel, Y.: DRUPing for interpolates. In: Formal Methods in
Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland, 21–24 October
2014, pp. 99–106. IEEE (2014). https://doi.org/10.1109/FMCAD.2014.6987601

54. Haberlandt, A., Green, H.: SBVA-CADICAL and SBVA-KISSAT: structured
bounded variable addition. In: Balyo, T., Froleyks, N., Heule, M.J.H., Iser, M.,
Järvisalo, M., Suda, M. (eds.) Proc. of SAT Competition 2023 – Solver and Bench-
mark Descriptions. Department of Computer Science Report Series B, vol. B-2023-
1, p. 18. University of Helsinki (2023)

55. Haberlandt, A., Green, H., Heule, M.J.H.: Effective auxiliary variables via struc-
tured reencoding. In: Mahajan, M., Slivovsky, F. (eds.) 26th International Con-
ference on Theory and Applications of Satisfiability Testing, SAT 2023, Alghero,
Italy. LIPIcs, 4–8 July 2023, vol. 271, pp. 11:1–11:19. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2023). https://doi.org/10.4230/LIPICS.SAT.2023.11

56. Hamadi, Y., Jabbour, S., Sais, L.: Learning for dynamic subsumption. In: ICTAI
2009, 21st IEEE International Conference on Tools with Artificial Intelligence,
Newark, New Jersey, USA, 2–4 November 2009, pp. 328–335. IEEE Computer
Society (2009). https://doi.org/10.1109/ICTAI.2009.22

57. Han, H., Somenzi, F.: On-the-fly clause improvement. In: Kullmann, O. (ed.) SAT
2009. LNCS, vol. 5584, pp. 209–222. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02777-2_21

58. Heule, M., Jr., W.A.H., Wetzler, N.: Trimming while checking clausal proofs. In:
Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,
20–23 October 2013, pp. 181–188. IEEE (2013)

59. Heule, M.J.H.: Proofs of unsatisfiability. In: Biere, A., Heule, M., van Maaren, H.,
Walsh, T. (eds.) Handbook of Satisfiability - Second Edition, Frontiers in Artificial
Intelligence and Applications, vol. 336, pp. 635–668. IOS Press (2021).https://doi.
org/10.3233/FAIA200998

60. Heule, M.J.H., Biere, A.: Proofs for satisfiability problems. In: All about Proofs,
Proofs for All (APPA), Mathmatical, Logic and Foundations, vol. 55. College
Publication (2015)

61. Heule, M., Järvisalo, M., Biere, A.: Clause elimination procedures for CNF for-
mulas. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR 2010. LNCS, vol. 6397, pp.
357–371. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16242-
8_26

62. Heule, M.J.H., Järvisalo, M., Biere, A.: Covered clause elimination. In: Voronkov,
A., Sutcliffe, G., Baaz, M., Fermüller, C.G. (eds.) Short papers for 17th Inter-
national Conference on Logic for Programming, Artificial intelligence, and Rea-
soning, LPAR-17-short, Yogyakarta, Indonesia, 10–15 October 2010. EPiC Series
in Computing, vol. 13, pp. 41–46. EasyChair (2010). https://doi.org/10.29007/
CL8S

https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu
https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu
https://api.semanticscholar.org/CorpusID:10504432
https://doi.org/10.1109/FMCAD.2014.6987601
https://doi.org/10.4230/LIPICS.SAT.2023.11
https://doi.org/10.1109/ICTAI.2009.22
https://doi.org/10.1007/978-3-642-02777-2_21
https://doi.org/10.1007/978-3-642-02777-2_21
https://doi.org/10.3233/FAIA200998
https://doi.org/10.3233/FAIA200998
https://doi.org/10.1007/978-3-642-16242-8_26
https://doi.org/10.1007/978-3-642-16242-8_26
https://doi.org/10.29007/CL8S
https://doi.org/10.29007/CL8S

148 A. Biere et al.

63. Heule, M.J.H., Järvisalo, M., Biere, A.: Revisiting hyper binary resolution. In:
Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 77–93.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38171-3_6

64. Hickey, R., Bacchus, F.: Trail saving on backtrack. In: Pulina, L., Seidl, M. (eds.)
SAT 2020. LNCS, vol. 12178, pp. 46–61. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-51825-7_4

65. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: a python toolkit for pro-
totyping with SAT oracles. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT
2018. LNCS, vol. 10929, pp. 428–437. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-94144-8_26

66. Janota, M., Lynce, I., Marques-Silva, J.: Algorithms for computing backbones of
propositional formulae. AI Commun. 28(2), 161–177 (2015). https://doi.org/10.
3233/AIC-140640

67. Järvisalo, M., Biere, A.: Reconstructing solutions after blocked clause elimination.
In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 340–345.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7_30

68. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-12002-2_10

69. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_28

70. Kiesl, B., Heule, M.J.H., Biere, A.: Truth assignments as conditional autarkies. In:
Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019. LNCS, vol. 11781, pp.
48–64. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31784-3_3

71. Kiesl-Reiter, B., Whalen, M.W.: Proofs for incremental SAT with inprocessing.
In: Nadel, A., Rozier, K.Y. (eds.) Formal Methods in Computer-Aided Design,
FMCAD 2023, Ames, IA, USA, 24–27 October 2023, pp. 132–140. IEEE (2023).
https://doi.org/10.34727/2023/ISBN.978-3-85448-060-0_21

72. Kochemazov, S., Ignatiev, A., Marques-Silva, J.: Assessing progress in SAT solvers
through the lens of incremental SAT. In: Li, C.-M., Manyà, F. (eds.) SAT 2021.
LNCS, vol. 12831, pp. 280–298. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-80223-3_20

73. Kupferschmid, S.: Über Craigsche Interpolation und deren Anwendung in der
formalen Modellprüfung. Ph.D. thesis, University of Freiburg (2013)

74. Kupferschmid, S., Lewis, M., Schubert, T., Becker, B.: Incremental preprocess-
ing methods for use in BMC. Formal Methods Syst. Des. 39(2), 185–204 (2011).
https://doi.org/10.1007/S10703-011-0122-4

75. Lammich, P.: Efficient verified (UN)SAT certificate checking. J. Autom. Reason.
64(3), 513–532 (2020). https://doi.org/10.1007/s10817-019-09525-z

76. Le Berre, D., Roussel, O., Simon, L.: SAT competition 2009: Benchmark sub-
mission guidelines. https://web.archive.org/web/20190325181937/https://www.
satcompetition.org/2009/format-benchmarks2009.html. Accessed 15 Jan 2024

77. Li, C.M.: Integrating equivalency reasoning into Davis-Putnam procedure. In:
Kautz, H.A., Porter, B.W. (eds.) Proceedings of the Seventeenth National Con-
ference on Artificial Intelligence and Twelfth Conference on on Innovative Appli-
cations of Artificial Intelligence, Austin, Texas, USA, 30 July–3 August 2000,
pp. 291–296. AAAI Press/The MIT Press (2000), http://www.aaai.org/Library/
AAAI/2000/aaai00-045.php

https://doi.org/10.1007/978-3-642-38171-3_6
https://doi.org/10.1007/978-3-030-51825-7_4
https://doi.org/10.1007/978-3-030-51825-7_4
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.3233/AIC-140640
https://doi.org/10.3233/AIC-140640
https://doi.org/10.1007/978-3-642-14186-7_30
https://doi.org/10.1007/978-3-642-12002-2_10
https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1007/978-3-030-31784-3_3
https://doi.org/10.34727/2023/ISBN.978-3-85448-060-0_21
https://doi.org/10.1007/978-3-030-80223-3_20
https://doi.org/10.1007/978-3-030-80223-3_20
https://doi.org/10.1007/S10703-011-0122-4
https://doi.org/10.1007/s10817-019-09525-z
https://web.archive.org/web/20190325181937/https://www.satcompetition.org/2009/format-benchmarks2009.html
https://web.archive.org/web/20190325181937/https://www.satcompetition.org/2009/format-benchmarks2009.html
http://www.aaai.org/Library/AAAI/2000/aaai00-045.php
http://www.aaai.org/Library/AAAI/2000/aaai00-045.php

CaDiCaL 2.0 149

78. Lohn, E., Lambert, C., Heule, M.J.H.: Compact symmetry breaking for tourna-
ments. In: Griggio, A., Rungta, N. (eds.) 22nd Formal Methods in Computer-
Aided Design, FMCAD 2022, Trento, Italy, 17–21 October 2022, pp. 179–188.
IEEE (2022). https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_24

79. Luo, M., Li, C., Xiao, F., Manyà, F., Lü, Z.: An effective learnt clause mini-
mization approach for CDCL SAT solvers. In: Sierra, C. (ed.) Proceedings of
the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI
2017, Melbourne, Australia, 19–25 August 2017, pp. 703–711. ijcai.org (2017).
https://doi.org/10.24963/IJCAI.2017/98

80. Mansur, M.N., Christakis, M., Wüstholz, V., Zhang, F.: Detecting critical bugs
in SMT solvers using blackbox mutational fuzzing. In: ESEC/SIGSOFT FSE, pp.
701–712. ACM (2020)

81. Manthey, N.: Riss 7 in proceedings of SAT competition 2020. In: Proceedings of
SAT Competition 2020: Solver and benchmark descriptions (2020)

82. Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of Boolean formulas.
In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol. 7857, pp. 102–117.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39611-3_14

83. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers.
In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiabil-
ity - Second Edition, Frontiers in Artificial Intelligence and Applications, vol. 336,
pp. 133–182. IOS Press (2021). https://doi.org/10.3233/FAIA200987

84. Möhle, S., Biere, A.: Backing backtracking. In: Janota, M., Lynce, I. (eds.) SAT
2019. LNCS, vol. 11628, pp. 250–266. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-24258-9_18

85. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

86. Nadel, A.: Introducing Intel(R) SAT Solver. In: Meel, K.S., Strichman, O.
(eds.) 25th International Conference on Theory and Applications of Satisfia-
bility Testing (SAT 2022). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 236, pp. 8:1–8:23. Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik, Dagstuhl, Germany (2022). https://doi.org/10.4230/LIPIcs.SAT.2022.8.
https://drops.dagstuhl.de/opus/volltexte/2022/16682

87. Nadel, A., Ryvchin, V.: Efficient SAT solving under assumptions. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 242–255. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-31612-8_19

88. Nadel, A., Ryvchin, V.: Chronological backtracking. In: Beyersdorff, O., Winter-
steiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 111–121. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94144-8_7

89. Nadel, A., Ryvchin, V., Strichman, O.: Preprocessing in incremental SAT. In:
Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 256–269.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8_20

90. Nadel, A., Ryvchin, V., Strichman, O.: Ultimately incremental SAT. In: Sinz, C.,
Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 206–218. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-09284-3_16

91. Neiman, D., Mackey, J., Heule, M.J.H.: Tighter bounds on directed ramsey num-
ber R(7). Graphs Comb. 38(5), 156 (2022). https://doi.org/10.1007/S00373-022-
02560-5

92. Niemetz, A., Preiner, M.: Bitwuzla. In: Enea, C., Lal, A. (eds.) Computer Aided
Verification - 35th International Conference, CAV 2023, Paris, France, 17–22 July

https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_24
https://doi.org/10.24963/IJCAI.2017/98
https://doi.org/10.1007/978-3-642-39611-3_14
https://doi.org/10.3233/FAIA200987
https://doi.org/10.1007/978-3-030-24258-9_18
https://doi.org/10.1007/978-3-030-24258-9_18
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.4230/LIPIcs.SAT.2022.8
https://drops.dagstuhl.de/opus/volltexte/2022/16682
https://doi.org/10.1007/978-3-642-31612-8_19
https://doi.org/10.1007/978-3-319-94144-8_7
https://doi.org/10.1007/978-3-642-31612-8_20
https://doi.org/10.1007/978-3-319-09284-3_16
https://doi.org/10.1007/S00373-022-02560-5
https://doi.org/10.1007/S00373-022-02560-5

150 A. Biere et al.

2023, Proceedings, Part II. Lecture Notes in Computer Science, vol. 13965, pp.
3–17. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-37703-7_1

93. Niemetz, A., Preiner, M., Barrett, C.W.: Murxla: a modular and highly extensible
API fuzzer for SMT solvers. In: Shoham, S., Vizel, Y. (eds.) CAV (2). Lecture
Notes in Computer Science, vol. 13372, pp. 92–106. Springer, Heidelberg (2022).
https://doi.org/10.1007/978-3-031-13188-2_5

94. Niemetz, A., Preiner, M., Biere, A.: Model-based API testing for SMT solvers. In:
SMT. CEUR Workshop Proceedings, vol. 1889, pp. 3–14. CEUR-WS.org (2017)

95. Niemetz, A., Preiner, M., Biere, A.: Boolector at the SMT competition 2019. In:
Hendrix, J., Sharygina, N. (eds.) Proceedings of the 17th International Workshop
on Satisfiability Modulo Theories (SMT 2019), affiliated with the 22nd Interna-
tional Conference on Theory and Applications of Satisfiability Testing (SAT 2019),
Lisbon, Portugal, 7–8 July 2019, p. 2 (2019)

96. Park, J., Winterer, D., Zhang, C., Su, Z.: Generative type-aware mutation for
testing SMT solvers. Proc. ACM Program. Lang. 5(OOPSLA), 1–19 (2021)

97. Paxian, T., Reimer, S., Becker, B.: Dynamic polynomial watchdog encoding for
solving weighted MaxSAT. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT
2018. LNCS, vol. 10929, pp. 37–53. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-94144-8_3

98. Piette, C., Hamadi, Y., Sais, L.: Vivifying propositional clausal formulae. In: Ghal-
lab, M., Spyropoulos, C.D., Fakotakis, N., Avouris, N.M. (eds.) ECAI 2008 - 18th
European Conference on Artificial Intelligence, Patras, Greece, 21–25 July 2008,
Proceedings. Frontiers in Artificial Intelligence and Applications, vol. 178, pp.
525–529. IOS Press (2008). https://doi.org/10.3233/978-1-58603-891-5-525

99. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for
satisfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS,
vol. 4501, pp. 294–299. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-72788-0_28

100. Pollitt, F., Fleury, M., Biere, A.: Faster LRAT checking than solving with CaD-
iCaL. In: Mahajan, M., Slivovsky, F. (eds.) 26th International Conference on
Theory and Applications of Satisfiability Testing (SAT 2023). Leibniz Inter-
national Proceedings in Informatics (LIPIcs), vol. 271, pp. 21:1–21:12. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl (2023). https://doi.org/10.
4230/LIPIcs.SAT.2023.21

101. Sanders, P., Schreiber, D.: Mallob: scalable SAT solving on demand with decen-
tralized job scheduling. J. Open Source Softw. 7(77), 4591 (2022). https://doi.
org/10.21105/JOSS.04591

102. Scott, J., Sudula, T., Rehman, H., Mora, F., Ganesh, V.: BanditFuzz: fuzzing SMT
solvers with multi-agent reinforcement learning. In: Huisman, M., Păsăreanu, C.,
Zhan, N. (eds.) FM 2021. LNCS, vol. 13047, pp. 103–121. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-90870-6_6

103. Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability.
In: Rutenbar, R.A., Otten, R.H.J.M. (eds.) Proceedings of the 1996 IEEE/ACM
International Conference on Computer-Aided Design, ICCAD 1996, San Jose, CA,
USA, 10–14 November 1996, pp. 220–227. IEEE Computer Society/ACM (1996).
https://doi.org/10.1109/ICCAD.1996.569607

104. Soos, M., Devriendt, J., Gocht, S., Shaw, A., Meel, K.S.: CryptoMiniSat with
ccanr at the SAT competition 2020. In: Proceedings of SAT Competition 2020:
Solver and Benchmark Descriptions 2020, vol. 27 (2020)

https://doi.org/10.1007/978-3-031-37703-7_1
https://doi.org/10.1007/978-3-031-13188-2_5
https://doi.org/10.1007/978-3-319-94144-8_3
https://doi.org/10.1007/978-3-319-94144-8_3
https://doi.org/10.3233/978-1-58603-891-5-525
https://doi.org/10.1007/978-3-540-72788-0_28
https://doi.org/10.1007/978-3-540-72788-0_28
https://doi.org/10.4230/LIPIcs.SAT.2023.21
https://doi.org/10.4230/LIPIcs.SAT.2023.21
https://doi.org/10.21105/JOSS.04591
https://doi.org/10.21105/JOSS.04591
https://doi.org/10.1007/978-3-030-90870-6_6
https://doi.org/10.1109/ICCAD.1996.569607

CaDiCaL 2.0 151

105. Soos, M., Gocht, S., Meel, K.S.: Tinted, Detached, and Lazy CNF-XOR solving
and its applications to counting and sampling. In: Lahiri, S.K., Wang, C. (eds.)
CAV 2020. LNCS, vol. 12224, pp. 463–484. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-53288-8_22

106. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_24

107. Soos, M., Selman, B., Kautz, H., Devriendt, J., Gocht, S.: CryptoMiniSat with
WalkSAT at the SAT competition 2020. In: Proceedings of SAT Competition
2020: Solver and Benchmark Descriptions, p. 29 (2020)

108. Subercaseaux, B., Heule, M.J.H.: The packing chromatic number of the infinite
square grid is 15. In: Sankaranarayanan, S., Sharygina, N. (eds.) Tools and Algo-
rithms for the Construction and Analysis of Systems - 29th International Confer-
ence, TACAS 2023, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2022, Paris, France, 22–27 April 2023, Proceed-
ings, Part I. Lecture Notes in Computer Science, vol. 13993, pp. 389–406. Springer,
Heidelberg (2023).https://doi.org/10.1007/978-3-031-30823-9_20

109. van der Tak, P., Ramos, A., Heule, M.J.H.: Reusing the assignment trail in CDCL
solvers. J. Satisf. Boolean Model. Comput. 7(4), 133–138 (2011). https://doi.org/
10.3233/SAT190082

110. Tan, Y.K., Heule, M.J.H., Myreen, M.O.: cake_lpr: verified propagation redun-
dancy checking in CakeML. In: TACAS 2021. LNCS, vol. 12652, pp. 223–241.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72013-1_12

111. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and trim-
ming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS,
vol. 8561, pp. 422–429. Springer, Cham (2014). https://doi.org/10.1007/978-3-
319-09284-3_31

112. Whittemore, J., Kim, J., Sakallah, K.A.: SATIRE: a new incremental satisfiability
engine. In: Proceedings of the 38th Design Automation Conference, DAC 2001,
Las Vegas, NV, USA, 18–22 June 2001, pp. 542–545. ACM (2001).https://doi.
org/10.1145/378239.379019

113. Wieringa, S., Niemenmaa, M., Heljanko, K.: Tarmo: A framework for parallelized
bounded model checking. In: Brim, L., van de Pol, J. (eds.) Proceedings 8th Inter-
national Workshop on Parallel and Distributed Methods in verifiCation, PDMC
2009, Eindhoven, The Netherlands, 4 November 2009. EPTCS, vol. 14, pp. 62–76
(2009). https://doi.org/10.4204/EPTCS.14.5

114. Yolcu, E., Aaronson, S., Heule, M.J.H.: An automated approach to the collatz
conjecture. J. Autom. Reason. 67(2), 15 (2023). https://doi.org/10.1007/S10817-
022-09658-8

115. Zhang, L.: On subsumption removal and on-the-fly CNF simplification. In: Bac-
chus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 482–489. Springer,
Heidelberg (2005). https://doi.org/10.1007/11499107_42

116. Zhang, T., Szeider, S.: Searching for smallest universal graphs and tournaments
with SAT. In: Yap, R.H.C. (ed.) 29th International Conference on Principles and
Practice of Constraint Programming, CP 2023, Toronto, Canada, 27–31 August
2023. LIPIcs, vol. 280, pp. 39:1–39:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2023). https://doi.org/10.4230/LIPICS.CP.2023.39

https://doi.org/10.1007/978-3-030-53288-8_22
https://doi.org/10.1007/978-3-030-53288-8_22
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1007/978-3-031-30823-9_20
https://doi.org/10.3233/SAT190082
https://doi.org/10.3233/SAT190082
https://doi.org/10.1007/978-3-030-72013-1_12
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1145/378239.379019
https://doi.org/10.1145/378239.379019
https://doi.org/10.4204/EPTCS.14.5
https://doi.org/10.1007/S10817-022-09658-8
https://doi.org/10.1007/S10817-022-09658-8
https://doi.org/10.1007/11499107_42
https://doi.org/10.4230/LIPICS.CP.2023.39

152 A. Biere et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Formally Certified Approximate Model
Counting

Yong Kiam Tan1(B) , Jiong Yang2 , Mate Soos2 , Magnus O. Myreen3 ,
and Kuldeep S. Meel4

1 Institute for Infocomm Research (I2R), A*STAR,
Singapore, Singapore

tanyk1@i2r.a-star.edu.sg
2 National University of Singapore, Singapore, Singapore

jiong@comp.nus.edu.sg, soos.mate@gmail.com
3 Chalmers University of Technology, Gothenburg, Sweden

myreen@chalmers.se
4 University of Toronto, Toronto, Canada

meel@cs.toronto.edu

Abstract. Approximate model counting is the task of approximating
the number of solutions to an input Boolean formula. The state-of-
the-art approximate model counter for formulas in conjunctive normal
form (CNF), ApproxMC, provides a scalable means of obtaining model
counts with probably approximately correct (PAC)-style guarantees. Nev-
ertheless, the validity of ApproxMC’s approximation relies on a careful
theoretical analysis of its randomized algorithm and the correctness of
its highly optimized implementation, especially the latter’s stateful inter-
actions with an incremental CNF satisfiability solver capable of natively
handling parity (XOR) constraints.

We present the first certification framework for approximate model
counting with formally verified guarantees on the quality of its out-
put approximation. Our approach combines: (i) a static, once-off, for-
mal proof of the algorithm’s PAC guarantee in the Isabelle/HOL proof
assistant; and (ii) dynamic, per-run, verification of ApproxMC’s calls to
an external CNF-XOR solver using proof certificates. We detail our gen-
eral approach to establish a rigorous connection between these two parts
of the verification, including our blueprint for turning the formalized,
randomized algorithm into a verified proof checker, and our design of
proof certificates for both ApproxMC and its internal CNF-XOR solv-
ing steps. Experimentally, we show that certificate generation adds little
overhead to an approximate counter implementation, and that our cer-
tificate checker is able to fully certify 84.7% of instances with generated
certificates when given the same time and memory limits as the counter.

Keywords: approximate model counting · randomized algorithms ·
formal verification · proof certification

Y. K. Tan and J. Yang—The first two authors contributed equally.
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 153–177, 2024.
https://doi.org/10.1007/978-3-031-65627-9_8

https://zenodo.org/doi/10.5281/zenodo.10948388
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65627-9_8&domain=pdf
http://orcid.org/0000-0001-7033-2463
http://orcid.org/0000-0002-8356-6637
http://orcid.org/0000-0002-7355-881X
http://orcid.org/0000-0002-9504-4107
http://orcid.org/0000-0001-9423-5270
https://doi.org/10.1007/978-3-031-65627-9_8

154 Y. K. Tan et al.

1 Introduction

State-of-the-art automated reasoning solvers are critical software systems used
throughout formal methods. However, even skilled and trusted developers of such
tools can inadvertently introduce errors. Two approaches have evolved to provide
assurances that automated reasoning tools behave as intended. The first involves
the use of theorem provers to formally verify the correctness of solver implemen-
tations [20,30]. This approach guarantees correct outputs for all inputs, but
struggles to scale to complex systems such as SAT solvers. The second approach
is based on certifying algorithms [38], where a solver is required to produce a
certificate alongside its output [6,10,24,35,37,53,58]. A certificate checker (also
called proof checker)—which is often formally verified—then checks the correct-
ness of this certificate, ensuring that the system’s output adheres to the desired
specifications. This latter method has gained significant traction in the SAT
solving community, wherein a SAT solver either returns a satisfying assignment
that is easy to check through evaluation or a proof of unsatisfiability as a certifi-
cate [58]. However, neither of these approaches have been applied to probabilistic
systems that rely on randomized algorithms. In fact, McConnell et al. [38] argue
that randomized algorithms resist deterministic certification.

In this paper, we propose a hybrid approach that harnesses the power of
both theorem-proving and certificate-based approaches to certify probabilistic
systems. We present our approach on ApproxMC, a probabilistic automated rea-
soning system which computes approximate model counts for Boolean formulas.
Model counting is a fundamental problem in computer science that serves as
a key component in a wide range of applications including control improvisa-
tion [22], network reliability [14,56], neural network verification [5], probabilistic
reasoning [11,18,45,46], and so on. Therefore, it is crucial that the results com-
puted by an approximate model counter, such as ApproxMC, can be trusted.

Two key questions must be tackled by our approach. First, what does it mean
to trust a random run of ApproxMC? Here, we propose a verification modulo ran-
domness approach, i.e., our certification results are modulo a trusted random bit
generator. Second, how do we handle the huge volume of (incremental) CNF-
XOR satisfiability solver calls which are tightly integrated in ApproxMC [49,50]?
Here, we design the certificate format to require only the results of solver calls
that are crucial for ApproxMC’s correctness. In particular, ApproxMC makes
O(ε−2 · log n · log δ−1) many calls to its solver, where n is the number of (pro-
jected) variables of the formula, ε is the tolerance parameter, and δ is the confi-
dence parameter (see Sect. 3 for definitions); our crucial insight is that to certify
ApproxMC, we only need to check the correctness of O(log δ−1) UNSAT calls,
which is independent of n. We then observe that existing CNF-XOR UNSAT
checkers fail to scale to formulas that are handled by ApproxMC. To this end, we
adapt existing solving and verified proof checking pipelines to natively support
proof certificates for CNF-XOR unsatisfiability. With this design, our framework
is able to independently check certificates generated by a state-of-the-art (but
untrusted) implementation of ApproxMC, with all of the latter’s optimizations
enabled. Overall, the key idea is to combine a static, once-off, formal proof of

Formally Certified Approximate Model Counting 155

Fig. 1. The certified approximate model counting workflow.

the algorithm’s correctness guarantee in Isabelle/HOL [42,43] with dynamic,
per-run, certification of ApproxMC’s calls to an external CNF-XOR solver.

In summary, our contributions are as follows:

1. An abstract specification of ApproxMC and a formal proof of its probably
approximately correct (PAC) guarantee in Isabelle/HOL (Sect. 4.1).

2. A refinement of the abstract specification to a concrete certificate format and
checker implementation for ApproxMC (Sects. 4.2 and 4.3).

3. Updates to various tools to realize a formally verified proof checking pipeline
with native support for CNF-XOR unsatisfiability (Sect. 4.4).

4. Empirical evaluation of the framework on an extensive suite of model counting
benchmarks to demonstrate its practical utility (Sect. 5).

Our workflow for certified approximate model counting is shown in Fig. 1. In
step 1 , it uses a trusted external tool to generate uniform random bits which are
handed to an untrusted certificate generator ApproxMCCert and to the verified
certificate checker CertCheck (extracted from Isabelle/HOL); the random bits
are used identically by ApproxMCCert and CertCheck to generate random XOR
constraints as part of the counting algorithm. For step 2 , ApproxMCCert gener-
ates a partial certificate which is subsequently checked in step 3 by CertCheck;
the certificate is partial because it does not contain CNF-XOR unsatisfiability
proofs. Instead, CertCheck calls an external CNF-XOR unsatisfiability checking
pipeline (with verified proof checking in CakeML [36,53]). In the final step 4 ,
an approximate model count is returned upon successful certification.

As part of our commitment to reproducibility, all code and proofs have been
made available with a permissive open-source license [2,21,54].

Impact. Although our main objective was to enhance end-user trust in answers
to their counting queries, undertaking this project led to unexpected benefits
that are worth highlighting. While modifying ApproxMC’s underlying solver,
CryptoMiniSat [52], to emit certificates (Sect. 4.4), a bug in CryptoMiniSat’s
XOR manipulation system was discovered. The bug was introduced during the
development of part of the BIRD system [50] that keeps all XOR constraints’
clausal versions (as well as their compact XOR versions) in-memory at all times.

156 Y. K. Tan et al.

This allows a substantial level of interaction between XOR and clausal con-
straints. However, it also led to large overhead in terms of the often hundreds
of thousands of clauses needed to encode the XORs in their clausal form. The
compromise made by the developers was to detach the clausal representation
of XORs from the watchlists. However, that seemed to have led to a level of
complexity that both allowed the bug to occur, and more importantly, made it
impossible to discover via CryptoMiniSat’s standard fuzzing pipeline. Our ver-
sion of CryptoMiniSat fixes this by not keeping around a clausal encoding of all
XORs, instead introducing (and deleting) them whenever needed for the proof.

Furthermore, we have also found minor flaws in the theoretical analysis of
ApproxMC (see discussion of events_prob) and in the implementation, e.g., the
sampling of random bits was slightly biased, and an infinite loop could be trig-
gered on certain random seeds. None of these bugs were known to the authors
of ApproxMC or were previously reported by users of the tool. All of these issues
have been fixed and upstreamed to their tools’ respective codebases.

2 Related Work

This discussion is focused on formally verified algorithms and proof checkers.
Readers are referred to Chakraborty et al. [13] and references therein for related
literature on approximate model counting.

Certified Model Counting. Prior research on certificate-based approaches focuses
on deterministic methods in model counting. Prior work on certified exact model
counting focuses either on the development of proofs, such as MICE [19] and
CPOG [10], along with their respective toolchains, or on analyzing the complex-
ity of the proof system [7]. Some efforts have been directed toward certifying
deterministic approximate counting algorithms which, however, require access to
a ΣP

2 oracle and did not yield practical implementations [40]. Our work develops
the first certification framework for randomized approximate model counting.

Formalization of Randomized Algorithms. Various randomized algorithms have
been formally analyzed in Isabelle/HOL, including randomized quicksort, ran-
dom binary tree data structures [15], and approximation of frequency moments
in data streams [31–34]. These prior efforts as well as ours, all build upon the
foundations for measure and probability theory in Isabelle/HOL [16,28]. Proper-
ties of approximate membership query structures (including Bloom filters) have
been verified in Coq [26]. Pioneering work on formal verification of randomized
algorithms, including the Miller-Rabin primality test, was carried out by Joe
Hurd in HOL4 [29]. A common objective of these prior efforts, and that of ours,
is to put the guarantees of randomized algorithms on formal foundations.

Verified Proof Checking. Formally verified proof checkers have been developed
for several (deterministic) algorithms and theories, such as the CNF unsatisfi-
ability checkers used by the SAT community [27,37,53]. Within Isabelle/HOL,

Formally Certified Approximate Model Counting 157

the Pastèque tool [35] checks proofs in the practical algebraic calculus, which
can be used to validate algebraic reasoning; the CeTA tool [55] is based on an
extensive library of results for certifying properties of rewriting systems; and
the LEDA project developed specialized proof checkers for graph algorithms [1].
CoqQFBV [47] is similar in design to our approach in that a higher-level Coq-
generated tool for verified bit-blasting is used in concert with a lower-level veri-
fied proof checker for CNF formulas.

CNF-XOR Unsatisfiability Checking. Given ApproxMC’s reliance on CNF-XOR
formulas, certification of CNF-XOR unsatisfiability emerged as a key challenge in
our work. To this end, we provide a brief overview of three prior state-of-the-art
approaches for certified CNF-XOR reasoning.

1. The first approach uses proof generation and certification of XOR reasoning
based on Binary Decision Diagrams (BDDs) [48]. It uses CryptoMiniSat [52],
a SAT solver specifically made to work on CNF-XOR instances and TBUDDY [9]
to produce FRAT proof certificates [3] for CryptoMiniSat’s XOR reasoning;
FRAT-rs [3] is used as the elaboration backend and a verified LRAT proof
checker [27,53] can be used to check the elaborated proofs.

2. The second approach, due to Gocht and Nordström [24], relies on pseudo-
Boolean reasoning and its associated proof system to justify both CNF and
parity reasoning. This approach was demonstrated on MiniSat equipped with
an XOR reasoning engine, with VeriPB as a proof checker; pseudo-Boolean
proofs are also supported by a verified proof checker [23].

3. The third approach is to rely on the standard SAT solvers accompanied with
standard CNF proof formats and (verified) checkers [27,37,53].

3 Background

This section gives a brief introduction to ApproxMC (Sect. 3.1) and to theorem-
proving in Isabelle/HOL (Sect. 3.2).

3.1 Approximate Model Counting

Given a Boolean formula F , the model counting problem is to calculate the num-
ber of models (also called solutions or satisfying assignments) of F . Model count-
ing is known to be #P-complete, and therefore has been a target of sustained
interest for randomized approximation techniques over the past four decades.
The current state-of-the-art approximate approach, ApproxMC [12], is a hashing-
based framework that relies on reducing the model counting problem to SAT
queries, which are handled by an underlying solver. Importantly, ApproxMC is a
probably approximately correct (PAC) projected model counter, i.e., it takes in
a formula F , a projection set S ⊆ Vars(F), a tolerance parameter ε > 0, and a
confidence parameter δ ∈ (0, 1], and returns a count c satisfying the PAC guar-
antee: Pr

[|sol(F)↓S |
1+ε ≤ c ≤ (1 + ε)|sol(F)↓S |

]
≥ 1 − δ, where |sol(F)↓S | denotes

the number of the solutions of F projected on S.

158 Y. K. Tan et al.

Algorithm 1. ApproxMC (F, S, ε, δ)

1: thresh ← 9.84
(
1 + ε

1+ε

) (
1 + 1

ε

)2
2: Y ← BoundedSAT(F, S, thresh)
3: if (|Y | < thresh) then return |Y |
4: t ← computeIter(δ) � probability amplification using the median method
5: C ← emptyList, iter ← 0
6: repeat
7: iter ← iter + 1
8: nSols ← ApproxMCCore(F, S, thresh)
9: AddToList(C, nSols)

10: until (iter ≥ t)
11: return FindMedian(C)

Algorithm 2. ApproxMCCore (F, S, thresh)
1: Choose |S| − 1 random XOR constraints X = (X1, . . . , X|S|−1) over S
2: m ← FindM(F, S, X, thresh) � search for m ∈ {1, . . . , |S|} using BoundedSAT
3: if (m ≥ |S|) then return (2m × 1) � dummy value for failed round
4: c ← BoundedSAT (F ∧ X1 ∧ · · · ∧ Xm, S, thresh) ;
5: return (2m × c)

An outline of ApproxMC is shown in Algorithms 1 and 2. At a high level, the
key idea of ApproxMC is to partition the set of solutions into small cells of roughly
equal size by relying on the power of XOR-based hash families [12,25], then
randomly picking one of the cells and enumerating all the solutions in the chosen
small cell up to a threshold thresh via calls to BoundedSAT(F, S, thresh). The
estimated count is obtained by scaling the number of solutions in the randomly
chosen cell by the number of cells, and the success probability of this estimation
is amplified to the desired level by taking the median result from several trials.

Syntactically, the solution space partition and random cell selection is
accomplished by introducing randomly generated XOR constraints of the form
(
⊕

y∈Y y) = b for a random subset Y ⊆ S and random bit b. A crucial fact
about random XOR constraints exploited by ApproxMC is their 2-universality
when viewed as a hash family on assignments—briefly, given any two distinct
Boolean assignments over the variable set S, the probability of each one satisfy-
ing a randomly chosen XOR constraint is independent and equal to 1

2 .
Accordingly, the BoundedSAT queries made in Algorithms 1 and 2 are con-

junctions of the input formula and random XOR constraints, i.e., CNF-XOR for-
mulas. The current implementation of ApproxMC relies on CryptoMiniSat for
its ability to handle CNF-XOR formulas efficiently and incrementally [49,50].
Furthermore, the real-world implementation also relies on three key optimiza-
tions. (1) The search for the correct value of m in Algorithm 2 (FindM) combines
a linear neighborhood search, a galloping search, and a binary search [12]. (2)
The underlying SAT solver is used as a library, allowing to solve under a set
of assumptions, a technique introduced as part of MiniSat [17]. This allows the

Formally Certified Approximate Model Counting 159

solver to keep learned lemmas between subsequent calls to solve(), significantly
improving solving speed, which is especially helpful for proving unsatisfiability.
(3) To improve the speed of finding satisfying assignments, a solution cache of
past solutions is retained [49] which is especially helpful when the optimal num-
ber of XORs to add is N, but N+1 have been added and were found to be too
much. In these cases, all solutions that are valid for N+1 XORs are also solutions
to N XORs and can be reused.

3.2 Formalization in Isabelle/HOL

Notation. All Isabelle/HOL syntax is typeset in typewriter font with bold-
face Isar keywords;

∧
and =⇒ are the universal quantifier and implication of

Isabelle’s metalogic, respectively. Type variables are written as ’a, ’b . The type
of (total) functions from ’a to ’b is written as ’a ⇒ ’b , and the type of partial
functions, which are only defined on some elements of type ’a , is ’a ⇀ ’b . For
clarity, we often annotate terms with their type using the notation term :: type .
For types such as reals, integers, or natural numbers, the interval from i to j
(inclusive) is written as {i..j} ; the same interval except endpoint j is {i..<j} .
More comprehensive introductions can be found in standard references [4,42].

Locales and Probability. Isabelle/HOL is equipped with locales [4], a sys-
tem of user-declared modules consisting of syntactic parameters, assumptions on
those parameters, and module-specific theorems. These modules can be instan-
tiated and inherited, giving users a powerful means of managing mathemati-
cal relationships. The following snippet, taken from the Isabelle/HOL standard
library, shows an example locale declaration for probability spaces followed by
an interpretation command claiming that the measure space associated with
any probability mass function (PMF) p is a probability space [28].

locale prob_space = finite_measure +
assumes emeasure_space_1: "emeasure M (space M) = 1"
...
interpretation measure_pmf: prob_space "measure_pmf p"

Thanks to the locale interpretation, all definitions and theorems associated
with probability spaces can be used with PMFs. For example, the probability of
an event A :: ’a set occurring under p is measure_pmf.prob p A . The support
of PMF p is set_pmf p , which is finite for all PMFs considered in this work.

4 Approximate Model Counting in Isabelle/HOL

This section outlines our formalization of ApproxMC in Isabelle/HOL and its ver-
ified certificate checker implementation. The proof follows a refinement-based
approach, starting with an abstract mathematical specification of ApproxMC,
where its probabilistic approximation guarantees can be formalized without low-
level implementation details getting in the way (Sect. 4.1). Then, the abstract

160 Y. K. Tan et al.

specification is progressively concretized to a verified certificate checker which
we call CertCheck (Sect. 4.2) and we extend ApproxMC to ApproxMCCert, a
certificate-generating counter (Sect. 4.3). As part of CertCheck, we also built
a native CNF-XOR unsatisfiability checker, which is external to Isabelle/HOL,
but is also based on formally verified proof checking (Sect. 4.4).

4.1 Abstract Specification and Probabilistic Analysis

Throughout this section, the type ’a abstracts the syntactic representation of
variables. For example, in the DIMACS CNF format, variables are represented
with positive numbers, while in other settings, it may be more convenient to use
strings as variable names. A solution (or model) w :: ’a ⇒ bool is a Boolean-
valued function on variables and a projection set S :: ’a set is a (finite) set
of variables. The main result of this section is formalized in a locale with two
parameters sols , enc_xor , and an assumption relating the two:

locale ApproxMC =
fixes sols :: "’fml ⇒ (’a ⇒ bool) set"
fixes enc_xor :: "’a set × bool ⇒ ’fml ⇒ ’fml"
assumes "

∧
F xor.

sols (enc_xor xor F) = sols F ∩ {ω. satisfies_xor xor {x. ω x}}"

Here, type ’fml abstracts the syntactic representation of formulas, sols F is
the set of all solutions of a formula F , and enc_xor xor F is a formula whose
set of solutions satisfies both F and the XOR constraint xor . An instantiation
of the ApproxMC locale would need to provide implementations of sols , enc_xor
and prove that they satisfy the latter assumed property.

The PAC theorem for ApproxMC is formalized as follows:

theorem approxmc_prob:
assumes "δ > 0" "δ < 1" "ε > 0" "ε ≤ 1" "finite S"
shows "let sz = real (card (proj S (sols F))) in

measure_pmf.prob (approxmc F S ε δ n)
{c. c ∈ {sz / (1 + ε) .. (1 + ε) * sz}} ≥ 1 - δ"

Here, sz is the true count of projected solutions, i.e., the cardinality of the
set proj S (sols F) , interpreted as a real number. The conclusion says that
approxmc returns an ε-approximate count c with probability at least 1 - δ. The
argument n is a user-specifiable minimum number of iterations of ApproxMCCore
calls inside ApproxMC; in practice, a sufficient number of rounds is automatically
determined using the median method. Since the ApproxMC locale can be instan-
tiated for any Boolean theory in which XOR constraints can be syntactically
encoded, this theorem shows that the approximate model counting algorithm of
Chakrabory et al. [12] works for any such theory.

The rest of this section gives an overview of our proof of approxmc_prob .
Technical differences compared to the original proofs are discussed in remarks.

Formally Certified Approximate Model Counting 161

Formalized Analysis of ApproxMCCore. For simplicity, we write S ⇒ bool
for the type of solutions projected onto set S and [n] ⇒ bool for n-dimensional
bit-vectors, i.e., the type of Boolean-valued functions on domain 0, 1, . . . , n − 1.
A hash function h :: (S ⇒ bool) ⇒ ([n] ⇒ bool) maps projected solutions
into n-dimensional bit-vectors. Let W :: (’a ⇒ bool) set be any set of solu-
tions, such as sols F . Abstractly, ApproxMCCore is a way of approximating the
cardinality of the projected set proj S W , given an oracle that can count up
to a specified threshold thresh number of solutions. Without loss of generality,
assume thresh ≤ proj S W (otherwise, the oracle returns the exact count).

Remark 1. The simple type theory of Isabelle/HOL does not support dependent
function types like S ⇒ bool and [n] ⇒ bool . Our formalization represents
functions with type S ⇒ bool as partial functions ’a ⇀ bool along with an
assumption that their function domain is equal to S .

For any fixed bit-vector α :: [card S - 1] ⇒ bool , the sets of hash func-
tions T , L , and U used in the analysis are defined as follows, where card_slice
h i counts the number of entries of w ∈ proj S W such that the hash value h w
agrees with α on their first i entries (also called the i -th slices).

definition μ where "μ i = card (proj S W) / 2 ^ i"
definition T where "T i = {h. card_slice h i < thresh}"
definition L where "L i = {h. card_slice h i < μ i / (1+ε)}"
definition U where "U i = {h. card_slice h i ≥ μ i * (1 +
ε/(1+ε))}"

For any input hash function h , the following approxcore function (cf. Algo-
rithm 2 Lines 2–5) finds the first index m , if one exists in [1..<card S] , where
h ∈ T m . It returns the approximate model count as a multiplier (2 ^ m) and
cell size (card_slice h m). The failure event approxcore_fail is the set of hash
functions h such that approxcore returns a non-(1+ε) -factor-approximate count.

definition approxcore where "
approxcore h = (
case List.find (λi. h ∈ T i) [1..<card S] of

None ⇒ (2 ^ card S, 1)
| Some m ⇒ (2 ^ m, card_slice h m))"

definition approxcore_fail where "
approxcore_fail =
{h. let (cells,sols) = approxcore h ; sz = card (proj S W) in

cells * sols /∈ {sz / (1 + ε) .. (1 + ε) * sz}}"

The key lemma for approxcore (shown with proof sketch below) is that, for
hash functions h , which are randomly sampled from an appropriate hash family H ,
the probability of the aforementioned failure event is bounded above by 0.36 [12].
The lemma uses Isabelle/HOL’s formalization of hash families which is seeded [31],
i.e., p is a PMF on seeds and H is a 2 -universal hash family for seeds drawn from p ;

162 Y. K. Tan et al.

map_pmf (λs w. H w s) p is a PMF which samples a random seed s and then returns
the hash function associated with that seed according to the family H .

lemma approxcore_fail_prob:
assumes "(1 + ε / (1 + ε)) * (9.84 * (1 + 1 / ε)^2) ≤ thresh"
assumes "ε ≤ 1" "finite (set_pmf p)"
assumes "prob_space.k_universal (measure_pmf p) 2 H

{α. dom α = S} {α. dom α = {0..<card S - 1}}"
shows "

measure_pmf.prob (map_pmf (λs w. H w s) p) approxcore_fail ≤ 0.36"

Proof. The proof of approxcore_fail_prob proceeds via several sub-lemmas [12],
which we discuss inline below. We first show that an index mstar exists with the
following properties (obtains is the Isar keyword for existential claims):

lemma mstar_exists:
obtains mstar where

"μ (mstar - 1) * (1 + ε / (1 + ε)) > thresh"
"μ mstar * (1 + ε / (1 + ε)) ≤ thresh"
"mstar ≤ card S - 1"

This is proved by noting that there exists m satisfying the first two properties
separately in the finite interval 1,2,...,card S - 1 , so there must be an mstar
satisfying all three properties in that interval.

Next, the failure event (which is a set of hash functions) is proved to be con-
tained in the union of four separate events involving mstar using the properties
from mstar_exists and unfolding the respective definitions of T , L , and U :

lemma failure_subset:
shows "approxcore_fail ⊆

T (mstar-3) ∪ L (mstar-2) ∪ L (mstar-1) ∪ (L mstar ∪ U mstar)"

Finally, we bound the probability for each of the four events separately.

lemma events_prob:
assumes "(1 + ε / (1 + ε)) * (9.84 * (1 + 1 / ε)^2) ≤ thresh"
assumes "finite (set_pmf p)"
assumes "prob_space.k_universal (measure_pmf p) 2 H

{α. dom α = S} {α. dom α = {0..<card S - 1}}"
shows "let Hp = map_pmf (λs w. H w s) p in

(ε ≤ 1 −→ measure_pmf.prob Hp (T (mstar-3)) ≤ 1 / 62.5) ∧
measure_pmf.prob Hp (L (mstar-2)) ≤ 1 / 20.68 ∧
measure_pmf.prob Hp (L (mstar-1)) ≤ 1 / 10.84 ∧
measure_pmf.prob Hp (L mstar ∪ U mstar) ≤ 1 / 4.92"

Lemma approxcore_fail_prob follows from failure_subset , events_prob ,
and the union bound on probabilities. ��

Formally Certified Approximate Model Counting 163

Remark 2. Our implicit construction of mstar in mstar_exists avoids an explicit
calculation from F , S and ε [12], which is more intricate to analyze. Additionally,
in events_prob , the first bound for T (mstar-3) works only when ε ≤ 1 , an
omitted condition from the pen-and-paper proof [12, Lemma 2]; we also verified
a looser bound of 1 / 10.84 without this condition, but this leads to a weaker
overall guarantee for ApproxMCCore (which we do not use subsequently).

Formalized Analysis of ApproxMC. Random XORs and XOR-based hash
families are defined as follows:

definition random_xor where "
random_xor V = pair_pmf (pmf_of_set (Pow V)) (bernoulli_pmf (1/2))"

definition random_xors where "
random_xors V n = prod_pmf {..<n} (λ_. map_pmf Some (random_xor

V))"
definition xor_hash where "

xor_hash w xors =
(map_option (λxor. satisfies_xor xor {x. w x = Some True}) ◦

xors)"

Here, random_xor V is the PMF which samples a pair of a uniformly randomly
chosen subset of the (projection) variables V and the outcome of a fair coin
flip; random_xors V n is the PMF that samples n independent XORs according
to random_xor V . Given card S - 1 randomly chosen seed xors , the associated
xor_hash hash function takes a projected solution w to the bit-vector whose bit
i indicates whether the i -th XOR is satisfied by w .

The following definition of approxmccore (cf. Algorithm 2) randomly sam-
ples card S - 1 XOR constraints over the variables S and runs approxcore_xors
(approxcore instantiated with XOR-based hash families using xor_hash). The
top-level function approxmc (cf. Algorithm 1) selects appropriate values for thresh
and the number of rounds t for amplification using the median method.

definition approxmccore :: "’fml ⇒ ’a set ⇒ nat ⇒ nat pmf"
where "approxmccore F S thresh =

map_pmf (approxcore_xors F S thresh) (random_xors S (card S - 1))"

definition approxmc::"’fml ⇒ ’a set ⇒ real ⇒ real ⇒ nat ⇒ nat
pmf"
where "approxmc F S ε δ n = (

let thresh = compute_thresh ε in
if card (proj S (sols F)) < thresh
then return_pmf (card (proj S (sols F)))
else

let t = compute_t δ n in
map_pmf (median t)

(prod_pmf {0..<t::nat} (λi. approxmccore F S thresh)))"

164 Y. K. Tan et al.

The main result approxmc_prob follows from 2-universality of XOR-based
hash families and the facts that compute_thresh returns a correct value of thresh
and compute_t chooses a sufficient number of rounds for the median method.

Library Contributions. We added reusable results to Isabelle/HOL’s proba-
bility libraries, such as the Paley-Zigmund inequality (a concentration inequality
used in the analysis of ApproxMCCore) and a slightly modified (tighter) analysis
of the median method based on the prior formalization by Karayel [31,33]; the
latter modification does not change the asymptotic analysis of the method but
it is needed as ApproxMC implementations use the tighter calculation to reduce
the number of rounds for success probability amplification.

We also formalized the 3-universality of XOR-based hash families [25], which
implies its 2-universality, as needed by ApproxMC. The proof is sketched in the
online extended version of this paper. Our (new) proof is of independent interest
as it is purely combinatorial, using a highly symmetric case analysis which helps
to reduce formalization effort because many cases can be proved using without-
loss-of-generality-style reasoning in Isabelle/HOL.

4.2 Concretization to a Certificate Checker

The specification from Sect. 4.1 leaves several details abstract. For example,
card_slice refers to set cardinalities and approxmc uses a bounded solution
counter as an oracle, neither of which are a priori computable terms. This
section gives a concrete implementation strategy where the abstract details
are obtained from certificates generated by an untrusted external implemen-
tation, and checked using verified code. The main result is formalized in a locale
CertCheck with two key extensions compared to ApproxMC from Sect. 4.1: (i) the
ApproxMCL locale, switching from set-based to computable list-based represen-
tations for the projection set and XORs; (ii) the additional locale parameters
check_sol determining whether a formula is satisfied by a specified assignment,
and ban_sol that syntactically blocks a solution from further consideration.

locale CertCheck = ApproxMCL sols enc_xor
for sols :: "’fml ⇒ (’a ⇒ bool) set"
and enc_xor :: "’a list × bool ⇒ ’fml ⇒ ’fml" +
fixes check_sol :: "’fml ⇒ (’a ⇒ bool) ⇒ bool"
fixes ban_sol :: "’a sol ⇒ ’fml ⇒ ’fml"
assumes "

∧
F w. check_sol F w ←→ w ∈ sols F"

assumes "
∧
F vs. sols (ban_sol vs F) =

sols F ∩ {ω. map ω (map fst vs) = map snd vs}"

The correctness of the certcheck checker (shown below) has two conjuncts
in its conclusion. In both conjuncts, f models an external (untrusted) imple-
mentation returning a certificate and r is a random seed passed to both f and
certcheck . The checker either returns an error string (isl) or a certified count.
The soundness guarantee (left conjunct) says that the probability of the checker

Formally Certified Approximate Model Counting 165

returning an incorrect count (without error) is bounded above by δ. Note that for
a buggy counter f that always returns an invalid certificate, certcheck returns
an error for all random seeds, i.e., it returns a count (whether correct or not)
with probability 0. Thus, the promise-completeness guarantee (right conjunct)
says that if the function f is promised to return valid certificates for all seeds
r , then the checker returns a correct count with probability 1 - δ.

theorem certcheck_prob:
assumes "(

∧
F. check_unsat F =⇒ sols F = {})"

assumes "δ > 0" "δ < 1" "ε > 0" "distinct S"
shows "

let sz = real (card (proj (set S) (sols F))) in
let seeds = random_seed_xors (find_t δ) (length S) in
let pr = measure_pmf.prob

(map_pmf (λr. certcheck check_unsat F S ε δ (f r) r) seeds) in
pr {c. ¬isl c ∧ projr c /∈ {sz / (1 + ε) .. (1 + ε) * sz}} ≤ δ ∧
((∀ r ∈ set_pmf seeds.

¬isl (certcheck check_unsat F S ε δ (f r) r)) −→
pr {c. projr c ∈ {sz / (1 + ε) .. (1 + ε) * sz}} ≥ 1 - δ)"

Additional differences in certcheck_prob compared to approxmc_prob are: (iii)
the oracle function check_unsat , which is assumed to be an interface to an exter-
nal unsatisfiability checker; (iv) the additional certificate arguments m0 and ms ;
and (v) the eager sampling of XORs using random bits (random_seed_xors),
compared to approxmc which samples lazily.

Remark 3. Note that ban_sol and check_sol are locale parameters with assump-
tions that must be proven when CertCheck is instantiated to a Boolean theory;
in contrast, check_unsat appears as an assumption. The pragmatic reason for
this difference is that ban_sol and check_sol can be readily implemented in
Isabelle/HOL with decent performance. In contrast, developing efficient verified
unsatisfiability proof checkers and formats, e.g., for CNFs, is still an active area
of research [3,27,37,53]. Leaving check_unsat outside the scope of Isabelle/HOL
allows us to rely on these orthogonal verification efforts (as we do in Sect. 4.4).

From approxmc to certcheck . We briefly list the steps in transporting the PAC
guarantee from approxmc to certcheck , with reference to the differences labeled
(i)–(v) above. The proof follows a sequence of small refinement steps which
are individually straightforward as they do not involve significant probabilistic
reasoning. First, cf. (v), a variant of approxmc is formalized where all XORs
are eagerly sampled upfront, as opposed to lazily at each call to approxmccore .
Without loss of generality, it suffices to sample t × (card S - 1) XORs. Next,
cf. (i), the representations are swapped to executable ones, e.g., the projection set
is represented as a list S of distinct elements. Accordingly, the left-hand side of
each XOR is represented as a list of length S bits, where the i -th bit indicates
whether the i -th entry of S is included in the XOR. Note that it suffices to
sample t × (card S - 1) × (card S + 1) bits for ApproxMC. Finally, cf. (iv),

166 Y. K. Tan et al.

Fig. 2. An example pigeon-hole formula (2 pigeons, 5 holes, 180 solutions) in DIMACS
format and a valid certificate for the checker at ε = 0.8 and δ = 0.2 (thresh = 73, t =
9). The certificate is shown with colored comments and with redundant spaces added
for clarity. In clauses, the negative (resp. positive) integers are negated (resp. positive)
literals, with a 0 terminator; solutions are lists of literals assigned to true. Part of the
certificate (marked with *) is checked with an external UNSAT proof checking pipeline.

partial certificates are introduced. The key observation is that the final value
of m in approxcore from Sect. 4.1 can be readily certified because it is the first
entry where adding m XORs causes the solution count to fall below thresh—the
solution count is monotonically decreasing as more XORs are added. Thus, for
a claimed value of m it suffices to check, cf. (ii) and (iii) that the following three
conditions hold. (1) Firstly, 1 ≤ m ≤ card S - 1 . (2) Secondly, the solution
count after adding m - 1 XORs reaches or exceeds thresh , which can be certified
(check_sol) by a list of solutions of length at least thresh , which are distinct
after projection on S . (3) Thirdly, if m < card S - 1 , then the solution count
after adding m XORs is below thresh , which can be certified (check_sol) by
a list of solutions of length below thresh , which are distinct after projection,
and where the formula after excluding all those projected solutions (ban_sol) is
unsatisfiable (check_unsat).

An example partial certificate is shown in Fig. 2. Note that we call these
partial certificates because of the reliance on an external pipeline for checking
unsatisfiability, as illustrated in the example.

Code Extraction for CertCheck. To obtain an executable implementation
of certcheck , we instantiated the Isabelle/HOL formalization with a concrete
syntax and semantics for CNF-XOR formulas, and extracted source code using
Isabelle/HOL’s Standard ML extraction mechanism. The extracted implemen-
tation is compiled together with user interface code, e.g., file I/O, parsing, and

Formally Certified Approximate Model Counting 167

interfacing with a trusted random bit generator and CNF-XOR unsatisfiability
checking, as shown in Fig. 1. The resulting tool is called CertCheck.

4.3 Extending ApproxMC to ApproxMCCert

To demonstrate the feasibility of building a (partial) certificate generation tool,
we modified the mainline implementation of ApproxMC to accept and use an
externally generated source of random bits. We also modified it to write its
internally calculated values of m and a log of the respective models reported by
its internal solver to a file. The resulting tool is called ApproxMCCert. An imple-
mentation of ApproxMC (and thus ApproxMCCert) requires logarithmically many
solver calls to find the correct value of m and it can employ many search strate-
gies [12]. The partial certificate format is agnostic to how m is found, requiring
certification only for the final value of m in each round.

Remark 4. It is worth remarking that CertCheck requires checking the validity of
O(ε−2 · log δ−1) solutions (each of size n, the number of variables), and unsatis-
fiability for O(log δ−1) formulas, while ApproxMC requires O(ε−2 · log n · log δ−1)
calls to its underlying solver. In the next section, we instantiate check_unsat
with a CNF-XOR unsatisfiability checking pipeline that generates proofs which
are checkable by a verified checker in polynomial time (in the size of the proofs).

4.4 CNF-XOR Unsatisfiability Checking

A crucial aspect of CertCheck is its reliance on an external checker for unsatis-
fiability of CNF-XOR formulas. As mentioned in Sect. 2, there are several prior
approaches for certified CNF-XOR reasoning that can be plugged into CertCheck.

We opted to build our own native extension of FRAT [3] because none of the
previous options scaled to the level of efficient XOR proof checking needed for
certifying ApproxMC (as evidenced later in Sect. 5). For brevity, the new input
and proof format(s) are illustrated with inline comments in Fig. 3. We defer a
format specification to the tool repository.

In a nutshell, when given an input CNF-XOR formula, CryptoMiniSat has
been improved to emit an unsatisfiability proof in our extended FRAT-XOR
format. Then, our FRAT-xor tool elaborates the proof into XLRUP, our extension
of Reverse Unit Propagation (RUP) proofs [27] with XOR reasoning. The latter
format can be checked using cake_xlrup, our formally verified proof checker.
Such an extension to FRAT was suggested as a possibility by Baek et al. [3] and
we bear their claim out in practice.

Extending FRAT-rs to FRAT-xor. Our FRAT-xor tool adds XOR support to
FRAT-rs [3], an existing tool for checking and elaborating FRAT proofs. This
extension is designed to be lightweight—FRAT-xor does not track XORs nor
check the correctness of any XOR-related steps; instead, it defers the job to
an underlying verified proof checker. Our main changes were: (i) adding parsing
support for XORs; (ii) ensuring that clauses implied from XORs can be properly

168 Y. K. Tan et al.

Fig. 3. (top left) A sample input CNF-XOR formula where XOR lines start with x
and indicate the literals that XOR to 1, e.g., the line x 1 2 -3 represents the XOR
constraint x1 ⊕ x2 ⊕ x̄3 = 1; (bottom left) a FRAT-XOR proof; (right) an XLRUP
proof. The steps in bold indicate newly added XOR reasoning. Note that the XOR
steps are (mostly) syntactically and semantically unchanged going from FRAT-XOR to
XLRUP, so we focus on the latter here. The meaning of each XLRUP step (analogously
for FRAT-XOR) is annotated in color-coded comments above the respective line.

used for further clausal steps, including automatic elaboration of RUP [3]; and
(iii) ensuring the clauses used to imply XORs are trimmed from the proof at
proper points, i.e., after the last usage by either a clausal or XOR step.

Extending cake_lpr to cake_xlrup. We also modified cake_lpr [53], a veri-
fied proof checker for CNF unsatisfiability, to support reasoning over XOR con-
straints. The new tool supports: (i) clause-to-clause reasoning via RUP steps; (ii)
deriving new XORs by adding together XORs; (iii) XOR-to-clause and clause-
to-XOR implications. The main challenge here was to represent XORs efficiently
using byte-level representations to take advantage of native machine instructions
in XOR addition steps. The final verified correctness theorem for cake_xlrup is
similar to that of cake_lpr [53] (omitted here).

Modifications to CryptoMiniSat. A refactoring of CryptoMiniSat was per-
formed in response to the bug described in Sect. 1 and in order to add FRAT-
XOR proof logging. As part of this rewrite, a new XOR constraint propagation
engine has been added that had been removed as part of BIRD [50]—that sys-
tem did not need it, as it kept all XOR constraints also in a blasted form.
Furthermore, XOR constraints have been given IDs instead of a pointer to a
TBUDDY BDD previously used, and all XOR manipulations such as XOR-ing

Formally Certified Approximate Model Counting 169

together XOR constraints, constant folding [57], satisfied XOR constraint dele-
tion, etc., had to be documented in the emitted FRAT-XOR proof log. Further,
CryptoMiniSat had to be modified to track which clause IDs were responsible
for recovered XOR constraints. To make sure our changes were correct, we mod-
ified CryptoMiniSat’s fuzzing pipeline to include XOR constraint-generating
problems and to check the generated proofs using our certification tools.

5 Experimental Evaluation

To evaluate the practicality of partial certificate generation (ApproxMCCert) and
certificate checking (CertCheck), we conducted an extensive evaluation over a
publicly available benchmark set [41] of 1896 problem instances that were used
in previous evaluations of ApproxMC [49,51]. The benchmark set consists of
(projected) model counting problems arising from applications such as proba-
bilistic reasoning, plan recognition, DQMR networks, ISCAS89 combinatorial
circuits, quantified information flow, program synthesis, functional synthesis,
and logistics. Most instances are satisfiable with large model counts and only
approximately 6% are unsatisfiable for testing corner cases.

To demonstrate the effectiveness of our new CNF-XOR unsatisfiability check-
ing pipeline, we also compared it to the three prior state-of-the-art approaches
discussed in Sect. 2. The approaches are labeled as follows:

CMS+frat-xor. Our new (default) pipeline based on FRAT-XOR (Sect. 4.4); here,
CMS is short for CryptoMiniSat.

CMS+tbuddy. The pipeline consisting of CryptoMiniSat with TBUDDY, FRAT-rs,
and a verified CNF proof checker (Sect. 2, item 1).

MiniSatXOR+pbp. The pipeline consisting of MiniSat with XOR engine, VeriPB,
and its verified proof checker (Sect. 2, item 2)

CaDiCaL+lrat. A state-of-the-art SAT solver CaDiCaL [8,44] which generates
proofs checkable by a verified CNF proof checker (Sect. 2, item 3).

We experimented with each of these approaches as the CNF-XOR unsatis-
fiability checking pipeline for CertCheck, checking the same suite of certificates
produced by ApproxMCCert.

The empirical evaluation was conducted on a high-performance computer
cluster where every node consists of an AMD EPYC-Milan processor featuring
2 × 64 real cores and 512GB of RAM. For each instance and tool (ApproxMC,
ApproxMCCert, or CertCheck), we set a timeout of 5000 s, memory limit of 16GB,
and we used the default values of δ = 0.2 and ε = 0.8 for all tools following
previous experimental conventions [49]. For each given tool, we report the PAR-
2 score which is commonly used in the SAT competition. It is calculated as the
average of all runtimes for solved/certified instances out of the relevant instances
for that tool, with unsolved/uncertified instances counting for double the time
limit (i.e., 10000 s).

Our empirical evaluation sought to answer the following questions:

170 Y. K. Tan et al.

RQ1 How does the performance of ApproxMCCert and CertCheck compare to
that of ApproxMC?

RQ2 How does the performance of CMS+frat-xor compare to prior state-of-the-
art approaches for CNF-XOR UNSAT checking for use in CertCheck?

RQ1 Feasibility of Certificate Generation and Checking. We present the
results for ApproxMC, ApproxMCCert, and CertCheck in Table 1. For certificate
generation, our main observation is that ApproxMCCert is able to solve and gen-
erate certificates for 99.3% (i.e., 1202 out of 1211) instances that ApproxMC can
solve alone, and their PAR-2 scores (out of 1896 instances) are similar. Indeed, in
the per-instance scatter plot of ApproxMC and ApproxMCCert runtimes in Fig. 4,
we see that for almost all instances, the overhead of certificate generation in
ApproxMCCert is fairly small. This is compelling evidence for the practicality of
adopting certificate generation for approximate counters with our approach.

Table 1. Performance comparison of ApproxMC, ApproxMCCert, and CertCheck. The
PAR-2 score is calculated out of 1896 instances for ApproxMC and ApproxMCCert, and
out of the 1202 instances with certificates for CertCheck.

ApproxMC ApproxMCCert CertCheck

Counted Instances 1211 1202 1018
PAR-2 Score 3769 3815 1743

Fig. 4. Per instance runtime (s) comparison for ApproxMCCert and ApproxMC.

Turning to the feasibility of certificate checking, we observe in Table 1 that
CertCheck is able to fully certify 84.7% of the instances (i.e., 1018 out of 1202)
with certificates. Of the remaining instances, CertCheck timed out for 46 and ran
out of memory for 138 instances (no certificate errors were reported in our latest

Formally Certified Approximate Model Counting 171

Fig. 5. (left) Runtime performance comparison between CNF-XOR unsatisfiability
checkers. (right) Per instance CNF-XOR unsatisfiability proof size (bytes) compari-
son for CMS+frat-xor and CMS+tbuddy.

versions of the tools). On average, CertCheck requires 4.6 times the runtime of
ApproxMCCert across all certified instances. Note that each instance of CertCheck
requires nine separate calls to the CNF-XOR unsatisfiability checking pipeline
(because δ = 0.2). It is worth emphasizing that in other certificate checking
setups, such as the SAT competitions, one would typically provide an order of
magnitude more time and memory to the checkers compared to solvers. Thus,
CertCheck performs well even though our time and memory limits are stringent.
Furthermore, we believe that CertCheck’s ability to achieve a fairly low PAR-2
score (computed out of 1202 instances) is compelling evidence for the practicality
of certificate checking in approximate counting. Future work could explore par-
allelized certificate checking since each round used in CertCheck can be checked
independently of each other.

RQ2 Comparison of CNF-XOR Unsatisfiability Checkers. We present
results using various alternative unsatisfiability checking pipelines as part of
CertCheck in Table 2. Here, we observe that the use of CMS+frat-xor allows
CertCheck to fully certify significantly more instances than can be certified by
prior approaches, and with a much lower PAR-2 score.

Table 2. Performance comparison of CNF-XOR unsatisfiability checkers in CertCheck.
The PAR-2 score is calculated out of the 1202 instances with certificates for all checkers.

Total CaDiCaL+lrat MiniSatXOR+pbp CMS+tbuddy CMS+frat-xor

Counted Instances 527 563 623 1018
PAR-2 Score 5742 5659 5027 1743

172 Y. K. Tan et al.

Figure 5 (left) visualizes the performance gap between CMS+frat-xor and the
prior methods using a CDF (cumulative distribution function) plot; a point (x, y)
indicates that the corresponding tool certifies y number of instances when given
a timeout of x seconds for each instance. This plot provides strong justifica-
tion for our claim of the need to develop CMS+frat-xor for native CNF-XOR
unsatisfiability proof checking in Sect. 4.4. The ability to log XOR proof steps
compactly in our new CNF-XOR unsatisfiability proof format is also significant.
This is illustrated in Fig. 5 (right) which gives a scatter plot comparing FRAT
(resp. FRAT-XOR) proof sizes generated by CMS+tbuddy (resp. CMS+frat-xor)
within 600 s on instances that were successfully certified by CMS+tbuddy. Recall
that the solver in CMS+tbuddy supports XOR reasoning and uses TBUDDY to
emit its proof log in terms of a clausal proof system, i.e., without native XOR
proof steps. Overall, our new proof format achieves an average 30-fold reduction
in proof size, with the maximum reduction reaching up to 8,251 times.

6 Conclusion and Future Work

This work shows that it is feasible to use proof assistants to formalize practical
randomized automated reasoning algorithms. Such formalizations are valuable—
our end-to-end certification approach for ApproxMCCert has led to bug-fixes for
both ApproxMC and its underlying CryptoMiniSat solver.

An interesting line of future work would be to support recently proposed tech-
niques such as sparse hashing [39] or rounding [60] in the context of ApproxMC.
Furthermore, this work leaves preprocessing techniques, such as independent
support identification, out of scope. It is worth noting that efficient identifica-
tion of the independent support set, in conjunction with a new rounding-based
algorithm [60], significantly boosts the counting performance of ApproxMC; in
the experimental setting of Table 1, this combination solves 1787 instances with
a PAR-2 score of 625. Thus, certifying these extensions is a tantalizing avenue
for future research. Another potential line of future work involves developing
extensions for theories other than CNF-XOR model counting [59].

Acknowledgement. This work has been financially supported by the Swedish
Research Council grant 2021-05165, National Research Foundation Singapore under its
NRF Fellowship Programme [NRF-NRFFAI1-2019-0004], Ministry of Education Sin-
gapore Tier 2 Grant [MOE-T2EP20121-0011], Ministry of Education Singapore Tier
1 Grant [R-252-000-B59-114], and by A*STAR, Singapore. The computational experi-
ments were performed on resources of the National Supercomputing Centre, Singapore
https://www.nscc.sg. Part of this work was carried out while some of the authors par-
ticipated in the Spring 2023 Extended Reunion: Satisfiability program at the Simons
Institute for the Theory of Computing and at Dagstuhl workshop 22411 Theory and
Practice of SAT and Combinatorial Solving.

https://www.nscc.sg

Formally Certified Approximate Model Counting 173

References

1. Abdulaziz, M., Mehlhorn, K., Nipkow, T.: Trustworthy graph algorithms (invited
talk). In: Rossmanith, P., Heggernes, P., Katoen, J. (eds.) MFCS. LIPIcs, vol. 138,
pp. 1:1–1:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://
doi.org/10.4230/LIPICS.MFCS.2019.1

2. ApproxMCCert and CertCheck tool repository. https://github.com/meelgroup/
approxmc-cert

3. Baek, S., Carneiro, M., Heule, M.J.H.: A flexible proof format for SAT solver-
elaborator communication. Log. Methods Comput. Sci. 18(2) (2022). https://doi.
org/10.46298/LMCS-18(2:3)2022

4. Ballarin, C.: Locales: a module system for mathematical theories. J. Autom. Rea-
son. 52(2), 123–153 (2014). https://doi.org/10.1007/s10817-013-9284-7

5. Baluta, T., Shen, S., Shinde, S., Meel, K.S., Saxena, P.: Quantitative verification of
neural networks and its security applications. In: Cavallaro, L., Kinder, J., Wang,
X., Katz, J. (eds.) CCS, pp. 1249–1264. ACM (2019). https://doi.org/10.1145/
3319535.3354245

6. Barbosa, H., Blanchette, J.C., Fleury, M., Fontaine, P.: Scalable fine-grained proofs
for formula processing. J. Autom. Reason. 64(3), 485–510 (2020). https://doi.org/
10.1007/s10817-018-09502-y

7. Beyersdorff, O., Hoffmann, T., Spachmann, L.N.: Proof complexity of propositional
model counting. In: Mahajan, M., Slivovsky, F. (eds.) SAT. LIPIcs, vol. 271, pp.
2:1–2:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023). https://doi.
org/10.4230/LIPICS.SAT.2023.2

8. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT competition 2020. In: Balyo, T., Fro-
leyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proceedings of SAT
Competition 2020 – Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

9. Bryant, R.E.: TBUDDY: a proof-generating BDD package. In: Griggio, A., Rungta,
N. (eds.) FMCAD, pp. 49–58. TU Wien Academic Press (2022).https://doi.org/
10.34727/2022/ISBN.978-3-85448-053-2_10

10. Bryant, R.E., Nawrocki, W., Avigad, J., Heule, M.J.H.: Certified knowledge com-
pilation with application to verified model counting. In: Mahajan, M., Slivovsky,
F. (eds.) SAT. LIPIcs, vol. 271, pp. 6:1–6:20. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2023). https://doi.org/10.4230/LIPIcs.SAT.2023.6

11. Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: Distribution-
aware sampling and weighted model counting for SAT. In: Brodley, C.E., Stone, P.
(eds.) AAAI, pp. 1722–1730. AAAI Press (2014). https://doi.org/10.1609/AAAI.
V28I1.8990

12. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Algorithmic improvements in approxi-
mate counting for probabilistic inference: from linear to logarithmic SAT calls. In:
Kambhampati, S. (ed.) IJCAI, pp. 3569–3576. IJCAI/AAAI Press (2016). http://
www.ijcai.org/Abstract/16/503

13. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Approximate model counting. In: Biere,
A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability - Second
Edition, Frontiers in Artificial Intelligence and Applications, vol. 336, pp. 1015–
1045. IOS Press (2021). https://doi.org/10.3233/FAIA201010

14. Dueñas-Osorio, L., Meel, K.S., Paredes, R., Vardi, M.Y.: Counting-based reliability
estimation for power-transmission grids. In: Singh, S., Markovitch, S. (eds.) AAAI,
pp. 4488–4494. AAAI Press (2017). https://doi.org/10.1609/AAAI.V31I1.11178

https://doi.org/10.4230/LIPICS.MFCS.2019.1
https://doi.org/10.4230/LIPICS.MFCS.2019.1
https://github.com/meelgroup/approxmc-cert
https://github.com/meelgroup/approxmc-cert
https://doi.org/10.46298/LMCS-18(2:3)2022
https://doi.org/10.46298/LMCS-18(2:3)2022
https://doi.org/10.1007/s10817-013-9284-7
https://doi.org/10.1145/3319535.3354245
https://doi.org/10.1145/3319535.3354245
https://doi.org/10.1007/s10817-018-09502-y
https://doi.org/10.1007/s10817-018-09502-y
https://doi.org/10.4230/LIPICS.SAT.2023.2
https://doi.org/10.4230/LIPICS.SAT.2023.2
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_10
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_10
https://doi.org/10.4230/LIPIcs.SAT.2023.6
https://doi.org/10.1609/AAAI.V28I1.8990
https://doi.org/10.1609/AAAI.V28I1.8990
http://www.ijcai.org/Abstract/16/503
http://www.ijcai.org/Abstract/16/503
https://doi.org/10.3233/FAIA201010
https://doi.org/10.1609/AAAI.V31I1.11178

174 Y. K. Tan et al.

15. Eberl, M., Haslbeck, M.W., Nipkow, T.: Verified analysis of random binary tree
structures. J. Autom. Reason. 64(5), 879–910 (2020). https://doi.org/10.1007/
s10817-020-09545-0

16. Eberl, M., Hölzl, J., Nipkow, T.: A verified compiler for probability density func-
tions. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 80–104. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46669-8_4

17. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3_37

18. Ermon, S., Gomes, C.P., Sabharwal, A., Selman, B.: Taming the curse of dimension-
ality: discrete integration by hashing and optimization. In: ICML. PMLR, vol. 28,
pp. 334–342. PMLR (2013). http://proceedings.mlr.press/v28/ermon13.html

19. Fichte, J.K., Hecher, M., Roland, V.: Proofs for propositional model count-
ing. In: Meel, K.S., Strichman, O. (eds.) SAT. LIPIcs, vol. 236, pp. 30:1–30:24.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.
4230/LIPICS.SAT.2022.30

20. Fleury, M.: Optimizing a verified SAT solver. In: Badger, J.M., Rozier, K.Y. (eds.)
NFM 2019. LNCS, vol. 11460, pp. 148–165. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-20652-9_10

21. FRATxor and cakexlrup tool repository. https://github.com/meelgroup/frat-xor
22. Gittis, A., Vin, E., Fremont, D.J.: Randomized synthesis for diversity and cost con-

straints with control improvisation. In: Shoham, S., Vizel, Y. (eds.) CAV. LNCS,
vol. 13372, pp. 526–546. Springer, Heidelberg (2022). https://doi.org/10.1007/978-
3-031-13188-2_26

23. Gocht, S., McCreesh, C., Myreen, M.O., Nordström, J., Oertel, A., Tan, Y.K.: End-
to-end verification for subgraph solving. In: Wooldridge, M.J., Dy, J.G., Natara-
jan, S. (eds.) AAAI, pp. 8038–8047. AAAI Press (2024). https://doi.org/10.1609/
AAAI.V38I8.28642

24. Gocht, S., Nordström, J.: Certifying parity reasoning efficiently using pseudo-
Boolean proofs. In: AAAI, pp. 3768–3777. AAAI Press (2021). https://doi.org/
10.1609/AAAI.V35I5.16494

25. Gomes, C.P., Sabharwal, A., Selman, B.: Near-uniform sampling of combinatorial
spaces using XOR constraints. In: Schölkopf, B., Platt, J.C., Hofmann, T. (eds.)
NIPS, pp. 481–488. MIT Press (2006)

26. Gopinathan, K., Sergey, I.: Certifying certainty and uncertainty in approximate
membership query structures. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS,
vol. 12225, pp. 279–303. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-53291-8_16

27. Heule, M., Hunt, W., Kaufmann, M., Wetzler, N.: Efficient, verified checking of
propositional proofs. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP 2017. LNCS,
vol. 10499, pp. 269–284. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66107-0_18

28. Hölzl, J., Lochbihler, A., Traytel, D.: A formalized hierarchy of probabilistic system
types. In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 203–220.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22102-1_13

29. Hurd, J.: Formal verification of probabilistic algorithms. Technical Report. UCAM-
CL-TR-566, University of Cambridge, Computer Laboratory (2003). https://doi.
org/10.48456/tr-566

30. Kan, S., Lin, A.W., Rümmer, P., Schrader, M.: CertiStr: a certified string solver.
In: Popescu, A., Zdancewic, S. (eds.) CPP, pp. 210–224. ACM (2022) https://doi.
org/10.1145/3497775.3503691

https://doi.org/10.1007/s10817-020-09545-0
https://doi.org/10.1007/s10817-020-09545-0
https://doi.org/10.1007/978-3-662-46669-8_4
https://doi.org/10.1007/978-3-540-24605-3_37
http://proceedings.mlr.press/v28/ermon13.html
https://doi.org/10.4230/LIPICS.SAT.2022.30
https://doi.org/10.4230/LIPICS.SAT.2022.30
https://doi.org/10.1007/978-3-030-20652-9_10
https://doi.org/10.1007/978-3-030-20652-9_10
https://github.com/meelgroup/frat-xor
https://doi.org/10.1007/978-3-031-13188-2_26
https://doi.org/10.1007/978-3-031-13188-2_26
https://doi.org/10.1609/AAAI.V38I8.28642
https://doi.org/10.1609/AAAI.V38I8.28642
https://doi.org/10.1609/AAAI.V35I5.16494
https://doi.org/10.1609/AAAI.V35I5.16494
https://doi.org/10.1007/978-3-030-53291-8_16
https://doi.org/10.1007/978-3-030-53291-8_16
https://doi.org/10.1007/978-3-319-66107-0_18
https://doi.org/10.1007/978-3-319-66107-0_18
https://doi.org/10.1007/978-3-319-22102-1_13
https://doi.org/10.48456/tr-566
https://doi.org/10.48456/tr-566
https://doi.org/10.1145/3497775.3503691
https://doi.org/10.1145/3497775.3503691

Formally Certified Approximate Model Counting 175

31. Karayel, E.: Formalization of randomized approximation algorithms for frequency
moments. In: Andronick, J., de Moura, L. (eds.) ITP. LIPIcs, vol. 237, pp. 21:1–
21:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/
10.4230/LIPIcs.ITP.2022.21

32. Karayel, E.: Formalization of randomized approximation algorithms for fre-
quency moments. Archive of Formal Proofs (2022). https://isa-afp.org/entries/
Frequency_Moments.html, Formal proof development

33. Karayel, E.: Median method. Archive of Formal Proofs (2022). https://isa-afp.org/
entries/Median_Method.html, Formal proof development

34. Karayel, E.: Universal hash families. Archive of Formal Proofs (2022). https://isa-
afp.org/entries/Universal_Hash_Families.html, Formal proof development

35. Kaufmann, D., Fleury, M., Biere, A.: The proof checkers Pacheck and Pastèque
for the practical algebraic calculus. In: FMCAD, pp. 264–269. TU Wien Academic
Press (2020).https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_34

36. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implemen-
tation of ML. In: Jagannathan, S., Sewell, P. (eds.) POPL, pp. 179–192. ACM
(2014). https://doi.org/10.1145/2535838.2535841

37. Lammich, P.: Efficient verified (UN)SAT certificate checking. J. Autom. Reason.
64(3), 513–532 (2020). https://doi.org/10.1007/s10817-019-09525-z

38. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms.
Comput. Sci. Rev. 5(2), 119–161 (2011). https://doi.org/10.1016/J.COSREV.
2010.09.009

39. Meel, K.S., Akshay, S.: Sparse hashing for scalable approximate model counting:
theory and practice. In: Hermanns, H., Zhang, L., Kobayashi, N., Miller, D. (eds.)
LICS, pp. 728–741. ACM (2020). https://doi.org/10.1145/3373718.3394809

40. Meel, K.S., Chakraborty, S., Akshay, S.: Auditable algorithms for approximate
model counting. In: Wooldridge, M.J., Dy, J.G., Natarajan, S. (eds.) AAAI, pp.
10654–10661. AAAI Press (2024). https://doi.org/10.1609/AAAI.V38I9.28936

41. Meel, K.S., Soos, M.: Model counting and uniform sampling instances (2020).
https://doi.org/10.5281/zenodo.3793090

42. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

43. Paulson, L.C.: The foundation of a generic theorem prover. J. Autom. Reasoning
5(3), 363–397 (1989). https://doi.org/10.1007/BF00248324

44. Pollitt, F., Fleury, M., Biere, A.: Faster LRAT checking than solving with CaDi-
CaL. In: Mahajan, M., Slivovsky, F. (eds.) SAT. LIPIcs, vol. 271, pp. 21:1–21:12.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023). https://doi.org/10.
4230/LIPICS.SAT.2023.21

45. Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82(1–2), 273–302
(1996). https://doi.org/10.1016/0004-3702(94)00092-1

46. Sang, T., Beame, P., Kautz, H.A.: Performing Bayesian inference by weighted
model counting. In: Veloso, M.M., Kambhampati, S. (eds.) AAAI, pp. 475–482.
AAAI Press/The MIT Press (2005). http://www.aaai.org/Library/AAAI/2005/
aaai05-075.php

47. Shi, X., Fu, Y.-F., Liu, J., Tsai, M.-H., Wang, B.-Y., Yang, B.-Y.: CoqQFBV: a
scalable certified SMT quantifier-free bit-vector solver. In: Silva, A., Leino, K.R.M.
(eds.) CAV 2021. LNCS, vol. 12760, pp. 149–171. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-81688-9_7

48. Soos, M., Bryant, R.E.: Proof generation for CDCL solvers using Gauss-Jordan
elimination. CoRR arxiv:2304.04292 (2023). https://doi.org/10.48550/ARXIV.
2304.04292

https://doi.org/10.4230/LIPIcs.ITP.2022.21
https://doi.org/10.4230/LIPIcs.ITP.2022.21
https://isa-afp.org/entries/Frequency_Moments.html
https://isa-afp.org/entries/Frequency_Moments.html
https://isa-afp.org/entries/Median_Method.html
https://isa-afp.org/entries/Median_Method.html
https://isa-afp.org/entries/Universal_Hash_Families.html
https://isa-afp.org/entries/Universal_Hash_Families.html
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_34
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1007/s10817-019-09525-z
https://doi.org/10.1016/J.COSREV.2010.09.009
https://doi.org/10.1016/J.COSREV.2010.09.009
https://doi.org/10.1145/3373718.3394809
https://doi.org/10.1609/AAAI.V38I9.28936
https://doi.org/10.5281/zenodo.3793090
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/BF00248324
https://doi.org/10.4230/LIPICS.SAT.2023.21
https://doi.org/10.4230/LIPICS.SAT.2023.21
https://doi.org/10.1016/0004-3702(94)00092-1
http://www.aaai.org/Library/AAAI/2005/aaai05-075.php
http://www.aaai.org/Library/AAAI/2005/aaai05-075.php
https://doi.org/10.1007/978-3-030-81688-9_7
https://doi.org/10.1007/978-3-030-81688-9_7
http://arxiv.org/abs/2304.04292
https://doi.org/10.48550/ARXIV.2304.04292
https://doi.org/10.48550/ARXIV.2304.04292

176 Y. K. Tan et al.

49. Soos, M., Gocht, S., Meel, K.S.: Tinted, detached, and lazy CNF-XOR solving and
its applications to counting and sampling. In: Lahiri, S.K., Wang, C. (eds.) CAV
2020. LNCS, vol. 12224, pp. 463–484. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-53288-8_22

50. Soos, M., Meel, K.S.: BIRD: engineering an efficient CNF-XOR SAT solver and
its applications to approximate model counting. In: AAAI, pp. 1592–1599. AAAI
Press (2019). https://doi.org/10.1609/AAAI.V33I01.33011592

51. Soos, M., Meel, K.S.: Arjun: An efficient independent support computation tech-
nique and its applications to counting and sampling. In: Mitra, T., Young, E.F.Y.,
Xiong, J. (eds.) ICCAD, pp. 71:1–71:9. ACM (2022). https://doi.org/10.1145/
3508352.3549406

52. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_24

53. Tan, Y.K., Heule, M.J.H., Myreen, M.O.: Verified propagation redundancy and
compositional UNSAT checking in CakeML. Int. J. Softw. Tools Technol. Transf.
25(2), 167–184 (2023). https://doi.org/10.1007/s10009-022-00690-y

54. Tan, Y.K., Yang, J.: Approximate model counting. Archive of Formal Proofs
(2024). https://isa-afp.org/entries/Approximate_Model_Counting.html, Formal
proof development

55. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 452–468. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03359-9_31

56. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J.
Comput. 8(3), 410–421 (1979). https://doi.org/10.1137/0208032

57. Wegman, M.N., Zadeck, F.K.: Constant propagation with conditional branches.
ACM Trans. Program. Lang. Syst. 13(2), 181–210 (1991). https://doi.org/10.1145/
103135.103136

58. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and trim-
ming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS,
vol. 8561, pp. 422–429. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09284-3_31

59. Yang, J., Meel, K.S.: Engineering an efficient PB-XOR solver. In: Michel, L.D.
(ed.) CP. LIPIcs, vol. 210, pp. 58:1–58:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2021https://doi.org/10.4230/LIPIcs.CP.2021.58

60. Yang, J., Meel, K.S.: Rounding meets approximate model counting. In: Enea, C.,
Lal, A. (eds.) CAV. LNCS, vol. 13965, pp. 132–162. Springer, Heidelberg (2023).
https://doi.org/10.1007/978-3-031-37703-7_7

https://doi.org/10.1007/978-3-030-53288-8_22
https://doi.org/10.1007/978-3-030-53288-8_22
https://doi.org/10.1609/AAAI.V33I01.33011592
https://doi.org/10.1145/3508352.3549406
https://doi.org/10.1145/3508352.3549406
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1007/s10009-022-00690-y
https://isa-afp.org/entries/Approximate_Model_Counting.html
https://doi.org/10.1007/978-3-642-03359-9_31
https://doi.org/10.1007/978-3-642-03359-9_31
https://doi.org/10.1137/0208032
https://doi.org/10.1145/103135.103136
https://doi.org/10.1145/103135.103136
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.4230/LIPIcs.CP.2021.58
https://doi.org/10.1007/978-3-031-37703-7_7

Formally Certified Approximate Model Counting 177

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Scalable Bit-Blasting with Abstractions

Aina Niemetz1(B) , Mathias Preiner1 , and Yoni Zohar2

1 Stanford University, Stanford, USA
niemetz@cs.stanford.edu

2 Bar-Ilan University, Ramat Gan, Israel

Abstract. The dominant state-of-the-art approach for solving bit-
vector formulas in Satisfiability Modulo Theories (SMT) is bit-blasting,
an eager reduction to propositional logic. Bit-blasting is surprisingly effi-
cient in practice but does not generally scale well with increasing bit-
widths, especially when bit-vector arithmetic is present. In this paper,
we present a novel CEGAR-style abstraction-refinement procedure for
the theory of fixed-size bit-vectors that significantly improves the scala-
bility of bit-blasting. We provide lemma schemes for various arithmetic
bit-vector operators and an abduction-based framework for synthesiz-
ing refinement lemmas. We extended the state-of-the-art SMT solver
Bitwuzla with our abstraction-refinement approach and show that it sig-
nificantly improves solver performance on a variety of benchmark sets,
including industrial benchmarks that arise from smart contract verifica-
tion.

1 Introduction

Bit-precise reasoning as provided by Satisfiability Modulo Theories (SMT) for
the theory of fixed-size bit-vectors is a key requirement for many applications in
computer-aided verification. The dominant, state-of-the-art approach for solv-
ing bit-vector formulas is a technique called bit-blasting [24], an eager reduc-
tion of bit-vector constraints to a propositional satisfiability problem (SAT).
Bit-blasting is usually combined with aggressive simplifications of the input con-
straints prior to the actual reduction step. Even though this eager reduction may
come at the cost of significantly increasing the formula size, it is surprisingly effi-
cient in practice—mainly due to the fact that state-of-the-art SAT solvers are
usually able to efficiently deal with complex formulas over millions of variables.
This size increase, however, is a potential bottleneck and the main reason why
bit-blasting does not generally scale well for large bit-widths. This is especially
true in the presence of arithmetic operators, which translate to large and com-
plex Boolean circuits on the bit-level. In practice, this scaling issue can already

This work was supported in part by the Stanford Center for Automated Reasoning, the
Stanford Center for Blockchain Research, ISF grant number 619/21, and a gift from
Amazon Web Services.

c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 178–200, 2024.
https://doi.org/10.1007/978-3-031-65627-9_9

https://doi.org/10.5281/zenodo.10913320
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65627-9_9&domain=pdf
http://orcid.org/0000-0003-2600-5283
http://orcid.org/0000-0002-7142-6258
http://orcid.org/0000-0002-2972-6695
https://doi.org/10.1007/978-3-031-65627-9_9

Scalable Bit-Blasting with Abstractions 179

occur with bit-widths as low as 32 bits, and it is especially severe for applica-
tions that reason over considerably larger bit-widths due to the nature of their
domain, e.g., 256 bits in the context of smart contract verification [15].

In this paper, we propose a novel abstraction-refinement framework for the
theory of fixed-size bit-vectors that significantly improves the scalability of bit-
blasting on increasing bit-widths. Rather than providing an alternative to bit-
blasting, our approach is explicitly aimed at improving its performance via an
abstraction-refinement scheme based on the counterexample-guided abstraction
refinement (CEGAR) paradigm [16]. Constructs and operators that are poten-
tially expensive when translated to the bit-level are abstracted with fresh unin-
terpreted functions (UF), which corresponds to over-approximating the original
problem and translates to significantly smaller circuits on the bit-level. When
an abstraction is unsatisfiable, so is the original problem. However, when it is
satisfiable and inconsistent with the true semantics of the abstracted opera-
tors, it must be refined with lemmas to rule out spurious counterexamples. We
iteratively repeat the abstraction-refinement process until all abstractions are
consistent, and only fall back to bit-blasting an abstracted term when it cannot
be further refined, as a last resort. Thus, the main challenge is finding lemmas
for abstraction refinement that, ideally, allow to avoid bit-blasting of abstracted
terms, entirely. To this extent, this paper makes the following contributions:

– We present a modular and configurable CEGAR-style abstraction-refinement
framework for the theory of fixed-size bit-vectors, based on bit-blasting.

– We provide a set of refinement lemmas for a restricted but sufficient set of
arithmetic bit-vector operators (bvmul, bvudiv, bvurem). This set of lemmas
consists of a set of basic, hand-crafted lemmas (encoding core properties of
abstracted operators) and a set of lemmas synthesized via abduction.

– We provide a lemma scoring scheme and an abduction-based framework
for synthesizing lemmas, utilizing the syntax-restricted abduction reasoning
capabilities of the SMT solver cvc5 [7].

– We extend the open-source SMT solver Bitwuzla [29] with our approach and
show that it significantly improves performance on a wide range of bench-
marks, including industrial benchmarks from smart contract verification.

Related Work. Developing scalable approaches for solving bit-vector formulas
with large bit-widths is a long-standing challenge. Previous efforts to tackle this
challenge can be mainly divided into two categories: alternative approaches to
bit-blasting that primarily rely on word-level reasoning, and techniques based on
bit-blasting that try to reduce the size of the original problem on the bit-level.

Alternative approaches to bit-blasting include: translations to linear integer
arithmetic [11] and non-linear integer arithmetic (in combination with CEGAR-
style handling of bit-wise operators) [36]; layered CDCL(T)-style approaches
that rely on encoding fragments of the input problem into other theories before
resorting to bit-blasting [13,21]; instances of the model-constructing satisfiability
(mcSAT) calculus [20,35], a generalization of propositional conflict-driven clause
learning (CDCL) to SMT; and incomplete techniques such as local search [19,

180 A. Niemetz et al.

28,30], which are only able to determine satisfiability. All of these approaches
are generally not competitive with bit-blasting.

Techniques based on bit-blasting that aim at mitigating the impact of
increasing bit-widths on the bit-level are mainly based on some form of
under-approximation. Bryant et al. [14] proposed a combination of under-
approximation via restricting the value range of input variables with over-
approximation of the unsat core of the under-approximated problem. This over-
approximation consists of two strategies: eliminating if-then-else (ite) operations,
and abstracting bit-vector multiplication x · y with a partially interpreted func-
tion of the form λx.λy.ite(x ≈ 0 ∨ y ≈ 0, 0, ite(x = 1, y, ite(y ≈ 1, x, f(x, y)))
where f(x, y) is a fresh uninterpreted function. An early version of Boolector [12]
implemented a refined version of the above under-approximation strategy in [14].
More recently, in the context of quantified bit-vector reasoning, Jonás et al. pro-
posed an abstraction-based approach that reduces the size of the input problem
via interpreting bits as don’t care bits [22], and an under-approximation-based
framework based on bit-width reduction [23] similar to [14].

2 Preliminaries

We assume and briefly review the usual notions and terminology of many-sorted
first-order logic with equality (see, e.g., [18,25]). Let S be a set of sort symbols,
and let Σ be a signature containing a set Σs ⊆ S of sort symbols and a set Σf

of function symbols fσ1···σnσ with arity n ≥ 0 and σ1, ..., σn, σ ∈ Σs. We usually
omit the superscript from function symbols and refer to 0-arity function symbols
as constants. We assume that Σ includes a designated sort Bool, values � (true)
and ⊥ (false) of sort Bool, Boolean connectives {∧,¬} defined as usual, equality
and disequality symbols {≈,
≈} of sort σ × σ → Bool for every σ ∈ Σs, and an
if-then-else operator ite of sort Bool × σ × σ → σ for every σ ∈ Σs.

Let I be a Σ -interpretation that maps each σ ∈ Σs to a non-empty set
σI (the domain of I), with BoolI = {�,⊥}; and each fσ1···σnσ ∈ Σf to a
total function fI : σI

1 × ... × σI
n → σI if n > 0, and to an element in σI if

n = 0. The interpretation of Boolean connectives, Boolean values, equality sym-
bols and ite symbols is fixed and standard. We use the usual inductive definition
of the satisfiability relation |= between Σ-interpretations and Σ-formulas. We
write ϕ[x1, . . . , xn] to denote a Σ-formula ϕ defined over (a subset of) symbols
{x1, . . . , xn}. We further use ϕ[x1 �→ a1, . . . , xn �→ an] for the formula obtained
from ϕ by simultaneously replacing each occurrence of xi with ai.

A theory is a pair (Σ, I) where Σ is some signature, and I is a class of
Σ-interpretations. A Σ-formula is T -satisfiable (resp. T -unsatisfiable) if it is
satisfied by some (resp. no) interpretation in I; it is T -valid if it is satisfied
by all interpretations in I. We assume the usual definition of well-sorted terms,
literals, and formulas, and call Σ-formulas T -formulas and Σ-literals T -literals.

We focus on the theory of fixed-size bit-vectors TBV as defined by the SMT-
LIB 2 standard [8]. The theory of fixed-size bit-vectors TBV is defined as the
pair (ΣBV , IBV). Signature ΣBV includes a unique sort σ[w] for each bit-width w,

Scalable Bit-Blasting with Abstractions 181

function symbols overloaded for every σ[w], and all bit-vector values of sort σ[w]

for each w. The non-empty class of ΣBV -interpretations IBV (the models of
TBV) interpret sort and function symbols as specified in SMT-LIB 2.

Without loss of generality, we consider ΣBV to contain a restricted, arbitrary
set of bit-vector operators as listed in Table 1. This set is complete in the sense
that it suffices to express all bit-vector operators defined in SMT-LIB 2. We fur-
ther use logical connectives {∨,⇒,⇔} and bit-vector operator − for subtraction
and negation as shorthand when convenient. In the context of this paper it is
important to note that both bit-vector subtraction and negation are expressed
in terms of bit-vector addition.

We denote a ΣBV -term (or bit-vector term) x of width w as x[w] when we
want to specify its bit-width explicitly, and will omit w from the notation when
it is clear from the context. The width of a bit-vector term is given by function κ,
e.g., κ(x[w]) = w. We refer to the bit at index i of x[w] as x[i] and represent a bit-
vector value v[w] as a bit-string of 0 s and 1 s, with the most significant bit (MSB)
as the left-most bit v[msb] at index msb = w − 1, and the least significant bit
(LSB) as the right-most bit v[lsb] at index lsb = 0. To simplify the notation, we
will sometimes represent a value v[w] as a natural number in {0, . . . , 2w−1}.

Table 1. Set of considered bit-vector operators.

Symbol SMT-LIB Syntax Sort

<u, ≤u, >u, ≥u bvult, bvule, bvugt, bvuge σ[w] × σ[w] → Bool

∼ bvnot σ[w] → σ[w]

&, |, ⊕, <<, >> bvand, bvor, bvxor, bvshl, bvlshr σ[w] × σ[w] → σ[w]

+, ·, mod, ÷ bvadd, bvmul, bvurem, bvudiv σ[w] × σ[w] → σ[w]

◦ concat σ[w] × σ[m] → σ[w+m]

[u : l] extract (l ≤ u < w) σ[w] → σ[u−l+1]

3 Abstraction-Refinement Framework

Our abstraction-refinement framework is integrated into an SMT solver as a
CEGAR procedure that combines an abstraction module with the theory solver
that is responsible for reasoning about TBV -formulas (the bit-vector solver).
Since our main goal is to improve the scalability of bit-blasting, we assume that
the bit-vector solver implements bit-blasting as its main strategy. For simplic-
ity, we further assume that bit-blasting is its only strategy. However, this is
not a requirement. Our abstraction-refinement technique can be combined with
any complete technique for determining the satisfiability of TBV -formulas that
produces models for satisfiable formulas.

Algorithm 1 shows the main abstraction-refinement procedure of our app-
roach. Given a set of bit-vector constraints A, the abstraction module (AM)

182 A. Niemetz et al.

Algorithm 1. Abstraction-refinement loop around the TBV -solver.

1 function AbstractSolveBV(A)

2 result ← unknown, L ← ∅
3 A′ ← AM::abstract(A) � generate abstraction

4 repeat

5 A′ ← A′ ∪ L � refine abstraction

6 result, M ← TBV ::solve(A′) � query bit-vector solver

7 if result = unsat then break

8 L ← AM::check(M) � check consistency

9 until L = ∅
10 return result

11 end function

first generates an abstraction A′ of A (AM::abstract) by replacing abstracted
terms with fresh constants. This abstraction is then iteratively refined with lem-
mas L, starting from an empty set. First, the bit-vector solver is queried for
a satisfiability result of the current abstraction A′ and a model M of A′ if it
is satisfiable (TBV ::solve). If A′ is unsatisfiable, the procedure concludes with
unsat . If A′ is satisfiable, the abstraction module checks the consistency of M
for all abstracted terms with respect to their true semantics (AM::check) as
follows. Starting from an empty set of refinement lemmas L, for each abstracted
term, function AM::check determines if the model value of its abstraction is
consistent. If it is inconsistent, we add a refinement lemma to L that rules out
the inconsistency. When the model values of all abstracted terms have been
checked for consistency, AM::check returns the set of refinement lemmas L,
which extends abstraction A′ in the next iteration. If model M is consistent for
all abstracted terms (i.e., L = ∅), the procedure concludes with sat .

Note that conceptually, our term abstractions are uninterpreted functions
that map bit-vector arguments to a term of bit-vector sort, e.g., mul32(x, s) of
sort σ[32] × σ[32] → σ[32] as abstraction of a bit-vector multiplication x[32] · s[32].
When combining bit-vector theory reasoning with UF theory reasoning, from
the point of view of the bit-vector solver, these UF are seen as fresh bit-vector
constants. However, by construction, our procedure ensures that term abstrac-
tions are refined until consistency. Thus, when the UF theory solver is invoked
after the bit-vector theory solver, additional UF theory reasoning is not required.
Hence, introducing uninterpreted functions is redundant—it is sufficient to intro-
duce a fresh constant of the same bit-vector sort as the abstracted term, e.g.,
mulx,s

[32] for x[32] · s[32]. This allows the integration of our approach into any SMT
solver that supports bit-vector reasoning, even when UF reasoning is not sup-
ported. Preliminary experiments showed that in the context of integrating our
techniques in the SMT solver Bitwuzla, using UF as abstractions and scheduling
the UF theory solver prior to our abstraction-refinement loop introduced redun-
dant overhead and negatively impacted performance. Our approach, however,
allows to freely choose between introducing UF vs. fresh bit-vector constants,
depending on what is more beneficial for a specific solver architecture.

Scalable Bit-Blasting with Abstractions 183

One of the main tasks of the abstraction module is consistency checking of
satisfying assignments of the current abstraction, and refining the abstraction
in case of inconsistency. This refinement is driven by a pre-defined refinement
scheme for each abstracted operator. A refinement scheme is a four-tiered set of
lemmas that is checked tier-wise, in ascending order, during consistency checking.
We describe the refinement scheme for each operator and their tiers in more
detail in Sect. 4.

4 Refinement Schemes

We define four-tiered refinement schemes for bit-vector operators
� ∈ {·,÷, mod}, with tiers 1–2 as the main and predefined sets of refinement
lemmas that describe properties of the abstracted operators in the usual bit-
vector semantics (notably, with respect to overflow semantics). The first tier
consists of hand-crafted lemmas that mostly encode basic properties (described
in more detail in Sect. 4.1), while the second tier is entirely comprised of lemmas
that were synthesized via our abduction-based lemma synthesis framework (see
Sect. 4.3).

The third tier is not pre-defined but encodes so-called value instantiation
lemmas to rule out the current inconsistent model value as a limited fallback
strategy before we have to, as the fourth and final tier, resort to bit-blasting.
For example, for x[32] · s[32] with M = {x = 3, s = 6,mulx,s

[32] = 1}, we add
(x = 3 ∧ s = 6) ⇒ mulx,s

[32] = 18 as value instantiation lemma. Value instantia-
tion lemmas are only added if none of the lemmas in previous tiers were violated.
We further limit the number of value instantiation lemmas that are added for an
abstracted term since they each only rule out a single spurious model value of
the term abstraction (see Sect. 5). Lemmas in tiers 1–2 do not necessarily fully
capture all properties of an abstracted operator, and thus, inconsistent assign-
ments may remain uncovered. When this is the case and the number of value
instantiation lemmas to add is exhausted, we add a so-called bit-blasting lemma,
e.g., mulx,s

[32] ≈ x · s, which enforces bit-blasting of the abstracted term.
Note that of the considered arithmetic operators, addition is the only one

we do not abstract. Even though addition is more expensive when bit-blasting
compared to bit-wise operators, it is considerably cheaper than the operators we
abstract. Preliminary experiments showed that the trade-off between abstract-
ing the addition operator (which also occurs in our lemmas) versus bit-blasting
addition terms suggests that it is more beneficial to not abstract addition.

Table 2 lists all lemmas of tiers 1–2 for all three operators, with hand-crafted
lemmas marked with an asterisk. We use x for the left-hand operand, s for the
right-hand operand, and t for the constant introduced to abstract x � s. We
further indicate with a subscript on the lemma ID if there is a restriction on
the bit-widths for which the lemma is correct (see Sect. 4.4). Note that while
our abstraction approach does not generally restrict the bit-width of operators
to abstract, lemmas that are incorrect for certain bit-widths must be removed
from the lemma sets when terms of that size are abstracted. In practice, we only

184 A. Niemetz et al.

abstract terms of bit-width 32 and above (see Sect. 5) and thus these restrictions
are not applicable. Further, note that in practice we consider both commutative
cases (when applicable) while Table 2 only gives one. In the following, we describe
our set of hand-crafted lemmas, our lemma scoring scheme and how we derive
lemmas via abduction reasoning in more detail.

4.1 Hand-Crafted Lemmas

For each refinement scheme, our set of hand-crafted lemmas mostly contains
lemmas that cover basic properties of the abstracted operators (e.g., when one
of its operands is a special value). We also include lemmas that describe more
elaborate properties based on invertibility conditions [31], i.e., conditions that
exactly describe when operand x of operator � has a solution in literal x � s ≈ y.
More formally, an invertibility condition IC for a literal ϕ[x, s, y] is a formula
defined over s and y such that ∃x. ϕ ⇔ IC. In the following, we summarize the
properties encoded by each hand-crafted lemma.

Multiplication. Lemmas 1–2 capture the fact that multiplication by a power
of 2 (and its arithmetic negation) can be described as a left shift operation.
Lemma 3 states that the result of the multiplication must have at least as
many trailing zeros in its binary representation as one of its arguments and
is derived from the invertibility condition (−s | s) & y ≈ y for x ·s ≈ y. The left-
to-right direction of ∃x. ϕ ⇔ IC gives us (after Skolemization) the implication
x · s ≈ y ⇒ (−s | s) & y ≈ y, of which lemma 3 is the right-hand side. Lemma 4
is a parity lemma that states that the result of a multiplication x · s must be
odd if both x and s are odd, and even otherwise. Note that properties related
to multiplication by special values 1, −1 and 0 are subsumed by lemmas 1, 2
and 3, respectively. Further note that [31] also provides invertibility conditions
for literals defined over disequality and inequalities. We only consider invert-
ibility conditions for literals x � s ≈ y as this allows to instantiate y in the
corresponding lemma with term abstraction t. For literals over predicates other
than equality, e.g., x�s <u y, a good strategy for instantiating y in the resulting
lemma is not obvious and left to future work.

Division. Lemma 1 states that unsigned division by a power of 2 can be described
as a logical right shift operation. Lemmas 2–3 cover special cases: division by
itself and division by 0 (the latter is a defined case in SMT-LIB). Lemma 4
states that zero divided by a non-zero value is zero. Lemma 5 captures a natural
property of division by a non-zero value: its result is always less than its left-hand
argument. Lemma 6 describes the property that division by ∼0 (the maximum
unsigned value) yields zero if the dividend is less than ∼0. Note that for division,
we do not utilize the corresponding invertibility conditions from [31] since they
introduce new division terms that may not yet appear in the input constraints,
which may lead to non-termination of the abstraction procedure.

Scalable Bit-Blasting with Abstractions 185

Table 2. Lemmas for terms x[w] � s[w] with � ∈ {·, ÷, mod}. We use t for the constant
introduced to abstract x�s, hand-crafted lemmas are marked with ∗, and i ∈ [0, w−1].
Lemma ID subscripts indicate bit-width restrictions for correctness.

bvmul

1∗ s ≈ 2i ⇒ t ≈ x << i 11>1 t �≈ (1 | ∼(x ⊕ s))

2∗ s ≈ −2i ⇒ t ≈ −x << i 12>1 t �≈ (∼1 | (x ⊕ s))

3∗ ((−s | s) & t) ≈ t 13 x �≈ ((x <<(s + t)) − 1)

4∗ t[0] ≈ (x[0] & s[0]) 14 x �≈ (1 − (x <<(s − t)))

5>1 s �≈ ∼(t | (1 & (x | s))) 15 s �≈ (1 + (s <<(t − x)))

6>1 (x & t) �≈ (s | ∼t) 16 s �≈ (1 − (s <<(t − x)))

7>1 t �≈ ((s | 1)<<(t << x)) 17 s �≈ (1 + (s <<(x − t)))

8 s ≈ (s <<(x & (1>> t))) 18>1 t �≈ (1 | (x + s))

9�=2 t ≥u (1 & ((x & s)>> 1)) 19 x �≈ ∼(x <<(s + t))

10 x �≈ (1 ⊕ (x <<(s ⊕ t)))

bvudiv

1∗ s ≈ 2i ⇒ t ≈ x >> i 19 (x >> t) �≈ (s | t)

2∗ (s ≈ x ∧ s �≈ 0) ⇒ t ≈ 1 20 s �≈ ∼(s >>(t >> 1))

3∗ s ≈ 0 ⇒ t ≈ ∼0 21>1 x �≈ ∼(x & (t << 1))

4∗ (x ≈ 0 ∧ s �≈ 0) ⇒ t ≈ 0 22 t ≥u ((x << 1)>> s)

5∗ s �≈ 0 ⇒ t ≤u x 23 x ≥u (s << ∼(x | t))

6∗ (s ≈ ∼0 ∧ x �≈ ∼0) ⇒ t ≈ 0 24 x ≥u (t << ∼(x | s))

7 x ≥u −(−s & −t) 25 x ≥u (t ⊕ (t >>(s >> 1)))

8 −(s | 1) ≥u t 26 x ≥u (s ⊕ (s >>(t >> 1)))

9 t �≈ −(s & ∼x) 27 x ≥u (s << ∼(x ⊕ t))

10 (s | t) �≈ (x & ∼1) 28 x ≥u (t << ∼(x ⊕ s))

11 (s | 1) �≈ (x & ∼t) 29 x �≈ (t + (s | (x + s)))

12 (x & −t) ≥u (s & t) 30>2 x �≈ (t + (1 + (1<< x)))

13 s ≥u (x >> t) 31 s ≥u ((x + t)>> t)

14 x ≥u ((s >>(s << t))<< 1) 32>1 x �≈ (t + (t + (x | s)))

15 x ≥u ((t << 1)>>(t << s)) 33 (s ⊕ (x | t)) ≥u (t ⊕ 1)

16 t ≥u ((x >> s)<< 1) 34 t ≥u (x >>(s − 1))

17 x ≥u ((x | t) & (s << 1)) 35 (s − 1) ≥u (x >> t)

18 x ≥u ((x | s) & (t << 1)) 36 �=2 x �≈ (1 − (x <<(x − t)))

bvurem

1∗ s ≈ 2i ⇒ t ≈ (0[κ(x)−i] ◦ x[i − 1 : 0]) 9 x ≥u (t | (x & s))

2∗ s �≈ 0 ⇒ t ≤u s 10 1 �≈ (t & ∼(x | s))

3∗ x ≈ 0 ⇒ t ≈ 0 11 t �≈ (∼x | −s)

4∗ s ≈ 0 ⇒ t ≈ x 12 (t & (x | s)) ≥u (t & 1)

5∗ s ≈ x ⇒ t ≈ 0 13>2 x �≈ (−x | −∼t)

6∗ x <u s ⇒ t ≈ x 14 (x + −s) ≥u t

7∗ ∼ − s ≥u t 15 (−s ⊕ (x | s)) ≥u t

8 x ≈ (x & (s | (t | −s)))

186 A. Niemetz et al.

Remainder. Lemma 1 exploits the fact that unsigned division by a power of 2
can be described as a logical right shift operation: the resulting remainder cor-
responds to the value of the bits that are shifted out. Lemma 2 states that a
division by a non-zero divisor yields a remainder that cannot be greater than the
divisor. Lemmas 3–5 cover special cases: when one of the operands is zero, and
division by itself. Lemma 6 captures the fact that a division with a dividend that
is less than the divisor yields the dividend as the remainder. Lemma 7 is derived
from invertibility condition ∼ − s ≥u y for x mod s ≈ y from [31] in a similar
manner as the lemma derived from the invertibility condition for multiplication.

Powers of Two Lemmas. The powers of two lemmas for multiplication (lem-
mas 1–2), division (lemma 1), and remainder (lemma 1) use 2i to denote a
specific power of two. They do not symbolically encode whether a term s rep-
resents a power of two since this would require counting the number of trailing
zero bits i. Instead, if the current model value of s is a power of two, we instan-
tiate the corresponding lemma with this value. In the worst case, this will add
κ(s) instantiations of the lemma if all powers of two for bit-width κ(s) are enu-
merated. However, this is rarely the case and the lemmas are cheap in terms of
bit-blasting.

4.2 Lemma Scoring Scheme

Compiling a set of lemmas to describe properties of an abstracted operator �
requires careful consideration of several key aspects: (i) lemmas for � should not
introduce new terms that will be abstracted (introducing new terms with � may
lead to non-termination of the abstraction procedure and introducing terms with
abstracted operators other than � may yield potentially expensive abstractions
in case they have to be bit-blasted); (ii) lemmas should minimize introducing
new terms with potentially expensive operators that are not abstracted (e.g., bit-
vector addition); and (iii) possible candidate lemmas should be filtered based
on their quality to avoid adding redundant (subsumed) lemmas and to ensure
that included lemmas maximize the number of spurious models to rule out.

The former two impose syntax restrictions (see Sect. 4.3), and for the purpose
of addressing (iii), we define a scoring scheme that measures the quality of a
candidate lemma for operator � as follows.

Definition 1 (Lemma Score). Let x � s be the term to abstract, and let t be
the constant abstracting x� s such that x� s ≈ t. Given a lemma �[x, s, t] defined
over {x, s, t} such that x � s ≈ t ⇒ �. We define Score(�, w), the score of � for
a given bit-width w, as the number of triplets (vx, vs, vt) of bit-vector values of
bit-width w where �[x �→vx, s �→vs, t �→vt] evaluates to �.

For a term x[4] �s[4], the worst possible lemma score is the number of all possible
combinations of triplets (24 × 24 × 24 = 4096), and the best possible score is
the number of possible combinations of x and s (24 × 24 = 256). Thus, the
difference between the worst and best possible lemma score for any x � s is the

Scalable Bit-Blasting with Abstractions 187

number of incorrect triplets, i.e., triplets for which vx � vs
≈ vt. Since lemmas
over-approximate literals x � s ≈ t, their score is a measure for the degree of
over-approximation: a lower score indicates higher quality of a lemma as a higher
number of incorrect triplets is ruled out.

For our hand-crafted lemmas for multiplication from Sect. 4.1, for bit-width
4 we compute as scores: {1: 2416, 2: 2791, 3: 1961, 4: 2048}. This indicates that
they, individually, rule out 34–55% of incorrect triplets. Further, lemma 3, the
lemma derived via the invertibility condition for multiplication over equality, is
the strongest lemma of the four. Similarly, our hand-crafted lemmas for division
and remainder rule out 6–50% of incorrect triplets for bit-width 4, with lemma
5 the strongest lemma for division, and lemma 7, the lemma derived from an
invertibility condition, the strongest for remainder.

Individual lemma scores are a valuable measure of quality for a single lemma.
However, triplet coverage for individual lemmas may intersect. Thus, when con-
sidered as a set, in a refinement scheme, it is necessary to define a measure for
the quality of sets of lemmas to determine if extending the set with additional
lemmas improves the number of incorrect triplets that are ruled out.

Definition 2 (Score of Lemma Set). Given a set of lemmas L such that for
each �[x, s, t] ∈ L, x � s ≈ t ⇒ �. We define the score of L for a given bit-
width w Score(L, w) as the number of triplets (vx, vs, vt) of bit-vector values of
bit-width w where

∧

l∈L
�[x �→vx, s �→vs, t �→vt] = �.

For example, for x[4] · s[4], the score of the set of hand-crafted lemmas is 704,
which indicates that it already rules out 88% of the incorrect triplets. Similarly,
for division and remainder, for bit-width 4 the sets of hand-crafted lemmas rule
out 71% and 91% of incorrect triplets. Note that extending a set of lemmas L
with a lemma �
∈ L can improve but not worsen its score. If � is subsumed by L,
Score(L, w) remains unchanged. While our sets of hand-crafted lemmas from
Sect. 4.1 already rule out a large number of incorrect triplets, their score also
indicates that a considerable number of incorrect triplets is still not covered. We
thus, in the following, propose an automated framework for synthesizing lemmas
with respect to our sets of hand-crafted lemmas via abductive reasoning.

4.3 Synthesizing Lemmas via Abduction

The lemmas from Sect. 4.1 describe basic properties of the abstracted operators
and are hand-crafted but strong, as indicated by their score. However, a consider-
able number of incorrect triplets is still uncovered for each set. Further, manually
crafting lemmas that are effective with respect to an already existing set is chal-
lenging for arithmetic bit-vector operators, mainly due to overflow semantics. In
this section, we propose an automated way to synthesize lemmas with respect
to our sets of hand-crafted lemmas via syntax-restricted abductive reasoning [34]
and focus on synthesizing lemmas for bit-vector operators {·,÷, mod }. Our app-
roach, however, can easily be generalized to other operators and theories.

188 A. Niemetz et al.

Since we are over-approximating literals x � s ≈ t, we are trying to find lem-
mas �[x, s, t] such that (x � s) ≈ t ⇒ �. Further, as mentioned in Sect. 4.2, we
require that � does not contain specific operators (the set of abstracted oper-
ators, including � itself) and that the number of occurrences of more expen-
sive operators (such as bit-vector addition) is limited. The best possible over-
approximation of operator � would exactly describe the semantics of � without
including �, which seems unattainable under the given constraints. The worst
possible over-approximation, on the other hand, is the formula �. We are thus
looking for simple but non-trivial lemmas that improve the scores of our ini-
tial, hand-crafted lemma sets. We formulate this problem as an instance of the
general abduction problem, which is defined as follows.

Definition 3 (TBV -Abduct). Given two quantifier-free TBV -formulas A and
B, a TBV -abduct is a quantifier-free formula C such that A ∧ C ⇒ B is TBV -
valid, and A ∧ C is TBV -satisfiable.

Definition 4 (Non-trivial Lemma). Given a TBV -literal ϕ as x � s ≈ t, a ϕ
-lemma �[x, s, t] is a quantifier-free T-formula defined over {x, s, t} such that
ϕ ⇒ � is TBV -valid. Lemma � is non-trivial if it is not TBV -valid.

Finding a non-trivial lemma � for a given literal ϕ amounts to finding an
abduct ¬� of the formulas � and ¬ϕ.

Lemma 1. Let ϕ be a TBV -literal as above. TBV -formula � is a non-trivial ϕ-
lemma if and only if ¬� is a TBV -abduct of the formulas � and ¬ϕ.

Proof. Suppose ¬� is a TBV -abduct of � and ¬ϕ. In particular, � ∧ ¬� ⇒ ¬ϕ,
and therefore ϕ ⇒ �, and thus � is a ϕ-lemma. And since, by Definition 3, � ∧ ¬�
is TBV -satisfiable, we get that � is not TBV -valid. For the converse, suppose � is
a non-trivial ϕ-lemma. Then, ϕ ⇒ � is TBV -valid. In particular, � ∧ ¬� ⇒ ¬ϕ
is TBV -valid. Further, since � is not TBV -valid, � ∧ ¬� is TBV -satisfiable. ��

Since we require certain syntactic restrictions for ϕ-lemmas, we base our
lemma synthesis framework on the syntax-restricted abductive reasoning frame-
work of [34] as implemented in the SMT solver cvc5 [7]. This abduction frame-
work is based on Syntax-Guided Synthesis (SyGuS) [6] and thus guided by a
user-defined grammar. Note that, alternatively, our lemma synthesis problem
could be directly expressed as a SyGuS problem. However, non-triviality of lem-
mas requires the introduction of quantifiers in the specification of the formula to
synthesize, whereas this quantification is implicit in the abduction formulation.

Our goal is to automatically extend a set of ϕ-lemmas L (may be empty)
for a given literal ϕ (as defined above) with a set of lemmas Γ such that each
lemma � ∈ Γ improves the score of L. Algorithm 2 shows the main procedure
of our abduction-based lemma synthesis approach. Function SynthLem takes
as input a literal ϕ, the bit-width w for which ϕ is defined, a set of initial
lemmas I, a set G of grammars that define syntax restrictions for lemma con-
struction, and a limit n of number of lemmas to synthesize for each grammar.
The procedure constructs and returns a set of ϕ-lemmas L such that I ⊆ L and

Scalable Bit-Blasting with Abstractions 189

Algorithm 2. Synthesizing lemmas. Function SynthLem assumes the avail-
ability of an abduction reasoner GetAbduct. Function Score computes the
score of a set of lemmas w.r.t. a given bit-width w as in Definition 2.

1 function SynthLem(ϕ, w, I, G, n)

2 L ← I � Populate with initial lemmas

3 for γ in G do

4 Γ ← ∅
5 for i in [1, n] do � Synthesize lemmas via abduction

6 a ← GetAbduct(�, ¬ϕ, γ)

7 if a = ⊥ then break

8 Γ ← Γ ∪ {¬a}
9 end for

10 repeat � Merge synthesized lemma with L
11 �min ← some � ∈ Γ that minimizes Score(L ∪ {�}, w)

12 L ← L ∪ {�min}, Γ ← Γ \ {�min}
13 until �min = � ∨ Γ = ∅
14 end for

15 return L
16 end function

I ⊂ L ⇒ Score(L, w) < Score(I, w) as follows. The resulting set of lemmas L
is initialized with the given set of initial lemmas I (in our case our hand-crafted
lemmas). Then, for each grammar γ ∈ G, in lines 5–9, first a set of at most n
lemmas Γ is generated via abductive reasoning (GetAbduct). From this set, in
lines 10–13, L is extended only with those lemmas � that improve the score of L.
Lemmas are synthesized via an incremental abduction engine GetAbduct (in
our case cvc5) by iteratively asking for n new TBV -abducts of formulas � and ¬ϕ,
constructed from the operators in grammar γ. Function GetAbduct returns ⊥
if no more abducts are found (line 7), either because the search terminated or a
resource limit was reached. Note that we used n = 100 and a time limit of 100 s
per call to GetAbduct. Both limits were found to be a good middle ground
between generating sufficiently many lemmas while not overwhelming the solver
with too many abduction queries.

In the context of synthesizing lemmas for TBV operators, the search for lem-
mas via abduction is limited to formulas where the bit-width of TBV -terms is
explicitly given. Consequently, the TBV -abducts determined via GetAbduct
(and thus the resulting lemmas) are only guaranteed to be correct for this spe-
cific bit-width. Further, abductive reasoning for theory TBV as in [34] is based
on a TBV -solver with the same limitations our abstraction-based approach aims
to address: it relies on bit-blasting and thus does not scale well for increasing
bit-widths. We thus chose a bit-width of 4 for x, s and t as a reasonable com-
promise to not overwhelm the abduction engine while avoiding the generation
of lemmas that are specific to very small bit-widths. To minimize the risk of
including bit-width specific lemmas in the set of synthesized lemmas L, in func-
tion SynthLem, before adding lemma � to L, we introduce an additional step

190 A. Niemetz et al.

where we verify the correctness of � for bit-widths 4–10. And finally, before incor-
porating synthesized lemmas in our refinement schemes, we verify each lemma
up to a certain, large bit-width (see Sect. 4.4). Note that while the additional
verification step during synthesis encountered lemmas that were only valid for
bit-width 4, no lemmas that passed this verification step failed verification for
larger bit-widths. Further note that bit-vector multiplication is commutative. As
an optimization we thus add the corresponding symmetric cases of hand-crafted
lemmas to the set of initial lemmas I when applicable.

Our abduction-based lemma synthesis procedure requires the definition of
a set of grammars G to describe syntax restrictions for constructing lemmas.
Since the search space for SyGuS-based abduction heavily depends on such an
input grammar, we opted for diversification via a set of grammars rather than
a single, larger grammar. Set G consists of the of grammars γ0 to γ6 defined via
a common grammar γc = {x, s, t,≈,
≈, <u,≤u, 0, 1} as follows:

γ0 = γc ∪ {∼ ,&, |,⊕} γ4 = γ3 ∪ {⊕}
γ1 = γc ∪ {−,∼ ,&, |} γ5 = γ4 ∪ {+}
γ2 = γ1 ∪ {⊕} γ6 = γc ∪ {−,+,−+, <<,>>}
γ3 = γ1 ∪ {<<,>>}

Note that in grammars γ0 to γ6 above, we use symbol ‘−’ for negation and
‘−+’ for subtraction to ensure that they are distinguishable. Further note that
we include bit-vector addition (and operators such as subtraction and negation
that can be rewritten as addition) even though it is an arithmetic operation
and thus one of the more expensive operators when bit-blasting. Preliminary
experiments showed that including addition, negation and subtraction in some
of the grammars is beneficial for finding useful lemmas.

Extending our set of hand-crafted lemmas from Sect. 4.1 with the lemmas
synthesized via abduction as given in Table 2 improves the score for multiplica-
tion from 704 to 490, which corresponds to ruling out 94% of incorrect triplets
for our final set of tier 1 and tier 2 lemmas. Similarly, the score for division
improves from 1366 to 394 (96% coverage of incorrect triplets), and the score for
remainder improves from 616 to 400 (96% coverage of incorrect triplets).

Finally, it is important to note that we synthesized lemmas via abduction
in an offline manner, as opposed to during the solving process. That is, after
automatically generating the lemmas, they were incorporated into the solver
together with the hand-crafted lemmas. Thus, the set of incorporated tier 1 and
tier 2 lemmas is fixed and independent from the input problem.

4.4 Lemma Verification

We verified the correctness of lemmas � from Table 2 for bit-widths from 1–256
by checking for literal x � s ≈ t if formula x � s ≈ t ∧ ¬� is T -unsatisfiable.
Given that the lemmas based on powers of two are well-known and universally
valid properties of the corresponding bit-vector operators, we omit the additional

Scalable Bit-Blasting with Abstractions 191

131,584 benchmarks required to check each instance of these lemmas up to bit-
width 256. For the remaining lemmas, we generated 16,896 benchmarks and used
the SMT solvers Bitwuzla [29], cvc5 [7], Yices [17], and Z3 [27] for verification.
We ran these verification tasks on a cluster of 22 machines with Intel(R) Xeon(R)
Gold 6348 CPUs. For each solver and benchmark pair, we used a CPU time limit
of 8 h and a memory limit of 8GB. For a given bit-width, we consider a lemma
to be correct if at least one solver determined unsat , and as incorrect if at least
one solver determined sat . Overall, all solver-benchmark pairs required 1,112 d
of CPU time. We did not encounter any disagreements between solvers and were
able to complete all verification tasks, with Yices individually solving 96.49%,
Bitwuzla 96.47%, cvc5 96.29%, and Z3 95.05% of all tasks.

We were able to verify the correctness of all hand-crafted lemmas for bit-
widths 1–256, and of all synthesized lemmas for bit-widths 3–256. Synthesized
lemmas are correct by construction for bit-width 4, which is confirmed by this
experiment. However, some of the synthesized lemmas do not hold for very small
bit-widths, as indicated by the bit-width restrictions given in Table 2. As men-
tioned above, if terms of such a restricted size are abstracted, these lemmas
must not be considered for refinement. However, in the context of integrating
our abstraction approach into Bitwuzla, all lemmas are applicable since we only
abstract terms of size 32 and above (see Sect. 5).

Verification of the correctness of our lemmas up to bit-width 256 establishes
sufficient confidence of their correctness for bit-widths larger than 256. We leave
the task of formally proving their correctness for all bit-widths to future work. A
recent technique for reasoning over bit-vectors with parametric bit-width based
on a reduction to the quantified combination of the theories of uninterpreted
functions and non-linear arithmetic was proposed in [32]. However, preliminary
experiments showed that except for a small number of lemmas, verification of
our lemmas using this technique is not feasible.

5 Integration

We extended the state-of-the-art SMT solver Bitwuzla [29] with our proposed
framework. Bitwuzla supports quantified and quantifier-free bit-vector reasoning
in combination with arrays, floating-point arithmetic and uninterpreted func-
tions and was the best performing solver across supported logics in the SMT
competition in 2023 [5]. Further, Bitwuzla reduces floating-point arithmetic to
the theory of bit-vectors, which allows us to also apply our approach to floating-
point arithmetic problems that do not involve bit-vector constraints.

Bitwuzla implements a lazy, CEGAR-based SMT paradigm called lemmas
on demand [10,26], but with a bit-vector abstraction (and thus a TBV -solver)
instead of a propositional abstraction at its core. In this bit-vector abstraction,
non-TBV -atoms are abstracted as Boolean constants and non-TBV -terms are
abstracted as bit-vector constants. These abstracted terms are then handled by
the corresponding theory solvers. This architecture allows an easy and seamless
integration of our abstraction module. The interaction between the TBV -solver of

192 A. Niemetz et al.

Algorithm 3. The lemmas on demand loop of Bitwuzla with multiple theory
solvers, extended with our abstraction module AM (highlighted in blue).
1 function solve(A)

2 r ← Unknown, L ← ∅
3 repeat

4 A ← AM::abstract(A ∪ L)

5 r, M ← TBV ::solve(A) � Solve Bit-Vector Abstraction of A
6 if r = Unsat then break end if

7 if (L ← TFP ::check(M)) �= ∅ then continue end if � FP Solver

8 if (L ← AM::check(M)) �= ∅ then continue end if

9 if (L ← TA::check(M)) �= ∅ then continue end if � Arrays Solver

10 if (L ← TUF ::check(M)) �= ∅ then continue end if � UF Solver

11 L ← TQ::check(M) � Quantifiers Solver

12 until L = ∅
13 return r

14 end function

Bitwuzla and our abstraction module AM is implemented as shown in Algorithm
3. Prior to sending assertions to the TBV -solver, the abstraction module processes
each assertion and introduces abstractions for all relevant bit-vector terms. After
the TBV -solver determines that the set of abstracted assertions is satisfiable, the
abstraction module checks if all abstracted bit-vector terms are consistent and
adds refinement lemmas when needed.

Note that the order in which the theory solvers and the abstraction module
are called is not arbitrary. The TFP -solver word-blasts floating-point constraints
to TBV and, thus, introduces new bit-vector terms. Hence, the abstraction mod-
ule is called after the TFP -solver to ensure that for pure TFP -formulas, the TFP -
solver first generates word-blasting lemmas so that the abstraction module has
bit-vector terms to abstract. For the arrays (TA) and UF (TUF) theory solvers
and the quantifiers module (TQ), on the other hand, we have to ensure that
the bit-vector abstraction is consistent before checking the theory axioms based
on the current bit-vector abstraction model M. In preliminary experiments, the
abstraction module was called after the TA- and TUF -solvers, which resulted in
a degraded performance for problems involving these theories. This was a conse-
quence of the TA- and TUF -solvers generating substantially more lemmas due to
an inconsistent bit-vector abstraction. Similarly, when quantifiers are involved,
the quantifiers module is called last to ensure that the bit-vector abstraction of
all ground terms and formulas is consistent.

As an additional extension, we also implemented a more coarse-grained
abstraction approach that abstracts assertions as fresh Boolean constants. This
is not a novel technique and has been proposed in earlier literature [24]. How-
ever, it can be easily implemented in our proposed abstraction framework with a
simple refinement scheme for assertions. The goal of this refinement scheme is to
incrementally add assertions as refinements that evaluate to ⊥ under the current

Scalable Bit-Blasting with Abstractions 193

model of the bit-vector abstraction. This is combined with our main approach of
term abstraction in an interleaved manner by limiting the number of assertion
refinements added per refinement iteration. When adding assertions as refine-
ment, the abstraction module abstracts all relevant bit-vector terms occurring
in these assertions, and before new assertions are added, it ensures that the cur-
rent set of term abstractions is consistent. Only when all currently abstracted
terms are consistent, more assertions may be added as refinement. The termina-
tion criteria are the same as with term abstraction only. If all of the remaining
assertions evaluate to � under the current model, we conclude with sat . If a
subset of the added assertions is already unsatisfiable, we found an unsat core
and conclude with unsat .

Configuration. The number of assertion refinements per iteration is configurable
and set to 100 refinements per iteration. Similarly, the minimum bit-width of
terms defined over {·, ÷, mod } that we abstract is configurable and limited
to terms of size 32 and above. Further, since value instantiation lemmas only
rule out one spurious model, our implementation limits the number of value
instantiations per abstraction t based on its bit-width to κ(t)/8 instantiations.
For example, for an abstracted term t of bit-width 32, we add at most four value
instantiations before we add a bit-blasting lemma as final refinement for t.

6 Evaluation

We evaluate the performance of our bit-vector abstraction approach as inte-
grated in Bitwuzla on five different benchmark sets: certora (1,988 benchmarks),
ethereum (3,173 benchmarks), syrew (15,000 benchmarks), ff (1,224 bench-
marks), and smtlib (155,269 benchmarks). Benchmark sets certora and ethereum
are industrial benchmarks that arise from smart contract verification applica-
tions [15], provided by Certora [1] and the Ethereum Foundation [3]. The certora
set consists of SMT queries generated by the Certora Prover [2] and is split into
sets certora1 and certora2. The ethereum set contains benchmarks generated
by hevm [4], a symbolic execution engine for the Ethereum virtual machine.
Benchmarks in these sets are specifically encoded over bit-vectors of size 256, in
combination with arrays, uninterpreted functions, and quantifiers.

Benchmark set syrew serves as a more controlled and balanced set to specif-
ically evaluate the effectiveness of our abstraction approach for each abstracted
operator. We generated three sets of equivalence checks, each only involving one
of the abstracted operators. For that purpose, we enumerated TBV -terms and
TBV -formulas that are equivalent for bit-width 4 with the SyGuS-solver of cvc5.
For each set, we enumerated 500 equivalence checks using as SyGuS grammar
{0, 1, x, s, t,≈,
≈, <u,≤u,∼ ,&, <<,>>}, extended with only one of {·,÷, mod}.
The resulting 1,500 benchmarks were then instantiated for bit-widths 2i with
i ∈ [4, 13] yielding 15,000 benchmarks in total, the majority unsatisfiable.

The ff benchmark set originates from [33] and consists of translation vali-
dation problems of zero-knowledge proof compilers in two sets: an encoding in

194 A. Niemetz et al.

the theory of finite fields TFF and a translation to TBV that exclusively uses
arithmetic bit-vector operators {+, ·, mod} over bit-vectors of size 510.

Benchmark set smtlib contains all non-incremental benchmarks of all logics
in the SMT-LIB [9] benchmark library supported by Bitwuzla. This includes all
quantified and quantifier-free logics involving the theories of bit-vectors, arrays,
floating-point arithmetic and uninterpreted functions (24 in total). Note that
this also includes floating-point arithmetic logics that do not involve the theory
of bit-vectors since Bitwuzla word-blasts floating-point terms to bit-vector terms.

We implemented our novel term abstraction technique in our main configura-
tion Abstr-t. We additionally distinguish two configurations that enable asser-
tion abstraction as described in Sect. 5: configuration Abstr-a, which enables
assertion abstraction only, and configuration Abstr-ta, which enables both term
and assertion abstraction. We evaluate these configurations against Bitwuzla
version 0.3.2, cvc5 version 1.1.0, and Z3 version 4.12.4 (in their default config-
uration, using bit-blasting for TBV). Both cvc5 and Z3 are industrial-strength
SMT solvers that support a wide range of theories, including the theories sup-
ported by Bitwuzla. We further compare against cvc5-ib, a configuration of cvc5
that reduces bit-vector problems to non-linear integer arithmetic problems via
int-blasting [36]. Note that on the ff benchmark set, we evaluate these configu-
rations only on the TBV subset, and additionally compare against a dedicated
TFF -solver implementation of cvc5 (cvc5-ff) on the TFF subset.

We ran all experiments on a cluster of 25 machines with Intel(R) Xeon E5-
2620 v4 CPUs. For each solver and benchmark pair, we allocated one CPU core
and 8GB of memory with a time limit of 1200 s. In case that a solver terminated
with an error or ran into the memory limit on a specific benchmark, we counted
its runtime on that benchmark as 1200 s as a penalty.

Table 3 summarizes the results for each solver grouped by benchmark set
and ordered by number of solved benchmarks. Overall, Abstr-t significantly
outperforms all other bit-blasting solvers and the int-blasting solver cvc5-ib on
all benchmark sets. Our abstraction approach considerably reduces the memory
usage across all sets, solving more benchmarks with a lower number of memory
outs. Only on the certora sets, cvc5-ib has a smaller memory footprint, which is
due to the more memory-efficient translation of bit-vector to integer arithmetic.

The certora set is divided into the certora1 and certora2 subsets, which
correspond to the use of two different encodings arising from the same appli-
cation. Both sets rely on 256-bit bit-vectors and uninterpreted functions and
make heavy use of arithmetic operators. Set certora1 is a proprietary and more
diverse set of benchmarks and is sampled from a different (and more diverse)
set of smart contracts than certora2. It uses an older, less optimized encoding
that involves quantifiers and overflow predicates, while certora2 does not rely
on quantifiers and was successfully optimized for existing bit-blasting solvers,
which struggled on the older encoding. This can be seen in Table 3, where the
best non-abstraction-based bit-blasting configuration (Bitwuzla) solves only 13%
of certora1 but 74% of certora2. Benchmarks in the certora1 set usually con-
tain a large number of assertions (15k on average, up to 100k) and are thus

Scalable Bit-Blasting with Abstractions 195

Table 3. Number of solved benchmarks (Solved), timeouts (TO), memory outs (MO),
penalized runtime (T), memory usage of all benchmarks (M), and runtime Tc on com-
monly solved benchmarks, grouped by benchmark set and solvers. Note that the num-
ber (x/y) for each benchmark set indicates the number of commonly solved instances
x and the total number of benchmarks y in the set.

Benchmarks Solver Solved TO MO T [s] M [GB] Tc [s]

certora1

(10/850)

Abstr-ta 573 231 46 448k 2, 492 234

Abstr-a 386 140 324 681k 5, 201 963

Abstr-t 258 155 437 760k 4, 807 83

cvc5-ib 147 674 0 879k 667 52

Bitwuzla 111 86 653 915k 6, 182 192

cvc5 90 113 610 923k 6, 064 341

Z3 30 447 373 989k 4, 944 484

certora2

(227/1,138)

Abstr-ta 866 264 8 370k 1, 024 11k

Abstr-t 866 263 9 384k 1, 402 17k

Abstr-a 844 269 25 433k 2, 661 19k

Bitwuzla 843 266 29 439k 2, 944 23k

cvc5 705 223 210 603k 4, 027 22k

cvc5-ib 666 472 0 643k 106 15k

Z3 612 492 34 679k 1, 866 24k

ethereum
(3,138/3,173)

Abstr-t 3, 173 0 0 407 11 102

Bitwuzla 3, 173 0 0 720 29 228

Z3 3, 169 4 0 6k 107 679

cvc5 3, 158 0 1 18k 36 377

cvc5-ib 3, 141 20 0 39k 21 128

syrew
(5,528/15,000)

Abstr-t 14, 142 583 276 1, 225k 4, 409 2k

Bitwuzla 11, 961 744 2, 296 3, 955k 23, 483 24k

Z3 9, 992 833 4, 175 6, 198k 39, 506 78k

cvc5 9, 003 797 5, 200 7, 498k 48, 421 109k

cvc5-ib 7, 974 5, 137 1, 632 8, 836k 19, 850 180k

ff
(12/1,224)

cvc5-ff 973 129 122 313k 1, 364 0

Abstr-t 480 729 15 913k 2, 762 0

cvc5-ib 304 822 98 1, 104k 1, 074 0

Bitwuzla 223 71 930 1, 211k 8, 360 277

Z3 145 56 1, 023 1, 299k 8, 893 3

cvc5 40 0 1, 184 1, 422k 9, 523 589

smtlib
(125,037/155,269)

Abstr-t 148, 554 1, 944 152 8, 770k 8, 566 64k

Bitwuzla 148, 492 1, 966 193 8, 748k 8, 953 64k

Z3 145, 121 4, 846 565 13, 528k 18, 278 693k

cvc5 144, 829 3, 775 285 13, 513k 11, 029 213k

cvc5-ib 127, 144 24, 479 194 39, 647k 15, 233 5, 666k

good candidates for evaluating assertion abstraction in combination with term
abstraction. Benchmarks in the certora2 set, on the other hand, usually contain
a significantly smaller number of assertions (less than 1k per benchmark). Hence,

196 A. Niemetz et al.

on the certora benchmark sets, in addition to configuration Abstr-t, we also
evaluate the two configurations Abstr-a and Abstr-ta that enable assertion
abstraction. On both sets, Abstr-t considerably improves over bit-blasting. On
the certora1 set, Abstr-a outperforms Abstr-t, and combining assertion and
term abstraction (Abstr-ta) significantly outperforms either, both in terms of
solved benchmarks and memory usage. We observed that in the majority of cases
where Abstr-ta improves over Abstr-t, the benchmark is unsatisfiable and
the size of the unsatisfiable core is only a small fraction of the overall number
of assertions. On the certora2 set, however, Abstr-a is less effective since these
benchmarks contain a significantly smaller number of assertions. Configuration
Abstr-ta still improves over Abstr-t in terms of overall memory usage.

Note that for the benchmark sets ethereum, ff and syrew , enabling assertion
abstraction was not applicable for a majority of the benchmarks due to the
low number of assertions (less than 100 per benchmark). On benchmark set
smtlib, the effects of assertion abstraction were overall inconclusive. Thus, due
to space constraints, for the remaining sets, we exclude configurations Abstr-a
and Abstr-ta from the evaluation.

On the ethereum set, both Abstr-t and Bitwuzla solve all benchmarks.
However, Abstr-t is more than 40% faster and requires 60% less memory. On
the commonly 3,138 solved benchmarks, Abstr-t is the fastest solver, closely
followed by cvc5-ib. Both outperform the other bit-blasting solvers. Note that on
this benchmark set, cvc5 and cvc5-ib returned with errors due to unsupported
cases of equality over constant arrays on 14 and 12 benchmarks, respectively.

On the syrew set, Abstr-t significantly outperforms all other solvers and is
more than 3× faster with a 5× lower memory usage compared to the second best
solver Bitwuzla. On the commonly solved 5,528 benchmarks, Abstr-t is 12–90×
faster than the competition. The int-blasting configuration cvc5-ib comes in last,
mainly due to the occurrence of bit-wise operations. Bit-wise operators do not
have a direct translation to integers and require cvc5-ib to resort to abstraction
schemes, which is more expensive than the direct translation via bit-blasting.

On the ff benchmark set, as expected, the native finite field solver cvc5-ff
solves the most benchmarks overall. However, Abstr-t significantly improves
over bit-blasting (Bitwuzla) and int-blasting (cvc5-ib) with the least number of
memory outs overall. Surprisingly, Abstr-t is able to solve 36 benchmarks that
cvc5-ff cannot. None of the other solvers solves benchmarks that cvc5-ff cannot.

On the smtlib set, Abstr-t improves over Bitwuzla in 10 out of the 24 logics
in terms of number of solved benchmarks, with 6 of them being floating-point
arithmetic logics. Most notably, Abstr-t was able to improve the number of
solved instances X and runtime in percent Y on commonly solved instances
(X, Y%) over Bitwuzla in logics FP (+5, −16%), BVFP (0, −45%), QF ABVFP (+1,
−33%), QF ABVFPLRA (0, −23%), QF BVFP (+1, −45%), QF BVFPLRA (+9, −46%),
QF FP (+23, −13%), and QF FPLRA (+1, -7%).

Scalable Bit-Blasting with Abstractions 197

The only significant loss of -13 benchmarks is in the QF BV logic, which is also
the only logic where Abstr-t is significantly slower (33%) on commonly solved
instances compared to Bitwuzla. This slowdown can be primarily attributed
to the two benchmark families Sage2 and uclid. On these two families, on the
commonly solved instances, Abstr-t is slower by 40% and 4,100%, respectively.
This slowdown is unexpected and needs further investigation. Nevertheless, in
logic QF BV, Abstr-t is able to solve more unsatisfiable benchmarks with less
memory outs compared to Bitwuzla and outperforms cvc5, cvc5-ib and Z3 by a
significant margin (more than 1,400 solved benchmarks).

Table 4. Number of overall abstracted terms and abstraction refinements on solved
benchmarks grouped by abstracted operator and refinement tier (1: hand-crafted,
2: abduction, 3: value instantiation, 4: bit-blasting).

Terms Refinement Tier

Operator Abstracted 1 2 3 4 Total

· 367,101 579,369 67,221 650,086 134,525 1,431,201

÷ 55,461 126,223 109,137 73,019 7,024 315,403

mod 62,328 161,270 5,614 30,350 1,326 198,560

We further performed an analysis of term abstractions and abstraction refine-
ments for all benchmarks solved by Abstr-t in all benchmark sets. Table 4 sum-
marizes our findings, grouped by refinement tier and abstracted operator. Over-
all, Abstr-t abstracted 367,101 multiplication terms, 55,461 unsigned division
terms, and 62,328 unsigned remainder terms. Out of these, only 134,525 (37%)
multiplications, 7,024 (13%) divisions, and 1,326 (2%) remainders were bit-
blasted as last resort via adding tier-4 lemmas. For the remaining 63%/87%/98%
of multiplication/division/remainder terms, refinement with tier 1–3 lemmas
only was sufficient to solve the benchmarks. Out of the solved benchmarks where
Abstr-t abstracted any bit-vector terms, 80% were solved without bit-blasting
any of the abstracted terms. For the remaining 20% of solved benchmarks, 78%
of abstracted terms were bit-blasted.

For the benchmarks solved with abstraction, Abstr-t required on average 37
refinement iterations (median 4). Further, all lemmas except bvudiv lemma 21
and bvurem lemma 11 from Table 2 were used for solving these instances. Tier-
1/2/3/4 lemmas were used in 76%/27%/30%/20% of solved instances.

We further evaluated the usefulness of the abduction-based lemmas (tier 2)
by disabling these lemmas on the syrew benchmark set. Without these lem-
mas, Abstr-t solves 336 less benchmarks, has 2× more memory outs, and is
23% slower on commonly solved instances while consuming 61% more mem-
ory. Without tier-3 lemmas the number of solved instances for benchmark sets
certora1/certora2/syrew/ff /smtlib change by −12%/−1%/−1%/−6%/+0.01%.
The artifact of this paper is archived and available in the Zenodo open-access
repository at https://zenodo.org/record/10913320.

https://zenodo.org/record/10913320

198 A. Niemetz et al.

7 Conclusion

We have presented a novel abstraction-refinement approach to improve the scala-
bility of bit-blasting arithmetic terms with large bit-widths. We have introduced
a lemma scoring scheme and an abduction-based framework for synthesizing
refinement lemmas, which we include in our four-tiered refinement schemes. We
have extended the state-of-the-art SMT solver Bitwuzla with our techniques and
showed that this significantly improves solver performance on a diverse set of
benchmarks coming from a variety of applications, including smart contract ver-
ification and zero-knowledge proofs. Incorporating existing under-approximation
techniques with our approach is an interesting direction for future work.

References

1. Certora (2024). https://www.certora.com/
2. Certora prover white paper (2024). https://docs.certora.com/en/latest/docs/

whitepaper/index.html
3. Ethereum foundation (2024). https://ethereum.foundation/
4. hevm symbolic execution engine smt queries (2024). https://github.com/

msooseth/eth-bench-smt-queries
5. SMT competition 2023 (2024). https://github.com/smt-comp/2023
6. Alur, R., et al.: Syntax-guided synthesis. In: Formal Methods in Computer-Aided

Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013, pp. 1–8. IEEE
(2013). https://ieeexplore.ieee.org/document/6679385/

7. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: TACAS
2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99524-9 24

8. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech.
rep., Department of Computer Science, The University of Iowa (2017). http://smt-
lib.org

9. Barrett, C., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2023)

10. Barrett, C.W., Dill, D.L., Stump, A.: Checking satisfiability of first-order formulas
by incremental translation to SAT. In: Brinksma, E., Larsen, K.G. (eds.) Computer
Aided Verification, pp. 236–249. Springer Berlin Heidelberg, Berlin, Heidelberg
(2002). https://doi.org/10.1007/3-540-45657-0 18

11. Bozzano, M., et al.: Encoding RTL constructs for MathSAT: a preliminary report.
Electron. Notes Theor. Comput. Sci. 144(2), 3–14 (2006)

12. Brummayer, R.: Efficient SMT Solving for Bit-Vectors and the Extensional Theory
of Arrays. Ph.D. thesis, Informatik, Johannes Kepler University Linz (2009)

13. Bruttomesso, R., et al.: A lazy and layered SMT(BV) solver for hard indus-
trial verification problems. In: Damm, W., Hermanns, H. (eds.) Computer Aided
Verification, pp. 547–560. Springer Berlin Heidelberg, Berlin, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73368-3 54

14. Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.A.:
An abstraction-based decision procedure for bit-vector arithmetic. Int. J. Softw.
Tools Technol. Transf. 11(2), 95–104 (2009). https://doi.org/10.1007/S10009-009-
0101-X

https://www.certora.com/
https://docs.certora.com/en/latest/docs/whitepaper/index.html
https://docs.certora.com/en/latest/docs/whitepaper/index.html
https://ethereum.foundation/
https://github.com/msooseth/eth-bench-smt-queries
https://github.com/msooseth/eth-bench-smt-queries
https://github.com/smt-comp/2023
https://ieeexplore.ieee.org/document/6679385/
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
http://smt-lib.org
http://smt-lib.org
www.SMT-LIB.org
https://doi.org/10.1007/3-540-45657-0_18
https://doi.org/10.1007/978-3-540-73368-3_54
https://doi.org/10.1007/S10009-009-0101-X
https://doi.org/10.1007/S10009-009-0101-X

Scalable Bit-Blasting with Abstractions 199

15. Buterin, V.: Ethereum whitepaper (2023). https://ethereum.org/en/whitepaper/
16. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided

abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) Computer Aided
Verification, pp. 154–169. Springer Berlin Heidelberg, Berlin, Heidelberg (2000).
https://doi.org/10.1007/10722167 15

17. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) Computer Aided Verification,
pp. 737–744. Springer International Publishing, Cham (2014). https://doi.org/10.
1007/978-3-319-08867-9 49

18. Enderton, H.B.: A mathematical introduction to logic. Academic Press (1972)
19. Fröhlich, A., Biere, A., Wintersteiger, C., Hamadi, Y.: Stochastic local search for

satisfiability modulo theories. Proc. AAAI Conf. Artif. Intell. 29(1) (2015). https://
doi.org/10.1609/aaai.v29i1.9372

20. Graham-Lengrand, S., Jovanović, D., Dutertre, B.: Solving Bitvectors with
MCSAT: explanations from bits and pieces. In: Peltier, N., Sofronie-Stokkermans,
V. (eds.) Automated Reasoning: 10th International Joint Conference, IJCAR 2020,
Paris, France, July 1–4, 2020, Proceedings, Part I, pp. 103–121. Springer Interna-
tional Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-51074-9 7

21. Hadarean, L., Bansal, K., Jovanović, D., Barrett, C., Tinelli, C.: A tale of two
solvers: eager and lazy approaches to bit-vectors. In: Biere, A., Bloem, R. (eds.)
Computer Aided Verification, pp. 680–695. Springer International Publishing,
Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 45

22. Jonáš, M., Strejček, J.: Abstraction of bit-vector operations for BDD-based SMT
solvers. In: Fischer, B., Uustalu, T. (eds.) Theoretical Aspects of Computing –
ICTAC 2018: 15th International Colloquium, Stellenbosch, South Africa, October
16–19, 2018, Proceedings, pp. 273–291. Springer International Publishing, Cham
(2018). https://doi.org/10.1007/978-3-030-02508-3 15

23. Jonáš, M., Strejček, J.: Speeding up quantified bit-vector SMT Solvers by Bit-
Width Reductions and Extensions. In: Pulina, L., Seidl, M. (eds.) Theory and
Applications of Satisfiability Testing – SAT 2020: 23rd International Conference,
Alghero, Italy, July 3–10, 2020, Proceedings, pp. 378–393. Springer International
Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-51825-7 27

24. Kroening, D., Strichman, O.: Decision Procedures. Springer Berlin Heidelberg,
Berlin, Heidelberg (2016)

25. Manzano, M.: Introduction to many-sorted logic. In: Many-sorted logic and its
applications, pp. 3–86. John Wiley & Sons, Inc., New York, NY, USA (1993)

26. Moura, L.D., Rueß, H.: Lemmas on demand for satisfiability solvers. In: The 5th
International Symposium on the Theory and Applications of Satisfiability Testing,
SAT 2002, Cincinnati, USA, May 15, 2002 (2002)

27. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems, pp. 337–340. Springer Berlin Heidelberg, Berlin, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78800-3 24

28. Niemetz, A., Preiner, M.: Ternary propagation-based local search for more
bit-precise reasoning. In: 2020 Formal Methods in Computer Aided Design,
FMCAD 2020, Haifa, Israel, September 21-24, 2020, pp. 214–224. IEEE
(2020). https://doi.org/10.34727/2020/ISBN.978-3-85448-042-6 29, https://doi.
org/10.34727/2020/isbn.978-3-85448-042-6 29

29. Niemetz, A., Preiner, M.: Bitwuzla. In: Enea, C., Lal, A. (eds.) Computer Aided
Verification: 35th International Conference, CAV 2023, Paris, France, July 17–22,
2023, Proceedings, Part II, pp. 3–17. Springer Nature Switzerland, Cham (2023).
https://doi.org/10.1007/978-3-031-37703-7 1

https://ethereum.org/en/whitepaper/
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1609/aaai.v29i1.9372
https://doi.org/10.1609/aaai.v29i1.9372
https://doi.org/10.1007/978-3-030-51074-9_7
https://doi.org/10.1007/978-3-319-08867-9_45
https://doi.org/10.1007/978-3-030-02508-3_15
https://doi.org/10.1007/978-3-030-51825-7_27
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.34727/2020/ISBN.978-3-85448-042-6_29
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_29
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_29
https://doi.org/10.1007/978-3-031-37703-7_1

200 A. Niemetz et al.

30. Niemetz, A., Preiner, M., Biere, A.: Propagation based local search for bit-precise
reasoning. Formal Methods Syst. Des. 51(3), 608–636 (2017). https://doi.org/10.
1007/S10703-017-0295-6, https://doi.org/10.1007/s10703-017-0295-6

31. Niemetz, A., Preiner, M., Reynolds, A., Barrett, C.W., Tinelli, C.: On solving
quantified bit-vector constraints using invertibility conditions. Formal Methods
Syst. Des. 57(1), 87–115 (2021)

32. Niemetz, A., Preiner, M., Reynolds, A., Zohar, Y., Barrett, C.W., Tinelli, C.:
Towards satisfiability modulo parametric bit-vectors. J. Autom. Reason. 65(7),
1001–1025 (2021). https://doi.org/10.1007/S10817-021-09598-9

33. Ozdemir, A., Kremer, G., Tinelli, C., Barrett, C.: Satisfiability modulo finite fields.
In: Enea, C., Lal, A. (eds.) Computer Aided Verification: 35th International Con-
ference, CAV 2023, Paris, France, July 17–22, 2023, Proceedings, Part II, pp. 163–
186. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-
031-37703-7 8

34. Reynolds, A., Barbosa, H., Larraz, D., Tinelli, C.: Scalable algorithms for
abduction via enumerative syntax-guided synthesis. In: Peltier, N., Sofronie-
Stokkermans, V. (eds.) Automated Reasoning: 10th International Joint Confer-
ence, IJCAR 2020, Paris, France, July 1–4, 2020, Proceedings, Part I, pp. 141–160.
Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-
030-51074-9 9

35. Zeljić, A., Wintersteiger, C.M., Rümmer, P.: Deciding bit-vector formulas with
mcSAT. In: Creignou, N., Le Berre, D. (eds.) Theory and Applications of Satisfia-
bility Testing – SAT 2016, pp. 249–266. Springer International Publishing, Cham
(2016). https://doi.org/10.1007/978-3-319-40970-2 16

36. Zohar, Y.: Bit-precise reasoning via int-blasting. In: Finkbeiner, B., Wies, T. (eds.)
Verification, Model Checking, and Abstract Interpretation: 23rd International Con-
ference, VMCAI 2022, Philadelphia, PA, USA, January 16–18, 2022, Proceedings,
pp. 496–518. Springer International Publishing, Cham (2022). https://doi.org/10.
1007/978-3-030-94583-1 24

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/S10703-017-0295-6
https://doi.org/10.1007/S10703-017-0295-6
https://doi.org/10.1007/s10703-017-0295-6
https://doi.org/10.1007/S10817-021-09598-9
https://doi.org/10.1007/978-3-031-37703-7_8
https://doi.org/10.1007/978-3-031-37703-7_8
https://doi.org/10.1007/978-3-030-51074-9_9
https://doi.org/10.1007/978-3-030-51074-9_9
https://doi.org/10.1007/978-3-319-40970-2_16
https://doi.org/10.1007/978-3-030-94583-1_24
https://doi.org/10.1007/978-3-030-94583-1_24
http://creativecommons.org/licenses/by/4.0/

Hardware Model Checking

The MoXI Model Exchange Tool Suite

Chris Johannsen1(B), Karthik Nukala2, Rohit Dureja3, Ahmed Irfan2,
Natarajan Shankar2, Cesare Tinelli4, Moshe Y. Vardi5,

and Kristin Yvonne Rozier1

1 Iowa State University, Ames, USA
{cgjohann,kyrozier}@iastate.edu

2 SRI International, Menlo Park, USA
{karthik.nukala,ahmed.irfan,
natarajan.shankar}@sri.com

3 Advanced Micro Devices, Inc., Santa Clara, USA
rohit.dureja@amd.com

4 The University of Iowa, Iowa City, USA
cesare-tinelli@uiowa.edu

5 Rice University, Houston, USA
vardi@cs.rice.edu

Abstract. We release the first tool suite implementing MoXI (Model
eXchange Interlingua), an intermediate language for symbolic model
checking designed to be an international research-community standard
and developed by a widespread collaboration under a National Science
Foundation (NSF) CISE Community Research Infrastructure initiative.
Although we focus here on hardware verification, the MoXI language is
useful for software model checking and verification of infinite-state sys-
tems in general. MoXI builds on elements of SMT-LIB 2; it is easy to
add new theories and operators. Our contributions include: (1) introduc-
ing the first tool suite of automated translators into and out of the new
model-checking intermediate language; (2) composing an initial example
benchmark set enabling the model-checking research community to build
future translations; (3) compiling details for utilizing, extending, and
improving upon our tool suite, including usage characteristics and initial
performance data. Experimental evaluations demonstrate that compiling
SMV-language models through MoXI to perform symbolic model check-
ing with the tools from the last Hardware Model Checking Competition
performs competitively with model checking directly via nuXmv.

1 Overview

As model checking becomes more integrated into the standard design and ver-
ification process for safety-critical systems, the platforms for model-checking
research have become more limited (e.g., for the SMV language [47], nei-
ther CadenceSMV [46] nor NuSMV [24] are actively maintained; only closed
source nuXmv [15] remains). Continuing advances in the field require utilizing

This work was funded by NSF: CCRI Awards #2016592, #2016597, and #2016656.
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 203–218, 2024.
https://doi.org/10.1007/978-3-031-65627-9_10

https://zenodo.org/doi/10.5281/zenodo.10946778
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65627-9_10&domain=pdf
https://doi.org/10.1007/978-3-031-65627-9_10

204 C. Johannsen et al.

higher-level languages that offer sufficient expressive power to describe mod-
ern, complex systems and enable validation by industrial system designers.
At the same time, contributing advances to back-end model-checking algo-
rithms requires the ability to compare across the full range of state-of-the-
art algorithms without regard for which open- or closed-source model checkers
implement them or what input languages those tools accept. Comparing new
advances in model-checking algorithms to state-of-the-art algorithms requires
re-implementing entire model checkers, e.g., [30]. We need a sustainable tool
flow that can model the system in the most domain-appropriate high-level mod-
eling language, analyze it with the full range of state-of-the-art model-checking
algorithms, and return counterexamples or certificates in the original modeling
language.

Our tool suite represents an initial step in unifying model-checking research
platforms. We seed an extensible framework designed around a model-checking
intermediate language, MoXI (Model eXchange Interlingua). MoXI aims to
serve as a common language for the international research community that can
connect popular front-end modeling languages with the state of the art in back-
end model-checking algorithms. Our vision is that MoXI will enable researchers
to model-check a new or extended modeling language simply by writing trans-
lators to and from MoXI. Similarly, developing a new backend model-checking
algorithm will only require writing a translator to and from MoXI to enable com-
parisons with existing algorithms and evaluations on every benchmark model,
regardless of its original modeling language.

Our initial tool suite accepts models in the higher-level language SMV [47]
and efficiently interfaces with the back-end model checkers that competed in the
last Hardware Model Checking Competition (HWMCC) [13]. We choose SMV
because it is a popular, expressive modeling language successfully used in a wide
range of industrial verification efforts [14,17,23,29,30,33,34,36,42,45,48,49,54,
61,63–65]. SMV is important because, uniquely from other model-checking input
languages, it includes high-level constructs critically required for modeling and
validating safety-critical systems, such as many aerospace operational systems
from Boeing’s Wheel Braking System [14] to NASA’s Automated Airspace Con-
cept [34,45,64,65] to a variety of Unmanned Aerial Systems [55,59]. SMV has
been used extensively by the hardware model-checking community as well (e.g.,
at FMCAD [38]) and has appealing qualities that could further the integration
of formal methods with the embedded-systems community. Two freely available
model checkers, CadenceSMV [46] and NuSMV [24] (which is integrated into
today’s nuXmv [52]), previously provided viable research platforms. However,
today, CadenceSMV’s 32-bit pre-compiled binary and nuXmv’s closed-source
releases are no longer suitable for research, e.g., into improved model-checking
algorithms. We provide accessibility to continue the progression of high-level lan-
guage model checking in SMV via an open-source research platform that allows
the use of new algorithms under the hood.

Pushing the state of the art are several open-source, award-winning model-
checking tools, including AVR [35], Pono [44], BtorMC [51], and ABC [18].

The MoXI Model Exchange Tool Suite 205

These tools support a hardware-oriented bit-level input language like Aiger
or a bit-precise, word-level format like Btor2. Unfortunately, such languages
do not enable the direct modeling of modern complex systems as SMV does,
hindering validation efforts. For instance, it is challenging to convince industrial
system designers that Aiger models correctly capture their higher-level systems.
Perhaps driven by HWMCC, most systems for translating from high-level mod-
els to Aiger currently focus on hardware designs, without providing a natural
way to describe other computational systems, e.g., embedded systems. Also, the
problem of translating counterexamples produced by low-level model-checking
algorithms back into meaningful counterexamples for a non-hardware-centric
higher-level language model, such as one in SMV, remains a challenge.

Section 2 provides a basic introduction to MoXI, sufficient to enable under-
standing of the tool suite functionality; a description of the full language and its
semantics appears in [57,58]. Section 3 details the extensible research and verifi-
cation suite of tools, including translators between the languages SMV, MoXI
(in concrete and JSON dialects), and Btor2; utilities for validation; and a full
model-checking implementation. Here, we provide a detailed example of behav-
iorally equivalent models in SMV, MoXI, and Btor2. Our efforts to validate
their correctness appear in Sect. 4. Section 5 demonstrates the efficiency of model
checking SMV-language models with a tool portfolio including nuXmv and via
translation through MoXI, which performs better than checking with nuXmv
alone. The tool1 and all of the benchmarks2 used in this experiment are avail-
able online for others to utilize in building additional translators to extend our
tool suite and the use of MoXI as an intermediate language for symbolic model
checking. Section 6 concludes with a discussion of future work.

2 Intermediate Language

MoXI (detailed in [57]) is an intermediate language designed to serve as a com-
mon input and output standard for model checkers for finite- and infinite-state
systems. It is general enough to encode high-level modeling languages like SMV
yet simple enough to enable efficient model checking, including through low-level
languages such as Btor2 or SAT/SMT-based engines. Key features include a
simple and easily parsable syntax, a rich set of data types, minimal syntactic
sugar (at least for now), well-understood formal semantics, and a small but
comprehensive set of commands.

MoXI maximizes machine-readability. Therefore, it does not support several
human-interface features found in high-level languages such as SMV, TLA+ [43],
PROMELA [37], Simulink [27], SCADE [28], and Lustre [19]; nor does it directly
support the full features of hardware modeling languages such as VHDL [40], or
Verilog [39]. However, many models and queries expressed in these languages can
be reduced to MoXI representations. MoXI development was directly informed
by previous intermediate formats for formal verification, their successful
1 https://github.com/ModelChecker/moxi-mc-flow.
2 https://modelchecker.github.io/benchmarks.

https://github.com/ModelChecker/moxi-mc-flow
https://modelchecker.github.io/benchmarks

206 C. Johannsen et al.

applications, and their limitations. The eventual form of MoXI stems from a
combination of previous work as well as direct conversations with model checking
and SMT researchers, including the developers of Aiger [2–4], Btor2 [51], Kind
2 [22], NuSMV [21], nuXmv [16,20], SAL/SALLY [9,32,50], VMT [26,41], and
SMT-LIB (the standard I/O language for SMT solvers) [6,7]. MoXI also bene-
fited from the feedback from a technical advisor board of prominent researchers
and practitioners in academia and industry [58].

MoXI’s base logic is the same as that of SMT-LIB Version 2: many-sorted
first-order logic with equality, quantifiers, let binders, and algebraic datatypes.
MoXI extends this logic to (first-order) temporal logic while adopting a discrete
and linear notion of time with standard finite and infinite trace-based semantics.
MoXI also extends the SMT-LIB language with new commands for defining and
verifying multi-component reactive systems. For the latter, it focuses on the speci-
fication and checking of reachability conditions (or, indirectly, state and transition
invariants) and deadlocks, possibly under fairness conditions on system inputs.
Each system definition command defines a transition system by specifying an ini-
tial state condition, a transition relation, and system invariants. These are pro-
vided as SMT formulas, with minimal syntactic restrictions, for flexibility and
future extensibility. Each defined system is parameterized by a state signature,
provided as a sequence of typed variables, and can be expressed as the synchronous
composition of other systems.3 The signature partitions state variables into input,
output, and local variables. Each system verification command expresses one or
more reachability queries over a previously defined system. The queries can be con-
ditional on environmental assumptions on the system’s inputs and fairness condi-
tions on its executions. Together with the ability to write observer systems, this
allows the expression of arbitrary LTL specifications via standard encodings [56].
Responses to a system verification command can contain (finite or lasso) witness
traces for reachable properties or proof certificates for unreachable ones.

Figure 1 contains an example (adapted from [5]) of a three-bit counter and
its modular definition in MoXI, together with a reachability query and a sam-
ple response to the query. Figure 2 contains an extension of that model with
an observer system and a query for checking the observational equivalence of
the three-bit counter with a bit-vector counter of matching width. The vari-
ous components of each system definition or check command are provided as
attribute-value pairs, following the syntax of SMT-LIB annotations. Transition
predicates use primed variables to denote next-state values.

3 Tool Suite

We provide a suite of tools for translating into and out of MoXI and validating
MoXI scripts. The tools are implemented in type-annotated Python with a focus
on finite-state systems (for now). Figure 3 illustrates the end-to-end toolchain for
model checking using MoXI, including relationships between the various tools.

3 We plan to include asynchronous composition in a later release.

The MoXI Model Exchange Tool Suite 207

Fig. 1. (Top) The three-bit counter circuit composes three one-bit counters together,
where each counter uses a latch to store that counter’s current value. (Middle) A
MoXI implementation of the circuit uses define-system (lines 1–20) to describe and
compose each counter component. It then queries (lines 21–26) whether the counter
can output 2. (Bottom) A possible query response provides a trace showing that the
counter outputs 2 within 3 execution steps. We write Bool values as integers here for
compactness.

208 C. Johannsen et al.

Fig. 2. (Top) Extending the MoXI model shown in Fig. 1, a Monitor (lines 33–40) com-
putes the output for a ThreeBitCounter and a bit-vector-based counter (lines 28–32).
The function to_bv3 (definition is omitted for space constraints) converts bit values to
the corresponding bit-vector value. The check-system command (lines 40–45) queries
whether their outputs can possibly differ. (Bottom) The check-system-response
reports an unsatisfiable query, proving the two counters equivalent.

Fig. 3. Starting with a nuXmv model, smv2moxi generates a behaviorally equivalent
MoXI model in either the MoXI concrete syntax or a JSON dialect syntax. moxi2btor
translates this MoXI model to a set of Btor2 models, one for each query, which an
off-the-shelf model checker (e.g., AVR [35], Pono [44], BtorMC [51]) solves. Then,
btorwit2moxiwit creates a MoXI witness from the Btor2 witness using the Btor2
model to map variable names properly, and similarly for moxiwit2smvwit. The sort
checker validates MoXI input against any of the SMT-LIB logics listed in Sect. 3.2.
The validator checks JSON dialect input against our provided schema.

The MoXI Model Exchange Tool Suite 209

3.1 Translators

The tool suite provides four translators that take as input a model, query, or
witness specified in a source language and output a behaviorally equivalent model,
query, or witness in the configured target language.
(1) smv2moxi translates specifications written in (a common subset of) the SMV
language into MoXI. Broadly, this tool supports Finite State Machine (FSM)
definitions (nuXmv manual, Sect. 2.3 [16]). It currently supports only statically
typed expressions; for example, all module instantiations of the same defined
module must share the same signature. (For a module M with parameters p1 and
p2, the types of p1, p2 must be the same across all instantiations of M.) Fig. 4
shows that the translation preserves the hierarchy between the SMV modules
and submodule instantiations.

The MoXI encoding captures SMV macro and function declarations
(DEFINE, FUN), variable declarations (VAR, IVAR, FROZENVAR), state machine dec-
larations (INIT, TRANS, INVAR, ASSIGN), invariant specifications (AG [property],
INVARSPEC) and fairness constraints (FAIRNESS, JUSTICE, COMPASSION). To sup-
port LTL specifications (LTLSPEC), smv2moxi runs PANDA [56], an open-source
tool offering a portfolio of LTL-to-symbolic automaton translations in SMV for-
mat.

The smv2moxi tool consists of (1) preprocessing that renames identifiers devi-
ating from the SMV grammar (discussed in Sect. 4); (2) running the C prepro-
cessor (SMV supports C-style macros) and PANDA [56] (for LTL specifications);
(3) parsing via a SLY-generated [8] parser; (4) running an SMV type checker; (5)
translating to MoXI. We emphasize that tool guarantees apply to well-formed
SMV models as determined by nuXmv.
(2) moxi2btor translates MoXI to Btor2 by creating a Btor2 file for each
:query attribute in each check-system command. Some crucial differences
between MoXI and Btor2 present non-trivial challenges. Firstly, Btor2 does
not support hierarchical models. moxi2btor flattens the system hierarchy in
its translation as a result. Secondly, MoXI allows for declarative-style initial,
transition, and invariant conditions while Btor2 allows only assignment-style.
Figure 4 shows how moxi2btor encodes each system’s conditions using three
variants of each variable. Thirdly, a MoXI query with multiple reachability
properties asks for a trace that eventually satisfies each property. In Btor2,
multiple bad properties in a file ask for a trace that eventually satisfies at least
one such property. Figure 4 again shows how the translation resolves this differ-
ence. The moxi2btor tool’s workflow consists of (1) parsing via a SLY-generated
parser [8]; (2) running sortcheck (Sect. 3.2); (3) translating to a set of Btor2
files, each behaviorally equivalent to its corresponding :query.
(3) btorwit2moxiwit translates Btor2 witnesses to MoXI witnesses using
the check-system-response syntax. It assumes moxi2btor created the Btor2
input files used to generate the witness and uses information that moxi2btor
encodes in the comments of each Btor2 file, e.g., to map bit vectors to enumer-
ation values for variables of such sorts.
(4) moxiwit2smvwit translates MoXI witnesses to SMV-language witnesses.

210 C. Johannsen et al.

Fig. 4. The toolchain translates the SMV model for a delay circuit on the left to the
MoXI model in the center by creating a define-system command for each MODULE.
It then generates the Btor2 model on the right, introducing three variants of each
check-system variable (.init, .cur, .next) and setting constraints such as the :init
and :next of Delay on lines 13 and 15 respectively. The Btor2 “flag” variable F_rch
(line 27) encodes if formula rch has been true at least once during the execution; the
presence of multiple Btor2 bad properties asks for a trace where at least one such
property is eventually true, we conjunct the flag variables to ask for a trace where
every property is eventually true.

3.2 Utilities

sortcheck We provide a sort-checker for MoXI that supports the following
SMT-LIB logics: QF_BV, QF_ABV, QF_LIA, QF_NIA, QF_LRA, and QF_NRA.
validate We define a JSON Schema for MoXI and support a JSON dialect
for MoXI in our tools. Given the evolving nature of new languages and their
standards, tool writers often pay an unnecessary overhead keeping front-end tools
up to date. By supporting the representation of MoXI constructs in the JSON
dialect, we expect to facilitate tool development, improve tool interoperability,
and ensure conformance to the language standard. Tool writers can use off-the-
shelf JSON parsers (e.g., simdjson, RapidJSON) to obtain industrial-strength
MoXI parsers in the language they choose “for free.” We plan to include a
JSON schema for each MoXI release, enabling seamless front-end compatibility

The MoXI Model Exchange Tool Suite 211

with the latest MoXI standard along with language/platform independence. The
validate utility invokes a JSON validator from Python’s jsonschema package to
validate a MoXI script (in the JSON dialect) against the MoXI JSON schema.

4 Tool Suite Validation

We validate our tools using a combination of manual inspection, sort check-
ing of translated output, and comparing witnesses between those generated by
nuXmv and our end-to-end tool suite. We use catbtor [51] for sort checking
and BtorMC, AVR, and Pono for bounded model checking (BMC) of Btor2
files. For benchmark generation, we use the set of nuXmv input files provided
in the most recent release of nuXmv (Fig. 5).

Fig. 5. The witness translation after model checking the Btor2 file in Fig. 4 works
right to left: it maps each Btor2 .cur variable to its MoXI counterpart and discards
the last frame of the witness due to the delay caused by using flag variables. Similarly,
it maps each MoXI variable to its SMV counterpart.

Manual Inspection. We provide an initial set of hand-written MoXI bench-
marks to perform manual validation. Each benchmark is well-sorted accord-
ing to sortcheck, generates well-sorted Btor2 via moxi2btor according to
catbtor, and generates correct, manually-inspected witnesses via BtorMC
and btorwit2moxiwit.4

Sort Checked Translations. Using the benchmarks distributed with nuXmv as
input, we check that the output of smv2moxi and moxi2btor are well-sorted
according to sortcheck and catbtor. We discovered discrepancies in bench-
marks distributed with nuXmv while developing these utilities, where the bench-
marks did not conform to the grammar defined in Chap. 2 of the nuXmv User

4 Many thanks to Daniel Larraz for writing many of the MoXI examples.

212 C. Johannsen et al.

Manual [16] but were accepted by nuXmv nonetheless, particularly concern-
ing identifiers. The preprocessor of smv2moxi transforms these identifiers into
valid ones. There were also numerous ill-typed benchmarks that smv2moxi’s type
checker correctly rejects.

Output Comparison. Using the nuXmv benchmarks again as input, we run
nuXmv and our tool suite to generate witnesses for each specification. Both
nuXmv and our tool suite agree on the result of every model-checking query.
Section 5 describes how our toolchain (using BtorMC, AVR, or Pono as its
back end) shows a similar number of timeouts compared with nuXmv when the
latter is set to use BMC or k-induction.

5 Benchmarks

We provide an initial set of MoXI benchmarks for the model-checking com-
munity generated from the set of SMV input files provided in the most recent
release of nuXmv. Noting that many of the SMV benchmarks are results of a
Btor2 to nuXmv translation themselves, we stress that this set of benchmarks
is intended to be an initial set. We expect to achieve greater benchmark diver-
sity with continued toolchain development and increased adoption of MoXI by
other researchers.

Experimental Evaluation. We compare the end-to-end performance of model-
checking SMV-language models with a portfolio comprising nuXmv and Btor2
model checkers: AVR, Pono, and BtorMC, on a set of 960 QF_ABV-compatible
SMV benchmarks, i.e., SMV models with boolean, word or array types. We use
the HWMCC 2020 versions of AVR and Pono, the version of BtorMC from the
latest version of Boolector [51], and the latest public release of nuXmv (version
2.0.0). Each checker is configured with a 1-h time limit and 8GB memory limit
and runs BMC [12] and k-induction [60] with a max bound of 1000. (We do not
run BtorMC with k-induction due to a bug in its implementation.)

Figure 6 shows our evaluation, with portfolio performance depicted as virtual-
best (vb). While we consider this a proof-of-concept evaluation, we observe that
SMV-language model checking using Btor2 model checkers, enabled via a trans-
lation through MoXI, delivers superior performance on unsafe queries compared
to model checking with nuXmv alone: vb-bmc solves 57% more benchmarks
than nuXmv-bmc while ensuring all Btor2 witnesses are correctly translated
to SMV traces. We measure competitive performance with vb-kind solving 6%
more benchmarks than nuXmv-kind for safe queries. The vb performance gains
are due to its ability to use a variety of model checkers with different SMT
solver backends of varying strengths, e.g., nuXmv uses MathSAT [25], AVR
uses Yices [31], and Pono uses Boolector [51], while ensuring correct model
and witness translation through MoXI. Section 4 of Rozier et al. [57] includes
experimental data using each tool’s IC3-based algorithms.

The MoXI Model Exchange Tool Suite 213

Fig. 6. Performance comparison on unsafe and safe queries with BMC and k-induction
across different model checkers. vb-* represents the virtual best solver. Wall-clock time
for the non-nuXmv plots includes translation time.

6 Conclusion and Future Work

The presented tool suite provides the foundational step in developing an open-
source, state-of-the-art symbolic model-checking framework for the research com-
munity. It constitutes the first tool support for the new intermediate language
MoXI, the first experimental evidence of the potential for efficient translation
through MoXI, and a basis upon which the hardware and software model-
checking communities can build. Adding support for checking models in a high-
level modeling language is now as easy as adding a translator between that
language and MoXI to this tool suite. Similarly, experimenting with a novel
back-end model-checking algorithm to check all supported input modeling lan-
guages only requires writing a new MoXI translator interfacing with that algo-
rithm. Benchmarking against other model-checking algorithms no longer require
re-implementing existing tools to achieve an apples-to-apples comparison.

Connecting this toolchain to existing tools enables the immediate application
of verification techniques for Btor2 to MoXI beyond just hardware model
checkers. For example, a software model checker can verify a MoXI model via
Btor2C [11], making at least 59 other backend verifiers for MoXI available [10].

This release enables future instantiations of HWMCC [13] to add competition
tracks centered around MoXI, with extensions from the model-checking research
community. Specifying, proving correct, and extracting efficient C code for our
translation using a theorem prover such as PVS [53] would provide an additional
trusted translation between languages beyond the validation techniques in Sect. 4.

214 C. Johannsen et al.

We are writing a back end to Yosys [62], the open-source RTL synthesis frame-
work, to generate files directly from Verilog designs and facilitate a more exten-
sive set of realistic benchmarks to add to the initial set in Sect. 5. Additionally,
once MoXI certificates are fully defined, we can translate Btor2-Cert [1] cer-
tificates back to MoXI from Btor2-Cert-supported verifiers. Finally, we expect
developers of model checkers for higher-level modeling languages than a language
like Btor2 may choose to support MoXI directly. We have work in this direction
underway for the Kind 2 checker [22].

References

1. Ádám, Z., Beyer, D., Chien, P.C., Lee, N.Z., Sirrenberg, N.: Btor2-Cert: a certify-
ing hardware-verification framework using software analyzers. In: Finkbeiner, B.,
Kovács, L. (eds.) TACAS 2024. LNCS, vol. 14572, pp. 129–149. Springer, Cham
(2024). https://doi.org/10.1007/978-3-031-57256-2_7

2. The AIGER and-inverter graph (AIG) format version 20071012. http://fmv.jku.
at/aiger/FORMAT. Accessed 25 July 2016

3. AIGER 1.9 and beyond. http://fmv.jku.at/hwmcc11/beyond1.pdf. Accessed 25
July 2016

4. AIGER website. http://fmv.jku.at/aiger/. Accessed 25 July 2016
5. Alur, R.: Principles of Cyber-physical Systems. MIT Press, Cambridge (2015)
6. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library

(SMT-LIB). https://smt-lib.org
7. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: version 2.0. In: Gupta,

A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfi-
ability Modulo Theories (Edinburgh, UK) (2010)

8. Beazley, D.: SLY (sly lex yacc) (2018). https://sly.readthedocs.io/en/latest/
9. Bensalem, S., et al.: An overview of SAL. In: Holloway, C.M. (ed.) LFM 2000: Fifth

NASA Langley Formal Methods Workshop, pp. 187–196. NASA Langley Research
Center, Hampton, June 2000. http://www.csl.sri.com/papers/lfm2000/

10. Beyer, D.: State of the art in software verification and witness validation: SV-
COMP 2024. In: Finkbeiner, B., Kovács, L. (eds) TACAS 2024. LNCS, vol. 14572,
pp. 299–329. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-57256-
2_15

11. Beyer, D., Chien, P.C., Lee, N.Z.: Bridging hardware and software analysis with
BTOR2C: a word-level-circuit-to-C translator. In: Sankaranarayanan, S., Shary-
gina, N. (eds.) TACAS 2023. LNCS, vol. 13994, pp. 152–172. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-30820-8_12

12. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0_14

13. Biere, A., Froleyks, N., Preiner, M.: Hardware Model Checking Competition
(HWMCC) (2020). https://fmv.jku.at/hwmcc20/index.html

14. Bozzano, M., et al.: Formal design and safety analysis of AIR6110 wheel brake
system. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp.
518–535. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_36

15. Bozzano, M., et al.: nuXmv 1.0 User Manual. Technical report, FBK - Via Som-
marive 18, 38055 Povo (Trento) - Italy (2014)

https://doi.org/10.1007/978-3-031-57256-2_7
http://fmv.jku.at/aiger/FORMAT
http://fmv.jku.at/aiger/FORMAT
http://fmv.jku.at/hwmcc11/beyond1.pdf
http://fmv.jku.at/aiger/
https://smt-lib.org
https://sly.readthedocs.io/en/latest/
http://www.csl.sri.com/papers/lfm2000/
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1007/978-3-031-30820-8_12
https://doi.org/10.1007/3-540-49059-0_14
https://fmv.jku.at/hwmcc20/index.html
https://doi.org/10.1007/978-3-319-21690-4_36

The MoXI Model Exchange Tool Suite 215

16. Bozzano, M., et al.: nuXmv 2.0. 0 user manual. Fondazione Bruno Kessler, Tech-
nical report, Trento, Italy (2019)

17. Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V.Y., Noll, T., Roveri, M.: The
COMPASS approach: correctness, modelling and performability of aerospace sys-
tems. In: Buth, B., Rabe, G., Seyfarth, T. (eds.) SAFECOMP 2009. LNCS, vol.
5775, pp. 173–186. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04468-7_15

18. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_5

19. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.: LUSTRE: a declarative language
for programming synchronous systems. In: Proceedings of the 14th Annual ACM
Symposium on Principles of Programming Languages, pp. 178–188 (1987)

20. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9_22

21. Cavada, R., et al.: NuSMV 2.6 user manual (2016)
22. Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The Kind 2 model checker.

In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 510–517.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_29

23. Choi, Y., Heimdahl, M.: Model checking software requirement specifications using
domain reduction abstraction. In: IEEE ASE, pp. 314–317 (2003)

24. Cimatti, A., et al.: NuSMV 2: an opensource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_29

25. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–
107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_7

26. Cimatti, A., Griggio, A., Tonetta, S., et al.: The VMT-LIB language and tools.
In: Proceedings of the 20th Internal Workshop on Satisfiability ModuloTheories
co-located with the 11th International Joint Conference on Automated Reasoning
{(IJCAR} 2022) part of the 8th Federated Logic Conference (FLoC 2022), Haifa,
Israel, 11–12 August 2022, vol. 3185, pp. 80–89. CEUR-WS. org (2022)

27. Documentation, S.: Simulation and model-based design (2020). https://www.
mathworks.com/products/simulink.html

28. Documentation, SCADE: Ansys SCADE Suite (2023). https://www.ansys.com/
products/embedded-software/ansys-scade-suite

29. Dureja, R., Rozier, E.W.D., Rozier, K.Y.: A case study in safety, security, and
availability of wireless-enabled aircraft communication networks. In: Proceedings
of the 17th AIAA Aviation Technology, Integration, and Operations Conference
(AVIATION). American Institute of Aeronautics and Astronautics, June 2017.
https://doi.org/10.2514/6.2017-3112

30. Dureja, R., Rozier, K.Y.: FuseIC3: an algorithm for checking large design spaces.
In: Proceedings of Formal Methods in Computer-Aided Design (FMCAD), Vienna,
Austria. IEEE/ACM, October 2017

31. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9_49

32. Dutertre, B., Jovanović, D., Navas, J.A.: Verification of fault-tolerant protocols
with sally. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol.

https://doi.org/10.1007/978-3-642-04468-7_15
https://doi.org/10.1007/978-3-642-04468-7_15
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-41540-6_29
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/978-3-642-36742-7_7
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.ansys.com/products/embedded-software/ansys-scade-suite
https://www.ansys.com/products/embedded-software/ansys-scade-suite
https://doi.org/10.2514/6.2017-3112
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49

216 C. Johannsen et al.

10811, pp. 113–120. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
77935-5_8

33. Gan, X., Dubrovin, J., Heljanko, K.: A symbolic model checking approach to ver-
ifying satellite onboard software. Sci. Comput. Programm. (2013). http://dx.doi.
org/10.1016/j.scico.2013.03.005

34. Gario, M., Cimatti, A., Mattarei, C., Tonetta, S., Rozier, K.Y.: Model checking
at scale: automated air traffic control design space exploration. In: Chaudhuri, S.,
Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 3–22. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-41540-6_1

35. Goel, A., Sakallah, K.: AVR: abstractly verifying reachability. In: TACAS 2020.
LNCS, vol. 12078, pp. 413–422. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45190-5_23

36. Gribaudo, M., Horváth, A., Bobbio, A., Tronci, E., Ciancamerla, E., Minichino,
M.: Model-checking based on fluid petri nets for the temperature control system
of the ICARO co-generative plant. In: Anderson, S., Felici, M., Bologna, S. (eds.)
SAFECOMP 2002. LNCS, vol. 2434, pp. 273–283. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45732-1_27

37. Holzmann, G.: Design and Validation of Computer Protocols. Prentice-Hall Int,
Editions (1991)

38. Hunt, W.: FMCAD organization home page. http://www.cs.utexas.edu/users/
hunt/FMCAD/

39. IEEE: IEEE standard for Verilog hardware description language (2005)
40. IEEE: IEEE standard for VHDL language reference manual (2019)
41. Kessler, F.B.: Verification modulo theories. https://vmt-lib.fbk.eu/. Accessed 30

Sept 2017
42. Lahtinen, J., Valkonen, J., Björkman, K., Frits, J., Niemelä, I., Heljanko, K.: Model

checking of safety-critical software in the nuclear engineering domain. Reliab.
Eng. Syst. Safety 105(0), 104–113 (2012). http://www.sciencedirect.com/science/
article/pii/S0951832012000555

43. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Reading (2002)

44. Mann, M., et al.: Pono: a flexible and extensible SMT-based model checker. In:
Silva, A., Leino, K.R.M. (eds.) CAV 2021, Part II. LNCS, vol. 12760, pp. 461–474.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81688-9_22

45. Mattarei, C., Cimatti, A., Gario, M., Tonetta, S., Rozier, K.Y.: Comparing different
functional allocations in automated air traffic control design. In: Proceedings of
Formal Methods in Computer-Aided Design (FMCAD 2015). IEEE/ACM, Austin,
Texas, U.S.A, September 2015

46. McMillan, K.: The SMV language. Technical report, Cadence Berkeley Lab (1999)
47. McMillan, K.L.: Symbolic Model Checking, chap. The SMV System, pp. 61–85.

Springer, Boston (1993). https://doi.org/10.1007/978-1-4615-3190-6_4
48. Miller, S.P.: Will this be formal? In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.)

TPHOLs 2008. LNCS, vol. 5170, pp. 6–11. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-71067-7_2

49. Miller, S.P., Tribble, A.C., Whalen, M.W., Per, M., Heimdahl, E.: Proving the
shalls. STTT 8(4–5), 303–319 (2006)

50. de Moura, L., Owre, S., Shankar, N.: The SAL language manual. CSL Technical
report SRI-CSL-01-02 (Rev. 2), SRI Int’l, 333 Ravenswood Ave., Menlo Park, CA
94025, August 2003

https://doi.org/10.1007/978-3-319-77935-5_8
https://doi.org/10.1007/978-3-319-77935-5_8
http://dx.doi.org/10.1016/j.scico.2013.03.005
http://dx.doi.org/10.1016/j.scico.2013.03.005
https://doi.org/10.1007/978-3-319-41540-6_1
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/3-540-45732-1_27
http://www.cs.utexas.edu/users/hunt/FMCAD/
http://www.cs.utexas.edu/users/hunt/FMCAD/
https://vmt-lib.fbk.eu/
http://www.sciencedirect.com/science/article/pii/S0951832012000555
http://www.sciencedirect.com/science/article/pii/S0951832012000555
https://doi.org/10.1007/978-3-030-81688-9_22
https://doi.org/10.1007/978-1-4615-3190-6_4
https://doi.org/10.1007/978-3-540-71067-7_2
https://doi.org/10.1007/978-3-540-71067-7_2

The MoXI Model Exchange Tool Suite 217

51. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2 , BtorMC and Boolector 3.0.
In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 587–
595. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_32

52. The nuXmv model checker (2015). https://nuxmv.fbk.eu/
53. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:

Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8_217

54. Lomuscio, A., Łasica, T., Penczek, W.: Bounded model checking for interpreted sys-
tems: preliminary experimental results. In: Hinchey, M.G., Rash, J.L., Truszkowski,
W.F., Rouff, C., Gordon-Spears, D. (eds.) FAABS 2002. LNCS (LNAI), vol.
2699, pp. 115–125. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-45133-4_10

55. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer
pairs for system health management of real-time systems. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 357–372. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-642-54862-8_24

56. Rozier, K.Y., Vardi, M.Y.: A multi-encoding approach for LTL symbolic satisfia-
bility checking. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp.
417–431. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-
0_31

57. Rozier, K.Y., et al.: MoXI: an intermediate language for symbolic model checking.
In: Proceedings of the 30th International Symposium on Model Checking Software
(SPIN). LNCS, Springer (2024)

58. Rozier, K.Y., Shankar, N., Tinelli, C., Vardi, M.Y.: Developing an open-
source, state-of-the-art symbolic model-checking framework for the model-checking
research community (2019). https://modelchecker.github.io

59. Schumann, J., Rozier, K.Y., Reinbacher, T., Mengshoel, O.J., Mbaya, T., Ippolito,
C.: Towards real-time, on-board, hardware-supported sensor and software health
management for unmanned aerial systems. In: Proceedings of the 2013 Annual
Conference of the Prognostics and Health Management Society (PHM2013), pp.
381–401, October 2013

60. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction
and a SAT-solver. In: Hunt, W.A., Johnson, S.D. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 127–144. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-40922-X_8

61. Tribble, A., Miller, S.: Software safety analysis of a flight management system
vertical navigation function-a status report. In: DASC, pp. 1.B.1–1.1–9 v1 (2003)

62. Wolf, C.: Yosys open synthesis suite (2016)
63. Yoo, J., Jee, E., Cha, S.: Formal modeling and verification of safety-critical soft-

ware. Softw. IEEE 26(3), 42–49 (2009)
64. Zhao, Y., Rozier, K.Y.: Formal specification and verification of a coordination

protocol for an automated air traffic control system. In: Proceedings of the 12th
International Workshop on Automated Verification of Critical Systems (AVoCS
2012). Electronic Communications of the EASST, vol. 53, pp. 337–353. European
Association of Software Science and Technology (2012)

65. Zhao, Y., Rozier, K.Y.: Formal specification and verification of a coordination
protocol for an automated air traffic control system. Sci. Comput. Programm. J.
96(3), 337–353 (2014)

https://doi.org/10.1007/978-3-319-96145-3_32
https://nuxmv.fbk.eu/
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/978-3-540-45133-4_10
https://doi.org/10.1007/978-3-540-45133-4_10
https://doi.org/10.1007/978-3-642-54862-8_24
https://doi.org/10.1007/978-3-642-21437-0_31
https://doi.org/10.1007/978-3-642-21437-0_31
https://modelchecker.github.io
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/3-540-40922-X_8

218 C. Johannsen et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

SMLP: Symbolic Machine Learning Prover

Franz Brauße1(B) , Zurab Khasidashvili2 , and Konstantin Korovin1

1 The University of Manchester, Manchester, UK
franz.brausse@manchester.ac.uk

2 Intel, Haifa, Israel

Abstract. Symbolic Machine Learning Prover (SMLP) is a tool and a
library for system exploration based on data samples obtained by simu-
lating or executing the system on a number of input vectors. SMLP aims
at exploring the system based on this data by taking a grey-box approach:
SMLP uses symbolic reasoning for ML model exploration and optimiza-
tion under verification and stability constraints, based on SMT, con-
straint, and neural network solvers. In addition, the model exploration
is guided by probabilistic and statistical methods in a closed feedback
loop with the system’s response. SMLP has been applied in industrial
setting at Intel for analyzing and optimizing hardware designs at the
analog level. SMLP is a general purpose tool and can be applied to any
system that can be sampled and modeled by machine learning models.

1 Introduction

Verification of assertions on machine learning (ML) models has received a
wide attention from formal methods community in recent years, and multi-
ple approaches have been developed for formal analysis of ML models, mostly
focused on neural networks [9]. In this work we introduce the SMLP tool – Sym-
bolic Machine Learning Prover – aiming at going beyond this mainstream in
several ways: SMLP helps to approach the system’s design, optimization and
verification as one process by offering multiple capabilities for system’s design
space exploration. These capabilities include methods for selecting which param-
eters to use in modeling design for configuration optimization and verification;
ensuring that the design is robust against environmental effects and manufac-
turing variations that are impossible to control, as well as ensuring robustness
against malicious attacks from an adversary aiming at altering the intended con-
figuration or mode of operation. Environmental affects like temperature fluctu-
ation, electromagnetic interference, manufacturing variation, and product aging
effects are especially more critical for correct and optimal operation of devices
with analog components, which is our current focus.

To address these challenges, SMLP offers multiple modes of design space
exploration, which are based on symbolic reasoning using SMT solvers guided
by statistical and probabilistic methods. These modes will be described in detail

This research was supported by a grant from Intel Corporation.
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 219–233, 2024.
https://doi.org/10.1007/978-3-031-65627-9_11

https://doi.org/10.1109/5.771073
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65627-9_11&domain=pdf
http://orcid.org/0000-0002-2386-7489
http://orcid.org/0000-0001-9883-6997
http://orcid.org/0000-0002-0740-621X
https://doi.org/10.1007/978-3-031-65627-9_11

220 F. Brauße et al.

in Sect. 6. The definition of these modes refers to the concept of stability of an
assignment to system’s parameters that satisfies all model constraints (which
include the constraints defining the model itself and any constraint on model’s
interface). We will refer to such a parameter assignment satisfying the model
constraints as a (stable) solution. Informally, stability of a solution means that
any eligible assignment in the specified region around the solution also satisfy the
required constraints. This notion is sometimes referred to as robustness. We work
with parameterized systems, where parameters (also called knobs) can be tuned
to optimize the system’s performance under all legitimate inputs. For example,
in the circuit board design setting, topological layout of circuits, distances, wire
thickness, properties of dielectric layers, etc. can be such parameters, and the
exploration goal would be to optimize the system performance under the system’s
requirements [19]. The difference between knobs and inputs is that knob values
are selected during design phase, before the system goes into operation; on the
other hand, inputs remain free and get values from the environment during the
operation of the system. Knobs and inputs correspond to existentially quantified
and universally quantified variables in the formal definition of model exploration
tasks. Thus in the usual meaning of verification, optimization and synthesis,
respectively, all variables are inputs, all variables are knobs, and some of the
variables are knobs and the rest are inputs.

In this work by a model we refer to an ML model that models the sys-
tem under exploration. The main capabilities of SMLP for system exploration
include:

assertion verification: Verifying assertions on the model’s interface.
parameter synthesis: Finding model parameter values such that design con-

straints are valid.
parameter optimization: Optimizing the model parameters under constraints.
stable optimized synthesis: Combining model parameter synthesis and opti-

mization into one algorithm, enhanced by stability guarantees, to achieve safe,
stable and optimal configurations.

root cause analysis: Generating root-causing hints in terms of subset of param-
eters and their ranges that explain the failure.

model refinement: Targeted refinement of the model based on stability regions
found by model exploration and on feedback from system in these stability
regions.

The model exploration cube in Fig. 1 provides a high level and intuitive idea
on how the model exploration modes supported in SMLP are related. The three
dimensions in this cube represent synthesis (↘-axis), optimization (→-axis) and
stability (↑-axis). On the bottom plane of the cube, the edges represent the
synthesis and optimization problems in the following sense: synthesis with con-
straints configures the knob values in a way that guarantees that assertions are
valid, but unlike optimization, does not guarantee optimally with respect to opti-
mization objectives. On the other hand, optimization by itself is not aware of
assertions on inputs of the system and only guarantees optimality with respect

SMLP: Symbolic Machine Learning Prover 221

Fig. 1. Exploration Cube

to knobs, and not the validity of assertions in the configured system. We refer
to the procedure that combines synthesis with optimization and results in an
optimal design that satisfies assertions as optimized synthesis. The upper plane
of the cube represents introducing stability requirements into synthesis (and as
a special case, into verification), optimization, and optimized synthesis. The for-
mulas that make definition of stable verification, optimization, synthesis and
optimized synthesis precise are discussed in Sect. 4.

Compared to digital design, it is fair to say that formal methods have had a
limited success in the analog domain. A practical approach to this challenge is to
use models as a way of abstraction that can be refined based on model analysis
and feedback from the real system to narrow the gap between the model and the
system to levels tolerable by stability requirements of the design. SMLP applies
formal analysis to systems represented by ML models, and assists designers in
product development, in particular, helps to refine the design to make it safe
and optimized, see Sect. 8.

Fig. 2. SMLP Tool Architecture

222 F. Brauße et al.

2 SMLP Architecture

SMLP tool architecture is depicted in Fig. 2. It consists of the following compo-
nents: 1) Design of experiments (DOE), 2) System that can be sampled based
on DOE, 3) ML model trained on the sampled data, 4) SMLP solver that han-
dles different system exploration modes on a symbolic representation of the ML
model, 5) Targeted model refinement loop.

SMLP supports multiple ways to generate training data known under the
name of Design Of Experiments. These methods include: full-factorial, fractional-
factorial, Plackett-Burman, Box-Behnken, Box-Wilson, Sukharev-grid, Latin-
hypercube, among other methods, which try to achieve a smart sampling of
the entire input space with a relatively small number of data samples. In Fig. 2,
the leftmost box-shaped component called doe represents SMLP capabilities to
generate test vectors to feed into the system and generate training data; the
latter two components are represented with boxes called system and data,
respectively.

In a simplified setting, SMLP can be directly applied to the training data
representing the input output behaviour of the system, skipping the DOE step.

The component called ml model represents SMLP capabilities to train mod-
els; currently neural network, polynomial and tree-based regression models are
supported. Modeling analog devices using polynomial models was proposed in
the seminal work on Response Surface Methodology (RSM) [3], and since then
has been widely adopted by the industry. Neural networks and tree-based models
are used increasingly due to their wider adoption, and their exceptional accuracy
and simplicity, respectively.

The component called solver pipeline represents model exploration engines
of SMLP (e.g., connection to SMT solvers), which besides a symbolic representa-
tion of the model takes as input several types of constraints and input sampling
distributions specified on the model’s interface; these are represented by the com-
ponent called constraints & distributions located at the low-left corner of
Fig. 2, and will be discussed in more detail in Sect. 4. The remaining components
represent the main model exploration capabilities of SMLP.

Last but not least, the arrow connecting the ml model component back to
the doe component represents a model refinement loop which allows to reduce
the gap between the model and system responses in the input regions where it
matters for the task at hand (there is no need to achieve a perfect match between
the model and the system everywhere in the input space). The targeted model
refinement loop is discussed in Sect. 6.7.

3 Symbolic Representation of Models and Constraints

We assume that system interface consists of free inputs, knobs, and outputs. The
set of inputs and/or knobs, can be empty. For the sake of ML-based analysis,
we build an ML model, represent it symbolically, and the aim is to analyze the
system through exploring the model instead.

SMLP: Symbolic Machine Learning Prover 223

A domain D is a Cartesian product of reals, integers and finite non-empty
sets. A parameterized system can be represented as a function f : Dpar × Din →
Dout , where Dpar ,Din ,Dout are domains of parameters (knobs), inputs and out-
puts, respectively. For simplicity of the presentation we assume all domains are
products of sets of reals but methods and implementation are applicable also
for domains over integers and arbitrary finite sets. We consider formulas over
〈R, 0, 1,F , P 〉, where P contains the usual predicates <,≤,=, etc. and F contains
addition, multiplication with rational constants and can also contain non-linear
functions supported by SMT solvers including polynomials, transcendental func-
tions and more generally computable functions [6,7,10,11,15].

We extend functions F by functions definable by formulas: FD, i.e., we
assume f ∈ FD is represented by a formula F (x1, . . . , xn, y) over variables
x1, . . . , xn corresponding to the n inputs and y corresponding to the output
f(x1, . . . , xn). We assume that satisfiability of quantifier free formulas over this
language is decidable or more generally δ-decidable [7,15]. Let us note that even
when basic functions F contain just linear functions, FD will contain, e.g., func-
tions represented by neural networks with ReLU activation functions as well
as decision trees and random forests. When representing parameterized systems
using ML models we assume that parameters are treated as designated inputs
to the ML model.

Throughout, p, x, y denote respectively knob, input and output variables (or
variable vectors) in formulas while r, z range over reals. Whenever we use a norm
‖ · ‖, we refer to a norm representable in our language, such as the Chebyshev
norm (x1, . . . , xn)
→ max{|x1|, . . . , |xn|}.

4 Symbolic Representation of the ML Model Exploration

The main system exploration tasks handled by SMLP can be defined using ∃∗∀∗

formulas in the GEAR-fragment [4]:

∃p
[
η(p) ∧ ∀p′ ∀xy [θ(p, p′) → (ϕM (p′, x, y) → ϕcond(p′, x, y))]

]
(1)

where x ranges over inputs, y ranges over outputs, and p, p′ range over knobs,
η(p) are constraints on the knob configuration p, ϕM (p′, x, y) defines the machine
learning model, θ(p, p′) defines stability region for the configuration p, and
ϕcond(p′, x, y) defines conditions that should hold in the stability region. An
assignment to variables p that makes formula (1) true is called a θ-stable solu-
tion to (1).

In our formalization θ, η and ϕcond are quantifier free formulas in the lan-
guage. These constraints and how they are implemented in SMLP are described
below.

η(p) Constraints on values of knobs; this formula need not be a conjunction of
constraints on individual knobs, can define more complex relations between
allowed knob values of individual knobs. η(p) can be specified through the
SMLP specification file (see Sect. 5).

224 F. Brauße et al.

Fig. 3. Example of SMLP’s format specifying the problem conditions for the displayed
model of the system.

θ(p, p′) Stability constraints that define a region around a candidate solu-
tion. This can be specified using either absolute or relative radius r in
the specification file. This region corresponds to a ball (or box) around p:
θ(p, p′) = ‖p − p′‖ ≤ r. In general, our methods do not impose any restric-
tions on θ apart from reflexivity.

ϕM (p, x, y) Constraints that define the function represented by the ML model
M , thus ϕM (p, x, y) = (M(p, x) = y). In the ML model, knobs are represented
as designated inputs (and can be treated in the same way as system inputs,
or the machine model architecture can reflect the difference between inputs
and knobs). ϕM (p, x, y) is computed by SMLP internally, based on the ML
model specification.

ϕcond(p, x, y) Conditions that should hold in the θ-region of the solution. These
conditions depend on the exploration mode and could be: (1) verification
conditions, (2) model querying conditions, (3) parameter optimization con-
ditions, or (4) parameter synthesis conditions. The exploration modes are
described in Sect. 6.

SMLP solver is based on specialized procedures GearSATδ [4] and GearSATδ-
BO [5] for solving formulas in the GEAR fragment using quantifier-free SMT
solvers. The GearSATδ procedure interleaves search for candidate solutions using
SMT solvers with exclusion of θ-regions around counter-examples. GearSATδ-
BO combines GearSATδ search with Bayesian optimization guidance. These pro-
cedures find solutions to GEAR formulas with user-defined accuracy ε (defined in
Sect. 6.4) and they have been proven to be sound, (δ)-complete and terminating.

5 Problem Specification in SMLP

The specification file defines the problem conditions in a JSON compatible
format, whereas SMLP exploration modes can be specified via command line

SMLP: Symbolic Machine Learning Prover 225

options. Figure 3 depicts a toy system with two inputs, two knobs, and two out-
puts and a matching specification file for model exploration modes in SMLP.
For each variable it specifies its label (the name), its interface function (“input”,
“knob”, or “output”), its type (“real”, “int”, or “set”, for categorical features),
ranges for variables of real and int types, and optionally, a grid of values for
knobs that they are allowed to take on within the respective declared ranges,
independently from each other (unless there are constraints further restricting
the multi-dimensional grid). Both integer and real typed knobs can be restricted
to grids (but do not need to). Additional fields alpha, beta, eta, assertions and
objectives can optionally be specified, as shown in the example. These correspond
to the predicates α, β, η, ‘assert’ and objective function o described in Sect. 6.

The details about the concrete format are described in the manual [8], also
distributed with SMLP.

6 SMLP Exploration Modes of ML Models

In this section we describe ML model exploration modes supported by SMLP,
which are based on Formula (1).1

6.1 Stable Parameter Synthesis

The goal of stable synthesis is to find values of the system parameters such that
required conditions hold in the θ-region of the parameters for all inputs. For this,
SMLP solves Formula (1), where

ϕcond (p, x, y) = α(p, x) → β(p, x, y).

Here, α(p, x) restricts points in the region around the solutions to points of inter-
est and β(p, x, y) is the requirement that these points should satisfy. The α con-
straints define the domain of inputs and knobs and constraints on them which
play the role of assumptions in the assume-guarantee paradigm, while β con-
straints can be viewed as guarantees; they can express some external/additional
requirements from system not covered by assertions. In case of synthesis and
optimization, β constraints can be used to express constraints that should be
satisfied by synthesized, respectively, optimized system. For example consider
α(p, x) = (x1 > x2 + x3), β(p, x, y) = y1 > 2 · x1 and θ = ‖p − p′‖ ≤ 0.5. In
this mode SMLP will find values of parameters of the system such that for all
parameters in the 0.5 region and all inputs such that x1 > x2 + x3 the output
value y1 is greater than 2 · x1.

1 A comprehensive description of the exploration modes can be found in the SMLP
manual [8].

226 F. Brauße et al.

Fig. 4. SMLP max-min optimization. On both plots, p denote the knobs. On the right
plot we also consider inputs x (which are universally quantified) as part of f .

6.2 Verifying Assertions on a Model

For verifying an assertion assert(p, x, y) on a model M under given parameters
p we can simplify Formula (1) to:

η(p) ∧ ∀p′ ∀xy [θ(p, p′) → (ϕM (p′, x, y) → assert(p′, x, y))].

Since p is fixed, η(p) can be eliminated by evaluation. Further, if one is not con-
cerned with stability, then θ can be replaced with the identity and the problem
can be reduced to a standard verification problem.

∀xy (ϕM (p, x, y) → assert(p, x, y)).

In the case of neural networks, there is a large range of verification tools to
solve this problem such as Marabou [16], α, β-CROWN [20,22]. Most of these
tools rely on floating point computations, which can quickly accumulate errors.
SMLP supports SMT solvers with arbitrary precision which can produce exact
results, at the expense of the computational cost. Nevertheless, dedicated ML
solvers are very useful as they scale to much larger problems [9]. We are currently
working on supporting dedicated ML solvers in SMLP and let user decide which
traded-off to choose. SMLP also supports other ML models such as decision
trees, random forests and polynomial models.

6.3 Querying Conditions on the Model

The task of querying ML model for a stable witness to query(p, x, y) consists
in finding value assignments p∗, x∗ for knobs p and inputs x that represent a
solution for Eq. (2):

∃p, x
[
η(p) ∧ ∀p′ ∀y [θ(p, p′) → (ϕM (p′, x, y) → ϕcond(p′, x, y))]

]
(2)

where
ϕcond(p, x, y) = α(p, x) → query(p, x, y).

Queries can be used to explore the model, e.g., to explore regions around
failures where query corresponds to negation of the assertion, or to explore near
optimal regions in the optimization tasks, or other conditions of interest.

SMLP: Symbolic Machine Learning Prover 227

6.4 Stable Optimized Synthesis

In this subsection we consider the optimization problem for a real-valued function
f (in our case, an ML model), extended in two ways: (1) we consider a θ-stable
maximum to ensure that the objective function does not drop drastically in a
close neighborhood of the configuration where its maximum is achieved, and (2)
we assume that the objective function besides knobs depends also on inputs,
and the function is maximized in the stability θ-region of knobs, for any values
of inputs in their respective legal ranges. We explain these extensions using two
plots in Fig. 4.

The left plot represents optimization problem for f(p, x) when f depends on
knobs only (thus x is an empty vector), while the right plot represents the general
setting where x is not empty (which is usually not considered in optimization
research). In each plot, the blue threshold (in the form of a horizontal bar or
a rectangle) denotes the stable maximum around the point where f reaches
its (regular) maximum, and the red threshold denotes the stable maximum,
which is approximated by our optimization algorithms. In both plots, the regular
maximum of f is not stable due to a sharp drop of f ’s value in the stability region.

Let us first consider optimization without stability or inputs, i.e., far low
corner in the exploration cube Fig. 1. Given a formula ϕM encoding the model,
and an objective function o : Dpar × Dout → R, the standard optimization
problem solved by SMLP is stated by Formula (3).

�ϕM�o = max
p

{z | ∀y (ϕM (p, y) → o(p, y) ≥ z)} (3)

A solution to this optimization problem is the pair (p∗,�ϕM�o), where p∗ ∈
Dpar is a value of parameters p on which the maximum �ϕM�o ∈ R of the
objective function o is achieved for the output y of the model on p∗. In most
cases it is not feasible to exactly compute the maximum. To deal with this,
SMLP computes maximum with a specified accuracy. Consider ε > 0. We refer
to values (p̃, z̃) as a solution to the optimization problem with accuracy ε, or
ε-solution, if z̃ ≤ �ϕM�o < z̃ + ε holds and z̃ is a lower bound on the objective,
i.e., ∀y[ϕM (p, y) → o(p, y) ≥ z̃] holds.

Now, we consider stable optimized synthesis, i.e., the top right corner of the
exploration cube. The problem can be formulated as the following Formula (4),
expressing maximization of a lower bound on the objective function o over
parameter values under stable synthesis constraints.

�ϕM�o,θ = max
p

{z | η(p)∧∀p′ ∀xy [θ(p, p′) → (ϕM (p′, x, y) → ϕ≥
cond (p

′, x, y, z))]}
(4)

where
ϕ≥
cond(p

′, x, y, z) = α(p′, x) → (β(p′, x, y) ∧ o(p′, x, y) ≥ z).

The stable synthesis constraints are part of a GEAR formula and include usual
η, α, β constraints together with the stability constraints θ. Equivalently, sta-
ble optimized synthesis can be stated as the max-min optimization problem,

228 F. Brauße et al.

Formula (5)

�ϕM�o,θ = max
p

min
x,p′

{z | η(p)∧∀y [θ(p, p′) → (ϕM (p′, x, y) → ϕ≤
cond (p

′, x, y, z))]}
(5)

where
ϕ≤
cond(p

′, x, y, z) = α(p′, x) → (β(p′, x, y) ∧ o(p′, x, y) ≤ z).

In Formula (5) the minimization predicate in the stability region corresponds to
the universally quantified x and p′ ranging over this region in (4). An advantage
of this formulation is that this formula can be adapted to define other aggrega-
tion functions over the objective’s values on stability region. For example, that
way one can represent the max-mean optimization problem, where one wants to
maximize the mean value of the function in the stability region rather one the
min value (which is maximizing the worst-case value of f in stability region).
Likewise, Formula (5) can be adapted to other interesting statistical properties
of distribution of values of f in the stability region.

We can explicitly incorporate assertions in stable optimized synthesis by
defining β(p′, x, y) = β′(p′, x, y)∧ assert(p′, x, y), where assert(p′, x, y) are asser-
tions required to be valid in the entire stability region around the selected con-
figuration of knobs p. The notion of ε-solutions for these problems carries over
from the one given above for Formula (3).

SMLP implements stable optimized synthesis based on the GearOPTδ and
GearOPTδ-BO algorithms [4,5], which are shown to be complete and termi-
nating for this problem under mild conditions. These algorithms were further
extended in SMLP to Pareto point computations to handle multiple objectives
simultaneously.

6.5 Design of Experiments

Most DOE methods are based on understanding multivariate distribution of legal
value combinations of inputs and knobs in order to sample the system. When
the number of system inputs and/or knobs is large (say hundreds or more), the
DOE may not generate a high-quality coverage of the system’s behavior to enable
training models with high accuracy. Model training process itself becomes less
manageable when number of input variables grows, and models are not explain-
able and thus cannot be trusted. One way to curb this problem is to select a
subset of input features for DOE and for model training. The problem of com-
bining feature selection with DOE generation and model training is an impor-
tant research topic of practical interest, and SMLP supports multiple practically
proven ways to select subsets of features and feature combinations as inputs to
DOE and training, including the MRMR feature selection algorithm [13], and a
Subgroup Discovery (SD) algorithm [1,18,21]. The MRMR algorithm selects a
subset of features according to the principle of maximum relevance and minimum
redundancy. It is widely used for the purpose of selecting a subset of features
for building accurate models, and is therefore useful for selecting a subset of
features to be used in DOE; it is a default choice in SMLP for that usage. The

SMLP: Symbolic Machine Learning Prover 229

SD algorithm selects regions in the input space relevant to the response, using
heuristic statistical methods, and such regions can be prioritized for sampling in
DOE algorithms.

6.6 Root Cause Analysis

We view the problem of root cause analysis as dual to the stable optimized
synthesis problem: while during optimization with stability we are searching for
regions in the input space (or in other words, characterizing those regions) where
the system response is good or excellent, the task of root-causing can be seen
as searching for regions in the input space where the system response is not
good (is unacceptable). Thus simply by swapping the definition of excellent vs
unacceptable, we can apply SMLP to explore weaknesses and failing behaviors
of the system.

Even if a number of counter-examples to an assertion are available, they
represent discrete points in the input space and it is not immediately clear which
value assignments to which variables in these counter-examples are critical to
explain the failures. Root causing capability in SMLP is currently supported
through two independent approaches: a Subgroup Discovery (SD) algorithm that
searches through the data for the input regions where there is a higher ratio (thus,
higher probability) of failure; to be precise, SD algorithms support a variety of
quality functions which play the role of optimization objectives in the context
of optimization. To find input regions with high probability of failure, SMLP
searches for stable witnesses to failures. These capabilities, together with feature
selection algorithms supported in SMLP, enable researchers to develop new root
causing capabilities that combine formal methods with statistical methods for
root cause analysis.

6.7 Model Refinement Loop

Support in SMLP for selecting DOE vectors to sample the system and gener-
ate a training set was discussed in Subsect. 6.5. Initially, when selecting sam-
pling points for the system, it is unknown which regions in the input space are
really relevant for the exploration task at hand. Therefore some DOE algorithms
also incorporate sampling based on previous experience and familiarity with the
design, such as sampling nominal cases and corner cases, when these are known.
For model exploration tasks supported by SMLP, it is not required to train
a model that will be an accurate match to the system everywhere in the legal
search space of inputs and knobs. We require to train a model that is an adequate
representation of the system for the task at hand, meaning that the exploration
task solved on the model solves this task for the system as well. Therefore SMLP
supports a targeted model refinement loop to enable solving the system explo-
ration tasks by solving these tasks on the model instead. The idea is as follows:
when a stable solution to model exploration task is found, it is usually the case
that there are not many training data points close to the stability region of that
solution. This implies that there is a high likelihood that the model does not

230 F. Brauße et al.

accurately represent the system in the stability region of the solution. Therefore
the system is sampled in the stability region of the solution, and these data
samples are added to the initial training data to retrain the model and make it
more adequate in the stability region of interest.

7 Implementation

SMLP code is open-source and publicly available2. Its frontend is implemented
in Python, and its backend is implemented in C++ , while the interface between
the two is realized using the Boost library. For training tree-based and polyno-
mial models we use the scikit-learnand pycaretpackages, and for training neural
networks we use the Keras package with TensorFlow. Our focus is on analyzing
regression models arising from systems with analog pins and analog output, but
classification models are also covered as they can be reduced to binary classifica-
tion with output values 0 and 1, or by treating the binary classification problem
as a regression problem of predicting the probability of the output to be 1 (the
latter is usually preferable for more finer analysis). For generating training data
from a system, SMLP supports DOE approaches available in package pyDOE.
The MRMR algorithm for feature selection is integrated in SMLP using the
mrmr package, and the Subgroup Discovery algorithm is integrated using pack-
age pysubgroup.

SMLP can use any external SMT solver which supports SMT-LIB2 format,
as a back end of the GearSAT/OPT algorithms (via command line options),
and also natively integrates Z3 via the Python interface. We successfully exper-
imented with Z3 [11], Yices [14], CVC5 [2], MathSAT [10] and ksmt [6].

8 Industrial Case Studies

Previous publications [4,5] on SMLP report detailed experimental results on
10 real-life training datasets originating from Electrical Validation and Signal
Integrity domains. The output is a measurement of the quality of an analog
signal between a transmitter and a receiver of a channel to a peripheral device.
The datasets are freely available3: 5 transmitter (TX) datasets and 5 receiver
(RX) counterparts. The count of inputs and knobs together in these experiments,
as well as in current usage of the SMLP tool at Intel, is around 5 to 20 variables.
In [4] the experimental evaluation is performed using GearSatδ algorithm, and
experimental results using the GearOptδ-BO algorithm that combines SMT-
based optimization procedure with Bayesian optimization are reported in [5].
While these datasets are relatively small in terms of parameter counts, they are
representative of modeling I/O devices at Intel, and SMLP has been useful in
suggesting safe and optimized configurations for a number of real-life I/O devices
in recent years.

2 https://github.com/fbrausse/smlp
3 https://fbrausse.github.io/smlp/benchmarks-intel/

https://github.com/fbrausse/smlp
https://fbrausse.github.io/smlp/benchmarks-intel/

SMLP: Symbolic Machine Learning Prover 231

Some of the challenges of design space exploration at Intel in the design
stage of product developed are described in [17]. This work focuses on design
challenges for 112Gb SerDes I/O serialization systems. This work uses Fea-
ture Range Analysis [17] as ML analysis engine which has initial support in
SMLP in the subgroups mode. The parameters relevant to the system exploration
include those characterizing topological layout of circuits, physical characteris-
tics, requirements for manufacturability, and more, such as relative locations of
vias, distances between parallel wires, wire thickness, wire lengths, properties
of dielectric layers. The exploration goal is to optimize the system performance
under the system’s requirements, to find one safe and optimal configuration that
supports multiple modes of operations – in particular, to improve the timing and
voltage margins, co-optimized with power and area requirements. SMLP is cur-
rently being applied for analysis and optimization of such I/O systems, through
analyzing NN, tree and polynomial models trained on design and lab data.

9 Future Work

Currently we are extending SMLP to support ONNX format used by VNN-
LIB [12] so more specialized solvers for ML can also be used alongside SMT
solvers. We are working on combining different solving strategies into a user-
definable solver pipeline of ML and SMT solvers within the SMLP framework.
We recently released a new set of benchmarks and intend to release more real-life
industrial datasets in the future (See Footnote 3).

Acknowledgments. We would like to thank Shai Amara, Alex Manukovsky, Joshua
N. Fontaine, and Yunhui Chu for providing us with data and ML models that helped
us in developing and tuning SMLP on real-life problem instances.

References

1. Atzmueller, M.: Subgroup discovery. WIREs Data Mining Knowl. Discov. 5(1),
35–49 (2015)

2. Barbosa, H.: cvc5: a versatile and industrial-strength SMT solver. In: TACAS 2022.
LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.org/10.1007/
978-3-030-99524-9_24

3. Box, G.E.P., Wilson, K.B.: On the experimental attainment of optimum conditions.
J. Royal Stat. Soc. Ser. B (Methodological) 13(1), 1–45 (1951)

4. Brauße, F., Khasidashvili, Z., Korovin., K.: Selecting stable safe configurations
for systems modelled by neural networks with ReLU activation. In: 2020 Formal
Methods in Computer Aided Design, FMCAD 2020, Haifa, Israel, 21–24 September
2020, pp. 119–127. IEEE (2020)

5. Brauße, F., Khasidashvili, Z., Korovin, K.: Combining constraint solving and
bayesian techniques for system optimization. In: De Raedt, L. (ed.) Proceedings
of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI
2022, Vienna, Austria, 23–29 July 2022, pp. 1788–1794. ijcai.org (2022)

https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24

232 F. Brauße et al.

6. Brauße, F., Korovin, K., Korovina, M., Müller, N.: A CDCL-style calculus for
solving non-linear constraints. In: Herzig, A., Popescu, A. (eds.) FroCoS 2019.
LNCS (LNAI), vol. 11715, pp. 131–148. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-29007-8_8

7. Brauße, F., Korovin, K., Korovina, M.V., Müller, N.T.: The KSMT calculus is a
δ-complete decision procedure for non-linear constraints. Theor. Comput. Sci. 975,
114125 (2023)

8. Brauße, F., Khasidashvili, Z., Korovin, K.: SMLP: symbolic machine learning
prover (user manual). CoRR, abs/2405.10215 (2024)

9. Brix, C., Müller, M.N., Bak, S., Johnson, T.T., Liu, C.: First three years of the
international verification of neural networks competition (VNN-COMP). Int. J.
Softw. Tools Technol. Transf. 25(3), 329–339 (2023)

10. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–
107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_7

11. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

12. Demarchi, S., Guidotti, D., Pulina, L., Tacchella, A.: Supporting standardization
of neural networks verification with VNN-LIB and CoCoNet. In: Proceedings of the
6th Workshop on Formal Methods for ML-Enabled Autonomous Systems, vol. 16,
pp. 47–58 (2023)

13. Ding, C.H.Q., Peng, H.: Minimum redundancy feature selection from microarray
gene expression data. J. Bioinform. Comput. Biol. 3(2), 185–206 (2005)

14. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9_49

15. Gao, S., Avigad, J., Clarke, E.M.: δ-complete decision procedures for satisfiabil-
ity over the reals. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012.
LNCS (LNAI), vol. 7364, pp. 286–300. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-31365-3_23

16. Katz, G., et al.: The Marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019, Part I. LNCS, vol.
11561, pp. 443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4_26

17. Khasidashvili, Z., Norman, A.J.: Feature range analysis. Int. J. Data Sci. Anal.
11(3), 195–219 (2021)

18. Klösgen, W.: Explora: a multipattern and multistrategy discovery assistant. In:
Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances
in Knowledge Discovery and Data Mining, pp. 249–271. AAAI/MIT Press (1996)

19. Manukovsky, A., Shlepnev, Y., Khasidashvili, Z.: Machine learning based design
space exploration and applications to signal integrity analysis of 112Gb SerDes
systems. In: 2021 IEEE 71st Electronic Components and Technology Conference
(ECTC), pp. 1234–1245 (2021)

20. Wang, S., et al.: Beta-CROWN: efficient bound propagation with per-neuron split
constraints for complete and incomplete neural network verification. Adv. Neural
Inf. Process. Syst. 34 (2021)

21. Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In:
Komorowski, J., Zytkow, J. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63223-9_108

https://doi.org/10.1007/978-3-030-29007-8_8
https://doi.org/10.1007/978-3-030-29007-8_8
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-642-31365-3_23
https://doi.org/10.1007/978-3-642-31365-3_23
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/3-540-63223-9_108

SMLP: Symbolic Machine Learning Prover 233

22. Xu, K., et al.: Fast and Complete: enabling complete neural network verification
with rapid and massively parallel incomplete verifiers. In: International Conference
on Learning Representations (2021)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Avoiding the Shoals - A New Approach
to Liveness Checking

Yechuan Xia1, Alessandro Cimatti2, Alberto Griggio2, and Jianwen Li1(B)

1 East China Normal University, Shanghai, China
jwli@sei.ecnu.edu.cn

2 Fondazione Bruno Kessler, Trento, Italy
{cimatti,griggio}@fbk.eu

Abstract. We present rlive, a new SAT-based model-checking algorithm
for the verification of liveness properties of finite-state symbolic tran-
sition systems. Like other recent approaches, rlive works by reducing
liveness checking to a sequence of safety checks. Similarly to FAIR, it
incrementally strengthens the input system using constraints obtained
by refuting candidate counterexamples to the input liveness property,
assumed (w.l.o.g.) to be of the form FGq. Differently from FAIR (and
crucially), however, instead of directly searching for lasso-shaped coun-
terexamples visiting ¬q infinitely-often, rlive searches for counterexam-
ples incrementally, via a recursive chain of safety checks, each of which
tries to determine whether it is possible to reach a ¬q-state from a given
¬q-state (which was previously determined to be reachable), in a man-
ner similar to k-Liveness. When the current candidate counterexample is
refuted, rlive exploits the inductive invariants generated by the (recur-
sive) safety checks to restrict the search space, until either no more reach-
able ¬q-states remain, or a real lasso-shaped counterexample is found.

In this paper, we describe rlive in detail, prove its soundness and com-
pleteness, and compare it against the state of the art both theoretically
and empirically. Our experimental results show that our implementation
of rlive outperforms state-of-the-art implementations of FAIR, k-Liveness
and other SAT-based liveness checking algorithms on a wide range of
benchmarks from the literature.

1 Introduction

The design of efficient algorithms for model checking has been a major research
challenge for over three decades. Following the SAT breakthrough in the late
90 s [22,25], many novel SAT-based techniques have been proposed, which have
tremendously increased the efficiency and scalability of (symbolic) model check-
ing and its applicability to real-world systems (e.g., [6,8,15,17,18,20,21,24,27]).
Although the vast majority of such approaches have focused on safety proper-
ties, their benefits have extended also to liveness model checking, thanks to the
development of liveness verification algorithms that work by exploiting efficient
safety checkers, either via a monolithic reduction from liveness to safety [4],
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 234–254, 2024.
https://doi.org/10.1007/978-3-031-65627-9_12

https://doi.org/10.5281/zenodo.10948703
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65627-9_12&domain=pdf
https://doi.org/10.1007/978-3-031-65627-9_12

Avoiding the Shoals - A New Approach to Liveness Checking 235

or via more sophisticated strategies that use safety checkers incrementally [13],
exploiting also the inductive invariants generated when the verification is suc-
cessful [9,16].

In this paper, we present a novel SAT-based liveness checking algorithm,
which we call rlive, that also takes advantage of efficient safety model checkers
and their capability of producing inductive invariants for verified properties. Like
all other SAT-based approaches to liveness checking, rlive works on properties
of the form FGq, stating that q has to eventually stabilize to true in all traces
of the system, relying on standard procedures (e.g., [12,14]) for transforming a
model checking problem for an arbitrary LTL property into this form.

Similar to the FAIR algorithm of [9], rlive then proceeds by refuting candidate
counterexamples to the property, i.e. traces in which ¬q holds infinitely often,
using a sequence of calls to a safety checker, and exploiting the inductive invari-
ants generated by such safety checks to prune the set of reachable ¬q-states, until
either a real (lasso-shaped) counterexample for FGq is found, or no ¬q-states are
reachable, implying that the property holds. However, in contrast to FAIR, which
directly searches for lasso-shaped traces where ¬q holds in at least one state of
the loop, rlive searches for counterexamples incrementally, via a recursive chain
of safety checks, each of which tries to determine whether it is possible to reach a
¬q-state starting from the successors of a previously-reached ¬q-state, in a man-
ner conceptually similar to k-Liveness [13]. If a ¬q-state is found for the second
time during this recursive chain, a (lasso-shaped) counterexample witnessing the
violation of FGq is constructed, and the algorithm terminates. Otherwise, even-
tually one of the recursive safety checks will generate an inductive invariant C
proving that no other ¬q-state can be reached from (the successors of) a given
¬q-state s. rlive then uses C to derive constraints that exclude s from the reach-
able states of the system, forcing it to (recursively) consider a different ¬q-state
to continue the current candidate counterexample trace. Specifically, C is used
to strengthen the target states to reach, by asking the safety checker to ignore
¬q-states whose successors are all contained in C (since all such states in C
cannot visit ¬q infinitely-often); furthermore, C can be used also to strengthen
the transition relation of the input system, since no state in C can be part of a
counterexample. To give this intuition, we refer to states in C as shoals, as they
represent regions of the state space that must be avoided in order to not “get
stuck” in the search for a counterexample. Eventually, the shoals (recursively)
produced will either exclude all ¬q-states, thus proving that the input property
holds, or compel rlive to find a lasso-shaped counterexample for it.

Intuitively, rlive effectively identifies counterexamples by searching, in a
depth-first manner, for traces that contain as many ¬q-states as possible. Per-
forming the search incrementally, by a sequence of simple reachability checks,
turns out to be computationally cheaper than searching directly for loops in
practice. Moreover, whenever the current candidate counterexample trace can-
not be completed, the shoals obtained from the safety checks can be used globally
to strengthen the transition system and reduce the search space that needs to
be explored, thus accelerating the convergence of the algorithm.

236 Y. Xia et al.

We have implemented rlive on top of the nuXmv model checker [10] which has
a mature, state-of-the-art IC3 implementation, and compared it against state-of-
the-art implementations of other SAT-based liveness checking algorithms, includ-
ing FAIR, k-Liveness, and their recent combination called k-FAIR [16]. Our exper-
imental results, conducted on a wide range of benchmarks taken from recent
hardware model checking competitions [1,2], demonstrate the strengths of our
algorithm: rlive solves more benchmarks than any other competitor in the given
resource bounds, and very often with significantly shorter time.

Paper Structure. The rest of the paper is structured as follows. After the intro-
duction of the necessary background in Sect. 2, we describe rlive in Sect. 3 and
prove its soundness and correctness. We compare rlive with related work in
Sect. 4, and experimentally evaluate its performance in Sect. 5. Finally, we con-
clude in Sect. 6 outlining also directions for future work.

2 Preliminaries

2.1 Boolean Satisfiability

A literal is a Boolean variable or its negation. If l is a literal, we denote its
corresponding variable with var(l). A cube (resp. clause) is a conjunction (resp.
disjunction) of literals. The negation of a clause is a cube and vice versa. A
formula in Conjunctive Normal Form (CNF) is a conjunction of clauses. For
simplicity, we also treat a CNF formula φ as a set of clauses and make no
difference between the formula and its set representation. Similarly, a cube or a
clause c can be treated as a set of literals or a Boolean formula, depending on
the context.

We say a CNF formula φ is satisfiable if there exists an assignment of its
Boolean variables, called a model, that makes φ true; otherwise, φ is unsatisfiable.
A SAT solver is a tool that can decide the satisfiability of a CNF formula φ. In
addition to providing a yes/no answer, modern SAT solvers can also produce
models for satisfiable formulas, and unsatisfiable cores (UC), i.e. a reason for
unsatisfiability, for unsatisfiable ones. More precisely, in the following we shall
assume to have a SAT solver that supports the following API (which is standard
in state-of-the-art SAT solvers based on the CDCL algorithm [19]):

– is-SAT(φ,A) checks the satisfiability of φ under the given assumptions A,
which is a list of literals. This is logically equivalent to checking the satisfia-
bility of φ ∧ ∧ A, but is typically more efficient;

– get-UC() retrieves an UC of the assumption literals of the previous SAT call
when the formula φ ∧ ∧ A is unsatisfiable. That is, the result is a set uc ⊆ A
such that φ ∧ ∧

uc is unsatisfiable;
– get-model() retrieves the model of the formula φ∧∧A of the previous SAT

call, if the formula is satisfiable.

Avoiding the Shoals - A New Approach to Liveness Checking 237

2.2 Boolean Transition Systems

A Boolean transition system Sys is a tuple 〈X, I, T 〉, where X is a set of variables,
and I and T are formulae. The state space of Sys is the set of possible assignments
to X. I(X) is a Boolean formula corresponding to the set of initial states, and
T (X,X ′) is a Boolean formula representing the transition relation, where X ′ =
{x′ | x ∈ X} represent the next state variables. In the following, we extend
the prime notation to states and formulae in the natural way. The state s2 is a
successor of a state s1 iff s1 ∧ s′

2 |= T, which is also denoted by (s1, s2) ∈ T . A
finite path of length k is a finite state sequence s1, s2, . . . , sk, where (si, si+1) ∈
T holds for (1 ≤ i ≤ k − 1). An infinite path is an infinite state sequence
s1, s2, . . . , where (si, si+1) ∈ T holds for i ≥ 1. The number of states is finite
for any (Boolean) transition system. An infinite path is lasso-shaped if it can
be presented as α · βω, where α is the finite prefix, e.g. s1, s2, . . . , sl−1, and β is
an infinitely-repeating suffix, e.g. sl, sl+2, . . . , sk. A state t is reachable from s
in k steps if there is a path of length k from s to t. Let S be a set of states in
Sys. We overload T and denote the set of successors of states in S as T (S) =
{t | (s, t) ∈ T, s ∈ S}. Conversely, we define the set of predecessors of states in
S as T−1(S) = {s | (s, t) ∈ T, t ∈ S}. Recursively, we define T 0(S) = S and
T i+1(S) = T (T i(S)) where i ≥ 0; the notation T−i(S) is defined analogously. In
short, T i(S) denotes the states that are reachable from S in i steps, and T−i(S)
denotes the states that can reach S in i steps.

2.3 Invariant Checking

Let a Boolean transition system Sys = 〈X, I, T 〉 be given. A Boolean formula P
over X is an invariant iff it holds in all the reachable states of Sys. An invariant
checker either proves that P holds for any state reachable from an initial state
in I, or disproves P by producing a counterexample. In the former case, we say
that the property is proven in the system, while in the latter case, the property
is disproved. A counterexample is a finite path from an initial state s to a state
t violating P , i.e., t ∈ ¬P ; such a state is also called a bad state.

Invariant checking, also referred to as safety checking, is reduced to symbolic
reachability analysis. Reachability analysis can be performed in a forward or
backward search. Forward search starts from initial states I and searches for
bad states by computing T i(I) with increasing values of i, while backward search
begins with states in ¬P and searches for initial states by computing T−i(¬P)
with increasing values of i.

State-of-the-art safety checking algorithms utilize SAT techniques to explore
the state space so as to improve the overall performance dramatically. Repre-
sentative approaches include IC3/PDR [8,15], interpolation-based model check-
ing [20], combinations of IC3 with interpolation [27] or k-induction [17], and
(forward and backward) CAR [18]. In the following, we abstract from specific
invariant checking algorithms, and assume that they implement the following
API:

238 Y. Xia et al.

– check-reachable(I, T,¬P) denotes a generic procedure for safety checking.
It takes as input a set of initial states I, the transition relation T , and the
negation of the candidate invariant P . check-reachable returns unsafe if
P is not an invariant. Otherwise, it returns safe.

– get-invariant() retrieves an inductive invariant proving that the bad states
are unreachable, i.e. a set ι of states closed under T , containing the states
reachable from I, and not intersecting ¬P . More formally, ι is such that I |= ι,
ι ∧ T |= ι′, and ι |= P .

– get-cex-trace() retrieves, if the property is violated, the counterexample
found by the safety checker, i.e. a finite path from I to ¬P .

2.4 Liveness Checking

We now consider the general model checking problem, denoted Sys |= φ, where
φ is a formula in Linear Temporal Logic (LTL) [23]. Following the standard
automata-theoretic approach [26], the problem can be reduced to checking Sys×
A¬φ |= FGq, where ¬q can be seen as the Büchi acceptance condition of A¬φ.
(Symbolic techniques such as [12,14] can be used in practice to encode such
reduction.) FGq intuitively means that, in any satisfying trace, q eventually
holds in all the future states, so that the acceptance condition ¬q can only be
visited a finite number of times. Dually, a counterexample is an infinite path
where ¬q is visited an infinite number of times, i.e. a trace satisfying GF¬q.

In the following, we focus on the (simplified) Sys |= FGq problem, referred
to as liveness checking. If the property is violated, there always exists a lasso-
shaped counterexample1, i.e., an infinite path α · βω where (i) the prefix α is a
finite trace of Sys whose last state t violates q, i.e., t ∈ ¬q, and (ii) the infinitely-
repeating suffix β is a path in Sys from a successor of t to t. We refer to a state
t ∈ ¬q as a ¬q-state.

The algorithms for liveness checking are more complicated than those for
invariant checking. In order to show that a candidate invariant does not hold, it
is sufficient to find a finite path. Liveness checking, on the other hand, requires
finding an infinite (lasso-shaped) counter-example (or proving that none exists).
The most effective solutions to liveness checking are based on invariant checking.
The most relevant to our work are the following.

– The L2S [4] (Liveness-to-Safety) construction introduces a copy of the state
variables in Sys, to record the first state of the loop, and a fresh variable
inLoop, to record that the loop has started. The state vector copy is non-
deterministically assigned a state violating q, i.e. the start of the loop, and
can never change after that. The search tries to reach a state where each state
variable has the same value as its copy and inLoop = true, which implies that
a violating lasso is detected. This translation is sound and complete.

1 Note that this fact only holds in the finite-state case; for infinite-state systems, the
existence of a lasso-shaped counterexample is not guaranteed in case of violation.

Avoiding the Shoals - A New Approach to Liveness Checking 239

Algorithm 1. k-FAIR = k-Liveness + FAIR
1: Liveness Property: FGq
2: procedure k-FAIR(I, T , q)
3: k := 0, C := ∅, W := ∅ // C: states not in loop, W : wall
4: while true do
5: if not is-SAT(¬qk ∧ ¬C) then // FAIR
6: return safe
7: if check-reachable(I, T , ¬qk ∧ ¬C) is safe then
8: return safe
9: s is the last state from get-cex-trace() // FAIR

10: if check-reachable(T (s), T ∧ (W ↔ W ′), s) is unsafe then
11: return unsafe
12: else
13: D := get-invariant()
14: W := W ∪ D
15: g := generalizing-noloop(s, D)
16: C := C ∪ g

17: (I, T , ¬qk) := IncreaseCounter(¬qk) // k++

18:

19: function generalizing-noloop(s, D)
20: assert(s ∈ ¬D and T (s) ⊆ D)
21: assert(not is-SAT(T ∧ ¬D′, s)) // s ∧ T → D′

22: g1 := get-UC()
23: assert(not is-SAT(D, s)) // s → ¬D
24: g2 := get-UC()
25: return g1 ∧ g2

– FAIR [9] tries to construct a lasso-shaped counterexample as follows: first, it
searches for a candidate prefix (α); then, starting from the last (bad) state
t of α, it searches for a suffix (β) that ends with t. Both steps are based
on invariant checking. If the loop cannot be found, this bad state will be
pruned. Fundamental optimizations include state generalization and, more
importantly, extraction of walls (where, intuitively, states in a loop can only
exist on one side of the wall). Then, FAIR iterates trying to find another
candidate prefix for the lasso. The procedure terminates as soon as no prefix
can be detected, in which case the property is proved.

– k-Liveness [13] tries to prove FGq based on the following intuition: if FGq
holds, then there is a (finite) maximum number of times in which q can be
violated in any path. The k-Liveness construction introduces a counter of
the number of times q is violated and calls a safety checker to prove that
the counter cannot exceed the given limit k. In case of failure, the limit is
increased. k-Liveness proves the property if a k is found such that no path
visits ¬q more than k times. In general, k-Liveness is considered effective in
proving the property. Notice, however, that k-Liveness – as described above – is
incomplete, and will diverge if the property does not hold. On the other hand,
it is possible to find counterexamples by checking the existence of repeated

240 Y. Xia et al.

Fig. 1. Forward expansion and shoal construction (left); Rollback (right).

Fig. 2. Terminating conditions: counterexample found, unsafe (left); ¬q no longer
reachable from I, safe (right).

bad states from the path returned by the safety-checking call. As already sug-
gested in [13], k-Liveness can be run in parallel to bounded model checking [6],
that is complete in the case of violation.

– k-FAIR [16] is a more recent approach, designed to inherit advantages from
FAIR and k-Liveness. k-FAIR utilizes k-Liveness for proving correctness while
leveraging FAIR for finding counterexamples. The k-FAIR algorithm is shown
in Algorithm 1. We see that FAIR and k-Liveness can both be considered a
special case of k-FAIR. If line 17 is removed, the algorithm becomes FAIR. If
line 5 and lines 9–16 are removed, it becomes k-Liveness.

3 Liveness Checking with rlive

In this section we informally describe rlive, then present the pseudo code and
some optimizations, and finally characterize its formal properties.

3.1 Overview

rlive is a new algorithm for liveness checking (Sys |= FGq). At a high level, rlive
can be seen as a depth-first search with chronological backtracking and learn-
ing. rlive incrementally tries to build a counterexample to FGq, progressively
extending it with more states in ¬q. In the forward expansion phase, rlive first
looks for a finite path π1 from I to ¬q, with s1 being the last state of π1. Then,

Avoiding the Shoals - A New Approach to Liveness Checking 241

rlive looks for another path π2 from T (s1) to ¬q, and so on. See Fig. 1, left. The
forward expansion proceeds until one of two conditions holds.

1. if sn is equal to si, with i < n, then a lasso-shaped counterexample exists,
and the search terminates with unsafe (Fig. 2, left). The counterexample can
be constructed by concatenating the previously found πi.

2. if sn+1 cannot reach ¬q, then a shoal is built, i.e. a set of states closed under
T and containing T (sn+1), that can reach no target state (shoaln+1 in Fig. 1,
left). Clearly, no state in a shoal can belong to the counterexample; hence,
shoals are learned and used to block the subsequent forward expansions.

In the second case, the algorithm rolls back to the previous level, and restarts
the forward search, looking for a new way to enter ¬q. However, to avoid entering
the shoals again, the target ¬q-state must have successors outside the shoals.
(e.g. s′

n+1 in Fig. 1, right). The algorithm terminates with safe whenever it rolls
back to level 0, and finds no way to reach, from the initial states, the remaining
subset of ¬q while avoiding the shoal constraints (Fig. 2, right).

We remark that, upon backtracking, the forward search space is restricted
to avoid the shoal constraints as well as the states in ¬q that do not belong
to the counterexample. Hence, the navigation toward the target is increasingly
restricted because of the discovered shoal constraints and also because the target
is progressively shrunk.

The algorithm described above is naturally implemented with primitives pro-
vided by the safety checker, such as deciding reachability and constructing the
counterexamples and the invariants. A further practical optimization called dead-
state pruning, trades off calls to the safety checker with calls to the SAT solver,
enlarging the shoals with a cheap form of look ahead to further prune the target
set.

3.2 Algorithm

Algorithm 2 describes how rlive is implemented using a generic invariant-checking
engine implementing the API introduced in Sect. 2.3. To prove or falsify the live-
ness property FGq, rlive will maintain a global state set C at line 2, representing
the shoals (i.e. states from which ¬q can be reached only a finite number of
times) discovered so far.

The algorithm starts from line 4, checking whether ¬q is reachable from the
initial states, using check-reachable. If it is not reachable, Gq is proved,
and so FGq is verified. Otherwise, from the counterexample trace returned by
check-reachable, we get a reachable ¬q-state s. Then the search-cex func-
tion is called to search for the next ¬q-state from s.

When C is not empty, we block the states in C from the transition system
by adding the constraint ¬C ∧ ¬C ′ to T (lines 5 and 17). At the same time, the
states to be searched become ¬q ∩ T−1(¬C), which ensures that the searched
¬q-states have ¬C successors, to exclude the ¬q-states that are proved not to
be part of a counterexample.

242 Y. Xia et al.

Algorithm 2. Implementation of rlive
1: Liveness Property: FGq
2: C := ∅ // shoals: ¬q can only be reached finitely-many times from states in C
3:

4: procedure rlive(I, T , q)
5: while check-reachable(I, T ∧ (¬C ∧ ¬C′), ¬q ∩ T−1(¬C)) is unsafe do
6: s is the reached ¬q-state from get-cex-trace()
7: if search-cex(s, ∅) then
8: return unsafe
9: return safe

10:

11: function search-cex(s,B)
12: if s ∈ B then // B: reachable ¬q-states from initial states
13: return True
14: while True do
15: if prune-dead(s) then
16: return False
17: if check-reachable(T (s), T ∧ (¬C∧¬C′), ¬q∩T−1(¬C)) is unsafe then
18: t is the reached ¬q-state from get-cex-trace()
19: if search-cex(t, B ∪ {s}) then
20: return True
21: else
22: D := get-invariant()
23: C := C ∪ D // ¬q ∩ T−1(¬C) cannot be reached from states in D
24: return False
25:

26: function prune-dead(s)
27: while is-SAT(s ∧ T ∧ ¬C′) do
28: µ := get-model()
29: d := {l | l′ ∈ µ}
30: if not is-SAT(T ∧ ¬C′, d) then
31: D := get-UC() // unsatisfiable core returned by the SAT solver
32: C := C ∪ D // states in D have no successor not in C
33: else
34: return False
35: return True

In the search-cex(s,B) function of line 11, the parameter s serves as a new
reached ¬q-state, and the parameter B contains the ¬q-states that have been
previously reached along the current trace. Therefore, in lines 12–13, when s has
appeared in B, a lasso-shape counterexample has been found, so the function
returns True (a counterexample has been detected). Line 15 is the implementa-
tion of an important heuristic called dead-pruning, which we describe in detail
in the next subsection. A new call to check-reachable is performed to find
the next ¬q ∩ T−1(¬C)-state starting from the successor of s on line 17. The
reason for searching from the T (s)-states is that s itself is a state that meets
¬q∩T−1(¬C). However, calculating the exact set T (s) might be quite expensive,

Avoiding the Shoals - A New Approach to Liveness Checking 243

so we use an overapproximation of T (s), which we describe below in Sect. 3.3. If
a state t can be reached, then the function is called recursively, t is used as the
new starting state, and the s state is added to B. Otherwise, check-reachable
would return an inductive invariant D on line 22.2 This invariant is an overap-
proximation of the reachable states starting from T (s), and none of these states
can reach ¬q∩T−1(¬C). Therefore, states in D are shoals, so they can be added
to C, and then the function returns False.

3.3 Optimizations

Avoiding the Explicit Computation of T−1(¬C). When asking for the
next ¬q ∩ T−1(¬C)-state in the current trace, we can avoid the explicit compu-
tation of T−1(¬C) by exploiting some additional knowledge about how the reach-
ability engine check-reachable works. For example, if check-reachable is
based on IC3 [8], we can simply add a constraint T ∧¬C ′ to the SAT solver when
asking for a ¬q-state.

Efficiently Over-Approximating T (s). Using IC3 as an implementation of
check-reachable allows us also to efficiently overapproximate the states T (s)
in the (recursive) searches for the next ¬q-states in the current trace (line 17). To
do so, we slightly modify IC3,3 and in particular the query that checks whether a
given predecessor b of a bad (¬q-)state intersects the initial states of the system.
Rather than checking whether T (s) ∧ b is satisfiable, we check the satisfiability
of s ∧ T under the assumption of b′. If the formula is unsat, we add the cube
c ⊆ b corresponding to the unsat core produced by the SAT solver (i.e. such that
c′ = get-UC()) to the 0-th frame of IC3. In this way, the 0-th frame of IC3 will
effectively be our desired over-approximation of T (s).

Dead States Pruning. During rlive, lots of dead states, i.e. states that do not
have any successors, are formed due to the strengthening of T and ¬q using the
discovered shoals. To prove that ¬q cannot be reached from such a dead state,
check-reachable needs to search for the predecessor states of ¬q and describe
the overapproximation of the reachable set from the dead state with the literals
in the predecessors, which might require a large number of SAT queries.

Dead-pruning optimization is a simple and effective optimization (but prob-
ably not the only one) used to detect and quickly block the dead states. The
optimization is used before calling check-reachable, to check whether a suc-
cessor of the starting bad state is a dead state. If it is, then it can be excluded
from the search and used to strengthen the shoals C.

2 When the recursive call returns to the previous level, due to the incremental nature
of the IC3, it can reuse the lemmas previously calculated in this level. However, we
empirically found that such reuse doesn’t result in an obvious boost in performance.

3 Note that the same optimization can be applied also to other engines that use an
“IC3-like” search, such as CAR.

244 Y. Xia et al.

Line 26 in Algorithm 2 is the implementation of the dead-pruning heuristic.
A successor d of s is computed on lines 27–29. If d is determined to be a dead
state (line 30), then it can be added to C (after being generalized using the
unsat core produced by the SAT solver). The function returns False once it finds
a successor of s with successors outside of C. If all the successors of s are blocked
as dead states, the function returns True.

3.4 Correctness Proof

This section presents the proofs for the correctness of rlive (Algorithm 2). We
first show the following lemmas which are crucial for the proof.

Lemma 1. Every state t ∈ C can only reach a ¬q-state a finite number of times.

Proof. According to Algorithm 2, C can be updated in either the search-cex or
prune-dead procedure. Since the latter one is optional (it is an optimization),
we first consider the proof without the prune-dead procedure.

In the search-cex procedure, C is the state set that is updated by the union
of different inductive invariants returned by check-reachable (line 23), whose
initial states are an over-approximation of successors of some ¬q-state s. From
the correctness of check-reachable, every state t in the inductive invariant
satisfies: (1) it may be reachable from the initial states (and ¬q-state s) due to
over-approximation, thus may be reachable from s, and (2) it cannot reach the
states in ¬q∩T−1(¬C) (line 17). By construction, assume C = C1∪C2∪ . . .∪Cn

where Ck (1 ≤ k ≤ n) is the k-th inductive invariant added into C. We prove
the lemma by induction over n. Obviously, every state t ∈ C1 cannot reach
states in ¬q (and C1 ∩ ¬q = ∅). So the lemma holds in the base case. For
the inductive step (when k > 1), since every state t ∈ Ck cannot reach ¬q ∩
T−1(¬(

⋃
1≤i≤k−1 Ci)), we consider a state s̃ ∈ ¬q in two different sets. If s̃ ∈

T−1(¬(
⋃

1≤i≤k−1 Ci)), t cannot reach s̃; otherwise, s̃ �∈ T−1(¬(
⋃

1≤i≤k−1 Ci))
implies that T (s̃) ⊆ (

⋃
1≤i≤k−1 Ci), i.e., every successor of s̃ is in (

⋃
1≤i≤k−1 Ci).

From the inductive hypothesis, every state in (
⋃

1≤i≤k−1 Ci) can only reach a
¬q-state a finite number of times. Therefore, we have that t can only reach a
¬q-state finitely-many times as well.

Taking the prune-dead procedure into consideration, only those states
whose successors are all in C are added into C (line 32). From the hypothe-
sis assumption, every state in C can only visit a ¬q-state a finite number of
times, so as the predecessors, those states can only visit a ¬q-state finitely-many
times as well. �
Lemma 2. Given s |= ¬C, when the prune-dead (s) procedure returns, it
returns True if and only if every successor of s, if existing, is in C.

Proof. (⇒) The procedure returns True implies that either the SAT call at line
27 returns unsat, which indicates that every successor of s is in C, or there is
some successor d of s that is not in C. However, since the procedure returns True,
the SAT call at line 30 must return unsat, which indicates that every successor

Avoiding the Shoals - A New Approach to Liveness Checking 245

of d, if existing, is in C. Then d will be added into C according to lines 31-32.
So d ∈ C becomes true. The above process will repeat inside the while loop at
line 27 until every successor of s is in C.

(⇐) If every successor of s is in C, the SAT call at line 27 will return
unsat. Therefore, the while loop directly stops and the procedure returns True at
line 35. �
Lemma 3. 1. search-cex(s,B) returns True if and only if there is a lasso

starting from s and its loop part contains a ¬q-state.
2. search-cex(s,B) always terminates.

Proof. 1. (⇒) The procedure is recursively implemented and it returns True as
soon as a ¬q-state t (which can be the same as s) is already in B, indicating
that a loop is detected. Moreover, t is reachable from the input state s, since
t is detected from the successors of s by check-reachable. Therefore, a
lasso starting from s and looping with t is found when the procedure returns
True.
(⇐) Assume the lasso is s, . . . , t1, . . . , (ti, . . . , tj) in which tj = ti (1 ≤ j ≤ i)
and every tk (1 ≤ k ≤ j) is a ¬q-state. First of all, we can prove that for
each tk, it is true that tk ∈ T−1(¬C), i.e., there is some successor of tk that is
not in C; otherwise, from tk there cannot be a lasso looping with a ¬q-state,
as based on Lemma 1, all successors of tk being in C implies they can only
visit a ¬q-state a finite number of times. Therefore, tk can be found by the
check-reachable call at line 17 and prune-dead(tk) cannot return True
according to Lemma 2, implying that search-cex(s,B) will not return False
at line 16. As a result, search-cex(s,B) will finally return True at line 13
once it finds tj for the second time.

2. We prove that the while loop of line 17 of search-cex(s,B) is terminating.
The point is that the size of the state set ¬q ∩T−1(¬C) keeps shrinking after
each iteration of the loop, because the ¬q-state t at line 18 will be removed
from ¬q ∩T−1(¬C). The reason is that when the recursive search-cex(s, ∅)
procedure returns False at line 19, the proof of Item 1 above guarantees that
there is no lasso starting from t and looping with a ¬q-state. So C will be
updated either by the inductive invariant (line 23) or the unsat core in the
prune-dead procedure (line 32) such that t �∈ T−1(¬C) is true, according to
Lemmas 1 and 2. Therefore, t is successfully removed from ¬q ∩T−1(¬C). In
the worst case, the state set will become empty and check-reachable can
terminate with safe as no bad state can be found at line 5.

�
Lemma 4. 1. rlive(I, T, q) always terminates.
2. rlive(I, T, q) returns safe if and only if the system (I, T) satisfies the property

FGq.

Proof. 1. The proof is analogous to that of Item 2 of Lemma 3, so it is omitted.
2. (⇒) Assume by contradiction that rlive returns safe, but the property doesn’t

hold. Therefore, there exists a lasso-shaped trace π of the form s, . . . , t1,

246 Y. Xia et al.

. . . , (ti, . . . , tj) in which tj = ti (1 ≤ j ≤ i) and every tk(1 ≤ k ≤ j) is
a ¬q-state. By Lemma 1, none of the states in π is in C, and moreover
ti ∈ ¬q ∩ T−1(¬C). Therefore, s, . . . , t1 is a trace reaching the bad state
¬q ∩ T−1(¬C) in the system 〈X, I, T ∧ (¬C ∧ ¬C ′)〉, which is found by the
check-reachable call at line 5. But then, search-cex(t1, ∅) at line 7
returns False by Lemma 3, and so rlive returns unsafe, which is a contradiction.
(⇐) The system satisfies the property implies that every ¬q-state that is
reachable from the initial states, if existing, can only be visited finitely-many
times. Assume the number of such reachable ¬q-states is k (k < +∞). If
k = 0, the check-reachable procedure in the while loop of rlive (line 5)
will directly return safe and thus rlive returns safe. When k > 0, assume
the reachable ¬q-states are s1, . . . , sk. So there are at most k iterations of
the while loop, since each si (1 ≤ i ≤ k) can be found at most once by the
check-reachable call on line 5 (the argument is similar to the one used
in the proof of Item 2 of Lemma 3). However, search-cex(si, ∅) will return
False, because si can be visited only a finite number of times and thus no
lasso can be detected. As a result, rlive cannot return unsafe inside the loop.
And finally, rlive can only return safe in the worst case that every si is found
and blocked in the while loop.

�
Theorem 1 (Correctness). rlive can always terminate and terminate with the
correct result.

Proof. Directly from Lemma 4. �

4 Related Work

We have already introduced the main SAT-based liveness checking algorithms in
Sect. 2.4. Here, we discuss their relation with rlive, highlighting both similarities
and differences with our approach.
rlive vs L2S [4]. The original liveness-to-safety transformation is conceptually
very simple, and it can be applied with any off-the-shelf safety model checking
algorithm, not necessarily based on SAT. The eager L2S transformation can how-
ever be inefficient, as it requires a duplication of the state variables, which might
lead to significant performance penalties. In contrast, rlive follows a lazier app-
roach, using an incremental reduction to safety, designed to exploit the invariant
generation capability of modern SAT-based safety checking engines, which does
not require duplicating the state variables and can be more efficient in practice.
rlive vs FAIR [9]. At a high level, rlive and FAIR follow the same principle of incre-
mental strengthening the input problem by exploiting the inductive invariants
generated when refuting candidate counterexamples with a safety model checker.
The main difference is in how the candidate counterexamples are identified and
blocked: while FAIR does that by checking directly for looping paths that start
from a given reachable ¬q-state, rlive follows a more incremental approach, in

Avoiding the Shoals - A New Approach to Liveness Checking 247

which repeated (and recursive) safety checks are used to build a bad loop incre-
mentally. As our experimental results show (see Sect. 5), this difference turns
out to be crucial for performance in practice. A second difference regards the
nature of the information extracted from the inductive invariants produced by
the safety checker: in general, the walls of FAIR are regions that cannot be crossed
to find a counterexample (i.e., all states of a counterexample to FGq are on one
side of the wall), whereas shoals are regions that must be avoided completely
(i.e., no state in a counterexample can part of a shoal).
rlive vs k-Liveness [13]. The incremental approach used by rlive for construct-
ing counterexamples is inspired by the k-Liveness algorithm; in some sense, rlive
can in fact be seen as a depth-first (DFS) variant of k-Liveness, which performs
instead a breadth-first (BFS) search (relative to the number k of times in which
¬q can occur in the traces of the system). Thanks to its DFS approach, rlive
doesn’t need to maintain a global k value, but uses a different k for each trace;
as such, it can sometims reach values of k which are beyond the capabilities
of k-Liveness (see our results in Sect. 5).4 Another difference between the two
approaches is in the capability of finding counterexamples: although in principle
complete, k-Liveness is more effective at proving properties than at disproving
them, and already in the original paper [13] the authors recommend comple-
menting it with BMC for finding counterexamples; on the other hand, rlive is
effective both for safe and unsafe properties.
rlive vs k-FAIR [16]. k-FAIR is a parametric combination of FAIR and k-Liveness,
in which each candidate counterexample to FGq either is analyzed using FAIR,
or causes an increase in the k counter of k-Liveness (see Algorithm 1). As such,
the comparisons made above between rlive and FAIR or k-Liveness apply also to
k-FAIR. Like k-FAIR, rlive can also be seen as trying to combine the strengths
of the two techniques in a single algorithm; however, the two approaches differ
significantly in how such integration is performed.

5 Evaluation

We have implemented rlive inside the nuXmv model checker [10]. Our imple-
mentation can use three different safety-checking engines, namely IC3, fCAR
(Forward CAR), and bCAR (Backward CAR), relying on the latest version of
CaDiCaL [7] as backend SAT solver. In this section, we experimentally evaluate
rlive by comparing it with different state-of-the-art SAT-based liveness checking
algorithms.

5.1 Experimental Setup

We include in our evaluation nuXmv [10] and IIMC [3], two state-of-the-art tools
implementing SAT-based liveness-checking algorithms which are among the best-
performing ones in the most recent liveness-checking tracks of the Hardware
4 Note that here by k we mean the maximum recursion depth reached by rlive for a

given candidate counterexample trace, as there is no explicit k counter in rlive.

248 Y. Xia et al.

Table 1. Tools and algorithms evaluated in the experiments.

Tools Algorithms Engines

nuXmv

rlive [-d]

IC3, fCAR, bCAR

k-Liveness

FAIR

k-FAIR

L2S

k-Liveness + BMC IC3, BMC

IIMC
k-Liveness

IC3
FAIR

Model Checking Competition (HWMCC) [1,2]. nuXmv implements L2S and k-
Liveness, using a configuration that runs k-Liveness in lockstep with BMC as
suggested in [13] for the latter (which we refer to as k-Liveness + BMC below). In
addition to rlive, we also implemented other three liveness-checking algorithms
on top of nuXmv, namely k-Liveness, FAIR, and k-FAIR. FAIR and k-FAIR are
implemented according to Algorithm 1, and k-Liveness is added with the ability
to find counterexamples by checking for repeated ¬q-states in the violated traces
(before increasing the value of k). IIMC implements FAIR and “plain” k-Liveness
instead (without BMC). Table 1 summarizes the tested tools, algorithms, and
their engines. Regarding rlive, the ‘-d’ flag is used to enable the dead-pruning
optimization, otherwise rlive ignores lines 15–16 of Algorithm 2.

We evaluate all the configurations on 223 benchmarks, in aiger [5] format, of
the liveness property track of HWMCC 2015 and 2017 [1,2].5 We ran the exper-
iments on a cluster, which consists of Gold 6132 2.6GHz CPUs in 240 nodes
running RedHat 4.8.5 with a total of 96GB RAM. For each test, we set the
memory limit to 8GB and the time limit to 1 h. During the experiments, each
model-checking run has exclusive access to a dedicated node. For correctness
checking, we compared the results from different solvers and found no discrep-
ancies.

5.2 Experimental Results

Overview. The main results of the experiment are summarized in Table 2, in
which the different tools/configurations are ordered by the total number of suc-
cessfully solved instances within the given resource budget. From the table, we
can see that rlive is the algorithm with the overall best performance in terms
of the number of solved cases. More explicitly, rlive with the dead-pruning opti-
mization and using IC3 as the backend solves the largest number of instances
(159), and it is also the configuration that verifies the most cases (66). rlive is
also the algorithm that finds the largest number of counterexamples, and this is
5 Note that HWMCC editions after 2017 did not include a liveness track.

Avoiding the Shoals - A New Approach to Liveness Checking 249

Table 2. Summary of overall results among different tools/configurations.

Configuration #Solved #Verified #Violated

nuXmv -rlive -d 159 66 93

nuXmv -rlive -d (fCAR) 158 62 96

nuXmv -k-Liveness + BMC 146 61 85

nuXmv -rlive 145 54 91

nuXmv -rlive -d (bCAR) 142 45 97

nuXmv -L2S 139 65 74

nuXmv -k-Liveness 138 63 75

nuXmv -k-FAIR 124 54 70

IIMC -FAIR 82 47 35

nuXmv -FAIR 66 29 37

IIMC -k-Liveness 50 50 0

true for all configurations that we tested (with ‘rlive -d’ using bCAR being the
best one).

Regarding other tools/algorithms, the best performing one is the k-Liveness
+ BMC implementation in nuXmv, solving a total number of 146 cases, which
is 11% less than the best configuration of rlive (i.e., ‘rlive -d’). All the other
configurations solve significantly fewer instances than rlive.

The results in Table 2 also show that using different engines to run the
rlive algorithm preserves good performance.6 Under the same implementation
platform, their overall performance is better than k-Liveness using IC3: ‘rlive -d
(fCAR)/ (bCAR)’ solves 158/142 instances in total, while k-Liveness only solves
124. Using fCAR results in a much better performance than bCAR on verifying
properties (62 vs. 45). However, applying the bCAR engine seems to be an advan-
tage in finding counterexamples, although the gap with other engines is modest
(and rlive in general performs very well on finding counterexamples).

Finally, the results show also the importance of the dead-pruning optimiza-
tion. Before the dead-pruning optimization is enabled, the performance of rlive is
similar to k-Liveness + BMC from nuXmv (145 vs. 146). Dead-pruning improves
rlive (using IC3) by verifying 12 more instances and finding 2 additional viola-
tions.

Runtime Efficiency. In order to evaluate the runtime efficiency of rlive, we
show in Fig. 3 a plot on the number of solved instances (y-axis) in the given
time limit (x-axis) for a subset of the tested configurations (all using IC3 as a
backend). From the plot, it is evident that ‘rlive -d’ is significantly more efficient
than the other competitors, always solving the largest number of instances within
the timeout ranging from 600 s to 3600 s.
6 It should be mentioned that we also tried k-Liveness, FAIR and k-FAIR with the fCAR

and bCAR engines in our tool as well, but they do not have better performance than
using IC3. For page limit, we do not list the relevant data in the paper.

250 Y. Xia et al.

100

110

120

130

140

150

160

0 600 1200 1800 2400 3000 3600

#
C

as
es

 S
o
lv

ed

CPU Time (s)

nuXmv -rlive -d

nuXmv -k-Liveness + BMC

nuXmv -rlive

nuXmv -L2S

nuXmv -k-Liveness

nuXmv -kfair

Fig. 3. Comparisons among the implementations under different configurations. (Note
that for better readability the y-axis starts from a value of 100.)

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

v
m

X
u

n
-k

-
C

M
B

+
sse

ne
vi

L

nuXmv -rlive -d

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

n
u

X
m

v
-r

li
v

e

nuXmv -rlive -d

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

n
u

X
m

v
-L

2
S

nuXmv -rlive -d

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

v
m

X
u

n
-k

-
sse

n e
vi

L

nuXmv -rlive -d

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

n
u

X
m

v
-k

-F
A

IR

nuXmv -rlive -d

Verified Violated

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

II
M

C
-F

A
IR

nuXmv -rlive -d

Fig. 4. Time comparison between rlive (with dead-pruning) and other implementa-
tions/configurations. rlive is always on the x-axis. Points above the diagonal indicate
better performance of rlive. Points on the borders indicate timeouts (3600 s).

A more detailed comparison between rlive and other algorithms is shown in
Fig. 4. From the plots, we can see that rlive outperforms other algorithms in a
large number of cases, especially in the case of violated properties. An interesting
exception is IIMC-FAIR, which shows strengths that are complementary to those
of rlive, particularly for verified properties.

Portfolio Configurations. We analyze the behaviour of rlive in “portfolio” con-
figurations, which is a technique often used in practice to improve performance

Avoiding the Shoals - A New Approach to Liveness Checking 251

when multiple CPU cores are available. For this, we performed two (virtual) exper-
iments. In the first experiment, we consider a (virtual) portfolio consisting of the
algorithms using IC3 as the backend, 7 and compare it with (virtual) portfolios
obtained by excluding a single algorithm at a time, in order to analyze the con-
tribution of the excluded algorithm to the virtual best. The results are shown in
Table 3. From the table, we can see that rlive contributes significantly to the per-
formance of the virtual best, particularly for violated properties. Moreover, when
multiple engines solve the same property, rlive is the fastest in the vast majority of
cases (81 over 183 verified by the virtual best, with the 2nd best performing being
the fastest only in 26 cases).

Table 3. Virtual Best results among implementations by IC3 engine. VBS \ (Algo-
rithm a) refers to the removal of a from the portfolio, so the reduction in the number
of solutions represents the contribution of a to the portfolio. #Fastest Solution rep-
resents the number of times algorithm a solves a case fastest in the full VBS portfolio.

Configuration #Verified #Violated #Contribute #Fastest Solution

VBS 82 101 – –

VBS \ (nuXmv -rlive -d) 82 85 17 81

VBS \ (IIMC -FAIR) 78 101 4 20

VBS \ (nuXmv -k-Liveness + BMC) 82 97 4 14

VBS \ (nuXmv -L2S) 82 101 0 26

VBS \ (nuXmv -k-FAIR) 82 101 0 18

VBS \ (nuXmv -FAIR) 82 101 0 15

VBS \ (nuXmv -k-Liveness) 82 101 0 10

In the second experiment, we compose (virtual) portfolios in a “bottom up”
way, by considering only configurations running two different algorithms in par-
allel. Also, in this case, the results in Table 4 clearly show the impact of rlive.

Table 4. Top 10 combinations of 2 algorithms implementation into one portfolio.

Configurations #Solved #Verified #Violated

nuXmv -rlive -d & IIMC -FAIR 174 78 96

nuXmv -rlive -d & nuXmv -k-Liveness + BMC 172 71 101

nuXmv -rlive -d & nuXmv -L2S 172 76 96

nuXmv -rlive -d & nuXmv-k-Liveness 170 74 96

nuXmv -rlive -d & nuXmv-k-FAIR 166 71 95

nuXmv -rlive -d & nuXmv-FAIR 161 66 95

nuXmv -k-Liveness + BMC & nuXmv -L2S 161 76 85

nuXmv -k-Liveness + BMC & IIMC -FAIR 159 74 85

nuXmv -L2S & nuXmv -k-FAIR 152 76 76

nuXmv -L2S & nuXmv -k-Liveness 151 76 75

7 We exclude ‘nuXmv -rlive’ because it is subsumed by ‘nuXmv -rlive -d’.

252 Y. Xia et al.

1

10

100

1000

10000

1 10 100 1000 10000

v
m

X
u

n
-

e
v ilr

-d

nuXmv -k-Liveness

Fig. 5. Comparison of the k val-
ues (maximum recursion depths
reached) at termination on prop-
erty verified cases between k-
Liveness and rlive. Points on the
borders indicate timeouts.

Analysis of rlive Behaviour. We explore the
reasons for the excellent performance of rlive
through Fig. 5, which compares the k value
of k-Liveness to the corresponding maximum
recursion depth in rlive on verified properties.
They both represent that the algorithm can
find a path containing at most k ¬q-states
before terminating with safe. When both algo-
rithms terminate within the time limit, the k
value of rlive is always less (or equal) than the
value of k-Liveness. Since k-Liveness performs a
breadth-first search (in terms of k), it always
needs to find the path that contains the most
¬q-states before it can terminate. On the other
hand, the shoals generated by rlive during the
search process help in blocking other ¬q-states,

allowing rlive to converge at a smaller depth. In addition, rlive is better at solving
cases where there is a path containing a large number of ¬q-states in the system,
where k-Liveness needs to reach a very large k value to converge. These cases are
located on the right border of Fig. 5. The recursion depths of rlive on these cases
reach far over 100, with the deepest one reaching 4095. However, the maximum
k value of k-Liveness is only around 100. Figure 5 shows also some cases (located
in the upper border of the plot) which could be solved by k-Liveness but not
by rlive. We investigated them and found that dead states caused the rollback
steps of rlive to be slower. The current dead-pruning optimization, which only
performs a one-step lookahead to discover dead states, is not effective for such
instances (though in most cases this simple strategy works), suggesting future
directions for improvement.

6 Conclusions

We presented rlive, a novel algorithm for the liveness checking problem FGq.
The idea is to search for a lasso-shaped counterexample by repeatedly calling
a safety checker to re-enter the ¬q states set. The search proceeds in depth-
first, backtracking when a state in ¬q can be excluded by proving that ¬q can
only be reached finitely-many times from its successors, and cannot be part
of a counterexample. The invariants returned by the underlying safety checker
restrict the search progressively. We called such invariants shoals, as intuitively
they represent states that must be avoided when searching for a counterexample.
A thorough experimental evaluation clearly demonstrates that rlive is superior
to the other liveness checkers, both in terms of benchmarks solved and run time.

Regarding future research, we plan to extend this work in several directions.
First, we will investigate heuristics to control the exploration order of bad states
and the counterexamples produced by the safety checker. Second, we will con-
sider the extraction of proofs from rlive. Third, we will consider extensions of

Avoiding the Shoals - A New Approach to Liveness Checking 253

rlive to the infinite-state case, in combination with algorithms for finding non-
lasso-shaped counterexamples such as [11].

Acknowledgment. We thank anonymous reviewers for their helpful comments.
Yechuan Xia and Jianwen Li are supported by the National Natural Science Foun-
dation of China (Grant #62372178 and #U21B2015), “Digital Silk Road” Shanghai
International Joint Lab of Trustworthy Intelligent Software under Grant 22510750100,
and Shanghai Collaborative Innovation Center of Trusted Industry Internet Software.
A. Cimatti and A. Griggio acknowledge the support of the PNRR project FAIR - Future
AI Research (PE00000013), under the NRRP MUR program funded by the NextGener-
ationEU, and of the PNRR MUR project VITALITY (ECS00000041), Spoke 2 ASTRA
- Advanced Space Technologies and Research Alliance.

References

1. HWMCC 2015. http://fmv.jku.at/hwmcc15/
2. HWMCC 2017. http://fmv.jku.at/hwmcc17/
3. IIMC. https://github.com/mgudemann/iimc
4. Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. In: Pro-

ceedings of the 7th International Workshop on Formal Methods for Industrial Crit-
ical Systems. Electronic Notes in Theoretical Computer Science, vol. 66:2 (2002)

5. Biere, A.: AIGER Format. http://fmv.jku.at/aiger/FORMAT
6. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without

BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

7. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proc. of SAT
Competition 2020 – Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

8. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4 7

9. Bradley, A.R., Somenzi, F., Hassan, Z., Zhang, Y.: An incremental approach to
model checking progress properties. In: FMCAD, pp. 144–153. FMCAD Inc. (2011)

10. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 22

11. Cimatti, A., Griggio, A., Magnago, E.: LTL falsification in infinite-state systems.
Inf. Comput. 289(Part), 104977 (2022)

12. Claessen, K., Eén, N., Sterin, B.: A circuit approach to LTL model checking. In:
FMCAD, pp. 53–60. IEEE (2013)

13. Claessen, K., Sörensson, N.: A liveness checking algorithm that counts. In:
FMCAD, pp. 52–59. IEEE (2012)

14. Clarke, E.M., Grumberg, O., Hamaguchi, K.: Another look at LTL model checking.
Formal Methods Syst. Des. 10(1), 47–71 (1997)

15. Een, N., Mishchenko, A., Brayton, R.: Efficient implementation of property
directed reachability. In: Proceedings of the International Conference on Formal
Methods in Computer-Aided Design, pp. 125–134. FMCAD ’11, FMCAD Inc,
Austin, Texas (2011)

http://fmv.jku.at/hwmcc15/
http://fmv.jku.at/hwmcc17/
https://github.com/mgudemann/iimc
http://fmv.jku.at/aiger/FORMAT
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22

254 Y. Xia et al.

16. Ivrii, A., Nevo, Z., Baumgartner, J.: k-fair = k-liveness + FAIR revisiting sat-based
liveness algorithms. In: FMCAD, pp. 1–5. IEEE (2018)

17. Jovanovic, D., Dutertre, B.: Property-directed k-induction. In: Formal Methods in
Computer-Aided Design, pp. 86–92 (2016)

18. Li, J., Zhu, S., Zhang, Y., Pu, G., Vardi, M.Y.: Safety model checking with com-
plementary approximations. In: Proceedings of the 36th International Conference
on Computer-Aided Design, pp. 95–100. ICCAD ’17, IEEE Press (2017)

19. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning sat solvers.
In: Handbook of Satisfiability, vol. 185 (2009)

20. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45069-6 1

21. McMillan, K.L.: Applying SAT methods in unbounded symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 250–264.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 19

22. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: DAC, pp. 530–535. ACM (2001)

23. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (sfcs 1977), pp. 46–57 (Oct 1977)

24. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction
and a SAT-solver. In: Hunt, W.A., Johnson, S.D. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 127–144. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-40922-X 8

25. Silva, J.P.M., Sakallah, K.A.: GRASP: a search algorithm for propositional satis-
fiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

26. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60915-6 6

27. Vizel, Y., Gurfinkel, A.: Interpolating property directed reachability. In: Biere, A.,
Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 260–276. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08867-9 17

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/3-540-45657-0_19
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/3-540-60915-6_6
https://doi.org/10.1007/978-3-319-08867-9_17
http://creativecommons.org/licenses/by/4.0/

Toward Liveness Proofs at Scale

Kenneth L. McMillan(B)

University of Texas at Austin, Austin, USA
kenmcmil@gmail.com

Abstract. While the problem of mechanized proof of liveness of reactive pro-
grams has been studied for decades, there is currently no method of proving live-
ness that is conceptually simple to apply in practice to realistic problems, can be
scaled to large problems without modular decomposition, and does not fail unpre-
dictably due to the use of fragile heuristics. We introduce a method of liveness
proof by relational rankings, implement it, and show that it meets these criteria in
a realistic industrial case study involving a model of the memory subsystem in a
CPU.

1 Introduction

The problem of mechanized proof of liveness of reactive programs has been studied for
decades. Yet proving liveness of practical systems remains a challenge that is typically
beyond the capability or time constraints of practicing engineers. This is not to say
that we lack the conceptual framework or the tools needed to prove liveness properties.
Rather, the difficulty lies in applying the tools and methods at the scale and complexity
of systems encountered in industry. Here, we study the source of these difficulties with
the goal of developing an approach that allows engineers with a reasonable degree of
sophistication in formal methods to prove liveness of real systems.

The inspiration to study this problem comes from an effort to prove liveness of
models of memory systems that have been developed by hardware engineers at Apple,
Inc. The engineers use a tool and language called Ivy [18] to prove safety properties
of memory subsystem models. These properties guarantee the consistency of memory
operations from the point of view of the processor cores. Liveness of these models is
considered important, in part to ensure the liveness of the underlying hardware imple-
mentation, but also to guarantee that the consistency proofs are not vacuous, owing
to oversights in the models that might result in deadlock. Unfortunately, proving live-
ness using an existing approach implemented in Ivy was found by the engineers to be
excessively difficult.

To understand why this is this is case, we must consider first the safety proofs.
These are accomplished using a large number of hand-written inductive invariants of
the models that were verified using a decision procedure (the SMT solver Z3 [5]). It
is significant that it was possible to construct these proofs and maintain them through
model changes on the time scale of industrial processor design.

One important factor in this success is that the models and proofs are constructed in
a way that allows automated verification using only effectively propositional reasoning,
or EPR [22], in which category we include extended logical fragments implemented
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 255–276, 2024.
https://doi.org/10.1007/978-3-031-65627-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65627-9_13&domain=pdf
https://doi.org/10.1007/978-3-031-65627-9_13

256 K. L. McMillan

in modern SMT solvers, such as FAU [9]. This means that the verifier is a decision
procedure and hence can provide both proofs and counterexamples. Empirically, auto-
mated verification within EPR is far more efficient, stable and reliable than verification
in the richer logics that SMT solvers provide [21,23]. This makes it possible to rapidly
iterate while crafting a proof by invariant, while rarely having to debug failures of the
verifier. Using EPR also makes it practical to verify a large model representing the
entire memory system without resorting to compositional methods (i.e., without using
assume/guarantee specifications of the system components). The ability to carry out
proof without modular decomposition significantly reduces the conceptual complexity
of the proof task for engineers.

Unfortunately, these advantages of EPR do not currently carry over to liveness
proofs. Known methods for liveness proof either (1) do not produce verification condi-
tions in EPR, (2) cannot be applied at the necessary scale or (3) are too conceptually
complex to be applied in industry. We will enumerate here the primary approaches to
liveness proof the and difficulty of applying them in industrial applications.

Model Checking. Because the models are complex and not finite-state it is a significant
challenge to apply model checking to them. Model checkers for infinite-state systems
generally do not support liveness proofs and do not, in any event, scale to the needed
size and complexity even for safety. This rules out model checking approaches such
as [8,10,11,13,17] as well as Invisible Ranking [6]. Proofs combining model checking
with compositional refinement and abstraction methods are possible [16] but have high
conceptual complexity.

Deductive Approaches. In addition to inductive invariants, the common deductive
approaches to liveness require the user to provide a ranking that maps the system state
into a well-founded pre-order [14,15]. This is conceptually simple, but reasoning about
well-founded orders generally takes us outside of EPR. We will consider why this is
the case in more detail shortly, and how undecidable reasoning makes the problem of
constructing large proofs substantially more difficult.

Liveness-to-Safety Translations. In this approach, we prove liveness by proving
safety of a transformed program [2]. Although the approach has primarily been applied
to finite-state systems, a recent method due to Padon et al. can be applied to infinite-state
systems and produces verification conditions in EPR [19,20]. Unfortunately, it requires
a user to provide an inductive invariant for the transformed program. The conceptual
complexity of this task is high due to the subtlety and complexity of the transformation.
This is the approach that the Apple engineers found difficult to apply.

Motivated by the practical experience at Apple, the goal of the proposed work is to
create a liveness proof methodology with the following characteristics:

1. It is conceptually simple and easy to apply in common cases,
2. It supports a rich class of systems and temporal specifications,
3. It requires users to reason only about their own system, not about automatically

constructed state machines,

Toward Liveness Proofs at Scale 257

4. It is as automated as is practical, relying only on decidable automated reasoning, and
5. It can be scaled to large models without modular decomposition.

To achieve these goals, we propose to apply the novel concept of a relational rank-
ing. Using a relational ranking, we hypothesize that we can retain the relative simplicity
of proof by well-founded ranking, allowing us to express rankings of height up to ωn

while avoiding any automated reasoning about well-founded orders, thus keeping the
proof obligations within EPR. This allows us to reason automatically about the entire
model, without modular decompositions, and thus without the need to write complete
interface specifications for the system components (a task which is difficult for engi-
neers). In place of this, we can re-use the inductive invariants needed to prove safety to
supply almost all of the liveness proof. In fact, our experience with a generic memory
system model provided by Apple bears out these expectations.

The primary contributions of this work are, first a novel deductive proof approach
for liveness, based on relational rankings, and second, a case study of industrial interest,
applying the method and motivating the features of the proof approach.

2 Background and Related Work

The classical approach to proving liveness properties deductively is to apply a ranking.
A ranking is a function of the system state that ranges over a well-founded pre-order
(often the natural numbers). This approach is well known for proving termination of
sequential programs and was adapted to the proof temporal logic properties of con-
current, reactive programs by Manna and Pnueli [15]. To apply their ranking rule, the
user must supply inductive invariants and a ranking that are expressed over the system
state. The proof is then reduced to non-temporal verification conditions that in principle
can be discharged automatically. Approaches to proving liveness or termination using
rankings include [4,12,24], some of which can synthesize rankings in limited cases.

2.1 Liveness-to-Safety with Rankings

We will use linear temporal logic (LTL) to define temporal properties, with � for
‘always’ and ♦ for ‘eventually’. FollowingManna and Pnueli,→ stands for implication,
while ⇒ stands for temporal entailment. That is, p ⇒ q is a shorthand for �(p → q).
We prove properties of standard first-order symbolic transition systems. As usual, we
assume a vocabulary Σ of function and relation symbols representing the program state
and a corresponding vocabulary of primed symbols Σ′ representing the next state. A
transition system is a pair 〈I, T 〉, where I is a first-order formula over Σ representing
the initial states and T is a first-order formula over Σ and Σ′ representing the set of
system transitions. We take I ∧ �T as an axiom. That is, I holds initially, and T for
every successive pair of states.

Manna and Pnueli gave a basic rule for proving properties of the form:

(�♦r) → (p ⇒ ♦q). (1)

The condition r is assumed to occur infinitely often. We will call this a justice con-
straint, and the formula r a justice condition. If justice condition r holds infinitely

258 K. L. McMillan

Fig. 1. Simple timestamped queue example in a notional synchronous language.

often, then whenever p holds, q must hold in the future. For now, we will assume that p,
r and q are non-temporal. To prove such a formula, we show that p establishes an invari-
ant φ that holds until q is true. Moreover, while φ holds, a ranking δ never increases,
and whenever r holds, δ decreases. We require that δ be a function from the program
state into some well-founded set.

In our notation, the rule for proving formulas of form (1) is as follows:

B1. p ⇒ (q ∨ φ)
B2. φ ⇒ (q′ ∨ (φ′ ∧ (δ′ ≤ δ)))
B3. φ ∧ r ⇒ (q′ ∨ (δ′ < δ))
(�♦r) → (p ⇒ ♦q)

(2)

Notice that premises B1–B3 are temporal entailments. Normally, these are proved using
the safety rule, stated below:

I1. I → ρ
I2. T ∧ ρ → ρ′

I3. T ∧ ρ → p
� p

(3)

Thus, we can think of (2) as a liveness-to-safety rule. We will call the invariant ρ used in
the safety rule the ‘safety invariant’ to distinguish it from the invariant φ in the liveness
rule.

A Simple Example. As an example, Fig. 1 shows a simple transition system represent-
ing a message queue, inspired by the Apple generic memory model. The actions repre-
sent atomic system transitions, which we assume are proved terminating (for example,
because they are loop-free, as here). A sender enters messages in the queue with logical
time stamps, drawn from the natural numbers. We assume the time stamps of messages
entering the queue are increasing, but there may be gaps in the time stamp sequence. A
receiver polls the queue for messages. When there is a message, the message with min-
imum time stamp is removed and a signal ‘recv’ is emitted. The state predicate ‘pend’
represents the time stamps that are currently present in the queue.

We would like to prove the following property for all t:

(�♦poll) → (send(t) ⇒ ♦recv(t)). (4)

where send(t) is true when sender enters a message with time stamp t, recv(t) is true
when the receiver removes a message with time stamp t, and poll is true when the

Toward Liveness Proofs at Scale 259

receiver polls the queue. In other words, if the receiver polls the queue infinitely often,
then every sent message is eventually received. Note that t is a temporal constant.

An obvious ranking function for this proof counts the number of time stamps ≤ t
that are pending in the queue, that is, δ = |{τ | τ ≤ t ∧ pend(τ)}|. While timestamp
t is pending, δ will decrease each time the queue is polled, since the removed time
stamp, being minimal, must be ≤ t. We can define δ in first-order logic using a simple
recursion over the natural numbers. That is, cnt(τ), the number of pending timestamps
≤ τ , is defined recursively as:

cnt(τ) � ite(τ = 0, 0, cnt(τ − 1)) + ite(pend(τ), 1, 0)

We then have δ = cnt(t). For the liveness invariant φ in the proof rule, we can use just
pend(t). Our justice condition r is that the queue is polled, i.e., r = poll.

In principle, we can now discharge the premises of Rule (2) using the safety rule,
with safety invariant ρ = ∀x. pend(x) → x ≤ last. Notice this invariant is also need
to prove the safety property that timestamps are dequeued in increasing order. Since all
of the premises of the safety rule are (quantified) first-order formulas over the theory
of linear arithmetic, we should be able to discharge them automatically using Z3, a
powerful automated theorem prover that supports this theory. When we attempt this,
however, we obtain a disappointing result. When trying to discharge premise B3 (stating
that δ decreases when the queue is polled) Z3 runs for a few minutes and then returns
an inconclusive result – neither a proof nor a counterexample. The solvers CVC4 and
CVC5 also fail.

The problem is that the formula we want to prove is outside Z3’s decidable frag-
ment. To show that removing a timestamp ≤ t reduces cnt(t) requires induction over t.
Z3 is unable to do this. The needed inductive generalization may seem trivial in this
small example, so one might easily imagine that a heuristic approach could solve the
problem. In a large proof, however, such heuristics are fragile and fail in opaque ways.
This failure puts a heavy burden on the user to debug the prover heuristics or discover
the necessary instance of the induction axiom by hand. One may imagine alternative
ranking schemes, for example using list or finite set datatypes to represent the ranking.
This does not escape the fundamental problem, however, that reasoning about well-
founded sets requires instantiating an induction schema.

To see how these issues play out in a typical ranking approach, consider the ranking-
based liveness proof method of [24]. This method synthesizes a ranking as a polyno-
mial over the integer variables in the program as well as the cardinalities of certain
predicates appearing in the program. This heuristic is fragile, however. In our simple
example, the predicate whose cardinality we require is λτ. pend(τ)∧ τ ≤ t. This predi-
cate appears nowhere in the program or the property, and so the ranking synthesis must
fail (we cannot build a ranking from just the ‘pend’ predicate). Moreover, if we use the
cardinality of this predicate in the ranking, the method will be unsound, since this car-
dinality is not verified to be finite. Even given the predicate and a proof of its finiteness,
the approach must infer ‘deltas’ which are upper and lower bounds on the changes in
the integer variables for each action. This is done by an approximate analysis. Unfor-
tunately, the method cannot infer an upper bound of -1 for the delta of our predicate
for the ‘poll’ action, because the inference is based on pattern matching and requires

260 K. L. McMillan

updates to the predicate to occur in the program. Thus the method cannot infer that the
ranking is eventually reduced. Even if this were somehow fixed, verifying the resulting
safety properties could still fail because the mixing of quantifiers, uninterpreted pred-
icates and non-linear integer arithmetic makes the verification conditions undecidable.
The same issues would be faced using other methods based on linear ranking functions
over integers (e.g., [4]). The fundamental problem is that unreliable heuristics must be
used to skirt undecidability, leading to methods that fail even on very simple problems.
The Ironfleet approach [12] is substantially more manual, but still relies on undecid-
able reasoning about well-founded orders. Users must therefore diagnose opaque and
unpredictable failures of the prover and provide manual guidance. By contrast, Invisible
Ranking [6,7] produces decidable verification conditions, but cannot express rankings
of height above ω.

2.2 Dynamic Liveness-to-Safety Construction

An alternative to well-founded rankings for infinite-state systems is the dynamic
liveness-to-safety method (DL2S) proposed by Padon et al. [19]. It works by trans-
lating a program P and a liveness property φ into a different program P ′ and safety
property φ′, such that P ′ |= φ′ implies P |= φ. Space prohibits a detailed description
of the method here. At a high level, it is similar to the method of Biere for finite-state
systems [2] in that it detects bad cycles by storing a shadow copy of the system state
and testing whether the system can return to the shadow state after certain fairness
constraints have been satisfied. The DL2S method is similar to the finite-state method,
except that it stores in the shadow state only a finite amount of information about the
system state that is dynamically chosen. Restricting the shadow state to a finite projec-
tion of the system state guarantees that every infinite behavior must visit some shadow
state infinitely often.

The DL2S approach is quite flexible, and has the advantage that in common cases,
it yields safety verification conditions in EPR. Thus, the automated part of the proof
tends to be reliable and we do not obtain inconclusive results as we did above, using a
well-founded ranking. Unfortunately, the safety proof requires us to construct an induc-
tive invariant over the transformed program P ′. This greatly increases the conceptual
complexity of proof development task for the user. Quoting Padon et al. [20] “Because
our approach relies on an inductive invariant supplied by the user, it requires the user to
understand the liveness-to-safety transformation and it requires both cleverness and a
deep understanding of the protocol.” To illustrate this, Fig. 2 shows an invariant obtained
manually for the simple queue example of Fig. 1, after many failed attempts and coun-
terexamples. The symbols D, A, O and W , ‘frz’ and ‘svd’ (some with subscripts) rep-
resent auxiliary state variables that are introduced by the DL2S construction. The user
must understand the semantics of these variables as well as the safety property to be
proved. Compare this in complexity to the proof by ranking that required the user only
to introduce a function that counts the pending time stamps, and needed no auxiliary
invariants apart from the simple one needed for safety. Unlike the ranking proof, the
DL2S proof can be completed rapidly and automatically by Z3. Unfortunately, we have
relieved the burden of undecidability on the automated prover at the cost of a substantial
burden of complexity on the user. Our goal here is to eliminate this invidious trade-off.

Toward Liveness Proofs at Scale 261

Fig. 2. Invariants for DL2S proof of simple queue example.

3 Relational Rankings

A key point that we failed to notice in the proof of our simple example by well-founded
ranking is that the liveness of the time stamped queue does not actually depend on the
well-foundedness of the time stamp order. In fact, we could use real numbers for the
time stamps, and the queue would still be live. The need for induction over the natural
numbers was an artifact of our proof rule, which requires a well-founded ranking. This
also explains why the proof by DL2S can be accomplished in EPR – the time stamps
are treated as a simple total order, which can be axiomatized within EPR.

This observation suggests a middle path that maintains the conceptual simplicity
of the proof by ranking, but eliminates reasoning about well-founded orders other than
time. To achieve this, we propose to express rankings as relations over infinite sets,
ordered by implication. While this order is not well-founded, we establish finiteness
of the ranking relations outside of the logic. This gives us the best of both worlds: we
remove the burden of undecidability on the automated prover without the extra burden
of complexity imposed on the user by DL2S.

To guarantee that relational rankings are sound for infinite-state systems, we adapt
a key idea from the DL2S method to prove that a relation is always finite (that is, its
extension as a set of tuples is always finite). To do this, we guarantee that all tuples in
the relational ranking are constructed from values that have been produced in a finite
computation. This ensures that the ranking relations are finite and therefore that they
cannot be infinitely reduced in the implication order.

Our proof approach uses a generic proof rule that is parameterized by a few user-
provided relations over the user’s program state. The rule avoids exposing the user
to the state of a machine-constructed program and still keeps the verification condi-
tions within EPR. For the sake of simple exposition, we will consider a succession of
increasingly general rules, culminating in a rule that supports many justice conditions
and lexicographic rankings.

262 K. L. McMillan

3.1 The Relational Reactivity Rule

We begin with a simple proof rule that simulates the Manna and Pnueli reactivity
Rule (2). We first consider the problem of proving that some relation R, a function
of the program state, is always finite. This can be accomplished by the following proof
rule:

F1. ∀x. ¬R(x)
F2. � ∀x. R′(x) → (R(x) ∨ x = e1 ∨ · · · ∨ x = en)
� R is finite

(5)

In this rule, e1 . . . e2 are expressions that depend on the program state. Typically, they
represent the values computed during a single atomic step of the program. This set is
necessarily finite. Premise F1 says that the relation R is initially empty. Premise F2
says that at most the elements e1 . . . en can be added to relation R in each transition.
In practice, e1 . . . en can be just the ground terms occurring in the transition condition.
Since a finite number of elements is added to R at each time step, R must be finite at
every finite time. Notice we did not state that R is finite in the logic, since this is not
expressible in first-order logic.

Now we replace our well-founded ranking δ by a relation, using two shorthands:

conserves δ � ∀x. δ′(x) → δ(x)
reduces δ � ∃x. δ(x) ∧ ¬δ′(x)

That is, a transition ‘conserves’ the ranking if it does not add any elements, and it
‘reduces’ the ranking if it removes at least one element. We can now prove formulas of
form (1) using the following rule:

C0. � R is finite
C1. p ⇒ (q ∨ φ ∧ (∀x.δ(x) → R(x)))
C2. φ ⇒ (q′ ∨ (φ′ ∧ (conserves δ))
C3. φ ∧ r ⇒ (q′ ∨ (reduces δ))
(�♦r) → (p ⇒ ♦q)

(6)

Premises C1-3 correspond closely to the premises of Rule (2). The key difference is
that, in premise C1, we establish that the ranking relation δ is finite at the moment
when condition p holds. This is done by establishing that δ is contained in the finite
relation R. Using just first-order connectives, we can also express that the ranking is
conserved unless q holds (right-hand side of C2) and that the ranking is reduced when
r holds (right-hand side of C3). Since δ must be finite while the invariant φ holds, it
follows that q eventually holds. The advantage of this formulation is that it allows us to
express the verification conditions in pure first-order logic, without additional theories.
If we take care in the use of quantifier alternations, this allows us to keep the verification
conditions within EPR [23].

Now consider proving liveness, of our simple time stamped queue. To prove prop-
erty (4) using rule (6), we use the following definitions of the predicates in the rule:

δ(τ) � pend(τ) ∧ τ ≤ t

φ � pend(t)

Toward Liveness Proofs at Scale 263

Notice that the ranking δ is very similar to the one we used above, but it represents
simply the set of pending time stamps ≤ t and not the cardinality of this set. The
invariant φ is the same. We can let R = δ, since the program adds only one element
to δ at each step, thus finiteness of δ can be proved automatically using Rule (5). This
proof has essentially the same conceptual complexity as the proof using well-founded
ranking (in fact, slightly less, since we need not define the counting function). However,
unlike that proof, it can be checked efficiently and reliably in EPR using Z3, whereas
Z3 fails to find a proof for the well-founded ranking. If we make a mistake in the proof,
Z3 can produce a true counterexample, guiding us to correct the proof.

3.2 Chaining Liveness Lemmas

Consider proving liveness of a cascade of two queues of the type described above. That
is, when we poll queue1, if a time stamp is received, we enter it into queue2. We would
like to show an end-to-end response property, that is, assuming �♦polli for i = 1, 2,
we have send1(t) ⇒ ♦recv2(t). One way to do this is to prove response properties for
the two queues, that is, sendi(t) ⇒ ♦recvi(t) for i = 1, 2 and then use these properties
to prove end-to-end response.

Unfortunately, we do not yet have a proof rule that would allow us to prove a
response property assuming two response properties. To remedy this, we will relax
Rule (6) slightly. First, we first observe that the condition r need not hold true infinitely.
It suffices that it hold in the future until q is true. Second, we can relax q and q′ in the
rule’s premises to the weaker ♦q. This gives us the following rule:

C0. �R is finite
D1. p ⇒ ((♦q) ∨ φ ∧ (∀x.δ(x) → R(x)))
D2. φ ⇒ ((♦q) ∨ (φ′ ∧ (conserves δ))
D3. φ ∧ r ⇒ ((♦q) ∨ (reduces δ))
D4. φ ⇒ ((♦q) ∨ (♦r))
p ⇒ ♦q

(7)

Notice that we have moved the assumption about r into the premises of the rule,
making r effectively a parameter of the rule. Also, observe that the premises now have
temporal operators in them (other than the prime symbol, representing ‘at the next
time’). This may seem to defeat the purpose of a program logic rule, since it does not
reduce the proof to ordinary logic. However, we will see that, by appropriate abstrac-
tions, we can reduce the temporal verification conditions to decidable propositions.

In our two-queue example, to prove send1(t) ⇒ ♦recv2(t), we can use the follow-
ing values of the rule parameters:

264 K. L. McMillan

Fig. 3. Rule parameters for liveness of the cascaded queues.

We then have to prove the following simplified premises:

D1. send1(t) ⇒ ((♦recv2) ∨ φ)
D2. φ ⇒ ((♦recv2) ∨ φ′)
D3. φ ∧ recv1 ⇒ (♦recv2))
D4. φ ⇒ ♦recv1

We can prove D1 using our lemma that send1(t) ⇒ ♦recv1(t). This proof is
propositional, in the sense that it does not depend on the semantics of the proposi-
tions ♦recv1 or ♦recv2. For D2 and D3, we need our lemma send2(t) ⇒ ♦recv2(t).
That is, if send2(t) then recv2(t) by the lemma, otherwise recv1(t) is false, thus
♦recv1(t) remains true. The proof for D3 is again purely propositional: the transi-
tion relation guarantees that recv1 implies send2(t) which in turn guarantees ♦recv2(t)
by the lemma. We needed one tautology of temporal logic to prove D2, that is,
♦recv1 ⇒ (recv1 ∨ (♦recv1)′). This is one of the facts about the ♦ operator that form
the symbolic tableau constraints [3], the other being recv1 ⇒ ♦recv1. The tableau
axioms can be generated automatically from the verification conditions allowing Z3 to
discharge the premises. Though this approach is not complete, it allows us to avoid
adding further inference rules, for example, to prove single-step eventualities, or to use
response properties as assumptions.

Notice that we don’t need a ranking for this proof, but we require that receiving
on queue1 and sending on queue2 occur in the same transition, so that D3 is provable
from the tableau axioms. Otherwise we would need a third lemma stating recv1(t) ⇒
♦send2(t). We also need a safety invariant, implying that time stamps in queue1 are
always greater than time stamps in queue2:

last2 ≤ last1 ∧ ∀x. pend1(x) → x ≥ last2

This invariant is also needed to prove the safety property that timestamps are entered
into queue2 in order. Often, invariants needed to prove safety properties are also suffi-
cient for liveness.

Toward Liveness Proofs at Scale 265

3.3 Stable Schedulers

Reducing the proof to many small lemmas, each with its own relational ranking, is an
effective approach, but each lemma adds complexity to the proof and opportunities for
errors that are time-consuming to correct. Since we require a ranking for each lemma,
it would seem more parsimonious, if possible, to combine these rankings into a single
ranking and dispense with the statements of the lemmas.

With multiple rankings come multiple justice conditions. In a given state, only one
of these must cause the ranking to decrease. We call this justice condition helpful in the
given state [6]. To establish a justice condition that must eventually reduce the ranking
in a given state, we introduce a function called a stable scheduler.

As a simple example, consider proving liveness of the cascaded queues above with-
out proving liveness lemmas for the individual queues. It is not difficult to define a
ranking over the combined state of the two queues. Let us say that δi is the number of
time stamps τ ≤ t that are pending in queuei, for i = 1, 2. A suitable numeric ranking
δ is 2δ1 + δ2.

We have two justice conditions to consider, that is, we assume that both queues are
polled infinitely often. Unfortunately, neither of these conditions always reduces the
ranking, since there may be no time stamps τ ≤ t in one or the other of the two queues.
One solution to this would be to define a combined justice condition r � poll1 if δ1 > 0
else poll2. This condition would indeed imply that the ranking decreases, but we would
have to prove a lemma that it is true infinitely often.

As an alternative, for each justice condition ri, we provide a scheduler predicate
ψi that determines when ri is helpful, in the sense of reducing the ranking δi, when it
eventually holds. We require the scheduler predicates to be stable, in the sense that ψi,
when true, remains true until ri holds.

A proof rule for response properties with multiple justice conditions and a stable
scheduler can be stated as follows:

S1. p ∧ ¬(♦q) ⇒ φ
S2.

∧n
i=1 φ ∧ ¬(♦q) ⇒
φ′∧
(conserves δi) ∧
(ψi ∧ ri → (reduces δi)) ∧
(ψi ∧ ¬ri → ψ′

i)
S3.

∧n
i=1 φ ∧ ¬(♦q) ∧ ψi ⇒ ♦ri

S4. φ ∧ ¬(♦q) ⇒
∨n

i=1 ψi

S5.
∧n

i=1 φ ⇒ (∀x.δi(x) → R(x)))
S6. �R is finite
p ⇒ ♦q

(8)

Premise S1 of the rule says that the invariant φ is established whenever p is true but
the desired eventuality ♦q is false. Premise S2 gives several conditions that system
transitions must satisfy, in the case invariant φ holds, but the eventuality does not. First,
the invariant φ must be preserved. Second, the each ranking component δi must be
conserved. Third, if scheduler predicate ψi is true and justice condition ri is true, then
the ranking δi must be reduced. Fourth, if scheduler predicate ψi is true and justice

266 K. L. McMillan

condition riis false, then ψi must remain true. The last is the stability condition for the
scheduler. Premise S3 ensures that every scheduled justice condition eventually occurs.
Premise S4 guarantees that at least one justice condition is always scheduled when the
invariant holds. Finally, S5 and S6 guarantee that the ranking is always finite while the
invariant holds. A proof of soundness of this rule can be found in Appendix A.

For the cascaded queues, we can use the rule parameters shown in Fig. 3. Notice that
δ2(τ) is true when time stamp τ appears in either queue, so that moving a time stamp
from queue1 to queue2 does not cause δ2 to increase. Also, notice that δ2 is reduced
when r2 occurs and ψ2 holds, because pend1(τ) and pend2(τ) cannot both be true.
This is implied by the safety invariant used above.

Now suppose we change the system so that the queues can hold a bounded number
of time stamps. This means that if queue2 is full, we cannot move a time stamp from
queue1 to queue2 (in other words, the action that polls queue1 must block). We can
prove this system live by a small change to ψ1 and ψ2, that is:

ψ1 � ¬∃τ. pend2(τ) ∧ τ ≤ t

ψ2 � ∃τ. pend2(τ) ∧ τ ≤ t

If there is a time stamp τ ≤ t to send in queue2, then δ2 must be reduced on polling
queue2. Otherwise, by the safety invariant above, queue2 must be empty. Therefore it
cannot block, and polling queue1 must reduce δ1. That is, we design the scheduler to
prioritize actions that unblock other actions. To handle a longer cascade of queues, we
would prioritize the queues later in the cascade.

3.4 Lexicographic Rankings

Consider now a cascade of queues in which messages can be reordered. For example,
suppose we have two classes of messages,A andB. We have two corresponding polling
actions for queue1: poll1A and poll1B . Each action moves the message of its given class
with the least time stamp from queue1 to queue2. Thus, messages of different classes
can bypass each other in transit. We will assume that queue2 delivers messages in FIFO
order, that is, in order of their time of arrival. We will denote the time of arrival of a
message with time stamp t at queue2 by a natural number ta(t).

Reordering of messages presents us with a difficulty in establishing a ranking. That
is, at the time a message of class A is sent, we do not have an upper bound on the
number of future messages of class B that will bypass it before it reaches queue2. Thus,
we cannot establish a finite ranking. One solution to this problem is to take a lemma,
such as ∀τ. send1(τ) ⇒ ♦pend2(τ). At that point when message t reaches queue2,
the number of messages in queue2 is known, so we can establish a ranking to prove
that message t is eventually received. Alternatively, we could use temporal prophecy to
achieve the same effect [20]. However, in both cases we are adding complexity to the
proof by asking the user to provide the necessary cut formulas, as well as the rankings.
This is unnecessary, however, if we use a lexicographic ranking.

To do this, we introduce a proof rule that combines multiple rankings lexicographi-
cally. That is, we introduce a hierarchy of rankings δ1 . . . δn, where δ1 is the high-order

Toward Liveness Proofs at Scale 267

component and δn is the low-order component. This induces a lexicographic ranking δ
such that δ(s1) < δ(s2) when δi(s1) is finite for all i = 1 . . . n, and

∨n
i=1

(
δi(s1) < δi(s2) ∧ (∧n−1

j=1 δj(s1) = δj(s2))
)
. (9)

We will not, however, explicitly represent δ. Instead, we will establish verification con-
ditions guaranteeing that the δi are always finite and that δ is conserved and eventually
reduced. For this, a lower-order ranking must be conserved only when no high-order
ranking is reduced. Given a scheduler ψ for the rankings, we will say that ranking δi

is preempted if, for some j < i, δj is scheduled. A preempted ranking need not be
reduced, and in fact is allowed to increase, as long as it remains finite. We say that a
ranking is required if it is scheduled and not preempted. A required ranking must even-
tually be reduced. This allows us to relax the condition of stability of the schedulers as
well, since only the schedulers of required rankings need be stable. We will introduce
two shorthands:

prei(ψ) = ∨i−1
j=1ψj

reqi(ψ) = ψi ∧ ¬prei(ψ)

The predicate pren(ψ) indicates that the ranking component δi is preempted under
scheduler ψ and reqn(ψ) indicates that δi is required.

Using these notations, a suitable rule for establishing liveness with lexicographic
relational rankings with stable schedulers is as follows:

S1. p ∧ ¬(♦q) ⇒ φ
L2.

∧n
i=1 φ ∧ ¬(♦q) ⇒
φ′∧
(¬prei(ψ) → (conserves δi)) ∧
(reqi(ψ) ∧ ri → (reduces δi)) ∧
(reqi(ψ) ∧ ¬ri → ψ′

i)
S3.

∧n
i=1 φ ∧ ¬(♦q) ∧ ψi ⇒ ♦ri

S4. φ ∧ ¬(♦q) ⇒
∨n

i=1 ψi

S5.
∧n

i=1 φ ⇒ (∀x.δi(x) → R(x)))
S6. �R is finite
p ⇒ ♦q

(10)

As before, premise S1 establishes the liveness invariant φ. Premise L2 differs from S2
in the previous rule in that transitions must conserve a ranking δi only if it is not pre-
empted, must reduce the ranking when the justice condition occurs only if it is required,
and must keep the scheduler stable only if the ranking is required. The remainder of the
premises are the same as in the previous rule. A proof of soundness of this rule can be
found in Appendix A.

Now consider again our problem of cascaded queues with reordering, and sup-
pose we want to prove that messages of class A are always eventually received, that
is, send1(t)∧A(t) ⇒ ♦recv2(t), under the assumption the actions poll1A and poll2 are
called infinitely often. This is done with the lexicographic ranking defined in Fig. 4.

Notice that, as long as ψ1 remains true, executing action poll1A must reduce ranking
δ1, since the earliest class A message must have time stamp ≤ t. While this is true,

268 K. L. McMillan

Fig. 4. Rule parameters for liveness of the cascaded queues with reordering.

the ranking δ2 is allowed to increase arbitrarily, so long as it remains contained in R.
This allows any number of B messages to be added to queue2, bypassing message t.
However, when message t is removed from queue1, δ2 becomes scheduled and must be
conserved. This is true because no new messages in queue2 can have arrival times less
than ta(t). The ranking must decrease every time poll2 occurs, since the least arrival
time in queue2 must be ≤ ta(t) as long as t remains in the queue. All of the premises
of the proof rule are in EPR and can easily be checked automatically.

Parameterized Systems. The are practical situations in which we have an infinite
or unbounded number of justice conditions. For example, we may have an infinite or
unbounded number of concurrent processes (or to be more precise, process id’s may be
drawn from an infinite set, if we have dynamic process creation). We wish to assume
that every process is scheduled to run infinitely often. In the Apple generic model, this
situation arises in various ways, due to fairness assumptions involving unbounded num-
bers of processors, controllers, addresses and so on. It is straightforward to generalize
Rule 10 to parameterized justice conditions. We can do this by simply replacing con-
junction and disjunction over finite sets with universal and existential quantification
over infinite sets:

S1. p ∧ ¬(♦q) ⇒ φ
P2. ∀x.

∧n
i=1 φ ∧ ¬(♦q) ⇒

φ′∧
(¬prei(ψ)(x) → (conserves δi)) ∧
(reqi(ψi)(x) ∧ ri(x) → (reduces δi)) ∧
(reqi(ψ)(x) ∧ ¬ri(x) → ψ′

i(x))
P3. ∀x.

∧n
i=1 φ ∧ ψi(x) ⇒ ♦ri(x)

P4. φ ⇒ ∃x.
∨n

i=1 ψi(x)
S5.

∧n
i=1 φ ⇒ (∀x.δi(x) → R(x)))

S6. �R is finite
p ⇒ ♦q

(11)

Notice here that premises P2, P3 and P4 are similar to L2, S3 and S4 in Rule (10),
except that the predicates ψi and ri have a parameter x that is quantified. Also, notice
that n is the number of rankings, not the number of processes, which is conceptually
infinite. We can also easily extend the rule to rankings that are n-ary relations rather
then unary relations, which is useful in some cases.

Toward Liveness Proofs at Scale 269

Relative Completeness. A temporal proof system is relatively complete if it reduces
the validity of all temporal propositions to the validity of a finite collection of formulas
of arithmetic. We are explicitly not concerned with relative completeness here, since our
goal is to reduce the proof to decidable propositions in EPR in practice. Having said
this, there are two obvious ways in which the relative incompleteness of our system
manifests. First, Rule 5 is not complete for proving finiteness of the ranking in cases
where the system can non-deterministically choose an unbounded natural number or
set in a single transition, as opposed to computing these values. Second, due to the
finiteness requirement, our lexicographic ranking (9) has ordinal height at most ωn.
However, we can describe systems whose reachability relations have greater ordinal
height than this. For example, a program that chooses an arbitrary natural number n
and descends lexically over the tuples in Nn has ordinal height ωω and hence cannot be
proved in our system. This incompleteness has not proved to be an issue, however, our
case study.

Fig. 5. Apple generic memory model architecture. The flow of memory operations (reads and
writes) is depicted by the solid arrows in the diagram, and the flow of I/O operations by dashed
arrows. Requests are depicted in light blue, with responses in gray. (Color figure online)

4 Case Study: The Apple Generic Memory Subsystem Model

We now consider applying the relational ranking approach to the Apple generic memory
model mentioned in the introduction. Apple provided a generic abstract memory system
model that was designed to capture the essential difficulties in proving memory system
consistency and liveness without revealing intellectual property. This model has been
contributed to the open-source the Ivy project, as have our proofs [1].

The high-level structure of the Apple generic model is sketched in Fig. 5. The sys-
tem connects a collection of processor cores with a collection of memory and I/O mod-
ules, via switch fabrics and controllers. The number of processor cores and controllers
is unbounded in the model. At each stage, memory operations (reads and writes) are
queued and may be reordered. The order of transmission depends on a set of ordering
rules specific to the given stage. In some cases, operations may be blocked by opera-
tions that are present in later stages. Whether one operation can bypass another may
depend on various attributes of the operations, including the initiating processor, the
address, the operation type, and the destination memory controller. While operations
may be completed by the memory units out-of-order, they are ultimately retired in-order
at the processor cores, by means of a reorder buffer. The Apple engineers developed a

270 K. L. McMillan

safety proof, using hand-written inductive invariants, that the ordering rules provide a
consistent view of memory to the processor cores, according to the desired memory
consistency model. The generic model consists of approximately 1200 SLOC in the
Ivy language. The safety proof consists of 78 invariants, comprising approximately 500
SLOC.

It was also considered important to prove a liveness property of this model, that is,
that every operation issued by a core is eventually retired. This property depends upon
a large number of fairness assumptions that constrain the behavior of different units.
There are two compelling reasons to verify this specification. First, from a system point
of view, we need to know that the ordering rules do not cause any operation to be
blocked indefinitely. Second, from a modeling point of view, we need to be certain that
the guarantee of memory consistency is not rendered vacuous by a modeling error that
prevents certain operations from being retired. However, the DL2S method was found
to be too difficult and counterintuitive to be applied in practice for this.

4.1 Liveness Proof with Lemmas

We initially implemented a liveness proof rule in the Ivy tool similar to Rule (8) that
allows parameterized justice conditions, without lexicographic ranking. The earliest
version of this rule lacked the ability for the user to specify the stable scheduler. Instead,
it used a default priority-based scheduler (i.e., the first non-empty ranking is scheduled).
Using this implementation, we constructed a liveness proof for the Apple model. The
lack of lexicographic ranking made it necessary to break the proof into many lem-
mas. The proof consists of 26 lemmas expressed in first-order temporal logic, chained
together in the style of Sect. 3.2. The basic lemmas are liveness properties relating to the
liveness of specific channels in specific modules. Most of these state that an operation
reaching one module is eventually transferred to the next module on the appropriate
flow path. Additional non-blocking properties are used to state that space eventually
becomes available for an operation of a given type in a given module. These basic live-
ness properties were chained to prove end-to-end liveness.

Most of the lemmas in the proof are universally quantified, typically over mod-
ule identifiers (i.e., processors or memory controllers) or operation time stamps. When
proving the properties, these quantifiers were Herbrandized, that is, replaced by fresh
constants. This replacement of variables with constants played a significant role in the
construction of rankings, just as the use of a time stamp constant t allowed us to con-
struct a ranking in our simple examples. Moreover, replacing quantified variables with
constants also helps in keeping verification conditions within EPR, and thus allowing
Ivy to automatically discharge them and produce counterexamples in a reliable way
using the Z3 theorem prover.

As an example, the DRAM controllers block incoming operations that have the
same address as operations that are already queued. To prove that operations are not
indefinitely blocked, we first prove that operation t eventually leaves the DRAM con-
troller, using a ranking. Universally generalizing t, we can then show that all operations
in the memory controller eventually reach the DRAM controller, since the blocking
operation must eventually depart. Similarly, we first show that the completion of oper-
ation timestamped t eventually reaches the reorder buffer at the CPU. Generalizing

Toward Liveness Proofs at Scale 271

t universally, we can then show that every operation u eventually leaves the reorder
buffer, since every predecessor of u, for which it waits, must eventually arrive.

We found that it was straightforward to prove all the lemmas save two using the
basic relational ranking approach. In all of these cases, Z3 was able to discharge the
relevant proof obligations quickly and reliably, without timeouts or divergences. This
was critical as each lemma required a few counterexamples to help correct errors in the
rule application. Without these counterexamples, developing the proof would have been
extremely challenging.

The two lemmas we were unable to prove were instructive. One case involved a
queue containing two kinds of operations. We needed to show that if both kinds of
operations are removed infinitely often, then every element is eventually removed. The
other case was proving that, if completions of all operations eventually reach the reorder
buffer (out of order) then all operations are eventually retired (in order). We discharged
the two lemmas by model checking a small abstract model (using the eager abstraction
method [17]) and then used refinement maps to transfer liveness properties of the small
models to the larger model. This method, while effective, was conceptually complex
and time-consuming. This experience motivated us to consider the more general proof
approach using stable schedulers.

The overall liveness proof consumed approximately 90 person-hours of effort and
resulted in fixing several issues in the Apple generic model. The overall textual size of
the proof was approximately 1000 SLOC, and all of the proof obligations were checked
by Ivy in approximately 115min on a laptop computer.

4.2 Lemma-Free Proof of Liveness

After adding stable schedulers to the Ivy proof rule, we found that it was straightforward
to prove the two lemmas that were previous proved using model checking and refine-
ment relations. However, the complexity of the proof remained high due to the large
number of lemmas. Eliminating the lemmas from the proof proved difficult for two
reasons. First, as in our simple reordering queue example, the presence of reordering
of operations at various places in the system prevented us from expressing the overall
ranking as a sum of simple relational rankings. Second, without taking lemmas and
Herbrandizing them, we faced the problem of quantifier alternations in the verification
conditions that took them outside EPR.

To handle the first problem, we extended the liveness proof rule with lexicographic
rankings. This made it possible to express a ranking for the entire end-to-end liveness
property without taking lemmas, instead using only a single application of the liveness
proof rule. This proof relied on 14 justice assumptions, and for each justice assumption
introduced one component in the lexicographic relation ranking.

Checking this proof with Z3 was not possible, however. We found that Z3 pro-
duced unpredictable timeouts and was unable to produce the counterexamples needed
to debug the proof. The root cause of the problem was quantifier alternations occurring
in certain invariants of the system that were needed to prove liveness, but not to prove
safety. As a simple example of this phenomenon, consider a mutual exclusion proto-
col based on ticket numbers, as in [19]. To prove liveness, we must show that every
unserved tick number is held by some process that is waiting to enter its critical section.

272 K. L. McMillan

Otherwise the protocol deadlocks. Deadlock does not affect safety but, of course, does
rule out liveness. The invariant we need says that for all ticket numbers t, if t is waiting
be served, then some process p holds ticket t. This quantifier alternation introduces a
Skolem function from tickets to processes, which forms a function cycle with the map
in the system state from processes to ticket numbers. This breaks stratification of the
verification conditions, which are thus not in EPR.

Similar situations occur in the Apple generic model. For example, we must show
that in every memory module, some time stamp occurs in the first queue position,
assuming the queue is not empty. In the proof with lemmas, the quantifier alternations
were avoided by simply Herbrandizing the quantifier over memory modules, reducing
it to a constant. In the lemma-free proof, however, this was not possible. We found it
impractical to carry out the proof with Z3 using non-stratified invariants, because of
frequent and unpredictable timeouts.

As an alternative, auxiliary variables were added to the system to provide suffi-
cient witnesses for the offending existential quantifiers, as needed to prove liveness. For
example, one auxiliary variable represents the least time stamp present in any memory
module, and another the identifier of the memory controller module holding this time
stamp. The defining properties of these auxiliary variables must be stated as invariants.
In some cases, this also entailed more complex ranking definitions.

The textual size of the proof without lemmas is greatly reduced from the proof with
lemmas, at about 280 SLOC, of which about 120 represent the auxiliary variables and
their invariants, and the checking time is reduced to 15min (11 for liveness only). The
human effort required for the proof was also substantially less, at about 20 h. This figure
should be taken with a grain of salt, however, since the second proof effort benefited
from the understanding of the system gained in the first.

It is interesting to note that, in the liveness proofs, only one new safety invariant
was needed, consisting of a disequality between two variables. The remaining invariants
came from the safety proof, or were invariants over the auxiliary variables. The ability
to re-use the safety proof greatly reduced the overall effort in proving liveness.

5 Conclusions and Future Work

We have endeavored in this work to develop a method of proving liveness that is is
conceptually simple to apply in practice to realistic problems, can be scaled to large
problems without modular decomposition, and does not fail unpredictably due to the
use of fragile heuristics. No existing method meets these conditions. In a realistic case
study, we have seen that relational rankings do. The case study is an of an order of mag-
nitude greater complexity than problems that have been solved by comparable existing
methods.

We have also observed that there is a trade-off between the use of lemmas in the
proof and the use of lexicographic rankings. The latter approach yielded a proof of
lesser textual complexity, but required more sophisticated reasoning to construct the
proof, in order to keep the verification conditions within decidable bounds. Handling
quantifier alternations in lexicographic proofs is an issue that requires further explo-
ration.

Toward Liveness Proofs at Scale 273

There are several possible directions for further work. One is the problem of assign-
ing root causes to liveness proof failures. One approach would be use state space explo-
ration on the concrete model. For example, we could use model checking to test whether
in fact a scheduled justice condition always reduces one of the rankings. If so, the fault
likely likes in the safety invariant. Or if the scheduled justice condition implies that the
ranking is eventually but not immediately reduced, then an additional ranking may be
needed. It is not clear, however, how to effectively explore the state space of complex,
infinite-state models to obtain this information.

A related question is automated synthesis of relational rankings. A natural app-
roach is to use a syntax-guided or template-based definition of the search space and
to perform the search in a counterexample-guided manner (that is, using CEGIS, or
counterexample-guided inductive synthesis). To use CEGIS effectively, we require an
effective counterexample diagnosis approach that allows us to rule out large spaces of
incorrect proofs. To be useful in practice, such a technique would have to fail transpar-
ently, in a way allows effective user guidance.

Another interesting question is whether there are useful classes of distributed sys-
tems for which the method is complete, that is, for which there always exist relational
rankings that can be verified within EPR.

Finally, while a single realistic case study is useful for motivating and guiding
research, it does not allow us to draw conclusions about the general utility of any given
method. For this we need a large, representative class of benchmark problems to use
in evaluation. Such a benchmark does not currently exist. Developing it would be a
significant step toward liveness proof methods that are effective at scale.

A Soundness proofs

In this section, we prove that Rules (8) and (10) are sound. We start by defining the
necessary background notions. We use standard multi-sorted first order logic. If s is a
multi-sorted first-order structure, we write σ[s] for the universe of sort σ in structure
s, and φ[s] for the interpretation of formula φ in structure s. For the sake of notational
simplicity, we restrict our attention in the sequel to unary relations, but the extension
to n-ary relations is straightforward. A (unary) relation over sort σ is a formula ψ of
the form λx. p(x), where p is a first-order formula whose only free variable is x and
x is of sort σ. We write ψ[s] for the function that takes x to p(x)[s]. We adopt the
standard semantics of first-order linear temporal logic with the prime operator, so that
t′ indicates the value of t at the next time. Moreover, we take the axiom I ∧�T (where
〈I, T 〉 is intended to represent a transition system with initial condition I and transition
condition T).

Definition 1. A lexicographic relational ranking is an indexed set (possibly empty) of
unary predicates, δ = {δi=1...n}, where each predicate may be over a different sort. We
say δ is finite in structure s if δi[s] is finite for all i = 1 . . . n. The ranking on structures
induced by δ is the pre-order <δ such that, for any two structures s1,2 over the same
universe, s1 <δ s2 iff:

– δ is finite in s1, and

274 K. L. McMillan

– for some i ∈ 1 . . . n, δi[s1] ⊂ δi[s2] and for all 1 ≤ j < i, δj [s1] = δj [s2].

Theorem 1. For any lexicographic relational ranking δ = {δi=1...n}, the pre-order <δ

is well-founded.

Proof. By induction on n. In the base case, n = 0, the order is well-founded because
it is empty. In the induction step, we show that if there is an infinite downward chain
in the order <δ , there is an infinite downward chain in the order <ε where ε is the
ranking {εi=1...n−1} such that εi = δi+1. This is a contradiction, since by inductive
hypothesis, ε is well-founded. To see this, suppose we have an infinite descending chain
t0 >δ t1 >δ · · · . By definition, δ must be finite in t1. Moreover, for all i = 1 . . ., we
must have δ1[ti] ⊇ δ1[ti+1]. Since δ1[t1] is finite, in cannot infinitely decrease, therefore
there exists an i such that δ1[tj] = δ1[tj+1] for all j ≥ i. It follows that the sequence
tj , tj+1, . . . is an infinite descending chain of ε. �

Theorem 2. Rule (10) is sound.

Proof. Suppose toward a contradiction that there exists a sequence of structures s =
so, s1, . . . satisfying I ∧ �T , such that p[si] is true for some i, but q[sj] is false for
all j ≥ i, and all the premises of the rule hold in s. From premise S1 we have φ[si]
and from L2, by induction on time, that φ[sj] for all j ≥ i. By S5 and S6, we know
that delta is finite in sj for all j ≥ i. Now we show that for all j ≥ i, there exists a
k > j such that sj >δ sk. By S4, we know that there exists an l ∈ 1 . . . n such that
ψi[sj]. Therefore, let l be the least number in 1 . . . n such that, for some m ≥ j, we
have ψl[sm]. We have ¬prel(ψ)[sk] for all k ≥ j and therefore by L2 and induction,
δl(sj) ⊇ δl(sk). From S3, it follows that there exists k ≥ j such that ri[sk]. Moreover,
by L2 and induction on time, we have, for all j ≤ m ≤ k, reql(ψ)[sm] and ψl[sm].
Thus, by L2 we have δl[sk] ⊃ δl[sk+1], hence δl[sj] ⊃ δl[sk+1]. We have proved that
for all j ≥ i, there exists a k > j such that sj >δ sk. It follows that there exists an
infinite descending chain in <δ , which contradicts Theorem 1. �

Theorem 3. Rule (8) is sound.

Proof. Since premise S2 of Rule (8) implies premise L2 of Rule (10), and the remaining
premises of the two rules are identical, it follows by Theorem 3 that Rule (8) is sound.

References

1. Apple, Inc. Apple Generic Memory Model. https://github.com/kenmcmil/ivy/tree/master/
doc/examples/apple

2. Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. Electr. Notes
Theor. Comput. Sci. 66(2), 160–177 (2002)

3. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model check-
ing: 1020 states and beyond. In: LICS, pp. 428–439. IEEE Computer Society (1990)

4. Cook, B., Podelski, A., Rybalchenko, A.: Abstraction refinement for termination. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 87–101. Springer, Heidelberg (2005).
https://doi.org/10.1007/11547662 8

5. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS, pp. 337–340 (2008)

https://github.com/kenmcmil/ivy/tree/master/doc/examples/apple
https://github.com/kenmcmil/ivy/tree/master/doc/examples/apple
https://doi.org/10.1007/11547662_8

Toward Liveness Proofs at Scale 275

6. Fang, Y., Piterman, N., Pnueli, A., Zuck, L.: Liveness with invisible ranking. In: Steffen, B.,
Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 223–238. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24622-0 19

7. Fang, Y., Piterman, N., Pnueli, A., Zuck, L.: Liveness with incomprehensible ranking. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 482–496. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-24730-2 36

8. Fedyukovich, G., Prabhu, S., Madhukar, K., Gupta, A.: Quantified invariants via syntax-
guided synthesis. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 259–277.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 14

9. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in Satisfiabiliby mod-
ulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 306–320.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 25

10. Ghilardi, S., Ranise, S.: MCMT: a model checker modulo theories. In: Giesl, J., Hähnle,
R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 22–29. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14203-1 3

11. Gurfinkel, A., Shoham, S., Vizel, Y.: Quantifiers on demand (2021). CoRR, abs/2106.00664
12. Hawblitzel, C., et al.: IronFleet: proving safety and liveness of practical distributed systems.

Commun. ACM, 60(7), 83–92 (2017)
13. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive pro-

grams (2014)
14. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst. 16(3), 872–

923 (1994)
15. Manna, Z., Pnueli, A.: Completing the temporal picture. Theor. Comput. Sci. 83(1), 91–130

(1991)
16. McMillan, K.L.: Circular compositional reasoning about liveness. In: Correct Hardware

Design and Verification Methods, 10th IFIP WG 10.5 Advanced Research Working Con-
ference, CHARME ’99, Bad Herrenalb, Germany, September 27-29, 1999, Proceedings, pp.
342–345 (1999)

17. McMillan, K.L.: Eager abstraction for symbolic model checking. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 191–208. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96145-3 11

18. McMillan, K.L., Padon, O.: Ivy: a multi-modal verification tool for distributed algorithms.
In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 190–202. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-53291-8 12

19. Padon, O., Hoenicke, J., Losa, G., Podelski, A., Sagiv, M., Shoham, S.: Reducing liveness to
safety in first-order logic. Proc. ACM Program. Lang. 2(POPL), 26:1–26:33 (2018)

20. Padon, O., Hoenicke, J., McMillan, K.L., Podelski, A., Sagiv, M., Shoham, S.: Temporal
prophecy for proving temporal properties of infinite-state systems. In: FMCAD, pp. 1–11.
IEEE (2018)

21. Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made EPR: decidable reasoning about
distributed protocols. Proc. ACM Program. Lang. 1(OOPSLA), 108:1–108:31 (2017)

22. Ramsey, F.: On a problem in formal logic. Proc. London Math. Soc. (1930)
23. Marcelo Taube, et al.: Modularity for decidability of deductive verification with applications

to distributed systems. In: Foster, J.S., Grossman, D. (eds.) Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2018,
Philadelphia, PA, USA, June 18-22, 2018, pp. 662–677. ACM (2018)

24. Yao, J., Tao, R., Gu, R., Nieh, J.: Mostly automated verification of liveness properties for
distributed protocols with ranking functions. In: POPL (2024). To appear

https://doi.org/10.1007/978-3-540-24622-0_19
https://doi.org/10.1007/978-3-540-24730-2_36
https://doi.org/10.1007/978-3-030-25540-4_14
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-14203-1_3
https://doi.org/10.1007/978-3-319-96145-3_11
https://doi.org/10.1007/978-3-030-53291-8_12

276 K. L. McMillan

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Software Verification

Strided Difference Bound Matrices

Arjun Pitchanathan1(B) , Albert Cohen2 , Oleksandr Zinenko2 ,
and Tobias Grosser3

1 University of Edinburgh, Edinburgh, UK
arjun.pitchanathan@ed.ac.uk

2 Google DeepMind, Paris, France
3 University of Cambridge, Cambridge, UK

tobias.grosser@cst.cam.ac.uk

Abstract. A wide range of symbolic analysis and optimization problems
can be formalized using polyhedra. Sub-classes of polyhedra, also known
as sub-polyhedral domains, are sought for their lower space and time
complexity. We introduce the Strided Difference Bound Matrix (SDBM)
domain, which represents a sweet spot in the context of optimizing com-
pilers. Its expressiveness and efficient algorithms are particularly well
suited to the construction of machine learning compilers. We present
decision algorithms, abstract domain operators and computational com-
plexity proofs for SDBM. We also conduct an empirical study with the
MLIR compiler framework to validate the domain’s practical applica-
bility. We characterize a sub-class of SDBMs that frequently occurs in
practice, and demonstrate even faster algorithms on this sub-class.

1 Introduction and Motivation

The analysis and verification of computing systems involves a variety of abstrac-
tions of the system semantics. Among these, numerical abstractions capture
arithmetic properties of system variables, supporting mathematical models of
systems such as timed and hybrid automata [2,3,25] and the static analysis of
inductive definitions in loops and recursive programs [18]. Many of these abstrac-
tions implement special cases of Presburger arithmetic [50] where typical deci-
sion problems are NP-hard. The simplest special cases are non-relational, such as
interval bounds ±x ≤ c where x is a variable and c is a numeric constant. More
expressive, relational cases include systems of inequalities of the form ±x±y ≤ c
known as Unit Two Variable Per Inequality (UTVPI) systems. They form the
octagon abstract domain [38]. While being much cheaper to operate upon than
convex polyhedra [4,18], UTVPI are sufficiently expressive to represent a wide
range of multi-variable problems [39].

UTVPI algorithms rely on a Difference Bound Matrix (DBM) representation
[7], with inequalities of the form x − y ≤ c or ±x ≤ c. DBMs are ubiquitous in
formal verification [6] and static analysis [8]. Other abstractions such as congru-
ences over linear combinations of integral variables [24] capture only the lattice

c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 279–302, 2024.
https://doi.org/10.1007/978-3-031-65627-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65627-9_14&domain=pdf
http://orcid.org/0000-0002-7301-2307
http://orcid.org/0000-0002-8866-5343
http://orcid.org/0000-0003-1978-0222
http://orcid.org/0000-0003-3874-6003
https://doi.org/10.1007/978-3-031-65627-9_14

280 A. Pitchanathan et al.

structure of Presburger sets but not the inequalities. The special case of congru-
ence equalities x ≡ r mod d where r, d are integral constants and 0 ≤ r < d has
low complexity [23] and is often used to enhance other abstract domains [14].

It has remained an open problem whether there are efficient algorithms for
the conjunction of UTVPI and congruence constraints. Such a domain would
have numerous applications in the analysis and optimization of machine learning
(ML) models. Indeed, modern ML compilers [11,33,48,53] often use a form of
Presburger representation for ML compute graphs and operations, e.g. to capture
the data layout in memory or conversions such as reshaping and padding.

Affine expressions also arise in program transformations to leverage modern
hardware, such as vectorization, fusion and thread-level parallelization. Most
of these expressions represent hyper-rectangular shapes, with occasional cases
of symmetric and triangular ones (Cholesky factorization and sequence mod-
els [12,35]), all of which can be expressed as UTVPI [49]. On the other hand,
strides and block sizes resulting from (dilated) convolutions, pooling and normal-
ization operations as well as the results of the tiling (block-wise decomposition)
transformation require congruence constraints. While some of the most advanced
compiler optimizations justify the efforts to implement full-fledged Presburger
arithmetic packages such as isl [50] and FPL [44], the majority of simpler cases
call for a definition of a relational abstract domain combining UTVPI and con-
gruences with a low-degree polynomial complexity. We also expect such a domain
to be applicable to verification efforts [5,13,46] that currently rely on Presburger
arithmetic libraries and SMT solvers; we present early results in Sect. 6.3.

This paper considers the conjunction of inequalities represented as a DBM
with single-variable congruences, a novel abstract domain we call Strided Dif-
ference Bound Matrices (SDBM). We also study a sub-case of these, Harmonic
SDBM (HSDBM), where such congruences form a harmonic sorted chain, which
is common in congruences produced by loop tiling in high-performance code.

Although the SDBM satisfiability problem turns out to be NP-hard, we are
able to provide and algorithm that runs in O(nmDlcm) time, where n is the
number of variables, m is the number of constraints and Dlcm is the least common
multiple of all congruence divisors. This time complexity, which is pseudo-linear
in Dlcm, is practical for program analysis applications. We also present an O(n4)
complexity algorithm for HSDBM satisfiability.

Finally, we define a normal form for SDBM constraint systems that is com-
putable in at most 3m+m log(nDlcm)+nDlcm satisfiability checks in the general
case, and 3m + m log(nDlcm) + n checks in the harmonic case. Given two sys-
tems in normal form, we show that it only takes linear time to perform the join
operation, producing a constraint set admitting a union of solutions, common in
abstract interpretation. Moreover, we can perform an equality check based on
direct comparison of normal forms.

2 DBMs, SDBMs, and HSDBMs

We consider sets over the integers only, i.e., subsets of Z
n for some n ∈ N. We

first define some notation. For m,n ∈ N, [n] denotes the set {1, . . . n}, nZ denotes

Strided Difference Bound Matrices 281

the set of integer multiples of n, and m | n denotes that m divides n. If G is
a weighted graph with no negative cycles and u and v are vertices in it, then
δG(u, v) is the distance from u to v in G. �x�y refers to x rounded down to the
nearest multiple of y smaller than or equal to x. If x, y are vectors and t a scalar,
x + t refers to element-wise addition.

Let us first formally recall the definition of Difference Bound Matrices (DBM)
over integers and their properties [20,37] before presenting SDBM.

Definition 1. A Difference Bound Matrix (DBM) is a constraint system over
variables x1, . . . xn ∈ Z of the form

−xi + xj ≤ cij �i ≤ xi ≤ ui (i, j, cij) ∈ E and li, lj ∈ Z

where E ⊆ [n] × [n] × Z denotes the set of difference bound constraints. We will
use m = |E| to denote the number of such constraints.

Not all upper and lower variable bounds �i, ui may be present. When no
such variable bounds are present we call the system variable-bound-free (VBF);
otherwise we say that the system has variable bounds.

It is known that the satisfiability of DBM constraints can be determined in O(n3)
time and O(n2) space [7,39]. We now define two special cases of Presburger sets
derived from DBMs by introducing additional congruence constraints.

Lemma 2 (DBM Shifting Lemma). If x is a solution to a VBF DBM, then
so is x+t for t ∈ Z, i.e., adding a constant to all variables preserves satisfiability.

Proof. All constraints are bounds on differences of variables, and the differences
don’t change when adding a constant to all variables. �	
Corollary 3. If Si,t is the set of solutions to a VBF DBM such that xi = t,
then Si,t = {x + t | x ∈ Si,0}.

Given a DBM with variable bounds, we can construct a new VBF system
by adding a new variable x0 and converting all variable bounds �i ≤ xi ≤ ui to
difference bound constraints �i ≤ xi − x0 ≤ ui. Clearly (x1, . . . xn) is a solution
to the original system iff (0, x1, . . . xn) is a solution to the new system. By the
above lemma, the new system has a solution with x0 = 0 iff it has any solution.
Thus the original DBM with variable bounds is satisfiable iff the new VBF DBM
is. VBF DBMs are best understood by analyzing their potential graphs.

Definition 4. The potential graph of a DBM is a weighted directed graph over
vertex set [n] with an edge from i to j of weight cij for each (i, j, cij) ∈ E. The
weights may be negative and the graph may contain negative cycles.

Lemma 5. Let G = ([n], E) be the potential graph of a DBM. If G has a path
from vertex u to v of total weight W , then −xu + xv ≤ W for every solution x
to the DBM.

282 A. Pitchanathan et al.

Corollary 6. If the graph has negative cycles, then no solution x exists.
If the graph has no negative cycles, then for all u, v ∈ [n], it holds that

−xu + xv ≤ δG(u, v). This is useful to define a normal form of the DBM.

Definition 7. A path-closed DBM is one that is satisfiable and, for all u, v
such that there exists a path from u to v in the potential graph G, the bound on
−xu + xv exists and is equal to δG(u, v).

Clearly, any DBM can be brought to path-closed form by computing the
distances in the potential graph, and by Corollary 6, doing so does not change
the solution set. Moreover, the path-closed form has the following useful property.

Lemma 8 (DBM Projection Lemma). If a DBM is path-closed, then the
projection of its solution set onto a subset of variables is equal to the solution
set of the constraints involving only those variables.

It follows that the path-closed form is the tightest constraint system with
the same solution set as the original system, i.e., in a path-closed DBM there
exist solutions on the surface of every inequality, so no inequality can be further
tightened without changing the solution set. Moreover, if there is no constraint
on some −xi+xj then adding any upper bound on this changes the solution set.
Finally, the following is useful to compute a complete explicit solution.

Lemma 9. For any vertex u in the potential graph from which all other vertices
are reachable, the assignment xv = δG(u, v) satisfies the DBM.

Note that in this solution, xu = 0. We now define the new abstract domains.

Definition 10. A Strided DBM (SDBM) is a DBM with additional constraints

xi ≡ ri mod di i ∈ [n]

where all di, ri are in Z. When referring to such a system, Dlcm will denote
lcm(d1, . . . dn). Given an SDBM, we define the underlying DBM as the constraint
system without these congruence constraints.

Note that one may encode the lack of a congruence constraint as xi ≡ 0 mod 1.

Definition 11. A Harmonic SDBM (HSDBM) constraint system is an SDBM
where the congruence divisors are sorted and each one divides the next, i.e.,
d1 | d2 | · · · | dn.

3 Satisfiability

We start by reducing the SDBM satisfiability problem to a simpler form. Firstly,
let yi = xi − ri. Then we can see that xi ≡ ri mod di iff yi ≡ 0 mod di.
Furthermore, −xi+xj ≤ cij iff −yi+yj ≤ cij + ri − rj . Thus the original SDBM

xi ≡ ri mod di −xi + xj ≤ cij �i ≤ xi ≤ ui

Strided Difference Bound Matrices 283

is satisfiable iff the following system is:

yi ≡ 0 mod di − yi + yj ≤ cij + ri − rj �i − ri ≤ yi ≤ ui − ri.

Thus we reduce satisfiability of any SDBM to the satisfiability of another SDBM
where all congruence constraints have remainder zero. We can further reduce
satisfiability of SDBMs with variable bounds to satisfiability of VBF SDBMs.
To do this, we generalize the DBM shifting lemma to SDBMs.

Lemma 12 (SDBM Shifting Lemma). If x is a solution to a VBF SDBM,
then so is x + tDlcm for t ∈ Z.

Proof. By the DBM shifting lemma (Lemma 2), the inequality constraints con-
tinue to be satisfied. Since the scalar being added is a multiple of all the con-
gruence divisors, the congruence constraints also continue to be satisfied. �	
Corollary 13. For a given VBF SDBM with the congruence constraint on xn

being xn ≡ 0 mod Dlcm, let St be the set of solutions such that xn = t. Then
St = {x + t | x ∈ S0} for t ∈ DlcmZ. (Of course, St = ∅ for non-congruent t).

We convert SDBMs to VBF form similarly to the procedure for DBMs. Let C
be an SDBM with variable bounds and all remainders zero. Now create a VBF
SDBM C ′ by adding a variable x0 and replacing the constant bounds �i ≤ xi ≤ ui

of C with inequalities �i ≤ xi−x0 ≤ ui. Then the set of solutions of C is equal to
the set of solutions of C ′ such that x0 = 0. Now by the above corollary, if we add
the constraint that x0 ≡ 0 mod Dlcm, then C ′ is satisfiable iff C is satisfiable.
Thus satisfiability of SDBMs with variable bounds can be efficiently reduced to
satisfiability of the following simpler class of SDBMs.

Definition 14. A constraint system of the form

xi ∈ diZ −xi + xj ≤ cij (i, j, cij) ∈ E

is called a simple SDBM. We sometimes refer to di as the stride of the variable
xi. When the system satisfies d1 | · · · | dn, we call it a simple HSDBM.

3.1 GCD-Tightening Constraints

If a DBM is unsatisfiable, repeatedly applying the following inference rule will
produce a contradiction eventually.

−xi + xj ≤ cij ∧ −xj + xk ≤ cjk ⇒ −xi + xk ≤ cij + cjk (path inference rule)

This is because if the DBM is unsatisfiable then a negative cycle exists, and in
that case, repeatedly applying the above leads to an inequality of the form 0 ≤ c
for some negative c. In an SDBM, if the underlying DBM is unsatisfiable then
the above is true. However, it is possible for an unsatisfiable SDBM to have its
underlying DBM be satisfiable. Consider the following example:

x, y ∈ 2Z 1 ≤ x − y ≤ 1

284 A. Pitchanathan et al.

The inequalities on their own are clearly satisfiable over the integers. However,
because both x and y are even, x − y cannot be 1 as required by the above
system. Due to the congruence constraints, x − y ≤ 1 implies x − y ≤ 0 and
similarly 1 ≤ x − y implies 2 ≤ x − y, so the system is unsatisfiable. In general,
by Bézout’s lemma, when x ∈ aZ, y ∈ bZ, then x − y ∈ gcd(a, b)Z. Thus we can
always tighten bounds to a multiple of the GCD, leading to a new inference rule:

−xi + xj ≤ cij =⇒ −xi + xj ≤ �cij�gcd(di,dj) (GCD-tightening rule)

We use the above to define a GCD-tight SDBM.

Definition 15. A GCD-tight SDBM is one where, for all i, j ∈ [n], we have
cij | gcd(di, dj).

These two rules are still not sufficient to determine if an SDBM is satisfi-
able. The following system is GCD-tight, path-closed, and the inequalities are
satisfiable over integers, but the system as a whole is unsatisfiable.

x ≡ 0 mod 4 · 5 0 ≤ y − x ≤ 5
y ≡ 0 mod 5 · 7 20 ≤ x − z ≤ 24 (1)
z ≡ 0 mod 4 · 7 21 ≤ y − z ≤ 28

To see that it is unsatisfiable, reparameterize the solution as (c+a, c+ b, c); this
vector is a solution to the congruences iff

c ≡ a mod 4 · 5 c ≡ b mod 5 · 7 c ≡ 0 mod 4 · 7
which by the general Chinese remainder theorem [42] has solutions iff

a ≡ b mod 5 a ≡ 0 mod 4 b ≡ 0 mod 7.

Since the solution is of the form (a, b, 0)+c, it satisfies the inequalities iff (a, b, 0)
does, by Lemma 2. Thus the inequalities hold iff

0 ≤ b − a ≤ 5 20 ≤ a ≤ 24 21 ≤ b ≤ 28.

Due to the congruence constraints we have a ∈ {20, 24}, b ∈ {21, 28}, and b−a ∈
{0, 5}, which cannot be satisfied simultaneously, so the SDBM is unsatisfiable.
For the case of HSDBMs however, path-closure and GCD-tightening suffice.

3.2 Satisfiability for HSDBMs in O(n4) Time

By the earlier discussion, we can assume that the given HSDBM is simple. In this
case, path-closure and GCD-tightening are sufficient to determine satisfiability.
To show this, we prove a projection lemma for HSDBMs; while the general
projection lemma for DBMs (Lemma 8) does not apply to HSDBMs, it does
hold when the subset of variables chosen forms a suffix. We will call an HSDBM
path-closed when its underlying DBM is path-closed.

Strided Difference Bound Matrices 285

Lemma 16. Let H be a path-closed, GCD-tight VBF HSDBM. If Sk:n is the
projection of the solution set of H onto xk, . . . xn, then Sk:n is equal to the set of
solutions to the inequalities and congruence constraints involving only xk, . . . xn.

Proof. Suppose (pk+1, . . . pn) ∈ Sk+1:n. We show that there exists a pk such
that (pk, . . . pn) ∈ Sk:n. By substituting pk+1, . . . pn into the system, we obtain
bounds of the form pi − cki ≤ xk ≤ pi + cik for k < i ≤ n on xk when the
corresponding inequalities exist. If none of the lower bounds exist or none of the
upper bounds exist, then we can definitely find a multiple of dk satisfying these
bounds to assign to xk.

Otherwise, if at least one upper bound and one lower bound is produced,
then the set of xk satisfying the inequalities is [maxi(pi − cki),mini(pi + cik)],
which is of the form [pi − cki, pj + cjk] for some i, j ∈ {k+1, . . . n}. This interval
is non-empty by the DBM projection lemma (Lemma 8).

Now note that pi ∈ diZ ⊆ dkZ by the harmonic property and similarly
pj ∈ dkZ. Also, cki ∈ gcd(dk, di)Z = dkZ by path-closure and the harmonic
property; similarly, cjk ∈ dkZ. So both the endpoints lie in dkZ and therefore it
certainly contains a multiple of dk. Repeating this, we can extend any point in
Sk:n into a point in S1:n, a full solution to the whole system. �	
Corollary 17. A path-closed GCD-tight HSDBM is satisfiable.

Proof. Sn:n = dnZ �= ∅ is the projection of the solution set onto xn. �	
This forms the basis of the SolveHSDBM algorithm in Fig. 1 to decide the

satisfiability of HSDBMs: first, obtain the path-closure of the inequalities by run-
ning the Floyd-Warshall algorithm [16] on the potential graph, then GCD-tighten
all inequalities, and repeat these two steps until a fixpoint or contradiction is
reached, at which point we know whether the system is satisfiable.

Fig. 1. HSDBM and SDBM satisfiability.

286 A. Pitchanathan et al.

Lemma 18. Let G = (V,E) be a transitively closed graph with no negative
cycles, i.e. whenever there is a path from u to v, there is an edge from u to v
of weight δG(u, v). Let U ⊆ V . Now let F be a copy of E in which we have
decreased the weights of some edges that go from one vertex in U to another in
U . Finally, let H = (V, F).

Suppose that H has no negative cycles. Then for any vertices u and v in U
with a path from u to v, there is a shortest path from u to v that never leaves U .

Proof. Let p = (p1, . . . pk) be the vertices of a path starting and ending in U and
with all the intermediate vertices lying outside U . Let W be the weight of p in
H and let c be the weight of the edge from p1 to pk in H. Then W ≥ δG(p1, pk)
because only edges that stay within U decreased, and δG(p1, pk) ≥ c because
the edge in G had weight equal to δG(p1, pk) and it can only have decreased or
stayed the same in H. Thus the path p cannot have weight less than the weight
of the direct edge in H.

For a general path that goes in and out of U repeatedly, we can always replace
all sections of the path that go outside and come back in with the direct edges
that stay in U , to obtain a path within U whose weight is at most that of the
original path. Thus for any start and end point in U , the shortest path that
stays in U has weight equal to the shortest path in the entire graph H. �	
Theorem 19. SolveHSDBM in Fig. 1 terminates in O(n4) time.

Proof. We will view the algorithm as operating on the potential graph; all mod-
ifications to cij then become modifications to the edge weights. We will show
that at most n−1 repetitions are needed for fixpoint. We prove that after the ith
application of GCD tightening, all edges between vertices in {vi, . . . vn} will stay
multiples of di for the rest of the algorithm. We prove this by induction. The
base case for i = 1 is true since when all edges are multiples of d1, path-closure
cannot change this divisibility, and GCD-tightening will not change this either.

Now assume it to be true for i; we will show it for i + 1. The i + 1-th
application of GCD tightening only decreases edge weights between vertices in
U = {vi+1, . . . vn}, by the induction hypothesis. Now we want to analyze how
path closure affects the edge weights in the subgraph induced by U . After tight-
ening, all edges in the subgraph are multiples of di+1, so distances between nodes
in the subgraph are also multiples of di+1 by Lemma 18. Thus path closure does
not affect divisibility at this step. Therefore, subsequent GCD-tightening does
not affect it either. Repeated applications of these preserve the property.

Thus the nth application of GCD tightening does nothing since there are no
edges in the graph induced on the single vertex vn for i = n. Therefore, neither
does the subsequent application of path-closure. Thus, fixpoint is achieved after
n − 1 runs of GCD-tightening and path-closure. �	

3.3 Satisfiability for SDBMs in O(nmDlcm) Time

Extending work by Lagarias [32], it can be shown that the SDBM satisfiabil-
ity problem is NP-hard (see the appendix of the extended paper [43]) so no

Strided Difference Bound Matrices 287

polynomial-time algorithm is likely to exist. In program analysis applications,
the inequality coefficients can be large, so we would like an algorithm that runs
in polynomial time in the representation size of these coefficients. On the other
hand, in these applications, the congruence divisors are typically small, so we
are willing to let the algorithm be polynomial in the values of these, i.e., pseudo-
polynomial in these. In fact, these divisors typically share many common factors,
so that their LCM is not much bigger than the divisors. We present an algorithm
that is pseudo-linear in the LCM.

The intuition for the algorithm comes from the following extensions of our
inference rules to upper bounds xi ≤ ui on the variables.

xi ≤ ui =⇒ xi ≤ �ui�di

xi ≤ ui ∧ −xi + xj ≤ cij =⇒ xj ≤ ui + cij

Suppose we have an SDBM with all variables bounds present and we keep
applying these rules. Then we either obtain a contradiction ui < �i, or a fixpoint.
At the fixpoint it holds that ui ∈ diZ and moreover uj ≤ ui + cij . So in fact,
u becomes a solution to the SDBM. Each successful application of an inference
rule reduces the gap ui − �i between some upper bound and lower bound. If this
difference becomes negative, a contradiction is obtained and the algorithm halts.

So the worst-case runtime of this method depends on the sum of the gaps
ui − �i between the upper bounds and the lower bounds, which could naively
be exponential in the representation size of the constraint system. To avoid this
worst-case scenario, we reduce the satisfiability of SDBMs to the satisfiability of
SDBMs with variable bounds where the gap between the upper and lower bound
is at most 2nDlcm for each variable.

For a matrix A, let MASD(A) be the maximum absolute determinant among
all square submatrices of A. A standard fact [15] in the theory of integer pro-
gramming is that if P ⊆ R

n is a polyhedron, P ∩ Z
n is non-empty, and x is in

P , then there exists a point y in P ∩ Z
n such that ‖x − y‖ ≤ nMASD(A). We

slightly generalize this to obtain the following lemma.

Lemma 20. Let S = {x ∈ R
n | Ax ≤ b} be a non-empty polyhedron. Let L

be the set of solutions to some single-variable congruence constraints such that
S ∩L �= ∅, and let Dlcm be the LCM of the congruence divisors of L. Let y ∈ S.
Then there exists a solution x ∈ S ∩ L such that ‖x − y‖∞ ≤ nDlcm MASD(A).

Moreover, we show that MASD(A) = 1 for DBMs, making the bound nDlcm.

Lemma 21. Let A be an m × n matrix where each row has exactly one +1 and
one −1. Then MASD(A) = 1.

We defer the proofs to the appendix of the paper’s extended version [43].
These lemmas allow to solve an SDBM by first finding any integral solution p
to the inequalities and adding constant bounds on the variables to lie within a
box of side length 2nDlcm centered at p, then applying the above inference rules
until reaching a contradiction or fixpoint.

288 A. Pitchanathan et al.

In SolveSDBM in Fig. 1, we first GCD-tighten all the upper bounds and
then look for opportunities to apply the path-closure inference rule to the upper
bounds, by checking each difference bound. Whenever an upper bound decreases
due to path-closure, we immediately apply the GCD-tightening rule to it. It takes
O(m) time to look over all edges. Since each variable’s upper and lower bounds
differ by 2nDlcm, there can be at most 2n2Dlcm steps of such tightening, for an
overall runtime of O(n2mDlcm).

We have to process the edge (i, j, cij) once in the beginning. After that, we
only have to process it again when the RHS of the if-condition on line 11 changes,
i.e., only when ui decreases. So we can replace lines 9–13 with the following.
1: dirty ← [n]
2: while dirty �= ∅ do
3: Pick i ∈ dirty

4: Remove i from dirty

5: for (i, j, cij) ∈ E do
6: if uj < �ui + cij	dj then uj ← �ui + cij	dj
7: if uj < �j then return ⊥
8: Add j to dirty

Here ui can decrease at most 2nDlcm times since after that it will go below the
lower bound �i and produce a contradiction. Each time ui decreases, we check all
edges that go out from i, as these are the edges that might use the reduced value
of ui. Thus if oi is the number of edges leaving i, then the time complexity of this
more careful implementation is

∑
i O(nDlcmoi) = O(nDlcmm) since

∑
i oi = m.

4 HSDBM Normalization

We consider normalization for satisfiable systems; if a system is unsatisfiable
we normalize it by setting it to some canonical unsatisfiable system. We first
normalize the inequalities and then the congruence constraints.

Definition 22. An inequality-normalized (H)SDBM is one where for any bound
−xi + xj ≤ c, if it holds in the solution set that −xi + xj ≤ d, then c ≤ d, i.e.
the bound in the system is the tightest valid bound.

Note that any two SDBMs with the same solution sets will have the same nor-
malized inequalities, since this depends only on the solution set and not on the
form of the initial constraint system. The above definition is equivalent to saying
that every bound −xi +xj ≤ c has a solution that makes it tight, and whenever
a bound does not exist that expression can take arbitrarily large values in the
solution set. Also, an inequality-normalized system is always path-closed and
GCD-tight since no such tightening inference rules can decrease any bound.

We previously showed that path-closure and GCD-tightening are not suf-
ficient to check satisfiability of SDBMs. Thus, we do not expect these to be
sufficient for inequality normalization either. One might hope that it is enough
for HSDBMs, but in fact it is not the case either. Consider the following example.

Strided Difference Bound Matrices 289

−1 ≤ x − y ≤ 1 −1 ≤ x − w ≤ 0 0 ≤ x − z ≤ 1 x, y ∈ Z

0 ≤ w − z ≤ 2 −1 ≤ y − w ≤ 0 0 ≤ y − z ≤ 1 z, w ∈ 2Z

It is obviously GCD-tight and path-closed. But all constraints are not as tight
as possible. Note that w is either z or z+2. If w = z then x−z = x−w = 0, and
similarly y−z = 0, implying x−y = 0. Otherwise w = z+2, then x−w = x−z = 1
and y − z = 1, so x − y = 0 again, yielding tighter inequalities 0 ≤ x − y ≤ 0.
Therefore, we need to do more for inequality normalization.

First, let us consider variable-bound-free systems. Suppose the system has
an inequality −xi + xj ≤ c and we want to check if replacing it by −xi + xj ≤ b
for b < c excludes any solutions. This is equivalent to asking if there are any
solutions with b+1 ≤ −xi+xj ≤ c, which is a single satisfiability check. We can
thus binary search over the values of b to find the minimum valid one, to obtain
the tightest form of the inequality. We now establish a bound on the range of
such b values over which we have to search.

By the projection lemma (Lemma 8), path-closing the underlying DBM
brings it to normal form. Therefore every difference bound −xi+xj ≤ cij has an
integral point y satisfying all the inequalities and such that −yi + yj = cij . By
Lemma 20, there exists a solution z to the whole system with zj ≥ cij − nDlcm
and zi ≤ cij + nDlcm, so that −zi + zj ≥ cij − 2nDlcm. Therefore, the tightest
version of the inequality has a bound that is tighter by at most 2nDlcm. The
binary search then takes at most 3+ log(nDlcm) steps. Inequality normalization
thus takes at most m(3 + log(nDlcm)) emptiness checks.

Now consider systems with variable bounds, still with remainder zero con-
gruence constraints. Path-closure and GCD-tightening are sufficient to normalize
these, by converting them to VBF form and applying the following lemma.

Lemma 23. If an HSDBM is path-closed and GCD-tight then all inequalities
involving xn are tight. If a bound on −xi + xn is missing then −xi + xn is
unbounded in that direction, and similarly for bounds on −xn + xi.

Proof. First, we show it for bounds of the form −xn+xi ≤ cni. Suppose all such
bounds exist. Then the point with xn = 0 and xi = cni for i < n is a solution.
By GCD-tightening and the harmonic property, it satisfies the congruences. By
path-closure, we have cnj ≤ cni + cij , so it satisfies the inequalities.

Now consider the case where all bounds do not exist. Let R be the set of
variables that have a bound on −xn + xi and let R be its complement. Set
xi = cni as before, for variables in R, except xn which we set to zero. Now we
find a way to fill in the values of xj in R. Note that there can be no bound of the
form −xi + xj ≤ cij for xi ∈ R, xj ∈ R because then by path-closure we would
have a bound −xn + xj ≤ cni + cij which contradicts xj ∈ R.

Thus, assigning values to variables in R can impose lower bounds on variables
in R, but not upper bounds. Since the whole HSDBM is non-empty we can find
a solution y to the subsystem of constraints that only involve variables in R.
Moreover, t + y is a solution for any real t ∈ DRZ where DR is the LCM of
the congruence divisors of variables in R. By making t sufficiently large, t + y

290 A. Pitchanathan et al.

satisfies the lower bounds imposed by substituting values for R variables. Thus
we have a solution making all the bounds cni tight. Also, by increasing t we can
make the variables in R arbitrarily large so these are unbounded above.

To prove the case of bounds on −xi + xn, negate all the variables so that
bounds on −xn + xi become bounds on −xi + xn and vice versa. Now we can
apply the same proof as above. �	

Therefore, to normalize a satisfiable HSDBM with variable bounds, we:

1. Convert the system into VBF form,
2. Bring the converted system into path-closed and GCD-tightened form,
3. Convert the system back to a form with variable bounds, and
4. Binary search on the remaining inequalities to normalize them.

If the system was not satisfiable, we would find out at step 2, at which point we
can normalize the system by setting it to some canonical unsatisfiable HSDBM.

Let us now consider how to congruence-normalize simple HSDBMs; in this
setting we require that the normal form’s congruence constraints have remainder
zero.

Definition 24. A congruence-normalized VBF HSDBM where the congruence
constraint system implies all other valid congruence constraint systems for that
solution set, i.e., an HSDBM with congruence divisors d∗

1, . . . d
∗
n is congruence-

normalized if for all HSDBMs with the same solution set having congruence
divisors say d1, . . . dn, it holds that each di | d∗

i .

Note that the above definition depends only on the solution set of a system,
and so the normalized congruence system of any two systems having the same
solution set will be the same. In a simple HSDBM, xn can always take all values in
dnZ by the shifting lemma (Lemma 12), so any system with the same solution set
will have the same congruence dn for xn. Therefore, d∗

n = dn. We now normalize
the remaining congruences iteratively, starting from xn−1 and going downwards.
Suppose that we already computed d∗

i+1, . . . d
∗
n and we want to compute d∗

i .
Note that for any valid congruence system it holds that di | di+1 | d∗

i+1 by
the harmonic property and congruence normalization. Thus d∗

i is the maximum
of all di | d∗

i+1 such that xi ∈ diZ holds in the solution set. By the projection
lemma (Lemma 16), we can reduce this to finding the largest possible divisor for
x1 in a given constraint system with divisors d1, . . . dn. As shown above we only
need to consider divisors m | d2. For it to be a valid divisor, it also needs to not
be so dense as to allow additional solutions; we ensure this by mandating that
d1 | m. Note that the greatest divisor cannot be a non-multiple of d1 anyway,
since if m is a valid congruence for x1 then so is lcm(d1,m).

Theorem 25. Let H be an inequality-normalized simple HSDBM. Let L be the
set of m ∈ N such that d1 | m | d2 and for any solution x of H, it holds that
x1 ∈ mZ. We are interested in the sparsest possible congruence divisor, maxL.
Let g be the GCD of all ci1 and c1i, and let q = gcd(g, d2).

Strided Difference Bound Matrices 291

Then maxL is either d1 or q. Moreover, it is q iff a specific other HSDBM
H ′ is unsatisfiable, where the constraint system H ′ can be computed in linear
time from the system H.

Proof. We first show that for any r ∈ L, r | g. Suppose not, then without loss of
generality, r does not divide some ci1. Since the system is inequality normalized,
it has some solution satisfying x1 = xi + ci1. But since xi ∈ diZ ⊆ rZ and
c1i /∈ rZ, we have x1 /∈ rZ, so r /∈ L which is a contradiction. So this case is
impossible and we have r | g. Since r | d2, we have r | gcd(g, d2) = q. Thus,
maxL | q. If q = d1, we are done and maxL = d1.

Otherwise, let q �= d1. We now show that either q | maxL, implying maxL =
q, or maxL = d1. Let S2:n be the projection of the solution set onto x2, . . . xn.
For now, assume that all constraints in the system exist. Then every assignment
(p2, . . . pn) ∈ S2:n implies constraints of the form pi − c1i ≤ x1 ≤ pi + ci1. So the
set of possible x1 values for this assignment is

⋂n
i=2[pi − c1i, pi + ci1]∩ d1Z. This

set is non-empty by the definition of S2:n. Since q | d2 | pi for all i ≥ 2 and q
divides all the coefficients c1i and ci1, all interval endpoints are multiples of q.
Therefore the endpoints of the intersection are also multiples of q. Since d1 | q, if
the intersection contains more than one element then it definitely contains two
adjacent multiples of d1, implying maxL = d1. Otherwise, if the intersection
contains exactly one element, that element is surely a multiple of q.

Thus, q | maxL if for all points in S2:n, the intersection of the intervals
is a singleton. Otherwise, maxL = d1. The intersection of some intervals is a
singleton iff the right endpoint of some interval equals the left endpoint of some
interval, possibly the same one. So we have to check whether, for every valid
assignment in S2:n, some two intervals [xi − c1i, xi + ci1] and [xj − c1j , xj + cj1]
intersect only at their endpoints, i.e., there always exist some i, j ∈ {2, . . . n} such
that xi + ci1 = xj − c1j , i.e., −xj + xi = ci1 + c1j . Note that by path closure, if
x2, . . . xn ∈ S2:n, then it already holds that −xj+xi ≤ cji ≤ cj1+c1i. So it is only
left to check whether ∀x2, . . . xn ∈ S2:n, ∃i, j ∈ {2, . . . n}, −xj + xi ≥ cj1 + c1i.
This is equivalent to �x2, . . . xn ∈ S2:n, ∀i, j ∈ {2, . . . n}, −xj+xi < cj1+c1i, by
logically negating twice. The strict inequality is equivalent to the constraint that
−xj+xi ≤ cj1+c1i−1 since all variables are integers. By the HSDBM projection
lemma (Lemma 16), a vector belongs to S2:n iff it satisfies the constraints on
those variables in the HSDBM. Thus the condition above can be checked using
a single HSDBM satisfiability check.

If some of the c1i or ci1 bounds did not exist then the corresponding intervals
in the intersection would have ranged till infinity on that side. Still, the same
conclusion holds: maxL �= d1 iff the intersection is a singleton, meaning that
some two finite endpoints have to coincide, and the rest of the proof proceeds
the same way. Whenever some c1i or ci1 does not exist we simply do not add
any of the bounds in the constructed system that depend on that bound. �	

Generalizing to HSDBMs with Variable Bounds. When variable bounds
exist, it is possible for a variable to take only a single value, in which case any

292 A. Pitchanathan et al.

congruence divisor is valid and the sparsest congruence constraint is not well-
defined. In this case, in inequality-normalized form, the variable will have upper
and lower bounds equal, so we can immediately detect this case by looking
at the variable bounds. When this happens, we first eliminate these variables
by substituting in the single value that they can take. We then compute the
congruence normalization of the resulting system, then add back the eliminated
variables and give them some canonical congruence constraint that preserves the
harmonic property. For example, use x1 ≡ 0 mod 1 if it is the first variable and
use the divisor of the previous variable otherwise.

We now consider congruence normalization of systems with variable bounds
where every variable takes at least two values.

Lemma 26. Let C be an SDBM with variable bounds, where each variable takes
at least two values. Let C ′ be the system converted into VBF form with the added
variable xn+1 having divisor D, with Dlcm | D. Let e1, . . . en be the normalized
congruence divisors of the converted system, and let d∗

1, . . . d
∗
n be the sparsest

congruences for the original system. Then ∀i, ei = gcd(D, d∗
i).

Proof. Let S be the set of values xi takes in C and let T be the set of values it
takes in C ′. Then T = {x+tD | x ∈ S, t ∈ Z} by the shifting lemma (Lemma 12).
The sparsest congruence divisor for S is the GCD of all elements in S, which we
call g. Similarly, the sparsest congruence divisor for T is the GCD of all elements
in T , which is equal to gcd(g,D) since for any a, gcdt∈Z

(a+ tD) = gcd(a,D). �	
Lemma 27. In an HSDBM with variable bounds where xn takes at least two
possible values, the sparsest possible congruence divisor for xn is dn.

Proof. Convert the system to VBF form. Let xn+1 be the variable added for the
conversion. By the projection lemma (Lemma 16), the set of valid values of these
two variables is the set of constraints involving only them. The set of valid values
of xn in the original system is the set of values of xn in the converted system
with xn+1 = 0, and is therefore the set of multiples of dn within the variable
bounds of xn. Thus the sparsest congruence divisor for xn is still dn. �	

We now show how to compute the sparsest congruence constraints.

Theorem 28. Given an HSDBM with variable bounds where every variable
takes at least two values, the sparsest congruence constraints are equal to sparsest
constraints for the system after converting to VBF form.

Proof. We convert the system to VBF form by adding a variable xn+1 with
congruence divisor dn+1 := dn. We then compute its congruence normalization
to obtain divisors e1 | · · · | en | en+1. Let d∗

1 | · · · | d∗
n be the true sparsest

congruences for the input system. Then ei = gcd(dn+1, d
∗
i) by Lemma 26 and

dn+1 = dn = d∗
n by Lemma 27. Hence ei = gcd(d∗

n, d∗
i) = d∗

i since d∗
i | d∗

n. �	

Strided Difference Bound Matrices 293

Generalizing to Arbitrary Congruence Constraints. For HSDBMs with
arbitrary congruence constraints, we can find any solution and shift the system
so that the origin becomes a solution. Then all valid congruence constraints have
remainder zero since there is a solution at the origin. Computing the sparsest
possible congruence for this system and performing the inverse shift therefore
gives us the sparsest possible congruence for the original system.

5 Operations for Abstract Interpretation

We introduce intersection, equality, inclusion, and join operations for
(H)SDBMs, completing the set of operations typically required for abstract inter-
pretation.

Intersection. To intersect, we just take the tighter of the bounds on each
−xi + xj and of the variable bounds.

Equality. We check if two HSDBMs have equal solution sets by checking if their
normal forms are equal. For simple SDBMs, we first check if their normalized
inequalities are equal, then compare congruences: given an SDBM C, D ∈ N

such that all di | D, and r ∈ {1, . . . D − 1}, there exists a solution with xi ≡ r
mod D iff there exists one with xi = r, by the shifting lemma (Lemma 12).

Now given two VBF SDBMs, let D be the LCM of their congruence divisors.
Checking which values modulo D each variable can take in each system takes
2nD satisfiability checks. If both are equal and the normalized inequalities are
also equal then both systems have equal solution sets. Otherwise, they do not.

Now given two SDBMs with variable bounds, we again set D to be the LCM
of the congruence divisors and inequality normalize both, then convert them to
VBF form using the same congruence divisor D for the added variable. The two
original systems are equivalent iff the converted systems are, and we know how
to check equality of solution sets for VBF SDBMs.

Inclusion. We can check for inclusion using intersection and equality checks
since for sets A and B, we have A ⊆ B iff A ∩ B = A.

Join. Given two SDBMs in normal form, the system with the smallest solution
set that encompasses both the inputs’ solution sets is the system that takes the
looser of the two bounds on each −xi + xj . When one of the systems has no
bound, the result should have no bound either. This follows from Definition 22.

For the congruences of the joined system, we compute the congruence nor-
malization of both the input systems and for each variable, take the sparsest
congruence constraints that encompass both. Say the two constraints are x ≡ r1
mod q1 and x ≡ r2 mod q2. Let p be any solution to these two constraints, then
the two constraints are equivalent to x − p ≡ 0 mod q1 and x − p ≡ 0 mod q2
respectively. The sparsest constraint that holds for x − p satisfying either one of
these constraints is x − p ≡ 0 mod gcd(q1, q2), i.e., x ≡ p mod gcd(q1, q2).

294 A. Pitchanathan et al.

Finding an Equivalent Simple Representation of an SDBM. It may
sometimes be useful to find a simple representation of an SDBM, if one exists.
A satisfiable SDBM C with variable bounds can never have the same solution
set as a VBF SDBM C ′, because by the shifting lemma (Lemma 12), for any
solution x of C ′, there exists a constant D such that x+kD is also a solution for
any integer k. Hence the solution set of C ′ does not satisfy any variable bounds
and so is different from that of C.

A VBF SDBM C with non-zero remainders admits a simple SDBM represen-
tation if there is a way to replace its congruence constraints with zero-remainder
constraints while preserving the same solution set. This can be determined by
computing the possible remainders of all variables modulo Dlcm. By the shifting
lemma, a remainder xi ≡ ri mod Dlcm is possible iff there is a solution with
xi = ri, which amounts to a satisfiability check.

Let gi be the GCD of all possible remainders obtained above and Dlcm. By
the shifting lemma, gi is the GCD of all valid values of xi. To ensure that our
new congruence constraint for xi does not invalidate any solutions of the original
system, it is necessary and sufficient that the new divisor be a divisor of gi.

To disallow any extraneous solutions, we make the congruence constraint as
sparse as possible. Consider the system C ′ with congruence constraints xi ≡ 0
mod gi and the inequality constraints of C. C can be represented by a simple
SDBM with the same solution set iff C and C ′ have the same solution set, which
we can check as described above.

6 Empirical Study

The goal of this study is to demonstrate the suitability of SDBM for program
representation and analysis. To this end, we instrumented several optimizing
compilers that use polyhedral domains internally and analyzed those domains.
Evaluating the compilation time or the run time of the compiled program is
beyond the scope of the study as it requires additional engineering to compete
with highly-optimized Presburger arithmetic libraries [44,50].

6.1 Methodology

We instrumented the following compilation and analysis projects.

– The MLIR compiler infrastructure [33], widely used in production to sup-
port domains ranging from machine learning compilers to hardware synthe-
sis. We used MLIR version llvmorg-18-init-16246-g4daea501c4fc (Jan
5, 2024) and compiled the test suite provided with the project using ninja
check-mlir. We collected statistics from 2176 compiler invocations. Some
tests feature multiple invocations.

– The Polygeist CUDA-to-OpenMP cross-compiler [40] based on the archived
artifact [41]. We compiled 17 benchmarks from the CUDA subset of the
Rodinia suite [10] accepted by Polygeist with the same 7 configurations as [41].

Strided Difference Bound Matrices 295

– The PPCG polyhedral compiler [51] version 0.09.1 (Apr 2, 2023, most recent
release). We compiled 30 benchmarks from the Polybench/C benchmark
suite version 4.2.1 [45] using ppcg –target=c –openmp –tile to enable
autoscheduling, parallelization and tiling.

MLIR and MLIR-based Polygeist were instrumented to intercept the cre-
ation of affine expressions and sets bounded by such expressions as well as (inte-
ger) emptiness checks of these sets. For each expression and set, we verified
whether it can be expressed as a (H)SDBM. We say that an expression can be
In MLIR, unique expressions are reused so that the collected statistics reflect
unique SDBM objects that existed throughout the execution of the test. PPCG,
and its underlying isl library [50], were instrumented to check if the following
objects fit (H)SDBM: affine constraints, convex sets, unions thereof and unions
of non-convex sets in multiple vector spaces. We collected all such objects at
several moments in the compilation process: after constructing the initial rep-
resentation, after performing dependence analysis, before and after scheduling,
and just before final code generation.

6.2 Prevalence of SDBMs

MLIR. Out of 2176 test cases, 1264 (58.1%) construct affine expressions
throughout their lifetime. The following analysis focuses only on those. Overall,
96.3% of affine expressions and 95.6% of integer sets (we consider MLIR multi-
dimensional affine maps as such) can be represented using SDBM. 714 (56.5%)
of the cases use only SDBM expressions. In the remaining cases, 90.3% ± 15.91

of expressions and 88.2% ± 17.5 sets can be represented using SDBM.
45 of the test cases perform a total of 7695 emptiness checks. 6262 (81.4%) of

these are performed on HSDBM integer sets, and none on more general SDBMs.
22 (48.9%) test cases perform emptiness checks only on HSDBM. In the remain-
ing cases, 73.5% ± 37.7 of the checks are performed on HSDBM sets.

These results suggest that SDBM is sufficient to represent a large fraction of
affine constructs appearing in a compiler infrastructure supporting polyhedral
compilation [31], machine learning compilers [34], high-level synthesis [54] and
other hardware design [21]. It is worth noting that the test suite covers rare
representational edge cases, so practical applications may have better coverage.
For example, many non-SDBM expressions are found in Affine dialect tests,
which exercise the full expressive power of (quasi-)affine expressions, including
divisions by parameters, huge coefficients, or expressions with hundreds of terms.

Some of the 17 compiled benchmarks consist of multiple translation units
processed separately, for a total of 39. Each one was compiled with 7 different
configurations, leading to the total of 273 test cases. Out of these, 266 (97.4%)
construct affine expressions and 50 (18.3%) perform emptiness checks.

1 The μ ± σ notation indicates the mean and standard deviation.

296 A. Pitchanathan et al.

Polygeist. 96.3% of the affine expressions and 95.6% of the integer sets fit the
SDBM domain. 185 (69.5%) cases use only SDBM constructs. The remaining
cases have 95%± 5.1 and 93.8%± 6.4 SDBM expressions and sets, respectively.

These test cases perform a total of 540 emptiness checks all of which can be
expressed using HSDBM. In Polygeist, emptiness checks are performed during
dependence analysis. Since the benchmarks are originally written in CUDA, they
use only simple single-variable subscript expressions, leading to compatible i− j
expressions in dependence relations.

These results indicate that SDBM is suitable for end-to-end compilation,
even if a more expressive representation may be occasionally required. Note also
the higher ratio compared to the MLIR test suite.

PPCG. While none of the benchmarks can be completely processed using exclu-
sively SDBM, most steps of the compilation process are largely compatible.
Specifically, the initial representation of the program uses only SDBM for 25
(83.3%) programs, and the result of dependence analysis is representable for 26
(86.7%) programs. ILP-based affine scheduling does not match SDBM require-
ments for any of the programs since it extensively uses multi-variable expressions
through its use of the Farkas lemma [49]. On the other hand, the resulting sched-
ule can be expressed as a union of SDBM integer sets for 21 (70%) programs.
Using the hierarchical form of the schedule [52] instead of a flat union brings this
number up to 24 (80%). When applying loop tiling on a hierarchical schedule,
23 (76.7%) programs still use only SDBM with divisibility constraints associated
with tile sizes. Finally, code generation is expressible only for the one program,
durbin.c, as it produces linearized expressions of the form C · i + ii to recom-
bine loop indexes after tiling (such linearization was previously avoided in the
hierarchical schedule); durbin.c does not contain a tileable loop nest and only
accesses single-dimensional arrays with subscripts of the form i and i - j - C,
which are SDBM. We could also confirm our intuition that all SDBM expressions
are also HSDBM. This is due to congruences being introduced by tiling, which
uses the fixed factor of 32 by default. We verified this by disabling tiling, which
brought the number of supported test cases for flat schedule and code generation
to 21 (70%). Tile factors are typically chosen as powers of two or fractions of
the problem sizes, so they are likely to remain divisible.

Overall, across all stages and benchmarks, 85.6%± 21.6 of affine constraints
and 78.1%±37 sets are SDBM. This number ranges from 41.5%±14.3 constraints
for the ILP set to 99.8% ± 0.5 for dependency analysis, and from 10.8% ± 24.2
sets for code generation to 99.6% ± 1.1 for dependency analysis. These results
suggest that SDBM combined with structured affine representations such as
schedule trees may power a large part of a polyhedral compiler, for all stages
except ILP-based affine scheduling.

Strided Difference Bound Matrices 297

6.3 Applications to Translation Validation

We additionally used our instrumented version of MLIR2 to process three end-
to-end machine learning models as described in [5]. Specifically, we took the
following models (fetched on January 19, 2024).

– text_classification_v2 obtained from https://www.tensorflow.org/lite/
examples/text_classification/overview.

– MobileNet v3, variation “large-075-224-classification” obtained from https://
www.kaggle.com/models/google/mobilenet-v3/frameworks/tfLite.

– SqueezeNet: https://www.kaggle.com/models/tensorflow/squeezenet.

We further converted these models from the original TFLite format into
the MLIR TOSA dialect using the TensorFlow tool flatbuffer_translate
–tflite-flatbuffer-to-mlir to yield a TFLite MLIR representation, as well
as tf-opt –tfl-to-tosa-pipeline to obtain TOSA.3 We do not run the mod-
els but (partially) compile them along the lines of [5] using the command:4

mlir-opt --pass-pipeline=’builtin.module(func.func(tosa-optional-decompositions),
canonicalize, func.func(tosa-infer-shapes, tosa-make-broadcastable, tosa-to-linalg-named),
canonicalize, func.func(tosa-layerwise-constant-fold, tosa-make-broadcastable),
tosa-validate, func.func(tosa-to-linalg, tosa-to-arith, tosa-to-tensor),
linalg-fuse-elementwise-ops, one-shot-bufferize)’

We collected SDBM-related statistics from all three cases in Table 1. None of the
models required an emptiness check.

Table 1. SDBM is sufficient to represent most affine sets and expressions during the
partial compilation pipeline from TOSA to the bufferized Linalg dialect in MLIR.

Model Sets Expressions
Total SDBM Total SDBM

Text Classification 4099 4099 (100%) 9148 9148 (100%)
MobileNet 58876 52596 (89.3%) 208840 202110 (96.8%)
SqueezeNet 28131 27806 (98.8%) 96140 95490 (99.3%)

2 llvmorg-18-init-16246-g4daea501c4fc(Jan 5,2024), same for MLIR test suite.
3 Both were compiled from source: https://github.com/tensorflow/tensorflow version
ae7eb0931d2973095, which depends on a different version of MLIR, but the textual
representation of TOSA in both is compatible.

4 We noticed the existing flag tosa-to-linalg-pipeline does not produce any
code, so we reconstructed the MLIR pass pipeline from its source code in
mlir/lib/Conversion/TosaToLinalg/TosaToLinalgPass.cpp. Notable differences
with the previously reported pipeline include additional TOSA normalization passes
and the decomposition of the Standard MLIR dialect into the Arith and Tensor
dialects, as well as the recomposition of bufferization passes into a single one.

https://www.tensorflow.org/lite/examples/text_classification/overview
https://www.tensorflow.org/lite/examples/text_classification/overview
https://www.kaggle.com/models/google/mobilenet-v3/frameworks/tfLite
https://www.kaggle.com/models/google/mobilenet-v3/frameworks/tfLite
https://www.kaggle.com/models/tensorflow/squeezenet
https://github.com/tensorflow/tensorflow

298 A. Pitchanathan et al.

7 Related Work

The relevance of weakly relational domains for loop parallelization and opti-
mization is well established [1]. More recently, UTVPI approximations enabling
complex affine transformations (such as those enabled by PPCG in the empirical
evaluation) have also been identified [49]. But these techniques remain unaware
of congruence properties, missing optimization opportunities as a result [49].

There is a rich literature on sub-polyhedral domains [22]. APRON5 [30] pro-
vides a reference implementation for many of these. See also ELINA6 [47] for
advanced algorithms and optimizations. Combinations of abstract domains are
popular in static analysis [14,17]. These aim at increasing precision by “cross-
fertilization” of analyses without the need for new abstract domains. Yet actual
intersections of sub-polyhedral domains received much less attention. Bygde sur-
veys some of these [9], the most closely related being the trapezoidal domain [36]
which combines lattices with intervals, forming a non-relational domain.

Considering SDBM algorithms themselves, our iterative approach to the sat-
isfiability problem is reminiscent of the dynamic all-pairs shortest paths [19] and
incremental closure algorithms [29]. Complexity results in this space relate to
the cubic upper bound of the Floyd-Warshall algorithm and do not contribute
to improving the complexity of the GCD tightening iterations.

The weak NP-completeness of TVPI has been established by Hochbaum and
Naor [26–28], together with a (pseudo-polynomial) integer linear programming
algorithm that is quadratic in the largest bound of the inequalities. Our SDBM
algorithm has lower complexity and also makes it pseudo-polynomial in the
congruence divisors instead. In compilation problems of interest, congruences
correspond to tile and vector sizes dictated by hardware parameters; they are
much smaller than bounds of the iteration spaces and arrays.

8 Conclusion

We introduced the Strided Difference Bound Matrix (SDBM) abstraction com-
bining two-variable inequalities with congruence constraints. We demonstrated
the prevalence of these across the compiler test suites of MLIR, Polygeist and
PPCG. We showed that the satisfiability of SDBM is NP-hard but also admits an
algorithm pseudo-linear in the LCM of the congruence divisors. We identified the
Harmonic SDBM (HSDBM) sub-case that commonly arises in compilation prob-
lems for deep learning and other areas. HSDBM satisfiability has a worst-case
complexity of O(n4), which is practical for uses in compilers and has the poten-
tial to accelerate verification tools based on more general Presburger arithmetic.
We gave an O(mn4 log(nDlcm)) algorithm for HSDBM normalization. Finally,
given a pair of normalized HSDBM, we showed linear-time algorithms to check
for equality and to perform the join operation. The design of a widening operator,
also necessary for abstract interpretation, is left for future work.

5 https://antoinemine.github.io/Apron/doc/api/c.
6 https://elina.ethz.ch.

https://antoinemine.github.io/Apron/doc/api/c
https://elina.ethz.ch

Strided Difference Bound Matrices 299

Disclosure of Interests.. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures: A
Dependence-Based Approach. Morgan Kaufmann, San Francisco (2001)

2. Alur, R.: Timed automata. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS,
vol. 1633, pp. 8–22. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48683-6_3

3. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

4. Bagnara, R., Hill, P.M., Ricci, E., Zaffanella, E.: Precise widening operators for
convex polyhedra. Sci. Comput. Program. 58(1–2), 28–56 (2005). https://doi.org/
10.1016/j.scico.2005.02.003

5. Bang, S., Nam, S., Chun, I., Jhoo, H.Y., Lee, J.: SMT-based translation validation
for machine learning compiler. In: Shoham, S., Vizel, Y. (eds.) CAV 2022. LNCS,
vol. 13372, pp. 386–407. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-13188-2_19

6. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL — a tool
suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A.,
Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg
(1996). https://doi.org/10.1007/BFb0020949

7. Berthomieu, B., Menasche, M.: An enumerative approach for analyzing time petri
nets. In: Mason, R.E.A. (ed.) Information Processing 83, Proceedings of the IFIP
9th World Computer Congress, Paris, France, 19–23 September, 1983, pp. 41–46.
North-Holland/IFIP (1983)

8. Blanchet, B., et al.: A static analyzer for large safety-critical software. In: Proceed-
ings of the ACM SIGPLAN 2003 Conference on Programming Language Design
and Implementation, pp. 196–207 (2003)

9. Bygde, S.: Abstract Interpretation and Abstract Domains. Master’s thesis,
Mälardalen University (2006). http://www.es.mdu.se/publications/948-

10. Che, S., et al.: Rodinia: a benchmark suite for heterogeneous computing. In: 2009
IEEE International Symposium on Workload Characterization (IISWC), pp. 44–54
(2009). https://doi.org/10.1109/IISWC.2009.5306797

11. Chen, T., et al.: TVM: an automated End-to-End optimizing compiler for deep
learning. In: 13th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), Carlsbad, CA, pp. 578–594. USENIX Association (2018).
https://www.usenix.org/conference/osdi18/presentation/chen

12. Child, R., Gray, S., Radford, A., Sutskever, I.: Generating long sequences with
sparse transformers. CoRR abs/1904.10509 (2019). http://arxiv.org/abs/1904.
10509

13. Clément, B., Cohen, A.: End-to-end translation validation for the halide lan-
guage. Proc. ACM Program. Lang. 6(OOPSLA1) (2022). https://doi.org/10.1145/
3527328

14. Codish, M., Mulkers, A., Bruynooghe, M., de la Banda, M.G., Hermenegildo, M.:
Improving abstract interpretations by combining domains. In: Proceedings of the
1993 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Pro-
gram Manipulation. PEPM ’93, New York, NY, USA, pp. 194–205. Association for
Computing Machinery (1993). https://doi.org/10.1145/154630.154650

https://doi.org/10.1007/3-540-48683-6_3
https://doi.org/10.1007/3-540-48683-6_3
https://doi.org/10.1016/j.scico.2005.02.003
https://doi.org/10.1016/j.scico.2005.02.003
https://doi.org/10.1007/978-3-031-13188-2_19
https://doi.org/10.1007/978-3-031-13188-2_19
https://doi.org/10.1007/BFb0020949
http://www.es.mdu.se/publications/948-
https://doi.org/10.1109/IISWC.2009.5306797
https://www.usenix.org/conference/osdi18/presentation/chen
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1904.10509
https://doi.org/10.1145/3527328
https://doi.org/10.1145/3527328
https://doi.org/10.1145/154630.154650

300 A. Pitchanathan et al.

15. Cook, W., Gerards, A.M.H., Schrijver, A., Tardos, É.: Sensitivity theorems in inte-
ger linear programming. Math. Program. 34(3), 251–264 (1986)

16. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

17. Cousot, P., Cousot, R., Mauborgne, L.: The reduced product of abstract domains
and the combination of decision procedures. In: Hofmann, M. (ed.) FoSSaCS 2011.
LNCS, vol. 6604, pp. 456–472. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19805-2_31

18. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages. POPL ’78, New York, NY, USA, pp. 84–
96, Association for Computing Machinery (1978).https://doi.org/10.1145/512760.
512770

19. Demetrescu, C., Italiano, G.F.: A new approach to dynamic all pairs shortest paths.
In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Com-
puting, pp. 159–166. STOC ’03, New York, NY, USA. Association for Computing
Machinery (2003). https://doi.org/10.1145/780542.780567

20. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-52148-8_17

21. Eldridge, S., et al.: MLIR as hardware compiler infrastructure. In: Workshop on
Open-Source EDA Technology (WOSET) (2021)

22. Gange, G., Ma, Z., Navas, J.A., Schachte, P., Søndergaard, H., Stuckey, P.J.: A
fresh look at zones and octagons. ACM Trans. Program. Lang. Syst. 43(3) (2021).
https://doi.org/10.1145/3457885

23. Granger, P.: Static analysis of arithmetical congruences. Int. J. Comput. Math.
30(3–4), 165–190 (1989). https://doi.org/10.1080/00207168908803778

24. Granger, P.: Static analysis of linear congruence equalities among variables of a
program. In: Abramsky, S., Maibaum, T.S.E. (eds.) CAAP 1991. LNCS, vol. 493,
pp. 169–192. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-53982-
4_10

25. Henzinger, T.: The theory of hybrid automata. In: Proceedings 11th Annual IEEE
Symposium on Logic in Computer Science, pp. 278–292 (1996).https://doi.org/10.
1109/LICS.1996.561342

26. Hochbaum, D.S.: Monotonizing linear programs with up to two nonzeroes per
column. Oper. Res. Lett. 32(1), 49–58 (2004). https://doi.org/10.1016/S0167-
6377(03)00074-9

27. Hochbaum, D.S.: Applications and efficient algorithms for integer programming
problems on monotone constraints. Networks 77(1), 21–49 (2021)

28. Hochbaum, D.S., Naor, J.S.: Simple and fast algorithms for linear and integer
programs with two variables per inequality. SIAM J. Comput. 23(6), 1179–1192
(1994). https://doi.org/10.1137/S0097539793251876

29. Howe, J.M., King, A., Simon, A.: Incremental closure for systems of two variables
per inequality. Theoret. Comput. Sci. 768, 1–42 (2019)

30. Jeannet, B., Miné, A.: Apron: a library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4_52

31. Katel, N., Khandelwal, V., Bondhugula, U.: MLIR-based code generation for gpu
tensor cores. In: Proceedings of the 31st ACM SIGPLAN International Conference

https://doi.org/10.1007/978-3-642-19805-2_31
https://doi.org/10.1007/978-3-642-19805-2_31
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/780542.780567
https://doi.org/10.1007/3-540-52148-8_17
https://doi.org/10.1145/3457885
https://doi.org/10.1080/00207168908803778
https://doi.org/10.1007/3-540-53982-4_10
https://doi.org/10.1007/3-540-53982-4_10
https://doi.org/10.1109/LICS.1996.561342
https://doi.org/10.1109/LICS.1996.561342
https://doi.org/10.1016/S0167-6377(03)00074-9
https://doi.org/10.1016/S0167-6377(03)00074-9
https://doi.org/10.1137/S0097539793251876
https://doi.org/10.1007/978-3-642-02658-4_52

Strided Difference Bound Matrices 301

on Compiler Construction. CC 2022, New York, NY, USA, pp. 117–128. Associa-
tion for Computing Machinery (2022). https://doi.org/10.1145/3497776.3517770,
https://doi.org/10.1145/3497776.3517770

32. Lagarias, J.C.: The computational complexity of simultaneous diophantine approx-
imation problems. SIAM J. Comput. 14(1), 196–209 (1985)

33. Lattner, C., et al.: MLIR: scaling compiler infrastructure for domain specific com-
putation. In: 2021 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), pp. 2–14 (2021). https://doi.org/10.1109/CGO51591.2021.
9370308

34. Liu, H.I.C., Brehler, M., Ravishankar, M., Vasilache, N., Vanik, B., Laurenzo, S.:
TINYIREE: an ml execution environment for embedded systems from compilation
to deployment. IEEE Micro 42(5), 9–16 (2022). https://doi.org/10.1109/MM.2022.
3178068

35. Martens, J., Grosse, R.: Optimizing neural networks with kronecker-factored
approximate curvature. In: Proceedings of the 32nd International Conference on
International Conference on Machine Learning - Volume 37. ICML’15, pp. 2408-
2417. JMLR.org (2015)

36. Masdupuy, F.: Array abstractions using semantic analysis of trapezoid congru-
ences. In: Kennedy, K., Polychronopoulos, C.D. (eds.) Proceedings of the 6th Inter-
national Conference on Supercomputing, ICS 1992, Washington, DC, USA, July
19-24, 1992, pp. 226–235. ACM (1992).https://doi.org/10.1145/143369.143414

37. Miné, A.: A new numerical abstract domain based on difference-bound matrices. In:
Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44978-7_10

38. Miné, A.: The octagon abstract domain. In: Proceedings of the Eighth Working
Conference on Reverse Engineering (WCRE’01). WCRE ’01, USA, p. 310. IEEE
Computer Society (2001)

39. Miné, A.: The octagon abstract domain. CoRR abs/cs/0703084 (2007). http://
arxiv.org/abs/cs/0703084

40. Moses, W.S., Chelini, L., Zhao, R., Zinenko, O.: Polygeist: raising c to poly-
hedral MLIR. In: 2021 30th International Conference on Parallel Architectures
and Compilation Techniques (PACT), pp. 45–59 (2021).https://doi.org/10.1109/
PACT52795.2021.00011

41. Moses, W.S., Ivanov, I.R., Domke, J., Endo, T., Doerfert, J., Zinenko, O.: High-
performance GPU-to-CPU transpilation and optimization via high-level parallel
constructs. In: PPoPP ’23, New York, NY, USA, pp. 119–134. Association for
Computing Machinery (2023). https://doi.org/10.1145/3572848.3577475

42. Ore, O.: The general Chinese remainder theorem. Am. Math. Mon. 59(6), 365–370
(1952)

43. Pitchanathan, A., Cohen, A., Zinenko, O., Grosser, T.: Strided difference bound
matrices. CoRR abs/2405.11244 (2024) .https://doi.org/10.48550/ARXIV.2405.
11244

44. Pitchanathan, A., Ulmann, C., Weber, M., Hoefler, T., Grosser, T.: FPL: fast pres-
burger arithmetic through transprecision. Proc. ACM Program. Lang. 5(OOPSLA)
(2021). https://doi.org/10.1145/3485539

45. Pouchet, L.N., Yuki, T.: Polybench/c 4.2.1. https://sourceforge.net/projects/
polybench/

46. Reinking, A., Bernstein, G.L., Ragan-Kelley, J.: Formal semantics for the halide
language. CoRR abs/2210.15740 (2022). https://doi.org/10.48550/ARXIV.2210.
15740

https://doi.org/10.1145/3497776.3517770
https://doi.org/10.1145/3497776.3517770
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/MM.2022.3178068
https://doi.org/10.1109/MM.2022.3178068
https://doi.org/10.1145/143369.143414
https://doi.org/10.1007/3-540-44978-7_10
http://arxiv.org/abs/cs/0703084
http://arxiv.org/abs/cs/0703084
https://doi.org/10.1109/PACT52795.2021.00011
https://doi.org/10.1109/PACT52795.2021.00011
https://doi.org/10.1145/3572848.3577475
https://doi.org/10.48550/ARXIV.2405.11244
https://doi.org/10.48550/ARXIV.2405.11244
https://doi.org/10.1145/3485539
https://sourceforge.net/projects/polybench/
https://sourceforge.net/projects/polybench/
https://doi.org/10.48550/ARXIV.2210.15740
https://doi.org/10.48550/ARXIV.2210.15740

302 A. Pitchanathan et al.

47. Singh, G., Püschel, M., Vechev, M.: Fast polyhedra abstract domain. In: Pro-
ceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages. POPL ’17, New York, NY, USA, pp. 46–59. Association for Computing
Machinery (2017). https://doi.org/10.1145/3009837.3009885

48. Tillet, P., Kung, H.T., Cox, D.: Triton: an intermediate language and compiler
for tiled neural network computations. In: Proceedings of the 3rd ACM SIG-
PLAN International Workshop on Machine Learning and Programming Languages.
MAPL 2019, pp. 10–19, New York, NY, USA. Association for Computing Machin-
ery (2019). https://doi.org/10.1145/3315508.3329973

49. Upadrasta, R., Cohen, A.: Sub-polyhedral scheduling using (unit-)two-variable-
per-inequality polyhedra. In: Proceedings of the 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL ’13, New
York, NY, pp. 483–496. USA. Association for Computing Machinery (2013).
https://doi.org/10.1145/2429069.2429127

50. Verdoolaege, S.: isl : an integer set library for the polyhedral model. In: Fukuda,
K., Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp.
299–302. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15582-
6_49

51. Verdoolaege, S., Carlos Juega, J., Cohen, A., Ignacio Gómez, J., Tenllado, C.,
Catthoor, F.: Polyhedral parallel code generation for CUDA. ACM Trans. Archit.
Code Optim. 9(4) (2013). https://doi.org/10.1145/2400682.2400713

52. Verdoolaege, S., Guelton, S., Grosser, T., Cohen, A.: Schedule trees. In: Inter-
national Workshop on Polyhedral Compilation Techniques, Date: 2014/01/20-
2014/01/20, Location: Vienna, Austria (2014)

53. XLA: Accelerated linear algebra. https://www.tensorflow.org/xla and https://
github.com/openxla/xla

54. Zhao, R., Cheng, J.: PHISM: polyhedral high-level synthesis in MLIR. CoRR
abs/2103.15103 (2021). https://arxiv.org/abs/2103.15103

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3009837.3009885
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/2429069.2429127
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.1145/2400682.2400713
https://www.tensorflow.org/xla
https://github.com/openxla/xla
https://github.com/openxla/xla
https://arxiv.org/abs/2103.15103
http://creativecommons.org/licenses/by/4.0/

The Top-Down Solver Verified: Building
Confidence in Static Analyzers

Yannick Stade1 , Sarah Tilscher1,2(B) , and Helmut Seidl1

1 TUM School of Computation, Information and Technology,
Technical University of Munich, Munich, Germany

{yannick.stade,sarah.tilscher,helmut.seidl}@tum.de
2 Department of Computer Science,

Ludwig-Maximilians-Universität Munich, Munich, Germany

Abstract. The top-down solver (TD) is a local fixpoint algorithm for
arbitrary equation systems. It considers the right-hand sides as black
boxes and detects dependencies between unknowns on the fly—features
that significantly increase both its usability and practical efficiency. At
the same time, the recursive evaluation strategy of the TD, combined
with the non-local destabilization mechanism, obfuscates the correctness
of the computed solution. To strengthen the confidence in tools relying on
the TD as their fixpoint engine, we provide a first machine-checked proof
of the partial correctness of the TD. Our proof builds on the observation
that the TD can be obtained from a considerably simpler recursive fix-
point algorithm, the plain TD, by applying an optimization that neither
affects the termination behavior nor the computed result. Accordingly,
we break down the proof into a partial correctness proof of the plain TD,
which is only then extended to include the optimization. The backbone of
our proof is a mutual induction following the solver’s computation trace.
We establish sufficient invariants about the solver state to conclude the
correctness of its optimization, i.e., the plain TD terminates if and only
if the TD terminates, and they return the identical result. The proof
is written using Isabelle/HOL and is available in the archive of formal
proofs.

Keywords: fixpoint algorithm · correctness proof · static analysis

1 Introduction

Fixpoint engines are at the heart of static program analyzers based on abstract
interpretation [9]. An analysis introduces a set of unknowns and a domain of
abstract values, which encode the properties of interest. Consider, e. g., the anal-
ysis of uninitialized variables as used by Java [13] or Kotlin [1]. Here, the

Y. Stade and S. Tilscher—Contributed equally to this research and are ordered alpha-
betically.
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 303–324, 2024.
https://doi.org/10.1007/978-3-031-65627-9_15

https://doi.org/10.5281/zenodo.10938336
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65627-9_15&domain=pdf
http://orcid.org/0000-0001-5785-2528
http://orcid.org/0009-0009-9644-7475
http://orcid.org/0000-0002-2135-1593
https://doi.org/10.1007/978-3-031-65627-9_15

304 Y. Stade et al.

unknowns are program points, while the abstract values are sets of local vari-
ables that have been initialized. The abstract value of an unknown may depend
on the abstract values of preceding program points. These dependencies are for-
malized as an equation x = fx. The right-hand side fx is the intersection of all
sets of definitely initialized variables arriving at x via incoming edges. Such an
incoming edge may be an assignment like a = 5, which adds the variable a to the
set of initialized unknowns. Accordingly, the analysis of the program compiles it
into a system of equations, cf. Example 1. A solution to this system approximates
the concrete set of initialized variables when reaching a program point.

Solutions of equation systems can be computed using fixpoint iteration. Pop-
ular fixpoint algorithms are round-robin [14] and worklist iteration [20]. Both
algorithms, though, have limitations. Round-robin iteration requires a fixed
finite equation system; also, its running time depends on the evaluation order of
unknowns. Worklist iteration is generally more efficient but, at least in the base
setting, also suffers from the restriction that the dependencies between unknowns
must be known beforehand. The latter short-coming is overcome by Vergauwen
et al. [29], de Vilhena et al. [30] where the evaluation of right-hand side functions
is enhanced with self-observation to dynamically detect the dependencies. More
enhanced solvers recursively descend into queried unknowns to obtain their best
values before the evaluation of a right-hand side proceeds. One instance of the
latter is the recursive local descent solver (RLD) [16]. The unknowns, affected by
an updated value, are collected in a local worklist for immediate re-evaluation.

This is in contrast to the top-down solver (TD) [21,22,28]. Like RLD, it relies
on a recursive descent into queried unknowns combined with dynamic detection
of dependencies. However, when an unknown changes its value, the influenced
unknowns are not immediately scheduled for re-evaluation. Instead, all transi-
tively influenced unknowns are marked as unstable so that, when queried again,
their re-evaluation is triggered. The destabilization mechanism, combined with
the delayed re-evaluation, potentially further increases the efficiency of the iter-
ation but also obfuscates the correctness of the TD. Still, due to its conceptual
simplicity, the TD opens possibilities for extensions, e.g., with widening and
narrowing [4,9,10,28] or side-effects [26], which otherwise are not so easy to
incorporate [3]. This is one of the reasons why tools like the Ciao system [15]
or Goblint [31] rely on variants of the TD as fixpoint engines. To strengthen
the confidence in these tools, we formalize the TD with the interactive theorem
prover Isabelle [24,25] and prove it to be partially correct. Here, partial correct-
ness means that assuming the TD terminates, it returns a partial solution of the
equation system.

To accomplish the proof, we build on the observation [28] that the original
TD, which we will also call TD for short, can be obtained from a significantly
simpler fixpoint algorithm that we call the plain TD. The plain TD still uses a
recursive descent into queried unknowns while using a set called to avoid infinite
descent due to unknowns with cyclic dependencies. However, it neither keeps
track of dependencies between unknowns nor maintains a set of stable unknowns
whose value has already been computed. Adding these features to obtain the TD

The Top-Down Solver Verified 305

thus can be seen as an optimization of the plain TD. Accordingly, the proof is
structured into two steps: In the first step, we show the partial correctness of the
plain TD. As this algorithm consists of several mutually recursive functions, the
proof consists of a mutual induction. To make the proof more comprehensible,
we utilize the concept of a computation trace to explain its structure and to
highlight important invariants. In the second step, the invariants of the plain
TD are extended to obtain invariants for the TD. The extensions cover the
correctness and modifications of the additional data structures that collect the
already computed stable unknowns and the dependencies between unknowns.
Additional effort is required to capture the effect of the non-local destabilization
mechanism on those two data structures. Altogether, we prove that the TD and
the plain TD are equivalent, i.e., the TD terminates if and only if the plain TD
terminates and returns the same result whenever they terminate.

For our formalization, we use the function package with domain predicates
and mutual recursion to define the solver algorithms in Isabelle. This allows for
a clean proof structure. The combination of features is, however, not supported
by the code generation framework provided by Isabelle. To obtain executable
solver programs from our formalization we, therefore, refine the programs and
use equivalent versions of the solver algorithms based on partial functions with
options for the code generation. We extract executable code for both solvers
and demonstrate their application on a small example. The formalization in
Isabelle/HOL is publicly available in the archive of formal proofs [27].

2 Preliminaries

We first introduce some notation used throughout the paper. The powerset of a
set M is denoted by P (M), and the set difference of two sets A and B is written
as A − B. Given a mapping f : X → Y , the updated mapping f ⊕ {x �→ y} :
X → Y is defined by (f ⊕ {x �→ y}) x = y and (f ⊕ {x �→ y}) x′ = f x′ for all
x′ �= x. For a mapping f : X → P (X), the transitive closure is the mapping
f+ : X → P (X) where f+ x is the minimal set such that f x ⊆ f+ x and
f y ⊆ f+ x for all y ∈ f+ x. Moreover, the reflexive and transitive closure is the
mapping f∗ : X → P (X) where f∗ x is defined as f∗ x := {x} ∪ f+ x.

For the remainder of this article, we consider some (possibly infinite) set
U of unknowns1 and a domain2

D of abstract values. The set D contains one
special element ⊥ (bottom), used as the initial value for the fixpoint iteration.
Elements from D need to be comparable for equality, but there is no need to
require a partial order or existence of least upper bounds. The equation system
associates each unknown x (the left-hand side) with a right-hand side function
fx, specifying other unknowns’ contribution to the left-hand side x. Following

1 We use the term unknown instead of variable because, in the context of program
analysis, variables usually denote program variables, not unknowns in the equation
system.

2 In program analysis this is often a complete lattice of abstract values describing
concrete program states.

306 Y. Stade et al.

Fecht and Seidl [11], the right-hand side function fx is considered as a black box
functional. The only requirement is that the right-hand side is pure [17], i. e.,
parametric in the solver state. That limitation has slightly been relaxed by de
Vilhena et al. [30] to apparent purity, which allows functions to have internal
side effects, e. g., logging important events or spawning a new thread—as long
as two identical calls of a function return the same result. Here, we stick to the
original notion of purity. For pure functionals in that sense, Hofmann et al. [17]
prove that they can be represented as strategy trees. A strategy tree is composed
of Answer nodes, the leaves of the tree, containing an element of D, and Query
nodes that contain an unknown y to be queried together with a function g. Based
on the value dy of the queried unknown y, the call g dy returns the subtree to
continue the evaluation of the right-hand side. In this work, we assume the depth
of strategy trees to be finite, i.e., only finitely many unknowns may be queried
in a right-hand side. As a shorthand, we write t σ when evaluating the strategy
treet t using the mapping σ.

type (U , D) strategy-tree = Answer D | Query U (D → (U , D) strategy-tree)

Note that the strategy trees can describe right-hand sides with varying depen-
dencies, which the TD can cope with. Further, their tree representation lends
itself to a structural induction on the right-hand sides. A system of equations T
is then formally the function

T : U → (U ,D) strategy-tree (1)

that maps every unknown in U to a strategy tree.

Example 1. Consider the following code snippet and the corresponding control-
flow graph, where a and b are local program variables.

The domain for the variable initialization analysis is D = P ({a, b}), with ⊥
being the complete set {a, b} and
 the empty set. A variable is added to the set
of initialized variables whenever it occurs on the left-hand side of an assignment.
Accordingly, we retrieve the following equation system and show its strategy tree
representation in Fig. 1:

T :

w = ∅
z = (y ∪ {a}) ∩ (w ∪ {a})
y = z ∪ {b}
x = y ∩ z

(2)

For the remaining part, we fix some system of equations T and assume that it
is globally available. A total solution of such a system of equations is a mapping

The Top-Down Solver Verified 307

Fig. 1. The figure shows the value table of T from Example 1. Each unknown maps
to a strategy tree with query nodes (Q) and answer nodes (A). The trees are defined
over the domain P ({a, b}) where ⊥ represents the full set {a, b} and � the empty set.

σ : U → D from unknowns to values such that for all unknowns x ∈ U

T x σ = σ x . (3)

However, we are often not interested in a solution for the entire (potentially
infinite) equation system, but rather in a partial solution. For an unknown x ∈ U
and a mapping σ : U → D, let the function depxσ return the set of all unknowns
occurring in T x when traversed with σ, the so-called (direct) dependencies of x.
Then, the mapping σ : U → D is a partial solution for a set s ⊆ U if3

∀x ∈ s. dep∗ x σ ⊆ s ∧ T x σ = σ x. (4)

If x is in dep+x σ for some σ, i. e., the unknown x depends transitively on
itself, we call the associated system of equations T recursive (with respect to σ).
In the proof, we argue about the subset of dep∗ composed of all unknowns
visited when solving some unknown x. Such unknowns are reachable from x via
the depends-relation without passing through (but including) unknowns of a set
X, where the recursive descent stops. Hence, we define the set RX inductively
for a given mapping σ : U → D and an unknown x to contain all unknowns in
depσ x if x /∈ X, and all unknowns in depσ y if y ∈ RX − X. We denote RX by

dep
∣
∣
U−X

∗ σ x .

Note that dep∗ σ x = dep
∣
∣
U−∅

∗ σ x holds. We extend the definitions of dep and
dep

∣
∣
U−X

∗ to strategy trees and use the same symbol for simplicity. This allows
to compute both sets also for partial right-hand sides.

3 The Plain Top-Down Solver

The TD can be obtained from a considerably simpler fixpoint algorithm [28],
which we call the plain TD. First, we prove the plain TD to be partially correct;
3 Recall, dep∗ denotes the reflexive and transitive closure of dep.

308 Y. Stade et al.

second, we extend this proof to the original TD. Tilscher et al. [28], consider
an even simpler version of the TD, the monadic base solver. It is, however, not
as powerful as the TD since it does not track the set of called unknowns and
thus cannot solve recursive equation systems. Therefore we excluded it from our
layered approach.

The plain TD maintains a solver state that consists of the set of called
unknowns c containing the unknowns that are already being evaluated, and
a mapping σ storing the current value of every unknown. The algorithm consists
of three mutually recursive functions: iterateplain, evalplain, and queryplain.
The function iterateplain iterates one unknown x until a fixpoint is reached for
it, i. e., the newly computed value and the value from the previous iteration coin-
cide. When the iteration continues because the value has changed, the mapping
σ of unknowns to values is updated.

iterateplain x c σ =
let (d, σ) = evalplain x (T x) c σ in
if d = σ x then (d, σ)
else iterateplain x c (σ ⊕ {x �→ d})

For the evaluation of x’s right-hand side, the function evalplain is invoked. The
function evalplain receives a right-hand side in the form of a strategy tree and
traverses it top-down until reaching an answer node, whose value it returns.

evalplain x t c σ = case t of
Answer d ⇒ (d, σ)

| Query y g ⇒ let (d, σ) = queryplain x y c σ in evalplain x (g d) c σ

The function queryplain is called to determine the current value for y and thereby
the subtree g d in which to descend next, when evalplain is called for some query
node Query y g. A call to queryplain checks whether a call to queryplain for the
same unknown y already occurred in the current call stack. If this is the case,
i. e., the unknown is contained in the set c of called unknowns, the current value
of y is looked up in the mapping σ. Otherwise, queryplain invokes the function
iterateplain with y added to c to start the fixpoint iteration for y.

queryplain x y c σ =
if y ∈ c then (σ y, σ)
else iterateplain y (c ∪ {y}) σ

Finally, we have a function solveplain that wraps the initial call to iterateplain
and provides it with the initial arguments, the singleton set {x} as called
unknowns, and the empty mapping σ0 that implicitly maps every unknown to ⊥.

solveplain x = let (_, σ) = iterateplain x {x} σ0 in σ

A computation trace captures the execution of a solver’s run. It is a tree that con-
tains a node for each function call, along with essential parameters and result
values. The solveplain node constitutes its root node. Nested calls to other

The Top-Down Solver Verified 309

Fig. 2. The figure shows the computation trace of the plain TD for solving the unknown
z from the equation system from Example 1. In dark, we highlight the function calls
corresponding to unknowns in dep∗ xσ where σ is the final result. (Color figure online)

functions are added as children, while recursive calls (to the same function) are
appended to the right as siblings.4 In Figs. 2 and 4, we omit evalplain nodes for
clarity since they essentially only add an intermediate node between iterateplain
and queryplain nodes. The backbone of the partial correctness proof is an induc-
tion over this computation trace, which can be conveniently implemented with
the induction rules generated by Isabelle for the mutually recursive functions.
The concept of a computation trace is illustrated in the following example.

Example 2. Consider the equation system from Example 1. We observe the exe-
cution of the TD when solving the unknown z and illustrate the occurring mutu-
ally recursive function calls as computation trace in Fig. 2.

The initial call solveplain z invokes the function iterateplain to iterate on
the queried unknown z. In z’s first iteration, the call to evalplain queries the
unknowns y and w to fully traverse the right-hand side of z. The querying of
y entails a call to iterateplain for its iteration which takes only one turn to
stabilize. The evaluation of y’s right-hand side only depends on the unknown
z, for which the call to queryplain immediately returns since z is already being
evaluated. The iteration of w entails no further queries because the strategy tree
representing its right-hand side is an answer node.

The computation trace reveals the information available during the solver’s
computations. When the algorithm reaches a node v in the computation trace,
(computations of) all nodes on the path to the root are in progress, and nodes in
subtrees on the left of this path are already completed; we call this history the
reaching left-context of v. The solver’s state, i. e., the internal data structures
maintained by the solver, can be seen as an abstraction of the (concrete) left-
context. Since the algorithm always refers to the latest abstraction of the solver
state, it could also be implemented as a reference to a mutable data structure.
4 For the TD, the order of function calls during execution corresponds to the preorder

traversal of the computation trace, because all recursive calls are tail calls.

310 Y. Stade et al.

For a subtree t of the computation trace and σ′ returned by the corresponding
function call, the set dep

∣
∣
U−c

∗ t σ′ matches the unknowns occurring in the last
iterations of t. Based on this, we introduce a set s that is an abstraction of
the reaching left-context: it collects the unknowns of the last iterations in the
reaching left-context, and unknowns under evaluation. A re-evaluation of x ∈ s
returns the same value already stored in σ for x. This holds specifically for
unknowns in c, a subset of s, because the algorithm looks up their value instead
of initiating a new iteration. Unknowns in s − c re-evaluate to the same value
because they only depend on unknowns in s; hence, we call them truly stable.
Accordingly, the two milestones for proving the correctness of the plain TD are:

(i) defining the set dep
∣
∣
U−c

∗ to describe the set of unknowns queried in the last
iterations for a subtree of the computation trace, and

(ii) introducing the set s to collect unknowns that, when re-evaluated, evaluate
to the same value.

Milestone (ii) is essential to ensure that the plain TD computes the same
value for recurring occurrences of an unknown in a right-hand side.

For unknowns in s we show that σ is a partial solution after updating the
value for the current unknown in iterateplain.

Lemma 1. Assume σ is a partial solution for all x ∈ s − c, the set s is closed
under dep except for elements that are in c, i. e., ∀y ∈ s − c, depσ y ⊆ s, and
σ and σ′ are identical on s, i. e., ∀x ∈ s. σ x = σ′ x. Then, σ′ is also a partial
solution for all x ∈ s − c.

Recall that σ is a partial solution of all unknowns in the set s. Within the
iterateplain function, when the newly computed value for an unknown x and
its old value stored in σ differ, we can conclude that x was not a member of s
because the old σ would not have been a partial solution.

Lemma 2. Assume T xσ �= σ x and σ is a partial solution of all unknowns in
a set s. Then, x is not a member of s.

The following definition summarizes the properties used as invariant for the
partial correctness proof in one predicate.

Definition 1 (Plain TD Invariant). For c, s ⊆ U and the mapping σ : U →
D the predicate validplain c s σ is satisfied if

(i) ∀x ∈ s− c.depσ x ⊆ s, i. e., the set s is closed under dep except for unknowns
that are also in c, and

(ii) ∀x ∈ s− c.T xσ = σ x, i. e., σ fulfills the equations for truly stable unknowns.

For c = ∅, which holds after a call to solveplain terminated, the predicate
implies that σ is a partial solution for s. Using the predicate, we formulate the
partial correctness theorem.

Theorem 1 (Partial Correctness of the plain TD). The theorem shows
three mutual statements:

The Top-Down Solver Verified 311

Fig. 3. The figure illustrates exemplary for the Continue subcase in the Iterate case
an induction step. First, the induction hypothesis (IH) for the nested queryplain is
instantiated, such that its premises are fulfilled. Its application then provides facts to
reason that the premises of the IH for the recursive iterateplain call are satisfied.

• Assume queryplain x y c σ = (dy, σ′) is defined and validplain c s σ holds.
Then, we show (i) validplain c s′ σ′, and (ii) ∀u ∈ s. σ u = σ′ u where s′ :=
s ∪ dep

∣
∣
U−c

∗ σ′ y.
• Let c′ = c − {x}. Assume iterateplain x c σ = (dx, σ′) is defined, x ∈ c, and

validplain c′ sσ holds. Then, we show (i) validplain c′ s′ σ′, and (ii) ∀u ∈ s.σu =
σ′ u where s′ := s ∪ dep

∣
∣
U−c′

∗ σ′ x.
• Assume evalplain x t c σ = (dx, σ′) is defined, and validplain c s σ holds.

Then, we show (i) validplain c s′ σ′, (ii) ∀u ∈ s. σ u = σ′ u, and (iii) t σ′ = dx
where s′ := s ∪ dep

∣
∣
U−c

∗ σ′ t.

Proof. This proof is more of a sketch to convey the proof idea; for a rigorous
proof, see the Isabelle formalization [27]. We prove the statement by mutual
induction. The induction rule derived from the three mutually recursive functions
leads to three cases. Figure 3 illustrates an induction step in the computation
trace exemplary for the iterate case.

Case 1 (Query). The first case reasons about a call to the queryplain function.
Let x, y ∈ U , c ⊆ U , σ, σ′ : U → D, and dy ∈ D such that queryplain x y c σ =
(dy, σ′) is defined. We distinguish two subcases: the queried unknown can either
be called or not, the former leading to a lookup and the latter to an iteration.

Subcase 1.1 (Lookup). This case is a base case since there are no further mutual
recursive calls. In the computation trace, it corresponds to a query node as leaf.
The proof goal follows directly from the premises since σ is not changed.

Subcase 1.2 (Iterate). In this case, the function iterateplain is called, and its
result directly returned by the enclosing queryplain function. Thus, iterateplain
y (c ∪ {y}) σ = (dy, σ′) and the induction hypothesis for the iterateplain call
can be applied. The proof goal follows immediately because the result of the call
to iterateplain is returned without modifications.

Case 2 (Iterate). Let c ⊆ U , x ∈ c, σ, σ′ : U → D, and dx ∈ D such that
iterateplain x c σ = (dx, σ′) is defined. We distinguish two subcases: either a
fixpoint is reached or not. In either case, the function evalplain is invoked first,
and the subcase depends on its result. Both subcases constitute two different
induction steps, and both cases use the induction hypothesis for evalplain.

312 Y. Stade et al.

Subcase 2.1 (Fixpoint). The induction hypothesis of evalplain provides all nec-
essary facts, and since σ is not updated anymore, the proof goal follows.

Subcase 2.2 (Continue). Obtain d′
x ∈ D and σ1 : U → D such that the call

evalplain x (T x) cσ = (d′
x, σ1) is defined. The induction hypothesis for evalplain

states (i) validplain s′ c σ1, (ii) ∀y ∈ s ∪ {x} . σ y = σ1 y, and (iii) T x σ1 = d′
x

where s′ := s ∪ {x} ∪ dep
∣
∣
U−c

∗ σ1 c x. Since we are in the Continue case, we
know that σ1 x �= d′

x. From Lemma 2 it follows x /∈ s. This allows us to show
together with Lemma 1 that also validplain s (c − {x}) (σ1 ⊕ {x �→ d′

x}) holds.
This is required to instantiate the induction hypothesis for the successive call to
iterateplain, which concludes the case.

Case 3 (Eval). The strategy tree passed to evalplain can either be a single
answer node or a non-trivial strategy tree with a query node as a root.

Subcase 3.1 (Answer). This case is the second induction base of the entire induc-
tion and follows trivially.

Subcase 3.2 (Query). The proof follows from the facts retrieved from the induc-
tion hypotheses for both recursive calls to queryplain and evalplain using the
fact that σ remains unchanged for unknowns in s. ��

The corollary below summarizes the results from this section. It follows
directly from Theorem 1.

Corollary 1 (Partial Correctness of the plain TD). Assume the equality
solveplain x = σ is defined. Then, σ is a partial solution for dep∗ x σ.

4 The Top-Down Solver

So far, we have proven partial correctness only for the plain TD. In the following,
we extend the correctness statement to the original TD by showing that both
fixpoint algorithms are equivalent. The TD improves the plain TD through more
extensive self-observation. While the plain TD solely maintains a set of called
unknowns to prevent non-termination in the case of recursive equation systems,
the TD introduces two additional data structures for self-observation:

• A set stable collecting all unknowns that do not need to be re-evaluated,
because they only depend on other stable unknowns whose value has not
changed since their last evaluation.

• An infl map that dynamically records for each unknown x a set of unknowns
influenced by x. It, therefore, records the inverse of the dep relationship.

The set stable is similar to set s used in the proof of the plain TD; and indeed,
s is in every step a subset of stable. However, stable additionally collects
unknowns that have been fully evaluated in earlier iterations but are not affected
by any unknowns whose value changed in the meantime. Its additional mainte-
nance allows skipping unnecessary re-evaluations of already stable unknowns.

The Top-Down Solver Verified 313

Three modifications are necessary to integrate the new data structures and to
keep them consistent. In the following code snippets, we highlight those changes.
The function eval is only adapted marginally to facilitate the passing of the
additional parameters (not highlighted).

eval x t c infl stable σ = case t of
Answer d ⇒ (d, infl, stable, σ)

| Query y g ⇒ let (d, infl, stable, σ) = query x y c infl stable σ in
eval x (g d) c infl stable σ

At the end of a call to query, the dependency is recorded in the map infl,
i. e., the parent unknown is inserted into the set of unknowns influenced by the
queried unknown.

query y x c infl stable σ =
let (d, infl, stable, σ) =

if x ∈ c then (σ x, infl, stable, σ)
else iterate x (c ∪ {x}) infl stable σ

in (d, infl ⊕ {x �→ infl x ∪ {y}}, stable, σ)

The improvement to skip re-evaluations of unknowns in stable is implemented
in the function iterate. If iterate is invoked for an unknown that is already in
stable, its right-hand side is not evaluated; instead, its value is simply looked
up in σ. In case the current unknown is not yet stable, it is optimistically added
to the set stable when starting the evaluation of its right-hand side.

iterate x c infl stable σ =
if x /∈ stable then

let (d, infl, stable, σ) = eval x (T x) c infl (stable ∪ {x}) σ in
if d = σ x then (d, infl, stable, σ)
else

let (infl, stable) = destab x infl stable in
iterate x c infl stable (σ ⊕ {x �→ d})

else (σ x, infl, stable, σ)

After the evaluation of the right-hand side of x, iterate x updates the value
of x in σ. If the value has changed, the values of unknowns that are (indi-
rectly) influenced by x need to be recomputed. Instead of recomputing them
immediately, all affected unknowns are removed from stable. This will trigger
their re-evaluation in case they are queried again. To remove all indirectly influ-
enced unknowns the additional function destab is provided. A call destab x first
removes all unknowns directly influenced by x from stable and resets the set of
influenced unknowns of x in infl to the empty set, and then continues recur-
sively to destabilize indirectly influenced unknowns of x. Note that destab x
only removes x itself from the set stable if x (transitively) depends on itself.
If x does not depend on itself, x remains in stable, and the fixpoint iteration
terminates after one iteration.5

5 Recall that x is inserted optimistically into stable before its iteration.

314 Y. Stade et al.

destab x infl stable =
let f y (infl, stable) = destab y infl (stable − {y}) in
fold f (infl ⊕ {x �→ ∅}, stable) (infl x)

With those changes, the solve function of the TD is defined as follows, where
infl0 represents the empty mapping, i. e., where every unknown in U maps to
the empty set.

solve x = let (_, _, stabl, σ) = iterate x {x} infl0 ∅ σ0 in (stabl, σ)

Calling solve for the unknown x and the equation system from Example
1 results in the computation trace shown in Fig. 4. The figure illustrates the
effect of skipping superfluous computations. Nodes that belong to additional
computations the plain TD would perform but which are skipped by the TD are
indicated with small grey nodes. In this example, the TD saves more than half
of the computations.

Fig. 4. The figure shows the computation trace corresponding to the TD when solving
the equation system from Example 1 for unknown x. Some computation paths termi-
nate because the queried unknown is called, others because the iterated unknown is
already stable. The grey nodes below stable leaves indicate the additional computation
steps that the plain TD would execute.

A crucial part of showing the correctness of the optimizations in the TD, is
verifying that the destabilization preserves the essential properties of the solver’s
state. This includes proving that destabilization is thorough enough to remove all
unknowns possibly affected by a changed value from stable, such that no evalu-
ation builds on possibly outdated values of stable unknowns. On the other hand,
it also requires showing that destabilization is specific enough to not remove

The Top-Down Solver Verified 315

from stable any unknown that was already stable before the iteration started.
This ensures that the set of called unknowns remains a subset of stable and
thus invariants for stable unknowns also hold for called unknowns where values
are simply looked up without further descending. To guarantee these bounds of
destabilization, we have found two invariants to be essential milestones:

(i) An invariant that the data structure infl is complete, i. e., records all rele-
vant dependencies, and

(ii) An invariant stating that, when evaluating an unknown x, only influences
to previously unstable unknowns or x itself, are recorded.

Similarly to Definition 1 for the plain TD, we define a predicate to describe
valid input solver states.

Definition 2 (TD Invariant). For c, stable ⊆ U , σ : U → D and infl : U →
P (U) the predicate valid c σ infl stable is satisfied if:

(i) c ⊆ stable
(ii) ∀x ∈ stable − c. T xσ = σ x, i. e., the mapping σ fulfills the equations for

all truly stable unknowns,
(iii) {x ∈ U | infl x �= ∅} ⊆ stable, i. e., keys mapping to non-trivial values in

infl are members of stable, and
(iv) ∀y ∈ stable − c. ∀x ∈ depσ y. y ∈ inflx, i. e., infl stores the mapping

“x influences y” for all unknowns x on which any truly stable unknown y
depends on.

Item (i) allows to conclude that x is not only in c but also in stable when
the unknown x is looked up in the query function. We remark that for the
plain TD this can be implicitly concluded, for s respectively, from the fact that
dep

∣
∣
U−c

∗ σ x ⊆ s for the currently evaluated unknown x. Item (iv) corresponds
to milestone (i) and relates the map of influences to the dependencies of the
equation system. It helps to show that stable remains closed under dep also
after the application of destab. With Item (ii) and (iii) the predicate valid
extends validplain from Definition 1.

Lemma 3. Let infl : U → P (U), and c, stable ⊆ U . Assume

• {u ∈ U | infl u �= ∅} ⊆ stable and
• ∀u ∈ stable − c. ∀v ∈ depσ u. u ∈ inflv.

Then ∀u ∈ stable − c. depσ u. ⊆ stable. This immediately implies

valid c σ infl stable =⇒ validplain c stable σ .

Besides the predicate for valid solver states, we define a predicate relating
the output solver state to the corresponding input state.

Definition 3. (Update relation). For x ∈ U , stable, stable′ ⊆ U , and
infl, infl′ : U → P (U) the predicate update x infl stable infl′ stable′ is
satisfied if

316 Y. Stade et al.

(i) stable ⊆ stable′, i. e., the stable set is increasing,
(ii) ∀u. (infl′ u − infl u) ∩ (stable − {x}) = ∅, i. e., only unknowns that were

not previously stable (or x) are inserted into infl, and
(iii) ∀u ∈ stable. infl u ⊆ infl′ u, i. e., the set of influenced unknowns increases

for all stable unknowns.

Item (i) is used to show that Definition 2 (i) still holds after destabilization
(cf. Lemma 4). It also aids in deriving the appropriate variants of Item (ii) and
Item (iii) in the induction steps. Definition 3 (ii) formalizes the earlier described
milestone (ii) and allows to show that Item (i) still holds after destabilization.
Item (iii) expresses that a dependency, recorded due to an unknown occurring
in some right-hand side, persists till the end of this right-hand side’s evaluation.
This is required to establish Definition 2 (iv).

Both defined predicates enable the formalization of the preservation of invari-
ants by the destabilization mechanism.

Lemma 4. For x ∈ U , infl : U → P (U), and stable ⊆ U , let infl′ : U →
P (U), and stable′ ⊆ U such that destab x infl stable = (infl′, stable′)
holds. Let c′ := c − {x} and σ′ := σ ⊕ {x �→ dx}.
(i) Assume c ⊆ stable and stable ⊆ stable′. Then c ⊆ stable′ holds.
(ii) Assume

• ∀x ∈ stable − c. T x σ = σ x,
• T x σ = dx, and
• ∀u ∈ stable − c′.∀v ∈ dep σ u. u ∈ infl v.

Then ∀x ∈ stable′ − c′. T x σ′ = σ′ x holds.
(iii) Assume {u ∈ U | infl u �= ∅} ⊆ stable.

Then {u ∈ U | infl′ u �= ∅} ⊆ stable′ holds.
(iv) Assume ∀u ∈ stable − c′. ∀v ∈ depσ u. u ∈ infl v.

Then ∀u ∈ stable′ − c′. ∀v ∈ dep σ′ u. u ∈ infl′ v.

The TD skips re-evaluation of stable unknowns because it would yield the same
value. The following lemma supports this and shows that the plain TD will
return the same value as already computed if an unknown is stable.

Lemma 5. This lemma shows:

• Assume queryplain x y c σ = (dy, σ′) is defined, validplain c s σ is satisfied, and
y ∈ s. Then σ and σ′ are equal.

• Assume iterateplain x c σ = (dx, σ′) is defined, x ∈ c, validplain (c − {x}) s σ
is satisfied, and x ∈ s. Then σ and σ′ are equal.

• Assume evalplain x t c σ = (dx, σ′) is defined, validplain c s σ is satisfied, and
dep t σ ⊆ s. Then t σ′ = dx and σ = σ′.

Following the auto-generated induction rules for the plain TD and the TD, we
split the equivalence proof of both fixpoint algorithms into two directions. The
first assumes the termination of the plain TD and shows that the TD terminates,
yielding the same value, cf. Theorem 2. The second proves that the plain TD
returns the same value as the TD under the assumption that the TD terminates,
cf. Theorem 3. Both results are combined afterward in Corollary 2, and Corollary
3 concludes the correctness of the TD.

The Top-Down Solver Verified 317

Theorem 2 (Equivalence I). The theorem shows:

• Assume queryplain x y c σ = (dy, σ′) is defined, and valid c σ infl stable
holds. Then there exist infl′ : U → P (U) and a set stable′ ⊆ U such that
(i) query x y c infl stable σ = (dy, infl′, stable′, σ′) is defined and
(ii) valid c σ′ infl′ stable′ holds.
Furthermore, (iii) the statements update x infl stable infl′ stable′, and
(iv) x ∈ infl′ y hold.

• Assume iterateplain x c σ = (dx, σ′) is defined, valid c′ σ infl stable
holds for c′ := c − {x}, and x ∈ c. Then there exist infl′ : U → P (U) and
stable′ ⊆ U such that
(i) iterate x c infl stable σ = (dx, infl′, stable′, σ′) is defined and
(ii) valid c′ σ′ infl′ stable′ holds.
Furthermore, (iii) the statements update x infl stable infl′ stable′, and
(iv) x ∈ stable′ hold.

• Assume evalplain x t c σ = (dx, σ′) is defined, valid c σ infl stable holds,
and x ∈ stable. Then there exist infl′ : U → P (U) and stable′ ⊆ U such
that
(i) eval x t c infl stable σ = (dx, infl′, stable′, σ′) is defined,
(ii) valid c σ′ infl′ stable′ holds.
Furthermore, (iii) the statements update x infl stable infl′ stable′, (iv)
t σ′ = dx, and (v) ∀u ∈ dep σ′ t. x ∈ infl′u hold.

Proof. The complete proof is extensive, thus we only highlight pivotal steps and
direct the reader to the formalization in Isabelle [27] for a detailed proof. The
proof uses the same induction rules and covers the same cases as in Theorem 1.

Case 1 (Query). Let x, y ∈ U , c ⊆ U , σ, σ′ : U → D, dy ∈ D such that the call
queryplain x y c σ = (dy, σ′) is defined. And let infl : U → P (U) , stable ⊆ U
such that valid c σ infl stable holds.

Subcase 1.1 (Lookup). This case follows directly from the premises.

Subcase 1.2 (Iterate). Using the induction hypothesis, we obtain infl1 and
stable1 such that iterate y c infl stable σ = (dy, infl1, stable1, σ′)
is defined. The induction hypothesis for the iterate call provides the fact
(infl1 u − infl u) ∩ (stable − {x}) = ∅. Using the definition of iterate, we
can conclude that the subtraction of {x} can be omitted, which aids in proving
the subgoal.

Case 2 (Iterate). First, assume that x ∈ stable. Lemma 5 implies that the plain
TD returns σ unchanged, and the same holds for the TD since it skips com-
putation altogether. Thus, the proof goals are trivially satisfied. Now, assume
that x /∈ stable. Let x ∈ U , c ⊆ c, σ, σ′ : U → D, dx ∈ D such that
iterateplain x c σ = (dx, σ′) is defined, and let infl : U → P (U) , stable ⊆ U
such that valid c σ infl stable holds.

Subcase 2.1 (Fixpoint). The premises directly imply the subgoal.

318 Y. Stade et al.

Subcase 2.2 (Continue). Let d′
x ∈ D, σ1 : U → D such that

evalplain x (T x) c σ = (d′
x, σ1) is defined. According to the induction hypothesis

for eval, there exists infl1 : U → P (U) , stable1 ⊆ U such that

eval x (T x) c infl ({x} ∪ stable) σ = (d′
x, infl1, stable1, σ1)

is defined. Let furthermore infl2 : U → P (U) , stable2 ⊆ U such that

destab x infl1 stable1 = (infl2, stable2) .

Lemma 4 states that the predicate valid is preserved for infl2 and stable2.
This is key to applying the induction hypothesis for the tail call to iterateplain.
After that, one must show that

(i) ∀u ∈ stable. infl u ⊆ infl′ u and
(ii) ∀u. (infl′ u − infl u) ∩ (stable − {x}) = ∅.

For the first, we exploit the fact that we have previously shown that stable ⊆
stable2 and that destab only removes key-value mappings with keys that
are not in stable. For the second, we show similar to the Iterate subcase
in the Query case above, that (infl′ u − infl2 u) ∩ (stable − {x}) = ∅ and
(infl1 u − infl u)∩ (stable − {x}) = ∅. Together with the fact that infl2 u ⊆
infl1 u for all u, the statement follows.

Case 3 (Eval). Let x ∈ U , c ⊆ U , σ, σ′ : U → D, dy ∈ D and t a strategy tree
such that evalplain x t c σ = (dx, σ′) is defined. Furthermore, let infl : U →
P (U) , stable ⊆ U such that valid c σ infl stable holds.

Subcase 3.1 (Answer). This case follows directly from the premises.

Subcase 3.2 (Query). The main step here is to show, as in Theorem 1, that once
a value for an unknown has been calculated, this value is preserved during the
evaluation of the remaining right-hand side. To accomplish this, we use Lemma
3 to derive validplain c stable σ and then use the value preserving property
Theorem 1 (ii) of the plain TD. ��

A crucial part for the proof in the other direction is to show that when the TD
reaches the Stable case, i. e., stops further descent because the iterated unknown
is in stable, the plain TD terminates for the same parameters and returns the
same value. Since the Stable case constitutes a base case of the induction using
the rules for the TD, no induction hypotheses are available to conclude this fact.
Hence, we add the obvious but vital premise that the set stable is finite.

Lemma 6. Assume x ∈ c, x ∈ stable, validplain (c − {x}) stable σ holds, and
the set stable is finite. Then there exists dx ∈ D such that iterateplain x c σ =
(dx, σ) is defined and dx = σ x.

This lemma holds since the resulting computation trace has finite width and
height. The fixpoint iterations at any level terminate after one iteration since

The Top-Down Solver Verified 319

the input is already a solution. Also, the number of query nodes in a right-hand
side is bounded, because we restrict strategy trees to be of finite height. Finally,
its height is finite because one unknown is added to c at every second level and
it is always a subset of s. Formally, this lemma is proven by structural induction
over s. With the help of the lemma we can show the remaining direction of the
equivalence:

Theorem 3 (Equivalence II). The theorem shows:

• Assume query x y c infl stable σ = (dy, infl′, stable′, σ′) is defined, x ∈
stable, stable is finite, and valid c σ infl stable holds. Then
(i) queryplain x y c σ = (dy, σ′) is defined and
(ii) valid c σ′ infl′ stable′ holds.

Furthermore, in this case (iii) update x infl stable infl′ stable′ holds, (iv)
stable′ is finite, and (v) x ∈ infl′y.

• Assume iterate x c infl stable σ = (dx, infl′, stable′, σ′) is defined,
x ∈ c, stable is finite, and valid c′ σ infl stable holds. Let c′ := c − {x}.
Then
(i) iterateplain x c σ = (dx, σ′) is defined and
(ii) valid c′ σ′ infl′ stable′ holds.

Furthermore, in this case (iii) update x infl stable infl′ stable′ holds, (iv)
the set stable′ is finite, and (v) x ∈ stable′.

• Assume eval x t c infl stable σ = (dx, infl′, stable′, σ′) is defined, x ∈
stable, stable is finite, and valid c σ infl stable holds. Then
(i) evalplain x t c σ = (dx, σ′) is defined and
(ii) valid c σ′ infl′ stable′ holds.

Furthermore, in this case (iii) update x infl stable infl′ stable′ holds, (iv)
stable′ is finite, (v) t σ′ = dx, and (vi) ∀u ∈ dep σ′ t. x ∈ infl′u.

Proof. This proof uses the induction rules for the TD; which results in an addi-
tional subcase Stabl in the Iterate case. This is the only case that differs signifi-
cantly from the previous proof; it is proven using Lemma 6. ��

Both theorems combined establish the equivalence of the plain TD and the
TD, which is expressed in the following corollary.

Corollary 2 (Equivalence of the TDs). The equation solveplain x = σ is
defined for some σ ∈ {f : U → D} whenever solve x = (stable, σ′) is defined
for some stable ⊆ U and σ′ : U → D. In this case, σ and σ′ are equal.

The following corollary reads identically to Corollary 1 but refers to the
implementation of the TD. It is a straightforward consequence of Theorem 3.

320 Y. Stade et al.

Corollary 3 (Partial Correctness of the TD). Assume that the equation
solve x = (stable, σ) is defined. Then the corollary shows that σ is a partial
solution for stable and x ∈ stable.

5 Related Work

In the scope of verifying dataflow analyses, round-robin iteration [6] and vari-
ations of Kildall’s algorithm [5,8,23] have been verified. The latter maintain a
global worklist for a chaotic iteration over the control-flow graph. Others for-
malize syntax-directed fixpoint iterators as part of their work on formalizing
abstract interpreters [7,12,18]. Instead of iterating over the control-flow graph
of a program, their abstract interpreters are guided by the program’s syntax.
These dedicated solvers, however, are not generically applicable to all equation
systems. Instead of dynamically detecting dependencies, the dependencies are
derived directly from the program’s control flow.

The partial correctness of the local generic fixpoint solver RLD has been
proven by Hofmann et al. [16]. This algorithm records dependencies dynami-
cally to deal with changing dependencies between unknowns. In contrast to the
TD, it locally destabilizes directly influenced unknowns when the value of the
current unknown has been updated, and immediately triggers their re-evaluation
through a local worklist. This may lead to different values being computed by
the solver for repeated queries of the same unknown within a right-hand side.
Extra mechanisms are required to avoid this undesired behavior [19]. In con-
trast, the TD relies on non-local destabilization to remove all unknowns from
the set of stable unknowns that transitively depend on an updated unknown.
The local worklist iteration of RLD is avoided and the same value is computed if
the same unknown is queried multiple times within one right-hand side. In fact,
the latter property constitutes an essential proof step in our formalization. Fur-
thermore, the RLD solver always combines the old value for an unknown with
its new value. This implies that the domain of values should provide some join
operator, whereas our algorithm is fully generic by making no assumptions on
the domain of values—except providing an element ⊥, and an equality operator.

De Vilhena et al. [30] use Iris to formalize a local generic solver and prove
its partial correctness. Like the RLD, their solver detects dependencies between
unknowns on the fly and can deal with a possibly infinite equation system. It
does, however, not rely on recursive descent into encountered unknowns. Instead,
it uses a worklist to iterate over the unknowns, which are either new or whose
current values are possibly outdated. Similarly to the RLD, this does not require
a non-local destabilization. In comparison, recursive descent into unknowns, as
done by the TD, is likely to be more efficient than plain worklist iteration. Due
to recursive descent, the evaluation of right-hand sides always uses the currently
best values for encountered unknowns and thus may avoid useless computation.
To prove that the results computed by their solver are part of an optimal least
fixpoint, Vilhena et al. [30] assume that the domain of values is partially ordered
and right-hand sides are monotonic. In practical applications such as interpro-
cedural analysis, or the analysis of concurrent systems, though, monotonicity

The Top-Down Solver Verified 321

cannot always be assumed. This is why our solver is proven partially correct
independent of any assumptions on ordering or monotonicity.

6 Conclusion

This work provides a formal proof of the partial correctness of the TD. We
first proved the plain TD to be partially correct and then proved that the TD
is equivalent to the plain TD. For complete lattices and monotonic right-hand
sides, the computed partial solution agrees with the least solution of the equation
system on all stable unknowns. A proof of this fact can be obtained by extending
the given proof with further invariants. When the complete lattice additionally
satisfies the ascending chain condition and the set of unknowns is finite, the
TD is guaranteed to terminate. In this case, partial correctness turns into total
correctness.

Another task for future work is to incorporate widening and narrowing [3,28]
into the solver and prove correctness. Widening and narrowing cannot be consid-
ered another semantics-preserving optimization. Even for complete lattices, the
computed result is generally no longer the least solution. In case that narrowing
is intertwined with widening as proposed by Seidl and Vogler [26] and right-
hand sides are non-monotonic, the result need not be a (post-)solution. Further
future work is to support side-effecting equation systems [2], where right-hand
sides may not only contribute to the left-hand side but also contribute to other
unknowns.

Acknowledgements. This work was supported by the German Research Foundation
(DFG) - 378803395/2428 ConVeY and by Shota Rustaveli National Science Founda-
tion of Georgia under the project FR-21-7973.

References

1. Akhin, M., Belyaev, M.: Variable initialization analysis (2020). https://kotlinlang.
org/spec/control--and-data-flow-analysis.html#variable-initialization-analysis

2. Apinis, K., Seidl, H., Vojdani, V.: Side-effecting constraint systems: a Swiss army
knife for program analysis. In: Jhala, R., Igarashi, A. (eds.) Programming Lan-
guages and Systems - 10th Asian Symposium, APLAS 2012, Kyoto, Japan, 11–
13 December 2012. Proceedings. LNCS, vol. 7705, pp. 157–172. Springer, Cham
(2012). https://doi.org/10.1007/978-3-642-35182-2_12

3. Apinis, K., Seidl, H., Vojdani, V.: How to combine widening and narrowing for
non-monotonic systems of equations. In: Boehm, H., Flanagan, C. (eds.) ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
2013, Seattle, WA, USA, 16–19 June 2013, pp. 377–386. ACM (2013). https://doi.
org/10.1145/2491956.2462190

4. Apinis, K., Seidl, H., Vojdani, V.: Enhancing top-down solving with widening and
narrowing. In: Probst, C.W., Hankin, C., Hansen, R.R. (eds.) Semantics, Logics,
and Calculi - Essays Dedicated to Hanne Riis Nielson and Flemming Nielson on
the Occasion of Their 60th Birthdays. LNCS, vol. 9560, pp. 272–288. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-27810-0_14

https://kotlinlang.org/spec/control--and-data-flow-analysis.html#variable-initialization-analysis
https://kotlinlang.org/spec/control--and-data-flow-analysis.html#variable-initialization-analysis
https://doi.org/10.1007/978-3-642-35182-2_12
https://doi.org/10.1145/2491956.2462190
https://doi.org/10.1145/2491956.2462190
https://doi.org/10.1007/978-3-319-27810-0_14

322 Y. Stade et al.

5. Bertot, Y., Grégoire, B., Leroy, X.: A structured approach to proving compiler opti-
mizations based on dataflow analysis. In: Filliâtre, J., Paulin-Mohring, C., Werner,
B. (eds.) Types for Proofs and Programs, International Workshop, TYPES 2004,
Jouy-en-Josas, France, 15–18 December 2004, Revised Selected Papers. LNCS, vol.
3839, pp. 66–81. Springer, Cham (2004). https://doi.org/10.1007/11617990_5

6. Cachera, D., Jensen, T.P., Pichardie, D., Rusu, V.: Extracting a data flow anal-
yser in constructive logic. In: Schmidt, D.A. (ed.) Programming Languages and
Systems, 13th European Symposium on Programming, ESOP 2004, Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS
2004, Barcelona, Spain, 29 March–2 April 2004, Proceedings. LNCS, vol. 2986, pp.
385–400. Springer, Cham (2004). https://doi.org/10.1007/978-3-540-24725-8_27

7. Cachera, D., Pichardie, D.: A certified denotational abstract interpreter. In: Kauf-
mann, M., Paulson, L.C. (eds.) Interactive Theorem Proving, First International
Conference, ITP 2010, Edinburgh, UK, 11–14 July 2010, Proceedings. LNCS, vol.
6172, pp. 9–24. Springer, Cham (2010). https://doi.org/10.1007/978-3-642-14052-
5_3

8. Coupet-Grimal, S., Delobel, W.: A uniform and certified approach for two static
analyses. In: Filliâtre, J., Paulin-Mohring, C., Werner, B. (eds.) Types for Proofs
and Programs, International Workshop, TYPES 2004, Jouy-en-Josas, France,
15–18 December 2004, Revised Selected Papers. LNCS, vol. 3839, pp. 115–137.
Springer, Cham (2004). https://doi.org/10.1007/11617990_8

9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Graham,
R.M., Harrison, M.A., Sethi, R. (eds.) Conference Record of the Fourth ACM
Symposium on Principles of Programming Languages, Los Angeles, California,
USA, January 1977, pp. 238–252. ACM (1977). https://doi.org/10.1145/512950.
512973

10. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Log. Comput. 2(4),
511–547 (1992). https://doi.org/10.1093/LOGCOM/2.4.511

11. Fecht, C., Seidl, H.: A faster solver for general systems of equations. Sci. Comput.
Program. 35(2), 137–161 (1999). https://doi.org/10.1016/S0167-6423(99)00009-X

12. Franceschino, L., Pichardie, D., Talpin, J.: Verified functional programming of an
abstract interpreter. In: Dragoi, C., Mukherjee, S., Namjoshi, K.S. (eds.) Static
Analysis - 28th International Symposium, SAS 2021, Chicago, IL, USA, 17–19
October 2021, Proceedings. LNCS, vol. 12913, pp. 124–143. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-88806-0_6

13. Gosling, J., et al.: Chapter 16. Definite Assignment, September 2023. https://docs.
oracle.com/javase/specs/jls/se21/html/jls-16.html

14. Hecht, M.S., Ullman, J.D.: Analysis of a simple algorithm for global data flow
problems. In: Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, pp. 207–217, POPL 1973. Association
for Computing Machinery, New York, NY, USA (1973). https://doi.org/10.1145/
512927.512946

https://doi.org/10.1007/11617990_5
https://doi.org/10.1007/978-3-540-24725-8_27
https://doi.org/10.1007/978-3-642-14052-5_3
https://doi.org/10.1007/978-3-642-14052-5_3
https://doi.org/10.1007/11617990_8
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1093/LOGCOM/2.4.511
https://doi.org/10.1016/S0167-6423(99)00009-X
https://doi.org/10.1007/978-3-030-88806-0_6
https://docs.oracle.com/javase/specs/jls/se21/html/jls-16.html
https://docs.oracle.com/javase/specs/jls/se21/html/jls-16.html
https://doi.org/10.1145/512927.512946
https://doi.org/10.1145/512927.512946

The Top-Down Solver Verified 323

15. Hermenegildo, M.V., et al.: An overview of the Ciao system. In: Bassiliades, N.,
Governatori, G., Paschke, A. (eds.) Rule-Based Reasoning, Programming, and
Applications - 5th International Symposium, RuleML 2011 - Europe, Barcelona,
Spain, 19–21 July 2011. Proceedings. LNCS, vol. 6826, p. 2. Springer, Cham (2011).
https://doi.org/10.1007/978-3-642-22546-8_2

16. Hofmann, M., Karbyshev, A., Seidl, H.: Verifying a local generic solver in Coq. In:
Cousot, R., Martel, M. (eds.) Static Analysis - 17th International Symposium, SAS
2010, Perpignan, France, 14–16 September, 2010. Proceedings. LNCS, vol. 6337, pp.
340–355. Springer, Cham (2010). https://doi.org/10.1007/978-3-642-15769-1_21

17. Hofmann, M., Karbyshev, A., Seidl, H.: What is a pure functional? In: Abramsky,
S., Gavoille, C., Kirchner, C., auf der Heide, F.M., Spirakis, P.G. (eds.) Automata,
Languages and Programming, 37th International Colloquium, ICALP 2010, Bor-
deaux, France, 6–10 July 2010, Proceedings, Part II. LNCS, vol. 6199, pp. 199–210.
Springer, Cham (2010). https://doi.org/10.1007/978-3-642-14162-1_17

18. Jourdan, J.: Verasco: a formally verified C static analyzer. (Verasco: un analy-
seur statique pour C formellement vérifié). Ph.D. thesis, Paris Diderot University,
France (2016). https://tel.archives-ouvertes.fr/tel-01327023

19. Karbyshev, A.: Monadic parametricity of second-order functionals. Ph.D. thesis,
Technische Universität München (2013). https://mediatum.ub.tum.de/1144371

20. Kildall, G.A.: A unified approach to global program optimization. In: Fischer, P.C.,
Ullman, J.D. (eds.) Conference Record of the ACM Symposium on Principles of
Programming Languages, Boston, Massachusetts, USA, October 1973, pp. 194–
206. ACM Press (1973). https://doi.org/10.1145/512927.512945

21. Le Charlier, B., Van Hentenryck, P.: A universal top-down fixpoint algorithm.
Technical report CS-92-25, University of Namur and Brown University, May 1992

22. Muthukumar, K., Hermenegildo, M.V.: Compile-time derivation of variable depen-
dency using abstract interpretation. J. Log. Program. 13(2&3), 315–347 (1992).
https://doi.org/10.1016/0743-1066(92)90035-2

23. Nipkow, T.: Verified bytecode verifiers. In: Honsell, F., Miculan, M. (eds.) Founda-
tions of Software Science and Computation Structures, 4th International Confer-
ence, FOSSACS 2001 Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2001 Genova, Italy, 2–6 April 2001, Proceedings.
LNCS, vol. 2030, pp. 347–363. Springer, Cham (2001). https://doi.org/10.1007/3-
540-45315-6_23

24. Nipkow, T., Klein, G.: Concrete Semantics - With Isabelle/HOL. Springer, Cham
(2014). ISBN 978-3-319-10541, https://doi.org/10.1007/978-3-319-10542-0

25. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Cham (2002). ISBN 3-540-43376,
https://doi.org/10.1007/3-540-45949-9

26. Seidl, H., Vogler, R.: Three improvements to the top-down solver. Math.
Struct. Comput. Sci. 31(9), 1090–1134 (2021). https://doi.org/10.1017/
S0960129521000499

27. Stade, Y., Tilscher, S., Seidl, H.: Partial correctness of the top-down solver. Archive
of Formal Proofs, May 2024. ISSN 2150-914x. https://isa-afp.org/entries/Top_
Down_Solver.html. Formal proof development

28. Tilscher, S., Stade, Y., Schwarz, M., Vogler, R., Seidl, H.: The top-down solver—an
exercise in A2I. In: Arceri, V., Cortesi, A., Ferrara, P., Olliaro, M. (eds.) Challenges
of Software Verification, vol. 238, pp. 157–179. Springer, Singapore (2023). https://
doi.org/10.1007/978-981-19-9601-6_9

https://doi.org/10.1007/978-3-642-22546-8_2
https://doi.org/10.1007/978-3-642-15769-1_21
https://doi.org/10.1007/978-3-642-14162-1_17
https://tel.archives-ouvertes.fr/tel-01327023
https://mediatum.ub.tum.de/1144371
https://doi.org/10.1145/512927.512945
https://doi.org/10.1016/0743-1066(92)90035-2
https://doi.org/10.1007/3-540-45315-6_23
https://doi.org/10.1007/3-540-45315-6_23
https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1017/S0960129521000499
https://doi.org/10.1017/S0960129521000499
https://isa-afp.org/entries/Top_Down_Solver.html
https://isa-afp.org/entries/Top_Down_Solver.html
https://doi.org/10.1007/978-981-19-9601-6_9
https://doi.org/10.1007/978-981-19-9601-6_9

324 Y. Stade et al.

29. Vergauwen, B., Wauman, J., Lewi, J.: Efficient fixpoint computation. In: Charlier,
B.L. (ed.) Static Analysis, First International Static Analysis Symposium, SAS
1994, Namur, Belgium, 28–30 September 1994, Proceedings. LNCS, vol. 864, pp.
314–328. Springer, Cham (1994). https://doi.org/10.1007/3-540-58485-4_49

30. de Vilhena, P.E., Pottier, F., Jourdan, J.: Spy game: verifying a local generic solver
in Iris. Proc. ACM Program. Lang. 4(POPL), 33:1–33:28 (2020). https://doi.org/
10.1145/3371101

31. Vojdani, V., Apinis, K., Rõtov, V., Seidl, H., Vene, V., Vogler, R.: Static race
detection for device drivers: the Goblint approach. In: Lo, D., Apel, S., Khurshid, S.
(eds.) Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering, ASE 2016, Singapore, 3–7 September 2016, pp. 391–402.
ACM (2016). https://doi.org/10.1145/2970276.2970337

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/3-540-58485-4_49
https://doi.org/10.1145/3371101
https://doi.org/10.1145/3371101
https://doi.org/10.1145/2970276.2970337
http://creativecommons.org/licenses/by/4.0/

End-to-End Mechanized Proof
of a JIT-Accelerated eBPF Virtual

Machine for IoT

Shenghao Yuan1,3(B) , Frédéric Besson2 , and Jean-Pierre Talpin1

1 Inria, Irisa, Rennes, France
{shenghao.Yuan,jean-Pierre.talpin}@inria.fr,

shenghaoyuan0928@163.com
2 Univ Rennes, CNRS, Rennes, France

3 State Key Laboratory of Blockchain and Data Security,
Zhejiang University, Hangzhou, China

Abstract. Modern operating systems have adopted Berkeley Packet
Filters (BPF) as a mechanism to extend kernel functionalities dynami-
cally, e.g., Linux’s eBPF or RIOT’s rBPF. The just-in-time (JIT) com-
pilation of eBPF introduced in Linux eBPF for performance has however
led to numerous critical issues. Instead, RIOT’s rBPF uses a slower but
memory-isolating interpreter (a virtual machine) which implements a
defensive semantics of BPF; and therefore trades performance for secu-
rity. To increase performance without sacrificing security, this paper
presents a fully verified JIT implementation for RIOT’s rBPF, consist-
ing of: i/ an end-to-end refinement workflow to both proving the JIT
correct from an abstract specification and by deriving a verified concrete
C implementation; ii/ a symbolic CompCert interpreter for executing
jited binary code; iii/ a verified JIT compiler for rBPF; iv/ a verified
hybrid rBPF virtual machine. Our core contribution is, to the best of
our knowledge, the first and fully verified rBPF JIT compiler with cor-
rectness guarantees from high-level specification to low-level implemen-
tation. Benchmarks on microcontrollers hosting the RIOT operating sys-
tem demonstrate significant performance improvements over the existing
implementations of rBPF, even in worst-case application scenarios.

Keywords: mechanized proof · virtual machines · JIT compiler ·
eBPF

1 Introduction

Kernel extensibility is the capability of an operating system to extend its core
functionalities with privileged services at runtime. It is an essential operating
system feature for mainframes, PCs, phones but also smaller devices of the
Internet of Things (IoT). Berkeley Packet Filters (BPF) was originally intro-
duced [22,23] to provide such extensions for Unix-BSD systems (e.g. network
packets filtering, cryptographic protocols, tools such as tcpdump, etc.). BPF
is an assembly language that defines a virtual RISC-like instruction set archi-
tecture (ISA). BPF scripts are executed in kernel to parameterize or extend
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 325–347, 2024.
https://doi.org/10.1007/978-3-031-65627-9_16

https://doi.org/10.5281/zenodo.11003924
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65627-9_16&domain=pdf
http://orcid.org/0000-0002-8467-5827
http://orcid.org/0000-0001-6815-0652
http://orcid.org/0000-0002-0556-4265
https://doi.org/10.1007/978-3-031-65627-9_16

326 S. Yuan et al.

privileged network stacks. For devices like PCs, servers and routers, the Linux
community adopted the concept of BPF and extended it to provide ways to
run custom in-kernel virtualized code, hooked as “plugins” to various services,
and for many other purposes beyond packet filtering [9]. The ISA of Linux’s
extended BPF (eBPF) is derived from the 64-bit RISC-V instruction set. It
features a sophisticated verifier [27], to statically analyze eBPF binary instruc-
tions, and an interpreter/just-in-time (JIT) compiler, to execute eBPF binaries
on varieties of 64/32-bit architectures, e.g., x86, ARM and RISC-V.

The correctness of the eBPF VM and/or JIT is critical for the integrity of the
Linux kernel. Bugs in their implementations have led to security vulnerabilities,
e.g., allowing execution of arbitrary code within the kernel context [16]. For
high-assurance of correctness, researchers have successfully applied verification
methods to eBPF JITs e.g., [28,34,35], to find and fix previously unknown bugs.
The eBPF instruction set is also used at the lowest end of the spectrum of the
IoT, on low-power and resource-constrained devices using micro-controller units
(MCUs) such as ARM Cortex-M, running smaller and resource-frugal operating
systems, such as the RIOT operating system [2]. Recent work has extended
the RIOT micro-kernel runtime with rBPF [38], a 64-bit register-based VM,
using fixed-size 64-bit instructions and a reduced ISA derived from eBPF. This
extension provides so-called femto-containers [39]: the capability for RIOT to
run privileged services, compiled as BPF binaries, each run in a sandboxed VM.

However, low-power IoT devices that run RIOT rarely support hardware
memory protections and they cannot afford the resource demands of an online
verifier to detect possibly faulty scripts. Instead, MCU-class femto-containers
implement a defensive semantics which checks dynamically the preconditions of
each instruction before executing it. This ensures the safety and isolation of the
eBPF script. Previous works [37,39] have tackled the challenges of implementing
a fully-verified and memory isolating VM for RIOT.

While previous works focused on trust (verified fault-isolation) and frugal-
ity (minimal footprint), the challenge addressed in this paper is to boost per-
formance while maintaining the highest degree of reliability, security, and fru-
gality. For that purpose, we extend the existing fault-isolating VM, namely
CertrBPF [37], with a JIT compiler that comes with mechanized correctness
proofs. Our goal is to improve efficiency while providing certified security guar-
antees i.e., the integrity of the host device, even in the presence of malicious
code. In this aim, we present a hybridly accelerated virtual machine (HAVM),
the first rBPF virtual machine that locally Just-In-Time compiles and executes
sequences of safe instructions (either exempt from, or subject to benign, run-
time checks), while behaving as a virtual machine for the most sensitive memory
transactions which, if jited, would require multiple runtime checks ruining any
performance or resources benefit. JIT acceleration highly improves the efficiency
of rBPF femto-containers, but may potentially introduce subtle errors due to the
sheer complexity of designing a JIT compiler. We exhaustively waive such risks
by a correctness theorem mechanically verified using the Coq proof assistant [5].

A Verified JIT-Accelerated eBPF Virtual Machine for Micro-controllers 327

1.1 Challenges

Typically, a JIT compiler manipulates three different programming or interme-
diate languages: it translates bytecode (the source language) to specific machine
code (the target languages), and it is usually implemented in a low-level system
language such as C (the host language) for space efficiency and performance.
Developing a JIT compiler of high-assurance hence poses major challenges.

JIT Design is Error-Prone. JIT compilers are more complex than ahead of
time compilers. The translations of instructions and protocols they perform are
error-prone: 1/ they perform transformations of architecture-dependent informa-
tion at binary level, different instruction encoding formats and specific calling
conventions and 2/ the host C language of the compiler eases low-level mem-
ory management mistakes, e.g., array-out-of-bound. Unsurprisingly, many eBPF
JIT-related vulnerabilities have been reported to the Linux community, regard-
ing kernel execution of arbitrary code [12] or confidentiality [14].

Formalizing a JIT Compiler is Challenging. Ahead-of-Time compilers usually
output assembly code by relying on separate assembler and linker to produce
machine code (plus runtime libraries in, e.g., Rust, OCaml). JIT compilers pro-
duce machine code directly, exposing vital semantics-level gaps: the host (C)
language, source, and target (ARM) binary have different semantics along with
specific calling convention. Existing compiler verification works, e.g., CompCert,
provide semantics from C to assembly languages but not to binary level currently.
One cannot directly reuse a CompCert backend assembly semantics to formalize
the target binary semantics of a JIT compiler as it does not conforms its calling
convention.

End-to-End Verification Gap. Our JIT compiler is intended to run within the
RIOT operating system kernel on resource-limited micro-controller devices. In
that context, the provision of a formally verified JIT model with a high-level
specification is not enough: there is still a verification gap to produce a veri-
fied low-level C implementation from that abstract specification. The CompCert
verification workflow is not suitable to that aim as it extracts OCaml code and
depends on unverified OCaml runtime libraries, assembler and linker. Other JIT
verification approaches, such as Jitterbug [28], suffer from this very same verifi-
cation gap: the high-level specification is verified, not its extracted compiler.

1.2 Contributions

In this paper, we address these challenges by presenting the first end-to-end
refinement workflow for application to the verified extraction of equivalent C
implementations of a hybrid virtual machine embedding a JIT compiler. Specif-
ically, we make the following contributions:

328 S. Yuan et al.

End-to-End Refinement Methodology. We propose an end-to-end refinement
methodology that i/ Horizontally, from source to target, formally verifies a JIT
compiler’s correctness in Coq using the standard CompCert simulation frame-
work, and ii/ Vertically, from Gallina model to C code, formally extracts an
equivalent, optimized and executable C implementation from its own JIT speci-
fication in Gallina (the functional language embedded in Coq). A strength of our
proof methodology lies in the capacity of extracting a verified C model from the
standard compiler verification workflow in Coq, from specification to executable
(end-to-end).

Symbolic CompCert ARM Interpreter. We extend the standard CompCert
ARM backend with symbolic execution, for the purpose of reusing the existing
CompCert calling convention to support binary code execution. This extension
allows our new CompCert ARM interpreter to correctly interpret (jited) binary
code while ensuring the preservation of the ARM calling convention.

A Verified JIT Compiler for rBPF. We design a JIT compiler translating rBPF
Arithmetic and Logic (ALU) instructions into binary code. To implement our
end-to-end approach, we prove a semantics preservation theorem between the
source transition system (rBPF) and the target transitive semantics (rBPF with
jited code), and extract a verified C implementation of the JIT compiler.

A Verified Hybrid Virtual Machine for rBPF. We introduce HAVM, a Hybridly
jit-Accelerated VM. HAVM can switch between (verified) interpreted, runtime-
costly, defensive memory bound checks (for load-store operations) and fully ver-
ified JIT-compiled code (for arithmetic operations). The verified C model of
HAVM is derived from its abstract semantics by our end-to-end workflow.

Plan. The rest of the paper is organized as follows: Sect. 2 provides background
on CompCert. Section 3 outlines our end-to-end refinement workflow and intro-
duces the application to produce both a verified JIT compiler and VM in C.
Section 4 defines our symbolic CompCert ARM interpreter. Section 5 introduces
our JIT design and applies our workflow to produce a verified C implementation
of the JIT with semantics preservation. Section 6 presents the complete HAVM
mixing with a hardware ARM interpreter, a rBPF interpreter, and an interface
function allowing them to interleave execution. Section 7 case-studies the perfor-
mance of our generated VM implementation in comparison to all existing VMs.
Section 8 reports our lessons learned, Sect. 9 discusses related works and Sect. 10
concludes.

2 Preliminaries

CompCert [17] is a C compiler that is both programmed and proven correct using
the Coq proof assistant. It compiles C programs into assembly code e.g., ARM.
The compiler is structured into passes using several intermediate languages. Each

A Verified JIT-Accelerated eBPF Virtual Machine for Micro-controllers 329

intermediate language is equipped with an operational semantics defined by a
labelled transition system denoted as E � st

t−→ st′. It represents one execution
step from machine state st to machine state st′ in some environment E. The
trace t denotes the observable events generated by the execution step.

Each pass is proven to preserve observational equivalence of programs using a
simulation relation. CompCert employs two types of simulations: forward simu-
lation (i.e., every behaviour of the source program is also a behaviour of the com-
piled program) and backward simulation. CompCert proves most of its passes
using forward simulation because it is easier to reason with. It uses a forward
to backward lemma to construct a backward simulation from a forward one.
The composition of all the simulation lemmas for the individual compiler passes
forms the semantic preservation theorem:

Theorem 1 (Semantic Preservation). Suppose that tp ∈ T is the result
of the successful compilation of the program p ∈ S. If bh is a behaviour of tp
(bh ∈ �tp�T) then there exists a behaviour bh′ such that bh′ is a behaviour of p
(bh′ ∈ �p�S) and bh′ improves bh, i.e.:

∀ p tp bh, compcert p = �tp� → bh ∈ �tp�T → ∃ bh′, bh′ ∈ �p�S ∧ bh′ ⊆ bh

bh′ ⊆ bh if either, bh′ is equal to bh, or bh′ is an undefined behaviour replaced
by a defined behaviour in bh. CompCert returns an option-typed object: �tp�
denotes success with result tp, and ∅ denotes failure.

The memory model and data structures (representation of values) are shared
across all the intermediate languages of CompCert [18,19]. CompCert defines
machine integers with different sizes, e.g., int for 32-bit words and int64 for
64-bits long integers. A value v ∈ val can either be a 32-bit Vint(i32) or 64-
bit Vlong(i64) machine integer, a pointer Vptr(b, o) to a block b and offset o, a
floating-point number, or the undefined value Vundef . A CompCert memory m
consists of a collection of partitioned arrays. Each array has a fixed size and is
identified by an uninterpreted block b ∈ block .

In addition to CompCert, our project employs the same Gallina-to-C tran-
spiler ∂x as the verified virtual machine presented in [37]. ∂x is an unverified
translator that was developed to design the verified PIP proto-kernel [13] in Coq.
It transpiles a monadic (imperative) Gallina source definition to CompCert C
code of identical structure and terms. We chose to reuse ∂x for its practicality
(traceability) and to reuse the same translation validation methodology as [37].

3 A Workflow for End-to-End Refinement

This section presents an overview of our methodology to prove the correct-
ness of a virtual machine which dynamically compiles, at load time, a subset
of the instructions. Informally, the end-to-end correctness guarantee of the vir-
tual machine can be phrased as follows. Suppose that a source code s executes
according to the small-step operational semantics and returns a value v. The
virtual machine just-in-time compiles a subset of the source instructions of s

330 S. Yuan et al.

into binary code and, therefore, generates a compound program t composed of
original instructions augmented with calls to binary code. The virtual machine
then executes the program t and returns the exact same value v.

In the following, we explain the high-level structure of the proof and how to
get a rigorously end-to-end formal guarantee for a virtual machine written in
the C language using the Coq proof assistant and the CompCert compiler.

3.1 Methodology

At high-level, the methodology can be explained using T-diagrams [6]. The T-
diagram of Fig. 1a depicts a compiler which given as input a source program
s ∈ S, generates a target program t ∈ T and is implemented using the imple-
mentation language I. We will also make use of the diagram of Fig. 1b which
depicts an interpreter for the language T implemented in the language I. As our
methodology is formally grounded each diagram comes with a soundness proof.
In particular, each language is equipped with a formal semantics and a compiler
diagram comes with a semantic preservation theorem similar to Theorem 1.

Fig. 1. T-diagrams.

JIT Compiler Structure. The JIT compiler and its proof follow the struc-
ture of the diagram of Fig. 2a. To begin with, we write a compiler for the source
language S to the target language T using the Gallina language, written G, of
the Coq proof assistant. We also prove a semantics preservation theorem guar-
anteeing the correctness of the compiler. To get an executable compiler outside

Fig. 2. Virtual machine diagrams.

A Verified JIT-Accelerated eBPF Virtual Machine for Micro-controllers 331

the proof assistant, the usual approach is to perform program extraction [20,32]
to a functional language. However, functional languages require a sophisticated
runtime e.g. a garbage collector, that is not compatible with our constrained
resources. Instead, we perform a rewrite of the compiler to a tiny subset of Gal-
lina (G0). Though the transformation is systematic, it is manual as indicated
in Fig. 2a by the implementation language H which stands for Human. In that
case, that associated correctness is that both compilers compute the exact same
output program. However, the compiler using the language G (Gallina without
restriction) is designed as a composition of passes. This simplifies the seman-
tic preservation proof but constructs intermediate functional data-structures.
The compiler restricted to G0 is using more imperative data-structures (using
an explicit state-monad) and is using a more direct generation of binary code
avoiding intermediate data-structures thus using resources that are compatible
with our resource constrained environment. The last step consists in using the
∂x Coq plugin, written in elpi [8], which converts the language G0 into C. As ∂x
is not proof generating, we perform a manual but systematic translation valida-
tion step with respect to the formal semantics of CompCert showing that both
the G0 program and the generated C code compute the same result.

Execution of JIT Compiled Code. The proofs of the JIT compiler are
performed over the small-step operation semantics of the target language which
is the combination of source semantics for the non-JIT compiled instruction
and the semantics of the binary code. The diagram of Fig. 2b shows how to
derive an executable C Virtual Machine for this language. To execute a program

T in language T, we program in Gallina (G) an interpreter for the language
T. As we explain in Sect. 4, the interpreter is equipped with a sub-interpreter
for executing binary code. Here, the proof is that if the interpreter terminates
without exhausting its allocated execution steps, it computes the same result
as the small-step semantics. To get an executable C code, we follow a similar
methodology: express the interpreter in restricted Gallina G0 and run the ∂x
tool to get a C program. What may be puzzling is how the Gallina semantics of
binary code may be compiled into C code. This indeed requires some substantial
work. What we do is to augment the semantics of all the intermediate language of
CompCert with a so-called builtin which embeds the semantics of our Gallina
interpreter for executing binary code. Eventually, we show that this semantics
coincide with the existing semantics of CompCert assembly augmented to fetch
and decode instructions from memory.

Terminology. In the following, we call horizontal refinement a proof related to
a Gallina program p ∈ G and vertical refinement a proof related to lower-level
programs p ∈ G0 or p ∈ C.

3.2 Application to a rBPF Virtual Machine

We instantiate our approach to derive a verified C implementation of a VM for
rBPF enhanced with a JIT compiler. As we target a 32-bit ARM architecture,

332 S. Yuan et al.

Fig. 3. JITCompiler Structure (left) and related Semantics (right).

we consider the rBPF variant operating on 32 bit registers. The JIT compiler
is invoked at load time and translates to ARM code straight-line sequence of
arithmetic and logic (ALU) instructions. The rationale is that these are the
part of the code for which we can expect a substantial speedup as the rBPF
registers can be mapped to ARM registers and an ALU instructions is mapped
to a short sequence of ALU ARM instructions. For memory operations, rBPF
implements a costly dynamic defensive semantics which consists in iterating
over a list of allowed memory regions and checking that the memory address is
correctly aligned and respect the access rights. Yet, a partial JIT compiler does
not simplify the verification task as the VM needs to ensure the inter-operability
between streams of rBPF and ARM instructions while reasoning at high-level
using formal models.

JIT Compiler Structure. The structure of the JIT compiler is illustrated in
Fig. 3. As hinted in the previous Section, the JIT compiler is not monolithic
but made of three passes. The Analyzer pass identifies sequences of rBPF ALU
instructions and disassemble them. The core of the JIT compiler is JITALU (see
Sect. 5) which translates a list of rBPF instructions into the correponding ARM
code. Eventually, Combiner collects all the binary instructions into a single array
B and generates another array KV such that KV [i] = ofs if i is the entry point
of a sequence of rBPF ALU instructions si and B [ofs] is the start of the binary
ARM code corresponding to si.

Horizontal Refinement: JIT Correctness. The proof of our JIT compiler follows
the structure of a standard CompCert compiler proof, with the difference that
the target language is made of both rBPF instructions and binary ARM code.

A Verified JIT-Accelerated eBPF Virtual Machine for Micro-controllers 333

This multi-language semantics requires the calling-conventions of ARM to ensure
the interoperability of the rBPF semantics and ARM semantics.

Vertical Refinement: Verified JIT and HAVM. The goal of vertical refinement
is to extract a verified C JITCompilerC from its Gallina model JITCompiler
and generate a VM HAVMC . One challenge is to ensure that the C program
is a valid refinement of the Gallina program. It appears, however, that calling
some in-memory ARM code from a C program has no defined semantics in
CompCert. To tackle the issue, we augment the semantics of CompCert with a
defensive symbolic ARM semantics.

4 Symbolic CompCert ARM Interpreter

The current standard CompCert backend defines various assembly languages,
e.g., ARM, along with their formal semantics. Unfortunately, it cannot be reused
for our JIT compiler because JITCompiler requires the binary-level semantics
of ARM. Additionally, the calling convention of the jited code exceeds the
capability of the existing CompCert ARM semantics.

To address this issue, we firstly define an ARM decoding function to link the
ARM semantics from binary-level to CompCert assembly-level. Subsequently, we
introduce a symbolic CompCert ARM semantics that lifts the ARM instruction
semantics and the calling convention into a symbolic form. This new CompCert
backend employs symbolic execution to interpret binary ARM instructions, and
symbolic values allow to i/ initialise ARM registers when switching from C to
binary; ii/ define an executable semantics of ARM capable of simulating (and ver-
ifying) the calling conventions. Yet, during the assembly code generation pass of
CompCert, the symbolic ARM semantics is switched to the concrete CompCert
ARM semantics.

ARM Decode. We implement a decoding function in Gallina that translates
binary ARM instructions to standard CompCert assembly ARM instructions.
We also define an encode function embedded in the JIT process, and prove that
this ‘decode-encode’ pair is consistent.

Lemma 1 (Decode-Encode Consistency). ∀ i, decode (encode i) = �i�
ARM Calling Convention. When interpreting (‘calling’) a list of jited binary
code, the ARM calling conventions need to be preserved: i/ the caller must save
the value of argument registers (r0 − r3), and ii/ the callee must save the value
of (r4 − r11). For efficiency purposes, we stipulate that:

– callee-saved registers must be dynamically preserved by the jited binary
code, as it may not modify all registers during one procedure call.

– all caller-saved registers are statically preserved by our ARM backend.

We also allocate a stack frame to implement the calling convention before
binary execution, and verify that all ARM callee-saved registers in the final reg-
ister state have been reset to their initial values, relying on a symbolic execution
technique.

334 S. Yuan et al.

Symbolic Execution. The register map SReg is symbolic: each register sr is either
an abstract value or a concrete value bound to an actual ARM register r.

SReg � sr::=abstract(r) | concrete(v)

All initial registers init rs have abstract values, e.g., SReg[r0] =
abstract(r0). The concrete values of registers are inserted by running the jited
code.

CompCert ARM Interpreter. We design a symbolic variant of the CompCert
ARM interpreter that utilizes the existing CompCert ARM transition function
to execute user-specific ARM binary code. We first introduce the initial and final
states of the interpreter, then explain how the interpreter works.

We define a function init state to create a new ARM environment for
interpreting binary code. It first copies values from the arguments list args
to caller-saved registers of the symbolic register map init rs, according to the
function’s signature sig. Then, init state allocates a new memory block stk
in CompCert memory with a fixed stack size sz. It stores the previous stack
pointer sp at position pos in stk and updates the stack pointer with the start
address of this block. Finally, it stores the return address, i.e., the next address
of the old pc, to r14. Since the first argument always points to the location of the
jited binary code to be executed, init state also assigns the program counter
pc with the first argument value r0.

init state(sig, args, sz, pos, m) =
match alloc arguments(sig, args, init rs) with

| ∅ ⇒ ∅
| �rs� ⇒ match alloc frame(sz, pos, rs, m) with

| ∅ ⇒ ∅
| �(rs′,m′)� ⇒ �(rs′{r14 ← abstract(pc) + 1, pc ← rs′[r0]}, m′)�

We then define a Boolean predicate is final state to describe a well-formed
final state of the jited code.

is final state(rs : SReg) : bool = rs[pc] == abstract(r14) &&
rs[sp] == abstract(sp) && (∀i. 4 ≤ i ≤ 11 → rs[ri] == abstract(ri))

The predicate is final state stipulates that 1/ pc should hold the return
address stored in r14; 2/ The stack pointer is restored; 3/ All callee-saved regis-
ters should have their initial values.

The symbolic CompCert ARM interpreter is defined as follows:

bin exec(fuel, sig, args, sz, pos, m) =
match init state(sig, args, sz, pos, m) with

| ∅ ⇒ ∅
| �(rs′,m′)� ⇒ bin interp(fuel, rs′, m′)

A Verified JIT-Accelerated eBPF Virtual Machine for Micro-controllers 335

where the parameters include: 1/ fuel, ensuring the termination of its recursive
call to bin interp. 2/ sig, the signature of the arguments used by the input
ARM binary code. 3/ args, the arguments list. 4/ sz, the size of the allocated
stack frame. 5/ pos, the position of the old stack pointer in the new stack frame.
6/ m, the CompCert memory.

First, bin exec uses init state to create a proper ARM environment,
including the initialized ARM register map rs′ and the new memory m′. It
then calls bin interp recursively to interpret ARM binary code until it reaches
the final state. It either returns r0’s value or exhausts fuel . Each iteration of
find instr fetches the instruction at the program counter pc and decodes it. If
its binary instruction decodes successfully, bin interp then calls the symbolic
ARM transition function symbolic transf to execute it and proceeds to the
next instruction, if no errors occur.

bin interp(fuel, rs, m) =
if is final state(rs) then �(rs[r0],m)�else if fuel == 0 then ∅

else match find instr(rs[pc], m) with

| ∅ ⇒ ∅
| �ins� ⇒ match symbolic transf(ins, rs, m) with

| ∅ ⇒ ∅
| �(rs′,m′)� ⇒ bin interp(fuel − 1, rs′, m′)

We have integrated this symbolic ARM backend into the CompCert environ-
ment and proven that it is compatible with the standard CompCert ARM seman-
tics. This interpreter also provides an equivalent built-in C function ‘bin exec’:
the CompCert “builtins” mechanism ensures that the semantics preservation the-
orem still holds between the Gallina function bin exec and its built-in ‘bin exec’.

5 A Verified Just-In-Time Compiler for rBPF

Our JIT compiler is exclusively designed to translate rBPF Alu instructions
into target binary code. The compiler structure is shown in Fig. 3. This section
highlights the JITALU translation as the other two are straightforward. We then
detail the end-to-end refinement verification process introduced to prove this
JIT compiler correct.

5.1 JIT Design

High-Level Intuition. JITALU translates a list of rBPF Alu instructions into a
list of ARM binary code. As depicted in Fig. 4, the target jited binary list has
a specific linear structure: i/ The Head part copies r1’s to r12 as the following
stages may override r1; ii/ The dotted part is made of the following stages:
Spilling copies ARM registers on the stack, Load transfers register values from
rBPF to ARM, and Core performs the arithmetic computation operating on

336 S. Yuan et al.

ARM registers that is equivalent to the behaviour of the source rBPF Alu list; iii/
The subsequent part Store updates registers from ARM to rBPF, and Reloading
pulls stack values into ARM registers; iv/ The Tail part frees the current stack
frame and branches to the return address.

Fig. 4. Structure of jited code.

The Load and Store stages perform interactions between ARM registers and
rBPF registers for consistency after executing the jited code, while the Spilling
and Reloading stages guarantee the ARM calling convention. As the ARM binary
can only ‘see’ ARM registers and memory blocks, the rBPF register map is stored
in the special block st blk and its start location (Vptr(st blk, o)) is stored in r1
with the argument passed by the jit call function. In the layout of st blk, cells
[4 ∗ i, 4 ∗ i + 4) have the value of Ri (0 ≤ i ≤ 10), and [44, 48) have the rBPF
PC’s value.

Core Mapping. The rBPF Alu instructions include common arithmetic opera-
tions where the destination operator is a general rBPF register (R0 − R9) and
the source could be a rBPF register (R0 − R10) or an 32-bit immediate number.

op ::= ADD | SUB | MUL | DIV | OR | AND | XOR | MOV general
| LSH | RSH | ARSH shift

ins ::= Alu op dst src | . . . instruction

The core mapping of JITALU includes two general rules and one specific rule.

– G1 : maps a register-based rBPF operation (source is a register) into its
corresponding ARM instruction operating the related ARM registers, e.g.,
Alu ADD Rd Rs is translated into add rd rd rs.

– G2 : maps an immediate rBPF operation according to the provided range i .
• G2.1 : If the immediate constant i is in the range [0, 255], each instruction

is directly mapped to an 8-bit-immediate ARM instruction.
• G2.2 : If i is within the range [256, 65535], it is first copied into ARM

register r11 using movw , and then mapped to an ARM instruction with
r11 as the second operand. movw writes an immediate value to the low
16 bits of the destination register.

• G2.3 : Otherwise, i is loaded into r11 using movt and movw before per-
forming the operation. movt modifies the high 16 bits.

– S1 : For the rBPF division and shift instructions, the immediate operation is
mapped if the constant i is valid, i.e., i �= 0 for division and (0 ≤ i ≤ 31)
for shifts. For completion, JITALU returns failure if it encounters an invalid
i. Note that validity is however a pre-condition guaranteed by the host vir-
tual machine [37], which analyzes script prior to execution and, among other
things, checks the validity of immediate instructions.

A Verified JIT-Accelerated eBPF Virtual Machine for Micro-controllers 337

Interaction. In the Core stage, source instructions operate over rBPF registers,
while the jited ARM code operates on ARM registers. Hence, a consistent
interaction between rBPF and ARM registers is mandatory. JITALU generates
extra binary code performing the interaction in the Load and Store stages, which
relies on two special sets LD (rBPF registers that have been loaded into ARM
registers) and ST (rBPF registers that should be updated in the Store stage).
For each rBPF Alu instruction, JITALU adopts two rules to produce memory
instructions and update the register sets before it performs the core mapping.

– I1 : if the rBPF destination register Rd isn’t in the LD, i/ if rd is an ARM
callee-saved register, generate ‘str rd [sp, #(d ∗ 4)]’ for spilling; ii/ generate
‘ldr rd [r12, #(d ∗ 4)]’ for the Load stage; iii/ add Rd into LD and ST .

– I2 : if the rBPF source is a register Rs that isn’t in the LD, generate the same
code as I1 but only add Rs into LD.

After all rBPF Alu instructions are jited, JITALU updates the rBPF register
map by generating ‘str ri [r12, #(i ∗ 4)]’ for all ri ∈ ST . Then, to preserve the
ARM calling convention, JITALU resets all modified ARM callee-saved registers
ri from the stack frame by ‘ldr ri [sp, #(i ∗ 4)]’.

Example. Figure 5 illustrates the entire JITALU process. Consider a source rBPF
Alu snippet composed of n instructions: ‘[ADD R0 R1 ; MOV R5 R0 ; MUL R6

0xf ; . . .]’. The Head is always ‘mov r12 r1’. Then, the Spilling stage saves r11 in
the stack frame because it will be modified later. For the first rBPF instruction,
the jited code copies R0 and R1 into r0 and r1, and then performs the ARM
addition. The initial LD and ST are ∅, the updated state is LD = {R0, R1}
and ST = {R0}. For the second rBPF instruction, the jited code requires a
Spilling stage to save r5 first, then performs the move and updates LD and ST
with R5. After the n-th rBPF instruction, there are two instructions to update
the rBPF’s PC with the length of the input list. The Store stage updates all
modified rBPF registers in ST and PC, and the Reloading stage resets all used
call-save registers to their previous values stored in the stack frame during the
Spilling stage. The last stage is Tail.

5.2 JIT Correctness

We employ the standard CompCert framework to prove the JIT compiler correct.
The proof initially refines the source rBPF semantics into an intermediate model
(after analysis), and subsequently refines into the target HAVM semantics.

Machine State. The rBPF state is a pair state ::= (R,M), consisting of a
CompCert memory model M and the register map R, which associates (32-bit)
values with the rBPF registers (R0 − R10 and PC).

Transition Semantics of rBPF. The core of rBPF’s semantics is a transition
function T (ins, st) = �st′� that determines the new state st′ after executing

338 S. Yuan et al.

Fig. 5. JITALU example.

instruction ins in the initial state st. In particular, the program counter PC is
incremented. For simplification, we only present the transition rule of arithmetic
instructions in one execution step steprBPF . The first two premises model the
actions of reading and decoding the n-th instruction ins, which is pointed to
by the program counter PC, from the list C. Then, the rule executes ins and
returns a new state.

R[PC] = Vint(n) C[n] = �ins� ins = Alu op dst src T (ins, (R, M)) = �(R′, M ′)�
C � (R, M)

ε−→ (R′, M ′)

Transition Semantics of the Analyzer. The first module of JITCompiler is an
analyzer that generates a list of analysis results BL, a pair of entry point and
a list of (decoded) rBPF Alu instructions, from the input rBPF binary C. The
refined semantics only replaces the previous arithmetic rule with the following
one. When PC is an entry point and its related rBPF Alu list is in BL, a refined
transition function TL is used to sequentially execute all instructions in l.

R[PC] = Vint(n) (n, l) ∈ BL T L(l, (R, M)) = �(R′, M ′)�
C, BL � (R, M)

ε−→ (R′, M ′)

We prove that, for one step ‘stepA’ of this refined machine, TSA has a back-
ward simulation relation with respect to several steps ‘step∗

rBPF ’ of the source
machine TSrBPF .

Lemma 2 (TSA simulates TSrBPF in one step). ∀ C BL t st st′,

Analyzer C = �BL� ∧ (stepA C BL) st t st′ → (step∗
rBPF C) st t st′

A Verified JIT-Accelerated eBPF Virtual Machine for Micro-controllers 339

Transition Semantics of HAVM. The Combiner module calls JITALU to generate
all binary code lists from the analyzing results and combines all jited code into
one list. The target semantics only changes the arithmetic rule compared to the
source semantics. Where PC is an entry point and its related jited list located
in bl starting from offset ofs, the transition function TARM calls the symbolic
ARM interpreter bin exec to execute the jited code.

R[PC] = Vint(n) ((n, ofs), bl) ∈ TP TARM (ofs, bl, (R, M)) = �(R′, M ′)�
C, TP � (R, M)

ε−→ (R′, M ′)

Lemma 3 proves that one step ‘stepA’ of TSA has a forward simulation
relation with one step ‘stepHAVM ’ of the target machine TSHAVM . Since the
semantics of TSHAVM encompasses rBPF and ARM, this proof features some
interesting inter-operations: i/ Both machines start from the same rBPF state;
ii/ When TSHAVM executes its ALU rule using TARM , we prove a simulation
between the rBPF state of TSA and the ARM state of TSHAVM ; iii/ After
completing the ALU rule, we prove that the jited code respects the ARM
calling convention, and both machines achieve the same final rBPF state.

Lemma 3 (TSA simulates TSHAVM in one step). ∀ C BL TP t st st′,

Combiner BL = �TP� ∧ (stepA C BL) st t st′ → (stepHAVM C TP) st t st′

From Lemma 2 and Lemma 3, we can prove that JITCompiler is correctness
because the forward simulation in Lemma 3 can be reconstructed into a backward
proof, and composed to a complete simulation proof from target to source.

5.3 JIT Vertical Refinement

The goal of this section is to design a verified and optimized JITCompiler C
implementation. The refinement process is step-wise.

Removing Intermediate Representation. JITCompiler adopts a modular design
for proof simplification. Expectedly, JITCompiler is memory-consuming and of
low efficiency, as it takes additional memory to save analysis results (Figrue 3,
middle). JITCompileropt instead operates as “find a rBPF Alu, jit immediately,
and check the next one”, with minimal resources and better performances.

Refining Data Structure. JITCompileropt refines data structures for optimization
and synthesis requirements. For example, LD and ST are implemented as sorted
ListSets, which cannot be directly mapped to a C type. We refine ListSet as a
Coq Record type regSet that states which rBPF registers are modified (e.g.,
flagged true). Then ‘LD : regSet ’ can be extracted as ‘ Bool LD[11]’ in C.

Record regSet := { f R0 : bool; . . . ; f R10 : bool }

https://coq.inria.fr/doc/V8.18.0/stdlib/Coq.Lists.ListSet.html

340 S. Yuan et al.

∂x Refinement. JITCompiler∂x adopts an option-state monad to model effectful
behaviours. For example, reading rBPF input binary p and writing the jited
code into the pre-allocated list tp bin with a proper offset in jit state.

Record jit state := { . . . ; p : list int64; . . . ; tp kv : . . . ; tp bin : list int }
We use ∂x to extract an executable C code JITCompilerC from

JITCompiler∂x using a global state where Coq lists are mapped to C pointers.

struct jit state { . . . ;uint64 t ∗ p; . . . ; . . . tp kv;uint32 t ∗ tp bin }
The end-to-end proof of the JIT compiler refinement proceeds in two steps: i/
from JITCompiler to JITCompiler∂x , we prove that the refinement is correct
(see Lemma 4) and, ii/ from JITCompiler∂x to JITCompilerC , we reuse the ∂x
end-to-end verification workflow.

Lemma 4 (∂x-Refinement Correctness). Suppose that Compiler∂x is the
refinement of Compiler. Compiler and Compiler∂x must generate the same
result tp when they accept the same input program p.

∀ p tp st1, Compiler p = �tp� ∧ p ∈ st1 ∧ Allocate(tp) ∈ st1 →
∃ st2, Compiler∂x st1 = �(unit, st2)� ∧ p ∈ st2 ∧ tp ∈ st2

where x ∈ st if x is a field of state st and Allocate(x) creates an empty list of
the same size as x.

6 HAVM: A Hybrid Interpreter for rBPF

This section introduces the first (and fully-verified) hybrid rBPF interpreter
HAVM, which interprets the composition of a rBPF binary script with jited
ARM binary code.

HAVM Design. HAVM is formalized as a monadic function in Gallina. First,
we highlight several fields in the monadic state of HAVM: 1/ R.pc is the PC of
rBPF register map R; 2/ tp kv is the offset-pairs list; 3/ M is the CompCert
memory including a special memory block jit blk storing the jited code list.

Then, we extend the standard rBPF interpreter of [39] to implement HAVM.
Its step function hybrid step interprets different rBPF instructions. For rBPF
Alu instructions, it directly calls jit call, which is a monadic instantiation
of our transition function TARM . For rBPF memory instructions, hybrid step
inherits the defensive semantics from the vanilla rBPF VM: the check mem
function guarantees the (verified) safety of all memory operations.

hybrid step(hst) =
match hst.p[hst.R.pc] with | ../..

| Alu op dst src ⇒ jit call(hst.tp kv[hst.R.pc], hst)
| Mem dst src . . . ⇒ if check mem(. . .) then safe mem op else . . .

A Verified JIT-Accelerated eBPF Virtual Machine for Micro-controllers 341

Refinement Proof. The vertical refinement proof focuses on the proof from
TSHAVM to the monadic model HAVM (see Lemma 5) where the simulation
relation st ∼ hst is defined as st.R = hst.R ∧ st.M = hst.M .

Lemma 5 (Interpreter Refinement). ∀ st1 st2 t hst1, st1 ∼ hst1 ∧

stephavm st1 t st2 → ∃ hst2, hybrid step hst1 = �(unit, hst2)� ∧ st2 ∼ hst2

C Implementation. We use ∂x to extract a verified C implementation HAVMC .
The C version jit callC is implemented by the verified ‘bin exec’ built-in func-
tion. This allows us to prove that the refinement from HAVM ∂x to HAVMC :
jit call is equivalent to jit callC due to the verified CompCert built-in mech-
anism. The Non-Alu cases reuse most of the refinement proofs of [37].

7 Evaluation: Case Study of RIOT’s Femto-Containers

We integrated our JIT compiler and the HAVM into the RIOT-OS to provide
the same functionalities as the previous vanilla-rBPF module.

Implementation. The whole project, available on [36], consists of more than 70k
lines of Coq code: The CompCert variant is completed by 6k lines and the rBPF-
related transitive systems are approx. 1k lines long. The specification of the JIT
compiler 1k lines large and our main proof effort, the JIT correctness theorem,
demanded 45k proof code. The vertical refinement to monadic form contains
the JIT part (about 4k lines) and the HAVM part (about 3k lines). From the
monadic models to the final C implementation, about 10k lines proof code, we
rely on the existing end-to-end verification workflow of [37].

Experiment. Our experiments are performed on a nrf52840dk development board
which uses an Arm Cortex-M4 micro-controller, a popular 32-bit architecture
(arm-v7m). The experimental benchmark code is compiled using the Arm GNU
toolchain version 12.2. The compilation is using level 2 optimization enabled and
the GCC option -foptimize-sibling-calls to optimize all tail-recursive calls
and in turn, bound the stack usage. We also enable -falign-functions=16
to reduce the performance variation caused by the instruction cache on the
device. Lastly, we compare the HAVM implementation against both CertrBPF
and Vanilla-rBPF using real-world benchmarks shown in Table 1.

The first four benchmarks test purely computational tasks, mainly consisting
of rBPF Alu operations. Then, two special benchmarks comprise more memory
operations but fewer Alu operations (worst cases for HAVM): the classical BPF
socket buffer read/write and memory copy functions. Finally, we benchmark the
performance of actual IoT data processing algorithms such as the Fletcher32
hash function or a bubble sort. We observed that, for all real-world benchmarks,
HAVM improves performance because of the numerical acceleration JIT-feature.

342 S. Yuan et al.

Table 1. Execution time of real-world benchmarks

Interpreter incr square bitswap fib sock buf memcpy fletcher32 bsort

vanilla-rBPF 8.44µs 8.50µs 42.25µs 94.38µs 325µs 887µs 2283µs 11722µs

CertrBPF 5.13µs 5.50µs 34.75µs 92.38µs 300µs 822µs 1980µs 10697µs

HAVM 4.38µs 4.37µs 15.63µs 51.75µs 185µs 588µs 1196µs 7120µs

8 Lessons Learned

In this section, we clarify the prospects and limitations of the methodology
proposed in the paper and its application to the rBPF JIT compiler.

Our Goal and Limitations. The methodology aims at proving the high-level
specification of the JIT compiler correct and at extracting a verified C imple-
mentation directly from this specification, using refinement. As mentioned in
Sect. 7, our methodology requires a lot of manual proof effort.

Regarding its application to rBPF JIT compilation, our JIT compiler is,
more precisely, a hardware accelerator for numerical operations: it only trans-
lates a subset of rBPF ISA, the ALU instructions, into ARM binary. We made
this choice as the other memory operations of rBPF must be given a defensive
semantics to meet the requirement of (memory) fault isolation. This defensive
code is large and, if jitted, would significantly increase the binary code size for
a limited performance gain.

Adaptability: Move to Other Targets. Should we consider instantiating our
methodology and proofs to another target architecture, say RISC-V, then most
of the current JIT design and proof techniques could be reused. The only modi-
fication would regard platform-dependent elements: the semantics model would
need to be based on CompCert/RISC-V, and the JIT’s spilling and reloading
stages would have to be modified to match RISC-V’s calling conventions.

Adaptability: Turn to Linux eBPF. However, our ARM-ALU JIT compiler may
not directly be extended to a full-fledged Linux eBPF JIT compiler, as eBPF
doesn’t have a defensive semantics for memory operations. Instead, Linux’ eBPF
uses a sophisticated verifier to validate memory operations, which would not fit
the memory resources onboard IoT devices, as it is larger than 20k lines of C
code, and be an end-to-end verification project in its own rights.

Finally, this paper does not discuss JIT optimizations, unlike modern JIT
compilers, which have sophisticated optimization strategies. Proving their cor-
rectness in Coq would also be a non-trivial verification task.

However, we believe that these two last limitations could be relaxed once
we complete a fully verified “JIT-all” compiler for rBPF. Essentially, the last
mile of our journey toward a complete JIT compiler would be one capable
of calling a verified ARM binary implementation of the (verified) defensive
“check mem” function and to embed it in the JITed code block. This would
essentially amount to verifying an adhoc linker between the JITed code and the
embedded check mem’s binary code.

A Verified JIT-Accelerated eBPF Virtual Machine for Micro-controllers 343

9 Related Works

Verified Compilers, OS kernels, and VMs. There is a rich literature on verified
software design. Verified compilers include CompCert [17] (from C to assembly)
and CakeML [26] (from ML to binary), etc. Verified OS kernels comprise for
instance SeL4 [15] (L4 microkernel) and CertiKOS [11] (multi-cores). Verified
virtual machines have been developed for richer scripting languages, such as
Java VM [21], JavaScript VM [7], and Ethereum [40].

Our work build upon CertrBPF [37], the first verified eBPF VM for RIOT
providing a service of so-called femto-containers [39]. CertrBPF provides an end-
to-end verification workflow from monadic Gallina models to executable C imple-
mentation. However, it has no JIT compiler. The main novelty presented in this
paper is the first and fully verified JIT compiler for RIOT rBPF, reusing and
enriching the CompCert and CertrBPF projects.

Verified JITs. Barriere et al. [3,4] extend the CompCert backend to support
general-purpose JIT compilation. They adopt an additional memory model for
defining the behaviours of jited code and require unverified C glue code to
obtain a runnable JIT compiler. Wang et al. [35] extend CompCert to extract
a verified JIT compiler Jitk from classic BPF (not eBPF) to assembly code in
OCaml. All aforementioned extensions rely on unverified TCB consisting of the
OCaml runtime, an assembler, and a linker, which are not suitable for a security-
critical and resources-limited OS kernel like RIOT. Myreen [25] proves a JIT
compiler from a simple stack-based bytecode language to x86 in the HOL4 proof
assistant. Van Geffen et al. [10] present an optimized JIT compiler for Linux
eBPF, embedded with automated static analysis. Nelson et al. [28,34] develop
the domain-specific language Jitterbug to write JITs and prove them correct.

All the above approaches only verify the JIT correctness in a high-level
abstract model, but do not produce a verified C implementation which is vital
for, e.g., field deployment on networks of micro-controllers (IoT) or embedded
devices. This paper fills this verification gap: the JIT correctness proof is con-
ducted over an abstract specification in Coq and then propagated down to a
concrete C implementation of the JIT compiler.

End-to-End Verification. There are various solutions for extracting executable
C code from high-level programs, but most of them are not compatible with
our goal: i.e., a verified JIT C implementation running the real-time OS kernel
deployed on IoT devices. Some of them are unverified, e.g., KaRaMeL [30] (from
F� to C) and Codegen [33] (from Gallina to C). Some require a garbage collector,
e.g., CertiCoq [1] and Œuf [24] (from Gallina to C) or CakeML (from Standard
ML to binary). The Cogent framework [31] (from Cogent to Isabelle/HOL and
C) is verified but depends on calls to foreign C functions to perform loops, and
Rupicola [29] (from Gallina to bedrock2, a C-like language) has only been tested
for small algorithms. The end-to-end refinement method proposed in the paper
instead reuses the existing verification workflow and proof efforts of CertrBPF

344 S. Yuan et al.

and CompCert to provide the first, fully verified and resource-efficient, hybrid
virtual machine, HAVM.

10 Conclusion

As use-cases for eBPF virtual machines multiply, their applicability encompasses
not only PCs and servers but also low-power devices based on microcontrollers.
In this context, we presented an end-to-end design, proof, and synthesis method-
ology to bring the first BPF Just-in-Time compiler tailored to the hardware and
resources constraints of popular low-power microcontroller architectures, proven
correct end-to-end using the proof assistant Coq. We combined our proven JIT
implementation with the BPF interpreter provided in the RIOT operating sys-
tem to create a hybrid virtual machine, HAVM: a defensive, kernel-privileged
service capable of accelerating numerical tasks at runtime using partial JIT
compilation. Benchmarking HAVM in practice on Cortex-M microcontrollers
show that HAVM achieves significant execution speed improvements compared
to prior works.

We are carrying on designing a fully verified JIT-all compiler for RIOT that
translates all rBPF instructions into binary. One of the most challenging aspect
of this project is to link and embed tailor-optimized check mem algorithms into
jited code (using loop unrolling, partial evaluation).

References

1. Anand, A., et al.: CertiCoq : a verified compiler for Coq. In: CoqPL (2017)
2. Baccelli, E., et al.: RIOT: an open source operating system for low-end embedded

devices in the IoT. IoT-J 5(6), 4428–4440 (2018)
3. Barrière, A., Blazy, S., Flückiger, O., Pichardie, D., Vitek, J.: Formally verified

speculation and deoptimization in a JIT compiler. Proc. ACM Program. Lang.
5(POPL), 26 (2021). https://doi.org/10.1145/3434327

4. Barrière, A., Blazy, S., Pichardie, D.: Formally verified native code generation in an
effectful JIT: Turning the CompCert backend into a formally verified JIT compiler.
Proc. ACM Program. Lang. 7(POPL), 249–277 (2023). https://doi.org/10.1145/
3571202

5. Bertot, Y., Castéran, P.: Interactive theorem proving and program development:
Coq’Art: the calculus of inductive constructions. Springer (2013)

6. Bratman, H.: A alternate form of the “uncol diagram”. Commun. ACM 4(3), 142
(1961). https://doi.org/10.1145/366199.366249

7. Desharnais, M., Brunthaler, S.: Towards efficient and verified virtual machines for
dynamic languages. In: CPP, pp. 61–75. ACM (2021)

8. Dunchev, C., Guidi, F., Sacerdoti Coen, C., Tassi, E.: ELPI: fast, embeddable,
λprolog interpreter. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.)
LPAR 2015. LNCS, vol. 9450, pp. 460–468. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48899-7 32

9. Fleming, M.: A Thorough Introduction to eBPF. Linux Weekly News (2017)

https://doi.org/10.1145/3434327
https://doi.org/10.1145/3571202
https://doi.org/10.1145/3571202
https://doi.org/10.1145/366199.366249
https://doi.org/10.1007/978-3-662-48899-7_32
https://doi.org/10.1007/978-3-662-48899-7_32

A Verified JIT-Accelerated eBPF Virtual Machine for Micro-controllers 345

10. Van Geffen, J., Nelson, L., Dillig, I., Wang, X., Torlak, E.: Synthesizing JIT com-
pilers for in-kernel DSLs. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol.
12225, pp. 564–586. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53291-8 29

11. Gu, R., et al.: CertiKOS: an extensible architecture for building certified concurrent
OS kernels. In: OSDI, pp. 653–669. USENIX (2016)

12. Hutchings, B.: Executing arbitrary code within the kernel (2021). https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29154

13. Jomaa, N., Torrini, P., Nowak, D., Grimaud, G., Hym, S.: Proof-oriented design
of a separation kernel with minimal trusted computing base. In: AVOCS. vol. 76.
Electronic Communications of the EASST (2018)

14. Keshri, R.: confidentiality problem (2021). https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2021-20320

15. Klein, G., et al.: seL4: formal verification of an OS kernel. In: SOSP, pp. 207. ACM
Press (2009)

16. Krysiuk, P.: Linux kernel vulnerability in NetApp products (2021). https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-38300

17. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

18. Leroy, X., Appel, A.W., Blazy, S., Stewart, G.: The CompCert Memory Model,
Version 2. Research Report RR-7987, INRIA (2012)

19. Leroy, X., Blazy, S.: Formal verification of a C-like memory model and its uses for
verifying program transformations. JAR 41(1), 1–31 (2008)

20. Letouzey, P.: A new extraction for Coq. In: Geuvers, H., Wiedijk, F. (eds.) TYPES
2002. LNCS, vol. 2646, pp. 200–219. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-39185-1 12

21. Lochbihler, A.: A Machine-Checked, Type-Safe Model of Java Concurrency: Lan-
guage, Virtual Machine, Memory Model, and Verified Compiler. Ph.D. thesis, Karl-
sruhe Institute of Technology (2012)

22. McCanne, S., Jacobson, V.: The BSD Packet Filter: A New Architecture for User-
level Packet Capture. In: Usenix Winter Conference. vol. 46, pp. 259–270. USENIX
(1993)

23. Mogul, J., Rashid, R., Accetta, M.: The packer filter: an efficient mechanism for
user-level network code. In: SOSP, pp. 39–51. ACM (1987)

24. Mullen, E., Pernsteiner, S., Wilcox, J.R., Tatlock, Z., Grossman, D.: Œuf: mini-
mizing the Coq extraction TCB. In: CPP, pp. 172–185. ACM (2018)

25. Myreen, M.O.: Verified just-in-time compiler on x86. In: POPL, pp. 107–118. ACM
(2010)

26. Myreen, M.O., Owens, S.: Proof-producing synthesis of ml from higher-order logic.
In: Proceedings of the 17th ACM SIGPLAN International Conference on Func-
tional Programming, pp. 115–126. ICFP ’12, Association for Computing Machin-
ery, New York, NY, USA (2012). https://doi.org/10.1145/2364527.2364545

27. Nelson, L., Geffen, J.V., Torlak, E., Wang, X.: Specification and verification in the
field: applying formal methods to BPF just-in-time compilers in the Linux kernel.
In: OSDI, pp. 41–61. USENIX (2020)

28. Nelson, L., Geffen, J.V., Torlak, E., Wang, X.: Specification and verification in the
field: Applying formal methods to BPF just-in-time compilers in the Linux kernel.
In: 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), pp. 41–61. USENIX Association, USA (2020)

29. Pit-Claudel, C., Philipoom, J., Jamner, D., Erbsen, A., Chlipala, A.: Relational
compilation for performance-critical applications. In: PLDI. ACM (2022)

https://doi.org/10.1007/978-3-030-53291-8_29
https://doi.org/10.1007/978-3-030-53291-8_29
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29154
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29154
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-20320
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-20320
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-38300
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-38300
https://doi.org/10.1007/3-540-39185-1_12
https://doi.org/10.1007/3-540-39185-1_12
https://doi.org/10.1145/2364527.2364545

346 S. Yuan et al.

30. Protzenko, J., et al.: Verified low-level programming embedded in F*. PACMPL
1(ICFP), 17:1–17:29 (2017). https://doi.org/10.1145/3110261

31. Rizkallah, C., et al.: A framework for the automatic formal verification of refine-
ment from Cogent to C. In: Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS,
vol. 9807, pp. 323–340. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
43144-4 20

32. Sozeau, M., Boulier, S., Forster, Y., Tabareau, N., Winterhalter, T.: Coq coq cor-
rect! verification of type checking and erasure for coq, in Coq. Proc. ACM Program.
Lang. 4(POPL), 8:1–8:28 (2020). https://doi.org/10.1145/3371076

33. Tanaka, A.: Coq to C translation with partial evaluation. In: PEPM@POPL, pp.
14–31. ACM (2021)

34. Van Geffen, J., Nelson, L., Dillig, I., Wang, X., Torlak, E.: Synthesizing JIT com-
pilers for in-kernel DSLs. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol.
12225, pp. 564–586. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53291-8 29

35. Wang, X., Lazar, D., Zeldovich, N., Chlipala, A., Tatlock, Z.: Jitk: a trustworthy
In-Kernel interpreter infrastructure. In: 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), pp. 33–47. USENIX Association,
Broomfield, CO (2014)

36. YUAN, S.: CertrBPF-JIT: A verified JIT for RIOT-OS rBPF (2024). https://
gitlab.inria.fr/x-SYuan/certrbpf-jit/-/tree/CAV24-AE

37. Yuan, S., Besson, F., Talpin, J.P., Hym, S., Zandberg, K., Baccelli, E.: End-to-end
mechanized proof of an eBPF virtual machine for micro-controllers. In: Shoham, S.,
Vizel, Y. (eds.) Computer Aided Verification, pp. 293–316. Springer International
Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-13188-2 15

38. Zandberg, K., Baccelli, E.: Minimal virtual machines on IoT microcontrollers: the
case of Berkeley Packet Filters with rBPF. In: PEMWN, pp. 1–6. IEEE (2020)

39. Zandberg, K., Baccelli, E., Yuan, S., Besson, F., Talpin, J.P.: Femto-containers:
lightweight virtualization and fault isolation for small software functions on low-
power IoT microcontrollers. In: Proceedings of the 23rd ACM/IFIP International
Middleware Conference, pp. 161–173. Middleware ’22, Association for Computing
Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3528535.3565242

40. Zhang, X., Li, Y., Sun, M.: Towards a formally verified EVM in production envi-
ronment. In: Bliudze, S., Bocchi, L. (eds.) COORDINATION 2020. LNCS, vol.
12134, pp. 341–349. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
50029-0 21

https://doi.org/10.1145/3110261
https://doi.org/10.1007/978-3-319-43144-4_20
https://doi.org/10.1007/978-3-319-43144-4_20
https://doi.org/10.1145/3371076
https://doi.org/10.1007/978-3-030-53291-8_29
https://doi.org/10.1007/978-3-030-53291-8_29
https://gitlab.inria.fr/x-SYuan/certrbpf-jit/-/tree/CAV24-AE
https://gitlab.inria.fr/x-SYuan/certrbpf-jit/-/tree/CAV24-AE
https://doi.org/10.1007/978-3-031-13188-2_15
https://doi.org/10.1145/3528535.3565242
https://doi.org/10.1007/978-3-030-50029-0_21
https://doi.org/10.1007/978-3-030-50029-0_21

A Verified JIT-Accelerated eBPF Virtual Machine for Micro-controllers 347

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

A Framework for Debugging Automated
Program Verification Proofs via Proof

Actions

Chanhee Cho(B), Yi Zhou, Jay Bosamiya, and Bryan Parno

Carnegie Mellon University, Pittsburgh, PA, USA
{chanheec,yeet,jaybosamiya,parno}@cmu.edu

Abstract. Many program verification tools provide automation via SMT
solvers, allowing them to automatically discharge many proofs. However,
when a proof fails, it can be hard to understand why it failed or how to fix it.
The main feedback the developer receives is simply the verification result
(i.e., success or failure), with no visibility into the solver’s internal state.
To assist developers using such tools, we introduce ProofPlumber, a novel
and extensible proof-action framework for understanding and debugging
proof failures. Proof actions act on the developer’s source-level proofs (e.g.,
assertions and lemmas) to determine why they failed and potentially sug-
gest remedies. We evaluate ProofPlumber by writing a collection of proof
actions that capture common proof debugging practices. We produce 17
proof actions, each only 29–177 lines of code.

1 Introduction

Software verification tools typically fall into two camps. The first camp relies on
interactive proof assistants, such as Coq [1] or Lean [2]. These proof assistants
show the developer the current proof state; i.e., the proof goal and all hypotheses
in scope. Developers then complete a proof by invoking tactics (user-developed
programs, e.g., in Ltac [3], that manipulate the proof state), viewing the effects
of the tactics in sophisticated IDEs. By default, these tools typically provide less
automation and generally require the developer to manipulate the proof at a low-
level. Some tactics (e.g., sledgehammer [4–6] or crush [7]) provide considerably
more automation, but as a result, their strengths and weaknesses tend to match
those of tools in the second camp.

In the second camp are languages and tools designed specifically for auto-
mated program verification, e.g., Spec# [8], ESC/Java [9], VCC [10], Dafny [11],
F� [12], Viper-based languages [13–16], and Verus [17]. With these tools, develop-
ers add specifications to their programs, and the tool attempts to automatically
prove (potentially with help from developer-provided source-level assertions/lem-
mas) that the spec holds. Typically this is done by reducing the problem to a
logical formula (e.g., via a weakest precondition calculus [18]) that can be checked
by an SMT solver [19–23]. Because SMT solvers can discharge many proofs fully
automatically, they enable developers to take large, logical steps.
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 348–361, 2024.
https://doi.org/10.1007/978-3-031-65627-9_17

https://doi.org/10.5281/zenodo.10946811
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65627-9_17&domain=pdf
https://doi.org/10.1007/978-3-031-65627-9_17

A Framework for Debugging Automated Program Verification Proofs 349

However, when a proof fails, it can be hard to understand why it failed or
how to fix it. The main feedback the developer receives is simply the verification
result (i.e., success or failure), with no visibility into the solver’s internal state.
Exposing such internal state in a useful manner is challenging, since an SMT
solver might generate millions of terms during its proof search. Hence, unlike
in interactive proof assistants, it can be difficult to answer questions like “What
propositions has the solver proven at this program point?” or “What additional
facts are needed for the solver to complete the proof?”. Indeed, because verifica-
tion is generally undecidable, the developer does not even know initially if the
proof failed because it is invalid, or because the tool’s automation is incomplete.
As a result, when developing verified code in automated program verification
languages, significant time goes into trying to figure out why the code is failing
to verify and what needs to be done to address the failure.

To assist developers using automated program verification techniques, we
introduce ProofPlumber, a novel proof-action framework for understanding and
debugging proof failures. Unlike tactics, which are primarily used to manipulate
(low-level) proof state, proof actions act on the developer’s source-level proofs
(e.g., assertions and lemmas) to determine why they have failed and potentially
suggest remedies. ProofPlumber comes prepackaged with a set of proof actions
that automate a wide variety of standard proof debugging techniques, and it is
also fully extensible, so that as developers devise new or project-specific tech-
niques, those can be automated as well. Ultimately, we hope that ProofPlumber-
style proof actions will reduce tedium for experienced developers and help boot-
strap developers just starting to write verified programs.

We implement ProofPlumber1 in the context of Verus [17], a verification-
oriented language for Rust [24,25]. ProofPlumber offers three categories of APIs
(with a total of 36 API calls) for manipulating source-level Verus proofs. In
Sect. 4, we demonstrate ProofPlumber’s expressivity and extensibility by imple-
menting a collection of 17 proof actions, each of which requires only 29–177 lines
of code. We also show that ProofPlumber reduces Verus’ trusted computing base
(TCB).

2 Proof Debugging Considered Painful

2.1 Background on Automated Program Verification in Verus

ProofPlumber is implemented for Verus [17], an SMT-based verification language
for formally verifying Rust programs. The basic syntax of Verus, shown in Fig. 1,
is similar to that used in most languages for automated program verification.
The requires clause on line 8 describes the function’s precondition, and the
ensures clause on line 9 describes its postcondition. The assert statement on
line 20 is a static check performed by an SMT solver; when a proof fails, proof
engineers add assertions to a program to extract information from the solver.

1 ProofPlumber’s code and proof actions are available as open source at https://github.
com/verus-lang/verus-analyzer.

https://github.com/verus-lang/verus-analyzer
https://github.com/verus-lang/verus-analyzer

350 C. Cho et al.

2.2 Examples of Proof Debugging

Today, developers typically debug their failed proofs by manually adding source-
level assertions to their program. Such an assertion has no effect on the exe-
cutable code; instead, it breaks the proof into smaller steps, and it indirectly
queries the solver’s internal state, extracting two pieces of information: (1) Is
the code’s precondition sufficient to prove the new assertion? (determined by
whether the assertion verifies); and (2) Is the assertion sufficient to prove the
code’s postcondition? (determined by whether the postcondition now verifies).

Effective assertion choice and placement is a key part of the proof engineering
process. Choosing the wrong assertion or inserting it in the wrong place sheds
little light on the cause of the proof failure. Further, a single assertion is seldom
sufficient; instead, multiple iterations are required to further break down the
proof goal, until either the proof succeeds, or the developer determines the key
missing facts the prover needs (or finds a bug in the code).

Unfortunately, assertion-based debugging is an arcane art. Beginners find it
hard to understand what assertions to add, where to add them, and how to use
them to break down the proof goal. We frequently see beginners become stuck
randomly adding assertions that do not improve their understanding of the proof
failure. Even for experts, assertion-based debugging is tedious and error prone.

We illustrate the challenges with two simplified examples. In real verification
projects, the properties involved are much larger and more complex, making
the manual manipulation of source-level assertions a remarkably laborious, error-
prone process. While our examples are based on Verus, manipulating source-level
proofs is the standard debugging technique in automated program verification;
see, for example, Dafny’s manual assertion guide [26], F�’s guide [27], and various
proof debugging examples on StackOverflow [28,29].

The left side of Fig. 1 presents a failing proof for fibo_is_monotonic; the
postcondition does not hold. An experienced proof engineer typically starts by

Fig. 1. “Stepping up” an assertion to identify the failing case.

A Framework for Debugging Automated Program Verification Proofs 351

copying the failing postcondition to the end of the function, so that they can
manipulate it for further debugging. When that assertion fails (as expected), the
proof engineer still does not know which of the four branches is causing the proof
failure, so she then copies the same assertion into each branch, as shown on the
right side of the figure. When she calls the verifier again, she observes that the
assertion in the third branch fails and can start fixing it.

Fig. 2. Inlining a precondition.

Figure 2 illustrates how proof engineers start debugging when the verifier
tells them that a function’s precondition fails to hold. In this example, after
proving mul_inequality for unbounded integers, the proof engineer tries to
prove a similar property (mul_inequality_bounded) for bounded integers. After
drafting the proof on the left side, she learns that the precondition on line 3 fails
at both callsites (lines 15 and 16). She then copies over the failing precondition,
and replaces the lemma’s formal arguments with the concrete values at the call
site, as in line 29. When she runs the verifier again, the added assertion fails as
expected. To learn which part of the conjunction fails, she splits the assertion
into two separate assertions (lines 26 and 27). After running the verifier yet
again, the proof engineer identifies the cause of the proof failure: 0 < z does not
hold.

2.3 Automated Proof Debugging with Proof Actions

We observe that much of the effort of proof debugging is consumed by steps
that can clearly be automated. We therefore propose proof actions,2 which can
automatically transform a program and its proof. With proof actions, we can
capture in an automated manner the existing proof-debugging practices used by
experts. This reduces their tedium and transcription errors, and it enables the
“wisdom” that these practices represent to be easily handed to new developers.

2 Inspired by the code actions supported by the Language Server Protocol (LSP) [30].

352 C. Cho et al.

For example, the Sect. 2.2 examples can be automated with these proof
actions:

Weakest Precondition Step. This proof action moves an assertion above the
statement that precedes it: in the case of a branch statement, it moves the
assertion to the end of each of the branch statements. More generally, the proof
action implements the rules of the weakest precondition calculus.

Insert Failing Preconditions. When preconditions cannot be established at a
call site, this proof action inlines the precondition in the caller’s context.

2.4 Challenges with Automatic Code Transformation

Automating proof debugging through proof actions is achievable but challeng-
ing, since it is hard to write programs that automatically and correctly transform
programs [31–33]. Such transformations require information about the program’s
control flow, the types of expressions, and the definitions of variables, functions,
and types. To act on this knowledge, we need easy and intuitive ways to manipu-
late source-level proofs. Finally, to understand proof failures, we need to interact
with the verifier in an automated way. Existing program verifiers lack support
for one or more of these features.

Furthermore, providing a fixed set of proof actions is insufficient. Since pro-
gram verification is still rapidly evolving, proof engineers will need to add new
proof actions. Moreover, different verification projects come with different proof
styles, and hence each project may benefit from project-specific proof actions.

3 ProofPlumber: An Extensible Proof Action Framework

We start with the design of ProofPlumber’s API, which provides the functionality
for developing proof actions. We then discuss the API’s implementation.

At a high level, ProofPlumber provides APIs that allow a proof action to
(1) lookup context information (e.g., types and definitions), (2) manipulate the
source-level program and proof, and (3) interact with the verifier. Proof actions
can be exposed to proof engineers in various ways; our current implementation
does so via the engineer’s editor (e.g., Visual Studio Code), where she can, say,
click on a failing assertion to invoke an appropriate proof action.

Figure 3 illustrates the workflow of a proof action built using ProofPlumber.
Once the program text from the editor is parsed, it is lifted to a simplified
form, and type-checked. The lifted and type-checked version of the program text
is available to proof actions. After a proof action manipulates the proof using
ProofPlumber’s APIs, it is then pretty printed into the proof engineer’s editor.

3.1 ProofPlumber’s API Design

Fundamentally, a proof action is a procedure that edits the user’s source pro-
gram based on results from type checking and verification. The correspond-
ing data structures in ProofPlumber are: (a) Transformation-Oriented Syntax

A Framework for Debugging Automated Program Verification Proofs 353

Fig. 3. Overview of ProofPlumber.

Tree (TOST) nodes representing the user’s source code; (b) the Context, which
contains additional source-level information such as types and definitions; and
(c) the Verus verifier, which contains information about failing assertions.

The TOST is the core data structure that represents the source program. It is an
abstract syntax tree, with each language construct represented as an enum (e.g.,
assertExpr, blockExpr). Since the TOST is not a concrete syntax tree (CST),
it omits semantically irrelevant syntactic details. The TOST thus allows easy
manipulation of the user’s source code, ignoring trivialities like whitespace. The
TOST offers the following APIs (corresponding to 3.1 represents the program,
4. modifies program, and 5. Pretty printing in Fig. 3).

– Traverse/Edit. A TOST node allows direct access to its children. For example,
assertExpr has a field expr that contains the asserted expression, which can
be accessed and modified directly. Additionally, ProofPlumber offers a visitor
pattern for recursively filtering or transforming TOST nodes.

– Create. When developing proof actions, it is often necessary to create new
TOST nodes. While this can be done through each node’s constructor, it
can be tedious for large expressions; e.g., consider the expression “x + y *
4”, which needs five constructor calls. To simplify this process, ProofPlumber
provides an option to parse user-provided text into a TOST node.

– Concretize. When the proof action is done modifying the TOST, it needs to
apply the changes to the program. Since the TOST is abstract, ProofPlumber
provides an API to convert it back to a CST, hiding the details of the con-
version.

354 C. Cho et al.

Context is another core data structure for writing a proof action. It contains
the following information not easily accessible from the TOST (corresponding
to 3.2 reports type info and symbol def in Fig. 3):

– Node in Scope. A proof action generally acts within a specific scope indicated
by the user; e.g., the user’s cursor location may identify an expression that is
inside a function, a file, a module, and a crate.

– Type. Needless to say, type information is crucial for understanding and
manipulating the source program. Rust does not require type annotations
for every variable or expression, so the type information is often unavailable
at the source (or TOST) level. However, the type of every expression has been
computed by the type checker, and this API provides that information.

– Definition. It is often necessary to look up the full definition for an identifier.
For example, when case matching on an enum variable c:Color, it is necessary
to look up the variants of Color. At the TOST level, the definition of Color
may be in a different module or even a different crate than the occurrence of
c. This API provides the definition of an identifier, which can be a name for
a struct, an enum, a function, etc.

The Verifier (Verus driver) is the last core data structure. It allows the proof
action to interact with the verifier. A proof action does not have to finish all
of its rewriting in one pass; instead, it can make a change, invoke the verifier,
and then continue rewriting based on the verifier’s response. Corresponding to
3.3 reports failing asserts and verification time in Fig. 3, this structure provides:

– Errors. The list of failing assertions, preconditions, and postconditions.
– Time. It often helps to know how long verification takes, since proofs with

shorter verification time are often more robust [34]. If a proof takes too long,
the proof action may choose a more efficient one.

3.2 ProofPlumber’s Implementation

As Verus [17] is based on Rust, ProofPlumber extends rust-analyzer [35], the offi-
cial language server for Rust, to understand Verus. As with rust-analyzer, Proof-
Plumber adheres to the Language Server Protocol (LSP) [30]. In turn, proof
actions developed with ProofPlumber are compatible with editors that imple-
ment the client-side of the LSP. We construct our Context APIs by extending
rust-analyzer’s type checking implementation (2.2 Type Checking in Fig. 3).

In our implementation, we have extended rust-analyzer’s grammar and parser
to obtain the Verus CST (1.1 Parsing in Fig. 3). We then lift the CST to a TOST,
eliminating details like whitespace (2.1 Lifting in Figrue 3). After a proof action
manipulates a TOST node using ProofPlumber’s APIs, our pretty printer restores
the TOST to a concrete program (5 Pretty Printing in Figrue 3).

A Framework for Debugging Automated Program Verification Proofs 355

4 Evaluation

We evaluate ProofPlumber with the following three research questions.

– RQ1: Are proof actions expressive enough for real proof debugging tasks?
– RQ2: Does ProofPlumber make it easy to write proof actions?
– RQ3: Can proof actions reduce the TCB of automated program verifiers?

4.1 RQ1: Are proof actions expressive enough?

We demonstrate ProofPlumber’s expressivity by writing 17 proof actions, divided
into two groups: (1) proof actions inspired by Dafny’s reference for verification
debugging [26], which suggests a set of manual rewrites to perform while debug-
ging proofs, and (2) proof actions distilled from the experiences of Verus devel-
opers. While these groups were developed independently, they overlap, as Dafny
and Verus share proof styles common to automated program verification tools.

Figure 4 presents the list of proof actions and the ProofPlumber features
used by each. As analyzed in detail below, we observe that ProofPlumber’s
APIs are expressive enough to implement all of the suggested rewrites from
Dafny, excluding the ones that are not applicable to Verus or that are inherently

Fig. 4. For each proof action, we report the source lines of code to implement it,
and the ProofPlumber features it uses. For proof actions that overlap in both groups,
the number of corresponding Dafny rewrite suggestions is in parentheses; e.g., five of
Dafny’s rewrite suggestions are special cases of the Weakest Precondition Step. Weakest
Precondition Step and Decompose Failing Assertion generalize their Dafny counterparts.

356 C. Cho et al.

manual (see Sect. 5 for details). Furthermore, ProofPlumber provides enough
expressivity to implement eight distinct proof actions that automate the routine
efforts of Verus developers. Figure 4 also demonstrates that all of ProofPlumber’s
features are utilized to implement these proof actions.

Proof Actions Inspired by Dafny. Dafny provides 29 suggested rewrites for
manual proof debugging [26], of which we have implemented 16 as proof actions.
We exclude the other 13 rewrites, as 9 of them are not applicable to Verus,
and 4 are inherently manual (Sect. 5). Of the 16 suggested Dafny rewrites we
implemented, 12 are purely syntactic. Among the remaining 4, the first (9 in
Fig. 4) automatically adds an “in-bounds” predicate for a sequence’s index; it
uses the Lookup Type API to decide if an assertion contains a sequence. The
second rewrite (one of the five in Weakest Precondition Step – rewrite 11 in
Fig. 4) adds the precondition and postcondition of a function at the callsite. The
last two (7 and 8 in Figrue 4) are related to reveal, which is used to control
the visibility of a function to the verifier. These automatic rewrites lookup the
function’s definition and the function’s “proof visibility”.

Proof Actions for Verus. We implemented 7 additional proof actions to auto-
mate routine proof engineering tasks in Verus. We discuss Weakest Precondition
Step and Insert Failing Preconditions in Sect. 2.3, and the rest below.

Decompose Failing Assertion. When a complex assertion fails to verify, it is
not always obvious which portion of the failing expression is responsible. This
proof action automates the process of decomposing and isolating the failing sub-
formulas. We discuss it in more detail in Sect. 4.2.

Insert Failing Postconditions. A common proof failure is that a procedure’s
postconditions cannot be established. Since there can be multiple postconditions
and multiple exit points (e.g., due to an early return), developers often employ
a tedious manual process to pinpoint the failing conditions at each exit point.
This proof action automatically adds the failing postcondition(s) at each exit.

Introduce Match Case Assertions. A special case of assertion decomposition is
when the assertion is about an enum. Today, the developer tediously writes a
match statement for the enum and then adds assertions to each case to identify
where the problem lies. This proof action emits a boilerplate match statement
for the enum, but only presents the failing variants.

Remove Redundant Assertions. During proof debugging, to understand the
solver’s state, proof engineers typically introduce multiple assertions, most of
which are redundant (i.e., they help the human, not the verification). Hence,
after debugging a proof, to maintain source code readability, developers manually
remove these redundant assertions. This proof action mechanizes the process.

A Framework for Debugging Automated Program Verification Proofs 357

Apply Induction. If the selected variable is a natural number or an abstract
datatype, this proof action generates the boilerplate code for an inductive proof,
including the base and inductive cases. When the selected variable is an enum,
it introduces a match statement with an empty proof block for each variant,
generating the recursive call to the lemma when the variant is defined recursively.

4.2 RQ2: Does ProofPlumber make it easy to write proof actions?

Figrue 4 shows that each proof action from Sect. 4.1 needs only 29–177 lines of
code. To qualitatively illustrate how ProofPlumber’s API enables the easy cre-
ation of a proof action, Figrue 5 presents a snippet from Decompose Failing
Assertion from Sect. 4.1. This proof action uses all three of ProofPlumber’s
APIs to analyze a failing assertion with a conjunction of clauses and present the
specific clauses that fail. Specifically, the proof action retrieves the surrounding
function using the Context API (line 6). Inside the function, the original asser-
tion is replaced (using the TOST API) with an assertion of one conjunct (line
11). The proof action then uses the Verifier API to invoke the verifier on this
modified function (line 12) and check if the new assertion fails. If so, it is added
to the source code.

Fig. 5. Main routine for the Decompose Failing Assertion proof action.

While ProofPlumber primarily focuses on automating proof debugging, we
observe that ProofPlumber’s extensibility also supports the broader proof engi-
neering process. In Sect. 4.1, we described Remove Redundant Assertions which
helps with proof refactoring, and Apply Induction which helps with proof devel-
opment.

4.3 RQ3: Can proof actions reduce the verifier’s TCB?

ProofPlumber can reduce a verification tool’s TCB by replacing baked-in
debugging support. For example, Verus provides a command line option called

358 C. Cho et al.

––expand-errors, which tries to localize the cause of a proof failure. The code
implementing this functionality is intertwined with the process of verification con-
dition generation (VCG). However, this functionality is essentially a combination
of Decompose Failing Assertion, Insert Failing Postconditions, and Insert Fail-
ing Preconditions. Similarly, Dafny’s VCG includes custom code similar to our
Apply Induction. In both cases, we can replace functionality inside the trusted
VCG with external, untrusted proof actions. Given the importance of the VCG
for sound verification results, this enhances the trustworthiness of those results.

5 Limitations

While ProofPlumber provides automation for most of the existing proof debug-
ging practices for automated program verification, some debugging practices are
still not automatable. To illustrate this, we elaborate on Dafny’s four rewrite
suggestions that we considered inherently manual in Sect. 4.1.

The first two are related to quantifiers (exists and forall). If a failing
assertion contains a forall, the Dafny manual suggests that the proof engineer
should replace the forall binding with a “guessed” concrete value that is likely to
fail. Similarly, if a failing assertion contains an exists, the manual suggests that
the proof engineer should replace the exists binding with a “guessed” concrete
value for which the updated assertion is likely to hold. The “guessing” part is
inherently manual as SMT solvers often do not produce a useful concrete model
(which could be used to build the source-level counterexample) when they return
an “unknown” result, which is the common case when a Verus or Dafny proof
fails.

The other two rewrite suggestions are about controlling “proof visibility”
when proof engineers encounter a very slow and/or unstable proof [34]. In Dafny,
a function’s body is available to the solver by default. If an engineer suspects a
function definition is contributing to the proof’s problematic performance, the
Dafny manual first suggests making the function’s body invisible to the solver.
This change can cause the proof to fail in several locations that previously relied
on information about the function’s body. Therefore, it then suggests making
the function’s definition locally available to the solver “only when it is necessary”.
Deciding if the definition is necessary for the proof to succeed often involves the
proof engineers’ judgment regarding the proof context, potentially relevant lem-
mas (that might complete the proof without revealing the function’s definition),
and their tolerance for proof instability.

6 Related Work and Conclusion

Frameworks such as Meta-F� [36] for F� [12] and Tacny [37] for Dafny [11] focus
on developing tactics to help write proofs, whereas ProofPlumber’s primary focus
is on proof debugging. Another line of work [38–40] attempts to reconstruct a
source-level counterexample from an SMT solver’s model [41]. However, when
the solver returns ‘unknown’, the common case in program verification queries,

A Framework for Debugging Automated Program Verification Proofs 359

the model is typically only partial and may be inconsistent with in-scope quan-
tifiers, due to the incomplete heuristics used to for quantifier instantiation. Such
inconsistency can be quite confusing for developers.

In everyday software engineering, a counterexample is critical in debugging,
as a software engineer can inspect the program’s concrete state, and hence local-
ize the error. In contrast, a verification failure can happen for various reasons,
including incorrect executable code, incorrect proofs, or even the SMT solver’s
incompleteness. Therefore, proof engineers still need debugging support to under-
stand the failure.

Conclusion We have presented ProofPlumber, a framework for understanding
and debugging proof failures in automated program verification proofs. Proof-
Plumber supports custom proof actions, which act on the developer’s source-level
proofs to determine why they have failed and potentially suggest remedies. Our
evaluation shows that ProofPlumber can automate today’s manual debugging
practices and provides the extensibility needed for a rapidly evolving area.

Acknowledgments. The authors thank the CAV reviewers and the Verus team for
feedback and support. This work was also supported by an Amazon Research Award
(Fall 2022 CFP), a gift from VMware, the Future Enterprise Security initiative at
Carnegie Mellon CyLab (FutureEnterprise@CyLab), NSF grant CCF 2318953, and
funding from AFRL and DARPA under Agreement FA8750-24-9-1000. Chanhee Cho
is additionally supported by the Kwanjeong Educational Foundation.

References

1. Coq Development Team. The Coq Proof Assistant. https://coq.inria.fr/
2. d. Moura, L., Ullrich, S.: The Lean 4 theorem prover and programming language.

In: International Conference on Automated Deduction (2021)
3. Delahaye, D.: A tactic language for the system Coq. In: Proceedings of the 7th

International Conference on Logic for Programming and Automated Reasoning
(2000)

4. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending sledgehammer with SMT
solvers. In: International Conference on Automated Deduction (2011)

5. Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J.
Autom. Reasoning 40(1), 35–60 (2008). https://doi.org/10.1007/s10817-007-9085-
y

6. Paulson, L.C., Susanto, K.W.: Source-level proof reconstruction for interactive the-
orem proving. In: Proceedings of the 20th International Conference on Theorem
Proving in Higher Order Logics (2007)

7. Chlipala, A.: Certified Programming with Dependent Types: A Pragmatic Intro-
duction to the Coq Proof Assistant. MIT Press, Cambridge (2022)

8. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an
overview. In: Proceedings of the 2004 International Conference on Construction
and Analysis of Safe, Secure, and Interoperable Smart Devices (2004). https://doi.
org/10.1007/978-3-540-30569-9_3

https://coq.inria.fr/
https://doi.org/10.1007/s10817-007-9085-y
https://doi.org/10.1007/s10817-007-9085-y
https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1007/978-3-540-30569-9_3

360 C. Cho et al.

9. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: advanced spec-
ification and verification with JML and ESC/Java2. In: Proceedings of the 4th
International Conference on Formal Methods for Components and Objects (2005).
https://doi.org/10.1007/11804192_16

10. Dahlweid, M., Moskal, M., Santen, T., Tobies, S., Schulte, W.: VCC: contract-
based modular verification of concurrent C. In: 31st International Conference on
Software Engineering - Companion Volume (2009)

11. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In:
Logic for Programming, Artificial Intelligence, and Reasoning (2010)

12. Swamy, N., et al.: Dependent types and multi-monadic effects in F*. In: Proceed-
ings of the ACM Symposium on Principles of Programming Languages (POPL)
(2016)

13. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Proceedings of the 17th International Conference
on Verification, Model Checking, and Abstract Interpretation (2016). https://doi.
org/10.1007/978-3-662-49122-5_2

14. Wolf, F.A., Arquint, L., Clochard, M., Oortwijn, W., Pereira, J.C., Müller, P.:
Gobra: modular specification and verification of Go programs. In: Computer Aided
Verification (CAV) (2021)

15. Eilers, M., Müller, P.: Nagini: a static verifier for Python. In: Computer Aided
Verification (2018)

16. Astrauskas, V., Müller, P., Poli, F., Summers, A.J.: Leveraging Rust types for
modular specification and verification. In: Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA) (2019). https://doi.org/10.1145/3360573

17. Lattuada, A., et al.: Verus: verifying Rust programs using linear ghost types. In:
Proceedings of the ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA) (2023)

18. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Hoboken (1976)
19. De Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Tools & Algorithms

for the Construction and Analysis of Systems (TACAS) (2008)
20. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: Tools

and Algorithms for the Construction and Analysis of Systems (TACAS) (2022)
21. Dutertre, B.: Yices 2.2. In: Computer Aided Verification (CAV) (2014)
22. Niemetz, A., Preiner, M.: Bitwuzla. In: Computer Aided Verification (CAV) (2023).

https://doi.org/10.1007/978-3-031-37703-7_1
23. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: BTOR2, BtorMC and Boolector 3.0.

In: Computer Aided Verification (CAV) (2018)
24. Matsakis, N.D., Klock, F.S.: The Rust Language. ACM SIGAda Ada Lett. 34(3),

103–104 (2014). https://doi.org/10.1145/2692956.2663188
25. Klabnik, S., Nichols, C.: The Rust Programming Language. No Starch Press, San

Francisco (2018)
26. Verification Debugging When Verification Fails. https://dafny.org/dafny/

DafnyRef/DafnyRef#sec-verification-debugging
27. Sliding Admit Verification Style. https://github.com/FStarLang/FStar/wiki/

Sliding-admit-verification-style
28. StackOverflow Question: With Dafny, Verify Function to Count Integer Set

Elements less than a Threshold. https://stackoverflow.com/questions/76924944/
with-dafny-verify-function-to-count-integer-set-elements-less-than-a-threshold/
76925258#76925258

29. StackOverflow Question: Hint on FStar Proof Dead End. https://stackoverflow.
com/questions/61938833/hint-on-fstar-proof-dead-end

https://doi.org/10.1007/11804192_16
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1145/3360573
https://doi.org/10.1007/978-3-031-37703-7_1
https://doi.org/10.1145/2692956.2663188
https://dafny.org/dafny/DafnyRef/DafnyRef#sec-verification-debugging
https://dafny.org/dafny/DafnyRef/DafnyRef#sec-verification-debugging
https://github.com/FStarLang/FStar/wiki/Sliding-admit-verification-style
https://github.com/FStarLang/FStar/wiki/Sliding-admit-verification-style
https://stackoverflow.com/questions/76924944/with-dafny-verify-function-to-count-integer-set-elements-less-than-a-threshold/76925258#76925258
https://stackoverflow.com/questions/76924944/with-dafny-verify-function-to-count-integer-set-elements-less-than-a-threshold/76925258#76925258
https://stackoverflow.com/questions/76924944/with-dafny-verify-function-to-count-integer-set-elements-less-than-a-threshold/76925258#76925258
https://stackoverflow.com/questions/61938833/hint-on-fstar-proof-dead-end
https://stackoverflow.com/questions/61938833/hint-on-fstar-proof-dead-end

A Framework for Debugging Automated Program Verification Proofs 361

30. Language Server Protocol. https://microsoft.github.io/language-server-protocol/
specifications/lsp/3.17/specification/#textDocument_codeAction

31. van Tonder, R., Le Goues, C.: Lightweight multi-language syntax transformation
with parser parser combinators. In: Proceedings of the 40th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (2019). https://doi.
org/10.1145/3314221.3314589

32. Maletic, J.I., Collard, M.L.: Exploration, analysis, and manipulation of source code
using SrcML. In: Proceedings of the 37th International Conference on Software
Engineering (2015)

33. Klint, P., van der Storm, T., Vinju, J.: RASCAL: a domain specific language for
source code analysis and manipulation. In: 2009 Ninth IEEE International Working
Conference on Source Code Analysis and Manipulation (2009)

34. Zhou, Y., Bosamiya, J., Takashima, Y., Li, J., Heule, M., Parno, B.: Mariposa:
measuring SMT instability in automated program verification. In: Proceedings of
the Formal Methods in Computer-Aided Design (FMCAD) Conference (2023)

35. Rust Analyzer. https://github.com/rust-lang/rust-analyzer
36. Martínez, G., et al.: Meta-F�: proof automation with SMT, tactics, and metapro-

grams. In: European Symposium on Programming (2019)
37. Grov, G., Tumas, V.: Tactics for the Dafny program verifier. In: Tools and Algo-

rithms for the Construction and Analysis of Systems (2016)
38. Christakis, M., Leino, K.R.M., Müller, P., Wüstholz, V.: Integrated environment

for diagnosing verification errors. In: Tools and Algorithms for the Construction
and Analysis of Systems (2016)

39. Chakarov, A., Fedchin, A., Rakamarić, Z., Rungta, N.: Better counterexamples for
Dafny. In: Tools and Algorithms for the Construction and Analysis of Systems
(2022)

40. Le Goues, C., Leino, K.R.M., Moskal, M.: The Boogie verification debugger. In:
Software Engineering and Formal Methods (2011)

41. Barrett, C., Fontaine, P., Tinelli, C.: The satisfiability modulo theories library
(SMT-LIB) (2016). www.SMT-LIB.org

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/#textDocument_codeAction
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/#textDocument_codeAction
https://doi.org/10.1145/3314221.3314589
https://doi.org/10.1145/3314221.3314589
https://github.com/rust-lang/rust-analyzer
www.SMT-LIB.org
http://creativecommons.org/licenses/by/4.0/

Verification Algorithms for Automated
Separation Logic Verifiers

Marco Eilers(B) , Malte Schwerhoff , and Peter Müller

Department of Computer Science, ETH Zurich, Zurich, Switzerland
{marco.eilers,malte.schwerhoff,peter.mueller}@inf.ethz.ch

Abstract. Most automated program verifiers for separation logic use
either symbolic execution or verification condition generation to extract
proof obligations, which are then handed over to an SMT solver. Exist-
ing verification algorithms are designed to be sound, but differ in perfor-
mance and completeness. These characteristics may also depend on the
programs and properties to be verified. Consequently, developers and
users of program verifiers have to select a verification algorithm carefully
for their application domain. Taking an informed decision requires a sys-
tematic comparison of the performance and completeness characteristics
of the verification algorithms used by modern separation logic verifiers,
but such a comparison does not exist.

This paper describes five verification algorithms for separation logic,
three that are used in existing tools and two novel algorithms that com-
bine characteristics of existing symbolic execution and verification con-
dition generation algorithms. A detailed evaluation of implementations
of these five algorithms in the Viper infrastructure assesses their perfor-
mance and completeness for different classes of input programs. Based on
the experimental results, we identify candidate portfolios of algorithms
that maximize completeness and performance.

Keywords: Symbolic execution · verification condition generation ·
separation logic · heap representation · SMT solver · portfolio

1 Introduction

Given a program and a specification, automated deductive program verifiers
such as Boogie [36], Corral [35], Dafny [37], and Why3 [27] compute proof obli-
gations whose validity implies the correctness of the input program. These proof
obligations are typically checked using SMT solvers, such as CVC5 [5] or Z3 [41].

For program verifiers based on separation logic [50] or related permission
logics [59], proof obligations are computed using two prevalent verification algo-
rithms: symbolic execution (SE) and verification condition generation (VCG).
For instance, Caper [17], Gillian [40], JaVerT [56], SecC [26], Smallfoot [8],
and VeriFast [32] are separation logic verifiers based on symbolic execution,
whereas Chalice [39] and GrassHopper [48] use verification condition generation.
Viper [44] provides two backend-verifiers, one based on SE and one on VCG.
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 362–386, 2024.
https://doi.org/10.1007/978-3-031-65627-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65627-9_18&domain=pdf
http://orcid.org/0000-0003-4891-6950
http://orcid.org/0000-0003-2569-9121
http://orcid.org/0000-0001-7001-2566
https://doi.org/10.1007/978-3-031-65627-9_18

Verification Algorithms for Automated Separation Logic Verifiers 363

Even though these tools differ in many aspects of the supported programming
language, separation logic, and proof automation, they employ fairly uniform SE
and VCG algorithms. Their SE algorithms use a symbolic heap representation
based on separation logic’s partial-heap semantics [46]: a symbolic heap maps
those separation logic resources (in particular, heap locations) to symbolic values
that are owned in a given program state. Each owned resource is represented by
one or more heap chunks, which map resources to ownership and value informa-
tion. In contrast, the VCG algorithms implemented in separation logic verifiers
use a total-heap representation, in which the heap is a total map from memory
locations to values, and the currently-owned resources are tracked in a separate
data structure. These two different ways of internally modeling the heap both
implement the same source-level language semantics.

These verification algorithms, and their variations implemented in various
tools, are all designed to be sound, but strike different trade-offs between perfor-
mance and completeness. For instance, SE verifies each path through a method
separately, whereas VCG typically generates one proof obligation for the entire
method. Therefore, VCG produces fewer, but larger proof obligations, which
may affect the effectiveness and performance of the underlying SMT solver.

Consequently, developers of program verifiers need to choose the verification
algorithm carefully, depending on the intended application area of their tools.
For verifiers that support several algorithms, such as the verifiers built on top
of the Viper infrastructure [9,22,65], this choice needs to be made by users.
Taking an informed decision requires a systematic comparison of the performance
and completeness characteristics of the verification algorithms used by modern
separation logic verifiers. Such a comparison necessitates implementations of all
relevant algorithms for the same programming language, verification logic, and
tool because comparisons across different settings would not yield meaningful
results. To the best of our knowledge, such implementations and, consequently,
a comprehensive comparison do not exist.

This Work. This paper describes the following five verification algorithms and
performs a detailed comparison.

1. SE-PS: An SE algorithm that looks up information in the partial symbolic
heap by trying to identify a single heap chunk to provide the required infor-
mation. This algorithm is used in JaVerT, SecC, VeriFast, and Viper’s SE-
backend.

2. SE-PC: An SE partial heap algorithm that performs look-ups by combining
the information available in all heap chunks. Combining different heap chunks
may provide additional information, for instance, by summing up fractional
permissions [12] or by using disjunctive properties.

3. SE-TR: An SE algorithm that uses a total heap representation per individual
resource, akin to VCG-TR below.

4. VCG-TR: A VCG total heap algorithm that uses a separate map per
resource. This representation is used by GrassHopper.

364 M. Eilers et al.

5. VCG-TA: A VCG total heap algorithm that stores the information for all
resources in a single map. This representation is used in Chalice and Viper’s
VCG-backend.

SE-PC and SE-TR are novel algorithms, which introduce characteristics of
existing VCG algorithms into SE, namely simultaneous reasoning about multi-
ple chunks of the (partial) heap, and a total heap representation, respectively.
Thereby, they offer different trade-offs than existing algorithms.

To enable a fair comparison, we implemented all five algorithms for Viper.
We evaluated them on a diverse benchmark suite that includes existing Viper
examples and code produced by different Viper frontends, which allows us to
draw conclusions for different kinds of input programs.

Our comparison identifies SE-PS as the best algorithm overall, but shows that
the different verification algorithms have complementary strengths. Based on our
findings, we identify and discuss several portfolios of algorithms, which maximize
completeness across the benchmark suite. In deductive verification, portfolio
approaches have been used successfully for the underlying SMT solver [27,42],
but, to our knowledge, not for the equally-important verification algorithms.

Contributions and Outline. We make the following contributions:

– We survey the SE and VCG algorithms used in existing separation logic
verifiers and propose two new algorithms, which combine characteristics of
existing SE and VCG algorithms (Sect. 2).

– We provide the first systematic comparison of verification algorithms for sep-
aration logic. A diverse set of benchmarks provides insights into the perfor-
mance and completeness for different classes of input programs (Sect. 3).

– We identify candidate portfolios of verification algorithms to maximize per-
formance and completeness, several of which include SE-TR, one of the novel
algorithms we propose (Sect. 4).

The implementations of the five algorithms, the example benchmarks, as well as
the data from our experiments, are available as an artifact [24].

2 Verification Algorithms

In this section, after providing necessary background on the Viper language, we
discuss the two main design dimensions for verification algorithms for separation
logic (SE vs. VCG, and total vs. partial heap representations), give an overview
of the considered algorithms, and discuss various design trade-offs.

2.1 Viper Verification Language

The Viper language [44] is a simple object-based imperative language with spec-
ification features like pre- and postconditions and loop invariants. Viper is based
on implicit dynamic frames [59], a variant of separation logic, and supports

Verification Algorithms for Automated Separation Logic Verifiers 365

advanced separation logic features such as fractional permissions [12], predi-
cates [45], magic wands, and quantified resources [43] (also called iterated sep-
arating conjunctions). Verification algorithms for Viper have to support all of
these features, which makes Viper an interesting target for a comparison.

A Viper state consists of local variables and a built-in heap that maps loca-
tions (consisting of a reference and a field) to values. Control flow is expressed
via conditionals, loops, method calls, and gotos. Whereas statements may have
side effects, expressions are always side-effect free and include calls to (partial)
functions, which may inspect the heap.

Following the implicit dynamic frames approach, Viper assertions express
resource ownership separately from value information. For example, the asser-
tion acc(x.f) ∗ x.f = 1 (corresponding to separation logic’s points-to predi-
cate x.f �→ 1) includes an accessibility predicate acc(x.f), expressing exclusive
ownership of the heap location, and a heap-dependent expression to constrain
its value. The general shape of accessibility predicates is acc(R, p) , where R
denotes a resource and p a fractional permission. Resources can be heap loca-
tions, predicate instances, and magic wands; all resources can be universally
quantified over. Predicates abstract over (possibly unbounded) heap data struc-
tures, whereas magic wands are used to express partial data structure, which
occur, for instance, during iterative traversals.

2.2 Design Dimensions

Verification algorithms for separation logic can be classified according to the
technique they use to compute proof obligations (SE or VCG) and according
to their heap representation (total or partial). In the following, we survey these
dimensions and their main trade-offs.

SE vs VCG. Verification in separation logic is modular, that is, each method
is verified independently, using method specifications to reason about calls. SE
and VCG differ in how they compute the proof obligations for each method.

SE uses a symbolic state, typically a triple of symbolic store, heap, and path
conditions. It explores each path through a method body separately (using loop
invariants to represent a statically-unknown number of loop iterations). State-
ments on the path may update the symbolic state; in particular, the conditions
of if-statements and loops are recorded in the path conditions. Expressions and
assertions are evaluated in the symbolic state. Proof obligations, for instance, to
show that an assertion holds, are expressed over the current symbolic state and
discharged on the fly via an SMT query. Consequently, SE typically generates
many SMT queries for each method body.

In contrast, VCG uses a predicate transformer, usually weakest preconditions,
to produce (typically) a single proof obligation (and, thus, SMT query) per
method body. This predicate transformer is based on a state model that, in the
context of separation logic, must encode heap and ownership information (e.g.,
via a map axiomatization, see below).

366 M. Eilers et al.

There are two fundamental differences between SE and VCG. First, SE gen-
erates many, but comparably small and simple SMT queries, whereas VCG pro-
duces a single, more complicated query. This difference may affect verification
times. Moreover, the complexity of the SMT queries can affect the SMT solver’s
ability to discharge (valid) queries. Second, for a rich verification logic such as
Viper’s, an SE algorithm is complex and performs substantial work for main-
taining the symbolic state, whereas VCG delegates most of the heavy lifting
to the SMT solver. This makes SE more difficult to implement, but also offers
the potential for many optimizations (possibly with the use of additional SMT
queries), whereas it is more difficult to direct the proof search of an SMT solver.
Our evaluation in the next section explores these trade-offs and others.

Partial vs Total Heaps. Both SE and VCG need to represent heap and own-
ership information. Existing SE algorithms do that by maintaining an internal
map data structure, typically a collection of heap chunks (also called heaplets).
A heap chunk is typically a tuple (x, f, v, p), denoting p permission to memory
location x.f at which value v is stored. Resources that are not owned in a state
have no corresponding heap chunk (or a chunk with permission amount p = 0).
Consequently, these internal map data structures represent partial heaps, which
represent value and ownership information simultaneously.

In contrast, VCG algorithms use an external representation that tracks heap
information only as part of the SMT queries. Since maps in SMT are total,
value and ownership need to be encoded separately as two total maps H and
M . The heap H : Resource �→ Value maps resources to their values, whereas the
permission mask M : Resource �→ Permission tracks ownership by mapping each
resource to the permission amount currently held (1 for exclusive ownership, and
0 if the resource is not owned in the current state). Suitable proof obligations
ensure that H is accessed only at resources for which M contains the necessary
permission. That is, the mask effectively represents the domain of a partial heap.
We call this representation total heaps.

We highlight three key differences between partial and total heaps here. First,
total heaps generally lead to more complex SMT queries. In particular, each
change of the heap (or mask) leads to an SMT term that relates the new heap
to the previous one, leading to increasingly large formulas, whereas the data
structure for partial heaps can be updated destructively. Moreover, encoding
the heap information in an SMT query typically uses many universal quantifiers
for total heaps, whereas partial heaps are finite collections whose content can be
described in quantifier-free formulas.

Second, partial heaps generally require more complex algorithms to perform
heap look-ups and modifications, possibly involving SMT queries. In contrast,
total heaps delegate much of the heavy lifting to the SMT solver. This difference
is especially prominent for resources that represent an unbounded number of
heap locations, such as recursive predicates and iterated separating conjunction.
These require dedicated data structures and operations in partial heaps [43], but
fairly trivial encodings with total heaps.

Verification Algorithms for Automated Separation Logic Verifiers 367

Third, total heaps greatly simplify the encoding of heap-dependent func-
tions to SMT, as uninterpreted functions of the total heap and corresponding
axioms [31]. In contrast, partial heaps require non-trivial algorithms to extract
the information needed to determine a function’s value [57].

2.3 Algorithms

In this subsection, we sketch five verification algorithms that occupy different
spots in the design space described above and, thus, have different performance
and completeness characteristics. Note that these algorithms do not directly cor-
respond to the four combinations of heap representation and technique used to
compute proof obligations explained before: First, there is no algorithm com-
bining VCG and partial heaps, since VCG algorithms necessarily require an
external heap representation. Second, we discuss two different algorithms that
combine SE with partial heaps. Three of the algorithms are used in existing tools,
whereas two are novel SE algorithms, including the first SE algorithm that uses
total heaps. We will see later in Sect. 4 that these new algorithms complement
existing ones, which makes them especially useful for portfolio approaches.

We focus the following presentation on two core operations: evaluating an
expression, as well as consuming an assertion, which includes checking that it
holds and removing its resources from the current state.

SE-PS. This algorithm combines symbolic execution with the partial heap
model and is used by the existing SE tools for separation logic. Evaluating a
source-level heap read x.f is performed by trying to find a chunk (y, f, v, p) in
the symbolic heap such that x = y and 0 < p. If such a chunk can be found, the
result of the symbolic evaluation is v. Otherwise, verification fails. Analogously,
consuming q permissions to a heap location x.f is implemented by finding a
chunk (y, f, v, p) such that x = y and q ≤ p. If found, the chunk is replaced by
(y, f, v, p − q); otherwise, verification fails. Finding matching chunks in general
requires SMT queries to account for aliasing; in practice, however, syntactical
checks often suffice, and can significantly reduce the number of SMT queries.

Note that both operations are performed on a single heap chunk, which may
lead to incomplete heap information and, thus, spurious errors. For instance,
when the permission to a heap location is split over several chunks, this algorithm
will use only one of them (rather than computing the total sum of permission
amounts) and might, thus, report a verification error if the permission amount in
that one chunk is not sufficient to perform an operation. To reduce the number
of such spurious errors, the algorithm performs various state consolidation steps
at heuristically determined points (e.g., triggered by an imminent verification
failure). For instance, it may merge two heap chunks (i.e., add their permission
amounts) if the SMT solver can prove that they refer to the same resource. State
consolidation may also introduce non-aliasing constraints, i.e., assume for any
pair of chunks (x1, f, v1, p1) and (x2, f, v2, p2) that x1 �= x2 if p1 + p2 > 1.

State consolidation eliminates some spurious errors, but performing opera-
tions on a single heap chunk remains incomplete, for instance, in situations with

368 M. Eilers et al.

disjunctive aliasing. In a state where x = y∨x = z and where permissions to both
y.f and z.f are available, consuming permission to a location x.f fails because
the algorithm cannot find a single chunk that definitely provides the necessary
permission. To work around this issue, users can force the SE to branch on the
disjunction (e.g., by inserting if-statements), such that a single chunk can be
found on each branch.

SE-PC. To address the shortcomings of SE-PS, we designed a novel varia-
tion that also uses partial heaps, but consults and combines information from
all chunks. Evaluating a source-level heap read x.f summarizes facts scattered
across all relevant heap chunks (y1, f, v1, p1), . . . , (yn, f, vn, pn): The effective
value of x.f is denoted by a fresh symbol v that is defined by the new path
condition (x = y1 ⇒ v = v1) ∧ . . . ∧ (x = yn ⇒ v = vn). Analogously, the
effective permission to x.f is denoted by a fresh symbol p that is defined by the
symbolic expression p = (x = y1 ? p1 : 0) + . . . + (x = yn ? pn : 0). Consuming
q permission to a heap location x.f similarly may remove fractions of q from
different heap chunks.

Compared to SE-PS, SE-PC effectively shifts work from the SE algorithm
to the SMT solver: it reduces the number of state consolidation steps (but does
not entirely eliminate them), at the price of more complex path conditions and
SMT queries. The next algorithm pushes this trade-off even further.

SE-TR. Even though all existing SE algorithms for separation logic use partial
heaps, SE is also compatible with total heaps, as this novel algorithm shows. It
uses a heap/mask pair (HR,MR) for each kind of resource (i.e., field or predicate)
R. Evaluating a source-level heap read x.f simply asserts 0 < Mf [x] and pro-
duces the symbolic look-up expression Hf [x], where Hf and Mf are the current
heap and mask component of the symbolic state. Consuming q permission checks
q ≤ Mf [x] and then replaces the symbolic state’s mask Mf with an updated ver-
sion M ′

f = Mf [x �→ Mf [x]−q]. The necessary map update axioms are part of the
heap’s background axiomatization that is given to the SMT solver. To prevent
the verifier from unsoundly framing information about heap locations for which
no permission is held and which may thus be modified by whoever has obtained
the permission, they are assigned non-deterministic values.

Using a total heap eliminates the need for state consolidation because all
information about a resources is represented by a single heap/mask pair, rather
than multiple chunks. Non-aliasing can be assumed using a global axiom stating
that for all masks MR and receivers x, MR[x] ≤ 1. Nevertheless, the algorithm
retains some of the key benefits of SE, such as cheap syntactical comparisons,
which are sufficient in many cases. However, compared to partial heap algo-
rithms, it complicates SMT queries, which now require a theory for maps or a
suitable axiomatization.

VCG-TR. VCG algorithms do not have an internal representation of the
heap and, therefore, they necessarily use total heaps, which can be encoded

Verification Algorithms for Automated Separation Logic Verifiers 369

in SMT. One option, implemented in GrassHopper, is to use a heap/mask pair
per resource, like in the previous algorithm. Evaluating source-level heap reads,
or consuming permissions, are incorporated into the verification condition as
described for the previous algorithm. Doing that in a VCG algorithm leads to
the advantages and disadvantages outlined in Sect. 2.2.

VCG-TA. A variation of VCG-TR that uses a single heap/mask pair across all
resources. It is used, for instance, in VeriCool [59] and Viper’s VCG-backend.
Heap reads and mask updates are encoded as described for SE-TR, with the
only change that the field becomes another index into the single heap or mask.

Using a single heap simplifies, for example, the encoding of predicates (see
Sect. 2.1) but, on the other hand, complicates framing for heap-dependent func-
tions, since updating any resource changes the (only) heap and, thus, requires
proof steps to show that other resources are not affected.

The discussion of these five algorithms illustrates various design choices,
which may affect performance, for instance, by shifting work between the veri-
fication algorithm and the SMT solver. These choices also affect completeness.
Most prominently, algorithms using total heaps make heavy use of universal
quantifiers, making the SMT queries undecidable. In practice, verification tools
use the SMT solver’s E-matching [16], which allows them to guide quantifier
instantiations by specifying matching patterns (also called triggers). However,
making those too strict can prevent necessary instantiations (causing spurious
errors), whereas making them too permissive may cause too many unnecessary
instantiations (and, thus, bad performance). It is thus crucial to assess perfor-
mance and completeness of verification algorithms empirically, as we do next.

3 Evaluation

This section presents our empirical evaluation. We first discuss relevant imple-
mentation details of the algorithms, introduce the benchmarks, and describe our
set-up. We then present and interpret our evaluation results, in terms of com-
pleteness and performance of the different algorithms. Finally, we conclude by
discussing potential threats to the validity of our results.

3.1 Implementations

Viper’s two existing backends implement SE-PS and VCG-TA, respectively. We
have extended Viper to implement the remaining three algorithms (for the full
Viper language as of version 23.07), reusing parts of the existing implementations
where possible: We based SE-PC on Viper’s SE-PS backend, which allowed us
to reuse the entire SE engine and the state representation, but required re-
implementing all heap-related parts of the algorithm. We also based SE-TR on
Viper’s SE-PS backend. Here, we could still re-use the SE engine, but had to re-
implement the heap representation, all heap-manipulating operations, and code
for axiomatizing heap-dependent functions. Lastly, we based VCG-TR on Viper’s

370 M. Eilers et al.

VCG-TA backend, which encodes a Viper program into a Boogie [6] program;
Boogie then computes a verification condition and interacts with Z3. We reused
this entire mechanism and the general encoding of statements and expressions,
but had to adapt all heap-handling code. All SE algorithms implement various
optimizations: they perform syntactic equality checks (e.g., in SE-PS to find
a matching heap chunk) to avoid SMT queries, they simplify terms on the fly
(e.g., SE-TR, to keep mask terms simple, simplifies a mask MR to which the same
permission has been added and later removed to be just MR again), they cache
values (e.g., the term resulting from reading a field in SE-PC), they actively
query the SMT solver to check if paths can be pruned, and they optimize their
communication with the SMT solver to avoid repeating large terms. Some of
these optimizations are crucial for scaling the algorithms to large examples,
while others are only relevant for corner cases. In the VCG algorithms, most of
these optimizations are not possible; thus, they mainly rely on Boogie to generate
efficient verification conditions [7].

3.2 Benchmark Selection

For our comparison, we selected a total of 537 example programs to be verified.
About 80% of these were generated by one of several Viper frontends from pro-
grams written in different source languages, the other programs were manually
written in Viper. Each example represents a meaningful verification task (e.g.,
from a publication’s case study or verification competition): in particular, we
excluded programs that represent regression tests or that test specific features
in isolation. The majority of the examples (388) is expected to verify; for the
remainder, the expected result is some set of verification failures.

The examples vary along several dimensions: source level language (e.g., Rust,
Java, Python), frontend verifier (e.g., we obtained Viper programs from differ-
ent Rust verifiers), application area and complexity (ranging from individual
functions to large case studies, e.g., to verify cryptographic security of network
protocols), verified properties (e.g., memory safety, complex functional specifi-
cations, or hyperproperties such as secure information flow), Viper features used
to encode source languages and properties, and code size (ranging from 15 to
99,110 lines of Viper code, with a mean/median of 2400/495 LOC).

To observe the effect that these variations have on the completeness or per-
formance of different verification algorithms, we partitioned the examples into
different groups, listed below. We first grouped by frontend verifiers, which we
then further refined: e.g., by application area or typical usage patterns of Viper
features. This resulted in the following groups:

– Ru1 represents Rust programs verified using Prusti [4], which heavily use
predicates and magic wands but no quantified resources.

– Ru2 and Ru3 contain unsafe Rust code encoded by prototype versions of two
different Viper frontends [3,49]; the former heavily mutates the heap, whereas
the latter does not use Viper’s heap at all.

Verification Algorithms for Automated Separation Logic Verifiers 371

– Go contains smaller Go programs encoded by Gobra [65]. GoC contains larger
examples from two case studies that prove correctness and security of real-
world implementations of security protocols [2,47].

– RSL contains weak-memory programs generated by a frontend [61] for
Relaxed Separation Logic [64].

– SC and SCR contain smart contracts encoded to Viper by 2vyper [13]; the for-
mer group does not use Viper’s heap at all, whereas the latter uses quantified
resources, and additionally generates a lot of branches.

– PP contains a product program encoding [23] that is used to prove a 3-safety
hyperproperty. The generated programs lightly use the heap and heavily uti-
lize branching.

– Py contains Python programs encoded by Nagini [20,22], including two case
studies [28,60] that prove complex functional properties. PyP contains Nagini-
generated programs that additionally use a product program encoding to
prove information flow security of the original Python programs [21].

– Rea proves reachability properties about graph-manipulating programs [63];
it heavily relies on heap-dependent functions and quantified resources.

– Vi contains various programs directly written in Viper, including examples
from publications on quantified resources [43] and magic wands [58], and from
the VerifyThis verification challenge [18].

– VeC contains examples encoded by VerCors [9] that stem from larger case
studies that verify properties of Java [1] and CUDA [53] programs as well
as examples written in VerCors’s custom (Java-like) PVL language [52]. VeV
contains VerCors-encoded examples from VerifyThis.

– DaV and DaG contain Viper [29] and Gobra versions [19], respectively, of
examples from a verification textbook [37,38].

– Vo contains examples that heavily manipulate the heap, generated by
Voila [66], a frontend automating the fine-grained concurrency logic
TaDA [51].

In all groups, the examples combine several Viper features to encode the
desired language semantics and properties; some groups use certain features very
prominently, while others are more heterogeneous. Overall, we believe that our
examples and groups form a good representation of the many different usages of
Viper, and that our results can be transferred to other separation logic verifiers.

3.3 Experimental Setup

We evaluated completeness and performance of the different algorithms for each
of the examples. Our test system uses an AMD Ryzen 5900X with 32GB of RAM
running Ubuntu 23.10. For the VCG algorithms, we use Boogie 2.15.9. Our SMT
solver is Z3 4.8.71. All algorithms run with the same Z3 options and the same
axiomatization for background theories other than the heap (e.g., sequences).

We ran each algorithm five times on each example on a warmed-up JVM, each
time with a timeout of ten minutes. We let each algorithm report all errors for
1 While this is an older version of Z3, it is the default version used with Viper 23.07.

372 M. Eilers et al.

Table 1. Incompletenesses per algorithm per example group. Σ is the total across
all groups. For each algorithm, we show first the percentage of examples where it was
incomplete for any reason, and then the percentage of examples where it was incomplete
due to timeouts and inconsistent results.

every example (i.e., we did not stop after some number of errors were found). To
ensure that we measure the total workload, we disabled all parallelization along
the tool chains. To account for the heuristics-driven nature of SMT solvers, we
consistently varied Z3’s random seeds: we picked five fixed seeds and always used
the ith seed for the ith run of every algorithm-example combination. Lastly, we
measured the verification time of each algorithm on an empty Viper program to
obtain their fixed startup overhead (e.g., from starting Boogie), and subtracted,
from all times of a given algorithm, the difference between its own overhead and
the overall lowest overhead. In practice, this difference was at most 320 ms.

3.4 Completeness Results

Table 1 shows the number of incompletenesses per algorithm and example group,
i.e., the number of examples for which the algorithm reported unexpected errors,
timed out, or reported inconsistent results over the five runs. The latter is typi-
cally caused by differences in the SMT solver’s proof search, e.g., due to different
random seeds.

Overall Results. Every algorithm is able to report the desired result for over
86% of the examples. However, there is a clear distinction: VCG-TA has the

Verification Algorithms for Automated Separation Logic Verifiers 373

most incompletenesses with 13.8% (and the most timeouts by far), followed by
VCG-TR with 8.8% and SE-TR with 7.4%. The two partial heap algorithms
perform the best with 5.4% each.

Thus, our first, perhaps surprising observation is that for our test set, (suffi-
ciently optimized) partial heap algorithms are more complete than total
heap algorithms. That is, performing heap reasoning in the verification algo-
rithm is more effective than leaving it entirely to the SMT solver. This conclu-
sion is supported by further observations: (1) SE algorithms, with their greater
potential for optimizations, generally outperform the VCG algorithms; (2) SE-
PS, despite its conceptual incompleteness, performs identically to SE-PC over-
all, which produces more complex SMT queries by summarizing heap chunks;
(3) VCG-TA, with its single heap, has a much higher number of timeouts than
VCG-TR with its separate heaps per resource.

Impact of Optimizations. To evaluate how much SE-PS’s completeness
depends on optimizations, we re-ran all examples with a version of SE-PS with
the majority of its optimizations disabled. The resulting algorithm performs
notably worse, with 59 (instead of 29) incompletenesses. We thus conclude that
the good performance of SE-PS is due to significant optimization
efforts.

Complementarity. A pairwise comparison shows that, for each algorithm,
there are a number of examples that this algorithm is incomplete on, but another
algorithm is not. For example, while SE-PC and SE-PS perform identically in
overall numbers, SE-PC is complete on three examples where SE-PS is not and
vice versa. Other pairs differ more strongly, with SE-PS and VCG-TA forming
the extreme pair: there are in total 75 examples for which only one of the two
algorithms is complete. We thus conclude that being able to use more than
one algorithm is advantageous in practice, and we explore this further in
Sect. 4.

Differences Between Groups. While comparisons of the different algorithms
for our overall test set can give us an indication of their overall performance,
their results may be skewed due to over- or underrepresentation of different
patterns in our test set. Thus, a more important observation is that the number
of incompletenesses per algorithm differs significantly between example groups.
The two algorithms using partial heaps (SE-PS, SE-PC) are both incomplete on
15 out of 16 examples in the Rea group, making them essentially unusable for
this group. This indicates that the heavy use of heap-dependent functions
framed by quantified resources is problematic for partial heap algorithms.
All total heap algorithms perform better: SE-TR is incomplete on 6 out of 16
examples, the VCG algorithms on 2 and 3.

The opposite is the case for group Ru2, where all total heap algorithms
time out for at least 5 out of 11 examples, while both partial heap algorithms

374 M. Eilers et al.

are complete for all examples. Other groups that also heavily manipulate the
heap are Ru1 and Vo; both exhibit the similar tendencies, and likewise for GoC
with its large and complex case studies. These observations suggest that total
heap algorithms can struggle with a large number of heap updates.
Correspondingly, the heap representation does not affect completeness for the
two groups that do not use the heap at all (Ru3 and SC).

Conclusions. Given the previous observations and interpretations, we can draw
three final conclusions regarding completeness: First, the heap representation
has a bigger impact on completeness than the verification mechanism
(SE or VCG), since all groups that have large differences in completeness num-
bers have the largest difference between the partial heap and the total heap
algorithms. Second, certain example groups effectively require specific
combinations (e.g., VCG + total for Rea, SE + partial for Ru2). Third, a
general-purpose separation logic verifier should implement at least two algo-
rithms to be reasonably complete.

3.5 Performance Results

To compare the performance of different verification algorithms, we measured
the run time of each of the five algorithms on each of the examples five times,
as explained in Sect. 3.3. We discarded the shortest and longest run times and
computed the mean of the remaining three, leading to one data point for each
algorithm-example combination.

Comparison Method. Comparing algorithms on an example is sensible only if
each algorithm reports the same verification result (otherwise, an algorithm that
always immediately fails would be the fastest). Therefore, we compare pairs of
algorithms on examples for which both report the same result; using pairs instead
of all five algorithms minimizes the number of examples to discard.

For each pair of algorithms and example, we compute the relative percentage
difference (RPD) of the two mean run times t1 and t2, defined as (t2 − t1)/(0.5 ·
(t2+t1))·100, which relates the run time difference to the average run time of the
example. Consequently, RPDs are independent of the absolute run times, which
allows us to compare algorithms across examples with vastly different run times.
An RPD of 0 means equal performance, a positive value means that the first
algorithm was faster, with higher values indicating bigger differences: e.g., +66.6
indicates that the first algorithm took half the time of the second. The maximum
RPD is +200, obtained when the first algorithm is essentially instant compared
to the second. Conversely, negative values mean that the second algorithm was
faster.

Overview. Figure 1 shows box plots of the RPDs of the two extreme points in
the design space, SE-PS vs. VCG-TA. Figure 2 shows the RDPs of the closely

Verification Algorithms for Automated Separation Logic Verifiers 375

Fig. 1. Box plot of relative percentage difference (RPD) of mean performance per group
for the two extreme points in the design space, SE-PS vs. VCG-TA. Values greater than
zero indicate that the first algorithm in the pair is faster, values less than zero that
the second is faster; the orange line denotes the median and the dashed green line the
mean. (Color figure online)

related pairs (a) SE-PS vs. SE-PC, (b) SE-PS vs. SE-TR, (c) SE-TR vs. VCG-
TR, and (d) VCG-TR vs. VCG-TA. The orange line indicates the median, the
dashed green line the mean. The lower and upper ends of the box signify the
first and third quartiles (Q1 and Q3), respectively. The whiskers show the 1.5
interquartile range (IQR) values, i.e., the lowest point in the range between
Q1 − 1.5× IQR and Q1 and the highest point between Q3 and Q3 + 1.5× IQR,
where IQR = Q3 − Q1.

Extreme Designs. We first compare the two extreme points, SE-PS and VCG-
TA, which show significant performance differences across many groups (see
Fig. 1): SE-PS performs better for most groups, in particular for Ru1, Ru2, RSL,
Py , DaG, DaV , and Vo, while VCG-TA performs significantly better for PP ,
and to a lesser extent for PyP , SCR, and VeC . Only SC shows essentially the
same performance for both algorithms, and Vi contains examples that favor each
of the two algorithms. For PP and SCR, VCG-TA’s advantage is likely due to
a high amount of branching: they have an average of 133 and 7.5 branches per
method, respectively, whereas all other groups have an average of 2 branches per
method. PyP also results from product program constructions; the verification
work again stems mostly from branching, even if the average is only 2.5 branches
per method. For VeC , VCG-TA’s advantage cannot be explained with branching,
and we will revisit this group further below. Thus, we conclude that SE-PS
usually outperforms VCG-TA, but VCG-TA performs much better on
branch-heavy programs.

Related Designs. To asses the impact of individual design decisions, we com-
pare each algorithm to the most similar alternative(s); all comparisons can be
found in Fig. 2.

376 M. Eilers et al.

Fig. 2. Box plots of relative percentage difference (RPD) of mean performance per
group. From top to bottom: (a) SE-PS vs. SE-PC, (b) SE-PS vs. SE-TR, (c) SE-TR
vs. VCG-TR, (d) VCG-TR vs. VCG-TA. As before, values greater than zero indicate
that the first algorithm in the pair is faster, values less than zero that the second is
faster. The orange line denotes the median, the dashed green line the mean. (Color
figure online)

Verification Algorithms for Automated Separation Logic Verifiers 377

Comparing SE-PS vs. SE-PC, we observe that the two algorithms exhibit very
similar performance, with some small advantages for SE-PS, and a few outliers
where SE-PC is significantly faster, in particular from Ru2. This is in line with
our completeness evaluation, where the two partial heap algorithms were also
the most similar pair. Analogous to completeness, the existence of outliers again
allows concluding that being able to use more than one algorithm can
result in performance advantages for individual examples, even if the
alternatives perform similar on average.

Moving from a partial heap algorithm (SE-PS) to a total heap algorithm (SE-
TR), we observe the following: both SE algorithms exhibit similar performance
for most groups; but SE-PS performs minimally better on Ru1, Ru2, and GoC ,
while SE-TR has an advantage on RSL and VeV . This leads to the surprising
conclusion that the choice of heap representation has a comparably small
impact on the average performance of an SE verifier, whereas it had a
large impact on completeness. Exceptions exist, however, and they exhibit a
pattern: when SE-TR outperforms SE-PS, it is almost exclusively on examples
that heavily use quantified resources. Conversely, when SE-PS is much faster, it
tends to be on Ru1 examples, which do not use quantified resources but whose
heap access patterns are amenable to SE-PS’s optimizations.

Comparing SE-TR and VCG-TR shows that the biggest difference in
average performance is caused by the switch from SE to VCG (while
keeping the same heap model). As for the two extremes (SE-PS vs. VCG-TA),
the branch-heavy groups (PP , PyP , and SCR), as well as Rea (and the aforemen-
tioned VeC2), show a significant advantage for VCG-TR, whereas Py , GoC , DaG,
DaV and Vo are faster with SE-TR (which also slightly outperforms VCG-TR
on most of the other groups).

Finally, comparing VCG-TR (heap per resource) to VCG-TA (single heap)
shows very similar performance for many groups, with some exceptions (Go,
GoC , RSL, Ru1 and Vo) that show a significant advantage for VCG-TR and
no significant advantages for VCG-TA. From that, we conclude that one total
heap per resource generally performs better than a single total heap.

3.6 Recommendation

The overall winner of our comparison in terms of both completeness and perfor-
mance is SE-PS, which makes SE-PS a good default algorithm, followed closely
by SE-PC. However, for both metrics, we have also found that (1) on individual
examples, any of the other algorithms may outperform SE-PS, (2) some amount

2 We investigated this group in more detail, and observed that the run time in SE
algorithms is dominated by certain SMT queries that involve heap-dependent func-
tions and mathematical sequences, and that non-deterministically take a long time
to be answered. It is ultimately unclear to us why VCG should pose a conceptual
advantage here, but it is plausible that for example slightly different function axiom-
atizations accidentally influence how the SMT solver instances the sequence axioms,
which are known to be challenging for performance.

378 M. Eilers et al.

of optimization is required to achieve this performance and a less-optimized
version of SE-PS would perform worse, and, most importantly, (3) there are
entire categories of examples where SE-PS is substantially less complete than a
total-heap algorithm (Rea), or where SE-PS is substantially slower than a VCG
algorithm (PP). We thus recommend to either choose the algorithm based on the
expected examples (e.g., for domain-specific applications), or to combine SE-PS
with other algorithms, as discussed in Sect. 4.

Our novel SE-TR algorithm, combining total heaps and SE, has shown that
it provides a different and useful trade-off compared to existing algorithms. Its
completeness is comparable to (and often slightly better than) existing total-heap
algorithms (which use VCG), while its performance is comparable to (albeit in
general slightly slower than) existing SE algorithms (which use partial heaps).

Our SE-PC algorithm performs very similarly to SE-PS, i.e., very well, with
some exceptions in both directions. SE-PC is thus also a good default algorithm,
in particular, if SE-PS’s disjunctive aliasing incompleteness is not acceptable.

VCG-TA is almost universally worse than VCG-TR and we thus recommend
VCG-TR when developing a VCG verifier.

3.7 Threats to Validity

Benchmark Selection. Our evaluation covers a wide range of use cases and
feature combinations, but cannot be representative of all existing (and future)
examples. Our recommendation to use multiple algorithms (see also Sect. 4)
increases the robustness of a verifier against unexpected examples.

We focused on verifying complex examples (often with quantifier-heavy spec-
ifications), whose verification time is between tenths of seconds and several min-
utes. As demonstrated by other tools (e.g., VeriFast), simpler settings (e.g.,
without fractional permissions and quantified resources) can lead to substantially
shorter verification times, in which case the differences between the algorithms
might be much less pronounced. Our Ru1 group (comparably few quantifiers, no
quantified resources) comes closest to such a setting, so our results for this group
should be transferable: here, the clear result is that SE-PS performs the best in
terms of both completeness and performance.

Verification examples are typically developed while getting feedback from
the verification tool. In our case, the algorithms used by this tool were (earlier
versions of) SE-PS, SE-PC, or VCG-TA, since SE-TR and VCG-TR were not yet
implemented when any of the examples used in our evaluation were developed.
This may skew the results in favor of these algorithms, because developers might
have chosen designs that are handled well in the used algorithm.

Impact of Optimizations and Implementation Maturity. The complete-
ness and performance of the different implementations can be influenced both
by optimizations they perform and by bugs they may contain. Of the algorithms
we used, the implementations of SE-PS and VCG-TA are the most mature (in
terms of development time); since these are the two best and worst performing

Verification Algorithms for Automated Separation Logic Verifiers 379

implementations in terms of completeness, we conclude that our results are not a
consequence of implementation maturity but of the algorithms themselves. It is,
however, possible that the remaining three algorithms with less mature imple-
mentations could be further improved with more development time. The fact
that SE-PS and SE-PA perform the largest amount of explicit optimization is
mostly because, as said before, partial-state SE-algorithms offer more potential
for optimization, not because of implementation maturity; the VCG algorithms
(and to a lesser degree SE-TR) leave much more work to the SMT solver, and
as a result, almost no optimization beyond tuning quantifier heuristics and gen-
erating efficient VCs are possible. We have done the former for all algorithms,
and Boogie is well-optimized to do the latter.

SMT Solver. We have performed our evaluation using Z3 4.8.7, Viper’s default
solver. Different SMT solvers have different performance characteristics, but
experiments with other SMT solvers determined that Z3 offers the best complete-
ness (and performance) for our examples, and thus, was the best current choice
for performing the evaluation. Future improvements in SMT solvers may dis-
proportionately affect the evaluation results of certain algorithms: e.g., improve-
ments in quantifier reasoning may be particularly beneficial for total-heap algo-
rithms, while improvements to incremental subsolvers may be particularly ben-
eficial to SE algorithms.

4 Portfolios

The previous section showed that no single algorithm is optimal for all bench-
mark groups. Therefore, to maximize the chance of successful verification, it is
advisable to use a portfolio of different algorithms, i.e., to run several algorithms
in parallel until at least one of them succeeds.

We explored all combinations of our five algorithms and identified four port-
folios of different sizes that maximize completeness. In this section, we discuss
these portfolios and evaluate their performance. It is worth noting that three out
of the four winning portfolios contain SE-TR, which we proposed in this paper.

Out of all possible combinations, the smallest set of algorithms needed to
get the expected result for all examples in our benchmark set is {SE-PS, SE-
TR, VCG-TR, VCG-TA}, which is our portfolio P0. Since the five algorithms
we evaluated have rather diverse sources of incompleteness, most of them are
needed to avoid any spurious errors in our benchmark set.

Using a large portfolio is resource intensive and not always justified in prac-
tice. There are two portfolios of size three that are complete for all but one exam-
ple: {SE-PS, SE-TR, VCG-TR} and {SE-PS, SE-TR, VCG-TA}. The examples
they fail on seem to be very sensitive to even small changes in the verification
algorithms. Each portfolio contains an SE algorithm with partial heaps, an SE
algorithm with total heaps, and a VCG algorithm, which demonstrates the com-
plementarity of these approaches. We select the first of these portfolios due to
the better average performance of VCG-TR over VCG-TA and name it P1.

380 M. Eilers et al.

Reducing the portfolio size further, we can identify two interesting portfolios
of size two. The best portfolio of size two, {SE-PS, VCG-TR} (P2), is complete
for all but six examples. {SE-PS, SE-TR} (P3) is complete for all but ten exam-
ples, but has the major advantage that it contains only SE algorithms, which
reduces the effort of implementing this portfolio substantially. Different SE algo-
rithms can share many parts of the implementation, whereas the implementa-
tions of SE and VCG algorithms offer little opportunity for reuse. Consequently,
P3 provides a relatively easy way for SE tools to improve their completeness by
complementing their existing SE-PS algorithm with the new SE-TR algorithm,
which only requires re-implementing the heap operations.

Our technical report [25] shows the relative performance of P1, P2, and P3
versus P0. While P1 mostly performs identical to P0, P2 has a slight disad-
vantage for RSL and VeC , but performs equally well for all other groups, and
thus delivers almost all the benefits of P0. Finally, P3, due to its lack of a VCG
verifier, performs much worse than P0 in the previously-identified branch-heavy
groups, while delivering good performance for all others.

5 Related Work

The first verification algorithm for separation logic was the SE algorithm for
Smallfoot [8]. Its partial heap representation as a collection of heap chunks has
been adopted and refined by many separation logic verifiers (such as Caper [17],
the Gillian instantiations for C and JavaScript [40], JaVerT [56], SecC [26],
VeriFast [32], and Viper’s SE-backend), for instance, to support user-defined
predicates [32], alternative permission models such as fractional permissions [12]
and counting permissions [11], advanced separation logic connectives such as
magic wands [58] and iterated separating conjunction [43], and proof search for
angelic choice using backtracking [17]. Our evaluation covers those extensions
that are implemented in Viper, namely predicates, fractional permissions, magic
wands, and iterated separating conjunction.

Gillian [55] is an SE framework that can be instantiated for different input
languages and separation logics and lets each instantiation define its own repre-
sentation of the heap. The existing instantiations for C and JavaScript use an
algorithm similar but not identical to SE-PS, but Gillian could also express the
other SE algorithms we discuss. Our evaluation can guide developers toward an
optimal use of Gillian’s expressiveness.

VCG for separation logic was first developed in the context of VeriCool [59]
and then extended to concurrency in Chalice [39]. The algorithm there, as well
as in Viper’s VCG-backend, uses a total-heap representation. While Chalice and
Viper use a single total map to represent all heap values, GrassHopper [48]
uses a dedicated map for each resource. As we observed in our evaluation, and
has previously been shown in the context of VCC [10], this representation can
improve performance and completeness by simplifying framing. GrassHopper
uses advanced algorithms to automate reasoning about predicates, which were
not in scope for our evaluation here.

Verification Algorithms for Automated Separation Logic Verifiers 381

Existing verifiers support a range of permission logics, including separation
logic and implicit dynamic frames [59]. Separation logic is typically defined over
partial heaps, whereas the theory of implicit dynamic frames uses total heaps.
However, there is a strong connection between both logics [46], and the algo-
rithms discussed in this paper can support both.

There are other approaches to automating verification in separation logic.
For instance, Steel [30] is built on top of F* [62], which uses type inference
to devise derivations in a dependently typed separation logic. RefinedC [54]
automates proof search in Lithium, a fragment of the Iris separation logic [33].
Its verification algorithm is implemented in Coq as a tactic. Such approaches
differ substantially from the SE and VCG algorithms discussed in this paper
in the degree of automation they provide, their expressiveness, or their ability
to devise foundational proofs, which makes a meaningful comparison difficult.
Hip/Sleek [15] performs a forward verification similar to SE but operates directly
by checking entailments on separation logic formulas and, thus, does not need a
heap encoding. To our knowledge, existing separation logic solvers do not sup-
port all of the separation logic features (predicates, magic wands and quantified
resources, and their combination) supported by the algorithms we considered.

Kassios et al. [34] compared the performance of Chalice’s VCG algorithm to
an alternative SE-backend most similar to SE-PS, and found a significant per-
formance advantage for the SE-backend throughout. However, their comparison
does not include the versions of SE and VCG used in modern tools, does not
assess completeness, and does not reflect the diversity of verification problems,
with only 29 examples in total being compared.

Finally, choices between explicitly enumerating states (e.g., heap chunks in
partial heap models and program paths in SE) and using logical formulas to rep-
resent the different options (in total heap models and VCG algorithms) also exist
for other ways of automated reasoning. For example, explicit-state model check-
ing enumerates individual states, whereas symbolic model checking represents
sets of states via logical formulas, offering different tradeoffs [14].

6 Conclusions and Future Work

We have presented and implemented five algorithms for automated separation
logic verification, including two novel algorithms. Our evaluation shows that,
across all benchmarks, the prevalent SE-PS algorithm shows the best complete-
ness and performance. However, it is not optimal for all benchmark groups and,
thus, should be complemented by other algorithms. We identified algorithm port-
folios of different sizes that maximize completeness.

As future work, we plan to extract features from programs that allow us to
predict which algorithm will perform best.

Acknowledgement. We are grateful to Sacha-Elie Ayoun, Thomas Dinsdale-Young,
and Thomas Wies for discussions about Gillian, Caper, and GrassHopper. We thank
Robin Sierra for a first implementation of SE-PC. We thank the ETH Seminar for
Statistics consulting service for helpful discussions.

382 M. Eilers et al.

References

1. Armborst, L., Huisman, M.: Permission-based verification of red-black trees and
their merging. In: FormaliSE@ICSE, pp. 111–123. IEEE (2021)

2. Arquint, L., Schwerhoff, M., Mehta, V., Müller, P.: A generic methodology for the
modular verification of security protocol implementations. In: CCS, pp. 1377–1391.
ACM (2023)

3. Astrauskas, V.: Leveraging uniqueness for modular verification of heap-
manipulating programs. Ph.D. thesis, ETH Zurich, Zürich, Switzerland (2024)

4. Astrauskas, V., Müller, P., Poli, F., Summers, A.J.: Leveraging rust types for mod-
ular specification and verification. Proc. ACM Program. Lang. 3(OOPSLA), 147:1–
147:30 (2019)

5. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: TACAS
2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99524-9_24

6. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192_17

7. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In:
PASTE, pp. 82–87. ACM (2005)

8. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: modular automatic asser-
tion checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer,
Heidelberg (2006). https://doi.org/10.1007/11804192_6

9. Blom, S., Huisman, M.: The VerCors tool for verification of concurrent programs.
In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 127–
131. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06410-9_9

10. Böhme, S., Moskal, M.: Heaps and data structures: a challenge for automated
provers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS
(LNAI), vol. 6803, pp. 177–191. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22438-6_15

11. Bornat, R., Calcagno, C., O’Hearn, P.W., Parkinson, M.J.: Permission accounting
in separation logic. In: POPL, pp. 259–270. ACM (2005)

12. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-44898-5_4

13. Bräm, C., Eilers, M., Müller, P., Sierra, R., Summers, A.J.: Rich specifications for
Ethereum smart contract verification. Proc. ACM Program. Lang. 5(OOPSLA),
1–30 (2021)

14. Buzhinsky, I., Pakonen, A., Vyatkin, V.: Explicit-state and symbolic model check-
ing of nuclear i&c systems: a comparison. In: IECON, pp. 5439–5446. IEEE (2017)

15. Chin, W., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape, size
and bag properties via user-defined predicates in separation logic. Sci. Comput.
Program. 77(9), 1006–1036 (2012)

16. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3), 365–473 (2005)

17. Dinsdale-Young, T., da Rocha Pinto, P., Andersen, K.J., Birkedal, L.: Caper. In:
Yang, H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 420–447. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54434-1_16

https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/11804192_6
https://doi.org/10.1007/978-3-319-06410-9_9
https://doi.org/10.1007/978-3-642-22438-6_15
https://doi.org/10.1007/978-3-642-22438-6_15
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/978-3-662-54434-1_16

Verification Algorithms for Automated Separation Logic Verifiers 383

18. Dross, C., Furia, C.A., Huisman, M., Monahan, R., Müller, P.: VerifyThis 2019:
a program verification competition. Int. J. Softw. Tools Technol. Transf. 23(6),
883–893 (2021)

19. Egli, T.: Translating Pedagogical Exercises to Viper’s Go Front-End. Bachelor’s
thesis, ETH Zürich (2023)

20. Eilers, M.: Modular Specification and Verification of Security Properties for Main-
stream Languages. Ph.D. thesis, ETH Zurich, Zürich, Switzerland (2022)

21. Eilers, M., Meier, S., Müller, P.: Product programs in the wild: retrofitting program
verifiers to check information flow security. In: Silva, A., Leino, K.R.M. (eds.) CAV
2021. LNCS, vol. 12759, pp. 718–741. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-81685-8_34

22. Eilers, M., Müller, P.: Nagini: a static verifier for Python. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 596–603. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3_33

23. Eilers, M., Müller, P., Hitz, S.: Modular product programs. ACM Trans. Program.
Lang. Syst. 42(1), 3:1–3:37 (2020)

24. Eilers, M., Schwerhoff, M., Müller, P.: Verification algorithms for automated
separation logic verifiers (artifact) (May 2024). https://doi.org/10.5281/zenodo.
11218239, https://doi.org/10.5281/zenodo.11218239

25. Eilers, M., Schwerhoff, M., Müller, P.: Verification algorithms for automated sep-
aration logic verifiers (2024)

26. Ernst, G., Murray, T.: SecCSL: Security Concurrent Separation Logic. In: Dillig,
I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 208–230. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25543-5_13

27. Filliâtre, J.-C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6_8

28. Forster, S.: Static Verification of the SCION Router Implementation. Bachelor’s
thesis, ETH Zürich (2018)

29. Frei, B.: Translating Pedagogical Verification Exercises to Viper. Bachelor’s thesis,
ETH Zürich (2023)

30. Fromherz, A., Rastogi, A., Swamy, N., Gibson, S., Martínez, G., Merigoux, D.,
Ramananandro, T.: Steel: proof-oriented programming in a dependently typed
concurrent separation logic. Proc. ACM Program. Lang. 5(ICFP), 1–30 (2021)

31. Heule, S., Kassios, I.T., Müller, P., Summers, A.J.: Verification condition genera-
tion for permission logics with abstract predicates and abstraction functions. In:
Castagna, G. (ed.) ECOOP 2013. LNCS, vol. 7920, pp. 451–476. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39038-8_19

32. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5_4

33. Jung, R., Krebbers, R., Jourdan, J., Bizjak, A., Birkedal, L., Dreyer, D.: Iris from
the ground up: a modular foundation for higher-order concurrent separation logic.
J. Funct. Program. 28, e20 (2018)

34. Kassios, I.T., Müller, P., Schwerhoff, M.: Comparing verification condition gen-
eration with symbolic execution: an experience report. In: Joshi, R., Müller, P.,
Podelski, A. (eds.) VSTTE 2012. LNCS, vol. 7152, pp. 196–208. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-27705-4_16

https://doi.org/10.1007/978-3-030-81685-8_34
https://doi.org/10.1007/978-3-030-81685-8_34
https://doi.org/10.1007/978-3-319-96145-3_33
https://doi.org/10.5281/zenodo.11218239
https://doi.org/10.5281/zenodo.11218239
https://doi.org/10.5281/zenodo.11218239
https://doi.org/10.1007/978-3-030-25543-5_13
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-39038-8_19
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-27705-4_16

384 M. Eilers et al.

35. Lal, A., Qadeer, S.: Powering the static driver verifier using Corral. In: SIGSOFT
FSE, pp. 202–212. ACM (2014)

36. Leino, K.R.M.: This is Boogie 2 (June 2008). https://www.microsoft.com/en-us/
research/publication/this-is-boogie-2-2/

37. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4_20

38. Leino, K.R.M.: Program Proofs. MIT Press (2023)
39. Leino, K.R.M., Müller, P., Smans, J.: Verification of concurrent programs with

chalice. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007-2009. LNCS,
vol. 5705, pp. 195–222. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03829-7_7

40. Maksimović, P., Ayoun, S.É., Santos, J.F., Gardner, P.: Gillian, Part II: real-world
verification for JavaScript and C. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021.
LNCS, vol. 12760, pp. 827–850. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-81688-9_38

41. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

42. Mugnier, E., McLaughlin, S., Tomb, A.: Portfolio solving for Dafny. In: Dafny
Workshop (2024), to appear

43. Müller, P., Schwerhoff, M., Summers, A.J.: Automatic verification of iterated sepa-
rating conjunctions using symbolic execution. In: Chaudhuri, S., Farzan, A. (eds.)
CAV 2016. LNCS, vol. 9779, pp. 405–425. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-41528-4_22

44. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5_2

45. Parkinson, M.J., Bierman, G.M.: Separation logic and abstraction. In: POPL, pp.
247–258. ACM (2005)

46. Parkinson, M.J., Summers, A.J.: The relationship between separation logic and
implicit dynamic frames. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp.
439–458. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19718-
5_23

47. Pereira, J.C., et al.: Protocols to code: formal verification of a next-generation
internet router (2024)

48. Piskac, Ruzica, Wies, Thomas, Zufferey, Damien: GRASShopper. In: Ábrahám,
Erika, Havelund, Klaus (eds.) TACAS 2014. LNCS, vol. 8413, pp. 124–139.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_9

49. Poli, F., Denis, X., Müller, P., Summers, A.J.: Reasoning about interior mutability
in rust using library-defined capabilities (2024)

50. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS, pp. 55–74. IEEE Computer Society (2002)

51. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: TaDA: a logic for time and
data abstraction. In: Jones, R. (ed.) ECOOP 2014. LNCS, vol. 8586, pp. 207–231.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44202-9_9

52. Safari, M., Huisman, M.: A generic approach to the verification of the permutation
property of sequential and parallel swap-based sorting algorithms. In: Dongol, B.,

https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-03829-7_7
https://doi.org/10.1007/978-3-642-03829-7_7
https://doi.org/10.1007/978-3-030-81688-9_38
https://doi.org/10.1007/978-3-030-81688-9_38
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-41528-4_22
https://doi.org/10.1007/978-3-319-41528-4_22
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-642-19718-5_23
https://doi.org/10.1007/978-3-642-19718-5_23
https://doi.org/10.1007/978-3-642-54862-8_9
https://doi.org/10.1007/978-3-662-44202-9_9

Verification Algorithms for Automated Separation Logic Verifiers 385

Troubitsyna, E. (eds.) IFM 2020. LNCS, vol. 12546, pp. 257–275. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-63461-2_14

53. Safari, M., Huisman, M.: Formal verification of parallel prefix sum and stream
compaction algorithms in CUDA. Theor. Comput. Sci. 912, 81–98 (2022)

54. Sammler, M., Lepigre, R., Krebbers, R., Memarian, K., Dreyer, D., Garg, D.:
RefinedC: automating the foundational verification of C code with refined owner-
ship types. In: PLDI, pp. 158–174. ACM (2021)

55. Santos, J.F., Maksimovic, P., Ayoun, S., Gardner, P.: Gillian, part i: a multi-
language platform for symbolic execution. In: PLDI, pp. 927–942. ACM (2020)

56. Santos, J.F., Maksimovic, P., Sampaio, G., Gardner, P.: JaVerT 2.0: compositional
symbolic execution for JavaScript. Proc. ACM Program. Lang. 3(POPL), 66:1–
66:31 (2019)

57. Schwerhoff, M.: Advancing Automated, Permission-Based Program Verification
Using Symbolic Execution. Ph.D. thesis, ETH Zurich, Zürich, Switzerland (2016)

58. Schwerhoff, M., Summers, A.J.: Lightweight support for magic wands in an auto-
matic verifier. In: ECOOP. LIPIcs, vol. 37, pp. 614–638. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2015)

59. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames: combining dynamic
frames and separation logic. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol.
5653, pp. 148–172. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03013-0_8

60. Sprenger, C., Klenze, T., Eilers, M., Wolf, F.A., Müller, P., Clochard, M., Basin,
D.A.: Igloo: soundly linking compositional refinement and separation logic for
distributed system verification. Proc. ACM Program. Lang. 4(OOPSLA), 152:1–
152:31 (2020)

61. Summers, A.J., Müller, P.: Automating deductive verification for weak-memory
programs. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp.
190–209. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2_11

62. Swamy, N., Weinberger, J., Schlesinger, C., Chen, J., Livshits, B.: Verifying higher-
order programs with the Dijkstra monad. In: PLDI, pp. 387–398. ACM (2013)

63. Ter-Gabrielyan, A., Summers, A.J., Müller, P.: Modular verification of heap reach-
ability properties in separation logic. Proc. ACM Program. Lang. 3(OOPSLA),
121:1–121:28 (2019)

64. Vafeiadis, V., Narayan, C.: Relaxed separation logic: a program logic for C11 con-
currency. In: OOPSLA, pp. 867–884. ACM (2013)

65. Wolf, F.A., Arquint, L., Clochard, M., Oortwijn, W., Pereira, J.C., Müller, P.:
Gobra: modular specification and verification of go programs. In: Silva, A., Leino,
K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 367–379. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-81685-8_17

66. Wolf, F.A., Schwerhoff, M., Müller, P.: Concise outlines for a complex logic: a
proof outline checker for TaDA. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.)
FM 2021. LNCS, vol. 13047, pp. 407–426. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-90870-6_22

https://doi.org/10.1007/978-3-030-63461-2_14
https://doi.org/10.1007/978-3-642-03013-0_8
https://doi.org/10.1007/978-3-642-03013-0_8
https://doi.org/10.1007/978-3-319-89960-2_11
https://doi.org/10.1007/978-3-030-81685-8_17
https://doi.org/10.1007/978-3-030-90870-6_22
https://doi.org/10.1007/978-3-030-90870-6_22

386 M. Eilers et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

SMT-Based Symbolic Model-Checking
for Operator Precedence Languages

Michele Chiari1(B) , Luca Geatti2 , Nicola Gigante3 ,
and Matteo Pradella4

1 TU Wien, Treitlstraße 3, 1040 Vienna, Austria
michele.chiari@tuwien.ac.at
2 University of Udine, Udine, Italy

luca.geatti@uniud.it
3 Free University of Bozen-Bolzano, Bolzano, Italy

nicola.gigante@unibz.it
4 Politecnico di Milano, Milan, Italy

matteo.pradella@polimi.it

Abstract. Operator Precedence Languages (OPL) have been recently
identified as a suitable formalism for model checking recursive proce-
dural programs, thanks to their ability of modeling the program stack.
OPL requirements can be expressed in the Precedence Oriented Tem-
poral Logic (POTL), which features modalities to reason on the natu-
ral matching between function calls and returns, exceptions, and other
advanced programming constructs that previous approaches, such as Vis-
ibly Pushdown Languages, cannot model effectively. Existing approaches
for model checking of POTL have been designed following the explicit-
state, automata-based approach, a feature that severely limits their scal-
ability. In this paper, we give the first symbolic, SMT-based approach for
model checking POTL properties. While previous approaches construct
the automaton for both the POTL formula and the model of the pro-
gram, we encode them into a (sequence of) SMT formulas. The search
of a trace of the model witnessing a violation of the formula is then car-
ried out by an SMT-solver, in a Bounded Model Checking fashion. We
carried out an experimental evaluation, which shows the effectiveness of
the proposed solution.

Keywords: SMT-based Model Checking · Tree-shaped Tableau ·
Temporal Logic · Operator Precedence Languages

1 Introduction

Operator Precedence Languages (OPL) [16] are very promising for software ver-
ification: as a subclass of context-free languages, they can naturally encode the
typical stack-based behavior of programs, without the shortcomings of the bet-
ter known Visibly Pushdown Languages (VPL), originally introduced as Input-
driven languages [5,6,30]. In particular, the main characteristic of VPL is the
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 387–408, 2024.
https://doi.org/10.1007/978-3-031-65627-9_19

https://zenodo.org/doi/10.5281/zenodo.10932836
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65627-9_19&domain=pdf
http://orcid.org/0000-0001-7742-9233
http://orcid.org/0000-0002-7125-787X
http://orcid.org/0000-0002-2254-4821
http://orcid.org/0000-0003-3039-1084
https://doi.org/10.1007/978-3-031-65627-9_19

388 M. Chiari et al.

one-to-one “matching” between a symbol representing a procedure call and the
symbol representing its corresponding return. Unfortunately, this feature makes
them ill-suited to model several typical behaviors of programs that induce a
many-to-one or one-to-many matching, such as exceptions, interrupts, dynamic
memory management, transactions, and continuations.

OPL were introduced through grammars for deterministic parsing by Floyd
in 1963, and were re-discovered and studied in more recent works, where contain-
ment of VPL and closure w.r.t. Boolean operations were proved [15], together
with the following characterizations: automata-based, monadic second order
logic [26], regular-like expressions [28], and syntactic congruence with finitely
many equivalence classes [22]. OPL are also the biggest known class maintaining
an important feature of Regular languages: first-order logic, star-free expressions,
and aperiodicity define the same subclass [29]. A temporal logic called OPTL was
defined in [11], and a subsequent extension called POTL (on which we focus in
this work) was introduced in [12], and then proved to capture the first-order
definable fragment of OPL in [13]. The linear temporal logics for VPL CaRet [4]
and NWTL [2] were also proved to be less expressive than both OPTL [11] and
POTL [13].

POTL contains explicit context-free modalities that interact not only with
the linear order of events representing time, but also with the nested structure
of function calls, returns, and exceptions. For instance, consider this formula:

�(call ∧ qs → ¬(�u exc ∨ χu
F exc))

Here � is the LTL globally operator, and call and exc hold respectively in
positions that represent a function call and an exception. �u exc means that
the next position is an exception (similarly to the LTL next), while χu

F exc
means that a subsequent position, which terminates the function call in the
current position, is an exception. Thus, the formula means “function qs is never
terminated by an exception” (or, equivalently, it never terminates or it always
terminates with a normal return).

It is worth to note that VPL were originally proposed for automatic verifi-
cation, thanks to their nice Regular-like closure properties, but effective Model
Checking (MC) tools for them are still not publicly available, in particular sup-
porting logics capable of expressing context-free specifications. This situation
improved with the introduction of POMC [8,10,12], a model checker for struc-
tured context-free languages based on POTL, but that can be easily adapted to
the simpler structure of VPL. POMC’s core consists of an explicit-state tableau
construction procedure, which yields nondeterministic automata of size at most
singly exponential in the formula’s length, and is shown to be quite effective in
realistic cases in [10,32].

The main shortcoming of explicit-state MC tools is the state explosion prob-
lem, i.e. the exponential growth of the state space as the system size and complex-
ity increase, which makes MC infeasible for large and realistic systems. Indeed,
as reported in [10], managing longer arrays or variables encoded with a real-
istic number of bits was problematic. A classical way to address this issue is

SMT-Based Symbolic Model-Checking for Operator Precedence Languages 389

to use Symbolic Model Checking, which is a variant of MC that represents the
system and the specification using symbolic data structures, instead of explicit
enumeration of states and transitions. One very successful symbolic technique is
Bounded Model Checking (BMC) [7,14], where the model is unrolled for a fixed
number of steps and encoded into SAT, i.e. Boolean Satisfiability, to leverage
recent efficient SAT solvers, and later the more general Satisfiability Modulo
Theories (SMT) solvers, such as Z3 [31].

In this paper we apply BMC to POTL by encoding its tableau into SMT,
extending the approach used in the BLACK tool [19]. BLACK is a satisfiability
checker and temporal reasoning framework based on an encoding into SAT of
Reynolds’ one-pass tableau system for classical linear temporal logic [18]. Cur-
rently, we consider the future fragment of the temporal logic POTL on finite-word
semantics, but we plan to extend the encoding to cover full POTL and ω-words.
SMT-based approaches were already introduced for verifying pushdown program
models [23,25], but only against regular specifications. To the best of our knowl-
edge, this is the first SMT encoding of a context-free temporal logic, proving
that BMC can be beneficial to verification of this class of temporal logics, too.

We applied our tool to a number of realistic cases: an implementation of
the Quicksort algorithm, a banking application, and C++ implementations of a
generic stack data structure, where our approach is compared with the original
POMC. The results are very promising, as our SMT-based approach was able
to avoid POMC’s exponential increase of the solving time in several cases.

The paper is structured as follows. OPL and the logic POTL are introduced in
Sect. 2. Section 3 defines the tree-shaped tableau for POTL, while Sect. 4 presents
its encoding into SMT. Section 5 illustrates the experimental evaluation. Last,
Sect. 6 draws the conclusions.

2 Preliminaries

2.1 Operator Precedence Languages

We assume that the reader has some familiarity with formal language theory
concepts such as context-free grammar, parsing, shift-reduce algorithm [20,21].
Operator Precedence Languages (OPL) were historically defined through their
generating grammars [16]; in this paper, we characterize them through their
automata [26], as they are more suitable for model checking. Readers not familiar
with OPL may refer to [27] for more explanations on their basic concepts.

Let Σ be a finite alphabet, and ε the empty string. We use a special symbol
�∈ Σ to mark the beginning and the end of any string. An operator precedence
matrix (OPM) M over Σ is a partial function (Σ ∪ {#})2 → {�,

.=, �}, that,
for each ordered pair (a, b), defines the precedence relation (PR) M(a, b) holding
between a and b. If the function is total we say that M is complete. We call the
pair (Σ,M) an operator precedence alphabet. Relations �,

.=, �, are respectively
named yields precedence, equal in precedence, and takes precedence. By conven-
tion, the initial # yields precedence, and other symbols take precedence on the
ending #. If M(a, b) = π, where π ∈ {�,

.=, �}, we write a π b. For u, v ∈ Σ+ we

390 M. Chiari et al.

write u π v if u = xa and v = by with a π b. The role of PR is to give structure
to words: they can be seen as special and more concise parentheses, where e.g.
one “closing” � can match more than one “opening” �. It is important to remark
that PR are not ordering relations, despite their graphical appearance.

Definition 1. An operator precedence automaton (OPA) is a tuple A =
(Σ,M,Q, I, F, δ) where (Σ,M) is an operator precedence alphabet, Q is a finite
set of states, I ⊆ Q is the set of initial states, F ⊆ Q is the set of final states,
δ is a triple of transition relations δshift ⊆ Q × Σ × Q, δpush ⊆ Q × Σ × Q, and
δpop ⊆ Q × Q × Q. An OPA is deterministic iff I is a singleton, and all three
components of δ are functions.

To define the semantics of OPA, we set some notation. Letters p, q, pi, qi, . . .

denote states in Q. We use q0
a−→ q1 for (q0, a, q1) ∈ δpush , q0

a��� q1 for
(q0, a, q1) ∈ δshift , q0

q2=⇒ q1 for (q0, q2, q1) ∈ δpop , and q0
w� q1, if the automaton

can read w ∈ Σ∗ going from q0 to q1. Let Γ = Σ × Q and Γ ′ = Γ ∪ {⊥} be the
stack alphabet ; we denote symbols in Γ ′ as [a, q] or ⊥. We set smb([a, q]) = a,
smb(⊥) = #, and st([a, q]) = q. For a stack content γ = γn . . . γ1⊥, with γi ∈ Γ ,
n ≥ 0, we set smb(γ) = smb(γn) if n ≥ 1, smb(γ) = # if n = 0.

A configuration of an OPA is a triple c = 〈w, q, γ〉, where w ∈ Σ∗#, q ∈ Q,
and γ ∈ Γ ∗⊥. A computation or run is a finite sequence c0 � c1 � . . . � cn of
moves or transitions ci � ci+1. There are three kinds of moves, depending on
the PR between the symbol on top of the stack and the next input symbol:

push move: if smb(γ)� a then 〈ax, p, γ〉 � 〈x, q, [a, p]γ〉, with (p, a, q) ∈ δpush ;

shift move: if a
.= b then 〈bx, q, [a, p]γ〉 � 〈x, r, [b, p]γ〉, with (q, b, r) ∈ δshift ;

pop move: if a � b then 〈bx, q, [a, p]γ〉 � 〈bx, r, γ〉, with (q, p, r) ∈ δpop .
Shift and pop moves are not performed when the stack contains only ⊥. Push

moves put a new element on top of the stack consisting of the input symbol
together with the current state of the OPA. Shift moves update the top element
of the stack by changing its input symbol only. Pop moves remove the element
on top of the stack, and update the state of the OPA according to δpop on the
basis of the current state of the OPA and the state of the removed stack symbol.
They do not consume the input symbol, which is used only to establish the �

relation, remaining available for the next move. The OPA accepts the language
L(A) = {x ∈ Σ∗ | 〈x#, qI , ⊥〉 �∗ 〈#, qF , ⊥〉, qI ∈ I, qF ∈ F} .

We now introduce the concept of chain, which makes the connection between
OP relations and context-free structure explicit, through brackets.

Definition 2. A simple chain c0 [c1c2 . . . c�]c�+1 is a string c0c1c2 . . . c�c�+1, such
that: c0, c�+1 ∈ Σ ∪ {#}, ci ∈ Σ for every i = 1, 2, . . .
 (
 ≥ 1), and c0 � c1

.=
c2 . . . c�−1

.= c��c�+1. A composed chain is a string c0s0c1s1c2 . . . c�s�c�+1, where
c0 [c1c2 . . . c�]c�+1 is a simple chain, and si ∈ Σ∗ is the empty string or is such
that ci [si]ci+1 is a chain (simple or composed), for every i = 0, 1, . . . ,
 (
 ≥ 1).
Such a composed chain will be written as c0 [s0c1s1c2 . . . c�s�]c�+1 . c0 (resp. c�+1)
is called its left (resp. right) context; all symbols between them form its body.

SMT-Based Symbolic Model-Checking for Operator Precedence Languages 391

Fig. 1. OPM Mcall (left), a string with chains shown by brackets (bottom), and its
parsing steps using the OP algorithm (right).

A finite word w over Σ is compatible with an OPM M iff for each pair of
letters c, d, consecutive in w, M(c, d) is defined and, for each substring x of #w#
that is a chain of the form a[y]b, M(a, b) is defined.

Chains can be identified through the traditional operator precedence parsing
algorithm. We apply it to the sample word wex = call han call exc call ret ret,
which is compatible with Mcall. First, write all precedence relations between con-
secutive characters, according to Mcall. Then, recognize all innermost patterns
of the form a � c

.= . . .
.= c � b as simple chains, and remove their bodies. Then,

write the precedence relations between the left and right contexts of the removed
body, a and b, and iterate this process until only ## remains. This procedure is
applied to wex and illustrated in Fig. 1 (right). The chain body removed in each
step is underlined. In step 1 we recognize the simple chain han[call]exc, which
can be removed. In the next steps we recognize as chains first call[hanexc]call,
then call[call ret]ret, and last #[call ret]#. Figure 1 (bottom) reports the chain
structure of wex .

Let A be an OPA. We call a support for the simple chain c0 [c1c2 . . . c�]c�+1

any path in A of the form q0
c1−→ q1 ��� . . . ��� q�−1

c���� q�
q0=⇒ q�+1. The

label of the last (and only) pop is exactly q0, i.e. the first state of the path; this
pop is executed because of relation c� � c�+1. We call a support for the composed
chain c0 [s0c1s1c2 . . . c�s�]c�+1 any path in A of the form q0

s0� q′
0

c1−→ q1
s1� q′

1

c2���
. . .

c���� q�
s�� q′

�

q′
0=⇒ q�+1 where, for every i = 0, 1, . . . ,
: if si �= ε, then qi

si� q′
i

is a support for the chain ci [si]ci+1 , else q′
i = qi.

Chains fully determine the parsing structure of any OPA over (Σ,M). If
the OPA performs the computation 〈sb, qi, [a, qj]γ〉 �∗ 〈b, qk, γ〉, then a[s]b is
necessarily a chain over (Σ,M), and there exists a support like the one above
with s = s0c1 . . . c�s� and q�+1 = qk. This corresponds to the parsing of the
string s0c1 . . . c�s� within the contexts a,b, which contains all information needed
to build the subtree whose frontier is that string.

In [15] it is proved that Visibly Pushdown Languages (VPL) [5] are strictly
included in OPL. In VPL the input alphabet is partitioned into three disjoint
sets, namely of call (Σc), return (Σr), and internal (Σi) symbols, where calls
and returns respectively play the role of open and closed parentheses. Intuitively,
the string structure determined by these alphabets can be represented through
an OPM as follows: a � b, for any a ∈ Σc, b ∈ Σc ∪ Σi; a

.= b, for any a ∈ Σc,

392 M. Chiari et al.

b ∈ Σr; a � b, for all the other cases. On the other hand, the OPM that we
use in this paper cannot be expressed in VPL, because the typical behavior of
exceptions cannot be modeled with the limited one-to-one structure of calls and
returns.

To sum up, given an OP alphabet, the OPM M assigns a unique structure to
any compatible string in Σ∗; unlike VPL, such a structure is not visible in the
string, and must be built by means of a non-trivial parsing algorithm. An OPA
defined on the OP alphabet selects an appropriate subset within the “universe”
of strings compatible with M .

2.2 Precedence Oriented Temporal Logic

POTL is a propositional linear-time temporal logic featuring context-free modal-
ities based on OPL. Here we are only interested in its future fragment, POTLf
(the letter “f” stands for “future”), with the addition of weak operators, which
are needed for our tableau. In this paper, we focus on the finite words semantics
for POTLf.

We fix a finite set of atomic propositions AP . POTLf semantics are based on
OP words, which are tuples (U,<,MAP , P), where U = {0, . . . , n}, n ∈ N, is a
finite set of word positions, < a linear order on them, MAP an OPM on P(AP),
and P : U → P(U) a labeling function, with 0, n ∈ P (#). From MAP follows
the chain relation χ ⊆ U2, such that χ(i, j) holds iff i and j are resp. the left
and right contexts of a chain. We only define the OPM on propositions in bold,
called structural, and assume that only one of them holds in each position. If
l1 ∼ l2 for any PR ∼ and i ∈ P (l1) and j ∈ P (l2), we write i ∼ j.

Fig. 2. An example OP word, with the χ relation depicted by arrows, and PRs. First, a
procedure is called (pos. 1), which installs an exception handler in pos. 2. Then, another
function throws an exception, which is caught by the handler. Another function is called
and returns and, finally, the initial one also returns.

POTLf offers next and until operators based on two different kinds of paths,
which we define below, after fixing an OP word w.

Definition 3. The downward summary path (DSP) between positions i and j,
denoted πd

χ(w, i, j), is a set of positions i = i1 < i2 < · · · < in = j such that, for
each 1 ≤ p < n,

ip+1 =

{
k if k = max{h | h ≤ j ∧ χ(ip, h) ∧ (ip � h ∨ ip

.= h)} exists;
ip + 1 otherwise, if ip � (ip + 1) or ip

.= (ip + 1).

SMT-Based Symbolic Model-Checking for Operator Precedence Languages 393

We write πd
χ(w, i, j) = ∅ if no such path exists. The definition for πu

χ(w, i, j) is
obtained by substituting � for �.

DSPs can either go downward in the nesting structure of the χ relation by follow-
ing the linear order, or skip whole chain bodies by following the χ relation. What
this means depends on the OPM: with Mcall, until operators on DSPs express
properties local to a function invocation, including children calls. Their upward
counterparts, instead, go from inner functions towards parent invocations. For
instance, in Fig. 2 we have πd

χ(w, 1, 6) = {1, 5, 6}, and πu
χ(w, 2, 7) = {2, 4, 5, 6, 7}.

Definition 4. The downward hierarchical path between positions i and j,
denoted πd

H(w, i, j), is a sequence of positions i = i1 < i2 < · · · < in = j
such that there exists h > j such that for each 1 ≤ p ≤ n we have χ(ip, h) and
ip � h, and for each 1 ≤ q < n there is no position k such that iq < k < iq+1

and χ(k, h).
The upward hierarchical path πu

H(w, i, j) is defined similarly, except h < j
and for all 1 ≤ p ≤ n we have χ(h, ip) and h � ip.

We write πd
H(w, i, j) = ∅ or πu

H(w, i, j) = ∅ if no such path exists.

Hierarchical paths range between multiple positions in the χ relation with the
same one. With Mcall, this means functions terminated by the same exception.
For instance, in Fig. 2 we have πd

H(w, 3, 4) = {3, 4}.
Let a ∈ AP , and t ∈ {d, u}; the syntax of POTLf is the following:

ϕ := a | ¬ϕ | ϕ ∨ ϕ | �t ϕ | �̃t
ϕ | χt

F ϕ | χ̃t
F ϕ | ϕ U t

χ ϕ | ϕ Rt
χ ϕ

| �t
H ϕ | �̃t

H ϕ | ϕ U t
H ϕ | ϕ Rt

H ϕ

The truth of POTLf formulas is defined w.r.t. a single word position. Let w be a
finite OP word, and a ∈ AP ; we set ∼d= � and ∼u= �. Then, for any position
i ∈ U of w and t ∈ {d, u}:

1. (w, i) |= a iff i ∈ P (a);
2. (w, i) |= ¬ϕ iff (w, i) �|= ϕ;
3. (w, i) |= ϕ1 ∨ ϕ2 iff (w, i) |= ϕ1 or (w, i) |= ϕ2;
4. (w, i) |= �t ϕ iff i < |w| − 1, (w, i + 1) |= ϕ and i ∼t (i + 1) or i

.= (i + 1);
5. (w, i) |= �̃t

ϕ iff i = |w| − 1 and (i ∼t (i + 1) or i
.= (i + 1)) implies

(w, i + 1) |= ϕ;
6. (w, i) |= χt

F ϕ iff ∃j > i such that χ(i, j), i ∼t j or i
.= j, and (w, j) |= ϕ;

7. (w, i) |= χ̃t
F ϕ iff ∀j > i such that χ(i, j) and (i ∼t j or i

.= j), we have
(w, j) |= ϕ;

8. (w, i) |= ϕ1 U t
χ ϕ2 iff ∃j ≥ i such that πt

χ(w, i, j) �= ∅, (w, j) |= ϕ2 and
∀j′ < j in πt

χ(w, i, j) we have (w, j) |= ϕ1;
9. (w, i) |= ϕ1 Rt

χ ϕ2 iff ∀j ≥ i such that πt
χ(w, i, j) �= ∅ we have either

(w, j′) |= ϕ2 for all j′ ∈ πt
χ(w, i, j), or ∃k ∈ πt

χ(w, i, j) such that (w, k) |= ϕ1

and ∀j′ ≤ k in πt
χ(w, i, j) we have (w, j) |= ϕ2;

10. (w, i) |= �u
H ϕ iff there exist a position h < i s.t. χ(h, i) and h � i and a

position j = min{k | i < k ∧ χ(h, k) ∧ h � k} and (w, j) |= ϕ;

394 M. Chiari et al.

11. (w, i) |= �̃u
H ϕ iff the existence of a position h < i s.t. χ(h, i) and h � i and

a position j = min{k | i < k ∧ χ(h, k) ∧ h � k} implies (w, j) |= ϕ;
12. (w, i) |= �d

H ϕ iff there exist a position h > i s.t. χ(i, h) and i � h and a
position j = min{k | i < k ∧ χ(k, h) ∧ k � h} and (w, j) |= ϕ;

13. (w, i) |= �̃d
H ϕ iff the existence of a position h > i s.t. χ(i, h) and i � h and

a position j = min{k | i < k ∧ χ(k, h) ∧ k � h} implies (w, j) |= ϕ;
14. (w, i) |= ϕ1 U t

H ϕ2 iff ∃j ≥ i such that πt
H(w, i, j) �= ∅, (w, j) |= ϕ2 and

∀j′ < j in πt
H(w, i, j) we have (w, j) |= ϕ1;

15. (w, i) |= ϕ1 Rt
H ϕ2 iff ∀j ≥ i such that πt

H(w, i, j) �= ∅ we have either
(w, j′) |= ϕ2 for all j′ ∈ πt

χ(w, i, j), or ∃k ∈ πt
H(w, i, j) such that (w, k) |= ϕ1

and ∀j′ ≤ k in πt
χ(w, i, j) we have (w, j) |= ϕ2.

We additionally employ ∧ and → with the usual semantics.
For instance, formula � Ud

χ p evaluated in a function call means that p holds
somewhere between the call and its matched return (or exception); formula χu

F p,
evaluated in a call, means that p will hold when it returns (this can be used to
check post-conditions or, if p = exc, to assert that the function is terminated
by an exception). Formula � Ud

H p, when evaluated in a call terminated by an
exception, means that p holds in one of the calls already terminated by the same
exception. For a more in-depth presentation of POTL, we refer the reader to [13].

3 A Tree-Shaped Tableau for POTLf

In this section, we describe our tableau system for POTLf, that will form the
core of our bounded model checking procedure. Let Σ be a set of structural
propositions, (Σ,M) an OP alphabet, AP a set of atomic propositions, and ϕ
a formula over Σ ∪ AP . Given Γ ⊆ Cl(ϕ), if Γ ∩ Σ = {a}, then we define
struct(Γ) = a. Moreover, for Γ, Γ ′ ⊆ Cl(ϕ) and ∼ ∈ {�,

.=, �}, we write Γ ∼ Γ ′

meaning struct(Γ) ∼ struct(Γ ′).
A tableau for ϕ is a tree built on top of a set of nodes N . Each node u ∈ N has

four labels: Γ (u) ⊆ Cl(φ), smb(u) ∈ Σ, stack(u) ∈ N ∪ {⊥}, ctx(u) ∈ N ∪ {⊥}.
Each node u is a push, shift, or pop node if, respectively, smb(u)�Γ (u), smb(u) .=
Γ (u), or smb(u) � Γ (u).

The tableau is built from ϕ starting from the root u0 which is labelled as
Γ (u0) = {ϕ}, smb(u0) = #, stack(u0) = ⊥, ctx(u0) = ⊥. The tree is built by
applying a set of rules to each leaf. Each rule may add new children nodes to the
given leaf, while others may accept or reject the leaf. The construction continues
until every leaf has been either accepted or rejected. The tableau rules can be
divided into expansion, termination, step, and guess rules.

To each leaf of the tree, at first expansion rules are applied, which are sum-
marised in Table 1. Each rule works as follows. If the formula ψ in the leftmost
column belongs to Γ (u), then for each i ∈ {1, 2, 3} for which Γi is given in
Table 1, a child ui is added to u, whose labels are identical to u excepting that
Γ (ui) = (Γ (u) \ {ψ}) ∪ Γi. If multiple rules can be applied, the order in which
they are applied does not matter.

SMT-Based Symbolic Model-Checking for Operator Precedence Languages 395

Table 1. Expansion rules, where t ∈ {u, d}.

ψ ∈ Γ (u) Γ1 Γ2 Γ3

α ∧ β {α, β}
α ∨ β {α} {β}

α Uu
H β {α, �u

H(α Uu
H β)} {β} (only if condition 1 holds)

α Ud
H β {α, �d

H(α Ud
H β)} {β} (only if condition 2 holds)

α Rt
χ β {α, β} {β, �̃t

(α Rt
χ β), χ̃t

F (α Rt
χ β)}

α Ru
H β {α, β} {β, �̃u

H(α Ru
H β)}

α Ut
χ β {β} {α, �t(α Ut

χ β)} {α, χt
F (α Ut

χ β)}
α Rd

H β ∅ {α, β} {β, �̃u
H(α Ru

H β)}
︸ ︷︷ ︸

(only if condition 2 holds)

condition 1: the closest step ancestor of u is a pop node up

such that Γ (ctx(up)) � Γ (up)

condition 2: the closest step ancestor of u is a push or shift node

When no expansion rules are applicable to a leaf u, and Γ (u)∩(Σ∪{#}) = ∅,
then one child ua, for each a ∈ Σ ∪{#}, is added to u whose labels are the same
as u except that Γ (ua) = Γ (u) ∪ {a}.

When no expansion rules are applicable to a leaf u and Γ (u) ∪ Σ �= ∅, u is
called a step node. In this case, termination rules are checked to decide whether
the leaf can be either rejected or accepted. Rejecting rules are described in
Table 2. Most rules depend on the type of the leaf node u where they are applied
(i.e., it being a push, pop, or shift node), and the type of the closest step ancestor
us of u. The rule in a given row of the table fires when u and us are of the stated
type (if any) and where the condition in the last column is met. In this case, u
is rejected. We need to set up the following terminology in order to understand
some of those rules.

Definition 5 (Fulfillment of a Chain Next Operator). A χd
F α operator

is said to be fulfilled in a node u iff χd
F α ∈ Γ (u), and there exists a pop node

descendant up such that ctx(up) = u and:

1. Γ (u) � Γ (up) or Γ (u) .= Γ (up), and
2. α ∈ Γ (us), where us is the closest push or shift node descending from up.

Replace χd
F with χu

F and � with � for the upward case.

Definition 6 (Pending Node). A node u is pending iff either:

1. u is a push node and no pop node up exists such that stack(up) = u, or
2. u is a shift node and no pop node up exists such that stack(up) = stack(u).

396 M. Chiari et al.

Definition 7 (Equivalent Nodes). Two nodes u and u′ belonging to the same
branch are said to be equivalent if the following hold:

1. Γ (u) = Γ (u′);
2. smb(u) = smb(u′);

3. Γ (stack(u)) = Γ (stack(u′)); and
4. Γ (ctx(u)) = Γ (ctx(u′)).

In contrast to rejecting rules, there is only one simple accepting rule: u is
accepted when Γ (u) = {#} and stack(u) = ⊥.

If no termination rules fire on a step node u, the construction can proceed by a
temporal step. To understand how it works, we need the following notation: given
a node u and a unary temporal operator �, we denote the set of all the formulas
that appear as arguments of � inside Γ (u) as G�(u) = {α | �α ∈ Γ (u)}, and for
a set of operators {�1, . . . ,�n} we define G�1,...,�n

(u) = G�1(u) ∪ . . . ∪ G�n
(u).

The temporal step consists in two parts: the application of one step rule, and
of one guess rule. The step rules, summarised in Table 3, are chosen depending
on the type of the leaf at hand, and of its closest step ancestor. Each rule adds
exactly one child u′ to the leaf u, whose label is described in the table. The child
u′ is then fed to one of the guess rules described in Table 4. The applicability
of the guess rules depend on the type of u and some other conditions, in a
way such that in each case at most one guess rule is applicable to u′. If any
is applicable, the selected rule defines a set of formulas G as described in the
table, and for each G ⊆ G adds a child u′′

G such that Γ (u′′
G) = Γ (u′) ∪ G,

smb(u′′
G) = smb(u′), stack(u′′

G) = stack(u′), and ctx(u′′
G) = ctx(u′). After the

temporal step is completed, the construction continues with the expansion rules
again, and everything repeats.

We can now sketch a soundness and termination argument for the tableau.

Theorem 1 (Soundness). If the tableau for φ has an accepted branch, then φ
is satisfiable.

Proof (Sketch). Cl(φ) is finite, and so is the number of possible node labels. Thus,
unless they are rejected by a rule other than 13, all branches of the tableau must
eventually reach a node that is equivalent (cf. Definition 7) to a previous one.
Then, they are rejected by Rule 13. Thus, once fully expanded, the tableau for a
formula φ is also finite. Then, soundness of the tableau can be proved by building
a word out of any accepted tableau branch, with a mapping from push and shift
step nodes of the branch to letters in the word. Chain supports in the word
correspond to sequences of step nodes. See [9] for the full proof.

4 SMT Encoding of the Tableau

Our technique for symbolic model checking of POTLf properties does not directly
construct the tableau described in Sect. 3, but rather, it encodes it into SMT
formulas that can be efficiently handled by off-the-shelf solvers. Iterating over
a growing index k > 1, at each step our procedure produces an SMT formula
that encodes the branches of the tableau of length up to k step nodes, such that

SMT-Based Symbolic Model-Checking for Operator Precedence Languages 397

Table 2. Rejecting termination rules.

n◦ type of u type of u1
s condition

1. {p, ¬p} ⊆ Γ (u)

2. |Γ (u) ∩ Σ| > 1

3. {ψ,#} ⊆ Γ (u) and ψ is strong2

4. push/shift Γ (us) � Γ (u) and some �d α ∈ Γ (us)1

push/shift Γ (us) � Γ (u) and some �u α ∈ Γ (us)1

5. push/shift Γ (us) � Γ (u) or Γ (us)
.
= Γ (u),

and some �̃d
α ∈ Γ (us), but α �∈ Γ (u)

push/shift Γ (us) � Γ (u) or Γ (us)
.
= Γ (u),

and some �̃u
α ∈ Γ (us), but α �∈ Γ (u)

6. pop χt
F α is not fulfilled in u′,

for some u′ ∈ G such that χt
F α ∈ Γ (u′)3,

for t ∈ {d, u}
7. push pop χ̃d

F α ∈ ctx(us) and α �∈ Γ (u)

shift pop χ̃t
F α ∈ ctx(us) and α �∈ Γ (u), for

t ∈ {d, u}
pop pop χ̃u

F α ∈ ctx(us) and α �∈ Γ (u)

8. pop �u
H α ∈ Γ (stack(u)) and Γ (ctx(u)) �� Γ (u)

push pop �u
H α ∈ Γ (stack(us)) and α �∈ Γ (u)

push push/shift �u
H α ∈ Γ (u)

shift �u
H α ∈ Γ (u)

9. push pop �̃u
H α ∈ Γ (stack(us)), stack(us) is a push

node, the closest step ancestor of
stack(us) is a pop node, and α �∈ Γ (u)

10. pop �d
H α ∈ Γ (ctx(u)) and

smb(stack(u))
.
= Γ (u)

pop push/shift �d
H α ∈ Γ (ctx(u))

pop pop �d
H α ∈ Γ (ctx(u)) and α �∈ Γ (ctx(us))1

pop/shift pop/shift �d
H α ∈ Γ (us)1

11. pop pop �̃d
H α ∈ Γ (ctx(u)),

smb(stack(u)) � Γ (u), and α �∈ Γ (ctx(us))

12. pop/shift push/shift α Ud
H β ∈ Γ (us)

push/shift pop αRd
H β appears in one of the nodes between

ctx(us)
and the closest step ancestor of us

(exclusive)
pop pop α, �̃d

H(α Rd
H β) �∈ Γ (ctx(us)), α, β �∈

Γ (ctx(us)), and
αRd

H β appears in one of the nodes between
ctx(us)
and the closest step ancestor of us

(exclusive)
13. push/shift there is a pending ancestor ui of u

equivalent to u4

1 us is the closest step ancestor of u
2 ψ is strong if it is a positive literal or a strong tomorrow
3 G = {stack(u)} ∪ {u′ | stack(u′) = stack(u) and u′ is a shift node}
4 See Definitions 6 and 7.

398 M. Chiari et al.

Table 3. Step rules

u u1
s Γ (u′) smb(u′) stack(u′) ctx(u′)

push push/shift G�d,�u(u) struct(Γ (u)) u us or ⊥2

push pop G�d,�u(u) struct(Γ (u)) u ctx(us) or ⊥2

shift G�d,�u(u) struct(Γ (u)) stack(u) ctx(u)

pop Γ (u) smb(stack(u)) stack(stack(u)) ctx(stack(u))
1 us is the closest step ancestor of u
2 ctx(u′) = ⊥ if stack(u) = ⊥

Table 4. Guess rules

u only if G
push/shift G�̃d(us) ∪ G�̃u(us) ∪ G�d

H
(us) ∪ G�̃d

H

(us)

pop uc �= ⊥1 ⋃

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Gχd
F
(uc) ∪ Gχu

F
(uc)

Gχ̃d
F
(uc) ∪ Gχ̃u

F
(uc)

G�d
H
(uc) ∪ G�̃d

H

(uc)

G�̃u

H
(stack(us)) ∪ G�u

H
(stack(us))

1 us is the closest step ancestor of u and uc = ctx(us)

the formula is satisfiable if and only if an accepted branch of the tableau exists.
If not, we increment k and proceed. In this respect, the procedure reminds of
classic bounded model checking [7,14]. Here we summarize the working principles
of the tableau encoding. The full details are available in [9].

The encoding produces formulas whose models, when they exist, represent
single branches of the tableau. At a given step k, the formulas are interpreted
over a restricted form of quantified1 EUF, over two finite, enumerated, ordered2

sorts: a sort Nk, of exactly k + 1 elements used to identify the nodes in the
branch, and a sort called S that contains a finite set of symbols used in the
encoding to represent the letters of the formula’s alphabet. We suppose to have
a finite number of constants for the values in S. Among those, we have p ∈ S
for each p ∈ Σ ∪ AP . Others will be introduced when needed. We also exploit
a fixed arbitrary ordering between elements of Nk, and we abuse notation by
denoting the constants for sort Nk as 0, 1, . . . , k, and writing x+1 and x − 1 for
an element x ∈ Nk to denote its predecessor and successor in this order.

For each proposition p ∈ Σ∪AP , the encoding uses a binary predicate Γ (p, x)
whose first argument ranges among S and the second among Nk. The intuitive
meaning of Γ (p, x) is that p ∈ Γ (u) if u is the x-th step node of the current branch
of the tableau. The encoding also uses some function symbols. A unary predicate
Σ̄ ranging over S tells which symbols from S are structural symbols. A function

1 Thanks to finite sorts, quantifiers are in fact expanded to disjunctions/conjunctions.
2 The sort returned by the Z3_mk_finite_domain_sort() function of the Z3 C API.

SMT-Based Symbolic Model-Checking for Operator Precedence Languages 399

smb(x) : Nk → S is used to represent the smb(ux) symbol. A function symbol
struct(x) : Nk → S represents Γ (ux) ∩ Σ. Two functions stack(x) : Nk → Nk

and ctx(x) : Nk → Nk represent the corresponding functions in the tableau.
When stack(u) = ⊥, we denote it as stack(x) = 0, and similarly for ctx(x).

For any strong or weak next or chain next temporal formula in the closure of
φ we also introduce a corresponding propositional symbol in S. Specifically, for
each formula �t ψ, χt

F ψ, �̃t
ψ and χ̃t

F ψ in the closure, S contains the follow-
ing propositional symbols, which we call grounded : (�t ψ)G, (χt

F ψ)G, (�̃t
ψ)G,

(χ̃t
F ψ)G, and (�t ψ)G, (χt

F ψ)G, (�̃t
ψ)G, (χ̃t

F ψ)G.
The core building block of the encoding is the following normal form for

POTLf formulas.

Definition 8 (Next Normal Form). Let φ be a POTLf formula. The next
normal form of φ, denoted xnf(φ) is defined as follows:

xnf(p) = p for p ∈ Σ xnf(¬p) = ¬p for p ∈ Σ

xnf(�̃t
ψ) = �̃t

ψ xnf(χ̃t
F ψ) = χ̃t

F ψ

xnf(α ◦ β) = xnf(α) ◦ xnf(β) for ◦ ∈ {∨,∧}
xnf(α U t

χ β) = xnf(β) ∨ (
xnf(α) ∧ (�t(α U t

χ β) ∨ χt
F (α U t

χ β))
)

xnf(α Rt
χ β) = xnf(β) ∧ (

xnf(α) ∨ (�̃t(α Rt
χ β) ∧ χ̃t

F (α Rt
χ β))

)
Intuitively, xnf(φ) encodes the expansion rules of the tableau (Table 1). Given
φ and a fresh variable x of sort Nk, we denote as xnf(φ)G the formula obtained
from xnf(φ) by replacing any proposition p with Γ (p, x). Note that xnf(φ)G
does not contain temporal operators: it is a first-order formula with a single free
variable x.

We can now show the encoding itself. We start by constraining the meaning
of the Σ̄ predicate and the struct and smb functions. We define a formula φaxioms

that states that the Σ̄ predicate identifies structural symbols and the struct(x)
and smb(x) functions only return structural symbols, and we write a formula
φOPM that explicitly models the �, .= and � relations between symbols in S as
binary predicates in the SMT encoding. The predicates range over the whole S
but only the relationship between symbols in Σ will matter. With these in place,
we can identify the type of each step node depending on the PR between smb(x)
and struct(x). We encode this by the following three predicates:

push(x) ≡ smb(x) � struct(x) shift(x) ≡ smb(x) .= struct(x)
pop(x) ≡ smb(x) � struct(x)

A formula φinit encodes how the root node of the tableau looks like. In par-
ticular, it includes the conjunct xnf(φ)G(1), to say that its label contains φ.

We can now encode the step rules of Table 3. For space constraints we only
show here the encoding of the step rules concerning push nodes (first two lines
of Table 3). The encoding of such rules is the following:

400 M. Chiari et al.

steppush(x) ≡
∧

�t α∈Cl(φ)

(

Γ ((�t α)G, x) → xnf(α)G(x + 1)
)

∧ smb(x + 1) = struct(x) ∧ stack(x + 1) = x

∧ (stack(x) = 0 → ctx(x + 1) = 0)

∧ ((stack(x) �= 0 ∧ (push(x − 1) ∨ shift(x − 1))) → ctx(x + 1) = x − 1)

∧ ((stack(x) �= 0 ∧ pop(x − 1)) → ctx(x + 1) = ctx(x − 1))

We can similarly obtain two formulas stepshift(x) and steppop(x). It is worth
to note the first line of the above definition, where xnf(α) is imposed to hold on
x + 1 if a next operator on α is present on x.

Next, we can encode the rejecting rules of Table 2. Since there are so many
of them, we only show some examples (see [9] for the full list). What we actually
encode is the negation of the rejecting rules, that describes what a node has to
satisfy to not be rejected. We start to note that Rule 1 does not need to be
encoded, since it just states that a proposition cannot hold together with its
negation, which is trivially implied by the logic. Then, the simplest ones are
Rules 2 and 3 of Table 2, and can be encoded as follows:

r2(x) ≡ ∀p ∀q(Σ(p) ∧ Σ(q) ∧ Γ (p, x) ∧ Γ (q, x) → p = q)

r3(x) ≡ Γ (#, x) → (∧
�t α∈Cl(φ)

(¬Γ ((�t α)G, x)) ∧
∧

p∈AP

(¬Γ (p, x))
)

We similarly have a formula ri(x) encoding the negation of each block of
lines from Rule 4 to 13. With these in place, we define a formula �φ�k called the
k-unraveling of φ, that encodes all the non-rejected branches of the tableau of
up to k step nodes.

φaxioms ∧ φOPM ∧ φinit ∧ ∀x

(
x > 1 →

∧13

i=2
ri(x)

)
∧

∀x

⎡
⎢⎣1 ≤ x < k →

⎛
⎜⎝

(push(x) → steppush(x))

∧ (shift(x) → stepshift(x))
∧ (pop(x) → steppop(x))

⎞
⎟⎠

⎤
⎥⎦

The only acceptance rule of the tableau is encoded by a formula e(x) defined as
e(x) ≡ Γ (#, x) ∧ stack(x) = 0.

Finally, we have the following.

Theorem 2. If �φ�k ∧ e(k) is satisfiable for some k > 0, then φ is satisfiable.

We exploit this encoding of POTLf satisfiability for model checking a formula
φ through an algorithm that iterates on k starting from k = 1. First, we check
satisfiability of �¬φ�k ∧ �M�k, where �M�k encodes a length-k prefix of a trace
of the program M to be checked. We automatically translate programs to OPA

SMT-Based Symbolic Model-Checking for Operator Precedence Languages 401

whose transitions are labeled with program statements in the same way as [3,10],
so that the automaton’s stack simulates the program stack. Such extended OPA
are then directly encoded into SMT in a straightforward manner, using the
theories of fixed-size bit vectors and arrays to represent variables (cf. [9]). If this
satisfiability check fails, it means no trace of M of length ≥ k violates φ, proving
that M satisfies φ. Otherwise, we check whether e(k) is satisfied when conjoined
with the previous assertions. If it is, then we have found a counterexample trace
that violates φ. Otherwise, we increase k by 1 and repeat. Since the tableau is
finite, we eventually either find a counterexample, or hit a value of k such that
Rule 13 rejects all branches, and the initial satisfiability check fails.

5 Experimental Evaluation

We implemented the encoding described in Sect. 4 in a SMT-based model checker
that leverages the Z3 SMT solver [31]. We developed it within POMC [8], an
explicit-state model checker for POTL developed by the authors of [10].

We compare our SMT-based approach with the explicit-state algorithm pow-
ering POMC, which performs the following steps on-the-fly: (i) it builds an OPA
Aϕ encoding the negation of the formula ϕ to be checked; (ii) it constructs the
synchronized product between Aϕ and the model of the system; (iii) it checks
the nonemptiness of the product automaton, witnessing a counterexample to the
property in the model, in a depth-first fashion.

We ran our experiments on server with a 2.0GHz AMD CPU and RAM
capped at 30 GiB.

5.1 Description of the Benchmarks

We evaluate the two tools on a set of benchmarks adapted from [10], divided
in three categories (Quicksort, Jensen, Stack). We modeled all benchmarks in
MiniProc, the modeling language of the POMC tool. The checked formulas are
reported in Table 5. Below, we give a brief description of each category.

Quicksort. We modeled a Java implementation of the Quicksort sorting algo-
rithm. The algorithm is implemented as a recursive function qs, called by the
main function in a try-catch block, and is applied to an array of integers that
may contain null values, which cause a NullPointerException. We vary the
length of the arrays from 1 to 5 elements and the width of the elements from 2
to 16 bits. Formulas 1 and 2 both check that the main function returns without
exceptions, while 3 checks the same for the qs (QuickSort) function. Formulas 4
(resp., Formula 5) states that the array is sorted when the main function (resp.,
the qs function) returns without exceptions. Finally, Formula 6 states that either
qs throws an exception or the array is sorted (and qs returns normally).

402 M. Chiari et al.

Table 5. Benchmark formulas. The last column states whether they are true (T) or
false (F) in each model. � is the LTL always, which we implemented as in [17].

QuickSort 1 χu
F (ret ∧ main) T

2 call ∧ main → ¬(�u exc ∨ χu
F exc) T

3 �(call ∧ qs → ¬(�u exc ∨ χu
F exc)) F

4 χu
F sorted F

5 �(call ∧ qs → χu
F sorted) F

6 χd
F (han ∧ �d(call ∧ qs ∧ χu

F (exc ∨ sorted))) T

Jensen 8 �(call ∧ ¬Pcp → ¬(� Ud
χ (call ∧ read))) T

9 �(call ∧ ¬Pdb → ¬(� Ud
χ (call ∧ write))) T

10 �(call ∧ ((canpay ∧ ¬Pcp) ∨ (debit ∧ ¬Pdb)) → �u exc ∨ χu
F exc) T

11 ¬(� Ud
χ (balance < 0)) T

Stack 12 �(modified → ¬(�u exc ∨ χu
F exc)) T/F

13 �(call ∧ (push ∨ pop) → ¬(� Ud
H modified)) T/F

14 �(call ∧ (push ∨ pop) ∧ χd
F ret → T/T

¬(� Ud
χ (han ∧ Stack ∧ (¬han Ud

χ (T ∧ �u exc)))))

Bank Account. This category consists of a simple banking application taken
from [24] which allows users to withdraw money or check their balance. The
variable representing the balance is protected by a Java AccessController, which
prevents unauthorized users from accessing it by raising exceptions. We modeled
the balance with an integer variable. Formula 8 (resp., Formula 9) checks that,
whenever a function is called without having permission to check the balance
(resp., to make a payment), then there is no read-access (resp., write access) to
the variable holding the balance. The permission of checking the balance and
to make a payment are modeled by the variables Pcp and Pdb, respectively.
Formula 10 checks that if the functions that check the balance (canpay) and
make a payment (debit) are called without permission, an exception is thrown.
Formula 11 checks that the balance never becomes negative, because payments
are only made if the account has enough money.

Stack. We model two C++ implementations of a generic stack data structure
taken from [33], where constructors of contained elements may throw exceptions.
Only one of the two implementations is exception safe. The pop method of the
safe implementation does not return the popped element, which must be accessed
through the top method, and it performs other operations on a new copy of the
internal data structure, to prevent exceptions from leaving it in an inconsistent
state. In contrast with [10] which uses a manually-crafted abstraction for the
elements in the stack, our model implements the stack with actual arrays of fixed-
width integers. Formulas 12 and 13 check strong exception safety [1], i.e., that
each operation on the data structure is rolled back if any functions related to
the element type T throw an exception, leaving the stack in a consistent state.
Formula 14 checks exception neutrality [1], which means that exceptions thrown
by element functions are always propagated by the stack’s methods.

SMT-Based Symbolic Model-Checking for Operator Precedence Languages 403

5.2 Description of the Plots

We compare the time (measured in seconds) taken by the SMT-based approach
(in the plots referred to as SMT) with the time taken by POMC, dividing the
plots by the three categories of benchmarks (Quicksort, Jensen, and Stack). For
each category, we show a scatter plot (Fig. 3) and a survival plot (Fig. 4).

We first look at the scatter plots in Fig. 3. The x-axis refers to the solving time
for the SMT-based approach while the y-axis to the solving time for POMC, both
measured in seconds. The blue border lines indicate the timeout (set to 3600 s)
for the tools, while the red line denotes the diagonal of the plot.

For all three categories of benchmarks, the scatter plots reveal an exponential
blow up for the solving time of the POMC tool; on the contrary, the SMT-based
approach does not incur in such a blow up. As an example, we take the scatter
plot for the Quicksort category in Fig. 3 (a) and we consider the brown circles
in the middle of the plot, corresponding to the Formula 5 of Table 5 checked on
an array of size 2 containing numbers of increasing bitvector-size. For the case
of numbers of bitvector-size of 3, 4, 5, and 6 bits, the solving time of POMC is
of 8, 40, 199, and 956 s, respectively, while the time required by the SMT-based
approach is of 13, 18, 16 and 16 s, respectively. Moreover, while for bitvector-
size greater than 6 bits POMC reaches always the timeout for Formula 5, the
SMT-based approach solves the benchmarks of all bitvector-size (i.e.,up to 16
bits) in time always less than 23 s.

A similar consideration can be done for the Jensen and the Stack categories.
Take, for example, the blue circles in Fig. 3 (c) corresponding to Formula 14 in
Table 5. For this case, the solving times of the SMT-based approach are con-
sistently better than the ones of POMC. The reason may be that this formula
contains hierarchical operators, which tend to yield to automata that make more
non-deterministic guesses. This, in turn, causes the explicit-state model checker
to perform, in general, many steps of backtracking during its depth-first model
checking algorithm. Conversely, in the SMT-based approach, this part is man-
aged (efficiently) by the DPLL algorithm inside the SMT-solver.

The exponential trend of POMC is reflected also in the survival plot (Fig. 4).
Here, the x-axis represents the time (in seconds) while the y-axis represents
the percentage of solved benchmarks. From the blue and yellow lines in Fig. 4,
which correspond to the categories Stack and Jensen, respectively, it is clear
that the POMC tool gets stuck solving (approximately) the 80% and the 60%
of the benchmarks in the corresponding category. Conversely, the SMT-based
approach solves all benchmarks in these two categories. If we take a look to
the survival plot only for the Quicksort category in Fig. 5 (which reports the
absolute number of solved benchmarks), we observe that the POMC tool gets
stuck solving (approximately) 330 benchmarks, while the SMT-based approach
solves circa 430 benchmarks.

In our benchmarks, we found only one case in which the solving time of
POMC is always better than the one of the SMT-based approach. It corre-
sponds to the green squares on the scatter plots in Fig. 3 (c) for the Stack
category, corresponding to Formula 12. The reason is that this formula requires

404 M. Chiari et al.

Fig. 3. Scatter plots

SMT-Based Symbolic Model-Checking for Operator Precedence Languages 405

Fig. 4. Survival plot

Fig. 5. Survival plot for the Quicksort category.

very few nondeterministic transitions in the explicit-state automaton. This, in
turn, makes the search of the state-space a (almost) deterministic step, and
thus very efficient for the depth-first algorithm of POMC. On the contrary, the
breadth-first algorithm of the SMT-based approach seems to perform worse.

406 M. Chiari et al.

6 Conclusions

We have introduced a tree-shaped tableau for the future fragment of the tem-
poral logic POTL on finite-word semantics, and encoded it in SMT to perform
symbolic model checking of procedural programs. This is the first time both
of these techniques have been used for checking a temporal logic with context-
free modalities. The experimental evaluation shows that our symbolic approach
scales better than the state-of-the-art explicit-state one.

Extending the tableau to past POTL operators and to infinite words seems
a promising future direction, which should be achievable through an approach
similar to related work on the tree-shaped tableau for LTL [18].

Acknowledgments. This work was partially funded by the Vienna Sci-
ence and Technology Fund (WWTF) grant [10.47379/ICT19018] (Prob-
InG), and by the EU Commission in the Horizon Europe research and
innovation programme under grant agreement No. 101107303 (MSCA
Postdoctoral Fellowship CORPORA).

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Abrahams, D.: Exception-safety in generic components. In: Generic Programming.
LNCS, vol. 1766, pp. 69–79. Springer, Berlin (1998). https://doi.org/10.1007/3-
540-39953-4_6

2. Alur, R., Arenas, M., Barceló, P., Etessami, K., Immerman, N., Libkin, L.: First-
order and temporal logics for nested words. LMCS 4(4) (2008). https://doi.org/
10.2168/LMCS-4(4:11)2008

3. Alur, R., Bouajjani, A., Esparza, J.: Model checking procedural programs. In:
Handbook of Model Checking, pp. 541–572. Springer (2018). https://doi.org/10.
1007/978-3-319-10575-8_17

4. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and
returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
467–481. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-
2_35

5. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: STOC 2004. pp. 202–
211. ACM (2004). https://doi.org/10.1145/1007352.1007390

6. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3),
16:1–16:43 (2009). https://doi.org/10.1145/1516512.1516518

7. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Adv. Comput. 58, 117–148 (2003). https://doi.org/10.1016/S0065-
2458(03)58003-2

8. Chiari, M., Bergamaschi, D., Pontiggia, F.: POMC (2024). https://github.com/
michiari/POMC

9. Chiari, M., Geatti, L., Gigante, N., Pradella, M.: SMT-based symbolic model-
checking for operator precedence languages. CoRR abs/ arXiv: 2405.11327 (2024)

https://doi.org/10.1007/3-540-39953-4_6
https://doi.org/10.1007/3-540-39953-4_6
https://doi.org/10.2168/LMCS-4(4:11)2008
https://doi.org/10.2168/LMCS-4(4:11)2008
https://doi.org/10.1007/978-3-319-10575-8_17
https://doi.org/10.1007/978-3-319-10575-8_17
https://doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1145/1516512.1516518
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1016/S0065-2458(03)58003-2
https://github.com/michiari/POMC
https://github.com/michiari/POMC
http://arxiv.org/abs/2405.11327

SMT-Based Symbolic Model-Checking for Operator Precedence Languages 407

10. Chiari, M., Mandrioli, D., Pontiggia, F., Pradella, M.: A model checker for operator
precedence languages. ACM Trans. Program. Lang. Syst. 45(3), 19:1–19:66 (2023).
https://doi.org/10.1145/3608443

11. Chiari, M., Mandrioli, D., Pradella, M.: Operator precedence temporal logic and
model checking. Theor. Comput. Sci. 848, 47–81 (2020). https://doi.org/10.1016/
j.tcs.2020.08.034

12. Chiari, M., Mandrioli, D., Pradella, M.: Model-checking structured context-free
languages. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12760, pp.
387–410. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81688-9_18

13. Chiari, M., Mandrioli, D., Pradella, M.: A first-order complete temporal logic
for structured context-free languages. Log. Methods Comput. Sci. 18:3 (2022).
https://doi.org/10.46298/LMCS-18(3:11)2022

14. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satis-
fiability solving. Formal Methods Syst. Des. 19(1), 7–34 (2001). https://doi.org/
10.1023/A:1011276507260

15. Crespi Reghizzi, S., Mandrioli, D.: Operator precedence and the visibly pushdown
property. J. Comput. Syst. Sci. 78(6), 1837–1867 (2012). https://doi.org/10.1016/
j.jcss.2011.12.006

16. Floyd, R.W.: Syntactic analysis and operator precedence. J. ACM 10(3), 316–333
(1963). https://doi.org/10.1145/321172.321179

17. Geatti, L., Gigante, N., Montanari, A.: A SAT-based encoding of the one-pass and
tree-shaped tableau system for LTL. In: Cerrito, S., Popescu, A. (eds.) TABLEAUX
2019. LNCS (LNAI), vol. 11714, pp. 3–20. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-29026-9_1

18. Geatti, L., Gigante, N., Montanari, A., Reynolds, M.: One-pass and tree-shaped
tableau systems for TPTL and TPTLb+Past. Inf. Comput. 278, 104599 (2021).
https://doi.org/10.1016/j.ic.2020.104599

19. Geatti, L., Gigante, N., Montanari, A., Venturato, G.: SAT meets tableaux for
linear temporal logic satisfiability. J. Autom. Reason. 68(2), 6 (2024). https://doi.
org/10.1007/S10817-023-09691-1

20. Grune, D., Jacobs, C.J.: Parsing techniques: a practical guide. Springer, New York
(2008). https://doi.org/10.1007/978-0-387-68954-8

21. Harrison, M.A.: Introduction to Formal Language Theory. Addison Wesley, Boston
(1978)

22. Henzinger, T.A., Kebis, P., Mazzocchi, N., Saraç, N.E.: Regular methods for oper-
ator precedence languages. In: ICALP 2023. LIPIcs, vol. 261, pp. 129:1–129:20.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023). https://doi.org/10.
4230/LIPICS.ICALP.2023.129

23. Huang, G., Wang, B.: Complete SAT-based model checking for context-free pro-
cesses. Int. J. Found. Comput. Sci. 21(2), 115–134 (2010). https://doi.org/10.1142/
S0129054110007179

24. Jensen, T.P., Le Métayer, D., Thorn, T.: Verification of control flow based security
properties. In: Proc. ’99 IEEE Symp. Secur. Privacy. pp. 89–103. IEEE Computer
Society, Oakland (1999). https://doi.org/10.1109/SECPRI.1999.766902

25. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. Formal Methods Syst. Des. 48(3), 175–205 (2016). https://doi.org/10.
1007/S10703-016-0249-4

26. Lonati, V., Mandrioli, D., Panella, F., Pradella, M.: Operator precedence lan-
guages: Their automata-theoretic and logic characterization. SIAM J. Comput.
44(4), 1026–1088 (2015). https://doi.org/10.1137/140978818

https://doi.org/10.1145/3608443
https://doi.org/10.1016/j.tcs.2020.08.034
https://doi.org/10.1016/j.tcs.2020.08.034
https://doi.org/10.1007/978-3-030-81688-9_18
https://doi.org/10.46298/LMCS-18(3:11)2022
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1016/j.jcss.2011.12.006
https://doi.org/10.1016/j.jcss.2011.12.006
https://doi.org/10.1145/321172.321179
https://doi.org/10.1007/978-3-030-29026-9_1
https://doi.org/10.1007/978-3-030-29026-9_1
https://doi.org/10.1016/j.ic.2020.104599
https://doi.org/10.1007/S10817-023-09691-1
https://doi.org/10.1007/S10817-023-09691-1
https://doi.org/10.1007/978-0-387-68954-8
https://doi.org/10.4230/LIPICS.ICALP.2023.129
https://doi.org/10.4230/LIPICS.ICALP.2023.129
https://doi.org/10.1142/S0129054110007179
https://doi.org/10.1142/S0129054110007179
https://doi.org/10.1109/SECPRI.1999.766902
https://doi.org/10.1007/S10703-016-0249-4
https://doi.org/10.1007/S10703-016-0249-4
https://doi.org/10.1137/140978818

408 M. Chiari et al.

27. Mandrioli, D., Pradella, M.: Generalizing input-driven languages: theoretical and
practical benefits. Comput. Sci. Rev. 27, 61–87 (2018). https://doi.org/10.1016/j.
cosrev.2017.12.001

28. Mandrioli, D., Pradella, M., Crespi Reghizzi, S.: Star-freeness, first-order definabil-
ity and aperiodicity of structured context-free languages. In: Pun, V.K.I., Stolz,
V., Simao, A. (eds.) ICTAC 2020. LNCS, vol. 12545, pp. 161–180. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64276-1_9

29. Mandrioli, D., Pradella, M., Crespi Reghizzi, S.: Aperiodicity, star-freeness, and
first-order logic definability of operator precedence languages. Log. Methods Com-
put. Sci. 19:4 (2023). https://doi.org/10.46298/lmcs-19(4:12)2023

30. Mehlhorn, K.: Pebbling mountain ranges and its application of DCFL-recognition.
In: ICALP 1980. LNCS, vol. 85, pp. 422–435 (1980). https://doi.org/10.1007/3-
540-10003-2_89

31. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

32. Pontiggia, F., Chiari, M., Pradella, M.: Verification of programs with exceptions
through operator precedence automata. In: Calinescu, R., Păsăreanu, C.S. (eds.)
SEFM 2021. LNCS, vol. 13085, pp. 293–311. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-92124-8_17

33. Sutter, H.: Exception-safe generic containers. C++ Report 9 (1997). https://
ptgmedia.pearsoncmg.com/imprint_downloads/informit/aw/meyerscddemo/
DEMO/MAGAZINE/SU_FRAME.HTM

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1016/j.cosrev.2017.12.001
https://doi.org/10.1016/j.cosrev.2017.12.001
https://doi.org/10.1007/978-3-030-64276-1_9
https://doi.org/10.46298/lmcs-19(4:12)2023
https://doi.org/10.1007/3-540-10003-2_89
https://doi.org/10.1007/3-540-10003-2_89
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-92124-8_17
https://doi.org/10.1007/978-3-030-92124-8_17
https://ptgmedia.pearsoncmg.com/imprint_downloads/informit/aw/meyerscddemo/DEMO/MAGAZINE/SU_FRAME.HTM
https://ptgmedia.pearsoncmg.com/imprint_downloads/informit/aw/meyerscddemo/DEMO/MAGAZINE/SU_FRAME.HTM
https://ptgmedia.pearsoncmg.com/imprint_downloads/informit/aw/meyerscddemo/DEMO/MAGAZINE/SU_FRAME.HTM
http://creativecommons.org/licenses/by/4.0/

On Polynomial Expressions with C-Finite
Recurrences in Loops with Nested

Nondeterministic Branches

Chenglin Wang(B) and Fangzhen Lin

The Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong
{cwangci,flin}@cse.ust.hk

Abstract. Loops are inductive constructs, which make them difficult to
analyze and verify in general. One approach is to represent the inductive
behaviors of the program variables in a loop by recurrences and try to
solve them for closed-form solutions. These solutions can then be used to
generate invariants or directly fed into an SMT-based verifier. One prob-
lem with this approach is that if a loop contains nondeterministic choices
or complex operations such as non-linear assignments, then recurrences
for program variables may not exist or may have no closed-form solutions.
In such cases, an alternative is to generate recurrences for expressions,
and there has been recent work along this line. In this paper, we fur-
ther work in this direction and propose a template-based method for
extracting polynomial expressions that satisfy some c-finite recurrences.
While in general there are possibly infinitely many such polynomials for
a given loop, we show that the desired polynomials form a finite union of
vector spaces. We propose an algorithm for computing the bases of the
vector spaces, and identify two cases where the bases can be computed
efficiently. To demonstrate the usefulness of our results, we implemented
a prototype system based on one of the special cases, and integrated it
into an SMT-based verifier. Our experimental results show that the new
verifier can now verify programs with non-linear properties.

Keywords: Program verification · Recurrence analysis · Loop
summary

1 Introduction

Loops in computer programs induce inductive behaviors that are difficult to ana-
lyze. One method is by recurrence analysis through first extracting recurrences
from loops and then solving them for closed-form solutions [11,17,19]. Once the
solutions have been computed, they can be used in many downstream tasks such
as invariant generation and program verification. So far most recurrence-based
methods focus on individual program variables and their recurrences. In prac-
tice, due to complex control flow (e.g., nested branches in a loop) and operations
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 409–430, 2024.
https://doi.org/10.1007/978-3-031-65627-9_20

https://doi.org/10.5281/zenodo.10935011
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65627-9_20&domain=pdf
http://orcid.org/0000-0002-1930-4771
http://orcid.org/0000-0002-3141-8675
https://doi.org/10.1007/978-3-031-65627-9_20

410 C. Wang and F. Lin

Fig. 1. Motivated example

(e.g., non-linear operations), individual variables may not have well-defined
recurrences. For example, consider the program in Fig. 1. Due to the non-
deterministic branches, there are no well-defined recurrences for the variables
x and y, not to mention computing closed-form solutions to them. However, if
we consider the expression x2 + y + 1, there is a simple c-finite recurrence for
it: let q = x2 + y + 1, and q(k) = x(k)2 + y(k) + 1, where x(k) and y(k) denote
the values of x and y, respectively, after the kth iteration of the while loop. It is
easy to verify that q(k) satisfies the following c-finite recurrence:

q(k + 1) = 4q(k),

from which one can compute a closed-form solution q(k) = 4kq(0). This by itself
shows an interesting property about the program. It can also potentially be used
to prove other properties that can be related to this expression. Furthermore,
as shown by Kovács [16], c-finite recurrences and their closed-form solutions can
be naturally used as a downstream tool to generate polynomial invariants.

This example shows that although individual program variables may not sat-
isfy any recurrences, expressions made out of them may sometimes have recur-
rences that can be solved. As mentioned, finding expressions that have solvable
recurrences is a useful exercise in itself in program analysis. It can also help
program verification as we will see later.

While most works on loops and recurrences have been on individual program
variables, there are two recent studies on recurrences arisen from expressions:
the work by Amrollahi et al. [1] and that by Cyphert and Kincaid [4]. In this
paper, we extend the current work by considering a larger program model that
allows nested nondeterministic branches:

whi l e (∗) {
i f (∗) x = p1(x);
e l s e i f (∗) x = p2(x);
:
e l s e x = pm(x);

}

On Polynomial Expressions with C-Finite Recurrences 411

where x = pi(x) is a simultaneous assignments of a tuple of variables x by a
corresponding tuple of polynomials pi(x). Given such a program, we consider
polynomial expressions and systematically exploring all c-finite recurrences. In
comparison, Amrollahi et al. [1] considered only simple loops without nested
branches, and for limited forms of recurrences. As we shall see, our results in
this paper strictly subsumes theirs even for simple loops. While Cyphert and
Kincaid [4] also considered nested branches, they are reduced to ones without
nested branches by program abstraction which is not guaranteed to be complete.
However, their results on simple loops without nested branches are systematic.
In fact, for these programs, our results are equivalent to theirs. We will have a
more detailed discussion of related work later.

Briefly, our main contributions in this paper are as follows:

1. We propose a sound and semi-complete template-based method for finding
polynomials that satisfy c-finite recurrences.

2. We show that the set of polynomials of the bounded degree d that satisfy
c-finite recurrences of order r, for any given d ≥ 0 and r ≥ 0, forms a finite
union of vector spaces. Based on this finding, we propose an algorithm to
compute the bases of the vector spaces, and their closed-form solutions.

3. We identify two special cases, (1) r = 1 and (2) all pi’s are linear, where
bases of these vector spaces are computed by solving linear equations.

4. We implemented a prototype system for finding closed-form solutions of poly-
nomial expressions for the first special case and integrated it into a program
verifier. Our experimental results shows that with this tool, many programs
with non-linear properties can now be proved.

The rest of this paper is structured as follows. Section 2 introduces notations
and reviews some basic concepts used in this paper. Section 3 introduces the
template-based method and shows that the problem of finding polynomials with
c-finite recurrences can be reduced to solving a system of quadratic equations.
Section 4 shows the polynomials of bounded degree d satisfying c-finite recur-
rences of order r form a finite union of distinct vector space. Section 5 shows
that under some settings, the computation for finite solutions can be easier than
that proposed in Sect. 4. Section 6 introduces the implemented system and sum-
marizes the experimental results. Finally, Sect. 7 discusses related work.

2 Preliminaries

In this section, we introduce notations and briefly review some concepts used in
this paper.

2.1 Polynomials

A monomial in x =
[
x1, . . . , xn

]T is a product of the form

xα1
1 · xα2

2 · · · xαn
n ,

412 C. Wang and F. Lin

where αi’s are nonnegative integers. We simplify the notation for monomials as
follows: let α = (α1, . . . , αn) be an n-tuple of nonnegative integers. Then we set

xα = xα1
1 · xα2

2 · · · xαn
n , .

The total degree of the monomial xα is denoted |α| = α1 + . . . , αn. A polynomial
p in x with coefficients in a field K is a finite linear combination of monomials
of form

p =
∑

α

aαxα,

where aα ∈ K and the sum is over a finite number of n-tuples α = (α1, . . . , αn).
The set of all polynomials in x with coefficients in a field K is denoted by
K[x1, . . . , xn] or K[x] for short. The total degree of p, denoted deg(p), is the
maximum |α| such that the coefficient aα is nonzero. By a polynomial p of
bounded degree d, we mean the total degree of it is less than or equal to d.

The set of all polynomials of bounded degree d (denoted by Kd[x]) forms a
vector space and all monomials of bounded degree d form a basis. By fixing the
order on those monomials, a polynomial p can be represented using coordinate
vector whose elements are coefficients of p. For example, let

[
1, x, y, x2, xy, y2

]T

be the basis. Then the coordinate vector of p = 2 + 3x + 4y2 is
[
2, 3, 0, 0, 0, 1

]T .

For a polynomial vector q =
[
q1, . . . , qn

]T , we have q(x) =
[
q1(x), . . . , qn(x)

]T . The result of the polynomial composition (p ◦ q)(x) =
p(q(x)) is a polynomial of bounded degree dpdq, where dp is the total degree of p
and dq is the maximum total degree among total degrees of qi’s. The polynomial
composition is distributed over addition. That is, (p1+p2)◦q = (p1◦q)+(p2◦q)
for any p1, p2, and q. Given another polynomial vector p =

[
p1, . . . , pn

]T , we

have p ◦ q =
[
p1 ◦ q, . . . , pn ◦ q

]T .

2.2 Eigenvalues and Matrix Polynomials

Given an n×n matrix M , if a scalar λ and a nonzero vector a satisfy the equation

Ma = λa,

then λ is called an eigenvalue of M and a is called an eigenvector of M associated
with λ. The pair (λ,a) is an eigenpair for M .

Given a univariate polynomial p(x) = xk +ak−1x
k−1+· · ·+a1x+a0 of degree

k, the evaluation of it at a square matrix M is well-defined by

p(M) = Mk + ak−1M
k−1 + · · · + a1M + a0I.

Recall that the following Theorem in [10], which follows the fundamental
theorem of algebra, links the eigenpairs of p(M) to those of M in a simple way.

On Polynomial Expressions with C-Finite Recurrences 413

Theorem 1. Let p(x) be a univariate polynomial of degree k. If (λ,a) is an
eigenpair of M , then (p(λ),a) is an eigenpair of p(M). Conversely, if k ≥ 1
and if μ is an eigenvalue of p(M), then there is some eigenvalue λ of M s.t.
μ = p(λ).

Example 1. Let p(x) = x2 + 3x + 1 The eigenvalues of M =
[
2 3
4 3

]
are 6 and −1.

The eigenvalues of p(M) = M2 +3M +1 =
[
23 24
32 31

]
are p(6) = 62 +3 ·6+1 = 55

and p(−1) = (−1)2 + 3 · (−1) + 1 = −1.

2.3 C-Finite Recurrences

A sequence {a(k)}∞
k=0 is c-finite if it satisfies a c-finite recurrence of the following

form for some constant ci ∈ Q’s and integer r ≥ 1:

a(k + r) = c1a(k + r − 1) + · · · + cra(k), (1)

where r is the order of this recurrence.
The following inhomogeneous c-finite recurrence with an extra constant term

cr+1 is also considered in this paper:

a(k + r) = c1a(k + r − 1) + · · · + cra(k) + cr+1. (2)

The constant term cr+1 is often discarded in the literature because a sequence
{a(k)}∞

k=0 satisfying an inhomogeneous c-finite recurrence (2) of order r must
satisfy a homogeneous one (1) of order r + 1. We consider the inhomogeneous
case because in a setting discussed later, the computation will be easier.

The characteristic polynomial p of a c-finite recurrence (1) is a univariate
polynomial defined as:

p(t) = tr − c1t
r−1 − · · · − crt.

Every c-finite recurrence (1) has a closed-form solution in the following expo-
nential polynomial form [7]:

a(k) =
s∑

i=1

pi(k)λk
i , (3)

where s is the number of distinct roots of the characteristic polynomial, λi’s are
those distinct roots, and pi’s are polynomials whose degrees are one less than
multiplicities of the corresponding roots λi’s and coefficients are determined by
initial values of a(k). Conversely, any sequence admitting a closed-form solution
of form (3) is c-finite.

414 C. Wang and F. Lin

2.4 Program Model and Problem Statement

In this paper, we consider the program model illustrated in Fig. 2. In words,
given a set of variables x =

[
x1, . . . , xn

]T , each iteration of the loop updates the
values of these variables non-deterministically by some polynomial transitions
pi =

[
pi1, . . . , pin

]T , where pij ∈ Q[x] and pi(x) = [pi1(x), . . . , pin(x)]T . Notice
that this class of programs can model nested deterministic branches and nested
loops in a natural way - see Sect. 6 for an example.

Fig. 2. program model

We denote the values of x after the kth iteration by x(k) =
[
x1(k), . . . , xn(k)

]T . Given a program in Fig. 2 and some integer r ≥ 1, we
want to find some polynomial expressions q(x) of bounded degree d satisfying
the following c-finite recurrence for some ci ∈ Q:

q(x(k + r)) = c1q(x(k + r − 1)) + · · · + crq(x(k)). (4)

3 Reduction to Solving a System of Quadratic Equations

Given a program as described by Fig. 2, a bounded degree d, and the order
r, we want to find polynomials q ∈ Q[x] satisfying c-finite recurrences (4). To
consider all possible interleaves of those non-deterministic branches, letting q′

i

be the polynomial composition q′
i = q ◦ pw[r−i] ◦ · · · ◦ pw[1], Eq. (4) is equivalent

to the following formula:

∧

w∈Wr

r−1∑

i=0

ciq
′
i(x(k)) = 0, (5)

where Wr is the set of all r-tuples over {1, . . . , m} and c0 = 1;
Intuitively, each w ∈ Wr denotes a possible execution path for any r conse-

quent iterations. So for any i < r, the composition pw[r−i] ◦ · · · ◦ pw[1] denotes
the transition after the first i iterations. That is, each q′

i(x(k)) is q(x(k + i)) in
recurrence (4) for a possible execution path. Since in the formula (5), w is ranged
over all r-tuples over {1, . . . , m}, all possible interleaves of those branches are
considered. Therefore, this formula is equivalent to the recurrence (4).

On Polynomial Expressions with C-Finite Recurrences 415

To find a polynomial q of bounded degree d satisfying this formula, we set
up a template polynomial for it:

q(x) =
∑

α

aαxα,

where aα’s are unknown and xα’s are all monomials of bounded degree d. After
plugging the template into formula (5), the left-hand side of each conjunct is a
polynomial over x(k). To be zero, all coefficients of this polynomial must be zero.
Note that those unknown values ci’s are multiplied with q, whose coefficients are
also unknown, so the coefficients of those polynomials on the left-hand side are
quadratic expression of these unknown values.

Example 2. Consider the loop in Fig. 1, if r = 1 and we want to find polynomial
q of bounded degree 2 that satisfies Eq. (1), we set up a template for q as follows:

q(x, y) = a0x
2 + a1xy + a2y

2 + a3x + a4y + a5.

There are two conjuncts in the resulting formula (5). One of them is as follows:

(−a0c1 + 4a0 − 8a1 + 16a2)x(k)2

+(−a1c1 + 8a1 − 32a2c1)x(k)y(k)
+(4a0 − 16a2 − a3c1 + 2a3 − 4a4)x(k)

+(−a2c1 + 16a2)y(k)2

+(4a1 + 16a2 − a4c1 + 4a4)y(k)
+a0 + 2a1 + 4a2 + a3 + 2a4 − a5c1 + a5 = 0

By setting all coefficients to be zero, this conjunct produces the following system
of quadratic equations:

−a0c1 + 4a0 − 8a1 + 16a2 = 0
−a1c1 + 8a1 − 32a2c1 = 0

4a0 − 16a2 − a3c1 + 2a3 − 4a4 = 0
−a2c1 + 16a2 = 0

4a1 + 16a2 − a4c1 + 4a4 = 0
a0 + 2a1 + 4a2 + a3 + 2a4 − a5c1 + a5 = 0

Together with the equations generated from the other conjunct, each solution to
them corresponds to a required polynomial q and the recurrence it satisfies. For
this example, a0 = 1, a4 = 1, a5 = 1, c1 = 4, and others are zero is one of the
solutions, which corresponds to q(k) = x(k)2 + y(k) + 1 and q(k + 1) = 4q(k).
Note that, this is not the only solution to the quadratic equations. For example,
a0 = λ, a4 = λ, a5 = λ, c1 = 4/λ is a solution for any λ �= 0.

416 C. Wang and F. Lin

4 Finding Finite Representative Solutions

In the previous section, we achieve a system of quadratic equations, whose solu-
tions correspond to the desired polynomials and the recurrences they satisfy.
The number of solutions to such equations may be infinite. But most of them
are redundant in the sense that some of them are linear combinations of others.
For example, if q1 and q2 are polynomials satisfying recurrence (4) for the same
ci’s, then any linear combination of them also satisfies this recurrence with the
same ci’s. That is, given an assignment to ci’s, the polynomials q satisfying recur-
rence (4) form a vector space. Since different ci’s may result in different vector
spaces for those polynomials, the set of all polynomials satisfying recurrence (4)
is a union of vector spaces.

Lemma 1. Given a loop, a bounded degree d, the order r of the c-finite recur-
rence, the set of polynomials q ∈ Qd[x] satisfying recurrence (4) of order r is a
union of vector spaces.

Proof. The zero polynomial must satisfy the recurrence (4) for any assignment
to {c1, . . . , cr}. Suppose both q1, q2 ∈ Qd[x] satisfy the recurrence (4) with the
same {c1, . . . , cr}. That is,

q1(x(k + r)) = c1q1(x(k + r − 1)) + · · · + crq1(x(k)),
q2(x(k + r)) = c1q2(x(k + r − 1)) + · · · + crq2(x(k)).

Then k1q1 + k2q2 for any k1, k2 also satisfies the recurrence (4) with the same
{c1, . . . , cr}. So any assignment to {c1, . . . , cr} corresponds to a vector space of
q. As a result, the set of polynomials q satisfying the recurrence (4) of order r is
a union of vector spaces. ��

Lemma 1 shows that the desired polynomials constitute some vector spaces.
But distinct vector spaces among them may be infinite, making it impossible to
produce finite representative solutions. The following theorem claims that these
polynomials form a finite union of vector spaces.

Theorem 2. Given a loop, a bounded degree d, an order r, the set of polynomials
q ∈ Qd[x] satisfying recurrence (4) of order r is a finite union of vector spaces,

Proof. By Lemma 1, the set of polynomials q ∈ Qd[x] is a union of vector spaces.
Let B be the set of all basis vectors of these vector spaces. It is known that as a
vector space, the dimension of Qd[x] is

(
n+d

d

)
+1, where n is number of program

variables. If |B| >
(
n+d

d

)
+1, there is a vector b ∈ B s.t. b is a linear combination

of other vectors in B. Keep removing such vectors in B and denote the resulting
set as B′. Then |B′| ≤ (

n+d
d

)
+ 1 and all vectors in it are linearly independent.

In other words, the vector space spanned by B′ is the smallest vector space that
contains all polynomials in Qd[x] satisfying recurrence (4) of order r. Since each
vector q in B′ satisfies some recurrence (4) of order r, it must satisfies some
exponential polynomial (3). That is, for each vector q ∈ B′, we have

On Polynomial Expressions with C-Finite Recurrences 417

q(x(k)) =
sq∑

i=1

pq,i(k)λk
q,i,

where pq,i are polynomials and the sum of their total degrees are less than or
equal to r. By definition of B′, any q′ ∈ Qd[x] that satisfying some recurrence
(4) of order r are some linear combination of vectors in B′. Therefore, we have

q′(x(k)) =
∑

q∈B′
aqq(x(k)) =

∑

q∈B′
aq

sq∑

i=1

pq,i(k)λk
q,i,

where aq ∈ R. Since it is an exponential polynomial, we can establish the fol-
lowing characteristic polynomial

∏

q∈B′

sq∏

i=1

(t − λq,i)dq,i ,

where dq,i ∈ N and the sum of them is r. Any desired q′ ∈ Qd[x] must satisfy
some recurrence (4) whose characteristic polynomial is of the above form for some
dq,i’s. Since the sum of dq,i is r and the number of λq,i is finite (because |B′| is
bounded), the number of possible characteristic polynomials and corresponding
recurrences are finite. Each recurrence corresponds a vector space, so the number
of vector spaces is finite. ��
Note that Theorem 2 is not only applicable to the program in Fig. 2, but applica-
ble to all general loops. In the proof of Theorem 2, a finite set B′ is constructed
and any polynomial that satisfies some recurrence (4) is a linear combination of
vectors in B′. So B′ can be used as the representative solutions.

Given a program in Fig. 2, Algorithm 1 gives the process to compute all
polynomial expressions that satisfy recurrence (4). Initially, given the inputs P ,
d, and r, it sets up a template for the desired polynomial (variable p is the
template polynomial and coeffs is a vector of the unknown coefficients) and
establishes those quadratic equations mentioned in Sect. 3. eqs is the set of
quadratic equations and c is a vector of unknown coefficients ci’s in recurrence
(1). The variable bases is initialized as an empty set. a denotes an assignment to
c. θ is a formula recording the remaining possible c that should be considered. In
each iteration, the loop asks for a model of θ, which is an assignment to c. After
plugging it into the quadratic equations (Line 7), these equations are reduced to
linear ones. Basis B of these linear equations are then computed and is added
to bases. Each element in B is a solution to coeffs, so each corresponds to a
desired polynomial. Since in each iteration, a vector space of desired polynomials
is computed and the basis is added to bases, bases is a spanning set of the
smallest vector space containing all vector spaces computed so far. In future
iterations we do not want to consider those c whose corresponding vector space
is contained in the vector space spanned by bases. So variable constraint is the

418 C. Wang and F. Lin

formula that will be added to θ saying that in the future iterations, the computed
vector spaces should contain at least one polynomial outside the vector space
spanned by bases.

Algorithm 1: Finding polynomial expressions of bounded degree d satis-
fying recurrence (4) of order r

Input : A program P , bounded degree d, order r of the recurrence (4)
Output: basis vectors of those distinct solution vector space.

1 p, coeffs ← template_poly(x, d);
2 eqs, c ← build_eqs(P, p, r);
3 bases ← ∅;
4 θ ← ∧

_ieqs[i];
5 while sat(θ) do
6 a ← model(∃coeffs.θ);
7 cur_eqs ← eqs.subs(c,a);
8 B ← solve(cur_eqs);
9 bases = bases ∪ B;

10 constraint ← ∃λ1, . . . , λ|bases|.
∑

bi∈bases λibi �= coeffs;

11 θ = θ ∧ constraint;

12 ans ← ⋃|bases|
i=1 {p.subs(coeffs,b)|b ∈ bases};

13 return ans;

Theorem 3. Given a program P in Fig. 2, bounded degree d, and the order r,
Algorithm 1 terminates with a set of polynomials s.t. all polynomials p ∈ Qd[x]
satisfying recurrence (4) of order r are linear combinations of them.

Proof. In each iteration, the basis B is computed from the quadratic equations
established in Sect. 3 with unknown ci’s replaced with some constant a. Then
it is added to bases, so bases is a spanning set of the smallest vector space
containing all vector spaces computed so far. In each iteration, after computing
the corresponding basis B, a constraint is set up in Line 10, which is then added
to θ. Note that the value a used to compute a new vector space in each iteration
is a valid assignment to θ as shown in Line 6. So the constraint set up in Line
10 states that those desired polynomials in the vector space spanned by bases,
which is the smallest vector space containing all computed vector spaces, is
found, in later iteration those computed vector spaces should contains at least
one vector outside this space. When the loop terminates, θ is unsatisfiable, which
means all desired polynomials have been computed. So if it terminates, all desired
polynomials are linear combinations of vectors in bases.

We next show the termination. Since in each iteration, at least one polynomial
not appeared in the vector space spanned by bases is in the vector space com-
puted in current iteration, the vector space spanned by bases will be enlarged in
dimension at least by 1. When dimension of the space spanned by bases reaches
the dimension of the smallest vector space containing all desired polynomial,

On Polynomial Expressions with C-Finite Recurrences 419

which is upper bounded by
(
n+d

d

)
+1, there is no other vector outside the space,

so θ becomes unsatisfiable, which terminates the loop. ��

5 Special Cases Where the Computations Are Easier

In the previous section, we derived an algorithm, which can find finite representa-
tive solutions for the quadratic equations set up in Sect. 3. But in each iteration,
it asks for a model of a non-linear formula, which requires a powerful SMT solver
or algebraic system. In this section, we discuss two special cases, whose compu-
tations are much easier. The key observation is that given a polynomial vector
p, the polynomial composition Tp(q) = q ◦ p is a linear transformation.

Lemma 2. Given a polynomial vector p, the polynomial composition Tp(q) =
q ◦ p is a linear transformation from Qdp

[x] to Qdpdq [x], dq = deg(q) and dp is
the maximum among deg(pi);

Proof. Given any scalars c1, c2 ∈ Q and polynomials q1, q2, we have

Tp(c1q1 + c2q2) = (c1q1 + c2q2) ◦ p

= c1q1 ◦ p + c2q2 ◦ p

= c1Tp(q1) + c2Tp(q2).

��
It is known that a linear transformation can be represented by a transforma-

tion matrix, which is constructed by computing the image of each basis element
under the transformation and putting coordinates of those images in order.

Example 3. Consider again the program in Fig. 1. Let {x2, xy, y2, x, y, 1} be the
basis of Q2[x, y]. As in Example 2, let the template polynomial be q(x, y) =
a0x

2+a1xy+a2y
2+a3x+a4y+a5, whose coordinate is a =

[
a0, a1, a2, a3, a4, a5

]
.

For the two transitions in Fig. 1, the transformation matrices are

M1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 −8 16 0 0 0
0 8 −32 0 0 0
0 0 16 0 0 0
4 0 −16 2 −4 0
0 4 16 0 4 0
1 2 4 1 2 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,M2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 0 0 0 0 0
0 8 0 0 0 0
0 0 16 0 0 0
0 6 0 2 0 0
0 0 24 0 4 0
0 0 9 0 3 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Note that M1a and M2a are coordinates of (q ◦ p1)(x, y) and (q ◦ p2)(x, y).

5.1 Polynomials Satisfying First Order Inhomogeneous C-Finite
Recurrences

In this subsection, given a d ≥ 0, we consider to find polynomial expressions q ∈
Qd[x] satisfying a first order inhomogeneous c-finite recurrence of the following
form for some c1, c2:

q(x(k + 1)) = c1q(x(k)) + c2. (6)

420 C. Wang and F. Lin

There are two cases to be considered:

1. if c1 �= 1, then for any polynomial q that satisfies Eq. (6), we can construct a
new polynomial q′(x) = q(x) + c2

c1−1 s.t. the following equation holds:

q′(x(k + 1)) = c1q
′(x(k)). (7)

2. if c1 = 1, then Eq. (6) becomes

q(x(k + 1)) − q(x(k)) − c2 = 0,

where the left-hand side is a zero polynomial. As a result, all its coefficients
must be zero. This forms a system of linear equations, from which a basis can
be computed to represent all polynomials that forms the desired recurrence.

Since in the second case, the computation for the desired polynomials is reduced
to solve a system of linear equations, which is much easier, so in the rest of this
subsection, we focus on the first case.

Similar to Eq. (5), for a program as described by Fig. 2, recurrence (7) is
equivalent to the following formula:

m∧

i=1

(q ◦ pi)(x(k)) = c1q(x(k)). (8)

Since polynomial composition is a linear transformation and can be repre-
sented by a matrix, assuming the basis is ordered by putting monomials with
higher degrees in front, formula (8) is equivalent to the following one:

m∧

i=1

[
Mi1

Mi2

]
a =

[
0

c1a

]
, (9)

where Mi1 ∈ Q
(s−t)×(t+1), Mi2 ∈ Q

(t+1)×(t+1), s =
(
n+ddp

ddp

)
, t =

(
n+d

d

)
, dp is the

maximum among deg(pi),
[
Mi1

Mi2

]
is the transformation matrix of q ◦ pi, and a

is the coordinate for the template polynomial q. There are (s − t) zeros on the
right-hand side, because q ◦pi may produce terms with higher order than d and
they should be zero to ensure formula (8) holds (because there is no terms with
degrees higher than d on the right-hand side).

Formula (9) can be further split as follows:

m∧

i=1

Mi1a = 0, (10)

m∧

i=1

Mi2a = c1a. (11)

Equations in (10) can be solved using Gaussian elimination. Each equation in
formula (11) is the definition of eigenvalues and eigenvectors for a square matrix,

On Polynomial Expressions with C-Finite Recurrences 421

so formula (11) says that c1 must be common eigenvalues of those matrices Mi2’s.
Because any n × n matrix has at most n distinct eigenvalues, the number of
solutions to c1 is finite. So to solve the Eq. (11), we just need to enumerate all
common eigenvalues of Mi2’s and replace c1 with those eigenvalues. After that,
equations in (11) are reduced to linear ones, which can be solved easily.

Theorem 4. Given a program in Fig. 2 and an integer d, let dp be the maxi-
mum among deg(pi)’s. By ordering all monomials in Qddp [x] with monomials
with higher degree in front, the possible values for c1 in Eq. (8) are common
eigenvalues of lower squared matrices of those transformation matrices of q ◦pi.

Example 4. Consider the program in Fig. 1. In Example 3, we computed trans-
formation matrices for both branches as M1 and M2. To solve for c1 and q in
Eq. (8), by Theorem 4, c1 should be common eigenvalues of M1 and M2, which
are {1, 2, 4, 8, 16}. For c1 = 1, the solution to q in Eq. (8) is the constant poly-
nomial q = λ for all λ ∈ Q, which is trivial. For c1 = 2, 8, 16, the solution to q is
zero. For c1 = 4, the solution to q is any multiple of q(x, y) = x2 + y + 1, which
is a basis for the solution vector space and used as the representative solution.

5.2 Linear Transitions

In this subsection, we assume all pi’s in Fig. 2 are linear and try to find all
polynomials of bounded degree d that satisfy c-finite recurrences (4) of order r.

If all pi are linear transitions, the transformation matrices of them are square.
So Eq. (5) is equivalent to

∧

w∈Wr

(
r∏

i=1

Mw[i] − c1

r−1∏

i=1

Mw[i] − · · · − cr−1Mw[1] − crI)a = 0, (12)

where Wr is the set of all r-tuples over {1, . . . ,m}, Mi’s are transformation
matrices of p ◦ pi, and

∏s
i=1 Mw[i] = Mw[s]Mw[s−1] . . . Mw[1].

Formula (12) is hard to solve, because a lies in the intersection of the
nullspaces of the matrices in the parenthesis. Different assignments to ci’s may
result in different nullspaces, thus different solutions to a. Our solution is to
transform formula (12) into formula (13)–(14) below, where ci’s only appear in
matrix polynomials p(M1) for some univariate polynomials p’s:

∀0 ≤ l < r.∀2 ≤ i ≤ m.
∧

w∈Wr−l−1

pl(M1)(Mi − M1)(
r−l−1∏

j=1

Mw[j])a = 0 (13)

∧ pr(M1)a = 0, (14)

where pk(M1) = Mk
1 − ∑k

j=1 cjM
k−j
1 .

Theorem 5. Formula (12) is equivalent to formula (13) - (14).

422 C. Wang and F. Lin

The proof is given in Appendix A due to page limits. Intuitively, there is a one-
to-one correspondence between conjuncts in formula (12) and those in formula
(13)–(14). Formula (14) is the conjunct in formula (12) whose w = [1]r. For any
other conjunct in formula (12), whose w has l trailing 1’s, one can find another
one, whose w′ has l + 1 trailing 1’s and has the same prefix of length r − l − 1
with w. The difference between them can be simplified into a conjunct in formula
(13). Transforming formula (13)–(14) back to formula (12) is done reversely.

Formula (13) and (14) are simpler than Formula (12) in the sense that all ci’s
appear in some matrix polynomials pk(M1), which makes it easier to be analyzed.
In the following, we show how to solve for a for the following equation, which is
a conjunct in formula (13):

pl(M1)(Mi − M1)(
r−l−1∏

j=1

Mw[j])a = 0. (15)

Recall that by the fundamental theorem of algebra, a polynomial p(t) =
tl + c1t

l−1 + · · · + cl can be factored into p(t) =
∏l

i=1(t − αi), where αi’s are
roots of p(t). When this factorization is applied on pl(M1) [10], it becomes:

pl(M1) =
l∏

i=1

(M1 − αiI).

Each factor (M1 − αiI) is a matrix, whose singularity depends on the value of
αi. If αi is some eigenvalue of M1, then this matrix is singular, otherwise it is
invertible. The factor (M1 − αiI) is called an eigenvalue factor of pl(M1) if αi

is an eigenvalue of M1. After this factorization, formula (15) becomes

l∏

j=1

(M1 − αjI)(Mi − M1)(
r−l−1∏

j=1

Mw[j])a = 0. (16)

Note that the multiplication between those factors (M1 − αiI) are mutually
commutative. So if some αi’s are not eigenvalues of M1, then the corresponding
factors are invertible and can be canceled, which converts formula (16) into

s∏

j=1

(M1 − λjI)(Mi − M1)(
r−l−1∏

j=1

Mw[j])a = 0,

where 0 ≤ s ≤ l and λj ’s are eigenvalues of M1.
This cancellation suggests that it is the eigenvalue factors that determine the

solutions set to a. In other words, if pl(M1) and p′
l(M1) have the same set of

eigenvalue factors, then pl(M1)(Mi −M1)(
∏r−l−1

j=1 Mw[j])a = 0 and p′
l(M1)(Mi −

M1)(
∏r−l−1

j=1 Mw[j])a = 0 have the same solution set to a. So solving Eq. (15) can
be done by enumerating all possible eigenvalue factor combinations for pl(M1).
That is, the solution to a of the following formula is equivalent to that of Eq. (15):

On Polynomial Expressions with C-Finite Recurrences 423

∨

Λ∈Λl

∏

λ∈Λ

(M1 − λI)(Mi − M1)(
r−l−1∏

j=1

Mw[j])a = 0, (17)

where Λl is the set of all the subsets whose cardinalities are less than or equal to
l of the set of eigenvalues of M1 (i.e., ∀Λ ∈ Λ.|Λ| ≤ l). Each disjunct in formula
(17) is a linear equation, which can be solved easily. Formula (14) can be solved
in a similar way.

Note that the derivation above solves a single equation (15). But solving
formula (13)–(14) cannot be simply solving each equation using this approach
and then intersecting those solution sets, because all pk(M1)’s share the same
coefficients ci’s, which puts constraints on the choice of eigenvalue factors combi-
nations implicitly. But solving those equations by enumerating all possible eigen-
value factor combinations for those pk(M1)’s without considering this implicit
constraints indeed gets all possible solutions to a, although some may be invalid
because of ignoring those constraints. So to solve formula (13) and (14), we adopt
the following “generate and check” procedure.

Generate. For each pk(M1) in formula (13)–(14), we enumerate all Λ ∈ Λl and
replace pk(M1) in formula (13) and (14) with

∏
λ∈Λ(M1−λI). Solve the resulted

linear equations for a basis, which is a candidate solution to formula (13)–(14).

Check. To validate whether a basis generated in the ‘generate’ phase represents
one of the vector spaces of a, we only need to replace a with elements in the basis
in formula (13) and (14) and see whether the resulting formulas are satisfiable.
If it is, the basis indeed corresponds to vector spaces of a. If any element in the
basis makes the formulas unsatisfiable, the basis is not valid and is filtered out.

Note that in the ‘generate’ phase, we only need to compute eigenvalues for
some known matrices and in the ‘check’ phase, the resulting formulas after the
substitution are linear. So this procedure is computationally cheaper than Algo-
rithm 1.

Candidate solutions computed in the ‘generate’ phase are solutions to the
formula obtained by ignoring the fact that those pi’s have the same coefficients
ci’s, which is a weak version of formula (13) and (14). So each solution to formula
(13) and (14) is also a solution generated in the ‘generate’ phase, which guar-
antees the completeness. Soundness is guaranteed by the ‘check’ phase, which
those candidate solutions back to formula (13)–(14) and filters out invalid ones.

6 Experimental Evaluation

To evaluate the effectiveness of our proposed methods in program verification,
we implemented a prototype system called PExpr on C-like programs based
on the algorithm given in Sect. 5.1. The reasons why we choose to implement
this algorithm instead of others are as follows: (1) The algorithm in Sect. 5.1
allows polynomial assignments, while the one in Sect. 5.2 can only handle linear
ones. And some programs in the benchmark we consider do have polynomial

424 C. Wang and F. Lin

assignments. (2) As it will be seen below that for those programs that cannot
be proved by the method in Sect. 5.1, they cannot be proved even if the general
Algorithm 1 were used, not to mention the one in Sect. 5.2. And the algorithm
in Sect. 5.1 is more efficient than others.

6.1 Implementation

Our system consists of two parts:

– The verifier is built on top of LLVM. C programs are first compiled into
LLVM IR, and then the IR is translated into first-order language using a
technique similar to the one proposed in [17]. Typically, loops are translated
as recurrences and solved using the recurrence solver (see below).

– The core algorithm proposed in this paper is integrated into the recurrence
solver proposed in [21], which is capable of solving conditional recurrences.
As mentioned above, we only implement the method proposed in Sect. 5.1,
which is simple and efficient.

The verifier extracts and feeds recurrences into the recurrence solver, the solver
will first try to solve closed-form solutions for each individual variable using
the technique proposed in [21]. If it fails, then the method in Sect. 5.1 will be
applied. When the first time this method is applied, the polynomial degree is
set to be 2. If no non-trivial result is returned, it is set to be 3. The closed-form
solutions together with other axioms generated by the verifier is directly fed into
SMT solver Z3 [6] to prove the correctness of the program. Nested loops are
abstracted using the program model considered in this paper. For example, a
loop below (left), whose body consists of two consequent loops, is treated as the
one below (right), where A and B are loop-free statements.

while (∗) do
{

while (∗) A;
while (∗) B;

}
while (∗) do

{
if (∗) A;
else if (∗) B;

}

6.2 Benchmarks and Environment

Our 48 benchmarks programs are adapted from the set of safe programs in
the c/nla-digbench set of the Software Verification Competition (SV-COMP)
[2]. The original c/nla-digbench consists of 26 classical algorithms. All are
annotated with some assertions to be proved in the end and loop invariants
in each loop. To make the verification non-trivial, as done in [4], we remove
all those loop invariants. Otherwise, the verification will be simply to prove
those annotated invariant are indeed invariant and then use them to prove the
assertions at the end. Further, since we want to see the effectiveness of our
finite representative solutions in verification, programs with multiple assertions
to be proved are split into several copies and each copy has one assertion to be
proved. By doing so, we can see for each program, what assertions can be proved
by simply providing our representative solutions to SMT solvers. As a result, 48
programs are collected as benchmark for the experiment and we call it NLA.

On Polynomial Expressions with C-Finite Recurrences 425

All experiments were conducted on a virtual machine with a guest OS of
Ubuntu 22.04 with 8 GB of RAM. The host machine is a MacBook Pro (16-inch,
2019) with 2.3GHz 8-core Intel Core i9. All tools were run with the BenchExec
tool [22] using a time limit of 60 s on all benchmarks.

6.3 Comparison Tools

We compared PExpr with USP-Quad [4], VeriAbs [5], ULTIMATE Automizer
[9]. And since we integrate the proposed method into the recurrence solver pro-
posed in [21], to see the effectiveness, we also compared with PExpr with the
proposed technique disabled (the resulting system is called PRS).

USP-Quad adopts a strategy that given a transition ideal, it computes a solv-
able one from it and then computes closed-form solutions to polynomial expres-
sions based on the solvable transition ideal (see related works for detailed com-
parison). As reported in [4], the refinement technique proposed in [3] improves
the analysis of USP-Quad, so when running USP-Quad, we enabled the refine-
ment. VeriAbs is the champion in the ReachSafety track in SV-COMP 2023.
It is a reachability verifier for C programs that incorporates a portfolio of
techniques (e.g., k-induction). ULTIMATE Automizer is the best tool for the
c/nla-digbench in SV-COMP 2023, which implements approaches based on
automata [8]. PRS applies the technique proposed in [21] to solve conditional
recurrence for individual program variables.

6.4 Experimental Results

Table 1 summarizes the comparison results. PExpr is the best among those tools
proving 34 programs, of which there are 3 programs can only be proved by
PExpr. Programs that PExpr failed to prove are classified as 3 categories:

– Integer division. Some loops contain integer division without any guard to
guarantee the effect is the same as real division (i.e., rounding occurs). There
are 8 programs in this category.

– Path condition matters. Our program model ignores all guards of those nested
if statements. But some programs’ correctness is guaranteed by those guards.
PExpr cannot capture this semantics because these guards are discarded.
There is 1 program in this category.

– Non-c-finite recurrences. PExpr only tries to find polynomial expressions
among variables that satisfy c-finite recurrences. So if those expressions are
not c-finite, PExpr is not able to find them. 5 programs are in this category.

USP-Quad ranks second. There are 3 programs that it can prove while PExpr
failed. Two of them contains integer division which cannot be proved to be equiv-
alent to real divisions by PExpr. The other is the program whose path condition
matters when proving its correctness. When facing multi-path loops, USP-Quad
tries to find solvable transition ideal in a more semantic way, while PExpr simply
discards those guards and treats them as non-deterministic branches.

426 C. Wang and F. Lin

Table 1. Comparison of tools on the NLA benchmarks. “Number of success” denotes
the number of programs that each tool can prove successfully. “Number of timeout”
records the number of timeout occurs when running the corresponding tool. “Time”
records the amount of time, in seconds, taken by each tool (only cases that are suc-
cessfully proved are counted). The best result in each category is bolded

PExpr USP-Quad VeriAbs ULTIMATE Automizer PRS

Number of success 34 23 3 21 20

Number of timeout 0 14 42 24 0

Time 231 95.3 186 447 126

Among those programs proved by VeriAbs, PExpr failed on one of them,
whose integer division cannot be handled by PExpr. Both ULTIMATE
Automizer and PRS work well on simple loops (loops without nested branches).
ULTIMATE Automizer can also prove four more loops with nested branches.
One of them belongs to those programs whose expressions do not satisfy c-finite
recurrences. Although PRS is able to solve conditional recurrences, those loops
with nested branches in the benchmark do not have the periodic property, which
is the key for PRS to find closed-form solutions. So PRS only works on simple
loops or those whose assertions entailed directly by the loop exiting conditions.

7 Related Works

This work follows up on recurrence-based methods for program verification. The
connection between loops and recurrences is widely known. Recently, it was used
in Lin’s translation [17] from C-like programs to first-order logic. This led to the
program verifier VIAP [19] that relies on off-the-shelf tools like Mathematica [23]
for solving recurrences. Kincaid et al. [12] also treated loops as recurrences, and
proposed algorithms for solving them. Their follow-up works [13,14] consider
finding closed-form solutions that can be used directly by SMT solvers. More
capable recurrence solvers for multi-paths loops have been studied [20,21].

When recurrences for individual variables either do not exist or cannot be
solved, an alternative is to consider expressions of the variables. Lin [18] con-
sidered this as an application of automated theorem discovery. Kincaid et al.
[14] proposed a method for finding linear expressions with solvable recurrences.
As their solvable recurrences are all c-finite, these linear expressions can also be
generated by our algorithm. More closely related works are Amrollahi et al. [1]
and Cyphert and Kincaid [4]. Below we discuss them in more details.

Amrollahi et al. [1] considered computing polynomial expressions q that sat-
isfy the recurrence q(x(n+1)) = cq(x(n))+p(v(n)), where c ∈ R, v are variables
that have exponential polynomials as their closed-form solutions, and p a poly-
nomial. Our method can also generate such polynomial expressions because if q
satisfies the above recurrence, then it has an exponential polynomial closed-form
solution, thus it satisfies a c-finite recurrence. However, there is a polynomial

On Polynomial Expressions with C-Finite Recurrences 427

expression that satisfies a c-finite recurrence but not the above recurrence, as
pointed out in [4]. Furthermore, the method in [1] is also template-based, and
does not consider finite representation of all possible solutions.

Cyphert and Kincaid [4] considered loops as transition ideal and introduced
the concept of solvable transition ideals to represent spaces of polynomials with
solvable recurrences. Since their solvable polynomial recurrences are equivalent
to c-finite recurrences, their results and ours are equivalent if the loop is simple,
i.e. when there is no nested branches. For loops with nested branches, they adopt
the same method in [15] that looks for linear expressions whose values change
by a polynomial loop invariant after an iteration of the loop. As such, they will
miss other polynomial expressions that have c-finite recurrences. In comparison,
our method is is sound and semi-complete as shown above.

8 Conclusion

Based on the observation that for loops with nondeterministic branches, recur-
rences for individual program variables may not exist, we have considered the
possibility of finding recurrences for expressions. Specifically, for loops with
nested nondeterministic branches, we have proposed a sound and semi-complete
algorithm for finding polynomial expressions that satisfy some c-finite recur-
rences. We have also considered in detailed two special cases, one on polynomials
that satisfy first-order inhomogeneous c-finite recurrences, and the other on loops
with linear transitions, and showed how to compute closed-form solutions more
efficiently in these cases. To illustrate the effectiveness of the proposed method,
we have implemented our algorithm for the first special case, and showed through
experiments that the new technique indeed can be effective in being able to verify
more benchmark programs.

A Proof of Theorem 5

Proof. ⇒: For a conjunct in formula (12), if the corresponding w = [1]r, then
it is exactly formula (14). Otherwise, if w has l trailing ones (i.e., w = v + [1]l

for some v ∈ Wr−l and v[r − l] �= 1), it can be transformed into a conjunct in
formula (13) by finding another conjunct in formula (12) whose corresponding
w′ = w[: r − l − 1] + [1]l+1. The difference between them is

((
r∏

i=1

Mw[i] −
r∏

i=1

Mw′[i]

)

− · · · − (
cr−1Mw[1] − cr−1Mw′[1]

)
)

a = 0. (18)

Since w and w′ have the same prefix of length r − l − 1, we have
∏t

i=1 Mw[i] −
∏t

i=1 Mw′[i] = 0 for all t ≤ r − l − 1. Equation (18) is thus simplified into
((

r∏

i=1

Mw[i] −
r∏

i=1

Mw′[i]

)

− · · · − cl

(
r−l∏

i=1

Mw[i] −
r−l∏

i=1

Mw′[i]

))

a = 0. (19)

428 C. Wang and F. Lin

Because w has l trailing 1’s, for s ≥ r − l, we have
∏s

i=1 Mw[i] = Ms−r+l
1

∏r−l
i=1

Mw[i], Similarly, for w′ we have
∏s

i=1 Mw′[i] = Ms−r+l+1
1

∏r−l−1
i=1 Mw′[i], So the

difference
∏s

i=1 Mw[i] − ∏s
i=1 Mw′[i] is

Ms−r+l
1

r−l∏

i=1

Mw[i] − Ms−r+l+1
1

r−l−1∏

i=1

Mw′[i]

= Ms−r+l
1

(

Mw[r−l]

r−l−1∏

i=1

Mw[i] − M1

r−l−1∏

i=1

Mw′[i]

)

= Ms−r+l
1

(
Mw[r−l] − M1

) r−l−1∏

i=1

Mw[i].

The second equality holds because w and w′ have the same prefix of length
r − l − 1. Applying this conversion on the left-hand side of Eq. (19), we have
(

M l
1

(
Mw[r−l] − M1

) r−l−1∏

i=1

Mw[i]

)

− · · · −
(

cl

(
Mw[r−l] − M1

) r−l−1∏

i=1

Mw[i]

)

.

After factorization, Eq. (19) becomes

pl(M1)(Mw[r−l] − M1)(
r−l−1∏

i=1

Mw[i])a = 0, (20)

where pl(M1) = M l
1 − ∑l

j=1 cjM
l−j
1 . Since 2 ≤ w[r − l] ≤ m, formula (20) is

one of conjuncts in formula (13). This completes the proof that each conjunct
in formula (12) can be transformed into one conjunct in formula (13)–(14).

⇐: For this direction, we show that each conjunct in formula (12) can be
derived from formula (13)–(14). There are two different w in formula (12) and
formula (13), to distinguish them we denote w12 for the one in formula (12) and
w12 for formula (13). We prove this by induction on the number l of trailing 1’s
in w12. For the base case l = r, there is only one conjunct whose w has r trailing
1 in formula (12), which is formula (14). For the inductive case, we assume for all
conjuncts in formula (12) whose w12 has more than l trailing 1’s can be derived
from formula (13)–(14). Then we need to prove that conjuncts in formula (14)
whose w12 has l trailing 1 can be derived from formula (13)–(14). For such w12,
we have w12 = w12[: r−l]+[1]l. We can find another w′

12 = w12[: r−l−1]+[1]l+1,
which has more than l trailing ones. So for w′

12, its corresponding conjunct in
formula (12) can be derived from formula (13)–(14) by the inductive hypothesis.
Let w12 = w12[: r − l − 1] and i = w12[r − l]. Add up the conjunct represented
by w′

12 and (w12, i) in formula (12) and (13) respectively, the result will be the
conjunct represented by w12. This completes the proof. ��

On Polynomial Expressions with C-Finite Recurrences 429

References

1. Amrollahi, D., Bartocci, E., Kenison, G., Kovács, L., Moosbrugger, M., Stankovič,
M.: Solving invariant generation for unsolvable loops. In: Singh, G., Urban, C.
(eds.) SAS 2022. LNCS, pp. 19–43. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-22308-2 3

2. Beyer, D.: Competition on software verification and witness validation: sv-comp
2023. In: Sankaranarayanan, S., Sharygina, N. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems. Springer, Cham (2023). https://doi.org/10.
1007/978-3-031-30820-8 29

3. Cyphert, J., Breck, J., Kincaid, Z., Reps, T.W.: Refinement of path expressions for
static analysis. Proc. ACM Program. Lang. 3(POPL), 45:1–45:29 (2019). https://
doi.org/10.1145/3290358

4. Cyphert, J., Kincaid, Z.: Solvable polynomial ideals: the ideal reflection for program
analysis. arXiv preprint arXiv:2311.04092 (2023)

5. Darke, P., Agrawal, S., Venkatesh, R.: VeriAbs: a tool for scalable verification by
abstraction (competition contribution). In: Groote, J.F., Larsen, K.G. (eds.) Tools
and Algorithms for the Construction and Analysis of Systems: 27th International
Conference, TACAS 2021, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2021, Luxembourg, pp. 458–462. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-72013-1 32

6. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, pp. 337–
340. Springer (2008)

7. Everest, G., van der Poorten, A.J., Shparlinski, I., Ward, T., et al.: Recurrence
sequences, vol. 104. American Mathematical Society Providence, RI (2003)

8. Heizmann, M., et al.: Ultimate automizer with SMTInterpol: (competition contri-
bution). In: Piterman, N., Smolka, S.A. (eds.) Tools and Algorithms for the Con-
struction and Analysis of Systems: 19th International Conference, TACAS 2013,
Held as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2013, Rome, 16–24 March 2013, pp. 641–643. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36742-7 53

9. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In: Pals-
berg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 69–85. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03237-0 7

10. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press (2012)
11. Kincaid, Z., Breck, J., Boroujeni, A.F., Reps, T.: Compositional recurrence analy-

sis revisited. In: Proceedings of the 38th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI 2017), pp. 248-262. Association
for Computing Machinery, New York (2017). https://doi.org/10.1145/3062341.
3062373

12. Kincaid, Z., Breck, J., Boroujeni, A.F., Reps, T.: Compositional recurrence analysis
revisited. SIGPLAN Not. 52(6), 248–262 (2017). https://doi.org/10.1145/3140587.
3062373

13. Kincaid, Z., Breck, J., Cyphert, J., Reps, T.: Closed forms for numerical loops.
Proc. ACM Program. Lang. 3(POPL) (2019). https://doi.org/10.1145/3290368

14. Kincaid, Z., Cyphert, J., Breck, J., Reps, T.: Non-linear reasoning for invariant
synthesis. Proc. ACM Program. Lang. 2(POPL), 1–33 (2017)

15. Kincaid, Z., Koh, N., Zhu, S.: When less is more: Consequence-finding in a weak
theory of arithmetic. Proc. ACM Program. Lang. 7(POPL), 1275–1307 (2023)

https://doi.org/10.1007/978-3-031-22308-2_3
https://doi.org/10.1007/978-3-031-22308-2_3
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1145/3290358
https://doi.org/10.1145/3290358
http://arxiv.org/abs/2311.04092
https://doi.org/10.1007/978-3-030-72013-1_32
https://doi.org/10.1007/978-3-642-36742-7_53
https://doi.org/10.1007/978-3-642-03237-0_7
https://doi.org/10.1145/3062341.3062373
https://doi.org/10.1145/3062341.3062373
https://doi.org/10.1145/3140587.3062373
https://doi.org/10.1145/3140587.3062373
https://doi.org/10.1145/3290368

430 C. Wang and F. Lin

16. Kovács, L.: Reasoning algebraically about P-solvable loops. In: Ramakrishnan,
C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems, pp. 249–264. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78800-3 18

17. Lin, F.: A formalization of programs in first-order logic with a discrete linear order.
Artif. Intell. 235, 1–25 (2016). https://doi.org/10.1016/j.artint.2016.01.014

18. Lin, F.: Machine theorem discovery. AI Magazine 39(2), 53–59 (2018). https://
www.aaai.org/ojs/index.php/aimagazine/article/view/2794

19. Rajkhowa, P., Lin, F.: VIAP 1.1: (Competition Contribution). In: Beyer, D., Huis-
man, M., Kordon, F., Steffen, B. (eds.) Tools and Algorithms for the Construc-
tion and Analysis of Systems: 25 Years of TACAS: TOOLympics, Held as Part
of ETAPS 2019, Prague, 6–11 April 2019, Proceedings, Part III, pp. 250–255.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17502-3 23

20. Silverman, J., Kincaid, Z.: Loop summarization with rational vector addition sys-
tems. In: Dillig, I., Tasiran, S. (eds.) Computer Aided Verification: 31st Interna-
tional Conference, CAV 2019, New York City, 15–18 July 2019, Proceedings, Part
II, pp. 97–115. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25543-
5 7

21. Wang, C., Lin, F.: Solving conditional linear recurrences for program verification:
the periodic case. Proc. ACM Program. Lang. 7(OOPSLA1), 28–55 (2023)

22. Wendler, P., Beyer, D.: Bench exec 3.16 (2023). https://github.com/sosy-lab/
benchexec

23. Wolfram, S., et al.: The MATHEMATICA R© Book, Version 4. Cambridge Univer-
sity Press (1999)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-78800-3_18
https://doi.org/10.1007/978-3-540-78800-3_18
https://doi.org/10.1016/j.artint.2016.01.014
https://www.aaai.org/ojs/index.php/aimagazine/article/view/2794
https://www.aaai.org/ojs/index.php/aimagazine/article/view/2794
https://doi.org/10.1007/978-3-030-17502-3_23
https://doi.org/10.1007/978-3-030-25543-5_7
https://doi.org/10.1007/978-3-030-25543-5_7
https://github.com/sosy-lab/benchexec
https://github.com/sosy-lab/benchexec
http://creativecommons.org/licenses/by/4.0/

Breaking the Mold: Nonlinear Ranking
Function Synthesis Without Templates

Shaowei Zhu(B) and Zachary Kincaid

Princeton University, Princeton, NJ 08540, USA
{shaoweiz,zkincaid}@cs.princeton.edu

Abstract. This paper studies the problem of synthesizing
(lexicographic) polynomial ranking functions for loops that can be
described in polynomial arithmetic over integers and reals. While the
analogous ranking function synthesis problem for linear arithmetic is
decidable, even checking whether a given function ranks an integer loop is
undecidable in the nonlinear setting. We side-step the decidability barrier
by working within the theory of linear integer/real rings (LIRR) rather
than the standard model of arithmetic. We develop a termination analy-
sis that is guaranteed to succeed if a loop (expressed as a formula) admits
a (lexicographic) polynomial ranking function. In contrast to template-
based ranking function synthesis in real arithmetic, our completeness
result holds for lexicographic ranking functions of unbounded dimension
and degree, and effectively subsumes linear lexicographic ranking func-
tion synthesis for linear integer loops.

Keywords: termination · ranking functions · polynomial ranking
functions · lexicographic ranking functions · monotone · nonlinear
arithmetic

1 Introduction

Ranking function synthesis refers to the problem of finding a well-founded metric
that decreases at each iteration of a loop. It is a critical subroutine in modern
termination analyzers like Terminator [12], Ultimate Automizer [16], and Com-
PACT [26]. One could synthesize ranking functions via a template, i.e., fixing a
particular form of ranking functions to be considered while leaving parameters
as free variables, and encoding the conditions for the function to rank the given
loop as a logical formula, thereby reducing the synthesis problem to a constraint-
solving problem. Provided that the resulting constraint-solving problem is decid-
able, this method yields a complete procedure for synthesizing ranking functions
that match the template. In particular, the template-based method is the basis
of complete synthesis of ranking functions for linear and lexicographic linear
ranking functions for loops whose bodies and guards can be expressed in lin-
ear real or integer arithmetic [3,23]. A limitation of the approach is that it is
only complete with respect to template languages that can be defined by finitely
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 431–452, 2024.
https://doi.org/10.1007/978-3-031-65627-9_21

https://doi.org/10.5281/zenodo.10939233
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65627-9_21&domain=pdf
http://orcid.org/0000-0002-0335-1151
http://orcid.org/0000-0002-7294-9165
https://doi.org/10.1007/978-3-031-65627-9_21

432 S. Zhu and Z. Kincaid

many parameters (e.g., we may define a template for all linear terms or degree-2
polynomials, but not polynomials of unbounded degree).1

In this paper, we study the problem of synthesizing polynomial ranking func-
tions for nonlinear loops. There are two apparent obstacles. The first obstacle
results from the difficulty of reasoning about nonlinear arithmetic. Nonlinear
integer arithmetic is undecidable, and so even checking whether a given func-
tion ranks a loop is undecidable, let alone synthesizing one. While nonlinear
real arithmetic is decidable, it has high complexity–prior work has explored
incomplete constraint-solving approaches to avoid the cost of decision proce-
dures for real arithmetic [1,13], but this sacrifices the completeness property
typically enjoyed by template-based methods. The second obstacle is that the
set of all polynomials cannot be described as a template language with finitely
many parameters, thus precluding complete ranking function synthesis based on
the template method.

To tackle the undecidability problem, we adopt a weak theory of nonlinear
arithmetic LIRR that is decidable [18]. For the infinite template problem, we
first compute the finite set of polynomials that are entailed to be bounded mod-
ulo LIRR by the loop, and use them to define a template language with finitely
many parameters to describe “candidate terms” for ranking functions. We then
show that synthesis of ranking functions consisting of non-negative linear combi-
nations of these candidate terms can be reduced to a constraint-solving problem
in linear arithmetic. The adoption of LIRR ensures that we do not lose com-
pleteness in any of the above steps, i.e., any ranking function modulo LIRR can
be written as a nonnegative combination of the “candidate terms” in the tem-
plate. We thus have a procedure for synthesizing polynomial ranking functions
that is sound for the reals, and complete in the sense that if a polynomial rank-
ing function exists for a formula (modulo LIRR), then the analysis will find
it. Furthermore, we extend this analysis to one that is sound for the integers
and complete relative to lexicographic polynomial ranking functions (modulo
LIRR).

Using the framework of algebraic termination analysis [26], we extend our ter-
mination analysis on loops (represents as formulas) to whole programs (including
nested loops, recursive procedures, etc.). The completeness of the proposed pro-
cedures leads to monotone end-to-end termination analyses for whole programs.
Informally, monotonicity guarantees that if the analysis can prove termination of
a program P and P is transformed to a program P ′ in a way that provides more
information about its behavior (e.g., by decorating the program with invari-
ants discovered by an abstract interpreter) then the analysis is certain to prove
termination of P ′ as well.

Our experimental evaluation establishes that the procedure based on polyno-
mial ranking function and lexicographic polynomial ranking function synthesis

1 One may imagine using the template paradigm to search for polynomial ranking
functions of successively higher degree until one is found; however, this yields a
complete semi-algorithm, which fails to terminate if no polynomial ranking function
exists.

Nonlinear Ranking Function Synthesis 433

with the background theory of LIRR is competitive for SV-COMP termination
benchmarks, especially for the nonlinear programs.

2 Background

Linear Algebra and Polyhedral Theory

In the following, we use linear space to mean a linear space over the field of
rationals Q. Let L be a linear space. A set C ⊆ L is convex if for every p, q ∈ C
and every λ ∈ [0, 1], we have λp + (1 − λ)q ∈ C. We use conv (S) to denote the
convex hull of a set S ⊆ L, which is the smallest convex set that contains S. A
set Q is a polytope if it is the convex hull of a finite set. A set C ⊆ L is a (con-
vex) cone if it contains 0 and is closed under addition and multiplication by Q≥0

(nonnegative rationals). For a set G ⊆ L, its conical hull is the smallest cone
that contains G, defined as cone(G) =

{
λ1g1 + · · · + λmgm : λi ∈ Q≥0, gi ∈ G

}
.

Given any A,B ⊆ L, we use A + B � {a + b : a ∈ A, b ∈ B} to denote their
Minkowski sum.

A set P ⊆ L is a polyhedron if P = cone(R) + conv (V), where R, V are
finite sets in L, and use the notation P = V-rep(R, V). Convex polyhedra are
effectively closed under intersection; that is, there is a procedure intersect such
that for any finite R1, V1, R2, V2 ⊆ L we have

V-rep(intersect (R1, V1, R2, V2)) = V-rep(R1, V1) ∩ V-rep(R2, V2) .

The Ring of Rational Polynomials

For a finite set of variables X, we use Q[X] to denote the ring of polynomials over
X with rational coefficients, and Q[X]1 to denote the set of linear polynomials
over X. A set I ⊆ Q[X] is an ideal if it contains zero, is closed under addition,
and for every p ∈ Q[X] and q ∈ I we have pq ∈ I. For a finite set G =
{g1, . . . , gn} ⊆ Q[X], we use 〈G〉 � {p1g1 +· · · + pngn : p1, . . . , pn ∈ Q[X]} to
denote the ideal generated by the elements in G. By Hilbert’s basis theorem,
we have that every ideal in Q[X] can be written as 〈G〉 for some finite set G.
Equivalently, for any ascending chain of ideals I1 ⊆ I2 ⊆ . . . in Q[X], there
exists an index j such that Ij = Ik for all k ≥ j.

Note that Q[X] is a linear space over Q, and so cones, polytopes, and polyhe-
dra consisting of polynomials are defined as above. We say that a cone C ⊆ Q[X]
is algebraic if it is the Minkowski sum of an ideal and a finitely-generated convex
cone [18]. For finite sets of polynomials Z,P ⊆ Q[X], we use

alg.coneX(Z,P) �

⎧
⎨

⎩

∑

z∈Z

qzz +
∑

p∈P

λpp : qz ∈ Q[X], λp ∈ Q≥0

⎫
⎬

⎭

to denote the algebraic cone generated by Z and P ; we call Z and P the “zeros”
and “positives” of the cone, respectively. When the set of variables is clear, we
often omit the subscript and just write alg.cone (Z,P).

434 S. Zhu and Z. Kincaid

For any algebraic cone C ⊆ Q[X], the set of linear polynomials in C forms a
convex polyhedron. We use linearize to denote the operation that computes
this set—that is, for any finite Z,P ⊆ Q[X], we have

V-rep(linearize (Z,P)) = alg.cone (Z,P) ∩ Q[X]1 .

There is a procedure inverse-hom for computing the inverse image of an
algebraic cone under a ring homomorphism ([18], Theorem 9). More precisely,
let alg.coneX(Z,P) be an algebraic cone, Y be a set of variables, and f : Q[Y] →
Q[X] be a ring homomorphism, then

alg.cone Y (inverse-hom (Z,P, f, Y)) = {p ∈ Q[Y] : f(p) ∈ alg.coneX(Z,P)} .

In this paper it will be useful to define a common generalization algebraic
cones and convex polyhedra, which we call a algebraic polyhedra. We say that a
set of polynomials R ⊆ Q[X] is an algebraic polyhedron if it is the Minkowski
sum of an algebraic cone and a convex polytope2. An algebraic polyhedron can
be represented by a triple 〈Z,P, V 〉 where Z,P, V are finite sets of polynomials;
such a triple represents the algebraic polyhedron

alg.polyhedron (Z,P, V) � alg.cone (Z,P) + conv (V) .

The Arithmetic Theory LIRR and Consequence Finding

We use the following syntax for formulas:

F,G ∈ Formula ::= p ≤ q | p = q | Int(p) | F ∧ G | F ∨ G | ¬F

where p and q denote polynomials with rational coefficients over some set of
variable symbols. We regard the reals R as the standard interpretation of this
language, with Int identifying the subset of integers Z ⊂ R.

Kincaid et al. [18] defined another class of interpretations for the above lan-
guage of formulas called linear integer/real rings. A linear integer/real ring is a
commutative ring equipped with an order and an integer predicate which obeys
certain axioms of the theories of linear real and linear integer arithmetic. The
standard interpretation R is an example of a linear integer/real ring. A “non-
standard” example is the ring Q[x], where p ≤ q iff p precedes q lexicographically
(e.g., −x3 < x < x2 − x < x2 < x2 + x) and Int(p) holds iff p’s coefficients are
integers.

The fact that the theory LIRR of linear integer/real rings (refer to [18] for
an axiomatization) admits such nonstandard (and inequivalent) models means
that the theory is incomplete. Nevertheless it has desirable algorithmic properties
that we will make use of in our ranking function synthesis procedures. We discuss
the limitations brought by LIRR in Example 3.
2 Recalling that a convex polyhedron is the Minkowski sum of a finitely generated

convex cone and a polytope.

Nonlinear Ranking Function Synthesis 435

Since the reals R is a model for LIRR, if we have F |=LIRR G, we also
have F |=R G. However, in this paper we are mostly concerned with entailment
modulo LIRR rather than the standard model, thus we abbreviate F |=LIRR G
to F |= G by default.

For a formula F and a set of variables X, we use

CX(F) � {p ∈ Q[X] : F |= p ≥ 0}

to denote the nonnegative cone of F (over X). For example, given X = {x, y}

CX(x = 2 ∧ y ≤ 1) = alg.cone ({x − 2} , {1, 1 − y}) .

CX(F) is an algebraic cone, and there is an algorithm for computing it (Algo-
rithm 2 of [18]), which we denote by consequence (F,X). We furthermore have
that if 〈Z,P 〉 = consequence (F,X), then 〈Z〉 = {z ∈ Q[X] : F |= z = 0}.

Transition Systems and Transition Formulas

For a set of variables X, we use X ′ � {x′ : x ∈ X} denote a set of “primed
copies”. For a polynomial p ∈ Q[X], we use p′ to denote the polynomial in Q[X ′]
obtained by replacing each variable x with its primed copy x′. A transition
formula over a set of variables X is a formula F whose free variables range
over X and X ′. We use TF(X) to denote the set of all transition formulas over
X. For a transition formula F ∈ TF(X) and real valuation v, v′ ∈ RX , we use
v →F v′ to denote that R, [v, v′] |= F , where R denotes the standard model and
[v, v′] denotes the valuation that maps each x ∈ X to v(x) and each x′ ∈ X ′

to v′(x). A real execution of a transition formula F is an infinite sequence
v0, v1, · · · ∈ RX such that for each i, we have vi →F vi+1; we say that v0, v1, . . .
is an integer execution if additionally each vi ∈ ZX . We say that F terminates
over R if it has no real executions, and F terminates over Z if it has no integer
executions.

Ranking Functions

Let F ∈ TF(X) be a transition formula. We say that r ∈ Q[X] is a polynomial
ranking function (PRF) for F (modulo LIRR) if F |= 0 ≤ r and F |= r′ ≤
r−1. The set of all polynomial ranking functions of F (modulo LIRR) is denoted
PRF(F).

Lemma 1. If PRF(F) = ∅, then F terminates over R.

Proof. If r ∈ PRF(F), then �r(X)� is a ranking function mapping RX into Z

that is well-ordered by a relation �, defined as x � y iff x ≥ 0∧ x ≤ y, where ≤
is the usual order on the integers. ��

436 S. Zhu and Z. Kincaid

We now consider lexicographic termination arguments. We define a quasi-
polynomial ranking function (QPRF) for a transition formula F ∈ TF(X)
(modulo LIRR) to be a polynomial r ∈ Q[X] such that

F |= r − r′ ≥ 0 ∧ r ≥ 0 .

We say that a sequence of polynomials r1, . . . , rn ∈ Q[X] is a dimension-n
weak lexicographic polynomial ranking function (WLPRF) for F (mod-
ulo LIRR) if

r1 ∈ QPRF(F)
r2 ∈ QPRF(F ∧ r′

1 = r1)
...

rn ∈ QPRF

(

F ∧
n−1∧

i=1

r′
i = ri

)

F ∧
n∧

i=1

r′
i = ri |= false .

Lemma 3 sketches the proof that the existence of WLPRF proves termina-
tion of F over Z.

Lemma 2. Let F ∈ TF(X) be a transition formula. If r ∈ Q[X] is a quasi-
ranking function for F , i.e., F |= r′ ≤ r ∧ r ≥ 0, and furthermore F ∧ r′ = r
terminates over the integers, then so does F .

Proof. Since quasi-ranking functions are closed under scaling by nonnegative
scalars, we may assume that r has integer coefficients without loss of generality.
Suppose for a contradiction that F has an infinite integer execution x0, x1,
Since r(xi) ≥ r(xi+1) for all i, and the range of r is restricted to Z≥0, there exists
some n such that r(xn) = r(xn+1) = But this is impossible since F ∧ r′ = r
terminates over the integers. ��
Lemma 3. If a transition formula F admits a WLPRF (modulo the theory
LIRR), then F terminates over Z.

Proof. We prove this by induction on the dimension n of WLPRF of F . The
base case holds vacuously when n = 0 since F is unsatisfiable, and the inductive
case holds by Lemma 2. ��

Note that Lemma 3 holds only for integer executions. Ben-Amram and
Genaim [3] showed that existence of a weak lexicographic linear ranking function
(LLRF) for a topologically closed linear formula implies existence of an LLRF
for loop with real variables, but the argument fails for nonlinear formulas (even
modulo LIRR). Consider the following LIRR transition formula over reals n, z

F � z ≥ 0 ∧ n ≥ 2 ∧ n′ = 2n ∧ z ≥ z′ ∧ nz′ = nz − 1 .

Nonlinear Ranking Function Synthesis 437

Then F |= z ≥ 0 ∧ z ≥ z′, and also F ∧ z = z′ |= false. Thus z does decrease at
every iteration of F and its value is bounded from below. However, F does not
terminate since the rate at which z decreases diminishes too quickly.

3 Polynomial Ranking for LIRR Transition Formulas

In this section, we consider the problem of synthesizing polynomial ranking func-
tions for transition formulas modulo LIRR. Observe that for a transition formula
F ∈ TF(X), the polynomial ranking functions PRF(F) of F can be decomposed
as PRF(F) = Bounded(F)∩Decreasing(F) where Bounded(F) are the bounded
and decreasing polynomials of F , respectively:

Bounded(F) � {p ∈ Q[X] : F |= p ≥ 0}
Decreasing(F) � {p ∈ Q[X] : F |= p′ ≤ p − 1}

Thus, one approach to computing PRF(F) is to compute the sets of bounded
and decreasing polynomials, and then take the intersection.

First, we observe that we can use this strategy to synthesize linear ranking
functions using the primitives defined in Sect. 23.

– The convex polyhedron of degree-1 polynomials of Bounded(F) can be com-
puted as linearize(consequence(F,X)),

– The convex polyhedron of degree-1 polynomials of Decreasing(F) can be com-
puted as follows. Define f : Q[X] → Q[X ∪ X ′] to be the homomorphism
mapping x �→ x − x′, and observe that

Decreasing(F) ∩ Q[X]1 =
{
p ∈ Q[X]1 : F |= f(p) − 1 ≥ 0

}

We proceed by first computing the polyhedron

Q �
{
p + a : p ∈ Q[X]1, a ∈ Q.F |= f(p) + a ≥ 0

}

as linearize(inverse-hom(consequence(F,X ∪ X ′), f)). Then we intersect
Q with the hyperplane consisting of linear polynomials with constant coef-
ficient -1, and then take the Minkowski sum with the singleton {1} to get
Decreasing(F) ∩ Q[X]1.

The essential difficulty of adapting this strategy to find polynomial ranking
functions of unbounded degree is that the function g : Q[X] → Q[X ∪ X ′]
mapping p �→ p′ − p is not a homomorphism (the function f defined above
agrees with g on linear polynomials, but not on polynomials of greater degree).

Our method proceeds as follows. As we will later see in Algorithm 2, we can
adapt the above strategy to compute the intersection of PRF(F) with some
“template language” {a1p1 + · · · + anpn : a1, . . . , an ∈ Q} for fixed polynomials
3 This is essentially a recasting of the classic algorithms linear ranking function syn-

thesis [3] for LRA, restated in our language.

438 S. Zhu and Z. Kincaid

p1, . . . , pn. Our insight is to use the cone generators of Bounded(F) to define
p1, . . . , pn. This yields a ranking function synthesis procedure that, in general,
is sound but incomplete; however, it is complete under the assumption that
F is zero-stable. In Sect. 3.1 we define zero-stability and show that assuming
zero-stability is essentially without loss of generality, and in Sect. 3 we define a
procedure for computing PRF(F) for zero-stable F .

3.1 Zero-Stable Transition Formulas

Consider a transition formula F defined as

F � x = 0 ∧ y ≥ 0 ∧ (x′)2 = y − y′ − 1 .

Observe that F |= x = 0. F has a PRF x2 + y, but it’s hard to find in the sense
that it’s not a linear combination of the generators of Bounded(F) (x, −x, and
y). But when x′ = 0, the loop terminates immediately. Thus we can consider
the restriction F ∧ x′ = 0, which admits the linear ranking function y. The
zero-stable restriction process we introduce below formalizes this process.

We define a transition formula F ∈ TF(X) to be zero-stable if for all
polynomials p ∈ Q[X] such that F |= p = 0, it is the case that F |= p′ = 0.
We give an algorithm for computing the weakest zero-stable transition formula
that entails the original formula in Algorithm 1, and we note that the algorithm
preserves termination behavior (Lemma 4).

1 Function zero-stable-restrict(F)
Input: A transition formula F ∈ TF(X).
Output: The weakest zero-stable transition formula that entails F .

2 〈Z,_〉 ←consequence(F,X);
/* 〈Z〉 = {p ∈ Q[X] : F |= p = 0} */

3 repeat
4 Z′ ← Z;
5 F ← F ∧ ∧

z∈Z z′ = 0;
6 〈Z,_〉 ← consequence(F,X);
7 until 〈Z〉 = 〈Z′〉;
8 return F

Algorithm 1: The zero-stable restriction of a transition formula.

Lemma 4. Let F be an LIRR transition formula, and

F̂ � zero-stable-restrict (F) .

1. Algorithm 1 computes the weakest zero-stable formula that entails F .
2. F terminates iff F̂ terminates.

Nonlinear Ranking Function Synthesis 439

Proof. Let F (k) and Z(k) denote the value of F and Z after the k-th iteration
of the loop in Algorithm 1, respectively.

We first prove 1. Clearly, if Algorithm 1 terminates at some iteration n, then
F̂ = F (n) is zero stable and entails F . It remains to show that (a) F (n) is the
weakest such formula, and (b) the algorithm terminates.

(a) We show by induction that for any zero-stable formula G that entails F , it
is the case that G |= F (k) for all k. The base case holds by assumption, since
G |= F = F (0). Now suppose that G |= F (k), and we wish to show that
G |= F (k+1). Since for each z ∈ Z(k) we have G |= F (k) |= z = 0, and G is
zero-stable, we know G |= z′ = 0. It follows G |= (F (k) ∧ ∧

z∈Z(k) z′ = 0) =
F (k+1).

(b) We show that Algorithm 1 terminates. Suppose that it does not. Then〈
Z(0)

〉
�

〈
Z(1)

〉
� · · · forms an infinite strictly ascending chain of ideals

of Q[X], contradicting Hilbert’s basis theorem.

For 2, if F terminates then F̂ clearly also terminates since F̂ |= F . To show
that if F̂ terminates then F must also terminate, we prove by induction that
for any k ≥ 0, F (k+1) terminates implies that F (k) terminates. We show this
by arguing that any real execution of F (k) is also one of F (k+1). Let v0, v1, . . .
be an execution of F (k). It is sufficient to show that vi →F (k+1) vi+1 for all i.
Since vi+1 →F (k) vi+2, we must have z(vi+1) = 0 for all z ∈ Z(k), and so since
F (k+1) = F (k) ∧ ∧

z∈Z(k) z′ = 0 we have vi →F (k+1) vi+1. ��
Example 1. Consider running Algorithm 1 on a transition formula F

F : x = 0 ∧ y ≥ 0 ∧ y′ = −(x′)2 + y − 1 + z′ ∧ z = x′ .

In the first iteration of the loop, we discover a zero consequence x of F : F |=
x = 0, and we then constrain the transition formula to be F ∧ x′ = 0. Now
since F |= z = x′, we get a new zero consequence z: F ∧ x′ = 0 |= z = 0. We
thus further constrain the transition formula to be F ∧ x′ = 0 ∧ z′ = 0. After
adding these constraints, we can no longer find new zero consequences, and the
resulting transition formula

F ∧ x′ = 0 ∧ z′ = 0 ≡ x = z = x′ = z′ = 0 ∧ y′ = y − 1 ∧ y ≥ 0

is zero-stable.

3.2 Complete Polynomial Ranking Function Synthesis

Assuming that a transition formula is zero-stable allows us to ignore polyno-
mials in the ideal 〈Z〉 = {p ∈ Q[X] : F |= p = 0} when synthesizing polynomial
ranking functions, in the following sense. Suppose there exists r ∈ PRF(F) a
polynomial ranking function for F , where 〈Z,P 〉 = consequence (F,X). We can
write r as r = z + p with z ∈ 〈Z〉 and p ∈ cone(P). Since F is zero-stable, we
have F |= p′ ≤ p − 1, thus some polynomial in cone(P) is decreasing. Thus, it is
sufficient to search for decreasing polynomials in cone(P). Algorithm 2 computes
the complete set of PRF for zero-stable transition formulas, which is illustrated
in the example below.

440 S. Zhu and Z. Kincaid

1 Function prf-zero-stable(F)
Input: A zero-stable transition formula F (X,X ′).
Output: A tuple Z,R, V such that alg.polyhedron (Z,R, V) = PRF(F) of

F .
2 〈Z,P 〉 ← consequence(F,X);
3 Y ← {yp : p ∈ P} be a set of fresh variables;
4 f ← the homomorphism Q[Y] → Q[X] defined by f(yp) = p − p′;
5 〈R′, V ′〉 ← linearize(inverse-hom(consequence(F , X ∪ X ′), f , Y));

/* 〈RL, VL〉 represents the polyhedron of linear terms with positive
coefficients for variables and constant coefficient −1. */

6 RL ← {y : y ∈ Y } , VL ← {−1};
7 〈RY , VY 〉 ← intersect(R′, V ′, RL, VL);

/* Translate polyhedron from Q[Y]1 back to Q[X], and add constant 1. */
8 R ← {r[yp 	→ p]p∈P : r ∈ RY };
9 V ← {1 + v[yp 	→ p]p∈P : v ∈ VY };

10 return 〈Z,R, V 〉
Algorithm 2: Computing PRF for zero-stable transition formulas. We use
notation p[y �→ zy : y ∈ S] to denote substitution of all variables y ∈ S with
zy in a polynomial p.

Example 2. Consider running Algorithm 2 on a (zero-stable) transition formula

F : nx ≥ 0 ∧ n ≥ 0 ∧ n′ = n ∧ x ≥ 0 ∧ z ≥ 1
∧ ((z′ = z − 1 ∧ x′ = x) ∨ (x′ = x − 1 ∧ z′ = z + n − 1)) .

The bounded polynomials of F (Line 1) is the algebraic cone defined by Z = {∅}
and P = {nx, x, n, z − 1, 1}. Let Y = {tnx, tx, tn, tz−1, t1} be a fresh set of
variables, let f be the ring homomorphism such that

f(tnx) = nx − n′x′

f(tx) = x − x′

f(tn) = n − n′

f(tz−1) = (z − 1) − (z′ − 1) = z − z′

f(t1) = 1 − 1 = 0

After Line 5, we obtain the polyhedron of linear polynomials in the inverse
image of the nonnegative cone of F under f , which is defined by the rays
R′ = {tn,−tn, t1,−t1, tnx + tz−1 − 1, 1 − tnx − tz−1} and one vertex V ′ = {0}.
The subset of V-rep(R′, V ′) of polynomials with nonnegative coefficients for vari-
ables and constant coefficient -1 (Line 7), is the polyhedron defined by rays
RY = {tnx, tx, tn, t1}, and vertices VY = {tnx + tz−1 − 1}. Finally, the algorithm
returns the algebraic polyhedron with zeros Z = ∅, positives R = {nx, x, n, 1},
and vertices V = {nx + z}. Thus F has a non-empty set of polynomial ranking
function modulo LIRR (e.g., it contains nx + z), and so we may conclude that
F terminates over the reals.

We are then ready to prove the correctness of Algorithm 2.

Nonlinear Ranking Function Synthesis 441

Theorem 1 (Soundness and completeness of Algorithm 2). For any
zero-stable transition formula F

PRF(F) = alg.polyhedron (prf-zero-inv (F)) .

Proof. Let Z,P, Y, f,R′, V ′, RL, VL, RY , VY , R, V be as in Algorithm 2. Let s :
Q[Y] → Q[X] be the homomorphism mapping yp �→ p (corresponding to the
substitution on lines 8-9). Observe that for any linear combination of the Y
variables q =

∑
p∈P apyp, we have

f(q) =
∑

p∈P

apf(yp) =
∑

p∈P

ap(p−p′) =

⎛

⎝
∑

p∈P

app

⎞

⎠−
⎛

⎝
∑

p∈P

app
′

⎞

⎠ = s(q)−s(q)′ .

By definition (line 5), we have V-rep(RY , VY) =
{
q ∈ Q[Y]1 : F |= f(q) ≥ 0

}

and (line 6) V-rep(RL, VL) = cone(Y)+ {−1}. It follows that the intersection of
these two polyhedra (line 7) is

V-rep(RY , VY) = {q − 1 : q ∈ cone(Y), F |= s(q) − s(q)′ − 1 ≥ 0} .

Then by the construction of R and V (lines 7-8) we have

V-rep(R, V) = {s(q) : q ∈ cone(Y), F |= s(q) − s(q)′ − 1 ≥ 0} .

Letting K = V-rep(R, V), we must show that PRF(F) = 〈Z〉 + K. We prove
inclusion in both directions.

⊆ Let r ∈ PRF(F). Then we have F |= r ≥ 0 and F |= r − r′ − 1 ≥ 0. Since
F |= r ≥ 0 and alg.cone (Z,P) = CX(F), we have we have r = z+p for some
z ∈ 〈Z〉 and p ∈ cone(P). To show r = z + p ∈ 〈Z〉 + K, it is sufficient to
show p ∈ K.
Write p as

(∑
t∈P ctt

)
for some {ct}t∈P ⊆ Q≥0. Let q =

(∑
t∈P ctyt

)
. Then

we have s(q) = p and q ∈ cone(Y), so it is sufficient to show that F |=
s(q) − s(q′) − 1 ≥ 0, or equivalently F |= p − p′ − 1. Since F |= z = 0 and F
is zero-invariant, we have z′ = 0. Since F |= r − r′ − 1 ≥ 0 by assumption, we
have F |= (z + p) − (z′ + p′) − 1 ≥ 0 and so F |= p − p′ − 1 ≥ 0.

⊇ Let r ∈ 〈Z〉+K. Then we may write r as z + k for some z ∈ 〈Z〉 and k ∈ K.
By the definition of K, we have k = s(q) for some q ∈ cone(Y) such that
F |= s(q) − s(q)′ − 1 ≥ 0 ≡ k − k′ − 1 ≥ 0. Since q ∈ cone(Y) we have
k = s(q) ∈ cone(P) and so F |= k ≥ 0 and thus F |= z + k ≥ 0, so r is
bounded. Since F |= k − k′ − 1 ≥ 0, F |= z = 0, and F is zero-stable, we
have F |= (k + z) − (k′ − z′) − 1, so r is decreasing. Since r is bounded and
decreasing, r ∈ PRF(F). ��

Example 3. Even though Algorithm 2 is complete for synthesizing PRFs modulo
LIRR, it does not find all PRFs with respect to the standard model. Consider

F � x ≥ 1 ∧ y ≥ 1 ∧ ((x′ = 2x ∧ y′ = y/2 − 1) ∨ (x′ = x/2 − 1 ∧ y′ = 2y))

442 S. Zhu and Z. Kincaid

which admits the PRF xy since F |=R xy ≥ 1 ∧ x′y′ ≤ xy − 1. However the
algorithm will not find this PRF since we cannot derive F |=LIRR xy ≥ 1
due to the fact that LIRR lacks axioms governing the relationship between
multiplication and the order relation [18].

3.3 Proving Termination Through Polynomial Ranking Functions

This section shows how to combine the previous two subsections into a end-
to-end termination analysis, which is (1) complete in the sense that it succeeds
whenever the input formula has a polynomial ranking function, and (2) monotone
in the sense that if F |= G and the analysis finds a termination argument for G,
then it can also find one for F .

Our analysis is presented in Algorithm 3, which operates by first computing
a zero-stable formula and then invoking Algorithm 2 to check if it has at least
one polynomial ranking function.

1 Function terminate-PRF(F)
Input: An LIRR transition formula F .
Output: Whether F admits a PRF.

2 F̂ = zero-stable-restrict(F);
3 _,_, V = prf-zero-stable(F̂);
4 if V = ∅ then
5 return unknown
6 else
7 return true
Algorithm 3: Proving termination through zero-stable restriction and PRF
synthesis.

Theorem 2 (Completeness). If F has a polynomial ranking function (mod-
ulo LIRR), then Algorithm 3 returns true on F .

Proof. Suppose F has r as a PRF. Since F̂ = zero-stable-restrict (F)
entails F (Lemma 4), r is also a PRF of F̂ . Letting 〈Z,P, V 〉 =
prf-zero-inv (F̂), we have r ∈ alg.polyhedron (Z,P, V) by Theorem 1, and so
V is non-empty, and Algorithm 3 returns true. ��
Example 4. The reverse of Theorem 2 does not hold. Due to zero-stable restric-
tion, Algorithm 2 can even prove termination of loops that do not admit
PRFs even in the standard model. For example, it can prove termination of
F � x = 0∧x′ = 0 since its zero-stable restriction is unsatisfiable. To see that F
does not admit any PRF, suppose for a contradiction that it has r as a PRF.
But this is impossible since there exists x′ such that r(x′) > r(0)− 1 due to the
continuity of r.

Nonlinear Ranking Function Synthesis 443

The completeness of the ranking function synthesis procedures leads to sev-
eral desirable properties of behavior of the resulting termination analysis, one
of which is monotonicity, i.e., if the analysis succeeds on a transition formula
G, then it is guaranteed to succeed on a stronger one F . Further, monotone
termination analysis on loops can be lifted to monotone whole-program analysis
by the framework presented by Zhu et al. [26].

Corollary 1 (Monotonicity). If F |= G and terminate-PRF (G) returns true,
then terminate-PRF (F) returns true.

4 Lexicographic Polynomial Ranking for Integer
Transitions

In this section, we show how to synthesize lexicographic polynomial ranking
functions. The strategy (inspired by [3]) is based on the connection between
WLPRF and quasi-ranking functions. We can describe the set of quasi-ranking
functions as the intersection of the sets of bounded and non-increasing polyno-
mials of F :

QPRF(F) = Bounded(F) ∩ Noninc(F)

where

Bounded(F) � {p ∈ Q[X] : F |= p ≥ 0}
Noninc(F) � {p ∈ Q[X] : F |= p ≥ p′} .

In the following, we first show how to synthesize QPRFs (Sect. 4.1), using which
we are able to synthesize WLPRFs (Sect. 4.2) to prove termination. Similar to
Sect. 3, we need to compute zero-stable restriction of transition formulas to make
sure that the set of ranking arguments found is complete.

4.1 Synthesizing Polynomial Quasi-Ranking Functions

Algorithm 4 finds all QPRFs for a zero-stable transition formula F , using a
variation of our strategy for finding PRFs.

Theorem 3 (Soundness and completeness of Algorithm 4). Suppose F
is a zero-stable transition formula. Then

QPRF(F) = alg.cone (qprf-zero-stable (F)) .

Proof. Let Z,P, Y, f,R, V, PX be as in Algorithm 4. Let s : Q[Y] → Q[X] be the
homomorphism mapping yp �→ p (corresponding to the substitution on line 6),
and observe that for any linear combination of the Y variables q =

∑
p∈P apyp,

we have f(q) = s(q) − s(q)′ (as in Theorem 1). By construction (lines 5-8) we
have

cone(PX) = {s(q) : q ∈ cone(Y), F |= f(q) ≥ 0} ,

444 S. Zhu and Z. Kincaid

1 Function qprf-zero-stable(F)
Input: A zero-stable transition formula F ∈ TF(X).
Output: The algebraic cone of all QPRFs of F .

2 〈Z,P 〉 ← consequence(F,X);
3 Y ← {yp : p ∈ P} be a set of fresh variables;
4 f ← the ring homomorphism Q[Y] → Q[X] defined by f(yp) = p − p′;

/* For any t ∈ cone(R), we have F |= f(t) ≥ 0. */
5 〈R′, V ′〉 ← linearize(inverse-hom(consequence(F , X ∪ X ′), f , Y));

/* 〈RL, VL〉 represents the polyhedron of linear terms with positive
coefficients for variables and constant coefficient 0. */

6 RL ← {y : y ∈ Y } , VL ← {0};
/* The intersection of V-rep(R′, V ′) and V-rep(RL, VL) is a cone. */

7 〈R,_〉 ← intersect(R′, V ′, RL, VL);
8 PX ← {r[yp 	→ p : p ∈ P] : r ∈ R};
9 return 〈Z,PX〉

Algorithm 4: Computing QPRF for zero-stable transitions.

which by the above observation can be written equivalently as

cone(PX) = {s(q) : q ∈ cone(Y), F |= s(q) − s(q)′ ≥ 0} .

Since {s(q) : q ∈ cone(Y)} is precisely cone(P), we have

cone(PX) = {p ∈ cone(P) : F |= p − p′ ≥ 0}

We must show that QPRF(F) = 〈Z〉 + cone(PX). We prove inclusion in
both directions.

⊆ Let r ∈ QPRF(F). Since F |= r ≥ 0 and alg.cone (Z,P) = CX(F), we
must have r = z + p for some z ∈ 〈Z〉 and p ∈ cone(P). It is sufficient to
show that p ∈ cone(PX). Since F is zero-stable and F |= z = 0, we have
F |= z − z′ = 0 and so we must have F |= p − p′ ≥ 0. It follows from the
above that p ∈ cone(PX).

⊇ Since QPRF(F) is a cone it is closed under addition, so it is sufficient
to prove that 〈Z〉 ⊆ QPRF(F) and cone(PX) ⊆ QPRF(F). Since F is
zero-stable, we have 〈Z〉 = {z ∈ Q[X] : F |= z = 0} ⊆ QPRF(F). Since
cone(PX) = {p ∈ cone(P) : F |= p − p′ ≥ 0}, we have that each p ∈ cone(P)
is both bounded (p ∈ cone(P)) and non-increasing (F |= p − p′ ≥ 0), and
thus belongs to QPRF(F). ��

��

4.2 Lexicographic Polynomial Ranking Functions

Given Algorithm 1 for computing zero-stable restrictions and Algorithm 4 for
finding QPRFs, we present Algorithm 5 for proving termination by finding
WLPRFs.

Nonlinear Ranking Function Synthesis 445

1 Function terminate-lprf(F)
2 Z ← ∅;
3 repeat
4 Z′ ← Z;
5 〈Z,P 〉 ← qprf-zero-stable(zero-stable-restrict(F));
6 F ← F ∧ ∧

z∈Z z′ = z ∧ ∧
p∈P p′ = p;

7 until 〈Z〉 = 〈Z′〉;
8 if 1 ∈ 〈Z〉 then
9 return true /* F is unsatisfiable modulo LIRR iff 1 ∈ 〈Z〉 */

10 else
11 return unknown
Algorithm 5: Proving termination by synthesizing lexicographic polynomial
ranking functions.

Ignoring the effects of zero-stable restriction, Algorithm 5 iteratively com-
putes a sequence of algebraic cones that represent all QPRFs, and finally checks
if all transitions in F have been ranked.

Example 5. Consider the transition formula

F : x − xy ≥ 0 ∧ y ≥ 0 ∧ ((x′ = x ∧ y′ = y − 1) ∨ (y ≥ 1 ∧ x′ = x − 1 ∧ y′ = y))

(which has a dimension-2 WLPRF 〈y, x − xy〉). The following table depicts
the execution of Algorithm 5, displaying a (simplified) transition formula F ,
zero polynomials Z, and positive polynomials P after each iteration of the loop,
culminating in F = false, which indicates that F terminates.

F Z P

Before
x − xy ≥ 0 ∧ y ≥ 0

∧ ((x′ = x ∧ y′ = y − 1)

∨ (y ≥ 1 ∧ x′ = x − 1 ∧ y′ = y))

∅ -

Iter 1
x − xy ≥ 0 ∧ y ≥ 0

∧ (y ≥ 1 ∧ x′ = x − 1 ∧ y′ = y))
∅ {y}

Iter 2 false ∅ {y, x − xy}

Theorem 4 (Correctness of Algorithm 5). Algorithm 5 is a terminating
procedure, and for any transition formula F for which terminate-lprf (F) =
true, we have that F terminates over the integers.

Proof. Let F (k), Z(k), P (k) denote the values of F , Z, and P at the beginning
of k-th iteration of the loop in Algorithm 5. We first prove termination of the
algorithm. Suppose the loop does not terminate, then

〈
Z(k+1)

〉
�

〈
Z(k)

〉
for all

iterations k. We have thus obtained an infinite and strictly ascending chain of
ideals in the polynomial ring Q[X ∪ X ′], contradicting Hilbert’s basis theorem.

446 S. Zhu and Z. Kincaid

Now we show that if Algorithm 5 returns true, all integer executions of F
terminate. We prove this by induction on n, the number of times the loop runs
in Algorithm 5. The base case holds when n = 1 since the zero-stable restriction
of F being unsatisfiable modulo LIRR implies that F terminates. Suppose that
the proposition is true for n ≥ 1 and we want to prove the case of (n + 1).
Consider the first iteration of the loop in Algorithm 5. For convenience, we
use F to denote F (1), F̂ to denote the zero-stable restriction of F , and F ′ to
denote F ∧ ∧

z∈Z(1) z′ = z ∧ ∧
p∈P (1) p′ = p. By the inductive hypothesis, F ′

terminates. Suppose for a contradiction that F does not terminate. By Lemma
4 we know F̂ also does not terminate. Define r =

∑
p∈P (1) p, then r ∈ QPRF(F̂)

due to Theorem 3. By Lemma 2, F̂ ∧ r′ = r has an infinite integer execution
x0, x1, . . . since F̂ has one. Let i ∈ N be arbitrary. Since xi →F̂∧r′=r xi+1,
we know that

∑
p∈P (1) p(xi+1) − p(xi) = 0. This is a sum of nonpositive terms

because p(xi+1) ≤ p(xi) holds for any p ∈ P (1) due to p ∈ QPRF(F̂). Thus
for all p ∈ P (1), it holds that p(xi+1) = p(xi). Since F̂ is zero-stable, we have
that z(xi+1) = z(xi) = 0 for all z ∈ Z(1). Thus we have xi →F ′ xi+1 and
subsequently x0, x1, . . . is an infinite integer execution of F ′, contradicting the
inductive hypothesis that F ′ terminates. ��

The following theorem states that even though we operate modulo LIRR,
we have a guarantee on the capability of the ranking functions synthesized that
it is no less powerful than LLRF modulo the standard linear integer arithmetic,
under mild assumptions.

Theorem 5 (Subsumption of LLRFs). If F ∈ TF(X) is a negation-free
formula involving only linear polynomials and F has an LLRF modulo linear
integer arithmetic (LIA), then F ∧ ∧

x∈(X∪X′) Int (x) has a WLPRF modulo
LIRR.

Proof. We first prove a lemma as follows. Let F (Y) be a ground, negation-free,
LIA transition formula over variable set Y . Then for any affine term r over Y ,
if F |=LIA r ≥ 0 then F ∧ ∧

y∈Y Int (y) |=LIRR r ≥ 0. (The proof is similar
to Theorem 8 in [18]. Without loss of generality we assume F is a conjunctive
formula. Suppose F |=LIA r ≥ 0. By [11,24] there is a cutting-plane proof of
r ≥ 0 from F . Since each inference rule in a cutting-plane proof is valid LIRR,
we have that F ∧ ∧

y∈Y Int (y) |=LIRR r ≥ 0.)
Suppose that LIA formula F admits an LLRF r1, . . . , rn of dimension n,

then F |=LIA ri ≥ 0 for each i (bounded), F ∧ ∧i−1
j=1 r′

j = rj |=LIA r′
i ≤ ri for

each i (decreasing), and F ∧ ∧n
j=1 r′

j = rj |=LIA false (coverage). Since the left
hand side of all the implications listed above contains ground linear formulas
without negation and the right hand side all contains linear inequalities (with
false being interpreted as 0 ≤ −1), these implications also hold modulo LIRR
by the lemma. Therefore, r1, . . . , rn is a WLPRF of F . ��

Algorithm 5 is also complete w.r.t. the existence of WLPRFs, since it finds
a WLPRF if there exists one for the transition formula. Moreover, it is optimal
in terms of the dimension of the WLPRF found.

Nonlinear Ranking Function Synthesis 447

Theorem 6 (Completeness of Algorithm 5 w.r.t. WLPRF). If a transi-
tion formula F admits a WLPRF of dimension N , then termination-lprf (F)
returns true and Algorithm 5 terminates in no more than N iterations.

Proof. Suppose that r1, . . . , rN is a WLPRF for F . Let F (k) denote the value
of F after the kth iteration of the while loop in Algorithm 5, with the convention
that if the loop exits after m iterations then F (m) = F (m+1) = · · ·. For any k,
let

〈
Z(k), P (k)

〉
� qprf-zero-stable(zero-stable-restrict(F (k))).

We prove that ri ∈ alg.cone (Z(i), P (i)) for all i, by induction on i. For the
base case, r1 is a quasi ranking function for F and so also a quasi ranking
function for the zero-stable restriction F , and thus r1 ∈ alg.cone (Z(1), P (1)).
For the inductive step, we have rj ∈ alg.cone (Z(j), P (j)) for all j ≤ i, and we
must prove ri+1 ∈ alg.cone (Z(i+1), P (i+1)). By the inductive hypothesis, we have
r1, . . . , ri ∈ alg.cone (Z(i), P (i)). It follows that F (i+1) |= F (i)∧∧i

j=1 r′
j−rj , so by

the (Decreasing) condition of WLPRF, ri+1 is a quasi ranking function of F (i).
It follows that ri+1 is a quasi ranking function of zero-stable-restrict(F (i)),
and thus ri+1 belongs to alg.cone (Z(i+1), P (i+1)).

By the (Coverage) condition of WLPRF, we have that F ∧ ∧N
j=1 r′

j = rj is
unsatisfiable. Since for each j we have

rj ∈ alg.cone (Z(j), P (j)) ⊆ alg.cone (Z(N), P (N))

we must have that F (N) is unsatisfiable, and so F (N) |= 1 = 0, and thus
termination-lprf (F) returns true. ��
Corollary 2 (Monotonicity of Algorithm 5). Let F and G be transition
formulas with F |= G. If termination-lprf (G) = true, then it is guaranteed
that termination-lprf (F) = true.

5 Evaluation

We consider two key research questions in the experimental evaluation. First,
how does the proposed technique perform in proving termination of linear or
nonlinear programs comparing to existing tools, in terms of running time and
the number of tasks solved. We thus compare the proposed techniques with other
sound and static provers for termination. In particular, we compare against
Ultimate Automizer [15,16] and 2LS [9], which are the top two sound tools
in the Termination category in the 12th Competition on software verification
(SV-COMP 2023). We also report a qualitative comparison with the dynamic
tool DynamiTe [19]. Second, we have shown in Theorem 5 that LPRF subsumes
LLRF synthesis for proving termination under certain assumptions, but we would
like to understand the performance overhead of our more general procedure. We
compare with the LLRF synthesis procedure implemented in ComPACT [26].

448 S. Zhu and Z. Kincaid

Implementation. We implement polynomial ranking functions synthesis (Sect. 3)
and lexicographic polynomial ranking function synthesis (Sect. 4) as two mor-
tal precondition operators (i.e., an operator that takes in a transition formula
representing a single loop and outputs sufficient terminating conditions for that
loop) in the ComPACT termination analysis framework [26], also utilizing the
LIRR solver, consequence finding, inverse homomorphism, and nonlinear invari-
ant generation procedures from Kincaid et al. [18]. Given any loop, we first
try synthesizing polynomial ranking functions, and only attempt to synthesize
lexicographic polynomial ranking function upon failure. Our implementation is
denoted by “LPRF” in the tables. We have also combined our technique with
phase analysis, a technique for improving termination analyzers by analyzing
phase transition structures implemented in ComPACT [26].

Environment. We ran all experiments in a virtual machine with Lubuntu 22.04
LTS (kernel version 5.12) with a CPU of Intel Core i7-9750H @ 2.60GHz and
8 GB of memory. The SV-COMP 2023 binaries of Ultimate Automizer v0.2.2-
2329fc70 and 2LS version 0.9.6-svcomp23 are used in the experiments. All tools
were run under a time limit of 2min.

Benchmarks. We collected tasks from the SV-COMP 2023 Termination bench-
marks. Since the focus of the proposed technique is to prove termination of
nonlinear programs, we divide the tasks into two suites according to whether
they require nonlinear reasoning. The linear suite consists of terminating and
nonrecursive integer programs from the Termination-MainControlFlow subcat-
egory in the SV-COMP, excluding the termination-nla folder. The nonlinear
suite contains terminating programs without overflow4 in the termination-nla
folder. This suite was originally presented in [19] and contains only integer pro-
grams.

Comparing Against Sound and Static Analyses. The results of running all experi-
ments are presented in Table 1. For the nonlinear suite, our proposed techniques
for synthesizing polynomial ranking functions and lexicographic ranking argu-
ments perform significantly better than the current static analysis tools in terms
of both number of tasks proved and running speed. Our technique subsumes linear
lexicographic ranking function synthesis for a large class of integer variable pro-
grams, and thus remains competitive for the linear suite. We see that there is
a moderate slowdown comparing to linear lexicographic ranking function synthe-
sis implemented in ComPACT. As a top competitor in the SV-COMP, Ultimate
Automizer proves the most tasks in the linear suite, while requiring more time
to run compared to our techniques (see the cactus plots Figs. 1 and 2).

4 Our technique assumes unbounded integers but 2LS is bit-precise and requires this
constraint.

Nonlinear Ranking Function Synthesis 449

Table 1. Experimental results
on termination verification bench-
marks comparing our technique
(LPRF) with lexicographic linear
ranking function (LLRF) synthesis,
both techniques with phase analysis
(+Φ), as well as ComPACT, Ulti-
mate Automizer, and 2LS. The #c
row counts the number of solved
tasks, t reports total running time
in seconds, excluding timeouts (#
timeouts in parentheses).

#tasks linear nonlinear

171 26

LPRF #c 118 17

t 333.2 (2) 47.8 (0)

LPRF+Φ #c 132 17

t 426.0 (2) 119.5 (0)

LLRF #c 120 3

t 74.6 (0) 161.1 (1)

LLRF+Φ #c 138 4

t 98.6 (0) 263.0 (2)

ComPACT #c 140 4

t 105.7 (0) 288.8 (2)

UAutomizer #c 160 1

t 2423.1 (6) 1282.7 (8)

2LS #c 114 0

t 5399.1 (43) 2748.7 (20)

Fig. 1. Linear benchmarks.

Fig. 2. Nonlinear benchmarks. 2LS cannot
solve any task in the suite and is thus omitted
in the plot.

Comparing Against DynamiTe. The DynamiTe paper [19] presents a dynamic
technique that can guess and verify linear or quadratic ranking functions for non-
linear programs and proposes a benchmark suite termination-nla for termina-
tion of nonlinear programs. Due to hardware constraints, we could not reproduce
the original evaluations for DynamiTe in our evaluation environment. Instead, we
perform a comparison with the results reported in the paper. Since our tool is
automated and sound but can only prove termination, we only count the termi-
nating programs for which DynamiTe can automatically validate the discovered
ranking functions. In the termination-nla suite, DynamiTe can learn the rank-
ing function for most tasks (23 out of 26) but can only automatically validate 7 of
them, whereas our static analysis technique LPRF is able to automatically prove
17. This observation demonstrates that verifying a given ranking function modulo
nonlinear integer arithmetic is not only difficult in theory but remains challenging
for modern arithmetic theory solvers. This provides additional motivation for the
introduction of the weak arithmetic theory LIRR in this work.

450 S. Zhu and Z. Kincaid

6 RelatedWork

Ranking Function Synthesis. For linear loops, there are complete procedures for
synthesizing particular classes of ranking functions such as linear [3,23], lexico-
graphic linear [3,4], multi-phase [2], and nested [20]. For nonlinear loops, it is
usually necessary to start with a template, e.g., polyranking functions based on
a finite tree of differences between terms [5], or limiting the degree of the poly-
nomial ranking functions to be considered [7,19]. Other procedures for synthe-
sizing (bounded-degree) polynomial ranking functions rely on semidefinite pro-
gramming [13] and cylindrical algebraic decomposition [10], but we have not found
implementations for these techniques to compare with experimentally. Chatterjee
et al. [8] synthesizes polynomial ranking supermartingales for probabilistic pro-
grams through Positivestellensatz, which bears some resemblance to our approach
based on LIRR consequence finding. One key advantage of our work comparing
to previous work is the completeness and monotonicity guarantee.

Decision Procedures for Termination. The decision problem for termination of
linear loops was introduced by Tiwari [25]. General procedures for loops over
the reals was developed by Tiwari [25], over the rationals by Braverman [6], and
over the integers by Hosseini et al. [17]. Time complexity for linear and lexi-
cographic linear ranking function synthesis has also been studied [3]. For non-
linear loops, it has been shown that termination of certain restricted classes of
single-path polynomial loops over the reals are decidable, e.g., when the guard
is compact and connected [21], when the loop is triangular weakly nonlinear
[14], when the guard is compact semi-algebraic and the body contains contin-
uous semi-algebraic updates [22]. Additionally, Neumann et al. [22] presents a
non-constructive method for reasoning about termination via polynomial rank-
ing functions of unbounded degree. The authors have not found any work that
handles polynomial loops over integers without assuming real relaxations.

Acknowledgements. This work was supported in part by the NSF under grant num-
ber 1942537. Opinions, findings, conclusions, or recommendations expressed herein are
those of the authors and do not necessarily reflect the views of the sponsoring agencies.

References

1. Asadi, A., Chatterjee, K., Fu, H., Goharshady, A.K., Mahdavi, M.: Polynomial
reachability witnesses via stellensätze. In: PLDI 2021, pp. 772–787. Association
for Computing Machinery, New York (2021). https://doi.org/10.1145/3453483.
3454076

2. Ben-Amram, A.M., Doménech, J.J., Genaim, S.: Multiphase-linear ranking func-
tions and their relation to recurrent sets. In: Chang, B.-Y.E. (ed.) SAS 2019. LNCS,
vol. 11822, pp. 459–480. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-32304-2_22

3. Ben-Amram, A.M., Genaim, S.: Ranking functions for linear-constraint loops. J.
ACM 61(4), 26:1–26:55 (2014). https://doi.org/10.1145/2629488

https://doi.org/10.1145/3453483.3454076
https://doi.org/10.1145/3453483.3454076
https://doi.org/10.1007/978-3-030-32304-2_22
https://doi.org/10.1007/978-3-030-32304-2_22
https://doi.org/10.1145/2629488

Nonlinear Ranking Function Synthesis 451

4. Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In: Etes-
sami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504. Springer,
Heidelberg (2005). https://doi.org/10.1007/11513988_48

5. Bradley, A.R., Manna, Z., Sipma, H.B.: The polyranking principle. In: Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 1349–1361. Springer, Heidelberg (2005). https://doi.org/10.1007/
11523468_109

6. Braverman, M.: Termination of integer linear programs. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 372–385. Springer, Heidelberg (2006).
https://doi.org/10.1007/11817963_34

7. Carbonneaux, Q., Hoffmann, J., Shao, Z.: Compositional certified resource bounds.
In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 467–478. ACM, Portland OR USA, June 2015.
https://doi.org/10.1145/2737924.2737955

8. Chatterjee, K., Fu, H., Goharshady, A.K.: Termination analysis of probabilistic
programs through positivstellensatz’s. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9779, pp. 3–22. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41528-4_1

9. Chen, H.Y., David, C., Kroening, D., Schrammel, P., Wachter, B.: Bit-precise
procedure-modular termination analysis. ACM Trans. Programming Lang. Syst.
40(1), 1–38 (2018). https://doi.org/10.1145/3121136

10. Chen, Y., Xia, B., Yang, L., Zhan, N., Zhou, C.: Discovering non-linear ranking
functions by solving semi-algebraic systems. In: Jones, C.B., Liu, Z., Woodcock,
J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 34–49. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75292-9_3

11. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Dis-
crete Math. 306(10), 886–904 (2006). https://doi.org/10.1016/j.disc.2006.03.009

12. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
Proceedings of the 27th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 415–426. ACM, Ottawa, Ontario, Canada, June
2006. https://doi.org/10.1145/1133981.1134029

13. Cousot, P.: Proving program invariance and termination by parametric abstraction,
Lagrangian relaxation and semidefinite programming. In: Cousot, R. (ed.) VMCAI
2005. LNCS, vol. 3385, pp. 1–24. Springer, Heidelberg (2005). https://doi.org/10.
1007/978-3-540-30579-8_1

14. Hark, M., Frohn, F., Giesl, J.: Termination of triangular polynomial loops. Formal
Methods in System Design, pp. 1–63 (2023)

15. Heizmann, M., et al.: Ultimate Automizer and the CommuHash Normal Form:
(Competition Contribution). In: Tools and Algorithms for the Construction and
Analysis of Systems: 29th International Conference, TACAS 2023, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2023, Paris, France, April 22–27, 2023, Proceedings, Part II, pp. 577–581. Springer,
Heidelberg (2023). https://doi.org/10.1007/978-3-031-30820-8_39

16. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In: Pals-
berg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 69–85. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03237-0_7

17. Hosseini, M., Ouaknine, J., Worrell, J.: Termination of Linear Loops over the Inte-
gers (Track B: Automata, Logic, Semantics, and Theory of Programming). In:
DROPS-IDN/v2/Document/10.4230/LIPIcs.ICALP.2019.118. Schloss-Dagstuhl -
Leibniz Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.ICALP.
2019.118

https://doi.org/10.1007/11513988_48
https://doi.org/10.1007/11523468_109
https://doi.org/10.1007/11523468_109
https://doi.org/10.1007/11817963_34
https://doi.org/10.1145/2737924.2737955
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1145/3121136
https://doi.org/10.1007/978-3-540-75292-9_3
https://doi.org/10.1016/j.disc.2006.03.009
https://doi.org/10.1145/1133981.1134029
https://doi.org/10.1007/978-3-540-30579-8_1
https://doi.org/10.1007/978-3-540-30579-8_1
https://doi.org/10.1007/978-3-031-30820-8_39
https://doi.org/10.1007/978-3-642-03237-0_7
https://doi.org/10.4230/LIPIcs.ICALP.2019.118
https://doi.org/10.4230/LIPIcs.ICALP.2019.118

452 S. Zhu and Z. Kincaid

18. Kincaid, Z., Koh, N., Zhu, S.: When less is more: consequence-finding in a weak the-
ory of arithmetic. Proceedings of the ACM on Programming Languages 7(POPL),
1275–1307 (Jan 2023). https://doi.org/10.1145/3571237

19. Le, T.C., Antonopoulos, T., Fathololumi, P., Koskinen, E., Nguyen, T.: DynamiTe:
Dynamic termination and non-termination proofs. Proc. ACM Programming Lang.
4(OOPSLA), 189:1–189:30 (2020). https://doi.org/10.1145/3428257

20. Leike, J., Heizmann, M.: Ranking templates for linear loops. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 172–186. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-642-54862-8_12

21. Li, Y.: Termination of single-path polynomial loop programs. In: Sampaio, A.,
Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 33–50. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46750-4_3

22. Neumann, E., Ouaknine, J., Worrell, J.: On Ranking Function
Synthesis and Termination for Polynomial Programs. In: DROPS-
IDN/v2/Document/10.4230/LIPIcs.CONCUR.2020.15. Schloss-Dagstuhl - Leibniz
Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.CONCUR.2020.
15

23. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239–251. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-
0_20

24. Schrijver, A.: On Cutting Planes. In: Hammer, P.L. (ed.) Annals of Discrete Math-
ematics, Combinatorics 79, vol. 9, pp. 291–296. Elsevier, January 1980. https://
doi.org/10.1016/S0167-5060(08)70085-2

25. Tiwari, A.: Termination of linear programs. In: Alur, R., Peled, D.A. (eds.) CAV
2004. LNCS, vol. 3114, pp. 70–82. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-27813-9_6

26. Zhu, S., Kincaid, Z.: Termination analysis without the tears. In: Proceedings of
the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, PLDI 2021, pp. 1296–1311. Association for Computing
Machinery, New York, June 2021. https://doi.org/10.1145/3453483.3454110

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3571237
https://doi.org/10.1145/3428257
https://doi.org/10.1007/978-3-642-54862-8_12
https://doi.org/10.1007/978-3-319-46750-4_3
https://doi.org/10.4230/LIPIcs.CONCUR.2020.15
https://doi.org/10.4230/LIPIcs.CONCUR.2020.15
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1016/S0167-5060(08)70085-2
https://doi.org/10.1016/S0167-5060(08)70085-2
https://doi.org/10.1007/978-3-540-27813-9_6
https://doi.org/10.1007/978-3-540-27813-9_6
https://doi.org/10.1145/3453483.3454110
http://creativecommons.org/licenses/by/4.0/

Hevm, a Fast Symbolic Execution
Framework for EVM Bytecode

Dxo1, Mate Soos1(B), Zoe Paraskevopoulou1, Martin Lundfall2,
and Mikael Brockman2

1 Ethereum Foundation, Berlin, Germany
{dxo,mate.soos,zoe.paraskevopoulou}@ethereum.org

2 Independent, Berlin, Germany
mikael@brockman.se

Abstract. We present hevm, a symbolic execution engine for the EVM.
hevm can prove safety properties for EVM bytecode or verify semantic
equivalence between two bytecode objects. It exposes a user-friendly API
in Solidity that allows end-users to define symbolic tests using almost the
same syntax as they would for their usual unit tests. We evaluate our
framework against state-of-the-art tools, using a comprehensive set of
benchmarks. Our empirical findings demonstrate that hevm outperforms
its counterparts, effectively solving a greater number of problems within
competitive time frames.

Keywords: Symbolic Execution · EVM · Smart Contract
Verification · Blockchain

1 Overview

Smart contracts running on the Ethereum Virtual Machine (EVM) currently
secure assets worth hundreds of billions of dollars [6]. Despite the high impact
of failure, losses due to security incidents are still very common (USD 4 billion
across the full Web3 ecosystem in 2022 [15]). Symbolic execution is a rigor-
ous method that evaluates a program using symbolic inputs, exploring the set
of reachable final states. By analyzing these states, one can identify potential
security flaws, and enhance the overall robustness of smart contracts.

In this paper, we present hevm, a Haskell implementation of the EVM that
supports both symbolic and concrete execution. It symbolically analyzes EVM
bytecode, exploring all possible states resulting from (potentially) symbolic
inputs, storage, and environmental parameters. hevm enables scalably proving
the properties of reachable final states, such as the absence of error states like
assertion violations or arithmetic overflows. To prove a property, hevm either
statically determines the final state to be unreachable, or generates SMT queries
for potentially reachable final states and passes them to an SMT solver (Z3 [10],
CVC5 [3], or Bitwuzla [20]) in parallel. The solver can disprove the property,
returning a counterexample, prove that it can never be violated, or timeout.
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 453–465, 2024.
https://doi.org/10.1007/978-3-031-65627-9_22

https://doi.org/10.5281/zenodo.11151905
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65627-9_22&domain=pdf
https://doi.org/10.1007/978-3-031-65627-9_22

454 dxo et al.

Additionally, hevm can (dis)prove the equivalence of two final-state sets origi-
nating from different EVM bytecode sequences, allowing for equivalence checking
between different implementations of the same functionality.

In addition to its command line interface, hevm has a Solidity API that allows
users to write symbolic tests in a language with which they are already famil-
iar. This Solidity API, and its associated Solidity library of assertion helpers
ds-test [24], has been widely adopted by many tools across the ecosystem and
has become the dominant format for testing smart contracts. The format sup-
ports standard unit testing, fuzzing, and symbolic execution. In this interface,
tests are implemented as public functions on Solidity contracts. By convention,
test contracts should inherit from the DSTest contract which provides various
assertion helpers. Concrete tests are functions prefixed with test, while symbolic
tests have a prove prefix.

As an example, consider a simple Token contract (left) and the corresponding
prove_transfer function (right). The contract performs token transfer from the
caller’s account to a receiver, if the balance suffices and if the amount is not 42.
The prove_transfer function checks whether the balance of the sender has been
updated correctly, but it does not account for the edge case.
contract Token {

/* account balances mapping */
mapping(address => uint256) public bal;

/* Transfer amt from the sender ’s account to x */
function transfer(address x, uint256 amt) public {

/* Check if there’s enough balance */
/* Do not make the transfer if amt equals 42 */
if (bal[msg.sender] >= amt && amt != 42) {

bal[msg.sender] -= amt;
bal[x] += amt;

}
}

}

import "lib/test.sol";
import "src/Token.sol";

contract TokenTest is DSTest {
Token token;

function setUp() public {
token = new Token(); }

function prove_transfer(address x, uint256 amt)
public {

uint256 fromBal= token.bal(msg.sender);
token.transfer(x, amt);
assertEq(fromBal - amt , token.bal(msg.sender)); }

}

If this test is part of a foundry [27] project, then running hevm test from the
root automatically discovers and executes the prove_transfer test, returning
the expected counterexample.
Failure: prove_transfer(address ,uint256)

Counterexample:
result: Revert: 0 x4e487b710001
calldata: prove_transfer (0 x0000000000000000000000000000000000001312 ,42)

hevm uses ABI metadata produced by solc to decode inputs that trigger the
assertion violation and displays them in a human-readable format. Optionally,
it can also produce a pretty-printed call trace, including log output from the
ds-test assertion library.

In the rest of this paper, we do a short survey of related work (Sect. 2),
give an overview of the internals of hevm (Sects. 3, 4 and 5), and evaluate hevm
against other state-of-the-art tools (Sect. 6).

2 Related Work

Symbolic execution, introduced in the 1970 s to check for property violations of
software [5,13,16], has garnered significant attention across various domains of

Hevm, a Fast Symbolic Execution Framework for EVM Bytecode 455

software analysis. In this section, we focus on its aspects related to blockchain
security, and refer the interested reader to [2] for an excellent survey of symbolic
execution in general.

In the broader landscape of blockchain security, prior research has primarily
focused on using symbolic execution to validate the reachability of potential
issues detected via static code analysis, as done by Oyente [18], sCompile [7],
and Mythril [19]. These systems analyze Solidity and EVM bytecode for common
vulnerabilities through static code analysis and use symbolic execution to filter
out (some) false positives in order to present higher-quality results to their users.
These symbolic engines tend not to be complete. For example, Oyente specifically
does not fully model the EVM and the underlying blockchain and is known to
report false positives even after filtering through its symbolic execution engine1.
In general, when these symbolic engines cannot prove that a path is unreachable,
they fail-safe by allowing the static code analysis to present a potentially false
positive to the user.

Within the realm of symbolic execution on blockchain platforms, significant
contributions have been made in adapting the technique to the EVM. Notable
examples include the Certora Prover [4,14], EthBMC [11], halmos [23], and
KEVM [12]. These tools all employ a variation of the principles of S2E [8] in
that they perform execution inside a virtual environment at a specific EVM
state and attempt to accurately symbolically execute it wherever possible. These
tools all make use of some over-approximations (e.g. in the SMT encoding of
cryptographic hash functions like SHA3).

Symbolic execution frameworks make extensive use of SMT solvers (e.g.
CVC5 [3], Z3 [10], and Bitwuzla [20]) to determine the reachability of a given
branch of the execution tree. Recently there have been significant advances made
in SMT bit-vector theory solving, with the introduction of local search [21], and
the use of integer reasoning for large bit-width formulas [22].

3 Symbolic Interpreter for the EVM

The EVM. The Ethereum Virtual Machine (EVM) is a stack machine designed
for verifiable, deterministic execution over a shared state. A so-called consensus
protocol is usually used to provide a globally unique ordering of transitions over
this shared state. The EVM state is segmented into accounts. Each account has
a unique 20-byte identifier (i.e. address), and can be controlled by a private
key, or by some EVM bytecode (so-called contract account). Each account has a
balance in Ether (the native currency of Ethereum), and contract accounts each
have their own region of persistent storage. During contract execution, calls to
other contracts generate call frames. Each call frame has its own isolated memory
region (a mutable byte array). The calldata and returndata regions are used
to pass data between parent and child callframes. Gas, a unit for measuring
computational effort, limits and monetizes executions to prevent network abuse.

1 see page 10 regarding the Validator at [18].

456 dxo et al.

The Interpreter. The core of the symbolic interpreter is the VM record, holding
the machine state at each execution step with individual state items stored as
terms of hevm’s internal representation: Expr (Sec. 4). The interpreter will fully
evaluate concrete subcomputations, ensuring that terms remain as concrete as
possible.

The interpreter executes by repeatedly applying the exec1 function to update
the VM record within Haskell’s State monad. This function processes the opcode
at the pc value in the input state and returns an updated state. For efficiency in
resource-intensive tasks, the St [17] monad is used for in-place memory mutation
when hevm can be sure that all relevant state entries are fully concrete.

Branching And Eager Exploration. At potential branch points (usually the
conditional jump instruction JUMPI), hevm clones the VM state and explores both
possible branches. Each branch is executed in parallel using Haskell’s asyn-
chronous runtime. Once the end of execution is reached in each branch, they
are summarized into Expr End’s, retaining only the final externally observable
effects of each branch. hevm skips almost all SMT queries during exploration.
This results in the exploration of provably unreachable paths. Since SMT queries
are usually more costly than path exploration, we have found this to be a perfor-
mance optimization in most cases. Before SMT-based reachability analysis, hevm
applies static simplification passes (constant folding, partial evaluation, etc.)
that are comparatively very cheap to execute, in order to eliminate unreachable
branches during exploration.

Loops, Recursion, and Loop Heuristics. EVM loops are implemented using
the JUMPI instruction and are unrolled by hevm during exploration. A naive
application of our eager approach to exploration would cause infinite loops
(even in loops with a fixed iteration count), as both branches of a JUMPI would
always be explored. hevm tackles this potential issue in the following two ways.
(1) User-supplied maximum iteration bound. In this approach, loops are
unrolled only up until some user-defined depth. This approach guarantees termi-
nation even with unbounded loops, but can lead to incompleteness of exploration
(for which a warning is printed). (2) Automated detection of bounded
loops. In this approach, a loop detection heuristic is applied and whenever the
loop is about to be executed again, an SMT call is made to determine branch
condition satisfiability. If the SMT solver can determine that the loop cannot run
one more time (e.g. because its condition is always falsified after k iterations),
the loop is exited. This approach retains the completeness of exploration while
guaranteeing termination for bounded loops only.

EVM control flow, which implements both branching and looping via JUMPI,
complicates loop detection. A naive approach, classifying repeated visits to the
same JUMPI as a loop, can misidentify repeated branches as loops. hevm over-
comes this by recording the stack content at each JUMPI visit. A subsequent
encounter with the same JUMPI leads to a comparison of valid jump destinations
on the stack. A change in these destinations indicates a branch, while consistency
suggests a loop. This heuristic, based on the assumption that reused basic blocks
have differing return locations, is effective for most Solidity-generated code.

Hevm, a Fast Symbolic Execution Framework for EVM Bytecode 457

Gas. In the context of symbolic analysis of EVM programs, gas accounting is
not usually relevant for assessing most safety properties. The primary concern is
potential branching on the result of the GAS opcode, which allows introspection
into the remaining gas. hevm incorporates a precise gas model for concrete exe-
cution. For symbolic execution, we implement an abstracted gas model. When
executing symbolically, precise gas tracking is omitted. Instead, executing the
GAS opcode introduces a unique symbolic value on the stack to represent the
remaining gas.

Remote State and RPC Calls. hevm supports symbolic execution against
a concrete state from a blockchain node adhering to the Ethereum RPC inter-
face [1]. This enables execution against the live state of networks like Ethereum.
In this mode, when executing the SLOAD/CALL opcodes, hevm makes an RPC call
to a user-defined node to fetch storage values and contract code from the node.
Execution against remote state can be very valuable when testing since it allows
users to easily write tests that exactly mirror the production environment that
their code is planned to be deployed into.

4 Expr, hevm’s Internal Representation

The result of symbolic execution is represented using hevm’s internal represen-
tation, Expr, that encodes final states and the path conditions leading to them.
hevm leverages Haskell’s type system and indexes Expr with the type of expres-
sion it represents, using a so-called generalized algebraic data type (GADT). This
allows hevm to build terms that are well-typed by construction. An expression
e has a type Expr a, where a can be any of the types Byte, EWord, Storage,
Buf, EAddr, EContract, and End, which we explain below.

Expr End: Top-level expressions. At the top-level, an expression is a tree with
if-then-else statements as branches, representing branching points of execution,
and final states as leaves. Final states can be either a successful final state, a
failed state, or a partial execution state.
ITE :: Expr EWord {-- branch condition --} -> Expr End -> Expr End -> Expr End
Success :: [Prop] {-- path conditions --} -> Expr Buf -> Map (Expr EAddr) (Expr EContract) -> Expr End
Failure :: [Prop] {-- path conditions --} -> EvmError -> Expr End
Partial :: [Prop] {-- path conditions --} -> PartialExec -> Expr End

A Success node represents a successful final state and contains the return-
data (of type Expr Buf) and the resulting EVM state, which is a contract map
from (potentially symbolic) contract addresses to the contract’s state (type Map
(Expr EAddr) (Expr EContract)). The state of a contract is a record consist-
ing of its bytecode, storage (of type Expr Storage), balance, and nonce.
C :: { code :: ContractCode , storage :: Expr Storage , balance :: Expr EWord , nonce :: Maybe W64 }

-> Expr EContract

Partial nodes represent cases where hevm prematurely halted execution,
either due to an unsupported execution state (e.g. a symbolic JUMPDEST, or a
call into an address with unknown code), or the loop unrolling bound being
reached.

458 dxo et al.

Each final state is annotated with a list of logical propositions of type [Prop],
representing the path conditions leading there. The tree structure can be flat-
tened to a list of final symbolic states, accumulating the if-then-else conditions
as path conditions in the final state nodes. For example the term
ITE c1 (Success [] b1 st1) (ITE c (Success [] b2 st2) (Failure [] (Error Revert)))

is flattened down to the list:
[Success [PNeg (PEq c1 (Lit 0x0))] b1 st1 , Success [PEq c1 (Lit 0x0), PNeg (PEq c2 (Lit 0x0))] b2 st2 ,
Failure [PEq c1 (Lit 0x0), PEq c2 (Lit 0x0)] (Error Revert)]

Expr Byte and Expr Word: Bytes and 256-bit words. Words can be concrete
or symbolic. Operations on words include arithmetic, boolean, and bitwise oper-
ations. Bytes can be concrete literals or symbolic expressions but hevm does not
have symbolic byte variables. Expr has specific abstract values representing the
block, transaction, or frame context.
Lit :: W256 -> Expr EWord {-- literal words --}
Var :: Text -> Expr EWord {-- symbolic words --}
LitByte :: Word8 -> Expr Byte {-- literal bytes --}
IndexWord :: Expr EWord -> Expr EWord -> Expr Byte
-- Arithmetic operations
Add :: Expr EWord -> Expr EWord -> Expr EWord
... {-- Sub , Mul , Div , SDiv , Mod , SMod , AddMod , MulMod , Exp , SExp , Min , Max --}
-- Boolean operations
LT :: Expr EWord -> Expr EWord -> Expr EWord
... {-- LT , GT , LEq , GEq , SLT , SGT , Eq, IsZero --}
-- bitwise operations
And :: Expr EWord -> Expr EWord -> Expr EWord
... {-- Or , Xor , Not , SHL , SHR , SAR --}
-- Context
TxValue :: Expr EWord
Origin :: Expr EWord
Balance :: Expr EAddr {-- contract address --} -> Expr EWord
...

Expr Buf: Buffers. Memory, calldata, and returndata are all represented as
buffers. A base buffer is either a concrete buffer, represented as a byte string,
or a symbolic buffer variable. Operations on buffers include reading and writing
bytes and words, copying slices, getting the length, and computing the Keccak
cryptographic hash.
ConcreteBuf :: ByteString -> Expr Buf
AbstractBuf :: Text -> Expr Buf
ReadWord :: Expr EWord {- offset -} -> Expr Buf {- buffer -} -> Expr EWord
ReadByte :: Expr EWord {- offset -} -> Expr Buf {- buffer -} -> Expr Byte
WriteWord :: Expr EWord {- offset -} -> Expr EWord {- value -} -> Expr Buf -> Expr Buf
WriteByte :: Expr EWord {- offset -} -> Expr Byte {- value -} -> Expr Buf -> Expr Buf
CopySlice :: Expr EWord {- src offset -} -> Expr EWord {- dst offset -} -> Expr EWord {- size -}

-> Expr Buf {- src buffer -} -> Expr Buf {- dst buffer -} -> Expr Buf
BufLength :: Expr Buf -> Expr EWord
Keccak :: Expr Buf -> Expr EWord

Expr Storage: Storage. An individual contract’s storage maps word-sized
storage addresses to words. Base storage values are either a concrete map or an
abstract variable annotated with the address of the contract it belongs to.
ConcreteStore :: (Map W256 W256) -> Expr Storage
AbstractStore :: Expr EAddr -> Expr Storage
SLoad :: Expr EWord {- key -} -> Expr Storage {- storage -} -> Expr EWord {- result -}
SStore :: Expr EWord {- key -} -> Expr EWord {- value -} -> Expr Storage -> Expr Storage

Expr EAddr: Addresses. An account address (not to be confused with a stor-
age address) is a 160-bit unique identifier created when a new account is added
to the state. For soundness, hevm asserts that all symbolic contract addresses
that are present in the the contracts map are pairwise distinct. the aliasing of
symbolic addresses must be prevented.

Hevm, a Fast Symbolic Execution Framework for EVM Bytecode 459

SymAddr :: Text -> Expr EAddr
LitAddr :: Addr -> Expr EAddr
WAddr :: Expr EAddr -> Expr EWord {-- conversion to words --}

Prop: Assertions. Various assertions, such as path conditions, are represented
in Haskell with the Prop datatype. The datatype includes boolean connectives,
polymorphic equality, and comparison operators over hevm words. This is dis-
tinct from the EVM level boolean operations, which operate on, and return
256-bit Words.
data Prop where

PBool :: Bool -> Prop
PAnd :: Prop -> Prop -> Prop
PEq :: forall a. Expr a -> Expr a -> Prop {-- polymorphic equality --}
PLT :: Expr EWord -> Expr EWord -> Prop
... {-- PNeg , PAnd , PImpl , PLEq , PGT , PGEq --}

4.1 Expr Simplification

The Expr generated by the symbolic interpreter can be verbose with many oppor-
tunities for simplification. To simplify it, the following set of rewrite rules are
applied: (1) Constant folding is a technique that replaces an expression with
its concrete value, if it can be computed e.g. via applying arithmetic opera-
tions such as addition modulo 2256. (2) Canonicalization is performed, mak-
ing sure that wherever possible, the first argument of a 2-argument operator is
always a constant. This helps improve the effectiveness of the following steps.
(3) Partial Evaluation is performed wherever possible. For example Max (Lit
0) (Var"a") is evaluated to Var "a". (4) Arithmetic simplifications are
applied, to reduce the overhead of execution. For example, Sub (Add x y) y is
rewritten to x. (5) Write simplifications help eliminate a memory write in
case there is no corresponding read to the affected memory region or the write
has been overwritten by a subsequent write.

Sets of assertions, expressed as list of Prop’s can also be simplified. Hence,
hevm performs (6) Equivalence propagation, a technique where if e.g. an
Expr forces Var "a" to Lit 5, then Var "a" can be safely replaced in every other
Expr with Lit 5. To make the final expression easier to deal with, hevm also
applies (7) Trivial constraint deletion to remove all constant true constraints,
and remove all constraints but the constant false, in case a constant false is found.

4.2 Example Program in Expr

Figure 1 shows how a simple Solidity program looks in Expr once the Expr has
been simplified. The end-states of the program are represented in orange and
the branch conditions in green. Solidity inserts a reverting end-state when Ether
is sent to the function (i.e. TxValue is larger than zero) since the function is not
marked as payable. The next end-state is due to the require statement that
forces a revert in case the condition val1 < 10 doesn’t hold. Finally, the assert
forces either a revert or a success depending on whether val1 can overflow.

460 dxo et al.

5 SMT Encoding

The core function used for verification in hevm is assertProps which takes a
list of Prop’s (the data type of propositions) and turns it into an SMT2 script
to check its validity. It first declares any necessary symbolic variables (buffers,
stores, addresses, words, EVM context) mentioned in the input and then asserts
the propositions translating Expr and Prop into SMT2. We discuss some subtle
points of this encoding below.

Fig. 1. The result of symbolically executing the call test(uint val1).

Keccak. Solidity uses the Keccak hash function to adapt its high-level storage
model to the EVM’s flat storage structure. For example, for the mapping data
type the value of key k is located at the storage slot keccak256(k||p), where p is
a compile-time constant [28] and || is concatenation. The security of this scheme
relies on the hash function being collision-free. For example, in the following
Solidity contract, absence of injectivity can cause a collision in the storage slot
of a1 and a2.
contract C {

mapping (address => bool) public map;
function withdraw(address a1, address a2) public {

require(a1 != a2);
map[a1] = false; map[a2] = true;
assert(map[a1] != map[a2]); // assertion violation is reachable without assuming injectivity }

}

Hevm, a Fast Symbolic Execution Framework for EVM Bytecode 461

In the SMT encoding, Keccak is an uninterpreted function. To encode injec-
tivity without using quantifiers, hevm gathers all buffers onto which Keccak is
applied and for each possible pair (b1, b2), adds the assertion b1 != b2 →
Keccak(b1) != Keccak(b2). We also need to assert that the “gap” between two
Keccak calls is large enough (currently it is arbitrarily set to be at least 256).
This is important for avoiding collisions between Solidity arrays.

Storage Decomposition. While the encoding above is accurate, the usage of
uninterpreted functions has been empirically identified as a bottleneck in SMT
query execution. A key optimization in hevm is the analysis of storage accesses
to reconstruct the original high-level Solidity storage layout, an idea originally
implemented by halmos. The required analysis is done without making any addi-
tional trust assumptions, i.e. hevm does not utilize the storage layout metadata
made available as part of the compiler output. The inferred structure is used in
SMT queries, assigning separate SMT arrays to each logical storage region and
eliminating Keccak calls in the generated SMT. This optimization is executed
through rewrite rules on Expr, applied only when safe. The current implementa-
tion supports 1-dimensional mappings and arrays, with plans to expand to more
complex nested structures.

Abstraction-Refinement. Abstraction-refinement [9] is a method used to
improve the performance of SMT solvers. Select (often more complicated) parts
of the formula are abstracted into a fresh new variable(s) and satisfiability is
checked. If this new formula is UNSAT, then the original formula must have
been UNSAT too since abstraction only weakened it. If the new formula is SAT,
the solver may have encountered a spurious counterexample. In such cases, hevm
performs so-called refinement to constrain the fresh variables to be (closer to)
the original value.

hevm performs two kinds of abstraction-refinement, one for complex arith-
metic operations, and one for EVM memory operations. In both cases, hevm does
not perform counterexample-guided refinements. Instead it refines all abstracted-
away elements in one go.

Fuzzing over the Symbolic Endstate. Some common properties of interest,
such as those involving complex non-linear arithmetic, can be very hard for an
SMT solver to analyze. If unsafe, counterexamples to these properties can often
be found with little effort via fuzzing. hevm by default applies a short round of
fuzzing over the symbolic endstate of interest before passing it to the solver.

6 Evaluation

Correctness. hevm is tested to pass the standard EVM test suite [26], which
is a set of test vectors to validate the conformance of an EVM client to the
expected semantics. This gives confidence in the concrete part of hevm’s seman-
tics. In addition, hevm comes with a differential fuzzing harness against geth, the
most popular EVM concrete execution client. This fuzzing framework exercises

462 dxo et al.

Table 1. Performance and correctness of different symbolic analysis tools on the bench-
mark set [25]

Correct Unknown False Positives False Negatives

hevm-bitwuzla 134 54 10 1
hevm-z3 129 60 9 1
halmos 114 75 9 1
kontrol 73 61 63 2

both the concrete and symbolic parts of hevm’s semantics. It randomly gen-
erates a bytecode sequence, symbolically executes it, concretizes any abstract
variables, and simplifies it down to a fully concrete result. This concrete result
is then checked against the result produced by geth. Finally, hevm contains a
set of SMT-based semantic fuzzing harnesses to check the various simplification
steps, making sure the semantic meaning of Expr terms is not changed through
simplification.

Performance. To validate the performance of hevm, we collaborated with the
authors of competitive symbolic analysis tooling halmos [23] and KEVM [12]
to produce a set of shared benchmarks publicly available on GitHub [25]. We
hope this benchmark set can become a useful standard that future tooling can
use to validate performance, as well as an interface for feedback from users to
tool developers. It currently contains 199 benchmarks: a mix of conformance tests
(focused on the correctness of a specific EVM feature or opcode) and performance
tests that mimic real-world use cases (ERC20 and ERC721A tokens, the beacon
chain deposit contract, and various CTF challenges). Test harnesses are currently
implemented for hevm, halmos [23], and KEVM (through kontrol [29]), the tools
that support the ds-test format. kontrol and halmos were run with default
settings, hevm was run with both the default settings (using z3) and with its
bitwuzla backend. Each tool was given a 300 s time limit and 110GB memory
limit for each benchmark. The benchmarks were run on an AMD 5950x with
128GB RAM (Table 1).

Results. All tools reported false positives, indicating a counterexample for tests
marked as safe. In the case of kontrol, the majority resulted from differences
in revert handling: kontrol treats all reverts as test failures, while halmos and
hevm only consider reverts from assertion violations as failures. Newer versions
of kontrol have added a mode to align with the hevm and halmos semantics. For
hevm and halmos, the false positives were caused by the various overabstractions
utilized by each tool, e.g. in the SMT encoding of Keccak.

Each tool also reported false negatives, where a test was marked as safe but
should have shown a counterexample. For hevm, this was due to a now-fixed
bug. Another false positive was reported by both halmos and kontrol: both
tools pass concretely sized calldata to the top level test method, meaning they
missed assertions in branches that could only be reached if the input calldata had

Hevm, a Fast Symbolic Execution Framework for EVM Bytecode 463

an abstract size. After discussion with the authors of halmos and kontrol, we
have agreed to standardize on concrete calldata size. kontrol had an additional
false positive due to differences in the concreteness of test inputs (callvalue and
test contract balance). We have not yet reached a consensus on which approach
should be standard in this case.

Fig. 2. CDF plot of the results. False negatives/positives are excluded.

Fig. 3. Pairwise comparison of hevm, halmos, and KEVM. In comparison to halmos, hevm
solves more instances, although can sometimes be slower. In comparison to KEVM, hevm
is both faster and solves more instances.

References

1. JSON-RPC API, Ethereum Development Documentation. https://ethereum.org/
en/developers/docs/apis/json-rpc (2022)

2. Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C., Finocchi, I.: A survey of sym-
bolic execution techniques. ACM Comput. Surv. 51(3), 50:1–50:39 (2018). https://
doi.org/10.1145/3182657

3. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: TACAS
2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99524-9_24

https://ethereum.org/en/developers/docs/apis/json-rpc
https://ethereum.org/en/developers/docs/apis/json-rpc
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24

464 dxo et al.

4. Bernardi, T., et al.: Finding bugs automatically in smart contracts with parame-
terized invariants. WIP, Retrieved July from arxiv (2020)

5. Boyer, R.S., Elspas, B., Levitt, K.N.: SELECT - a formal system for testing and
debugging programs by symbolic execution. In: Shooman, M.L., Yeh, R.T. (eds.)
Proceedings of the International Conference on Reliable Software 1975, Los Ange-
les, California, USA, April 21-23, 1975, pp. 234–245. ACM (1975). https://doi.org/
10.1145/800027.808445

6. Brunny.eth: The market cap of the ethereum ecosystem. https://mirror.xyz/
brunny.eth/-0Jn0dD5868h_WshCirxJPyjBD6hQvqPL18blZrEbsU (2022)

7. Chang, J., Gao, B., Xiao, H., Sun, J., Cai, Y., Yang, Z.: sCompile: critical path
identification and analysis for smart contracts. In: Ait-Ameur, Y., Qin, S. (eds.)
ICFEM 2019. LNCS, vol. 11852, pp. 286–304. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-32409-4_18

8. Chipounov, V., Kuznetsov, V., Candea, G.: The S2E platform: design, implementa-
tion, and applications. ACM Trans. Comput. Syst. 30(1), 2:1–2:49 (2012). https://
doi.org/10.1145/2110356.2110358

9. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) Computer Aided
Verification, pp. 154–169. Springer, Berlin, Heidelberg (2000). https://doi.org/10.
1007/10722167_15

10. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

11. Frank, J., Aschermann, C., Holz, T.: ETHBMC: a bounded model checker for smart
contracts. In: Capkun, S., Roesner, F. (eds.) 29th USENIX Security Symposium,
USENIX Security 2020, August 12-14, 2020, pp. 2757–2774. USENIX Association
(2020). https://www.usenix.org/conference/usenixsecurity20/presentation/frank

12. Hildenbrandt, E., et al.: KEVM: a complete formal semantics of the ethereum
virtual machine. In: 31st IEEE Computer Security Foundations Symposium, CSF
2018, Oxford, United Kingdom, July 9-12, 2018, pp. 204–217. IEEE Computer
Society (2018). https://doi.org/10.1109/CSF.2018.00022

13. Howden, W.E.: Symbolic testing and the DISSECT symbolic evaluation system.
IEEE Trans. Software Eng. 3(4), 266–278 (1977)

14. Hozzová, P., Bendık, J., Nutz, A., Rodeh, Y.: Over approximation of non-linear
integer arithmetic for smart contract verification. In: Proceedings of 24th Interna-
tional Conference on Logic, vol. 94, pp. 257–269 (2023)

15. Immunefi: Immunefi crypto losses report. https://immunefi.com/research/ (2022)
16. King, J.C.: A new approach to program testing. In: Shooman, M.L., Yeh, R.T.

(eds.) Proceedings of the International Conference on Reliable Software 1975, Los
Angeles, California, USA, April 21-23, 1975, pp. 228–233. ACM (1975). https://
doi.org/10.1145/800027.808444

17. Launchbury, J., Jones, S.L.P.: Lazy functional state threads. In: Sarkar, V., Ryder,
B.G., Soffa, M.L. (eds.) Proceedings of the ACM SIGPLAN’94 Conference on Pro-
gramming Language Design and Implementation (PLDI), Orlando, Florida, USA,
June 20-24, 1994, pp. 24–35. ACM (1994). https://doi.org/10.1145/178243.178246

18. Luu, L., Chu, D., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, Vienna, Austria, October 24-28, 2016, pp. 254–269. ACM
(2016). https://doi.org/10.1145/2976749.2978309

https://doi.org/10.1145/800027.808445
https://doi.org/10.1145/800027.808445
https://mirror.xyz/brunny.eth/-0Jn0dD5868h_WshCirxJPyjBD6hQvqPL18blZrEbsU
https://mirror.xyz/brunny.eth/-0Jn0dD5868h_WshCirxJPyjBD6hQvqPL18blZrEbsU
https://doi.org/10.1007/978-3-030-32409-4_18
https://doi.org/10.1007/978-3-030-32409-4_18
https://doi.org/10.1145/2110356.2110358
https://doi.org/10.1145/2110356.2110358
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/978-3-540-78800-3_24
https://www.usenix.org/conference/usenixsecurity20/presentation/frank
https://doi.org/10.1109/CSF.2018.00022
https://immunefi.com/research/
https://doi.org/10.1145/800027.808444
https://doi.org/10.1145/800027.808444
https://doi.org/10.1145/178243.178246
https://doi.org/10.1145/2976749.2978309

Hevm, a Fast Symbolic Execution Framework for EVM Bytecode 465

19. Mueller, B., Luca, D.: Advances in automated EVM smart contract vulnerability
detection and exploitation. In: Proceedings of HITBSecConf2018 (2018)

20. Niemetz, A., Preiner, M.: Bitwuzla at the SMT-COMP 2020. CoRR
abs/2006.01621 (2020). https://arxiv.org/abs/2006.01621

21. Niemetz, A., Preiner, M., Biere, A.: Precise and complete propagation based local
search for satisfiability modulo theories. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9779, pp. 199–217. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-41528-4_11

22. Niemetz, A., Preiner, M., Reynolds, A., Zohar, Y., Barrett, C., Tinelli, C.: Towards
bit-width-independent proofs in SMT solvers. In: Fontaine, P. (ed.) CADE 2019.
LNCS (LNAI), vol. 11716, pp. 366–384. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-29436-6_22

23. Park, D., et. al: Halmos, a symbolic testing tool for EVM smart contracts. https://
github.com/a16z/halmos

24. The Dapphub Team: ds-test (2024). https://github.com/dapphub/ds-test/
25. The Eth SC Comp Authors: Ethereum smart contract analysis benchmarks (2024).

https://github.com/eth-sc-comp/benchmarks/
26. The Ethereum Project: Ethereum tests (2023). https://github.com/ethereum/tests
27. The Foundry Project: foundry (2024). https://github.com/foundry-rs/foundry
28. The Solidity Authors: Mappings and dynamic arrays in solidity (2023). https://

docs.soliditylang.org/en/latest/internals/layout_in_storage.html#mappings-
and-dynamic-arrays

29. Verification, R.: KEVM based symbolic execution of foundry tests. https://github.
com/runtimeverification/kontrol?tab=readme-ov-file

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://arxiv.org/abs/2006.01621
https://doi.org/10.1007/978-3-319-41528-4_11
https://doi.org/10.1007/978-3-319-41528-4_11
https://doi.org/10.1007/978-3-030-29436-6_22
https://doi.org/10.1007/978-3-030-29436-6_22
https://github.com/a16z/halmos
https://github.com/a16z/halmos
https://github.com/dapphub/ds-test/
https://github.com/eth-sc-comp/benchmarks/
https://github.com/ethereum/tests
https://github.com/foundry-rs/foundry
https://docs.soliditylang.org/en/latest/internals/layout_in_storage.html#mappings-and-dynamic-arrays
https://docs.soliditylang.org/en/latest/internals/layout_in_storage.html#mappings-and-dynamic-arrays
https://docs.soliditylang.org/en/latest/internals/layout_in_storage.html#mappings-and-dynamic-arrays
https://github.com/runtimeverification/kontrol?tab=readme-ov-file
https://github.com/runtimeverification/kontrol?tab=readme-ov-file
http://creativecommons.org/licenses/by/4.0/

SolTG: A CHC-Based Solidity Test Case
Generator

Konstantin Britikov1 , Ilia Zlatkin2 , Grigory Fedyukovich2(B) ,
Leonardo Alt3 , and Natasha Sharygina1

1 University of Lugano, Lugano, Switzerland
{konstantin.britikov,natasha.sharygina}@usi.ch

2 Florida State University,, Tallahassee FL, USA
iz20e@fsu.edu, grigory@cs.fsu.edu

3 Ethereum Foundation, Berlin, Germany
leo@ethereum.org

Abstract. Achieving high test coverage is important when developing
blockchain smart contracts, but it could be challenging without auto-
mated reasoning tools. In this paper, we present SolTG, an automated
test case generator for Solidity based on constrained Horn clauses (CHC).
SolTG exhaustively enumerates symbolic path constraints from the con-
tract’s CHC representation and makes calls to the Satisfiability Modulo
Theories (SMT) solver to find input values under which the contract
exhibits the corresponding behavior. Test cases synthesized by SolTG
have the form of a sequence of function calls over concrete values of input
parameters which lead to a specific execution scenario. The tool supports
multiple Solidity-specific features and is capable of exhibiting a high cov-
erage for industrial-grade Solidity code. We present a detailed architec-
ture of SolTG based on the existing translation of smart contracts into
a CHC representation. We also present the experimental results for test
generation on the regression and industrial benchmarks.

1 Introduction

Constrained Horn clauses (CHC) provide a logic-based format for automated ver-
ification which has an advantage over other solutions since it separates modeling
from solving and makes it suitable for various application domains and reusable
across different verification tasks. The CHC-based solutions focus on one hand
on the development of a front-end for the translation of the source code into the
language of logic constraints and on the other hand on the implementation of
the back-end for solving logical queries constructed from the encoding. Various
CHC solvers have been applied to solve verification problems in different domains
(e.g., SeaHorn [10], Korn [8] and TriCera [9] for C, JayHorn for Java [17],
RustHorn for Rust [13], SolCMC [2] and SmartACE [18] for Solidity).

K. Britikov and I. Zlatkin—The authors contributed equally.

c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 466–479, 2024.
https://doi.org/10.1007/978-3-031-65627-9_23

https://doi.org/10.5281/zenodo.10991015
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65627-9_23&domain=pdf
http://orcid.org/0009-0005-7843-7290
http://orcid.org/0000-0001-5329-993X
http://orcid.org/0000-0003-1727-4043
http://orcid.org/0000-0001-5976-5153
http://orcid.org/0000-0002-8872-4913
https://doi.org/10.1007/978-3-031-65627-9_23

SolTG: A CHC-Based Solidity Test Case Generator 467

Recently the CHC-based approach called Horntinuum was proposed for
the exhaustive test case generation for an imperative language without recur-
sion [19]. Given a CHC-encoding of a program, this approach systematically
explores various control-flow paths represented by CHC unrollings and relies on
an off-the-shelf SMT solver to produce exact input values to the program. The
approach is exhaustive in the sense that it terminates only when each branch of
the original program either has a test case or has been proven to be unreachable
(using an automatically generated invariant).

In this paper, we demonstrate the evolution of the ideas described in [19] for
programs in a contract-oriented language, namely Solidity. It relies on a CHC
representation of a smart contract generated by a recent Solidity compiler’s
model checker, SolCMC [2]. The logic encoding of a contract is different from
the encoding of an imperative program, due to the presence of functions that
can be invoked in any order. This complicates the trace enumeration process
which is necessary for the exhaustive test case generation. In our approach, we
explore contract behaviors gradually, from shorter ones to longer ones, and we
keep track of functions and branches that have already been covered.

We present SolTG, a new fully automated tool for Solidity test generation.
SolTG receives a Solidity source file(s), extracts the compiler metadata and the
CHC representation from SolCMC, computes multiple CHC unrollings, and
communicates with the Z3 solver [14] to receive values of function parameters
to compute a test case. Each test case is compiled into a human-readable test
file following the format for a well-known Foundry1 framework to build, test,
fuzz, debug and deploy Solidity smart contracts. Thus it becomes immediately
useful for contract engineers who receive the test coverage reports based on the
contract execution, which cannot be obtained by the other tools, e.g. [18].

SolTG generates tests for real-world contracts fully automatically. We eval-
uated the tool on the benchmarks both from the SolCMC repository [2] and
industrial contracts. All the tests were executed by Foundry on smart contracts
as they were running in the actual blockchain. Our experimentation demon-
strates that SolTG provides a high level of test coverage. Specifically, it reached
71% branch coverage, 81,2% line coverage, and 90,9% function coverage on aver-
age. Furthermore, for 35% of benchmarks, SolTG achieved 100% test coverage
within 5 s of running time. Overall, the evaluation demonstrates the practicality
of SolTG since it provides contract-specific feedback in a small amount of time.

2 Tool Overview

SolTG2 supports most of the Solidity features, it can process smart contracts
with constructors, multiple fields and functions, polymorphism, inheritance of
other contracts or interfaces, etc. It can also handle Solidity-specific constructs
1 https://book.getfoundry.sh.
2 The tool is available as a Python module and can be installed via sudo pip3 install

solTg. The code is available at https://github.com/BritikovKI/aeval/tree/tg-nonlin
(back-end) and at https://github.com/BritikovKI/solidity testgen (front-end).

https://book.getfoundry.sh
https://github.com/BritikovKI/aeval/tree/tg-nonlin
https://github.com/BritikovKI/solidity_testgen

468 K. Britikov et al.

like inherent transaction data, a current state of blockchain, contract state vari-
ables, and a full set of standard Solidity datatypes.

Fig. 1. Architecture of SolTG.

Fig. 2. Role of SolTG in the testing workflow.

Figure 1 gives an overview of the architecture of SolTG. The input is a
source file with a Solidity smart contract, and the output is a set of test files for
Foundry, a framework to build, test, fuzz, debug, and deploy Solidity smart
contracts. The tool relies on the external modules: Solidity Compiler to obtain
the compilation metadata, Solidity Compiler Model Checker, to get the
CHC encoding, and an SMT solver Z3 to actually extract concrete values for
test cases.

SolTG: A CHC-Based Solidity Test Case Generator 469

Figure 2 gives an overview of a higher-level testing process monitored by
engineers, where SolTG plays the central role. The generated test files are
human-readable and are kept until the contract under test has been updated and
are thus used for testing. The test reports in the HTML format are generated by
Foundry that compiles the contracts being tested and executes the test cases.
The internal components of SolTG are defined below.

Preprocessor is responsible for parsing and analyzing the input data. It
receives compilation metadata and the CHC encoding of the Solidity contract.
The preprocessor then parses the compiler’s metadata, determining the complete
list of the contract’s public and external (testable) functions, constructors and
their required inputs. Preprocessor encodes the full set of constructors, func-
tions, and input variables. It then provides them as input together with the
CHC encoding to Symbolic Behavior Enumerator to discover possible execution
scenarios.

Symbolic Behavior Enumerator (see details in Sect. 3) synthesizes sequences
of function calls over tuples of concrete values for function parameters. Over-
all SolTG exhaustively enumerates symbolic representations of different paths
through the contract’s functions and relies on an SMT solver (in our case, Z3)
to extract values of those parameters, until either all branches are covered with
tests or a timeout is reached.

Test Synthesizer receives a set of concrete function arguments for the tests
from the SMT models and corresponding sequences of function calls which are
provided by Symbolic Behavior Enumerator. It processes the inputs and gener-
ates a set of tests stored as a test file for Foundry.

Foundry compiles, executes, performs coverage analysis, and generates a
report for the synthesized test files. Coverage analysis uses classical test cov-
erage metrics such as line/branch/function coverage which are commonly used
by contract engineers. The distinguishing feature of our framework is that the
reported results reflect the exact blockchain response to the tested function calls.

Limitations. Currently SolTG does not support inline assembly code and uses
approximate reasoning about dynamically sized byte arrays and strings. SolTG
does not model the gas consumption during the function execution, and thus it
may generate test cases for some unreachable blocks of source code due to this.

3 Test Case Generation from CHC Encoding

Although SolTG targets smart contracts in Solidity, our test case generation
approach can be lifted to other contract-oriented languages given an encoder for
them to constrained Horn clauses.

3.1 CHC Preliminaries

A constrained Horn clause (CHC) over a set of uninterpreted predicate symbols
R = {r1, . . . , rn}, is a universally quantified first-order formula that matches the
following regular expression:

470 K. Britikov et al.

∀�x, �y.
(
(r1 | . . . | rn)(�x) ∧)∗

ϕ(�x, �y) =⇒ (
(r1 | . . . | rn)(�y) | false)

where �x, �y are vectors of variables, ∗ is Kleene star, the left side of the implication
(called body) may have multiple occurrences of any symbol from R but ϕ does
not have occurrences of any symbol from R. For readability reasons, we omit
writing ∀�x, �y . . . In the following formulas, we introduce indexes (e.g., in �x1 or
�x2) whenever we need to introduce fresh variables.

CHCs are used as an intermediate representation for procedural and object-
oriented programs and allow the verification tools to symbolically enumerate
program behaviors. To formally introduce the process, we define the notion of
CHC unrolling as follows. Given a CHC system S over uninterpreted predicates
R and a rule r1(�x1) ∧ ϕ =⇒ r0(�x0) where r0, r1 ∈ R, an unfolding of r1 is
another CHC rule ψ(�x1, �x2) ∧ ϕ =⇒ r0(�x0) such that:

– for some �x3 and �x4, ψ(�x3, �x4) =⇒ r1(�x3) is a CHC in S, and
– �x2 is a vector of fresh variables that does not overlap with �x1 and �x0.

For a given CHC, an unrolling is an output of any number of consecutive
unfoldings of that rule that does not have uninterpreted predicates in the body.
There could be multiple possible unrollings for a single CHC instance, and we
illustrate it in the next subsection.

3.2 Solidity Smart Contracts to CHCs

We begin with a brief intuitive overview of the CHC encoding employed by
SolTG which is inspired by SolCMC. For demonstration reasons, we simplify
the encoding principles, but we highlight the main ingredients. Each test case-
generation target may operate over the application binary interface and crypto-
graphic functions, transaction data, the blockchain state, balances, and storage
for every contract. We denote their logic representation as �s and assume there
is a fully interpreted formula init(�s) that describes how �s is instantiated before
an instance of the contract under test has been created. We assume the contract
under test has a vector of fields v1, . . . , vn that is symbolically encoded into
some �v that does not overlap with �s. Throughout the lifecycle of an instance
of the contract, it could undergo a (possibly unbounded) number of changes
made by calling the contract’s functions. These are modeled with the help of
an auxiliary uninterpreted predicate fc. Intuitively, it corresponds to a contract
transition system (we will use this notation later) that has two logic rules, for
the initiation and consecution respectively:

init(�s) =⇒ fc(�s,�v) (1)

fc(�s,�v) ∧ summ(�s, �s′, �v, �v′) =⇒ fc(�s′, �v′) (2)

For the second rule, we assume a set of defined functions F . An uninterpreted
predicate summ stands for a summary of an arbitrary function over two vectors
of logic variables �v and �v′ that represent symbolic values of contract’s fields
before and after each function call, respectively.

SolTG: A CHC-Based Solidity Test Case Generator 471

Each f ∈ F has a CFG (Vf , Ef), where Vf is a set of basic blocks and
Ef is a set of control-flow edges, each one connecting two basic blocks. The
dedicated basic block enf is the only one with no incoming edge in Ef , and
the dedicated basic block retf is the only one with no outgoing edge in Ef .
We also assume there exists an encoding function τ : Ef → Prop that trans-
lates each (b1, b2) ∈ Ef into an SSA form and further to a logic formula over
�s, �s′, �v, �v′, �in, �loc, where �in is a vector of input variables to f and �loc is a vector of
fresh local variables (and auxiliary SSA variables created during the encoding).
This formula encodes symbolically the basic block b1 and the condition under
which the control transitions to basic block b2 . The CHC encoding has then a
set of rules for f :

For each control-flow edge (b, retf), the CHC encoding uses an uninterpreted
predicate b:

τ(b, retf) =⇒ b(�s, �s′, �v, �v′, �in, �loc) (3)

Then for each control-flow edge (b1, b2) where b2 �= retf , the CHC encoding
uses uninterpreted predicates b1 and b2:

b2 (�s, �s′, �v, �v′, �in, �loc) ∧ τ(b1, b2) =⇒ b1 (�s, �s′, �v, �v′, �in, �loc) (4)

Lastly, to connect the entry to function f with its summary, it uses unin-
terpreted predicates enf and sum (which is in turn used to connect f with the
contract transition system via rule (2)):

enf (�s, �s′, �v, �v′, �in, �loc) =⇒ summ(�s, �s′, �v, �v′) (5)

We illustrate this encoding using the following example contract with one
field a, a constructor, and two other functions.

1 contract A{

2 uint a;

3 constructor(uint in) {a = in;}

4 function reset () public {a = 0;}

5 function f(uint x, uint y) public {

6 if (a < x) reset ();

7 else a += y;}

8 }

The CHC encoding is as follows. Field a (resp. inputs in, x, and y) is rep-
resented in CHCs by logic variable a (resp. in, x, and y). For simplicity, we let
�s to be empty and init to be true. The entry points to the constructor and two
functions are represented using predicates encon , enreset , and enf , respectively.
The CFG of the constructor (similarly, function reset) is trivial, so it needs one
CHC of form (3) and one of form (5). Since function f contains a conditional
statement, its CFG has basic blocks b1 and b2, and its CHC encoding makes
uses of predicates b1 and b2 in the CHCs of form (3) and (4). For readability,
formula τ(enf , b1) (resp. τ(enf , b2)) is colored purple (resp. blue) and placed

472 K. Britikov et al.

in the box. Lastly, note that τ(b1, retf) has an occurrence of predicate enreset

which corresponds to calling function reset.

true =⇒ fc(a)

fc(a) ∧ summ(a, a′) =⇒ fc(a′)

a′ = in =⇒ encon(a, a′, in)

encon(a, a′, in) =⇒ summ(a, a′)

a′ = 0 =⇒ enreset(a, a
′)

enreset(a, a
′) =⇒ summ(a, a′)

enreset(a, a
′) =⇒ b1(a, a

′, x, y)

a′ = a + y =⇒ b2(a, a
′, x, y)

b1(a, a
′, x, y) ∧ a < x =⇒ enf (a, a′, x, y)

b2(a, a
′, x, y) ∧ a ≥ x =⇒ enf (a, a′, x, y)

enf (a, a′, x, y) =⇒ summ(a, a′)

The boxed formulas are the building blocks to be used in the test-code gen-
eration as described in the next subsection. Purple (resp. blue) color emphasizes
that the formula is used to symbolically encode the then-branch (resp. the else-
branch) of f’s behavior, black color in the box – the code of the constructor.

3.3 Algorithmic Enumeration of Contract Behaviors

SolTG generates tests by symbolic enumeration of the possible behaviors of
the contract under test. Each test case begins with creating an instance of the
contract c (by calling its constructor). Suppose then we wish to observe the
behavior of certain function f which will be expressed as c.f(...) in the test. If
f uses an input, the test case should specify one of the possible concrete values.
A test could have a sequence of multiple functions under certain inputs, each
of which contributes to updating the fields. For the example above, when we
wish to test function f’s behavior, we could (manually) create a test c = A(0);
c.f(0,0). This would however be not enough to test the then-branch of the
conditional in f’s body. For this reason, another test, e.g., c = A(0); c.f(1,0)
would be needed. In general, finding these sequences of function calls and con-
crete inputs is challenging. Our tool effectively generates sequences of function
calls by enumeration over permutations of available functions, and it generates
concrete inputs from the models of satisfiable logic formulas that correspond to
distinct unrollings of CHCs. Specifically, our enumeration has three nested loops
(denoted respectively A, B, and C).

A: Enumerating the lengths of tests At the higher level, the tool sequentially
considers unfoldings of the contract transition system (1)-(2), that allows it to
eventually consider test cases of various lengths. That is, an unrolling of length
one would yield only test cases with constructors, an unrolling of length two –
test cases with a constructor and one function call, etc. More formally, at this
level, the tool performs an unfolding of fc in CHC fc(v)∧summ(v, v′) =⇒ fc(v′)
but keeps summ uninterpreted. For a length n, the tool unfolds fc exactly n + 1
times, for which it uses the consecution rule n times and then the initiation rule
once. As a result, we get a new CHC (called Cn) with n distinct occurrences of
summ in the body.

SolTG: A CHC-Based Solidity Test Case Generator 473

B: Enumerating the functions At the middle level, i.e., for an unrolling of
a fixed length n, the tool considers a sequence of n functions (possibly, with
repetitions), where the first function is necessarily a constructor. Specifically,
given the output from the outer loop, i.e., a CHC Cn with n distinct occurrences
of summ in the body, the tool considers a set of n-tuples Fn and computes |F |n
tuples of uninterpreted predicates T = {enf | f ∈ F}n. It finally computes |F |n
distinct CHCs, each one by the pairwise replacement of the n-tuple of summ
predicates in Cn by an n-tuple from T (with introducing fresh variables for in
and loc whenever needed).

C: Enumerating behaviors for each function At the inner level, for each n-
th function that we wish to test, the tool considers all paths through its CFG.
That is, it receives one of the CHCs constructed at the middle level, and it com-
putes all possible unrollings by recursively eliminating all uninterpreted symbols.
Algorithmically, an unrolling of each function is similar to the approach of [19],
and the tool repeats it n times, for each high-level function call (i.e., that it
synthesizes in the test file). This loop gives a set of logic formulas, each of which
is sent to an SMT solver. Lastly, to enumerate inputs for each function call, we
rely on an SMT solver. Given a formula, the solver targets finding a satisfying
assignment from which the desired input values are extracted.

Pruning test case enumeration Because of the exhaustiveness of enumeration,
the complexity of steps A, B, and C grows exponentially with the number of
contract functions and the points of control-flow divergence. We attempt to
mitigate it using optimizations to prune the search space of the test cases, which
is similar to [19]. First, the initial function to be called in a test case should
always be the constructor of the contract under test. Second, assume there is a
subset F ′ ⊆ F of functions that have already full coverage (thanks to the already
synthesized test cases). Then, given that we need to synthesize a new test case as
a sequence n function calls, in step B, instead of enumerating |F |n possibilities,
we can only enumerate |F |n−2 ∗ |F \ F ′| possibilities (i.e., any function from
f ∈ F ′ could only be called in either 1-st, 2-nd, . . ., or n − 1-th position).

Synthesizing tests Each test case is synthesized from two components: a
sequence of functions created at the end of step B, and a sequence of tuples of
concrete values extracted from an SMT model at the end of step C. In general,
the tool has to create an unrolling of the following CHC, for some f1, f2, . . . ∈ F :

enf1(�s, �s′, �v, �v′, �loc, �in) ∧ enf2(�s′, �s′′, �v′, �v′′, �loc′, �in′) ∧ . . . =⇒ fc(�s(n), �v(n))

Note that the ultimate unrolling still has the occurrences of variables �in and �in′
but no predicates enf1 , enf2 , . . . Thus, if satisfiable, the SMT solver returns a
tuple of values in1, in2, . . . for �in, a tuple of values in’1, in’2, . . . for �in′, etc.
The final test case is then constructed as follows:

f1(in1, in2, . . .); f2(in’1, in’2, . . .); . . .

We illustrate the whole process in our example. The formula encoding calls to
the constructor and function f under the then-branch has the following unrolling:

474 K. Britikov et al.

a′ = in∧ (constructor – first call)
a′ < x∧ (f(x, y) – second call, then-branch)

a′′ = 0 (reset() – nested call)

It is satisfiable with a model in
→ 0, x
→ 1, y
→ 0 . . . Parsing this model and
determining that in represents an input to the constructor and x represents an
input to f gives us the test case c = new A(0); c.reset().

A formula encoding the same function calls but another branch is as follows:

a′ = in∧ (constructor – first call)
a′ ≥ x ∧ a′′ = a′ + y (f(x, y) – second call, else-branch)

It is satisfiable with a model in
→ 0, x
→ 0, y
→ 0 . . . which gives us test case
c = new A(0); c.f(0,0).

These test cases now can be used for the generation of a Solidity test file:

1 contract A_Test is Test {

2 A a0; A a1;

3 function setUp () public { a0 = new A(0); a1 = new A(0); }

4 function test_A_0 () public { a0.f(1, 0); }

5 function test_A_1 () public { a1.f(0, 0); } }

The test file consists of multiple functions, the naming convention for which
follows the Foundry3 standards. SetUp is used to prepare a testing environment
by Foundry. Functions test A 0 and test A 1 incorporate test cases generated
by SolTG above. The test file is human-readable and reusable: it can be used
to generate test coverage right away and/or stored for regression testing later.

4 Evaluation

We evaluated SolTG on 59 benchmarks from the SolCMC repository [2] and
industrial smart contracts which exhibit different Solidity-specific features. All
experiments were conducted on a machine with a 2.3GHz 8-core Intel Core i9
processor and 16 GB RAM running on macOS 13.4. Test coverage data was
collected from the Foundry test reports.

For the given set of benchmarks, SolTG provided a high level of test cov-
erage. In particular, on average, it achieved 71% branch coverage, 81,2% line
coverage, and 90,9% function coverage for a 60-second timeout. A correlation
of the coverage and the chosen timeout for each benchmark is shown in Fig. 3.
The cactus plot has a range of timeouts from 0.1 sec to 60 sec on the x-axis
and the corresponding coverage on the y-axis. Each curve represents multiple

3 https://book.getfoundry.sh/forge/writing-tests.

https://book.getfoundry.sh/forge/writing-tests

SolTG: A CHC-Based Solidity Test Case Generator 475

behaviors of SolTG on a single benchmark w.r.t. different timeouts. The rapid
growth of many curves demonstrates that 1) the prepossessing and initial enu-
meration steps are very fast, and 2) SolTG often needs just a few seconds to
produce many test cases. In fact, SolTG generates the majority of tests within
the first 10 s of the execution. For 21 benchmarks SolTG generated tests that
report on 100% line coverage within the first 5 s. Further, with the increase of
time, SolTG finds additional test cases, but the production expectedly becomes
costlier.

Fig. 3. SolTG performance for the benchmark set with different timeouts.

We investigated the cases when SolTG did not report the full test coverage
within the 60-second timeout. One reason as expected was due to the complexity
of the control structures of the contracts, resulting in less efficient test case
generation. Remarkably, the other reason is the discrepancies between the CHC
encoding and the actual semantics of the contracts.

We evaluated SolTG on multiple industrial Ethereum contracts (e.g.,
Weth.sol, ERC20.sol, VestingWallet.sol), and it exhibited similar perfor-
mance as for SolCMC benchmarks. For example, for Weth.sol4 SolTG gen-
erated tests that produce 100% line and branch coverage within 120 s timeout.
Overall, the results demonstrate the practical value of SolTG in the contract
development process.

4 https://etherscan.io/token/0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2.

https://etherscan.io/token/0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2

476 K. Britikov et al.

5 Related Work

The principles of the CHC encoding of smart contracts that SolTG relies
on originate from [12]. Previously, they enabled the development of the Sol-
CMC [2] model checker built into the Solidity compiler. SolCMC, however,
is not designed to generating test cases for each branch of each function of a
given contract which requires an exhaustive enumeration of path conditions. On
the other side, SolTG does not rely on external CHC solvers and has its own
approach towards the exhaustiveness of the enumeration.

Automated reasoning about Solidity is also enabled by LLVM-based frame-
works SmartACE [18] and SKLEE [11]. SmartACE uses an existing infras-
tructure for model checking, symbolic execution, and fuzzing [5,10], and it does
not translate tests from LLVM back to Solidity. SKLEE targets the detection
of certain types of bugs rather than maximizing the function, branch, or line
coverage. Both tools reason about an LLVM binary which is semantically dif-
ferent from the original contract in Solidity. By contrast, SolTG guarantees
that behavior demonstrated by the generated tests corresponds to the actual
blockchain behavior.

Existing tools for test case generation for Solidity [7,15] follow genetic algo-
rithms and traditional fuzzing. These methods may struggle with corner cases
because they extensively modify some initial random test cases, producing a
significant amount of superfluous tests, e.g., ones that cover the same branch.
By contrast, SolTG is driven by exploitation of the program’s structure, and
specifically, it attempts to cover blocks of code that have not been tested yet.

There exist multiple SMT-based test generation tools like KALI [3], CAVI-
TEST [16] for Java, FuseBMC [1], Symbiotic [6], KLEE [4] for C and other
languages. Many of them produce test cases after some communication with an
SMT solver, but neither of them is based on CHCs. The closest tool to SolTG is
the only CHC-based test case generator, Horntinuum [19], which is, however,
not tailored for smart contracts and assumes that the CHC representation is lin-
ear (i.e., all function calls have to be inlined). Horntinuum alternates invariant
generation and test case generator, and it accelerates the enumeration process
by exploiting the invariants discovered so far. In the future, we would like to
adopt this strategy in SolTG as well.

6 Conclusion

We have presented SolTG, a fully automated Solidity test case generator based
on CHC encoding capable of generating tests for industry-grade smart contracts.
SolTG analyzes the system of nonlinear CHCs provided by SolCMC and syn-
thesizes test cases as a result of exhaustive enumeration of contract behavior and
SMT models, thus avoiding fuzzing. The compiled tests are supported by the
widely used Foundry framework. Our evaluation demonstrates that the tool
is effective in generating test cases on a range of Solidity contracts and can be

SolTG: A CHC-Based Solidity Test Case Generator 477

fully integrated into the development process. In the future, SolTG could ben-
efit from a tighter connection with invariant generation techniques to accelerate
its enumeration process.

Acknowledgments. The USI authors were supported by the Swiss National Science
Foundation grant 200021 185031. The FSU authors were supported by the National
Science Foundation grant 2106949 and by a gift from the Ethereum Foundation.

References

1. Alshmrany, K.M., Menezes, R.S., Gadelha, M.R., Cordeiro, L.C.: FuSeBMC: a
white-box fuzzer for finding security vulnerabilities in C programs. CoRR (2020).
https://arxiv.org/abs/2012.11223

2. Alt, L., Blicha, M., Hyvärinen, A.E.J., Sharygina, N.: Solcmc: Solidity compiler’s
model checker. In: Shoham, S., Vizel, Y. (eds.) Computer Aided Verification - 34th
International Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceed-
ings, Part I. Lecture Notes in Computer Science, vol. 13371, pp. 325–338. Springer
(2022). https://doi.org/10.1007/978-3-031-13185-1 16

3. Bombarda, A., Gargantini, A., Calvagna, A.: Multi-thread combinatorial test gen-
eration with SMT solvers. In: Hong, J., Lanperne, M., Park, J.W., Cerný, T.,
Shahriar, H. (eds.) Proceedings of the 38th ACM/SIGAPP Symposium on Applied
Computing, SAC 2023, Tallinn, Estonia, March 27-31, 2023, pp. 1698–1705. ACM
(2023). https://doi.org/10.1145/3555776.3577703

4. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Draves, R., van Renesse,
R. (eds.) 8th USENIX Symposium on Operating Systems Design and Implementa-
tion, OSDI 2008, December 8-10, 2008, San Diego, California, USA, Proceedings,
pp. 209–224. USENIX Association (2008). http://www.usenix.org/events/osdi08/
tech/full papers/cadar/cadar.pdf

5. Cadar, C., Nowack, M.: KLEE symbolic execution engine in 2019. Int. J.
Softw. Tools Technol. Transf., 867–870 (2021). https://doi.org/10.1007/S10009-
020-00570-3

6. Chalupa, M., Novák, J., Strejcek, J.: Symbiotic 8: parallel and targeted test gen-
eration - (competition contribution). In: Guerra, E., Stoelinga, M. (eds.) Funda-
mental Approaches to Software Engineering - 24th International Conference, FASE
2021, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021,
Proceedings. Lecture Notes in Computer Science, vol. 12649, pp. 368–372. Springer
(2021). https://doi.org/10.1007/978-3-030-71500-7 20

7. Driessen, S.W., Nucci, D.D., Tamburri, D.A., van den Heuvel, W.: Solar: auto-
mated test-suite generation for solidity smart contracts. Sci. Comput. Program.
232, 103036 (2024). https://doi.org/10.1016/J.SCICO.2023.103036

8. Ernst, G.: Korn - software verification with horn clauses (competition contribu-
tion). In: Sankaranarayanan, S., Sharygina, N. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems - 29th International Conference, TACAS
2023, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2022, Paris, France, April 22-27, 2023, Proceedings, Part II. Lec-
ture Notes in Computer Science, vol. 13994, pp. 559–564. Springer (2023). https://
doi.org/10.1007/978-3-031-30820-8 36

https://arxiv.org/abs/2012.11223
https://doi.org/10.1007/978-3-031-13185-1_16
https://doi.org/10.1145/3555776.3577703
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1007/S10009-020-00570-3
https://doi.org/10.1007/S10009-020-00570-3
https://doi.org/10.1007/978-3-030-71500-7_20
https://doi.org/10.1016/J.SCICO.2023.103036
https://doi.org/10.1007/978-3-031-30820-8_36
https://doi.org/10.1007/978-3-031-30820-8_36

478 K. Britikov et al.

9. Esen, Z., Rümmer, P.: Tricera: Verifying C programs using the theory of heaps. In:
Griggio, A., Rungta, N. (eds.) 22nd Formal Methods in Computer-Aided Design,
FMCAD 2022, Trento, Italy, October 17-21, 2022, pp. 380–391. IEEE (2022).
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2 45

10. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The seahorn verification
framework. In: Kroening, D., Pasareanu, C.S. (eds.) Computer Aided Verification
- 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-
24, 2015, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9206, pp.
343–361. Springer (2015). https://doi.org/10.1007/978-3-319-21690-4 20

11. Jain, N., Kaneko, K., Sharma, S.: SKLEE: A dynamic symbolic analysis tool for
ethereum smart contracts (tool paper). In: Schlingloff, B., Chai, M. (eds.) Software
Engineering and Formal Methods - 20th International Conference, SEFM 2022,
Berlin, Germany, September 26-30, 2022, Proceedings. Lecture Notes in Computer
Science, vol. 13550, pp. 244–250. Springer (2022). https://doi.org/10.1007/978-3-
031-17108-6 15

12. Marescotti, M., Otoni, R., Alt, L., Eugster, P., Hyvärinen, A.E.J., Sharygina, N.:
Accurate smart contract verification through direct modelling. In: Margaria, T.,
Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verification and Val-
idation: Applications - 9th International Symposium on Leveraging Applications of
Formal Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings,
Part III. Lecture Notes in Computer Science, vol. 12478, pp. 178–194. Springer
(2020).https://doi.org/10.1007/978-3-030-61467-6 12

13. Matsushita, Y., Tsukada, T., Kobayashi, N.: RustHorn: CHC-based verification
for rust programs. ACM Trans. Program. Lang. Syst. 43(4), 15:1–15:54 (2021).
https://doi.org/10.1145/3462205

14. de Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan,
C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems, 14th International Conference, TACAS 2008, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceedings. Lecture Notes in Com-
puter Science, vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/
978-3-540-78800-3 24

15. Olsthoorn, M., Stallenberg, D.M., van Deursen, A., Panichella, A.: SynTest-
Solidity: automated test case generation and fuzzing for smart contracts. In: 44th
IEEE/ACM International Conference on Software Engineering: Companion Pro-
ceedings, ICSE Companion 2022, Pittsburgh, PA, USA, May 22-24, 2022, pp. 202–
206. ACM/IEEE (2022). https://doi.org/10.1145/3510454.3516869

16. Peña, R., Sánchez-Hernández, J., Garrido, M., Sagredo, J.: SMT-based test-case
generation and validation for programs with complex specifications. In: López-
Garćıa, P., Gallagher, J.P., Giacobazzi, R. (eds.) Analysis, Verification and Trans-
formation for Declarative Programming and Intelligent Systems - Essays Dedicated
to Manuel Hermenegildo on the Occasion of His 60th Birthday. Lecture Notes in
Computer Science, vol. 13160, pp. 188–205. Springer (2023). https://doi.org/10.
1007/978-3-031-31476-6 10

17. Rümmer, P.: Jayhorn: a java model checker. In: Murray, T., Ernst, G. (eds.) Pro-
ceedings of the 21st Workshop on Formal Techniques for Java-like Programs,
FTfJP@ECOOP 2019, London, United Kingdom, July 15, 2019. p. 1:1. ACM
(2019). https://doi.org/10.1145/3340672.3341113

https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_45
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-031-17108-6_15
https://doi.org/10.1007/978-3-031-17108-6_15
https://doi.org/10.1007/978-3-030-61467-6_12
https://doi.org/10.1145/3462205
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/3510454.3516869
https://doi.org/10.1007/978-3-031-31476-6_10
https://doi.org/10.1007/978-3-031-31476-6_10
https://doi.org/10.1145/3340672.3341113

SolTG: A CHC-Based Solidity Test Case Generator 479

18. Wesley, S., Christakis, M., Navas, J.A., Trefler, R.J., Wüstholz, V., Gurfinkel, A.:
Verifying solidity smart contracts via communication abstraction in smartace. In:
Finkbeiner, B., Wies, T. (eds.) Verification, Model Checking, and Abstract Inter-
pretation - 23rd International Conference, VMCAI 2022, Philadelphia, PA, USA,
January 16-18, 2022, Proceedings. Lecture Notes in Computer Science, vol. 13182,
pp. 425–449. Springer (2022). https://doi.org/10.1007/978-3-030-94583-1 21

19. Zlatkin, I., Fedyukovich, G.: Maximizing branch coverage with constrained horn
clauses. In: TACAS 2022. LNCS, vol. 13244, pp. 254–272. Springer, Cham (2022).
https://doi.org/10.1007/978-3-030-99527-0 14

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-94583-1_21
https://doi.org/10.1007/978-3-030-99527-0_14
http://creativecommons.org/licenses/by/4.0/

Interactive Theorem Proving Modulo
Fuzzing

Sujit Kumar Muduli(B) , Rohan Ravikumar Padulkar , and Subhajit Roy

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur, Kanpur, India

smuduli@cse.iitk.ac.in

Abstract. Interactive theorem provers (ITPs) exploit the collabora-
tion between humans and computers, enabling proof of complex the-
orems. Further, ITPs allow extraction of provably correct implemen-
tations from proofs. However, often, the extracted code interface with
external libraries containing real-life complexities—proprietary library
calls, remote/cloud APIs, complex models like ML models, inline assem-
bly, highly non-linear arithmetic, vector instructions etc. We refer to such
functions/operations as closed-box components. For such components, the
user has to provide appropriate assumed lemmas to model the behavior
of these functions. However, we found instances where these assumed
lemmas are inconsistent with the actual semantics of these closed-box
components. Hence, even correct-by-construction code extracted from
an ITP may still behave incorrectly when interfaced with such closed-box
components.

To this end, we propose StarFuzz, that allows the F� interactive the-
orem prover to provide better end-to-end assurance on the application—
even when interfaced with the closed-box components. Under the hood,
StarFuzz rides on Sādhak, an SMT solver that combines fuzz test-
ing to allow satisfiability checking over closed-box components. On the
F� library that includes external implementations in OCaml, StarFuzz
discovered four bugs—one bug that revealed an error on the assumed
lemmas for a closed-box function, and three bugs in the external imple-
mentations of these components.

1 Introduction

Interactive theorem provers (ITPs) have been immensely successful in assist-
ing/checking mathematical proofs, including those pertaining to properties of
complex hardware/software systems. ITPs benefit from a synergistic human-
computer collaboration: humans provide the necessary “intuitions” about the
problem (eg. invariants) while the computer attempts to complete and check the
proof. This allows ITPs to solve problems that are beyond automated theorem
provers (like SMT solvers). In recent years, ITPs have been effective in build-
ing large-scale verified systems, such as secure TLS1.3 record layer [4], secure
parser [22], compilers [17,18], and OS microkernels [14]. Not only do such verified
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 480–493, 2024.
https://doi.org/10.1007/978-3-031-65627-9_24

https://doi.org/10.1109/5.771073
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65627-9_24&domain=pdf
http://orcid.org/0000-0002-3506-6742
http://orcid.org/0009-0004-6544-3918
http://orcid.org/0000-0002-3394-023X
https://doi.org/10.1007/978-3-031-65627-9_24

Interactive Theorem Proving Modulo Fuzzing 481

systems assure robustness in deployment, they also provide important guarantees
on the system implementation.

Interactive theorem provers allow a human user to interactively complete a
proof with machine assistance. Further, if one can prove the validity of a speci-
fication, ITPs allow the extraction of provably correct implementations. Modern
ITPs provide code backend for a variety of target languages: Coq allows extrac-
tion to OCaml, Haskell or Scheme language; F� allows extraction to OCaml, F#,
C, Wasm or assembly.

For verification of programs, ITPs need the complete formal semantics for all
program components. However, real-life programs often contain program compo-
nents whose semantic definitions are not available. For example, an implemen-
tation may use proprietary library calls, remote/cloud APIs, complex models
like ML models, inline assembly, non-linear arithmetic, vector instructions, and
external function calls where the implementation of certain operations/functions
are either not available or too complex to be handled by the verifier. However,
these components can be executed, and hence, available as oracles—one can
pose an input query and observe their responses. We refer to such components
as closed-box components.

Currently, closed-box components are handled with the user assuming rel-
evant lemmas about them. However, the assumed lemmas may be inconsistent
with the actual implementation, leading to two possible problems:

– the assumed specification of the closed-box components (in form of the admit-
ted lemmas) can be incorrect: as the prover’s proof is based on the assumed
lemmas, the proof is, then, invalid;

– the implementation of the closed-box box components (that is not available
to the ITP) is faulty: in this case, the implementation extracted from the ITP
will be faulty when linked and executed with the closed-box components.

In this work, we propose StarFuzz as a framework that allows an Inter-
active Theorem Prover to construct almost correct proofs over the end-to-end
application (including closed-box libraries). StarFuzz uses the F� prover [25]
to interactively construct proofs over the program components whose definitions
are available. For the closed-box components, StarFuzz constructs a relevant
verification condition including the closed-box components, and uses a fuzzing-
enabled SMT solver, Sādhak [19], to reason over such closed-box functions.
Hence, StarFuzz attempts to provide guarantees beyond what conventional
ITPs provide—that the implementation extracted from the ITP will (most likely)
demonstrate the expected behavior even after being linked to the required closed-
box components.

We have used StarFuzz to validate F� specifications for many library calls
that are used in proofs; for each of these calls, certain lemmas were assumed to
construct the proofs. These library calls are heavily optimized implementations.
The code extracted from F� proofs is finally linked against these libraries to build
the final applications. StarFuzz could discover 4 violations in these libraries and
proofs: one of them a case of an incorrect specification for a closed-box function,

482 S. K. Muduli et al.

in the other three cases, the implementation of the closed-box components was
faulty. Three of these bugs were unknown bugs.

This work makes the following contributions:

– We propose that fuzz engines should be integrated within ITPs to validate
the assumed lemmas over closed-box components;

– We build StarFuzz, a framework that uses a synergy of proofs and tests for
almost-correct verification of applications with closed-box components;

– We have used StarFuzz on F� libraries and have been able to discover mul-
tiple, hitherto unknown, faults.

2 Overview

2.1 Introduction to F�

F� [25] is a general purpose proof-oriented functional programming language that
is used to write pure functional and effectful programs. Theorems and program
specifications can be written in F� using dependent, refinement types.

Syntax. F� follows an OCaml-like syntax structure for defining functions
(proofs). Functions can be typed via the arrow-type: val incr: int -> int ;
here, the function incr takes a value of the int type and, also, returns an
int value. The let binding can be used to write named expressions, e.g.,
let incr = fun (x: int) -> x + 1 .

Further, refinement predicates can be added to existing types to allow a ref-
ined specification. For example, in val incr : x:int{x > 0} -> y:int{y > 1} ,
(x > 0) and (y > 1) are type refinements for parameters x and y over base
type int. One may also interpret these type refinements over input and outputs
of a function as pre- and post-conditions of the function incr. F� also provides
syntactic sugar, the keyword Lemma, to specify properties or proof obligations. For
example, inc_lemma below uses the requires and ensures predicates to describe
a lemma.

1 val incr_lemma: (x:int) -> (y:int) ->
2 Lemma ((requires (x > 0)) (ensures (y > 1)))

Code Extraction. F� allows the extraction of verified code from F� proofs
to target languages like OCaml, F#, Wasm, or C. For code extraction, one can
invoke F� with the target language name passed with –codegen command-line
argument.

1 module Incr
2 let incr (x: int {x > 0}) : (y: int {y = x + 1}) = x + 1

Listing 1.1. F� implementation of incr along with the specification.

Interactive Theorem Proving Modulo Fuzzing 483

1 open Prims
2 let (incr : Prims .int -> Prims .int) = fun x -> x + Prims .int_one

Listing 1.2. OCaml code extracted from Listing 1.1 after verification. Prims
OCaml module is provided by F� which can be linked to the program to run.

2.2 F� with Closed-Box Functions

Functions that are only available in some external modules or are too complex
for verification, can still be used in F� proofs. However, we need to assume the
necessary specification of such functions to be able to complete the proofs. For
example, in Listing 1.4, char_of_int is an external function that is used within
the F� function load_string; a lemma that summarizes the behavior of this
function is shown in Listing 1.5. Such closed-box functions may have bugs, either
in their specification (i.e. assumed lemmas in F�), or in their implementation
(in the external module). Hence, verification of a module within F� does not
necessarily imply that the verified code is indeed correct after it it linked with
the external module with the closed-box functions.

We discuss some bugs that StarFuzz was able to uncover in the F� library.

Example 1. (Bug in Specification). Listing 1.41 is taken from the F� library.
The function load_string reads a string of fixed length from a buffer, and uses
the closed-box function Char.char_of_int. The lemma assumed about the imple-
mentation of this closed-box function is shown in Listing 1.5: it says that the
Char.char_of_int function would work correctly for all integers less than 221,
and must generate a UTF-8 char value in an unsigned 32-bit integer.

StarFuzz uncovered a bug in this specification. Investigating further, we
found that the char_of_int implementation eventually ends up calling a external
OCaml module batUChar2 which is outside of the F� library. As we can see from
the batUChar module code snippet in Listing 1.3, a valid UTF character should
be in the range [U+0000, U+D7FF] to [U+E000, U+10FFFF]. However, the given
allowed range of the input [0, 221] in Listing 1.5 is beyond the valid range.

Understandably, as F� believes the lemmas provided by the users, it was
unable to detect this issue. Further, any proofs that used this lemma were invalid
(as the lemma was invalid). Clearly, the refinement type for the input (i.e., pre-
condition) in Listing 1.5 is weak. To fix the problem, this precondition can be
strengthened (shown in Listing 1.6).

The F� proofs completed successfully with the new lemma (Listing 1.5 replac-
ing Listing 1.6) for char_of_int, now providing assurance that not only is the

1 https://github.com/FStarLang/FStar/blob/e4cdebfa1d7aa45404650108b177dac3
37251d12/examples/old/tls-record-layer/crypto/Crypto.Test.fst#L116.

2 https://github.com/ocaml-batteries-team/batteries-included/blob/
77bd2aace3e16499ec71bf544270e169656c3c23/src/batUChar.ml#L51-L55=.

https://github.com/FStarLang/FStar/blob/e4cdebfa1d7aa45404650108b177dac337251d12/examples/old/tls-record-layer/crypto/Crypto.Test.fst#L116
https://github.com/FStarLang/FStar/blob/e4cdebfa1d7aa45404650108b177dac337251d12/examples/old/tls-record-layer/crypto/Crypto.Test.fst#L116
https://github.com/ocaml-batteries-team/batteries-included/blob/77bd2aace3e16499ec71bf544270e169656c3c23/src/batUChar.ml#L51-L55=
https://github.com/ocaml-batteries-team/batteries-included/blob/77bd2aace3e16499ec71bf544270e169656c3c23/src/batUChar.ml#L51-L55=

484 S. K. Muduli et al.

1 · · ·
2 (* valid range: U+0000..U+D7FF and U+E000..U+10FFFF *)
3 let chr n =
4 if (n >= 0 && n <= 0xd7ff) (n >= 0xe000 && n <= 0x10ffff)
5 then n
6 else raise Out_of_range
7 · · ·

Listing 1.3. OCaml code snippet from batUChar shows the valid range of UTF-
8 character code. If the input is not in valid range, then throws Out_of_range
exception.

1 let rec load_string l buf =
2 if l = 0ul then "" else
3 //16-09-20 we miss String.init, proper refinements, etc
4 let b = UInt8.v (Buffer.index buf 0ul) in
5 let s = String.make 1 (Char.char_of_int b) in
6 let t = load_string (l -^ 1ul) (Buffer.sub buf 1ul (l -^ 1ul)) in
7 String.strcat s t

Listing 1.4. Code that leads to error for char_of_int specification. This exam-
ple code is taken from F� Crypto.Test.fst of F� GitHub repo. char_of_int is
closed-box function whose definition is not available.

implementation that is exposed to F� safe, but it is also higly likely to interface
well with the functions in the external libraries (eg. batUChar). It is extremely
hard for verification engineers to come up with a good enough specifications for
such instances and such interfacing issues with external libraries is quite com-
mon, thereby motivating the use of StarFuzz for specification validation of
external libraries. This example was taken from an older version of F�; the same
fix (Listing 1.6) appears in a subsequent commit.

1 val char_of_int: (i: nat{i < pow2 21}) -> Tot char

Listing 1.5. Weak specification for FStar_Char.char_of_int.

1 val char_of_int : (i: nat{(i < 0xd7ff) \/
2 (i >= 0xe000 /\ i <= 0x10ffff)}) -> Tot char

Listing 1.6. Strengthened FStar_Char.char_of_int specification.

Interactive Theorem Proving Modulo Fuzzing 485

1 val shift_left : v:int -> i:nat -> Tot (res:int{res = v * (pow2 i)})

Listing 1.7. Specification of closed-box function shift_left from
FStar.Math.Lib.

1 let (shift_left : Prims .int -> Prims .nat -> Prims .int) =
2 fun v -> fun i -> v * (Prims .pow2 i)

Listing 1.8. OCaml code for closed-box function of shift_left which has to be
linked.

Example 2. (Bug in Implementation). Listing 1.7 is the lemma assumed
for the closed-box function shift_left in the F� library. The implementation of
this function is in OCaml and is available in Listing 1.8. While the specification
seems to capture the expected behavior of this function, StarFuzz discovers an
interesting test input, (0, 549755813888), for which the function is expected
to be produce 0 after evaluation, but it fails with an out-of-memory error.

The verified-by-construction code extracted from F�, when linked with this
implementation of shift_left, is susceptible to crashing due to shift_left. In
this case, though the specification is correct, the implementation of the function
in the external module is faulty; again, F� cannot detect this problem as the
implementation is outside the scope of F�.

This issue, reported by StarFuzz, was an unknown bug in the F� library
that had not been discovered earlier. StarFuzz found multiple other, hitherto
unknown bugs, that we discuss in Sect. 4.

3 Tool Architecture and Operation

3.1 Invoking StarFuzz

StarFuzz accepts as input F� files with additional annotations for each closed-
box functions. We assume that the closed-box components are functional, i.e.
given a closed-box component f and two inputs a, b in its domain, (a = b) =⇒
f(a) = f(b). Given an F� program, we can prepare it for StarFuzz by anno-
tating all closed-box (CB) functions with the @starfuzz annotation, followed
by the names of the libraries that contain implementations of these closed-box
and other functions that the closed-box functions depend on. This annotation
must be followed by the F� type of the closed-box function. The syntax of the
@starfuzz annotation is as follows:

1 @starfuzz: <cb-func-name> [lib1, ..., libN]
2 <cb-func-name> <fstar-type>

486 S. K. Muduli et al.

1 @starfuzz: shift_left [FStar_Math_Lib]
2 val shift_left: v:int -> i:nat -> Tot (res:int{res = v * (pow2 i)})
3 @starfuzz: pow2 [Prims]
4 val pow2: x:nat -> y:pos

Listing 1.9. A closed-box function annotated file as given to StarFuzz as
input.

StarFuzz uses this annotation to identify the closed-box functions whose
specification must be validated. For example while validating the closed-box
function shift_left in Listing 1.7 we need to provide the input as shown in
Listing 1.9. The pow2 method used in type refinement of shift_left function
is defined in the Prims module which has to be linked to create the executable.

Fig. 1. Overview of the StarFuzz architecture.

3.2 Architecture

Figure 1 shows the architecture of StarFuzz: the annotated F� file(s) and the
libraries of the closed-box functions are fed to the StarFuzz driver, that dis-
patches two queries:

– The @starfuzz annotations are stripped to create a “pure” F� file which can
be sent to F�;

– The @starfuzz annotations are extracted and passed to our logic compiler.

The logic compiler compiles the F� types into first-order logic formulae. The
compilation process guarantees that the closed-box functions are type-safe if and
only if the resulting formula ϕ is unsatisfiable; we refer to this formula as the
verification condition. Next, the verification condition is checked with an SMT

Interactive Theorem Proving Modulo Fuzzing 487

solver that is capable of handling closed-box constraints, with the associated
libraries made available to it to enable fuzz-based search.

We made a conscious decision to maintain a loose coupling between F� and
StarFuzz: no code changes were needed within F� to integrate it within Star-
Fuzz. It offers two advantages: firstly, it was easier to develop and will be easier
to maintain StarFuzz across changing F� versions. Secondly, this loose cou-
pling allows other theorem provers (like Agda [1], Iris [12] etc.) to be plugged
into StarFuzz with little change to the StarFuzz implementation. We have
plans of extending StarFuzz to support other ITPs in the future.

3.3 Constructing Verification Conditions

Consider an F� type: τ1→τ2→ . . .→τn. Each meta-variable τ in the above
expression either represents a F� primitive type or a refinement type. Primitive
types could be int, char, etc. The refinement types are in the form (x : t{ϕ}) ,
where x is to name the parameter, t is a type and ϕ is a predicate for type
refinement which defines the set of values that x belongs to. In other words an
expression e belongs to the refined type (x : t{ϕ}) iff e is of type t and ϕ [e\x]
is a valid formula. StarFuzz also also supports sub-types of int from F� such
as type nat = x:int{x >= 0} and type pos = x:int{x > 0}. The type refinement
predicate ϕ for nat and pos are kept implicit.

In the StarFuzz’s compiler we have provided rules to translate the above
type annotation of any function to an appropriate SMT constraints, which
is inspired from F� to SMT encoding discussed in [2]. The type annotation
τ1→ τ2 → . . . → τn is translated to the logic expression shown in Eq. (1)
(where T denotes the translation procedure),

T (τ1) ∧ T (τ2) ∧ . . . T (τn−1) ∧ ¬T (τn) (1)

Along with refinement types user can also write the Lemma statements in
F� using requires (pre) and ensures (post) conditions for each function. The
Lemma statement is of form Lemma (requires ϑ) (ensures ϕ) , then we would
like to find violation for the ensures condition by assuming requires i.e. the
satisfiable assignment for the expression: T (ϑ) ∧ ¬T (ϕ).

Lemmas can also be defined without the requires keyword, simply as
Lemma (ϕ) ; then, we test for violation in T (ϕ).

To encode the closed-box functions, we use the recently proposed closed-
box logic fragment [19] that allows us to solve first-order logical formula over
closed-box functions supported by the Sādhak [19] SMT solver. Sādhak needs
the closed-box functions to be declared as closed-box sorts using the keyword
declare-cb in the extended SMTLIB format. For example, the declaration of
closed-box functions shift_left and pow2 in Listing 1.7 is shown below,

1 (declare-cb shift_left ((_ BitVec 64) (_ BitVec 64)) (_ BitVec 64))
2 (declare-cb pow2 ((_ BitVec 64)) (_ BitVec 64))

488 S. K. Muduli et al.

3.4 Solving Verification Conditions

The verification condition constructed above cannot be solved by regular SMT
engines due to the presence of the closed-box functions. For this purpose, we use
the Sādhak SMT solver that is capable of solving constraints over such logic
fragments.

Sādhak employs the CDFL (Conflict-drive Fuzz Loop) algorithm to combine
SMT solving and Fuzzing. Sādhak dispatches the set of constraints that contain
closed-box terms to the fuzz engine, while the remaining constrained are sent to
the SMT engine. The closed-box terms are represented simply as uninterpreted
functions within the SMT engine. The fuzz engine in Sādhak generates a par-
tial model from its constraints and dispatches it to the SMT solver. The SMT
solver searches for a completion of this partial model such that the resulting
model is consistent with its own set of constraints. If such a model is found, the
set of constraints are deemed satisfiable. Otherwise, Sādhak performs a conflict
analysis on the constraints in the SMT solver to discover the reason for unsatis-
fiability; the terms participating in the conflict are sent to the fuzz engine for it
to generate a better partial model. At the same time, the SMT engine caches the
input-output relations over the closed-box functions from the partial model it
had received from the fuzz engine. The fuzz engine, now, prepares a new partial
model that it consistent with its augmented constraint set, and communicates it
back to the SMT engine. This process is repeated, both the SMT solver and the
fuzz engine learning new lemmas in each iteration, till they converge to a model.
Sādhak is sound but not complete—that is, if it terminates with a model, it is
guaranteed to be a solution to the provided constraints, but it may not be able
to find a model or a proof of unsatisfiable due to the presence of a fuzzer in the
loop.

To run the CDFL loop, Sādhak translates logic constraints to program which
is then compiled down to a binary target to be fuzzed after linked with the
libraries of the closed-box functions. Because it uses a fuzzer, Sādhak is sound
but not complete, and termination may not be guaranteed.

For interfacing with F�, we enhance Sādhak with a novel OCaml code gen-
eration backend to the existing C code backend. Generated OCaml code can be
interfaced with closed-box functions that are defined in external OCaml modules
and are called from F� programs. The generated OCaml code is instrumented
with afl-instrument and Crowbar packages. The binary fuzz target is gen-
erated after linking the external modules containing the closed-box functions.
Finally, the generated target binary is then fuzzed with AFL++ [9] fuzzer.

A satisfiying model from Sādhak is reported as a violation of a F� closed-box
function specification under consideration. The user will, then, have to do the
triage to isolate the specification defects by evaluating the closed-box function
against the corresponding specification.

Interactive Theorem Proving Modulo Fuzzing 489

4 Evaluation

We evaluate StarFuzz on 56 specifications from F� library that are used as
external function calls. We validate these specifications against corresponding
OCaml implementations; verified code extracted from F� are linked against these
implementations. Our benchmark suite contains specifications dealing with both
integer and string data types, implemented either as refinement types or lemmas
in F�. The evaluation was performed on Intel Core i7-8700 CPU @3.2 GHz
machine running Ubuntu 18.04 (x86-64) with a timeout of 300 s.

The third violation was found in the concat_length lemma:

1 val concat_length: s1:string -> s2: string ->
2 Lemma ((length (s1 ^ s2)) = (length s1) + (length s2))

In our evaluation of these 56 benchmarks we found around four violations.
Out of these, two have already been discussed in Example 1 and Example 2 of
Sect. 2.2, respectively.

This lemma defines distributive property of the length function from
FString_String module: the sum of the lengths of two input string should
always be equal to the length the concatenated string. However, StarFuzz was
able to find a violation for this lemma for the current implementation of the
function: invoking FStar_String.length ("{\163" ^ "\004") produces output
2, while the expected output is 3—since the string length of "{\163" and "\004"
is 1 and 2, respectively.

The fourth violation was found in the lemma string_of_list_of_string,
which fails for the input "\225".

1 val string_of_list_of_string: (s:string) ->
2 Lemma ((string_of_list (list_of_string s)) = s)

Invoking (list_of_string "\225") returns the character list ['\225'] and
converting the resulting output back to a string with (string_of_list ['\225'])
returns the string "\225\128\128". The lemma string_of_list_of_string expects
string_of_list to be the inverse of list_of_string, however StarFuzz was able
to find this violation for the lemma.

5 Related Work

Reasoning programs with external function calls has been a challenging task.
Colossus [20], Achar [15], Delphi [21] and Sādhak [19] use constraint solving
for reasoning with closed-box functions. Colossus [20] uses fuzzing to solve
path constraints containing closed-box functions calls to recover lost coverage
in symbolic execution. Achar [15] uses fuzzing along with SMT solving to find
inductive loop invariant for programs which may contain CB functions, using
fuzzing to validate program paths containing closed-box functions and SMT

490 S. K. Muduli et al.

solving for the rest. Delphi [21] uses SMT solver by interpreting the closed-box
function calls as uninterpreted functions to find a candidate solution, and then,
validates the candidate solution by calling an oracle for the closed-box function.
Sādhak [19] combines both SMT solving and fuzzing to find out satisfiable
solution for a given constraint in first-order logic. In contrast to Colossus,
Sādhak uses a lazy approach called conflict-driven fuzz loop (CDFL) when
invoking fuzzer from the SMT solver. StarFuzz uses these ideas to propose
a solution for handling closed-box functions in context of verification-oriented
programming such as F�.

Angelic verification [7,8,11,16] use heuristics to suppress false alarms due
to overapproximation of the external functions, but they risk missing real
bugs. Multi-abduction [3] attempts to infer maximal permissive specifications of
closed-box functions. HornSpec [23] also tries to synthesize maximal specifica-
tions for closed-box (undefined) functions appearing in constrained horn clauses
and ensures non-vacuity. Amurth [13] can infer a sound and maximally precise
(in a provided DSL) abstract specifications of library functions in a provided
abstract domain from concrete specifications. The technique proposed in [10]
can infer maximal refinement types for higher-order functional programs.

6 Conclusion and Future Work

In this work, we enable interactive theorem provers to provide better end-to-end
assurance on programs that contain closed-box components. We demonstrate
the applicability of this proposal by building a tool, StarFuzz, that integrates
the F� interactive theorem prover with the Sādhak solver. Sādhak is capable
of combining SMT solving and fuzzing to reason on constraints that may contain
closed-box functions. We evaluated StarFuzz on 56 specifications from the F�

library that includes external implementations in OCaml, to discover four bugs;
three of these bugs were unknown.

In the future, we are interested in applying StarFuzz on more libraries
and applications of F�. Further, as StarFuzz couples with F� quite loosely,
we are also interested in extending the support of such almost verification to
other interactive theorem provers as well. Finally, we would also like to invest in
integrating Sādhak with other verification methodologies, like bounded model
checking [5,6,24]. In summary, we believe satisfiability modulo fuzzing is an
exciting technology with potential for solving many other real-world software
engineering problems.

References

1. Agda Development Team: The Agda wiki. Chalmers University of Technology
(2007–2021). http://wiki.portal.chalmers.se/agda/pmwiki.php/

2. Aguirre, A.: Towards a provably correct encoding from F* to SMT. Master’s thesis,
Université Paris, vol. 7 (2016)

http://wiki.portal.chalmers.se/agda/pmwiki.php/

Interactive Theorem Proving Modulo Fuzzing 491

3. Albarghouthi, A., Dillig, I., Gurfinkel, A.: Maximal specification synthesis. In: Pro-
ceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2016, pp. 789–801. Association for Comput-
ing Machinery, New York (2016). ISBN 9781450335492. https://doi.org/10.1145/
2837614.2837628

4. Bhargavan, K., et al.: Implementing and proving the TLS 1.3 record layer. Cryp-
tology ePrint Archive, Paper 2016/1178 (2016). https://eprint.iacr.org/2016/1178

5. Chatterjee, P., Meda, J., Lal, A., Roy, S.: Proof-guided underapproximation widen-
ing for bounded model checking. In: Shoham, S., Vizel, Y. (eds.) CAV 2022. LNCS,
vol. 13371, pp. 304–324. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-13185-1_15

6. Chatterjee, P., Roy, S., Diep, B.P., Lal, A.: Distributed bounded model check-
ing. In: Formal Methods in Computer Aided Design (FMCAD), pp. 47–56 (2020).
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_11

7. Das, A., Lahiri, S.K., Lal, A., Li, Y.: Angelic verification: precise verification mod-
ulo unknowns. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015, Part I. LNCS,
vol. 9206, pp. 324–342. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4_19

8. Das, A., Lal, A.: Precise null pointer analysis through global value numbering. In:
D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 25–41.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2_2

9. Fioraldi, A., Maier, D., Eißfeldt, H., Heuse, M.: AFL++: combining incremental
steps of fuzzing research. In: 14th USENIX Workshop on Offensive Technologies
(WOOT 2020). USENIX Association (2020)

10. Hashimoto, K., Unno, H.: Refinement type inference via horn constraint optimiza-
tion. In: Blazy, S., Jensen, T. (eds.) SAS 2015. LNCS, vol. 9291, pp. 199–216.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48288-9_12

11. Joshi, S., Lahiri, S.K., Lal, A.: Underspecified harnesses and interleaved bugs.
In: Field, J., Hicks, M. (eds.) Proceedings of the 39th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2012, Philadelphia,
Pennsylvania, USA, 22–28 January 2012, pp. 19–30. ACM (2012). https://doi.org/
10.1145/2103656.2103662

12. Jung, R., et al.: Iris: monoids and invariants as an orthogonal basis for concurrent
reasoning. In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2015, pp. 637–650. Associ-
ation for Computing Machinery, New York (2015). ISBN 9781450333009. https://
doi.org/10.1145/2676726.2676980

13. Kalita, P.K., Muduli, S.K., D’Antoni, L., Reps, T., Roy, S.: Synthesizing abstract
transformers. Proc. ACM Program. Lang. 6(OOPSLA2) (2022). https://doi.org/
10.1145/3563334

14. Klein, G., et al.: Sel4: formal verification of an OS kernel. In: Proceedings of
the ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP
2009, pp. 207–220. Association for Computing Machinery, New York (2009). ISBN
9781605587523. https://doi.org/10.1145/1629575.1629596

15. Lahiri, S., Roy, S.: Almost correct invariants: synthesizing inductive invariants by
fuzzing proofs. In: Proceedings of the 31st ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, ISSTA 2022, pp. 352–364. Association for
Computing Machinery, New York (2022). ISBN 9781450393799. https://doi.org/
10.1145/3533767.3534381

https://doi.org/10.1145/2837614.2837628
https://doi.org/10.1145/2837614.2837628
https://eprint.iacr.org/2016/1178
https://doi.org/10.1007/978-3-031-13185-1_15
https://doi.org/10.1007/978-3-031-13185-1_15
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_11
https://doi.org/10.1007/978-3-319-21690-4_19
https://doi.org/10.1007/978-3-319-21690-4_19
https://doi.org/10.1007/978-3-319-68167-2_2
https://doi.org/10.1007/978-3-662-48288-9_12
https://doi.org/10.1145/2103656.2103662
https://doi.org/10.1145/2103656.2103662
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3563334
https://doi.org/10.1145/3563334
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/3533767.3534381
https://doi.org/10.1145/3533767.3534381

492 S. K. Muduli et al.

16. Lahiri, S.K., et al.: Angelic checking within static driver verifier: towards high-
precision defects without (modeling) cost. In: 2020 Formal Methods in Computer
Aided Design, FMCAD 2020, Haifa, Israel, 21–24 September 2020, pp. 169–178.
IEEE (2020). https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_24

17. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In: Conference Record of the 33rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2006. Association
for Computing Machinery, New York (2006). ISBN 1595930272.https://doi.org/
10.1145/1111037.1111042

18. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009). ISSN 0001-0782. https://doi.org/10.1145/1538788.1538814

19. Muduli, S.K., Roy, S.: Satisfiability modulo fuzzing: a synergistic combination of
SMT solving and fuzzing. In: Proceedings of the ACM on Programming Languages,
OOPSLA2. Association for Computing Machinery, New York (2022). https://doi.
org/10.1145/3563332

20. Pandey, A., Kotcharlakota, P.R.G., Roy, S.: Deferred concretization in symbolic
execution via fuzzing. In: Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2019 (2019). https://doi.
org/10.1145/3293882.3330554

21. Polgreen, E., Reynolds, A., Seshia, S.A.: Satisfiability and synthesis modulo oracles.
In: Finkbeiner, B., Wies, T. (eds.) VMCAI 2022. LNCS, vol. 13182, pp. 263–284.
Springer, Cham (2022). https://doi.org/10.1007/978-3-030-94583-1_13

22. Ramananandro, T., et al.: EverParse: verified secure zero-copy parsers for authen-
ticated message formats. In: 28th USENIX Security Symposium (USENIX Security
2019), pp. 1465–1482. USENIX Association, Santa Clara, CA (2019). ISBN 978-1-
939133-06-9. https://www.usenix.org/conference/usenixsecurity19/presentation/
delignat-lavaud

23. Prabhu, S., Fedyukovich, G., Madhukar, K., D’Souza, D.: Specification synthesis
with constrained horn clauses. In: Freund, S.N., Yahav, E. (eds.) PLDI 2021: 42nd
ACM SIGPLAN International Conference on Programming Language Design and
Implementation, Virtual Event, Canada, 20–25 June 2021, pp. 1203–1217. ACM
(2021). https://doi.org/10.1145/3453483.3454104

24. Solanki, M., Chatterjee, P., Lal, A., Roy, S.: Accelerated bounded model checking
using interpolation based summaries. In: Finkbeiner, B., Kovács, L. (eds.) TACAS
2024. LNCS, vol. 14571, pp. 155–174. Springer, Cham (2024). https://doi.org/10.
1007/978-3-031-57249-4_8

25. Swamy, N., Hriţcu, C., et al.: Dependent types and multi-monadic effects in F*. In:
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2016. Association for Computing Machin-
ery, New York (2016). https://doi.org/10.1145/2837614.2837655

https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_24
https://doi.org/10.1145/1111037.1111042
https://doi.org/10.1145/1111037.1111042
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/3563332
https://doi.org/10.1145/3563332
https://doi.org/10.1145/3293882.3330554
https://doi.org/10.1145/3293882.3330554
https://doi.org/10.1007/978-3-030-94583-1_13
https://www.usenix.org/conference/usenixsecurity19/presentation/delignat-lavaud
https://www.usenix.org/conference/usenixsecurity19/presentation/delignat-lavaud
https://doi.org/10.1145/3453483.3454104
https://doi.org/10.1007/978-3-031-57249-4_8
https://doi.org/10.1007/978-3-031-57249-4_8
https://doi.org/10.1145/2837614.2837655

Interactive Theorem Proving Modulo Fuzzing 493

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Author Index

A
Abate, Alessandro III-161, III-395
Abdulla, Parosh Aziz II-19
Alt, Leonardo I-466
Althoff, Matthias III-259
Amir, Guy II-249
An, Jie III-282
Ang, Zhendong II-182
Antonopoulos, Timos II-233
Armborst, Lukas II-3
Athavale, Anagha II-329
Atig, Mohamed Faouzi II-19
Azeem, Muqsit II-265

B
Barrett, Clark I-3, II-249
Bartocci, Ezio II-329
Basin, David II-156
Bassa, Alp I-3
Bassan, Shahaf II-249
Baumeister, Jan II-207
Becchi, Anna II-219
Berger, Martin III-209
Bertram, Noah II-109
Besson, Frédéric I-325
Beutner, Raven III-3
Biere, Armin I-133
Bjørner, Nikolaj I-26
Bonakdarpour, Borzoo III-3
Bonsangue, Marcello III-555
Bos, Pieter II-3
Bosamiya, Jay I-348
Brauße, Franz I-219
Britikov, Konstantin I-466
Brockman, Mikael I-453
Bryant, Randal E. I-110
Bu, Lei III-329

C
Cai, Shaowei I-68
Cano, Filip II-233
Cao, Jialun II-302

Chajed, Tej II-86
Chaudhuri, Swarat III-41
Cheung, Shing-Chi II-302
Chiari, Michele I-387
Cho, Chanhee I-348
Christakis, Maria II-329
Cimatti, Alessandro I-234, II-219
Cohen, Albert I-279

D
D’Antoni, Loris III-27
Daggitt, Matthew II-249
Dai, Aochu III-520
Das, Sarbojit II-19
Dillig, Işil I-3, III-41
Dimitrova, Rayna III-135
Ding, Jianqiang III-307
Dohmen, Taylor III-184
Drachsler-Cohen, Dana II-377
Dureja, Rohit I-203
Dxo, I-453

E
Eilers, Marco I-362
Elacqua, Matthew II-233

F
Faller, Tobias I-133
Fazekas, Katalin I-133
Fedyukovich, Grigory I-466
Feldman, Yotam M. Y. II-71
Feng, Yuan III-533
Ferles, Kostas I-3
Fijalkow, Nathanaël III-209
Finkbeiner, Bernd II-207, III-3, III-64, III-87
Fleury, Mathias I-133
Frenkel, Eden II-86
Frenkel, Hadar III-87
Froleyks, Nils I-133

© The Editor(s) (if applicable) and The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14681, pp. 495–498, 2024.
https://doi.org/10.1007/978-3-031-65627-9

https://doi.org/10.1007/978-3-031-65627-9

496 Author Index

G
Geatti, Luca I-387
Giacobbe, Mirco III-161, III-395
Gigante, Nicola I-387
Griggio, Alberto I-234
Grobelna, Marta II-265
Grosser, Tobias I-279
Guan, Ji III-533

H
Habermehl, Peter I-42
Hasuo, Ichiro III-282, III-467
Havlena, Vojtěch I-42
He, Mengda II-302
Hečko, Michal I-42
Heim, Philippe III-135
Heule, Marijn J. H. I-110
Hipler, Raik II-133
Holík, Lukáš I-42
Hsu, Justin II-109
Hsu, Tzu-Han III-3
Huang, Pei II-249
Hublet, François II-156
Huisman, Marieke II-3

I
Irfan, Ahmed I-203
Isac, Omri II-249

J
Jiang, Hanru III-495
Johannsen, Chris I-203
Johnson, Keith J. C. III-27
Jonsson, Bengt II-19
Judson, Samuel II-233
Julian, Kyle II-249
Junges, Sebastian III-467

K
Kallwies, Hannes II-133
Kanav, Sudeep II-265
Katz, Guy II-249
Khasidashvili, Zurab I-219
Kincaid, Zachary I-89, I-431
Kohn, Florian II-207
Kokke, Wen II-249
Komendantskaya, Ekaterina II-249
Könighofer, Bettina II-233
Konsta, Alyzia-Maria III-373

Korovin, Konstantin I-219
Křetínský, Jan II-265
Krstić, Sr -dan II-156

N
Laarman, Alfons III-555
Lahav, Ori II-249
Lai, Tean II-109
Lengál, Ondřej I-42
Lercher, Florian III-259
Leucker, Martin II-133
Li, Haokun II-302
Li, Jianwen I-234
Li, Xuandong III-329
Li, Yixuan II-280
Liang, Zhen III-307
Lima, Leonardo II-156
Lin, Fangzhen I-409
Lin, Yi III-112
Liu, Jiamou III-420
Liu, Si II-401
Liu, Wenxia III-329
Lluch Lafuente, Alberto III-373
Löhr, Florian II-207
Lundfall, Martin I-453
Luo, Ziqing II-44

M
Maffei, Matteo II-329
Manfredi, Guido II-207
Martinelli Tabajara, Lucas III-112
Matheja, Christoph III-373
Mathur, Umang II-182
McMillan, Kenneth L. I-255
Meel, Kuldeep S. I-153
Meggendorfer, Tobias III-359
Mei, Jingyi III-555
Metzger, Niklas III-64, III-87
Miltner, Anders III-41
Mohr, Stefanie II-265
Moses, Yoram III-64
Muduli, Sujit Kumar I-480
Müller, Peter I-362
Murphy, Charlie I-89
Myreen, Magnus O. I-153

N
Nachmanson, Lev I-26
Nayak, Satya Prakash III-135

Author Index 497

Nickovic, Dejan II-329
Niemetz, Aina I-178
Nukala, Karthik I-203

O
Ong, C.-H. Luke II-401
Ozdemir, Alex I-3

P
Padon, Oded II-71, II-86
Padulkar, Rohan Ravikumar I-480
Pailoor, Shankara I-3
Paraskevopoulou, Zoe I-453
Parno, Bryan I-348
Parsert, Julian II-280
Perez, Mateo III-184
Piskac, Ruzica II-233
Pitchanathan, Arjun I-279
Polgreen, Elizabeth II-280
Pollitt, Florian I-133
Pradella, Matteo I-387
Preiner, Mathias I-178

Q
Qian, Yuhang I-68
Qin, Shengchao II-302

R
Reeves, Joseph E. I-110
Refaeli, Idan II-249
Ren, Dejin III-307
Reps, Thomas III-27
Reynolds, Andrew III-27
Rieder, Sabine II-265
Roy, Diptarko III-395
Roy, Subhajit I-480
Rozier, Kristin Yvonne I-203
Rubbens, Robert II-3

S
Sagonas, Konstantinos II-19
Şakar, Ömer II-3
Sánchez, César II-133
Sato, Sota III-282
Scaglione, Giuseppe II-219
Schirmer, Sebastian II-207
Schmuck, Anne-Kathrin III-135
Schnitzer, Yannik III-161
Schwerhoff, Malte I-362

Seidl, Helmut I-303
Shabelman, Shahar II-377
Shankar, Natarajan I-203
Shapira, Yuval II-377
Shapiro, Scott J. II-233
Sharygina, Natasha I-466
Shi, Yuhui III-329
Shoham, Sharon II-71, II-86
Siber, Julian III-87
Siegel, Stephen F. II-44
Somenzi, Fabio III-184
Soos, Mate I-153, I-453
Stade, Yannick I-303
Su, Jie II-302
Sun, Jun II-352

T
Tagomori, Teruhiro II-249
Takisaka, Toru III-420
Talpin, Jean-Pierre I-325
Tan, Yong Kiam I-153
Tasche, Philip II-3
Tian, Cong II-302
Tilscher, Sarah I-303
Tinelli, Cesare I-203
Torens, Christoph II-207
Traytel, Dmitriy II-156
Trivedi, Ashutosh III-184
Turrini, Andrea III-533

V
Valizadeh, Mojtaba III-209
van den Haak, Lars B. II-3
Vardi, Moshe Y. I-203, III-112
Vegt, Marck van der III-467

W
Wang, Changjiang III-420
Wang, Chenglin I-409
Wang, Jiawan III-329
Wang, Peixin II-401
Wang, Yuning III-232
Wang, Ziteng III-41
Watanabe, Kazuki III-467
Wei, Jiaqi III-329
Weininger, Maximilian III-359
Weissenbacher, Georg II-329

498 Author Index

Wen, Cheng II-302
Wiesel, Naor II-377
Wilcox, James R. II-71
Wu, Chenyu III-307
Wu, Haoze II-249
Wu, Min II-249
Wu, Taoran III-307

X
Xia, Yechuan I-234
Xu, Zhiwu II-302
Xue, Bai III-307

Y
Yan, Peng III-495
Yang, Jiong I-153
Ying, Mingsheng III-520, III-533

Yu, Nengkun III-495
Yuan, Shenghao I-325

Z
Zeljić, Aleksandar II-249
Zhang, Libo III-420
Zhang, Min II-249, II-401
Zhang, Muzimiao III-329
Zhang, Ruihan II-352
Zhang, Yunbo III-443
Zhang, Zhenya III-282
Zhao, Mengyu I-68
Zhi, Dapeng II-401
Zhou, Yi I-348
Zhu, He III-232
Zhu, Shaowei I-431, III-443
Zinenko, Oleksandr I-279
Zlatkin, Ilia I-466
Zohar, Yoni I-178

	 Preface
	 Organization
	Invited Talks
	 How to Solve Math Problems Without Talent
	 Bridging Formal Mathematics and Software Verification
	 The Art of SMT Solving
	 Contents – Part I
	 Contents – Part II
	 Contents – Part III

	Decision Procedures
	Split Gröbner Bases for Satisfiability Modulo Finite Fields
	1 Introduction
	1.1 Related Work

	2 Background
	3 Motivating Example
	3.1 Verifying the Determinism of Num2Bits
	3.2 The Challenge of Bit-Splitting
	3.3 Cooperative Reasoning: A Path Forward

	4 Approach
	4.1 Split Gröbner bases
	4.2 Abstract Procedure: Split
	4.3 Concrete Procedure: BitSplit

	5 Experiments
	5.1 Benchmarks
	5.2 Comparison to Prior Solvers
	5.3 Comparison to Variants

	6 Application
	6.1 Background on Verifiable Field-Blasting
	6.2 A New Strategy for Verifying Operator Rules

	7 Conclusion
	A Additional Background
	B Computing Bitsum Usage in Real World Projects
	C Proof of Theorem 1
	D Proof of Theorems 2 and 3
	E Proof of Lemma 1
	F The Seq Benchmark Family
	G Proof of Theorem 4
	References

	Arithmetic Solving in Z3
	1 Introduction
	2 Design Goals and Implementation Choices
	3 Linear Real Arithmetic
	3.1 Linear Solving
	3.2 Finding Equal Variables - Cheaply
	3.3 Bounds Propagation

	4 Integer Linear Arithmetic
	4.1 Patching
	4.2 Cubes
	4.3 GCD Consistency
	4.4 Branching
	4.5 Cuts

	5 Non-linear Arithmetic
	5.1 Patch Monomials
	5.2 Bounds Propagation
	5.3 Adding Bounds
	5.4 Gröbner reduction
	5.5 Incremental Linearization
	5.6 NLSat

	6 Shared Equalities
	7 Evaluation
	8 Summary and Discussion
	References

	Algebraic Reasoning Meets Automata in Solving Linear Integer Arithmetic
	1 Introduction
	2 Preliminaries
	3 Classical Automata-Based Decision Procedure for LIA
	4 Derivative-Based Construction for Nested Formulae
	5 Simple Rewriting Rules
	6 Disjunction Pruning
	7 Quantifier Instantiation
	7.1 Quantifier Instantiation Based on Formula Monotonicity
	7.2 Range-Based Quantifier Instantiation
	7.3 Modulo Linearization

	8 A Comprehensive Example of Our Optimizations
	9 Experimental Evaluation
	10 Related Work
	References

	Distributed SMT Solving Based on Dynamic Variable-Level Partitioning
	1 Introduction
	2 Preliminaries
	2.1 Definitions and Notations
	2.2 Parallel SMT Solving with Partitioning
	2.3 Interval Constraint Propagation

	3 Dynamic Parallel Framework Based on Arithmetic Partitioning
	3.1 The Framework
	3.2 Partition Tree Maintenance and UNSAT Propagation
	3.3 Terminate on Demand
	3.4 A Running Example

	4 Variable-Level Partitioning for Arithmetic Theories
	4.1 Preprocessing
	4.2 The Partitioning Algorithm
	4.3 BICP in Arithmetic Partitioning

	5 Evaluation
	5.1 Evaluation Preliminaries
	5.2 Comparison to Sequential Solving
	5.3 Comparison to State-of-the-art Partitioning Strategies
	5.4 Improvement on Pure-Conjunction Formulas

	6 Conclusion and Future Work
	References

	Quantified Linear Arithmetic Satisfiability via Fine-Grained Strategy Improvement
	1 Introduction
	2 Fine-Grained Game Semantics for LRA Satisfiability
	2.1 Linear Rational Arithmetic
	2.2 Fine-Grained Game Semantics

	3 Fine-Grained Strategy Skeletons
	4 Fine-Grained Strategy Improvement
	5 Computing Counter-Strategies
	5.1 Term Selection

	6 Synthesizing Fine-Grained Strategies
	7 Experimental Evaluation
	8 Discussion and Related Works
	References

	From Clauses to Klauses*
	1 Introduction
	2 Background
	2.1 Cardinality Constraints
	2.2 Conflict-Driven Clause Learning and Proofs of Unsatisfiability

	3 At-Least-K Conjunctive Normal Form (KNF)
	4 Cardinality Constraint Extraction and Analysis
	4.1 Extraction
	4.2 Analysis with BDDs
	4.3 PySAT Encodings Experimental Evaluation

	5 Cardinality Conflict-Driven Clause Learning
	5.1 Implementation Details
	5.2 Inprocessing Techniques

	6 Proof Checking
	6.1 Satisfying Assignments
	6.2 Clausal Proofs
	6.3 Starting with KNF Input

	7 Experimental Evaluation
	7.1 SAT Competition Benchmarks
	7.2 Magic Squares and Max Squares

	8 Conclusion and Future Work
	References

	CaDiCaL 2.0
	1 Introduction
	2 Architecture
	3 External Propagator
	4 Proofs
	5 Tracer Interface
	6 Constraints and Flipping
	7 Interpolation
	8 Testing and Debugging
	9 Experiments
	10 Conclusion
	References

	Formally Certified Approximate Model Counting
	1 Introduction
	2 Related Work
	3 Background
	3.1 Approximate Model Counting
	3.2 Formalization in Isabelle/HOL

	4 Approximate Model Counting in Isabelle/HOL
	4.1 Abstract Specification and Probabilistic Analysis
	4.2 Concretization to a Certificate Checker
	4.3 Extending ApproxMC to ApproxMCCert
	4.4 CNF-XOR Unsatisfiability Checking

	5 Experimental Evaluation
	6 Conclusion and Future Work
	References

	Scalable Bit-Blasting with Abstractions
	1 Introduction
	2 Preliminaries
	3 Abstraction-Refinement Framework
	4 Refinement Schemes
	4.1 Hand-Crafted Lemmas
	4.2 Lemma Scoring Scheme
	4.3 Synthesizing Lemmas via Abduction
	4.4 Lemma Verification

	5 Integration
	6 Evaluation
	7 Conclusion
	References

	Hardware Model Checking
	The MoXI Model Exchange Tool Suite
	1 Overview
	2 Intermediate Language
	3 Tool Suite
	3.1 Translators
	3.2 Utilities

	4 Tool Suite Validation
	5 Benchmarks
	6 Conclusion and Future Work
	References

	SMLP: Symbolic Machine Learning Prover
	1 Introduction
	2 SMLP Architecture
	3 Symbolic Representation of Models and Constraints
	4 Symbolic Representation of the ML Model Exploration
	5 Problem Specification in SMLP
	6 SMLP Exploration Modes of ML Models
	6.1 Stable Parameter Synthesis
	6.2 Verifying Assertions on a Model
	6.3 Querying Conditions on the Model
	6.4 Stable Optimized Synthesis
	6.5 Design of Experiments
	6.6 Root Cause Analysis
	6.7 Model Refinement Loop

	7 Implementation
	8 Industrial Case Studies
	9 Future Work
	References

	Avoiding the Shoals - A New Approach to Liveness Checking
	1 Introduction
	2 Preliminaries
	2.1 Boolean Satisfiability
	2.2 Boolean Transition Systems
	2.3 Invariant Checking
	2.4 Liveness Checking

	3 Liveness Checking with rlive
	3.1 Overview
	3.2 Algorithm
	3.3 Optimizations
	3.4 Correctness Proof

	4 Related Work
	5 Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Conclusions
	References

	Toward Liveness Proofs at Scale
	1 Introduction
	2 Background and Related Work
	2.1 Liveness-to-Safety with Rankings
	2.2 Dynamic Liveness-to-Safety Construction

	3 Relational Rankings
	3.1 The Relational Reactivity Rule
	3.2 Chaining Liveness Lemmas
	3.3 Stable Schedulers
	3.4 Lexicographic Rankings

	4 Case Study: The Apple Generic Memory Subsystem Model
	4.1 Liveness Proof with Lemmas
	4.2 Lemma-Free Proof of Liveness

	5 Conclusions and Future Work
	A Soundness proofs
	References

	Software Verification
	Strided Difference Bound Matrices
	1 Introduction and Motivation
	2 DBMs, SDBMs, and HSDBMs
	3 Satisfiability
	3.1 GCD-Tightening Constraints
	3.2 Satisfiability for HSDBMs in O(n4) Time
	3.3 Satisfiability for SDBMs in O(n m Dlcm) Time

	4 HSDBM Normalization
	5 Operations for Abstract Interpretation
	6 Empirical Study
	6.1 Methodology
	6.2 Prevalence of SDBMs
	6.3 Applications to Translation Validation

	7 Related Work
	8 Conclusion
	References

	The Top-Down Solver Verified: Building Confidence in Static Analyzers
	1 Introduction
	2 Preliminaries
	3 The Plain Top-Down Solver
	4 The Top-Down Solver
	5 Related Work
	6 Conclusion
	References

	End-to-End Mechanized Proof of a JIT-Accelerated eBPF Virtual Machine for IoT
	1 Introduction
	1.1 Challenges
	1.2 Contributions

	2 Preliminaries
	3 A Workflow for End-to-End Refinement
	3.1 Methodology
	3.2 Application to a rBPF Virtual Machine

	4 Symbolic CompCert ARM Interpreter
	5 A Verified Just-In-Time Compiler for rBPF
	5.1 JIT Design
	5.2 JIT Correctness
	5.3 JIT Vertical Refinement

	6 HAVM: A Hybrid Interpreter for rBPF
	7 Evaluation: Case Study of RIOT's Femto-Containers
	8 Lessons Learned
	9 Related Works
	10 Conclusion
	References

	A Framework for Debugging Automated Program Verification Proofs via Proof Actions
	1 Introduction
	2 Proof Debugging Considered Painful
	2.1 Background on Automated Program Verification in Verus
	2.2 Examples of Proof Debugging
	2.3 Automated Proof Debugging with Proof Actions
	2.4 Challenges with Automatic Code Transformation

	3 ProofPlumber: An Extensible Proof Action Framework
	3.1 ProofPlumber's API Design
	3.2 ProofPlumber's Implementation

	4 Evaluation
	4.1 RQ1: Are proof actions expressive enough?
	4.2 RQ2: Does ProofPlumber make it easy to write proof actions?
	4.3 RQ3: Can proof actions reduce the verifier's TCB?

	5 Limitations
	6 Related Work and Conclusion
	References

	Verification Algorithms for Automated Separation Logic Verifiers
	1 Introduction
	2 Verification Algorithms
	2.1 Viper Verification Language
	2.2 Design Dimensions
	2.3 Algorithms

	3 Evaluation
	3.1 Implementations
	3.2 Benchmark Selection
	3.3 Experimental Setup
	3.4 Completeness Results
	3.5 Performance Results
	3.6 Recommendation
	3.7 Threats to Validity

	4 Portfolios
	5 Related Work
	6 Conclusions and Future Work
	References

	SMT-Based Symbolic Model-Checking for Operator Precedence Languages
	1 Introduction
	2 Preliminaries
	2.1 Operator Precedence Languages
	2.2 Precedence Oriented Temporal Logic

	3 A Tree-Shaped Tableau for POTLf
	4 SMT Encoding of the Tableau
	5 Experimental Evaluation
	5.1 Description of the Benchmarks
	5.2 Description of the Plots

	6 Conclusions
	References

	On Polynomial Expressions with C-Finite Recurrences in Loops with Nested Nondeterministic Branches
	1 Introduction
	2 Preliminaries
	2.1 Polynomials
	2.2 Eigenvalues and Matrix Polynomials
	2.3 C-Finite Recurrences
	2.4 Program Model and Problem Statement

	3 Reduction to Solving a System of Quadratic Equations
	4 Finding Finite Representative Solutions
	5 Special Cases Where the Computations Are Easier
	5.1 Polynomials Satisfying First Order Inhomogeneous C-Finite Recurrences
	5.2 Linear Transitions

	6 Experimental Evaluation
	6.1 Implementation
	6.2 Benchmarks and Environment
	6.3 Comparison Tools
	6.4 Experimental Results

	7 Related Works
	8 Conclusion
	A Proof of Theorem 5
	References

	Breaking the Mold: Nonlinear Ranking Function Synthesis Without Templates
	1 Introduction
	2 Background
	3 Polynomial Ranking for LIRR Transition Formulas
	3.1 Zero-Stable Transition Formulas
	3.2 Complete Polynomial Ranking Function Synthesis
	3.3 Proving Termination Through Polynomial Ranking Functions

	4 Lexicographic Polynomial Ranking for Integer Transitions
	4.1 Synthesizing Polynomial Quasi-Ranking Functions
	4.2 Lexicographic Polynomial Ranking Functions

	5 Evaluation
	6 Related Work
	References

	Hevm, a Fast Symbolic Execution Framework for EVM Bytecode
	1 Overview
	2 Related Work
	3 Symbolic Interpreter for the EVM
	4 Expr, hevm's Internal Representation
	4.1 Expr Simplification
	4.2 Example Program in Expr

	5 SMT Encoding
	6 Evaluation
	References

	SolTG: A CHC-Based Solidity Test Case Generator
	1 Introduction
	2 Tool Overview
	3 Test Case Generation from CHC Encoding
	3.1 CHC Preliminaries
	3.2 Solidity Smart Contracts to CHCs
	3.3 Algorithmic Enumeration of Contract Behaviors

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	Interactive Theorem Proving Modulo Fuzzing
	1 Introduction
	2 Overview
	2.1 Introduction to F
	2.2 F with Closed-Box Functions

	3 Tool Architecture and Operation
	3.1 Invoking StarFuzz
	3.2 Architecture
	3.3 Constructing Verification Conditions
	3.4 Solving Verification Conditions

	4 Evaluation
	5 Related Work
	6 Conclusion and Future Work
	References

	Author Index

