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Preface

It was our privilege to serve as the program chairs for CAV 2024, the 36th International
Conference on Computer-Aided Verification. CAV 2024 was held in Montreal, Canada,
on July 24–27, 2024, and the pre-conference workshops were held on July 22–23, 2024.

CAV is an annual conference dedicated to the advancement of the theory and practice
of computer-aided formal analysis methods for hardware and software systems. The
primary focus of CAV is to extend the frontiers of verification techniques by expanding
to new domains such as security, quantum computing, and machine learning. This puts
CAV at the cutting edge of formal methods research. This year’s program is a reflection
of this commitment.

CAV 2024 received 317 submissions. We accepted 16 tool papers, 2 case-study
papers, and 51 regular papers, which amounts to an acceptance rate of roughly 26%
in each category. The accepted papers cover a wide spectrum of topics, from theoret-
ical results to applications of formal methods. These papers apply or extend formal
methods to a wide range of domains such as concurrency, machine learning and neural
networks, quantum systems, as well as hybrid and stochastic systems. The program fea-
tured keynote talks by Noriko Arai (National Institute of Informatics, Japan), Leonardo
de Moura (Amazon Web Services, USA), and Erika Abraham (RWTH Aachen Univer-
sity, Germany). In addition to the contributed talks, CAV 2024 also hosted the CAV
Award ceremony, and a report from the Synthesis Competition (SYNTCOMP) chairs.
Furthermore, we continued the tradition of Logic Lounge, a series of discussions on
computer science topics targeting a general audience. This year’s Logic Lounge speaker
was Scott J. Shapiro (Yale Law School) who spoke about topics at the intersection of
formal methods and the law.

In addition to the main conference, CAV 2024 hosted the following workshops: Ver-
ificationMentoringWorkshop (VMW), Correct Data Compression (CoDaC),Workshop
on Synthesis (SYNT), Workshop on Verification of Probabilistic Programs (VeriProP),
Developing an Open-Source, State-of-the-Art Symbolic Model-Checking Framework
for the Model-Checking Research Community (OSSyM), Formal Reasoning in Dis-
tributed Algorithms (FRIDA), Workshop on Hyperproperties: Advances in Theory
and Practice (HYPER), Symposium on AI Verification (SAIV), Deep Learning-aided
Verification (DAV), and International Workshop on Satisfiability Modulo Theories
(SMT).

Organizing a flagship conference like CAV requires a great deal of effort from the
community. The Program Committee for CAV 2024 consisted of 90 members—a com-
mittee of this size ensures that each member has to review only a reasonable number of
papers in the allotted time. In all, the committee members wrote over 900 reviews while
investing significant effort to maintain and ensure the high quality of the conference
program. We are grateful to the CAV 2024 Program Committee for their outstanding
efforts in evaluating the submissions and making sure that each paper got a fair chance.
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Like recent years in CAV, we made artifact evaluation mandatory for tool paper submis-
sions, but optional for the rest of the accepted papers. This year we received 54 artifact
submissions, all of which received at least one badge. The Artifact Evaluation Commit-
tee consisted of 92 members who put in significant effort to evaluate each artifact. The
goal of this process was to provide constructive feedback to tool developers and help
make the research published in CAV more reproducible. We are also very grateful to
the Artifact Evaluation Committee for their hard work and dedication in evaluating the
submitted artifacts.

CAV 2024 would not have been possible without the tremendous help we received
from several individuals, and we would like to thank everyone who helped make CAV
2024 a success. We would like to thank Mirco Giacobbe and Milan Ceska for chairing
the Artifact Evaluation Committee. We also thank Temegshen Kahsai for chairing the
workshop organization. Norine Coenen and Hadar Frenkel for leading publicity efforts,
Eric Koskinen and Grigory Fedyukovich as the fellowship chairs, Grigory Fedyukovich
as sponsorship chair, and John (Zhengyang) Lu as the website chair. Hari Govind V. K.
helped prepare the proceedings. We also thank Grigory Fedyukovich, Eric Koskinen,
UmangMathur, Yoni Zohar, and JingboWang for organizing the VerificationMentoring
Workshop. Last but not least, we would like to thank the members of the CAV Steering
Committee (Kenneth McMillan, Aarti Gupta, Orna Grumberg, and Daniel Kroening)
for helping us with several important aspects of organizing CAV 2024.

We hope that you will find the proceedings of CAV 2024 scientifically interesting
and thought-provoking!

June 2024 Arie Gurfinkel
Vijay Ganesh
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Invited Talks



How to Solve Math Problems Without Talent

Noriko Arai

National Institute of Informatics, Japan

The desire to solve mathematical problems without inherent talent has been a long-
standing aspiration of humanity since ancient times. In this lecture, we delve into the
complexity theory of proofs, examining the relationship between talent and the cost
of proof. Additionally, we discuss the possibilities and limitations of using a fusion
of computational methods, including computer algebra and natural language process-
ing, to solve mathematical problems with machines. Join us as we explore the fron-
tier of machine-enabled mathematical problem-solving, reflecting on its potential and
boundaries in fulfilling this age-old human ambition.



Bridging Formal Mathematics and Software Verification

Leonardo de Moura

Amazon Web Services, USA

This talk will explore the dual applications of Lean 4, the latest iteration of the
Lean proof assistant and programming language, in advancing formal mathematics and
software verification. We begin with an overview of its design and implementation. We
will detail how Lean 4 enables the formalization of complex mathematical theories and
proofs, thereby enhancing collaboration and reliability in mathematical research. This
endeavor is supported by a philosophy that promotes decentralized innovation, empow-
ering a diverse community of researchers, developers, and enthusiasts to collaboratively
push the boundaries of mathematical practice. Simultaneously, we will discuss software
verification applications using Lean 4 at AWS. By leveraging Lean’s dual capabilities
as both a proof assistant and a functional programming language, we achieve a cohesive
approach to software development and verification. Additionally, the talk will outline
future directions for Lean 4, including efforts to expand its user community, enhance
user experience, and further integrate formal methods into both academic research and
industrial applications.



The Art of SMT Solving

Erika Ábrahám

RWTH Aachen University, Germany

Satisfiability Modulo Theories (SMT) solving [3, 4, 9] is a technology for the fully
automated solution of logical formulas. SMT solvers can be used as general-purpose off-
the-shelf tools. Due to their impressive efficiency, they are nowadays frequently used in
a wide variety of applications [2]. A typical application encodes real-world problems as
logical formulas, whose solutions can be decoded to solutions of the original real-world
problem.

Besides its unquestionable practical impact, SMT solving has another great merit:
it inspired truly elegant ideas, which do not only enable the construction of efficient
software tools, but provide also interesting theoretical insights.

For propositional logic where each formula has a finite number of Boolean variables,
we could enumerate and check all possible variable assignments, but due to its bad
average complexity, this exploration approach is not applicable in practice. Alternatively,
the proof system of Boolean resolution can be applied, but the applicability of this
method is also restricted to rather small problems. However, in the 90s, SAT solvers
succeeded to become impressively powerful due to an elegant combination of these two
methods, where the proof construction is guided by an exploration of the assignment
space equipped with a smart look-ahead mechanism [5, 6, 10].

The effectivity of SAT solvers gave motivation to extend the scope of solver tech-
nologies to formulas of quantifier-free first-order logic over different theories. On the
one hand, eager SMT solving approaches have been proposed for certain theories to
transform their formulas to propositional logic and use SAT solving to check the result
for satisfiability. On the other hand, (full/less) lazy SMT solving uses SAT solving to
explore the Boolean structure of the formula, and employs theory solvers to check the
consistency of Boolean assignments in the theory domains.

Recently, the idea of symbiotic combination of exploration and proof construction
has been also generalized to theories, most notably quantifier-free real algebra [7], in
the framework of the model constructing satisfiability calculus (MCSAT) [11]. In this
approach, exploration-guided proof construction is designed to run both in the Boolean
space and in the theory domain, simultaneously in a consistent manner.

Both the SAT and theMCSAT approaches are based on the generalization of “wrong
guesses”, made during exploration, into pieces of a proof, which are collected and used
to synthesize a global proof during the solving process. While being one of the currently
best approaches, for large or complex formulas, a large number of “proof pieces” cause
high effort for their processing and restrict scalability.

Thus the question comes up whether there are also other ways to store such infor-
mation in a more structured way, allowing a less costly processing. This idea is taken
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up by the cylindrical algebraic covering method [1, 8], developed for the satisfiability
check of conjunctions of polynomial constraints.

In this talk we give an introduction to the mechanisms of SAT and SMT solving,
discuss the above ideas, and illustrate the usage of SMT solvers on a few application
examples.
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Matthew Daggitt, Wen Kokke, Idan Refaeli, Guy Amir, Kyle Julian,
Shahaf Bassan, Pei Huang, Ori Lahav, Min Wu, Min Zhang,
Ekaterina Komendantskaya, Guy Katz, and Clark Barrett

Monitizer: Automating Design and Evaluation of Neural Network Monitors . . . 265
Muqsit Azeem, Marta Grobelna, Sudeep Kanav, Jan Křetínský,
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Abstract. This paper gives an overview of the most recent develop-
ments on the VerCors verifier. VerCors is a deductive verifier for con-
current software, written in multiple programming languages, where
the specifications are written in terms of pre-/postcondition contracts
using permission-based separation logic. In essence, VerCors is a pro-
gram transformation tool: it translates an annotated program into input
for the Viper framework, which is then used as verification back-end.
The paper discusses the different programming languages and features
for which VerCors provides verification support. It also discusses how the
tool internally has been reorganised to become easily extendible, and to
improve the connection and interaction with Viper. In addition, we also
introduce two tools built on top of VerCors, which support correctness-
preserving transformations of verified programs. Finally, we discuss how
the VerCors verifier has been used on a range of realistic case studies.

1 Introduction

With the ever-growing digitalisation of our society, we depend more and more
on the reliability of the underlying software. To provide guarantees about this
reliability, we need tools that can do a formal analysis directly at the imple-
mentation level of the software. The VerCors verifier [12] contributes to this
goal: it enables the verification of pre-/postcondition contract specifications for
(concurrent) programs, written in a range of different programming languages.

Work on the VerCors verifier started in 2011 [2], focussing initially on the ver-
ification of concurrent Java programs, using permission-based separation logic.
Over time, VerCors has expanded into a verification environment that sup-
ports reasoning about programs in a wide range of different programming lan-
guages. An important design goal of the VerCors verifier was to make a tool that
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Fig. 1. Overview of the tool architecture. Tool interface boundaries are indicated with
vertical lines. The circular arrow indicates that AST and error transformation steps
might by applied multiple times. The red X (Color figure online) indicates a verification
error, the green checkmark indicates succesful verification.

(1) would verify a program as is, i.e., without the need to manually simplify the
implementation and only requiring additional verification annotations in com-
ments, and (2) would have a high degree of automation, to make it accessible
to a large group of potential users. Ultimately, VerCors should make verifica-
tion available as a part of the build process, similar to type checking. VerCors
is developed as a program transformation tool: it takes as input an annotated
program, and it transforms this in multiple steps into input for the Viper frame-
work [38], which is an intermediate representation framework for separation-
logic-style specifications. An overview of the architecture is provided in Fig. 1.
The transformation is set up in such a way that it is sound but incomplete: if
Viper verifies the program, it is guaranteed that the original program satisfies
its specification. However, if verification fails the program might or might not
respect its verification annotations.

This paper reports on the recent steps that have been taken to further develop
the VerCors verifier towards its ultimate goals. It describes in particular new
developments on the VerCors verifier since 2017, when the last tool paper on
VerCors was published [12]. Notable developments since then are:

– improved front-end support for programming languages such as Java, C and
OpenCL, described in Sect. 2.1;

– added front-end support for other programming languages, such as
Halide [44], SystemC [27], LLVM IR [31] and SYCL [58], described in
Sects. 2.2 and 2.3;

– updated the internals of the tool to improve support for typing and transfor-
mation, as well as in the interaction with Viper, described in Sect. 3;

– a collection of transformation tools built on top of VerCors to step-wise derive
verified, complex implementations, described in Sect. 4; and

– a wide range of practical case studies to understand how verification can be
used in practice, described in Sect. 5.

2 New and Improved Language Support

This section describes the progress on programming languages supported by
VerCors. First we describe new features that are provided for languages that
were already supported by VerCors, namely Java and C/C++, as well as the
improved support to reason about GPU kernels. Next, we describe new languages
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for which direct support has been added to VerCors (JavaBIP and SYCL). The
last subsection covers programming languages that are not directly supported
by VerCors, but can be encoded – by VerCors itself, or by an external tool –
into an existing VerCors language: SystemC, LLVM IR and Halide. For these
encodings, we typically transform a program to PVL, which is VerCors’ internal
language. It is similar to Java, supporting classes and methods for example, but
also has additional constructs such as parallel blocks, which we use to prototype
new verification features.

2.1 Improved Existing Language Support

Java: Exceptions. As mentioned above, Java was the first programming language
supported by VerCors. It has support for several non-trivial features of the lan-
guage, such as the import statement, locks (specified using lock invariants),
arrays, instance and static fields.

A missing feature that hindered practical applicability was the support to
reason about exceptions. To improve this, we first added support for exceptional
contracts using signals clauses. Similar to ensures, a signals clause specifies
the postcondition that must hold when an exception of the indicated type is
thrown. In addition, it can also specify properties over the object that is thrown.

Support for exception-related statements and modifiers such as try_catch,
throw and throws is encoded by transforming them in several steps, to keep
the implementation modular. For example, throws modifiers are encoded into
signals clauses, and try_catch and throwing method calls are encoded into
goto’s. After the transformations, the only primitives that remain are goto,
return, requires and ensures. In addition, abrupt termination primitives such
as break and continue are transformed into exceptional statements, such that
they can be handled using the same code that encodes exceptional behaviour.
For more details about the support for exceptions, see [47,48].

C/C++. Support for basic features of the C and C++ languages works similar to
the verification of those features in Java. In particular, a C/C++ program can
only be verified if it does not have undefined behaviour. However, also C-specific
features had to be covered, such as allocating and freeing memory (malloc and
free), array initialisers, structures, casts between primitive types and implicit
type conversion rules. Furthermore, VerCors now uses the truncated [33] defini-
tion for division and modulo in the C, Java and C++ languages.

GPU Kernels: OpenCL/CUDA. VerCors initially supported verifying data race
freedom and functional correctness of GPU kernels using barriers and atomic
operations by manually encoding kernels into PVL (using parallel blocks) [13].
Support for verification directly at the level of the OpenCL [59] or CUDA [35]
program has now been added, by implementing a translation from kernels into
parallel blocks. In addition, support for both dynamic and static local memory
(called shared memory in CUDA) is added, allowing verification of kernels that
use faster data sharing for threads within the same workgroup. Support for local
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and global memory fences for barriers is present for OpenCL, only allowing
redistribution of memory permissions when the appropriate fence is used.

2.2 Newly Supported Frameworks

JavaBIP. VerCors has direct support for JavaBIP [11]. BIP [6] (“Behavior,
Interaction, Priority”) is a framework for rigorous system design. JavaBIP pro-
vides support for BIP as a Java library. Each JavaBIP class is modelled by
a separate BIP state machine. This connection is made through annotations.
The @State class annotation indicates the possible states, and the @Transition
annotation indicates that a method makes a transition. Whenever a transition
must be taken, the JavaBIP runtime engine looks up and executes the corre-
sponding method. Essentially, the user declaratively specifies the state machine
and implements the transition methods, and JavaBIP provides state machine
behaviour.

The BIP methodology assumes that conditions on the behaviours of the
system are encoded by the user in the BIP state machine, e.g. by adding guards to
transitions, and by assuming implicit invariants in the state machine, such as “in
state S, field f is positive”. However, the JavaBIP platform does not provide tool
support to check if an implementation actually guarantees these invariants. To
address this shortcoming, we prototyped verification support for JavaBIP using
VerCors [10]. In the JavaBIP state machine, the user makes implicit invariants
explicit by adding contract annotations on the states and transitions. Guards
and contracts are then verified deductively using VerCors, thus ensuring that
the implementation corresponds to the assumptions for the BIP state machine.

SYCL. SYCL is a high-level programming language that enables the use of
different heterogeneous devices in a single application [58]. It is built in C++

and targets different devices such as CPUs, GPUs and FPGAs. It abstracts
away from the device-specific details (in contrast to e.g. OpenCL for GPUs), by
building on top of existing (lower-level) APIs such as OpenCL, CUDA and HIP.

VerCors provides prototype verification support for a subset of SYCL,
focussing on its basic and nd-range kernels, buffers and data accessors [60]. A con-
tract is specified for the host function and SYCL kernel. VerCors automatically
adds predefined specifications for the various SYCL data types and functions,
and uses the kernel contract to automatically handle the permissions related to
the data transfer and access through SYCL’s buffer and accessor constructs.

2.3 Programming Languages Encoded into VerCors

SystemC. VerCors is able to verify embedded systems at the design stage, as it
supports the hardware/software co-design language SystemC [27]. The VeSUV
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tool [57] takes designs written in a widely-used subset of SystemC and encodes
their semantics, as well as the scheduling semantics of SystemC, into PVL. The
user can then add properties to the encoded PVL program and verify them
normally with VerCors. This approach allows VerCors to verify both local and
global safety properties and to reason about the timing behaviour of the system,
which is typically difficult for deductive verifiers.

LLVM IR. VCLLVM is a prototype tool that adds support for LLVM IR [31] to
VerCors [40,41]. Building verification support for LLVM IR is part of a larger
project that aims to develop verification support for any programming language
that compiles into LLVM IR. VCLLVM takes as input an annotated LLVM IR
file. It uses the existing LLVM infrastructure to parse and analyse the program.
The program and the annotations are then encoded by VCLLVM into input for
VerCors, and VerCors is used for the verification.

Halide. HaliVer [24] is a tool that adds verification support for Halide [44] and
uses VerCors as its verifier. Halide is a Domain Specific Language designed to
write high-performance image and tensor processing code. Halide decouples the
algorithmic part, which defines what should be computed, from the schedule,
which defines how a computation should be optimised. HaliVer makes it possible
to add and verify annotations that describe the behaviour of Halide programs.
Verification can be done at two levels: (1) front-end verification encodes the
algorithmic part of the Halide program directly into PVL, together with its
annotations, to verify its functional correctness, while (2) back-end verification
transforms the annotations to match the Halide-generated and optimised C code,
which VerCors can then verify. This allows to verify complex optimised code,
without formal verification of the whole Halide compiler. The HaliVer tool is
integrated into the Halide compiler and transforms the annotations similar to
how the compiler transforms the code.

3 VerCors Implementation Changes

In order to improve the user experience for VerCors users, as well as the extend-
ability of the tool, some major updates to its implementation have been made.
We describe the important changes.

Internal Transformation Steps. The effect of VerCors as a program transformer
is achieved by a sequence of approximately eighty rewrite steps. Each step
descends into the program tree recursively and rewrites nodes where appropri-
ate. In earlier versions of VerCors there were several transformations containing
over 1000 lines of code each, which made it hard to guarantee that they were
correct rewrites. We reorganised the internal structure of VerCors and split those
large transformations into multiple small rewrites. The smaller steps also help
facilitate abstractions that newly supported languages like SYCL can build on.
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Name Resolution. Earlier versions of VerCors used text names, which ended up
with a large number of prefixes. If one was missing, it was hard to see which
rewrite caused that. Schemes with de Bruijn-indexed names [17] are thwarted
by declarations shifting around, and forgetting to account for it. Therefore, we
made the rewriters blind to the declaration names. Instead, direct references
to the referred declaration are stored in the tree. This means that names are
resolved once at the start, and from then on there is nothing to resolve anymore:
the name is a pointer to the declaration itself. When rewriting such a reference
we look up the successor of the referent in a map. The circularity of this approach
is resolved by storing the reference as a lazily evaluated value.

Typing Coercions. To ensure that all (intermediate) program trees during pars-
ing and rewriting are correct, it is imperative that the program is well-typed.
This is arranged by having each node in the tree assert typing constraints on its
sub-nodes using the internal typing rules of VerCors. Moreover, certain rewriters
need to know what typing rules were applied to the current node for it to be
allowed in its current position, for example, if we want to store the sequence
{null, null, null} in a variable of type seq<int[]>. This is achieved by
temporarily storing the typing rule(s) that are applied to a node in the program
tree, as a coercion. In this case, the sequence stores a coercion capturing that
“seq<null type> can be mapped to seq<int[]>, because null type can be
coerced to int[]”. As a result, the rewriter for arrays only needs to consider
places with the appropriate coercions.

Triggers. A known challenge in verification are quantifiers, which need instanti-
ation in the proof. In the SMT community, triggers are used to manually provide
hints about potential instantiations [21]. Initially, VerCors automatically gener-
ated triggers for quantifiers. However, for complicated examples it is important
to have explicit control over triggers, to avoid matching loops [8]. Therefore,
while VerCors still generates triggers, VerCors now also allows the user to spec-
ify triggers explicitly.

To enable the use of triggers for parallel block specifications, additional
rewrites may be necessary. For a parallel block, the annotations are given per
thread, and during the verification process these annotations are quantified over
the range of all threads. However, in some cases this results in quantified formulas
containing arithmetic expressions, which are not allowed in triggers. For example
in the case of a flattened multi-dimensional array, we obtain specifications like:
∀ int i, int j; 0 ≤ i < 8 ∧ 0 ≤ j < 10 ∧ j%2 = 0 ⇒ A[(j ∗ 8) + i] > 0. We would like
to use the following trigger: A[(j ∗ 8) + i]. However, as arithmetic operators are
not allowed in triggers, this trigger cannot be used. To fix this, VerCors can now
automatically rewrite this expression to ∀ int k; 0 ≤ k < 8 ∗ 10 ∧ (k/8)%2 = 0 ⇒
A[k] > 0. This quantifier now has the following valid trigger: A[k]. This rewrite
is general, and applies for most surjective mappings from variables to values.

Error Reporting. Errors that are reported about input programs are now mod-
elled close to the input language. Earlier the tool reported simply that a formula
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Fig. 2. Flame graph render of a verification profile

is false, or another technical error from the back-end. We extended the rewriters
to indicate how errors reported in Viper [38] should be translated backwards in
correspondence to the changes that occur in that rewriter. In certain cases such
translations can consist of several steps, which have to be merged/combined, as
rewriters build on abstractions within the internal VerCors language. Essentially,
whenever a transformation creates an AST node that might cause a failure in
the output AST, the transformation also has to define how to map the error
back onto the input AST. The end result is that errors at the SMT level can be
translated back to the input source level at the correct location.

Progress and Profiling. While VerCors is verifying a file, it now occasionally
updates the user interface to show the proof goal it is working on. Since verifica-
tion often gets stuck on a specific proof goal, this is helpful in diagnosing where
the program needs further specifications or fixes. Currently this is reported in a
rather technical manner, but we plan to soon adopt a better model, reporting in
terms of the input program. This is inspired by the approach in the WP interface
of Frama-C [7], where proof goals and their status are reported in line with the
input file before the file is verified.

To keep the verify-edit-verify loop manageable, it also helps to be able to
diagnose the verification time as a whole. For this purpose VerCors can now
output a fine-grained profile, which contains timing information that can later
be rendered to e.g. a flame graph as in Fig. 2. The tasks in the profile can be
viewed as a tree structure, where a task is nested under its parent task. Tasks
are divided up from global phases, down to the branch conditions under which
a proof goal is verified. The detailed information about proof goals is supported
through the symbolic execution back-end of Viper.

4 Deriving Verified, Optimised Programs

Program verification is a hard and challenging problem, and verifying a program
that has been optimised for performance can be even harder. To alleviate this
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problem, we have developed two program correctness-preserving optimisation
tools on top of VerCors: Alpinist and VeyMont.

Alpinist. Alpinist is an annotation-aware GPU program optimiser [52]. Part of
the GPU program development cycle is to incrementally optimise the GPU pro-
gram for performance. These incremental optimisations are performed on the
source level, prior to compilation. Such optimisations can introduce errors. To
address this problem, Alpinist automatically applies frequently-used GPU pro-
gram optimisations, notably loop unrolling, tiling, kernel fusion, iteration merg-
ing, matrix linearisation and data prefetching, in an annotation-aware manner,
which means that besides transforming the GPU program itself, it also trans-
forms the annotations. The provability of the resulting annotated optimised GPU
program is preserved by this transformation. Alpinist works in four different
phases: parsing, applicability checking, transformation and output. The strength
of Alpinist’s approach lies in particular in the applicability checking, where dif-
ferent analysis techniques, including deductive verification can be used to check
whether the optimisation is indeed applicable, before applying it. An example of
an applicability check is whether a loop can be safely unrolled a certain number
of times (as specified by the user): Alpinist unrolls a loop n times only if it can
prove that the loop is executed at leastn times.

VeyMont. VeyMont supports the derivation of correct parallel programs from
sequential programs [16]. First, a sequential global program is verified. The
sequential program has a restricted form, similar to choreographic programs
and session types [26,36]. A sequential VeyMont program contains endpoints,
communication statements between these endpoints, conditional statements, and
loops, where for conditional statements all endpoints must agree on which branch
is taken (“branch unanimity”). There are no local variables, instead all state is
encapsulated by the endpoints. VeyMont can also generate permissions, however,
this assumes a simple ownership structure without sharing.

After the global program is verified, VeyMont transforms it into a concur-
rent program, where an implementation is derived for each endpoint by projec-
tion [16]. For example, if an endpoint is in a receiving position in a communica-
tion statement, the projection will produce code that reads from the receiving
end of the channel. If an endpoint is not involved in a communication, the pro-
jection will produce a no-op. The meta-theory behind VeyMont shows that this
transformed program behaves in the same way as the sequential program [29].
In future work, we want to make VeyMont usable for a larger class of programs,
in particular by providing support for the user to specify permissions, and by
allowing parametrisation of global programs over the number of endpoints.

5 Case Studies

In order to evaluate and improve the usability and applicability of VerCors, we
have developed a number of case studies using VerCors over the last years.
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5.1 Tunnel Control Software Components

In collaboration with the company Technolution1, several Java components of a
tunnel control system were analysed with VerCors. The architecture of the soft-
ware is governed by the Dutch tunnel standard specification (called BSTTI) [45].
First, we investigated the connection between the BSTTI and the implementa-
tion [42]. Next, we looked into a benign but unexplained runtime behaviour of
the control software implementation [37]. Technolution suspected there was a
concurrency bug in the code, but had not yet found a likely explanation.

After analysis and annotating the Java code, two possible explanations were
found, and later confirmed by Technolution. First, there was a mutable inter-
nal data structure, which was accidentally aliased into a reference which was
assumed to be immutable. Second, several methods allowed inspection and hence
the leaking of an internal data structure, which was not designed to be thread
safe. The collaboration with Technolution strengthened our ideas about what is
needed for further adoption of verification in industry, as we not only encoun-
tered the problems ourselves, but also were able to confirm these findings with
Technolution. These ideas are: language support has to be improved, code writ-
ten without verification in mind is difficult to verify, and ultimately verification
should be part of the development chain.

5.2 Verification of Red-Black Trees and their Parallel Merge

Another case study inspired by industrial code, this time from NLnet Labs2,
involved the verification of red-black (RB) trees. In the industrial C code, data
was parsed by several threads concurrently, each constructing its own red-black
tree. Afterwards, all those trees are merged in parallel into one. As a first step,
Nguyen in his master thesis [39] implemented an RB tree in Java and verified
parts of its functionality. This was later extended by verifying the delete function-
ality, as well as a version of the parallel merging process [4]. It uses a linked-list
data structure to store batches of RB tree nodes, prepared by a producer thread
and queueing for a consumer thread. This case study particularly highlights the
use of two concepts supported by VerCors: (1) The producer-consumer pattern
was proved using ghost variables, i.e. variables that only exist for specification
and verification, and are not part of the executable code. While ghost variables
are not unique to VerCors, the case study provides a useful example how they
can assist in verifying concurrent programs in VerCors. (2) The delete operator
was verified using the separating implication operator (“magic wand”), which is
the separation logic counterpart to the logical implication “⇒” [14,53]. Many
tools based on separation logic do not support the magic wand, but this case
study shows its usefulness.

1 https://www.technolution.com/.
2 https://nlnetlabs.nl/.

https://www.technolution.com/
https://nlnetlabs.nl/
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5.3 GPU Case Studies

We developed several verification case studies for GPU code. Notably, we studied
the verification of various prefix sum implementations, which is a frequently used
library function for GPU kernels [51]. After that, we verified two other GPU algo-
rithms (Parallel Stream Compaction and Summed-Area Table) that use prefix
sum, to show how to verify code reusing existing verification results [50]. Initially,
we verified encodings of the algorithms in PVL, but to show practical applica-
bility of our approach, we also verified CUDA versions for most of them [49].
These case studies helped us to improve our GPU support and understand how
these proofs work.

5.4 Student Projects

Several students have done case studies with VerCors. We find these student
projects important, as they show the usability of VerCors for users who are not
involved in the development of VerCors.

Sequential SCC Algorithm. The strongly connected components (SCC) algo-
rithm finds the maximal subsets of nodes in a directed graph, such that every
node in the component can reach any other node in the component, without
leaving the component. It is an important ingredient for many model checking
algorithms, and thus its correctness is essential. We had two student projects on
the verification of a variation of Tarjan’s SCC algorithm [56] in PVL. Hollan-
der [25] provided an overall outline of the correctness proof, which was proven
correct with VerCors, however using some unproven lemmas. Boerman [15] then
followed up on this, and proved two of these remaining lemmas, to complete the
soundness proof of the algorithm. In addition, Boerman identified several bot-
tlenecks that slowed down the proof, and documented how they were resolved.

Distributed Locks. An implementation of a distributed re-entrant lock was veri-
fied to be memory safe and functionally correct by Ledelay [32]. The case study
was provided by the company BetterBe3. To make verification tractable, Ledelay
split up the implementation into four intermediate versions of increasing com-
plexity, adding more aspects of the original code of BetterBe in each layer. The
first layer was based on an earlier verified re-entrant lock [3]. The second layer
added read/write functionality to the lock, and the third layer added an abstrac-
tion for a database. Finally, the fourth phase added a “fail-fast” optimisation,
where a lock can safely skip a database query in certain cases. Layers one and
two were fully verified. Verification of the later layers was not completed due

3 https://www.betterbe.com/.

https://www.betterbe.com/
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to time constraints. During verification, the multiple layers of abstraction some-
times made verification slower, or required additional verification annotations in
other places. This was important input to improve the performance of VerCors.

Other Student Projects. Sessink verified (parts of) the implementation of the
ArrayList class of Java’s standard library [54]. This is relevant for verifying real-
life code bases, which often make use of library features. Budde verified Kahn’s
topological sorting algorithm [18]. Like the SCC algorithm above, this is a base
component in more complex procedures, such as task scheduling.

6 Conclusions, Related Work and Future Work

This paper gave an overview of recent work around the VerCors verifier. We
described how we improved the support for programming languages that can be
reasoned about, as well as the internals and verification support of the tool. We
also discussed various case studies, which demonstrate the usability of the tool.

Related Work. There are several other deductive program verifiers for high-level
programs, such as KeY [1], Dafny [34], OpenJML [20] Why3 [23], VeriFast [28],
Frama-C [7], Whiley [43] RESOLVE [55] and the verifiers that are built on top
of Viper, such as Nagini [22], Prusti [5] and Gobra [61]. The main characteristics
that distinguish VerCors from these other tools are its focus on concurrency (only
a few other verifiers, such as VeriFast and the Viper-based Gobra and Nagini,
also support this), and its focus on extendability and support for many differ-
ent programming languages and concurrency paradigms. However, we are often
inspired by verification features and how they are built into other tools. There
are also some tools that focus specifically on the analysis of GPU programs,
such as GPUVerify [9] and Faisal [19]. They tailor their verification support
specifically to GPU programs, whereas VerCors is fully general.

There also is related work on developing verification theories for concurrent
software, such as Iris [30] and TaDa [46]. These form an inspiration for the ver-
ification logic supported by VerCors. However, our approach ultimately focuses
on the applicability of our techniques, rather than covering all edge cases by
developing a fully generic verification technique.

Future Work. Annotation generation is an important aspect of future work.
HaliVer, Alpinist and VeyMont already address this for specific cases, but we
also plan to develop techniques to generate annotations from scratch. Further,
we would like to exploit the generality of VerCors further, to make it easier to
support new programming languages. One future project is to investigate if we
can use support for LLVM IR to develop verifiers for any language that compiles
into LLVM IR. Finally, we continuously work on improving VerCors’ usability.
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Abstract. Stateless model checking is a fully automatic verification tech-
nique for concurrent programs that checks for safety violations by explor-
ing all possible thread schedulings. It becomes effective when coupled with
Dynamic Partial Order Reduction (DPOR), which introduces an equiva-
lence on schedulings and reduces the amount of needed exploration. DPOR
algorithms that are optimal are particularly effective in that they guaran-
tee to explore exactly one execution from each equivalence class. Unfor-
tunately, existing sequence-based optimal algorithms may in the worst
case consume memory that is exponential in the size of the analyzed pro-
gram. In this paper, we present Parsimonious-OPtimal DPOR (POP), an
optimal DPOR algorithm for analyzing multi-threaded programs under
sequential consistency, whose space consumption is polynomial in the
worst case. POP combines several novel algorithmic techniques, includ-
ing (i) a parsimonious race reversal strategy, which avoids multiple rever-
sals of the same race, (ii) an eager race reversal strategy to avoid storing
initial fragments of to-be-explored executions, and (iii) a space-efficient
scheme for preventing redundant exploration, which replaces the use of
sleep sets. Our implementation in Nidhugg shows that these techniques
can significantly speed up the analysis of concurrent programs, and do so
with low memory consumption. Comparison to TruSt, a related optimal
DPOR algorithm that represents executions as graphs, shows that POP’s
implementation achieves similar performance for smaller benchmarks, and
scales much better than TruSt’s on programs with long executions.

1 Introduction

Testing and verification of multi-threaded programs is challenging, since it
requires reasoning about all the ways in which operations executed by different
threads can interfere. A successful technique for finding concurrency bugs in mul-
tithreaded programs and for verifying their absence is stateless model checking
(SMC) [20]. Given a terminating program and fixed input data, SMC system-
atically explores the set of all thread schedulings that are possible during pro-
gram runs. A dedicated runtime scheduler drives the SMC exploration by making
decisions on scheduling whenever such choices may affect the interaction between
threads. Given enough time, the exploration covers all possible executions and
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detects any unexpected program results, program crashes, or assertion violations.
The technique is entirely automatic, has no false positives, does not consume
excessive memory, and can reproduce the concurrency bugs it detects. SMC has
been implemented in many tools (e.g., VeriSoft [21], Chess [39], Concuerror [15],
Nidhugg [2], rInspect [48], CDSChecker [41], RCMC [28], and GenMC [34]),
and successfully applied to realistic programs (e.g., [22] and [32]).

To reduce the number of explored executions, SMC tools typically employ
dynamic partial order reduction (DPOR) [1,18,28]. DPOR defines an equiv-
alence relation on executions, typically Mazurkiewicz trace equivalence [36],
which preserves many important correctness properties, such as reachability
of local states and assertion violations, and explores at least one execution in
each equivalence class. Thus, to analyze a program, it suffices to explore one
execution from each equivalence class. DPOR was originally developed [18] for
models of concurrency where executions are expressed as sequences of inter-
actions between threads/processes and shared objects. Subsequently, sequence-
based DPOR has been adapted and refined to a number of programming models,
including actor programs [46], abstract computational models [27], event driven
programs [4,24,35], and MPI programs [42]; it has been extended with features
for efficiently handling spinloops and blocking constructs [25], and been adapted
for weak concurrency memory models, such as TSO and PSO [2,48]. DPOR
has also been adapted for weak memory models by representing executions as
graphs, where nodes represent read and write operations, and edges represent
reads-from and coherence relations; this allows the algorithm to be parametric
on a specific memory model, at the cost of calling a memory-model oracle [28,30]

An important improvement has been the introduction of optimal DPOR algo-
rithms, which are efficient in that they guarantee to explore exactly one execu-
tion from each equivalence class. The first optimal DPOR algorithm was designed
for the sequence-based representation [1]. Subsequently, optimal DPOR algo-
rithms for even weaker equivalences than Mazurkiewicz trace equivalence have
been developed [6,9,11]. In some DPOR algorithms [1,9,11], optimality comes at
the price of added memory consumption which in the worst case can be exponen-
tial in the size of the program [3]. Even though most benchmarks in the literature
show a modest memory overhead as the price for optimality, it would be desirable
to have an optimal DPOR algorithm whose memory consumption is guaranteed
to be polynomial in the size of the program. Such an algorithm, called TruSt [29],
was recently presented, but for a graph-based setting [30]. It would be desirable
to develop a polynomial-space optimal DPOR algorithm also for sequence-based
settings. One reason is that a majority of past work on DPOR is sequence-based;
hence such an algorithm could be adapted to various programming models and
features, some of which were recalled above. Another reason is that sequence-
based models represent computations adhering to sequential consistency (SC) and
TSO more naturally than graph-based models. For SC, representing executions as
sequences of events makes executions consistent by construction and alleviates the
need to resort to a potentially expensive memory-model oracle for SC.

In this paper, we present the Parsimonious-OPtimal DPOR (POP) algorithm
for analyzing multi-threaded programs under SC (Sect. 4). POP is designed for
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programs in which threads interact by atomic reads, writes, and RMWs to shared
variables, and combines several novel algorithmic techniques.

– A parsimonious race reversal technique (Sect. 4.1), which considers a race
if and only if its reversal will generate a previously unexplored execution;
in contrast, most existing DPOR algorithms reverse races indiscriminately,
only to thereafter discard redundant reversals (e.g., by sleep sets or similar
mechanisms).

– An eager race reversal strategy (Sect. 4.2), which immediately starts explo-
ration of the new execution resulting from a race reversal; this prevents accu-
mulation of a potentially exponential number of execution fragments gener-
ated by race reversals.

– In order to avoid exploring several executions in the same equivalence class, a
näıve realization of POP would employ an adaptation of sleep sets [19]. How-
ever, these can in the worst case become exponentially large. Therefore, POP
employs a parsimonious characterization of sleep sets (Sect. 4.3): instead of
representing the elements of the sleep set explicitly, POP uses a character-
ization of them, which allows to detect and prevent redundant exploration,
and uses at most polynomial space. This sleep set characterization is com-
puted only from its generating race, implying that explorations of different
executions share no state, making POP suitable for parallelization.

We prove (in the appendices of the longer version of this paper [5]) that the
POP algorithm is correct (explores at least one execution in each equivalence
class), optimal (explores exactly one execution in each equivalence class), does
not suffer from blocked explorations, and requires only polynomial size memory.

We have implemented POP DPOR in an extension of the Nidhugg tool [2].
Using a wide variety of benchmarks (Sect. 6), which are available in the paper’s
artifact, we show that POP’s implementation indeed has its claimed properties,
it always outperforms Optimal DPOR’s implementation, and offers performance
which is on par with TruSt’s, the state-of-the-art graph-based DPOR algorithm.
Moreover, by being sequence-based, it scales much better than TruSt’s imple-
mentation on programs with long executions.

2 Main Concepts

Initially: x = y = z = 0

x = 1
p

y = 1

z = 1

q
g = 1
a = y

b = x

r
c = y

d = z
e = x

s

Fig. 1. Program code.

In this section, we informally present the core
principles of our approach, in particular the
three novel algorithmic techniques of parsimo-
nious race reversal, eager race reversal, and par-
simonious characterization of sleep sets, along
with how they relate to previous sequence-
based DPOR algorithms, on a simple exam-
ple, shown in Fig. 1. In this code, four threads
(p, q, r, s) access three shared variables (g, x, y, z), using five thread-local



22 P. A. Abdulla et al.

registers (a, b, c, d, e).1 DPOR algorithms typically first explore an arbitrary exe-
cution, which is then inspected to detect races. Assume that this execution is E1

(the leftmost execution in Fig. 2). To detect races in an execution E, one first
computes its happens-before order, denoted hb−→E , which is the smallest transi-
tive relation that orders two events that (i) are in the same thread, or (ii) access
a common shared variable and at least one of them is a write. A race consists of
two events in different threads that are adjacent in the hb−→E order. In execution
E1 there are two races on x, two races on y, and one race on z. The two races
on y are marked with yellow arrows, as we are going to discuss them now. POP
first reverses the race between events y = 1 and a = y. For each race, a DPOR
algorithm constructs an initial fragment of an alternative execution, called a
schedule, which reverses the race and branches off from the explored execution
just before the race. POP constructs a minimal schedule consisting of the events
that happen before (in the hb−→E1 order) the second event followed by the second
event of the race, while omitting the first event of the race, resulting in the event
sequence 〈g = 1 ·a = y〉, which is inserted as an alternative continuation after x = 1
(the branch to the right of x = 1).

E1

e = x

d = z

c = y

b = x

a = y

g = 1

z = 1

y = 1

E2

z = 1

y = 1

e = x

d = z

c = y

b = x

a = y

g = 1

E3

b = x

a = y

g = 1

e = x

d = z

z = 1

T5

e = x

d = z

y = 1

c = y

x = 1

T4

b = x

a = y

g
=
1

T6

e = x

d = z

c = y

T7

e = x

d = z

z = 1

y = 1

c = y

T8

b = x

a = y

g = 1

y = 1

c = y

σ1 σ2

σ3 σ4

Fig. 2. Part of the exploration tree
for the program in Fig. 1. Completed
executions are denoted Ei; truncated
subtrees are denoted Ti.

In comparison, early DPOR algorithms,
including the “classic” DPOR algorithm
by Flanagan and Godefroid [18] and the
Source DPOR algorithm of Abdulla et
al. [1] construct a schedule consisting of
just one event that can initiate an execution
which reverses the race (〈g = 1〉 in this case).
Storing just one event saves space, but the
execution afterwards is uncontrolled and
may deviate from the path towards the sec-
ond racing event a = y, potentially leading
to redundant exploration. To avoid redun-
dancy, we need schedules which consist of
paths to the second racing event.

Eager Race Reversal: Following an eager
race reversal strategy, POP continues
the exploration with this branch and
explores E2. POP can in principle be imple-
mented so that the schedules constructed
as alternative continuations of an event are
all collected before they are explored. How-
ever, such a strategy can in the worst case
consume memory that is exponential in the
program size. The reason is that, for some
programs, the number of schedules that

1 Throughout this paper, we assume that threads are spawned by a main thread, and
that all shared variables get initialized to 0, also by the main thread.
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branch off at a particular point in an execution may become exponential in
the size of the program; this was first observed by Abdulla et al. [3, Sect. 9];
an illustrating shared-variable program is given by Kokologiannakis et al. [29,
Sect. 2.3]. POP avoids this problem by exploring schedules eagerly : immediately
after the creation of a schedule, exploration switches to continuations of that
schedule. This strategy can be realized by an algorithm that calls a recursive
function to initiate exploration of a new schedule. We establish, in Lemma 1,
that the recursion depth of such an algorithm is at most n(n − 1)/2, where n is
the length of the longest execution of the program.

Continuing exploration, POP encounters the race on x in E2 involving events
x = 1 and b = x. (In Fig. 2, we show races by red arrows.) POP constructs the
schedule σ1 := 〈g = 1 · a = y · b = x〉(second branch from the root) and explores
the subsequent part of T4 (tree T4 represents all the extensions after σ1). After
exploring T4 (second branch from the root), POP comes back to E2.

Parsimonious Race Reversal: To illustrate POP’s mechanism for reversing each
race only once, let us next consider races in execution E2. There is one race on y,
between a = yand y = 1in E2, for which POP would construct the schedule σ :=
〈c = y · y = 1〉 However, a prefix of σ, namely 〈c = y〉 will be constructed from a
race in E1 between y = 1and c = y and inserted as an alternative continuation after
x = 1 (the rightmost child of x = 1 in Fig. 2). Thus, any continuation of σ after
x = 1 can also be explored as a continuation after the rightmost child of x = 1,
implying that inserting σ as an alternative continuation after x = 1 would lead to
redundant exploration. POP avoids such redundant exploration by forbidding to
consider races whose first event (in this case a = y) is in some schedule: reversing
a race whose first event is in a schedule yields a fragment that is explored in some
other execution. The execution E2 also exhibits two races on x, both including
x = 1, with the events b = x and e = x These races have already occurred in E1,
and should therefore not be considered, since the schedules they would generate
will be generated from the corresponding races in E1. POP achieves this by
forbidding to consider races whose second event is not fresh. A second event of a
race is fresh if it happens-after (in the hb−→ order) the last event of each schedule
that appears between the two racing events. Returning to the two races on x
in E2, their second events are not fresh, and hence they are not reversed.

Let us continue the exploration of E2 in Fig. 2 to illustrate how the eager race
reversal strategy affects the order in which branches are explored. In E2, there
are two more races, on y and z, whose reversals produce two branches after b = x
and c = y, denoted by wavy edges. After their exploration, since there are no more
races in E2, POP returns to E1, where the race between events y = 1 and c = y
induces the schedule 〈c = y〉, initiating exploration of E3. While exploring E3, the
race inolving events z = 1 and d = z in E3 induces the schedule 〈d = z〉, initiating
exploration of the subtree T5, during which the race on x involving x = 1 and
e = x induces the schedule σ2 := 〈c = y · d = z · e = x〉, and explores the subsequent
part of the tree T6. After finishing exploration of T6 and T5, POP comes back
to E3, where the race involving events x = 1 and e = x induces the schedule σ3 :=



24 P. A. Abdulla et al.

〈c = y ·y = 1 ·z = 1 ·d = z ·e = x〉 initiating exploration of T7, whereafter exploration
of E3 resumes.

Parsimonious Characterization of Sleep Sets: Even though the parsimonious
race reversal strategy guarantees that the initial fragments of alternative execu-
tions are inequivalent, one must prevent that their continuations become equiv-
alent. This happens when POP continues after a read schedule, generated from a
race whose second event is a read event. To illustrate this problem, let us consider
the race involving events x = 1 and b = x in E3, which produces the read schedule
σ4 := 〈c = y · y = 1 · g = 1 · a = y · b = x〉, initiating exploration of T8. Note that the
schedule σ4 is not conflicting with the read schedules σ2 and σ3. At this point,
we need to be careful: there is a danger that σ4 will be continued using the other
two schedules (σ2 and σ3), whereas the explorations starting with schedules σ2

and σ3 can be continued using σ4; we would then explore equivalent executions,
consisting of these three schedules in either order. The same problem occurs
with σ1 and σ3, as they do not conflict. The DPOR technique for avoiding such
redundant exploration is sleep sets [19]. In its standard form, a sleep set is a set
of events that should not be performed before some conflicting event. Since POP
uses schedules as beginnings of alternative explorations, the appropriate adap-
tation would be to let a sleep set be a set of read schedules that should not be
performed unless some conflicting event is performed before that. In Fig. 2, this
would mean that after exploring the continuations of σ2 and σ3, these schedules
are added to the sleep set when starting to explore the continuations of σ4, and
σ1 is added to the sleep set when starting to explore the continuations of σ3.
This mechanism is simple to combine with parsimonious race reversal and eager
exploration of schedules. Unfortunately, there are programs where the number
of read schedules that would be added to such a sleep set is exponential in the
size of the program, whence the worst-case memory consumption may be expo-
nential in the size of the program. POP avoids this problem by a parsimonious
characterization of sleep sets, which consumes memory that is polynomial in the
size of the program. The idea is to totally order the read schedules. When con-
tinuing exploration after a read schedule σ, the read schedules that precede σ in
this order are represented by POP’s parsimonious characterization in polynomial
space, even though the number of represented schedules may be exponential. In
principle, there are several ways to order the read schedules. POP uses one such
ordering, namely σ1, σ2, σ3 and σ4. We provide the details about this represen-
tation in Sect. 4.3.

3 Programs, Executions, and Equivalence

We consider programs consisting of a finite set of threads that share a finite set of
(shared) variables. Each thread has a finite set of local registers and runs a deter-
ministic code, built in a standard way from expressions (over local registers) and
atomic commands, using standard control flow constructs (sequential composi-
tion, selection, and bounded loop constructs). Atomic commands either write
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the value of an expression to a shared variable, or assign the value of a shared
variable to a register, or can atomically both read and modify a shared variable.
Conditional control flow constructs can branch on the value of an expression.
From here on, we use t to range over threads, and x, y, z to range over shared
variables. The local state of a thread is defined as usual by its program counter
and the contents of its registers. The global state of a program consists of the
local state of each thread together with the valuation of the shared variables.
The program has a unique initial state, in which shared variables have predefined
initial values. We assume that memory is sequentially consistent.

The execution of a program statement is an event, which affects or is affected
by the global state of the program. An event is represented by a tuple 〈t, i, T, x〉,
where t is the thread performing the event, i is a positive integer, denoting
that the event results from the i-th execution step in thread t. T is the type
of the event (either R for read or W for write and read-modify-write), and x is
the accessed variable. If e is the event 〈t, i, T, x〉, we write e.th for t, e.T for T,
and e.var for x. An access is a pair 〈T, x〉 consisting of a type and a variable.
We write e.acc for 〈e.T, e.var〉. We say that two accesses 〈T, x〉 and 〈T′, x′〉 are
dependent, denoted 〈T, x〉 �� 〈T′, x′〉, if x = x′ and at least one of T and T′ is W.
We say that two events e and e′ are dependent, denoted e �� e, if e.th = e′.th
or e.acc �� e′.acc. As is customary in DPOR algorithms, we can let an event
represent the combined effect of a sequence of statements, if at most one of
them accesses a shared variable.

An execution sequence (or just execution) E is a finite sequence of events,
starting from the initial state of the program. We let enabled (E) denote the set
of events that can be performed in the state to which E leads. An execution E is
maximal if enabled (E) = ∅. We let dom (E) denote the set of events in E; we also
write e ∈ E to denote e ∈ dom (E). We use u and w, possibly with superscripts,
to range over sequences of events (not necessarily starting from the initial state),
〈〉 to denote the empty sequence, and 〈e〉 to denote the sequence with only the
event e. We let w · w′ denote the concatenation of sequences w and w′, and let
w\e denote the sequence w with the first occurrence of e (if any) removed. For
a sequence u = e1 · e2 · . . . · em, we let w\u denote (· · · ((w\e1)\e2)\· · · )\em.

The basis for a DPOR algorithm is an equivalence relation on the set of
execution sequences. The definition of this equivalence is based on a happens-
before relation on the events of each execution sequence, which captures the data
and control dependencies that must be respected by any equivalent execution.

Definition 1 (Happens-before). Given an execution sequence E, we define
the happens-before relation on E, denoted hb−→E, as the smallest irreflexive par-
tial order on dom (E) such that e

hb−→E e′ if e occurs before e′ in E, and e �� e′.

The hb-trace (or trace for short) of E is the directed graph (dom (E) ,
hb−→E).

Definition 2 (Equivalence). Two execution sequences E and E′ are equiv-
alent, denoted E � E′, if they have the same hb-trace. We let [E]� denote the
equivalence class of E.
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The equivalence relation � partitions the set of execution sequences into
equivalence classes, paving the way for an optimal DPOR algorithm which
explores precisely one execution in each equivalence class.

4 Design of the POP Algorithm

In this section, we explain the design of POP, which is optimal in the sense that
it explores precisely one execution in each equivalence class defined by Definition
2. We first need some auxiliary definitions

Definition 3 (Compatible sequences and happens-before prefix). For
two execution sequences E · w and E · w′,

– the sequences w and w′ are compatible, denoted w ∼ w′, iff there are
sequences w′′ and w′′′ s.t. E · w · w′′ � E · w′ · w′′′,

– the sequence w is a happens-before prefix of w′, denoted w 	 w′, iff there is
a sequence w′′ s.t. E · w · w′′ � E · w′.

We illustrate the definition on the example in Fig. 2. Assuming E3 = 〈x = 1〉 ·
w′, it is true that σ4 	 w′, since 〈x = 1〉 · σ4 · w′′ � 〈x = 1〉 · w′, where w′′ is the
sequence 〈z = 1 · d = z · e = x〉. However, σ1 
∼ σ4, since σ1’s access to y and σ4’s
second access to y are in conflict.

Definition 4 (Schedule). A sequence of events σ is called a schedule if all its
events happen-before its last one, i.e., e′ hb−→ e where e is its last event, and e′ is
any other event in σ. The last event e of a schedule σ is called the head of σ,
sometimes denoted hd (σ). For an execution sequence E · w and event e ∈ w,
define the schedule e ↓w to be the subsequence w′ of w such that (i) e ∈ w′, and
(ii) for each e′ ∈ w it holds that e′ ∈ w′ iff e′ hb−→E·w e.

4.1 Parsimonious Race Reversals

A central mechanism of many DPOR algorithms is to detect and reverse races.
Intuitively, a race is a conflict between two consecutive accesses to a shared
variable, where at least one access writes to the variable (i.e., it is a write or a
read-modify-write).

Definition 5 (Race). Let E be an execution sequence. Two events e and e′

in E are racing in E if (i) e and e′ are performed by different threads, (ii)
e

hb−→E e′. (iii) there is no other event e′′ with e
hb−→E e′′ hb−→E e′.

Intuitively, a race arises when two different threads perform dependent accesses
to a shared variable, which are adjacent in the hb−→E order. If e and e′ are racing
in E, then to reverse the race, E is decomposed as E = E1 · e · E2 with e′ in
E2, thereafter the schedule σ = e′ ↓E2 is formed as the initial fragment of an
alternative execution, which extends E1.
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The key idea of parsimonious race reversal is to reverse a race only if such a
reversal generates an execution that has not been explored before. To be able to
do so, POP remembers whenever an event in a new execution is in a schedule,
and whether it is a schedule head. This can be done, e.g., by marking events in
schedules, and specifically marking the schedule head. From now on, we consider
such markings to be included in the events of executions. They play an important
role in selecting races.

Definition 6 (Fresh event). For an execution E · w · e′ · w′, the event e′ is
called fresh in w · e′ · w′ after E if (i) if e′ is in a schedule, then it is the head
of that schedule, and (ii) for each head eh of a schedule in w it is the case that
eh

hb−→E·w·e e′.

Definition 7 (Parsimonious race). Let E be an execution sequence. Two
events e and e′ in E are in a parsimonious race, denoted e�E e′ if (i) e and e′

are racing in E, (ii) e is not in a schedule in E, and (iii) e′ is fresh in w · e′

after E1, where E = E1 · e · w · e′ · w′

Conditions (ii) and (iii) are the additional conditions for a race to be parsimo-
nious. They filter out races, whose reversals would lead to previously explored
executions. Let us provide the intuition behind these conditions. (ii) If e is in
a schedule, then that schedule, call it σ, was generated by a race in an earlier
explored execution E′. Hence σ was contained in E′. Moreover e′ would race
with the head of σ also in E′; if e′ appeared after σ the resulting new sched-
ule had been generated already in E′; if e′ appeared before σ, then we would
only undo a previous race reversal. This is illustrated in Fig. 2 by the race on y,
between a = y and y = 1 in E2. (iii) If e′ is not fresh, then e′ appeared with the
same happens-before predecessors in an earlier explored execution E′, where it
was in a race that would generate the same schedule as in E. This is illustrated
in Fig. 2 by the race on x, between b = x and e = x. in E2, which was considered
already in E1.

4.2 The Parsimonious-OPtimal DPOR (POP) Algorithm

We will now describe the mechanism of the POP algorithm, without going into
details regarding its handling of sleep sets (this will be done in Sect. 4.3). In
particular, we will show how the eager race reversal strategy is represented in
pseudo-code. Recall from Sect. 2 that a DPOR algorithm with parsimonious race
reversal could be implemented so that the schedules that constructed from races
with a particular event e are all collected before they are explored. However,
for some programs, the number of schedules created from races with an event e
can be exponential in the length of the longest program execution. In order not
to consume exponential memory, POP explores schedules eagerly : immediately
after the creation of a schedule, exploration switches to continuations of that
schedule.

The POP algorithm is shown as Algorithm 1, where lines without background
shading are concerned with the exploration and race handling, and the other
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Algorithm 1: POP (Recursive)
1 Pick e ∈ enabled (〈〉)
2 SSChar [〈〉] = SSChar [〈e〉] = ∅
3 Explore(〈e〉)
4 Explore(E)
5 foreach e s.t. e �E e′, where e′ = last (E) do
6 let E = E1 · e · E2

7 let σ = e′ ↓E2

8 if UpdSeq(σ,SSChar [E1]) �= block then
9 SSChar [E1 · σ] = UpdSeq(σ,SSChar [E1])

10 if (e′.T = R) then
11 SchedChar [E1](σ) = MkSchedChar(σ, E1, e, E2)
12 SSChar [E1 · σ] ∪= SchedChar [E1](σ)

13 Explore(E1 · σ)

14 if ∃e ∈ enabled (E) s.t. UpdSeq(〈e〉,SSChar [E]) �= block then
15 SSChar [E · e] = UpdSeq(〈e〉,SSChar [E])
16 Explore(E · e)

lines, which are marked with green background, are concerned with sleep sets.
POP takes an input program, and explores its executions by repeated calls to the
procedure Explore. For each prefix E′ of an execution that is under exploration,
the algorithm maintains a characterization SSChar [E′] of the sleep set at E′,
to be described in Sect. 4.3, in order to prevent redundant exploration of read
schedules. This characterization is manipulated by POP through two functions:

MkSchedChar(σ,E1, e, E2) constructs a characterization of the sleep set for a
newly constructed σ, constructed from a race e�E1·e·E2

last (E2),
UpdSeq(w,SSChar) updates the sleep set characterization SSChar wrt. process-

ing of the sequence w. However, if a characterized read schedule (i.e., a sched-
ule in the sleep set) would be performed while exploring w, the function
returns block instead of the updated characterization.

The algorithm first picks an enabled event e (line 1), initializes the character-
izations of sleep sets of 〈〉 and 〈e〉 (line 2), whereafter it calls Explore(〈e〉) (line
3). Each call to Explore(E) consists of a race reversal phase (lines 5 to 13) and
an exploration phase (lines 14 to 16). In the race reversal phase, POP considers
all parsimonious races between an event e in E and the last event e′ of E (line
5). For each such race, of form e�E e′, POP decomposes E as E1 · e · E2 (line
6), and forms the schedule σ that reverses the race as e′ ↓E2 (line 7). It then
intends to call Explore(E1 · σ) in order to recursively switch the exploration
to the newly reversed race, according to the eager race reversal strategy. Before
that it checks whether exploring E1 · σ will complete a schedule in the sleep set
by calling UpdSeq(σ,SSChar [E1]) (line 8). If not, SSChar [E1 · σ] is computed
(line 9), and if e′ is a read event also extended with the new sleep set for σ (lines
11 to 12). After these preparations, Explore(E1 · σ) is called recursively (line
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13). After the return of all recursive calls initiated in the race reversal phase,
Explore enters the exploration phase. There it picks an event e that is enabled
for execution, and check that e is not the head of a schedule in the sleep set by
calling UpdSeq(〈e〉,SSChar [E]) (line 14) If the check succeeds, exploration of e
is prepared by updating SSChar [E1 · e] (line 15) and then performed by calling
Explore(E · e)(line 16).

We establish (in Lemma 1) that the recursion depth of Algorithm 1 is at
most n(n − 1)/2, where n is the length of the longest execution of the analyzed
program.

4.3 Parsimonious Sleep Set Characterization

As described in Sect. 2, POP needs a sleep set mechanism to avoid redun-
dant exploration of read schedules. Such a mechanism is needed whenever POP
explores reversals of races with a write event eW that appears after an execu-
tion E1. Then each parsimonious race eW �E′ eR between eW and a read event
eR results in a schedule σ, which will be explored as a continuation of E1. For
any two such schedules, σ and σ′, POP must ensure that either the exploration
starting with σ does not continue in a way that includes σ′, or (vice versa)
that the exploration starting with σ′ does not continue in a way that includes
σ. In Sect. 2, it was further described that to achieve this, POP must for each
such explored write event eW establish a total order between the read schedules
resulting from races with eW , and ensure that an exploration starting with σ
does not continue in a way that includes another schedule σ′ which precedes σ in
this order. It was also observed that, since there can be an exponential number
of such schedules, the näıve approach of enumerating the schedules that precede
σ can in the worst case consume space exponentical in the length of the longest
execution.

In this section, we will describe one way to realize such a sleep set mechanism.
We first define, for each explored write event eW , a total order between the
read-schedules resulting from races with eW . Thereafter we define a succinct
(polynomial-space) characterization of all schedules that precede any given such
schedule σ. Finally, we define a polynomial-space mechanism for POP to monitor
exploration so that exploration after the schedule σ does not explore another read
schedule which precedes σ in the order.

First, for a variable x, we define a read-x-schedule to be a schedule whose
head is a read on x, and which does not contain any other read or write on x. A
read-schedule is a read-x-schedule for some variable x. Then a read-x-schedule
is a schedule that may be formed when reversing a parsimonious race between a
write on x and a read on x. Such a schedule σ cannot include a write on x, since
then it could not have been formed from a race. Also, it cannot include a read
on x, since that extra read will both happen-before hd (σ), and happen-after the
write on x, contradicting that there was a race between the write and hd (σ).

Let us now define the order ∝, which for each write event eW totally orders
the schedules that result from parsimonious races between eW and a subsequent
read. Let σ be formed from a race eW �E eR between eW and another read event
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eR in E and σ′ be formed from a race eW �E′ e′
R between eW and another read

event e′
R. Then σ′ ∝ σ if either

(A) E′ is a prefix of E, i.e., e′
R occurs before eR in E, or

(B) for the longest common prefix Ê of E and E′, E has a prefix of form Ê · ê for
some non-schedule event ê, whereas E′ has a prefix of form Ê · σ̂ for some
schedule σ̂ (which is induced by a race whose first event is ê), or

(C) for the longest common prefix Ê of E and E′, E has a prefix of form Ê · σi

for some schedule σi, whereas E′ has a prefix of form Ê ·σ′
i for some schedule

σ′
i, and σ′

i ∝ σi.

Schedules of form (A) are called contained schedules (wrt. σ). An example can
be found in Fig. 2. Consider the schedules σ3 :=〈c = y · y = 1 · z = 1 · d = z · e = x〉
from the race x = 1�E3

e = x in E3, and σ4 := 〈c = y ·y = 1 ·g = 1 ·a = y · b = x〉 from
the race x = 1�E3

b = x in E3. As e = x occurs before b = x in E3, (A) implies that
σ3 ∝ σ4. Schedules of form (B) are called conflicting schedules, because e′ occurs
in an execution which branches off from (thus conflicts with) E because of a
race involving an event ê in E. For example, consider the schedules σ2 :=〈c = y ·
d = z ·e = x〉, which is constructed from the race between x = 1 and e = x in T5, and
σ4 constructed from the race x = 1�E3

b = x in E3. Since T5 branches off from
(and thus conflicts with) E3 after the prefix Ê :=〈x = 1 · c = y · y = 1〉 with the
schedule σ̂ :=〈d = z〉, we have σ2 ∝ σ4 according to case (B). Schedules of form
(C) are called inherited schedules, because the order σ′ ∝ σ is inherited from the
order σ′

i ∝ σi. For example, consider the schedules 〈g = 1 · a = y〉 (second branch
after x = 1), and 〈c = y〉 (third branch after x = 1), for which 〈g = 1 · a = y〉∝〈c = y〉
because of (A). Now consider the schedules σ1 := 〈g = 1 · a = y · b = x〉 from the
race x = 1�E2

b = x in E2, and σ2 from the race between the events x = 1 and e = x
from an execution in T5. As 〈g = 1 · a = y〉 is a prefix of σ1 and 〈c = y〉 is a prefix
of σ2, according to (C), the order 〈g = 1 · a = y〉 ∝〈c = y〉 is inherited as σ1 ∝ σ2.

It is clear that these rules define a total order on the read schedules that
branch off after E1. We next define a succinct way to characterize, for a given
schedule σ, the set of schedules σ′ such that σ′ ∝ σ. Given E = E1 · eW · w · eR

and σ formed from the race eW �E eR, let w = w0 · σ1 · w1 · σ2 · · · · σm · wm,
where σ1, . . . , σm are the schedules in w. We note that σ, since eW �E eR is
parsimonious, includes all σi (including their heads) for 1 ≤ i ≤ m, and may also
include events in the sequences w0, . . . , wm. This means that w\σ is of form w′

0 ·
. . . ·w′

m, where w′
i is the sequence remaining in wi after removing σ; in particular

w\σ does not contain any events in any schedule σi. The following proposition
characterizes how to detect a schedule σ′ with σ′ ∝ σ in an exploration that is
initiated as a continuation of E1 · σ.

Proposition 1. Let E = E1 · eW · w · eR, let w = w0 · σ1 · w1 · · · · · ·wm, and let
σ be formed from eW �E eR. Let w′

j = wj \σ for j = 0, . . . ,m, and ej = hd (σj)
for j = 1, . . . , m. Let E1 ·σ ·u ·e′

R be an execution where e′
R is a read event on x,

and let σ′ = e′
R ↓σ·u·e′

R . Then σ′ ∝ σ iff σ′ is a read-x-schedule such that either

(A) (i) (e′
R ↓u·e′

R) 	 w\σ, and (ii) if e′
R is in w′

j then ek
hb−→ e′

R for 1 ≤ k ≤ j,
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(B) for some j with 0 ≤ j ≤ m we have (i) (e′
R ↓u·e′

R) 
∼ w′
0 · . . . · w′

j, and

(ii) if j is the smallest index s.t. (i) holds, then ek
hb−→ e′

R for 1 ≤ k ≤ j, or
(C) for some i with 1 ≤ i ≤ m s.t. σi is a read-schedule, and σ′

i with σ′
i ∝ σi

1) if hd (σi) .var 
= x then (i) (hd (σ′
i) ↓w′

0·...·w′
i·σ′

i) 	 u,
(ii) hd (σ′

i)
hb−→ e′

R, and (iii) ek
hb−→ e′

R for 1 ≤ k ≤ i.
2) if hd (σi) .var = x then (i) (hd (σ′

i) ↓w′
0·...·w′

i·σ′
i) 	 u · e′

R,
(ii) hd (σ′

i) = e′
R, and (iii) ek

hb−→ e′
R for 1 ≤ k ≤ i. ��

Let us motivate this proposition.

(A) Since σ 	 w · eR, condition (i) implies that σ′ = e′
R ↓σ·u·e′

R 	 w, implying
that σ′ is a contained schedule (wrt. σ).

(B) Since σ 	 w·eR, condition (i) implies that σ′ = e′
R ↓σ·u·e′

R 
∼ w0·σ1·. . .·σj ·wj ,
implying that σ′ is a conflicting schedule.

(C) Let us first consider case 1). Since σ 	 w · eR, condition (i) implies that
(hd (σ′

i) ↓w0·σ1·...·σj ·wj ·σ′
i) 	 σ · u, implying that σ′ is an inherited schedule.

Condition (ii) ensures that e′
R appears in the exploration that follows hd (σ′

i),
in which case hd (σ′

i)
hb−→ e′

R is necessary for e′
R to be fresh. Case 2) is a slight

modification for these case that the head of σ′
i and e′

R read from the same
variable, in which case e′

R must be hd (σ′
i) (since a read-x-schedule cannot

contain another read on x).

In each case, the last condition ensures that e′
R is fresh, and thus part of a

parsimonious race.
Let us illustrate, using Fig. 2, how some continuations of read schedules can be

characterized according to Proposition 1. First, consider σ4 (top right in Fig. 2),
derived from the race x = 1�E3

b = x in E3. Decomposing E3 as x = 1 · w · b = x,
where w :=〈c = y · y = 1 · z = 1 · d = z · e = x · g = 1 · a = y〉, we obtain w \ σ4 =〈z = 1 ·
d = z · e = x〉.
(A) Assume that the exploration continues after σ4 as 〈z = 1 ·d = z ·e = x〉. Letting

u be 〈z = 1 · d = z〉 and e′
R be e = x, we see that σ′ = u · e′

R matches the
conditions in case (A), since (i) σ′ 	 w \ σ4 and (ii) e′

R happens-after the
head of the only schedule 〈c = y〉 in E3.

(B) Assume next that the exploration continues after σ4 as 〈d = z ·e = x〉. Letting
u be 〈d = z〉 and e′

R be e = x, we see that σ′ = u ·e′
R matches the conditions in

case (B), since (i) e = x ↓〈d = z·e = x〉= 〈d = z · e = x〉 and 〈d = z · e = x〉 
∼ (w \σ4),
and (ii) e = x happens-after the head of the only schedule c = y in E3.

(C) Let us next consider σ2 (top middle in Fig. 2), derived from the race
x = 1�E′ e = x in the first explored execution E′ from T5. Decomposing E′

as x = 1 · w · e = x, where w :=〈c = y · y = 1 · d = z〉 we obtain w \ σ2 =〈y = 1〉.
Assume next that the exploration continues after σ2 as 〈g = 1 · a = y · b = x〉.
Letting u be 〈g = 1 · a = y〉 and e′

R be b = x, we see that σ′ = u · e′
R matches

the conditions in case (C)1), since there is the schedule σi =〈c = y〉 for which
there is another schedule σ′

i =〈g = 1 · a = y〉 with σ′
i ∝ σi. The conditions in

case (C)1) are satisfied, since (i) a = y ↓〈y = 1·g = 1·a = y〉	 u, (ii) a = y
hb−→e′

R, and
(iii) there is no schedule before the event c = y in E′.
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Based on Proposition 1, we now describe a technique to monitor the explo-
ration of executions in order to detect when it is about to explore a schedule in a
sleep set. It is based on annotating each newly constructed read schedule σ with
a characterization of the schedules σ′ with σ′ ∝ σ that must be avoided in the
exploration that continues after σ. We use the same notation and set-up as for
Proposition 1. For i = 0, . . . , m, let Pi denote Pi = w′

0{e1}w′
1 · · · {ei}w′

i, where w′
j

is wj\σ for j = 0, . . . , i, and ej is hd (σj) for j = 1, . . . , i. From Proposition 1 we
see that (i) Pm and x contains sufficient information to characterize the contained
and conflicting schedules that must be avoided, and (ii) for each i = 1, . . . , m,
such that σi is a read-schedule, Pi−1 together with a characterization of the
schedules σ′

i with σ′
i ∝ σi contain sufficient information to characterize the

schedules inherited from schedules σ′
i with σ′

i ∝ σi that must be avoided. Let us
therefore define a schedule expression as an expression of form (i) Pm�x, charac-
terizing the set of contained and conflicting read-x-schedules, according to cases
(A) and (B) in Proposition 1, or of form (ii) Pi−1[ϕi] � x for some i = 1, . . . , m,
such that σi is a read-schedule, and ϕi is a schedule expression characterizing
schedules σ′

i with σ′
i ∝ σi. Let us go through one example of each form of sched-

ule expressions using Fig. 2. While exploring continuations of σ4, POP creates
two schedule expressions; (i) P1 � x = {c = y}〈z = 1 · d = z · e = x〉 � x representing
the schedules σ2 and σ3, and (ii) P0[ϕ1]�x = 〈〉[〈z = 1 ·g = 1 ·a = y ·b = x〉�y]�x,
representing only σ1. Notice that, expression (ii) is useless in this case as σ1 is
conflicting with σ4, i.e., σ1 is not a feasible continuation after σ4. However, the
same expression is useful to prevent doing σ1, when exploring a continuation of
σ2.

In order to detect when exploration is about to explore a schedule that must
be avoided, the “state” of each schedule expression will during exploration be
maintained by POP in a sleep set expression, which is obtained from a schedule
expression ϕ by (i) augmenting each event e which occurs in some sequence wi

in ϕ (i.e., not inside brackets {·}) with a conflict set (denoted C) of encountered
events that conflict with e or happen-after an event that conflicts with e; we
use the notation eC to denote such an augmented event, (ii) augmenting each
enclosed subexpression of form P � x or P [ϕ] � x with the set (denoted D) of
encountered read-x-events that are heads of read-schedules that are characterized
by P � x; we use the notation [P � x]D (or [P [ϕ] � x]D), and (iii) augmenting
each occuring variable x that occurs after � in a subexpression of form P � x
or P [ϕ] � x with the set of previously encountered read events on x; we use the
notation �xR, where R is this set of read events. If a read on x happens-after
a read in R, it cannot be the head of a read-x-schedule, and should thus not
be blocked (recall from the definition of read-x-schedules that its head cannot
happen-after another read on the same variable). When a sleep set expression
is created and initialized, its augmenting sets are empty. We identify a schedule
expression with its initialized sleep set expression. We use ψ, possibly with sub-
or superscripts, to range over sleep set expressions.

Algorithm 2 shows POP’s implementation of the sleep set expression manip-
ulation functions MkSchedChar(σ,E1, e, E2) and UpdSeq(w,SSChar), which are
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Algorithm 2: Functions for Parsimonious Sleep Set Characterization
1 MkSchedChar(σ, E1, e, E2)
2 let x = hd (σ) .var
3 let E2 = w0 · σ1 · w1 · · · · σm · wm · e′

4 for i = 0, . . . , m let Pi = (w0\σ){hd (σ1)}(w1\σ) · · · {hd (σi)}(wi\σ)
5 for i = 0, . . . , m let ui = e · w0 · σ1 · . . . · σi · wi

6 return

(
{Pm � x} ∪

m⋃
i=1

{Pi−1[ϕi] � x | ϕi ∈ SchedChar [E1 · ui−1](σi)}
)

7 UpdSeq(w,SSChar)
8 if w = 〈〉 then return (SSChar)
9 else if ∃ψ ∈ SSChar : UpdSE(fst(w), ψ) = block then return block

10 else return (UpdSeq(rest(w), {UpdSE(fst(w), ψ)|ψ ∈ SSChar ∧
11 if e.T = W then ψ does not contain �(e.var))})

12 UpdSE(e, P � xR)
13 if UpdP(e, P, x, R) = block then return block
14 else return (UpdP(e, P, x, R) � x)

15 UpdSE(e, P [ψ′]D � xR)
16 if UpdP(e, P, x, R) = block then return block
17 if UpdP(e, P, x, R) = indep then

18 if (e.T = R ∧ e.var = x ∧ (e ∈ D ∨ ∃e′ ∈ D : [e′.var �= x ∧ e′ hb−→ e]) then

19 if � ∃e′
R ∈ R : e′

R
hb−→ e then return block else add e to R

20 else

21 if UpdSE(e, ψ′) = block then return (P [ψ′]D∪{e} � x)
22 else return (P [UpdSE(e, ψ′)] � x)

23 else return (UpdP(e, P, x)[ψ′]D � x)

24 UpdP(e, P, x, R)
25 let P = w′

0{e′
1}w′

1 · · · {e′
i}w′

i

26 for j = 0, . . . , i do

27 let w′
j = eC1

1 · . . . · e
Ck
k

28 for l = 1, . . . , k do
29 if e �� Cl ∨ e ↔ el then add e to Cl ; go to line 32
30 if e = el then remove e from w′

j ; go to line 32

31 return indep

32 if (e.T = R ∧ e.var = x ∧ ∀n : 1 ≤ n ≤ j : e′
n

hb−→ e) then

33 if � ∃e′
R ∈ R : e′

R
hb−→ e then return block else add e to R

34 else return the updated version of P

called by Algorithm 1. A set of sleep set expressions is called a sleep set char-
acterization. The function MkSchedChar(σ,E1, e, E2) (line 1), constructs the set
of schedule expressions (which can be seen as initialized sleep set expressions)
for σ according to the description given earlier in this section. The function
UpdSeq(w,SSChar) updates the sleep set characterization SSChar wrt. process-
ing of the sequence w. At its top level, UpdSeq(w,SSChar) updates each sleep set
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expression ψ in SSChar with the sequence of events in w, one by one, each time
calling UpdSE(e, ψ). If e is a write on a variable y, then in this process, all sleep set
expressions containing �y are discarded, since it is from now impossible to com-
plete a read-y-schedule. The function UpdSE(e, ψ) comes in two versions (at line
12 and line 15). Both versions first call UpdP(e, P, x,R), which updates the sleep
set expressions with respect to contained and conflicting read-x-schedules char-
acterized by P � xR. If e is the head of such a schedule, then UpdP(e, P, x,R)
returns block ; if e is independent with all of P , then UpdP(e, P, x,R) returns
indep; otherwise it returns the updated version of P . In the code for UpdP, we
let let e ↔ e′ denote that e and e′ are performed by different threads and access
the same variable and at least one of e and e′ writes. For an event e and a set
C of events, let e �� C denote that there is some e′ ∈ C with e �� e′. When
called, UpdP(e, P, x,R) traverses the sequences w′

0, . . . , w
′
i, one event at a time,

and stops at the first event eCl

l such that either (i) e conflicts with el or depends
with an event in Cl, in which case e is added to Cl (line 29), or (ii) e = el, in
which case e is removed from the sequence (of form w′

j) (line 30). If in addition
e is a read on x and happens after the relevant schedule heads among e′

1, . . . , e
′
i

for being fresh, then if e does not happen after a read in R, UpdP(e, P, x,R)
returns blocked (since in case (i) it is the head of a conflicting schedule and in
case (ii) of a contained schedule), else e is added to R (line 33). If on the other
hand, e is not a read on x or does not happen after the relevant schedule heads
among e′

1, . . . , e
′
i, then UpdP(e, P, x,R) returns the updated version of P . Finally,

if there is no event eCl

l in w′
0, . . . , w

′
i satisfying conditions (i) or (ii), then UpdP

returns indep (line 31).
Let us now consider UpdSE(e, ψ), which comes in two versions, depending

on the form of ψ. If ψ is of form P � xR (line 12), it calls UpdP(e, P, x,R) and
forwards its return value. If ψ is of form P [ψ′]D � xR) (line 15), it also calls
UpdP(e, P, x,R). Also this version forwards the return value block. In addition,
if UpdP(e, P, x,R) returns indep, meaning that e is independent of P , then (i)
if some event already in D (being the head of a schedule characterized by ψ′)
happens-before e (or is the same as e if it reads from x), and e is a read on
x, then if e does not happen after a read in R, the function returns blocked
(since e is the head of an inherited schedule), else e is added to R (line 19), (ii)
otherwise, processing is continued recursively on ψ′ by calling UpdSE(e, ψ′). If
this call returns blocked, then e is added to D (line 21), otherwise the inner sleep
set expression ψ′ is updated. Finally, if UpdP(e, P, x,R) returns neither blocked
nor indep, the updated sleep set expression is returned (line 23).

5 Correctness and Space Complexity

In this section, we state theorems of correctness, optimality, and space complex-
ity of POP. We first consider correctness and optimality.

Theorem 1. For a terminating program P , the POP algorithm has the proper-
ties that (i) for each maximal execution E of P , it explores some execution E′



Parsimonious Optimal Dynamic Partial Order Reduction 35

with E′ � E, and (ii) it never explores two different but equivalent maximal exe-
cutions, and (iii) it is never blocked (at line 14) unless it has explored a maximal
execution.

We thereafter consider space complexity.

Lemma 1. The number of nested recursive calls to Explore at line 13 is at
most n(n − 1)/2, where n is the length of the longest execution of the program.

Note that in this lemma, we do not count the calls at line 16, since they are
considered as normal exploration of some execution. Only the calls at line 13
start the exploration of a new execution.

Theorem 2. Algorithm 1 needs space which is polynomial in n, where n is the
length of the longest execution of the analyzed program.

6 Implementation and Evaluation

Our implementation, which is available in the artifact of this paper, was done
in a fork of Nidhugg. Nidhugg is a state-of-the-art stateless model checker
for C/C++ programs with Pthreads, which works at the level of LLVM Inter-
mediate Representation, typically produced by the Clang compiler. Nidhugg
comes with a selection of DPOR algorithms, one of which is Optimal DPOR [1]
nowadays also enhanced with Partial Loop Purity elimination and support for
await statements [25]. In our Nidhugg fork, we have added the POP algorithm
as another selection. Its implementation involved: (i) designing an efficient data
structure to simulate recursive calls to Explore, i.e., follow the next schedule
to explore and backtrack to the previous execution when no further races to
reverse, (ii) developing a procedure to filter out races that are not parsimonious,
and (iii) implementing a more optimized data structure than Algorithm 2 that
stores sleep set characterizations as trees.

In this section, we evaluate the performance of POP’s implementation
and compare it, in terms of time and memory, against the implementa-
tions of Optimal DPOR in Nidhugg commit 5805d77 and the graph-based
Truly Stateless (TruSt) Optimal DPOR algorithm [29] as implemented in
GenMC v0.10.0 using options -sc --disable-instruction-caching. All tools
employed LLVM 14.0.6, and the numbers we present are measured on a desktop
with a Ryzen 7950X CPU running Debian 12.4.

Table 1 contains the results of our evaluation. Its first nine benchmarks are
from the DPOR literature, and are all parametric on the number of threads
(shown in parentheses). The last benchmark, length-param, is synthetic and is
additionally parametric on the length of its executions. Since these DPOR algo-
rithms are optimal, they explore the same number of executions (2nd column)
in all ten benchmarks. We will analyze the results in five groups (cf. Table 1).

The first group consists of three programs (circular-buffer from SCT-
Bench [47], fib-bench from SV-Comp [45], and the linuxrwlocks from SATCheck
[16]). Here, all algorithms consume memory that stays constant as the size of

https://doi.org/10.5281/zenodo.11001033
https://github.com/nidhugg/nidhugg
https://github.com/nidhugg/nidhugg/commit/5805d77a48778b6877616d782e29aec5cfc9c8e7
https://github.com/MPI-SWS/genmc/releases/tag/v0.10.0
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Table 1. Time and memory performance of three optimal DPOR algorithms on ten
benchmark programs which are parametric in the number of threads used.

Time (secs) Memory (MB)

Benchmark Executions TruSt Optimal POP TruSt Optimal POP

circular-buffer(7) 3432 0.62 0.45 0.43 85 84 84

circular-buffer(8) 12870 2.63 1.79 1.66 85 84 84

circular-buffer(9) 48620 11.04 7.21 6.67 85 84 84

fib-bench(4) 19605 1.08 1.93 1.82 85 84 84

fib-bench(5) 218243 14.59 24.66 24.10 85 84 84

fib-bench(6) 2364418 186.25 301.30 297.40 85 84 84

linuxrwlocks(6) 99442 3.61 13.71 12.88 90 91 91

linuxrwlocks(7) 829168 32.75 127.66 121.17 90 91 91

linuxrwlocks(8) 6984234 311.93 1176.13 1119.23 90 91 91

filesystem(22) 512 0.72 0.62 0.34 86 84 84

filesystem(24) 2048 2.84 2.97 1.32 86 187 84

filesystem(26) 8192 11.88 15.71 5.66 85 622 84

indexer(15) 4096 11.07 8.58 5.65 89 116 90

indexer(16) 32768 90.14 80.37 46.46 89 464 90

indexer(17) 262144 736.78 827.02 399.87 89 3030 90

lastzero(10) 3328 0.07 0.34 0.27 85 84 84

lastzero(15) 147456 3.19 24.46 15.09 85 276 84

lastzero(20) 6029312 152.13 1828.92 786.19 85 8883 84

exp-mem3(7) 10080 0.22 0.67 0.54 86 104 85

exp-mem3(8) 80640 1.96 6.15 4.61 86 506 85

exp-mem3(9) 725760 19.11 73.68 44.83 86 4489 85

dispatcher(4) 6854 1.15 1.75 1.47 90 90 90

dispatcher(5) 151032 34.66 55.07 42.76 89 407 90

dispatcher(6) 4057388 1245.13 2333.51 1424.57 89 9097 90

poke(10) 135944 88.54 96.30 63.45 90 791 90

poke(15) 728559 874.76 891.26 479.03 89 5527 90

poke(20) 2366924 4502.45 4356.59 2008.92 90 22383 90

length-param(2,1024) 4 0.14 0.05 0.06 85 84 84

length-param(2,8196) 4 7.95 0.16 0.14 95 101 89

length-param(2,65536) 4 1413.00 1.13 0.90 389 441 343

the program and the number of executions explored increase. We can therefore
compare the raw performance of the implementation of these three DPOR algo-
rithms. POP’s implementation is fastest on circular-buffer, while TruSt’s is fastest
on the two other programs. However, notice that all three implementations scale
similarly.

The second group consists of the two benchmarks (filesystem and indexer)
from the “classic” DPOR paper of Flanagan and Godefroid [18]. Here,
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Optimal DPOR shows an increase in memory consumption (measured in MB),
while the other two algorithms use constant memory. POP is fastest here by
approximately 2×.

The third group, consisting of lastzero [1] and exp-mem3,2 two synthetic
benchmarks also used in the TruSt paper [29, Table 1], shows a similar picture
in terms of memory consumption: Optimal DPOR’s increases more noticeably
here, while the two other algorithms use memory that stays constant. Time-wise,
TruSt is 2–5× faster than POP, which in turn is 2× faster than Optimal.

The fourth group, consisting of two concurrent data structure programs
(dispatcher and poke) from the Quasi-Optimal POR paper [40], shows Optimal’s
memory explosion more profoundly, and provides further evidence of the good
memory performance of the TruSt and POP algorithms. Time-wise, there is no
clear winner here, with TruSt’s implementation being a bit faster on dispatcher,
and with POP’s being faster and scaling slightly better than TruSt’s on poke.

Finally, let us examine the algorithms’ performance on length-param(T ,N), a
synthetic but simple program in which a number of threads (just two here) issue
N stores and loads to thread-specific global variables, followed by a store and a
load to a variable shared between threads. The total number of executions is just
four here, but the executions grow in length. One can clearly see the superior time
performance of sequence-based DPOR algorithms, such as Optimal and POP,
compared to TruSt’s graph-based algorithm that needs to perform consistency
checks for the executions it constructs. As can be seen, these checks can become
quite expensive (esp. if their implementation has sub-optimal complexity, as it is
probably the case here). In contrast, sequence-based DPOR algorithms naturally
generate consistent executions (for memory models such as SC). We can also
notice that POP performs slightly better than Optimal in terms of memory.

Wrapping up our evaluation, we can make the following two general claims:

1. Both POP and TruSt live up to their promise about performing SMC explo-
ration which is optimal (w.r.t. the Mazurkiewicz equivalence) but also with
polynomial (in fact, in practice, constant) space consumption.

2. The implementation of the POP algorithm consistently outperforms that of
Optimal DPOR in Nidhugg. This is mostly due to increased simplicity.

7 Related Work

Since its introduction in the tools Verisoft [20,21] and CHESS [39], stateless
model checking has been an important technique for analyzing correctness of
concurrent programs. Dynamic partial order reduction [18,44] has enabled a
significantly increased efficiency for covering all interleavings, which has been

2 exp-mem3 is slight variant of the exp-mem program used in the TruSt paper. It
uses atomic stores and loads instead of fetch-and-adds (FAAs), because the current
implementation of Optimal DPOR (and POP) in Nidhugg employs an optimization
which treats independent FAAs as non-conflicting [25] and explores only one trace
on the exp-mem program independently of the benchmark’s parameter.
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adapted to many different settings and computational models, including actor
programs [46], abstract computational models [27], event driven programs [4,24,
35], and MPI programs [42]. DPOR has been adapted for weak memory models
including TSO [2,16,48], Release-Acquire [8], POWER [7], and C11 [28], and also
been applied to real life programs [32]. DPOR has been extended with features
for efficiently handling spinloops and blocking constructs [25,31],

An important advancement has been the introduction of optimal DPOR algo-
rithms, which guarantee to explore exactly one execution from each equivalence
class [1], and therefore achieve exponential-time reduction over non-optimal algo-
rithms. This saving came at the cost of worst-case exponential (in the size of the
program) memory consumption [3]. The strive for covering the space of all inter-
leavings with fewer representative executions inspired DPOR algorithms for even
weaker equivalences than Mazurkiewicz trace equivalence, such as equivalence
based on observers [11], reads-from equivalence [6,13,14], conditional indepen-
dence [10], context-sensitive independence and observers [9], or on the maximal
causal model [23]. These approaches explore fewer traces than approaches based
on Mazurkiewicz trace equivalence at the cost of potentially expensive (often
NP-hard) consistency checks. Another line of work uses unfoldings [37] to fur-
ther reduce the number of interleavings that must be considered [26,40,43]; these
techniques incur significantly larger cost per test execution than the previously
mentioned ones.

DPOR has also been adapted for weak memory models using an approach
in which executions are represented as graphs, where nodes represent read and
write operations, and edges represent reads-from and coherence relations; this
allows the algorithm to be parametric on a specific memory model, at the cost
of calling a memory-model oracle [28,30,33]. For this graph-based setting, an
optimal DPOR algorithm with worst-case polynomial space consumption, called
TruSt, was recently presented [29]. POP is also optimal with worst-case polyno-
mial space consumption. Since it is designed for a sequence-based representation
of executions, POP must be designed differently. In analogy with the parsimo-
nious race reversal technique, TruSt has a technique for reversing each race only
once, which is based on a maximal extension criterion. POP adapts TruSt’s
strategy of eager race reversal to avoid potentially space-consuming accumu-
lation of schedules. Finally, since TruSt operates in a graph-based setting, it
reverses write-read races by changing the source of a read-from relation in the
graph, instead of constructing a new schedule. Therefore redundant exploration
of read-schedules is prevented by careful book-keeping instead of using sleep sets,
which POP represents in a compact parsimonious way. The experimental results
show that TruSt and POP have comparable performance for small and modest-
size programs, but that POP is superior for programs with long executions, since
the graph-based approach has difficulties to scale for long executions.

An alternative to DPOR for limiting the number of explored executions is to
cover only a subset of all executions. Various heuristics for choosing this subset
have been developed, including delay bounding [17], preemption bounding [38],
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and probabilistic strategies [12]. Such techniques can be effective in finding bugs
in concurrent programs, but not prove their absence.

8 Conclusion

In this paper, we have presented POP, a new optimal DPOR algorithm for ana-
lyzing multi-threaded programs under SC. POP combines several novel algorith-
mic techniques, which allow efficiency improvements over previous such DPOR
algorithms, both in time and space. In particular, its space consumption is poly-
nomial in the size of the analyzed program. Our experiments on a wide variety of
benchmarks show that POP always outperforms Optimal DPOR, the state-of-
the-art sequence-based optimal DPOR algorithm, and offers performance compa-
rable with TruSt, the state-of-the-art graph-based DPOR algorithm. Moreover,
by being sequence-based, its implementation scales much better than TruSt’s on
programs with long executions.

As future work, it would be interesting to investigate the effect of applying
POP’s novel algorithmic techniques on DPOR algorithms tailored for differ-
ent computational models, and for analyzing programs under weak concurrency
memory models such as TSO and PSO.
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Abstract. Procedure contracts are a well-known approach for specify-
ing programs in a modular way. We investigate a new contract theory
for collective procedures in parallel message-passing programs. As in the
sequential setting, one can verify that a procedure f conforms to its
contract using only the contracts, and not the implementations, of the
collective procedures called by f . We apply this approach to C programs
that use the Message Passing Interface (MPI), introducing a new con-
tract language that extends the ANSI/ISO C Specification Language.
We present contracts for the standard MPI collective functions, as well
as many user-defined collective functions. A prototype verification sys-
tem has been implemented using the CIVL model checker for checking
contract satisfaction within small bounds on the number of processes.

Keywords: contract · message-passing · MPI · verification · collective

1 Introduction

Procedure contracts [27,46,47] are a well-known way to decompose program ver-
ification. In this approach, each procedure f is specified independently with pre-
and postconditions or other invariants. To verify f , one needs only the contracts,
not the implementations, of the procedures called by f .

Contract languages have been developed for many programming languages.
These include the Java Modeling Language (JML) [38] for Java and the ANSI C
Specification Language (ACSL) [10] for C. A number of tools have been developed
which (partially) automate the process of verifying that a procedure satisfies its
contract; an example for C is Frama-C [18] with the WP plugin [9].

In this paper, we explore a procedure contract system for message-passing
parallel programs, specifically for programs that use the Message-Passing Inter-
face (MPI) [45], the de facto standard for high performance computing.

Our contracts apply to collective-style procedures in these programs. These
are procedures f called by all processes and that are communication-closed : any
message issued by a send statement in f is received by a receive statement in f ,
and vice-versa. The processes executing f coordinate in order to accomplish a
coherent change in the global state. Examples include all of the standard blocking
MPI collective functions [45, Chapter 5], but also many user-defined procedures,
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such as a procedure to exchange ghost cells in a stencil computation. (We will
use the term collective as shorthand for collective-style when there is no chance
of ambiguity.) These procedures are typically specified informally by describing
the effect they produce when called by all processes, rather than the effect of an
individual process. They should be formally specified and verified in the same
way.

Developers often construct applications by composing collective procedures.
As examples, consider the Monte Carlo particle transport code OpenMC [53]
(over 24K lines of C++/MPI code) and module parcsr_ls in the algebraic
multigrid solver AMG [62] (over 35K lines of C/MPI code). Through manual
inspection, we confirmed that every function in these codes that involves MPI
communication is collective-style.

We begin in Sect. 2 with a toy message-passing language, so the syntax,
semantics, and theoretical results can be stated and proved precisely. The main
result is a theorem that justifies a method for verifying a collective procedure
using only the contracts of the collective procedures called, as in the sequential
case.

Section 3 describes changes needed to apply this system to C/MPI programs.
We handle a significant subset of MPI that does not include MPI_ANY_SOURCE
(“wildcard”) receives. This means program behavior is largely independent of
interleaving [55]. There are enough issues to deal with, such as MPI datatypes,
input nondeterminism, and nontermination, that we feel it best to leave wild-
cards for a sequel. A prototype verification system for such programs, using the
CIVL model checker, is described and evaluated in Sect. 4. Related work is dis-
cussed in Sect. 5. In Sect. 6, we wrap up with a discussion of the advantages and
limitations of our system, and work that remains.

In summary, this paper makes the following contributions: (1) a contract
theory for collective message-passing procedures, with mathematically precise
syntax and semantics, (2) a theorem justifying a method for verifying that a
collective procedure conforms to its contract, (3) a contract language for a large
subset of MPI, based on the theory but also dealing with additional intricacies
of MPI, and (4) a prototype verification tool for checking that collective-style
MPI procedures conform to their contracts.

2 A Theory of Collective Contracts

2.1 Language

We describe a simple message-passing language MiniMP with syntax in Fig. 1.
There is one datatype: integers; 0 is interpreted as false and any non-zero integer
as true. A program consists of global variable declarations followed by (mutually
recursive) procedure definitions. Global variables may start with arbitrary val-
ues. Each procedure takes a sequence of formal parameters. The procedure body
consists of local variable declarations followed by a sequence of statements. Local
variables are initially 0. Assignment, branch, loop, call, and compound state-
ments have the usual semantics. Operations have the usual meaning and always
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Fig. 1. MiniMP syntax

return some value—even if the second argument of division is 0, e.g. Operators
with ‘\’, described below, occur only in the optional contract.

A procedure is executed by specifying a positive integer n, the number of
processes. Each process executes its own “copy” of the code; there is no shared
memory. Each process has a unique ID number in PID = {0, . . . , n−1}. A process
can obtain its ID using the primitive pid; it can obtain n using nprocs.

The command “send data to dest” sends the value of data to the process
with ID dest. There is one FIFO message buffer for each ordered pair of processes
p → q and the effect of send is to enqueue the message on the buffer for which p
is the ID of the sender and q is dest. The buffers are unbounded, so send never
blocks. Command “recv buf from source” removes the oldest buffered message
originating from source and stores it in variable buf ; this command blocks until
a message becomes available. A dest or source not in PID results in a no-op.

A procedure f with a contract is a collective procedure. The contract encodes
a claim about executions of f : if f is called collectively (by all processes), in such
a way that the precondition (specified in the requires clause) holds, then all of
the following hold for each process p: p will eventually return; p’s postcondition
(specified in the ensures clause) will hold at the post-state; all variables not
listed in p’s assigns clause will have their pre-state values at the post-state;
and if q is in p’s waitsfor set then p will not return before q enters the call.
These notions will be made precise below.

Global variables and the formal parameters of the procedure are the only
variables that may occur free in a contract; only globals may occur in the assigns
clause. A postcondition may use \old(e) to refer to the value of expression e
in the pre-state; \old may not occur in this e. Pre- and postconditions can use
\on(e,i) to refer to the value of e on process i. These constructs allow contracts
to relate the state of different processes, and the state before and after the call.

Example 1. The program of Fig. 2 has two procedures, both collective. Procedure
g accepts an argument k and sends its value for global variable x to its right
neighbor, in a cyclic ordering. It then receives into local variable y from its left
neighbor q, adds k to the received value, and stores the result in x. The contract
for g states that when p exits (returns), the value of x on p is the sum of k and
the original value of x on q. It also declares p cannot exit until q has entered.
Procedure f calls g nprocs times. Its contract requires that all processes call f
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Fig. 2. cyc: a MiniMP program

with the same value for k. It ensures that upon return, the value of x is the sum
of its original value and the product of nprocs and k. It also declares that no
process can exit until every process has entered.

2.2 Semantics

Semantics for procedural programs are well-known (e.g., [2]), so we will only
summarize the standard aspects of the MiniMP semantics. Fix a program P
and an integer n ≥ 1 for the remainder of this section. Each procedure in P
may be represented as a program graph, which is a directed graph in which
nodes correspond to locations in the procedure body. Each program graph has a
designated start node. An edge is labeled by either an expression φ (a guard) or
one of the following kinds of statements: assignment, call, return, send or receive.
An edge labeled return is added to the end of each program graph, and leads to
the terminal node, which has no outgoing edges.

A process state comprises an assignment of values to global variables and a
call stack. Each entry in the stack specifies a procedure f , the values of the local
variables (including formal parameters) for f , and the program counter, which
is a node in f ’s program graph. A state specifies a process state for each process,
as well as the state of channel p → q for all p, q ∈ PID. The channel state is a
finite sequence of integers, the buffered messages sent from p to q.

An action is a pair a = 〈e, p〉, where e is an edge u
α→ v in a program graph

and p ∈ PID. Action a is enabled at state s if the program counter of the top
entry of p’s call stack in s is u and one of the following holds: α is a guard φ and
φ evaluates to true in s; α is an assignment, call, return, or send; or α is a receive
with source q and channel q → p is nonempty in s. The execution of an enabled
action from s results in a new state s′ in the natural way. In particular, execution
of a call pushes a new entry onto the stack of the calling process; execution of a
return pops the stack and, if the resulting stack is not empty, moves the caller
to the location just after the call. The triple s

a→ s′ is a transition.
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Let f be a procedure and s0 a state with empty channels, and in which
each process has one entry on its stack, the program counter of which is the
start location for f . An n-process execution ζ of f is a finite or infinite chain
of transitions s0

a1→ s1
a2→ · · · . The length of ζ, denoted len(ζ), is the number of

transitions in ζ. An execution must be fair : if a process p becomes enabled at
some point in an infinite execution, then eventually p will execute. Note that,
once p becomes enabled, it will remain enabled until it executes, as no process
other than p can remove a buffered message with destination p.

A process p terminates in ζ if for some i, the stack for p is empty in si. We
say ζ terminates if p terminates in ζ for all p ∈ PID. The execution deadlocks if
it is finite, does not terminate, and ends in a state with no enabled action.

It is often convenient to add a “driver” to P when reasoning about executions
of a collective procedure f . Say f takes m formal parameters. Form a program
P f by adding fresh global variables x1, . . . , xm to P , and adding a procedure

void main() { f(x1, . . . ,xm); }.

By “execution of P f ,” we mean an execution of main in this new program.

2.3 Collective Correctness

In this section, we formulate conditions that correct collective procedures are
expected to satisfy. Some of these reflect standard practice, e.g., collectives
should be called in the same order by all processes, while others specify how
a procedure conforms to various clauses in its contract. Ultimately, these con-
ditions will be used to ensure that a simple “stub” can stand in for a collective
call, which is the essential point of our main result, Theorem 1.

In formulating these conditions, we focus on the negative, i.e., we identify the
earliest possible point in an execution at which a violation occurs. For example,
if a postcondition states that on every process, x will be 0 when the function
returns, then a postcondition violation occurs as soon as one process returns
when its x has a non-zero value. There is no need to wait until every process has
returned to declare that the postcondition has been violated. In fact, this allows
us to declare a postcondition violation even in executions that do not terminate
because some processes never return.

Fix a program P and integer n ≥ 1. Let C be the set of names of collective
procedures of P . Let ζ be an execution s0

a1→ s1
a2→ · · · of a procedure in P .

For i ∈ 1..len(ζ), let ζi denote the prefix of ζ of length i, i.e., the execution
s0

a1→ · · · ai→ si.

Collective Consistency. The first correctness condition for ζ is collective con-
sistency. To define this concept, consider strings over the alphabet consisting of
symbols of the form ef and xf , for f ∈ C. Given an action a and p ∈ PID, define
string Tp(a) as follows:

– if a is a call by p to some f ∈ C, Tp(a) = ef (a is called an enter action)
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Fig. 3. Representation of a 3-process execution of cycf of Fig. 2. ef = enter (call) f ;
xf = exit (return from) f ; s = send; r = receive. The execution has no collective errors
and ends in a state with one buffered message sent from process 1 to process 2.

– if a is a return by p from some f ∈ C, Tp(a) = xf (a is called an exit action)
– otherwise, Tp(a) is the empty string.

Now let Tp(ζ) be the concatenation Tp(a1)Tp(a2) · · · . Hence Tp(ζ) records the
sequence of collective actions—enter or exit actions—taken by p.

Definition 1. An execution ζ is collective consistent if there is some p ∈ PID
such that for all q ∈ PID, Tq(ζ) equals or is a prefix of Tp(ζ). We say ζ commits
a consistency violation at step i if ζi−1 is collective consistent but ζi is not.

For the rest of this section, assume ζ is collective consistent.
The sequence of actions performed by p in ζ is divided into segments whose

boundaries are the collective actions of p. More precisely, given i ∈ 0..len(ζ) and
p ∈ PID, define k = segp(ζ, i) to be the number of collective actions of p in
a1, . . . , ai. We say p is in segment k at state i.

Example 2. In program cyc of Fig. 2, there is a 3-process execution ζ of P f

illustrated in Figure 3. The execution is collective consistent: Tp(ζ) is a prefix
of T1(ζ) = efegxgegxgegxgxf for all p ∈ {0, 1, 2}. A process is in segment 0 at
any point before it executes ef ; it is in segment 1 after executing ef but before
executing its first eg; and so on. At a given state in the execution, processes can
be in different segments; e.g., when process 2 is in segment 1, process 1 is in
segment 3 and process 0 is in segment 2.

Precondition and Postcondition Violations. We now turn to the issue of
evaluation of pre- and postconditions. Let f be a collective procedure in P with
precondition pre(f) and postcondition post(f). Let Vf be the union of the set of
formal parameters of f and the global variables of P . As noted above, these are
the only variables that may occur free in pre(f) and post(f). An f-valuation is
a function α : PID → (Vf → Z). For each process, α specifies a value for each
free variable that may occur in pre(f) or post(f).

For any expression e that may occur as a sub-expression of pre(f), and p ∈
PID, define �e�α,p ∈ Z as follows:
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�c�α,p = c
�x�α,p = α(p)(x)

�nprocs�α,p = n
�pid�α,p = p

��e�α,p = ��e�α,p

�e1 � e2�α,p = �e1�α,p � �e2�α,p

�\on(e1, e2)�α,p = �e1�α,q, where q = �e2�α,p.

This is the result of evaluating e in process p. Note how \on shifts the evaluation
context from process p to the process specified by e2, allowing the precondition
to refer to the value of an expression on another process.

Evaluation of an expression involving \old, which may occur only in post(f),
requires a second f -valuation β specifying values in the pre-state. The definition
of �·�α,β,p repeats the rules above, replacing each subscript “α” with “α, β”, and
adds one rule:

�\old(e)�α,β,p = �e�β,p.

Say 1 ≤ i ≤ len(ζ) and ai is an ef action in process p. Let r = segp(ζ, i) and

Q = {q ∈ PID | segq(ζ, i) ≥ r}, α′ : Q → (Vf → Z),

where α′(q)(v) is the value of v on process q in state sj(q), and j(q) is the
unique integer in 1..i such that aj(q) is the r-th collective action of q in ζ. (As
ζ is collective consistent, aj(q) is also an ef action.) In other words, α′ uses the
values of process q’s variables just after q entered the call. Now, α′ is not an f -
valuation unless Q = PID. Nevertheless, we can ask whether α′ can be extended
to an f -valuation α such that �pre(f)�α,q holds for all q ∈ PID. If no such α
exists, we say a precondition violation occurs at step i.

Example 3. Consider program cyc of Fig. 2. Suppose process 1 calls f(1) and
process 2 calls f(2). Then a precondition violation of f occurs with the second
call, because there is no value that can be assigned to k on process 0 for which
1 = \on(k, 0) and 2 = \on(k, 0) both hold.

If ai is an xf action, define Q and j(q) as above; for any q ∈ Q, aj(q) is also
an xf action. Let α′(q)(v) be the value of v in q at state sj(q)−1, i.e., just before q

exits. Define k(q) ∈ 1..j(q)−1 so that ak(q) is the ef action in q corresponding to
aj(q), i.e., ak(q) is the call that led to the return aj(q). Define β′ : Q → (Vf → Z)
so that β′(q)(v) is the value of v on q in state sk(q), i.e., in the pre-state. A
postcondition violation occurs if it is not the case that there are extensions of α′

and β′ to f -valuations α and β such that �post(f)�α,β,q holds for all q ∈ PID.

Waitsfor Violations. We now explain the waitsfor contract clause. Assume
again that ai is an xf action in process p, and that k is the index of the corre-
sponding ef action in p. The expression in the waitsfor clause is evaluated at
the pre-state sk to yield a set W ⊆ PID. A waitsfor violation occurs at step i
if there is some q ∈ W such that segq(ζ, i) < segp(ζ, k), i.e., p exits a collective
call before q has entered it.
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Correct Executions and Conformance to Contract. We can now encap-
sulate all the ways something may go wrong with collective procedures and their
contracts:

Definition 2. Let P be a program, ζ = s0
a1→ s1 · · · an execution of a procedure

in P , and i ∈ 1..len(ζ). Let p be the process of ai and r = segp(ζ, i). We say ζ
commits a collective error at step i if any of the following occur at step i:

1. a consistency, precondition, postcondition, or waitsfor violation,
2. an assigns violation: ai is an exit action and the value of a variable not in

p’s assigns set differs from its pre-state value,
3. a segment boundary violation: ai is a receive of a message sent from a process

q at aj (j < i) and segq(ζ, j) > r; or ai is a send to q and segq(ζ, i) > r, or
4. an unreceived message violation: ai is a collective action and there is an

unreceived message sent to p from q at aj (j < i), and segq(ζ, j) = r − 1.

The last two conditions imply that a message that crosses segment boundaries
is erroneous. In particular, if an execution terminates without collective errors,
every message sent within a segment is received within that same segment.

Definition 3. An execution of a procedure is correct if it is finite, does not
deadlock, and has no collective errors.

We can now define what it means for a procedure to conform to its contract.
Let f be a collective procedure in P . By a pre(f)-state, we mean a state of
P f in which (i) every process has one entry on its call stack, pointing to the
start location of main, (ii) all channels are empty, and (iii) for all processes, the
assignment to the global variables satisfies the precondition of f .

Definition 4. A collective procedure f conforms (to its contract) if all execu-
tions of P f from pre(f)-states are correct.

Note that any maximal non-deadlocking finite execution terminates. So a con-
forming procedure will always terminate if invoked from a pre(f)-state, i.e., ours
is a “total” (not “partial”) notion of correctness in the Hoare logic sense.

2.4 Simulation

In the sequential theory, one may verify properties of a procedure f using only
the contracts of the procedures called by f . We now generalize that approach
for collective procedures. We will assume from now on that P has no “collective
recursion.” That is, in the call graph for P—the graph with nodes the procedures
of P and an edge from f to g if the body of f contains a call to g—there is no cycle
that includes a collective procedure. This simplifies reasoning about termination.

If f, g ∈ C, we say f uses g if there is a path of positive length in the call
graph from f to g on which any node other than the first or last is not in C.

Given f ∈ C, we construct a program P f which abstracts away the implemen-
tation details of each collective procedure g used by f , replacing the body of g
with a stub that simulates g’s contract. The stub consists of two new statements.
The first may be represented with pseudocode
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havoc(assigns(g)); assume(post(g));

This nondeterministic statement assigns arbitrary values to the variables speci-
fied in the assigns clause of g’s contract, as long as those values do not commit
a postcondition violation for g. The second statement may be represented

wait(\old(waitsfor(g)));

and blocks the calling process p until all processes in p’s wait set (evaluated in
p’s pre-state) reach this statement. This ensures the stub will obey g’s waitsfor
contract clause. Now P f is a program with the same set of collective procedure
names, and same contracts, as P f . A simulation of f is an execution of P f .

Theorem 1 Let P be a program with no collective recursion. Let f be a collective
procedure in P and assume all collective procedures used by f conform. If all
simulations of f from a pre(f)-state are correct then f conforms.

Theorem 1 is the basis for the contract-checking tool described in Sect. 4.2.
The tool consumes a C/MPI program annotated with procedure contracts. The
user specifies a single procedure f and the tool constructs a CIVL-C program
that simulates f by replacing the collective procedures called by f with stubs
derived from their contracts. It then uses symbolic execution and model checking
techniques to verify that all simulations of f behave correctly. By Theorem 1,
one can conclude that f conforms.

A detailed proof of Theorem 1 is given in [43]. Here we summarize the main
ideas of the proof. We assume henceforth that P is a collective recursion-free
program.

Two actions from different processes commute as long as the second does
not receive a message sent by the first. Two executions are equivalent if one can
be obtained from the other by a finite number of transpositions of commuting
adjacent transitions. We first observe that equivalence preserves most violations:

Lemma 1 Let ζ and η be equivalent executions of a procedure f in P . Then

1. ζ commits a consistency, precondition, postcondition, assigns, segment bound-
ary, or unreceived message violation iff η commits such a violation.

2. ζ deadlocks iff η deadlocks.
3. ζ is finite iff η is finite.

If ζ commits a collective error when control is not inside a collective call
made by f (i.e., when f is the only collective function on the call stack), we
say the error is observable. If the error is not observable, it is internal. We say
ζ is observably correct if it is finite, does not deadlock, and is free of observable
collective errors.

We are interested in observable errors because those are the kind that will
be visible in a simulation, i.e., when each collective function g called by f is
replaced with a stub that mimics g’s contract.
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When ζ has no observable collective error, it can be shown that a collective
call to g made within ζ can be extracted to yield an execution of g. The idea
behind the proof is to transpose adjacent transitions in ζ until all of the actions
inside the call to g form a contiguous subsequence of ζ. The resulting execution ξ
is equivalent to ζ. Using Lemma 1, it can be shown that ξ is also observably cor-
rect and the segment involving the call to g can be excised to yield an execution
of g. The next step is to show that extraction preserves internal errors:

Lemma 2 Assume ζ is an observably correct execution of collective procedure
f in P . Let g1, g2, . . . be the sequence of collective procedures called from f .
If a transition in region r (i.e., inside the call to gr) of ζ commits an internal
collective error then the execution of P gr extracted from region r of ζ is incorrect.

A corollary of Lemma 2 may be summarized as “conforming + observably
correct = correct”. More precisely,

Lemma 3 Let f be a collective procedure of P . Assume all collective procedures
used by f conform. Let ζ be an execution of P f . Then ζ is correct if and only if
ζ is observably correct.

To see this, suppose ζ is observably correct but commits an internal collective
error. Let r be the region of the transition committing the first internal collective
error of ζ. Let g be the associated collective procedure used by f , and χ the
execution of P g extracted from region r of ζ. By Lemma 2, χ is incorrect,
contradicting the assumption that g conforms.

Next we show that observable errors will be picked up by some simulation.
The following is proved using extraction and Lemma 3:

Lemma 4 Suppose f is a collective procedure of P , all collective procedures used
by f conform, and ζ is an execution of P f . If ζ has an observable collective error
or ends in deadlock then there exists an incorrect simulation of f .

Since infinite executions are also considered erroneous, we must ensure they
are detected by simulation:

Lemma 5 Suppose f is a collective procedure of P , and all collective procedures
used by f conform. If ζ is an infinite execution of P f with no observable collective
error then there exists an incorrect simulation of f .

Finally, we prove Theorem 1. Assume f is a collective procedure in P and all
collective procedures used by f conform. Suppose f does not conform; we must
show there is an incorrect simulation of f . As f does not conform, there is an
incorrect execution ζ of P f from a pre(f)-state. By Lemma 3, ζ is not observably
correct. If ζ is finite or commits an observable collective error, Lemma 4 implies
an incorrect simulation exists. Otherwise, Lemma 5 implies such a simulation
exists. This completes the proof.
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3 Collective Contracts for C/MPI

In Sect. 3.1, we summarize the salient aspects of C/MPI needed for a contract
system. Section 3.2 describes the overall grammar of MPI contracts and summa-
rizes the syntax and semantics of each new contract primitive.

3.1 Background from MPI

In the toy language of Sect. 2, every collective procedure was invoked by all
processes. In MPI, a collective procedure is invoked by all processes in a commu-
nicator, an abstraction representing an ordered set of processes and an isolated
communication universe.1 Programs may use multiple communicators. The size
of a communicator is the number of processes. Each process has a unique rank
in the communicator, an ID number in 0..size − 1.

In Sect. 2, a receive always selects the oldest message in a channel. In MPI, a
point-to-point send operation specifies a tag, an integer attached to the “message
envelope.” A receive can specify a tag, in which case the oldest message in the
channel with that tag is removed, or the receive can use MPI_ANY_TAG, in which
case the oldest message is. MPI collective functions do not use tags.

MPI communication operations use communication buffers. A buffer b is spec-
ified by a pointer p, datatype d (an object of type MPI_Datatype), and nonneg-
ative integer count. There are constants of type MPI_Datatype corresponding to
the C basic types: MPI_INT, MPI_DOUBLE, etc. MPI provides functions to build
aggregate datatypes. Each datatype specifies a type map: a sequence of ordered
pairs (t,m) where t is a basic type and m is an integer displacement in bytes. A
type map is nonoverlapping if the memory regions specified by distinct entries
in the type map do not intersect. A receive operation requires a nonoverlapping
type map; no such requirement applies to sends. For example, the type map
{(int, 0), (double, 8)}, together with p, specifies an int at p and a double at
(char*)p+8. As long as sizeof(int) ≤ 8, this type map is nonoverlapping.

The extent of d is the distance from its lowest to its highest byte, including
possible padding bytes at the end needed for alignment; the precise definition is
given in the MPI Standard. The type map of b is defined to be the concatenation
of T0, . . . , Tcount−1, where Ti is the type map obtained by adding i ∗ extent(d) to
the displacements of the entries in the type map of d. For example, if count is 2,
sizeof(double) = 8 and ints and doubles are aligned at multiples of 8 bytes,
the buffer type map in the example above is

{(int, 0), (double, 8), (int, 16), (double, 24)}.

A message is created by reading memory specified by the send buffer, yielding
a sequence of basic values. The message has a type signature—the sequence
of basic types obtained by projecting the type map onto the first component.
The receive operation consumes a message and writes the values into memory
according to the receive buffer’s type map. Behavior is undefined if the send and
receive buffers do not have the same type signature.
1 We consider only intra-communicators in this paper.



Collective Contracts for Message-Passing Parallel Programs 55

Fig. 4. Grammar for ACSL function contracts, extended for MPI. Details for standard
ACSL clauses can be found in [10].

3.2 Contract Structure

We now describe the syntax and semantics for C/MPI function contracts. A con-
tract may specify either an MPI collective function, or a user-defined collective
function. A user function may be implemented using one or more communicators,
point-to-point operations, and MPI collectives.

The top level grammar is given in Fig. 4. A function contract begins with a
sequence of distinct behaviors, each with an assumption that specifies when that
behavior is active. Clauses in the global contract scope preceding the first named
behavior are thought of as comprising a single behavior with a unique name and
assumption true. The behaviors may be followed by disjoint behaviors and
complete behaviors clauses, which encode claims that the assumptions are
pairwise disjoint, and their disjunction is equivalent to true, respectively. All of
this is standard ACSL, and we refer to it as the sequential part of the contract.

A new kind of clause, the comm-clause, may occur in the sequential part.
A comm-clause begins “mpi uses” and is followed by a list of terms of type
MPI_Comm. Such a clause specifies a guarantee that no communication will take
place on a communicator not in the list. When multiple comm-clauses occur
within a behavior, it is as if the lists were appended into one.

Collective contracts appear after the sequential part. A collective contract
begins “mpi collective” and names a communicator c which provides the con-
text for the contract; c must occur in a comm-clause from the sequential part. A
collective contract on c encodes the claim that the function conforms to its con-
tract (Definition 4) with the adjustment that all of the collective errors defined
in Definition 2 are interpreted with respect to c only.

A collective contract may comprise multiple behaviors. As with the sequential
part, clauses occurring in the collective contract before the first named behavior
are considered to comprise a behavior with a unique name and assumption true.

Type Signatures. The new logic type mpi_sig_t represents MPI type signa-
tures. Its domain consists of all finite sequences of basic C types. As with all
ACSL types, equality is defined and == and != can be used on two such values
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in a logic specification. If t is a term of integer type and s is a term of type
mpi_sig_t, then t*s is a term of type mpi_sig_t. If the value of t is n and
n ≥ 0, then t*s denotes the result of concatenating the sequence of s n times.

Operations on Datatypes. Two logic functions and one predicate are defined:

int \mpi_extent(MPI_Datatype datatype);
mpi_sig_t \mpi_sig(MPI_Datatype datatype);
\mpi_nonoverlapping(MPI_Datatype datatype);

The first returns the extent (in bytes) of a datatype. The second returns the type
signature of the datatype. The predicate holds iff the type map of the datatype is
nonoverlapping, a requirement for any communication buffer that receives data.

Value Sequences. The domain of type mpi_seq_t consists of all finite
sequences of pairs (t, v), where t is a basic C type and v is a value of type
t. Such a sequence represents the values stored in a communication buffer or
message. Similar to the case with type signatures, we define multiplication of an
integer with a value of type mpi_seq_t to be repeated concatenation.

Communication Buffers. Type mpi_buf_t is a struct with fields base (of
type void*), count (int), and datatype (MPI_Datatype). A value of this type
specifies an MPI communication buffer and is created with the logic function

mpi_buf_t \mpi_buf(void * base, int count, MPI_Datatype datatype);

The ACSL predicate \valid is extended to accept arguments of type mpi_buf_t
and indicates that the entire extent of the buffer is allocated memory; predicate
\valid_read is extended similarly.

Buffer Arithmetic. An integer and a buffer can be added or multiplied. Both
operations are commutative. These are defined by

n * \mpi_buf(p, m, dt) == \mpi_buf(p, n * m, dt)

n + \mpi_buf(p, m, dt) == \mpi_buf((char*)p + n*\mpi_extent(dt), m, dt)

Multiplication corresponds to multiplying the size of a buffer by n. It is meaning-
ful only when both n and m are nonnegative. Addition corresponds to shifting a
buffer by n units, where a unit is the extent of the datatype dt. It is meaningful
for any integer n.

Buffer Dereferencing. The dereference operator * may take an mpi_buf_t b
as an argument. The result is the value sequence (of type mpi_seq_t) obtained
by reading the sequence of values from the buffer specified by b.

The term *b used in an assigns clause specifies that any of the memory
locations associated to b may be modified; these are the bytes in the range p+m
to p + m + sizeof(t) − 1, for some entry (t,m) in the type map of b.

The ACSL predicate \separated takes a comma-separated list of expres-
sions, each of which denotes a set of memory locations. It holds if those sets are
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pairwise disjoint. We extend the syntax to allow expressions of type mpi_buf_t
in the list; these expressions represent sets of memory locations as above.

Terms. The grammar for ACSL terms is extended:

term ::= \mpi_comm_rank | \mpi_comm_size | \mpi_on(term, term)

The term \mpi_comm_size is a constant, the number of processes in the
communicator; \mpi_comm_rank is the rank of “this” process. In the term
\mpi_on(t,r), r must have integer type and is the rank of a process in the com-
municator. Term t is evaluated in the state of the process of rank r. For conve-
nience, we define a macro \mpi_agree(x) which expands to x==\mpi_on(x,0).
This is used to say the value of x is the same on all processes.

Reduction. A predicate for reductions is defined:

\mpi_reduce(mpi_seq_t out, integer lo, integer hi,
MPI_Op op, (integer)->mpi_seq_t in);

The predicate holds iff the value sequence out on this process is a point-wise
reduction, using operator op, of the hi− lo value sequences in(lo), in(lo+ 1),
. . . , in(hi − 1). Note in is a function from integer to mpi_seq_t. We say a
reduction, and not the reduction, because op may not be strictly commutative
and associative (e.g., floating-point addition).

4 Evaluation

In this section we describe a prototype tool we developed for MPI collective
contract verification, and experiments applying it to various example codes. All
experimental artifacts, including the tool source code, are available online [43].

4.1 Collective Contract Examples

The first part of our evaluation involved writing contracts for a variety of collec-
tive functions. We started with the 17 MPI blocking collective functions specified
in [45, Chapter 5]. These represent the most commonly used message-passing
patterns, such as broadcast, scatter, gather, transpose, and reduce (fold). The
MPI Standard is a precisely written natural language document, similar to the
C Standard. We scrutinized each sentence in the description of each function
and checked that it was reflected accurately in the contract.

Figure 5 shows the contract for the MPI collective function MPI_Allreduce.
This function “combines the elements provided in the input buffer of each pro-
cess. . . using the operator op” and “the result is returned to all processes” [45].
This guarantee is reflected in line 13. “The ‘in place’ option . . . is specified by
passing the value MPI_IN_PLACE to the argument sendbuf at all processes. In
this case, the input data is taken at each process from the receive buffer, where it
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Fig. 5. The contract of the MPI_Allreduce function.

will be replaced by the output data.” This option is represented using two behav-
iors. These are just a few examples of the tight mapping between the natural
language and the contract.

The only ambiguity we could not resolve concerned synchronization. The
Standard is clear that collective operations may or may not impose barriers.
It is less clear on whether certain forms of synchronization are implied by the
semantics of the operation. For example, many users assume that a non-root
process must wait for the root in a broadcast, or that all-reduce necessarily entails
a barrier. But these operations could be implemented with no synchronization
when count is 0. (Similarly, a process executing all-reduce with logical and could
return immediately if its contribution is false.) This issue has been discussed
in the MPI Forum [17]. Our MPI_Allreduce contract declares, on line 9, that
barrier synchronization occurs if count > 0, but other choices could be encoded.

In addition to the MPI collectives, we wrote contracts for a selection of user-
defined collectives from the literature, including:

1. exchange: “ghost cell exchange” in 1d-diffusion solver [58]
2. diff1dIter: computes one time step in 1d-diffusion [58]
3. dotProd: parallel dot-product procedure from Hypre [23]
4. matmat: matrix multiplication using a block-striped decomposition [52]
5. oddEvenIter: odd-even parallel sorting algorithm [30,41].

We also implemented cyc of Fig. 2 in MPI with contracts.
Figure 6 shows the contract and the implementation for dotProd. The func-

tions hypre_MPI∗ are simple wrappers for the corresponding MPI functions. The
input vectors are block distributed. Each process gets its blocks and computes
their inner product. The results are summed across processes with an all-reduce.
The contract uses the ACSL \sum function to express the local result on a pro-
cess (line 3) as well as the global result (line 13). Thus the contract is only
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Fig. 6. The parallel dotProd function from Hypre [23], with contract.

valid if a real number model of arithmetic is used. This is a convenient and
commonly-used assumption when specifying numerical code. We could instead
use our predicate \mpi_reduce for a contract that holds in the floating-point
model.

4.2 Bounded Verification of Collective Contracts

For the second part of our evaluation, we developed a prototype tool for ver-
ifying that C/MPI collective procedures conform to their contracts. We used
CIVL, a symbolic execution and model checking framework [57] written in Java,
because it provides a flexible intermediate verification language and it already
has strong support for concurrency and MPI [44]. We created a branch of CIVL
and modified the Java code in several ways, which we summarize here.

We modified the front-end to accept contracts in our extended version of
ACSL. This required expanding the grammar, adding new kinds of AST nodes,
and updating the analysis passes. Our prototype can therefore parse and perform
basic semantic checks on contracts.

We then added several new primitives to the intermediate language to sup-
port the formal concepts described in Sect. 2. For example, in order to evaluate
pre- and postconditions using \mpi_on expressions, we added a type for collec-
tive state, with operations to take a “snapshot” of a process state and merge
snapshots into a program state, in order to check collective conditions.

Finally, we implemented a transformer, which consumes a C/MPI program
annotated with contracts and the name of the function f to be verified. It gener-
ates a program similar to P f (Sect. 2.4). This program has a driver that initial-
izes the global variables and arguments for f to arbitrary values constrained only
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Fig. 7. Verification performance for nprocs ≤ 5.

by f ’s precondition, using CIVL’s $assume statement. The body of a collective
function g used by f is replaced by code of the form

wait(waitsfor(g)); $assert(precondition); $havoc(assigns(g));
wait(waitsfor(g)); $assume(postcondition);

where wait is implemented using CIVL primitive $when, which blocks until a
condition holds. When the CIVL verifier is applied to this program, it explores
all simulations of f , verifying they terminate and are free of collective errors. By
Thm. 1, the verifier can prove, for a bounded number of processes, f conforms.

Our prototype has several limitations. It assumes no wildcard is used in
the program. It does not check assigns violation for the verifying function. It
assumes all communication uses standard mode blocking point-to-point functions
and blocking MPI collective functions. Nevertheless, it can successfully verify a
number of examples with nontrivial bounds on the number of processes.

For the experiment, we found implementations for several of the MPI col-
lective functions. Some of these are straightforward; e.g., the implementation of
MPI_Allreduce consists of calls to MPI_Reduce followed by a call to MPI_Bcast.
Two of these implementations are more advanced: allreduceDR implements
MPI_Allreduce using a double recursive algorithm; reduceScatterNC imple-
ments MPI_Reduce_scatter using an algorithm optimized for noncommutative
reduction operations [12].

We applied our prototype to these collective implementations, using the con-
tracts described in Sect. 4.1. We also applied it to the 5 user-defined collectives
listed there. We were able to verify these contracts for up to 5 processes (no other
input was bounded), using a Mac Mini with an M1 chip and 16GB memory. For
the CIVL configuration, we specified two theorem provers to be used in order:
(1) CVC4 [8] 1.8, and (2) Z3 [49] 4.8.17, each with a timeout of two seconds.

Results are given in Fig. 7. For each problem, we give the number of states
saved by CIVL, the number of calls to the theorem provers, and the total veri-
fication time in seconds, rounded up to the nearest second.

The times range from 4 seconds to 8 and a half minutes. In general, time
increases with the number of states and prover calls. Exceptions to this pat-
tern occur when prover queries are very complex and the prover times out—two
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seconds in our case. For example, matmat, whose queries involve integer multi-
plications and uninterpreted functions, times out often. It is slower than most
of the test cases despite a smaller state space.

Comparing reduceScatter with reduceScatterNC, it is noteworthy that
verifying the simple implementation takes significantly longer than the advanced
version. This is because the simple implementation re-uses verified collective
functions. Reasoning about the contracts of those functions may involve expen-
sive prover calls.

For exchange, nearly one million states are saved though its implementation
involves only two MPI point-to-point calls. This is due to the generality of its
contract. A process communicates with its left and right “neighbors” in this
function. The contract assumes that the neighbors of a process can be any two
processes—as long as each pair of processes agree on whether they are neighbors.
Hence there is combinatorial explosion generating the initial states.

For each example, we made erroneous versions and confirmed that CIVL
reports a violation or “unknown” result.

5 Related Work

The ideas underlying code contracts originate in the work of Floyd on formal
semantics [26], the proof system of Hoare [29], the specification system Larch
[27], and Meyer’s work on Eiffel [46,47]. Contract systems have been developed
for many other languages, including Java [25,32,38], Ada [5], C# [7], and C
[10,18].

Verification condition generation (VCG) [6,25,39] and symbolic execution
[35,36,51] are two techniques used to verify that code conforms to a contract.
Extended static checking is an influential VCG approach for Java [25,32,39].
Frama-C’s WP plugin [9,18] is a VCG tool for ACSL-annotated C programs,
based on the Why platform [24]. The Kiasan symbolic execution platform [20]
has been applied to both JML and Spark contracts [11].

Several contract systems have been developed for shared memory concur-
rency. The VCC verifier [15,16,48] takes a contract approach, based on object
invariants in addition to pre- and postconditions, to shared-memory concurrent
C programs. VeriFast is a deductive verifier for multithreaded C and Java pro-
grams [31]. Its contract language is based on concurrent separation logic [14].
These systems focus on issues, such as ownership and permission, that differ
from those that arise in distributed computing.

For distributed concurrency, type-theoretic approaches based on session types
[50,54,59] are used to describe communication protocols; various techniques
verify an implementation conforms to a protocol. ParTypes [40] applies this
approach to C/MPI programs using a user-written protocol that specifies the
sequence of messages transmitted in an execution. Conformance guarantees
deadlock-freedom for an arbitrary number of processes. However, ParTypes pro-
tocols cannot specify programs with wildcards or functional correctness, and
they serve a different purpose than our contracts. Our goal is to provide a public
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contract for a collective procedure—the messages transmitted are an implemen-
tation detail that should remain “hidden” to the extent possible.

Several recent approaches to the verification of distributed systems work by
automatically transforming a message-pasing program to a simplified form. One
of these takes a program satisfying symmetric nondeterminism and converts it
to a sequential program, proving deadlock-freedom and enabling verification of
other safety properties [4]. Another does the same for a more general class of
distributed programs, but requires user-provided information such as an “invari-
ant action” and an abstraction function [37]. A related approach converts an
asynchronous round-based message-passing program, with certain user-provided
annotations, to a synchronous form [19]. This technique checks that each round
is communication-closed, a concept that is similar to the idea of collective-style
procedures. It is possible that these approaches could be adapted to verify that
collective-style procedures in an MPI program conform to their contracts.

There are a number of correctness tools for MPI programs, including the
dynamic model checkers ISP [60] and DAMPI [61], the static analysis tool MPI-
Checker [22], and the dynamic analysis tool MUST [28]. These check for certain
pre-defined classes of defects, such as deadlocks and incorrectly typed receive
statements; they are not used to specify or verify functional correctness.

Ashcroft introduced the idea of verifying parallel programs by showing every
atomic action preserves a global invariant [3]. This approach is applied to a simple
message-passing program in [42] using Frama-C+WP and ghost variables to
represent channels. The contracts are quite complicated; they are also a bespoke
solution for a specific problem, rather than a general language. However, the
approach applies to non-collective as well as collective procedures.

A parallel program may also be specified by a functionally equivalent sequen-
tial version [56]. This works for whole programs which consume input and pro-
duce output, but it seems less applicable to individual collective procedures.

Assume-Guarantee Reasoning. [1,21,33,34] is another approach that decom-
poses along process boundaries. This is orthogonal to our approach, which
decomposes along procedure boundaries.

6 Discussion

We have summarized a theory of contracts for collective procedures in a toy
message-passing language. We have shown how this theory can be realized for C
programs that use MPI using a prototype contract-checking tool. The approach
is applicable to programs that use standard-mode blocking point-to-point oper-
ations, blocking MPI collective functions, multiple communicators, user-defined
datatypes, pointers, pointer arithmetic, and dynamically allocated memory. We
have used it to fully specify all of the MPI blocking collective functions, and
several nontrivial user-defined collective functions.

MPI’s nonblocking operations are probably the most important and widely-
used feature of MPI not addressed here. In fact, there is no problem specifying
a collective procedure that uses nonblocking operations, as long as the proce-
dure completes all of those operations before returning. For such procedures,
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the nonblocking operations are another implementation detail that need not be
mentioned in the public interface. However, some programs may use one proce-
dure to post nonblocking operations, and another procedure to complete them;
this is in fact the approach taken by the new MPI “nonblocking collective” func-
tions [45, Sec. 5.12]. The new “neighborhood collectives” [45, Sec. 7.6] may also
require new abstractions and contract primitives.

Our theory assumes no use of MPI_ANY_SOURCE “wildcard” receives. It is
easy to construct counterexamples to Theorem 1 for programs that use wild-
cards. New conceptual elements will be required to ensure a collective procedure
implemented with wildcards will always behave as expected.

Our prototype tool for verifying conformance to a contract uses symbolic
execution and bounded model checking techniques. It demonstrates the feasi-
bility of this approach, but can only “verify” with small bounds placed on the
number of processes. It would be interesting to see if the verification condition
generation (VCG) approach can be applied to our contracts, so that they could
be verified without such bounds. This would require a kind of Hoare calculus for
message-passing parallel programs, and/or a method for specifying and verifying
a global invariant.

One could also ask for runtime verification of collective contracts. This is an
interesting problem, as the assertions relate the state of multiple processes, so
checking them would require communication.
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Abstract. mypyvy is an open-source tool for specifying transition sys-
tems in first-order logic and reasoning about them. mypyvy is particu-
larly suitable for analyzing and verifying distributed algorithms. mypyvy
implements key functionalities needed for safety verification and provides
flexible interfaces that make it useful not only as a verification tool but
also as a research platform for developing verification techniques, and
in particular invariant inference algorithms. Moreover, the mypyvy input
language is both simple and general, and the mypyvy repository includes
several dozen benchmarks—transition systems that model a wide range
of distributed and concurrent algorithms. mypyvy has supported several
recent research efforts that benefited from its development framework
and benchmark set.

1 Introduction

mypyvy is an open-source1 research platform for automated reasoning about
symbolic transition systems expressed in first-order logic. A chief design goal
for mypyvy is to lower the barrier to entry for developing new techniques for
solver-aided analysis and verification of transition systems. As a result, mypyvy’s
modeling language is simple and close to the underlying logical foundation, and
the tool is designed as a collection of reusable components, making it easy to
experiment with new verification techniques.

The main application domain of mypyvy is verification of complex dis-
tributed algorithms. Following prior work [32,33], transition systems in mypyvy
are expressed in uninterpreted first-order logic (i.e., without theories). Using
uninterpreted first-order logic is motivated by the experience that solvers often
struggle when theories (e.g., arithmetic, arrays, or algebraic data types) are
combined with quantifiers. Quantifiers are essential for describing distributed
algorithms (e.g., to state properties about all messages in the network), but
theories can often be avoided, yielding improved automation.
1 https://github.com/wilcoxjay/mypyvy.
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14682, pp. 71–85, 2024.
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Fig. 1. Main components of mypyvy.

mypyvy consists of a language for expressing transition systems directly as
logical formulas but in a convenient manner (Sect. 2), a tool for reasoning about
such systems, and a collection of benchmarks accumulated over the last few years
(Sect. 2.1). Figure 1 depicts mypyvy’s components, which are divided to solver-
based queries (Sect. 3) and invariant inference algorithms (Sect. 4). Solver-based
queries such as inductiveness checking and bounded model checking are answered
by translating them into satisfiability checks that are sent to external first-order
solvers. These queries are used as basic building blocks for developing invariant
inference algorithms. mypyvy includes an implementation of two such algorithms:
PDR∀ [21] and Primal-dual Houdini [34]. mypyvy’s internals are designed with
the goal of making it easy to build on (Sect. 5). mypyvy interacts with multiple
solvers, and currently supports Z3 [13] and cvc5 [2]. To present counterexamples
(states, transitions, or traces) in a user-friendly way, mypyvy supports custom
printers that simplify and improve readability of counterexamples.

mypyvy is not just the sum of the analyses currently available; it is a platform
for doing research in automated verification. Several projects (including ongoing
ones) use the mypyvy foundation and benchmark suite to build new invariant
inference techniques, user interfaces for verification and exploration, and, most
recently, liveness verification techniques (Sect. 6).

mypyvy’s first-order modeling is inspired by Ivy [30,33], which promoted the
idea of modeling distributed systems in the EPR decidable fragment of first-
order logic. Ivy includes a rich and modular high-level imperative specifica-
tion language, as well as mechanisms for creating executable implementations,
specification-based testing, liveness verification, and more. As a result, Ivy’s syn-
tax, semantics, and code base are more complicated than what would be ideal
for enabling rapid exploration of new techniques. In contrast, mypyvy’s focus on
transition systems, with a simple syntax and semantics, makes it especially suited
for enabling verification research.2 Moreover, mypyvy’s code base is intentionally
designed, documented, and typed (using Python’s support for type annotations),
to make it easy to build on and extend.

2 There are current open-source efforts to automatically translate Ivy to mypyvy [9,36],
which would allow Ivy users to benefit from mypyvy’s algorithms.
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Broadly, mypyvy has three target audiences:

1. Researchers interested in modeling and verifying distributed algorithms.
mypyvy offers a user-friendly input language, several queries that assist in
developing models of distributed algorithms, readable counterexamples, and
access to a variety of automatic verification algorithms.

2. Researchers developing verification techniques, and invariant inference in par-
ticular. mypyvy offers a starting point for implementing new algorithms on
top of a developer-friendly code base. mypyvy includes many useful building
blocks, and has already been successfully used in several research projects.

3. Researchers looking for benchmarks for various verification tasks. mypyvy
includes a significant set of transition systems (and their invariants), which
can serve as benchmarks for invariant inference or other verification tasks.

2 Modeling Language

We present mypyvy through a simple example of modeling and analyzing a toy
consensus protocol.3 To get started, the user first expresses a transition sys-
tem in mypyvy’s input language, which is a convenient syntax for (many-sorted)
uninterpreted first-order logic. A mypyvy model of the toy consensus protocol is
shown in Fig. 2. In this protocol, each node votes for a single value, and once
a majority or quorum of nodes vote for the same value a decision takes place.
Because majorities intersect, the protocol ensures that at most one value is
decided on. Modeling an algorithm or system of interest as a transition system
in first-order logic may involve some abstraction, e.g., modeling majorities as
abstract quorums such that every two quorums intersect [31].

States. The first step is to choose the types over which the transition system is
defined. In the fashion of first-order logic, the basic types are uninterpreted sorts
(mypyvy does not use SMT theories). In the example, we use the sorts node, value,
and quorum to represent the nodes that participate in the distributed system,
the values they choose from, and the sets of nodes that suffice for a decision
(we abstract majorities following [4,32]). The state of the system is modeled
by variables which can be constants (individuals), relations, or functions, whose
domains are constructed from the aforementioned sorts. Each state variable is
either immutable, which means it does not change throughout an execution of
the system, or mutable, which means it may change with each transition. In the
example, all state variables are relations. An immutable relation member denotes
membership of a node in a quorum. The other relations are mutable: v records
votes of nodes for values, b tracks which nodes already voted, and d records
decisions.

3 While not useful as a consensus protocol, this example does illustrate important
aspects from proofs of complex, widely used consensus protocols like Paxos [25].
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Fig. 2. The toy consensus example in
mypyvy.

Fig. 3. A counterexample to induction
(CTI) for the toy consensus proto-
col’s safety property without additional
invariants.

Axioms. mypyvy allows the user to define a “background theory” over the
immutable symbols, which restricts the state space, via axiom declarations. In the
example, the property that any two quorums intersect (abstracting majorities)
is expressed as an axiom for the member relation (line 6). (The sorts of quanti-
fied variables are omitted in formulas since mypyvy infers them automatically.)
Another common background theory that is useful when modeling distributed
protocols in mypyvy is a total order, which can be used to abstract the natural
numbers in first-order logic (e.g., to model rounds or indices).
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Initial States. The initial states are defined as those that satisfy all init declara-
tions. In the example, these declare that all mutable relations are initially empty
(lines 13 to 15).

Transitions. The transitions of the system are expressed by transition declara-
tions. The semantics is that each transition executes atomically and can modify
the system’s state. Transitions can have parameters, which are local variables
that are assigned nondeterministically whenever the transition is executed. The
example has two transitions: vote(n, x) and decide(x) (lines 17 to 27). An impor-
tant design choice of mypyvy is that the user specifies transitions by explicitly
writing logical formulas. Each transition is defined over two states: variables
in the usual notation refer to the state before the transition is applied (pre-
state), and primed variables refer to the state after the transition (post-state).
Pre-conditions are encoded as conjuncts in the formula about the pre-state; for
example, vote requires that the node has not already voted by specifying !b(n).
Post-conditions are encoded as conjuncts about the post-state, relating it to the
pre-state; for example, vote specifies that the relation b is updated to include
exactly the same nodes as before in addition to n. Writing transitions directly
through formulas offers great flexibility, but in order to write these formulas suc-
cinctly, a transition starts with a modifies clause that declares which mutable state
variables are changed by it. For any mutable state component not in the modifies
clause, mypyvy implicitly adds a conjunct encoding that the component does not
change. Formally, the transition relation is the disjunction of the formulas from
each of the transitions, where parameters are existentially quantified.

Safety. Finally, the user may specify safety properties using first-order formulas
in safety declarations. The agreement safety property in the example (line 29)
states that at most one value is decided. A safety property holds if it is satisfied
by every state that is reachable from an initial state via a sequence of transitions.

2.1 Benchmarks

The mypyvy repository includes over 30 transition systems collected over the
years. Some of these were translated from Ivy, while others were directly mod-
eled in mypyvy. The benchmarks model a variety of distributed and concurrent
algorithms, including consensus algorithms, networking algorithms, and cache
coherence protocols. The variety of benchmarks, which also vary in complex-
ity, is useful for evaluating and experimenting with new verification techniques.
Additional details can be found in the paper’s artifact [39].

3 Satisfiability-Based Queries

Once a transition system is specified, mypyvy supports several satisfiability-based
queries over it, which are directly translated to satisfiability checks and handed
off to solvers (currently Z3 [13] and cvc5 [2] are supported). These queries are
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useful building blocks for developing more advanced solver-aided algorithms, and
for users who are interested in analyzing specific systems (especially during the
model development process). For most queries, mypyvy provides counterexamples
based on satisfying models obtained from solvers. And while solvers are not
guaranteed to terminate, mypyvy makes it easy to follow the EPR fragment
restrictions, which ensures termination.

3.1 Queries

Inductiveness Checking. mypyvy allows the user to add invariant declarations
to prove safety by induction. These are first-order formulas, whose conjunc-
tion (together with the safety properties) forms a candidate inductive invariant.
Figure 2 lists three supporting invariants (lines 30 to 34). The most common
query in mypyvy is to check if the candidate invariant is inductive. When trans-
lating an inductiveness check to the solver, mypyvy splits it into one solver query
per (transition, invariant) pair. In our experience, splitting the disjunction out-
side the solver improves performance and reliability, and, best of all, improves
transparency for the user when one of the cases is more problematic (e.g., takes
a long time).

Theorems. In addition to invariants, which are meant to hold in all reachable
states of the transition system, mypyvy supports checking theorem declarations,
which specify first-order formulas that are expected to be valid modulo the
background theory (i.e., axioms). zerostate theorems refer to immutable state
variables only, onestate theorems may refer to the mutable state variables as well,
and twostate theorems involve two states, similarly to transition declarations. In the
toy consensus example, a zerostate theorem (line 36) is used to state that quorums
cannot be empty (follows from the quorum intersection axiom); a onestate theorem
(line 37) is used to state that, given the background theory, the unique_votes and
decision_quorums invariants imply the agreement safety property; and a twostate theorem
(line 39) is used to check that the voting_bit invariant is preserved by the vote
transition.

Bounded Model Checking (BMC). It is often useful to explore (un)reachability
of a safety violation via BMC. Given a transition system and a safety property,
BMC asks, “Is there a counterexample trace with ≤ k transitions?” BMC is
implemented in the usual way, by unrolling the transition relation.

Trace Queries. Trace queries allow the user to explore the possible executions of
the system in a more targeted way than BMC. This is useful both when the user
is interested only in specific scenarios, and when BMC does not scale to sufficient
depth. As an illustration, in a model of a distributed system with many protocol
steps, BMC may only reasonably scale to a small depth, say 5 transitions, but
many interesting behaviors of the system may not occur until at least 10 or 15
transitions. In Fig. 2, lines 41 to 48 show a query for the nonexistence of an
execution trace that starts with three vote transitions, followed by two decide
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transitions, and then reaches a safety violation. mypyvy translates such a query
to a first-order formula that is checked for unsatisfiability.

As a complement of trace queries that are expected to be unsatisfiable (spec-
ified by the unsat keyword), it is also useful to make sat trace queries that are
expected to be satisfiable, demonstrating that some behaviors are indeed pos-
sible.4 For example, lines 50 to 54 show a query expecting the existence of a
trace that starts with any transition after which there exists a vote, followed by
a decide transition after which there exists a decision. (That is possible when
the number of nodes is 1.) Such satisfiable trace queries are especially useful for
detecting vacuity bugs, where, due to a modeling error, some transitions mistak-
enly cannot execute, potentially making the system erroneously safe.

Relaxed Bounded Model Checking (BMC�). So far we discussed concrete traces.
mypyvy can also search for relaxed counterexample traces of a bounded depth.
A relaxed trace consists of a sequence of interleaved transitions and “relaxation
steps”, where some elements get deleted from the structure. As shown in [21], a
relaxed counterexample trace that starts at an initial state and ends in a safety
violation proves that there is no universally quantified inductive invariant that
implies safety. This is the case in the toy consensus example—a relaxed coun-
terexample trace found by mypyvy for this example is provided in the paper’s
artifact [39]. The key to implementing relaxed BMC queries is encoding uni-
verse reduction between states. mypyvy does so by introducing a mutable unary
relation active for each sort and using it as a guard in every quantifier, effec-
tively restricting the universe in each state to the “active” part. Relaxation steps
are then modeled by adding a relax transition where each active relation in the
post-state is a subset of the corresponding one in the pre-state (expressed as a
universally quantified formula); all other state variables are unmodified over the
active part. Finally, a relaxed BMC query is encoded similarly to a BMC query
(with the added relax transitions), except that, due to the use of different active
universes, the axioms are asserted not only at the beginning of the trace but also
after every (relaxation) step, together with assertions requiring that the active
universe contains the constants and is closed under functions.

3.2 Counterexamples

When a query fails (except for a sat trace query), it is because the formula sent to
the solver was satisfiable. In such cases, mypyvy obtains a model from the solver
and displays a counterexample—which can be a state, a transition, or a trace,
depending on the failing query. For example, when inductiveness checking fails,
it returns either a 1-state model demonstrating a violation of safety at an initial
state, or a 2-state model demonstrating a counterexample to induction (CTI). As
4 mypyvy uses solver queries to generate executions of the transition system. A solver

is needed due to mypyvy’s flexible and abstract modeling language. More imperative
modeling languages, e.g. that of Ivy, admit execution/simulation without solvers,
which can be useful for invariant inference as well [40,42]. Such simulation can also
be implemented for a fragment of mypyvy’s language.
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another example, when BMC finds an execution that violates safety, it returns
a k-state model providing a counterexample trace. Figure 3 shows a CTI (2-
state model) for the toy consensus protocol when the invariants supporting the
safety property are omitted. In general, mypyvy displays a k-state model by first
listing the universe of each sort and the interpretations of the immutable symbols
(member in our example). Then, for each of the k states, the interpretations of
the mutable symbols in that state are printed. For relations, by default mypyvy
only prints positive literals, i.e., the tuples that are in the relation.

Annotations, Plugins, and Custom Printers. In some cases, the default coun-
terexample printing of mypyvy is not as readable as it could be. For example,
if one of the sorts in the transition system is totally ordered (using a binary
relation and suitable axioms), it would make sense to name the elements of that
sort according to the total order. To improve the readability of counterexamples,
mypyvy supports custom formatting via printer plugins and annotations. Every
declaration in mypyvy can be tagged with annotations, which have no inherent
meaning, but can be detected by plugins, e.g., to cause things to be printed
differently. For example, the declaration sort round @printed_by(ordered_by_printer, le)

invokes the ordered_by_printer plugin and tells mypyvy that the sort round should
be printed in the order given by the le relation. mypyvy provides several other
custom printers, including one for printing sorts that represent sets of elements
coming from another sort. Users can also implement their own custom printing
plugins in Python.

mypyvy also supports a handful of other annotations. @no_print instructs
mypyvy not to print a sort, relation, constant, or function at all, which can
be useful either because of a custom printer for another symbol, or temporarily
because the model is large and the symbol is irrelevant to the current debugging
session. @no_minimize is used to instruct mypyvy’s model minimizer not to minimize
elements of a certain sort or relation. The annotation framework is extensible,
and we expect more uses for it to come up.

3.3 Decidability and Finite Counterexamples via EPR

In general, mypyvy does not restrict the quantifier structure used in formulas,
nor the signatures of state variables. As a result, the first-order formulas that
encode different queries in mypyvy are not guaranteed to reside in any decidable
fragment and solvers may diverge. However, a common practice when working
with mypyvy is to use the effectively propositional (EPR) [35,37] fragment of
first-order logic, which imposes certain restrictions on functions and quantifier
alternations. To encode a system in EPR (i.e., ensure that formulas generated
for all queries are in EPR), the user can rely on recently developed method-
ologies [32,38]. For example, the toy consensus example of Fig. 2 is in EPR.
Satisfiability of EPR is decidable, and reliably checked by solvers. EPR enjoys a
small-model property, which implies queries have finite counterexamples (if any).
Solver reliability and finite counterexamples are key enablers for more advanced
algorithms (e.g., invariant inference) that make thousands of solver queries and
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employ model-based techniques. mypyvy’s language is close to the underlying
logic used in queries, making it relatively easy to follow the EPR restrictions.

4 Invariant Inference

mypyvy’s design aims to make it easy to implement complex solver-aided analysis
algorithms on top of the simpler queries. Two such algorithms, for automatically
finding inductive invariants, are included in mypyvy: PDR∀ and Primal-dual
Houdini.

Universal Property-Directed Reachability (PDR∀ ). mypyvy includes an imple-
mentation of PDR∀ [21], which infers universally quantified inductive invariants
in first-order logic. Like IC3/PDR [7], PDR∀ constructs invariants incrementally
by finding backwards reachable states and “blocking” them relative to a “frame”.
To block a state, PDR∀ computes a “forbidden sub-state” that rules out all states
containing a certain pattern. If PDR∀ succeeds, it returns the inductive invari-
ant in the form of a conjunction of universally quantified clauses. Otherwise, it
either loops forever or returns a relaxed trace, proving that no universally quan-
tified inductive invariant exists for the property. On the toy consensus example,
PDR∀ returns a relaxed trace similar to the one obtained by BMC�. mypyvy’s
implementation is the state-of-the-art implementation of PDR∀, and was used
for comparison with PDR∀ in various papers [23,34,40]. The results demonstrate
the success of mypyvy’s PDR∀ implementation in solving benchmarks that only
require universally quantified invariants.

Primal-Dual Houdini. Primal-dual Houdini [34] is a recent invariant inference
algorithm based on a formal duality between reachability in transition systems
and a notion of incremental induction proofs. mypyvy includes an implementation
of Primal-dual Houdini for universally quantified invariants. Primal-dual Hou-
dini works best for transition systems where the inductive invariant can be con-
structed incrementally, adding one universally quantified clause at a time. Several
complex distributed algorithms have this feature. In cases where the invariant
cannot be constructed incrementally, Primal-dual Houdini can find a witness
for that fact. See [34] for more details and an empirical evaluation. Primal-dual
Houdini was prototyped using mypyvy’s infrastructure, and its development is
an example of the usefulness of mypyvy for research in invariant inference.

5 Designing mypyvy’s Internals

We designed mypyvy’s internals with the goal of making it easy to build on. The
most important aspects of the internals from the developer’s perspective are (1)
using typed Python,(2) the design of the abstract syntax trees (ASTs), and (3)
the interface to the underlying first-order solver. mypyvy is written in statically
typed Python using the mypy type checker. Types not only help catch bugs, but
also document the interfaces available to the developer. In our experience, types
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allow developers to get up to speed more quickly on the code base and facilitate
communication.

The ASTs for representing logical formulas in mypyvy were designed to sup-
port symbolic manipulation, as is common in solver-aided algorithms. This led
us to avoid any additional intermediate representations between the ASTs rep-
resenting the user-level formulas and the ASTs representing the input to solvers.
We also structured the ASTs so that it is easy to (re)compute any analysis per-
formed. For example, instead of using a traditional (mutable, long-lived) symbol
table to resolve names, mypyvy uses a purely functional context to track scopes
during AST traversals. The context is thrown away and recomputed every time
the AST is traversed. This makes it easy to traverse programmatically gener-
ated ASTs, without needing to update any symbol tables or other global data
structures, and the extra run time overhead is negligible.

Developers who use mypyvy often want to make many queries to the under-
lying solvers (currently Z3 and cvc5). We expose two interfaces for this. First,
many common primitives, such as those discussed in Sect. 3.1, are exposed as a
library. Second, mypyvy has a lower-level solver interface, where developers can
issue their own satisfiability queries, and also gain access to minimized models
and minimized unsat cores. Furthermore, developers of sophisticated invariant
inference algorithms may have many thousands of queries to run, so mypyvy
supports running many solvers in parallel.

6 Works Using mypyvy

One of mypyvy’s goals is to serve the research community and enable research on
verification, and invariant inference in particular. Indeed, in recent years several
works have built on mypyvy or used it to various extents.

Phase-PDR∀ [14] is a user-guided invariant inference technique. The user pro-
vides a phase structure to convey temporal intuition, and suitable phase invari-
ants are found using an adaptation of PDR∀. Phase-PDR∀ was developed on top
of the mypyvy code base and mypyvy’s PDR∀ implementation, and its evaluation
uses benchmarks available from mypyvy augmented with phase structures.

SWISS [18] is an invariant inference algorithm that finds quantified invari-
ants, including quantifier alternations, using explicit search. While SWISS does
not use the mypyvy code base (it is implemented in C++), it accepts mypyvy’s
input files and its evaluation uses benchmarks available from mypyvy.

P-FOL-IC3 [23] is a variant of IC3/PDR that can find invariants with arbi-
trary quantification using quantified separation [22]. P-FOL-IC3 was imple-
mented using mypyvy’s code, and also benefited from mypyvy’s benchmark set.

IC3PO [15,16] is an IC3/PDR variant that finds quantified invariants for
protocols by analyzing finite instances. It does not use mypyvy’s code, but is
evaluated on some of mypyvy’s benchmarks, manually translated to its input for-
mat.
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LVR [41] develops a methodology for proving liveness properties. It uses
mypyvy “twice”: first, as a modeling language and a source of benchmarks, and
second, as an invariant inference engine (using P-FOL-IC3) to find invariants
that are required to support a liveness proof based on ranking functions.

7 Related Work
Several tools promote specification and verification of systems and algorithms
using first-order logic, dating back to Abstract State Machines [6,17]. Alloy [20]
is a relational modeling language and a tool that performs bounded verification,
i.e., bounding the size of the universe of each sort. Alloy goes beyond first-
order logic and has concepts such as transitive closure, but it shares mypyvy’s
emphasis on using uninterpreted relations and quantifiers, rather than SMT
theories. Electrum [8,29] is an extension of Alloy that was recently integrated
into Alloy 6 [1]; it essentially turns Alloy into a modeling language for transition
systems. When universe sizes are bounded, Electrum/Alloy 6 can use finite-state
model checkers to verify safety as well as liveness properties.

Ivy [30,33] is a multi-modal verification tool that supports modeling using
first-order logic and EPR as well as some decidable SMT theories, mod-
ular reasoning, extracting executable implementations, liveness verification,
specification-based testing, and more. Unlike Alloy, Ivy is not restricted to
bounded verification; instead, it relies on user-provided inductive invariants and
restricts the quantifier-alternation structure of verification conditions to ensure
decidability of unbounded verification queries.

Verification of transition systems is also the focus of the TLA+ toolbox [26],
where transition systems are expressed in a very rich logic (based on set theory).
As a result, verification is restricted to model checking bounded instances [24,43]
similar to Alloy, or manually writing detailed machine-checked proofs [10].

The IronFleet project [19] verifies distributed systems by formalizing transi-
tion systems and refinement in Dafny [27], a general-purpose deductive verifica-
tion language. In IronFleet, transition systems are expressed using the rich Dafny
type system, which is based on SMT combined with quantifiers. But as a result,
queries to Z3, the underlying SMT solver, suffer from instability, especially when
quantifiers—which are handled using triggers—are involved [28].

Compared to the aforementioned systems, mypyvy takes a similar approach
to Ivy in using first-order logic without theories and aiming for unbounded ver-
ification, but unlike Ivy it focuses on automatically finding inductive invariants,
and enabling research in that direction. We note that automated invariant infer-
ence depends on the reliability of invariant checking and related queries, which
is absent from Dafny, TLA+, or Alloy (for the unbounded case), and obtained
in mypyvy by using EPR in the style of [32].

Another related line of research is developing intermediate representation lan-
guages for invariant inference. VMT [11] is a format that extends SMT-LIB [3]
to a transition system semantics. Constrained Horn Clauses (CHCs) [5,12] is
another SMT-LIB extension that is similar to transition systems but more gen-
eral (it captures, e.g., recursive programs). Both VMT and CHCs are typically
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used with rich SMT theories, whereas mypyvy’s logic is centered around uninter-
preted first-order logic and quantifiers.
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Abstract. This paper lays a practical foundation for using abstract
interpretation with an abstract domain that consists of sets of quantified
first-order logic formulas. This abstract domain seems infeasible at first
sight due to the complexity of the formulas involved and the enormous
size of sets of formulas (abstract elements). We introduce an efficient rep-
resentation of abstract elements, which eliminates redundancies based on
a novel syntactic subsumption relation that under-approximates seman-
tic entailment. We develop algorithms and data structures to efficiently
compute the join of an abstract element with the abstraction of a concrete
state, operating on the representation of abstract elements. To demon-
strate feasibility of the domain, we use our data structures and algorithms
to implement a symbolic abstraction algorithm that computes the least
fixpoint of the best abstract transformer of a transition system, which
corresponds to the strongest inductive invariant. We succeed at finding,
for example, the least fixpoint for Paxos (which in our representation
has 1,438 formulas with ∀∗∃∗∀∗ quantification) in time comparable to
state-of-the-art property-directed approaches.

Keywords: Abstract interpretation · First-order logic · Symbolic
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1 Introduction

Recent years have seen significant progress in automated verification based on
first-order logic. In particular, quantified first-order formulas have been used
to model many systems, their properties and their inductive invariants [1,6,9–
11,13–18,20,22,24,26,28,30,31]. Automatic verification in this domain is chal-
lenging because of the combination of the complexity of first-order reasoning
performed by solvers and the enormous search space of formulas, especially due
to the use of quantifiers. Despite these challenges, there are impressive success
stories of automatically inferring quantified inductive invariants for complex dis-
tributed and concurrent algorithms [9–11,14,15,17,26,30,31].
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Previous works on invariant inference for first-order logic search for invariants
in the form of sets of formulas (interpreted conjunctively) from some language
of quantified first-order formulas. Each approach fixes some restricted, typically
finite (but extremely large) language L, and searches for a set of L-formulas that
form an inductive invariant using sophisticated heuristics and algorithmic tech-
niques, such as property-directed reachability (IC3) [14,15], incremental induc-
tion [11,26], generalization from finite instances [9,17], and clever forms of prun-
ing and exploration [30,31]. While prior techniques can successfully handle some
challenging examples, the accumulation of specially-tailored techniques makes
the results computed by these techniques unpredictable, and makes it hard to
extend or improve them.

Abstract interpretation [4,5] suggests a more systematic approach for the
development of verification algorithms based on logical languages, where we
consider sets of L-formulas as elements in an abstract domain. The abstraction
of a set of states S in this domain is given by α(S) = {ϕ ∈ L | ∀s ∈ S. s |= ϕ},
i.e., the formulas that are satisfied by all states in the set. Algorithms based on
abstract interpretation are better understood and are easier to combine, extend,
and improve. However, an abstract domain of quantified first-order formulas
seems infeasible: for interesting systems, the abstract elements involved in proofs
would contain an astronomical number of formulas.

The main contribution of this work is to develop algorithms and data struc-
tures that make an abstract domain based on quantified first-order formulas
feasible. Working with this abstract domain introduces two main challenges:
(i) efficiently storing and manipulating abstract elements comprising of many
formulas, and (ii) overcoming solver limitations when reasoning over them. This
work focuses on the first challenge and adopts ideas from prior work [15] to deal
with the second. Our techniques lay a practical foundation for using an abstract
interpretation approach to develop new analyses in the domain of quantified first-
order formulas. We demonstrate feasibility of the abstract domain by applying
it to an analysis of several intricate distributed protocols.

Our first key idea is to design a subsumption relation for quantified first-
order formulas and use it to represent abstract elements (sets of formulas) more
compactly, pruning away some formulas that are redundant since they are equiv-
alent to or are entailed by another formula. Subsumption over propositional
clauses (disjunctions of literals) is traditionally used for similar pruning pur-
poses (e.g., [19]), but the generalization to first-order formulas, which include
disjunction, conjunction, and quantification, is novel.

The second key ingredient of our approach is a way to manipulate abstract
elements in our representation. Rather than implementing the standard opera-
tions of α (abstraction) and � (abstract join), we observe that our subsumption-
based representation makes it more natural to directly implement an operation
that computes the join of an abstract element a with the abstraction of a given
concrete state s, i.e., a � α({s}). This operation can be used to compute the
abstraction of a set of states, and can also be used to compute the least fixpoint
of the best abstract transformer (in the style of symbolic abstraction [27]). The
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crux of computing a � α({s}) is to weaken the formulas in the representation of
a to formulas that are subsumed by them and that s satisfies.

Finally, the third key ingredient of our approach is a data structure for storing
a set of formulas, with efficient filters for (i) formulas that a given state does not
satisfy, and (ii) formulas that subsume a given formula. This data structure is
then used to store abstract elements, and the filters make the implementation
of a � α({s}) more efficient.

While the paper presents the ingredients of our approach (subsumption,
weakening, and the data structure) sequentially, they are interconnected; they all
affect each other in subtle ways, and must be designed and understood together.
Specifically, there is an intricate tradeoff between the precision of subsump-
tion, which determines the extent of pruning (and therefore the compactness
of the representation), and the complexity of abstract domain operations such
as weakening (e.g., for computing a � α({s})). The definitions, algorithms, and
data structures we present are carefully crafted to balance these considerations.
Our subsumption relation, which approximates entailment, is cheap to compute,
eliminates enough redundancy to keep the representation of abstract elements
compact, and enables an efficient implementation of the weakening operation.

To evaluate our implementation of the abstract domain, we use it to imple-
ment a symbolic abstraction [27] procedure that computes the least fixpoint of
the best abstract transformer of a transition system (i.e., the strongest inductive
invariant for the transition system in the given language). Our evaluation uses
benchmarks from the literature, mostly from safety verification of distributed
protocols. While our fixpoint computation algorithm is not fully competitive with
property-directed invariant inference approaches that exploit various sophisti-
cated heuristics and optimizations, it does demonstrate that fixpoint computa-
tion in our abstract domain is feasible, which is quite surprising given the amount
of quantified formulas the domain considers. Our approach successfully computes
the least fixpoint for transition systems that previously could only be analyzed
using property-directed, heuristic techniques (which do not compute the least
fixpoint, but an unpredictable heuristic fixpoint). For example, we succeed at
finding the strongest inductive invariant of Paxos as modeled in [24] (which in
our representation has 1,438 formulas with ∀∗∃∗∀∗ quantification, representing
orders of magnitude more subsumed formulas).

In summary, this paper makes the following contributions:

1. We develop a compact representation of sets of formulas based on a novel
syntactic subsumption relation. We make a tradeoff here between the extent
of pruning and efficiency, accepting some redundant formulas in exchange for
practical algorithms. (Sect. 3)

2. We show how to implement a key operation of weakening a formula to be
satisfied by a given state, and leverage it to compute the join of an abstract
element and the abstraction of a state, when abstract elements are represented
using our subsumption-based representation. (Sect. 4)

3. We present a data structure that provides an efficient implementation of
operations used in the join computation described above. (Sect. 5)
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4. We evaluate the approach by applying it to compute the least fixpoint of the
best abstract transformer for several distributed and concurrent protocols
from the literature, demonstrating the promise of our approach. (Sect. 6)

The rest of this paper is organized as follows: Sect. 2 introduces definitions
and notation, Sects. 3 to 6 present the main contributions outlined above, Sect.
7 discusses related work, and Sect. 8 concludes. The proofs of all theorems stated
in the paper are given in [8].

2 Background

First-Order Logic. For simplicity of the presentation, we present our approach
for single-sorted first-order logic, although in practice we consider many-sorted
logic. The generalization of our methods to many-sorted logic is straightforward.

Given a first-order signature Σ that consists of constant, function and relation
symbols, the sets of terms and formulas are defined in the usual way: a term t
is either a variable x, a constant c or a function application f(t1, . . . , tn) on
simpler terms; a formula is either an equality between terms t1 = t2, a relation
application r(t1, . . . , tn) on terms, or the result of applying Boolean connectives
or quantification. We also include ⊥ as a formula (that is never satisfied).

Terms and formulas are interpreted over first-order structures and assign-
ments to the (free) variables. Given a first-order signature Σ, a structure
σ = (U , I) consists of a universe U and an interpretation I to the symbols
in Σ. We denote by structs[Σ] the set of structures of Σ whose universe is a
finite set.1 When considering formulas with free variables V , and given some
structure σ = (U , I), an assignment μ : V → U maps each variable to an ele-
ment of the structure’s universe. We write (σ, μ) |= ϕ to mean that a structure
σ with an assignment μ satisfies a formula ϕ, and ψ |= ϕ to mean that a formula
ψ semantically entails ϕ, i.e., (σ, μ) |= ψ whenever (σ, μ) |= ϕ.

Abstract Interpretation. Abstract interpretation [4,5] is a framework for approx-
imating the semantics of systems. It assumes a concrete domain and an abstract
domain, each given by a partially ordered set, (C,�C) and (A,�A), respectively.
These are related via a Galois connection consisting of a monotone abstraction
function α : C → A and a monotone concretization function γ : A → C satisfying
α(c) �A a ⇐⇒ c �C γ(a) for all a ∈ A and c ∈ C.

In this work we consider logical abstract domains parameterized by a finite
first-order language L of closed formulas over signature Σ. In this context,
concrete elements are sets of states from S = structs[Σ],2 i.e., C = P(S),
ordered by �C=⊆ (set inclusion). Abstract elements are sets of formulas from
L, i.e., A = P(L), ordered by �A=⊇, and the Galois connection is given by
α(S) = {ϕ ∈ L | ∀s ∈ S. s |= ϕ} and γ(F ) = {s ∈ S | ∀ϕ ∈ F. s |= ϕ}. That
is, abstraction in this domain consists of all L-formulas that hold on a given

1 We restrict our attention to FOL fragments that have a finite-model property.
2 Later we consider non-closed formulas and let S denote structures with assignments.
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concrete set, and concretization consists of all states that satisfy a given set of
formulas. Note that sets of formulas are interpreted conjunctively in this context.

This logical abstract domain forms a join-semilattice (meaning every two
elements have a least upper bound) with a least element. The least element,
denoted ⊥A (not to be confused with the formula ⊥), is L, and join, denoted �,
corresponds to set intersection. For example, F � α({s}) = F ∩ {ϕ ∈ L | s |=
ϕ} = {ϕ ∈ F | s |= ϕ}, and can be understood as weakening F by eliminating
from it all formulas that are not satisfied by s.

3 Subsumption-Based Representation of Sets of Formulas

In this section we develop an efficient representation for elements in the abstract
domain A = P(L) induced by a finite first-order language L. The abstract
elements are sets of formulas, interpreted conjunctively, which may be extremely
large (albeit finite). Our idea is to reduce the size and complexity of such sets
by avoiding redundancies that result from semantic equivalence and entailment.
For example, when representing a set of formulas we would like to avoid storing
both ϕ and ψ when they are semantically equivalent (ϕ ≡ ψ). Similarly, if ϕ |= ψ
then instead of keeping both ϕ and ψ we would like to keep only ϕ.

In practice, it is not possible to remove all such redundancies based on seman-
tic equivalence and entailment, since, as we shall see in Sect. 4, performing oper-
ations over the reduced representation of abstract elements involves recovering
certain subsumed formulas, and finding these in the case of entailment essen-
tially requires checking all formulas in the language. This is clearly infeasible for
complex languages such as the ones used in our benchmarks (see Table 1), and
is exacerbated by the fact that merely checking entailment is expensive for for-
mulas with quantifiers. Instead, our key idea is to remove redundancies based on
a cheap-to-compute subsumption relation, which approximates semantic entail-
ment, and enables efficient operations over abstract elements such as joining
them with an abstraction of a concrete state.

We start the section with an inductive definition of a family of finite first-
order languages that underlies all of our developments (Sect. 3.1). We then intro-
duce a syntactic subsumption relation for first-order formulas (Sect. 3.2), which
we leverage to develop an efficient canonicalization of formulas, effectively deter-
mining a single representative formula for each subsumption-equivalence class
(Sect. 3.3). We then use antichains of canonical formulas, i.e., sets of canonical
formulas where no formula is subsumed by another, to represent sets of formulas
(Sect. 3.4). Sects. 4 and 5 develop ways to effectively manipulate this representa-
tion in order to accommodate important operations for abstract interpretation
algorithms, such as weakening an abstraction to include a given concrete state.

3.1 Bounded First-Order Languages

At core of our approach is an inductively-defined family of first-order languages,
termed bounded first-order languages. These languages are all finite and bound
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various syntactic measures of formulas (e.g., number of quantifiers, size of the
Boolean structure), which, in turn, determine the precision of the abstract
domain. The inductive definition of bounded languages facilitates efficient recur-
sive implementations of our developments.

We fix a signature Σ and a variable set V . Definition 1 provides the inductive
definition of the family of bounded first-order languages (over Σ and V ), where
each language L is also equipped with a bottom element ⊥L (equivalent to false).
We use SX to denote the set of permutations over a set of variables X, and use
ϕπ to denote the formula obtained by substituting free variables in a formula
ϕ according to π ∈ SX . A set of formulas F is SX -closed if ϕπ ∈ F for every
ϕ ∈ F , π ∈ SX . All bounded first-order languages will be SV -closed; this will be
important for canonicalization. We use ϕ̄ = 〈ϕ1, . . . , ϕn〉 to denote a sequence of
formulas, ϕ−i to denote the formula ϕn−i+1 in the sequence, |ϕ̄| for the length
of ϕ̄, and [ϕ̄] for its set of indices {1, . . . , |ϕ̄|}. We use L∗ for the set of all (finite)
sequences of formulas from L, and ε for the empty sequence (|ε| = 0).

Definition 1 (Bounded First-Order Languages). A bounded first-order
language is one of the following, where X ⊆ V denotes a finite set of variables,
and L, L1 and L2 denote bounded first-order languages:

LA = A ∪ {⊥} with ⊥LA = ⊥, where A is any finite SV -closed set of formulas
∨[L1, L2] = {ϕ1 ∨ ϕ2 | ϕ1 ∈ L1, ϕ2 ∈ L2} with ⊥∨[L1,L2] = ⊥L1 ∨ ⊥L2

∧[L1, L2] = {ϕ1 ∧ ϕ2 | ϕ1 ∈ L1, ϕ2 ∈ L2} with ⊥∧[L1,L2] = ⊥L1 ∧ ⊥L2

∨k[L] = {
∨

ϕ̄ | ϕ̄ ∈ L∗ and |ϕ̄| ≤ k} with ⊥∨k[L] =
∨

ε, where k ∈ N

∧ω[L] = {
∧

ϕ̄ | ε 
= ϕ̄ ∈ L∗} with ⊥∧ω [L] =
∧

〈⊥L〉
∃X [L] = {∃X.ϕ | ϕ ∈ L} with ⊥∃X [L] = ∃X.⊥L
∀X [L] = {∀X.ϕ | ϕ ∈ L} with ⊥∀X [L] = ∀X.⊥L
∃∀X [L] = {QX.ϕ | ϕ ∈ L, Q ∈ {∃, ∀}} with ⊥∃∀X [L] = ∀X.⊥L

The base case is any finite set of formulas (over Σ and V ) that is closed
under variable permutations, augmented by ⊥ (denoting false). Typical exam-
ples include the set of all literals over Σ and V with a bounded depth of func-
tion applications. We introduce binary language constructors for disjunction
and conjunction, each operating on two possibly different languages. We also
introduce constructors for homogeneous disjunction of at most k disjuncts, as
well as unbounded non-empty conjunction, over any single language. Finally, we
introduce constructors for quantification (∃ or ∀) over a finite set of variables
and a language, as well as a constructor that includes both quantifiers for lan-
guages where both options are desired. Note that for the construction of a logical
abstract domain, we are interested in languages where all formulas are closed
(have no free variables), but the inductive definition includes languages with free
variables.

The semantics of formulas in each language is defined w.r.t. states S that
consist of first-order structures and assignments to the free variables, following
the standard first-order semantics, extended to conjunctions and disjunctions of
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finite sequences in the natural way, where
∨

ε ≡ ⊥. (We do not allow
∧

ε, which
would have been equivalent to “true”, since it is not useful for our developments.)

Observe that for a fixed language L, the formulas ϕ1 ∨ ϕ2 ∈ ∨[L,L] and∨
〈ϕ1, ϕ2〉 ∈ ∨2[L] are syntactically different but semantically equivalent (and

similarly for conjunctions). Nonetheless, we introduce homogeneous disjunction
and conjunction since they admit a more precise subsumption relation, yielding
a more efficient representation of sets of formulas. Also note that we consider
bounded disjunction but unbounded conjunction; Sect. 4.3 explains this choice.

Example 1. L = ∀{x,y}[∨2[LA]] with A = {p(x),¬p(x), p(y),¬p(y)} is a
bounded first-order language over signature Σ that has one unary predicate p and
variables V = {x, y}. Formulas in this language are universally quantified homo-
geneous disjunctions of at most two literals. For instance, L includes ∀{x, y}.

∨
ε,

which is also ⊥L, as well as ∀{x, y}.
∨

〈p(x)〉, ∀{x, y}.
∨

〈p(x),¬p(y)〉, etc.

3.2 Syntactic Subsumption

Next, we define a subsumption relation for each bounded first-order language.
The subsumption relation serves as an easy-to-compute under-approximation for
entailment between formulas from the same language. We use �L to denote the
subsumption relation for language L, or simply � when L is clear from context.
When ϕ � ψ we say ϕ subsumes ψ, and then we will also have ϕ |= ψ.

Definition 2 (Subsumption). We define �L inductively, following the def-
inition of bounded first-order languages, as follows, where ◦ ∈ {∨,∧}, k ∈ N,
Q,Q′ ∈ {∃,∀}, X is a finite set of variables, and L, L1 and L2 are bounded
first-order languages:

ϕ LA ψ iff ϕ = ⊥ or ϕ = ψ

ϕ1 ◦ ϕ2 ◦[L1,L2] ψ1 ◦ ψ2 iff ϕ1 L1 ψ1 and ϕ2 L2 ψ2 (pointwise extension)
∨

ϕ̄ ∨k[L]

∨
ψ̄ iff ∃m : [ϕ̄] → [ψ̄]. ∀i ∈ [ϕ̄]. ϕi  ψm(i) and m is injective

∧
ϕ̄ ∧ω [L]

∧
ψ̄ iff ∃m : [ψ̄] → [ϕ̄]. ∀i ∈ [ψ̄]. ϕm(i)  ψi

(QX.ϕ) QX [L] (QX.ψ) iff ∃π ∈ SX . ϕ L ψπ

(QX.ϕ) ∃∀X [L] (Q
′X.ψ) iff ∃π ∈ SX . ϕ L ψπ, and Q = ∀ or Q′ = ∃

The subsumption relation of a bounded first-order language L is composed,
hierarchically, from the subsumption relations of the bounded first-order lan-
guages that L is composed from. For example, the languages participating in
the composition of L = ∀{x,y}[∨2[LA]] defined in Example 1 are LA, ∨2[LA],
and ∀{x,y}[∨2[LA]], and each is equipped with its own subsumption relation.

In the base case, formulas in LA are only subsumed by themselves or by
⊥. For example, considering Example 1, p(x) ��LA

p(y). Subsumption is lifted
to languages obtained by binary conjunctions and disjunctions in a pointwise
manner. For the languages obtained by homogeneous constructors, a mapping
over indices determines which element of one sequence subsumes which element
of the other. To approximate entailment, the mapping in the disjunctive case
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maps each element of
∨

ϕ̄ to one in
∨

ψ̄ that it subsumes, and in the conjunc-
tive case maps each element of

∧
ψ̄ to one in

∧
ϕ̄ that subsumes it. As a result,

subsumption is more precise in the homogeneous case than in the binary one.
For example, considering A from Example 1, p(x) ∨ p(y) ��∨[LA,LA] p(y) ∨ p(x),
even though the formulas are semantically equivalent. On the other hand,∨

〈p(x), p(y)〉 �∨2[LA]

∨
〈p(y), p(x)〉

In the case of quantifiers, subsumption is lifted from the language of the body
while considering permutations over the quantified variables. For example, in
Example 1, ∀{x, y}.

∨
〈p(x)〉 �L ∀{x, y}.

∨
〈p(y)〉 due to variable permutations,

even though
∨

〈p(x)〉 ��∨2[LA]

∨
〈p(y)〉. When both quantifiers are considered, a

universal quantifier can subsume an existential one.
The injectivity requirement for �∨k[L] can be dropped without damaging any

of the definitions or theorems in this section, but it enables a simpler definition
of the weakening operator in Sect. 4 (as discussed further in Sect. 4.3).

The following theorem establishes the properties of �L.

Theorem 1 (Properties of �L). For any bounded first-order language L, �L
is a preorder (i.e., reflexive and transitive) such that for any ϕ,ψ ∈ L, if ϕ � ψ
then ϕ |= ψ. Moreover, ⊥L �L ϕ for any ϕ ∈ L.

As with entailment, where two distinct formulas can entail each other (i.e.,
be semantically equivalent), there can be distinct formulas ϕ,ψ ∈ L with ϕ �L ψ
and ψ �L ϕ (since �L is not always a partial order, i.e., not antisymmetric).
We call such formulas subsumption-equivalent, and denote this by ϕ ≡�L ψ.
(≡�L is clearly an equivalence relation.) The existence of subsumption-equivalent
formulas is a positive sign, indicating that our subsumption relation manages
to capture nontrivial semantic equivalences. This is thanks to the definition
of subsumption for homogeneous disjunction and conjunction, as well as for
quantification. For example,

∨
〈ϕ,ψ〉 ≡�

∨
〈ψ,ϕ〉 (and similarly for conjunction),

and if ϕ � ψ then
∧

〈ϕ,ψ〉 ≡�
∧

〈ϕ〉. For quantifiers, QX.ϕ ≡� QX.ϕπ for any
π ∈ SX and Q ∈ {∃,∀}. (In contrast, �LA

is always antisymmetric, and the
definitions of ∨[L1,L2] and ∧[L1,L2] preserve antisymmetry.)

3.3 Canonicalization

As a first step towards an efficient representation of sets of formulas, we use a
canonicalization of formulas w.r.t. ≡�, which allows us to only store canonical
formulas as unique representatives of their (subsumption-) equivalence class. In
general, a canonicalization w.r.t. an equivalence relation ≡ over a set S is a
function c : S → S such that ∀x ∈ S. c(x) ≡ x (representativeness) and ∀x, y ∈
S. x ≡ y ⇐⇒ c(x) = c(y) (decisiveness). We say that x is canonical if c(x) = x.
When the equivalence relation is derived from a preorder (as ≡� is derived from
�) then the preorder is a partial order over the set of canonical elements. For our
case, that means that �L is a partial order over the set of canonical L-formulas.

It is useful, both for the algorithms developed in the sequel and for the def-
inition of canonicalization for QX [L] (Q ∈ {∃,∀,∃∀}), to define a total order
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≤L over canonical L-formulas that extends �L. We thus define the canonical-
ization function cL and the total order ≤L over canonical L-formulas by mutual
induction. For a set of canonical L-formulas F , we use min�L F to denote the
set of formulas in F not subsumed by others, i.e., min�L F = {ϕ ∈ F | ∀ψ ∈
F \{ϕ}. ψ �� ϕ}, and use min≤L F to denote the minimal element of a non-empty
set F w.r.t. the total order ≤L. Finally, we use 〈ϕ̄〉≤ for the sequence obtained by
sorting ϕ̄ according to ≤ in ascending order, and similarly 〈F 〉≤ for the sequence
obtained by sorting the elements of a set F .

Definition 3 (Canonicalization). For every bounded first-order language L,
we define the canonicalization function cL : L → L and a total order ≤L over
canonical L-formulas by mutual induction (where ◦ ∈ {∨,∧} and Q ∈ {∃,∀}):

cLA(ϕ) = ϕ

c◦[L1,L2](ϕ1 ◦ ϕ2) = cL1(ϕ1) ◦ cL2(ϕ2) (pointwise)

c∨k[L](
∨

ϕ̄) =
∨

〈cL(ϕ1), . . . , cL(ϕ|ϕ̄|)〉≤L

c∧ω [L](
∧

ϕ̄) =
∧

〈min�L{cL(ϕ1), . . . , cL(ϕ|ϕ̄|)}〉≤L

cQX [L](QX.ϕ) = QX.min≤L
{
cL(ϕπ)

∣∣ π ∈ SX

}

c∃∀X [L](QX.ϕ) = cQX [L](QX.ϕ)

and

≤LA is an arbitrary total order extending LA

ϕ1 ◦ ϕ2 ≤◦[L1,L2] ψ1 ◦ ψ2 ⇐⇒ ϕ1 <L1 ψ1, or ϕ1 = ψ1 and ϕ2 ≤L2 ψ2
∨

ϕ̄ ≤∨k[L]

∨
ψ̄ ⇐⇒ ϕ̄ is a suffix of ψ̄,

or ∃i ∈ [ϕ̄] ∩ [ψ̄]. ϕ−i <L ψ−i ∧ ∀j < i. ϕ−j = ψ−j
∧

ϕ̄ ≤∧ω [L]

∧
ψ̄ ⇐⇒ ψ̄ is a prefix of ϕ̄,

or ∃i ∈ [ϕ̄] ∩ [ψ̄]. ϕi <L ψi ∧ ∀j < i. ϕj = ψj

QX.ϕ ≤QX [L] QX.ψ ⇐⇒ ϕ ≤L ψ

QX.ϕ ≤∃∀X [L] Q′X.ψ ⇐⇒ Q = Q′ and ϕ ≤L ψ, or Q = ∀ and Q′ = ∃

where ϕ <L ψ is shorthand for “ϕ ≤L ψ and ϕ �= ψ”.

Our inductive definition of canonicalization in Definition 3 recognizes the only
possible sources of nontrivial subsumption-equivalence in our construction: non-
canonicity of subformulas, ordering of sequences, internal subsumption in ∧ω[·]-
sequences, and permuting of quantified variables. To address these, we canonical-
ize all subformulas, order their sequences w.r.t ≤L in ∨k[L] and ∧ω[L], minimize
∧ω[L]-sequences w.r.t �L, and in QX [L], Q ∈ {∃,∀,∃∀}, choose the permuta-
tion yielding the ≤L-least (canonical) body. For the total order in the cases of
Boolean connectives, we use lexicographic-like orderings carefully designed to
extend their associated subsumption relations (e.g., homogeneous disjunction
uses a right-to-left lexicographic ordering). For quantification, the total order is
directly lifted from the total order for canonical bodies.
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As an example, consider L = ∀{x,y}[∨2[LA]] from Example 1. To obtain a
canonicalization for L, we provide an arbitrary total order ≤LA

, say p(x) <LA

¬p(x) <LA
p(y) <LA

¬p(y) (recall that ⊥ ∈ LA is least). This uniquely deter-
mines the total order and canonicalization of L and all of its sub-languages. For
example, canonicalization of both ∀{x, y}.

∨
〈p(x)〉 and ∀{x, y}.

∨
〈p(y)〉, which

are �L-equivalent, is ∀{x, y}.
∨

〈p(x)〉. This is because p(x) <LA
p(y), and

thus c∨2[LA] (
∨

〈p(x)〉) =
∨

〈p(x)〉 <∨2[LA]

∨
〈p(y)〉 = c∨2[LA] (

∨
〈p(y)〉). Note

that
∨

〈p(x)〉 and
∨

〈p(y)〉 are both canonical, but adding quantifiers merges
the two formulas into the same subsumption-equivalence class, necessarily mak-
ing the quantified version of one of them non-canonical. Similarly, the �∨2[LA]-
equivalent formulas

∨
〈p(x), p(y)〉 and

∨
〈p(y), p(x)〉 are both canonicalized into∨

〈p(x), p(y)〉 (by sorting the sequences of literals according to ≤LA
).

The properties of cL and ≤L defined above are established by the following
theorem, which ensures that Definition 3 is well-defined (e.g., that whenever
min≤L is used, ≤L is a total order).

Theorem 2. For any bounded language L, cL is a canonicalization w.r.t. ≡�L ,
that is, it is representative (cL(ϕ) ≡�L ϕ) and decisive (ϕ ≡�L ψ ⇐⇒ cL(ϕ) =
cL(ψ)); �L is a partial order over canonical L-formulas; and ≤L is a total order
over canonical L-formulas that extends �L.

Corollary 1. For any ϕ,ψ ∈ L, if ϕ �L ψ then cL(ϕ) ≤L cL(ψ).

Henceforth, we use L to denote the set of canonical L-formulas.

3.4 Representing Sets of Formulas

We utilize the subsumption relation and canonicalization to efficiently represent
sets of formulas which are interpreted conjunctively as antichains of canonical
formulas, where an antichain is a set of formulas incomparable by subsumption.

Definition 4 (Set Representation). Given a set of formulas F ⊆ L, we
define its representation as the set RF = min�L{c(ϕ) | ϕ ∈ F}.

The representation combines two forms of redundancy elimination: the use
of canonical formulas eliminates redundancies due to subsumption-equivalence,
and the use of �L-minimal elements reduces the size of the set by ignoring
subsumed formulas. Observe that the more permissive the subsumption relation
is, the smaller the set representations are, because more formulas will belong to
the same equivalence class and more formulas will be dropped by min�L .

This representation preserves the semantics of a set of formulas (interpreted
conjunctively). For sets that are upward-closed w.r.t. subsumption (e.g., α(S)
for some set of states S), the representation is lossless as a set can be recovered
by taking the upward closure of its representation. For a set F ⊆ L, we use ↑F to
denote its upward closure (w.r.t. �L), given by ↑F = {ϕ ∈ L | ∃ψ ∈ F.ψ �L ϕ}.

Theorem 3 (Antichain Representation). For F ⊆ L and RF =
min�L{c(ϕ) | ϕ ∈ F} its representation,

∧
RF ≡

∧
F and ↑RF = ↑F .
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Corollary 2. If F ⊆ L is upward closed w.r.t. �L then F = ↑RF .

In particular, Corollary 2 applies to any set that is closed under entailment.

4 The Weaken Operator

This section develops an algorithm that computes a weaken operator, which takes
a representation of an upward-closed set F ⊆ L and a state s and computes a
representation of F ∩ α({s}) = {ϕ ∈ F | s |= ϕ}. When F is viewed as an
abstract element, this operation corresponds to computing F � α({s}). While
it is not a general abstract join operator, joining an abstract element with the
abstraction of a single concrete state is a powerful building block that can be
used, for example, to compute the abstraction of a set of states or even the least
fixpoint of the best abstract transformer (á la symbolic abstraction [27]).

In an explicit representation of F , computing F � α({s}) would amount
to removing from F all the formulas that are not satisfied by s. However, in
the subsumption-based representation RF , simply removing said formulas is not
enough. Instead, we must weaken them, i.e., replace them by formulas they
subsume that are satisfied by s. To this end, Sect. 4.1 develops an appropriate
weakening operator for a single formula, and Sect. 4.2 then lifts it to antichains
used as representations.

4.1 Weakening a Single Canonical Formula

Given a canonical formula ϕ and a state s such that s �|= ϕ, the weaken operator
computes the set of minimal canonical formulas that are subsumed by ϕ and
satisfied by s, which can be understood as a representation of ↑{ϕ} ∩ α({s}).

Definition 5 (The Weaken Operator). The weaken operator of L is the
function WL : L × S → P(L) defined as follows:

WL (ϕ, s) = min�L {cL(ψ) | ψ ∈ L, ϕ � ψ, and s |= ψ} .

Note that WL (ϕ, s) returns a set of formulas, since there may be different
incomparable ways to weaken ϕ such that it is satisfied by s.

While Definition 5 does not suggest a way to compute WL (ϕ, s), the fol-
lowing theorem provides a recursive implementation of WL (ϕ, s) that follows
the inductive structure of bounded languages. For the quantification cases, we
weaken according to all assignments of variables in X ⊆ V . Recall that a state
can be unpacked as s = ((U , I), μ) where (U , I) is a first-order structure (universe
and interpretation) and μ is an assignment to variables (into U). For assignments
μ and ν, we use μ

←−∪ ν to denote the assignment obtained from μ by updating
(possibly extending) it according to ν.

Theorem 4 (Implementation of Weaken). Let ϕ ∈ L be a canonical for-
mula in a bounded first-order language L and s ∈ S a state. If s |= ϕ then
WL (ϕ, s) = {ϕ}. If s �|= ϕ, then WL (ϕ, s) is given by:
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WLA
(ϕ, s) =

{
{ψ ∈ A | s |= ψ}, if ϕ = ⊥
∅, if ϕ 
= ⊥

W∨[L1,L2] (ϕ1 ∨ ϕ2, s) = {ψ ∨ ϕ2 | ψ ∈ WL1 (ϕ1, s)} ∪ {ϕ1 ∨ ψ | ψ ∈ WL2 (ϕ2, s)}
W∧[L1,L2] (ϕ1 ∧ ϕ2, s) = {ψ1 ∧ ψ2 | ψ1 ∈ WL1 (ϕ1, s), ψ2 ∈ WL2 (ϕ2, s)}

W∨k[L]

(∨
ϕ̄, s

)
= min �∨k[L]

(
W|ϕ̄| ∪ W|ϕ̄|+1

)
where

W|ϕ̄| =
{∨

〈ϕ1, . . . , ϕi−1, ψ, ϕi+1, . . . , ϕ|ϕ̄|〉≤L
| i ∈ [ϕ̄], ψ ∈ WL (ϕi, s)

}
and

W|ϕ̄|+1 =
{∨

〈ϕ1, . . . , ϕ|ϕ̄|, ψ〉≤L
| ψ ∈ WL (⊥L, s) and |ϕ̄| < k

}
W∧ω [L]

(∧
ϕ̄, s

)
=

{∧
〈min �L WL (ϕ1, s) ∪ · · · ∪ WL

(
ϕ|ϕ̄|, s

)〉≤L

}
W∃X [L] (∃X.ϕ, ((U, I), μ)) = min �∃X [L]

{c(∃X.ψ) | ν : X → U, ψ ∈ WL
(

ϕ, ((U, I), μ
←−∪ ν)

)
}

W∀X [L] (∀X.ϕ, ((U, I), μ)) = min �∀X [L]
{c(∀X.ψ) | ψ ∈ Ωϕ

(
{((U, I), μ

←−∪ ν) | ν : X → U}
)

}
where Ωϕ0 ({s1, . . . , sn}) = {ϕn | ϕ1 ∈ WL (ϕ0, s1), . . . , ϕn ∈ WL (ϕn−1, sn)}
W∃∀X [L] (∃X.ϕ, s) = W∃X [L] (∃X.ϕ, s)

W∃∀X [L] (∀X.ϕ, s) = min �∃∀X [L]

(
W∃X [L] (∃X.ϕ, s) ∪ W∀X [L] (∀X.ϕ, s)

)

When s |= ϕ, no weakening of ϕ is needed for s to satisfy it. In the case of
LA, only ⊥ can be weakened to make s satisfy it, yielding the set of formulas
from A that are satisfied by s. (For LA, weakening anything except ⊥ that is not
satisfied by s yields the empty set.) In the case of disjunction, it suffices for one of
the disjuncts to be satisfied by s. Therefore, weakening is done by (i) weakening
exactly one of the existing disjuncts, which applies to both ∨[L1,L2] and ∨k[L];
or by (ii) adding a disjunct that weakens ⊥L, which applies only to

∨
ϕ̄ ∈ ∨k[L]

when |ϕ̄| < k. In the case of homogeneous disjunction, each resulting disjunc-
tion needs to be sorted to restore canonicity; moreover, some of the resulting
disjunctions may be subsumed by others, so min�∨k[L] is applied to the set
of weakened disjunctions. In the case of conjunction, all conjuncts need to be
weakened to be satisfied by s. In the binary case, this leads to all pairs that
combine weakened conjuncts. But in the homogeneous case a single conjunction
can accumulate all weakened conjuncts, so weakening always yields a singleton
set; filtering the weakened conjuncts using min�L is required to ensure canonic-
ity, as one weakened conjunct may subsume another. To satisfy an existentially
quantified formula, it suffices for the body to be satisfied by a single assignment.
Therefore, each possible assignment ν contributes to the result of weakening.
In contrast, for a universally quantified formula the body must be satisfied by
all assignments. Therefore, the body of the formula is iteratively weakened by
all assignments. In both cases, formulas are re-canonicalized and non-minimal
elements are removed. The case of ∃∀X [L] combines the two quantified cases.

Example 2. Consider applying the weaken operator of L = ∀{x,y}[∨2[LA]]
from Example 1 to the bottom element ⊥L = ∀{x, y}.

∨
ε, with the state

s = ((U , I), μ) where U = {a, b}, pI = {a, b}, and μ is an empty assignment. To
weaken the universally quantified formula, we first iteratively weaken its body,
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ϕ0 =
∨

ε, with the states s1, . . . , s4, each of which extends s with one of the
4 possible assignments to x, y. Since all of these states satisfy p(x) and p(y),
the first weakening (with s1) results in {

∨
〈p(x)〉,

∨
〈p(y)〉}, and no formula is

weakened further in later iterations (since both of them are already satisfied by
s2, s3, s4). As we have seen in Sect. 3.3, both formulas are canonical; however,
they become subsumption-equivalent when the quantifier prefix is added, demon-
strating the need for additional canonicalization in the computation of weaken
for ∀X [·]. The result is the antichain of canonical formulas {∀{x, y}.

∨
〈p(x)〉}.

Note that the weakened formula ⊥L has 21 formulas in its �L-upward closure,
and its weakening has 14 formulas (see [8] for the lists of formulas); yet through-
out the weakening process we only dealt with at most two formulas.

Algorithm 1: In-place Weaken for LSet[L]
Input: An antichain of canonical L-formulas R stored in the LSet[L] data

structure and a state s ∈ S

Output: R modified in place to store WL (R, s)

1 U := R| �=|s;
2 for ϕ ∈ U do R.remove(ϕ);
3 W :=

⋃
ϕ∈U WL (ϕ, s);

4 for ϕ ∈ W sorted by ≤L do
5 if R|�ϕ = ∅ then R.insert(ϕ);

4.2 Weakening Sets of Formulas

We lift the weaken operator to sets of canonical formulas. For a set R ⊆ L, we
define WL (R, s) = min�

⋃
ϕ∈R WL (ϕ, s), motivated by the following theorem.

Theorem 5 (From Weaken to Join). Let F ⊆ L be upward-closed w.r.t.
�, RF its representation (RF = min�{c(ϕ) | ϕ ∈ F}), and s a state. The
representation of F � α({s}) is given by WL (RF , s) = min�

⋃
ϕ∈RF

WL (ϕ, s).

Corollary 3 (Weaken for a Set of States). Let F ⊆ L be upward-closed
w.r.t. �, RF its representation, and s1, . . . , sn states. The representation of F �
α({s1, . . . , sn}) is given by WL (WL (· · · WL (WL (RF , s1), s2), · · · sn−1), sn).

Corollary 4 (Abstraction of a Set of States). The representation of α(S)
for a set of states S The representation of α({s1, . . . , sn}) is given by
WL (WL (· · · WL (WL ({⊥L}, s1), s2), · · · sn−1), sn).

Theorem 5 and Corollary 3 show that weakening of a single formula can be
lifted to compute join between an upward-closed set of formulas (represented
using its minimal elements w.r.t. �) and the abstraction of one or more states.

Next, we observe that we can implement WL (R, s) by (i) focusing only on
formulas that actually need weakening, i.e., formulas in R that are not satisfied
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by s, without iterating over formulas that s satisfies; and (ii) leveraging the ≤L
total order to accumulate the set of minimal elements more efficiently.

Algorithm1 presents our implementation of WL (R, s) for an antichain R of
canonical formulas and a state s. It updates R to WL (R, s) in place, which
is useful for computing an abstraction of a set of states (Corollary 3) or even
for fixpoint computation (Sect. 6). The algorithm uses a data structure LSet[L]
(whose implementation is explained in Sect. 5) that stores a set of canonical L-
formulas and supports two efficient filters: one for formulas that are not satisfied
by a given state s, denoted by R|
=|s; and one for formulas that subsume a
given formula ϕ, denoted by R|�ϕ. Formally: R|
=|s = {ψ ∈ R | s �|= ψ} and
R|�ϕ = {ψ ∈ R | ϕ � ψ}.

To weaken R, Algorithm1 first identifies all formulas that need weakening
using the R|
=|s filter. It then removes these formulas, weakens them, and adds
the weakened formulas back to the set, while filtering out formulas that are
not �L-minimal. For the minimality filtering, we leverage ≤L to ensure that
if ϕ �L ψ then ϕ is added before ψ. As a result, when inserting a formula ϕ
we only need to check that it is not already subsumed by another formula in
the set, which is done by checking if R|�ϕ is empty3. Importantly, a formula
ϕ ∈ R \ R|
=|s cannot be subsumed by a formula from WL (ψ, s) for ψ ∈ R|
=|s.
(If we assume the contrary we easily get that ψ � ϕ, contradicting the fact that
R is an antichain.)

4.3 Design Consideration and Tradeoffs

We are now in a position to discuss the tradeoffs and considerations that arise
in our framework in the design of languages and their subsumption relations,
explaining the design choices behind Definitions 1 and 2.

There is a tradeoff between the precision of the subsumption relation �L and
the complexity of implementing the weaken operator WL. From a representation
perspective, a more precise �L is desirable (i.e., relating more formulas), since
it means that the upward closure ↑{ϕ} of a formula ϕ is larger, and (upward-
closed) sets of formulas can be represented using less minimal formulas. On
the other hand, when ↑{ϕ} is larger, computing WL (ϕ, s) is generally more
complicated. As an extreme case, if �L is trivial (i.e., a formula only subsumes
itself), we get no pruning in the representation, but computing WL (ϕ, s) is
very easy, since it is either {ϕ} or ∅. As another example, compare ∨[L,L]
with ∨2[L]. The subsumption relation of ∨[L,L] is a pointwise extension, while
that of ∨2[L] allows swapping the two formulas, which is more precise. (E.g.,∨

〈ϕ,ψ〉 �∨2[L]

∨
〈ψ,ϕ〉 always holds but we might have ϕ ∨ ψ ��∨[L,L] ψ ∨ ϕ.)

Accordingly, weakening of ∨2[L]-formulas is slightly more involved.
As opposed to reordering of disjuncts, �∨k[L] does not allow multiple dis-

juncts to subsume the same one, e.g.,
∨

〈ϕ,ψ〉 ��∨k[L]

∨
〈ψ〉 even if ϕ �L ψ (recall

that the mapping between disjuncts must be injective). This choice makes the

3 While the implementation of the weaken operator only checks the emptiness of R|�ϕ,
the full set is used in the recursive implementation of R|�ϕ (Sect. 5).
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computation of W∨k[L] simpler, as it only needs to consider individually weak-
ening each disjunct or adding a new one, but not merging of disjuncts (to “make
space” for a new disjunct). For example, when computing W∨2[L] (

∨
〈ϕ1, ϕ2〉, s),

we do not have to consider formulas of the form
∨

〈ϕ,ψ〉 where s |= ψ and
ϕ1, ϕ2 �L ϕ, which we would need to include if the mapping was not required to
be injective. One seemingly undesirable consequence of the injectivity require-
ment is that canonical formulas may contain redundant disjuncts, e.g.,

∨
〈ϕ,ψ〉

when ϕ � ψ (or even
∨

〈ϕ,ϕ〉). However, when formulas are obtained by itera-
tive weakening, as in the computation of the representation of α(S) for a set of
concrete states S, formulas with such redundancies will be eliminated as they
are always subsumed by a canonical formula without redundancies.

Our design of bounded first-order languages uses bounded disjunction but
unbounded conjunction. The reason is that we obtain formulas by weakening
other formulas, starting from ⊥L. In this scenario, bounding the size of con-
junctions would have replaced one conjunction by all of its subsets smaller than
the bound, causing an exponential blowup in the number of formulas, without
contributing much to generalization. On the other hand, bounding the size of
disjunctions yields generalization without blowing up the number of formulas (in
fact, it reduces the number of formulas compared to unbounded disjunction).

5 Data Structure for Sets of Formulas

The implementation of WL (R, s) presented in Algorithm 1 uses the filters R|
=|s
and R|�ϕ. Since the sets may be very large, a naive implementation that iter-
ates over R to find formulas that are not satisfied by s (R|
=|s) or formulas that
subsume ϕ (R|�ϕ) may become inefficient. We therefore introduce a data struc-
ture for bounded first-order languages, which we call LSet[L], that stores a set
of canonical L-formulas R (not necessarily an antichain), and implements R|
=|s
and R|�ϕ without iterating over all formulas in R. The key idea is to define
the LSet[L] data structure recursively, following the structure of L, and to use
auxiliary data to implement the R|
=|s and R|�ϕ filters more efficiently.

For example, to implement LSet[∨[L1,L2]], we store a set of ∨[L1,L2]-
formulas and two auxiliary data fields: an LSet L : LSet[L1] and a map
M : Map[L1,LSet[L2]]. We maintain the invariant that ϕ1 ∨ ϕ2 is in the set
iff ϕ2 ∈ M [ϕ1], and that L contains the same L1-formulas as the keys of M .
Then, to find formulas that are not satisfied by a state s, i.e., formulas where
both disjuncts are not satisfied by s, we first query L to find ϕ1’s that are not
satisfied by s, and for each such ϕ1 we query the LSet M [ϕ1] to find ϕ2’s that are
not satisfied by s. Implementing the subsumption filter follows a similar logic.

Our implementation of LSet[∨k[L]] uses a trie data structure that generalizes
the binary case. Each edge is labeled by an L-formula, and each node represents
an ∨k[L]-formula that is the disjunction of the edge labels along the path from
the root to the node. The outgoing edges of each node are stored using an
LSet[L] that can be used to filter only the edges whose label is not satisfied by a
given state, or subsumes a given formula. Then, the R|
=|s and R|�∨

ϕ̄ filters are
implemented by recursive traversals of the tree that only traverse filtered edges.
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The recursive implementation for the other language constructors is simpler,
and follows a similar intuition to that of the cases presented above. The base
case LSet[LA] is implemented without any auxiliary data using straightforward
iteration. The full details of the LSet[L] data structure appear in [8].

6 Implementation and Evaluation

To evaluate our abstract domain implementation, we used it to implement a sym-
bolic abstraction [27,29] algorithm that computes the least fixpoint of the best
abstract transformer of a transition system. We evaluated our implementation
on 19 distributed protocols commonly used as benchmarks in safety verification
and obtained promising results.

6.1 Implementation

We implemented our abstract domain and the symbolic abstraction algorithm in
Flyvy,4 an open-source verification tool written in Rust, whose implementation
leverages parallelism and the optimizations detailed below. The implementation
and benchmarks used, as well as the log files and raw results from the experiments
reported, are publicly available in this paper’s artifact [7].

Our implementation receives as input (i) a first-order transition system (ι, τ)
over signature Σ, where ι is a closed first-order formula over Σ specifying the
initial states and τ is a closed first-order formula over two copies of Σ specifying
the transitions, and (ii) a specification of a bounded first-order language L over
Σ that defines the abstract domain P(L). The reachable states of the system
are the least fixpoint of a concrete transformer T : P(S) → P(S) given by
T (S) = {s′ ∈ S | s′ |= ι ∨ ∃s ∈ S. 〈s, s′〉 |= τ}, where 〈s, s′〉 |= τ indicates
that the pair of states satisfies the two-vocabulary formula τ , i.e., that s′ is a
successor of s w.r.t the transition relation defined by τ . For more details on this
style of modeling distributed systems in first-order logic, see [23–25].

The Galois connection (α, γ) between P(S) and P(L) induces a best abstract
transformer T � : P(L) → P(L) defined by T � = α ◦ T ◦ γ. Any fixpoint of T �,
i.e., a set F ⊆ L such that T �(F ) = F , is an inductive invariant of (ι, τ) (when
sets are interpreted conjunctively), and the least fixpoint, lfpT �, is the strongest
inductive invariant in L. The strongest inductive invariant is useful for verifying
safety properties of the system, or showing that they cannot be proven in L (if
the strongest inductive invariant in L cannot prove safety, neither can any other
inductive invariant expressible in L).

Symbolic abstraction computes lfpT � without computing T � explicitly: begin-
ning with F = L (the least element in P(L)), and as long as F �= T �(F ), a
counterexample to induction (CTI) of F is sampled, i.e., a state s′ �|=

∧
F that

is either an initial state or the successor of a state s with s |=
∧

F , and F is
updated to F � α({s′}). Our implementation uses the representation RF and

4 Flyvy’s code is available at https://github.com/vmware-research/temporal-verifier.

https://github.com/vmware-research/temporal-verifier
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Algorithm1 to compute the join (more details in [8]). To find CTIs or deter-
mine that none exist we use SMT solvers (Z3 [21] and cvc5 [2]), with queries
restricted to the EPR fragment (following [24]), which ensures decidability and
the existence of finite counterexamples. Solvers still struggle in some challenging
benchmarks, and we employ several optimizations detailed in [8] to avoid solver
timeouts.

6.2 Experiments

To evaluate our techniques, we computed the least fixpoints (strongest inductive
invariants) of 19 distributed protocols commonly used as benchmarks in safety
verification, in a language expressive enough to capture their human-written
safety invariants. We used all EPR benchmarks from [15], except for universally
quantified Paxos variants. To evaluate the utility of the LSet data structure
described in Sect. 5, we ran each experiment twice, once using LSet and once
using a naive (but parallelized) implementation for the filters R|
=|s and R|�ϕ.

To specify the bounded first-order language for each example, we provide
the tool with a quantifier prefix (using ∃X [·], ∀X [·], and ∃∀X [·]) composed
on top of a quantifier-free bounded language that captures k-pDNF (follow-
ing [15]). A k-pDNF formula has the structure c1 → (c2 ∨ · · · ∨ ck), where
c1, c2, . . . , ck are cubes (conjunctions of literals). We specify such formulas as
∨[∨n[LA1 ],∨k−1[∧ω[LA2 ]]], where k and n are parameters, and A1 and A2 are
sets of literals. Inspired by [30], we observe that we can restrict the variables used
in A1 and A2 to reduce the size of the language without losing precision.5 For
additional details see [8]. The list of examples with their language parameters
appears in Table 1. For each example, we report the quantifier structure, the k
and n parameters of the k-pDNF quantifier-free matrix, and the approximate
size of the language L. Recall that the size of the abstract domain is 2|L|.

All experiments were performed on a 48-threaded machine with 384 GiB of
RAM (AWS’s z1d.metal) and a three-hour time limit. For each example we
also provide runtimes of two state-of-the-art safety verification tools, DuoAI [30]
and P-FOL-IC3 [15]. Note that, unlike our technique, these tools look for some
inductive invariant proving safety, not necessarily the strongest, but are also
given fewer explicit language constraints. Moreover, the runtimes of DuoAI and
P-FOL-IC3 are sourced from their respective papers, and reflect different archi-
tectures and time limits. Thus, the inclusion of their results is not intended as a
precise comparison to our tool, but as a reference for the difficulty of the invariant
inference task of each example, as evidenced by state-of-the-art techniques.

5 One of the language reductions used by [30] relies on an overly generalized lemma [30,
Lemma 6]; we confirmed this with the authors of [30]. We prove and use a correct
(but less general) variant of this lemma, see [8] for details.
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6.3 Results

The results of the symbolic abstraction computation are presented in Table 1. For
each experiment we report the runtime of our tool and the following statistics:
the percentage of time spent weakening formulas (as opposed to searching for
CTIs), the number of formulas in the representation of the fixpoint (if reached),
and the maximal number of formulas in the representation of an abstract element
throughout the run. Each experiment was run five times, unless it timed out, in
which case it was run only once. We aggregate the results of each statistic across
multiple runs as median ± deviation, where deviation is the maximal distance
between the median value and the value of the statistic in any given run.

For simple examples, the fixpoint computation terminates very quickly, often
faster than the other tools, and maintains only tens or hundreds of formulas
throughout its run. Some of the larger examples, such as ticket, paxos-epr,
flexible-paxos-epr, and cache also terminate after similar times to the other
tools. In fact, this is the first work to compute least fixpoints for any Paxos vari-
ant or cache. (DuoAI, for instance, has a component that attempts to compute
a precise fixpoint, but [30] reports that it times out on all Paxos variants.)

Unsurprisingly, there is a significant gap between the runtimes of examples
with and without quantifier alternation, mostly due to the time spent in SMT
solvers. For example, in ticket we spend about 43% of the runtime perform-
ing weakenings, but this percentage drops to 1% and 4% for paxos-epr and
flexible-paxos-epr, respectively. This causes the runtime of paxos-epr to
exceed that of ticket by more than an order of magnitude, although its fix-
point computation considers fewer formulas and actually spends less time weak-
ening. Similarly, in cache we manage to prove a fixpoint of a hundred thousand
formulas in about an hour and spend a third of it weakening formulas, while
multi-paxos-epr and fast-paxos-epr time out, although they consider far
fewer formulas and spend a negligible amount of time weakening.

Next, we observe that the use of LSet significantly reduces time spent in weak-
ening, leading to more than an order of magnitude difference even in moderate
examples, e.g., ticket and paxos-epr. In terms of the total fixpoint computa-
tion time, in examples where the runtime is small or dominated by the SMT
solvers, the effect might be negligible, but otherwise the speedup is significant.
For example, cache is not solved within the 3-hour limit with a naive data struc-
ture; it gets stuck after reaching ∼ 20,000 formulas in the abstraction, whereas
using LSet it is solved in about an hour while handling more than ten times
the number of formulas. Similarly, in the two unsolved examples where SMT
calls seem to be the bottleneck (multi-paxos-epr and fast-paxos-epr), using
a naive data structure causes weakening to become the bottleneck and time out.

Finally, the remaining timeouts, learning-switch, stoppable-paxos-epr,
and vertical-paxos-epr, are the only examples where the weakening pro-
cess itself is the bottleneck. These are cases where the language induced by
the human-written invariant, using the constraining parameters of bounded
languages, create a inefficient weakening process. The cause for this is either
a profusion of literals in the basis language (>600 in learning-switch and
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Table 1. Symbolic abstraction over invariant inference benchmarks with a time limit of
3 h (10800 s). We describe the bounded language underlying the abstract domain of each
example, including its approximate size, and report the runtime of our technique—with
and without using LSet—along with some statistics. For reference, we provide runtimes
of two state-of-the-art safety-verification tools. ‘T/O’ indicates a timeout, and ‘N/A’
indicates that the example was not reported by the respective tool.

Example Language Runtime
(sec)

LSet % in W Lfp. Size Max. Size Safety (sec)

quant k n size P-FOL-IC3 DuoAI

lockserv ∀2 1 3 104 0.4 ± 0.1 � 6 ± 1 % 12 28 ± 7 19 1.9
0.5 ± 0.1 – 6 ± 1 % 29 ± 3

toy-consensus-
forall

∀3 1 3 103 0.2 ± 0.0 � 9 ± 2 % 5 18 ± 5 4 1.9

0.2 ± 0.0 – 7 ± 1 % 18 ± 4

ring-id ∀3 1 3 105 1.6 ± 0.1 � 16 ± 1 % 97 182 ± 22 7 3.5
1.9 ± 0.1 – 20 ± 1 % 189 ± 22

sharded-kv ∀5 1 3 104 0.5 ± 0.1 � 8 ± 0 % 20 26 ± 2 8 1.9
0.5 ± 0.0 – 8 ± 1 % 26 ± 4

ticket ∀4 1 5 109 32.6 ± 3.3 � 43 ± 7 % 2621 8531 ± 119 23 23.9
862.2 ± 21.9 – 97 ± 0 % 8533 ± 121

learning-
switch

∀4 1 4 1011 T/O � 98 % – 9576194 76 52.4

T/O – 100 % 5998
consensus-
wo-decide

∀3 1 3 106 3.0 ± 0.2 � 19 ± 1 % 41 717 ± 109 50 3.9

4.0 ± 0.6 – 38 ± 4 % 724 ± 43

consensus-
forall

∀4 1 3 106 3.5 ± 0.4 � 21 ± 2 % 51 740 ± 114 1980 11.9

5.1 ± 0.9 – 40 ± 6 % 708 ± 82

cache ∀6 1 5 1011 4029.4 ± 220.7 � 30 ± 2 % 106348 271255 ± 13081 2492 N/A
T/O – 100 ± 0 % 19183 ± 9466

sharded-kv-
no-lost-keys

∀1(∃∀)2 1 2 102 0.3 ± 0.0 � 3 ± 0 % 4 4 ± 0 4 2.1

0.3 ± 0.0 – 2 ± 0 % 4 ± 0

toy-consensus-
epr

∀2(∃∀)1∀1 1 3 104 0.3 ± 0.0 � 9 ± 1 % 5 18 ± 4 4 2.6

0.3 ± 0.0 – 7 ± 1 % 19 ± 3

consensus-
epr

(∃∀)1∀4 1 3 106 5.1 ± 0.7 � 17 ± 2 % 51 800 ± 137 37 4.8

8.8 ± 1.7 – 46 ± 8 % 783 ± 88

client-
server-ae

∀2(∃∀)1 2 1 103 0.2 ± 0.0 � 4 ± 1 % 2 5 ± 0 4 1.5

0.2 ± 0.1 – 3 ± 1 % 5 ± 0

paxos-epr ∀4(∃∀)2 2 3 1011 621.5 ± 246.8 � 1 ± 1 % 1438 1693 ± 203 920 60.4
789.6 ± 285.5 – 11 ± 3 % 1737 ± 168

flexible-
paxos-epr

∀4(∃∀)2 2 3 1011 166.7 ± 29.3 � 4 ± 1 % 964 1622 ± 177 418 78.7

235.6 ± 31.7 – 35 ± 8 % 1575 ± 196

multi-
paxos-epr

∀5(∃∀)3 2 3 1030 T/O � 2 % – 27508 4272 1549

T/O – 100 % 6400
fast-
paxos-epr

∀4(∃∀)3 2 4 1014 T/O � 1 % – 16290 9630 26979

T/O – 99 % 13683
stoppable-
paxos-epr

∀7(∃∀)3 2 5 10155 T/O � 100 % – 37529 >18297 4051

T/O – 100 % 3331
vertical-
paxos-epr

∀4(∃∀)3 3 5 1054 T/O � 100 % – 112990 T/O T/O

T/O – 100 % 2576
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stoppable-paxos-epr, less than 200 in all other examples), or a very expressive
language (e.g., vertical-paxos-epr uses 3-pDNF, whereas all other examples
use 1- and 2-pDNF). For these examples, it might be necessary to restrict the
languages in additional ways, e.g., as was done in [30]. Our experience, however,
is that the more significant bottleneck for computing least fixpoints for the most
complicated examples is the SMT queries.

7 Related Work

Many recent works tackle invariant inference in first-order logic [9–11,14,15,17,
26,30,31]. These works are all property-guided and employ sophisticated heuris-
tics to guide the search for invariants. Of these works, the most closely related
to ours are [30,31]. DistAI [31] is restricted to universally quantified invariants,
while DuoAI [30] infers invariants with quantifier alternations. DuoAI defines a
“minimum implication graph” enumerating all formulas in a first-order logical
language, whose transitive closure can be understood as a specific subsump-
tion relation, and where replacing a node with its successors can be understood
as a form of weakening. DuoAI’s “top-down refinement” precisely computes the
strongest invariant in the logical domain. However, this computation does not
scale to complex examples such as all Paxos variants, in which case “bottom-
up refinement” is used—a property-guided process that does not compute the
strongest invariant. Our approach based on a generic subsumption relation is
both more principled and more scalable, as it succeeds in computing the least
fixpoint for some Paxos variants.

Another work concerning a least-fixpoint in a logical domain is [19], which
computes the set of propositional clauses up to length k implied by a given for-
mula, minimized by the subsumption relation �=⊆; a trie-based data structure
is used to maintain the formulas, weaken them, and check subsumption of a for-
mula by the entire set. Both that data structure and LSet[∨k[·]] bear similarity
to UBTrees [12], also employed in [3], which store sets and implement filters
for subsets and supersets. However, while UBTrees and LSets always maintain
ordered tree paths, these are unordered in [19], which allows [19] to perform
weakening directly on the data structure, whereas we need to remove the unsat-
isfied disjunctions, weaken, and insert them. On the other hand, this makes
filtering for subsets in UBTrees and LSets more efficient. Also note that LSet is
more general than both, since it supports a more general subsumption relation.

8 Conclusion

We have developed key algorithms and data structures for working with a logi-
cal abstract domain of quantified first-order formulas. Our fundamental idea is
using a well-defined subsumption relation and a weaken operator induced by it.
This idea makes the abstract domain feasible, and it is also extensible: while we
explored one possible subsumption relation and its associated weaken operator,
future work may explore others, representing different tradeoffs between pruning
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and weakening. We demonstrated the feasibility of our approach by computing
the least abstract fixpoint for several distributed protocols modeled in first-order
logic—a challenging application domain where previously only property-directed
heuristics have been successful. For some of the examples in our evaluation, the
computation still times out. In some of these cases, SMT queries (for comput-
ing CTIs) become the bottleneck. Dealing with this bottleneck is an orthogonal
problem that we leave for future work. For the examples with the largest log-
ical languages, abstract domain operations remain the bottleneck, and future
work may either scale the abstract domain implementation to such languages or
explore combinations with property-directed approaches.
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Abstract. Envy-free cake-cutting protocols procedurally divide an
infinitely divisible good among a set of agents so that no agent prefers
another’s allocation to their own. These protocols are highly complex
and difficult to prove correct. Recently, Bertram, Levinson, and Hsu
introduced a language called Slice for describing and verifying cake-
cutting protocols. Slice programs can be translated to formulas encod-
ing envy-freeness, which are solved by SMT. While Slice works well on
smaller protocols, it has difficulty scaling to more complex cake-cutting
protocols.

We improve Slice in two ways. First, we show any protocol execu-
tion in Slice can be replicated using piecewise uniform valuations. We
then reduce Slice’s constraint formulas to formulas within the theory of
linear real arithmetic, showing that verifying envy-freeness is efficiently
decidable. Second, we design and implement a linear type system which
enforces that no two agents receive the same part of the good. We imple-
ment our methods and verify a range of challenging examples, including
the first nontrivial four-agent protocol.

Keywords: Fair division · Automated verification · Type system

1 Introduction

How would you divide a piece of cake between two children? Classic wisdom
would say to have one child cut the piece into two, and have the other take their
preferred slice. Procedures that divide an infinitely divisible good amongst a set
of agents are called cake-cutting protocols. If the protocol ensures no agent prefers
what another received, it is called envy-free. While classic wisdom gives an envy-
free protocol for two agents, a three-agent envy-free protocol was not discovered
until 1960, and a four-agent envy-free protocol that does not dispose any cake
was only proposed in 2015 by Aziz and Mackenzie [2]. Modern cake-cutting
protocols are highly complex, and proving envy-freeness requires checking an
enourmous number of cases.

Verifying Envy-Freeness. To make cake-cutting protocols easier to verify,
Bertram et al. [4] introduced a language called Slice that can describe cake-
cutting protocols, and encode envy-freeness as a logical formula that can be
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dispatched to an SMT solver. While Slice can verify envy-freeness fully automat-
ically, it has some drawbacks. First, it is not able to verify that agents receive
non-overlapping pieces. This basic property, known as disjointness, is crucial for
correctness.

Another drawback of Slice is the SMT instances encoding envy-freeness
for complicated protocols are difficult to solve, and only scale to some three-
agent protocols—non-trivial algorithms, but relatively simple compared to mod-
ern cake-cutting protocols. One reason the instances are difficult is they are
higher order : they quantify over valuations, which are functions that describe
the agents’ preferences.

Our Work: Verifying Disjointness and Envy-Freeness, Faster. We address these
weaknesses in Slice. To verify disjointness, we develop an affine type system for
Slice which restricts usage of the cake and then prove that well-typed programs
are disjoint. Typechecking is straightforward and syntax-directed, requiring no
use of SMT.

To verify envy-freeness more efficiently, we reduce Slice constraints into linear
real arithmetic formulas, removing the need to quantify over valuations. This
reduction leverages a key observation: the behavior of a protocol on any valuation
can be replicated by a piecewise uniform valuation, which enables envy-freeness
to be encoded as a first-order formula in linear real arithmetic. As a side benefit,
our work shows that verifying envy-freeness of Slice protocols is decidable.

Finally, we implement both our affine type system and formula reduction
procedure on top of the Slice implementation and transcribe two significantly
more complicated protocols into Slice, including the first nontrivial four agent
cake-cutting protocol [16]. For all Slice protocols, our type system establishes
disjointness and our constraints encoding envy-freeness can be verified in sub-
stantially less time than in the previous version of Slice.

Outline. After describing the cake-cutting model (Sect. 2), we present the Slice
language and our new linear type system for verifying disjointness (Sect. 3).
We then review Slice’s constraints (Sect. 4) and describe our new constraint
translation (Sect. 5). We discuss our implementation and evaluation (Sect. 6),
and then conclude with related work and future directions (Sect. 7).

2 Cake-Cutting Preliminaries

In this section, we introduce the basics of cake-cutting protocols; the reader can
consult a standard text for more background [14].

We begin by fixing a finite set of agents A. The cake or good is modeled by
the unit interval [0, 1]. A piece P is a finite union of intervals from the cake:
P = [r1, r′

1] ∪ · · · ∪ [rn, r′
n] where r1 ≤ r′

1 < r2 ≤ r′
2 < · · · < rn ≤ r′

n; the points
ri and r′

i are boundary points of P , and we write ∂P for the set of all boundary
points. Two pieces P1 and P2 are disjoint if (P1 \ ∂P1)∩ (P2 \ ∂P2) = ∅, that is,
P1 and P2 only share possibly their boundary points.
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Cake-cutting protocols produce an allocation of pieces to agents, i.e., an A-
tuple of pieces (Pa | Pa ∈ P, a ∈ A). Protocols produce allocations based on
agent preferences, which are typically modelled by functions V : P → [0, 1]
called valuations. We assume that valuations satisfy five standard assumptions:
(1) Additivity: V (P ∪ P ′) = V (P ) + V (P ′) provided P and P ′ are disjoint;
(2) Non-negativity: V (P ) ≥ 0; (3) Continuity: V ([r, r′]) is continuous in both
r and r′; (4) Monotonicity: V (P ) ≥ V (P ′) if P ′ ⊆ P ; and (5) Normalization:
V ([0, 1]) = 1. We will often write V [r, r′] for V ([r, r′]). A valuation set V is an
A-tuple of valuations (Va | a ∈ A). We write V a for agent a’s valuation.

Cake-cutting protocols aim to produce fair allocations where no agent prefers
another agent’s piece. More precisely, if A is an allocation and V is a valuation
set, we say A is envy-free (with respect to V ) if V a(Aa) ≥ V a(Aa′) for all
a, a′ ∈ A.

Protocols are assumed to have indirect access to agent valuations through
specific kinds of agent queries. Slice implements the Robertson-Webb (RW)
query model [15], which is the typical query model in the cake-cutting literature
and captures most protocols. In the RW model, there are two kinds of queries.
An eval query takes as input an agent and a piece and reports the agent’s value
of that piece:

evala(P ) reports V a(P ).

A mark query, when supplied an interval and a value, reports how much of the
interval is needed to attain that value:

marka([�, r], v) reports r′ where V a[�, r′] = v, provided that v ≤ V a[�, r].

This query enables us to find intervals within the cake which have a specified
value for a certain agent. For example, marka([0, 1], 1/2) will output a point r′

such that V a[0, r′] = 1/2 = V a[r′, 1]. The assumption v ≤ V a[�, r] is required
since V a is monotone: if v > V a[�, r], no such point exists. Note that if multiple
points r′ are a valid answer to a mark query, then mark can report any of them.

3 Language and Type System

We review the language [4] before describing our novel affine type system. Full
details for this section can be found in the full paper [3].

3.1 Syntax of Base Slice

The set of all basic Slice expressions E is given by the grammar shown in Fig. 1.
The expression v is a value and X is an infinite set of variables. We can form
tuples and, through the split expression, extract their components. We have
standard if-then-else expression, and a set O consisting of primitive operations
like +, ≥, etc.

The remaining expressions are cake-cutting specific. The expression cake rep-
resents the whole cake, divide takes an interval and a point, splitting the interval
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into two at the point, and piece takes in a list of intervals and forms a piece
out of them. The expression evala implements the eval query by taking in an
interval or piece, and producing its value according to agent a. The expression
marka implements the mark query by taking in an interval and the target value,
returning any point satisfying the query.

Fig. 1. The grammar for Slice expressions (top) and values (bottom).

The set of all values is denoted by V. We have boolean constants, points r#Pt,
and intervals [r, r′]. Points represent positions within the cake. Intervals describe
contiguous pieces of the cake. Tuple values enable us to describe allocations.

Values of the form P [r1, r′
1], . . . , [rn, r′

n] and r1 · Va1(P1) + · · · + rn · Van
(Pn)

are referred to as pieces and valuations, respectively. Note that for piece values,
we do not assume that [ri, r′

i] is disjoint from [rj , r′
j ] if i 
= j. We sometimes

write piece values as Pn
i=1[ri, r

′
i], or Pi[ri, r′

i], where i ranges over a finite set.
Within the valuation value, P1, . . . , Pn are interval or piece values, a1, . . . , an are
agents, and r1, . . . , rn are real numbers. We sometimes write

∑n
i=1 ri · Vai

(Pi),
or

∑
i ri · Vai

(Pi) for short.
Figure 2 shows the two agent protocol described in Sect. 1 implemented in

Slice; for now, we can ignore the bars over variables. This protocol uses the eval
and mark queries to divide the cake into two pieces equally preferred by agent
1, and then uses eval queries for agent 2’s comparison.

Fig. 2. Cut-choose in Slice.
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3.2 A Linear Type System for Slice

In this section, we develop a new, affine type system for Slice. At a high level,
our type system ensures that no two agents receive overlapping pieces in the
allocation. In order to accomplish this, it suffices to ensure that any duplicated
variable bound to an interval or piece cannot be used either make further cuts
or form more pieces. After all, you can’t have your cake and eat it too!

Types. Slice types include affine types τ and non-affine types τ̂ :

τ̂ ::= Bool | Point | Vltn | Intvl | Piece

τ ::= Intvl | Piece | τ̂1 × · · · × τ̂n × τ1 × · · · × τn

Any non-linear type can be viewed as a linear type (i.e., as a unary product).
We treat Intvl and Piece as affine types to prevent their values from being

duplicated. However, restricting interval and piece types poses a problem: pro-
tocols often query an agent before using the same interval or piece for division
or allocation. For example, in the second line in Fig. 2, p needs to be used to
mark itself appropriately before being divided. To address this issue, we include
two new base non-affine types, Intvl and Piece, called “read only” types. Since
these types are non-affine, variables of these types can be freely used in queries.
However, dividing or forming pieces from read-only types is not allowed. This
restriction ensures we can only create disjoint pieces.

Values and Expressions. We extend Slice with values of read-only type:

v ::= · · · | [r, r′] | P [r1, r′
1] , . . . , [rn, r′

n]

The overline syntax is also extended to notation on other values and types, e.g.
r = r, (v1, v2) = (v1, v2), Vltn = Vltn, and τ1 × τ2 = τ1 × τ2. Next, we extend
Slice expressions with two new classes of variables. Affine variables are drawn
from W, while read-only variables are drawn from W. Finally, we extend the
syntax of the split expression to bind these variables:

let x1, . . . , xn, w1, . . . , wn′ = split e1 in e2

This expression implicitly binds read-only variables w1, . . . , wn′ corresponding
to the affine variables w1, . . . , wn. For example, in Fig. 2, p is bound in the first
line and both p1 and p2 are bound in the second line.

Affine Typing Rules. Our typing judgements are of the form Γ ;Δ � e : τ , for
Γ a partial map from X ∪ W to non-affine types, and Δ a partial map from W
to linear types. We present a selection of rules in Fig. 3. For affine type contexts
Δ1 through Δn, the concatenation Δ1, . . . ,Δn denotes the union of disjoint
contexts: dom(Δi) ∩ dom(Δj) = ∅ if i 
= j.

The variable rules [T-Var] and [T-AffVar] type the given variable based on
its context. The rule [T-Piece] shows the role of affine variables. The premise has
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Fig. 3. Select typing rules for Slice expressions.

expressions ei under linear type contexts Δi, while the conclusion has the com-
bined affine type context Δ1, . . . ,Δn. Since the Δi must have disjoint domain,
the expressions ei cannot share affine variables. In particular, it is not possible
for the same interval variable to appear more than once in a piece.

The rules [T-Piece], [T-Div], [T-Mark], and [T-EvalPc] highlight the
difference between affine types and their read-only variants. [T-Piece] requires
its subexpressions have type Intvl as it is forming a piece. [T-Div] requires the
first argument have type Intvl since it is forming new pieces. In contrast, [T-
Mark] requires the first argument to have type Intvl as it is querying a valuation,
not forming a piece, and similarly for [T-EvalPc].

The most complicated rule is [T-Split], which binds multiple variables at
once by pattern matching on tuples.

3.3 Semantics

We present a big-step style semantics, defined by a relation ⇓V ⊆ E ×V indexed
by a valuation set V , so our judgments are of the form e ⇓V v. We omit V
when clear from context. Our big-step rules are straightforward. We present a
few rules in Fig. 4 and discuss them here.

The rule [E-Tup] forms a tuple out of a collection of values. [E-Mark]
implements the mark query; since the equation V a[r1, r] =

∑
i riV ai

(Pi) can
be satisfied by more than one r, the big-step semantics is non-deterministic. [E-
EvalPc] implements the eval query. [E-Div] splits an interval into two, requiring
the interval to contain the split point. Both this condition and the condition for
[E-Mark] mean that some well-typed protocols may become stuck: they may not
evaluate to values. Lastly, [E-Split] binds the variables x1, . . . , xn, w1, . . . , wn′

to the values v1, . . . , vn, . . . , vn+n′ , and binds w1, . . . , wn to read-only versions
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Fig. 4. Select evaluation rules for Slice expressions.

vn+1, . . . , vn+n′ of the affine values. It is straightforward to show that evaluation
preserves types:

Proposition 1 (Type soundness). If · � e : τ and e ⇓ v, then · � v : τ .

3.4 Disjointness

Our affine type system is designed to ensure that well-typed programs produce
only disjoint allocations, i.e., tuples of pieces that do not overlap. To prove this
claim, we generalize and define disjointness for values and general expressions,
and then show that a well-typed disjoint program can only evaluate to a disjoint
value.

Informally, an expression is disjoint if all interval values within it, excluding
read-only versions, are disjoint from each other. Disjointness ignores read-only
values since well-typed programs are allowed to duplicate them; this does not
affect disjointness verification since we are only concerned with programs that
return allocations, i.e., values of type PieceA.

Since our type system prevents multiple uses of variables with type Intvl
and Piece, they cannot be duplicated so programs cannot construct pieces and
intervals with overlapping components. This invariant enables us to show that
disjoint expressions only evaluate to disjoint values.

Proposition 2. If · � e : τ and e is disjoint, then e ⇓ v implies v is disjoint.

Checking that a well-typed protocol is disjoint is easily done syntactically, and
in the protocols we are concerned with, amounts to ensuring cake is only used
once.
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Example 1. We illustrate our type system with the two-agent Surplus protocol.
In brief, both agents are asked to mark the cake at half the value of the whole
cake. The agent that marked furthest to the left is given all the cake to the left of
their own mark. Symmetrically, the other agent is given everything to the right
of their own mark, leaving the cake lying between the marks un-allocated. The
Slice programs shown in Fig. 5 both correctly implement the Surplus protocol,
however, the left program is not well-typed, while the right one is. The left
program does not type check because it divides the whole cake twice (highlighted
in red), leaving either p1 and p4 or p2 and p3 to overlap. Disjointness cannot be
verified in this instance since there are intermediate expressions that will not be
in its evaluation. The right program avoids this issue by only dividing the cake
once it is known where the marks lie in relation to each other. �

Fig. 5. The Surplus protocol written in two ways. (Color figure online)

4 Constraints

Now that we’ve seen the Slice language, we review the original Slice constraint
translation. For full details see the full paper [3].

Paths. As is standard, we consider each path through a program separately.
Paths b are Slice expressions (Sect. 3) with an assert expression assert b1 in b2 in
place of if-then-else.

Logical syntax Protocol paths are translated into a multi-sorted first order logic.
The logic is standard, so most details are omitted, though we make note of select
function symbols:

– [_,_], ∪ for forming intervals and pieces respectively
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– l, r for obtaining the left and right endpoints of an interval respectively
– Va for each a ∈ A for representing agent valuations
– πi for the ith component of a tuple
– O which contains logical counterparts to the primitive operations O (e.g. +,

≥)

Through the function symbols and constants, any program value v can be
encoded as a logical term v. Throughout, the typewriter font designates logi-
cal counterparts to program objects. We also include a special set of variables
Y, disjoint from X , which will only be used to represent points in our formulas.

With our logic, we can express envy-freeness, where x represents allocation:

E(x) �
∧

a,a′∈A

Va(πax) ≥ Va(πa′x). (1)

Logical Semantics. Formula semantics are given by an interpretation A and
variable assignment μ. An interpretation associates sorts with sets and function
symbols with functions on these sets. A variable assignment is a map from vari-
ables to elements of these sets. For our purposes, we fix a base interpretation
that interprets everything but the symbols Va for all a, and all full interpre-
tations agree with the base. The base interprets objects as one would expect,
e.g. �l�([r, r′]) = r. For full interpretations, the symbols Va are interpreted over
all possible valuations. Thus, full interpretations are uniquely determined by
the choice of valuation set, and we write AV for the interpretation such that
�Va�AV

= V a.
For a logical term t, we let �t�µA denote the interpretation of t according

to A, with variable values determined by μ, defined in the usual way (e.g.,
�Va([y, y′])�µAV

= V a[μ(y), μ(y′)]). Likewise, for a formula ϕ, we write A, μ � ϕ

if ϕ is true when interpreted through A with variable values determined by μ,
also defined in the usual way. We write A � ϕ if for all assignments μ we have
A, μ � ϕ. If t is a term containing no Va symbols, then for a fixed assignment μ,
the term t is always interpreted the same way and we write just �t�µ.

If v is an allocation, AV , μ � E(v) states that �v�µAV
is an envy-free allocation.

If e is a expression, we say that e satisfies E(x) and write e � E(x) if for all
valuation sets V , e ⇓V v implies AV � E(v). Thus e � E(x) means e is envy-free.

In order to verify envy-freeness, Slice translates programs e to logical formulas
ensuring e � E(x). We review this constraint translation next, before describing
our improved translation.

Constraints. To translate protocols to formulas, we translate each path in a pro-
tocol to a formula consisting of a logical term ρ(b) and a formula c(b). Intuitively,
ρ(b) is the logical term representation of the value that b evaluates to assuming
that the formula c(b) holds. We give some cases of the definition in Fig. 6.

It is informative to compare these definitions to the big-step semantics shown
in Sect. 3. For instance, ρ(divide(b1, b2)) is a logical encoding of the original inter-
val being split into two, ρ(marka(b1, b2)) is a variable that represents the mark,
ρ(evala(b)) is the value of the interval or piece provided.
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Fig. 6. ρ(b) and c(b) for select path expressions b.

The formula c(b) is referred to as the constraint of b. Roughly, the formula
corresponds to the side conditions shown in the big-step semantics. The most
interesting cases of the definition are in Fig. 6. All constraints conjoin the condi-
tions from their subexpressions. The constraint for divide encodes that the point
dividing the interval must be within. The constraint of eval has no additional
conditions to satisfy, so it is just the constraint of its subexpression. The con-
straint of mark ensures that the new point has the required property and the
constraint of assert asserts that the guard must hold.

Example 2. Consider the following path, denoted b, from Cut-Choose (Fig. 2):

let p = split cake in
let p1, p2 = split divide(p,mark1(p, 1/2 · eval1(p))) in
assert eval2(p1) ≥ eval2(p2) in (piece(p2), piece(p1))

The path b gives the following (simplified) constraint:

c(b) = (V1([0, y]) = 1/2 · V1([0, 1])) ∧ (V2([0, y]) ≥ V2([y, 1]))
ρ(b) = (∪[y, 1],∪[0, y])

The first conjunct in c(b) is from the expression mark1(p, 1/2 · eval1(p)), while
the second is from eval2(p1) ≥ eval2(p2). The term ρ(b) is a logical encoding of
b’s evaluation. �

The following result, akin to Corollary 4.8 for Slice [4], characterizes paths
in terms of their constraints.

Theorem 1. Suppose · � b : τ . Then b ⇓V v if and only if there is a variable
assignment μ such that AV , μ � c(b) and �ρ(b)�µAV

= |v|.
With our constraint translation being sound and complete, we look to use

constraints to verify envy-freeness only by checking the validity of certain formu-
las involving the constraint. For the following, let Yb be the set of free variables
contained in c(b), and let B(e) be the set of paths within e. The following theo-
rem forms the basis for automated verification in Slice.
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Theorem 2. Suppose that e is a well-formed expression and · � e : PieceA.
Then

AV �
∧

b∈B(e)

∀Yb.(c(b) ⇒ E(ρ(b))) (2)

for all V if and only if e � E(x).

The formal definition for a well-formed expression can be found within the
full paper [3], though the imposed conditions are mild; any typical cake-cutting
protocol is well-formed. This theorem can be generalized from E(x) to general
formulas F (x) satisfying mild conditions.

We stress that in order to apply this theorem to conclude e � E(x), Formula
(2) needs to be valid for all valuation sets. Our logic is not rich enough to
quantify over valuations and their axioms, so for verification, these formulas
must be embedded in a richer theory (e.g., from a modern SMT solver).

5 Piecewise Uniform Reduction

Now that we have seen how the existing constraint translation works in Slice, we
show how to produce a result similar to Theorem 2, but instead with a formula
in the theory of linear real arithmetic. Formula (2) contains terms like l([t1, t2]),
πk(t1, . . . , tn), and Va(t), which all need to be reduced to linear sums of real
variables. Most terms can be reduced via syntactic simplifications, but reducing
valuation terms Va(t) is much more challenging.

The broad approach is to show a protocol execution on any valuation set can
be replicated with a piecewise uniform valuation set, then replace terms Va(t)
with sums of differences of real variables that represent Va(t). We discuss con-
ditions under which protocol executions can be replicated, then show there are
always piecewise uniform valuations meeting these conditions. Then, we describe
how to construct the formula reduction, prove that it preserves validity, and then
apply it to obtain an analog to Theorem2. Our approach is inspired by Theorem
1 from Kurokawa, Lai, and Procaccia [9].

For this section only, we will assume that the operations O consist
only of boolean operators, comparisons, constant multiplication and
addition. These operations are sufficient for describing cake-cutting protocols.
A more detailed description of O is shown in the full paper [3].

5.1 Replicating Protocol Executions

In this subsection, we give a condition when the same evaluation judgement
holds for two possibly different valuation sets. For this, we define the following
relationship between valuation sets.

Definition 1. Let M ⊇ {0, 1} a finite set of points. We say that valuation sets U
and V agree on M if for any piece P with boundary points in M , Va(P ) = Ua(P )
for all a ∈ A.
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The following theorem says that we can identically derive an evaluation judge-
ment with a different valuation set, as long as the valuation set agrees with the
original on all pieces formed from points in the derivation.

Theorem 3. Let U and V be valuation sets, and suppose e ⇓V v. If U and V
agree on all points considered in the derivation of e ⇓V v, then e ⇓U v.

There is an analog for formulas.

Theorem 4. If valuation sets U and V agree on the set of points considered in
a formula ϕ under variable assignment μ, then AV , μ � ϕ ⇐⇒ AU , μ � ϕ.

5.2 Piecewise Uniform Valuations

Now that we have seen what is required for replication, we show that there is
always a special piecewise uniform valuation set that meets the requirements.

We first formally define piecewise uniform valuations. It is easiest to define
these valuations in terms of their density. For our purposes, a density is a function
w : [0, 1] → R≥0, and a valuation W has density w if W (P ) =

∫
P

w for all
P ∈ P.

Definition 2. We say that a valuation U is piecewise uniform if U has density
u for which there exists a piece P ∈ P and a constant c such that

u(x) =

{
c if x ∈ P

0 if x 
∈ P.

We let P (U) denote P and c(U) denote c.

Because valuations are normalized, the constant associated with a piecewise
uniform valuation U is the reciprocal length of P (U). Therefore, any piece P
uniquely determines a piecewise uniform valuation UP , where P (UP ) = P .

Much of the advantage of these valuations lies in how we can represent their
values on specific pieces. For intervals built from right endpoints of P (U), the
valuation reduces to a simple sum of differences between real numbers. If we
write out P (U) = [l1, r1] ∪ · · · ∪ [ln, rn] where l1 ≤ r1 < · · · < ln ≤ rn, then

U [ri, ri′ ] = c(U) ·
∑

i′≥j>i

(rj − lj). (3)

This formula is key for our reduction, as it enables us to convert valuations
applied to intervals (left) to sums of differences of real numbers (right).

We call a valuation set a piecewise uniform valuation set if all valuations
within it are piecewise uniform. Our formula reduction will benefit from the
following key conditions on piecewise uniform valuation sets.

Definition 3. Let U be a piecewise uniform valuation set and let M ⊇ {0, 1}
be a finite set of points. We say that U is easily replaceable on M if
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1. For each a ∈ A, and for each m ∈ M\0 � M \ {0}, there exists la(m) such
that if la(m) < m′ for m′ ∈ M\0, then m ≤ m′ and

P (Ua) =
⋃

m∈M\0

[la(m),m].

2. For each a, a′ ∈ A, c(Ua) = c(Ua′).

The first part is valuable for the reduction as it removes the need to keep track
of distinct right endpoints for each agent. The second part means that the coeffi-
cient in Eq. (3) can be ignored when comparing these valuations with each other,
which will be important later for the formulas to be in real linear arithmetic.

Theorem 5. For any valuation set V and any finite set of points M ⊇ {0, 1},
there exists a piecewise uniform valuation set that both agrees with V on M and
is easily replaceable on M .

The proof constructs a specific piecewise uniform valuation set that satis-
fies these properties. The construction is a slightly more general version of the
construction shown in Theorem 1 by Kurokawa, Lai, and Procaccia [9].

A consequence of the theorem is that any protocol execution can be replicated
by the specific piecewise uniform valuation set, and any formulas that hold for
the original valuation set that only consider points from the execution will also
hold for this specific valuation set.

Example 3. We illustrate the construction for A = {1, 2} with valuation V 1

being the uniform valuation over the cake, and V 2 having density x �→ 2x, and
the set of points M = {0, 1/2, 1}. Set U1 = UP1(d) and U2 = UP2(d) for pieces

P1(d) = [1/2 − 1/2 · 1/d, 1/2] ∪ [1 − 1/2 · 1/d, 1]
P2(d) = [1/2 − 1/4 · 1/d, 1/2] ∪ [1 − 3/4 · 1/d, 1]

for d ≥ 3/2. Clearly both pieces have interval right endpoints of {1/2, 1} =
M\0. Also, it is easily to calculate that c(UP1) = c(UP2) = d. Thus, U is easily
replaceable on M . We additionally have

U1[0, 1/2] = d · (1/2 − (1/2 − 1/2 · 1/d)) = 1/2 = V 1[0, 1/2],
U1[1/2, 1] = d · (1 − (1 − 1/2 · 1/d)) = 1/2 = V 1[1/2, 1],
U2[0, 1/2] = d · (1/2 − (1/2 − 1/4 · 1/d)) = 1/4 = V 2[0, 1/2],
U2[1/2, 1] = d · (1 − (1 − 3/4 · 1/d)) = 3/4 = V 2[1/2, 1],

so U replicates V on M . �

5.3 Piecewise Uniform Replacement

We leverage the above results to produce a reduction on protocol constraints.
At a high level, for any formula having only variables for points, we can simplify
it to be a disjunction of inequalities in terms of the form

∑
i ri · Vai

(Pi) for real
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ri and logical pieces and intervals Pi. We then replace terms of the form Va(P )
with sums of differences of real variables. Using Theorem 4 and Theorem 5 we
can show that the original formula holds if and only if the replaced formula holds
for a piecewise uniform valuation set.

Simplified terms are the terms within the following sets, indexed by sort:

RPoint � Y ∪ {r#Pt | r ∈ R} RPiece � {∪(t1, . . . , ti) | ti ∈ RIntvl}
RIntvl � {[t, t′] | t, t′ ∈ RPoint} RVltn � {∑

iri · Vai
(Pi) | Pi ∈ RIntvl ∪ RPiece}

For any well-sorted term t containing only variables in Y, we can produce an
equivalent simplified version of it, which we denote by R(t). The notion of simpli-
fied and the simplification operation R easily extends to whole formulas as well.
For further details of this step, see the full paper [3]. For further use, if t is a
simplified term or formula, we let #Pt(t) denote the subset of RPoint contained
as subterms of t.

Proceeding with the reduction, we introduce a new set of logical variables,
Z and we assume for each y ∈ Y ∪ {1}, and a ∈ A, there is a unique za,y ∈ Z.
To understand the purpose of Z, consider a piecewise uniform valuation set U
that is easily replaceable on M . Then P (Ua), the piece corresponding to agent
a’s valuation, is the union of intervals of the form [la(m),m] for m ∈ M\0. If the
variable y represents the variable m, then the variable za,y then represents the
left endpoint la(m).

Definition 4. A piecewise uniform replacement is a finite totally ordered subset
(S,>S) of Y ∪ {0, 1} such that {0, 1} ⊆ S and 0 ≤S y ≤S 1 for all y ∈ S. For
y, y′ ∈ S, we define S|y′

y � {y′′ ∈ S | y′ ≥S y′′ >S y}. We let S|t � S|y′
y if

t = [y, y′] and S|t � S|y′
1

y1 ∪ · · · ∪ S|y′
n

yn if t = ∪[y1, y′
1], . . . , [yn, y′

n].

The piecewise uniform replacement packages neatly all the data needed to replace
valuation symbols in formulas. The order on S represents the ordering of real
numbers, since variables from Y represent points. A replacement is applied to
terms:

Definition 5. The application of a piecewise uniform substitution S on a term
t ∈ RS for which #Pt(t) ⊆ S is as follows:

S(Va(t)) �
∑

y∈S|t
(y − za,y) S(

∑

i

ri · ti) �
∑

i

ri · S(ti) S(t) � t otherwise.

S can be applied to formulas by passing itself down to its terms. When S|t is
empty, we replace the term with 0.

The piecewise uniform replacement syntactically applies Eq. (3) (ignoring the
constant) to valuation terms for valuations of the form shown in Definition 3.
The following example illustrates this concretely.

Example 4. Returning to the path b shown in Example 2, consider the piecewise
uniform replacement S = {0, y, 1} where 0 <S y <S< 1. Then Va([0, y]) and
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Va([y, 1]) are replaced with y − za,y and 1 − za,1 respectively. The formula c(b)
simplifies to

S(c(b)) = (y − z1,y = 1/2 · (y − z1,y + 1 − z1,1)) ∧ (y − z2,y ≥ 1 − z2,1),

and the encoding of envy-freeness becomes

S(E(ρ(b))) = (y − z2,y ≥ 1 − z2,1) ∧ (y − z1,y ≥ 1 − z1,1).

Both are clearly linear inequalities in real variables. �
Piecewise uniform replacements are used to reduce simplified formulas to

linear real inequalities:

Proposition 3. Let f be a simplified formula. Let S be a piecewise uniform
replacement such that #Pt(f) ⊆ S. Then S(f) consists only of conjunctions and
disjunctions of linear inequalities of real variables.

To apply piecewise uniform replacements in a sound way, the variable assign-
ment must properly line it up with the valuation set; the precise conditions for
this are given in the following definition.

Definition 6. Let U be a piecewise uniform valuation set. Let S is a piecewise
uniform replacement and μ a variable assignment. We write S

µ−→ U if

1. U is easily replaceable on μ(S) (by convention μ(0) = 0 and μ(1) = 1)
2. μ(za,y) = la(μ(y)) if y = min{y′ ∈ S | μ(y′) = μ(y)}
3. μ(za,y) = μ(y) if y 
= min{y′ ∈ S | μ(y′) = μ(y)}
4. If μ(y) < μ(y′) then y <S y′.

This definition formalizes how we think of variables in a piecewise uniform
replacement. Condition (1) says that μ(S) captures the right endpoints of P (Ua)
correctly, (2) and (3) together ensure that we don’t repeat values in our sums,
and (4) ensures that the variable ordering is compatible with the real ordering
given by μ.

Example 5. Let S = {0, y, 1}, and let U be the piecewise uniform valuation set
described in Example 3. Set μ(y) = 1/2, and

μ(z1,y) = 1/2 − 1/2 · 1/d μ(z1,1) = 1 − 1/2 · 1/d
μ(z2,y) = 1/2 − 1/4 · 1/d μ(z2,1) = 1 − 3/4 · 1/d.

Then μ(S) = {0, 1/2, 1} and Example 3 illustrates that U is easily replaceable
on μ(S). Also, za,y is the left endpoint, la(1/2), of the left interval for Pa(d), and
za,1 is the left endpoint, la(1), of the right interval for Pa(d), hence condition (2)
is satisfied. Condition (3) is vacuous here. Clearly, 0 < 1/2 < 1 and 0 <S y <S 1
so condition (4) is satisfied. Thus we have that S

µ−→ U . �
Piecewise uniform replacements preserve validity when the conditions in Def-

inition 6 are met.
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Theorem 6. Let f be a simplified formula and let S be a piecewise uniform
replacement such that #Pt(f) ⊆ S. Let μ be an assignment and U a piecewise
uniform valuation set. If S

µ−→ U then AU , μ � f ⇐⇒ AU , μ � S(f).

Example 6. We illustrate the theorem by applying it with S = {0, y, 1} for the
formula c(b) Example 2 reproduced here:

c(b) = (V1([0, y]) = 1/2 · V1([0, 1])) ∧ (V2([0, y]) ≥ V2([y, 1])).

Supposing S
µ−→ U , this formula is equivalent to its reduced version from Exam-

ple 4:

S(c(b)) = (y − z1,y = 1/2 · (y − z1,y + 1 − z1,1)) ∧ (y − z2,y ≥ 1 − z2,1).

One can verify this equivalence for the example U and μ shown in Example 5.

Associated with each piecewise uniform replacement S, is a formula ψ(S).

Definition 7. Let S be a piecewise uniform replacement, written S =
{y1, . . . , yn} so that y1 <S · · · <S yn. We let ψ(S) denote the conjunction of
the following formulas for all agents a, a′ ∈ A:

0 ≤ za,y1 ≤ y1 ≤ · · · ≤ za,yn
≤ yn ≤ 1,

∑

y∈S

y − za,y =
∑

y∈S\{0}
y − za′,y.

Whenever the above formula holds for some variable assignment μ, a piecewise
uniform valuation set U that is easily replaceable on μ(S) can be constructed:

P (Ua) =
⋃

y∈S\{0}
[μ(za,y), μ(y)], c(Ua) =

∑

y∈S\{0}
μ(y) − μ(za,y).

This assists us in showing that our constraint reduction procedure is complete.
We now state our main theorem. For a path b, let Sb be the set of piecewise

uniform replacements on Yb ∪ {0, 1}—note that this set is finite.

Theorem 7. Suppose e is well-formed and · � e : PieceA. Then e � E(x) if and
only if

�
∧

b∈B(e)

∧

S∈Sb

∀Yb.S(R(c(b) ∧ ψ(S) ⇒ E(ρ(b)))). (4)

In contrast to Theorem2, we no longer need to quantify over valuations—a
valuation set is baked into the formula through ψ(S). This also gives a valuation
set witness whenever Formula (4) does not hold.

Similar to Theorem2, this theorem can be extended to more general formulas
F (x).
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Proof (sketch). For the forward direction, we assume that e ⇓V v and apply
Theorems 5 to 3 to obtain a piecewise uniform valuation set U for which e ⇓U v.
Then it is a matter of applying Theorem 6 and Theorem 4 to obtain that E(v) is
satisfied. For the backward direction, we suppose that Formula (4) doesn’t hold
for some b and Sb, and use ψ(S) to construct a piecewise uniform valuation set
that evaluates to v yet E(v) is not satisfied.

According to Proposition 3, Formula (4) consists entirely of linear inequalities
of real variables. Thus, we have the following corollary.

Corollary 1. Let e be a well-formed and well-typed Slice protocol. Checking if
e is envy-free is decidable.

6 Implementation and Evaluation

We implemented our type system and formula reduction on top of the Slice imple-
mentation. Protocols are first type-checked following our linear typing rules, and
then compiled to linear real arithmetic constraints encoding envy-freeness, which
are dispatched to Z3 [12].

Benchmark Protocols. In our benchmarks, we include all original protocols imple-
mented in Slice [4]; we briefly describe them here. Cut-choose is the classic 2 agent
protocol where one agent cuts and the other picks. Surplus is a two agent pro-
tocol which leaves a “surplus” piece of the cake in the center. Selfridge-Conway-
Full is the classic three agent protocol [6]. Selfridge-Conway-Surplus is a variant
of Selfridge-Conway-Full that disposes the trimming, and Waste-Makes-Haste-
3 [16] effectively is a minor variant on Selfridge-Conway-Surplus.

We also implement two new, more complicated protocols. The first,
Aziz-Mackenzie-3 , is the three-agent variant of the first bounded envy-free four
agent protocol with no free disposal [2]. Briefly, this protocol obtains an envy-
free allocation by first obtaining a partial allocation where one agent does not
care how the rest is allocated amongst the others. Cut-Choose is then applied.
The second, Waste-Makes-Haste-4, is the four-agent connected variant of the
Waste-Makes-Haste free disposal protocol [16, Section 6]. This protocol relies on
equalize queries: Equalizea(n) has agent a divide the cake to produce n equally
most preferred (according to a) pieces of the cake. It can be shown using Hall’s
marriage theorem that an envy-free allocation can be made from a set of pieces
following some sequence of equalize queries among the agents (for 4 agents,
n ≤ 5), although the allocation must be found through exhaustive search. This
protocol exhaustively tries certain sequences of equalize queries until an envy-free
allocation is obtained. Notably, this is the first four agent envy-free cake-cutting
protocol to be implemented and verified.

Evaluation. Table 1 presents some statistics from verifying envy-freeness for each
of our benchmark protocols. Our experiments were conducted on an M1 Mac-
Book Pro with 16 GB of RAM. We measured the time both to compile protocols
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to constraints, and the actual time Z3 took to solve. We also record here the
number of paths in each protocol, as well as the number of lines for the pro-
tocol implementation and the constraint formula. Each path corresponds to a
distinct disjunct in the constraint. We measure this against the solving time for
the original Slice constraints (Old), which uses non linear real arithmetic for-
mulas. Our results demonstrate a reduction in solving time compared with the
old constraints. The four-agent protocol is significantly more complex than the
others, though Z3 can still solve the constraints efficiently.

Table 1. Verifying envy-freeness (averaged over 5 runs).

Protocol #Paths Size (lines) Time (seconds)
Program Constraints Compile Z3 Z3 (Old)

Cut-Choose 2 6 35 1.31 0.00 0.02

Surplus 2 11 56 1.23 0.00 0.02

Waste-Makes-Haste-3 24 8 924 0.85 0.02 0.84

Selfridge-Conway-Surplus 216 19 7726 1.09 0.01 0.82

Selfridge-Conway-Full 1800 21 98292 9.20 0.46 19.38

Aziz-Mackenzie-3 93384 23 8086180 2m4 6.82 n/a

Waste-Makes-Haste-4 1953792 290 157553237 37m02 1m22 n/a

7 Related and Future Work

Cake Cutting Verification. In recent work, Lester [11] proposes a system called
Crumbs to verify and disprove envy-freeness, using C bounded model checker
(CBMC) instead of SMT. While performance on correct (envy-free) protocols
is similar to the prior version of Slice, Lester [11] shows that Crumbs is much
more effective at finding counterexamples for incorrect protocols. By using our
new constraint reduction, our current work significantly outperforms Slice and
Crumbs for correct protocols, and we can efficiently construct counterexamples
for incorrect protocols (details in the full paper [3]). In terms of expressivity,
Crumbs supports a more restrictive, higher-level query model, enabling con-
straint solving over bounded integer arithmetic. In contrast, our work supports
all protocols written in the standard Robertson-Webb model. Our system also
establishes disjointness, which Crumbs does not consider.

Substructural Type Systems. Our type system is an example of a substructural
type system, which originate from substructural logics. In brief, substructural
logics restrict the application of assumptions in proofs. Likewise, substructural
type systems restrict the usage of variables, enabling computational resource
usage to be restricted. A classic example is linear logic, due to Girard [8], which
led to linear type systems [1,10,17,18]. Walker [19] provides a resource for learn-
ing about substructural type systems. Our type system is designed to ensures
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physical disjointness of parts of the cake; we are not aware of prior work that
uses substructural types for a single divisible good, though there are similar ideas
in separation logic (e.g., [5]).

Formal Methods and Social Choice. Cake-cutting protocols belong to a broader
literature on social choice theory, which has had many fruitful interactions with
formal methods. In one direction, formal methods researchers have used interac-
tive theorem provers to verify classical protocols and impossibility theorems in
social choice theory (e.g., [13]). In the other direction, social choice researchers
have used computer-aided solvers to prove novel theorems in social choice theory
(e.g., [7]).

Conclusions and Future Work. Our work makes progress in cake-cutting proto-
col verification, through an affine type system for disjointness and a formula
reduction that enables much more efficient envy-freeness checking. However,
there are envy-free cake-cutting protocols even more complex than what we
can verify here. The complexity of these protocols makes it difficult to even
write them down in Slice, let alone the constraint compiling and solving time
involved. New Slice language features may be needed to address transcription
effort, while improvements to the Slice implementation and early pruning of
unreachable paths could significantly decrease both compile and solving time.
The most notable of these protocols is the four agent version of Aziz-Mackenzie-
3 [2], which does not discard any cake, unlike Waste-Makes-Haste-4. By making
our affine type system instead linear, it could be used to verify no cake is dis-
carded for that protocol, and others already implemented.
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Abstract. Runtime verification is a technique for monitoring a system’s
behavior against a formal specification. Monitors must produce verdicts
that are sound with respect to the specification. Anticipation is the abil-
ity to immediately produce verdicts when the monitor can confidently
predict the inevitability of the verdict.

Stream runtime verification is a specialized form of runtime verifica-
tion tailored to the monitoring and verification of data streams. In this
paper we study anticipatory monitoring for stream runtime verification.
More specifically, we present an algorithm with anticipation for moni-
toring of Lola specifications, which we then extend to exploit assump-
tions and tolerate uncertainties. As perfect anticipation is in general not
computable, we use techniques from abstract interpretation, especially
widening, to approximate anticipatory monitoring verdicts. Finally, we
report on three empirical cases studies using a prototype implementation
of a symbolic instantiation of our approach.

1 Introduction

In its simplest definition, runtime verification (RV) [26] solves the word problem:
whether a certain property (for example, expressed as an LTL formula) is satis-
fied for a system run, given the run or a prefix of it. In recent years, advanced RV
paradigms have emerged, such as stream runtime verification (SRV), extending
the traditional notion of runtime verification. First, SRV allows computations
and outputs over arbitrary data domains, not only atomic Boolean propositions
and verdicts like for LTL. Second, they specify “point-wise properties”, which
assign outputs to every position of the trace (instead of a single verdict for the
trace as a whole). This is especially useful to identify points in a trace, e.g. an
error location.
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Fig. 1. Example Lola specification and room map for a vacuum cleaner robot.

Figure 1 shows an SRV specification in the pioneering formalism Lola [9]
(see Sect. 2), which we will use as a running example. The scenario models a
vacuum cleaner robot in a house with four rooms, connected by open doors. The
charging station is located in room r0. We want to check the following property:
“The robot may not enter rooms if its battery is not charged enough to be able
to reach the base station.” The Lola specification for this property defines four
input streams of type Boolean r0, . . . , r3 and one stream e of type real. A stream
is a sequence of data values over time. The input streams originate from the
robot system and are incrementally passed to the monitor. The values (events)
of streams r0, . . . , r3 encode the current location of the robot while e contains
the battery charge (between 0% and 100%). The Lola specification defines a
Boolean output stream err that defines the error: the robot is not in room 0 and
its battery has run below 5%. Output streams contain events in synchrony with
input streams, so the values at each input stream instant produce a value of err,
revealing whether the system has run into an error. That is, this specification is
a point-wise property. The specification also defines Ferr, which is true if either
err is true now or in the future (by referring to Ferr at the next instant, with
default value false at the trace end).

Monitoring can be performed online or offline. In offline monitoring the input
trace is completely known upfront, for example as a log file. On the other hand,
an online monitor receives the trace event by event while the observed system
is running. In this paper we deal with online runtime verification. There is a
significant difference between both kinds of monitoring when the specification
contains future references (as stream Ferr above). Future references are not
a problem in offline RV, because future input values can be easily accessed,
but future values are unknown in online monitoring. In general there are two
strategies for future references in online RV: (1) stalling calculations until all
relevant input events are accessible [9]; (2) cast at each step an output as precise
as possible with the information available (e.g. a set/interval of possible values).
For a Boolean stream these outputs could be � = {tt}, ⊥ = {ff} or ? = {tt,ff}
when both values are possible, depending on future inputs. This strategy is used
in LTL3 monitoring [2], but not for point-wise properties. The online monitoring
of point-wise properties—while emitting the best possible sets of valuations—is
called perfect recurrent monitoring in [20,21].

A stream being defined using future references does not necessarily imply
that a ? verdict has to be cast. Consider Ferr above: if the value of err is true
at some instant then Ferr is true now, independently of future events. More-
over, additional knowledge about the monitored system available in the form of
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assumptions [4,18,24] allows to reduce the set of possible valuations. Consider
again our running example and assume that the robot consumes 3% of energy
when passing from one room to the next. We may conclude that room 0 is not
reachable without dropping below 5% battery before (and thus Ferr is true), if
the robot is in room 3 with an energy level below 8%. This kind of monitoring
is called anticipatory [3].

In this paper we study the problem of anticipatory monitoring for Lola under
assumptions and also uncertainties (missed or imprecise sensor values) in the
input trace. While for a propositional logic, whether a prefix satisfies or vio-
lates a property in all continuations can be modeled using (Büchi) automata,
whose emptiness can be effectively determined, the problem is more complex
for richer domains. They require reasoning about satisfiability and validity in
richer theories—which are computationally expensive or even undecidable—and
require reasoning about all futures as finite formulas (instead of automata).

Related Work. Early RV research focused mostly on the monitoring of
LTL [29] properties. The LTL3 monitoring approach [2] was the first to consider
anticipation, by reasoning about all possible trace continuations. More expres-
sive RV formalisms were later introduced adding notions of time or complex data
values in the traces. Examples include signal temporal logic (STL) [27], mission
time LTL [31], Eagle [14] or metric first order temporal logic (MFOTL) [1]. A
prominent class of extended RV approaches is SRV, pioneered by Lola [9], and
later extended in asynchronous languages like RTLola [11,12], TeSSLa [6,22]
and Striver [15,16]. Many RV formalisms can be encoded in Lola [20]. Recurrent
monitoring [21] was first studied in [17] for past LTL and later extended with
resets [4,5], and also for Lola [20]. The use of symbolic representations for moni-
toring (also to handle uncertainty) has recently been studied [4,5,10,13,34] and
also applied to Lola [19]. Considering assumptions during monitoring was first
proposed in [24] (under different wording) and later successfully adapted and
extended [4,5,19,35]. The topic is theoretically studied in [18]. The approach
that we present in this paper is based on the theory of abstract interpreta-
tion [7,8], which was used in RV to handle uncertainties in [25].

The works closest to this paper are [5,13] which study symbolic anticipa-
tory LTL monitoring with linear arithmetic sub-formulas. The former [5] also
considers uncertainties and assumptions.

In this paper we first introduce variations of the original Lola semantics: We
give monitoring semantics which define the perfect monitoring results for uncer-
tain stream prefixes. Based on this we define the instant and then (more impor-
tantly) transformer semantics, which also capture perfect monitoring outputs
but discard unnecessary information about relations to all past and future events
and can be deterministically computed. We then introduce a general abstraction
framework for the effective computation of the transformer semantics and derive
an efficient, anticipatory Lola monitoring algorithm. Provided with a sound or
perfect abstraction for the stream values (e.g. one from the various literature on
abstract interpretation) we present a general algorithm to monitor Lola speci-
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fications with future references. We give a criterion for the existence of perfect
monitoring, and present a technique based on widening to produce a sound
monitor if perfect monitoring is impossible. Then, we instantiate our general
framework for linear real arithmetic specifications using symbolic computation.
Finally, we report on an empirical evaluation of a prototype implementation of
our approach on three complex case studies.

Contributions. Compared to previous works (esp. [5,13]) the main contribu-
tions of our approach are:

– The anticipated monitor outputs may be of richer data types than Boolean.
– The monitor is able to produce arbitrarily many outputs per time step.
– Instead of unrolling a specification from the beginning to handle anticipation,

we unroll from the back until an invariant is found which is then used to
efficiently look ahead during the actual monitoring.

– If no perfect anticipation exists, we provide sound over-approximations
instead.

– We are not restricted to symbolic reasoning but provide a general abstraction-
based monitoring framework.

2 Lola Monitoring Revisited

2.1 Recurrent Monitoring

Recurrent monitoring starts from a point-wise property, which assigns to every
position of a trace a valuation. Traditionally, valuations are Boolean or other
truth domains [33]. Here, we consider valuations from an arbitrary data domain.

Definition 1 (Point-wise property). A point-wise property P of words of
length n over domain Γ into domain D is a function P : Γn ×{1, 2, . . . , n} → D.

In online monitoring of point-wise properties, the input w ∈ Γn is not avail-
able at once but provided incrementally, and the monitor produces an output
after each input letter. A monitor may output several possible values from D,
which in practice is encoded as an interval or ? (for all values). We identify a
monitor with its characteristic function M : Γ≤n → 2D which maps prefixes
of inputs to sets of possible outputs. After the first k letters of the input, a
recurrent monitor [21] tries to evaluate the corresponding property at position
k. A sound recurrent monitor outputs a super set of the possible verdicts at the
current instant (compatible with all possible future input continuations). The
monitor is perfect if it casts exactly the set of possible property valuations.

Definition 2 (Sound/perfect recurrent monitor). Given a point-wise
property P and a non-empty input prefix w ∈ Γ≤n, the set of possible verdicts
after w is pos(w) = {P(wv, |w|) | v ∈ Γn−|w|}. A recurrent monitor M for P is
sound whenever for every w, M(w) ⊇ pos(w). M is perfect if M(w) = pos(w).
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2.2 Lola

A Lola specification defines a transformation from a tuple of input streams to
a tuple of output streams. A finite stream of type D over a time domain T =
{0, 1, . . . , tmax} is a function s : SD := T → D that assigns a data value to every
instant in T. In this work we fix tmax and thus T. We use sequences to represent
streams and their prefixes. Given s = 〈3, 4, 2〉 we use s(0) = 3, s(1) = 4, s(2) = 2.

A Lola specification [9] is given as an equation system, which defines output
streams in terms of input and other output streams. The set of Lola expressions
over a set of stream identifiers S, ExprS , is recursively defined as

ExprS := c | f(ExprS , . . . ,ExprS) | s[o|c]

where s ∈ S is a stream identifier, c a constant value, f a function symbol, and
o ∈ Z is an integer offset. A constant expression is interpreted as a stream with
that constant value at all instants; a function application as the stream which
results from the application of the function on the argument stream events at
every instant. The operator s[o|c], called the offset operator, describes a stream
which carries the values of stream s, shifted o instants. To refer to past events
o can be chosen to be negative. If the accessed instant does not exist because it
is beyond the trace ends (beginning or end) the default value c is used instead.
For offset operators with offset 0, the default value does not play a role, thus we
use the notation s[now] or simply s for s[0|c] for arbitrary constant c.

Syntax. A Lola specification ϕ = (I, S,E) is a 3-tuple where I is a finite set of
input stream identifiers; S is finite set of output stream identifiers with I∩S = ∅;
E : S → ExprI∪S assigns a defining expression to every output steam. For the
rest of the paper, we assume that specifications are flat, i.e. they only contain
offsets −1, 0,+1. Every specification can be flattened by introducing additional
streams and splitting greater offsets to a chain of ±1 offsets.

Semantics. The formal semantics of a Lola specification ϕ = (I, S,E) with
input streams I = {i1, . . . , in} and output streams S = {s1, . . . , sm} maps a
tuple of concrete input streams to the corresponding tuple of concrete output
streams as follows. Given a tuple of input streams Σ = (σ1, . . . , σn) the semantics
�e�Σ ∈ SD of an expression e ∈ ExprI∪S of type D is:

– �c�Σ(t) = c
– �f(e1, . . . , en)�Σ(t) = f(�e1�Σ(t), . . . , �en�Σ(t))

– �ij [o|c]�Σ(t) =

{
σj(t + o) if t + o ∈ T

c otherwise

– �sj [o|c]�Σ(t) =

{
�E(sj)�(t + o) if t + o ∈ T

c otherwise
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The semantics of ϕ, �ϕ� : SD1 × · · · × SDn
→ SD

′
1
× · · · × SD′

m
is given as

�ϕ�(Σ) = (�E(s1)�Σ , . . . , �E(sm)�Σ)

This Lola semantics is well-defined if the value of no stream event is depen-
dent on itself. This is the case when the graph of the specification contains no
self-loops, which can easily be checked [9]. We assume that all Lola specifications
are well-defined. With D := D1 × · · ·×Dn and D′ := D

′
1 × · · ·×D

′
m, the induced

pointwise property of a specification ϕ is the function Pϕ : Dtmax × T → D′

defined as
Pϕ(w, t) = (s1(t), . . . , sm(t))

where (s1, . . . , sm) = �ϕ�(w). Thereby we implicitly understand w as a tuple of
streams.

Assumptions. Assumptions are knowledge about system and environment [18],
which allow to restrict the actual set of possible input and output traces. Con-
sider again Fig. 1. First, the robot can only be in one room at a time, so exactly
one of r0, r1, r2, r3 must be true at any instant. The map also limits the tran-
sitions, so if r1 is true at some instant, only r0, r1, r3 can be true at the next
instant, but not r2. We can also make assumptions about energy consumption
(for example at least 3% of energy is used at every instant). We follow [19] and
encode assumptions in Lola, using a special stream Λ which we assume to be
true at every instant. The assumptions above are e.g. encoded as follows:

Def Λ := (r0[now] ↔ ¬(r1[now] ∨ r2[now] ∨ r3[now])) ∧ · · · ∧
(r0[now] → (r0[1|tt] ∨ r1[1|tt] ∨ r2[1|tt])) ∧ · · · ∧
(e[now] ≤ e[−1|103] − 3)

Given a specification ϕ with assumption Λ and a tuple of input streams
Σ = (σ1, . . . , σn) we write Σ |=Λ ϕ if �ϕ�(Σ) yields an output that only contains
tt events for Λ.

Recurrent Lola Monitoring. Based on Definition 2 we define a sound and
perfect recurrent Lola monitor as a recurrent monitor for the induced point-wise
property of a specification, taking assumptions into account.

Given a Lola specification ϕ over input data types D and given assumption
Λ, the set of possible verdicts after a non-empty input prefix w ∈ D≤tmax is
posϕ(w) = {Pϕ(wv, |w| − 1) | wv ∈ Dtmax+1 ∧ wv |=Λ ϕ}.

Definition 3 (Sound/perfect recurrent Lola monitor). A recurrent Lola
monitor M is:

– sound iff for every non-empty w ∈ D≤tmax , M(w) ⊇ posϕ(w).
– perfect iff for every non-empty w ∈ D≤tmax , M(w) = posϕ(w).
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Lola monitors receive input streams instant by instant and, per input, cast
the set (or an over-approximation) of the possible output stream value tuples.

Several monitoring approaches can be reduced to recurrent monitoring by
modification of the specification. For example, consider a Boolean stream b rep-
resenting a property. The initial value of this property (the value of b at posi-
tion 0) can iteratively be monitored by introduction of an additional stream
Def s = if first then b[now] else s[−1|ff]. Note that s at instant 0 takes the
value of b and otherwise takes the previous value of s. A recurrent monitor for s
outputs increasingly precise verdicts about the initial property b. This monitor
simulates the typical initial monitor, for example for LTL3 [2]. Recurrent Lola
monitors further subsume monitoring with reset [4]; monitoring instants with a
fixed offset of k to the current instant, or a fixed size window around the cur-
rent instant; monitoring the distance to the next instant where a violation of a
property occurs (see [21]) or counting of violations, etc. All these notions can
be solved with recurrent monitoring by introducing additional streams in the
specification.

Perfect recurrent monitoring requires reasoning about possible future contin-
uations of a trace. This ability however, especially together with the presence
of assumptions makes recurrent monitors very powerful. The vacuum cleaning
robot example above could include the following four stream definitions:

Def enteri∈{0,1,2,3} := ri[+1|false] ∧ ¬Ferr[now]

Note that if a recurrent monitor yields the verdict ⊥ = {ff} for one of these
streams, entering the corresponding room will inevitably cause Ferr to be true,
which means that the base station cannot be reached anymore with the remain-
ing battery energy. On the other hand, the verdict ? = {tt,ff} implies that it is
possible that Ferr is false when the corresponding room is entered. This way a
higher level planning system an use the information that the monitor provides
to steer and prevent the robot from going into rooms which will inevitably cause
an error. If the robot always follows a path where ? verdicts are obtained it will
eventually end up in room 0 if the battery level is critical. In this example antic-
ipatory verdicts are possible if assumptions that are included in the specification
reveal information about where the robot can drive and how much energy it
consumes.

3 Lola Recurrent Online Monitoring Semantics

We now introduce a novel Lola semantics for recurrent online monitoring. While
the original semantics from Sect. 2 describes a relation between fully known input
and output streams (i.e. an offline semantics), we now give a semantics that
relates prefixes of input streams with partially known output streams. We base
our definition on monitoring stream tuples (inspired by [32]) which represent a
set of possible (complete and fully known) stream tuples:

Definition 4 (Monitoring stream tuple). A monitoring stream tuple of n
streams of types D1, . . . ,Dn is an element from TD1,...,Dn

:= 2SD1×···×SDn .
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We will use monitoring stream tuples in two ways: (1) to define input stream
prefixes, which are only known up to a certain instant t ∈ T; and (2) to encode
uncertain input readings. (Note that the first case is a special case of the second,
where all events after t are fully unknown.) The idea is that the monitoring
stream tuple is the set of all complete and fully known input streams that are
compatible with the (uncertain) input readings received so far.

Example 1. Consider again the robot example from Fig. 1 for T = {0, 1, 2, 3, 4}
and where the received trace prefix is known up to instant 3. Assume that the
robot started at room r0 and moved to r1 and then to r3; then it is uncertain
whether the robot remained in r3 or moved back to r1 again. Furthermore, the
energy started at 100% and was reduced by 3% per step, but the sensor has an
uncertainty of ±1%. This input would be encoded by the following monitoring
stream tuple, where the streams follow the order r0, r1, r2, r3, e:

s = {(〈tt,ff,ff,ff, r40〉, 〈ff, tt,ff, r31, r
4
1〉, 〈ff,ff,ff,ff, r42〉, 〈ff,ff, tt, r33, r43〉,

〈e0, e1, e2, e3, e4〉) |
r31 ↔ ¬r33, e

0 ∈ [99, 101], e1 ∈ [96, 98], e2 ∈ [93, 95], e3 ∈ [90, 92]}

Given a monitoring stream tuple s ∈ TD1×···×Dn
we use s(t) for t ∈ T to

denote the set of all value tuples at position t. In the example above s(3) =
{(ff, r31,ff, r33, e3) | r31 ↔ ¬r33, e3 ∈ [90, 92]}.

In this paper we restrict to “instant-wise uncertainty”: our monitoring streams
only encode uncertain values which are independent from the values at other
instants. That is, we can encode that the robot is in room 3 iff it is not in room
0, but not that the robot is in room 3 if it was in room 0 in the previous instant.
In many cases relations among instants can still be encoded as assumptions.

To simplify the definitions, for the rest of the paper we fix a Lola specification
ϕ = (I, S,E) with n input streams of type D1≤i≤n and m output streams of type
D

′
1≤i≤m. A monitoring stream tuple Σ for the input is then Σ ∈ TD1,...,Dn

. We
define the monitoring semantics of a Lola specification as the application of the
standard Lola semantics on all streams from the input monitoring stream tuple.

Definition 5 (Lola monitoring semantics). Let ϕ be a specification and Σ
the monitoring stream tuple for the inputs. The monitoring semantics of ϕ, Σ
is defined as:

�ϕ�mon : TD1,...,Dn
→ TD1,...,Dn,D′

1,...,D′
m

�ϕ�mon(Σ) = {(σ1, . . . , σn) ◦ �ϕ�(σ1, . . . , σn) | (σ1, . . . , σn) ∈ Σ}

We handle assumptions by adding the condition (σ1, . . . , σn) |=Λ ϕ which
restrict the input streams considered. The Lola monitoring semantics is closely
related to a perfect recurrent Lola monitor: the output of a perfect recurrent Lola
monitor after receiving input Σ at monitoring step t is �ϕ�mon(Σ)(t). Receiving
tuples Σ0, Σ1, Σ2 . . . with growing information about input readings a monitor
could compute �ϕ�mon(Σ0), �ϕ�mon(Σ1), �ϕ�mon(Σ2), . . . and generate the out-
puts �ϕ�mon(Σ0)(0), �ϕ�mon(Σ1)(1), �ϕ�mon(Σ2)(2), . . . . This monitor, however,
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computes a monitoring stream tuple of all inputs and outputs so it contains
information about all events of all streams, which makes semantics costly. Note
that for recurrent monitoring we are actually only interested in the events at the
current instant. Therefore, in the following we introduce a variation of the Lola
monitoring semantics which produces sets of possible stream value combinations
(called configurations) for every instant, with no information relating different
instants.

We first introduce some additional notation. Given a flat specification ϕ =
(I, S,E) for input stream types D1, . . . ,Dn and output stream types D′

1, . . . ,D
′
m,

we use Dϕ = D1 × · · · ×Dn ×D
′
1 × · · · ×D

′
m to denote the product of all stream

types. Given d ∈ Dϕ and s ∈ I∪S we use d(s) to denote the entry of stream s in d.
Elements from 2D

ϕ

, i.e. sets of stream value tuples, are called configuration sets.
Given an expression e ∈ ExprI∪S of type D, the following three functions �e��

ϕ

and �e��
ϕ (with type Dϕ ×Dϕ → D), and �e���

ϕ (with type Dϕ ×Dϕ ×Dϕ → D)
compute the value of e at the beginning, at the end and in the middle of the
trace. �e��

ϕ receives the configuration for the current and subsequent instant,
�e��

ϕ receives the current and previous instant, and �e���
ϕ the configuration for

the previous, current and subsequent instant. This semantics are:

�d���
ϕ (b, c, a) = d

�f(e1, . . . , en)���
ϕ (b, c, a) = f(�e1���

ϕ (b, c, a), . . . , �en���
ϕ (b, c, a))

�s[−1|d]���
ϕ (b, c, a) = b(s)

�s[now]���
ϕ (b, c, a) = c(s)

�s[+1|d]���
ϕ (b, c, a) = a(s)

for constant d ∈ D, stream identifier s ∈ I ∪ S and sub-expressions e1, . . . , en ∈
ExprI∪S . Here, b denotes the valuation at the previous instant, c at the current
instant and a at the successor instant. The definitions for �e��

ϕ and �e��
ϕ are

analogous, but these use the default value for -1 and +1 references (resp.). Let
ϕ = (I, S,E) and let S = {s1, . . . , sn} be the output stream identifiers. We use

�ϕ��(b, c) = (�E(s1)��
ϕ(b, c), . . . , �E(sn)��

ϕ(b, c))

�ϕ��(c, a) = (�E(s1)��
ϕ(c, a), . . . , �E(sn)��

ϕ(c, a))

�ϕ���(b, c, a) = (�E(s1)���
ϕ (b, c, a), . . . , �E(sn)���

ϕ (b, c, a))

to denote the application of the given functions on all defining expressions of ϕ.
We can finally define an alternative fixed point semantics which can serve as

the basis for recurrent monitoring.

Definition 6 (Lola instant semantics). Let ϕ be a specification and Σ a
monitoring stream tuple of the input streams. The instant semantics fixed point
equation of ϕ, Σ is:

�ϕ�instΣ : (2D
ϕ

)|T| → (2D
ϕ

)|T|

�ϕ�instΣ (V ) = (V ′
0 , . . . , V

′
tmax

)

with
V ′
0 = {c | c = σ ◦ �ϕ��(c, a), σ ∈ Σ(0), a ∈ V (1)}

V ′
t = {c | c = σ ◦ �ϕ���(b, c, a), σ ∈ Σ(t), b ∈ V (t − 1), a ∈ V (t + 1)}

V ′
tmax

= {c | c = σ ◦ �ϕ��(b, c), σ ∈ Σ(tmax), b ∈ V (tmax − 1)}.
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The instant semantics of ϕ is given as the greatest fixed point of �ϕ�instΣ w.r.t.
the point-wise ⊆ order on the (2D

ϕ

)|T| structure:

�ϕ�inst : TD1,...,Dn
→ (2D

ϕ

)|T|

�ϕ�inst(Σ) = ν(�ϕ�instΣ )

The instant semantics fixed point equation takes a structure of configuration
sets for every trace position, and returns a homogeneous structure consisting
of the possible inputs and the semantics of the output stream expressions for
the corresponding positions (based on the argument structure). Consequently, a
fixed point of this equation is a solution of the Lola specification. We define the
instant semantics as the greatest fixed point of the instant semantics fixed point
equation. One structure is greater or equal than another if at every instant it
contains at least the same configurations, i.e. is the point-wise application of ⊆.
Note that the instant semantics of ϕ is equivalent to the monitoring semantics
with respect to the stream events at every instant, that is

∀t ∈ T. ν(�ϕ�instΣ )(t) = {T (t) | T ∈ �ϕ�mon(Σ)}

Hence, this semantics can also be used as basis for recurrent monitoring.
Computing this semantics, however, is rather complex—requiring a fixed point
iteration—and it must be recomputed every time new inputs are received (since
Σ changes). Therefore, we slightly adjust this semantics again. Instead of com-
puting the possible value combinations (configurations sets) we now compute
them parametric in the values of the previous instant, using the structure
(Dϕ → 2D

ϕ

)|T| instead of (2D
ϕ

)|T|. We call the elements of this structure trans-
formers as they transform the configurations from the previous instant to those
of the current instant. Transformers receive a configuration b ∈ Dϕ at t ∈ T and
return the set of all possible configurations at t + 1 ∈ T, provided b.

Definition 7 (Lola transformer semantics). Let ϕ be a specification and Σ
an input stream tuple. The transformer semantics fixed-point equation of ϕ and
Σ is given as:

�ϕ�traΣ : (Dϕ → 2D
ϕ

)|T| → (Dϕ → 2D
ϕ

)|T|

�ϕ�traΣ (V ) = (V ′
0 , . . . , V ′

tmax
)

with

V ′
0(b) = {c | c = σ ◦ �ϕ��(c, a), σ ∈ Σ(0), a ∈ V (1)(c)}

V ′
t (b) = {c | c = σ ◦ �ϕ���(b, c, a), σ ∈ Σ(t), a ∈ V (t + 1)(c)}

V ′
tmax

(b) = {c | c = σ ◦ �ϕ��(b, c), σ ∈ Σ(tmax)}.

The transformer semantics of ϕ is the (only) fixed point of �ϕ�traΣ :

�ϕ�tra : TD1,...,Dn
→ (2D

ϕ

)|T|

�ϕ�tra(Σ) = μ(�ϕ�traΣ )
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This semantics is basically equivalent to the instant semantics except that
V ′

t is no longer dependent on V (t−1), as the generated transformers are param-
eterized in the configuration of their previous instant. Therefore, b is now a
parameter of the single structure entries and a is still received from the argu-
ment structure of the fixed point equation, by applying the current configuration
on the subsequent transformer (V (t + 1)(c)).

This new semantics has several advantages for online monitoring. First, the
fixed point of the upper semantics is unique and can (as opposed to monitoring
and instant semantics) be deterministically computed from the back, as the sin-
gle transformer elements only depend on the subsequent transformer. Second,
this semantics can still conveniently be used for recurrent monitoring. One can
mutually compute the current monitor state (i.e. the currently possible stream
configurations) and the transformer to the subsequent instant and apply the cur-
rent state on the transformer (see Sect. 5). However, one caveat is that computing
with (Dϕ → 2D

ϕ

)|T| is complex, as it is unclear how to represent the elements
in Dϕ → 2D

ϕ

and in 2D
ϕ

. Furthermore, the recursively defined sets V ′
i are hard

to determine. Therefore, we introduce a framework for abstract computation of
this semantics.

4 An Abstraction Framework for Lola Monitoring

We borrow concepts from abstract interpretation to efficiently implement the
transformer semantics. The main element is an abstract domain which is a per-
fect representation (or a sound over-approximation) of the transformer or config-
uration set domain. An appropriate abstract domain must be easy to represent
in memory and enable efficient computations.

We introduce two domains: A, whose elements abstract concrete configura-
tion sets from Sect. 3, and Ã that contains abstractions of the transformers. We
require that (A,�A) and (Ã,�Ã) are complete lattices, that is, partial orders
where every subset has a least upper bound and a greatest lower bound. The
relation a �A b indicates that b over-approximates a, i.e. that every configu-
ration represented by a is also represented by b. The same holds for �Ã. We
demand the existence of functions:

γA : A → 2D
ϕ

αA : 2D
ϕ → A

γÃ : Ã → (Dϕ → 2D
ϕ

) αÃ : (Dϕ → 2D
ϕ

) → Ã

which are able to translate from the concrete configuration set or transformer
domain to the abstract counterpart and back. We require that these function
pairs are Galois connections:

∀a ∈ A, c ∈ 2D
ϕ

: αA(c) �A a ↔ c ⊆ γA(a)
∀a ∈ A, c ∈ (Dϕ → 2D

ϕ

) : αÃ(c) �Ã a ↔ c � γÃ(a)

Here, � denotes the pointwise application of ⊆ on all corresponding configura-
tions sets where the functions from (Dϕ → 2D

ϕ

) map to. Galois connections
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ensure that a translation from the concrete to the abstract domain and back
leads to an over-approximation, so abstract computations in the abstract domain
produce sound monitor outputs.

We say that A is a perfect configuration set abstraction if for all c ∈ 2D
ϕ

,
γA(αA(c)) = c. Analogously Ã is a perfect transformer abstraction if for all
c ∈ (Dϕ → 2D

ϕ

), γÃ(αÃ(c)) = c.

Symbolic Abstraction. We introduce now a perfect abstract transformer and
configuration set abstract domain based on symbolic constraints, which will be
later used for an anticipatory Lola monitoring algorithm in Sect. 6. For the sym-
bolic abstraction we use symbolic constraints (i.e. quantifier-free first order logic
expressions) that perfectly describe the relation among all possible values of a
configuration or transformer.

We start with the symbolic representation of the configuration sets. We use
a symbolic constraint where every stream value is represented by its own vari-
able. For example, C = {(tt, 3), (ff, 5)}—for two streams b (of type bool) and
r (of type real)—captures values that can either be tt and 3 or ff and 5, This
configuration set can be expressed as (b → (r = 3)) ∧ (¬b → (r = 5)). Our
symbolic computation is restricted to those configuration sets which are sym-
bolically representable, thus the theory of choice (e.g. Boolean algebra or linear
real arithmetic) determines the capabilities of the monitor. We assume that the
chosen algebra can encode all monitor inputs and operations in the specification.

The concretization function of a symbolic constraint ψ is:

γ(ψ) = {v ∈ Dϕ |
( ∧

s∈I∪S

s = v(s)
)

|= ψ}

Recall that v(s) denotes the value of stream s in a configuration v ∈ Dϕ. We
implicitly define α s.t. for any configuration set C ∈ 2D

ϕ

, γ(α(C)) = C. That
is, every configuration set C has a canonical symbolic encoding. In the algo-
rithm we only require α for translating uncertain input readings to symbolic
representations. Note that by the given definition of α the symbolic domain is a
perfect configuration set abstraction. Also note that while our symbolic domain
is defined as abstraction of configuration sets over all streams, it is also possible
to encode only sets of sub-configurations, e.g. only input stream values.

Consider for example Fig. 1 and the following configuration set v = {(ff, r31,
ff, r33, e3) | ¬(r31 ↔ r33), e3 ∈ [90, 92]}, which represents the uncertain input for
instant 3 from the example above. A symbolic representation of this configuration
set is α(v) = ¬r0 ∧ ¬r2 ∧ ¬(r1 ↔ r3) ∧ (90 ≤ e ≤ 92).

We also encode transformers symbolically, extending the variables of our
constraints to I ∪S ∪{s−1 | s ∈ I ∪S}, where s−1 represent the stream values at
the previous instant in which the transformer is parametric. The corresponding
concretization function for transformers is given as γ(ψ) = τ s.t.

∀v ∈ Dϕ : τ(v) = {u ∈ Dϕ |
( ∧

s∈I∪S

((s−1 = v(s)) ∧ (s = u(s)))
)

|= ψ}.
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Abstract Transformer Semantics Computation. We now present the com-
putation of an alternative, abstract transformer semantics, related to the con-
crete semantics given in Definition 7. This semantics is computed in an Ã|T|

structure where each entry contains the abstract transformer for the correspond-
ing trace position.

We fix an abstract transformer domain Ã with translation functions γÃ :
Ã → (Dϕ → 2D

ϕ

) and αÃ : (Dϕ → 2D
ϕ

) → Ã.

Definition 8 (Abstract Lola transformer semantics). A fixed point equa-
tion for ϕ, Σ is called abstract Lola transformer fixed point equation if

�ϕ��
Σ : Ã|T| → Ã|T|

�ϕ��
Σ(V ) = (τ0

ϕ,Σ(V (1)), τ1
ϕ,Σ(V (2)), . . . , τ tmax

ϕ,Σ )

with τ tmax
ϕ,Σ : Ã and τ t

ϕ,Σ : Ã → Ã for t ∈ {0, . . . , tmax − 1} s.t.

τ0
ϕ,Σ(V1) �Ã αÃ(b �→ {c | c = σ ◦ �ϕ��(c, a) | σ ∈ Σ(0), a ∈ γÃ(V1)(c)})

τ t
ϕ,Σ(Vt+1) �Ã αÃ(b �→ {c | c = σ ◦ �ϕ���(b, c, a) | σ ∈ Σ(t), a ∈ γÃ(Vt+1)(c)})

τ tmax
ϕ,Σ �Ã αÃ(b �→ {c | c = σ ◦ �ϕ��(b, c) | σ ∈ Σ(tmax)}).

This corresponds to a computation in the abstract structure Ã|T| where all the
entries are over-approximations of the transformers of the concrete Lola trans-
former semantics. If the �Ã relation in the above definitions is an equality then
�ϕ��

Σ is called a perfect abstract Lola transformer fixed point equation. We will
later in Sect. 6 provide the abstract transformer constructors τ t

ϕ,Σ for the sym-
bolic abstract domain introduced above.

As in the concrete case, the abstract transformer fixed point equation above
has a unique fixed point μ(�ϕ��

Σ), as it can be computed deterministically from
back to front given a particular input Σ. We say that our abstract trans-
former semantics is sound in relation to the concrete semantics if for all t ∈ T,
μ(�ϕ�traΣ )(t) ⊆ γÃ(μ(�ϕ��

Σ)(t)) and perfect if μ(�ϕ�traΣ )(t) = γÃ(μ(�ϕ��
Σ)(t)). By

properties of abstract interpretation the following holds:

Theorem 1. Let μ(�ϕ��
Σ) be an abstract transformer semantics for ϕ. Then:

– μ(�ϕ��
Σ) is sound.

– μ(�ϕ��
Σ) is perfect if �ϕ��

Σ is a perfect abstract Lola transformer fixed point
equation and Ã is a perfect transformer abstraction.

This justifies that we can build a sound or perfect recurrent Lola monitor
based on this abstract semantics. Consider the computation of the fixed point
μ(�ϕ��

�), where � is the maximal element in TD1,...,Dn
(i.e. the input monitor-

ing stream tuple where no information about any input streams is available).
The abstract transformer structure chosen for the abstract semantics has one
significant advantage in terms of the computation of this fixed point: As soon
as a single element in S = μ(�ϕ��

�) repeats, all entries of the structure (except
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the one for instant 0) are known. This is because if S(t) = S(t + k) for k > 0,
t ∈ T, then also S(t − 1) = S(t + k − 1) are equal (as no input information is
available with Σ = �). Therefore, all entries in S can be filled up to instant
1 without new computations being required. Hence, μ(�ϕ��

�) can be computed
back to front until the first instant at which μ(�ϕ��

�)(t) = μ(�ϕ��
�)(t+k) occurs,

and then the values at all instants are determined (except for the first entry). If
the number of elements in the abstract domain Ã is bounded by c, (e.g. Boolean
specifications) then after at most c iterations a loop in μ(�ϕ��

�) is found. There
are domains beyond Booleans for which finite perfect representations exist [13].

For abstract domains where |Ã| is unbounded one can use a widening opera-
tor [7,8]. For example, using μ(�ϕ��

�)(t)
�

μ(�ϕ��
�)(t−1) instead of μ(�ϕ��

�)(t−1)
in the fixed point computation where the operator

�
: Ã × Ã → Ã yields an

over-approximation of the arguments by taking all unstable components of the
abstractions directly to the extreme limits and thus enforcing a loop in μ(�ϕ��

�).
Based on these observations we build in the next section an efficient sound

(or perfect) recurrent Lola monitoring algorithm.

5 Abstraction-Based Recurrent Lola Monitoring

We introduce our monitor construction based on the abstract structure from the
previous section. At runtime the monitor receives information incrementally, so
there is a sequence of extending input monitoring stream tuples Σ0, Σ1, . . . , Σtmax

where in Σt all streams are fully unknown for instants larger than t and equal
to Σt−1 for instants smaller than t. Based on this observation we introduce the
online monitoring algorithm Algorithm 1.

Algorithm 1. Abstract Lola monitoring algorithm
Compute (over-approximation of) μ(�ϕ��

�)
s� ← �A

foreach t ∈ T do
Read inputs for t
Compute μ(�ϕ��

Σt
)(t) = τ t

ϕ,Σt
(μ(�ϕ��

�)(t + 1))

s� ← μ(�ϕ��
Σt

)(t)(s�)

Output γ(s�)
end

The algorithm first determines μ(�ϕ��
�), which is not dependent on inputs and

can thus be computed statically as part of the monitor synthesis (as described
at the end of the previous section). Then, at runtime the monitor receives iter-
atively the (possibly uncertain) inputs for the current instant t and computes
μ(�ϕ��

Σt
)(t). By definition

μ(�ϕ��
Σt

)(t) = τ t
ϕ,Σt

(μ(�ϕ��
Σt

)(t + 1)).
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However, μ(�ϕ��
Σt

)(t + 1) = μ(�ϕ��
�)(t + 1) because for all t′ > t no inputs

are available yet. This can be taken from the pre-computed μ(�ϕ��
�), and hence

μ(�ϕ��
Σt

)(t) can be efficiently determined by applying τ t
ϕ,Σt

once without requir-
ing a full computation of the fixed point μ(�ϕ��

Σt
) from the end.

Then, the algorithm applies the abstracted configuration set from the previ-
ous step, stored in s� (of type A) on the computed transformer μ(�ϕ��

Σt
)(t) and

assigns the result to s� again. In this manner s� represents the monitor state:
the set of possible stream configurations at the current instant t. Note that s� is
not available for t = 0 as there is no previous instant and thus also no monitor
state. Yet μ(�ϕ��

Σ0
)(0) yields (by definition) a transformer which is independent

of the predecessor argument. The concrete representation of s� is γ(s�) which
consists of a set of possible value tuples for all streams, and serves as the monitor
output. This output is perfect if and only if the chosen abstract domains A and
Ã are perfect configuration set and transformer abstractions and the abstract
transformer semantics is also perfect (see Theorem 1).

The application of an abstract transformer T ∈ Ã on a configuration set
abstraction s ∈ A is technically defined as T (s) = αA({γÃ(T )(c) | c ∈ γA(s)}).
Depending on the concrete abstractions there may be easier ways to achieve the
application, for example using symbolic constraints, as we will see in the next
section.

The size of s� may grow over time, so for a constant-size monitor it may be
necessary to find an over-approximation. In conclusion the following holds:

Theorem 2. Let ϕ be a Lola specification let Σ0, Σ1, . . . , Σtmax be an extending
sequence of input monitoring stream tuples where Σt contains the input readings
for instant t. Algorithm 1 yields a sound recurrent Lola monitor and a perfect
recurrent Lola monitor if �ϕ��

Σ is a perfect abstract Lola transformer fixed point
equation and Ã is a perfect transformer abstraction.

6 Symbolic Recurrent Lola Monitoring

We now show a symbolic monitoring strategy under assumptions that tolerates
uncertainty, for linear real arithmetic Lola specifications based on the general
framework from the previous section. This theory supports real and Boolean
streams, and the common Boolean operations, additions, constant multiplica-
tions and comparisons among real streams.

We will use the symbolic abstract domain to symbolically represent config-
urations and transformers. For convenience we use instant variables formed by
stream names with the corresponding instant in the exponent of the symbolic
variables. For example, s3 indicates the value of the event in stream s at instant
3. Abstractions of configuration sets only contain variables of a single instant,
transformer abstractions those of the current and previous instant.

Example 2. Consider a specification with a single stream e of type real. The
configuration set that states the value of e at instant 3 is between 90 and 92
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(both inclusive) would be represented by the constraint 90 ≤ e3 ≤ 92. To express
that the value of e at instant 4 is at least 3 less than the value one instant before,
that is, the transformer T (e) = {e′ | e′ ≤ e − 3}, we could use e4 ≤ e3 − 3.

A perfect monitoring procedure requires—besides perfect abstract domains
Ã and A—perfect symbolic constructions for the transformers τ t

ϕ,Σ . This can be
achieved in a straight forward manner as follows. To compute the transformer at
instant t we take the symbolic representation of the subsequent transformer in
the structure, and conjunct it with the symbolic instantiation of the specification
at the current instant and the input readings for the current instant. This works
because we required the input values of different instants to be independent of
each other. For t = 0 or t = tmax we use the default values.

Example 3. Consider again the specification from Fig. 1 (for this example with-
out the parts added later like assumptions) and the situation where no inputs are
known, which can be encoded by the symbolic constraint tt, and T = {0, . . . , 10}.
The symbolic transformer τ tmax

ϕ,� for tmax = 10 is:

μ(�ϕ��
�)(10) = τ10

ϕ,� = (err10 = ¬r100 ∧ (e10 < 5)) ∧ (Ferr10 = err10)

and τ9
ϕ,� applied on μ(�ϕ��

�)(10) is

μ(�ϕ��
�)(9) = τ9

ϕ,�(μ(�ϕ��
�)(10)) = (err10 = ¬r100 ∧ (e10 < 5)) ∧ (Ferr10 = err10)

∧ (err9 = ¬r90 ∧ (e9 < 5)) ∧ (Ferr9 = err9 ∨ Ferr10).

Applying this strategy, the resulting formulas can grow and ultimately involve
all instant variables from the current instant up to the trace end. Likewise instant
variables from later instants are included, which are actually not allowed to
be included in the transformers because their presence could prevent finding a
repeated element in Ã and result in full unrolling of the specification. The fully
computed transformers would express relations among all the instant variables
to the stream end. In contrast, our online monitoring only preserves the relation
among the variables for the current and previous instant, so we search for an
alternative representation of the formula above which is equivalent w.r.t. the
instant variables at the current and previous time points. This is equivalent to
existentially quantifying over the variables to be removed and apply quantifier
elimination if it can be used.

Example 4. Revisiting the previous example, real linear arithmetic quantifier
elimination determines that μ(�ϕ��

�)(9) is

μ(�ϕ��
�)(9) = ∃r100 , err10,Ferr10, e10.(err10 = ¬r100 ∧ (e10 < 5)) ∧
(Ferr10 = err10) ∧ (err9 = ¬r90 ∧ (e9 < 5)) ∧ (Ferr9 = err9 ∨ Ferr10)

= (err9 = ¬r90 ∧ (e9 < 5)) ∧ (err9 → Ferr9)

Following this strategy for μ(�ϕ��
�)(8):

μ(�ϕ��
�)(8) = ∃¬r90, err9,Ferr9, e9.(err9 = ¬r90 ∧ (e9 < 5)) ∧
(err9 → Ferr9) ∧ (err8 = ¬r80 ∧ (e8 < 5)) ∧ (Ferr8 = err8 ∨ Ferr9)

= (err8 = ¬r80 ∧ (e8 < 5)) ∧ (err8 → Ferr8)
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Thus μ(�ϕ��
�)(9) and μ(�ϕ��

�)(8) are (modulo instant variable timestamps) equal
to each other and consequently also to μ(�ϕ��

�)(7), . . . , μ(�ϕ��
�)(1). Hence, after

three computation steps μ(�ϕ��
�) is fully computed, independent of the concrete

tmax (except for the entry at instant 0).

If the specification contains assumptions, we also add . . .∧Λt to each symbolic
transformer. Unfortunately, quantifier elimination does not guarantee to reach
a stabilized formula as above. Therefore, we propose the following three stage
strategy for the computation of the initial fixed point, which may ultimately
lead to an over-approximation of μ(�ϕ��

�):

1. Compute the elements of μ(�ϕ��
�) from back to front applying quantifier

elimination for k steps.
2. If no repeating entry is found for l steps, the elements of μ(�ϕ��

�) are deter-
mined but besides variables of future instants all real variables are eliminated.
For the current instant real variables’ maximal and minimal bounds are deter-
mined based on the computed symbolic representation and added to the final
symbolic representation (see [19]).

3. If still no repeating element is found, the strategy is applied again but with
widening [7] on the bounds of two subsequent instants interval. For example,
let [a, b] be the previously computed interval and [a′, b′] the new one. The
lower widened interval bound is −∞ if a′ < a and a otherwise. Dually, the
upper widened interval bound is ∞ if b′ > b and b otherwise.

As all constraints over a fixed number of Boolean variables can be represented
in a formula of constant length and the bounds of all real variables either stabilize
or are brought to ±∞ by widening, it is guaranteed that a repeating element will
be found in the third stage. Note that eliminating real variables and replacing
their constraints with bounds leads to an over-approximation. The resulting
transformer and monitor are still sound but not necessarily perfect.

For the monitoring we finally recompute μ(�ϕ��
Σt)(t) for each timestamp t.

We do this analogously to the initial fixed point computation before, but also
add the new input constraints α(Σt)\α(Σt−1) (i.e. the input readings of the
current instant).

When it comes to the application of the computed transformer to the current
monitor state we can simply conjunct the constraints of the transformer and
the current monitor state and again use quantifier elimination to eliminate the
variables from the previous instant.

Example 5. Take again the transformer τ = (e4 ≤ e3 − 3) from Example 2 and
the monitoring state s� = (90 ≤ e3 ≤ 92) from above, we get τ(s) = ∃e3.(e4 ≤
e3 − 3) ∧ (90 ≤ e3 ≤ 92). After application of quantifier elimination this would
lead to state s� = e4 ≤ 89.

If the monitor state grows too large we can also apply the second stage of
the above strategy to reduce its size at the cost of making the monitor state
less precise. As a further optimization, note that from the first fixed point (for
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Σ = �), we only need the relation between those variables that are referenced
by +1 offsets in the specification. Therefore, during quantifier elimination for
the initial fixed point we can also remove all variables from the current instant
which are not referenced in this way.

7 Empirical Evaluation

We developed a prototype for symbolic recurrent Lola monitoring in Scala using
Z3 [28] as backend solver for symbolic reasoning and quantifier elimination. We
evaluated our tool on three case studies running on a 64-bit Linux machine with
an Intel Core i7-1365U CPU and 32GB of RAM.

Path Planning. The first case study examines a variation of the vacuum clean-
ing robot from Fig. 1. The example was extended such that the output does not
only specify whether a room can be safely entered but also with how much sur-
plus or missing energy. This information could then be used to control the robot’s
behavior, e.g. switching to a power-saving mode, showing the advantages of a
monitoring approach which is able to compute richer verdicts than just Booleans.

We analyzed the monitor’s synthesis time (i.e. the time for the computation
of the initial fixed point), and the monitor time per instant at runtime for a vari-
able number of rooms by simulating a random walk according to the monitor’s
output. In this case study, the initial semantics could be fully determined with-
out widening, as a repeating symbolic transformer element was found after a few
computations. As Fig. 2a shows, the synthesis time grows non-linearly. This is
because the backwards calculation becomes more expensive with longer paths.
This can be remedied by simplifying the symbolic representation of formulas
during computation. However, Z3 is rather optimized for satisfiability checks
but not for simplifying symbolic constraints. We will explore the benefits of spe-
cialized simplifiers and further optimizations for reducing the synthesis time as
future work.

More important than synthesis time is the execution time of the monitors.
The average computation time per instant during the monitor execution, mea-
sured with different degrees of induced uncertainty, is shown in Fig. 2b. Runtime
increases when uncertainty is introduced but the time-per-event is still small
(384 ms) in the worst case.

Collision Avoidance. In the second case study a robot uses a Lola monitor to
navigate through an area with obstacles. The robot receives a set of waypoints
from the user and tries to follow them while avoiding the obstacles. The monitor
receives as inputs the distance dist to the closest obstacle in front of the robot, as
well as its leftmost and rightmost points left and right. The monitor outputs the
possible steering angles to avoid collisions in the future (see Fig. 3a). Assumptions
define parameters like the maximum possible steering angle and the bounding
box of the robot (see b and d in Fig. 3a).
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(a) (b)

Fig. 2. a: Monitor synthesis per number of rooms. Synthesis time in seconds ( ) and
number of computed states ( ). b: Avg. runtime (ms) per instant for different room
numbers. Full certain ( ), 30% noisy ( ) and 15% entirely unknown ( ).

(a) (b)

Fig. 3. a: Collision avoidance (scheme). b: Screenshot of the simulation in Gazebo.

The study was qualitatively evaluated by integrating our Lola monitor-
ing tool with the robot operating system ROS [30] running on a turtlebot1
inside the simulation environment Gazebo [23] (see Fig. 3b). The robot follows
a user defined path, periodically calling the monitor for the closest obstacle
in front obtaining safe steering angles, from which the robot chooses the one

Fig. 4. Average runtime (ms) for
uncertainty margins from 0% to 30%.

closest to the defined path. The monitor
was able to steer the robot without collision
with an uncertainty margin of up to 30%.
We additionally extracted execution traces
and evaluated the performance of the mon-
itor offline. Figure 4 shows the runtime per
instant, which increases with growing input
uncertainty due to the increasing complex-
ity of the constraint states.

Program Monitoring. In the third case study we use our approach for tra-
ditional program monitoring. An excerpt of the monitored program is shown
1 https://www.turtlebot.com/.

https://www.turtlebot.com/
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below on the left.

1 x = getInput ();
2 [...]
3 y = 0;
4 while (x > 0) {
5 x--;
6 y += 2;
7 }
8 assert y >= 15;

At the end of the program we wanted to
ensure that the value of variable y which
is previously computed in a while loop does
exceed 15. We have created a Lola specifica-
tion which receives the current variable val-
ues as input streams and the current program
line. Furthermore the program behavior itself
was encoded in a straight-forward manner as
assumption in the Lola specification. With its

anticipation capabilities the monitor was able to compute legal values for the
variables at certain program positions s.t. the assertion at the end is satisfied.
Thus, it was able to detect program failures at an early stage during program
execution.

Since the valid variable values depend on the number of while loop executions
in the program (and thus the remaining trace length), the initial transformer
semantics computation of our approach did not find a repeating transformer.
Consequently the widening strategy described above has been applied to yield
a sound recurrent Lola monitor for the specification. In the particular exam-
ple however the simple interval widening was still able to capture that before
entering the while loop variable x has to be at least 8, yet some other vari-
able connections have been over-approximated. Yet, when in line 1 an input was
entered which ultimately lead to x < 8 in line 3 the monitor was able to detect
the failure right there. Altogether this provides an illustrative example how the
approach from this paper could be used for a mixture of static and dynamic pro-
gram analysis, which in a large scale however would require more sophisticated
widening techniques than in the current implementation.

8 Conclusion

In this paper we have studied general anticipatory monitoring of Lola specifica-
tions under uncertainties and assumptions. We have introduced a hierarchy of
monitoring semantics and presented an abstraction based framework for mon-
itoring, from which we developed a general sound or perfect online monitoring
algorithm for Lola. This algorithm considers future continuations of the received
input, provided an abstraction of stream data values. Finally, we have presented
an instantiation of this algorithm based on a symbolic representation. and eval-
uated the approach in three practical scenarios. Due to Lola’s universality, our
theory can also serve a general framework for anticipatory monitoring of syn-
chronous RV formalisms.

Future work includes a more efficient implementation, especially improving
the simplification of the symbolic constraints applied during monitoring, and
applications to other Lola fragments beyond linear arithmetic. We also plan to
extend the approach to infinite traces and asynchronous SRV formalisms.
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Abstract. Modern software systems must comply with increasingly
complex regulations in domains ranging from industrial automation
to data protection. Runtime enforcement addresses this challenge by
empowering systems to not only observe, but also actively control, the
behavior of target systems by modifying their actions to ensure pol-
icy compliance. We propose a novel approach to the proactive real-
time enforcement of policies expressed in metric first-order temporal
logic (MFOTL). We introduce a new system model, define an expres-
sive MFOTL fragment that is enforceable in that model, and develop a
sound enforcement algorithm for this fragment. We implement this algo-
rithm in a tool called WhyEnf and carry out a case study on enforcing
GDPR-related policies. Our tool can enforce all policies from the study in
real-time with modest overhead. Our work thus provides the first tool-
supported approach that can proactively enforce expressive first-order
policies in real time.

Keywords: runtime enforcement · temporal logic · obligations

1 Introduction

As modern software systems become increasingly complex, they are required to
comply with a myriad of growingly intricate regulations. The ability to monitor
and control such systems is an important, technically challenging task.

Runtime enforcement [58] tackles this problem by observing and controlling
a target system under scrutiny (SuS), so that its actions, possibly modified,
comply with a given policy. Runtime enforcement is performed by a component
called enforcer, which observes the SuS and influences its behavior as permitted
by the system model, e.g., by suppressing or causing SuS actions. Enforcement is
thus an inherently online problem performed during the SuS’s execution. When
time constraints are involved, enforcement is called real-time. This is a more
difficult problem than runtime monitoring [8], where the SuS is only observed
and policy violations are reported, but not prevented. Applications of runtime
enforcement are manifold, ranging from safety protocols in industrial automation
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to regulatory compliance and it is closely related to the problem of controller
synthesis [1,56].

Policies can be decomposed into provisions and obligations [37]. Compliance
with provisions depends on past and present SuS behavior, and it is sufficient
for an enforcer to react to the current SuS action. Compliance with obligations,
on the other hand, depends on future SuS behavior, requiring the enforcer to
account for this behavior and proactively act [11] to prevent violations.

In existing approaches to proactive runtime enforcement [11], policies are
typically propositional: they regard every system action as either true or false.
In practice, however, actions are often parameterized with data values coming
from an infinite domain, like strings or integers, and first-order policies are used
to formulate dependencies between such actions’ parameters. To the best of
our knowledge, no previous work supports proactive enforcement of first-order
policies: Hublet et al.’s [39] enforcement is real-time, but not proactive; Aceto
et al. [5] similarly support only the reactive runtime enforcement of first-order
provisions.

In this paper, we propose an approach for proactively enforcing metric first-
order temporal logic (MFOTL) [18] policies. Our approach features a realis-
tic system model that supports proactive real-time enforcement in the nick of
time [11,12], i.e., the enforcer can act at least once per clock tick. Our model
includes causable, suppressable, and only-observable SuS actions. Due to its
proactivity, our enforcer supports an expressive MFOTL fragment with past
and future operators.

Our enforcer is sound (modified SuS behavior complies with a given pol-
icy) for an enforceable MFOTL fragment (EMFOTL), and transparent (if SuS
behavior is already policy-compliant, then it is not modified) for a fragment of
EMFOTL. Our enforcer relies on the runtime monitoring tool WhyMon [49]
as a backend. After reviewing MFOTL and WhyMon (Sect. 2) we describe our
approach and evaluate the associated implementation. Our work makes the fol-
lowing contributions:

– We introduce a new system model for the proactive real-time enforcement of
metric first-order policies (Sect. 3).

– We present an enforceable MFOTL fragment (called EMFOTL) with past
and future operators that we characterize using a type system (Sect. 4).

– We develop an enforcement algorithm for EMFOTL and prove its soundness.
We also prove its transparency for a fragment of EMFOTL (Sect. 5).

– We implement the type system and the algorithm into a new tool, called
WhyEnf. We carry out a case study on monitoring core GDPR provisions [7],
using WhyEnf to enforce the monitored policies. We find that WhyEnf can
seamlessly enforce all monitorable policies from this case study in real time
with modest runtime overhead (Sect. 6).

To our knowledge, WhyEnf (available at [43]) is the first proactive first-order
policy enforcer (Sect. 7). All proofs can be found in our extended report [42].
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2 Preliminaries

We introduce traces that model system executions, metric-first order temporal
logic (MFOTL), and WhyMon, a monitor for an expressive MFOTL fragment.

Let x, y, z ∈ V be variables and c, d ∈ D be values from an infinite domain D

of constant symbols, like integers or strings. Terms t ∈ V∪D are either variables
or constants. Finite sequences of terms t1, . . . , tn are written as t. Let E denote a
finite set of event names, and the function ι : E → N map event names to arities.
An event is a pair (e, (d1, . . . , dι(e))) ∈ E × D

ι(e) of an event name e and ι(e)
arguments. We fix a signature Σ = (D,E, ι) and define the set DB of databases
over Σ as P({(e, d) | e ∈ E, d ∈ D

ι(e)}). The subset of all databases with event
names in E ⊆ E is DB(E) := {D ∈ DB | ∀(e, (d1, . . . , dι(e))) ∈ D. e ∈ E}.

Example 1. Consider a system logging GDPR-relevant events defined with the
signature Σ0 = (N,E0, ι0), where E0 = {use, consent, delete, deletion_request,
legal_ground}, ι0(use) = ι0(delete) = ι0(deletion_request) = 3, and
ι0(consent) = ι0(legal_ground) = 2. The events’ denotations are: use(c, d, u)
means ‘system uses user u’s data d from category c’, delete(c, d, u) means ‘user
u’s data d from category c is deleted’, deletion_request(c, d, u) means ‘user u
requests deletion of data d from category c’, consent(u, c) means ‘user u provides
consent for category c’, and legal_ground(u, d) means ‘legal ground was claimed
to process user u’s data d’.

A trace σ is a sequence 〈(τi,Di)〉0≤i≤k , k ∈ N ∪ {∞} of timestamps τi ∈ N and
finite databases Di ∈ DB, where timestamps grow monotonically (∀i < |σ|. τi ≤
τi+1) and progress (if |σ| = ∞, then ∀τ. ∃i. τ < τi). An index 0 ≤ i < |σ|, in
a trace σ is called a time-point. The empty trace is denoted by ε, the set of all
traces by T, and the set of finite (resp. infinite) traces by Tf (resp. Tω). For
traces σ ∈ Tf and σ′ ∈ T, σ · σ′ denotes their concatenation. A property is a
subset P ⊆ Tω.

Example 2. Consider two infinite traces of a data management system

σ1=(10, {consent(1, 1), consent(1, 2)), (50, {use(1, 3, 1), use(2, 1, 1)}), . . .
σ2=(10, {deletion_request(2, 1, 1)}), (50, {use(1, 3, 1)}), . . .

In σ1, user 1 provides consent for categories 1 and 2 at time-point 0with timestamp
10; at time-point 1 with timestamp 50, the system uses user 1’s data 3 (with cat-
egory 1) and user 1’s data 1 (with category 2). In σ2, user 1 requests deletion of
data 1 with category 2, and then the system uses data 3 with category 1.

MFOTL formulae are defined by the following grammar

ϕ ::= � | e(t) | ¬ϕ | ϕ ∧ ϕ | ∃x. ϕ | �I ϕ | �I ϕ | ϕ UI ϕ | ϕ SI ϕ,

where e ∈ E, x ∈ V, and I ∈ I ranges over non-empty intervals in N. We use
the standard abbreviations ⊥ := ¬�, ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ), ϕ → ψ := ¬ϕ ∨ ψ,
ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ), ∀x. ϕ := ¬(∃x. ¬ϕ), ♦Iϕ := � UI ϕ (eventually),
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Fig. 1. MFOTL semantics for a fixed, infinite trace σ

�Iϕ := �SIϕ (once), �Iϕ := ¬♦I¬ϕ (always), and �Iϕ := ¬�I¬ϕ (historically).
A polarity p ∈ {+,−} acts upon a formula ϕ by +ϕ := ϕ and −ϕ := ¬ϕ.
We omit intervals of the form [0,∞) from the temporal operators’ subscript.
We write ϕ[d/x] for the formula resulting from substituting the free variable
x with the constant d in the formula ϕ. The notation ϕ[v] generalizes such a
unary substitution to applying a full valuation v : V → D, i.e., a mapping from
variables to domain values.

Example 3. Suppose that the time unit is days. Consider the formulae

ϕlaw ≡ � (∀c, d, u. use (c, d, u) → � (consent (u, c) ∨ legal_grounds (u, d)))

ϕdel ≡ �
(∀c, d, u. deletion_request (c, d, u) → ♦[0,30]delete (c, d, u)

)

The formula ϕlaw formalizes lawfulness of processing : ‘whenever data d with
category c belonging to user u is processed, then either u has consented to her
data with category c being used, or the controller has claimed a legal ground to
process d.’ The formula ϕdel formalizes the GDPR’s right to erasure: ‘whenever
a user u requests the deletion of data d of category c, then d must be deleted
within 30 d’.

We write fv(ϕ) and cs(ϕ) for the set of free variables and constants of a formula
ϕ, respectively. We define the active domain ADi(ϕ) of a formula ϕ at time-
point i as cs(ϕ)∪

(⋃
j≤i{d | d is one of dk in e(d1, . . . , dι(e)) ∈ Dj}

)
. The active

domain of ϕ at i contains all constants occurring in ϕ together with all constants
occurring as event arguments in the trace up to time-point i.

Example 4. As cs(ϕlaw) = cs(ϕdel) = ∅, we have AD0(ϕlaw) = AD0(ϕdel) = {1, 2}
and AD1(ϕlaw)=AD1(ϕdel)={1, 2, 3} for σ1.

MFOTL’s semantics (Fig. 1) is defined over infinite traces. Given a valuation
v, we define the interpretation of terms as �x �v = v(x) (for variables) and
� c �v = c (for constants). We lift this operation straightforwardly to lists of
terms. A valuation update is denoted as v[d/x]. Each sequent v, i �σ ϕ denotes
that ϕ is satisfied at time-point i of trace σ under valuation v. We omit σ
whenever it is clear from the context. The language of a formula ϕ is L(ϕ) =
{σ ∈ Tω | ∃v. v, 0 �σ ϕ}.

Lima et al. [49] present an algorithm and a tool, called WhyMon, that can
monitor an expressive safety fragment of MFOTL both online and offline. This
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Fig. 2. System model for proactive real-time first-order enforcement

fragment contains all formulae with future-bounded until operators. Thus, it
strictly extends the fragments supported by other tools like MonPoly [13] and
VeriMon [9], which only support formulas in relational algebra normal form [20],
and DejaVu [35], which is restricted to past temporal operators.

Abstractly, WhyMon implements a function Sat(v, ϕ, i) = v, i � ϕ that
checks if a valuation satisfies the formula ϕ on a (fixed) trace σ at time-point i.
Internally, it manipulates objects representing proofs of ϕ’s subformulae. This
technique additionally allows WhyMon to output explanations [48] of its ver-
dicts (satisfactions or violations) in the form of proofs that can be checked using
a proof checker. We refer to Lima et al.’s work [49] for further details.

3 Proactive, Real-Time, First-Order Enforcement

Our system model (Sect. 3.1) is inspired by Basin et al.’s model for proactive
propositional enforcement [11,12] and Hublet et al.’s model for (non-proactive)
first-order enforcement [39]. Within this model, we define enforcers (Sect. 3.2).

3.1 System Model

Figure 2 shows a system S supervised by an enforcer E described using a com-
munication diagram [32]. The system S interacts with an environment X that E
cannot control. The enforcer E must ensure that the sequence of actions executed
by S complies with a given policy P . To this end, S reports to E sets of events
(from E) that capture the system’s observable actions. The enforcer E can send
commands to S, whereby it instructs S to cause or suppress the actions corre-
sponding to specific events. There are two kinds of such commands, R-commands
and P-commands, which will be described below. We assume that the set of
events is partitioned into a set of causable events C capturing actions that E
can instruct S to cause, a set of suppressable events S capturing actions that E
can instruct S to suppress, and a set of only-observable events O = E \ (S ∪ C)
capturing actions that can be neither caused nor suppressed.

Example 5. Suppose that the system from Example 1 can be instrumented so
that an enforcer can (observe and) prevent data usage and cause data deletion,
but can only observe the remaining actions. The corresponding event sets are
then C={delete}, S={use}, and O={consent, legal_ground, deletion_request}.

More specifically, we assume that E interacts with S in three modes: (1)
Before performing any suppressable actions, S sends the corresponding set of
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(suppressable) events D ∈ DB to E. The enforcer inspects D and reactively
responds with an R-command RCom(DC,DS), where DC ∈ DB(C) is a set of
causable events and D ⊇ DS ∈ DB(S) is a set of suppressable events. S then
performs the actions corresponding to the events in (D\DS)∪DC, i.e., all actions
corresponding to events in DC (resp. DS) are caused (resp. suppressed). (2) After
performing actions that are not suppressable, S sends the corresponding set of
events D ∈ DB to E. The enforcer inspects D and responds with an R-command
RCom(DC, ∅). As no suppressable actions are to be performed and the events
are sent after the actions, the enforcer can only instruct S to cause actions,
but not to suppress them. (3) Before any clock tick (‘in the nick of time’ [12]),
E can proactively send a P-command PCom(DC) with DC ∈ DB(C) to S. The
system S then performs the actions corresponding to the events in DC. Note
that sending a P-command before a tick is always possible, but the enforcer may
instead choose not to send any command.

These modes of interaction cover different enforcement scenarios. In mode
(1), E reacts to suppressable events by possibly suppressing or causing events.
E.g., the formula ϕlaw from Example 3 can be enforced by suppressing data usage
(the use events) if no appropriate event has previously occurred. In mode (2),
E reacts to only-observable events (e.g., the consent events) by possibly causing
events corresponding to corrective actions after the executed action. Finally,
mode (3) enforces policies by causing events at times when the SuS does not, on
its own, send any observable events. This is the case, e.g., when enforcing ϕdel

on σ2: data 1 with category 2 must be deleted between timestamps 10 and 40.

Discussion. Assume that the enforcer E can ensure that the sequence of actions
it observes complies with P . When does this guarantee that the system actually
complies with P? Basin et al. [12] state two conditions for achieving soundness:
(a) the system and enforcer must be synchronized and (b) the enforcer must
be fast enough to keep up with the real-time system behavior. These conditions
also apply in our model. Condition (a) ensures that the order of events observed
by E reflect the order of S’s actions. Condition (b) ensures that the timestamps
of events reflect the time at which the corresponding actions are performed by
S. The interval t between two clock ticks must satisfy the real-time condition
t > δS+2δS↔E+δE , where δS is the worst-case time needed by S to create events
before performing observable actions and process the enforcer’s reactions, δS↔E

is the worst-case communication time between S and E, and δE is the worst-case
latency of the enforcer. Threats to the model’s validity may thus stem from high
communication time, or poor SuS or enforcer performance.
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1: run(s, σ, σ′, τ) = case σ′ of
2: | ε ⇒ ε
3: | (τ ′, D) · σ′′ when τ ′ > τ ⇒ let (o, s′) = μ(σ, s, τ) in
4: case o of | PCom(DC) ⇒ (τ, DC) · run(s′, σ · (τ, DC), σ′, τ + 1)
5: | NoCom ⇒ run(s′, σ, σ′, τ + 1)
6: | (τ ′, D) · σ′′ when τ ′ = τ ⇒ let (o, s′) = μ(σ · (τ ′, D), s, ⊥);D′ = (D \ DS) ∪ DC)

in
7: case o of | RCom(DC , DS) ⇒ (τ ′, D′) · run(s′, σ · (τ ′, D′), σ′′, τ + 1)
8: E(σ) = run(s0, ε, σ, if σ = ε then 0 else fts(σ))

Algorithm 1: Enforced trace

3.2 Enforcers

An enforcer reads the consecutive prefixes of an SuS’s trace and returns com-
mands:

Definition 1. A command is any element of the form RCom(DC,DS) (‘R-
command’), PCom(DC) (‘P-command’), or NoCom (‘no command’), where DC ∈
DB(C) and DS ∈ DB(S). The set of commands is denoted by C.

Definition 2. An enforcer E is a triple (S, s0, μ), where S is a set of states,
s0 ∈ S is an initial state, and μ : Tf × S × (N ∪ {⊥}) → C × S is a computable
update function such that the following two conditions hold:

∀σ, τ,D, s. ∃DC,DS, s
′. μ(σ · (τ,D), s,⊥) = (RCom(DC,DS), s′) ∧ DS ⊆ D

∀σ, s, τ ∈ N. ∃DC, s′. μ(σ, s, τ) ∈ {(PCom(DC), s′), (NoCom, s′)}.

If μ’s third argument is ⊥, then μ returns an R-command. The set of events to
be suppressed contained in this command is a subset of the last set of events
reported by the SuS. On the other hand, if μ’s third argument is an integer
timestamp, then μ returns either a P-command for the corresponding timestamp,
or no command. Any enforcer induces the following trace transduction:

Definition 3. For any σ ∈ T and enforcer E = (S, s0, μ), the enforced trace
E(σ) is defined co-recursively in Algorithm 1, where fts(σ) is the first timestamp
in σ.

Algorithm 1 formalizes the interaction described in Sect. 3.1: the enforcer is
called once at every time-point in the input trace σ to generate an R-command
(lines 6–7), and once before each clock tick to (possibly) generate a P-command
(lines 3–5). The generated commands are executed sequentially to produce the
enforced trace E(σ), which thus reflects the actions performed by the SuS when
composed with the enforcer as in Sect. 3.1.
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To be considered correct with respect to a given property P , enforcers are typ-
ically required to fulfill two properties: soundness and transparency [47]. Sound-
ness states that any trace modified by the enforcer must be compliant with P ,
while transparency states that the enforcer does not alter a trace that already
complies with the policy. A transparent enforcer modifies the system’s behavior
only when necessary. The following definition formalizes these notions.

Definition 4. An enforcer E is sound with respect to a property P iff for any
σ ∈ Tω, we have E(σ) ∈ P . An enforcer E = (S, s0, μ) is transparent with respect
to a property P iff for all σ ∈ P , E(σ) = σ. A property P (resp. a formula ϕ) is
enforceable iff there exists a sound enforcer with respect to P (resp. L(ϕ)).

4 Enforceable MFOTL Formulae

In this section, we present EMFOTL, an expressive and enforceable fragment of
MFOTL. An enforcer for EMFOTL formulae will be presented in Sect. 5.

EMFOTL is defined using the typing rules in Fig. 3. These consist of sequents
of the form Γ � ϕ : α, reading ‘ϕ types to α under Γ ’. Here, context Γ : E →
{C,S} is a mapping from event names to either of the symbols C or S, ϕ is an
MFOTL formula, and α is a type in {C,S}. The type names C and S overload
the names of the sets of suppressable and causable events in a natural way: any
event ec(t) with ec ∈ C (resp. es ∈ S) has type C (resp. S) under the context
{ec �→ C} (resp. {es �→ S}). EMFOTL is defined as the set of all ϕ for which
∃Γ. Γ � ϕ : C. Intuitively, a formula types to C under Γ (‘ϕ is causable under Γ ’)
if it can be enforced by causing events ec(t) such that Γ (ec) = C and suppressing
events es(t) such that Γ (es) = S. It types to S under Γ (‘ϕ is suppressable under
Γ ’) if ¬ϕ can be enforced under the same conditions on Γ .

We now review the typing rules presented in Fig. 3. Our approach for enforc-
ing temporal operators is illustrated in Fig. 4.

Constants and predicates (Rules �C, ⊥S, EC, ES). The constant � (resp.
⊥) is causable (resp. suppressable). Event e(t1, . . . , tk) is causable (resp. sup-
pressable) under Γ if e ∈ C and Γ (e) = C (resp. e ∈ S and Γ (e) = S).

Negation (Rules ¬C, ¬S). Negation exchanges C and S: a formula is causable
iff its negation is suppressable; it is suppressable iff its negation is causable.

Conjunction (Rules ∧C, ∧SL, ∧SR). A conjunction is causable if both
of its conjuncts are causable; it is suppressable if either of its conjuncts is
suppressable.

Quantifiers (Rules ∃C, ∃S). The formula ϕ′ = ∃x. ϕ is causable if ϕ is
causable: it is enough to set x to some value v and cause ϕ[x/v] to cause ϕ′.
In contrast, to suppress ϕ′ at i, we must ensure that no value of v ∈ D can
satisfy ϕ. If ϕ depends on the future, then values of v satisfying ϕ′ may only be
discovered strictly after i. Then, it may not be possible to decide which ϕ[x/v]
to suppress at i. Our fragment rules this case out by requiring that x be past-
guarded in ϕ, i.e., that any value of x that satisfies ϕ is a constant or present in
the trace up until i. Formally:
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Fig. 3. Typing rules for EMFOTL

Definition 5. (Past-guardedness). A variable x is past-guarded in ϕ iff
∀v, i. v, i � ϕ ∧ x ∈ dom v =⇒ v(x) ∈ ADi(ϕ).

Past-guardedness can be soundly overapproximated using the type system in
the upper half of Fig. 3. The PG typing rules define sequents of the form � ϕ :
PG(x)p, where p ∈ {+,−}. In our extended report [42], we prove

Lemma 1. For p ∈ {+,−}, if � ϕ : PG(x)p, then x is past-guarded in pϕ.

Since (Rules SC, SSL, SSLR). As enforcers cannot affect the past, causation
of ϕ′ = ϕ SI ψ is only possible when 0 ∈ I and ψ is enforceable. In this
case, ϕ′ is caused by causing ψ in the present (Fig. 4, a). To suppress ϕ′, we
consider two scenarios. If 0 /∈ I, then to suppress ϕ′, it suffices to suppress ϕ
in the present (Fig. 4, b). If 0 ∈ I, both ϕ and ψ may need to be suppressed
(Fig. 4, c).
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Fig. 4. Enforcement for temporal operators: ϕ = cause ϕ and ϕ = suppress ϕ

Until (Rules US, UCR, UCLR). The formula ϕ′ = ϕUI ψ is causable if both ϕ
and ψ are causable: one can cause ϕ until the interval I has elapsed, and then
cause ψ ‘in the nick of time’ (Fig. 4, d). This requires a finite upper bound
for I; otherwise, the enforcer may wait indefinitely to cause ψ, producing a
non-compliant trace. (For I = [a,∞), we could enforce ϕ′ non-transparently
by causing ψ after an arbitrary, finite interval [a, b). In this case, the user
could have as well specified ϕ U[a,b) ψ. Hence, our type system requires a
finite I.) Alternatively, if 0 ∈ I, then ϕ′ can be caused when ψ is causable,
with the enforcer causing ψ as soon as ϕ ceases to hold or the interval has
elapsed (Fig. 4, e). In contrast, ϕ′ can be suppressed whenever ψ is suppress-
able (Fig. 4, f). This also applies when I is unbounded: if necessary, the for-
mula ψ can be suppressed indefinitely. Enforcement can thus be performed for
formulae that are generally not supported by existing monitors [18]. Namely,
monitors exclude non-future-bounded formulae, for which compliance cannot
be guaranteed by observing a finite prefix of the trace and hence verdicts
cannot be given in finite time. However, an enforcer can ensure compliance
at every time-point.
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Previous. The formula ϕ′ = �I ϕ can neither be caused nor suppressed
without editing databases of events that happened strictly in the past. This
goes beyond the enforcer’s capabilities in our model.
Next (Rules �C, �S). If ϕ is suppressable, the formula ϕ′ = �I ϕ is also
suppressable: ϕ′ is suppressed by suppressing ϕ at the next time-point (Fig. 4,
g). In contrast, causing ϕ′ is not possible for arbitrary I. If I = [a, b) with
a > 0, then, to cause ϕ′ at i, one must ensure τi+1 ≥ τi + a. But the next
time-point in the input trace might be τi+1 < τi + a (e.g., τi+1 = τi), and
this timestamp cannot be suppressed. If I = [0, 0], then enforcing ϕ′′ = �ϕ′

is not possible, since no trace satisfies ϕ′′ (a trace must satisfy progress): one
cannot both support I = [0, 0] in rule �C and use the previous definition of
US. Therefore, our fragment only supports causation of �I ϕ for intervals I
of the form [0, b), b > 0 (Fig. 4, h).

Our use of the context Γ is inspired by Hublet et al. [39]. By ensuring that all
events with the same name are only caused or only suppressed, we exclude non-
enforceable formulae such as e ∧ ¬e, where e is both causable and suppressable.

Example 6. We show that ϕdel presented in Example 3 is in EMFOTL. We work
with the “desugared” variant of ϕdel (instead of using abbreviations like ♦):

ϕ′
del ≡ ¬ (� U

(∃c, d, u. deletion_request (c, d, u) ∧ (¬ (� U[0,30] delete (c, d, u)
))))

Furthermore, we shorten ϕ′
del ≡ ¬(� U ϕ∃1), where:

ϕ∃1 ≡ ∃c. ϕ∃2 ϕ∃2 ≡ ∃d. ϕ∃3 ϕ∃3 ≡ ∃u. ϕ∧ ϕ∧ ≡ ϕ∧1 ∧ ϕ∧2

ϕ∧1 ≡ deletion_request (c, d, u) ϕ∧2 ≡ ¬ϕU ϕU ≡ � U[0,30] delete (c, d, u)

Lastly, we use the typing rules presented in Fig. 3 to show that ϕ′
del types to C:

where P1,2,3 respectively stand for:

� ϕ∧1 : PG(c)+
E
+
PG

� ϕ∧ : PG(c)+
∧L+
PG u �= c

� ϕ∃3 : PG(c)+
∃PG

d �= c

� ϕ∃2 : PG(c)+
∃PG

� ϕ∧1 : PG(d)+
E
+
PG

� ϕ∧ : PG(d)+
∧L+
PG u �= d

� ϕ∃3 : PG(d)+
∃PG

� ϕ∧1 : PG(u)+
E
+
PG

� ϕ∧ : PG(u)+
∧L+
PG
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Fig. 5. Mappings in the first component of future obligations

The formula ϕlaw is also in EMFOTL (see our extended report [42]).

5 Enforcing EMFOTL

We now describe our enforcement algorithm. First, we present the enforcer’s
state, which consists of a set of obligations (Sect. 5.1). We then explain how
Lima et al.’s monitoring algorithm [49] can be extended to check the satisfaction
of a formula ϕ under assumptions about the future (Sect. 5.2). Finally, we present
our algorithm (Sect. 5.3) and prove its soundness and transparency (Sect. 5.4).

5.1 Obligations

Our algorithm manipulates sets of obligations that encode the formulae to be
caused or suppressed in the future. There are two types of obligations, present
and future obligations. A present obligation is a triple (ϕ, v, p) of an MFOTL for-
mula ϕ, a valuation v, and a polarity p ∈ {+,−} such that pϕ ∈ EMFOTL. After
reading a new time-point, our enforcer’s state will contain a finite set of such
present obligations. Some of these obligations will be immediately discharged via
causation or suppression. Others will be processed to generate simpler present
obligations and new future obligations that will then be propagated to the next
time-point. Future obligations are triples (ξ, v, p) where ξ : N → MFOTL maps
timestamps to EMFOTL formulae and v and p are as before. The set of future
obligations is denoted by FO. The mapping ξ is evaluated with the next time-
stamp to generate present obligations at the next time-point in the trace.

In some cases (e.g., ϕdel), the enforcer must insert a time-point. In other cases
(e.g., ϕlaw), the enforcer can modify the events at existing time-points. To insert
a time-point only when necessary, we use a special, causable TP event encoding
the existence of a time-point. When processing a time-point already present
in the trace (l. 6 in Algorithm 1), the enforcer receives the additional present
obligation (TP, ∅,+), as the time-point cannot be suppressed. When computing
P-commands (l. 3 in Algorithm 1), this obligation is not given to the enforcer,
but TP may be generated from other obligations, in which case a time-point is
inserted.

Figure 5 shows the mappings used in the first component of future obligations.
There are three types of mappings, corresponding to the obligations passed to
the enforcer in the initial state and those generated from unrolling � and U.
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Fig. 6. Additional proof rules

5.2 Checking Satisfaction of MFOTL Formulae Under Assumptions

Our enforcer uses WhyMon’s monitoring algorithm to check the satisfaction of
formulae. Unlike Lima et al. [49], we must however compute satisfactions under
assumptions encoding future obligations. To guarantee, e.g., that causing ϕ in
the present and satisfying fo = (λτ ′.� U (TP ∧ ¬ϕ), ∅,−) guarantees �ϕ, one
must be able to check that after causing ϕ, �ϕ is satisfied at i assuming that fo
is satisfied at i+1. Since the enforcer will suppress all time-points not containing
TP, future time-points can be assumed to all contain TP.

Let {C}+ := C, {C}− := S, and σTP = 〈(τi,Di ∪ {TP})〉i∈N
for the trace

σ = 〈(τi,Di)〉i∈N
. Consider ϕ ∈ EMFOTL, and obtain Γ such that Γ � ϕ : C.

Our satisfiability checker under assumptions is a function

Sat : (V → D) × MFOTL × Tf × P(FO) → {�,⊥}

. The implementation of the checker must ensure that, for any p ∈ {+,−}, ϕ such
that Γ � ϕ : {C}p, and X ⊆ FO, Sat(v, ϕ, σ′,X) implies

∀ts ∈ N,D ∈ DB, σ′′ ∈ Tω. (∀(ξ, v′, p′) ∈ X. v′, |σ′| �
σ′·(ts,D)·σ′′TP p′ξ(ts))

=⇒ v, |σ′| − 1 �
σ′·(ts,D)·σ′′TP ϕ. (�)

Intuitively, this condition expresses that whenever Sat(v, ϕ, σ′,X) is true
and the (infinite) trace σ = σ′ · (ts,D) · σ′′TP satisfies all the future obligations
in X at time-point |σ′|, then ϕ holds over σ at time-point |σ′| − 1.

For our algorithm to eventually recognize satisfaction and terminate, one
must ensure that for large enough X, the implication (�) is an equivalence. This
guarantees that after generating a finite set of reactions and future obligations,
the algorithm can use Sat to assess that no more immediate actions are needed.

To support assumptions about the future, we extend Lima et al’s algo-
rithm [49] with the proof rules in Fig. 6. In our extended report [42], we show

Lemma 2. The proof system of [49] extended with the rules from Fig. 6 yields
a decision procedure Sat that satisfies (�).

Lemma 3. There exists a set FO+
i,ts(ϕ) such that whenever X ⊇ FO+

|σ|,τ|σ|
(ϕ),

the converse of (�) also holds for Sat constructed as in Lemma 2.
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5.3 The Enforcement Algorithm

Our enforcer’s update function enf is shown in Algorithm 2. It is used to define
an enforcer Eϕ = (S, sϕ, enf), where S = P(FO) and sϕ = {(foinit,ϕ, ∅,+)}. In the
algorithm and its description below, we annotate operators that fulfill the typing
conditions in Fig. 3 with the respective typing rule names. For example, we write
ϕ UCLR

[a,b] ψ to denote ϕ U[a,b] ψ where b �= ∞, Γ � ϕ : C, and Γ � ψ : C under
some Γ .

As required by Definition 2, the function enf takes a trace σ, a set of future
obligations X, and a timestamp ts as input. If ts = ⊥, i.e., the enforcer processes
a time-point already present in the trace, then ts is set to the latest timestamp
τ|τ | (line 4). The enforcer computes a (closed) formula Φ that summarizes all
obligations at the present time-point (line 5). Then Φ, σ, an empty set of future
obligations, and an empty valuation are passed to enf+ts,⊥ (line 6). The function
enf+ts,b takes a formula ϕ, a trace σ, a set of (new) future obligations X, and a
valuation v as input, and returns a triple (DC ,DS ,X ′) such that DC is a set of
events to cause, DS is a set of events to suppress, and X ′ is an updated version of
X. The function is parameterized by the current timestamp ts and a Boolean b
that is true iff the current time-point is the last one with the current timestamp.
The definition of enf+ (resp. enf−) guarantees that if we update Di according
to DS and DC and assume that all obligations in X ′ are satisfied at time-point
i + 1, then ϕ is always (resp. never) satisfied under v at i on the new trace.

After computing DS , DC , and X ′, an R-command RCom(DC ,DS) is returned
(line 7) and the state is updated to X ′. If ts �= ⊥, a similar approach is followed,
but now TP is not conjoined with Φ (line 9) and the boolean b is set to � as
enforcement happens ‘in the nick of time.’ If TP is part of the set DC returned by
enf+, then a P-command PCom(DC) and a new state X ′ are returned. Otherwise,
NoCom is returned and the state is not updated.

The functions enf+ and enf− recurse over the structure of ϕ. The traver-
sal of ϕ is guided by the typing: the function enf+ (resp. enf−) is only called
on subformulae of type C (resp. S). The algorithm implements the approach
described in Sect. 4. For space reasons, we only explain the more complex cases:
ϕ = ϕ1 ∧C ϕ2, ϕ = ∃Sx. ϕ1, and ϕ = ϕ1 U

CLR
I ϕ2.

Causing ϕ1 ∧ ϕ2 (Algorithm 2, enf+ l. 9). Causing ϕ1 ∧ ϕ2 where both ϕ1

and ϕ2 are causable requires a fixed-point computation [39]. Consider, e.g., the
EMFOTL formula ϕ = ψ∧ (ψ → χ), where ψ and χ both type to C. If neither ψ
nor χ are satisfied, then the right conjunct of ϕ is satisfied; however, to satisfy
the left conjunct, ψ must be caused. But after causing ψ, the right conjunct
is not satisfied, and χ must be caused too. In general, the two conjuncts are
repeatedly enforced until both are satisfied. This is achieved by combining the
function fp (performing a fixed-point computation) and enf+and,ϕ1,ϕ2,v,ts that calls
the function enf+ on both ϕ1 and ϕ2 if none of these formulae is satisfied. In our
extended report [42], we prove the termination of this fixed-point computation
Suppressing ∃x. ϕ1 (Algorithm 2, enf− l. 13). The suppression of ∃ follows a
similar pattern, but this time there are AD|σ|(ϕ1) rather than just 2 cases to
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consider, corresponding to all potential values of the (past-guarded) variable x.
Similar to the previous case, we prove termination in our extended report [42].
Causing ϕ1 U[a,b] ϕ2, b �= ∞ (Algorithm 2, enf+ l. 17–22). There are two cases
for causing ϕ1UI ϕ2: we cause ϕ1 and generate the future obligation foτ,U,I,ϕ1,ϕ2

if I �= [0, 0] or b = ⊥; otherwise, we cause ϕ2 and TP.

Example 7. Let us enforce ϕdel on σ2. Consider the following abbreviations:

ϕdel ≡ �ϕ∀ ϕ∀ ≡ ∀c, d, u. deletion_request (c, d, u) → ♦[0,30]delete (c, d, u)
ϕU ≡ (TP → �) U (TP ∧ ¬ϕ∀) E1 ≡ deletion_request(2, 1, 1) E′

1 ≡ delete(2, 1, 1)
fox,y

2 ≡ (λτ ′. ♦[0,x]−(y−τ ′) (TP ∧ delete (c, d, u)) , {c �→ 2, d �→ 1, u �→ 1},+)

Figure 7 shows our algorithm’s execution.
Initially, enf decomposes its goal Φ = TP ∧ ϕdel into the present obliga-

tions (TP, ∅,+) and (ϕdel, ∅,+). The former is discharged by causing TP; the
latter is unrolled into the present obligation (ϕ∀, ∅,+) and the future obligation
fo1 = (fo10,U,[0,∞),�,¬ϕ∀ , ∅,−) = (λ_. ϕU, ∅,−). The present obligation (ϕ∀, ∅,+)
is violated, since deletion_request(2, 1, 1) is satisfied but at this point there is no
corresponding delete. In this case, enf+10,⊥ generates the future obligation fo30,10

2 .
Satisfying this future obligation guarantees the satisfaction of Φ, hence the algo-
rithm proceeds. Next, the algorithm processes the timestamp 10 ‘in the nick of
time’. The function enf computes Φ = fo1(10)∧fo30,10

2 (10) = ϕU∧♦[0,30](TP∧E′
1)

and calls enf+10,� on Φ. First, it decomposes Φ into the present obligations
po1 = (ϕ∀, ∅,+) and po2 = (♦[0,30](TP ∧ E′

1), ∅,+) and the future obligation
fo1. The present obligation po1 is vacuously satisfied, since no deletion_request
takes place. In contrast, the satisfaction of po2 can rely on the satisfaction of
the future obligation (fo30,10

2 , ∅,+) at the next time-point. Hence, the enforcer
emits NoCom and propagates the future obligations X ′ = {fo1, fo

30,10
2 } to the

next time-point. The timestamp 11 is also processed ‘in the nick of time’. The
goal Φ = fo1(11) ∧ fo30,10

2 (11) = ϕU ∧ ♦[0,29](TP ∧ E′
1) is computed, and reduced

to the future obligations X ′ = {fo1, fo
29,11
2 }. Similar iterations occur until time-

stamp 40, when the goal becomes Φ = fo1(40)∧ fo1,39
2 (40) = ϕU∧♦[0,0](TP∧E′

1).
Here, enf+40,� produces the present obligations (TP, ∅,+) and (E′

1, ∅,+), which
are discharged by causing TP and E′

1, respectively. Thus, DC = {TP, E′
1} and the

command PCom({E′
1}) is emitted, resulting in (40, {E′

1}) being inserted into the
trace. The future obligations X ′ = {fo1} are propagated to the next timestamp.
Similar iterations occur until timestamp 50. At this point, b = ⊥ and the trace
is already compliant, so the enforcer responds with RCom(∅, ∅).

5.4 Correctness

Let ϕ be a closed formula to be enforced. The proofs of all lemmata are given
in our extended report [42]. First, recall the following standard definition of
safety [6]:
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1: function enf(σ, X, ts)
2: let 〈τ〉, 〈D〉 = unzip(σ) in
3: if ts = ⊥ then
4: let ts = τ|τ | in
5: let Φ = TP ∧ ∧

(ξ,v,�)∈X ξ(ts)[v] ∧ ∧
(ξ,v,⊥)∈X ¬ξ(ts)[v] in

6: let (DC , DS , X′) = enf+ts,⊥(Φ, σ, ∅, ∅) in
7: (RCom(C \ {TP}, S), X′)
8: else
9: let Φ =

∧
(ξ,v,�)∈X ξ(ts)[v] ∧ ∧

(ξ,v,⊥)∈X ¬ξ(ts)[v] in
10: let (DC , DS , X′) = enf+ts,�(Φ, σ · (ts, ∅), ∅, ∅) in
11: if TP ∈ DC then (PCom(DC \ {TP}), X′) else (NoCom, X)
12: end if
13: end function

1: function enf+ts,b(ϕ, σ, X, v)
2: if ϕ = �C then
3: (∅, ∅, ∅)
4: else if ϕ = p(t) then
5: ({(p, (� t �v))}, ∅, ∅)
6: else if ϕ = ¬Cϕ1 then
7: enf−ts,b(ϕ1, σ, X, v)

8: else if ϕ = ϕ1 ∧C ϕ2 then
9: fp(σ, X, enf+and,ϕ1,ϕ2,v,ts)

10: else if ϕ = ∃Cx. ϕ1 then
11: enf+ts,b(ϕ1, σ, X, v[0/x])

12: else if ϕ = �C

I ϕ1 then
13: (∅, ∅, {(foτ,�,I,ϕ1

, v,+)})
14: else if ϕ = ϕ1 SCI ϕ2 then
15: enf+ts,b(ϕ2, σ, X, v)

16: else if ϕ = ϕ1 UCLR
I ϕ2 then

17: if I = [0, 0] ∧ b then
18: enf+ts,b(ϕ2, σ, X, v) � ({TP}, ∅, ∅)
19: else
20: enf+ts,b(ϕ1, σ, X, v) �
21: (∅, ∅, {(foτ,U,I,ϕ1,ϕ2 , v,+)})
22: end if
23: else if ϕ = ϕ1 UCR

I ϕ2 then
24: if I = [0, 0] ∧ b then
25: enf+ts,b(ϕ2, σ, X, v) � ({TP}, ∅, ∅)
26: else if ¬Sat(v, ϕ1, σ, X) then
27: enf+ts,b(ϕ2, σ, X, v)
28: else
29: (∅, ∅, {(foτ,U,I,ϕ1,ϕ2 , v,+)})
30: end if
31: end if
32: end function

1: function fp(σ · 〈(τ, D)〉 , X, f)
2: (DC , DS) ← (∅, ∅)
3: r ← None
4: while (DC , DS , X) �= r do
5: r ← (DS , DC , X)
6: let D′ = (D \ DS) ∪ DC in
7: (DC , DS , X) ← r � f(σ · 〈(τ, D′)〉 , X)
8: end while
9: (DC , DS , X)
10: end function

1: function enf−ex,ϕ1,v,ts,b(σ, X)
2: r ← (∅, ∅, ∅)
3: for d ∈ AD|σ|(ϕ1) do
4: if ¬Sat(v[d/x], ¬ϕ1, σ, X) then
5: r ← r � enf−ts,b(ϕ1, σ, X, v[d/x])
6: end if
7: end for
8: r
9: end function

1: function enf−ts,b(ϕ, σ, X, v)
2: if ϕ = ⊥S then
3: (∅, ∅, ∅)
4: else if ϕ = p(t) then
5: (∅, {(p, (� t �v))}, ∅)
6: else if ϕ = ¬Sϕ1 then
7: enf+ts,b(ϕ1, σ, X, v)

8: else if ϕ = ϕ1 ∧SL ϕ2 then
9: enf−ts,b(ϕ1, σ, X, v)

10: else if ϕ = ϕ1 ∧SR ϕ2 then
11: enf−ts,b(ϕ2, σ, X, v)

12: else if ϕ = ∃Sx. ϕ1 then
13: fp(σ, X, enf−ex,ϕ1,v,ts,b)

14: else if ϕ = �S

I ϕ1 then
15: (∅, ∅, {(foτ,�,I,ϕ1

, v, −)})
16: else if ϕ = ϕ1SSLI ϕ2 then
17: enf−ts,b(ϕ1, σ, X, v)

18: else if ϕ = ϕ1SSRI ϕ2 then
19: let ϕ′ =
20: ¬(ϕ1 ∧SL (ϕ1 SI ϕ2)) in
21: fp(σ, X, enf+

and,ϕ′,¬ϕ2,v,ts,b
)

22: else if ϕ = ϕ1US

Iϕ2 then
23: fp(σ, X, enf−until,I,ϕ1,ϕ2,v,ts,b)
24: end if
25: end function

1: function enf−until,I,ϕ1,ϕ2,v,ts,b(σ, X)
2: r ← (∅, ∅, ∅)
3: if 0 ∈ I ∧ ¬Sat(v, ¬ϕ2, σ, X) then
4: r ← enf−ts,b(ϕ2, σ, X, v)
5: end if
6: if ¬Sat(v, ¬ϕ1, σ, X) then
7: r ← r � (∅, ∅, {(foτ,U,I,ϕ1,ϕ2 , v, −)}
8: end if
9: r
10: end function

1: function enf+and,ϕ1,ϕ2,v,ts,b(σ, X)
2: r ← (∅, ∅, ∅)
3: if ¬Sat(v, ϕ1, σ, X) then
4: r ← r � enf+ts,b(ϕ1, σ, X, v)
5: end if
6: if ¬Sat(v, ϕ2, σ, X) then
7: r ← r � enf+ts,b(ϕ2, σ, X, v)
8: end if
9: r
10: end function

Algorithm 2: Proactive real-time first-order enforcement algorithm
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Fig. 7. Enforcement of the formula ϕdel on trace σ2

Definition 6. P is a safety property iff for any σ ∈ Tω \P , there exists a finite
prefix σ′ ∈ Tf of σ such that for all σ′′ ∈ Tω, we have σ · σ′′ /∈ P . A formula ϕ
is a safety formula when L(ϕ) is a safety property.

Our algorithm can enforce formulae that are not safety formulae. This is the
case, e.g., for any ψ ∨ ♦χ ≡ ¬(¬ψ ∧ ¬(�Uχ)), where ψ types to C. In this case,
enforcement is performed greedily: if the monitor cannot construct a proof of ♦χ
(which occurs whenever χ cannot be satisfied in the present), then ψ is caused.
Thus our algorithm actually enforces a stronger formula, which we denote by
[ψ ∨ ♦χ]+ ≡ ¬(¬ψ ∧Rω ¬(� U χ)), where ∧Rω has the semantics

v, i �σ ϕ ∧Rω ψ iff v, i �σ ϕ and ∃σ′. v, i �σ|..i·σ′ ψ.

This semantics states that ϕ∧Rω ψ holds whenever ϕ holds on σ at time-point i
and there exists at least one extension of the prefix σ|..i on which ψ holds. The
formula [ψ ∨♦χ]+ thus requires than ψ holds on σ at time-point i and ♦ψ holds
on σ at time-point i for any extension of σ |..i. The formula [ψ ∨ ♦χ]+, unlike
ψ ∨♦χ, is safety. In our extended report [42], we define a similar transformation
[•]p, p ∈ {+,−} for all operators and prove

Lemma 4. For any ϕ such that Γ � ϕ : {C}p, we have v, i |=σ p[ϕ]p =⇒ v, i |=σ

pϕ. In particular, L([ϕ]+) ⊆ L(ϕ).
We prove that Eϕ soundly enforces [ϕ]+, and hence ϕ:

Theorem 1. (Soundness). If ϕ ∈ EMFOTL, the enforcer Eϕ is sound with
respect to L([ϕ]+) ⊆ L(ϕ). As a consequence, ϕ is enforceable.

In our model, transparent enforcement of non-safety formulae such as ψ ∨♦χ
is generally not possible, since the necessity to cause ψ depends on future events:

Lemma 5. If a property admits a transparent enforcer, it is a safety formula.

Thus, when enforcing a non-safety formula ϕ, one can at best achieve trans-
parency with respect to some sound safety approximation ϕ′ of ϕ. We prove:
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Fig. 8. Selected events and policies from Arfelt et al. [7]

Theorem 2. (Transparency). If ϕ ∈ EMFOTL, the enforcer Eϕ is transpar-
ent with respect to L([ϕ]+).

By imposing more constraints on the formulae (e.g., the formula χ must not
depend on the future in ψ∧SLχ), one can obtain an EMFOTL fragment for which
[ϕ]+ = ϕ and the enforcer Eϕ is transparent (see our extended report [42]).

6 Evaluation

We implemented our type system and enforcement algorithm in a tool, called
WhyEnf, consisting of 2 800 lines of OCaml code. WhyEnf uses a modified
version of WhyMon [49], which we call WhyMon*. It ignores the explanations’
structures (not required by our algorithm) and returns only Boolean verdicts.

Our evaluation aims to answer the following research questions:

RQ1. Is EMFOTL expressive enough to formalize real-world policies?
Is manual formula rewriting necessary, as in previous works [14,40]?

RQ2. At what maximum event rate can WhyEnf perform real-time enforce-
ment?

RQ3. Do WhyEnf’s performance and capabilities improve upon the state-of-
the-art?

The notion of ‘real-world policies’ in RQ1 is domain-dependent. In the following,
we demonstrate our approach’s effectiveness in the case of privacy regulations.

Case study. Arfelt et al. [7] define events and MFOTL formulae formalizing
core GDPR provisions that they monitor on a trace produced by a real-world
system [24]. Relevant events (superscripted by their number of occurrences in the
trace) and formulae are shown in Fig. 8 and Examples 1 and 3. We pre-process
the trace to obtain 3 846 time-points containing 5 630 system events distributed
over 515 d. We interpret the ‘Lawyer review’ and ‘Architect review’ events as
both use and share (sharing with third-parties) events, and the ‘Abort’ events as
both revoke (revoking consent) and deletion_request. Otherwise, we follow Arfelt
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et al.’s pre-processing. We make the following assumptions [40]: use events are
suppressable, while delete, inform (informing the user), and notify (notifying a
third-party) events are causable. All metric constraints are specified in days.

RQ1: Expressiveness. Except for ϕmin, all formulae are in EMFOTL. Unlike in
previous works [15,18,40], no further policy engineering (e.g., manual rewriting
to equivalent formulae in supported fragments) is needed. For all enforceable
formulae except ϕlim, our algorithm guarantees transparent enforcement. For
ϕlim, which contains an unbounded ♦ operator, non-transparent enforcement is
possible by enforcing the stronger formula ϕb

lim = �(∀c, d, u. collect(c, d, u) →
♦[0,b]delete(c, d, u)) for any b ∈ N. The formula ϕmin, capturing data minimiza-
tion, is intrinsically non-enforceable, as a sound Eϕmin must either always suppress
collect, or eventually cause use, which is only suppressable.

WhyEnf’s type system helps determine appropriate suppressible and caus-
able events. For instance, if use was marked as only-observable, the type
checker would state that ϕlaw is not enforceable and suggest to make use sup-
pressible, or otherwise make either consent or legal_ground causable. Since use
actually is suppressable, the type checker concludes that ϕlaw is transparently
enforceable.

RQ2: Maximum event rate. We enforce the enforceable formulae from Fig. 8, i.e.,
all but ϕmin. As we do not have access to the SuS, we simulate online enforce-
ment by reproducing [45] the events from the above trace to WhyEnf at the
speed specified by the trace’s timestamps. We also consider different accelera-
tions of the original trace’s real-time behavior to challenge WhyEnf. We mea-
sure WhyEnf’s latency � and processing time t for each time-point. Latency
is the time delay between the emission of a time-point to WhyEnf and the
reception of the corresponding command, whereas processing time is the time
WhyEnf effectively takes to process the time-point. We report the average
latency (avg�(a)) and maximum latency (max�(a)) given an acceleration a, as
well as the average processing time (avgt), and the maximum processing time
(maxt) all computed over the entire trace. If max�(a) is smaller than the interval
1
a between two timestamps in the accelerated trace, then the real-time condition
(Sect. 3.1) is met assuming that the SuS’s and communication latency are small
enough.

All measurements were performed on a 2.4GHz Intel i5-1135G7 CPU with
32 GB RAM. For each formula and acceleration a ∈ {105 · 20, . . . , 105 · 29}, we
plot max�(a), the function 1

a (right y-axis), and the corresponding average event
rate avger(a) (left y-axis) in Fig. 9. We include similar plots for WhyMon* and
EnfPoly and latency profiles for individual runs in our extended report [42].

As presented in Fig. 9, for all formulae, WhyEnf meets the real-time condi-
tion for all accelerations up to 4 · 105, which corresponds to a maximum latency
of 96 ms and an average event rate of 51 events/s. Hence, even though the ana-
lyzed trace specifies time intervals in days, the real-time enforcement of the same
trace can in fact be performed for sub-second intervals. Note that the average
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Fig. 9. RQ2: Maximum latency of WhyEnf and event rate for the formulae in Fig. 8.

latency is much lower (20 ms for the most challenging policy), with the maxi-
mum latency occurring when many events occur within a short time span. The
two formulae that only define future obligations, ϕlim and ϕdel, have much lower
maximum latency, of 14 and 19 ms, respectively, corresponding to an average
event rate of about 600 events/s. Due to proactivity, the enforcer does not need
to keep the history of past events for these formulae. Overall, our experiments
show that WhyEnf can efficiently enforce a real-world SuS.

RQ3: Comparison with the state of the art. We compare WhyEnf’s perfor-
mance to its two most closely related tools: WhyMon*, which provides similar
expressiveness as WhyEnf but no enforcement, and EnfPoly [39], the only tool
supporting non-proactive enforcement of an MFOTL fragment. In addition to the
real-world log [24], we generate synthetic traces with n ∈ {100 · 20, . . . , 100 · 28}
time-points each containing k ∈ {20, . . . , 28} random events. We report avgt for
the three tools and six formulae in Fig. 11, imposing a 10-minute timeout (t.o.).

WhyMon* cannot monitor ϕlim, as the formula has an unbounded ♦ oper-
ator. For all other formulae, WhyMon* satisfies the real-time condition for
accelerations a ≤ 105. WhyEnf’s latency is at most twice WhyMon*’s for
ϕlaw and ϕcon as the enforcer calls the monitor at least once per iteration and also
performs fixed-point computations (Fig. 10). In contrast, WhyEnf can enforce
ϕlim and has significantly (up to 22 times) lower latency for ϕinf , ϕsha, and ϕdel.
Unlike WhyMon*, WhyEnf is able to lazily evaluate implications involving
future obligations, which improves its runtime performance. WhyEnf’s pro-
cessing time also scales better than WhyMon*’s for large values of n and k
(Fig. 11).

Only ϕlaw and ϕcon are transparently enforceable without proactivity. We
enforce them using EnfPoly after manually rewriting them into equivalent for-
mulae in EnfPoly’s fragment. WhyEnf’s average and maximum latencies are
higher than EnfPoly’s, but WhyEnf’s algorithm covers a much larger frag-
ment of MFOTL than EnfPoly, which makes computating verdicts more costly.
The same behavior is observed in terms of average processing time (Fig. 11).
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Fig. 10. RQ2–3: Latency and processing time for the largest a such that max�(a) ≤ 1/a.

Fig. 11. RQ3: Average processing time (ms) for different trace and time-point sizes.

7 Related Work

Security automata [26,58] were first used for enforcement by terminating the
SuS. Fredrikson et al. [31] also terminate the SuS upon violation detection, but
use symbolic automata which allow policies to refer to the SuS’s state. Bauer et
al. [21] investigate enforcers that can cause and suppress events, as do Ligatti
et al. [47], who use edit automata with the ability to buffer events. Ngo et
al. [51] study policy enforcement for reactive systems for which they disallow
the enforcer to buffer events or inspect SuS code. Basin et al. [15] distinguish
between suppressable and only-observable events, without considering causation.
More complex bidirectional enforcement [3,4] and enforcement through delaying
events [27,54] have also been proposed. Pinisetty et al. [55] further allow the
enforcer to inspect the SuS’s code to perform predictive enforcement.

Most runtime enforcement approaches (and tools [28,29]) rely on automata as
policies. Metric interval temporal logic formulae can be enforced via translation
to timed automata [53,57]. Basin et al. [11,12] use dynamic condition response
graphs [36] to formalize and enforce obligations in real time by suppressing and
(proactively) causing events. Finally, controller synthesis tools for LTL [25,44,
60], Timed CTL [22,52], or MTL [38,46] can generate enforcement mechanisms.

To the best of our knowledge, only a few approaches enforce first-order tem-
poral policies. Hallé and Villemaire [33,34] develop a monitor for LTL-FO+, a
first-order variant of future-only linear temporal logic. They use the monitor to
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block the system in case of detected policy violations, in the spirit of the work
on security automata [26,58]. Hublet et al. [39–41] developed the EnfPoly tool
that enforces policies from a fragment of MFOTL that can contain future oper-
ators, but only nested with past ones such that the formula overall does not
refer to the future. Independently, Aceto et al. [2–5] consider the safety frag-
ment of Hennessy-Milner Logic (HML) with recursion as their policy language.
They generalize HML to allow quantification over event parameters, but do not
support time constraints. They also focus on instrumentation scenarios where
all events are suppressable.

A satisfiability checking tool [30] and many runtime monitoring tools sup-
port (different fragments of) MFOTL [23], including MonPoly [13,17–19], Ver-
iMon [9,10,59] and DejaVu [35]. Lima et al. [48] recently introduced Explana-
tor2, an MTL monitor that outputs explanations. They later extended their
work to MFOTL with the WhyMon tool [49], upon which our enforcer relies.
WhyMon supports a large fragment of MFOTL as it uses partitioned decision
trees to represent variable assignments. To the best of our knowledge, all existing
monitoring tools only support safety formulae of the form �ϕ. Our work addi-
tionally supports (non-transparent) enforcement of some non-safety formulae.

8 Conclusion

We have presented the first proactive real-time enforcement algorithm and an
efficient tool, WhyEnf, for metric first-order temporal logic. Our approach lends
itself to a number of extensions. For instance, WhyMon’s runtime performance
can be optimized for large formulae. Features like complex data types [50], let
bindings [61], and aggregations [16] would further improve our enforcer’s expres-
siveness. Finally, refinements of the type system when the same event can be
both caused and suppressed in different contexts would be a useful addition.
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Abstract. Runtime predictive analyses enhance coverage of traditional
dynamic analyses based bug detection techniques by identifying a space
of feasible reorderings of the observed execution and determining if any
reordering in this space witnesses the violation of some desired safety
property. The most popular approach for modelling the space of feasible
reorderings is through Mazurkiewicz’s trace equivalence. The simplicity
of the framework also gives rise to efficient predictive analyses, and has
been the de facto means for obtaining space and time efficient algorithms
for monitoring concurrent programs.

In this work, we investigate how to enhance the predictive power of
trace-based reasoning, while still retaining the algorithmic benefits it
offers. Towards this, we extend trace theory by naturally embedding a
class of prefixes, which we call strong trace prefixes. We formally char-
acterize strong trace prefixes using an enhanced dependence relation,
study its predictive power and establish a tight connection to the pre-
viously proposed notion of synchronization-preserving correct reorder-
ings developed in the context of data race and deadlock prediction. We
then show that despite the enhanced predictive power, strong trace pre-
fixes continue to enjoy the algorithmic benefits of Mazurkiewicz traces
in the context of prediction against co-safety properties, and derive new
algorithms for synchronization-preserving data races and deadlocks with
better asymptotic space and time usage. We also show that strong trace
prefixes can capture more violations of pattern languages. We implement
our proposed algorithms and our evaluation confirms the practical utility
of reasoning based on strong prefix traces.

Keywords: concurrency · runtime verification · dynamic analysis ·
trace languages

1 Introduction

Dynamic analysis has emerged as a popular class of techniques for ensuring
reliability of large scale software, owing to their scalability and soundness (no
false positives). At a high level, such techniques solve the membership problem
— given an execution σ, typically modelled as a sequence of events, does σ
belong to Lbug, a chosen set of executions that exhibit some undesired behaviour.
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In the context of concurrent software, however, such a naive testing paradigm
suffers from poor coverage, since even under the ideal input, the execution σ
observed at the time of testing, may not reveal the presence of bug (membership
in Lbug), because of the non-determinism due to thread scheduling. Runtime
prediction, which is also the subject of this work, has emerged as a systematic
approach to enhance vanilla dynamic analyses [15,21,40]. Instead of solving the
vanilla membership problem (σ ∈ Lbug), runtime predictive techniques solve the
predictive membership or predictive monitoring problem — they generalize the
observed execution σ to a larger set of executions Sσ and check if there is some
execution in Sσ that belongs to Lbug.

The predictive power (how often real bugs are identified) as well as the
speed of a runtime predictive analysis (or predictive monitoring), often con-
flicting goals, crucially depend upon the space of Sσ that the analysis reasons
about. In the most general case, Sσ can be the set of all executions that preserve
the control and data flow of σ, namely correct reorderings [38] of σ. Analyses
that exhaustively reason about the entire space of correct reorderings have the
highest prediction power in theory [35], but quickly become intractable even for
very simple classes of bugs [21,25]. On the other extreme is the class of trivial
analyses which consider Sσ = {σ} but offer no predictive power. Analyses based
on Mazurkiewicz’s trace equivalence theory [28] opt for middleground and bal-
ance predictive power with moderate computational complexity of the predictive
monitoring question.

In the framework of trace theory, one fixes a concurrent alphabet (Σ, D) con-
sisting of a finite set of labels Σ, and a symmetric, reflexive dependence relation
D ⊆ Σ × Σ. Now, each string w ∈ Σ∗ can be generalized to its equivalence
class [[w]]D, comprising all those strings w′ which can be obtained from w by
repeatedly swapping neighbouring events when their labels are not dependent.
The corresponding predictive monitoring question under trace equivalence then
translates to the disjointness check [[σ]]D ∩Lbug �= ∅. Consider the sound depen-
dence relation DRWL that marks pairs of events of the same thread, and pairs of
events that write to the same memory location or the same lock as dependent.
Here, we say D is sound if one can only infer correct reorderings from D, i.e.,
for every well-formed execution σ, [[σ]]D ⊆ CReorderings(σ). Then consider, for
example, the execution σ1 in Fig. 1a consisting of 6 events {ei}i≤6 performed by
threads t1 and t2. It is easy to conclude that σ1 is equivalent to the reorder-
ing ρ1 = e1e4e2e3e5e6, i.e., ρ1 ∈ [[σ]]DRWL

and thus [[σ]]DRWL
is not disjoint from

the set of executions where two w(x) events are consecutive. For a large class
of languages Lbug [30], this question can, in fact, be answered in a one pass
streaming constant-space algorithm, the holy grail of runtime monitoring, and
has been instrumental in the success of industrial strength concurrency bug
detectors [17,29,36].

Despite the simplicity and algorithmic efficiency of reasoning with commuta-
tivity of individual events, trace theory falls short in accurately reasoning about
commutativity of atomic blocks of events in executions of concurrent programs.
Consider, for example, the execution σ2 from Fig. 1b. Here, under the depen-
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Fig. 1. Execution σ1 has a predictable data race, and can be exposed with trace equiv-
alence. Execution σ2 has a predictable data race (witnessed by ρ2) which cannot be
exposed under trace equivalence, but can be exposed by strong trace prefixes.

dence DRWL described above, the events e1 = w(x)t1 and e6 = w(x)t2 are ordered
through the chain of dependence (e1, e3), (e3, e4), (e4, e6). However, the reorder-
ing ρ′

2 = e4e5e1e6e2e3 is a correct reordering of σ2 and also witnesses the two
write events consecutively. In other words, the equivalence induced by a depen-
dence relation can be conservative since commutativity on individual events
maybe insufficient to determine when two blocks commute. Observe that sim-
ply relaxing the dependence relation DRWL to a smaller set (say by removing
dependence on locks) may be detrimental to soundness as one may infer that
the ill-formed execution ρ′′

2 = e1e2e4e3e5e6 is equivalent to σ2. Indeed, one can
show that DRWL is the most relaxed sound dependence relation. At the same
time, we remark that the efficiency of the algorithms based on trace equiv-
alence [9,11,13,16,27] crucially stems from reasoning about commutativity of
individual events (instead of blocks of events).

In this work, we propose taking a different route for enhancing the predictive
power of trace-based reasoning. Instead of allowing flexibility for commuting
individual blocks of events, we observe that we can nevertheless enhance pre-
dictive power by sticking to commutativity of events but allowing for greater
flexibility in selecting events that participate in these reorderings. Consider, for
example, the execution ρ2 in Fig. 1c, which is a correct reordering of σ2 and also
witnesses that the two write events are consecutive. Intuitively, one can obtain
ρ2 from σ2 by first dropping the earlier critical section in t1, thereby unblocking
the critical section in t2 so that it can commute to the beginning of the execution
using event based commutativity.

In this work, we argue that the above style of reasoning can be formalized
as a simple extension of the classic trace theory and no sophisticated algebraic
formulation may be required. The dependence relation D plays a dual role —
(downward-closure) for each event e in some reordering, all events dependent
before e must be present in the reordering, and (order-preservation) amongst
the set of events present in the reordering, the relative order of all dependent
events must be preserved. Towards this, we propose to make this distinction
explicit. Reflecting on the example above, a key tool we employ here is to stratify
the dependence in DRWL based on their strength. On one hand, we have strong
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dependencies, such as program order, for which both the roles (downward-
closure) and (order-preservation) must be respected and cannot be relaxed.
On the other hand, we have dependence between lock events, for which (order-
preservation) must be kept intact, but nevertheless the first role (downward-
closure) can be relaxed. We formalize this notion, in Sect. 3, using two sets
of dependence relations, a strong dependence S and a weak one W, and the
resulting notion of a strong trace prefix of an execution, whose set of events is
downward closed with respect to S and further, the relative order on the residual
events in it respects the order induced by S ∪ W.

Our generalization of traces to strong trace prefixes has important advan-
tages. First, and the most obvious one, is the enhanced predictive power when
monitoring against a language Lbug, as we illustrated above. The second conse-
quence of the explicit stratification of the dependence relation, is that we can
predict against new, previously impossible, languages such as those for deadlock
prediction [40]. Third, the simplicity of our strong trace prefixes framework and
its proximity to the original trace-theoretic framework implies that the predic-
tive monitoring question in this new setting is solvable in essentially the same
time and space complexity as in the trace-theory setting, despite the enhanced
predictive power it unveils. We present a unified scheme, in Sect. 4, to translate
any predictive algorithm that works under trace equivalence against some lan-
guage Lbug to one that works under strong trace prefixes (for the same language
Lbug) with additional non-determinism (but similar time and space usage) or
alternatively with a polynomial multiplicative blowup in time. Thus, when the
predictive question can be answered in constant space for Mazurkiewicz traces
(as with data races [1]), it continues to be solvable in constant space for strong
trace prefixes.

In Sect. 5 we further shorten the gap between commutativity style reasoning
(aka strong trace prefixes) and the full semantic space (aka correct reorderings).
In particular, we show that we can further relax the dependence on conflicting
memory locations ((r, w), (w, r)), that otherwise ensure soundness, and regain
soundness back by baking in extra reads-from constraints in the prefixes. We
define strong reads-from prefixes to formalize the resulting space of reorderings,
and show that predictive monitoring under them can also be done with same
time and space complexity as with strong trace prefixes. Next, in Sect. 6 we
draw an interesting connection between strong reads-from prefixes and the class
of synchronization-preserving data races [26] and deadlocks [40] which are the
fastest and most predictive practical algorithms for detecting these concurrency
bugs. We show that while synchronization-preserving reorderings are a larger
class of reorderings, strong reads-from prefixes are nevertheless sufficient to cap-
ture the corresponding class of data races and deadlocks. As a consequence, we
obtain constant-space algorithms for predicting classes of bugs, improving the
previously known linear-space algorithms.

We put the new formalism to test by implementing the algorithms that follow
from our results, for various specifications such as data races, deadlocks, and
pattern languages [1]. We evaluated them on benchmark program traces derived
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from real world software applications and demonstrate the effectiveness of our
formalism through its enhanced prediction power.

2 Predictive Monitoring and Trace Theory

Here we discuss some preliminary background on the predictive monitoring prob-
lem, trace theory and some limitations when applying the latter in the context
of the former.

Events, Executions and Monitoring. We model an execution as a finite
sequence σ = e1, e2, . . . , ek of events where each event ei is labelled with a letter
ai = lab(ei) ∈ Σ from a fixed alphabet Σ. We will use Eventsσ to denote the
set of events of σ and use the notation e1 <σ e2 to denote that the event e1
appears before e2 in the sequence σ. We will often use the custom alphabet
ΣRWL to label events of shared memory multithreaded programs. For this, we fix
sets T , L and X of thread, lock, and memory location identifiers. Then, ΣRWL =
{op(d)t | t ∈ T , op(d) ∈ {r(x), w(x), acq(�), rel(�)}x∈X ,�∈L} consists of labels
denoting read/write of memory locations X or acquire/release of locks L, each
being performed by some thread t ∈ T . Executions of multithreaded programs
are assumed to be well-formed, i.e., belong to the regular language LWF ⊆ Σ∗

RWL

that contains all strings where each release event e has a unique matching acquire
event e′ on the same lock and same thread, and no two critical sections on the
same lock overlap. In addition, we only consider sequential consistency memory
model in this paper. Our focus here is the runtime monitoring problem against
a property L ⊆ Σ∗ — ‘given an execution σ, does σ ∈ L?’

Predictive Monitoring and Correct Reorderings. Vanilla dynamic anal-
yses that answer the membership question ‘σ ∈ L?’ often miss bugs thanks to
non-deterministic thread interleaving. Nevertheless, even when an execution σ
does not belong to the target language L, it may still be possible to predict
bugs in alternate executions that can be inferred from σ. Here, one first defines
the set CReorderings(σ) of correct reorderings [35,38] of σ comprising executions
similar to σ in the following precise sense — every program P that can gen-
erate σ, will also generate all executions in CReorderings(σ). For an execution
σ ∈ LWF ⊆ Σ∗

RWL of a multithreaded program, CReorderings(σ) can be defined to
be the set of all executions ρ of σ such that (1) Eventsρ ⊆ Eventsσ, (2) ρ is well-
formed, i.e., ρ ∈ LWF, (3) ρ is downward-closed with respect to the program-order
of σ, i.e., for any two events e1, e2 performed by the same thread and e1 <σ e2,
if e2 ∈ Eventsρ, then e1 ∈ Eventsρ, and (4) for any read event er labelled r(x)t,
the write event ew that er reads-from (er ∈ rfσ(ew)) must also be in ρ. Here, we
say that er ∈ rfσ(ew) if er and ew access the same memory location x and there
is no other write event e′

w such that ew <σ e′
w <σ er. The predictive monitoring

question against a language L can now be formalized as ‘given an execution σ, is
CReorderings(σ) ∩ L �= ∅?’. Observe that any witness ρ ∈ CReorderings(σ) ∩ L is
a true positive since every execution in CReorderings(σ) passes the same control
flow as σ and thus can be generated by any program that generates σ. In general,
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this predictive monitoring question does not admit a tractable solution, even for
the simplest class of (regular) languages, such as the class of executions that con-
tain a data race [25], and has been shown to admit super-linear-space hardness
even for 2 threads [12]. Practical and sound algorithms for solving the predictive
monitoring problem [21,24,26,31,38] often weaken predictive power in favour of
soundness by considering a smaller space Sσ of reorderings. A set Sσ ⊆ Σ∗

RWL

is said to be sound for a given execution σ ∈ LWF if Sσ ⊆ CReorderings(σ),
an algorithm that restricts its search of reorderings to Sσ will not report false
positives.

Mazurkiewicz Traces. Trace theory, proposed by Antoni Mazurkiewicz [28],
offers a tractable solution to the otherwise intractable predictive monitoring
problem, by characterizing a simpler subclass of reorderings. Here, one identi-
fies a reflexive and symmetric dependence relation D ⊆ Σ × Σ, and deems an
execution ρ equivalent to σ if one can obtain ρ from σ by repeatedly swapping
neighbouring events when they are not dependent. Together, (Σ, D) constitute a
concurrent alphabet. Formally, the trace equivalence ∼D of the concurrent alpha-
bet (Σ, D) is the smallest equivalence on Σ∗ such that for every w1, w2 ∈ Σ∗ and
for every (a, b) ∈ Σ × Σ \ D, we have w1 · a · b · w2 ∼D w1 · b · a · w2. We use
[[w]]D = {w′ |w ∼D w′} to denote the equivalence class of w ∈ Σ∗.

Model Shared-Memory Concurrency Using Traces. Let us see how traces
can (conservatively) model a class of correct reorderings, with an appropriate
choice of dependence over ΣRWL. The dependence DL = {(op1(�)

t1 , op2(�)
t2) | � ∈

L} can be used enforce mutual exclusion of critical sections — for every ρ ∈
[[σ]]DL , the order of locking events is the same as in σ, and thus if σ is well-formed,
then so is ρ. Likewise, the dependence DT = {(op1(d1)

t
, op2(d2)

t) | t ∈ T } is such
that every ρ ∈ [[σ]]DT preserves the program order of σ. Indeed, the dependence
DHB = DT ∪ DL is the classic happens-before dependence employed in modern
data race detectors such as ThreadSanitizer [36]. Finally, the dependence
DRWL = DT ∪DL∪Dconf , where Dconf = {(op1(x)t1 , op2(x)t2) |x ∈ X , (op1, op2) ∈
{(w, r), (r, w), (w, w)}}, ordering all conflicting memory accesses, ensures that for
a well-formed execution σ, we have [[σ]]DRWL

⊆ CReorderings(σ). The inclusion of
DT ensures that program order is preserved, DL ensures well-formedness, while
the remaining dependencies preserve the order of all conflicting pairs of events,
and thus the reads-from relation. Indeed, DRWL is the smallest dependence that
ensures soundness. Here, we say that D ⊆ ΣRWL × ΣRWL is sound if for every
σ ∈ Σ∗, [[σ]]D ⊆ CReorderings(σ),

Predictive Monitoring with Traces. The predictive monitoring question
under trace equivalence induced by a generic concurrent alphabet (Σ, D) becomes
— ‘given an execution σ, is [[σ]]D ∩ L �= ∅?’. In general, even when L is regular,
this problem cannot be solved faster than O(|σ|α). Here, α is the degree of con-
currency in D, or the size of the largest set without containing pairwise dependent
events [1]. For the subclass of star-connected regular languages [30], this prob-
lem can be solved using a constant-space linear-time algorithm. Star-connected
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Fig. 2. Execution σ3 has a predictable deadlock, as witnessed by the correct reordering
ρ3, but cannot be exposed by without violating DL.

languages include the class of languages that can encode data races [9,16], and
the class of pattern languages [1] that capture other temporal bugs.

Example 1. Let Lrace = Σ∗
RWLw(x)t1w(x)t2Σ∗

RWL be the set of executions that
witness a race between two write accesses on memory location x between threads
t1 and t2. Consider the execution σ1 illustrated in Fig. 1a and recall from Sect. 1
that [[σ1]]DRWL

∩ Lrace �= ∅. Further, recall that for the trace σ2 from Fig. 1b, we
have [[σ2]]DRWL

∩ Lrace = ∅, even though CReorderings(σ2) ∩ Lrace �= ∅. In other
words, data race prediction based on trace equivalence may have strictly less
predictive power than prediction based on correct reorderings.

Example 2. While trace equivalence can expose some data races (as with σ1

from Fig. 1a), it can fundamentally not model deadlock prediction. Consider the
execution σ3 in Fig. 2a. It consists of two nested critical sections in inverted
order of acquisition. Any program that generates σ3 is prone to a deadlock,
as witnessed by the correct reordering ρ3 in Fig. 2b that acquires �1 in t1 and
then immediately switches context to t2 in which lock �2 is acquired. Clearly,
the underlying program is deadlocked at this point. Since (lab(e3), lab(e5)) and
(lab(e4), lab(e6)) ∈ DL, trace equivalence cannot predict this deadlock. Indeed,
nested critical sections, acquired in a cyclic order, can never be reordered to
actually expose the deadlock without violating the dependence between earlier
release events and later acquire events induced by DL.

3 Strong Trace Prefixes

Observe that for both the executions σ2 (Example 1) and σ3 (Example 2), the
correct reordering that exposes the bug in question can be obtained by relaxing
the order of two events that were otherwise ordered by the dependence relation,
in particular DL. Since the dependence DL enforces mutual exclusion, it cannot
be ignored altogether without compromising soundness. For example, setting
DL = ∅, would deem ρ′

2 = w(x)t1acq(�)t1acq(�)t2rel(�)t1rel(�)t2w(x)t2 to be
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equivalent to σ2, even though ρ′
2 �∈ CReorderings(σ2). Nevertheless, both these

examples illustrate a key insight behind how we generalize the trace-theoretic
framework — the dependence due to locks is weak. That is, let e1 = rel(�)t1 <σ

e2 = acq(�)t2 be events of an execution σ. If they both appear in a reordering ρ
of σ, then, under commutativity-style reasoning, we demand that their relative
order must be e1 <ρ e2. However, reorderings that drop the entire critical section
of e1 may nevertheless be allowed and may not compromise well-formedness.
This is in contrast with strong dependence such as those induced due to DT or
reads-from — any reordering must be downward closed with respect to them.

Building on these insights, we formalize strong trace prefixes by distinguish-
ing dependencies that are absolutely necessary, i.e., strong dependence, from
weak dependence, which do not affect causality, but only offer convenience for
modelling constructs like mutual exclusion in a swap-based equivalence like trace
equivalence. We present the formal definition of strong trace prefixes next.

Definition 1 (Dual Concurrent Alphabet). A dual concurrent alphabet
is a tuple (Σ, S, W), where Σ is a finite alphabet, S ⊆ Σ × Σ is a reflexive
and symmetric strong dependence relation, and W ⊆ Σ × Σ is an irreflexive
symmetric weak dependence relation.

Definition 2 (Strong Trace Prefix). The strong trace prefix order induced
by the dual alphabet (Σ, S, W), denoted �W

S
, is the smallest reflexive and transi-

tive binary relation on Σ∗ that satisfies:

1. ∼S∪W ⊆ �W

S
, and

2. for every u, v ∈ Σ∗ and for every a ∈ Σ, if for every b ∈ v, (a, b) �∈ S, then
we have u · v �W

S
u · a · v

We say that w′ ∈ Σ∗ is a strong trace prefix of w if w′ �W

S
w. We use 〈〈w||W

S
=

{w′ ∈ Σ∗ |w′ �W

S
w} to denote the strong downward closure of w.

Let us also recall the classical notion of ideal based prefixes using the above. For
a reflexive symmetric dependence relation D ⊆ Σ×Σ, we use the notation 	D to
denote the ideal prefix relation �∅

D
, and call w1 an ideal prefix of w2 if w1 	D w2.

We use [[w||D = {w′ ∈ Σ∗ |w′ 	D w} to denote the ideal downward closure of w.
A few observations about Definition 2 are in order. First, the relations �W

S

and 	D defined here are not equivalence relations (unlike ∼D) but only quasi
orders and relate executions of different lengths (namely strong (or ideal) pre-
fixes). Second, in the case W ⊆ S, the strong trace prefix order gives the ideal
prefix order 	S∪W. Third, in general, strong prefixes are more permissive than
ideal prefixes, i.e., �∅

S∪W
⊆�W

S
, and is key to enhancing the predictive power of

commutativity-style reasoning.

Example 3. Consider the alphabet Σ = {a, b, c}. Fix the strong dependence rela-
tion S = {(a, a), (b, b), (c, c), (b, c), (c, b)} and the weak dependence relation W =
{(a, b), (b, a)}. Let D = S ∪ W be a traditional Mazurkiewicz-style dependence.
Now, consider the string w = abacba. First, observe the simple equivalence w ∼D

w′ = abcaba. Indeed, no other strings in Σ∗ are ∼D-equivalent to w. The ideal



190 Z. Ang and U. Mathur

prefixes of w [[w||D = {ε, a, ab, aba, abac, abacb, abacba, abc, abca, abcab, abcaba}
is precisely the set of (string) prefixes of the two strings w and w′. The set
of strong trace prefixes induced by (Σ, S, W) is larger though. First, consider
the string w1 = abcb and observe that w1 �W

S
w. This follows because (1)

w′ = abcab · a · ε, and thus abcab �W

S
w, (2) abcab = abc · a · b and (a, b) �∈ S

and thus abcb �W

S
abcab, and finally (3) due to transitivity, we have w1 �W

S
w.

Consider now the string w2 = bcb, and observe that abcb = ε · a · bcb, giving us
w2 �W

S
w1 since {(a, b), (a, c)} ∩ S = ∅. Thus, w2 �W

S
w. On the other hand,

observe that w1 �	D w and w2 �	D w.

3.1 Modelling Correct Reorderings with Strong Trace Prefixes

Recall that DRWL ordered events of the same thread, same locks and conflicting
events of a given memory location allowing us to soundly represent a class of
correct reorderings of an execution σ as the equivalence class [[σ]]DRWL

. Here,
we identify a finer gradation of DRWL, to allow for a larger subset of correct
reorderings. Specifically, we define the strong and weak dependence on ΣRWL as:

Ww = {(w(x)t1 , w(x)t2) |x ∈ X , t1 �= t2 ∈ T }, WL = {(at1 , bt2) ∈ DL | t1 �= t2}
WRWL = WL ∪ Ww, SRWL = DRWL \ WRWL

(1)

In other words, the dual concurrent alphabet (ΣRWL, SRWL, WRWL) relaxes the
‘hard ordering’ between writes to the same memory location (i.e., ‘conflicting
writes’) as well as that between critical sections of the same lock (i.e., ‘conflicting
lock events’). We next explain the intuition behind the above relaxations.

Weakening Dependence on Writes. Let us begin by arguing about Ww.
When an execution contains two consecutive write events e1, e2 with lab(e1) =
w(x)t1 and lab(e2) = w(x)t2 on the same memory location x ∈ X , then, clearly,
there is no event reading from the first write event e1 since it is immediately
overwritten by e2. In this case, while flipping the order of e1 and e2 may violate
the read-from relation of a read event reading from e2, observe that e1 can be
completely dropped (in absence of later SRWL-dependent events after e1) without
dropping e2 and without affecting any control flow. In other words, the presence
of e2 does not mandate the presence of e1, but when both are present, the
conservative choice of placing e1 before e2 ensures that the reads-from relation
is preserved.

Weakening Dependence on Lock Events. Recall that the primary role of
the dependence DL was to ensure mutual exclusion, i.e., two critical sections of
the same lock do not overlap in any execution obtained by repeatedly swapping
neighboring independent events. We identify that this is not a strong dependence,
in that one can possibly drop an earlier critical section entirely, while retaining
a later critical section on the same lock in a candidate correct reordering. The
correct reordering ρ2 of σ2 in Fig. 1c can be obtained by leveraging this insight.
Indeed, ρ2 ∈ 〈〈σ2||WRWL

SRWL
because (o1(�)

t1 , o2(�)
t2) ∈ WRWL for o1, o2 ∈ {acq, rel}.
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Moreover, in the deadlock example (Fig. 2), ρ3 ∈ 〈〈σ3||WRWL

SRWL
, since the critical

section of l2 in thread t1 can be completely dropped without affecting the pres-
ence of acq(l2)t2 .

Well-Formedness. The weak dependence WL ensures that no two complete
critical sections on the same lock overlap in a strong trace prefix (provided they
did not overlap in the original execution). However, simply marking lock depen-
dencies as weak still does not forbid strong trace prefixes where an earlier incom-
plete critical section overlaps with a later complete critical section. Consider for
example, the (ill-formed) execution ρ′

2 = w(x)t1acq(�)t1acq(�)t2rel(�)t2w(x)t2 .
Observe that ρ′

2 is a strong trace prefix of σ2 under SRWL and WRWL. As we will
show in Sect. 4.3, we can remedy this mild peculiarity in the predictive monitor-
ing algorithm.

Soundness and Precision Power. Strong trace prefixes retain soundness (as
long as they are well-formed) while enjoying higher predictive power:

Theorem 1 (Soundness and Precision Power). For each well-formed exe-
cution σ ∈ LWF, we have:

[[σ]]SRWL∪WRWL
⊆ [[σ||SRWL∪WRWL

⊆ 〈〈σ||WRWL

SRWL
∩ LWF ⊆ CReorderings(σ).

Moreover, there is a σ ∈ LWF for which each of the subset relationships are strict.

Maximality. Our choice of the dual concurrent alphabet (ΣRWL, SRWL, WRWL) is
also the best one amongst the space of sound dual concurrent alphabets obtained
by stratifying DRWL. Formally,

Theorem 2 (Maximality). Let (ΣRWL, S, W) be a dual concurrent alpha-
bet such that DRWL ⊆ S ∪ W, and, for every σ ∈ Σ∗

RWL, 〈〈σ||W
S

∩ LWF ⊆
CReorderings(σ). Then, SRWL ⊆ S, and thus, for every σ, 〈〈σ||W

S
⊆ 〈〈σ||WRWL

SRWL

The formal proof of the theorems in this paper can be found in the extended
version of our paper [2].

4 Complexity of Predictive Monitoring

In this section we investigate the impact of generalizing Mazurkiewicz traces
to strong trace prefixes, on the predictive monitoring question. We present two
schemes to translate arbitrary Turing machines for predictive monitoring under
trace equivalence against a language L to one for predictive monitoring under
strong trace prefixes against the same language L. The first scheme (Sect. 4.1),
uses additional non-determinism (but same time and space usage), and the sec-
ond (Sect. 4.2) employs polynomial multiplicative blow-up in time complexity.
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4.1 Non-deterministic Predictive Monitoring

We first show that an algorithm that solves the vanilla predictive monitoring
problem ([[σ]]D ∩ L �= ∅) can be transformed into an algorithm for predictive
monitoring against strong trace prefixes with similar resource (time and space)
usage, albeit with use of non-determinism.

Theorem 3. Let L ⊆ Σ∗ and let M be a deterministic Turing machine, that
uses time T (|w|) and space S(|w|), such that L(M) = {w | [[w]]D ∩L �= ∅}. There
is a nondeterministic Turing machine M ′ that uses time T (|w|) + O(|w|) and
space S(|w|) + O(|w|), such that L(M ′) = {w | 〈〈w||W

S
∩ L �= ∅}. Moreover, if M

runs in one-pass, then M ′ uses space S(|w|) + c (for some constant c).

Observe that, in the above, we have S(|w|) + c ∈ O(S(|w|)). Further, when
T (|w|) ∈ Ω(|w|), then T (|w|) + O(|w|) ∈ O(T (|w|)). Thus, the time and space
usage of the non-deterministic machine M ′ in Theorem 3 are essentially the same
as those of M .

The proof of Theorem 3 relies on the observation that any strong prefix u of
a string w is equivalent (according to trace equivalence using ∼S∪W) to a subse-
quence w′ of w, such that w′ is downward closed with respect to strong depen-
dencies. The non-deterministic Turing machine M ′ first non-deterministically
guesses a subsequence w′ of the input execution w, then, using constant space
and an additional forward streaming pass, ensures that w′ is downward closed
with respect to S, and finally invokes the Turing machine M on the string w′.

It follows from Theorem 3 that when the language of M is regular, so is
the language of M ′. This means, that when a language L can be predictively
monitored in constant space under trace equivalence (for example data races,
deadlocks, or pattern languages [1]), then it can also be predictively monitored
in constant space, yet with higher predictive power, under strong trace prefixes!

4.2 Deterministic Predictive Monitoring

While Theorem 3 illustrates that the predictive monitoring question with strong
trace prefixes becomes decidable (when assuming the analogous problem for
Mazurkiewicz traces is decidable), we remark that the use of nondeterminism
may lead to exponential blow-ups in time and space when translating it to a
deterministic machine that can then be used in a practical predictive testing
setup. Here, in this section, we establish that one can tactfully avoid this blow-
up. In fact, we show that only allowing a polynomial multiplicative blow-up
is sufficient to do predictive monitoring under strong prefixes starting with a
deterministic Turing machine for that works under trace equivalence.

Our result is inspired by prior works on predictive monitoring under trace
languages [3]. Here, one identifies strong ideals1, i.e., sets of events that are
downward closed with respect to the strong dependence relation, and checks

1 A strong ideal X of an execution σ = e1, . . . , ek is a subset of {e1, e2, ..., ek} such
that for every i < j, if (lab(ei), lab(ej)) ∈ S and if ej ∈ X, then ei ∈ X.
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whether there is a linearization of one of them that respects both strong and
weak dependence and also belongs to the target language L. A parameter that
crucially determines the time complexity here is the width of the concurrency
alphabet. In our setting, the width αS is the size of the largest subset of Σ, that
contains no two letters which are dependent according to S.

Theorem 4. Fix a language L. Let M be a deterministic Turing machine that
uses time T (|w|) and space S(|w|), such that L(M) = {w | [[w]]D ∩ L �= ∅}.
Then, there exists a deterministic Turing machine M ′ that runs in time O((|w|+
T (|w|)) ·nαS) and uses space S(|w|)+O(|w|), such that L(M ′) = {w | 〈〈w||W

S
∩L �= ∅}.

The above complexity bounds follow because one can systematically enumer-
ate those subsequences of the input w which are downward closed with respect
to S, by in turn enumerating the space of strong ideals. The set of strong ideals
is, in turn, bounded by |w|αS .

4.3 Ensuring Well-Formedness and Soundness

Recall that the dual concurrent alphabet (ΣRWL, SRWL, WRWL) is not sufficient by
itself for ensuring that the strong trace prefixes of an execution σ ∈ LWF are also
well-formed. Well-formedness can nevertheless be retrofitted in the predictive
monitoring algorithm with same additional time, space and non-determinism.
Theorem 5 formalizes this and follows from the observation that the set LWF

is (a) regular, and (b) closed under trace equivalence, i.e., for every σ ∈ LWF,
we have [[σ]]DRWL

⊆ LWF, and algorithms for predictive monitoring can be easily
augmented to reason about the set 〈〈σ||WRWL

SRWL
∩ LWF.

Theorem 5. Let L ⊆ Σ∗
RWL and let M be a deterministic Turing machine, that

uses time T (|w|) and space S(|w|), such that L(M) = {σ ∈ LWF | [[σ]]DRWL
∩LWF∩

L �= ∅}. There is a nondeterministic Turing machine M ′ (resp. deterministic
Turing machine M ′′) that uses time T (|w|)+O(|w|) (resp. O((|w|+T (|w|))·nαS))
and space S(|w|)+O(|w|) such that L(M ′)(= L(M ′′)) = {σ ∈ LWF | 〈〈σ||W

S
∩LWF∩

L �= ∅}. Moreover, if M runs in one-pass, M ′ uses space S(|w|) + c (for some
constant c).

5 Strong Reads-From Prefixes

Strong trace prefixes generalize Mazurkiewicz traces and can enhance precision of
predictive monitoring algorithms. In this section, we propose further generaliza-
tions in the context of ΣRWL, bringing the power of trace-based reasoning further
close to correct reorderings. Towards this, we observe that the key constraints
that correct reorderings must satisfy are only thread-order and reads-from rela-
tion, and thus SRWL may be relaxed further by removing the dependence between
writes and reads.

Consider the trace σ4 in Fig. 3. Here, the only strong prefixes of σ (under
SRWL and WRWL) are its own (string) prefixes. That is, strong trace prefixes
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Fig. 3. Execution σ4 has a predictable data race, and can be exposed with strong
reads-from prefixes in ρ′

4, but cannot be exposed by strong trace prefixes.

cannot be used to argue that there is a reordering (namely ρ′
4 in Fig. 3c) in

which w(y) and r(y) are next to each other. Intuitively, one can first obtain the
intermediate ρ4 (Fig. 3b) from σ4 by dropping all events in the block of events
containing e2 labelled w(x)t1 together with all its read events rfσ4(e2) = {e3, e4},
and then obtain ρ′

4 from ρ4 using Mazurkiewicz between independent events.
We remark however that, neither ρ4 nor ρ′

3 is a strong trace prefix of σ4 because
(r(x)t3 , w(x)t2) ∈ SRWL. However, observe that one cannot obtain this reordering
ρ4 in the presence of SRWL.

The above example illustrates the possibility of relaxing SRWL by remov-
ing the dependencies between reads and writes. However, an incautious relax-
ation (such as removing (w(x)t1 , r(x)t3) from SRWL) may result into a prefix like
ρ′′
4 = w(y)t1r(x)t3w(x)t2r(x)t2r(y)t2 which is not a correct reordering of σ4. In

other words, while (r, w) and (w, r) dependencies can be relaxed, the stronger
semantic dependence due to reads-from must still be retained. As a reminder,
such a relaxation cannot accurately be modelled under strong prefixes alone since
(ΣRWL, SRWL, WRWL) is already the weakest alphabet (Theorem 2). We instead
model this as strong reads-from prefixes defined below:

Definition 3 (Strong Reads-from Prefix). The strong reads-from prefix
order induced by (ΣRWL, SRWL, WRWL), denoted �rf , is the smallest reflexive and
transitive binary relation on Σ∗

RWL that satisfies:

1. �WRWL

SRWL
⊆ �rf , and

2. let σ = σ1 · e · σ2, if ∀e′ ∈ σ2, we have (e, e′) �∈ DT and e′ �∈ rfσ(e), then
σ1 · σ2 �rf σ1 · e · σ2.

We say w′ ∈ Σ∗
RWL is a strong reads-from prefix of w if w′ �rf w. We use 〈〈w||rf =

{w′ ∈ Σ∗
RWL |w′ �rf w} to denote the strong reads-from downward closure of w.

In the above example, ρ4 and ρ′
4 now can be modelled as strong reads-from

prefixes of σ4, i.e., ρ4, ρ
′
4 ∈ 〈〈σ4||rf , since w(x)t1 and r(x)t1 are not strong depen-

dent with and not in the reads-from relation with any subsequent events. The
soundness and precision power of strong-reads from prefixes are clear:
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Theorem 6 (Soundness and Precision Power). For each well-formed exe-
cution σ ∈ LWF, we have:

[[σ]]SRWL∪WRWL
⊆ [[σ||SRWL∪WRWL

⊆ 〈〈σ||WRWL

SRWL
∩ LWF ⊆ 〈〈σ||rf ∩ LWF ⊆ CReorderings(σ).

Moreover, there is a σ ∈ LWF for which each of the subset relationships are strict.

We now discuss the algorithmic impact of this further relaxation to strong
reads-from prefixes. Here we obtain results which are analogue to Theorem 3
and Theorem 4. These follow because one can guess and check whether a prefix
preserves thread order and reads-from relations.

Theorem 7. Let L ⊆ Σ∗ and let M be a deterministic Turing machine, that
uses time T (n) and space S(n), such that L(M) = {w | [[w]]D∩L �= ∅}. There is a
nondeterministic Turing machine M ′ (resp. deterministic Turing machine M ′′)
that uses time T (n)+O(n) (resp. O((n+T (n)) ·nαSRWL )) and space S(n)+O(n)
such that L(M ′)(= L(M ′′)) = {w | 〈〈w||rf ∩ L �= ∅}. Moreover, if M runs in
one-pass, then M ′ uses space S(n) + c (for some constant c).

In next section, we will show that such a relaxation allows us to obtain a
previously known class of synchronization-preserving data races and deadlocks.

6 Strong Prefixes Versus Synchronization Preservation

Recall the execution σ2 in Fig. 1, where (e1, e6) is a data race, but cannot be
detected using a happens-before style detector, i.e., using the dependence DL. On
the other hand, trace ρ2 demonstrates that this can be captured using strong
prefixes (i.e., under SRWL and WRWL). Indeed, this is a classic example of a
synchronization-preserving data race proposed in [26] and characterizes a large
class of predictable data races that can also be detected in linear time. The anal-
ogous notion of synchronization-preserving deadlocks captures a large class of
predictable deadlocks [40], and can be detected efficiently. Both these classes of
bugs can be predicted by looking for synchronization-preserving correct reorder-
ings, and in this section we investigate the relationship between them and strong
reads-from prefixes.

Synchronization-Preserving Reorderings, Data Races and Deadlocks.
An execution ρ ∈ Σ∗

RWL is a synchronization-preserving correct reordering of
execution σ ∈ Σ∗

RWL if (a) ρ is a correct reordering of σ, and (b) for each pair of
acquire events a1 �= a2 (alternatively, critical sections) of σ on the same lock �,
such that both a1 and a2 are present in ρ, we have, a1 <ρ a2 iff a1 <σ a2. We use
SyncP(σ) to denote the set of all synchronization-preserving correct reordering
of σ. A sync(hronization)-preserving data races are a pair of conflicting events
(e1, e2), such that there is a synchronization-preserving correct reordering ρ in
which e1 and e2 are ρ-enabled. Likewise, a sync-preserving deadlock of length k is
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a deadlock pattern2 (e1, . . . , ek), such that there is a synchronization-preserving
correct reordering ρ in which e1, . . . , ek are σ-enabled. This class of data races
and deadlocks can be detected in linear time and space [26,40].

We observe that the algorithmic efficiency in predicting sync-preserving data
races (resp. deadlocks) stems from the fact that whenever (e1, e2) is a data race
(resp. (e1, . . . , ek) is a deadlock), it can be witnessed by a reordering which is
not only synchronization-preserving, but also preserves the order of conflicting
read and write events, i.e., through a conflict-preserving reordering :

Definition 4. (Conflict-preserving Correct Reordering) A reordering ρ of an
execution σ is a conflict-preserving correct reordering if (a) ρ is the correct
reordering of σ, (b) for every lock � and for any two acquire event a1, a2 labelled
acq(�) in ρ, a1 <ρ a2 iff a1 <σ a2, and (c) for every two conflicting events e1
and e2 in ρ, e1 <ρ e2 iff e1 <σ e2.

Here, we say (e1, e2) is a conflicting pair of events if (lab(e1), lab(e2)) ∈ Dconf . We
use ConfP(σ) to denote all conflict-preserving correct reorderings of σ. Observe
that every conflict-preserving correct reordering of σ is also a synchronization-
preserving correct reordering of σ.

Proposition 1. For any execution σ ∈ Σ∗
RWL, we have ConfP(σ) ⊆ SyncP(σ).

We now formalize our observation: We identify that in fact every synchro-
nization-preserving data race (deadlock) is also a conflict-preserving data race
(deadlock).

Lemma 1. Let σ ∈ Σ∗
RWL be an execution. A sequence of events (e1, . . . , ek)

is σ-enabled in some synchronization-preserving reordering of σ iff they are σ-
enabled in some conflict-preserving reordering of σ. Thus, sync-preserving data
races and deadlocks can also be witnessed using conflict-preserving reorderings.

The connection between synchronization-preserving and strong reads-from
prefixes is now straightforward because the class of conflict-preserving races or
conflict-preserving deadlocks can be accurately modelled in our framework:

Lemma 2. Let σ ∈ Σ∗
RWL be an execution. We have 〈〈σ||rf ∩ LWF = ConfP(σ).

According to Lemma 1 and Lemma 2, we build the connection between sync-
preserving data race (deadlock) and our strong reads-from prefixes: a sequence of
events (e1, . . . , ek) is σ-enabled in some synchronization-preserving reordering of
σ iff they are σ-enabled in a well-formed strong reads-from prefix. Consequently,
we get algorithms for detecting sync-preserving data races and deadlocks with
improved space bound and same time:

2 A deadlock pattern of size k is a sequence of acquire events D = (e1, . . . , ek) per-
formed by k distinct threads t1, . . . , tk, acquiring k distinct locks �1, . . . , �k such that
�i ∈ HeldLks(ei%k+1), and further, the locks held at ei and ej are disjoint (i �= j).
The set HeldLks(e) is the set of locks which have been acquired in thread of e, before
e, but not released until after e is performed.
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Theorem 8. Synchronization-preserving races and deadlocks can be detected in
linear time and constant space.

Even though, in the context of data races and deadlocks, it suffices to look at
conflict-preserving correct reorderings, in general, the class of synchronization-
preserving reorderings is much more expressive. As a consequence, when one
goes beyond data races and deadlocks to a slightly different class of specifications,
the predictive monitoring question under synchronization-preserving reorderings
quickly becomes hard. In particular, we demonstrate this in the context of pre-
dicting if two events can be reordered in a certain order. Under Mazurkiewicz’s
trace equivalence, this problem can be decided in linear time and constant space,
and thus also for strong trace prefixes (Theorem 3). However, in the context of
synchronization-preserving reorderings, we show that this problem cannot be
solved in linear time and constant space.

Theorem 9. Let σ ∈ Σ∗
RWL be an execution, and e1, e2 ∈ Eventsσ be two events.

Any streaming algorithm that checks if there is an execution ρ ∈ SyncP(σ) such
that e1 <ρ e2 uses linear space.

Indeed, the above problem (checking if two events can be flipped) is an
example of the level 1/2 in the Straubing-Thérien hierarchy3 [32], or pattern
languages4 [1], whose predictive monitoring can be solved in linear time and
constant space under Mazurkiewicz traces, and thus also under strong prefixes.
However, Theorem 9 indicates that any streaming algorithm deciding this prob-
lem against pattern languages under synchronization-preserving reorderings has
a linear-space lower bound. We therefore remark that, strong prefixes lie at the
horizon of tractability in the context of predictive monitoring.

7 Experimental Evaluation

We evaluate the effectiveness of strong prefixes and strong reads-from prefixes
for the purpose of predictive monitoring of executions (over Σ∗

RWL) of shared
memory multi-threaded programs. The goal of our evaluation is two-folds. First,
we want to empirically gauge the enhanced predictive power of strong reads-
from prefixes over prediction based on trace equivalence. We demonstrate this
using prediction against pattern languages proposed in [1]. For data races, strong
reads-from prefixes can capture sync-preserving races, which have already been
shown to have more empirical predictive power over trace-based reasoning [26].
Second, we want to evaluate how our, not-so-customized but constant space,
algorithm for synchronization-preserving data races and deadlocks (Theorem 8)
performs against the linear-space algorithm due to [26,40].
3 The level 1/2 in the Straubing-Thiérin hierarchy contains languages of Σ∗ that are

finite union of languages in the form of L0a0L1 . . . Ln−1an−1Ln, where a0, . . . , an−1 ∈
Σ and L0, . . . , Ln ∈ {Σ∗, ∅}.

4 Pattern languages are regular languages of the form Σ∗a1Σ
∗ . . . Σ∗adΣ

∗, where
a1, . . . , ad ∈ Σ.
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Table 1. Predictive monitoring against pattern languages, grouped by pattern length.
Column 3 (Column 6) reports the total time taken under trace equivalence (strong
reads-from prefixes). Column 2 (Column 4) reports the number of successful matches
under trace equivalence (strong reads-from prefixes). Column 5 reports the number of
times prediction based on strong reads-from prefixes reports an earlier match.

1 2 3 4 5 6

Length of Pattern #Match in Maz Time Maz #Match in Strong RF #Earlier Match in Strong RF Time Strong RF.
3 230 10 h 23 m 249 7 10 h 55 m
5 197 9 h 6 m 209 12 10 h 17 m
Total 427 19 h 29 m 458 19 21 h 12 m

Implementation and Setup. We implemented our predictive monitoring algo-
rithms for data races, deadlocks and pattern languages, in Java, obtained by
determinizing the non-deterministic monitors obtained from Theorem 7. We
evaluate against benchmarks derived from [1,26,40], consisting of concurrent
programs from a variety of suites: (a) the IBM Contest suite [10], (b) the DaCapo
suite [5], (c) the Java Grande suite [39], (d) the Software Infrastructure Repos-
itory suite [8], and (e) others [6,18–20,23]. For each benchmark program, we
generated an execution log using RV-Predict [33] and evaluate all competing
algorithms on the same execution. Our experiments were conducted on a 64-bit
Linux machine with Java 19 and 400GB heap space. Throughout, we set a time-
out of 3 hours for each run of every algorithm. We present brief summary of our
results here, and the full result can be found in [2].

7.1 Enhanced Predictive Power of Strong Prefixes

We demonstrate the enhanced predictive power due to our proposed formal-
ism in the context of predictive monitoring against pattern languages [1]. Pat-
tern language specifications take the form Σ∗a1Σ∗ . . . Σ∗adΣ∗, and thus include
all executions that contain a1, . . . , ad as a sub-sequence. Predictive monitoring
against pattern languages can be performed in constant space and linear time
under trace equivalence [1].

Implementation and Methodology. M (under trace equivalence) proposed
in [1]. To perform predictive monitoring under strong reads-from prefixes, our
algorithm M ′ guesses an appropriate prefix and invokes the predictive monitor
M (under trace equivalence) proposed in [1], . Since M consumes constant space,
in theory, simulating M ′ also requires constant space (see also Theorem 7). The
resulting space complexity, however, can be prohibitive in practice. For scala-
bility, we employ randomization to select a subset of prefixes, and only inspect
these. Our results show that, despite this compromise, the predictive power under
strong reads-from prefixes is higher than under trace equivalence. We use 30
benchmark executions, and for each execution, we isolate 20 patterns (of size 3
and 5), from randomly chosen sub-executions of length 5000, following [1]. For
each pair of benchmark and pattern, we run the two streaming algorithms (trace
equivalence v/s strong reads-from prefixes), on the sub-execution from which the
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pattern is extracted, allowing us to optimize memory usage. Both algorithms ter-
minate as soon as the pattern is matched, otherwise the algorithms process the
entire sub-execution. We use the publicly available implementation of [1].

Evaluation Results. Our results are summarized in Table 1. First, all matches
reported under trace equivalence were also reported under strong reads-from
prefixes, as expected based on Theorem 6 . Second, out of the 30 × 20 combi-
nations of executions and patterns, trace equivalence based prediction reports
33 fewer matches as compared to prediction based on strong reads-from prefixes
(466 vs 499). The enhancement in prediction power spans patterns of both sizes
— 15 extra matches were found for patterns of size 3 and 18 extra matches were
found for patterns of size 5. Third, we also collect more fine-grained information
— amongst the 466 combinations reported by both, 18 were reported earlier (in
a shorter execution prefix) under strong reads-from prefixes, and thus are new
violations. Finally, the total time taken for prediction under reads-from prefixes
is higher, as expected, but only by 6%. In summary, strong reads-from prefixes
offer higher prediction power in practice, with moderate additional overhead.

Table 2. Synchronization-preserving v/s conflict-preserving data races. N and T
denote the number of events and threads in the executions.

1 2 3 4 5 6 7

Benchmark N T SyncP ConfP

Race Time Race Time
lang 6K 8 400 0.25 s 400 0.96 s
readerswriters 11K 6 199 0.70 s 199 1.10 s
raytracer 15K 4 8 0.16 s 8 0.27 s
ftpserver 49K 12 85 5.70 s 85 7984 s
moldyn 200K 4 103 0.65 s 103 3.24 s
derby 1M 5 29 12.99 s 29 29.3 s
jigsaw 3M 12 6 1.16 s 6 2.76 s
xalan 122M 9 37 149.39 s 37 1075
lufact 134M 5 21951 45.80 s 21951 29.78 s
batik 157M 7 10 0.11 s 10 0.37 s
lusearch 217M 8 232 7.57 s 232 2685 s
tsp 307M 10 143 115.8 s 143 631.8 s
luindex 397M 3 15 0.73 s 15 0.70 s
Total 1338M 341.01 s 12444.28 s
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7.2 Strong Reads-From Prefixes v/s Sync-Preservation

We implemented the constant-space linear-time algorithm for sync-preserving
data races and deadlocks (Theorem 8) and compare it against the linear-space
algorithms due to [26,40], solving the same problem.

Implementation and Methodology. The algorithm guesses strong reads-from
prefixes and checks whether the enabled events in them constitute a data race
or a deadlock. Following [26,40], we filtered out thread-local events to reduce
the space usage of all algorithms. We compare our predictive monitoring algo-
rithm under strong reads-from prefixes (conflict-preserving reorderings) with
SyncP [26] and SyncPD [40] under synchronization-preserving prefixes. We use
the publicly available implementation of [26,40]. We run all algorithms on the
entire executions. For the case of data races, we report the number of events
e2 for which there is an earlier event e1 such that (e1, e2) is a sync-preserving
data race. For the case of deadlocks, we report the number of tuples of program
locations corresponding to events reported to be in deadlock.

Evaluation Results. We present our results in Table 2 and Table 3. First,
observe that the precision of data race and deadlock prediction based on
strong reads-from prefixes is exactly the same as the prediction based on
synchronization-preservation (compare columns 4 and 6 in both tables). Next, we
observe that our implementations (even though constant space) is slower than the
optimized algorithms proposed [26]. We conjecture this is because the constants
appearing after determinization, are large (of the order of O(2poly(|X |+|T |+|L|))),
also resulting in out-of-memory exceptions on some large benchmarks.

Table 3. Synchronization-preserving v/s conflict-preserving deadlocks. N and T
denote the number of events and threads in the executions.

1 2 3 4 5 6 7

Benchmark N T SyncP ConfP

Deadlock Time Deadlock Time
JDBCMySQL-1 442K 3 2 0.48 s 2 4.45 s
JDBCMySQL-2 442K 3 1 0.43 s 1 0.35 s
ArrayList 2.63M 801 3 2.47 s – OOM
IdentityHashMap 2.71M 801 1 1.95 s 1 3.79 s
Stack 2.93M 801 3 3.77 s 3 261 s
LinkedList 3.40M 801 3 3.02 s 3 1174 s
HashMap 3.43M 801 2 2.34 s – OOM
WeakHashMap 3.48M 801 2 2.60 s – OOM
VecOOMr 3.80M 3 1 2.58 s 1 7.59 s
LinkedHashMap 4.20M 801 2 2.42 s – OOM
TreeMap 9.03M 801 2 2.44 s 2 1564 s
Total 36M 24.50 s >3015.18 s
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8 Related Work and Conclusions

Our work is inspired from runtime predictive analysis for testing concurrent
programs, where the task is to enhance the coverage of naive dynamic analysis
techniques to a larger space of correct reorderings [15,34,35]. A key focus here is
to improve the scalability of prediction techniques for concurrency bugs such as
data races [21,24,26,31,37,38], deadlocks [20,40], atomicity violations [4,11,27]
and more general properties [1,14] for an otherwise intractable problem [25]. The
theme of our work is to develop efficient algorithms for predictive concurrency
bug detection. We start with the setting of trace theory [28], where questions
such as checking whether two events can be flipped, which are intractable in
general [12,22,25], can be answered in constant space. The problem of relax-
ing Mazurkiewicz traces has been studied [7]. Recent work [12] has focused on
reasoning about commutativity of grains of events.

In contrast, our work takes an orthogonal angle and proposes that, for co-
safety properties, one might be able to perform relaxations by exploiting seman-
tic properties of programming constructs in multithreaded shared-memory pro-
grams. To this end, strong trace prefixes and its extension on a concrete alphabet
ΣRWL, strong reads-from prefixes, where the commutativity between events can
be stratified into strong and weak dependencies. This simple relaxation allows us
to capture a larger class of concurrency bugs, while still retaining the algorith-
mic simplicity that event based commutativity offers. We also show connections
between prior algorithms for (sync-preserving) data race and deadlock predic-
tion and our formalism, and arrive at asymptotically faster algorithms for them.
We envision that combining commutativity based on groups of events [12] and
prefix based prediction may be an interesting avenue for future research.
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Abstract. This paper reports on the integration of runtime monitor-
ing into fully-electric aircraft designed by Volocopter, a German air-
craft manufacturer of electric multi-rotor helicopters. The runtime mon-
itor recognizes hazardous situations and system faults. Since the cor-
rect operation of the monitor is critical for the safety of the aircraft,
the development of the monitor must follow strict aeronautical stan-
dards. This includes the integration of the monitor into different develop-
ment environments, such as log-file analysis, hardware/software-in-the-
loop testing, and test flights. We have used the stream-based monitoring
framework RTLola to generate monitors for a range of requirements.
In this paper, we present representative monitoring specifications and
our lessons learned from integrating the generated monitors. Our main
finding is that the specification and the integration need to be decou-
pled, because the specification remains stable throughout the develop-
ment process, whereas the different development stages require a sepa-
rate integration of the monitor into each environment. We achieve this
decoupling with a novel abstraction layer in the monitoring framework
that adapts the monitor to each environment without affecting the core
component generated from the specification. The decoupling of the inte-
gration has also allowed us to react quickly to the frequent changes in the
hardware and software environment of the monitor due to the fast-paced
development of the aircraft in a startup company.
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1 Introduction

The new generation of fully-electric aircraft pioneered by companies like Volo-
copter promises a revolution in urban air mobility. Fully-electric aircraft air taxis,
cargo drones, and longer-range passenger aircraft will provide transit solutions
that are emission-free and thus more sustainable and efficient than traditional
forms of air transport. A critical part of the safety engineering of such aircraft
is to analyze log-files and tests, as well as the real-time data obtained during
the actual flight, so that the health status of the system can be assessed and
mitigation procedures can be initiated when needed. In this paper, we report
on the design and integration of formally specified monitors into aircraft devel-
oped by Volocopter, based on the monitoring framework RTLola. The goal of
our collaboration over the past three years has been to explore the benefits and
challenges of applying formal runtime verification within the strict aeronautical
standards of aircraft development.

Volocopter specializes in the design, manufacturing, and operations of electric
Vertical Takeoff and Landing (eVTOL) vehicles. The company targets Urban Air
Mobility (UAM) operations, i.e., passenger and cargo transportation above and
around cities. These operations involve high population density on the ground
and high traffic density in the air. Consequently, all developments must meet
the highest level of safety similar to airliners: one failure for every billion hours
flown. To ensure such a level of safety, the design of the vehicles follows aero-
nautical standards, especially SAE’s ARP4754b [14] to ensure the coherency
between the concept of operation, requirements, design, and implementation.
The development cycle described in this standard uses a layered approach with
multiple verification and validation steps.

RTLola [3,8] is a formal monitoring framework that consists of a stream-
based specification language for real-time properties, an interpreter, and com-
pilers into software- and hardware-based execution platforms. An RTLola spec-
ification of hazardous situations and system failures is statically analyzed in
terms of consistency and resource usage and then automatically translated into
an FPGA-based monitor. This approach leads to highly efficient, parallelized
monitors with formal guarantees on the noninterference of the monitor with the
normal operation of the monitored system.

Previous case studies with RTLola [2] and similar frameworks, such as
R2U2 [10] and Copilot [12], have already shown that properties that are critical
for the safety of the aircraft can readily be expressed in such formal languages
and that the resulting monitors can be integrated into real systems. Our ambition
has been to go beyond such one-time applications, and integrate the specified
monitors into the complete development process. This means that the gener-
ated monitors are not only integrated into the specific setup of the case study,
but rather are continuously adapted according to the needs of the development
process.

We consider monitoring in all stages of the development process. Initially,
the role of the monitor is to annotate log-files and guide the user during an
offline analysis, e.g. these annotations split a test flight into flight-phases for
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separate inspection. Next, the monitor validates data from test-benches that
check that external components conform to their specifications, such as delivering
data within deadlines. Finally, the monitor validates safety requirements during
test flights. The monitoring specifications are based on the requirements of the
various regulatory authorities and cover a range of safety-critical requirements
from single-component checks to system-level health.

Our main finding is that the specification and the integration need to be
decoupled, because the specification remains stable throughout the development
process, whereas the different development stages require a separate integration
of the monitor into each environment. We achieve this decoupling with a novel
abstraction layer in the monitoring framework that adapts the monitor to each
environment without affecting the core component generated from the specifica-
tion. In the abstraction layer, the monitor is framed with two new components,
the event conversion and the verdict converison. The decoupling of the integra-
tion has also allowed us to react quickly to the frequent changes in the hardware
and software environment of the monitor due to the fast-paced development of
the aircraft in a startup company.

1.1 Related Work

Runtime monitoring is a scalable dynamic verification approach that has been
applied to a variety of domains [9,11]. For cyber-physical systems, many mon-
itoring tools exist [1,2,12], but despite integration being an important part of
the usage of monitoring [7], tools are often specific to certain environments
and leave embedding in different environments to the user, i.e., the user needs
to establish a connection, parse received events, and forward it to the moni-
tor. For some specific environments, these user efforts are reduced. For instance,
SOTER [4] a specification language that is based on the P language [5], was
recently extended [16] to produce code for the Robot Operating System (ROS),
which allows to just specify which ROS topics are subscribed and published.
Similarly, TeSSLa features keywords to subscribe and publish ROS topics [16].
A more generic approach is pursued by R2U2 Version 3.0 [10] which allows to
specify C-like structs. This makes it easy for engineers to receive structs and just
forward them to the monitor unit. In this work, we foster this kind of general-
ization by providing an automatic mapping of the received and the forwarded
events.

2 Stream-Based Monitoring

RTLola is a real-time monitoring framework [8] aimed at, but not exclusively
applicable to, cyber-physical systems. At its core is a stream-based specification
language that distinguishes between two kinds of streams: Input streams repre-
sent sensor readings from the system under observation. Output streams perform
computations over these input streams and other output streams. Special kinds
of output streams, called triggers, define violations based on boolean conditions.
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Equipped with a message, they notify the system operator when a violation is
detected. Consider the following example:
1 input altitude: Float
2 output average_alt @1Hz := altitude.aggregate(over: 60s, using: avg).defaults(to: 0.0)
3 trigger average_alt > 300.0

In this example, the monitor observes the altitude of the system through the
input stream altitude. The output stream average alt aggregates all values of
this input stream over the last minute and computes the average of these values.
It also highlights the real-time capabilities of RTLola. By explicitly annotating
the output stream with a frequency, the monitor cannot only react to events
but also proactively perform computations. More concretely, the output stream
evaluates at a fixed frequency of 1 Hz. The final defined trigger then notifies an
operator if the average altitude is above 300.

3 Setup

All components that are integrated into aircrafts designed by Volocopter need to
follow aeronautical standards, especially SAE’s ARP4754b [14]. This standard
ensures that the concept of operation, requirements, design, and implementation
are coherent. In general, it describes a development cycle using a layered app-
roach with multiple verification and validation steps, i.e., new components are
validated in different environments that get closer to the operation with each
step.

Integrating a monitor in this setup is two-folded: 1. the monitor verifies the
behavior of new components and 2. the monitor itself needs to be verified The
monitor can provide valuable feedback when new components undergo the afore-
mentioned validation steps. This feedback includes statistical assessments or
violations of given requirements. Yet, the monitor as a safety-critical component
needs to be evaluated in the same manner.

3.1 Monitoring Applications

This section presents four applications that highlight the benefit of the monitors
feedback during the development of new components:

1. Debugging. A monitor is developed alongside the component giving full infor-
mation about its internal state. During the execution of the system, the mon-
itor checks whether the component works as intended by the developer used
as a white-box testing component.

2. Validation. The monitor is developed independently of the component and
checks its behavior based on the inputs and outputs of defined test cases.
Hence, the monitor functions as a black-box testing component. The monitor
output on these test cases is then used as a report for internal validation,
validation of components by external companies, or as proof of conformity
for aviation authorities.
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3. Pre-Post-Flight Analysis. Before the flight, the monitor checks whether all
necessary components are operational. After the flight, the monitor com-
putes more sophisticated information to better evaluate the flight and detect
irregularities that were not detected during the flight.

4. In-Flight Analysis/Safe Integration. The monitor communicates with the
remote operator. e.g., through the User Interface of the ground control station,
to provide feedback about the safety of the drone. It validates the correct-
ness of individual components to ensure a safe flight or monitors the flight
operation. For instance, it supports the pilot by checking that the drone stays
within safe flight parameters such as a geofence.

Before presenting concrete specifications for each application in Sect. 5, we elab-
orate on the validation of a monitor.

3.2 Development Cycle for the Monitor

This section introduces the four environments into which the monitor must be
integrated to validate its correctness.

1. Log-File Analysis. This step evaluates the functional correctness of the speci-
fication. We test the generated monitors against traces that violate or satisfy
the specification and analyze the output of the monitor.

2. Software-in-the-Loop (SiL). The monitor interacts with simulated systems
and environments. This step is crucial for a runtime monitor since most tem-
poral behaviors are not visible until these tests.

3. Hardware-in-the-loop (HiL). This step is similar to the SiL environment. How-
ever, the monitor and the system run on the actual resource-constrained hard-
ware used in the aircraft. This setup brings even more time-related effects to
the evaluation and allows an evaluation with replayed flight data.

4. Flight Testing. Running the monitor in parallel with the flying aircraft allows
for assessing the impact of all effects coming from the aircraft, the ground
system, and the environment.

The integration of the monitors in the different validation environments poses
new challenges for the monitoring framework. In our experience, each step in the
development process relies on different ways of communication. For instance, in
the log-file analysis, events are processed in CSV-format, while during test flights,
the communication with the monitor uses a custom protocol over TCP. Yet, the
changes in the monitor should be as minimal as possible to simplify its validation.
Specifically, the specification has to remain unchanged after the Log-file Analysis
as otherwise its functional correctness is not guaranteed anymore.

4 Abstract Integration

In this section, we present our approach integrating the RTLola frame-
work [8] into the different environments described in Sect. 3.



212 J. Baumeister et al.

Fig. 1. Overview of the Generalization

Figure 1 shows an overview of this approach. The system on the left side rep-
resents the UAV under development. From a monitoring perspective, the current
step in the development cycle does not influence the underlying monitor, only its
integration into the system. This is depicted on the right side of Fig. 1. The mon-
itor framework receives or requests incoming data from the different components
of the system (Event), analyses this data, and produces an output (Verdict).
In the center of the monitoring framework is a fixed monitor generated from
a formal specification. This monitor has a fixed representation of the Monitor
Input and Monitor Output that are independent of the integration.

To bridge the communication gap between the system and the monitor, we
propose an abstraction layer that translates system outputs to monitor inputs
and vice versa. This abstraction also generalizes the monitor’s interface such that
no expert knowledge about the concrete monitor is necessary to integrate the
monitor. This abstraction layer can vary depending on the specific integration
into the development cycle but allows the monitor to remain unchanged following
the idea of decoupling the specification from the integration.

Our approach introduces two translation components: the Event
Conversion and the Verdict Conversion. Each component is again split into
two parts: data-acquisition/data-dispatch and data-conversion to allow a generic
implementation of the data-acquisition/data-dispatch. This results in reusable
and maintainable implementation while keeping the changes between the devel-
opment stages minimal.

In the following, we elaborate on the data-acquisition and data-conversion of
the Event Conversion in more detail. The results are transferable to the Verdict
Conversion.

4.1 Common Interfaces

The Event Conversion is a generic translation layer between the systems output
and the monitor input. During instantiation it validates the mapping between
the system output and the monitor input, representing the input streams in the
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specification. Hence, it checks that the Events are a superset of the Monitor
Input avoiding any runtime errors resulting from an invalid mapping. The data-
acquisition part of the Event Conversion is handled through the Event Source
interface, while the data-conversion is handled by an Event Factory. Both inter-
faces are defined in Fig. 2.

Fig. 2. Common interfaces for the Event Conversion.

The Event Source consists of a single function called next event. It is used
to communicate to the system that the monitor is ready to accept the next
event. The Event Factory as a counterpart has two functions: The new function
gets a description of the input streams derived from the specification and the
configuration of the Event Source. It then checks if each input in the specification
can be matched with the data provided by the Event Factory implementation.
If successful, it computes a static mapping for each input stream to a data
segment in an incoming Event. The second function create is called for every
Event and creates the internal event structure Monitor Input, given the input
mapping.

Implementation. We implemented the approach from this section in the RTLola
framework and were able to provide implementations for a variety of Event
Sources that are independent of the data format they receive. These include
basic file-based input methods such as reading from stdin or a local file, up to
network protocols that receive data over UDP, TCP, or MQTT. We also provide
ready-to-use Event Factories to parse, for example, data in CSV or PCAP format
as well as a binary data parser derived from a user-provided configuration.

Fig. 3. Interfacing a cus-
tom data structure.

Yet, implementing a custom Event Factory still
requires knowledge about the structure of the Monitor
Input that is undesired for a successful integration
in real-production where implementations need to
be maintained by non-monitoring experts. In the
RTLola framework, we provide further abstractions
over the interfaces presented in Fig. 2 to reduce the
required knowledge about the monitoring framework.
These abstractions range from helper implementations encapsulating common
functionality to procedural macros that automatically generate implementations



214 J. Baumeister et al.

Fig. 4. Overview of the concrete integrations that have been performed in the research
project

of these interfaces. Figure 3 shows an example of the macro application. It demon-
strates a simplified version of a GPS-Package, exposing the fields of the struct
to input streams named GPS lat and GPS lon.

5 Concrete Integration of Representative Specifications

This section provides a set of representative specifications to validate our app-
roach presented in Sect. 4. The specifications have been obtained by collabo-
rating with flight engineers or from official RTCA [13] standards and cover all
monitoring applications.

Figure 4 provides an overview of the concrete specifications and the integra-
tion of the generated monitors. The x-axis in this graph visualizes the different
environments in which the monitor was integrated, labeled at the top of the
figure. The y-axis of the graph in Fig. 4 maps the specifications to their applica-
tion from Sect. 3.1.

In our setup, log-files are usually given in the csv-format, the SiL is a Matlab
Simulation or a simplified replay of log-files and the Hil is a concrete replay of the
simulated data or flights on the actual hardware. The test flights were performed
on the VoloDrone, a cargo transportation drone that offers highly automated
flights with a range of 40km and a payload of up to 200kg. Not all monitors
could be validated up to a flight test, but we validated our approach in at least
two environments presented in Sect. 3.2. In our experience, the provided Event
Sources are sufficient for all environments. We either used the Event Source to
access data stored in files or used the implementations for the different network
protocols from Sect. 4. For the concrete implementation of the Event Factories,
we either use the ready-to-use CSV Event Factory or create new implementations
using the macros shown in Fig. 3. These implementations do not require any
internal knowledge of the monitoring tool as intended by our approach.

We published the specifications on Github1 after replacing some sensitive
information, e.g., by replacing some streams with arbitrary constants.

The rest of the section describes the general idea of the specifications and
refers to the concrete monitoring application.
1 https://github.com/reactive-systems/rtlola-uav-specifications.

https://github.com/reactive-systems/rtlola-uav-specifications
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Fig. 5. Excerpt of the specification of the Flight-Phase-Detection

Fig. 6. Excerpt of the requirements specific to one RCC

Flight-Phase-Detection (FPD). The FPD specification detects different flight
phases, helping the debugging of correct automated flights. In the log-file anal-
ysis, the monitor annotates previous test flights pointing the engineer to critical
points, e.g., when no clear phase could be detected. In the software and hardware
simulation, we evaluate the handling of asynchronous inputs and the timing of
the monitor. For a final flight test, the monitor was integrated into the ground
station to check if a flight phase is always detected moving the monitor also to
the in-flight application.

Figure 5 presents partially the specification for the FPD. It gets data from
several sensors and computes binary flags describing the current state of the
drone. One example is the rpm one check flag that compares the average rota-
tions per minute of all rotors against a threshold. In general, a simple state
machine then decides based on these flags if a flight phase is detected and
which one. However, the data of the sensors arrives asynchronously with dif-
ferent frequencies and we need to synchronize the flags for the comparison. For
this synchronization, the streams rpm on aggregate over the corresponding flags,
computing the percentage of how often the condition is satisfied during the last
second. This value is then used in phase 1 stream for the flight phase detection
instead of asynchronous rpm one check flag.

Remote-Control System (RCS). Assuring a safe development is especially chal-
lenging when combining in-house products with commercial off-the-shelf hard-
ware or software products. In our example, we validated the correctness of an
RCS that receives flight commands from different sources and dependent on
the configuration decides which source should be used by the system. More con-
cretely, we used RTLola to validate that the requirements given to the company
developing the RCS are satisfied by the resulting product. Besides the in-house
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validation, this approach comes with certification evidence that can be submitted
to the safety agency for the certification process.

As a redundant system, the RCS runs several instances of remote control
computers (RCCs) and unions their output. Figure 6 presents some stream-
declarations for requirements validating each RCC individually. This specifi-
cation includes checks of simple invariants such as property one that validates
if the sequence number increments, but also includes complex real-time proper-
ties exemplified with property seven. The stream declarations for this property
implement a watchdog. It reports a violation in the case that the connection to
the main controller is lost and the RCC does not switch from the main to the
secondary controller in a time frame of 200ms.

System Checks. We developed a specification to validate the system parame-
ters of different sensors. This specification included requirements monitoring the
battery level and voltage drops, pre-flight sensor inconsistencies, and accelera-
tions bound. Due to the sensible information of this specification that requires
knowledge of the complete system, we cannot publish this specification.

Geofence. Defining a geography volume and a contingency volume, where the
UAV will operate and can be used to maneuver in case of a problem, is part
of a risk assessment required for a flight permit in the specific category [6].
This risk assessment also requires a runtime validation that the position of the
UAV is within these bounds for which we use the monitors generated from an
RTLola specification. Similar to the FPD, we integrated the monitor in the
ground station to communicate with the remote pilot. We used the geofence
specification from previous case-studies with RTLola [2,15] describing the inter-
section between the flight vehicle line and the geofence polygon. Further, this
paper extends the specification to predict a possible breach of the geofence by
computing the minimum distance to each polygon line and to approximate the
time until that breach.

Detect-And-Avoid (DAA). We use the validation of the DAA function as a rep-
resentative specification for the safe integration monitoring application. This
function is essential for any UAV flying beyond visual line of sight and ensures
that the UAV avoids any collision with the surrounding traffic. One of the most
common sensors in commercial aviation is the ADS-B in receiver which can sense
all surrounding aircraft equipped with ADS-B out emitters. However, this sen-
sor is susceptible to attacks by spoofing, so the RTCA standard [13] demands
a safe integration in which this sensor needs to be supported by a secondary
sensor, usually an ”active surveillance” sensor. Instead of merging both signals,
it is common practice to use the active surveillance sensor data to check if parts
or all of the ADS-B in signal have been compromised. The challenges for the
RTLola specification are similar to the flight phase detection. The specifica-
tion compares data from sensors with different frequencies and validates these
frequencies. Compared to the FPD, the standard assumes in its validation these
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frequencies, so a comparison with the last values is sufficient instead of aggre-
gating the data.

6 Conclusion

This paper presents the results of our research project investigating the use of
runtime monitors implemented in the RTLola framework for the development
of unmanned aircraft systems. We demonstrate the benefits of decoupling the
specification and integration when the monitor has to undergo the same devel-
opment as other safety-critical components, in this safety-critical environment.
To keep the changes for the monitor during the development as minimal as pos-
sible, we presented an abstraction for monitoring frameworks. This abstraction
introduces two layers that translate between system outputs and monitoring
inputs and vice versa. We conducted a large case study to validate our approach
and presented representative specifications for different monitoring applications
derived from aeronautical safety standards and internal requirements from Volo-
copter. In a final step, we performed a test flight where the monitor reported
its feedback to the ground control station used by the remote pilot. From a
monitoring perspective, this approach can be used to start the development of
automatic contingencies triggered by the monitor instead of notifying the pilot.
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Abstract. We work in the context of a tool set developed for the Italian
Railway Network supporting the migration of legacy relay-based inter-
locking systems to a new software-based implementation. We propose to
generate test cases from the analog implementation in a way that they
are significant for a comparison with a cycle-based computational model,
by leveraging stable states abstraction. Our methodology found actual
bugs in the new code that were missed by other analyses, and aids in
documenting the expected differences with the legacy behaviors.

Keywords: railway interlockings systems · model-based testing ·
legacy systems · relay-based circuits · model checking

1 Introduction

Railway Interlocking Systems (RIS) implement the controlling logic that regu-
lates train traffic and prevents collisions in stations and railroad crossings. In
Italy, RIS were first implemented decades ago with electro-mechanical circuits
based on relays. Although this solution is working safely, the adopted technology
limits flexibility and makes maintenance difficult. For these reasons, the Italian
Railway Network (RFI) is migrating to a new software-based solution.

A tool-supported methodology for the specification, implementation, and
verification of interlocking systems has been recently developed in an ongoing
project between Fondazione Bruno Kessler (FBK) and RFI [5]. Here, C code
is automatically generated starting from standardized requirements written in
Controlled Natural Language (CNL) by railway experts. Given the critical nature
of the application, the project involves support for formal verification and testing
of the produced code against the specifications it was generated from.

A key observation is that the legacy relay-based circuits are considered to be
the golden specification of what RIS should implement and guarantee: hence, the
formalized requirements that the new software originates from must be checked
to be compliant with the old implementation, and the project includes a strategy
for validating the migration to the new development.
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The comparison between the new software (SwRIS) and the old circuits
(ReRIS) faces several difficulties. First, ReRIS were engineered and optimized
several years ago1, and a formal collection of requirements applicable to a soft-
ware development process is missing. Moreover, they are available only as hand-
written drawings on paper, making the inspection and their understanding even
more limited to a handful of people.

Second, SwRIS define generic types and classes that can be instantiated to
generate the code for a given train station by assigning values to parameters.
Such parameters define the topology of the station (e.g., the number and orien-
tation of routes, switches, etc.) and their instantiation is called a configuration.
Instead, ReRIS exist only in their concrete form, for specific train stations.

Third, SwRIS and ReRIS differ in the set of variables used and, most impor-
tantly, in the computational model. While the software is cycle-based, with a
discrete interpretation of time, the circuits depend on their intrinsic continuous
aspects (flowing of electrical current, delays in capacitors charging, . . . ).

Finally, a complete equivalence between ReRIS and SwRIS is not expected.
On one hand, the new software is specified to cover more functionalities than
before. On the other hand, ReRIS’s safety relies on several normative rules that
the railway operators should respect when interacting with the system: many
of these rules are now integrated into the controlling logic of the new software,
therefore preventing human errors by blocking illicit signals. Hence, it is expected
to have different behaviors under certain stimuli, e.g., a scenario that is possible
in ReRIS cannot be simulated in the SwRIS if it breaks the normative ReRIS
rules. Moreover, it would be important to properly document which assumptions,
that were implicit in the ReRIS, have been embedded in the SwRIS.

In this paper, we describe our strategy to address these difficulties when
pursuing the goal of testing SwRIS against test cases extracted from ReRIS.

For making available ReRIS in a format that is amenable to formal analyses,
we leverage the tool Norma [4] developed for RFI to digitalize and compile in
timed transition systems the drawings of the relay-based circuits. We benefit
from the Norma’s functionality that allows the user to analyze a portion of the
whole ReRIS2, and inject constraints and assumptions on the open inputs and
environment. By combining a part of the ReRIS with a stub that summarizes in
an abstract way the surrounding circuits, we are able to symbolically handle a
set of concrete configurations simultaneously.

Facing the comparison of two different computational models, we build on
the Abstraction Modulo Stability (AMS) framework [7]. AMS allows the user to
isolate the stable states traversed when accomplishing an action, disregarding
the internal transient steps needed. Applied in this context, by filtering the stable

1 The circuits were developed for different train stations throughout the 20th century,
roughly until the 1980s.

2 The transition system for the entire station is huge and likely to encounter scalability
issues if analyzed monolithically. Besides, the activity of collecting and digitalizing
the available circuits is still ongoing and some parts may be yet to be compiled.
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states, we obtain scenarios that should be shared by the two implementations
although they are internally working differently.

Guided by different coverage criteria we extract a set of stable scenarios, i.e.,
sequences of stable states, from the ReRIS. In contrast with classic model-based
testing, where test cases are extracted from the abstract model of the system’s
specifications, we derive test cases from a different concrete implementation used
as a reference. With a mapping provided by domain experts, every ReRIS sce-
nario (expressed in terms of electrical variables) is then translated in a SwRIS
test case (expressed in terms of software variables). Due to the generality of the
stub added to the ReRIS transition system, the obtained tests can be instan-
tiated in multiple configurations. After running the tests on the corresponding
configured code, we analyze the failing cases and distinguish (1) scenarios that
have been deliberately excluded in the SwRIS (and that must be documented),
or (2) scenarios witnessing real bugs in the SwRIS.

We show the benefits of integrating such an activity in the ongoing deploy-
ment of the new software. We extract scenarios from the relay-based implemen-
tation of a railroad switch and run the tests on the new code for a number of real
train stations. The analysis of the failed tests reported more than 10 real bugs
originating from errors in the specifications the new model-based development
starts with: although compliant with its requirements, the new software was
unintentionally behaving differently from the legacy reference implementation.
Other failed tests produced documentation about expected differences between
SwRIS and ReRIS.

The rest of the paper is structured as follows: Sect. 2 gives a high-level descrip-
tion of the legacy and the new development processes; Sect. 3 focuses on the
extraction of scenarios from ReRIS and their translation in tests for SwRIS;
Sect. 4 studies related works; Sect. 5 shows the results of including this testing
strategy in the development of SwRIS; we conclude in Sect. 6.

2 Operational Setting

Let p represent a configuration for a train station assigning parameters such as
the number of railway switches, the number and disposition of routes passing
through the station, etc.

On the left-hand side of Fig. 1, it is described how relay-based RIS had been
developed decades ago (see label legacy development). Starting from laws and
regulations documented in official books, a human modeler drew the schematics
of one train station at a time by combining copies of basic “general-purpose”
circuits (e.g., the one for a generic railroad switch) and linking their terminals.
Only these final results, named ReRIS[p] in Fig. 1, are now available.

On the right-hand side of Fig. 1, the label new development points at the
main phases of the new methodology for the definition of software-based RIS.

Aida is the part taking care of the generation of the new code. The new
process starts with Functional Requirements Specifications (FRS), written by
domain experts in Controlled Natural Language. From these, SysML diagrams
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Fig. 1. Legacy development of relay-based RIS (on the left), tool set supporting the
development of a software-based implementation (on the right).

(and documentation) are automatically produced: such diagrams model in the
form of an Extended Finite State Machine (EFSM) how the main railway entities
interact with each other from a general (or abstract) perspective, i.e., without
referring to a specific station. Generic C code (SwRIS.c) is automatically gen-
erated from the diagrams: a configured version of the logic is obtained by plug-
ging the parameters of a specific configuration p, hence obtaining an executable
SwRIS[p].

The new development in Aida is supported by other tools: Carmen, provid-
ing both parametric [12] and software model-checking [18], and Tosca, provid-
ing testing functionalities. Interestingly, abstract test cases (.atosca files) are
written by the user in Controlled Natural Language, or generated covering the
EFSM models. These tests are called abstract since they specify general con-
straints on the declared variables which may identify multiple configurations.
Tosca allows for instantiating an abstract test case to concrete and executable
versions (.ctosca) for all the known configurations p that are consistent with
the declarations. An execution environment, including a simulator of the physi-
cal yard and a simulator of the operator interface, then executes the test running
the corresponding configured logic SwRIS[p].

Finally, the tool Norma [4,25] completes the picture: it allows for the digi-
talization of the ReRIS[p] and their translation in timed transition systems (in
Timed SMV language). This step is fundamental to enable standard analyses,
such as simulations and reverse-engineering, on the circuits, otherwise available
only as handwritten drawings on paper.

3 Bridging the Gap Between ReRIS and SwRIS

In this section, we describe the process of extraction of test cases from ReRIS
corresponding to the red part in Fig. 1. In Sect. 3.1 we show how to collect simu-
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lations from a generic transition system according to a given coverage criterion.
In Sect. 3.2 we describe how the transition system compiled from a subset of
circuits can be combined with a handwritten Stub for the missing parts, and
obtain a model that abstracts multiple configured schemas. In Sect. 3.3 we show
how to map a simulation into an abstract test case, and in Sect. 3.4 we discuss
the outcomes of the analysis of the failing cases.

Background. We assume familiarity with Satisfiability Modulo Theory (SMT) [6]
and Linear Temporal Logic (LTL) [11,24]. We use capital letters X,Y for sets
of variables, X ′, Y ′ for their next versions, and x, y for their interpretations. We
abuse the notation and write P = Q for P ↔ Q when P and Q are Boolean
variables. Similarly for P = p, where p ∈ 2P . We work with timed transition
systems S = 〈X,Y,C, I(X), T (X,Y,X ′)〉, where X are the Boolean and theory
state variables, Y are the Boolean input variables, C are the real-valued clock
variables, I(X) and T (X,Y,X ′) are the initial and discrete transition formulae.
We denote with Π(S) the set of paths of S.

We work in the context of Abstraction Modulo Stability (AMS) [7], where σ
is a stability criterion defined by the user. While the AMS framework comes with
a number of suggestions for the stability definition, in this paper, we fix σ as the
non-urgency condition: a σ-stable state is a state where time can elapse, while
a transient (or urgent) state is forced to move with a discrete transition. Urgent
states are often introduced to model causal relations between components: intu-
itively, they correspond to states traversed when accomplishing a complex – but
instantaneous – action. For example, an (instantaneous) relay is an electrical
component that immediately closes a remote electrical switch when traversed
with current: it follows that the activation of a relay may trigger the activation
of several relays in sequence, until all effects are propagated. By choosing σ as
the non-urgency condition, all intermediate steps in this chain of activations are
seen as transient states (satisfying ¬σ), leading to the final σ-state. Such a σ
definition was chosen by domain experts among the ones suggested in [7]. The
use of other more aggressive stability definitions (e.g., considering as transient
the states that are traversed in a “short” time as well) is future work.

3.1 Simulations Extractor

We consider the problem of extracting a set of simulations3 from a transition
system according to a coverage criterion. The coverage criterion defines a set of
test targets, i.e., features to be stressed by at least one test in the test suite.
When leveraging model checking for tests extraction, the target to be covered is
considered a trap property [17] or a never-claim [15] for which a counter-example
is looked for. A counter-example for a trap property is a path of the model that
shows how the target under consideration is reached, i.e., covered.

Let S be a transition system on X variables and Y inputs, V,W be sets of
Boolean variables, with V ⊆ X, W ⊆ X ∪ Y . For a coverage criterion cov .crit ,
3 In this context, simulations will be also called test cases, and the obtained set of

simulations will be also called test suite [16].
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let Targ(cov .crit) return the corresponding targets, and for a t ∈ Targ(cov .crit),
let �t� return the corresponding LTL trap property. We consider three coverage
criteria:

– states(V ): the targets to cover are the possible assignments to V variables:
Targ(states(V )) .= 2V , and for each v ∈ Targ(states(V )), �v�

.= (V = v).
– trans(V ): the targets to cover are the possible transitions on V vari-

ables: Targ(trans(V )) .= 2V × 2V , and for each (v1, v2) ∈ Targ(trans(V )),
�(v1, v2)�

.= (V = v1 ∧ V ′ = v2).
– transσ(V,W ): the targets to cover are the possible σ-stable transitions on V

variables, with W inputs: Targ(transσ(V,W )) .= 2V × 2W × 2V , and for each
(v1, w, v2) ∈ Targ(transσ(V,W )),

�(v1, w, v2)�
.= (σ ∧ V = v1) ∧ G(W = w) ∧ X

(
(¬σ)U(σ ∧ V = v2)

)
.

Intuitively, a path covering the trap property �(v1, w, v2)� witnesses that with
the reception of only input w a σ-state where v1 holds moves to a σ-stable
state where v2 holds, possibly passing through a sequence of transient steps.

The test suite extracted from S according to cov .crit is a finite set
TS(S, cov .crit) ⊆ Π(S) such that:

∀t ∈ Targ(cov .crit) . ∃π ∈ TS(S, cov .crit) . π |= F(�t�).

Namely, the test suite includes the simulations π for the system that show how
the candidate targets can be reached. In practice, the path π is obtained as a
counter-example of the model-checking query S |= ¬F(�t�). For the candidate
traps that are not covered in TS(S, cov .crit), there is a proof of the fact that
S |= ¬F�t�, i.e., that they are unreachable.

The understandability and readability of the generated tests are important
for the engagement of domain experts in the process. Notably, the coverage
criterion of transσ(V,W ) allows for extracting test cases that are similar to the
ones that an engineer would manually write by looking at the circuits. By using
as V the variables representing the status of some relays and as W the variables
representing the switches connected to them, we obtain scenarios showing that
under certain inputs the relays will change configuration, and that under others
the relays will stay still. Considering stable transitions, instead of one-step ones,
is crucial to visualize the stable effects of a change in the inputs, and to disregard
the internal transient steps needed by the relays to propagate their signals. Our
method is designed to support this engineers’ standard practice of test case
extraction in an automated and complete way.

3.2 Working with a Partial ReRIS Model

For a parametrization p, let Sp be the entire corresponding ReRIS, which con-
sists of many tables and schematics that may be very large or not yet fully
translated in transition systems by Norma. Let R be the subset of circuits that
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are available in the form of a transition system. We consider the composition of
R with a system Stub, introduced to mock the behaviors of the non-available
circuits with respect to R’s inputs. Writing an adequate Stub is a hard task
since it should summarize many circuits and let R receive only the correct input
sequences. In our process, a domain expert is directly involved in this phase, sup-
ported by verifying a set of properties as sanity checks on the produced model.
The Stub is also validated by checking the TS extracted from the model. If a
missing (resp, spurious) target was noticed by the expert, they could fix the Stub
implementation by enlarging (resp, refining) its constraints.

The definition of the Stub attempts to generalize the concrete configura-
tion p of the schematics where R was taken from. It symbolically includes all
the parametrizations that might share the R part. We denote with p� such an
abstract parametrization, and with Sp� the composition of R and Stub.

Example 1. Consider as the original Sp the interlocking logic of Trento support-
ing 20 routes (named A, B, C. . . ) with 10 railroad switches (named r1, r2, r3. . . ).
Assume that the available part R is the one representing the switch r7, that is
shared by 2 concurrent routes A and B, running left-to-right and right-to-left
respectively. The safety logic ensures that switch is booked by one route at a
time. Instead of considering a stub only for such A and B, we use a wider Stub,
that mimics how any pair of routes interact with a similar switch, by treating
symbolically their running direction.

3.3 Mapping a ReRIS Simulation into an Abstract SwRIS Test

Since Sp� is made of a generic Stub, its simulations induce abstract test cases, that
can be concretized in multiple instantiations. In the middle of Fig. 2, we show
the skeleton of a sample test.atosca, with placeholders (in <..>) to be filled
with data read from the simulation π. While defining Stub, the domain expert
collects the constraints defining the compatible instantiations. The abstract test
starts with the declaration of the constraints on the used variables (see the “let”
namespace), read from the abstract configuration p�. Based on these constraints,
the expert also provides a dictionary where ReRIS expressions are mapped in
SwRIS expressions. In Fig. 2 we denote such a rewriting with function map().
This is a key element that allows for translating a π ∈ TS, i.e., a sequence of
assignments to ReRIS variables, into a sequence of test steps. Specifically, each
test step corresponds to a unique state of the simulation π and, except for the
initialization one, it corresponds to a command (or stimulus), read from the
π inputs (see keyword “do”). Each test step assumes the stub behavior, and
asserts the system state, both read from the corresponding π state: for a state
s, i.e., a complete assignment to the Sp� variables, we denote with s|Stub the
assignments to Stub variables only.

As it is discussed in [7], ReRIS simulations show transient implementation-
dependent states that are irrelevant from the perspective of high-level railway
functionalities. After an input is received, the system reacts with a chain of
internal steps, until stability is accomplished. We believe that in order to obtain
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Fig. 2. Extraction and analysis of concrete test cases from Sp� . σ-stable states of Sp�

are colored in gray (i.e., s0, s2, s5 satisfy σ, while s1, s3, s4 do not).

a test scenario for a different implementation we have to disregard such internal
steps, and consider only the stable ones. For this reason, the mapping of the π
states into test steps is limited to the σ-stable, i.e., non-urgent, states (colored in
gray in Fig. 2): we disregard the discrete steps that in the simulation are executed
at the same time (in a super-dense time domain) and retain all the states where
time elapses. In our models, we easily classify the states by checking the value of
the δ variable (introduced by Timed nuXmv for synchronizing the clocks) that
represents the time dwelling in each state.

The obtained sequence of test steps is about stable railway aspects only.
Since the SwRIS execution will go through its implementation-dependent steps
as well, we need to take stability into account in the test too, and allow for
more internal steps between the stimuli and the assertions. For this, we leverage
a Tosca’s syntactic construct specifying that the assertions should be verified
within N cycles (“within 100 cycles”, in Fig. 2).

In the .atosca file we also add traceability information mapping each test
step back to the originating state in π. Finally, we minimize the resulting set of
tests by removing the ones that are syntactically a prefix of another.

3.4 Test Execution

Each abstract test mapped from a π ∈ TS(Sp� , cov .crit) is then instantiated in a
set of concrete tests by looking for a concrete p that is consistent with the vari-
ables declarations. Then, each test.ctosca[p] is executed on the corresponding
code SwRIS[p]. If the test passes, then the scenario of π is reproducible in the
SwRIS[p]. If the test fails, then ReRIS and SwRIS react in different ways to the
same stimuli. A domain expert analyzes the failing case and decides whether
it witnesses a bug of the SwRIS, or whether the inputs received in the ReRIS
simulation are in fact not allowed by the rules that a human operator should fol-
low when controlling the interlocking. The latter case corresponds to a spurious
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failed test case (the “expected” case in Fig. 2), that can be fixed by refining the
environment Env around Sp� before restarting the procedure. We highlight the
importance of this iteration for reverse engineering and documentation purposes.
As a matter of fact, there is no proper report of the rules that are assumed by
the ReRIS and are instead implemented in the SwRIS.

4 Related Works

Several techniques exist for developing and verifying railway interlocking sys-
tems [9,14,20,21,23]. For relay-based RIS [1], tools for graphical modeling sup-
porting verification exist [19,22]. In these works, the circuits are described with
discrete formulae between the stable states of the components. In [3], CSP mod-
eling is proposed to also represent transient states, which are fundamental for
complete verification. Our work differs because our modeling format is electri-
cally accurate and includes transient states by construction; since in this context
we do not focus on verifying the circuits, we afterward formally select the stable
states to obtain more significant scenarios in a reverse-engineering perspective.
The importance of modeling the surrounding environment is also faced in [2].

Legacy systems migration is considered in [8], where the legacy and the new
systems are tested to behave consistently on a common test suite. In [26], the
migration of legacy systems to the cloud is validated, similarly to our case,
by generating tests from the legacy implementation. The key difference is that
in [26], the legacy system is manually abstracted and reverse-engineered into a
requirements model, whose paths are then used as test cases. We instead extract
simulations from the legacy model and abstract (i.e., remove transient states)
in each of them individually, therefore avoiding computing an abstract state
machine whose paths may be spurious.

5 Experimental Evaluation

We evaluate the benefits of including our approach in the development process
of the new software-based RIS. We started with the (drawing of an) electrical
circuit of a railroad switch. A domain expert wrote a generic Stub, able to cover
symbolically every pair of routes interacting with the switch, for any running
direction. Let Sp� be the resulting transition system compiled by Norma. We
extracted 6 sets of simulations of Sp� , according to different coverage criteria: the
criterion “states 8” (resp, “trans 4”) induces the set of simulations covering all
the reachable states (resp, transitions) of 8 (resp, 4) relays chosen by the domain
expert as significant. The sets induced by the criteria “transσ-A”, “transσ-B”,
“transσ-C”, “transσ-D” are considered by the domain expert the most significant
scenarios, because they show every way in which a specific relay changes (or does
not change) position according to the controlling signals. The extraction of the
simulations is performed with the model-checker nuXmv [10], leveraging ic3ia
algorithm [13]. We mapped each simulation in an abstract test case (891 in total)



228 A. Becchi et al.

Table 1. Sizes of the test suites before (TS) and after refining the environment (TSEnv );
FAIL percentages on original version of SwRIS (v0.1) and the one (v0.2) obtained by
fixing the signalled bugs; FAIL cases for each concrete test instantiation.

cov .crit size v0.1 size v0.1 v0.2 v0.2 # of FAIL

TS FAIL% TSEnv FAIL% FAIL% S1:c1 S1:c2 S2:c1 S2:c2 S3:c1 S3:c2 S4:c1 S4:c2

states 8 81 91% 54 70% 69% 36 36 42 36 42 36 36 36

trans 4 41 58% 13 25% 25% 3 3 4 3 4 3 3 3

transσ-A 38 0% 26 0% 0% 0 0 0 0 0 0 0 0

transσ-B 52 54% 36 40% 36% 11 11 19 11 19 11 11 11

transσ-C 298 34% 228 17% 13% 31 33 32 31 32 31 31 31

transσ-D 381 50% 372 39% 30% 101 108 150 101 150 101 101 101

which we instantiated on 4 different railway stations (S1, S2, S3, S4), and on two
different railroad switches each (c1, c2), hence obtaining 7128 concrete tests.

In the first three columns of Table 1, we show the size of the test suites and the
FAIL percentage obtained on the current version of the code, denoted with v0.1.
It’s important to observe that this version already went through other tests and
verifications foreseen in the new development process. By inspecting some of the
failing tests, a railway expert recognized expected failures (as in Fig. 2), where
the scenario was breaking the normative rules that a railway operator should
follow. We documented such cases and consequently refined the model by adding
an environment Env in the transition system. By restarting the procedure on
Sp� +Env , we extracted new test suites (denoted as TSEnv in Table 1) for each
criterion (totaling 5832 concrete tests), with more significant scenarios.

In the remaining failures, the domain expert found more than 10 actual bug
sources in the software logics, originating from errors in the Functional Require-
ments Specifications (FRS, the entry point of the new development, as in Fig. 1).
Based on the produced bug report, the FRS were fixed and a new version of the
code (denoted with v0.2) was generated. The “v0.2 FAIL%” column of Table 1
shows that the FAIL percentage actually decreases.

The remaining failures are currently under analysis and may lead to fur-
ther refinements of the environment (and more documentation), or to new bug
reports. The last 8 columns of Table 1 show how the remaining FAIL cases are
divided in different instantiations of the abstract test cases (four stations, 2 con-
crete switches each). We see that a ReRIS simulation may induce tests failing
only in some configurations of the parameters. This highlights the importance
of generalizing the Stub and instantiating in multiple stations the abstract tests.

Between the considered cov .crit , “states 8” and “trans 4” induce longer sim-
ulations (50 states on average), while the “transσ-” criteria induce shorter ones
(30 states on average): the latter are more significant and understandable for
the domain expert, who chose to prioritize the analysis of these test suites.

We also evaluated the coverage on SwRIS (in terms of lines of code) with
the execution of our tests. As expected, a good coverage level is limited to the
code of the railroad switch (our system-under-test). Notably, a domain expert
manually analyzed some of the uncovered lines and confirmed that they are
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related to functionalities added in the new implementation that did not exist in
the legacy ReRIS. We plan to automatize this process and produce additional
documentation on the migration.

6 Conclusions

We described our contribution within an ongoing industrial collaboration
between Fondazione Bruno Kessler and the Italian Railway Network (RFI), cur-
rently migrating from analog to software-based railway interlocking systems.
We applied test case generation via model-checking by using another concrete
implementation as a reference model; we avoid building an abstract model for
the legacy implementation, rather, we abstract each simulation into a scenario
that is significant when comparing two different computational models (analog
vs cycle-based), by skipping implementation-dependent transient states.

The approach we proposed in this paper is now integrated into the ongoing
process of development and validation of the new code. Although the latter
was already subject to substantial scrutiny in terms of other properties, this
new methodology targets the comparison with the legacy functionalities. Our
approach proved to be effective already from its first application on the railroad
switch circuits, as it allowed RFI engineers (i.e., not formal-methods experts)
to find more than 10 real bugs in the new software. As an additional feature,
our pipeline supports the documentation of the expected differences between the
two implementations due to changes in regulations.

We plan to apply the procedure to other circuits and analyze the bug reports
on the newly developed versions of the software.
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Abstract. We present soid, a tool for interrogating the decision mak-
ing of autonomous agents using SMT-based automated reasoning. Rely-
ing on the Z3 SMT solver and KLEE symbolic execution engine, soid
allows investigators to receive rigorously proven answers to factual and
counterfactual queries about agent behavior, enabling effective legal and
engineering accountability for harmful or otherwise incorrect decisions.
We evaluate soid qualitatively and quantitatively on a pair of examples,
i) a buggy implementation of a classic decision tree inference benchmark
from the explainable AI (XAI) literature; and ii) a car crash in a simu-
lated physics environment. For the latter, we also contribute the soid-gui,
a domain-specific, web-based example interface for legal and other prac-
titioners to specify factual and counterfactual queries without requiring
sophisticated programming or formal methods expertise.

1 Introduction

Recent advances in (often ML-based) artificial intelligence have led to a pro-
liferation of algorithmic decision making (ADM) agents. The risk that these
agents may cause harm – and the many demonstrated examples of them already
doing so, ranging across numerous domains [3,8,19,30] – has led to a significant
demand for technologies to enable their responsible use. In this work, we present
soid, a tool based on Judson et al.’s method [16] to account for software systems
using computational tools from the fields of formal methods and automated rea-
soning. The soid tool is primarily oriented towards supporting legal reasoning
and analysis, in order to better understand the ultimate purpose of an agent’s
decision making – as is often relied upon by various bodies of law.

In particular, rather than traditional verification methods which aim towards
proving a specific program property, soid instead aims to ‘put the agent on the
stand’. The design of soid enables factual and counterfactual querying – under-
lying a finding of fact – in support of human-centered assessment of the ‘why’ of
the agent’s decision making. Such an assessment can then in turn justify hold-
ing responsible an answerable owner or operator, like a person or company. We
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14682, pp. 233–246, 2024.
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Fig. 1. Architecture of the soid tool.

describe the functioning of the soid tool itself as well as a pair of examples of its
use on simulated harms. We also describe the soid-gui, a domain-specific interface
for soid applied to autonomous vehicles, allowing for adaptive and interpretable
analysis of driving decisions without requiring extensive programming skills or
familiarity with formal logical reasoning.

The basic flow of soid, depicted in Fig. 1, is adaptive and requires a human
in the loop. The human investigator – likely a practitioner such as a lawyer or
regulator supported as necessary by engineers – uses soid to better understand
the decision making of an agent program A. They do so by finding critical deci-
sion moments in the logs of A that transpired in the lead up to a harm, and then
relaxing or perturbing the program inputs to specify a (family of) counterfactual
scenario(s). The investigator then formulates a query asking what the behavior
of A ‘might’ or ‘would’ have been [20] under that (family of) counterfactual(s).
As we show in the design of our soid-gui, such questions can even be formu-
lated in user-friendly interfaces that abstract away all of the formal logic and
reasoning of soid for non-technical practitioners. Once a query is posed, a ver-
ification oracle using SMT-based automated reasoning – including constrained
symbolic execution – gets the investigator a prompt answer. They can then con-
tinue to ‘interrogate the witness’ until they are satisfied they have a sufficient
understanding of the purpose of A’s decisions, and terminate the loop.

Contribution. In summary, we developed a command line tool and Python
library soid, which uses symbolic execution (through Z3) and SMT solving
(through KLEE) to enable rigorous interpretation of the decision-making logic
of an autonomous agent. We demonstrate soid on a pair on instructive involving
machine-learned agents. In both cases, we find soid able to resolve counterfac-
tual queries with reasonable efficiency, even when adaptively posed through the
interpretable soid-gui aimed at non-technical practitioners.

A Motivating Example. Consider a program A which computes a decision tree
in order to classify the diabetes health risk status of an individual, a classic
example in automated counterfactuals with legal implications due to [31]. The
decision tree and code of A are shown in Fig. 2. However, the software system
surrounding A creates an implicit unit conversion bug: A computes the body-
mass-index (BMI) input to the decision tree, using height and weight parameters
from its input. But, A expects metric inputs in kg and m and so computes the
BMI without a necessary unit conversion, while the program inputs are instead
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Fig. 2. An incorrect decision tree classification. At left the decision subtree with the
incorrect path in bolded red and the missed ‘correct’ branch in dashed blue. At right,
the decision tree inference logic as implemented in C. (Color figure online)

provided in the imperial in and lb. Notably, A is ‘correct’ with respect to natural
specifications – as is the decision tree in isolation. The flaw occurs due to a
mistake in the composition of the software system as a whole. Nonetheless, the
system misclassifies many inputs, as (kg/m2) � (lb/in2) for the same quantities.

The goal of soid is to enable a legal practitioner to understand the pres-
ence of and conditions underlying a potential misclassification. Unlike statistical
methods for counterfactual analysis which only analyze the (correct) decision
model [31], the minimal assumptions underlying soid – namely, the lack of an
assumption that the broader software system correctly uses the decision model –
make it a more capable framework for analyzing this type of ‘implicit conversion’
failure. In §2.1 we run a small empirical analysis on A, showing how soid enables
a user to specify concrete factual and counterfactual queries to understand the
conditions under which the failure can occur and their implications.

1.1 Related Work

The explainable AI (XAI) and fairness, accountability, and transparency
(FAccT) communities have developed numerous methods and tools for enabling
accountability of ADMs, machine-learned or otherwise, for which [1,10,13] are
recent surveys. The closest tool to soid of which we are aware is the VerifAI
project [9,11]. Many of these tools and techniques focus on counterfactual rea-
soning in particular [7,14,15,24,31]. In comparison to the prevailing lines of this
research, soid emphasizes i) after-the-fact (or ex post) analysis for algorithmic
accountability in the style of with legal reasoning; ii) the use of SMT-based ver-
ification technologies capable of resolving counterfactual questions about whole
families of scenarios; and iii) emphasis on the ‘code as run’, rather than eval-
uating a specific component like a particular decision model, or requiring an
abstracted program representation or a formal model of the (often complex social
and/or physical) environment the agent operates within.

2 soid Tool Architecture and Usage

Figure 1 illustrates the architecture of soid. The tool is implemented in Python,
and invokes the Z3 SMT solver [26] for resolving queries.
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Fig. 3. A counterfactual specified using soidlib for a simplified grid-based car crash
implementation (also available within our codebase alongside our soid-gui). This query
leaves the turn signal of the ‘other’ car at (2, 1) unconstrained, defining a counterfactual
family. The objects E , S , and D are user-specified in an omitted declare function,
including datatype.

Before working with soid, the investigator must use their domain expertise
to find and extract the critical moment they care about from the factual trace
within the logging infrastructure of A. We assume some mechanism guarantees
the authenticity of the trace, such as an accountable logging protocol, as has
been previously proposed for cyberphysical systems [33]. After extracting the
trace the investigator must specify the i) (counter)factual query defining the
factual, counterfactual, or family of counterfactual scenarios the query concerns;
as well as ii) some possible agent behavior. In the remainder of this section, we
explain how the user does so using soid and a Python library interface it exposes
called soidlib. Constraints are specified through an API similar to Z3Py, see
Fig. 3, while queries can be written as independent Python scripts or generated
dynamically within a Python codebase.

Upon invocation, soid symbolically executes A to generate a set of feasible
program paths as constrained by the (counter)factual query. The constraints
in that query must be provided directly to the symbolic execution engine – an
integration API exposes the query to the symbolic execution in order to enable
this communication, or the user can do so directly outside soid itself. After the
symbolic execution completes, soid formulates the query formula and invokes Z3
to resolve it. It then outputs to the user the finding, as well as any model –
which exists in the event of a failed ‘would’ or successful ‘might’ query.

Query API. The query API of soid is exposed as a Python library called soidlib.
A query specified using soidlib is composed of a name and query type, as well as
a set of functions. These functions return either soidlib variable declarations or
constraints, which are in either case automatically encoded into a set of corre-
sponding Z3Py constraints for use during SMT solving to establish the satisfi-
ability or validity of the query. An example query is shown in Fig. 3. The main
API function interfaces the user must define in order to encode their query are:
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– declare() : A function that must return three dictionaries of soidlib variable
declarations, enumerating the set of environmental inputs ( E ) and internal
state inputs ( S ) over which the factual or (family of) counterfactual sce-
nario(s) are defined, as well as the set of decision ( D ) variables over which
the behavior is defined. In order to do this soidlib exposes a variety of variable
types, which it then converts into Z3 statements with the appropriate logical
sorts as required by the underlying SMT logic (e.g., encoding an object of
integer type as an object of the 32-bit bitvector sort).

– environmental(E) : A function that must return a soidlib constraint over
E describing the environmental program inputs.

– state(S) : A function that must return a soidlib constraint over S describing
the internal state program inputs.

– falsified(E, S) : An optional function, returns a soidlib constraint encod-
ing a concrete factual to be negated from the query formula, and therefore
excluded from the set of possible output models.

– behavior(D) : A function that must return a soidlib constraint over D
describing the behavior being queried.

Language Support. Through a modular API soid extensively supports any sym-
bolic execution engine that produces output in the SMT-LIB format [4]. An
integrator needs only to write a Python class implementing an interface between
soid and the engine. As such, soid supports agents written in any program-
ming language for which a suitable symbolic execution engine is available. We
use the KLEE family of symbolic execution engines throughout our bench-
marks. At present, support is integrated into soid for C language programs with
floating-point instructions using KLEE-Float [21], working over the SMT logic
of QF FPBV, the quantifier-free theory of floating-point and bitvectors. Support
is also integrated for C and C++ language programs without floating-point
using mainline KLEE [5], producing representations in QF ABV, the quantifier-
free theory of arrays and bitvectors.1 KLEE can be further extended to ana-
lyze other LLVM-compilable languages such as Rust [22], while other engines
exist for compiled binaries [29] and many other languages including Java [2] and
Javascript [23].

Symbolic Execution API. Adding support for a new symbolic execution engine to
soid requires specifying between two and five functions: preprocess , execute ,

parse , clean , and postprocess , which are all hooked into the main soid

execution path. Only execute and parse are necessary – they must respec-
tively invoke the symbolic execution and then process the output into a list
of Z3Py statements capturing the possible path conditions. Optionally, clean
provides a hook for cleaning up temporary or output files generated by the
symbolic execution engine, while preprocess and postprocess are designed

1 Adding support for floating-point instructions into mainline KLEE remains at
present an open enhancement for the project, see: https://klee.github.io/projects/.

https://klee.github.io/projects/


238 S. Judson et al.

to automate additional steps that may be desirable for the symbolic execu-
tion – the former is given access to the query, the latter additionally to the
set of variables declared along the path conditions. For example, KLEE-Float
automatically converts arrays into bitvectors using a technique called Acker-
mannization [25], and renames any such variables in the process. The KLEE-
Float preprocess function packaged with soid i) casts objects as necessary;
and ii) constrains them to equal the corresponding input declarations in the
declare function so that they alias those inputs, e.g., adding the constraint
(= (fp.to ieee bv data) data ackermann!0) where data ackermann!0 is

KLEE-Float’s synthesized, Ackermannized representation of data .

Query to Symbolic Execution. One of the major benefits of the ex post method
of soid is that the (counter)factual query specified by the user can be used to
constrain what parts of the program A are relevant to the scenarios in question
and therefore must be included in the formula being checked. However, in order
to do so the query must also be exposed to the symbolic execution engine in
order to limit the symbolic execution to just the (ideally small) set of program
paths feasible under the (counter)factual scenario conditions. This can either
be done independent of soid, e.g. by the code invoking soid when it is used as a
library, or by using the preprocess hook in the symbolic execution framework.
At present, our codebase exclusively uses the external method.

Invocation. There are two ways to use soid: through a command line script (the
soidcli) or directly as a Python library. If the latter, the user calling the code
must declare a soid.Oracle object and configure it with i) a soid.Query ; ii)
the path to the A; and iii) the identity of the symbolic execution engine. If using
the soidcli, the CLI script declares the oracle object for the user, who must
specify the path to where (a collection of) soid.Query objects can be found
declared in independent Python scripts (as well as the same path to A and sym-
bolic execution engine identity). In case multiple variants of A are required in
order to specify different symbolic execution preconditions for different counter-
factual families, soid passes an identifier corresponding to a priority index
that the user can specify through the CLI interface. In the examples present in
the soid codebase this identifier is passed to a Makefile, which is then used to
invoke KLEE(-Float) on the correct variant.

2.1 Example #1: Decision Tree Inference

Using soid, we analyzed our decision tree misclassification motivating example.
The results are summarized in Table 1, and were gathered on an Intel Xeon
CPU E5-2650 v3 @ 2.30GHz workstation with 64 GB of RAM. We used scikit-
learn [27] to train a decision tree over the Pima Indians dataset as used in [31].
We then implemented A as a C program that preprocesses the data – triggering
the software system bug, as it does so without the necessary unit conversion –
and then infers a binary classification using the decision tree. In order to create
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Table 1. Benchmark results for our incorrect statistical inference example.

timings (avg. n = 10)

model output symbolic (s) solving (s) total (s) paths

→ ϕfact, low risk?

dt ✔ 0.746 4.896e-03 0.812 1

�→ ϕ∗ ≡ ϕfact[(weight = 249.973) �→ �], ever high risk?

dt ✔ 2.277 1.655 4.009 2

the factual basis for an investigation, we then invoked A on an example input
where the unit conversion bug leads to the misclassification of the input as low
risk instead of high risk.

We posed two queries:

1. Did the classification happen as described?
2. Does there exist a weight input parameter for which the instance is instead

classified as high risk instead?

The former query provides a baseline for how much the counterfactual possi-
bility of the latter query increases the cost of solving. It also fulfills the natural
goal of many accountability processes to formally confirm apparent events and
create a confirmed, end-to-end chain of analysis so that there is the highest pos-
sible societal confidence in any policy changes or punishments derived it. Both
of these queries were resolved by soid in the positive, requiring at most a few
seconds, even over a program structure in A that includes recursive invocations
of floating-point comparison operations. Together, they demonstrate the weight
input to A was causal for the classification, and establish its lack of unit conver-
sion as contributory to the (harmful) misclassification decision.

Working with A, soid provides an adaptive oracle allowing the investigator
to query its behavior and receive prompt and useful answers. The output of
the program is also simple and interpretable. Without an intermediating GUI or
developer tools, soid does require comfort with its API and the logical framework
of expressing (counter)factuals and program outputs, but we do not expect a
usable interface would be meaningfully difficult to integrate for this example.

3 soid-gui Architecture and Usage

The soid-gui is a web-based interactive interface for soid applied to the domain of
autonomous vehicle accountability. It demonstrates that the use of soid can be
managed by a high-level abstraction that exposes to non-technical practitioners
the expressiveness and capacity of the tool, but none of its logical or technical
complexity. We demonstrate the design and use of the soid-gui in Fig. 4.2

2 The repositories for soid and soid-gui are available at https://github.com/sjudson/
soid and https://github.com/mattelacqua/duckietown-soid, respectively.

https://github.com/sjudson/soid
https://github.com/sjudson/soid
https://github.com/mattelacqua/duckietown-soid
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Architecturally, the soid-gui is composed of three main components: i) a fron-
tend written in React; ii) a backend server written in Python that operates a
vehicle simulation using the Duckietown simulator for the OpenAI Gym (hence-
force Gym-Duckietown [6]) and also interfaces with soid; and iii) a proxy server
that manages communication between the browser frontend and the server back-
end. The Duckietown simulation is used as a stand-in for the real vehicle logs and
instrumentation on which soid would be deployed in practice. We designed the
crossroads intersection simulation interface to mimic the real-time driving con-
text interface generated by contemporary autonomous vehicles, like those pro-
duced by Tesla. We stress that Gym-Duckietown is not exposed to soid, which
operates exclusively over the program (and decision model) A. Gym-Duckietown
is used only to simulate crashes and generate logfiles as the basis for soid queries.

Outside of the soid investigatory loop, the user can first use the soid-gui
to design a car crash scenario by manipulating the location, destination, and
other properties of the simulated car through menus and a drag and drop inter-
face (see Fig. 4). The soid-gui also allows the user to select from among five
different decision logics for the ego car: a directly programmed ‘ideal’ car, and
four reinforcement-learned (specifically, Q-learned [32]) agents, colloquially the
‘defensive’, ‘standard’, ‘reckless’ and ‘pathological’ decision models. They are so
named on the basis of the reward profiles used to train them.

After an iteration of the simulation (usually, after a crash occurs), the soid-gui
allows the user to operate the soid investigatory loop. Using a slider the user can
pick out a moment from the logs of the agent, and supported by detailed logging
information about the inputs to A at each timestep can select the critical moment
(see Step 1 in Fig. 4). They can then use car-specific dropdown menus to specify
counterfactuals about any of the agents in the system in a user-friendly manner,
which fully abstracts away the underlying logical formalism (Step 2 in Fig. 4).
Finally, they can invoke soid on the query they have specified by asking whether
the ego car ‘might’ or ‘would’ move or stop under the (family) of counterfactual
scenario(s) they have defined (Step 3 in Fig. 4). After solving the soid-gui then
presents an interpretable answer, including a valuation for any variables the
counterfactual was stated over when one is available (Step 4 in Fig. 4). The user
can then clear or adjust their counterfactual statement and ask further queries,
until satisfied they have reached an understanding of the car’s decision making
under the selected decision model.

To use soid, the soid-gui first writes out a C language file with the neces-
sary constraints for the KLEE-Float symbolic execution. It then creates the
soid.Query and soid.Oracle objects, allowing it to invoke soid through the
Python library interface. Once soid has invoked KLEE-Float and Z3 to deter-
mine the answer to the query the output is then processed. When applicable, this
includes model parsing. The result is then passed back to the browser frontend
to be shown to the user.
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Fig. 4. After the (simulated) execution, the investigator (1) selects a critical moment;
(2) poses a counterfactual query; (3) invokes the SMT solver; and (4) is presented with
the response from the oracle.

3.1 Example #2: Three Cars on the Stand

We use the soid-gui to investigate a crash in Fig. 4. It is a simple intersection
scenario, where the blue ‘ego’ car under investigation strikes the broadside of the
red ‘other’ car which has indicated a right turn but proceeded straight nonethe-
less. As the red car possesses the right of way the fault lies with the blue car. We
investigate ‘to what purpose’ the blue car entered in the intersection, in order
to grade the severity of its misconduct in conjunction with legal norms that fre-
quently apply the greatest possible penalties to purposeful action [16]. Notably,
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this crash occurs for all three of the ‘standard’, ‘reckless’, and ‘pathological’
decision models (but not the ‘defensive’ model).

Table 2. Benchmark results for our car crash example. For the final query, we phrased
it as both a ‘would’ and a ‘might’ counterfactual for comparison.

timings (avg. n = 10)

model output symbolic (s) solving (s) total (s) paths

→ ϕfact, moved?

standard ✔ 3.575 4.290e-03 4.162 1

impatient ✔ 3.607 4.317e-03 4.193 1

pathological ✔ 3.626 4.249e-03 4.212 1

�→ ϕ∗ ≡ ϕfact[(agent1 signal choice = 2) �→ (agent1 signal choice ∈ {0, 1, 2})], always move?

standard ✘ 3.979 2.371 7.754 3

impatient ✔ 4.001 2.307 7.703 3

pathological ✔ 3.958 2.326 7.681 3

�→ ϕ∗[(agent1 pos x = 1.376) �→ (1.0 ≤ agent1 pos x ≤ 1.5)], always move?

standard ✘ 154.7 17.14 179.7 19

impatient ✔ 207.6 4.622 220.1 19

pathological ✘ 141.1 17.34 166.1 19

�→ ϕ∗ ∧ (agent2 pos x = 1.316) ∧ (agent2 pos z = 0.378) ∧ · · · , always move?

standard ✘ 8.995 4.111 16.74 3

impatient ✔ 9.107 3.951 16.71 3

pathological ✔ 9.037 3.913 16.54 3

�→ ϕ∗ ∧ (agent2 pos x = 1.316) ∧ (agent2 pos z = 0.378) ∧ · · · , ever not move?

standard ✔ 8.483 4.029 16.33 3

impatient ✘ 8.979 3.848 16.46 3

pathological ✘ 9.087 3.941 16.70 3

We pose three queries about the blue car’s decision making at the moment
when it releases the brakes and enters the intersection (Step 1 in Fig. 4):

1. Did the blue car actually decide to move, as it appeared to?
2. Could a different turn signal have led the blue car to remain stationary?
3. If the blue car had arrived before the red car and the red car was not signaling

a turn, might the blue car have waited to ‘bait’ the red car into entering the
intersection and creating the opportunity for a crash?

Intuitively, the second question should distinguish the ‘standard’ car from the
‘reckless’ and ‘pathological’, which should continue to move into the intersection
no matter what. The third question should then distinguish between the ‘reckless’
and ‘pathological’ cars, with the former taking the opportunity for a clean path
through the intersection, while the latter lies in wait.

There are natural explanations for the behavior of the other decision models:
the ‘standard’ car is undertaking common human driving behavior given the
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perception of an unobstructed path through the intersection, the ‘reckless’ car
demonstrates a prioritization of individual speed over collective safe driving,
while the ‘pathological’ car might be attempting to trigger a crash for insurance
fraud. Notably, in the case of the ‘reckless’ car, we do not want to inherently
describe that behavior as incorrect as verification methods might, such as any
implementing [28]. It could be that exigent circumstances necessitate reckless
behavior, and that the blue car not entering the intersection as fast as possible
would trigger a greater harm than a minor crash.

The results of our benchmarks are summarized in Table 2. As before, all
of the statistics were gathered on an Intel Xeon CPU E5-2650 v3 @ 2.30GHz
workstation with 64 GB of RAM. Each heading in Table 2 describes a family
of (counter)factual scenarios and behavior, as well as whether the query is a
verification (‘would...?’) or counterfactual generation (‘might...?’) one. The rows
list the decision model invoked within A, the answer as determined by the veri-
fication oracle, timings, and the total number of feasible paths.

We find that soid provides an interpretable and adaptive oracle allowing the
investigator to query a sequence of counterfactuals without directly interacting
with A or the machine learned-model underlying it. Most of our queries resolved
within < 20s, providing effective usability. The results of the queries demonstrate
the distinctive behaviors expected of the three conflicting purposes, allowing a
capable investigator to distinguish them as desired.

4 Conclusion

We briefly conclude by considering some future directions for extensions to soid.

Supporting DNNs. Many modern machine-learned agents rely on models built
out of deep neural network (DNN) architectures. Extending soid to support
such agents – most likely by relying on recent innovations in symbolic execution
for neural networks [12] and SMT-based neural network verifiers [17,18] – is a
possible direction for increasing the utility of soid.

Programming Counterfactuals. Although soid is adaptive, that does not neces-
sarily mean it needs to be interactive. A further possible direction would be
to design a counterfactual calculus as the basis for a programming language
that would invoke soid as part of its semantics. Such a language could poten-
tially be the basis for formalizing legal regimes for which counterfactual analysis
forms a critical component. A related direction would be to integrate with a sce-
nario specification language like SCENIC from the VerifAI project [9,11] to add
another layer of capability onto the specification of families of counterfactuals.
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Abstract. This paper serves as a comprehensive system description of
version 2.0 of the Marabou framework for formal analysis of neural net-
works. We discuss the tool’s architectural design and highlight the major
features and components introduced since its initial release.

1 Introduction

With the increasing pervasiveness of deep neural networks (DNNs), the formal
analysis of DNNs has become a burgeoning research field within the formal
methods community. Multiple DNN reasoners have been proposed in the past
few years, including α-β-CROWN [56,65,69], ERAN [45–47], Marabou [32], MN-
BaB [16], NNV [35,51], nnenum [4], VeriNet [24,25], and many others.

We focus here on the Marabou [32] tool, which has been used by the research
community in a wide range of formal DNN reasoning applications (e.g., [9,12,17,
18,22,26,34,37,49,54,64,66], inter alia). Initially, Marabou was introduced as a
from-scratch re-implementation of the Reluplex [31] decision procedure, with a
native linear programming engine and limited support for DNN-level reasoning.
Over the years, fundamental changes have been made to the tool, not only from
an algorithmic perspective but also to its engineering and implementation.

This paper introduces version 2.0 of Marabou. Compared to its predeces-
sor, Marabou 2.0: (i) employs a new build/test system; (ii) has an optimized
core system architecture; (iii) runs an improved decision procedure and abstract
interpretation techniques; (iv) handles a wider range of activation functions;(v)
supports proof production; (vi) supports additional input formats; and (vii) con-
tains a more powerful Python API. Due to these changes, the original system
description [32] no longer gives an accurate account of the tool’s current capa-
bilities. Our goal in this paper is to close this gap and provide a comprehensive
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14682, pp. 249–264, 2024.
https://doi.org/10.1007/978-3-031-65630-9_13
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Fig. 1. High-level overview of Marabou 2.0’s system architecture.

description of the current Marabou system. We highlight the major features
introduced since the initial version, describe a few of its many recent uses, and
report on its performance, as demonstrated by the VNN-COMP’23 results and
additional runtime comparisons against an early version of Marabou.

2 Architecture and Core Components

In this section, we discuss the core components of Marabou 2.0. An overview of
its system architecture is given in Fig. 1. At a high level, Marabou performs satis-
fiability checking on a set of linear and non-linear constraints, supplied through
one of the front-end interfaces. The constraints typically represent a verifica-
tion query over a neural network and are stored in an InputQuery object. We
distinguish variable bounds from other linear constraints, and piecewise-linear
constraints (which can be reduced to linear constraints via case analysis) from
more general, non-linear constraints.

Variables are represented as consecutive indices starting from 0. (In)equations
are represented as Equation objects. Piecewise-linear constraints are represented
by objects of classes that inherit from the PiecewiseLinearConstraint abstract
class. The abstract class defines the key interface methods that are implemented
in each sub-class. This way, all piecewise-linear constraints are handled uni-
formly in the back end. Similarly, each other type of non-linear constraint is
implemented as a sub-class of the new NonlinearConstraint abstract class. Ini-
tially, Marabou only supported the ReLU and Max constraints. In Marabou 2.0,
over ten types of non-linear constraints (listed in the extended version of the
paper [61]) are supported.
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2.1 Engine

The centerpiece of Marabou is called the Engine, which reasons about the satisfi-
ability of the input query. The engine consists of several components: the Prepro-
cessor, which performs rewrites and simplifications; the Network-level Reasoner,
which maintains the network architecture and performs all analyses that require
this knowledge; the SMT Solver, which houses complete decision procedures for
sets of linear and piecewise-linear constraints; and the (MI)LP Interface, which
manages interactions with external (MI)LP solvers for certain optional solving
modes as explained below.

Two additional modules are built on top of the Engine. The Multi-thread
Manager spawns multiple Engine instances to take advantage of multiple pro-
cessors. The CEGAR Solver performs incremental linearization [13,62] for non-
linear constraints that cannot be precisely handled by the SMT Solver.

Preprocessor. Every verification query first goes through multiple prepro-
cessing passes, which normalize, simplify, and rewrite the query. One new nor-
malizing pass introduces auxiliary variables and entailed linear constraints for
each of the piecewise-linear constraints, so that case splits on the piecewise-
linear constraints can be represented as bound updates and consequently do not
require adding new equations.1 This accelerates the underlying Simplex engine,
as explained in the SMT Solver section below. Another significant preprocess-
ing pass involves iterative bound propagation over all constraints. In this pro-
cess, piecewise linear constraints might collapse into linear constraints and be
removed. This pass was present in Marabou 1.0, but could become a runtime
bottleneck; whereas Marabou 2.0 employs a data structure optimization that
leads to a ∼60x speed up. Finally, the preprocessor merges any variables dis-
covered to be equal to each other and also eliminates any constant variables.
This results in updates to the variable indices, and therefore a mapping from old
indices to new ones needs to be maintained for retrieving satisfying assignments.

SMT Solver. The SMT Solver module implements a sound and complete, lazy-
DPLL(T)-based procedure for deciding the satisfiability of a set of linear and
piecewise-linear constraints. It performs case analysis on the piecewise-linear con-
straints and, at each search state, employs a specialized procedure to iteratively
search for an assignment satisfying both the linear and non-linear constraints.

Presently, the DeepSoI procedure [58] has replaced the Reluplex proce-
dure [31,32] as Marabou’s default procedure to run at each search state.
The former provably converges to a satisfying assignment (if it exists) and
empirically consistently outperforms the latter. DeepSoI extends the canonical

1 For example, for a piece-wise linear constraint y = max(x1, x2), we would introduce
c1 : y − x1 = a1 ∧ a1 ≥ 0 ∧ y − x2 = a2 ∧ a2 ≥ 0, where a1 and a2 are fresh
variables. This way, case splits on this constraint can be represented as c2 : a1 ≤ 0
and c3 : a2 ≤ 0, respectively. This preprocessing pass preserves satisfiability because
the original constraint is equisatisfiable to c1 ∧ (c2 ∨ c3).
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sum-of-infeasibilities method in convex optimization [10], which determines the
satisfiability of a set of linear constraints by minimizing a cost function that
represents the total violation of the constraints by the current assignment. The
constraints are satisfiable if and only if the optimal value is 0. Similarly, Deep-
SoI formulates a cost function that represents the total violation of the current
piecewise-linear constraints and uses a convex solver to stochastically minimize
the cost function with respect to the convex relaxation of the current constraints.
In addition, DeepSoI also informs the branching heuristics of the SMT Core,
which performs a case split on the piecewise-linear constraint with the largest
impact (measured by the pseudocost metric [58]) on the cost function. The Deep-
SoI procedure is implemented for all supported piecewise-linear activation func-
tions. The convex solver can be instantiated either with the native Simplex
engine or with an external LP solver via the (MI)LP interface (detailed below).
The latter can be more efficient but requires the use of external commercial
solvers.

One optimization in Marabou 2.0’s Simplex engine is that once the tableau
has been initialized, it avoids introducing any new equations — a costly oper-
ation that requires re-computing the tableau from scratch. This is achieved by
implementing case-splitting and backtracking as updates on variable bounds (as
mentioned above), which only requires minimal updates to the tableau state.
By our measure, this optimization reduces the runtime of the Simplex engine
by over 50%. Moreover, the memory footprint of the solver is also drastically
decreased, as the SMT Core no longer needs to save the entire tableau state
during case-splitting (to be restored during backtracking).

Network-Level Reasoner. Over the past few years, numerous papers (e.g.,
[41,46,55,68,70], inter alia) have proposed abstract interpretation techniques
that rely on network-level reasoning (e.g., propagating the input bounds layer by
layer to tighten output bounds). These analyses can be viewed as a stand-alone,
incomplete DNN verification procedure, or as in-processing bound tightening
passes for the SMT Solver. Marabou 2.0 features a brand new NetworkLevelRea-
soner class that supports this type of analysis. The class maintains the neural
network topology as a directed acyclic graph, where each node is a Layer object.
The Layer class records key information such as weights, source layers, and
mappings between neuron indices and variable indices. Currently, seven differ-
ent analyses are implemented:[i] 1.interval bound propagation [20]; 2. symbolic
bound propagation [55]; 3. DeepPoly/CROWN analysis [46,70]; 4. LP-based
bound tightening [50]; 5. Forward-backward analysis [59]; 6.MILP-based bound
tightening [50]; and 7. iterative propagation [57]. Analyses 2–7 are implemented
in a parallelizable manner, and analyses 4–7 require calls to an external LP
solver. By default, the DeepPoly/CROWN analysis is performed. The Network-
level Reasoner tightly interleaves with the SMT Solver: the network-level reason-
ing is executed any time a new search state is reached (with the most up-to-date
variable bounds), and the derived bound tightenings are immediately fed back
to the search procedure.
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It is noteworthy that the user does not have to explicitly provide the neu-
ral network topology to enable network-level reasoning. Instead, the network
architecture is automatically inferred from the given set of linear and non-linear
constraints, via the constructNetworkLevelReasoner method in the InputQuery
class. The Network-level Reasoner is only initialized if such inference is success-
ful. Apart from the abstract interpretation passes, the Network-level Reasoner
can also evaluate concrete inputs. This is used to implement the LP-based bound
tightening optimization introduced by the NNV tool [51].

(MI)LP Interface. Marabou can now optionally be configured to invoke the
Gurobi Optimizer [23], a state-of-the-art Mixed Integer Linear Programming
(MILP) solver. The GurobiWrapper class contains methods to construct a MILP
problem and invoke the solver. The MILPEncoder class is in charge of encod-
ing the current set of linear and non-linear constraints as (MI)LP constraints.
Piecewise-linear constraints can either be encoded precisely, or replaced with
a convex relaxation, resulting in a linear program. For other non-linear con-
straints, only the latter option is available. The (MI)LP interface presently has
three usages in the code base. Two have already been mentioned, i.e., in some
of the abstract interpretation passes and optionally in the DeepSoI procedure.
Additionally, when Marabou is compiled with Gurobi, a --milp mode is avail-
able, in which the Engine performs preprocessing and abstract interpretation
passes, and then directly encodes the verification problem as a MILP problem
to be solved by Gurobi. The mode is motivated by the observation that the
performance of Gurobi and the SMT Solver can be complementary [48,58].

Multi-thread Manager. Parallelization is an important way to improve verifi-
cation efficiency. Marabou supports two modes of parallelization, both managed
by the new MultiThreadManager class: the split-and-conquer mode [57] and the
portfolio mode. In the split-and-conquer mode, the original query is dynami-
cally partitioned and re-partitioned into independent sub-queries, to be handled
by idle workers. The partitioning strategy is implemented as a sub-class of the
QueryDivider abstract class. Currently, two strategies are available: one parti-
tions the intervals of the input variables; the other splits on piecewise linear
constraints. By default, the former is used only when the input dimension is
less than or equal to ten. In the portfolio mode, each worker solves the same
query with a different random seed, which takes advantage of the stochastic
nature of the DeepSoI procedure. Developing an interface to define richer kinds
of portfolios is work in progress.

CEGAR Solver. While the DNN verification community has by and large
focused on piecewise-linear activation functions, other classes of non-linear con-
nections exist and are commonly used for certain architectures [27,53]. Apart
from introducing support for non-linear constraints in the Preprocessor and the
Network-level Reasoner, the latest Marabou version also incorporates a counter-
example guided abstraction refinement (CEGAR) solving mode [62], based on
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incremental linearization [13] to enable more precise reasoning about non-linear
constraints that are not piecewise linear. Currently, the CEGAR solver only
supports Sigmoid and Tanh, but the module can be extended to handle other
activation functions.

2.2 Context-Dependent Data-Structures

When performing a case split or backtracking to a previous search state, the
SMT Core needs to save or restore information such as variable bounds and
the phase status of each piecewise-linear constraint (e.g., is a ReLU currently
active, inactive, or unfixed). To efficiently support these operations, Marabou
2.0 uses the notion of a context level (borrowed from the CVC4 SMT solver [6]),
and stores the aforementioned information in context-dependent data structures.
These data structures behave similarly to their standard counterparts, except
that they are associated with a context level and automatically save and restore
their state as the context increases or decreases. This major refactoring has
greatly simplified the implementation of saving and restoring solver states and
is an important milestone in an ongoing effort to integrate a full-blown Conflict-
Driven Clause-Learning (CDCL) mechanism into Marabou.

2.3 Proof Module

A proof module has recently been introduced into Marabou, enabling it to
optionally produce proof certificates after an unsatisfiable (UNSAT) [29] result.
This is common practice in the SAT and SMT communities and is aimed at
ensuring solver reliability. Marabou produces proof certificates based on a con-
structive variant of the Farkas lemma [52], which ensures the existence of a proof
vector that witnesses the unsatisfiability of a linear program. Specifically, the
proof vector corresponds to a linear equation that is violated by the variable
bounds [29]. The full certificate of UNSAT is comprised of a proof tree, whose
nodes represent the search states explored during the solving. Each node may
contain a list of lemmas that are used as additional constraints in its descen-
dent nodes; and each leaf node contains the proof vector for the unsatisfiability
of the corresponding sub-query. The lemmas encapsulate some of the variable
bounds, newly derived by the piecewiese-linear constraints of the query, and
require their own witnesses (i.e., proof vectors). The BoundExplainer class is
responsible for constructing all proof vectors, for updating them during execu-
tion, and for appending them to the node. The proof tree itself is implemented
using the UnsatCertificateNode class.

When the solver is run in proof-production mode, the Proof module closely
tracks the steps of the SMT Solver module and constructs the proof tree on the
fly: new nodes are added to the tree whenever a case split is performed; and a
new proof vector is generated whenever a lemma is learned or UNSAT is derived
for a sub-query. If the Engine concludes that the entire query is UNSAT, a proof
checker (implemented as an instance of the Checker class) will be triggered
to certify the proof tree. It does so by traversing the tree and certifying the
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Fig. 2. Two ways to define the same verification query through the Python API.

correctness of the lemmas and the unsatisfiability of the leaf nodes. A formally
verified and precise proof-checker is currently under development [14]. Note that,
currently, proof production mode is only compatible with a subset of the features
supported by Marabou. Adding support for the remaining features (e.g., for the
parallel solving mode) is an ongoing endeavor.

2.4 Front End

Marabou provides interfaces to prepare input queries and invoke the back-end
solver in multiple ways. The Marabou executable can be run on the command
line, taking in network/property/query files in supported formats. The Python
and C++ APIs support this functionality as well, but also contain methods to
add arbitrary linear and (supported) non-linear constraints. In addition, a layer
on top of the Python API was added to Marabou 2.0 which allows users to
define constraints in a more Pythonic manner, resulting in more succinct code.
For example, suppose one wants to check whether the first output of a network
(stored in the ONNX format) can be less than or equal to half of its second
output, when the first input is greater than or equal to 0.1. Figure 2a shows
how to perform this check with the base Python API, while Fig. 2b exhibits the
“Pythonic” API.

Typically, a query consists of the encoding of (one or several) neural networks
and the encoding of a property on the network(s). To encode a neural network,
the user has two options: 1) pass in a neural network file to be parsed by one of
the neural network parsers; or 2) manually add constraints to encode the neu-
ral network. The main network format for Marabou 2.0 is now ONNX, towards
which the neural network verification community is converging. The NNet for-
mat and the Tensorflow protobuf format are still supported but will likely be
phased out in the long run. To encode the property on top of the neural network
encoding, the user can 1) pass in a property file to be parsed by one of the prop-
erty parsers; or 2) manually encode the property. Currently Marabou has two
property parsers, one for a native property file format [32], and a new one for
the VNN-LIB format, supporting the standardization effort of the community.

In addition to the aforementioned network and property file formats,
Marabou also supports a native query file format that describes a set of lin-
ear and non-linear constraints. This can be dumped/parsed from all interfaces.
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2.5 Availability, License, and Installation

Marabou is available under the permissive modified BSD open-source license,
and runs on Linux and macOS machines. The tool can be built from scratch
using CMake. Marabou is now also available on The Python Package Index
(PyPI) and can be installed through pip. The latest version of Marabou is avail-
able at: https://github.com/NeuralNetworkVerification/Marabou. The artifact
associated with this tool description is archived on Zenodo [60].

3 Highlighted Features and Applications

In terms of performance, Marabou is on par with state-of-the-art verification
tools. In the latest VNN-COMP [11], Marabou won the second place overall,
and scored the highest among all CPU-based verifiers. We summarize the main
results in the extended version of the paper [61]. In this section, we focus on
the usability aspect of Marabou, and highlight some of its recent applications
— as well as the features that make them possible. We believe this diverse set
of use cases (as well as the relevant scripts in the artifact [60]) serve as valuable
examples, which will inspire new ways to apply the solver. More use cases can
be found in the extended version of the paper [61]. A runtime evaluation of
Marabou 2.0 against an early version appears in Sect. 4.

Verifying the Decima Job Scheduler. Recently, Graph Neural Networks
(GNNs) have been used to schedule jobs over multi-user, distributed-computing
clusters, achieving state-of-the-art job completion time [38]. However, concerns
remain over whether GNN-based solutions satisfy expected cost-critical proper-
ties beyond performance. Marabou has been used to verify a well-known fair-
ness property called strategy-proofness [59] for a high-profile, state-of-the-art
GNN-based scheduler called Decima [38]. The verified property states that “a
user cannot get their job scheduled earlier by misrepresenting their resource
requirement.” While it is challenging to represent a GNN directly in ONNX [21],
Marabou’s Python API makes it possible to manually encode Decima and the
specification as a set of linear and non-linear constraints. From these constraints,
the Network-level Reasoner is able to automatically infer a feed-forward structure
with residual connections and then use it for the purpose of abstract interpre-
tation. Notably, Marabou was able to handle the original Decima architecture,
proving that the property holds on the vast majority of the examined job profiles
but can indeed be violated in some cases.

Formal XAI. Despite their prevalence, DNNs are considered “black boxes”,
uninterpretable to humans. Explainable AI (XAI) aims to understand DNN
decisions to enhance trust. Most XAI methods are heuristic-based and lack for-
mal correctness guarantees [36,43,44], which can be problematic for critical,
regulation-heavy systems. Recent work showed that Marabou can be utilized as

https://github.com/NeuralNetworkVerification/Marabou
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a sub-routine in procedures designed for producing formal and provable expla-
nations for DNNs [7,8,26,37,63]. For instance, it can be used in constructing
formal abductive explanations [8,28], which are subsets of input features that
are, by themselves, provably sufficient for determining the DNN’s output. This
approach has been successfully applied to large DNNs in the domains of com-
puter vision [8,63], NLP [37], and DRL robotic navigation [7]. These studies
highlight the potential of Marabou in tasks that go beyond formal verification.

Analyzing Learning-Based Robotic Systems. Deep Reinforcement Learn-
ing has extensive application in robotic planning and control. Marabou has
been applied in these settings to analyze different safety and liveness proper-
ties [2,3,15,54]. For example, Amir et al. [2] used Marabou to detect infinite
loops in a real-world robotic navigation platform. This was achieved by query-
ing whether there exists a state to which the robot will always return within a
finite number of steps k, effectively entering an infinite loop. A multi-step prop-
erty like this can be conveniently encoded in Marabou, by (i) encoding k copies
of the control policy; (ii) for each time-step t, encoding the system transition as
constraints over the current state (input to the policy at t), the decided action
(output of the policy at t), and the next state (input to the policy at t + 1);
and (iii) encoding the “loop” constraint that the initial state (t1) is equal to
the final state (tk). From this set of constraints, the Network-level Reasoner can
infer the structure of and perform abstract interpretations over a concatenated
network, where the input is the initial state and the output is the final state.
Moreover, due to the low input dimension, the split-and-conquer mode in the
Multi-thread Manager can be used to perform input-splitting, effectively search-
ing for such loops in independent input regions in parallel. Notably, Marabou
can detect loops in the system for agents trained using state-of-the-art RL algo-
rithms, in cases where gradient/optimization-based approaches fail to find any.
Loops detected this way have also been observed in the real world [1].

Proof Production for the ACAS-Xu Benchmarks. A well-studied set of
benchmarks in DNN verification derives from an implementation of the ACAS-
Xu airborne system for collision avoidance [30]. Using Marabou, we were able
to produce certificates of unsatisfiability for these benchmarks for the first time.
Marabou was able to produce certificates for 113 out of the 180 tested bench-
marks, with only mild overhead incurred by proof generation and certification.
The proof certificates contained over 1.46 million proof-tree leaves, of which more
than 99.99% were certified by the native proof checker, while the remaining were
certified by a trusted SMT solver. Additional details are provided in [29].

Specifications on Neural Activation Patterns. Properties of hidden neu-
rons garner increasing interest [67], as they shed light on the internal decision-
making process of the neural network. Gopinath et al. [19] observed that for
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a fixed neural network, certain neuron activation patterns (NAPs) empirically
entail a fixed prediction. More recently, Geng et al. [18] formally verified (using
Marabou) the aforementioned property, along with a variety of other properties
related to NAPs. Specifications related to NAPs can be conveniently encoded in
Marabou. For example, specifying that a certain ReLU is activated amounts to
setting the lower bound of the variable corresponding to the ReLU input to 0,
using the general constraint-encoding methods in the Python/C++ API. Con-
straints on internal neurons, as with other constraints, can be propagated by the
Preprocessor and Network-level Reasoner to tighten bounds.

Robustness Against Semantically Meaningful Perturbations. Consider-
ing specifications of perception networks, there is an ongoing effort in the verifi-
cation community to go beyond adversarial robustness [5,33,39,40,62]. Marabou
has been used to verify robustness against semantically meaningful perturbations
that can be analytically defined/abstracted as linear constraints on the neural
network inputs (e.g., brightness, uniform haze) [42]. More recently, Marabou has
also been successfully applied in a neural symbolic approach, where the correct
network behavior is defined with respect to that of another network [62,64]. For
example, Wu et al. [62] considered the specification that an image classifier’s pre-
diction does not change with respect to outputs of an image generative model
trained to capture a complex distribution shift (e.g., change in weather condi-
tion). A property like this can be conveniently defined in Marabou by loading
the classifier and the generator through the Python API and adding the relevant
constraints on/between their input and output variables.

4 Runtime Evaluation

Fig. 3. Runtime performance of Marabou 2.0
and an early version of Marabou on four appli-
cations supported by both versions.

We measure the performance
improvement in Marabou 2.0 by
comparing it against an early
Marabou version (git commit
1c1c66), which can handle ReLU
and Max constraints and sup-
ports symbolic bound propaga-
tion [55]. We collected four bench-
mark sets from the applications
described in Section 3: Alter-
nating Loop [2], DeepCert [42],
NAP [18,19], and VeriX [63].
There are 745 instances in total.
Details about the benchmarks can
be found in the extended version
of the paper [61].

Figure 3 compares the runtime
of the two Marabou versions on all
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the benchmarks with a 1 h CPU timeout. Each configuration was given 1 core
and 8GB of memory. Note that Marabou 2.0 was not configured with exter-
nal solvers in this experiment. We see that Marabou 2.0 is significantly more
efficient for a vast majority of the instances. Upon closer examination, an at-
least 2× speed-up is achieved on 428 instances and an at-least 10× speed-up
is achieved on 263 instances. Moreover, Marabou 2.0 is also significantly more
memory efficient, with a median peak usage of 57MB (versus 604MB with the
old version). Solvers’performance on individual benchmarks is reported in the
extended version of the paper [61].

5 Conclusion and Next Steps

We have summarized the current state of Marabou, a maturing formal analyzer
for neural-network-enabled systems that is under active development. In its cur-
rent form, Marabou is a versatile and user-friendly toolkit suitable for a wide
range of formal analysis tasks. Moving forward, we plan to improve Marabou in
several dimensions. Currently, we are actively integrating a CDCL mechanism in
the SMT Solver module. Given that many applications involve repeated invoca-
tion of the solver on similar queries, we also plan to support incremental solving
in the style of pushing and popping constraints, leveraging the newly introduced
context-dependent data structures. In addition, adding GPU support (in the
Network-level Reasoner) and handling other types of non-linear constraints are
also on the development agenda for Marabou.
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39. Mirman, M., Hägele, A., Bielik, P., Gehr, T., Vechev, M.: Robustness certification
with generative models. In: ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation, pp. 1141–1154 (2021)

40. Mohapatra, J., Weng, T.W., Chen, P.Y., Liu, S., Daniel, L.: Towards verifying
robustness of neural networks against a family of semantic perturbations. In:
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 244–
252 (2020)

41. Müller, M.N., Makarchuk, G., Singh, G., Püschel, M., Vechev, M.: Prima: general
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Abstract. The behavior of neural networks (NNs) on previously unseen
types of data (out-of-distribution or OOD) is typically unpredictable.
This can be dangerous if the network’s output is used for decision making
in a safety-critical system. Hence, detecting that an input is OOD is
crucial for the safe application of the NN. Verification approaches do not
scale to practical NNs, making runtime monitoring more appealing for
practical use. While various monitors have been suggested recently, their
optimization for a given problem, as well as comparison with each other
and reproduction of results, remain challenging.

We present a tool for users and developers of NN monitors. It allows
for (i) application of various types of monitors from the literature to
a given input NN, (ii) optimization of the monitor’s hyperparameters,
and (iii) experimental evaluation and comparison to other approaches.
Besides, it facilitates the development of new monitoring approaches. We
demonstrate the tool’s usability on several use cases of different types of
users as well as on a case study comparing different approaches from
recent literature.

1 Introduction

Neural networks (NNs) are increasingly used in safety-critical applications due
to their good performance even on complex problems. However, their notorious
unreliability makes their safety assurance even more important. In particular,
even if the NN is well trained on the data that it is given and works well on similar
data (so-called in-distribution (ID) data), it is unclear what it does if presented
with a significantly different input (so-called out-of-distribution (OOD) data).
For instance, what if an NN for traffic signs recognition trained on pictures taken
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in Nevada is now presented with a traffic sign in rainy weather, a European one,
or a billboard with an elephant?

To ensure safety in all situations, we must at least recognize that the input
is OOD; thus, the network’s answer is unreliable, no matter its confidence. Veri-
fication, a classic approach for proving safety, is extremely costly and essentially
infeasible for practical NNs [34]. Moreover, it is mainly done for ID or related
data [6,34]. For instance, robustness is typically proven for neighborhoods of
essential points, which may ensure correct behavior in the presence of noise or
rain, but not elephants [18,24,25,35]. In contrast, runtime verification and par-
ticularly runtime monitoring provide a cheap alternative. Moreover, the industry
also finds it appealing as it is currently the only formal-methods approach appli-
cable to industrial-sized NNs.

OOD runtime monitoring methods have recently started flourishing [7,14,20,
22,32,42]. Such a runtime monitor tries to detect if the current input to the NN
is OOD. To this end, it typically monitors the behavior of the network (e.g.,
the output probabilities or the activation values of the neurons) and evaluates
whether the obtained values resemble the ones observed on known ID data. If
not, the monitor raises an alarm to convey suspicion about OOD data.

Fig. 1. Illustration of challenges for OOD detection

Challenges: While this approach has demonstrated potential, several practical
issues arise:

– How can we compare two monitors and determine which one is better? Con-
sidering the example of autonomous driving, an OOD input could arise from
the fact that some noise was introduced by sensors or the brightness of the
environment was perturbed. A monitor might perform well on one kind of
OOD input but may not on another [44], as better performance in one class
of OOD data does not imply the same in another class (see Fig. 1a).
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– Applying a particular monitoring technology to a concrete NN involves signif-
icant tweaking and hyperparameter tuning, with no push-button technology
available. OOD monitors typically compute a value from the input and the
behavior of the NN. The input is considered OOD if this value is smaller than
a configurable threshold τ (see Fig. 1)b. The value of this threshold has a sig-
nificant influence on the performance of the monitors. More inputs would
be classified as OOD if the threshold value is high, and vice versa. More-
over, OOD monitors generally have multiple parameters that require tuning,
thereby aggravating the complexity of manual configuration.

– As OOD monitoring can currently be described as a search for a good heuris-
tic, many more heuristics will appear, implying the need for streamlining their
handling and fair comparison.

In this paper, we provide the infrastructure for users and developers of NN
monitors aiming at detecting OOD inputs (onwards just “monitors”).

Our contributions can be summarized as follows:

– We provide a modular tool called Monitizer for automatic learning/con-
structing, optimizing, and evaluating monitors.

– Monitizer supports (i) easy practical use, providing various recent monitors
from the literature, which can directly be optimized and applied to user-given
networks and datasets with no further inputs required; the push-button solu-
tion offers automatic choice of the best available monitor without requiring
any knowledge on the side of the user; (ii) advanced development use, with the
possibility of easily integrating a new monitor or new evaluation techniques.
The framework also foresees and allows for the integration of monitoring other
properties than OOD.

– We provide a library of 19 well-known monitors from the scientific literature
to be used off-the-shelf, accompanied by 9 datasets and 15 NNs, which can
be used for easy but rich automatic evaluation and comparison of monitors
on various OOD categories.

– We demonstrate the functionality for principled use cases accompanied by
examples and a case study comparing a few recent monitoring approaches.

Altogether, we are giving users the infrastructure for automatic creation of mon-
itors, development of new methods, and their comparison to similar approaches.

2 Related Work

NN Monitoring Frameworks. OpenOOD [47,48] contains task-specific
benchmarks for OOD detection that consist of an ID and multiple OOD datasets
for specific tasks (e.g., Open Set Recognition and Anomaly Detection). Both
OpenOOD and Monitizer contain several different monitors and benchmarks.
Monitizer provides functionality to tune the monitors for the given objective,
supports a comprehensive evaluation of monitors on a specific ID dataset by
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automatically providing generated OOD inputs by, e.g., the addition of noise,
and can easily be extended with more datasets. OpenOOD, in contrast to Moni-

tizer, does not support hyperparameter tuning and generation of OOD inputs.
Samuels et al. propose a framework to optimize an OOD monitor during

runtime on newly experienced OOD inputs [26]. While this contains optimiza-
tion, the framework is specific to one monitor and is based on active learning.
Monitizer is meant to work in an offline setting and optimize a monitor before
it is deployed. Additionally, Monitizer is built for extensibility and reusability,
which the other tool is not, e.g., it lacks an executable.

PyTorch-OOD [27] is a library for OOD detection, yet despite its name, it
is not part of the official PyTorch-library. It includes several monitors, datasets,
and supports the evaluation of the integrated monitors. Both Monitizer and
PyTorch-OOD provide a library of monitors and datasets. However, there are
significant differences. Monitizer supports optimization of monitors, allowing
us to return monitors optimal for a chosen objective, provides a more structured
view of the dataset, and provides a transparent and detailed evaluation showing
how a monitor performs on different OOD classes. Besides, we provide a one-click
solution to easily evaluate the whole set of monitors and automatically return
the best available option, fine-tuned to the case. Consequently, Monitizer is a
tool that is much easier to use and extend. Last but not least, it is an alternative
implementation that allows cross-checking outcomes, thereby making monitoring
more trustworthy.
OOD Benchmarking. Various datasets have been published for OOD bench-
marking [15,16,19,37,38], Breitenstein et al. present a classification for different
types of OOD data in automated driving [5], and Ferreira et al. propose a bench-
mark set for OOD with several different categories [11].

3 Monitizer

Monitizer aims to assist the developers and users of NN monitors and devel-
opers of new monitoring techniques by supporting optimization and transparent
evaluation of their monitors. It structures OOD data in a hierarchy of classes, and
a monitor can be tuned for any (combination) of these classes. It also provides
a one-click solution to evaluate a set of monitors and return the best available
option optimized for the given requirement.

3.1 Overview

Monitizer offers two main building blocks, as demonstrated in Fig. 2: optimiza-
tion and evaluation of NN monitors. NN monitors are typically parameterized
and usually depend on the NN and dataset. Before one can evaluate them, they
need to be configured and possibly tuned. We refer to monitors that are not yet
configured as monitor templates. Monitizer optimizes the monitor templates
and evaluates them afterward on several different OOD classes, i.e., types of
OOD data.
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Fig. 2. Architecture of Monitizer: The required inputs are an NN and the dataset
(both can be chosen from existing options). The dashed area indicates optional inputs,
and the bold-faced option indicates the default value. The icons(see footnote 1) indicate
which types of users are expected to use each of the options.

Monitizer needs at least two inputs (see Fig. 2): an NN, and an ID-dataset.
The user can also provide a monitor template and an optimization configuration
(consisting of an optimization objective and optimization method). If these are
not provided, Monitizer reverts to the default values (i.e., evaluating all mon-
itors using the AUROC-score without optimization). For both inputs, the user
can choose from the options we offer or provide a custom implementation.

Monitizer optimizes the provided monitor based on the optimization objec-
tives and method on the given ID dataset. An example of optimization would
be:1 maximize the detection accuracy on blurry images, but keep the accuracy
on ID images at least 70%. Optimization is necessary to obtain a monitor that is
ready to use. However, it is possible to evaluate a monitor template on its default
values for the parameters using the AUROC -score (Area Under the Receiver
Operating Characteristic Curve)2.

On successful execution, Monitizer provides the user with a configuration
of the monitor template and the evaluation result. This can be either a table
with the accuracy of OOD detection for each OOD dataset along with a parallel
coordinate plot for the same (in case of optimization) or the AUROC score.

1 Thanks to Flaticon.com for the Icons.
2 The ROC (Receiver Operating Characteristic) curve shows the performance of a

binary classifier with different decision thresholds. The AUROC computes the area
under this curve. The best possible value is 1, indicating perfect prediction.
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3.2 Use Cases

We envision three different types of users for Monitizer:

1. The End User

Context: The end user of a monitor, e.g., an engineer in the aviation indus-
try, is interested in the end product, not in the intricacies of the underlying
monitoring technique. She intends to evaluate one or all monitors provided
by Monitizer for her custom NN and dataset, and wants to come to a con-
clusion on which one to use. She has an NN that needs to be monitored.
Additionally, she has her own proprietary ID dataset, e.g., the one on which
the NN was trained. She wants a monitor fulfilling some requirement, e.g.,
one that is optimal on average for all classes or one that can detect a specific
type of OOD that her NN is not able to handle properly.

Usage: Such a user can obtain a monitor tuned to her needs using Monitizer

without much effort. Monitizer supports this feature out of the box. It
provides various monitors (19 at present) that can be optimized for a given
network. In case she wants to use a custom NN or a dataset, she has to provide
the NN as PyTorch-dump or in onnx-format [4] and add some lines of code
to implement the interface for loading her data.

Required Effort: After providing the interface for her custom dataset, the
user only has to trigger the execution. The execution time depends on the
hardware quality, the NN’s size, the chosen monitor’s complexity, and the
dataset’s size.

2. The Developer of Monitors

Context: The developer of monitoring techniques, e.g., a researcher working
in runtime verification of NNs, aims to create novel techniques and assess
their performance in comparison to established methods.

Usage: Such a user can plug their novel monitor into Monitizer and evaluate
it. Monitizer directly provides the most commonly used NNs and datasets
for academic evaluation.

Required Effort: The code for the monitor needs to be in Python and should
implement the functions specified in the interface for monitors in Monitizer.
Afterward, she can trigger the evaluation of her monitoring technique.

3. The Scholar

Context: An expert in monitoring, e.g., an experienced researcher in NN run-
time verification, intends to explore beyond the current boundaries. She might
want to adapt an NN monitor to properties other than OOD, or to experi-
ment with custom NNs or datasets.
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Usage: Monitizer provides interfaces, and instructions on how to integrate
new NNs, datasets, monitors, custom optimization methods and objectives.

Required Effort: The required integration effort depends on the complexity of
the concrete use case. For example, adding an NN would take much less time
than developing a new monitor.

More detailed examples are available in [1].

3.3 Phases of Monitizer

An execution of Monitizer is typically a sequence of three phases: parse, opti-
mize, and evaluate. As mentioned, the user can decide to skip the optimization
or the evaluation.
Parse. This phase parses the input, loads the NN and dataset, and instantiates
the monitor. It also performs sanity checks on the inputs, e.g., the datasets are
available in the file system, the provided monitor is implemented correctly, etc.
Optimize. This phase tunes the parameters of a given monitor template to
maximize an objective. It depends on two inputs, the optimization method and
the optimization objective, that the user has to give.

An illustrative depiction of this process can be found in [1]. The optimization
method defines the search space and generates a new candidate monitor by set-
ting its parameters. Monitizer then uses the optimization objective to evaluate
this candidate. If the objective is to optimize at least one OOD class, Monitizer

evaluates the monitor on a validation set of this class, which is distinct from the
test set used in the evaluation later. The optimization method obtains this result
and decides whether to continue optimizing or stop and return the best monitor
that it has found.

Monitizer provides three optimization methods: random, grid-search, and
gradient descent. Random search tries out a specified number of random sets
of parameters and returns the monitor that worked best among these. Grid-
search specifies a search grid by looking at the minimal and maximal values
of the parameters. It then defines a grid on the search space. The monitor is
infused with these parameters for each grid vertex and evaluated on the objec-
tive. Gradient-descent follows the gradient of the objective function towards the
optimum.

Monitizer supports multi-objective optimization of monitors. A user can
specify a set of OOD classes to optimize for and the minimum required accuracy
for ID detection. Single objective optimization is a special case when only one
OOD class is specified for optimization. Based on a configuration value, Moni-

tizer would generate a set of different weight combinations for the objectives
and create and evaluate a monitor for each of these combinations. If there are
two objectives, Monitizer generates a Pareto frontier plot; in the case of more
than two objectives, the tool generates a table. The user obtains the performance
of the optimized monitor for each weight-combination of objectives.
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Fig. 3. Class diagram depicting the different types of OOD data.

Evaluate. The evaluation of NN monitors in Monitizer is structured accord-
ing to the OOD classification (detailed in the next section). We introduce this
classification of OOD data to enable a clearer evaluation and gain knowledge
about which monitor performs well on which particular class of OOD. Typically,
no monitor performs well on every class of OOD [44]. We highlight this in our
evaluation to ensure a fair and meaningful comparison between monitors rather
than restricting to a non-transparent and possibly biased average score.

After evaluation, Monitizer reports the detection accuracy for each OOD
class and can also produce a parallel-coordinates-plot displaying the reported
accuracy. Monitizer can also provide confidence intervals for the evaluation
quality, which is explained in [1].

3.4 Classification of Out-of-Distribution Data

We now introduce our classification of OOD data. At the top level, an OOD input
can either be generated, i.e., obtained by distorting ID data [3,14,17,31,41], or
it can be collected using data from some other available dataset.

Fig. 4. Examples for OOD

The notion of generated OOD
is straightforward. These classes are
created by slightly distorting ID
data, for example, by increasing the
contrast or adding noise. An impor-
tant factor is the amount of distor-
tion, e.g., the amount of noise, as it
influences the NN’s performance and
needs to be high enough to transform
an ID into an OOD input.

We explain the idea of collected
OOD with the help of an exam-
ple shown in Fig. 4. Consider an ID
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dataset that consists of textures (Fig. 4a). Images containing objects (Fig. 4b)
differ from images showing just a texture. But, when we consider a dataset
of numbers as ID (Fig. 4c), it seems much more similar to a dataset of letters
(Fig. 4d) than textures are to objects. In the first case, the datasets have no
common meaning or concept, as if they were belonging to a new world. In the
second case, the environment and the underlying concept are similar, but an
unseen object is placed in it.

Figure 3 shows our classification of the OOD data. It is based on the kind of
OOD data we found in the literature (discussed in Sect. 2). [1] contains a detailed
description of each class and an illustrative figure.
OOD Benchmarks Implementation. Note that the generated OOD will be
automatically created by Monitizer for any given ID dataset. The collected
OOD data has to be manually selected. We provide a few preselected datasets
(for example, KMNIST [9] as unseen objects for MNIST [29]) in the tool. A
user can easily add more when needed. However, for a user like the developer
of monitors, MNIST and CIFAR-10 are often sufficient to test new monitoring
methodologies, as related work has shown [13,20].

3.5 Library of Monitors, NNs, and Datasets

Monitizer currently includes 19 monitors, accompanied by 9 datasets and 15
NNs. In the following, we give an overview of the available options.

Monitors. Monitizer provides different highly cited monitors, which are also
included in other tools such as OpenOOD/Pytorch-OOD. We extended this
list by adding monitors from the formal methods community (e.g., Box moni-
tor, Gaussian monitor). The following monitors are available in Monitizer:
ASH-B,ASH-P,ASH-S [10], Box-monitor [20], DICE [42], Energy [32],
Entropy [33], Gaussian [13], GradNorm [23], KL Matching [15], KNN [43],
MaxLogit [50], MDS [30], Softmax [17], ODIN [31], ReAct [41], Maha-

lanobis [39], SHE [49], Temperature [12] VIM [45].

Datasets. The following datasets are available in Monitizer: CIFAR-10,
CIFAR-100 [28], DTD [8], FashionMNIST [46], GTSRB [21], ImageNet [40],
K-MNIST [9], MNIST [29], SVHN [36].

Neural Networks Monitizer provides at least one pretrained NN for each avail-
able dataset. The library contains more NNs trained on commonly used datasets
in academia, such as MNIST and CIFAR-10, allowing users to evaluate monitors
on different architectures. [1] contains a detailed description of the pretrained
NNs.

4 Summary of Evaluation by Case Study

We demonstrate the necessity of having a clear evaluation in Table 1. The full
table containing all available OOD datasets can be found in [1]. We evaluate the



274 M. Azeem et al.

Table 1. Comparison of the AUROC-score of all implemented monitors on different
OOD datasets multiplied by 100 (and rounded to the nearest integer). All monitors
were evaluated on a fully connected network trained on MNIST. The cells are colored
according to the relative performance of a monitor (column) in a specific OOD class
(row). The monitors are divided in three ranks and the darker color represents better
performance. If several monitors have the same score, they all belong to the better
group.
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Gaussian 64 65 65 65 65 37 48 89 35 48 62 66 35 50 56 38 61 65 46
Contrast 45 41 41 41 41 56 44 20 56 42 64 49 59 50 51 57 46 41 50
Invert 28 21 21 21 21 47 0 0 39 0 100 100 79 43 92 88 56 21 0
Rotate 60 62 62 61 61 38 43 79 39 41 69 67 39 50 59 41 62 61 41

KMNIST 64 82 81 81 82 18 16 84 18 10 98 97 18 54 84 30 82 82 14

available monitors on a network trained on the MNIST dataset on a GPU and
depict the AUROC score. The values of MDS and Mahalanobis can differ when
switching between CPU and GPU; refer to [1] for details. The Box monitor [20]
is not included as it does not have a single threshold and, therefore, no AUROC
score can be computed. The table shows the ranking of the monitors for the
detection of Gaussian noise, increased contrast, color inversion, rotation, and a
new, albeit similar dataset (KMNIST). A darker color indicates a better ranking.
One can see that there is barely any common behavior among the monitors. For
example, while GradNorm performs best on Gaussian noise, it performs worst
on inverted images.

This also shows that it is important for the user to define her goal for the
monitor. Not every monitor will be great at detecting a particular type of OOD,
and she must carefully choose the right monitor for her setting. Monitizer

eases this task. In addition, it highlights the need for a clear evaluation of new
monitoring methods in scientific publications.

We illustrate further features of Monitizer using the following four moni-
tors: Energy [32], ODIN [31], Box [20], and Gaussian [13]. The first two were
proposed by the machine-learning community, and the latter two by the formal
methods community.

The output produced by Monitizer in the form of tables and plots (depicted
in Fig. 5) helps the user see the effect of the choice of monitor, chosen objective,
and dataset on the monitor’s effectiveness. Monitizer allows users to experi-
ment with different choices and select the one suitable for their needs. Figure 5
shows the evaluation of the mentioned monitors with the MNIST dataset as ID
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Fig. 5. The monitor templates were optimized on MNIST as ID and for detecting
New-World / CIFAR-10 as OOD while keeping 70% accuracy on ID. All monitors were
optimized randomly.

data and an optimization with the goal of detecting pre-selected images of the
CIFAR-10 dataset as those are entirely unknown to the network. The optimiza-
tion was performed randomly. This resulted in the Gaussian monitor only cor-
rectly classifying around 70% of ID data, whereas the other monitors have higher
accuracy on ID data. Consequently, the other monitors perform worse than the
Gaussian monitor in detecting OOD data, as there is a tradeoff between good
performance on ID and OOD data. This highlights the necessity of proper opti-
mization for each monitor. See [1] for a detailed evaluation where we report on
the experiments with different monitors, optimization objectives, and datasets.

Our experiments show that different monitors have different strengths and
limitations. One can tune a monitor for a specific purpose (e.g., detecting a par-
ticular OOD class with very high accuracy); however, this affects its performance
in other OOD classes.

5 Conclusion

Monitizer is a tool for automating the design and evaluation of NN monitors.
It supports developers of new monitoring techniques, potential users of avail-
able monitors, and researchers attempting to improve the state of the art. In
particular, it optimizes the monitor for the objectives specified by the user and
thoroughly evaluates it.

Monitizer provides a library of 19 monitors, accompanied by 9 datasets
and 15 NNs (at least one for each dataset), and three optimization methods
(random, grid-search, and gradient descent). Additionally, all these inputs can
be easily customized by a few lines of Python code, allowing a user to provide
their monitors, datasets, and networks. The framework is extensible so that the
user can implement their custom optimization methods and objectives.
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Monitizer is an open-source tool providing a freely available platform for
new monitors and easing their evaluation. It is publicly available at https://
gitlab.com/live-lab/software/monitizer.

Data Availability Statement. A reproduction package including all our results is
available at Zenodo [2].
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Abstract. Pre-trained Large Language Models (LLMs) are beginning
to dominate the discourse around automatic code generation with natu-
ral language specifications. In contrast, the best-performing synthesizers
in the domain of formal synthesis with precise logical specifications are
still based on enumerative algorithms. In this paper, we evaluate the abil-
ities of LLMs to solve formal synthesis benchmarks by carefully crafting a
library of prompts for the domain. When one-shot synthesis fails, we pro-
pose a novel enumerative synthesis algorithm, which integrates calls to
an LLM into a weighted probabilistic search. This allows the synthesizer
to provide the LLM with information about the progress of the enumer-
ator, and the LLM to provide the enumerator with syntactic guidance
in an iterative loop. We evaluate our techniques on benchmarks from
the Syntax-Guided Synthesis (SyGuS) competition. We find that GPT-
3.5 as a stand-alone tool for formal synthesis is easily outperformed by
state-of-the-art formal synthesis algorithms, but our approach integrat-
ing the LLM into an enumerative synthesis algorithm shows significant
performance gains over both the LLM and the enumerative synthesizer
alone and the winning SyGuS competition tool.

1 Introduction

Program synthesis is the task of automatically generating programs that sat-
isfy a given specification. It has applications in planning [13], program anal-
ysis [16], data-wrangling [17] and more. The dominant techniques for formal
program synthesis are based around enumeration [4,21,37], and a key challenge
is how to guide this enumeration to search a huge space of possible programs
efficiently. Syntax-Guided Synthesis(SyGuS) [2] allows the user to restrict the
space of possible programs using a context-free grammar, and, in later work, this
has been extended using pre-trained probabilistic models such as higher-order
grammars [27] and neural networks [31], trained on a dataset of solved synthesis
problems. However, obtaining these datasets for pre-training is challenging.

In parallel, the use of pre-trained large language models (LLMs) to gen-
erate code is rapidly gaining traction, with impressive results being obtained
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on benchmarks with natural language specifications and input-output exam-
ples [14]. These benchmarks are very different in style to the logical specifica-
tions that formal program synthesis tackles, as most are procedural code, in
Python, and solve classic programming exercise questions that might be asked
of students or interview candidates, and that one may find in abundance on
sources used in training data such as StackOverflow and GitHub. In contrast,
formal program synthesis benchmarks, such as those in the SyGuS competition,
require functional code, which must satisfy precise logical specifications derived
from problems such as program analysis [16], and are certainly less abundant in
sources of publicly available code for training machine learning models.

In this paper, we set out to investigate whether off-the-shelf large language
models can solve formal program synthesis problems. We craft a library of
prompts, which enables us to solve roughly 50% of the SyGuS competition
benchmarks. We hypothesize that, in the cases where the LLM returns only
incorrect solutions, the correct solutions are most often in the vicinity of the
incorrect solutions, and that, by searching in the neighborhood of the incorrect
solutions, we may be able to guide an enumerative synthesizer to find a solution
faster. To that end, we construct a probabilistic Context-Free Grammar (pCFG)
based on the incorrect solutions proposed by the LLM, and use this to guide an
enumerative synthesizer within a CounterExample Guided Inductive Synthesis
(CEGIS) loop.

Our final contribution is a full integration of these techniques in a novel
CEGIS algorithm with an inline syntactic oracle, in the form of an LLM that is
queried by an enumerative synthesis phase. We incorporate information obtained
during the synthesis search into the queries, prompting the LLM with partially
enumerated functions, incorrect solutions, and counterexamples, and requesting
that it provide “helper functions”, which we use to update the pCFG guiding
the enumerator.

We implement all three techniques described above and evaluate them on
benchmarks from the Syntax-Guided Synthesis competition. We compare with
two baselines: the first is an enumerative synthesizer where all rules in the gram-
mar are given equal likelihood, and the second is cvc5 [7], the state-of-the-art
SyGuS solver. All techniques easily outperform the baseline enumerator, and
the final technique outperforms cvc5. Our results demonstrate that, whilst large
language models do have the potential to make significant contributions in the
domain of formal program synthesis, this can currently only be achieved by com-
bining these techniques with existing algorithms in the literature. Enumerative
synthesis is not yet obsolete!

The main contributions of our work are as follows: A set of prompts for prompt-
ing a pre-trained Large Language Model to solve formal program synthesis prob-
lems (Sect. 4.1); A method for guiding an enumerative synthesizer using LLM-
generated probabilistic context-free grammars (Sect. 5.1); A novel approach to
integrating an LLM into an enumerative synthesizer (Sect. 6); And, finally, an
implementation and evaluation of all of the above on benchmark problems taken
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from the Syntax-Guided Synthesis competition. The results outperform cvc5, the
state-of-the-art synthesizer, as well as our baseline enumerators.

2 Background

Program synthesis focuses on automated program creation that satisfies a high-
level specification, which can be comprehensive, such as a basic, unrefined pro-
gram, or incomplete, like a logical formula or a set of test cases.

Definition 1 (Context-Free Grammar, CFG). A context-free grammar is
a 4-tuple G = (V,Σ,R, S). V is a finite set of variables also known as non-
terminal symbols. Σ with Σ ∩ V = ∅ is called the set of terminal symbols or
alphabet. R ⊆ V × (V ∪ Σ)∗ is a finite relation describing the production rules
of the grammar. We define RΣ = R ∩ V × Σ∗, i.e. the set of rules restricted
to those whose right-hand side only consists of terminal symbols. Elements of
(V ∪ Σ)∗ are known as words in sentential form. S ∈ V is the start symbol of
the grammar G.

Given a context-free grammar G = (V,Σ,R, S) with x, y ∈ (V ∪Σ)∗ and (α, β) ∈
R we say that xαy yields xβy, written xαy → xβy. We say that x derives y
written x → ∗ y if either x = y or x → x1 → . . . xn → y for n ≥ 0. Finally, we
define the language of a grammar LG = {s ∈ Σ∗ | S → ∗ s}. We now introduce
two extensions of context-free grammars:

Definition 2 (Weighted Context-Free Grammar, wCFG). A weighted
context-free grammar (wCFG) [29,30] is a 5-tuple WG = (V,Σ,R, S,W ) such
that (V,Σ,R, S) is a context-free grammar and W is a function assigning a
numeric value to each rule r ∈ R.

Definition 3 (Probabilistic Context-Free Grammar, pCFG). A proba-
bilistic context-free grammar [29,30] is a 5-tuple PG = (V,Σ,R, S,P) such that
(V,Σ,R, S) is a context-free grammar and P is a probability mass function
assigning a probability P[r] to each rule r ∈ R. PΣ is the probability mass func-
tion that assigns a probability to PΣ [r] to each rule r ∈ RΣ. A pCFG is a specific
instance of a wCFG.

In general, program synthesis is concerned with the generation (i.e., synthe-
sis) of a program that satisfies a certain specification. Syntax-guided synthe-
sis (SyGuS) describes a standardized function synthesis format that precisely
defines a synthesis problem within first-order theories [8]. We will use the nota-
tion φ[F 	→ f ] to denote the replacing of all occurrences of F in φ with f while
substituting all arguments to f by the arguments of F in the same order.

Definition 4 (Syntax-Guided Synthesis, SyGuS). A SyGuS problem is a
4-tuple 〈T,G, φ, F 〉 such that T is a first-order theory, G is a context-free gram-
mar, φ is a first-order formula, and F is a function symbol that may occur in
φ. A solution to a SyGuS problem 〈T,G, φ, F 〉 is either a function f such that
T |= φ[F 	→ f ] and f ∈ LG, or proof that no such function can exist.



Guiding Enumerative Program Synthesis with Large Language Models 283

SyGuS closely follows the syntax and semantics of SMT, and hence T usually
refers to theories that are also common in SMT. Usually, SMT solvers are queried
in the background of SyGuS solvers to verify solution candidates. This connection
is made explicit in Counter-Example Guided Inductive Synthesis (CEGIS) [39].
CEGIS is a family of algorithms that alternate between a synthesis phase, which
searches for a candidate solution that works for a subset of inputs, and a verifi-
cation phase, where the candidate is checked against all possible inputs. If the
verification fails, a counterexample is passed back to the synthesis phase and
appended to the subset of inputs used to guide the search. The synthesis phase
is often implemented as an enumerative search. An example SyGuS problem is
shown in Example 1.

Generative Large Language Models. Generative Large Language Models
(LLMs) are advanced Artificial Intelligence (AI) systems based on transformer
models and trained on vast datasets to produce human-like text, followed by
human-provided instruction prompts [10]. One application of LLMs is generating
code from natural language specifications [14].

3 Overview

In this work, we first present a carefully tailored set of prompts that we use to
evaluate an LLM’s ability to solve formal synthesis problems. We construct an
iterative loop where we prompt the LLM, verify the candidate solution, and if
the solution fails, we prompt the LLM again.

Fig. 1. An overview of pCFG-synth. Both the verifier and the LLM have access to the
specification φ (which is used to generate the prompt for the LLM, as well as to check
whether candidate programs are correct).

We then present two methods for integrating syntactic guidance from pre-
trained LLMs into an enumerative CEGIS algorithm. The first method, shown in
Fig. 1, prompts an LLM for solutions to the benchmark, and generates a pCFG
from these solutions before deploying an enumerative synthesizer, increasing the



284 Y. Li et al.

chance of the LLM solving the synthesis problem outright. We refer to this
method as pCFG-synth. The second method, shown in Fig. 2, integrates the
prompting within the enumerative synthesizer, allowing the prompts to incorpo-
rate additional information obtained during the synthesis process. Here, instead
of asking the LLM to provide a full solution, we ask it to provide helper func-
tions to help “a student” complete the partially enumerated program. We use the
responses to augment the set of production rules in the grammar and update
the weights across the existing production rules. We refer to this approach,
which integrates an LLM into an enumerative synthesizer, as iLLM-synth. In
this section, we give an overview of these two approaches. The details of the
components of both approaches and their relative performances are found in the
subsequent sections. We integrate both approaches with a probabilistic top-down
enumerator and a weighted search based on the A∗ algorithm [19,27].

(set -logic LIA)
(synth -fun fn ((vr0 Int) (vr1 Int) (vr2 Int)) Int)
(constraint (>= (fn vr0 vr1 vr2) vr0))
(constraint (>= (fn vr0 vr1 vr2) vr1))
(constraint (>= (fn vr0 vr1 vr2) vr2))
(constraint (or (= vr0 (fn vr0 vr1 vr2)) (or (= vr1 (fn vr0 vr1 vr2))

(= vr2 (fn vr0 vr1 vr2)))))
(check -synth)

Example 1. A SyGuS specification that asks for a program that synthesizes the
maximum of 3 inputs. We omit some the grammar and variable declarations for brevity.

Fig. 2. An overview of iLLM-synth. Both the verifier and the enumerator have access
to the specification φ (which is used to generate the prompt for the LLM, as well as to
check whether candidate programs are correct)

4 Stand-Alone LLM

In this section, we describe how we prompt the LLM as a stand-alone syn-
thesizer. These prompting techniques are then also deployed by pCFG-synth.
We use GPT-3.5-turbo as the LLM. Note that the model is not fine-tuned to
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this problem setting. Furthermore, we rename any functions and variables in
the SyGuS benchmarks to generic names to avoid the LLM producing solutions
solely based on the function names.

4.1 Prompting the LLM

We design a library of prompts for program synthesis problems with logical spec-
ifications and a single target function to synthesize. These prompts are deployed
in an iterative loop, until a correct solution is obtained, or the library of prompts
is exhausted.

Prompting is an art rather than a science, but we hypothesize that it is
better to ask the LLM to give a solution in a language that is more common in
the training data, and then request it to translate it into our desired SMT-LIB,
and experiment with both Python and Lisp. On a subset of 50 benchmarks,
we observed that soliciting responses in Lisp resulted in a 6% enhancement
in the resolution of benchmarks compared to utilizing Python (and both were
better than asking for SMT-lib directly). It is also reported in the literature that
the efficacy of LLMs can be augmented by including emotional stimuli within
prompts [28]. Incorporating the emotional prompt leads to an 8% increase in the
likelihood of generating accurate solutions compared to standard, non-emotional
prompts in our study. Details of our initial prompting experiments are in the
extended version of this paper1.

The following is an example prompt and response sequence for the LIA exam-
ple shown in Example 1:

(set -logic LIA)
(declare -var vr0 Int)
(declare -var vr1 Int)
(declare -var vr2 Int)
(constraint (>= (fn vr0 vr1 vr2) vr0))
(constraint (>= (fn vr0 vr1 vr2) vr1))
(constraint (>= (fn vr0 vr1 vr2) vr2))
(constraint (or (= vr0 (fn vr0 vr1 vr2)) (or (= vr1 (fn vr0 vr1 vr2))

(= vr2 (fn vr0 vr1 vr2)))))
(check -synth)
You are a good synthesizer. Do you know what "(define -fun fn ((vr0 Int

) (vr1 Int) (vr2 Int)) Int" is doing?
Write only one Lisp -like method "defun fn" without any built -in

methods or arrays.
Requirements:
1. No built -in functions.
2. Never violate the SMT -LIB constraints above.
3. Pay attention to the define functions.
4. Ensure the response contains one and only one function.
5. Do not include any iterations , BitVec , or Int notations in the

function body.
Write it correctly , or I will lose my job and 100 grandmothers will

die. Don ’t disappoint me.
Write only one Lisp -like method "defun fn" that never violates the SMT

-LIB constraints above.

Prompt 1. Prompt for Example 1.

1 https://arxiv.org/html/2403.03997.

https://arxiv.org/html/2403.03997
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(defun fn (vr0 vr1 vr2)
(ite (>= vr0 vr1) (ite (>= vr0 vr2) vr0 vr2) (ite (>= vr1 vr2) vr1

vr2)))

Response 1. Response from LLM after Prompt 1.

You are close to the right answer. Take another guess. You have to try
something different , think harder. Write a different Lisp method
that never violates the SMT -LIB constraints above again.

Prompt 2. Prompt requesting a revised solution.

Prompts for Invariant Synthesis. Invariant synthesis is a specific instance of
program synthesis: given a pre-condition pre(x), transition-relation trans(x, x′)
and post-condition post(x), the synthesizer is required to provide an invariant
inv that satisfies the following constraint: ∀x, x′.pre(x) =⇒ inv(x) ∧ (inv(x)∧
trans(x, x)) =⇒ inv(x′) ∧ inv(x) =⇒ post(x). We find that LLMs struggle
to reason about constraints presented in the above format. Inspired by “chain-
of-thought” [42] prompting, where the LLM is asked to provide a step-by-step
explanation, we augment our prompting strategy for invariants by asking the
LLM first to explain the constraints. After requesting this explanation, we follow
the same interactive prompt strategy as before.

Lisp to SMT-LIB Converter. The final prompts in our prompt library are
to ask the LLM to convert any functions given in Lisp to correct SMT-LIB
functions:

You are a good programming language converter. Convert the Lisp
function to SMT -LIB:

Based on the Lisp code provided above , convert the ’defun ’ Lisp -like
code to a corresponding SMT -LIB function. Use SMT -LIB syntax
starting with (define -fun

Follow these guidelines:
1. Only give me the function definition starting with ’(define -fun ’.
2. Pay attention to types. If there are bit -vector terms , they need to

be of the same width.
3. Ensure the SMT -LIB function contains one and only one function

definition starting with ’(define -fun ’.
4. Do not include any iterations , BitVec , or Int notations in the

function body.
5. Use the assigned values from the Lisp code during translation.
6. Do not introduce any variables that do not exist in the Lisp

function.
Rules for SMT -LIB: +, -, *, ite , >, =, <, >=, <=, and , or, not , true ,

false.

Prompt 3. Request for converting Lisp to SMT-LIB code for response 1.

Upon receiving a response from the LLM, we extracted the Lisp program and
subjected it to format verification. The resulting SMT-LIB code is represented:

(define -fun fn ((vr0 Int) (vr1 Int) (vr2 Int)) Int
(ite (>= vr0 vr1) (ite (>= vr0 vr2) vr0 vr2) (ite (>= vr1 vr2) vr1

vr2)))

Program 1. LLM-Generated program for Example 1.
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5 Synthesis with pCFG Guidance: pCFG-synth

We hypothesize that, if the LLM did not propose a correct solution, the cor-
rect solution is likely to be roughly in the same “area” as the incorrect solu-
tions it suggested, and so our synthesis algorithm aims to prioritize this area
when searching for candidate programs. For simplicity, we use a simple weighted
Context-Free Grammar to represent the area of solutions proposed by the LLM.
We then present methods for searching the space: the first is a probabilistic top-
down search, shown in Algorithm 3; the second is based on an adaptation of the
A∗ algorithm [19,27], and we integrate both into CEGIS searches as shown in
Algorithm 1. The verification phase in Algorithm 1 is implemented via a call to
an SMT solver, which checks, for a candidate solution f , whether there exists
an input such that the specification is violated, i.e., ∃x.¬φ[F 	→ f ].

Algorithm 1. CEGIS with weighted search
1: procedure CEGIS(WG, φ)
2: cex ← ∅
3: while true do
4: prog ← Enumerate(WG, φ, cex, )
5: if verify(prog, φ) then
6: return prog
7: else
8: c ← verify.get cex

9: cex ← cex ∪ {c}

5.1 Inferring a Weighted CFG

In this section, we describe how we infer a weighted Context-Free Grammar from
the incorrect solutions produced by the large language model.

Definition 5 (Derivations). Given a context-free grammar G, and a sentence
s, the sentence is in the language of the grammar if S →∗ s, where S is the start
symbol of the grammar. The derivation of s from S is a sequence of rules such
that S

r0−→ s1
r1−→ . . . sn

rn−→ s and r0 . . . rn ∈ R. We denote the derivation of s
by the sequence of rules r0, . . . rn as Ds = {r0, . . . rn}. The left-most derivation
is a derivation such that all rules expand the left-most non-terminal symbol in
the sentential form.

From here on in, all derivations are assumed to be the left-most derivation,
and we assume the grammar is unambiguous, i.e., there exists a single left-most
derivation for any sentence in the language.

Given a set of possible programs prog ∈ LG generated by the language
model, we calculate a weight for each rule ri ∈ R as the number of times that
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rule appears in the left-most derivations of the programs. That is,

w[ri] =
∑

progi∈prog

|ri| ∈ Dprogi
, (1)

where |ri| is the number of times ri appears in the derivation. For example,
consider Response 1: the weights are calculated as w[r1] = 3, w[r2] = 3, w[r3] =
3, w[r4] = 4, w[r5] = 3. These correspond to the rules from Example 1:

r1 : Start → (ite StartBool Start Start)

r2 : Start → vr0

r3 : Start → vr1

r4 : Start → vr2

r5 : StartBool → (>= Start Start).

Probabilistic Context-Free Grammar. Given a wCFG, we derive a simple
pCFG by assuming that the probability associated with a rule ri : α → β is equal
to the weight w[α → β] of ri, divided by |π[α]| = |α × (Σ ∪ V )∗ ∈ R|, i.e., the
total number of rules that could be applied to α. That is P[α → β] = w[α→β]

|π[α]| .

By extension, PΣ [α → β] = w[α→β]
|π[α] | iff β ∈ Σ and 0 otherwise.

5.2 Probabilistic Guided Search

The aim of our algorithm is thus to search the area of programs closest to
those with the highest weights in the wCFG, or highest probabilities in the
corresponding pCFG. We adapt and implement two search methods for doing
this: the first is a probabilistic top-down search. To this end, we first introduce
the notion of a grammar tree.

Definition 6 (Grammar tree). We represent the search space as a grammar
tree. Given a context-free grammar G = (V,Σ,R, S), the graph of sentential
forms, or grammar tree, T (G) defined inductively: S is the root of the tree, and
for all x, y ∈ (V ∪ Σ)∗ with x → y and x being a node of the tree, then y is a
child node of x.

To implement our probabilistic guided search, we extend this definition to a
probabilistic grammar tree. Given a pCFG, PG = (V,Σ,R, S,P), a probabilistic
grammar tree T (PG) is a directed labelled graph as defined before, but each
edge has a corresponding weight ω given by P. We limit the edges to only those
needed for the left-most derivations, and so E and ω are defined as follows:

E = {xαy
α→β−−−→ xβy |α → β ∈ R, x ∈ Σ∗, α ∈ V, β, y ∈ (V ∪ Σ)∗},

ω[α → β] = P[α → β].
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Note that this guarantees that, for any node, the sum of the weight on the edges
leaving that node is equal to 1.

Algorithm 2. Probabilistic top-down enumerator for pCFG-synth
1: procedure Enumerate(WG, φ, cex )
2: prog ← WG.S
3: d ← 0
4: previousProgs ← ∅
5: PG ← BuildPCFG(WG)
6: while 1 do
7: if prog ∈ Σ∗ then
8: previousProgs ← previousProgs ∪ prog
9: if ∀�x ∈ cex. φ(prog, �x) then
10: return prog
11: else
12: prog ← S
13: d ← 0
14: prog ← ReplaceNonTerminals(prog, PG)
15: d ← d + 1
16: if d = maxDepth then
17: prog ← CompleteProgram(prog, PG)
18: if prog ∈ PreviousPrograms then
19: prog ← S
20: d ← 0
21: procedure ReplaceNonTerminals(prog, PG)
22: NT ← list of nonterminals in prog
23: for α ∈ NT do
24: (α × β) ∼ Cat(|π[α]|, {P[π[α]1],P[π[α]2], . . .}) � Sample from distribution
25: prog ← prog.{α → β} � apply rule to prog

26: return prog

27: procedure CompleteProgram(prog, PG)� Replaces non-terminal symbols with
terminal symbols

28: NT ← list of nonterminal symbols in prog
29: for α ∈ NT do
30: (α × β) ∼ Cat(|π[α]|, {PΣ [π[α]1],PΣ [π[α]2], . . .}) � Sample
31: prog ← prog.{nt → nt′} � apply rule to prog

32: return prog

We search this grammar tree using a top-down enumerative synthesizer,
shown in Algorithm 2. This enumerates possible programs in the grammar in
a top-down manner, expanding non-terminals by randomly sampling from the
categorical distribution over the production rules. That is, the search algorithm
starts by considering the node corresponding to the start symbol S. It then
chooses the next node by sampling from a categorical distribution with event
probabilities corresponding to the probabilities on the outgoing edges of the
current node. The categorical distribution is a generalization of the Bernoulli
distribution and describes the possible results of a random variable that can
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take one of K possible categories, with the probability of each category sepa-
rately specified. Formally, to sample a rule α × β to apply to a non-terminal
symbol α, we sample from the distribution:

(α × β) ∼ Cat(|π[α]|, {P[π[α]1],P[π[α]2], . . .}),

where |π[α]| is the number of rules that could be applied to α and π[α]i is
the ith of those rules, and {P[π[α]1],P[π[α]2], . . .} is a vector of probabilities
corresponding to those rules.

We then apply the sampled rule, and repeat the process. We use prog.{α →
β} to indicate the result of substituting the first occurrence of α in a partial
program prog with β.

With a naive implementation of this algorithm, the probability of our algo-
rithm generating any sentence s is equal to

∏
ri∈Ds

P[ri], where Ds is the left-
most derivation of s. However, this will result in the algorithm generating the
same programs multiple times, so we modify this algorithm in two ways: First, if
we enumerate a complete program that we have seen before, we discard it; Sec-
ond, we give a maximum depth limit, and if we are approaching the maximum
depth limit, we sample only from the outgoing edges that result in complete
programs.

Algorithm 3. pCFG-synth
1: procedure pCFG-synth(prompts, φ, G)
2: conv ← [ ]
3: progs ← ∅
4: while prompts 	= ∅ do
5: response ← LLM(prompts.pop(), conv)
6: conv.append(response)
7: currentProg ← ExtractProgram(response)
8: if ∀�x φ(currentProg, �x) then
9: return currentProg
10: else
11: progs ← progs ∪ currentProg

12: W ← WeightCounter(prog, G)
13: WG ← (G, W )
14: prog ← CEGIS(WG, φ)
15: return prog

5.3 Weighted A∗ Search

We implement a second variation of pCFG-synth using the A∗ weighted search
algorithm as the underlying enumerator. A∗ is a search algorithm that chooses
which paths to extend based on minimizing the cost of the path so far and an
estimate of the cost required to extend the path to the goal, i.e., it expands
nodes that minimizes f(x) = c(x) + g(x), where c(x) is the cost of the path to
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x so far and g(x) is the estimated cost of reaching a goal node from x. This
technique was first used for guiding synthesis by Lee et al. [27], and we adapted
the algorithm from their work.

To implement our A∗ search, we extend the definition of the grammar tree
to a weighted grammar tree. Given a pCFG PG = (V,Σ,R, S,P), a weighted
grammar tree T (WG) is a directed labeled graph as defined before, but each
edge has a corresponding weight, given as follows:

ω(α → β) =

{
− log2(P[α → β]) if P[α → β] > 0,

inf otherwise.

We use the negative log of the probability to ensure that higher weighted edges
correspond to those with very low probabilities.

Algorithm 4. A∗ search for pCFG-synth
1: procedure Enumerate(PG, φ, cex )
2: Q = {0, S} � Priority queue of candidates
3: while Q 	= ∅ do
4: (f, prog) ← Q.pop() � Remove program with minimal f
5: if ∀�x ∈ cex. φ(prog, �x) then
6: return prog

7: for (nt ∈ prog) × nt′ do
8: if (nt × nt′) ∈ PG.R then � For all applicable rules
9: prog ← prog.{nt → nt′} � apply rule to prog
10: Q ← Q ∪ (c(prog) + g(prog), prog)

The A∗ algorithm, shown in Algorithm 4, relies on two key functions: first,
the function c(x), which computes the cost of the path so far, and second, the
function g(x) which estimates the cost to extend the path to a goal node. Assum-
ing x is a sentential form in our language, c(x) and g(x) are given by:

c(x) =
∑

ri∈Dx

− log2 (P[ri]) , g(x) =

{
0 if x ∈ Σ∗,
−

∑
xi∈V log2 h(xi) otherwise,

where xi indicates the ith symbol in x, and h is the upper bound of the proba-
bilities of expressions that can be derived from xi, and is calculated as the fixed
point of:

∀α ∈ V.h(α) = max
α→β∈R

⎛

⎝P[α → β] ×
∏

βi∈V

h(βi)

⎞

⎠ ,

The function g(x) can then be thought of as the product of the probability of
each non-terminal symbol in x being converted into a terminal symbol.
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Smoothing the Probability Distributions: Since the A∗ algorithm will not enumer-
ate any programs whose derivation uses a rule with zero probability, we smooth
the weighted grammar as follows, with γ = 0.4: w′[α → β] = 10×

(
w[α→β]+1

10

)γ

.

6 Enumerative Synthesis with an Integrated LLM
(iLLM-synth)

The disadvantage of the method described in the preceding section is that the
language model cannot benefit from any additional information that the enu-
merator learns during enumeration, as all prompting happens prior to starting
the enumerative synthesis. In this section we describe how we integrate an LLM
into an enumerative synthesis algorithm, allowing it to update a probability
distribution over the search grammar and to augment the grammar with new
production rules, as shown in Algorithm 5.

Algorithm 5. Syntactic feedback generator
1: procedure SyntacticFeedback(WG, prog, cex)
2: prompt ← GeneratePrompt(prog, cex)
3: response ← LLM(prompt)
4: candidate ← ExtractProgram(response)
5: WG.W ← WG.W +WeightCounter(response)
6: WG.R ← WG.R ∪ (WG.S × response)
7: return WG

6.1 Integrated Prompting

We construct a prompt that asks the LLM to provide helper functions to assist a
student in writing SMT-lib code. We give the LLM the constraints from the tar-
get synthesis problem and the partially complete program at the point the enu-
merator calls the LLM. If the LLM fails to solve the problem with this prompt,
we later add the most recently failed candidate solution and the counterexample
it failed on. These prompts are shorter than the prompts in those used in Sect. 4
and, therefore, cheaper and faster to run. An example Prompt 4 is as follows:

You are teaching a student to write SMT -LIB. The student must write a
function that satisfies the following constraints:

(constraint (>= (fn vr0 vr1 vr2) vr0))
(constraint (>= (fn vr0 vr1 vr2) vr1))
(constraint (>= (fn vr0 vr1 vr2) vr2))
(constraint (or (= vr0 (fn vr0 vr1 vr2)) (or (= vr1 (fn vr0 vr1 vr2))

(= vr2 (fn vr0 vr1 vr2)))))
So far , the student has written this code:
(define -fun fn ((vr0 Int) (vr1 Int) (vr2 Int)) Int

(ite ?? ?? ??)
Can you suggest some helper functions for the student to use to

complete this code and replace the ??
You must print only the code and nothing else.

Prompt 4. Integrated prompt for Example 1.
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Algorithm 6. Top-down enumerator for iLLM-synth
1: procedure Enumerate(WG, φ, cex )
2: prog ← WG.S
3: d ← 0; i ← 0
4: PG ← BuildPCFG(WG)
5: while 1 do
6: if prog ∈ Σ∗ then
7: if ∀�x ∈ cex. φ(prog, �x) then
8: return prog
9: else
10: prog ← S
11: d ← 0
12: if i%n = 0 then
13: WG ← SyntacticFeedback(WG, prog, cex)
14: PG ← BuildPCFG(WG)

15: prog ← ReplaceNonTerminals(prog, PG)
16: d ← d + 1
17: if d = maxDepth then
18: prog ← CompleteProgram(prog, PG)
19: if prog ∈ PreviousPrograms then
20: prog ← S
21: d ← 0
22: i ← i + 1

6.2 Updating the Weighted Grammar

We initialize our algorithm with a weight of 1 for each rule in the grammar. We
use the LLM-generated helper functions to augment the grammar in the follow-
ing way: first, any helper functions will be added directly as new production rules
to replace non-terminals of the correct type in the grammar. That is, if the LLM
proposes the defined function f , a set of rules of the form Vi × f are added to
the grammar, for all non-terminal symbols Vi such that this rule results in syn-
tactically correct expressions, i.e., Vi must be of the same type as the co-domain
of f . This is sufficient to guarantee syntactically correct expressions because any
functions proposed by the LLM that are otherwise not well-formed, e.g., they
reference variables that are not defined, are discarded. Any new rules are given
a weight equal to the average of all the current weights for rules relevant to that
non-terminal. The response parser also updates the weights of all existing rules
in the grammar, according to Eq. 1, calculated from the set of helper functions
the LLM proposed.

6.3 Integrating Syntactic Feedback into Enumerative Search

We integrate the syntactic feedback generator into the probabilistic enumerator,
shown in Algorithm 3, and into the A∗ weighted search, as shown in Algorithm 7.
Both search algorithms call the syntactic feedback generator every nth iteration,
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where n is a heuristic used to ensure the LLM is not called with the same
partial program repeatedly and that the search algorithm has time to exploit the
information obtained from the LLM. Note that, when the probabilistic grammar
is updated, the h values must be re-calculated in the A∗ search.

Algorithm 7. A∗ search for iLLM-synth
1: procedure Enumerate(PG, φ, cex )
2: Q = {0, S} � Priority queue of candidates
3: i ← 0
4: while Q 	= ∅ do
5: (f, prog) ← Q.pop() � Remove program with minimal f
6: if prog ∈ Σ∗ then
7: if ∀�x ∈ cex. φ(prog, �x) then
8: return prog

9: if i%n = 0 then
10: WG ← SyntacticFeedback(WG, prog, cex)
11: PG ← BuildPCFG(WG)

12: for (nt ∈ prog) × nt′ do
13: if (nt × nt′) ∈ PG.R then � For all applicable rules
14: prog ← prog.{nt → nt′} � apply rule to prog
15: Q ← Q ∪ (c(prog) + g(prog), prog)

16: i ← i + 1

7 Evaluation

We evaluate our approaches on benchmarks taken from the SyGuS competi-
tion [3], each with a grammar that corresponds to the full language of their
respective theories. We evaluate across three SyGuS categories: Bit-Vector (BV),
Linear Integer Arithmetic (LIA), and Invariants (INV). We evaluate both the
LLM as a stand-alone synthesizer, the probabilistic enumerator and A∗ imple-
mentations with a pre-trained pCFG and the enumerator with a pre-trained
syntactic oracle. We utilize OpenAI’s GPT-3.5-turbo-16k model to generate the
prompts used for the pre-trained pCFG and the standalone LLM evaluation
because this model supports longer prompts. We configure this with a tempera-
ture of 1.0, conversation-style messaging. We use GPT-3.5-turbo for iLLM-synth,
which has shorter prompts. We use the 4.8.12 64-bit version of Z3 for verification
and cvc5 version 1.1.0 as a baseline.

Evaluation of the Stand-Alone LLM: We prompt the LLM until it produces up
to 6 complete synthesis attempts per benchmark, with the results reported in
line 1 of Table 1. Any incomplete solutions are discarded (i.e., functions without
a function body), although these are relatively rare, and we discard only 0.85%
of programs we generate. In total, the LLM solves 49% of benchmarks, perform-
ing better in the invariant and LIA categories than the bit-vector category. On
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average, for the benchmarks it can solve, it takes 4 attempts to produce a correct
solution. The average time for the LLM to generate a program is approximately
5s using the OpenAI Python API. However, this is dependent on OpenAI, and
we report these times only as estimates in Table 1. We allow the LLM only 6
attempts to solve the problem since, by the 6th iteration, the number of new
solutions the LLM finds has dropped to <2% (and it finds 0 new solutions for
LIA).

Evaluation of pCFG-synth: We evaluate both variants of pCFG-synth (with
the probabilistic enumerator, denoted e-pCFG-synth, and with A∗, denoted A∗-
pCFG-synth) using the wCFG obtained from the LLM. As a baseline, we run the
same algorithms assigning a weight of 1 to every rule in the grammar (referred to
as “enumerator” and A∗ respectively in the results). pCFG-synth increases the
number of benchmarks the probabilistic enumerator can solve by 30%, but barely
increases the number A∗ can solve, although the exact sets of benchmarks which
A∗ and A∗-pCFG-synth solve do differ significantly. We hypothesize that this is
because A∗, guided by the pCFG with equal weights for all rules, is very good at
generating short solutions, and A∗-pCFG-synth is worse at short solutions but
better at generating more complex solutions guided by the pCFG.

We also report the results obtained by the union of the LLM alone and pCFG-
synth, i.e., if the LLM solves the benchmark, we do not deploy the enumerator.
This is a more realistic representation of how such a technique would be used and
demonstrates that the enumerator can overcome shortcomings of the LLM and
vice versa. The union of the LLM and A∗-pCFG-synth substantially outperforms
cvc5, solving 73 more benchmarks.

Evaluating iLLM-synth: We evaluate both variants of iLLM-synth, denoted e-
iLLM-synth and A∗-iLLM-synth. We set the temperature for e-iLLM-synth to
1, but find that A∗-iLLM-synth performs better with a temperature set to 0
which we hypothesize is due to the determinism of the algorithm. We find that
iLLM-synth outperforms the enumerator of pCFG-synth, and gets close to the
performance of cvc5, suggesting that the ability to prompt the LLM with addi-
tional information obtained during enumeration allows the LLM to provide bet-
ter guidance to the enumerator, as well as to more frequently propose useful
helper functions. We do find that iLLM-synth performs less well than methods
incorporating the stand-alone LLM on the invariant benchmarks, which is likely
because the invariant benchmarks benefit from the custom prompting technique
described in Sect. 4.1. Future work would involve identifying further categories
of benchmarks that benefit from custom prompts. It is worth noting that neither
the probabilistic enumerator nor the A∗ implementation includes many of the
optimizations that mature solvers such as cvc5 implement, and yet, by integrat-
ing these simple algorithms with syntactic feedback from an LLM, they have
achieved performance on par with the state-of-the-art enumerative solver.
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Failure Modes: We manually examine a sample of the stand-alone LLM errors
and give examples of such errors in the extended version of this paper2. Broadly,
we identify the following common failures: Misunderstandings due to complex
constraints (the LLM suggests solutions that are not syntactically close to the
correct solution); simple syntactic errors, e.g., applying non-commutative opera-
tors to operands in the wrong order, concatenating bit-vectors in the wrong order
or hallucinating operations; simple semantic errors, e.g., operators in the wrong
order. Errors in the first category are not helpful to our guided enumerators, but
the remaining categories of error still allow us to generate a wCFG that is likely
to indicate the area of the solution. The benchmarks that cvc5 can solve and our
enumerative techniques cannot, tend to have complex constraints and relatively
short solutions that use less common operators (e.g., bitwise operators). We
hypothesize that the LLM guidance becomes an impediment to the enumerator
in these scenarios. In contrast, the average length (in characters) of a solution
for benchmarks uniquely solved by the LLM is 4.7x the length of a solution for
benchmarks uniquely solved by cvc5. Using the LLM to guide the enumerators
increases the length of solutions that the enumerators can find, for instance all
solutions found by A∗ contain fewer than 3 operators, but A∗-iLLM-synth finds
solutions with greater than 20 operators.

Programming-by-Example: We omit benchmarks from the syntax-guided syn-
thesis competition tracks that solely focus on programming-by-example (PBE)
(i.e., specifying a program only using input-output examples and a grammar).
We omit these benchmarks for two reasons: first, since training data is trivial to
generate for PBE, unlike general logical specifications [34], there are many other
successful machine-learning driven synthesis techniques that can be trained for
PBE techniques [6]. Second; our approaches are effective when the LLM can pro-
vide guidance to the enumerator, which comes from prompting the LLM with
the logical constraints that form the specification. If we prompt the LLM using
the prompting techniques outlined in Sect. 4.1 with a PBE specification, it tends
to provide a solution in the form of a large case split over the input examples,
which returns specific outputs for each input. This is not useful for guiding the
enumerator because the LLM overfits to the examples in the specification and
fails to provide any bias towards operators other than “if-then-else”. To extend
our approach to PBE, we would need to use a prompting approach tailored to
input-output examples.

2 https://arxiv.org/html/2403.03997.

https://arxiv.org/html/2403.03997
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Table 1. Summary of results. We run nondeterministic results, marked�, 3 times and
report the average (standard deviation is less than 1% for all methods except the
baseline enumerator for number of benchmarks solved). We highlight the best result in
terms of number of benchmarks solved in each category. The timeout is 600 s. Times
in italic indicate results that may vary depending on load on the OpenAI servers. The
times for pCFG-synth do not include the time to call the standalone LLM and generate
the wCFGs, but these are included in the times for LLM ∪ pCFG-synth.

BV (384) LIA (87) INV (138) Total (609)

Methods # time(s) # time(s) # time(s) # %

LLM only 137 13.5 54 7.10 112 29.2 303 49.8%

e-pCFG-synth� 196.0 48.3 24.0 40.0 25.4 100.5 245.4 40.3%

A∗-pCFG-synth 262 60.1 35 72.7 25 99.7 322 52.9%

LLM ∪ e-pCFG-synth 255.0 37.0 64.0 17.20 117.7 40.4 436.7 71.7%

LLM ∪ A∗-pCFG-synth 305.0 35.0 65.0 18.1 118.0 33.6 488.0 80.1%

e-iLLM-synth� 241.0 88.2 63.4 9.3 65.3 25.4 370.0 60.8%

A∗-iLLM-synth� 272.3 24.6 68.3 20.8 67.3 43.6 408.0 67.0%

enumerator� 142.7 7.2 25.0 1.53 21.0 3.2 188.7 31.0%

A∗ 253.0 25.4 34.0 73.19 22.0 31.1 309.0 50.7%

cvc5 292.0 17.1 43.0 19.53 80.0 23.6 415.0 68.1%

8 Threats to Validity

LLM Training Data: The SyGuS problems are publicly available and might
be part of the training data for the LLM we use, although we believe the
solutions were not publicly available at the time of training.

Reproducibility: These experiments use GPT-3.5, an LLM available via API
from OpenAI. We have recorded the responses and parameters generated by
the LLM in all experiments, but these may not be reproducible [33] since
GPT-3.5 behaves non-deterministically in a way that cannot be seeded. How-
ever, we observe very small variations in the number of benchmarks solved in
our experiments (although greater variation in the average solving time). It
is also possible that OpenAI deprecates this LLM and its associated API or
updates it and changes its behavior in the future.

Benchmark Bias: The benchmark set is taken from the SyGuS competition [3],
but may not be very diverse and may not be representative of synthesis prob-
lems “in the wild”. Nevertheless, this is a standard benchmark set used in
many formal synthesis papers.

Hyperparameters: We have not invested time in parameter tuning, and better
or worse results may be obtained by changing the LLM parameters (temper-
ature), or adjusting the weights, enumeration depth and heuristic functions
in the probabilistic enumerator and A∗ algorithms.
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9 Related Work

Many state-of-the-art of SyGuS solvers are based on enumerative synthesis [4,21,
27,37] and use clever heuristics to improve the search speed. Closest to our work
is Euphony [27], which uses a pre-trained probabilistic higher-order grammar [9]
to guide an A∗ search. This requires a library of known solutions for training;
an advantage of our approach is it exploits the availability of LLMs pre-trained
on large bodies of code in other languages, and disregards the need for a library
of known solutions of SyGuS problems for training. Weighted grammars have
also been used to guide programming by example [30], and to encode syntactic
objectives [20], for instance, for optimizing the length of solutions.

Almost all synthesis algorithms use oracles to give feedback to the synthesis
process [24,25]. The majority of these use semantic oracles, which give feedback
on the meaning of the program, for example, counterexamples [2]. The LLM in
iLLM-synth can be considered a syntactic oracle as it only gives feedback on
the syntax of the program. Two approaches [1,17] can be thought of as using
syntactic oracles, which evaluate partial programs (or sentential forms) and tell
the synthesizer whether a solution can be derived from the sentential form.

Machine learning techniques have been deployed to improve the efficiency
of enumerative synthesis, e.g., reinforcement learning [12,15,34] or using neural
networks to filter grammars for programming-by-examples problems [31].

LLMs, such as GPT-4 [32] and CoPilot [18], have demonstrated impressive
capabilities in generating code and assisting in diverse programming tasks with
natural language and input-output specifications [5,10,11,22]. However, their
tendency to produce hallucinations, factually incorrect or contextually inap-
propriate outputs, which poses challenges to users [35,36,38]. Closest to our
work is Kamath et al., who use LLMs to synthesize loop invariants [26] directly.
Our work also demonstrates that LLMs are surprisingly good at synthesizing
invariants, but also addresses the question of how to use LLMs in other formal
synthesis problems and when they cannot find the solution in one shot. Other
work that integrates formal methods with LLMs uses LLMs to generate program
annotations for program annotation [41,43]. Jha et al. [23] and Song et al. [40]
integrate an LLM into a CEGIS loop, but, unlike our work, the entire synthesis
phase is implemented by an LLM, which does not allow them to benefit from
the combined strengths of enumerative solving and LLMs.

10 Conclusions

We have presented a novel integration of LLMs into two enumerative synthesis
algorithms, evaluated on benchmarks from the Syntax-Guided Synthesis com-
petition. We found that LLMs and enumerative solvers have distinct strengths
and weaknesses when deployed alone. We have demonstrated that, by allow-
ing the enumerative synthesizer to prompt the LLM with information obtained
during the enumeration and allowing the LLM to provide syntactic feedback
to the enumeration, we can achieve performance that equals and exceeds the
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state-of-the-art solvers, even with relatively simple enumerative algorithms. We
argue that our results show that LLMs have the potential to make significant
contributions in the domain of formal program synthesis, but the way to achieve
this is by combining these techniques with existing algorithms in the literature.
Enumerative synthesis is not dead yet!
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Abstract. Formal verification provides a rigorous and systematic app-
roach to ensure the correctness and reliability of software systems. Yet,
constructing specifications for the full proof relies on domain expertise
and non-trivial manpower. In view of such needs, an automated app-
roach for specification synthesis is desired. While existing automated
approaches are limited in their versatility, i.e., they either focus only
on synthesizing loop invariants for numerical programs, or are tailored
for specific types of programs or invariants. Programs involving multiple
complicated data types (e.g., arrays, pointers) and code structures (e.g.,
nested loops, function calls) are often beyond their capabilities. To help
bridge this gap, we present AutoSpec, an automated approach to syn-
thesize specifications for automated program verification. It overcomes
the shortcomings of existing work in specification versatility, synthesiz-
ing satisfiable and adequate specifications for full proof. It is driven by
static analysis and program verification, and is empowered by large lan-
guage models (LLMs). AutoSpec addresses the practical challenges in
three ways: (1) driving AutoSpec by static analysis and program veri-
fication, LLMs serve as generators to generate candidate specifications,
(2) programs are decomposed to direct the attention of LLMs, and (3)
candidate specifications are validated in each round to avoid error accu-
mulation during the interaction with LLMs. In this way, AutoSpec can
incrementally and iteratively generate satisfiable and adequate specifica-
tions. The evaluation shows its effectiveness and usefulness, as it outper-
forms existing works by successfully verifying 79% of programs through
automatic specification synthesis, a significant improvement of 1.592x. It
can also be successfully applied to verify the programs in a real-world
X509-parser project.
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1 Introduction

Program verification offers a rigorous way to assuring the important properties
of a program. Its automation, however, needs to address the challenge of proof
construction [1,2]. Domain expertise is required for non-trivial proof construc-
tion, where human experts identify important program properties, write the
specifications (e.g., the pre/post-conditions, invariants, and contracts written in
certain specification languages), and then use these specifications to prove the
properties.

Despite the immense demand for software verification in the industry [3–7],
manual verification by experts remains the primary approach in prac-
tice. To reduce human effort, automated specification synthesis is desired.
Ideally, given a program and a property to be verified, we expect the specifica-
tions that are sufficient for a full proof could be synthesized automatically.

Research gap – Prior works are limited in versatility, i.e., the ability
to simultaneously handle different types of specifications (e.g., invariants, pre-
conditions, postconditions), code structures (e.g., multiple function calls, multi-
ple/nested loops), and data structures (e.g., arrays, pointers), leaving room for
improvement towards achieving full automation in proof construction. Existing
works focus only on loop invariants [8–10], preconditions [11,12], or postcondi-
tions [13–15]. Moreover, most works on loop invariant synthesis can only handle
numerical programs [2,16–18] or are tailored for specific types of programs or
invariants [19–24]. To handle various types of specifications simultaneously and
to process programs with various code and data structures, a versatile approach
is required.

Challenges – Although the use of large language models (LLMs) such as
ChatGPT may provide a straightforward solution to program specification gen-
eration, it is not a panacea. The generated specifications are mostly incorrect due
to three intrinsic weaknesses of LLMs. First, LLMs can make mistakes. Even
for the well-trained programming language Python, ChatGPT-4 and ChatGPT-
3.5 only achieve 67.0% and 48.1% accuracy in program synthesis [25]. In compar-
ison with programming languages, LLMs are much less trained in specification
languages. Therefore, LLMs generally perform worse in synthesizing specifica-
tions than programs. Since the generated specifications are error-prone, we need
an effective technique to detect incorrect specifications, which are meaningless
to verify. Second, LLMs may not attend to the tokens we want them
to. Self-attention may pay no, less, or wrong attention to the tokens that we
want it to. Recent research even pointed out a phenomenon called “lost in the
middle” [26], observing that LLMs pay little attention to the middle if the con-
text goes extra long. In our case, the synthesized specifications are desired to
capture and describe as many program behaviors as possible. Directly adopt-
ing the holistic synthesis (i.e., synthesizing all specifications at once) may yield
unsatisfactory outcomes. Third, errors accumulate in the output of LLMs.
LLMs are auto-regressive. If they make mistakes, these wrong outputs get added
to their inputs in the next round, leading to way more wrong outputs. It lays
a hidden risk when taking advantage of LLMs’ dialogue features, especially in
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an incremental manner (i.e., incrementally synthesizing specifications based on
previously generated ones).

Insight – To address the above challenges, our key insight is to let static
analysis and program verification take the lead, while hiring LLMs
to synthesize candidate specifications. Static analysis parses a given pro-
gram into pieces, and passes each program piece in turn to LLMs by inserting a
placeholder in it. Paying attention to the spotted part, LLMs generate a list of
specifications as candidates. Subsequently, a theorem prover validates the gener-
ated specifications and keeps the validated ones in the next round of synthesis.
The iteration process terminates when the property under verification has been
proved, or the iteration reaches a predefined limit.

Solution – Bearing the insight, we present AutoSpec, an LLM-empowered
framework for generating specifications. It tackles the three above-mentioned
limitations of directly adopting LLM in three perspectives. First, it decom-
poses the program hierarchically and employs LLMs to generate specifi-
cations incrementally in a bottom-up manner. This allows LLMs to focus on a
selected part of the program and generate specifications only for the selected con-
text. Thus, the limitation of context fragmentation could be largely alleviated.
Second, it validates the generated specifications using theorem provers.
Specifications that are inconsistent with programs’ behaviors and contradict the
properties under verification will be discarded. This post-process ensures that
the generated specifications are satisfiable by the source code and the prop-
erties under verification. Third, it iteratively enhances the specifications
by employing LLMs to generate more specifications until they are adequate to
verify the properties under verification or the number of iterations reaches the
predefined upper bound.

We evaluate the effectiveness of AutoSpec by conducting experiments on
251 C programs across four benchmarks, each with specific properties to be
verified. We compare AutoSpec with three state-of-the-art approaches: Pilat,
Code2inv, and CLN2Inv. The result shows AutoSpec can successfully handle
79% (= 199 / 251) programs with various structures (e.g., linear/multiple/nested
loops, arrays, pointers), while existing approaches can only handle programs
with linear loops. As a result, 59.2% (= (199 – 125) / 125) more programs can
be successfully handled by AutoSpec. The result also shows that AutoSpec
outperforms these approaches’ effectiveness and expressiveness when accurately
inferring program specifications. To further indicate its usefulness, we apply
AutoSpec to a real-world X509-parser project, demonstrating its ability to
automatically generate satisfiable and adequate specifications for six functions
within a few minutes. Also, the ablation study reveals that the program decompo-
sition and the hierarchical specification generation components contribute most
to performance improvement. This paper makes the following contributions:

– Significance. We present an automated specification synthesis approach,
AutoSpec, for program verification. AutoSpec is driven by static analysis
and program verification, and empowered by LLMs. It can synthesize differ-
ent types of specifications (e.g., invariants, preconditions, postconditions) for



Enchanting Program Specification Synthesis 305

Fig. 1. ACSL Annotations to Functional Proof of Bubble Sort

programs with various structures (e.g., linear/multiple/nested loops, arrays,
pointers).

– Originality. AutoSpec tackles the practical challenges for applying LLMs
to specification synthesis: It decomposes the programs hierarchically to lead
LLMs’ attention, and validates the specifications at each round to avoid error
accumulation. By doing so, AutoSpec can incrementally and iteratively gen-
erate satisfiable and adequate specifications to verify the desired properties.

– Usefulness. We evaluate AutoSpec on four benchmarks and a real-world
X509-parser. The four benchmarks include 251 programs with linear/mul-
tiple/nested loops, array structures, pointers, etc.. AutoSpec can success-
fully handle 79% of them, 1.592x outperforming existing works. The exper-
iment result shows the effectiveness, expressiveness, and generalizability of
AutoSpec.
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2 Background and Motivation

Listing 1 illustrates a C program that implements the bubble sort (sorting
a 5000-element array of integers in ascending order), where the property to be
verified (line 48) prescribes that after sorting, any index i between 1 and 4999,
the element at array[i-1] is no larger than the element at array[i]. To ver-
ify the property, we use a specification language for C programs, ACSL [27]
(ANSI/ISO-C Specification Language) to write the proof. It appears in the form
of code comments (annotated by //@ ... or /*@ ... */) and does not affect
the program execution. The ACSL-annotated program can be directly fed to
auto-active verification tool (Frama-C [28] in this paper) to prove the proper-
ties (Fig. 1).

In the running example, specifications in the program prescribe the precondi-
tions (begin with \requires), postconditions (begin with \ensures), and loop
invariants (begin with loop invariant)1. To prove the property in line 48, prac-
titioners usually write specifications in a bottom-up manner, that is, from line
47 tracing to bubbleSort (line 21), then from line 39, tracing to swap (line 10).
Starting from swap, practitioners identify the inputs and outputs of the swap
function and write the pre/post-conditions (lines 4–8). In particular, the precon-
dition (lines 4–5) requires the two input pointers to be valid (i.e., they can be
safely accessed), which is necessary to ensure the safe execution of the operations
involving dereferencing. Additionally, the postcondition ensures that the values
of *a and *b are swapped (lines 6–7) and assigned (line 8) during execution.

Then tracing back to where swap is called, i.e., inside bubbleSort, it can be
challenging because it contains nested loops. In a bottom-up manner, the inner
loop of bubbleSort (lines 37–41) is first analyzed. In particular, to verify a loop,
it is composed of (1) loop invariants (i.e., general conditions that hold before/-
during/after the loop execution, begin with loop invariant), and possibly (2)
the list of assigned variables (begin with assign). In the example, practitioners
analyze the inner loop and write specifications in lines 31–36. Specifically, the
index j should fall into the range of 0 to n (line 32), the elements from index 0
to j are not larger than the element at j (line 33), and all elements from index 0
to i are smaller than or equal to the element at i+1 (line 34). Also, the variables
to be assigned in this inner loop include j and first-i elements in the array (line
35). Similarly, for the outer loop (lines 30–42), lines 24–29 describe the range
of index i (line 25), invariants (lines 26–27) and assigned variables (line 28).

Finally, practitioners analyze bubbleSort (lines 21–43), identifying that the
first-n elements of array can be safely accessed (line 17), n must be greater
than zero (line 18). After execution, the array is in ascending order (line 19).
Once all the specifications are written, they are fed into a prover/verification
tool), Frama-C [28] which supports ACSL to verify the satisfiability (i.e., the
specifications satisfy the program) and adequacy (i.e., the specifications are
sufficient to verify the desired properties) of all specifications until the desired

1 ACSL has more keywords with rich expressiveness. Refer to the documentation [27].
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property verification succeeds. If the verification fails, practitioners debug and
refine the specifications.

From this example, we can see that the manual efforts to write specifications
are non-trivial. Even for a simple algorithm such as bubble sort. In practice, the
program under verification could be on a far larger scale, which brings a huge
workload to practitioners, motivating the automated specification synthesis.

Motivation – Existing related works can only synthesize loop invariants for
programs with a single loop [2,16] or multiple loops [29] on the numerical pro-
gram. These approaches cannot generate satisfiable and adequate specifications
to fully prove the correctness of basic programs such as bubble sort.

Motivated by the research gap, AutoSpec is presented. It synthesizes spec-
ification in a bottom-up manner, synthesizing versatile specifications (i.e., not
only loop invariants, but also precondition, postcondition, and assigned vari-
ables, which are necessary for the full proof). It validates the satisfiability of
specifications whenever specifications are synthesized, and verifies the adequacy
of specifications after all specifications are synthesized.

Fig. 2. User Scenario of AutoSpec

User Scenario – We envision the user scenario of AutoSpec in Fig. 2.
Given a program and properties under verification, AutoSpec provides a fully
automated verification process. It synthesizes the specifications for the program,
validates the satisfiability of specifications, verifies the specifications against the
desired properties, and outputs the verification result with proof if any.

Note that proof can be provided by AutoSpec if the program is correctly
implemented (i.e., the properties can be verified). When the given program is
syntactically buggy, the program reports the syntactic error at the beginning
before launching AutoSpec. If the given program is semantically buggy, then
AutoSpec cannot synthesize adequate specifications for verification, the syn-
thesis terminates when the maximum iteration number is reached.

3 Methodology

Figure 3 shows an overview of AutoSpec. The workflow comprises three main
steps: ➊ Code Decomposition (Sect. 3.1). AutoSpec statically analyzes a C
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program by decomposing it into a call graph, where loops are also represented
as nodes. The aim of the first step is to generalize the procedure that was previ-
ously discussed in Sect. 2 to include the implicit knowledge of simulating interac-
tions between humans and verification tools. By decomposing the program into
smaller components, LLMs can iteratively focus on different code components for
a more comprehensive specification generation. ➋ Hierarchical specification
generation (Sect. 3.2). Based on the call graph with loops, AutoSpec inserts
placeholders in each level of the graph in a bottom-up manner. Taking the pro-
gram in Listing 1 for example, AutoSpec inserts the first placeholder (/*@ 1.
SPEC PLACEHOLDER */) before swap, and then inserts the second placeholder in
the inner loop of Sort. Then, AutoSpec iteratively masks the placeholder one
at a time with “>>> INFILL <<<” and feeds the masked code into LLMs
together with few-shot examples. After querying LLMs, they reply with a set of
specifications. AutoSpec then fills the generated specifications into the place-
holder and proceeds to the next one. Once all the placeholders are filled with
LLM-generated specifications, AutoSpec proceeds to the next step. ➌ Speci-
fication Validation (Sect. 3.3). AutoSpec feeds the verification conditions of
each generated specification into a theorem prover to verify their satisfiability. If
the theorem prover confirms the satisfiability of the specifications, they will be
annotated as a comment in the source code. Otherwise, if the theorem prover
identifies any unsatisfiable specifications (i.e., cannot be satisfied by the pro-
gram), AutoSpec removes those specifications and annotates program with the
remaining specifications. Then, AutoSpec returns to the second step to insert
additional placeholders immediately after the specifications generated in the pre-
vious iteration and generate more specifications. This iterative process continues
until all the specifications are successfully verified by the prover or until the

Fig. 3. Overview of AutoSpec
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Algorithm 1: Construct an Extended Loop/Call Graph

Input: The source code C and the location loc of the assertion to be verify
Output: A call graph G extended with loops

1 G ← get function(loc) // initialize a Graph G

2 WorkList ← get function(loc)
3 while WorkList! = ∅ do

4 Fn ← select and remove a node(WorkList) // transitively visit all reachable nodes

5 for each basicBlock bb in Fn do

6 if bb calls a function M then // If there exist a function call

7 if M is not already a node in G then
8 Add a node M to G
9 Add an edge from Fn to M in G

10 WorkList ← WorkList ∪ M // Add this node (function) to the WorkList

11 if bb is a loop entry for loop L then // If there exist a loop

12 if L is not already a node in G then
13 Add a node L to G
14 Add an edge from Fn to L in G

15 WorkList ← WorkList ∪ L // Add this node (loop) to the WorkList

16 return G

number of iterations reaches the predefined upper limit (in our evaluation, it is
set to 5). We will explain the methodology of each step in detail.

3.1 Code Decomposition

Using static analysis, AutoSpec constructs a comprehensive call graph for the
given program to identify the specific locations where specifications should be
added and determine the order in which these specifications should be added.
This call graph is an extended version of the traditional one, where loops are
also treated as nodes, in addition to functions. This is particularly useful for
complex programs where loops can significantly affect the program’s behavior.

The algorithm for constructing such a call graph is shown in Algorithm 1.
Specifically, the algorithm selects a function that contains the target assertion
to be verified as the entry point for the call graph construction. Then, it tra-
verses the abstract syntax tree (AST) of the source code to identify all functions
and loops and their calling relationships. For instance, the extended call graph
generated for the program in Listing 1 is given in Fig. 3(A).

Then, the specifications are generated step-by-step based on the nodes in
the extended call graph. When generating the specification for a node, one only
needs to consider the code captured by the node and the specifications of its
callees in the extended call graph. Furthermore, modeling loops in addition to
functions as separate nodes in the extended call graph allows AutoSpec to
generate loop invariants, which are essential to program verification. Therefore,
code decomposition allows LLMs to focus on small program components to gen-
erate specifications, thus reducing the complexity of specification generation and
making it more manageable and efficient. And traversing the extended call graph
from bottom to top can simulate the programmers’ verification process.
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3.2 Hierarchical Specification Generation

AutoSpec generates specifications for each node in the extended call graph in a
hierarchical manner. It starts from the leaf nodes and moves upward to the root
node. This bottom-up approach ensures that the specifications for each function
or loop are generated within the context of their callers. Algorithm 2 shows the
algorithm of hierarchical specification generation. The algorithm takes as input
an extended call graph G, an iteration bound t, a large language model, and
the assertion to be verified; and outputs an annotated code C with generated
specifications. In detail, the algorithm works as follows: First, the algorithm
initializes a code template C with the original code without specifications (line 1).
The code template, similar to Fig. 3(B), includes placeholders. Each placeholder
corresponds to a node in the call graph. These placeholders will be iteratively
replaced with the valid specifications generated by the LLMs and validated by
the theorem prover, within a maximum of t iterations (line 2).

In each iteration, the algorithm performs the following steps. First,
AutoSpec initializes a stack S with the root node of graph G, which is the tar-
get function containing the assertion to be verified (line 3). Second, AutoSpec
pushes the nodes that require specification generation into the stack S and tra-
verses the stack S in a depth-first manner (lines 4–15). For each node f in the
stack, the algorithm checks if all the callees of f have their specifications gener-
ated in this iteration (lines 7–8). If not, the algorithm pushes the callee nodes
into the stack and marks f as not ready for specification generation (lines 9–10).
If all of the functions called by f have had their specifications generated, the
algorithm will then proceed to generate the specifications for f . (lines 11–15). In
particular, AutoSpec queries the LLMs to generate a set of candidate specifica-
tions spectmp for f (line 12), and validates spectmp by examining their syntactic
and semantic validity. Any illegal or unsatisfiable specifications are eliminated,
and the remaining valid specifications are referred to as specf (line 13). The
validation process may employ existing provers/verification tools to guarantee
soundness. Then, AutoSpec inserts the validated specifications into the source
code C at the placeholder of f (line 14), and pops up the node f from the stack,
indicating that f has its specification generated in this iteration (line 15). Third,
AutoSpec examines whether the whole verification task has been completed,
that is, whether the generated specifications are adequate to verify the target
assertion (line 16). If it does, AutoSpec proceeds to simplify the annotated
code C by eliminating redundant or unnecessary specifications (line 17) and
then terminates (line 18). Otherwise, it is assumed that the specifications gener-
ated so far are satisfiable, though they may be inadequate. And AutoSpec will
start another iteration to generate additional specifications while retaining those
already generated. Finally, the algorithm returns the annotated code C with the
generated specifications as the output (line 19). After several iterations, if the
whole verification task remains incomplete, the programmer can make a decision
on whether to involve professionals to continue with the verification process for
the annotated code C.
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Algorithm 2: Hierarchical Specification Generation

Input: A loop/call Graph G, an iteration bound t, a Large Language Model LLM , and the
assertion ass to be verified

Output: Annotated Code C with generated specifications

1 C.init() // initialize the code (without specifications)

2 for i in range(0, t) do // iteratively enhancing specifications

3 Initialize a stack S with the root node of G
4 while S is not empty do

5 f = S.top() // get the element at the top of the stack

6 allgen = true
7 for each callee in f .callees() do
8 if spec generation for callee has not been done in ith iteration then

9 S.push(callee) // push all callee into the stack

10 allgen = false

11 if allgen == true then

12 spectmp = spec generation(C, f ,LLM) // query LLM to generate specification candidates

13 specf = spec validation(C, spectmp) // specification validation

14 C.insert(specf ) // insert the specifications into the code template

15 S.pop() // pop up the top element f of the stack

16 if spec validation(C, ass) then // determine whether the whole verification task has been completed

17 simplify(C) // eliminating redundant specifications

18 break

19 return C

Consider the extended call graph in Fig. 3(A) for example. AutoSpec
first pushes the main function, the sort function, the sort.loop1 loop, the
sort.loop2 loop, and the swap function into the stack in order, as all of them,
except the swap function have some callee nodes that require specification gen-
eration. Then, it generates specifications for each function or loop in the stack
in reserve order. This order echoes what is described in Sect. 2. AutoSpec will
leverage the power of LLMs to generate candidate specifications for each compo-
nent/function (i.e., spec generation function in line 12). In the following, we
discuss how AutoSpec utilizes LLMs for generating specifications.

Specification generation by LLMs. To employ LLMs in producing precise
and reliable responses in the specified format, AutoSpec automatically gener-
ates a prompt for each specification generation task. This prompt is a natural
language query that includes the role setting, task description, a few examples
showing the desired specifications, and the source code with a highlighted place-
holder (e.g., Fig. 3(C)). The prompt template used in AutoSpec is shown in
Fig. 3(D). Specifically, a prompt typically consists of the following elements: a
system message, code with a placeholder, and an output indicator. The system
message provides the specification generation task description and the specifica-
tion language, which are called context. AutoSpec sets the role of LLMs as “As
an experienced C/C++ programmer, I employ a behavioral interface specification
language that utilizes Hoare style pre/post-conditions, as well as invariants, to
annotate my C/C++ source code”. The system message also indicates the task’s
instructions, such as “Fill in the >>> INFILL <<<”. As explained in Sect. 3.1,
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when querying LLMs for the specifications of a component (i.e., a function or
loop), the code of this component and the specifications of its callees in the call
graph are needed. That is to say, the irrelevant code that is not called by this
component can be omitted, allowing LLMs to maintain their focus on the target
component and reduces unnecessary token costs. Finally, AutoSpec uses the
output format /@ ... / to indicate the generated specifications, which is crucial
for programmatically processing the responses of LLMs.

To improve the quality of the generated specifications, AutoSpec employs
the prompt engineering technique of few-shot prompting [30]. To achieve this,
the prompts are designed to include a few relevant input-output examples. Feed-
ing LLMs a few examples can guide them in leveraging previous knowledge
and experiences to generate the desired outputs. This, in turn, enables LLMs
to effectively handle novel situations. In particular, few-shot prompting allows
LLMs to facilitate the learning of syntax and semantics of specification language
through in-context learning. For example, consider a prompt that includes an
input-output example with a loop invariant for an array that initializes all ele-
ments to 0, such as \forall integer j; 0 <= j < i ==> ((char*)p)[j] ==
0;. With this example, AutoSpec is able to generate a valid loop invariant that
involves using quantifiers for the inner loop of bubbleSort in a single query.

3.3 Specification Validation

The hierarchical specification generation algorithm also employs specification
validation (i.e., spec validation() in line 13) and specification simplification
(i.e., simplify() in line 17) techniques to ensure the quality of the specifications.

Specification Validation. Once candidate specifications have been generated
for a component, AutoSpec will check their syntactic and semantic validity
(i.e., legality and satisfiability), as shown in Fig. 3(F). Specifically, for a func-
tion, the legality and satisfiability of the generated specifications are checked
immediately. While for a loop, the legality is checked immediately, but the satis-
fiability check is postponed until the outermost loop. This is because inner loops
often use variables defined in some of their outer loops (e.g., variable i in the
bubbleSort example), and the satisfiability of all loop invariants needs to be
verified simultaneously.

AutoSpec leverages the verification tool (i.e., Frama-C) to verify the speci-
fications. If the verification tool returns a compilation error, AutoSpec identifies
the illegal specification where the error occurs and continues verifying without
it if there are still some candidates. Otherwise, if the verification tool returns
a verification failure, AutoSpec identifies the unsatisfiable specification which
fails during verification and continues verifying without it if there are still some
candidates. Finally, if the verification succeeds, the specifications will be corre-
spondingly inserted into the code as a comment (Fig. 3(G)).

In addition, AutoSpec also validates whether the generated specifications
are adequate to verify the target assertion (line 16), which is the same as the
validation above but with the target assertion. Note that, the validation phase is
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Table 1. Statistics of Benchmarks.

Benchmarks/Project Description Num of Prog Types of Specifications Ave LoC Num of Spec

Frama-C-problems [31] Programs with function calls, nested/multiple loops, arrays, pointers 51 pre/post-conditions, loop invariants 17.43 1∼3
X509-parser [32] A real-world software implements a X.509 certificate parser 6 pre/post-conditions, loop invariants 82.33 3∼19
SyGuS [33] Programs with a single loop 133 loop invariants 22.56 1∼12
OOPSLA-13 [34] Programs with a single loop or nested/multiple loops 46 loop invariants 30.28 1∼3
SV-COMP [35] Programs with more complex nested/multiple loops 21 loop invariants 24.33 1∼5

crucial to AutoSpec as it ensures that the generated specifications are not only
legal and satisfiable but also adequate to verify the target assertion (Fig. 3(I)).

Specification Simplification (Optional). The objective of specification simpli-
fication is to provide users with a concise and elegant specification that facilitates
manual inspection and aids in understanding the implementation. This process
could be optional if one’s goal is simply to complete the verification task without
placing importance on the specifications. After successfully verifying the asser-
tion, we proceed to systematically remove specifications that are not needed for
their verification, one by one. Our main idea is that a specification is unnecessary
if the assertion is still verifiable without it. We repeat this process until we reach
the minimal set of specifications for manual reading.

There are two main reasons to eliminate specifications: (1) The specifica-
tion is considered weak and does not capture relevant properties of the veri-
fication task. For example, both the loop invariant i > 0 and i > 1 are sat-
isfiable, but i > 0 can be safely removed. (2) The specification is semanti-
cally similar to another specification. For example, both \forall integer i; 0
< i < n ==> array[i-1] <= array[i]; and \forall integer i; 0 <= i <
n-1 ==> array[i] <= array[i+1]; accurately describe the post-condition of
bubbleSort. Removing either of them has no impact on the verification results.

4 Evaluation

The experiments aim to answer the following research questions:

RQ1.Can AutoSpec generate specifications for various properties effec-
tively? We aim to comprehensively characterize the effectiveness of AutoSpec

against various types of specifications including pre/post-conditions, loop invari-

ants.

RQ2. Can AutoSpec generate specifications for loop invariant effec-
tively? Loop invariant, as a major specification type, is known for its difficulty

and significance. We select three benchmarks with linear and nested loop structures

and compare them with state-of-the-art approaches.

RQ3. Is AutoSpec efficient? We compare the AutoSpec’s overhead incurred by

LLM querying and theorem proving with the baselines.

RQ4. Does every step of AutoSpec contribute to the final effective-
ness? We conduct an ablation study on each part of the AutoSpec’s design, show-

ing the distinct contribution made independently.
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4.1 Evaluation Setup
Benchmark. We conducted evaluations on four benchmarks and a real-world
project. The statistical details of these benchmarks can be found in Table 1.
The Frama-C-problems [31] benchmark and the X509-parser [32] comprises
programs that involve multiple functions or loops, requiring the formulation
of pre/post-conditions, loop invariants, etc.. The SyGuS [33] benchmark only
includes programs with linear loop structures. While the OOPSLA-13 [34] and
SV-COMP [35] benchmarks include programs with nested or multiple loops, mak-
ing them suitable for evaluating the versatility and diversity of generated specifi-
cations. Please note that we assume the programs being verified are free of compi-
lation errors, and the properties being verified are consistent with the programs.
If there are any inconsistencies between the code and properties, AutoSpec is
expected to fail the verification after the iterations end.

Baselines. For RQ1, as previous works have primarily relied on manually
written specifications for the deductive verification of functional correctness for
C/C++ programs [36,37], we then conduct our approach based on this baseline,
and use the ablation study to demonstrate the contribution of different parts of
the design in AutoSpec in RQ4. For RQ2, we compare with Code2Inv [2], a
learning-based approach for generating linear loop invariants2. Although there
are newer approaches built on Code2Inv such as CLN2INV [16], their replicable
toolkit is only applicable to the benchmark they used (i.e., SyGuS [33]) and
incomplete, failing to apply to other benchmarks. Additionally, for RQ2, we also
compared with Pilat [29] using the default settings.

Configuration. For implementation, we use ChatGPT’s API gpt-3.5-turbo-
0613. We configure the parameters in API as follows: max token: 2048,
temperature: 0.7. To show the generalizability of AutoSpec, we also uti-
lize Llama-2-70b for conducting a comparable experiment (Sect. 5). Lastly, we
employ Frama-C [28,38] and its WP plugin to verify the specifications.

4.2 RQ1. Effectiveness on General Specification

Table 2 shows the results of AutoSpec on the Frama-C-problems benchmark.
This benchmark consists of 51 C programs, divided into eight categories (as indi-
cated in the entry Type). Each type contains several programs. The size of the
programs ranges from 9 to 36 lines of code (the entry LoC ). We also list the
number of functions and loop structures defined in the program. Most programs
contain a main function, with one or more loop structures. Since we could not

2 We reproduce their implementation using the provided replicable package and run
the tool on two additional benchmarks following their instructions. However, in their
original setting, the maximal time limit for each program is set to 12 h, which is far
from affordable. So we lowered the threshold to 1 h for efficiency.
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Table 2. Effectiveness of AutoSpec in General Specification Generation

Benchmark Information AutoSpec

Type Program LoC
Component
(Func, Loop)

Success Ratio Iterations
Generated

Spec
Correct
Spec

Time(s)
mean ± std

general wp problems

absolute value.c 15 1 (1,0) ✔ 5/5 1,1,1,1,1 7,7,7,7,7 7/7 14.17 ± 8.74
add.c 11 1 (1,0) ✔ 5/5 1,1,1,1,1 3,3,3,3,3 2/2 14.36 ± 8.20
ani.c 18 2 (1,1) ✕ 0/5 –,–,–,–,– 41,33,26,20,24 3/4 –
diff.c 10 1 (1,0) ✔ 5/5 1,1,1,1,1 2,2,2,2,2 1/1 8.85 ± 5.72
gcd.c 22 1 (1,0) ✕ 0/5 –,–,–,–,– 3,6,8,5,5 2/5 –
max of 2.c 15 1 (1,0) ✔ 5/5 1,1,1,1,1 4,3,5,3,5 2/2 17.64 ± 11.24
power.c 18 2 (1,1) N/A – – – – –
simple interest.c 14 1 (1,0) ✔ 5/5 1,1,1,1,1 5,5,5,5,5 5/5 15.34 ± 8.60
swap.c 16 1 (1,0) ✔ 5/5 1,1,1,1,1 3,3,3,3,3 2/2 15.36 ± 8.66
triangle angles.c 14 1 (1,0) ✔ 5/5 1,1,1,1,1 7,5,6,4,5 4/4 23.99 ± 13.67
triangle sides.c 16 1 (1,0) ✔ 5/5 1,1,1,1,1 3,3,3,2,2 2/2 20.11 ± 11.41
wp1.c 14 1 (1,0) ✕ 0/5 −,−,−,−,− 1,4,1,4,2 3/3 –

pointers

add pointers.c 19 1 (1,0) ✔ 5/5 1,1,1,1,1 3,4,4,4,4 2/2 10.00 ± 5.85
add pointers 3 vars.c 20 1 (1,0) ✔ 5/5 2,5,3,-,3 3,6,10,14,4 3/3 74.45 ± 47.78
div rem.c 12 1 (1,0) ✔ 5/5 1,1,1,1,1 7,8,7,7,7 4/4 14.66 ± 8.39
incr a by b.c 13 1 (1,0) ✔ 5/5 1,1,1,1,1 6,6,6,4,6 3/3 18.82 ± 13.43
max pointers.c 16 1 (1,0) ✔ 5/5 1,2,1,1,1 5,4,4,5,5 4/4 41.73 ± 15.74
order 3.c 36 1 (1,0) ✕ 0/5 −,−,−,−,− 16,19,15,6,12 3/4 –
reset 1st.c 16 1 (1,0) ✔ 5/5 1,1,1,1,1 7,5,4,6,5 4/4 15.23 ± 9.42
swap pointer.c 13 1 (1,0) ✔ 5/5 1,1,1,1,1 5,5,5,5,5 2/2 10.72 ± 6.00

loops

1.c 9 1 (0,1) ✔ 5/5 1,1,1,1,1 2,2,2,2,2 1/1 2.35 ± 2.23
2.c 17 2 (1,1) ✕ 0/5 −,−,−,−,− 8,10,11,11,5 2/5 –
3.c 18 2 (1,1) ✕ 0/5 −,−,−,−,− 10,6,7,5,6 3/4 –
4.c 18 2 (1,1) N/A – – – – –
fact.c 19 2 (1,1) ✕ 0/5 −,−,−,−,− 3,8,7,6,6 3/7 –
mult.c 16 2 (1,1) ✕ 0/5 −,−,−,−,− 6,14,10,9,16 2/3 –
sum digits.c 17 2 (1,1) ✕ 0/5 −,−,−,−,− 7,13,13,12,11 - –
sum even.c 16 2 (1,1) ✕ 0/5 −,−,−,−,− 9,14,16,18,19 2/3 –

immutable arrays

array sum.c 16 2 (1,1) ✕ 0/5 −,−,−,−,− 5,4,4,3,4 3/5 –
binary search.c 24 2 (1,1) ✔ 1/5 3,−,−,−,− 16,16,30,36,19 7/7 739.62 ± 239.59
check evens in array.c 19 2 (1,1) ✕ 0/5 −,−,−,−,− 11,18,15,13,16 4/6 –
max.c 20 2 (1,1) ✔ 5/5 1,1,1,1,1 10,9,12,8,7 5/5 40.11 ± 29.49
occurences of x.c 26 2 (1,1) ✔ 5/5 2,1,1,1,2 16,12,10,14,12 3/3 121.83 ± 75.04
sample.c 19 1 (0,1) ✔ 5/5 1,1,1,1,1 3,3,4,3,3 1/1 16.89 ± 10.47
search.c 17 2 (1,1) ✕ 0/5 −,−,−,−,− 12,14,16,16,12 5/8 –
search 2.c 18 2 (1,1) ✔ 4/5 1,3,2,-,3 13,18,19,10,16 5/5 155.32 ± 175.44

mutable arrays
array double.c 19 2 (1,1) ✔ 4/5 -,2,2,2,3 12,17,19,16,17 4/4 81.44± 21.14
bubble sort.c 26 3 (1,2) ✔ 3/5 -,2,3,3,- 9,12,15,12,15 10/10 448.76 ± 554.81

more arrays
equal arrays.c 15 2 (1,1) ✕ 0/5 −,−,−,−,− 9,14,15,13,8 5/7 –
replace evens.c 17 2 (1,1) ✔ 5/5 1,1,1,1,1 13,12,15,20,14 3/3 52.33 ± 17.30
reverse array.c 23 2 (1,1) ✕ 0/5 −,−,−,−,− 10,7,14,13,18 5/- –

arrays and loops

1.c 10 1 (1,0) ✔ 5/5 1,1,1,1,1 3,2,3,2,3 1/1 3.22 ± 2.07
2.c 18 2 (1,1) ✔ 5/5 1,1,1,1,1 10,10,10,10,10 2/2 30.15 ± 27.79
3.c 19 1 (1,0) ✔ 5/5 1,1,1,1,1 9,10,10,4,9 2/2 12.05 ± 7.09
4.c 18 2 (1,1) ✔ 5/5 1,1,1,1,1 12,10,10,8,0 2/2 18.34 ± 13.46
5.c 18 2 (1,1) ✕ 0/5 −,−,−,−,− 12,10,10,4,9 3/4 –

miscellaneous

array find.c 20 2 (1,1) ✕ 0/5 −,−,−,−,− 7,7,7,7,7 4/7 –
array max advanced.c 20 2 (1,1) ✔ 5/5 1,1,1,1,1 5,6,5,6,5 2/2 31.99 ± 34.41
array swap.c 18 1 (1,0) ✔ 5/5 1,1,1,1,1 8,4,7,8,4 3/3 26.05 ± 30.72
increment arr.c 17 2 (1,1) ✕ 0/5 −,−,−,−,− 2,2,2,2,2 3/6 –
max of 2.c 14 1 (1,0) ✔ 5/5 1,1,1,1,1 2,3,3,2,3 1/1 9.98 ± 10.31

Overall 31 / 51 89.17 ± 172.75

find other previous work that can automatically generate various types of spec-
ifications to complete the verification task on Frama-C-problems benchmark,
we hereby show the effectiveness of AutoSpec in detail.

Overall, 31/51 of these programs can be successfully solved by AutoSpec. In
particular, due to the randomness of LLMs, we ran the experiment five times for
each program and reported the detailed results. The success rate is tabulated in
Table 2, column Ratio. It shows that the results are stable over five runs. Almost
all passed cases can be successfully solved in five runs, with only a few exceptions
(e.g., 1/5, 4/5). The stable result shows that the randomness of LLMs has little
impact on the effectiveness of AutoSpec. Furthermore, AutoSpec enables an
iterative enhancement on specification generation. We hereby show the number
of iterations used for success generation (column Iterations). Most cases can be
solved in the first iteration. While the iterative enhancement also contributes to
certain improvements. For example, add pointers 3 vars.c in the pointers
category needs two more iterations to generate adequate specifications to pass
the theorem prover. In addition, we also report the number of generated specifica-
tions that are correct by using the ground truth in the benchmark as a reference,
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Table 3. Effectiveness on a Real-world X.509 Certificate Parser Project

Function Information AutoSpec

Project Function Feature LoC Success Ratio Iterations
Generated

Spec
Correct
Spec

Time(s)
mean ± std

X509-parser

check ia5 string loop; buffer pointer 60 ✔ 5/5 1,1,2,1,1 13,11,14,13,11 6/6 20.89 ± 10.51
verify correct time use switch-case 90 ✔ 5/5 1,1,3,1,2 10,19,23,15,16 3/3 24.16 ± 11.73
bufs differ loop; buffer pointer 55 ✔ 5/5 1,1,1,1,1 17,17,20,16,15 5/5 12.49 ± 5.11

parse null
call the function bufs differ;
buffer pointer

87 ✔ 2/5 –,–,1,1,– 25,36,44,33,34 13/13 260.96 ± 118.58

parse algoid params none
call the function parse null
and bufs differ

136 ✔ 2/5 –,2,–,–,2 184,92,156,142,96 19/19 957.14 ± 446.56

time components
shift operation;
multiple data type

63 ✔ 5/5 1,1,1,1,1 11,17,16,13,17 7/7 11.82 ± 5.34

Overall 6 / 6 214.58 ± 389.58

as shown in column Correct Spec. We can see that for the failed cases, there is at
least one generated specification that is correct. This shows that the generated
specifications are not excessive, and still have the potential to improve. Finally,
in terms of overhead (column Time(s)), AutoSpec processes a case in minutes,
from 2.53 s to 12 min, with an average of 89.17 s.

A Real-World X509 Parser Project. The X509-parser project, which aims
to ensure the absence of runtime errors, has undergone verification by Frama-C
and the ACSL specification language. Note that the specifications for this project
were manually added throughout 5 months [3]. It is currently impractical to seam-
lessly apply AutoSpec to the entire project without human intervention. We
manually extracted 6 representative functions without specifications. These func-
tions handle pointer dereference, multiple data types, shift operations, etc.. For
each function, we set a verification target that accurately describes its functional
correctness properties. AutoSpec generates specifications for these functions,
as shown in Table 3. Surprisingly, all 6 functions were solved by AutoSpec.
Through our comprehensive manual examination of the generated specifications,
we found that AutoSpec can generate a variety of specifications not previously
written by the developer. These specifications play a crucial role in ensuring
functional correctness. Considering that it takes five calendar months to write
specifications for the whole X509-parser project [3], AutoSpec can automati-
cally generate the required specifications for the functions in X509-parser in a few
minutes. We believe that AutoSpec could be useful for real-world verification
tasks.

4.3 RQ2. Effectiveness on Loop Invariants

Table 4 shows the effectiveness of AutoSpec in generating specifications of
loop invariants compared with three baselines. In particular, the SyGuS bench-
mark consists of 133 C programs. Each program contains only one loop struc-
ture. We compare AutoSpec with three baselines: Pilat [29], Code2Inv [2] and
CLN2INV [16] on this benchmark. The result is shown in Table 4 under SyGuS
entry. Pailt fails to generate valid specifications for all cases in this benchmark,
as all the specifications it generates are either unsatisfiable or irrelevant. On
the other hand, Code2Inv and CLN2INV perform better, solving 73 and 124
programs, respectively. AutoSpec can handle a comparable number of cases,
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Table 4. Effectiveness on Loop Invariants Synthesis

SyGuS [33] (133 C Programs with One Loop) OOPSLA-13 [34] (46 C Programs with Various Loop Types)

Info AutoSpec Pailt Code2Inv CLN2Inv Info AutoSpec Code2Inv CLN2INV

ID LoC Sucess Time(s) Success Time(s) Success Time(s) Success Time ID LoC Type
Loop

Num.
Success

Time(s)

mean ± std
Success Time(s) Success Time(s)

1 29 ✔ 6.65 ✕ – ✔ 4950.78 ✔ 4.32 1 23 Linear 1 ✔ 6.25 ± 7.22 ✔ 337.8 ● –

2 20 ✔ 5.97 ✕ – ✕ – ✔ 4.11 2 27 Linear 1 ✔ 7.17 ± 7.38 ✔ 74.36 ● –

3 18 ✕ 36.24 ✕ – ✕ – ✔ 0.22 3 22 Linear 1 ✔ 113.47 ± 88.10 ✔ 46.22 ✕ –

4 13 ✕ 32.28 ✕ – ✕ – ✔ 0.21 4 28 Linear 1 ✔ 6.04 ± 7.64 ✕ – ● –

5 17 ✔ 19.22 ✕ – ✕ – ✔ 2.48 5 30 Linear 1 ✔ 8.59 ± 9.80 ✕ – ● –

6 21 ✕ 142.95 ✕ – ✕ – ✔ 1.7 6 31 Linear 1 ✔ 41.62 ± 24.06 ✕ – ✕ –

7 17 ✔ 57.15 ✕ – ✔ 128.03 ✔ 3.47 7 30 Linear 1 ✔ 12.66 ± 15.12 ✕ – ● –

8 15 ✔ 92.75 ✕ – ✔ 72.74 ✔ 3.13 8 24 Linear 1 ✔ 3.40 ± 3.25 ✕ – ● –

9 25 ✔ 39.66 ✕ – ✕ – ✔ 3.04 9 27 Linear 1 ✕ – ✕ – ✕ –

10 21 ✕ 295.83 ✕ – ✔ 53.39 ✔ 3.14 10 26 Linear 1 ✔ 9.40 ± 7.29 ✕ – ● –

11 18 ✔ 77.48 ✕ – ✔ 145.02 ✔ 3.33 11 26 Linear 1 ✔ 16.82 ± 16.90 ✕ – ✕ –

12 30 ✔ 106.137 ✕ – ✔ 71.97 ✔ 3.37 12 25 Linear 1 ✔ 51.27 ± 34.43 ✕ – ✕ –

13 31 ✔ 240.24 ✕ – ✔ 39.82 ✔ 3.07 13 25 Linear 1 ✔ 12.57 ± 10.57 ✕ – ● –

14 18 ✔ 79.59 ✕ – ✔ 21.9 ✔ 3.23 14 29 Linear 1 ✔ 19.42 ± 11.52 ✕ – ✕ –

15 20 ✔ 13.66 ✕ – ✔ 274.79 ✔ 2.43 15 37 Linear 1 ✔ 58.85 ± 13.83 ✕ – ● –

16 22 ✔ 30.31 ✕ – ✕ – ✔ 6.16 16 37 Linear 1 ✕ – ✕ – ● –

17 15 ✔ 24.97 ✕ – ✕ – ✔ 2.31 17 27 Linear 1 ✔ 4.80 ± 3.62 ✔ 66.4 ✕ –

18 22 ✔ 23.7 ✕ – ✕ – ✔ 6.47 18 24 Linear 1 ✔ 19.86 ± 12.17 ✕ – ✕ –

19 33 ✔ 21.41 ✕ – ✕ – ✔ 2.47 19 23 Linear 1 ✔ 10.34 ± 7.59 ✕ – ● –

20 22 ✔ 16.59 ✕ – ✔ 53.57 ✔ 9.78 20 25 Linear 1 ✕ – ✕ – ✕ –

113 more cases are omitted due to space limitation 21 24 Linear 1 ✔ 12.09 ± 7.97 ✕ – ● –

Total 114/133 0/133 73/133 248±982.2 124/133 2.1 ± 2.32 22 22 Linear 1 ✔ 11.79 ± 11.14 ✔ 29.96 ● –

SV-COMP (21 C programs with multiple/nested loops) 23 28 Linear 1 ✔ 32.71 ± 24.14 ✕ – ✕ –

Benchmark Information AutoSpec 24 23 Linear 1 ✔ 12.84 ± 7.20 ✕ – ✕ –

Type Program LoC Loop Success Time(s) 25 62 Linear 1 ✔ 6.64 ± 4.62 ✕ – ✕ –

quantifier-free

afnp2014 true-unreach-call.c 17 1 ✔ 40.69 ± 34.37 26 32 Linear 1 ✔ 44.89 ± 49.35 ✕ – ✕ –

bhmr2007 true-unreach-call.c 31 1 ✔ 4.50 ± 2.61 27 34 Linear 1 ✕ – ✕ – ✕ –

cggmp2005 true-unreach-call.c 18 1 ✔ 128.04 ± 53.74 28 26 Linear 1 ✔ 11.92 ± 9.78 ✕ – ✕ –

count up down true-unreach-call... 22 1 ✔ 18.44 ± 15.77 29 35 Linear 1 ✔ 16.21 ± 14.83 ✕ – ✕ –

css2003 true-unreach-call.c 19 1 ✔ 88.07 ± 74.35 30 29 Linear 1 ✔ 140.51 ± 67.06 ✕ – ● –

ddlm2013 true-unreach-call.c 33 1 ✕ – 31 51 Multiple 4 ✕ – ✕ – ✕ –

down true-unreach-call.c 21 2 ✔ 269.98 ± 224.05 32 36 Multiple 2 ✔ 71.74 ± 60.13 ✕ – ✕ –

half 2 true-unreach-call.c 25 2 ✕ – 33 27 Multiple 2 ✔ 94.02 ± 58.68 ✔ 26.97 ✕ –

hhk2008 true-unreach-call.c 26 1 ✔ 8.49 ± 5.87 34 33 Multiple 2 ✔ 57.32 ± 39.28 ✕ – ● –

jm2006 variant true-unreach-call.c 30 1 ✔ 22.52 ± 14.55 35 27 Nested 3 ✔ 58.26 ± 54.18 ✕ – ● –

jm2006 true-unreach-call.c 25 1 ✔ 123.61 ± 100.31 36 30 Nested 2 ✔ 84.23 ± 57.52 ✔ 17.42 ✕ –

large const true-unreach-call.c 37 2 ✕ – 37 23 Nested 2 ✕ – ✔ 0.26 ● –

nest-if3 true-unreach-call.c 19 2 ✔ 107.05 ± 73.11 38 22 Nested 3 ✔ 105.28 ± 60.01 ✕ – ● –

nested6 true-unreach-call.c 31 3 ✕ – 39 35 Nested 2 ✔ 96.50 ± 68.99 ✕ – ✕ –

nested9 true-unreach-call.c 23 3 ✔ 274.87 ± 156.77 40 26 Nested 3 ✔ 139.88 ± 92.53 ✔ 147.89 ✕ –

seq true-unreach-call.c 33 3 ✕ – 41 30 Nested 2 ✔ 177.43 ± 106.79 ✕ – ✕ –

sum01 true-unreach-call... 20 1 ✔ 8.12 ± 6.41 42 29 Nested 3 ✔ 228.71 ± 218.43 ✕ – ✕ –

terminator 03 true-unreach-call... 20 1 ✔ 26.09 ± 22.98 43 39 Nested 3 ✕ – ✕ – ✕ –

up true-unreach-call.c 30 2 ✔ 374.38 ± 291.44 44 61 Nested 4 ✕ – ✕ – ✕ –

quantifier
array true-unreach-call1.c 13 1 ✔ 5.88 ± 3.78 45 46 Nested 3 ✔ 202.78 ± 185.39 ✕ – ✕ –

array true-unreach-call2.c 18 1 ✔ 32.53 ± 27.11 46 24 Nested 3 ✔ 86.61 ± 50.22 ✕ – ● –

Total 16/21 217.9± 451.7 38/46 68.92 ± 171.13 9/46 83.0 ± 104.8 0/46

namely, 114 programs in this benchmark. Although CLN2INV can solve 10 more
cases in this benchmark, it cannot handle any cases in the OOPSLA-13 bench-
mark. Although CLN2INV can successfully parse 19 out of 46 cases (denoted as
●), CLN2INV fails to construct satisfiable invariants that are adequate to verify
the programs, resulting in a score of 0/46. This could be due to the overfitting of
machine learning methods to specific datasets. Code2Inv, on the other hand, can
handle 9 out of 46 cases. In comparison, AutoSpec can solve 38/46 (82.60%),
which significantly outperforms existing approaches.

Furthermore, we consider a more difficult benchmark, SV-COMP. Due to the
unsatisfactory results of the existing approaches, we have opted to exclusively
present the results obtained using AutoSpec. As shown in Table 4 under SV-
COMP entry, AutoSpec can solve 16 out of 21 programs with an average time
of 3 min. Note that there are three programs with 3-fold nested loop structures
in this benchmark. AutoSpec can solve one of them, while for the other two
programs, AutoSpec can generate several satisfiable specifications, but there
are still one or two specifications that cannot be generated after five iterations.
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Fig. 4. Overhead of AutoSpec on Four Benchmarks.

4.4 RQ3. Efficiency of AutoSpec

In the first RQs, we can observe that AutoSpec can generate satisfiable and
adequate specifications for the proof ranging from 2.35 to 739.62 s (i.e., 0.04
to 12.33 min). In this RQ, we illustrate the composition of the overhead in
AutoSpec across sub-tasks, i.e., the time required for querying the LLM for
specifications, validating and verifying the specifications against the theorem
prover, and simplifying the specifications (optional). The results for these four
benchmarks are presented in Fig. 4.

We can see that for the four benchmarks, validating and verifying the spec-
ifications (Validate) takes the most time, ranging from 1.3 to 994.9 s. Querying
the LLMs (Query) takes the least time, averaging less than 10 s. It is noteworthy
that, unlike existing works that tend to generate a lot of candidate specifications
and check their validity for one hour [16] to 12 h [2], AutoSpec takes far less
time in validating (e.g., 1.2 s to 3.88 min). This is because AutoSpec generates
fewer but higher-quality specifications. The efficiency of AutoSpec makes it
both practical and cost-effective for various applications.

In addition, the time required for simplifying the specifications (Simplify)
may vary depending on the number of generated specifications. A larger number
of specifications leads to a longer simplification process. Nonetheless, given the
fact that the simplification step is optional in AutoSpec, and considering the
benefit of faster solving brought about by the concise and elegant specifications,
the cost of simplification is justified.

4.5 RQ4. Ablation Study

Finally, we evaluate the contribution made by each part of AutoSpec’s design.
The results are shown in Table 5. We conduct the evaluation on Frama-C-
problems benchmark [31] under seven settings: (1) - (4) settings under Base
ChatGPT entry directly feed the C program together with the desired properties
to be verified into ChatGPT, with zero-/one-/two-/three-shot. These settings are
designed to compare with the decomposed manner adopted by AutoSpec. Set-
ting (5) under entry Decomposed adopts the code decomposition (i.e., Step 1 of
AutoSpec) with three-shot, because it shows the best result according to the
results of the previous settings. Settings (6) and (7) are respectively configured
with only one pass (i.e., without enhancement) and five iterations (i.e., with
enhancement), showing the improvement brought by the iterative enhancement
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Table 5. Experiment Result of Ablation Study

Type Base ChatGPT Decomposition Iterative Enhancement
(1) 0-shot (2) 1-shot (3) 2-shot (4) 3-shot (5) 3-shot (6) Pass@1 (7) Iter@5

Loops 1 1 1 1 1 1 1
Immutable arrays 0 0 0 0 3 4 5
Mutable arrays 0 0 0 0 0 0 2
Arrays and loops 1 0 1 1 4 4 4
More arrays 0 0 0 0 1 1 1
General wp problems 2 4 3 5 8 8 8
Pointers 0 2 0 1 6 6 7
Miscellaneous 1 1 1 1 3 3 3
Total 5 8 6 9 26 27 31

(Step (K) in Fig. 3). The last row shows the total number of programs that can
be successfully solved under the corresponding settings.

Table 5 shows an ascending trend in the number of solved programs, from 5
to 31 over 51. On the one hand, it is hardly possible to directly ask ChatGPT to
generate specifications for the entire program. The input-output examples bring
only a limited improvement (from 5 to 9) in the performance. On the other hand,
code decomposition and hierarchical specification generation bring a significant
improvement (from 9 to 26). This shows the contribution made by the first two
steps of AutoSpec. Furthermore, the contribution of iterative enhancement can
be observed in the last two columns, from 27 to 31. Overall, the ablation study
shows that every step in AutoSpec has a positive impact on the final result
and that the idea of code decomposition and hierarchical specification generation
brings the biggest improvement.

4.6 Case Studies

We discuss 3 representative cases to show how iterative enhancement contributes
(Fig. 5), and situations where AutoSpec fails to handle (Fig. 6 and Fig. 7).

Case 1. A Success Case Made by Validation and Iterative Enhance-
ment. We show how specification validation and iterative enhancement help
AutoSpec to generate satisfiable and adequate specifications. The program
presented below computes the sum of three values stored in pointers. In the
first iteration, only two specifications (lines @newinlinkFig5listing:case32 and
@newinlinkFig5listing:case33) are generated, which respectively require three
pointers should be valid (line @newinlinkFig5listing:case32), and the result of
add is the sum (line @newinlinkFig5listing:case33). However, these two specifica-
tions alone are inadequate to verify the property due to the lack of a specification
describing whether the values of the pointers have been modified within the add
function. AutoSpec then inserts placeholders immediately after the two gener-
ated specifications and continues to the second iteration of enhancement. The
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subsequently generated specification (line @newinlinkFig5listing:case34) states
the add function has no assignment behavior, making the verification succeed.

Case 2. A Failing Case Due to Missing Context. We present an exam-
ple where AutoSpec fails to generate adequate specifications due to the lack
of necessary context. The code for the pow in <math.h> is not directly acces-
sible. Currently, AutoSpec does not automatically trace all the dependencies
and include their code in the prompt. LLMs can hardly figure out what pow is
expected to do. As a result, the specification for this function cannot be gen-
erated despite all attempts made by AutoSpec. This case shows a possible
improvement by adding more dependencies in the prompt.

Fig. 5. Case 1

Fig. 6. Case 2
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Case 3. A Failing Case Due to the Need for User-Defined Axioms.
We illustrate an example where AutoSpec fails to produce sufficient specifica-
tions, necessitating user-defined axioms. The factorial function encompasses
a nonlinear loop, typically necessitating the formulation of axioms or lemmas
by domain experts to aid in the proof process. Presently, AutoSpec does not
include axioms in the prompt or provided examples, posing a challenge for LLM
to generate these supportive axioms. This example underscores the importance
of addressing the axiom generation issue for AutoSpec for future work, in order
to handle intricate examples effectively.

5 Threats to Validity

There are three major validity threats. The first concerns the data leakage
problem. We addressed this threat in two folds. First, we directly apply LLMs
to generate the specifications (Sect. 4.5). The unsatisfactory result (success rate:
5/51) shows that the chance of overfitting to the benchmark is low. Second, we
followed a recent practice [39] for the data leakage threat. We randomly sampled
100 programs from three benchmarks in RQ2 (i.e., SyGuS, OOPSLA-13, and SV-
COMP) in a ratio of 50:25:25 and mutated these programs by variable renaming
(e.g., renaming x to m) and statement/branch switching (e.g., negotiating the
if-condition, and switching the statements in if and else branches) without
changing the semantics of the program manually. Then we applied AutoSpec

Fig. 7. Case 3
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over the 100 mutated programs. The experiment shows that 98% results hold
after the programs are mutated. It further confirmed that the validity threat of
data leakage is low. The second concerns the generalizability to different
LLMs. To address this concern, we implemented AutoSpec to a popular and
open-source LLM called Llama-2-70b and ran it on the same benchmark used
in RQ1. Similar results were observed, with AutoSpec (Llama2) achieving a
score of 25/51 compared to the score of 31/51 achieved by AutoSpec (Chat-
GPT). The third concerns the scalability of AutoSpec. We have evaluated
a real-world X509-parser project and achieved unexpectedly good performance.
However, completing the whole verification task on the entire project remains
challenging. The evidence suggests that AutoSpec has the potential to assist
participants in writing specifications for real-world programs.

6 Related Work

Specification Synthesis. While there exist various approaches and techniques
for generating program specifications from natural language [40–42], this paper
primarily focuses on specification generation based on the programming lan-
guage. There has been work using data mining to infer specifications [43–46].
Several of these techniques use dynamic traces to infer possible invariants and
preconditions from test cases, and static analysis to check the validity and com-
pleteness of the inferred specifications [47–49]. While others apply domain knowl-
edge and statically infer specifications from the source code [43,50,51]. Several
works have been conducted to address the challenging sub-problem of loop invari-
ant inference, including CLN2INV [16], Code2Inv [2], G-CLN [17] and Fib [52].
Additionally, there are also studies dedicated to termination specification infer-
ence [23]. A recent study, SpecFuzzer [53], combines grammar-based fuzzing,
dynamic invariant detection, and mutation analysis to generate class specifica-
tions for Java methods in an automated manner. Our approach differs from these
techniques as it statically generates comprehensive contracts for each loop and
function, yielding reliable outcomes necessary for verification.

Assisting Program Analysis and Verification with LLMs. In recent years,
there has been a growing interest in applying LLMs to assist program analysis
tasks [54], such as fuzz testing [55,56], static analysis [57–59], program verifi-
cation [60–62], bug reproduction [63] and bug repair [64–66]. For example, Bal-
dur [60] is a proof-synthesis tool that uses transformer-based pre-trained large
language models fine-tuned on proofs to generate and repair whole proofs. In
contrast, AutoSpec focuses on generating various types of program specifica-
tions and leveraging the auto-active verification tool to complete the verification
task, while Baldur focuses on automatically generating proofs for the theorems.
Li et al. [59] investigated the potential of LLMs in enhancing static analysis by
posing relevant queries. They specifically focused on UBITest [67], a bug-finding
tool for detecting use-before-initialization bugs. The study revealed that those
false positives can be significantly reduced by asking precisely crafted questions
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related to function-level behaviors or summaries. Ma et al. [68] and Sun et al. [58]
explore the capabilities of LLMs when performing various program analysis tasks
such as control flow graph construction, call graph analysis, and code summariza-
tion. Pei et al. [69] use LLMs to reason about program invariants with decent
performance. These diverse applications underline the vast potential of LLMs
in program analysis. AutoSpec complements these efforts by showcasing the
effectiveness of LLMs in generating practical and elegant program specifications,
thereby enabling complete automation of deductive verification.

7 Conclusion

In this paper, we presented AutoSpec, a novel approach for generating program
specifications from source code. Our approach leverages the power of Large Lan-
guage Models (LLMs) to infer the candidate program specifications in a bottom-
up manner, and then validates them using provers/verification tools and itera-
tively enhances them. The evaluation results demonstrate that our approach to
specification generation achieves full automation and cost-effectiveness, which is
a major bottleneck for formal verification.
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Abstract. We present the first automated verification technique for
confidence-based 2-safety properties, such as global robustness and global
fairness, in deep neural networks (DNNs). Our approach combines self-
composition to leverage existing reachability analysis techniques and a
novel abstraction of the softmax function, which is amenable to auto-
mated verification. We characterize and prove the soundness of our static
analysis technique. Furthermore, we implement it on top of Marabou, a
safety analysis tool for neural networks, conducting a performance eval-
uation on several publicly available benchmarks for DNN verification.

1 Introduction

Deep neural networks (DNNs) [1,2] encountered tremendous success in the recent
past due to their ability to infer highly nonlinear relations from data, learn
accurate predictive models, and make smart decisions with little or no human
intervention. Despite their success, the correctness of neural networks remains a
major concern due to their complexity and lack of transparency. This is especially
the case for safety- and security-critical applications where errors and biases can
have serious undesired consequences, such as in medical diagnosis [3], self-driving
cars [4], or financial systems [5]. New techniques that can prove mathematical
guarantees concerning the behavior of neural networks are the need of the hour
[6]. An effective approach to address this issue is the use of automatic verifica-
tion techniques, which can either formally prove that the network adheres to a
specified property or return a concrete input (witness) demonstrating a violation
of the property [7].

Robustness and fairness are two important properties of neural networks.
Robustness refers to the neural network’s ability to make accurate predictions
even in the presence of input perturbations. In particular, a robust neural net-
work is able to produce accurate results without being overly sensitive to small
changes in the input. Fairness, on the other hand, refers to a neural network’s
ability to make unbiased and equitable predictions, particularly in cases where
the input data may contain sensitive attributes such as gender, race, or age.
A neural network that is not fair may produce biased results that discriminate
against certain groups, which can have serious ethical and social implications.
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Local Robustness and Fairness provide the dominant perspective in verification
and adversarial testing of DNNs. Local robustness [8–11] intuitively requires the
DNN to have the following property with respect to a given input x – it has to
make the same prediction for the input x as for all the points in the vicinity of
x. Local fairness [8,12,13] is defined in a similar way, with the distance metric
used for the inputs being the main difference. Both properties can be formal-
ized as safety properties. This has led to the design of a variety of SMT-based
techniques [10,14,15], which encode the neural networks and the property to
be verified as an SMT solving problem in order to enable automated verifica-
tion. Other works approach the verification problem using static analysis [16–19]
which over-approximates DNN executions, thereby compromising precision for
higher scalability. Alternative verification techniques include mixed-integer pro-
gramming [20–22] and modified simplex algorithms [9,23].

Figure 1 (a) illustrates the properties of local robustness. It shows the classifi-
cation of an input �x that includes two (continuous) features x1 and x2. The pair
of purple points is not a counterexample to robustness, as both inputs lie within
the same class. The green and blue points, however, represent counterexamples
to local robustness, as they fall on different sides of the decision boundaries.

The above example shows two major limitations of local properties. First,
there are always inputs arbitrarily close to the decision boundary, which then
constitute counterexamples to local robustness. Second, local robustness is
defined only for a specific input. Consequently, it does not provide any guar-
antees for any other input. It follows that the robustness of the entire neural
network cannot be assessed with local robustness only.

Global Robustness and Fairness. The limitation of the local definition for robust-
ness and fairness indicates the need for a global property that evaluates the
expected input/output relation over all pairs of inputs.

We first observe that global robustness and fairness of DNNs are hyperproper-
ties, i.e. properties that relate multiple executions of the model. Khedr et al. [24]
and Biswas et al. [25] recently introduced the first verification techniques for
hyperproperties in DNNs. These works assume that the inputs contain categor-
ical variables. Based on this strong assumption, these two approaches partition
the input space based on categorical features to avoid comparing inputs close
to decision boundaries, which would lead to a non-satisfiable property. This is
illustrated in Fig. 1 (b). Here, we assume that �x includes a categorical feature
x3 in addition to the continuous features x1 and x2. The left (right) part of
Fig. 1 (b) depicts classes and inputs in the partition based on the categorical
feature x3 with value v (v′). Consequently, only pairs of inputs belonging to the
same partition are compared. Inputs belonging to two different partitions (e.g.
green points in Fig. 1 (b)) deviate in at least one categorical feature and can
hence be assumed to violate the premise that these inputs are “close”. Accord-
ing to this approach, a classification in a secure network can only change with
different categorical values. Any two points that lie in the same partition but
belong to different classes (e.g. the pair of blue points in Fig. 1 (b)) are consid-
ered counterexamples to the global property. This leads to a strong limitation
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Fig. 1. (a) Local, (b) partitioned-global and (c) our confidence-based robustness. x1

and x2 denote continuous input points, while x3 denotes a categorical input in the
partitioned-global approach (b). The shades of gray in (c) depict the level of confidence
of the neural network with respect to the given inputs – dark gray denotes high while
white denotes low confidence level. The neural network is robust to the pair of purple
points in all three cases (a), (b) and (c). The neural network is not robust for the pair
of blue points in the case of local and partitioned-global (b) robustness, but is robust
according to our definition (c). Finally, the neural network is not robust for the pair
of green points according to both the local and our confidence-based global robustness
(a) and (c), but is robust with respect to the partitioned-global robustness (b). The
global partitioning method does not catch the counterexample, because the two green
points are in separate partitions. (Color figure online)

that does not admit two classes to result from continuous inputs only, as typ-
ically required for robustness. As a result, the two approaches [24,25] address
only verification of global fairness.

Our Contributions. Inspired by the work of Chen et al. [26] on properties of rule-
based security classifiers, we adopt a confidence-based view on global robustness
and fairness for DNN. The idea is to compare all input pairs which are (1)
sufficiently close and (2) for which at least one of them yields a high confidence
classification. This intuitive definition expects robust and fair DNNs to generate
outputs with low confidence near the decision boundary.

We therefore propose confidence-based 2-safety property, the first definition
that unifies global robustness and fairness for DNNs. Our definition highlights
the hyperproperty nature of global properties and uses the confidence in the
DNN as a first class citizen.
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We briefly illustrate the intuition behind our confidence-based 2-safety prop-
erty definition with focus on robustness in Fig. 1 (c), in which the input space is
colored into shades of gray and where every gray value corresponds to a confi-
dence of the network. Darker shades of gray represent higher levels of confidence
for the given classification. Our definition captures two reasonable assumptions:
(1) continuous inputs can also trigger changes in classification, and (2) the con-
fidence of the neural network at a decision boundary must be relatively low. In
essence, our definition requires that for any input with high-confidence, all its
ε-neighbour inputs yield the same class (e.g. the two purple points in Fig. 1 (c)).
This notion discards inputs near the decision boundaries as counterexamples,
as long as they result in outputs with low confidence (e.g. the two blue points
in Fig. 1 (c)). Systems satisfying the 2-safety properties hence guarantee that
input points classified with a high confidence are immune to adversarial pertur-
bation attacks. In Fig. 1 (c), the pair of green inputs witness the violation of the
confidence-based 2-safety property – the two points lie in different classes and
one of them has an output with high confidence.

This confidence-based view makes a conceptual change to the definition of
global properties, as it requires relating not only inputs, but also confidence
values to the outputs. This conceptual change poses a significant challenge to
the verification problem because checking a confidence-based property on a DNN
requires reasoning about its softmax layer, which is not supported by the state-
of-the-art DNN verification tools [23,27–31]. To solve this problem, we develop
the first verification method that supports DNNs with softmax, in which we
use a linearized over-approximation of the softmax function. We then combine it
with self-composition [32] in order to verify confidence-based 2-safety properties.
We formally prove the soundness of our analysis technique, characterizing, in
particular, the error bounds of our softmax over-approximation.

We demonstrate our approach1in Marabou [23], a state-of-the-art analysis
tool for local robustness based on a modified simplex algorithm, which we extend
to support global robustness and global fairness. We show that by combining
our method with binary search, we can go beyond verification and synthesize
the minimum confidence for which the DNN is globally robust or fair. We finally
conduct a performance evaluation on four neural networks trained with publicly
available datasets to demonstrate the effectiveness of our approach in identifying
counterexamples and proving global robustness and fairness properties.

2 Background

2.1 Feed-Forward Neural Networks

In feed-forward neural networks data flows uni-directionally, which means there
are no back edges. An input layer receives the inputs that move via one or mul-
tiple hidden layers to the output layer [33]. A layer has multiple neurons, each
connected to the neurons in the next layer using a set of weights. Each layer also

1 https://github.com/anaghaathavale/Global 2Safety with Confidence.git.

https://github.com/anaghaathavale/Global_2Safety_with_Confidence.git
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has an associated bias. Weight and bias selection is crucial to the performance of
a neural network and is performed during the training phase. Outputs are cal-
culated by processing the inputs using weights and biases, followed by applying
the activation functions and then propagating the processed inputs through the
network [34].

Formally, a feed-forward neural network f : R
m → R

n is modeled as a
directed acyclic graph G = (V,E) that consists of a set (finite) of nodes V
and a set of edges E ⊆ V × V .2 The nodes V are partitioned into l layers V i

with 1 ≤ i ≤ l, where V 1 and V l represent the input and output layers, and
V 2, . . . , V l−1 represent the hidden layers, respectively. We use vi,j to denote
node j in layer i. The edges E connect nodes in V i−1 with their successor nodes
in V i (for 1 < i ≤ l).

Each node vi,j has an input and an output, where the latter is derived from
the former by means of an activation function. We use in(vi,j) and out(vi,j)
to denote the input and output value of node vi,j , respectively. The output is
determined by

out(vi,j) = ai,j(in(vi,j))) , (1)

where ai,j is the activation function. The input to node vi,j in layer V i is deter-
mined by the outputs of its predecessors vi−1,1, . . . , vi−1,k in V i−1 and weights
associated with the edges (vi−1,k, vi,j) ∈ E for 1 ≤ k ≤ |V i−1|:

in(vi,j) =
|V i−1|∑

k=1

weight((vi−1,k, vi,j)) · out(vi−1,k)

The values of the nodes in the input layer V 1 are determined by the input �x
to f(�x), i.e.,

(in(v1,1), . . . , in(v1,m)) = �x .

The output of the final layer V l is then computed by propagating the inputs
according to the activation functions (see Eq. 1 above). Consequently, a graph G
with |V 1| = m input and |V l| = n output nodes induces a function f : R

m → R
n

whose semantics is determined by the activation functions.
In this paper, we concentrate on the Rectified Linear Unit (ReLU) activation

function, which is frequently applied to the hidden layers of deep neural networks.
For a (scalar) input value x, ReLU returns the maximum of 0 and x, i.e.

ReLU(x) = max(0, x) .

In neural networks that are used as classifiers and map an input �x to one of
m labels in a set of classes C, the final layer typically employs a softmax function
to ensure that the output represents normalized probabilities corresponding to
each of the n classes. Mathematically,

softmax(�z)i =
ezi

∑n
j=1 ezj

(2)

2 We follow the formalization of [35] and omit the biases for simplicity.
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where �z represents the values out(vl−1,i) for 1 ≤ i ≤ n and n = |V l−1|, and
zi is the ith element in �z. This induces a function y : R

n → [0, 1]n mapping
every output of V l−1 to a confidence score in the range [0, 1]. Consequently,
f(�x) outputs a probability distribution over the possible labels in C, where each
component of the output vector represents the probability of input �x belonging
to the corresponding class. We use conf(f(�x)) to refer to the highest probability
value in the softmax layer of f(�x) and call it the confidence, i.e.,

conf(f(�x)) = max(out(vl,1), . . . , out(vl,n)) (3)

Finally, a function class : R
m → C then maps the output of f to the class C

corresponding to the highest probability in f(�x):

class(f(�x)) = arg max
1≤i≤n

(out(vl,i)) (4)

2.2 Hyperproperties

Hyperproperties [36] are a class of properties that capture relationships between
multiple execution traces. This is in contrast to traditional properties, which are
evaluated over individual traces.

To define traces in the context of feed-forward neural networks, we extend
our notation out to layers as follows:

out(V i) = (out(vi,1), . . . , out(vi,k))

where k = |V i|. Let in(V i) be defined similarly. The corresponding trace π for
f(�x) is then formally defined as

π = in(V 1), out(V 1), . . . , in(V l), out(V l)

where in(V 1) = �x.
Note that each execution is entirely determined by the input value �x (assum-

ing that the function f implemented by the network is deterministic). Quantify-
ing over traces π of f(�x) hence corresponds to quantifying over the corresponding
inputs �x. A traditional safety property would then quantify over the inputs �x,
e.g.

∀�x . conf(f(�x)) ≥ κ,

stating that the confidence of each classification of the network should be larger
than a threshold κ. Another example of a traditional safety property is local
robustness, given in Definition 1 in Subsect. 2.4.

A hyperproperty, on the other hand, refers to, and quantifies over, more than
one trace. An example would be

∀�x, �x′.
|f(�x)i − f(�x′)i|

||�x − �x′|| ≤ Ki, 1 ≤ i ≤ n (5)
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where f(�x)i denotes out(vl,i). Equation 5 states that Ki sets the maximum limit
of the Lipschitz constant for f(�x)i. A hyperproperty central to this paper is
global robustness, defined in Definition 2 Subsect. 2.4.

Hyperproperties are used to capture important properties that involve mul-
tiple inputs, such as robustness and fairness. By verifying hyperproperties of
neural networks, we can ensure that they behave correctly across all possible
input traces.

2.3 Relational Verification and Self-composition

Hyperproperties are verified by means of so-called relational verification tech-
niques: the idea is to verify if k program executions satisfy a given property [37],
expressing invariants on inputs and outputs of such executions. Several security
properties (e.g., information flow) can be expressed by relating two executions
of the same program differing in the inputs: such properties are called 2-safety
properties. Global robustness in neural networks can also be seen as a 2-safety
property [8].

2-safety properties can be verified in a generic way by self-composition [37]:
the idea is to compose the program with itself and to relate the two executions.
In the context of neural networks, the self-composition of a network f is readily
defined as a function over

f(�x) × f(�x′) = λ(�x, �x′) . (f(�x), f(�x′)) (6)

where (�x, �x′) denotes the concatenation of the vectors �x and �x′ and λ�x . f(�x)
denotes the lambda term that binds �x in f(�x). The underlying graph G = (V,E)
is simply duplicated, i.e., we obtain a graph G × G′ = (V ∪ V ′, E ∪ E′) where
V ′ and E′ are primed copies of V and E.

A counterexample to a universal 2-safety property over the self-composition
of f comprises of a pair of traces of f witnessing the property violation.

2.4 Robustness and Fairness

Robustness in neural networks refers to the ability of a model to perform con-
sistently in the presence of small perturbations of the input data. The common
approach to address robustness in neural networks is to define it as a local robust-
ness [38] property. For an input �x, a neural network is locally robust if it yields
the same classification for �x and all inputs �x′ within distance ε from �x [39]:

Definition 1 (Local Robustness). A model f is locally ε-robust at point �x if

∀�x′ . ||�x − �x′|| ≤ ε → class(f(�x)) = class(f(�x′))

Local robustness, therefore, is defined only for inputs within a distance ε of a
specific �x and, thus, does not provide global guarantees. Here || · || represents the
distance metric used over the input space. Intuitively, global robustness tackles
this problem by requiring that the local robustness property must hold for every
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input within the input space [8]. Definition 2 gives the general definition of global
robustness used in [26,40]. It essentially states that all input points in a small
neighborhood ε, are mapped to the same class.

Definition 2 (Global robustness). A model f is globally ε-robust if

∀�x, �x′ . ||�x − �x′|| ≤ ε → class(f(�x)) = class(f(�x′))

Clearly, global robustness as formalized in Definition 2 makes sense only for
selected distance metrics, which in particular avoid comparing inputs close to the
decision borders. For instance, [40] addresses this by introducing an additional
class ⊥ to which class(f(�x)) evaluates whenever the difference between the high-
est and second-highest probability falls below a certain threshold (determined by
the Lipschitz constants of f). The global robustness requirement is then relaxed
at these points.

Definition 3 (Global fairness) A model is said to be globally fair if:

∀�x = (xs, �xn), �x′ = (x′
s, �x′

n).

|| �xn − �x′
n|| ≤ ε ∧ (xs �= x′

s) → class(f(�x)) = class(f(�x′))

where xs and xn are the sensitive and non-sensitive attributes of �x, respectively.

[24,25] address a similar problem, which arises in the context of fairness, by
partitioning the input space based on categorical features. In general, if the input
to a decision-making neural network comprises of certain sensitive attributes,
say age or gender, the network is said to be fair if the sensitive attributes do
not influence its decisions [8]. Definition 3 gives the general definition of global
fairness used in [24,25].

Ensuring fairness in neural networks is important because these models are
increasingly being used in decision-making processes that can have significant
impacts on peoples’ lives. For example, a hiring algorithm that discriminates
against certain groups of job applicants based on their race or gender could
perpetuate existing biases and inequalities in the workplace [41].

3 Confidence Based Global Verification of Feed-Forward
Neural Networks

We now formalize confidence-based 2-safety property, the first definition that
unifies global robustness and fairness for DNNs in Definition 4. It is a hyper-
property that takes the confidence of the decision into account when checking
for the safety of the network. Before we give the actual definition, we introduce
additional notation. Given an input �x = (x1, . . . , xn), we assume that its every
component xi is either a categorical or real value. We then define the distance
d(xi, x

′
i) as |xi−x′

i| when xi is real-valued. We use instead the following distance:

d(xi, x
′
i) =

{
0, if xi = x′

i

1, otherwise
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when xi is a categorical value. We define cond(�x, �x′,�ε) as a (generic) Boolean
condition that relates inputs �x and �x′ to a tolerance vector �ε.

Definition 4 (Confidence-based global 2-safety). A model f is said to be
globally 2-safe for confidence κ > 0 and tolerance �ε iff

∀�x, �x′ . cond(�x, �x′,�ε) ∧ conf(f(�x)) > κ =⇒ class(f(�x)) = class(f(�x′))

Next, we instantiate the above 2-safety property for confidence-based global
robustness and fairness.

For confidence-based global robustness, cond is defined as:

cond(�x, �x′,�ε) =
∧

i∈[1,n]

d(xi, x
′
i) ≤ εi

For confidence-based global fairness, �x can be split into sensitive �xs and non-
sensitive �xn attributes. For confidence-based global fairness,

cond(�x, �x′,�ε) =
∧

xi∈ �xs

d(xi, x
′
i) > 0 ∧

∧

xi∈ �xn

d(xi, x
′
i) ≤ εi

where for any categorical xi ∈ �xn, its associated tolerance threshold εi = 0.5.
Intuitively, confidence-based global fairness ensures that for any data

instance, x classified with high confidence κ, no other data instance, x′, that
only differs with x in the value of the sensitive attribute (e.g. age, gender, eth-
nicity) shall be classified to a different class.

As defined in Sect. 2, f(x) represents the feed-forward neural network, which
maps inputs to classes with corresponding confidence scores. By introducing the
threshold κ, our definition effectively ignores classification mismatches that arise
from decisions with low confidence. The rationale is as follows:

– Different classifications close to decision boundaries need to be allowed, as
safety can otherwise only be satisfied by degenerate neural networks that
map all inputs to a single label.

– On the other hand, input points classified with a high confidence should be
immune to adversarial perturbations and also uphold fairness.

3.1 Encoding 2-Safety Properties as Product Neural Network

In this section, we reduce checking of the 2-safety hyperproperty in Definition 4
to a safety property over a single trace. Given a neural network f (as defined
earlier in Sect. 2), the product neural network is formed by composing a copy
of the original neural network with itself. Checking 2-safety then reduces to
checking an ordinary safety property for the self-composed neural network that
consists of two copies of the original neural network, each with its own copy of
the variables.
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Table 1. Marabou’s piecewise linear constraints

Equation ::= Sum�Constant with � ∈ {≤,≥,=}
and Sum ::= Sum + Constant · Variable | Constant · Variable

MaxConstraint ::= Variable = max(VariableList)
and VariableList ::= VariableList,Variable | Variable

AbsConstraint ::= Variable = |Variable|
ReLUConstraint ::= Variable = ReLU(Variable)
Disjunction ::= (Disjunction ∨ Equation) | Equation

The product neural network is now treated as the model to be verified. A
product network allows the reduction of a hyperproperty to a trace property,
thereby reducing the problem of hyperproperty verification to a standard ver-
ification problem, which can be solved using an existing standard verification
technique.

Product Neural Network. We encode f(�x) using piecewise linear constraints (see
Table 1). Each node vi,j is represented by two variables ini,j and outi,j repre-
senting its input and output, respectively. Inputs and outputs are related by the
following constraints:

ini,j =
|V i−1|∑

k=1

wi−1,k
i,j · out(i−1,)k ∧ outi,j = ai,j(ini,j)

where wi−1,k
i,j is the weight associated with the edge (vi−1,k, vi,j) and ai,j is the

activation function of node vi,j . To encode the self-composition, we duplicate all
variables and constraints by introducing primed counterparts in′

i,j and out′i,j for
ini,j and outi,j .

Transfer Functions and Operators. ReLUs can be readily encoded using outi,j =
ReLU(ini,j). There is, however, no direct way to encode softmax using the con-
straints in Table 1, hence we defer the discussion to Subsect. 3.2.

The conf operator can be implemented using the max constraint (cf. Eq. 3).
The operator class as well as the implication, on the other hand, are not neces-
sarily supported by state-of-the-art static analysis tools for DNNs. For instance,
they are not supported by Marabou [23], on which we base our implementation.
For reference, Table 1 illustrates the linear constraints supported by Marabou.
We thus introduce an encoding, which we detail below.

First, checking the validity of the implication in Definition 4 can be reduced
to checking the unsatisfiability of

cond(�x, �x′,�ε) ∧ conf(f(�x)) > κ ∧ class(f(�x)) �= class(f(�x′)) (7)

However, the grammar in Table 1 provides no means to encode disequality or
class (which returns the index of the largest element of a vector). To implement
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disequality, we perform a case split over all n = |V l| labels by instantiating the
encoding of the entire network over outl,i and out′l,i for 1 ≤ i ≤ n. To implement
this in Marabou, we execute a separate query for every case.

To handle the operator class, we can encode the disequality class(f(�x)) �=
class(f(�x′) as:

. . . ∧
conf(f(�x))︷ ︸︸ ︷

max(outl,1, . . . , outl,n) > κ ∧ (max(outl,1, . . . , outl,n) − outl,i = 0) ∧
(max(out′l,1, . . . , out′l,n) − out′l,i �= 0) (8)

The constraint (max(outl,1, . . . , outl,n) − outl,i = 0) ensures that outl,i cor-
responds to the largest element in f(�x) (and hence that class(f(�x) = i). Con-
sequently, if (max(out′l,1, . . . , out′l,n) − out′l,i �= 0), then we can conclude that
class(f(�x′)) �= i and hence the safety constraint is violated.

Since, Marabou does not support the disequality operator, we check whether
(max(out′l,1, . . . , out′l,n)−out′l,i < 0) and (max(out′l,1, . . . , out′l,n)−out′l,i > 0),
and if both constraints are not satisfied, we know that (max(out′l,1, . . . , out′l,n)−
out′l,i �= 0).

While the above transformation is equivalence preserving, the encoding of
softmax requires an approximation, described in the following subsection.

3.2 Softmax Approximation

Softmax in Terms of Max and Sig. We can approximate softmax using a
max operator and a sigmoid function as follows. Consider softmax(�z)i (cf. Eq. 2),
for i = 1,

softmax(�z)1 =
1

1 + (ez2 + · · · + ezn)e−z1
(9)

=
1

1 + elog(ez2+···+ezn )e−z1
=

1
1 + e(−z1+log(ez2+···+ezn ))

(10)

We can now generalize the result from (9) for i

softmax(�z)i =
1

1 + e(−zi+log(
∑n

j �=i ezj ))
= Sig(zi −

n

LSE
1

j �=i

(zj)) (11)

where LSE (the log-sum-exp) is:

n

LSE
1

j �=i

(zj) = log(
n∑

j=1,j �=i

ez
j ) and Sig(x) =

1
1 + e−x

We know from [42] that LSE is bounded:

maxn
1 (zi) ≤

n

LSE
1

(zi) ≤ maxn
1 (zi) + log(n) (12)
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with maxn
1 (zi) = max(z1, · · · , zn), in particlular, when z1 = · · · = zn, we have:

n

LSE
1

(zi) = maxn
1 (zi) + log(n) (13)

Then softmax has as lower bound:

softmax(�z)i ≥ Sig(zi − maxn
1

j �=i

(zj) + log(n − 1)) (14)

and as upper bound:

softmax(�z)i ≤ Sig(zi − maxn
1

j �=i

(zj)) (15)

When n = 2, the softmax is equivalent to the sigmoid:

softmax(�z)1 = Sig(z1 − z2) and softmax(�z)2 = Sig(z2 − z1) (16)

Now that we know how to approximate a softmax using a sigmoid and max,
we need to find a piece-wise linear approximation of sigmoid since sigmoid is
also a non-linear exponential function.

Piece-Wise Approximation of Sigmoid. We approximate sigmoid as a
piece-wise linear function using the Remez exchange algorithm [43]. The Remez
algorithm is an iterative algorithm that finds simpler approximations to func-
tions. It aims to minimize the maximum absolute difference between the approx-
imated polynomial and the actual function. The algorithm takes a maximum
acceptable error δ and generates l linear segments to approximate the sig-
moid function such that the error is less than δ. We use the Remez algo-
rithm to approximate the sigmoid in the interval [Sig−1(δ),Sig−1(1 − δ)], where
Sig−1 is the inverse function of the sigmoid. The inverse of sigmoid is the
logit function i.e., Sig−1(y) = logit(y) = log(y)/(1 − y). For example, if
the user sets δ to 0.0006, then the input domain for the algorithm lies in
[−7.423034723582278, 7.423034723582278]. Thus, the approximated sigmoid is:

|Ŝig(x) − Sig(x)| ≤ δ

We approximate softmax with its lower bound:

̂softmax(�z)i = Ŝig(zi − maxn
1

j �=i

(zj) + log(n − 1)) − δ (17)

and the upper bound for the softmax is:

̂softmax(�z)i ≤ softmax(�z)i ≤ Ŝig(zi − maxn
1

j �=i

(zj)) + δ (18)
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Theorem 1. Let softmax and ̂softmax compute the real and linearly approxi-
mated softmax (with precision δ), respectively for the last layer of n ≥ 2 neurons
�z of a neural network and zi = max(z1, · · · , zn). Then, we have the following
result:

∀�z. softmax(�z)i − ̂softmax(�z)i ≤ n − 2
(
√

n − 1 + 1)2
+ 2δ

Proof. We refer to [44]. ��
Theorem 2. (Class consistency) Let f and f̂ denote the real and the approxi-
mated (with precision δ) neural networks with n ≥ 2 outputs, respectively. Then:

conf(f̂(�x)) >
1
2

=⇒ class(f̂(�x)) = class(f(�x))

Proof. We refer to [44]. ��

Soundness. For the confidence-based 2-safety property discussed before, our
analysis provides a soundness guarantee. This means that whenever the analysis
reports that the property specified in Definition 4 holds, then the property also
holds true in the concrete execution.

Theorem 3. (Soundness) Let f and f̂ be the original neural network and over-
approximated neural network, respectively. Let bn,δ be the error bound of the
approximated softmax (bn,δ = n−2

(
√

n−1+1)2
+2δ (see Theorem1)). Then we have the

following soundness guarantee: Whenever the approximated neural network is 2-
safe for conf(f̂(�x)) > (κ−bn,δ), the real neural network is 2-safe for conf(f(�x)) >

κ, given conf(f̂(�x)) > 1
2 . Formally:

(
∀�x, �x′. cond(�x, �x′,�ε) ∧ conf(f̂(�x)) > (κ − bn,δ)

=⇒ class(f̂(�x)) = class(f̂(�x′))

)
=⇒

(
∀�x, �x′. cond(�x, �x′,�ε) ∧ conf( �f(x)) > κ

=⇒ class(f(�x)) = class(f(�x′))

)
, with conf(f̂(�x)) >

1
2

Proof. We refer to [44]. ��

4 Implementation

For the implementation of our technique, we use the state-of-the-art neural net-
work verification tool Marabou [23] as our solver. In this section, we describe
how we encode the confidence-based 2-safety property in Marabou. Note that
such an encoding can be expressed in a similar way for virtually any off-the-shelf
neural network verifier.

Marabou [23]. Marabou is a simplex-based linear programming neural network
verification and analysis tool. Marabou is capable to address queries about net-
work’s properties, such as local robustness, by encoding them into constraint
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satisfaction problems. It supports fully-connected feed-forward neural networks.
A network can be encoded as a set of linear constraints representing the weighted
sum of the neurons’ outputs feeding the next neuron’s input, and a set of
non-linear constraints defining the activation functions. A verification query to
Marabou comprises a neural network along with a property that needs to be
verified. This property is defined as “linear and nonlinear constraints on the
network’s inputs and outputs” [23]. In Marabou, network’s neurons are treated
as variables. As a result, the verification problem involves identifying a variable
assignment that satisfies all the constraints at the same time, or establishing that
such an assignment does not exist. The tool uses a variant of the Simplex algo-
rithm at its core to make the variable assignment satisfy the linear constraints.
During the execution, the tool adjusts the variable assignment to either fix a
linear or a non-linear constraint violation. Although the technique implemented
in Marabou is sound and complete, the tool can work only with piece-wise lin-
ear activation functions (including ReLU function and the max function) to
guarantee termination. Additionally, an essential aspect of Marabou’s verifica-
tion approach is deduction – specifically, deriving more precise lower and upper
bounds for each variable. The tool leverages these bounds to relax piece-wise
linear constraints into linear ones by considering one of its segments.

The original network g is a function of the following: input parameters, neu-
rons, neuron connection weights, layer biases, ReLU activation functions and
output classes. To make Marabou amenable for verification of 2-safety proper-
ties, we need a product neural network. This means that the execution is tracked
over two copies of the original network, g and g′ (cf. Subsect. 2.3). Let Xi denote
the set of input variables to g and let X ′

i be a set of primed copies of the vari-
ables in Xi. As a result, we obtain a self-composition g(Xi) × g′(X ′

i) of g over
the input variables Xi ∪ X ′

i.
Next, we extend the output layer with softmax function in order to extract

the confidence scores with which output classes are predicted.

Linearized Sigmoid. We explain our linearized sigmoid function in this subsec-
tion. This function is used to implement an approximated piece-wise linear sig-
moid function. Let the outputs of the last inner layer l−1 be represented by zi for
1 ≤ i ≤ n, where n is the number of output classes. In Marabou, we first encode
the linear piece-wise sigmoid function which we obtain by setting the maximum
acceptable error to 0.005. This provides us with a piece-wise linear approximated
sigmoid with 35 segments of the form qj = {mj ·zi+cj , | LB ≤ zi ≤ UB}, where
zi is the variable representing the output node whose confidence we want to find.
We encode each segment as an equation in and represent it using a variable qj .
Next, we need to select the applicable segment corresponding to the value of zi.
Unfortunately, Marabou does not provide a conditional construct. So, we deploy
the min and max functions to emulate if-then-else.

First, we split the sigmoid into two convex pieces S1 and S2. Figure 2 illus-
trates this step using a simplified approximation of sigmoid with 4 linear seg-
ments q1, q2, q3, and q4. The resulting value of S1 can now be expressed as S1 =
min(max(0, q1, q2), 0.5). Similarly, S1 = max(min(0.5, q3, q4), 1). The values 0 and
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1 are the minimum and maximum values of the sigmoid function and 0.5 is the
value of sigmoid at the splitting point. Second, we combine the convex segments
by adding them:

S = min(max(0, q1, q2), 0.5) + max(min(0.5, q3, q4), 1) − 0.5

Note that we have 35 segments instead of four used in our simplified explanation.

Linearized Softmax. The next step consists in implementing the softmax func-
tion using the output of the sigmoid function and the max function (see Eq. 17).
To this end, we find the maximum of all output nodes excluding the current one,
and subtract that maximum from the current output value. Finally, we apply
the linearized sigmoid (cf. Sect. 4), to obtain the result of softmax.

We repeat the above steps for all output nodes to obtain the softmax values
corresponding to all output classes. Finally, we find the maximum value of these
softmax outputs, which represents the confidence.

Fig. 2. (Simplified) Approximation of sigmoid with 4 linear segments

5 Experimental Evaluation

For our evaluation, we used four publicly available benchmark datasets to eval-
uate our technique. We pre-process the datasets to remove null entries, select
relevant categorical attributes, and hot-encode them. For each dataset, we train
a fully connected feed-forward neural network with up to 50 neurons and ReLU
activation functions.

German Credit: The German Credit Risk dataset [45] describes individuals
requesting credit from a bank and classified, based on their characteristics, in
two categories (“good” or “bad”) of credit risk. The dataset comprises 1000
entries.

Adult: The Adult dataset, also referred to as the “Census Income” dataset, is
used to estimate whether a person’s income surpasses $50,000 per year based on
census information [46].
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COMPAS: COMPAS (“Correctional Offender Management Profiling for Alter-
native Sanctions”) is a widely-used commercial algorithm that is utilized by
judges and parole officers to assess the probability of criminal defendants com-
mitting future crimes, also known as recidivism [47].

Law School: The Law School Admissions Council (LSAC) provides a dataset
called Law School Admissions, which includes information on approximately
27,000 law students from 1991 to 1997. The dataset tracks the students’ progress
through law school, graduation, and bar exams. It uses two types of academic
scores (LSAT and GPA) to predict their likelihood of passing the bar exam [48].

We use TensorFlow for training neural networks and the NN verifier Marabou
[23] whose implementation is publicly available. The accuracies for the deployed
models are as follows: German Credit: 0.71; COMPAS: 0.74; Law: 0.94; Adult:
0.77. In our experiments, adding more layers or nodes per layer did not result in
an increased accuracy. We run all our experiments using a single AMD EPYC
7713 64-Core Processor, Ubuntu 22.04 LTS Operating System with 32 GB RAM.

Fig. 3. Input distance vs. confidence for
German credit dataset

Fig. 4. Input distance vs. confidence for
adult dataset

Fig. 5. Input distance vs. confidence for
law school dataset

Fig. 6. Input distance vs. confidence for
COMPAS dataset

First, we present our confidence-based global robustness results. We evaluate
our implementation on the neural networks trained with the benchmark datasets
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for various combinations of input distance and confidence values. We aim to find
proofs for globally robust neural networks. The plots in Figs. 3, 4, 5 and 6 show
our experimental results as scatter plots. Markers denoting ’sat’ correspond to
the query resulting in a counter-example. A counter-example here means that for
the input distance and confidence values in that query, the inputs are classified
into different output classes. The ‘unsat’ markers stand for the query being
proved (i.e. the model is robust), which means that for the corresponding input
distance and confidence threshold, the inputs are classified to the same output
class and the model is globally robust. The color bar on the right side denotes the
time taken in seconds to run each query; the time scale goes from deep purple to
blue, green and yellow as the time taken increases from 0 to 60 sec. The plot in
Fig. 3 depicts the effect of varying input distance and confidence on the German
credit benchmark. We ran our query with the confidence-based global robustness
property for input distance, ε and confidence κ values ranging from 0.001 to 1.0
and 0.5 to 0.9, respectively. Observe that for κ values below 0.7, the model is sat
i.e. we find counter-examples. However, for confidence values above 0.75, even
for larger input distances, the queries result in unsat and a proof that the model
is robust above a confidence threshold of 0.75.

The plots in Figs. 4, 5 and 6 show the results for neural networks trained
with Adult, Law School, and COMPAS datasets. As can be observed from the
scatter plots, these models are robust. For confidence values above 0.5, they are
2-safe and we are successfully able to prove this rather fast in 50 s or less.

Table 2. Global fairness on German credit/COMPAS datasets for various criteria

Dataset Sensitive attribute Confidence threshold Result Time taken

German credit Gender 0.5 unsat 10.232 s

German credit Age 0.5 unsat 11.478 s

COMPAS Gender 0.5 sat 7.423 s

COMPAS Ethnicity 0.5 sat 18.293 s

COMPAS Ethnicity 0.99 sat 25.846 s

COMPAS Ethnicity 0.999 unsat 171min 15 s

Next, we present the results for confidence-based global fairness verification,
which are shown in Table 2. Each row in the table depicts the verification result
for a NN along with the sensitive attribute and confidence threshold considered.
If the result is ‘unsat’, it means that the query is proved (i.e. the model is fair).
In other words, for the corresponding sensitive attribute and confidence value
constraints, the inputs are classified to the same output class and the model
is globally fair. On the other hand, ‘sat’ corresponds to the query resulting
in a counter-example. A counter-example here means that for the corresponding
sensitive attribute and confidence threshold in the query, the inputs are classified
into different output classes.
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The German credit model is proved to be globally fair for confidence values
above 0.5 for sensitive attributes Gender and Age. Running our query with the
confidence-based global fairness property for the COMPAS model, with Gen-
der as the sensitive attribute gives counter-examples for all confidence values.
Additionally, when Ethnicity is considered as the sensitive attribute while verify-
ing the COMPAS model, we find counter-examples for lower confidence values.
However, the model is proved to be globally fair for confidence values above
0.999.

We combined our method with binary search, to synthesize the minimum
confidence for which the DNN is globally robust or fair. We perform the binary
search, starting with confidence 0.5. If the model is unsat, we are done. Else, we
check for confidence mid = (0.5 + 1)/2, and continue in this way till we find the
minimum confidence accurate to the nearest 0.05. For instance, binary search
combined with our method, on German credit gave us 0.75 (in 45 s) to be the
minimum confidence for which the DNN is globally robust.

Our experimental results on 2-safety properties (with regard to both, global
robustness and global fairness), clearly point out that taking confidence along
with input distance into account is crucial when verifying neural networks.

5.1 Discussion

Soundness. Our proof of soundness guarantees that if our approach yields that
a model is robust or fair for a given confidence and input distance, the model
is indeed safe. In case of the German Credit model, for instance, the model is
indeed globally robust for all input distances when the confidence is at least 0.75.
Moreover, we can use binary search to find the minimal confidence value above
which a model is robust. Our approach guarantees soundness and when a model
is found to be safe, it is indeed safe. However, if a counterexample is found, it may
be a false positive. False positives (or spurious counterexamples) may in general
stem either from overapproximations of the underlying reachability analysis tool
or from our own softmax approximation. In our implementation, the former are
not present since Marabou is complete (i.e., it does not have false positives),
whereas our softmax approximation yields a confidence error that depends on
the number of DNN-outputs, as formalized in Theorem 1 and quantified in its
proof. For DNNs with two outputs, such as German Credit, Adult, and Law
School, there is no error, whereas for three outputs (COMPAS) the error is ∼
0.171. Hence, if we want to certify a three-output DNN for confidence x, we
run our analysis for confidence x − 0.171: if no attack is found, we can certify
the network for confidence x (soundness), otherwise we know the counterexam-
ple violates the 2-safety property (completeness of Marabou) for confidence in
between x and x − 0.171 (the possible imprecision is due to our softmax over-
approximation). We report counterexamples in this paper on German Credit
and on COMPAS: the former are true positives (2-output DNN), whereas the
latter are counterexamples for confidence in between 0.999 (the confidence we
can certify the network for) and 0.828. We ran the network on the counterexam-
ple reported by Marabou and found the real confidence to be 0.969. Hence, the
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network is for sure fair for a confidence higher than 0.999, unfair for confidence
levels lower than 0.969, while we cannot decide it for the confidence levels in the
interval between 0.969 and 0.999. This means that on our datasets, our analysis
is very accurate.

Threats to Validity. Presuming a high level of confidence as a precondition
can make low-confidence networks vacuously safe. However, an accurate but low-
confidence network is not desirable in the first place. This concept is known in
the literature as miscalibration. The Expected Calibration Error is defined as
weighted average over the absolute difference between confidence and accuracy.
In scenarios where accurate confidence measures are crucial, the goal is to reduce
the Maximum Calibration Error [49] that is the maximum discrepancy between
confidence and accuracy.

This is orthogonal to our work and there is an entire field of research [50,51]
aiming at minimizing such calibration errors.

6 Conclusion

We introduce the first automated method to verify 2-safety properties such as
global robustness and global fairness in DNNs based on the confidence level. To
handle the nonlinear softmax function computing the confidence, we approxi-
mate it with a piece-wise linear function for which we can bound the approxima-
tion error. We then compute the self-composition of the DNN with the approx-
imated softmax and we show how to leverage existing tools such as Marabou
to verify 2-safety properties. We prove that our analysis on the approximated
network is sound with respect to the original one when the value of confidence is
greater than 0.5 in the approximated one. We successfully evaluate our approach
on four different DNNs, proving global robustness and global fairness in some
cases while finding counterexamples in others.

While we improve over recent verifiers for global properties that are limited
to binary classifiers [25], a limitation of our current approach is that we can
only handle DNNs with few (two to five) outputs, since the approximation error
increases with the number of outputs. We plan to overcome this limitation in
future work by devising more accurate abstractions of softmax.

To improve scalability, we will investigate how to refine our approach by
integrating pruning strategies, such as those developed in [25], which we intend
to refine to fit our static analysis framework.

We also plan to explore more sophisticated and effective verification tech-
niques for 2-safety properties, possibly tailored to specific DNN structures.

Finally, we plan to complement our verification approach with testing tech-
niques to further explore the generated counterexamples.



348 A. Athavale et al.

Acknowledgements. The work published in this paper is a part of the AI4CSM
project that has received funding within the ECSEL JU in collaboration with the
European Union’s H2020 Framework Programme (H2020/2014-2020) and National
Authorities, under grant agreement No. 101007326. This work was also partially sup-
ported by the WWTF project ICT22-023, by the WWTF project 10.47379/ICT19018,
by the European Research Council (ERC) under the European Union’s Horizon 2020
research (grant agreement 771527-BROWSEC), by the Austrian Science Fund (FWF)
10.55776/F85 (project F8510-N); the Vienna Science and Technology Fund (WWTF)
through [ForSmart Grant ID: 10.47379/ICT22007]; the Austrian Research Promotion
Agency (FFG) through the COMET K1 SBA.

References

1. Gurney, K.: An Introduction to Neural Networks. CRC Press, Boca Raton (1997)
2. Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep Learning. Adaptive Computa-

tion and Machine Learning. MIT Press, Cambridge (2016)
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Abstract. Adversarial examples pose a security threat to many critical sys-
tems built on neural networks. While certified training improves robustness, it
also decreases accuracy noticeably. Despite various proposals for addressing this
issue, the significant accuracy drop remains. More importantly, it is not clear
whether there is a certain fundamental limit on achieving robustness whilst main-
taining accuracy. In this work, we offer a novel perspective based on Bayes errors.
By adopting Bayes error to robustness analysis, we investigate the limit of certi-
fied robust accuracy, taking into account data distribution uncertainties. We first
show that the accuracy inevitably decreases in the pursuit of robustness due to
changed Bayes error in the altered data distribution. Subsequently, we establish
an upper bound for certified robust accuracy, considering the distribution of indi-
vidual classes and their boundaries. Our theoretical results are empirically evalu-
ated on real-world datasets and are shown to be consistent with the limited suc-
cess of existing certified training results, e.g., for CIFAR10, our analysis results
in an upper bound (of certified robust accuracy) of 67.49%, meanwhile existing
approaches are only able to increase it from 53.89% in 2017 to 62.84% in 2023.

1 Introduction

Neural networks have achieved remarkable success in various applications, including
many security-critical systems such as self-driving cars [24], and face-recognition-
based authentication systems [44]. Unfortunately, several security issues of neural net-
works have been discovered as well. Arguably the most notable one is the presence
of adversarial examples. Adversarial examples are inputs that are carefully crafted by
adding human imperceptible perturbation to normal inputs to trigger wrong predic-
tions [25]. Their existence poses a significant threat when the neural networks are
deployed in security-critical scenarios. For example, adversarial examples can mis-
lead road sign recognition systems of self-driving cars and cause accidents [24]. The
increasing adoption of machine learning in security-sensitive domains raises concerns
about the robustness of these models against adversarial examples [38].

To defend against adversarial examples, various methods for improving a model’s
robustness have been proposed. Two main categories are adversarial training [3,58]
and certified training [35,45], both of which aim to improve a model’s accuracy in the
presence of adversarial examples. Adversarial training works by training the network
with a mix of normal and adversarial examples, either pre-generated or generated during

c© The Author(s) 2024
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Fig. 1. The picture at left may look like a cat. In fact, it can be the back of a dog.

training. Methods in this category do not provide a formal robustness guarantee [63],
leaving the system potentially vulnerable to new types of adversarial attacks [31,49].

In contrast, certified training aims to provide a formal guarantee of robustness. A
method in this category typically incorporates robustness verification techniques [60]
during training, i.e., they aim to find a valuation of network parameters such that the
model is provably robust with respect to the training samples. However, they are found
to reduce the model’s accuracy significantly [9]. Recent studies have shown that state-
of-the-art certified training can result in up to 60% accuracy drop on CIFAR-10 [32] (at
vicinity size 8/255). This is unacceptable for many real-world applications. Although
numerous researchers attempt to enhance certified training methods, there seems to be
an invisible hurdle preventing them from achieving a level of accuracy similar to that
of vanilla models. Despite attempts to explore it using the limit of certain abstraction
domains [33], in general, whether there is such a theoretical upper bound on certified
robust accuracy or not remains an open problem.

In this work, we offer a novel perspective and argue that Bayes errors may be one
of the reasons why there is such an invisible hurdle. The Bayes error, in the context of
statistics and machine learning, is a fundamental concept related to the inherent uncer-
tainty in any classification system [20]. It represents the minimum error rate for any
classifier on a given problem and is determined by the overlap in the probability distri-
butions of the classes to be predicted [13]. Thus, we study whether the Bayes errors put
a limit on certified robust accuracy.

To understand how Bayes Error is relevant, we can consider it from the uncertainty
in neural network learning. Most existing classifiers learn using a data set which gives a
unique and certain label for each input [26]. Yet, this may not be the case in reality. That
is, not every input may have a 100% certain label (due to reasons such as information
loss during the picture-capturing process). Intuitively, we show a real-world example in
Fig. 1. This image looks like a cat, while it is, in fact, also possible to be a dog. The
point is that unless we know how this photo was taken, and there is no information
loss during the photo taking, there may always be a certain level of uncertainty when
we label the data. These uncertainties call for Bayes errors and actually bounds both
vanilla and certified robust accuracy.

This work has two objectives. First, we aim to analyse whether the quest for robust-
ness inevitably decreases model accuracy, from the perspective of Bayes errors. This
requires examining how the inherent, irreducible error in class probability distributions
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influences the robustness of classifiers (with respect to perturbations). We show that
given the definition of robustness, the data distribution undergoes a convolution within
the vicinity (i.e., the region around an input which is defined by the perturbation bud-
get). Second, we intend to quantify this potential decrease, i.e., what are the upper
bounds on the optimal certified robust accuracy? We show that such an upper bound can
be derived independently from the classification algorithm. Through a detailed explo-
ration of how each input may contribute to the Bayes errors, our study aims to enhance
the understanding of their contribution to classification robustness.

We apply our analysis to multiple benchmark data sets and the corresponding mod-
els. From every data set, we observe that the convolved distribution has an increased
Bayes error compared with the original distribution. This implies that pursuing robust-
ness would in turn increase uncertainty, and decrease accuracy as we show in our anal-
ysis. Second, we contrast the state-of-the-art (SOTA) certified robust accuracy against
the upper bound derived using our approach. This is to verify if the bound is empir-
ically effective. We find that the bound is indeed higher than the state-of-the-art cer-
tified robust accuracy. We further investigate the relationship between the robustness
upper bound and the perturbation vicinity size. When vicinity size grows, we expect-
edly obtain a decreased upper bound, on every data set used in our study.

2 Preliminary and Problem Definition

In this section, we review the relevant background of this study, including the funda-
mentals of robustness in machine learning, e.g., its definition and verification. We also
recall statistical decision theory, highlighting its relevance to classification. After that,
we define our research problem.

In machine learning, the learner, denoted as a function h : X → Y, is used to
predict outputs h(x) ∈ Y based on a (possibly high dimensional) input point x ∈ X.
The quality of h can be measured by a problem-dependent loss function �(h,x, y) [66].
The choice of the loss function depends on the specific problem and data. Common
options include the cross-entropy loss for classification and the mean squared error loss
for regression. We focus on the classification problem in this work. Classification is the
problem of assigning a class to each input [34], i.e., the learner’s task is to map an input
to a discrete class and the learner is often called a classifier.

Definition 1 (Classifier). In machine learning, a classifier maps an input x from an
input space X to a discrete class y in the output space Y. The output space Y is a
(typically finite) set of discrete categories. Formally,

h : x �→ ŷ, x ∈ X, ŷ ∈ Y, Y = { classi | i ∈ Z
+, i ≤ Ny } (1)

where Ny is the total number of categories the classifier can assign such that |Y| = Ny .

For example, a spam classifier maps an email to { spam, non-spam }. The input
vector for an email may embody the length of the message, the frequency of cer-
tain keywords in the body of the message, or the vectorised email body [34]. A
learning example contains an input and a label. A classifier can learn from labelled
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email examples and predict labels for other email examples. The classifier’s predic-
tions are then compared with the labels of the email under test to measure the per-
formance of the classifier, e.g., a zero-one misclassification loss may be defined over
{ spam, non-spam } × { spam, non-spam } by l(ŷ, y) = 1ŷ �=y . A lower loss on the test
sample set indicates a more accurate classifier.

2.1 Robustness in Classification

A classifier may not be robust as small changes in input data might lead to significant
changes in the predictions made by a classifier [47]. Consider the spam classifier exam-
ple. Surprisingly, the removal of a single seemingly unimportant word from an email
may switch the classifier’s decision from spam to non-spam [55]. This phenomenon
highlights the existence of adversarial examples, which are defined as follows.

Definition 2 (Adversarial example [17,25]). Given a classifier h : X → Y and an
input-label pair (x, y) ∈ X × Y, an adversarial example x′ ∈ X is an input that is
similar to x but is classified wrongly, e.g., h(x′) �= y. The difference between x and x′

can be measured by a distance function d, and we often require the distance between
x′ and x to be smaller than some threshold ε. We assume x is correctly classified, i.e.,
h(x) = y.

Consider the case of the spam email. If a single word is removed, the Levenshtein
distance (a measure of the number of edits needed to change one text into another) is
1. An adversarial example based on such a small change could be used with malicious
intent. Even though removing a common word like ‘just’ does not alter the nature of a
spam email, it might be enough to prevent it from being detected by the spam classifier.
Therefore, robustness against such attacks is needed such that spam would not evade
detection by just changing a few words. Formally, robustness is defined as follows [30].

Definition 3 (Classifier robustness against perturbations). Given classifier h
and example (x, y) ∈ X × Y, we say that h is robust with respect to vicinity
{x′ | d(x,x′) ≤ ε }, i.e., Rob (

h,x, y; (d, ε)
)
, only if the following condition is sat-

isfied.
¬∃ x′ ∈ X. d(x,x′) ≤ ε ∧ h(x′) �= y (2)

Definition 3 involves the concept of vicinity, which is a subset of the input space, i.e.
⊂ X. It is usually determined by an input and a budget for perturbation. For instance,
give an input x, we can define its vicinity as Vx = {x′ | d(x,x′) ≤ ε }. However,
this set representation may be inconvenient sometimes. Thus, we give an equivalent
function form as follows.

vx(x′) =

⎧
⎨

⎩

(∫
Vx

dx′′
)−1

, if x′ ∈ Vx

0, otherwise
(3)
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Fig. 2. 1D visualizations of vicinity function and Bayes error. A vicinity function is a rectangular
function that returns a constant value if an input is in the vicinity. We use two PDFs of the
truncated normal distribution to visualise the Bayes error.

Essentially, Equation (3) can be viewed as a probability density function uniformly
defined over the vicinity around an input x. Now we shift the x-coordinate by x, we get

v0(x′ − x) =

⎧
⎨

⎩

(∫
V0

dx′′
)−1

, if x′ − x ∈ V0

0, otherwise
(4)

Assuming that the vicinity function is translation invariant, we can drop the subscript
0, and use a positive constant εv to represent

∫
V0

dx′′. Thus, the vicinity function v :
X → { 0, ε−1

v } can be expressed as

v(x) =

{
ε−1
v if x ∈ V0

0, otherwise
(5)

Since these representations are equivalent, we choose either representation based on the
contexts. An example of a one-dimensional input’s vicinity is shown in Fig. 2a.

Achieving robustness is challenging. Verifying whetherRob
(
h,x, y;Vx

)
holds for

a given classifier h is complicated since examining every example within a vicinity is
impractical. Consequently, accurately estimating a classifier’s robustness on specific
inputs, as well as its robustness on a given data distribution, presents significant chal-
lenges. Existing methods for evaluating robustness include empirical evaluation (i.e.,
adversarial attacks) [14], robustness verification [17,28], and others [57].

Adversarial attacks take one or more steps to search for adversarial examples within
a vicinity. Let AttS

(
h,x, y;Vx

)
denote the success of an attack in finding adversarial

examples in Vx . The failure rate of this attack on classifier h can serve as an estimation
for the classifier’s expected robustness, as outlined below.

AttS
(
h,x, y;Vx

) → ¬Rob
(
h,x, y;Vx

)
(6)
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Another perspective contends that any non-zero rate of false negatives in the detec-
tion of adversarial examples is problematic. To this end, a conditionVrob is to be estab-
lished, such that given a classifier h, it satisfies

∀ (x, y) ∈ X × Y. Vrob
(
h,x, y;Vx

) → Formula 2 (7)

This method refers to robustness verification and the condition Vrob is the verification
result of robustness. There are two categories of robustness verification methods, i.e.,
incomplete deterministic verification [28] and complete deterministic verification [28].
Any deterministic verification method that fulfils Formula 7 qualifies as an incomplete
verification. If a method further fulfils Formula 8, it qualifies as a complete verifica-
tion. In both cases, if the verification result Vrob

(
h,x, y;Vx

)
is True, i.e., verified,

the classifier is considered to have deterministic robustness certification [28] for input
x within the vicinity Vx , and the average certification likelihood is often called certi-
fied robust accuracy [45]. Certified robust accuracy can serve as a lower bound for the
classifier’s expected robustness.

∀ (x, y) ∈ X × Y. Vrob
(
h,x, y;Vx

) ← Rob
(
h,x, y;Vx

)
(8)

These verification methods can be used to optimise classifiers during training, and such
a practice refers to certified training [28,53], which is defined as follows.

min
h

E(x,y)∼D

[

sup
x′∈V(x), k �=y

(
�(h,x′, y) − �(h,x′, k

)
]

(9)

Here, the neural network verification methods are used to soundly approximate the
worst loss that can be induced by any perturbation within the vicinity of each train-
ing sample. However, after years of research [6,46,64], certified training still faces
challenges. Existing certified training methods often result in a significant drop in the
model’s accuracy [10,40]. For instance, the best accuracy achieved by certified training
is typically half of that of the standard training on the CIFAR-10 data set [45,51]. Such
a significantly reduced accuracy often means that the model is unacceptable in practice.

In summary, to evaluate whether h attains robustness at example (x, y) within the
vicinity Vx , existing methods include checking AttS

(
h,x, y;Vx

)
through adversarial

attacks orV
(
h,x, y;Vx

)
through robustness verification. The expected robustness over

a given distribution D, denoted by

E(x,y)∼D

[
1

Rob
(
h,x,y;Vx

)
]

(10)

which can be overestimated by attack success rate (E(x,y)∼D [1AttS]) or underestimated
by certified robust accuracy (E(x,y)∼D [1Vrob]). 1condition is the indicator function that
returns 1 if the condition is True, and 0 otherwise.

2.2 Bayes Rules for Distributions

In the following, we introduce the notion of Bayes Error and how it reflects a classifi-
cation distribution. We consider a scenario where an input x is to be classified into one
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class in Y, in particular, y = k with prior class probability P (y = k) where k ∈ Y. Let
p(x|y = k) denote the class likelihood, that is, the conditional probability density of x
given that it belongs to class k. The probability that the input x belongs to a specific
class k, namely the posterior probability p(y = k|x), is given by Bayes’ theorem.

p(y = k|x) = p(x|y = k)P (y = k)
p(x)

(11)

where p(x) is the probability density function of x, i.e., p(x) =
∑

k∈Y
p(x|y =

k)P (y = k). This classifier assigns an input x to the class with the highest poste-
rior and is called the Bayes classifier, which is the optimal classifier. The classification
error associated with the Bayes classifier is outlined as follows.

Definition 4 (Bayes error). Given a distribution D over X × Y, the error associated
with the Bayes classifier is called the Bayes error (rate), denoted as βD. The Bayes
error can be expressed [13,15] as:

βD = E(x,y)∼D

[
1 − max

k
p(y = k|x)

]

=
∫ (

1 − max
k

p(y = k|x = x)
)

p(x)dx
(12)

Besides, since the Bayes classifier is optimal [42], this optimality gives rise to the fol-
lowing definition of the Bayes error [34].

βD = min
measurable h

E(x,y)∼D

[
1h(x) �=y

]
(13)

where the Bayes error is defined as the minimum of the errors achieved by measurable
functions h : X → Y. Hereby, (any) classifier h with an error rate equal to βD can be
called a Bayes classifier.

An example illustrating the Bayes error is given in Fig. 2b. The Bayes error funda-
mentally reflects the inherent uncertainty in classification tasks. It is the (irreducible)
minimal error rate achievable by any classifier for a specific problem, influenced by
the overlap amount among the class probability distributions. An input having a cer-
tain (deterministic) label can be formally expressed as maxk p(y = k|x = x) = 1.
We can also represent this using the ceiling �· or floor �·� function within the inter-
val [0, 1]. Specifically, the ceiling function returns the smallest integer greater than or
equal to the input. Consequently, it returns 1 for any number from 0 (exclusive) up to
1 and returns 0 if the input is 0. This shows that the input’s label has uncertainty if
1 − maxk p(y = k|x = x) > 0 and does not have uncertainty otherwise. We write
KD = {x | 1 − maxk p(y = k|x = x) > 0 } to denote the set of every input whose
label has uncertainty. The Bayes error provides a yardstick for other classifiers [18,42],
e.g., a classifier may be deemed effective if its error rate approximates the Bayes error.

As highlighted in Eqs. (11) and (12), the calculation of Bayes error is contin-
gent upon knowing the prior distribution. In practical situations, since this distribu-
tion is not analytically known, the strategy is to estimate Bayes error using the observ-
able portion of the distribution, e.g., training data characteristics, through approxima-
tions [11,19,52,61] or by computing its upper [5,13,21] and lower [1,65,67] bounds.
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Fig. 3. Visualizing the convolution of distributions, the marginal contribution to Bayes error, and
the bounds of robustness error and certified robust accuracy.

Problem Definition. Next, we define the problem that we study. Despite the many pro-
posals on certified training, noticeable suboptimality in robustness persists, especially
compared with vanilla accuracy. Our objective is to ascertain whether this limitation
comes from insufficient optimisation, or if there exists a fundamental upper bound that
inherently limits the certified robust accuracy. Furthermore, if such an upper bound does
exist, we aim to investigate how we can compute it, and how we can validate our result.

3 An Upper Bound of Robustness from Bayes Error

In this section, we present a method that attempts to address our research problem
defined above, from a Bayes error perspective. Particularly, we hypothesise that the
Bayes error plays a vital role in estimating the robustness that can be achieved by any
classifier. First, we prove that certified training increases the Bayes error, which poses
an upper bound on the robustness that can be achieved by any classifier. Second, we
present how the upper bounds of certified robust accuracy can be calculated from a
given distribution.

3.1 Certified Training Increases Bayes Error

Certified robustness can be viewed as a way of optimizing the classifier with an altered
data distribution instead of the original distribution [37]. This is because due to the
requirement of robustness, an input may be forced with a label of some of its neigh-
bors in the vicinity, instead of its original label. In the following, we investigate how
the robustness requirement influences the data distribution, further affecting the Bayes
error. We hypothesise that the altered distribution worsens Bayes error. We begin by
defining a “label-assignment” action that alters a distribution, from a local perspective.

Suppose there is a distribution D over the space X × Y. From a local (example)
perspective, an example (x, y) ∈ X × Y assigns its label to a specific domain S ⊂ X

(S can be a vicinity) by directly altering the joint probability in S. Specifically, this
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alteration is a process that adds Δp(y = y,x = x) to the original p(y = y,x = x),
and adds Δp(y = y,x = x′) to the original p(y = y,x = x′) for any example x′ ∈ S,
where Δp denotes a change in the joint distribution function (of x, y) such that

Δp(y = k,x = x) =

{
0, if k �= y

pori(y = k,x = x)
(

1∫
S
dx′ − 1

)
, otherwise

Δp(y = k,x = x′) =

{
0, if k �= y

1∫
S
dx′ pori(y = k,x = x), otherwise

(14)

We then explain why this label assignment aligns with the robustness criteria. In the
context of robustness, for every input in the training set, every neighbour point in the
vicinity around the input gets the label of this input. Meanwhile, an input may fall within
more than one vicinity. Thus, an input gets labels assigned from multiple neighbours,
and each label’s influence depends on its source’s joint probability. Intuitively, examples
with higher joint probability have a stronger influence on its vicinity.

Equation (14) captures the effect of an input’s label on its neighbours, from an indi-
vidual input perspective. We next set out from a distributional perspective which is
supposed to match our individual input perspective. When all examples in the original
distribution concurrently assign labels to their respective vicinity, the effect is equiva-
lent to convolving this given distribution with the vicinity (function). This convolved
distribution represents the target of certified robustness optimization, as captured by
Throrem 1.

Theorem 1. Given a distribution D for classification, optimising for higher certified
robustness does not optimise the classifiers to fit D. Rather, it optimises classifiers
towards D ∗ v, i.e., convolved distribution between D and vicinity v(x).

Proof. Optimising for certified robustness tunes classifiers to have a higher probability
of satisfying Formula 2. Therefore, the objective is to maximise

E(x,y)∼D

[
�
∫

X

v(x − x′) · 1y=h(x′)dx
′�

]

=
∑

k

∫

X

�
∫

X

v(x − x′) · 1k=h(x′)dx
′�p(x, k)dx

(15)

Denote μk(x) =
∫
X

v(x − x′) · 1k=h(x′)dx
′, then the objective can be expressed as∑

k

∫
X
�μk∗(x)�p(x, k)dx. Suppose μk for each x is the variational function we tune

to maximise the objective. As the floor function is monotonically increasing, maximis-
ing the original objective is equivalent to maximising

∑
k

∫
X

μk(x)p(x, k)dx, which
equals

∑

k

∫

X

∫

X

v(x − x′) · 1k=h(x′)dx
′p(x, k)dx

=
∑

k

∫

X

∫

X

v(x′ − x)p(x, k)dx · 1k=h(x′)dx
′

(16)
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Observe the convolution form (pk ∗v)(x′) =
∫
X

v(x′ −x)p(x, k)dx, and the objective
becomes

∑
k

∫
X
(pk ∗ v)(x′) · 1k=h(x′)dx

′. Thus, the target distribution of optimising
for certified robustness is indeed the convolved distribution of the given one. ��
Note that Throrem 1 is not particularly for existing certified training approaches but
rather any approach to achieving certified robustness. Hereafter, we use D to denote the
original distribution, p to denote the conditional distributions (of each class) from D,
D′ to denote the convolved distribution, and q to denote the conditional distributions
(of each class) from D′. Thus, the Bayes error of D′ can be expressed as

βD′ = E(x,y)∼D′

[
1 − max

k
q(y = k|x)

]
(17)

The subsequent question is to study the Bayes error with respect to the convolved dis-
tribution D′. Throrem 2 suggests that Bayes error grows when D is transformed into
D′, as illustrated in Fig. 3a.

Theorem 2. Given a distribution D for classification, its convolved distribution D′ has
an equal or larger Bayes error, i.e., βD ≤ βD′ .

Proof. Consider D is a distribution of random variables x and y. Let pk(x) be the
conditional distribution of x given y = k. We need to prove that the Bayes error between
pk is less than or equal to the Bayes error between pk ∗ v, where v is a probability
density function (PDF). First, let us prove that ((maxk(pk)) ∗ v)(x) ≥ maxk((pk ∗
v)(x)). Expanding both sides, we get

∫
maxk(pk(x − x′)v(x′))dx′ at left. We get

maxk(
∫

pk(x − x′)v(x′)dx′) at right. We can see that left ≥ ∫
pk(x − x′)v(x′)dx′

for any k. Therefore, the maximum can be brought out from the integral and thus the left
side is proved to be greater than or equal to the right side. Then, we use the equality that
the integral of ((maxk pk) ∗ v)(x) is actually the same as the integral of (maxk pk)(x).
This is because v itself is a PDF. Therefore, we get

∫ (
1 − (max

k
pk)(x)

)
dx ≤

∫ (
1 − max

k
((pk ∗ v)(x))

)
dx (18)

��
Intuitively, when robustness is required, new labels are assigned to data in the vicin-

ity of the training inputs. But, these new labels sometimes contradict the original labels
or contradict themselves. As a result, the convolved distribution invariably exhibits
larger uncertainty, represented by an increased Bayes error. For instance, let us con-
sider a separable distribution with a unique boundary. The condition d(x,x′) ≤ ε
implies that x and x′, near the boundary, should be assigned the same label even if
their ground-truth labels are different, leading to a non-zero Bayes error.

3.2 Irreducible Robustness Error and Robustness Upper Bound

We have proved that the optimal robustness is equal to or lower than the optimal accu-
racy. We now would like to find a quantitative upper bound for robustness. We first
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define the irreducible expected error rate across all classifiers regarding robustness, as
expressed in Equation (19) where ζ�

D represents the irreducible robustness error on dis-
tribution D.

ζ�
D = inf

measurable h
E(x,y)∼D

[
1 − 1

Rob
(
h,x,y;Vx

)
]

(19)

This concept is analogous to Equation (13), where the Bayes error is described as the
irreducible vanilla error rate achievable by any classifier. Then, the upper bound of
expected robustness is 1 minus the lower bound of ζ�

D.
Recall Definition 3, the condition Rob(h,x, y; (d, ε)) holds only if Formula 2 is

met, where (x, y) ∈ X × Y. Nevertheless, Formula 2 alone is not a sufficient condition
for Rob

(
h,x, y; (d, ε)

)
. According to Definition 2, Rob

(
h,x, y; (d, ε)

)
also requires

that no input in the vicinity of x should be classified incorrectly, as expressed in For-
mula 20. Formally, Rob

(
h,x, y; (d, ε)

) ⇐⇒ Formula 2 ∧ Formula 20.

¬∃ (x′, y′) ∈ X × Y. p(x′, y′) > 0 ∧ d(x,x′) ≤ ε ∧ h(x′) �= y′ (20)

Equation (20) suggests that if the ground-truth labels of inputs in the vicinity of x
are different from the labels of x, then a prerequisite of robustness is missing such
that robustness cannot be attained. The conjunction of Formula 2 and 20 clarifies that
robustness asks for general correctness across the (local) input domain, rather than just
local consistency. From this conjunction, we can derive that for a classifier to attain
robustness at an input, it is necessary that the posterior probability associated with this
input is entirely certain, which is formally captured in Throrem 3. Further, given a
distribution, the proportion of examples with uncertain labels can serve as a lower bound
for the proportion of examples without robustness.

Theorem 3. Given a distribution D over X × Y, the irreducible robustness error is
greater than or equal to the probability that an input is in KD.

ζ�
D ≥

∫
�1 − max

k
p(y = k|x = x) p(x)dx ≥ βD (21)

When �1−maxk p(y = k|x = x) = 0, there is one and only one class has a posterior
probability of 1 at input x, resulting in a non-zero contribution to the Bayes error.

Proof. Assume some classifier h attains robustness at input x, and the posterior proba-
bility is not certain, i.e., 1 − maxk p(y = k | x = x) > 0. The latter infers that there
exists some (non-zero probability) examples of (x, y1) pair and some (x, y2) pair, and
y1 �= y2. The prediction for x differs from at least one of either y1 and y2. Formally, the
latter condition in our assumption entails (h(x) �= y1 ∨ h(x) �= y2), which then entails

∃x′ ∈ Vx . h(x′) �= y1 ∨ h(x′) �= y2 (because x ∈ Vx )

∃x′ ∈ Vx ∃y′ ∈ Y. p(x′, y′) > 0 ∧ h(x′) �= y′ (Disjunction Elimination)
(22)

Condition (22) contradicts the former condition in our assumption, i.e., Condi-
tion 20. Thus, robustness may only be attained if there is no label uncertainty at an
input. ��
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Uncertainty contributes to an irreducible error in both vanilla accuracy and robust-
ness. The irreducible robustness error is at least the Bayes error. We are further inter-
ested in refining this boundary in scenarios where we know the value of the Bayes
error but lack information about the posterior probabilities. To this end, we develop
Corollary 1.

Corollary 1. Given a distribution D over X × Y, its irreducible robustness error is at
least as large as the Bayes error multiplied by the number of classes divided by one less
than the number of classes, i.e.,

ζ�
D ≥ |Y|

|Y| − 1
βD (23)

where |Y| denotes the number of classes.

Proof. we have that ζ�
D ≥ ∫

KD
p(x)dx =

∫
KD

(1 − maxk p(y = k|x = x) +
maxk p(y = k|x = x))p(x)dx = βD +

∫
KD

(maxk p(y = k|x = x))p(x)dx ≥∫
KD

p(x)/ |Y| dx+ βD. Thus, we can prove that
∫
KD

p(x)dx ≥ βD |Y| /(|Y| − 1) ��

In Throrem 3 and Corollary 1, the lower bounds for the ζ�
D are established based on that

a single input needs to have a deterministic label. Still, there are additional conditions
that, if unmet, will prevent a classifier from attaining robustness for a given input. For
instance, we can expand the certainty requirement from a single input to encompass any
input within its vicinity. The input neighbours in the vicinity with uncertain labels can
also contribute to the irreducible robustness error. Given an input x such that x /∈ KD,
if there exists an x′ within this vicinity of x such that x′ ∈ KD, robustness at x cannot
be attained. All such x forms a domain K

∗
D. K∗

D can be considered as a thin margin
around KD, as shown in Fig. 3b. This expansion results in a more stringent condition.
Consequently, we will likely identify a tightened lower bound for ζ�

D.

Corollary 2. Given a distribution D over X × Y, then

ζ�
D ≥ 2 · εeff · pmin ·

(∫

KD

dx

) dim X−1
dim X

+
∫

KD

p(x)dx (24)

where εeff denotes the radius of the vicinity according to the definition of robustness,
e.g., for L2-perturbation, εeff equals to the radius ε. For general perturbations,

πdimX/2

Γ
(

dimX

2 + 1
)εdimX

eff =
∫

X

�v(x)dx (25)

Proof. K
∗
D emerges when a perturbation vicinity sweeps along the boundary of KD

and the isoperimetric inequality suggests that the volume of this marginal domain is
minimized when both vicinity and KD are dimX-spheres.

Thus, a lower bound of the volume ofK∗
D can be expressed as the volume difference

between two concentric spheres which is again greater than the product of their radius
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difference and the surface area of the inner sphere. Thus, the volume of K∗
D is lower

bounded by

εeff · vol(KD)
dim X−1
dim X · 2π

dimX/2

Γ
(

dimX

2

)
(

π− dimX/2Γ

(
dimX

2
+ 1

)) dim X−1
dim X

(26)

where Γ represents the gamma function, and for all positive real numbers Γ (z) =∫ ∞
0

tz−1e−t dt. We further simplify Equation (26) to εeff ·vol(KD)(dimX−1)/(dimX) ·γ,
where γ ≥ 2 for dimX > 1 and a lower bound of vol(K∗

D) is thus 2 · εeff ·
(
∫
KD

dx)(dimX−1)/(dimX). In very high dimensions, the (minimum) volume of K∗
D

is almost linearly related to the volume of KD. The irreducible error contributed by
the marginal domain to robustness can be expressed as

∫
K∗

D
p(x)dx. It is greater

than or equal to
∫
K∗

D
pmindx, where pmin = minx p(x). Thus, this irreducible error

≥ pmin · vol(K∗
D), contributes to the irreducible robustness error as the first term in

Equation (24). This corollary is particularly useful if we know the non-zero pmin of the
distribution. ��

In short, Throrem 3, Corollary 1, and Corollary 2 suggest how we can get lower
bounds of irreducible robustness error ζ�

D from the original distribution D, with lower
bound from Corollary 2 being the tightest among three. Given a distribution, ζ�

D has two
sources. One is the examples that have uncertain labels (which contribute to the error
directly), and the other is the examples that have neighbours whose labels are uncertain
(which contribute to the error indirectly). Additionally, when the Bayes error βD of a
distribution is non-zero, the irreducible error of robustness ζ�

D is also non-zero and is
greater than the Bayes error.

Theoretically, there is another way to tighten the bound provided by Throrem 3.
If we know the convolved distribution D′ obtained in Sect. 3.1, the ζ�

D can be calcu-
lated as p(x ∈ KD′), i.e., the probability (in convolved distribution) that input has a
deterministic label. Thus,

ζ�
D = E(x,y)∼D′

[
1 − �max

k
q(y = k|x)�

]
(27)

Since D′ = D ∗ v, as vicinity size grows, the Bayes error of D′ also grows, and thus
the irreducible robustness error ζ�

D grows.
The least upper bound of robustness on a given data distribution D can then be

written as 1 − ζ�
D, and 1 minus any lower bound of ζ�

D presented above serves as an
upper bound of robustness on a given data distribution D. These upper bounds are
directly derived from the data distribution D and the vicinity function v, independent
of any specific classifier.

Although we have been using both Formulae 2 and (20) throughout this subsection,
the existing studies only rely on Formula 2 [28] for practical evaluation of certified
robust accuracy. Intuitively, we sometimes do not know the true label of a neighbour x′

in an input x’s vicinity, and thus use the x’s label instead. Consequently, the correctness
of x′ prediction is neglected. Instead, only the consistency between predictions on x′

and x, as well as the correctness of prediction on x, are considered. This simplifica-
tion could result in a different certified robust accuracy for classifiers and exceed our
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upper bounds of robustness on a given data distribution (Throrem 3). To this end, we
also present the irreducible robustness error ζD in Equation (28) and the corresponding
upper bound for such robustness on a given data distribution 1 − ζD. We use Fig. 3c to
illustrate its effect.

ζD =
∫

K
D†

q(x)dx+
∫

X\K
D†

(
1 − max

k
q(y = k|x = x)

)
q(x)dx (28)

where D† is a distribution obtained from convolving the vicinity function v and the
“hardened” distribution of D′, i.e., each phard(y = kmax|x = x) = q(x) and for other
k �= kmax, phard(y = k|x = x) = 0. Then, pD† = phard ∗ v. Recall that q is the
conditional distribution of D′. In Equation (28), its first term suggests no input close to
the boundary can attain robustness. For inputs not close to the boundary, as indicated
by the second term, their optimal robustness on a given data distribution depends on
the correctness of the prediction. In terms of Fig. 3c, the first term corresponds to the
shaded area bounded by the vicinity, and the second term corresponds to all shaded
areas outside the curve. Although Equation (28) has tackled the label-missing chal-
lenges in practice, this theoretical evaluation of the irreducible error (in certified robust
accuracy) could still rely on the knowledge of distribution. Thus, distribution estimating
techniques are also needed when facing sampled data from an unknown distribution.

4 Experiment and Results

In this section, we empirically test our results discussed above by designing and answer-
ing three research questions: 1) does certified training always result in a classifier on a
distribution with a higher Bayes error; 2) is our computed upper bound of robustness
indeed higher than the robustness achieved by all the existing certified training classi-
fiers; and 3) does the upper bound of robustness change when the vicinity increases,
and if so how does it change?

The experiments are conducted with four data sets: two synthetic ones (i.e., Moons
and Chan [8]) and two standard benchmarks (i.e., FashionMNIST [59] and CIFAR-
10 [23]). Moons is used for binary classification with two-dimensional features, where
each class’s distribution is described analytically with specific likelihood equations,
and uses a three-layer Multi-Layer Perceptron (MLP) neural network for classification.
The Chan data set, also for binary classification with two-dimensional features, differs
in that it does not follow a standard PDF pattern, requiring kernel density estimation
(KDE) for non-parametric PDF estimation, and also uses the three-layer MLP. Fash-
ionMNIST, a collection of fashion item images, involves a 10-class classification task
with 784-dimensional inputs (28×28 pixel grayscale images). Each class has an equal
prior probability, and their conditional distributions are estimated non-parametrically
using KDE. CIFAR-10 uses images with a resolution of 32×32 pixels. Similar to Fash-
ionMNIST, it has a balanced class distribution and is estimated using KDE. We use a
seven-layer convolutional neural network (CNN-7) [45] as the classifier of both Fash-
ionMNIST and CIFAR-10. We adopt a direct approach [20] to compute the original
Bayes error of both FashionMNIST and CIFAR-10 [20].
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Fig. 4. The conditional distribution before and after convolution for (a, b) Moons and (c, d) Chan.
For both Moons and Chan, L∞ size is set at ε = 0.15. We also report the Bayes error to show
the change of inherent uncertainty in each distribution.

To train the classifiers, two approaches are adopted, i.e., empirical error mini-
mization (ERM [54]) for standard training, and the state-of-the-art (SOTA) small-box
method for certified training [35]. The performance of these classifiers is evaluated
using two metrics: vanilla accuracy and certified robust accuracy [35]. Note that, cer-
tified robust accuracy measures the proportion of predictions that can be certified as
robust in terms of satisfying Formula 2.

RQ1: Does the Bayes error indeed grow when certified training is applied? We would
like to check if the Bayes error indeed sees a growth when certified training is used. To
do that, we first need to obtain the altered distribution used in the context of certified
training. As explained in Sect. 3.1, certified training extends the label of an input to its
vicinity, and thus results in a convolutional effect across the entire given distribution.
Therefore, we can obtain a convolved distribution of each given distribution with each
vicinity. Then, we compare the original distribution and the convolved distribution of a
given data set, and the Bayes error of the distribution before and after convolution.

We use the Moons and Chan data sets, setting a L∞ vicinity at ε = 0.15. Then,
we get the convolved distribution of each data set (using FFT-based convolution, imple-
mented through scipy.signal.fftconvolve) and the results are demonstrated
in Fig. 4. Observing the comparison shown in Fig. 4(a, b) and (c, d), we can see that
the original distribution has gone through a “melting” process, i.e., the peaks of each
distribution becomes lower, and the spread increases. For example, in Fig. 4b, the upper
moon’s centre region (around x1 = 0, x2 = 0.6) has a higher concentration of inputs
from the lower moon than that in (a). This is because convolution with a rectangular
function, e.g., vicinity function in our case, is essentially smoothing the original condi-
tional distribution.

To quantify the increased overlap between the density function of each distribution
after convolution, we compute their Bayes error. For Moons, the original Bayes error
(Fig. 4a) is 8.54%, while the Bayes error after convolution is 9.24%. Similarly, for Chan,
Bayes error increases from 5.39% (c) to 9.66% (d). As expected, the Bayes errors do
grow, with the growth ranging from 8% to nearly 80%.
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Fig. 5. Upper bounds of robustness/accuracy and the state-of-the-art classifier’s performance.
The L∞ vicinity size for certified training /certified robust accuracy for each data set is ε =
0.15, 0.15, 0.1, 2/255 for Moons, Chan, FashionMNIST, and CIFAR-10.

We find that convolving with the same vicinity function results in very different
growth in the Bayes error. This is likely due to the shape of the original density func-
tion. For instance, each moon in the Moons distribution can be approximately seen
as a single-modal distribution, and the density function does not have sharp changes.
In contrast, the density function of each class’s conditional distribution in Chan has
sharper value changes at the central region (around x1 = 0, x2 = 0.5). This may sug-
gest that the Chan distribution exhibits a larger shape change to its original distribution
after convolution than Moons. Particularly, in Chan, we observe that the class with
the highest probability at the central region changes. Originally, class-0 examples have
a higher density in this region. However, after convolution, we can see from Fig. 4d
that this region is filled more with class-1 examples than class-0 examples. Essentially,
this change shows a significant prediction change in the Bayes classifier. This is likely
because convolution has a larger influence on the distributions with features with high
(2D) frequencies.

In summary, by comparing the Bayes error before and after distribution alteration,
we conclude that the Bayes error does increase when certified training is used, which
aligns with Throrem 2. Moreover, the distribution alteration has a larger impact on dis-
tributions with high-frequency features than on originally smooth distributions.

RQ2: Is our upper bound of robustness empirically effective? Next, we check whether
the computed upper bound of robustness is indeed higher than the existing robustness
evaluation in practice. To do that, we apply the closed-form Equation (28) numerically
to compute the irreducible robustness error ζD for each data set/distribution D. The
upper bound of certified robust accuracy is 1 − ζD. Then, we use ERM and certified
training to optimise the corresponding classifier of each data set. As such, we get two
trained classifiers for each data set. For each classifier, we compute its performance
metrics and compare the classifiers’ performance against our upper bounds. We remark
that the accuracy and certified robust accuracy may fluctuate when the sample size is
not sufficiently large, as seen in Fig. 6. For example, if we are only given five samples,
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there is a high chance we get a very high or very low accuracy. For this reason, we
gradually increase the sample size of test sets and observe its converged value.

Fig. 6. As sample size grows, the accuracy converges to a value below 1 - Bayes-error. Similarly,
the certified robust accuracy converges to a value below our upper bound of robustness. The
figures are computed based on the Moons data set.

The results are shown in Fig. 5. For each data set, the computed value ζD is detailed
in the caption. The certified robust accuracy is represented by bars in the graph. For
example, the MLP for the Moons dataset (seen in Fig. 5a) is trained twice. Initially,
it is trained with ERM, achieving a vanilla accuracy of 91.23%, which is nearly the
optimal vanilla accuracy of 91.46% (calculated as 1−8.54%). Here, the certified robust
accuracy is about 80% with an L∞ vicinity of ε = 0.15. When trained a second time
with certified training, the MLP’s vanilla accuracy slightly decreases to 89.66%, but its
certified robust accuracy improves by 5.1%, at 84.24%. The improved certified robust
accuracy is below the theoretical upper bound (marked by a dashed line in Fig. 5a, below
the annotation ζD), which is calculated to be 85.72% (1−14.28%). Furthermore, the gap
between the certified robust accuracy of this classifier and its upper limit is relatively
small, approximately 1.5% in absolute percentage points.

Based on the result, we have multiple observations. First, we find that 1 − ζD con-
sistently exceeds the certified robust accuracy achieved by state-of-the-art method [35]
across various datasets in Fig. 5. This gap, ranging from 1.5% to 7.1%, indicates the
potential for further improving classifier robustness within these theoretical limits. For
example, the Moons dataset has a small gap, suggesting limited room for improvement,
while larger gaps in datasets like the Chan, FashionMNIST, and CIFAR-10 indicate
more significant opportunities for increasing the robustness.

Second, we note that ζD consistently surpasses the Bayes error βD by a significant
margin for all D. For example, in the Moons dataset, ζD is 14.2%, which is 66% higher
than its βD of 8.54%. This implies that robustness against perturbations is challenging,
even when the inherent uncertainty of the data is considered. In datasets like Fashion-
MNIST and CIFAR-10, despite their low Bayes error of 3.1%-5.2%, their ζD are at
least six times higher (25.0%-32.7%). This indicates that factors other than inherent
data uncertainty are affecting robustness. These factors are likely the newly generated
uncertainty from certified training. Moreover, some gaps between ζD and βD are partic-
ularly large (e.g., Fig. 5b). Such instances highlight the robustness challenges presented
by each dataset can vary. Recall Fig. 4d, the distribution of Chan can be particularly
sensitive to convolution with vicinity.
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Third, recall that the upper bound ζD and certified robust accuracy are based on For-
mula 2 and Equation (28), and they do not consider the correctness of the label (Defini-
tion 2). If we take into consideration the correctness of the examples in the vicinity, we
can compute a tighter bound ζ�

D based on Equation (20), and certified robust accuracy
(from Def. 2) is calculated by sampling a large finite number of neighbours of the input
and evaluating their correctness. As the test sample size grows, more examples appear
in the vicinity of some training samples, and the likelihood of correctly predicting all
of them decreases. This result is also illustrated in the right-most columns in Fig. 5.
As observed, certified robust accuracy (from Def. 2) is always lower than 1 − ζ�

D. For
instance, the certified robust accuracy of Moons (and Chan) decreases from 84.24%
(and 32.35%) respectively to less than 10−7, and that of FashionMNIST (and CIFAR-
10) decreases from 73.78% (and 60.12%) to 41.66% (and 54.26%) respectively. Such
large reductions indicate a potential need for rethinking the robustness requirement,
which may lead to different ways of defining and achieving robustness.

Fig. 7. As epsilon increases, we plot the robustness upper bound change as well as classifiers’
certified robust accuracy change in the Moons and Chan dataset.

RQ3: How does the upper bound of robustness vary when the vicinity size grows? In
the following, we investigate what can influence the value of irreducible robustness
error/upper bound of certified robust accuracy. We already know that when the vicin-
ity grows, it empirically becomes more difficult for a classifier to be robust [35]. The
question is then: how about the irreducible robustness error? Is it dependent on the size
of the vicinity? If so, how are they correlated? To answer this question, we extend our
experiment to cover various vicinity shapes (L∞ and L2), and different vicinity sizes
(from 0 to 2).
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The results are shown in Fig. 7. Each sub-figure in Fig. 7 illustrates the impact of
increasing the vicinity size (ε) on the upper bound (1 − ζD). For instance, in Fig. 7a,
we present the change of 1 − ζD as well as the classifier’s certified robust accuracy
after certified training. We observe that for all datasets (Moons, Chan, FashionMNIST,
CIFAR-10) and norms (L∞ and L2), as the vicinity size grows, both the robustness
upper bound and certified robust accuracy decrease monotonically. This indicates an
inverse relationship between the upper bound and vicinity size. This finding aligns
with our intuition that when vicinity size grows it becomes more difficult for a clas-
sifier to be robust. Notably, the CIFAR-10/Chan dataset shows a sharper decline in the
upper bound than Moons/FashionMNIST, suggesting that some data distributions may
inherently withstand perturbation better, which is consistent with our previous findings.
Implementation of our experiment is available on our GitHub page1.

5 Related Works

This work is closely related to research on Bayes errors and certified training. Com-
puting the Bayes error of a given data distribution has been studied for over half a
century [12]. Several works have derived upper and lower bounds of the Bayes error
and proposed ways to estimate those bounds. Various f -divergences, such as the Bhat-
tacharyya distance [13] or the Henze-Penrose divergence [7,43], have been studied.
Other approaches include directly estimating the Bayes error with f -divergence repre-
sentation instead of using a bound [36], and computing the Bayes error of generative
models learned using normalizing flows [22,48]. More recently, a method has been
proposed to evaluate Bayes error estimators on real-world datasets [41], for which we
usually do not know the true Bayes error. While these existing studies concentrate on
vanilla accuracy, our approach extends the study into the realm of robustness. Besides,
some studies may argue that the real-world datasets are well-separated so therefore the
Bayes error predicted by the theorems may not be as severe [62]. However, due to
the information loss (photo-taking or compression), Bayes errors inevitably exist. For
instance, Over 1/3 of CIFAR-10 inputs have been re-annotated by human annotators to
have non-fixed labels (CIFAR-10H) [39], indicating non-zero uncertainty. Hence, cal-
culating irreducible error, regardless of severity, holds significance in understanding the
inherent limit of certified robustness.

Many certified training techniques have been developed to increase certified robust
accuracy, including branch-and-bound [4,16,56], linear relaxation [2,32,46], Lipschitz
or curvature verification [29,50], and others [27]. In addition, a number of training
techniques have been proposed specifically for improving certified robustness [28],
which include warm-up training [45], small boxes [35], and so on. Certified robust
accuracy has seen only limited growth over the past decade, prompting research efforts
to understand why. Besides the Bayes error perspective, there exists an explanation for
this problem from the standpoint of the abstraction domain [33]. However, note that
these studies often only focus on the concept of interval arithmetic. Additionally, fac-
tors such as the trade-off between certified robustness and vanilla accuracy have also
been explored [37,51].

1 https://github.com/cat-claws/irreducible-robustness-error.

https://github.com/cat-claws/irreducible-robustness-error


Certified Robust Accuracy of Neural Networks Are Bounded Due to Bayes Errors 371

6 Conclusion

In this work, we study the limit of classification robustness against perturbations. We
are motivated by the observation that the robustness of existing certified classifiers tends
to be suboptimal, and hypothesise that there is an irreducible robustness error linked to
the classification distribution itself. We formally prove that this irreducible robustness
error does exist and is greater than the Bayes error. Further, we present how to calculate
the upper bound of robustness based on the data distribution and the vicinity within
which we demand robustness. Besides, this work also provides empirical experiments
that compute our upper bound on common machine learning data sets. Results show
that our robustness upper bound is empirically effective. We conclude that the limit of
classification robustness can be well elaborated from the Bayes error perspective and
we hope that the upper bound we derive can enlighten future developments on certified
training and other robust-classifier training.
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Abstract. Proving local robustness is crucial to increase the reliability
of neural networks. While many verifiers prove robustness in L∞ ε-balls,
very little work deals with robustness verification in L0 ε-balls, capturing
robustness to few pixel attacks. This verification introduces a combina-
torial challenge, because the space of pixels to perturb is discrete and of
exponential size. A previous work relies on covering designs to identify
sets for defining L∞ neighborhoods, which if proven robust imply that
the L0 ε-ball is robust. However, the number of neighborhoods to verify
remains very high, leading to a high analysis time. We propose cover-
ing verification designs, a combinatorial design that tailors effective but
analysis-incompatible coverings to L0 robustness verification. The chal-
lenge is that computing a covering verification design introduces a high
time and memory overhead, which is intensified in our setting, where
multiple candidate coverings are required to identify how to reduce the
overall analysis time. We introduce CoVerD, an L0 robustness verifier that
selects between different candidate coverings without constructing them,
but by predicting their block size distribution. This prediction relies on
a theorem providing closed-form expressions for the mean and variance
of this distribution. CoVerD constructs the chosen covering verification
design on-the-fly, while keeping the memory consumption minimal and
enabling to parallelize the analysis. The experimental results show that
CoVerD reduces the verification time on average by up to 5.1x compared
to prior work and that it scales to larger L0 ε-balls.

1 Introduction

Neural networks are very successful in various applications, most notably in
image recognition tasks [14]. However, neural networks are also vulnerable
to adversarial example attacks [17,33]. In an adversarial example attack, an
attacker slightly perturbs the input to mislead the network. Many attack mod-
els and different kinds of perturbations have been considered for neural networks
implementing image classifiers [15,26,33]. The most commonly studied pertur-
bations are Lp perturbations, where p is 0 [9,40], 1 [10], 2 [4,33] or ∞ [4,15]. For
Lp perturbations, the attacker is given a small budget ε and the goal is to find
a perturbed input in the Lp ε-ball that causes misclassification.
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14682, pp. 377–400, 2024.
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In response to adversarial attacks, many verifiers have been proposed to rea-
son about the robustness of neural networks in a given neighborhood of inputs.
Most deterministic robustness verifiers analyze robustness in L∞ ε-balls [2,13,
21,25,32,34], while some deterministic verifiers analyze L2 ε-balls [19,22] or L1 ε-
balls [38,41]. Probabilistic verifiers, often leveraging randomized smoothing [6],
have been proposed for analyzing Lp ε-balls for p ∈ {0, 1, 2,∞} [11,23,28,39].
Other verifiers analyze neighborhoods defined by semantic or geometric features
(e.g., brightness or rotation) [3,20,24]. An existing gap is deterministically veri-
fying robustness in L0 ε-balls, for a small ε, also known as robustness to few pixel
attacks. In L0 ε-balls, ε is the number of pixels that can be perturbed. Since ε is
an integer (as opposed to a real number), we denote it as t. L0 t-balls consist of
discrete perturbations, unlike many other attack models whose perturbations are
continuous. Thus, their analysis is a challenging combinatorial problem. The-
oretically, robustness verification of an L0 t-ball can be reduced into a set of
robustness verification tasks over L∞ neighborhoods, each allows a specific set
of t pixels to be perturbed. However, this approach is infeasible in practice for
t > 2, since the number of the L∞ neighborhoods that need to be proven robust
is

(
v
t

)
, where v is the number of pixels. To illustrate, for MNIST images, where

v = 784, the number of neighborhoods is 1.6 · 1010 for t = 4, 2.4 · 1012 for t = 5,
and 3.2 · 1014 for t = 6. That is, every minimal increase of t (by one) increases
the neighborhood size by two orders of magnitude.

A recent work proposes a deterministic L0 robustness verifier for few pixel
attacks, called Calzone [30]. Calzone builds on two main observations. First,
if a network is robust to perturbations of a specific set of k pixels, then it is
also robust to perturbations of any subsumed set of these pixels. Second, often
L∞ robustness verifiers can analyze robustness to arbitrary perturbations of k
specific pixels, for values of k that are significantly larger than t. They thus
reduce the problem of verifying robustness in an L0 t-ball to proving robustness
in a set of L∞ neighborhoods defined by a set of k-sized pixel sets, subsuming all
possible sets of t pixels. To compute the k-sized pixel sets, they rely on covering
designs [16,35]. Given parameters (v, k, t), a covering is a set of k-sized sets
that cover all subsets of size t of a set [v] = {1, . . . , v} (e.g., the pixel set).
Covering designs is a field in combinatorics providing construction techniques
to compute coverings. The challenge is to compute a covering of minimal size.
While many covering constructions have been proposed, computing an optimal
covering is an open combinatorial problem for most values of v, k and t. Further,
most best-known coverings for t > 3 are far from the best general lower bound,
known as the Schönheim bound [29]. This severely impacts the analysis time
of Calzone. In practice, Calzone often does not complete within the five hour
timeout when analyzing L0 5-balls. To scale, it is crucial to lower the number
of analyzed sets. While there are effective covering constructions renowned for
the small coverings they compute, they are limited to specific values of v and k,
which are incompatible for the analysis of L0 robustness. Since Calzone treats
covering constructions as black-box, it is limited to rely on analysis-compatible
coverings and cannot benefit from these effective constructions.



Boosting Few-Pixel Robustness Verification via Covering Verification Designs 379

To boost the robustness verification of few pixel attacks, we propose a new
covering type, called a covering verification design (CVD), tailoring covering
designs for L0 robustness verification. CVD relies on a highly effective construc-
tion to obtain an analysis-incompatible covering and partially induces it to an
analysis-compatible covering, where sets can have different sizes. Although the
exact sets and their sizes depend on a random choice, we prove that the mean
and variance of the set sizes are independent of this choice and have closed-
form expressions. Partially inducing this effective construction has been pro-
posed before [27], however it has been proposed for another combinatorial design,
requiring a bound on the maximal set size in the covering, unlike CVD. We demon-
strate that the sizes of CVDs are lower by 8% for t = 4 and by 15% for t = 5 than
the respective Schönheim lower bound. This improvement, enabled by consider-
ing a new type of coverings, is remarkable for scaling L0 robustness analysis. To
date, for analysis-compatible values of v and k and for t ≥ 3, it is impossible to
obtain an optimal covering design, and even if we obtained it, its size is at least
the Schönheim bound. In particular, Calzone’s considered coverings are larger
by 4x than the Schönheim lower bound for t = 4 and by 8.4x for t = 5. While
promising, CVDs raise a practical challenge: their construction as well as their
final size introduce a high memory overhead. Further, to minimize the analysis
time, the verifier chooses between multiple coverings. However, the total mem-
ory overhead makes it infeasible to store these coverings in a covering database
without limiting their size (like Calzone does).

We introduce CoVerD, an L0 robustness verifier, boosting Calzone’s perfor-
mance by leveraging CVDs. CoVerD has two main components, planning and anal-
ysis. The planning component predicts the CVD that will allow it to minimize
the overall analysis time. To reduce the memory overhead, it predicts the best
CVD out of many candidates, without constructing the candidates. This prediction
relies on estimating the set size distribution of a candidate covering, using our
expressions for the mean and variance. The analysis component constructs the
chosen CVD. The challenge is that the original covering that is being induced may
be too large to fit the memory. To cope, CoVerD induces the covering while con-
structing the original covering. Further, it constructs on-the-fly a partitioning
of the CVD so that the analysis can be parallelized over multiple GPUs. Another
advantage of the on-the-fly construction is that CoVerD does not need to prepare
coverings for every image dimension in advance. This both saves memory con-
sumption and makes CoVerD suitable for any image classifier, without requiring
to precompute coverings for new image dimensions, as Calzone requires.

We evaluate CoVerD on convolutional and fully-connected networks, trained
for MNIST, Fashion-MNIST, and CIFAR-10. CoVerD is faster than Calzone in
verifying robust t-balls on average by 2.8x for t = 4 and by 5.1x for t = 5.
Further, CoVerD scales to more challenging t-balls than Calzone. In particular,
it verifies some 6-balls, which Calzone does not consider at all, within 42 minutes.
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2 Background

In this section, we define the problem of verifying robustness of an image classifier
in an L0 t-ball and provide background on Calzone [30].

L0 Robustness Verification. We address the problem of determining the local
robustness of an image classifier in an L0 t-ball of an image x. An image classifier
N takes as input an image x consisting of v pixels, each ranges over [0, 1] (all
definitions extend to colored images, but omitted for simplicity’s sake). It returns
a vector consisting of a score for every possible class. The classification the
classifier N assigns to an input image x is the class with the maximal score:
cx = argmax(N(x)). We focus on classifiers implemented by neural networks.
Specifically, our focus is on fully-connected and convolutional networks, since
many L∞ robustness verifiers can analyze them [2,13,21,25,32,34]. However,
like Calzone, CoVerD is not coupled to the underlying implementation of the
classifier and can reason about any classifier for which there are L∞ robustness
verifiers that it can rely on. The problem we study is determining whether a
classifier N is locally robust in the L0 t-ball of an input x, for t ≥ 2. That is,
whether every input whose L0 distance from x is at most t is classified by N as
x is classified. Formally, the t-ball of x is Bt(x) = {x′ | ||x′ − x||0 ≤ t} and N
is locally robust in Bt(x) if ∀x′ ∈ Bt(x). argmax(N(x′)) = argmax(N(x)). We
note that the L0 distance of two images is the number of pixels that the images
differ, that is ||x′ − x||0 = |{i ∈ [v] | xi �= x′

i}| (where [v] = {1, . . . , v}). In other
words, an L0 perturbation to an image x can arbitrarily perturb up to t pixels
in x.

Calzone. Calzone, depicted in Fig. 1, is an L0 robustness verifier. It verifies
by determining the robustness of a classifier N in all neighborhoods in which a
specific set of pixels S is arbitrarily perturbed, for every S ⊆ [v] of size t. Namely,
to prove robustness, it has to determine for every such S whether N classifies the
same all inputs in the neighborhood consisting of all images that are identical to
x in all pixels, but the pixels in S. We denote this neighborhood by IS(x) = {x′ ∈
[0, 1]v | ∀i /∈ S. x′

i = xi}. Such neighborhoods can be specified as a sequence of
intervals, one for every pixel, where the ith interval is [0, 1] if i ∈ S (i.e., it can
be perturbed) or [xi, xi] if i /∈ S (i.e., it cannot be perturbed). Most existing L∞
robustness verifiers can determine the robustness of such interval neighborhoods.
However, verifying

(
v
t

)
interval neighborhoods, one for every selection of t pixels

to perturb, is practically infeasible for t > 2. Instead, Calzone builds on the
following observation: if N is locally robust in a neighborhood IS′(x) for S′ ⊆ [v]
of size k > t, then N is also robust in every IS(x), for S ⊆ S′ of size t. This
observation allows Calzone to leverage covering designs to reduce the number
of neighborhoods analyzed by an L∞ verifier. Given three numbers (v, k, t), for
t ≤ k ≤ v, a covering C(v, k, t) is a set of blocks, where (1) each block is subset
of size k of [v] and (2) the blocks cover all subsets of [v] of size t: for every
S ⊆ [v] of size t, there is a block B ∈ C(v, k, t) such that S ⊆ B. Coverings
are evaluated by their size, |C(v, k, t)|, where the smaller the better. We next
describe the components of Calzone: analysis, planning and covering database.
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Fig. 1. The Calzone L0 robustness verifier.

Calzone’s Analysis. Calzone begins the analysis by obtaining a covering
C(v, k1, t) from its covering database, where k1 is determined by the planning
component (described shortly). It pushes all blocks in the covering into a stack.
It then iteratively pops a block S from the stack and verifies the robustness of N
in IS(x) by running GPUPoly [25]. GPUPoly is a sound L∞ robustness verifier
which is highly scalable because it performs the analysis on a GPU. However, it
relies on a linear relaxation and thus may fail proving robustness due to over-
approximation errors. If it determines that IS(x) is robust, Calzone continues
to the next block. Otherwise, Calzone performs an exact analysis or refines the
block. If |S| = t, Calzone invokes a sound and complete mixed-integer linear
programming (MILP) verifier [34]. If it determines that IS(x) is not robust,
Calzone returns non-robust, otherwise Calzone continues to the next block. If
|S| is greater than t, Calzone refines S by pushing to the stack all blocks in a
covering for S and t. The blocks’ size is ki+1, which is the block size follow-
ing the current block size ki = |S|, as determined by the planning component.
The covering is obtained by retrieving from the covering database the covering
C(|S|, ki+1, t) and renaming the numbers in the blocks to range over the num-
bers in S (instead of [|S|]), denoted as CS(|S|, ki+1, t). If Calzone observes an
empty stack, it returns robust. This analysis is proven sound and complete. To
scale, Calzone parallelizes the analysis over multiple GPUs (for GPUPoly) and
CPUs (for the MILP verifier). Technically, the first covering is split between the
GPUs, each independently analyzes its assigned blocks and refines if needed.

Calzone’s Planning. The planning determines the block sizes of the first covering
and of the refinements’ coverings. These are given as a K strategy, a decreasing
series k1 > . . . > km, where k1 ≤ MAX K = 99 and km = t. Calzone predicts the
K strategy that minimizes the overall analysis time using dynamic programming,
defined over the analysis time of the first covering, the average fraction of blocks
that will be refined, and the analysis time of the refined blocks. This computation
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requires GPUPoly’s success rate and average analysis time for neighborhoods
IS(x), for all |S| ≤ MAX K. These are estimated by sampling nsamples = 400 sets
S for every k ≤ MAX K and submitting their neighborhood IS(x) to GPUPoly.

Calzone’s Covering Database. As described, the analysis obtains coverings from
a database. This database has been populated by obtaining well-optimized cov-
erings from online resources and extending them for large values of v and k
using general covering constructions. Because of these general constructions, the
database’s coverings tend to be far from the Schönheim bound [29], the best-
known general lower bound, especially for large values of v (the image dimen-
sion). This inefficiency results in longer analysis, since more blocks are analyzed.

3 Our Approach: Covering Verification Designs

To scale Calzone’s analysis, it is crucial to reduce the number of blocks that
are analyzed by GPUPoly or the MILP verifier. A dominant contributor to this
number is the size of the first covering, for two reasons. First, the first covering is
over a large v (the image dimension), thus its size is significantly larger than the
sizes of coverings added upon refinement, which are over significantly smaller v
(typically v ≤ 80 and at most v ≤ MAX K). Second, the first covering has an
accumulative effect on the number of refinements, and consequently it dominates
the analysis time. Reducing this size is theoretically possible by relying on finite
geometry covering constructions [1,16,27], which are renowned for computing
very small coverings. However, finite geometry coverings are limited to (v, k, t)
triples in which v and k are defined by related mathematical expressions over t.
In Calzone’s analysis, the first covering has to be defined over a given v (the
image dimension) and t (the number of perturbed pixels). Thus, for some values
of v and t, there is no finite geometry covering. For the other values, there are
very few values for k, leading to long analysis either because they are large and
have a low success rate, triggering many refinements, or small and have very large
coverings. We propose to tailor induced coverings for L0 robustness analysis in
order to leverage finite geometry coverings. To this end, we introduce a new type
of a covering design, called a covering verification design (CVD). We next provide
background on finite geometry coverings and induced coverings. We then define
partially-induced coverings and our new covering type. We discuss its properties,
its effectiveness, and the practical challenges in integrating it to L0 verification.

Fig. 2. The Fano Plane.

Finite Geometry Coverings. Finite geometry covering
constructions are widely known for obtaining small
(sometimes optimal) coverings [1,16,27]. Popular finite
geometry constructions rely on projective geometry
(PG) or affine geometry (AG). We focus on PG, but
our approach extends to AG. A PG construction views
the problem of constructing a covering for a given (v, k,
t) from a finite geometry point of view, where v is the
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number of points in the geometry. It constructs coverings by computing
flats (linear subspaces) of dimension t − 1, each containing k points. Since
every t points from [v] are contained in at least one flat [27], the flats
provide a covering. Figure 2 shows the Fano plane, a well-known exam-
ple. In this example, there are v = 7 points, the flats are of dimen-
sion t − 1 = 1 (the lines and the circle), each containing k = 3 points.
The set of flats forms a covering, where each flat is a block: C(7, 3, 2) =
{{1, 2, 3}, {1, 4, 6}, {1, 5, 7}, {2, 4, 7}, {2, 5, 6}, {3, 4, 5}, {3, 6, 7}}. PG coverings
exist for triples where v = qm+1−1

q−1 and k = qt−1
q−1 , for a prime power q and

m ≥ t ≥ 2 (it also exists for m = t−1, but then v = k, which is unhelpful to our
analysis). Because PG is restricted to such triples, Calzone cannot effectively
leverage it for the first covering, whose v and t are given. This is because for
common image dimensions (e.g., v = 784 for MNIST and v = 1024 for CIFAR-
10), there are no suitable q and m. Even if there are suitable q and m, there are
very few possible k values, which are unlikely to include or be close to an optimal
value of k. Thus, either they are smaller than an optimal k, leading to larger
coverings and a longer analysis time, or that they are larger than an optimal k
and have a lower success rate, leading to many refinements, resulting, again, in
a longer analysis time. For example, for v = 364 and t = 5, the only suitable
values are q = 3 and m = 5 (i.e., 364 = (35+1 − 1)/(3 − 1)), namely there is only
one triple for these values of v and t. In this triple, k = (35 − 1)/(3 − 1) = 121.
Since k ≈ v

3 , neighborhoods IS(x) for which |S| = 121 are not likely to be robust,
thus such k is likely to have a low success rate. Induced coverings [16] enable to
leverage finite geometry coverings for other (v, k, t) triples, as next explained.

Induced Coverings. Given v ≤ v′ and k ≤ k′, a covering C(v′, k′, t) can be
induced to form a covering C(v, k, t) [16]. The induced covering is obtained in
three steps. First, we select a subset of numbers of size v, denoted L ⊆ [v′], and
remove every l ∈ [v′] \ L from every block in C(v′, k′, t′). This results in a set
of blocks of different sizes that covers all subsets of L of size t [27, Lemma 1].
This follows since every subset S ⊆ L of size t is a subset of [v′] and thus there
is B ∈ C(v′, k′, t) such that S ⊆ B. The first step removes from B only numbers
from [v′] \ L and thus S is contained in the respective block to B after this
step. The next two steps fix blocks whose size is not k. The second step extends
every block whose size is smaller than k with numbers from L. The third step
refines every block whose size is larger than k to multiple blocks of size k that
cover all of its subsets of size t. This step significantly increases the number of
blocks, unless the number of blocks larger than k is negligible. We note that these
steps provide a covering over the numbers in L (i.e., CL(|L|, k, t)). A covering
for (|L|, k, t) can be obtained by renaming the numbers to range over [|L|].

Partially-induced Covering. Our new covering design is an instance of a partially-
induced covering. A partially-induced covering is the set of blocks obtained by
the first step, where the blocks cover all subsets of L of size t and are of differ-
ent sizes. For example, for the Fano plane and L1 = {4, 5, 6, 7}, the partially-
induced covering is: C1 = {{}, {4, 6}, {5, 7}, {4, 7}, {5, 6}, {4, 5}, {6, 7}}, while
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for L2 = {1, 2, 3, 4}, it is: C2 = {{1, 2, 3}, {1, 4}, {1}, {2, 4}, {2}, {3, 4}, {3}}.
Partially-induced coverings have two benefits in our setting: (1) by not extending
blocks whose size is smaller than k, we increase the likelihood that GPUPoly
will prove their robustness, and (2) by not refining blocks whose size is larger
than k, we (a) preserve the number of blocks as in the original covering, (b) pro-
vide GPUPoly an opportunity to verify these blocks, and (c) rely on the opti-
mal refinement sizes (computed by the dynamic programming) for blocks that
GPUPoly fails proving robustness. Our covering design partially induces PG
coverings, to obtain additional benefits for L0 robustness verification.

Covering Verification Designs. Given the number of pixels v and the number
of pixels to perturb t, a covering verification design (CVD) is the set of blocks
obtained by partially inducing a PG covering C(v′, k′, t), where v ≤ v′, using
a random set of numbers L ⊆ [v′] of size v. The numbers in the blocks can
later be renamed to range over [v]. For example, since the Fano plane is a PG
covering, the partially-induced coverings C1 and C2 are CVDs. A CVD has two
important properties. First, it is a partially-induced covering and thus has all
the aforementioned advantages in our setting. In particular, its size is equal to
the size of the original covering, which is highly beneficial since CVD induces from
PG coverings, known for their small size. Second, although different sets L lead
to different block size distributions, we prove that the mean block size and its
variance are the same regardless of the choice of L. Further, we identify closed-
form expressions for them and show that the variance is bounded by the mean.
For example, although the block size distributions of C1 and C2 are different,
they have the same average block size ( 127 ) and the same variance ( 2449 ). This
property has practical advantages: (1) it allows us to estimate the block size
distribution (Sect. 4.2), and (2) since the variance is bounded by the mean, the
smaller the mean block size, the less likely that there are very large blocks, which
are less likely to be proven robust by GPUPoly. To prove this property, we rely
on the fact that PG coverings (and AG coverings) are also a combinatorial design
called a balanced incomplete block design (BIBD) [7, Part VII, Proposition 2.36].
We next describe BIBD and then state our theorem on its mean and variance.

BIBD. Given positive integers (v, b, r, k, λ), a BIBD is a set of b blocks, each is
a subset of [v] of size k, such that every i ∈ [v] appears in r blocks and every
i �= j ∈ [v] appear together in λ blocks. For example, the Fano plane is a BIBD
with v = 7, b = 7, r = 3, k = 3, λ = 1. This is because it has b = 7 blocks, each
block is a subset of [v] = {1, . . . , 7} of size k = 3, every number in {1, . . . , 7}
appears in r = 3 blocks and every two different numbers appear together in
λ = 1 block. Given a BIBD with parameters (v′, b, r, k′, λ), we define a partially-
induced BIBD for v ≤ v′ by selecting a subset of numbers L ⊆ [v′] of size v
and removing every l ∈ [v′] \ L from every block in the BIBD (empty blocks or
repetitive blocks are kept). While the distribution of the induced blocks’ sizes
depends on L, the mean block size and its variance depend only on v, v′, k′.
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Theorem 1. Given a (v′, b, r, k′, λ)-BIBD, for v′ > 1, and 1 ≤ v ≤ v′, for every
L ⊆ [v′] of size v, the mean μv′,k′,v and variance σ2

v′,k′,v of the block sizes in the
partially-induced BIBD satisfy:

1. μv′,k′,v = vk′
v′

2. σ2
v′,k′,v = μv′,k′,v

(
1 + (v−1)(k′−1)

v′−1 − μv′,k′,v

)
= vk′

v′

(
1 + (v−1)(k′−1)

v′−1 − vk′
v′

)

3. σ2
v′,k′,v ≤ μv′,k′,v

Proof. 1. We prove μv′,k′,v = vk′
v′ .

Since |L| = v and r is the number of occurrences of every number in all blocks,
the sum of the sizes of the induced blocks is vr. By counting arguments, for a
BIBD it holds that rv′ = bk′ [7, Part II, Proposition 1.2], and so r = bk′

v′ . That
is, the sum of the induced blocks’ sizes is vbk′

v′ . The mean is obtained by dividing
by the number of blocks b: μv′,k′,v = vk′

v′ .

2. We prove σ2
v′,k′,v = μv′,k′,v

(
1 + (v−1)(k′−1)

v′−1 − μv′,k′,v

)
.

Let Z ∈ N0
b be a vector such that, for every n ∈ [b], Zn is the size of block n in

the partially-induced BIBD. It can be written as Z = AT xL, where A represents
the BIBD and xL the set L, used for partially inducing the BIBD. The matrix A
is a v′ × b incidence matrix, where A[m,n] = 1 if m is in block n and A[m,n] = 0
otherwise. The vector xL is a v′-dimensional vector, where xL[m] = 1 if m ∈ L and
xL[m] = 0 otherwise. Thus, the average of the squares of the block sizes, denoted
E[Z2], is E[Z2] = 1

b

(∑b
n=1(A

T xL)2n
)

= 1
b ‖AT xL‖22 (1).

By the variance definition, σ2
v′,k′,v = E[Z2] − μ2

v′,k′,v. Thus, we need to show:

E[Z2] = μv′,k′,v(1+ (v−1)(k′−1)
v′−1 ) = vk′

v′ (1+ (v−1)(k′−1)
v′−1 ) = k′

v′ v+ k′(k′−1)
v′(v′−1)v(v−1). By

counting arguments [7], we have k′
v′ = r

b and k′(k′−1)
v′(v′−1) = λ

b . Namely, it suffices to
show: E[Z2] = 1

b (rv + λv(v − 1)). By (1), we can show ‖AT xL‖22 = rv+λv(v−1).
We prove by induction on v = |L| that ‖AT xL‖22 = rv + λv(v − 1):

Base For v = 1, we show ‖AT xL‖22 = r · 1 + λ · 1 · 0: Since v = |L| = 1, by
definition of a BIBD, the vector of the induced blocks’ sizes Z has r ones and
the rest are zeros. Thus, ‖Z‖22 = r. Since Z = AT xL, the claim follows.

Induction hypothesis. Assume that the claim holds for every 1, . . . , v.

Step Let L ⊆ [v′] such that |L| = v +1. Pick some i ∈ L and define L′ = L \ {i}
of size v. We get xL = xL′ + ei, where ei is the ith standard unit vector. Thus:

‖AT xL‖22 = ‖AT (xL′ + ei)‖22 = ‖AT xL′‖22 + ‖AT ei‖22 + 2
〈
AT xL′ , AT ei

〉

– By the induction hypothesis, ‖AT xL′‖22 = rv + λv(v − 1).
– Since ei can be viewed as xL′′ for some L′′ of size 1, we get ‖AT ei‖22 = r.
– We show

〈
AT xL′ , AT ei

〉
= xT

L′
(
AAT

)
ei = λv: Since A is an incidence matrix

of a BIBD, AAT is the matrix with r on the diagonal and λ elsewhere [7, Part
II, Theorem 1.8]. Therefore,

(
AAT

)
ei is a vector whose entries are λ except

for the ith entry which is r. The vector xL′ has v ones and 0 on the ith entry
(since i /∈ L′). Thus, their dot product is xT

L′
(
AAT

)
ei = λv.
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Fig. 3. The ratio of CVD sizes and their respective Schönheim bound vs. the ratio
of Calzone’s covering sizes and their Schönheim bound. The black line is ratio 1, i.e.,
coverings whose sizes are equal to the respective Schönheim bound. (Color figure online)

Putting it all together: ‖AT xL‖22 = rv+λv(v−1)+r+2λv = r(v+1)+λ(v+1)v.

3. We show σ2
v′,k′,v ≤ μv′,k′,v by showing that 1+ (v−1)(k′−1)

v′−1 −μv′,k′,v ≤ 1. Since

μv′,k′,v = vk′
v′ , we show (v−1)(k′−1)

v′−1 ≤ vk′
v′ . We have 1 ≤ v ≤ v′ and 1 < v′,

thus we get v−1
v′−1 ≤ v

v′ . Since k′ − 1 ≥ 0, we get (v−1)(k′−1)
v′−1 ≤ v(k′−1)

v′ ≤ vk′
v′ .

��

Size of Covering Verification Designs. CVDs enable us to obtain coverings whose
sizes are small, often close or better than their respective Schönheim bound.
Given a CVD whose mean block size is a real number k, we define its respective
Schönheim bound as the bound for the covering design of (v, k�, t). Note that
this bound is not a lower bound on the size of the CVD, since the CVD can have
blocks larger than k� and thereby be smaller than covering designs for (v, k�, t).
Still, comparing to this bound enables understanding how much smaller our
coverings are compared to the coverings considered by Calzone, whose sizes are
lower bounded by the Schönheim bound. Figure 3 shows the ratio of the sizes
of our CVDs and their respective Schönheim bound and the ratio of the sizes of
Calzone’s covering designs and their Schönheim bound. The comparison is for
v = 784 and t = 4 (Fig. 3a) and t = 5 (Fig. 3b). We compute CVDs from different
PG coverings and the figure shows CVDs whose mean block size k is at least 10.
For Calzone, we show all coverings in its database. The plots demonstrate that
typically the size of a CVD is smaller or equal to the Schönheim bound, and on
average, the ratio is 0.92 for t = 4 and 0.85 for t = 5. In contrast, Calzone’s
coverings are significantly larger than the Schönheim bound, on average the
ratio is 4.04 for t = 4 and 8.44 for t = 5. The plots also show that Calzone has
many more coverings than the number of CVDs. This is because Calzone relies
on general techniques to compute coverings and thus it can generate a covering
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Fig. 4. CoVerD: An L0 robustness verifier.

for every k ≤ MAX K = 99 (except that it is limited to coverings with at most
107 blocks). In contrast, our CVDs induce PG coverings and are thus limited to
coverings whose mean block size is given by the expression given in Theorem 1,
over v′ and k′ such that there is a PG covering for (v′, k′, t).

Challenge: Memory Consumption. The main challenge in computing CVDs is
that it requires to compute a PG covering for large values of v′ and k′, which
poses a high memory overhead. To illustrate, in our experiments, CoVerD uses
a CVD induced from a PG covering for (v′ = 1508598, k′ = 88741, t = 5). If
CoVerD stored this covering in the memory, it would require 124GB of memory,
assuming each number in a block takes a byte. To cope, CoVerD computes the
partially-induced covering during the PG covering construction. However, even
the partially-induced coverings can consume a lot of memory, since the number of
blocks can be large. Calzone faced a similar challenge and coped by restricting
the size of the covering designs to at most 107, which allowed it to keep all
coverings in the covering database. While CoVerD could take a similar approach,
this would prevent it from picking CVDs of larger size which overall may lead
to a lower analysis time (since they will require fewer refinements). Instead,
CoVerD generates a CVD on-the-fly and uses the covering database only for the
refinements, which tend to require coverings of significantly smaller size than the
first covering. Another advantage of building the CVD on-the-fly is that it enables
CoVerD to analyze any classifier over any image dimension, without any special
adaptation. This is in contrast to Calzone, which requires to extend its covering
database upon every new image dimension v.
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4 CoVerD

In this section, we present CoVerD, our L0 robustness verifier. We first describe
our system and its components and then provide a running example.

4.1 Our System

Figure 4 shows CoVerD that, given an image classifier N , an image x with v pixels,
and the maximal number of perturbed pixels t, returns whether N is robust in
the t-ball of x. We next describe its planning and analysis components.

Planning. The planning component consists of several steps. First, it samples
sets of different sizes k to estimate the success rate and average analysis time
of their respective neighborhoods, like Calzone. Since CoVerD considers CVDs, it
can observe larger block sizes than Calzone, thus the maximal sampled set size
is MAX K = 200, unlike 99 in Calzone. Because of the larger bound, CoVerD is
likely to observe many more k values whose success rate is zero. To save execution
time while still enabling to determine the success rate and average analysis time
of large k values, CoVerD reduces the number of samples after observing nfail

times k values whose success rate is zero. Second, the planning component relies
on Calzone’s dynamic programming for computing a K strategy, but uses it
differently. Since CoVerD begins the analysis from a CVD consisting of different
sized blocks, there is no single K strategy. Instead, it runs Calzone’s dynamic
programming for every k ∈ {t+1, . . . ,MAX K} to define a function fR mapping
every set size k to the best set size to use upon a refinement of a set of size k.
Then, the planning component iterates over every candidate CVD and picks the
best CVD for the analysis. It picks between the candidates without constructing
them, as the construction is time and memory intensive and we wish to execute
it only for the chosen candidate. To pick the best candidate, it leverages two
observations. First, a CVD candidate is uniquely defined by the parameters of
the PG covering, (q,m) (formally, its parameters are (q,m, t) but t is identical
in all our PG coverings), so it suffices to pick a pair (q,m) which can later be
used to construct the CVD. Second, to predict the CVD with the minimal analysis
time, only the block sizes are needed. In Sect. 4.2, we describe how to estimate a
CVD’s block size distribution dist(q,m) and estimate its analysis time Tdist(q,m),
in order to predict the best CVD. Given the best candidate (q∗,m∗), it randomly
samples an ordered set L of v indices from v′, which is a function of (q∗,m∗).

Analysis. After determining the best (q∗,m∗), L, and the refinement mapping
fR, CoVerD continues to analyze the robustness of the classifier N in the t-ball
of the given image x. The analysis constructs the CVD on-the-fly block-by-block.
Technically, there is a covering generator that constructs the blocks one-by-one.
Every block is pushed to the stack of blocks to verify, and then the analysis pro-
ceeds as Calzone. That is, the block is popped, submitted to GPUPoly, and if
needed, refinement is executed. After the block is verified (directly or by refine-
ment), the next block in the CVD is obtained from the covering generator. We note
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that although CoVerD could use CVDs for refinements, the coverings for refine-
ments are smaller than the first covering since these coverings are for triples
(ṽ, k̃, t) where ṽ is typically few dozens and at most MAX K = 200, whereas the
first covering is for a triple (ṽ, k̃, t) where ṽ is the image dimension. Like Cal-
zone, CoVerD parallelizes the analysis on GPUs. Thus, our covering generator
generates disjoint parts of the covering, described in Sect. 4.3.

4.2 Choosing a Covering Verification Design

In this section, we describe how CoVerD predicts the CVD that enables CoVerD to
minimize the overall analysis time. We begin with describing the CVD candidates,
then describe how CoVerD estimates their block size distributions, and finally
explain how CoVerD predicts the CVD leading to the minimal analysis time.

Candidates. A CVD candidate is defined by the PG covering from which it is
partially-induced. Recall that a PG covering is defined for triples (v′, k′, t), where
v′ = qm+1−1

q−1 and k′ = qt−1
q−1 for a prime power q and m ≥ t ≥ 2. By Theorem 1,

given a PG covering, the mean block size of the CVD has a closed-form expres-
sion μv′,k′,v = vk′

v′ = v(qt−1)
qm+1−1 . By this expression, given q, as m increases μv′,k′,v

decreases, and given m, as q increases μv′,k′,v decreases. Further, this expression
approaches 0 for high values of q or m. Thus, to obtain a finite set of candidates,
we provide a positive lower bound on μv′,k′,v, denoted MIN K (our implemen-
tation sets it to t). That is, the finite set of candidates CoVerD considers is:

{(q,m) ∈ N
2 | q is a prime power, m ≥ t, v′ ≥ v, μv′,k′,v ≥ MIN K}

Estimating the Block Size Distribution. For every CVD candidate, defined by
(q,m), CoVerD estimates the distribution of its block sizes. While Theorem 1
provides expressions for the mean block size and the variance, it does not define
the block size distribution. We empirically observe that our CVDs have the prop-
erty that the distribution of their block sizes resembles a discrete approximation
of a Gaussian distribution with mean μv′,k′,v and variance σ2

v′,k′,v. The higher the
mean and the number of blocks, the higher the resemblance. Figure 5a visualizes
this resemblance for a CVD, with v = 784, induced from a PG with parame-
ters q = 17, m = 5, and t = 5. We believe this resemblance exists because
a CVD is partially-induced from a PG covering given a random set of num-
bers L. This resemblance may not hold for other choices of L, for example
for the choice of L proposed by [27], which compute a partially-induced cov-
ering whose maximal block size is bounded (unlike our CVD). Because of this
resemblance, we model the block size as drawn from the Gaussian distribu-
tion with the true mean and variance G

(
μv′,k′,v, σ2

v′,k′,v

)
. Even if this model-

ing is imprecise, in practice, it is sufficient to allow CoVerD identify the candi-
date CVD leading to the minimal analysis time. Formally, given a CVD candidate
defined by (q,m), the distribution of the block sizes is dist(q,m) = {Nq,m

k |
k ≤ MAX K}, where Nq,m

k is our estimation of the number of blocks of size
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Fig. 5. Block size distributions.

k in this CVD. We define the probability that a block size in this CVD is of size
k as: P(k − 0.5 < Z ≤ k + 0.5) = Φ

(
(k+0.5)−μv′,k′,v

σv′,k′,v

)
− Φ

(
(k−0.5)−μv′,k′,v

σv′,k′,v

)
,

where Z ∼ G
(
μv′,k′,v, σ2

v′,k′,v

)
and Φ is the cumulative distribution function

(CDF) of a Gaussian distribution with mean 0 and variance 1. The number of
blocks bq,m is identical to the number of blocks in the PG covering, which has
a closed-form expression [16]. Thus, the estimated number of blocks of size k is:
Ñq,m

k = bq,m ·P(k−0.5 < Z ≤ k+0.5). To make the estimated number an integer,
we define Nq,m

k as the floor of Ñq,m
k and add 1 with probability of the remainder:

Nq,m
k =

⌊
Ñq,m

k

⌋
+ X where X ∼ Bern

(
Ñq,m

k −
⌊
Ñq,m

k

⌋)
. Figure 5b visualizes

how close our estimation of the block size distribution is to the distribution
of the CVD shown in Fig. 5a. We note that CoVerD considers a candidate and
estimates its block size distribution only if its estimated number of overly large
blocks (larger than MAX K) is close to zero. Formally, it considers candidates
that satisfy bq,m ·

(
1 − Φ

(
MAX K−μv′,k′,v

σv′,k′,v

))
≤ ε, where ε is a small number. This

is the reason that dist(q,m) = {Nq,m
k | k ≤ MAX K} consists of estimations

only for blocks whose size is at most MAX K.

Predicting the Best CVD. Given the candidates and their estimated block size
distributions, CoVerD chooses the CVD which will enable CoVerD to minimize
the overall analysis time. To this end, it predicts for every candidate CVD its
overall analysis time. The prediction relies on: (1) the estimated number of
blocks Nq,m

k of size k, (2) the average analysis time of a block of size k, denoted
k array[k][time] (given by the initial sampling), (3) the fraction of the non-
robust blocks of size k, which is one minus the success rate of k, denoted
k array[k][success] (given by the initial sampling) and (4) the analysis time
of refining a non-robust block of size k, denoted T (k) (given by the dynamic
programming, as defined in [30]). Similarly to Calzone’s dynamic programming,
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Algorithm 1: CoveringGenerator(q, m, t, L, iGPU )
Input: PG parameters (q, m, t), an ordered set of v indices L = [s1, . . . , sv]

which is a subset of [ q
m+1−1
q−1

], and an index of a GPU iGPU .
Output: A stream of the covering verification design’s blocks.

1 ∀i ∈ [v]. P [:, i] = a unique vector in F
m+1
q computed for si // P ∈ F

(m+1)×v
q

2 M = [M ∈ F
(m−t+1)×(m+1)
q | M is full rank and in reduced row echelon form]

3 for j = 0; j < |M|; j + + do
4 if j modulo GPUs �= iGPU then continue
5 R = M[j] × P
6 block = {i ∈ [v] | R[:, i] = 0} // generate induced block

7 output block

the analysis time is the sum of the analysis time of verifying all blocks in the
CVD and the analysis time of the refinements of the non-robust blocks:

Tdist(q,m) =
MAX K∑

k=t

Nq,m
k · (k array[k][time] + (1 − k array[k][success]) · T (k))

This computation ignores blocks of size less than t since they do not cover
any subset of size t and need not be analyzed to prove L0 robustness. After
predicting the analysis time of every candidate, CoVerD picks the candidate with
the minimal time.

4.3 Constructing a Covering Verification Design

In this section, we present our covering generator that computes a CVD. The
covering generator operates as an independent process, one for every GPU, that
outputs blocks a-synchronically. At every iteration, every GPU worker obtains
a block from its covering generator, analyzes it with GPUPoly, and refines if
needed. If the block is robust or its refinement does not detect an adversarial
example, the GPU worker obtains the next block from the covering generator.
The covering generator relies on the chosen CVD’s parameters q and m and the
ordered set L from the planning component. It computes the PG covering for (q,
m, t) block-by-block and induces it to obtain a CVD. Generally, its construction
follows the meta-algorithm of generating PG coverings described in [16]. The
novel parts are our implementation of inducing blocks immediately upon gener-
ating them and partitioning them to enable their analysis to proceed in parallel
over the available GPUs. We next describe the covering generator.

Algorithm 1 shows the algorithm of our covering generator. It takes as input
the PG parameters (q,m, t), an ordered set L of v indices from [v′] (where v′ =
qm+1−1

q−1 ), and the GPU index iGPU . As described in Sect. 3, a PG construction
for (v′, k′, t) views v′ as the number of points in the geometry. Formally, given
the finite field Fq of order q, we identify the points of the geometry as a subset
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W ⊂ F
m+1
q of size v′ (technically, these points are representatives of equivalence

classes over F
m+1
q , as explained in [16]). To later partially-induce the covering

using L, Algorithm 1 maps every index in L to a unique point in W and stores
all points (column vectors) in a matrix P (Line 1). Then, Algorithm 1 begins to
construct the PG covering by computing flats (linear subspaces) of dimension
t − 1, each containing k′ = qt−1

q−1 points. As described in [16], every block in the
PG covering is a solution (a set of points in W ) to m − t + 1 independent linear
equations over m+1 variables. Such a linear system can be represented as a full
rank matrix, where its solutions are vectors in the matrix’s null space. Thus, to
compute the blocks in the PG covering, Algorithm 1 defines a set of matrices
M, each is over Fq, of dimension (m − t + 1) × (m + 1), and full rank (equal
to m − t + 1). Each matrix has exactly k′ points in W in its null space. These
points form a PG block (a flat of dimension t−1). To avoid block duplication, the
matrices in M need to have different null spaces. Thus, Algorithm 1 considers
matrices in reduced row echelon form, i.e., M is all full rank (m−t+1)×(m+1)
matrices over Fq in reduced row echelon form (Line 2). The covering generator
then iterates these matrices. To avoid a high memory overhead, the matrix M[j]
is generated only upon reaching its index j. If j belongs to the disjoint part of the
given GPU, its induced block is generated (Line 4). To construct a PG block, one
needs to compute all the points in the null space of M[j]. However, the generator
requires only the partially-induced blocks. Thus, it immediately induces the block
by obtaining all points si, for i ∈ [v], whose respective point P [:, i] belongs to
the null space of M[j]. To this end, it defines R as the multiplication of M[j]
and P (Line 5), forms the induced block by identifying the points that are in the
null space of M[j] (i.e., every si satisfying R[:, i] = 0), and makes the induced
block a subset of [v] by mapping every si in the induced block to i (Line 6).

4.4 A Running Example

In this section, we describe a real execution of CoVerD, for an MNIST image, a
fully-connected network (6×200 PGD in Sect. 5), and t = 4. CoVerD begins with
the planning component. It first estimates the success rate and average analysis
time of blocks. For every k ∈ {4, 5, . . . , 200}, it samples blocks S (subsets of [784])
of size k and submits their neighborhood IS(x) = {x′ ∈ [0, 1]v | ∀i /∈ S. x′

i =
xi} to GPUPoly. Based on all samples for k, it estimates the success rate and
the average analysis time. For instance, for k = 34 the success rate is 94.05%
and the average analysis time is 16.19ms, while for k = 41 they are 65.85%
and 16.96ms. Then, CoVerD runs Calzone’s dynamic programming to map every
k ∈ {5, 6, . . . , 200} to the refinement size. For example, k = 34 is mapped to 28
and k = 41 to 33. Next, CoVerD determines the CVD for the first covering, out
of 50 candidates. For each candidate, it predicts the block size distribution and
the respective overall analysis time of this candidate. To this end, it computes
the mean, variance, and number of blocks using the closed-form expressions. For
example, the CVD of the candidate (q = 23,m = 4) has mean block size 34.087,
variance 32.518 and 292, 561 blocks. The CVD of (q = 19,m = 4) has mean block
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size 41.263, variance 38.867, and 137, 561 blocks. Although the second candidate
has less than half the number of blocks of the first candidate, CoVerD predicts
that using the first candidate will enable a faster analysis. This is because its
success rate is significantly higher and thus it will require fewer refinements (e.g.,
the success rate of its mean block size is 94.05%, whereas the second candidate’s
success rate of the mean block size is 65.85%). The estimated analysis times
(in minutes) are Tdist(23,4) = 21.20 and Tdist(19,4) = 27.92. The last step of the
planning component samples an ordered set L of size 784 (the number of pixels
in the MNIST image) from [23

5−1
23−1 ] = [292561]. In total, the planning component

takes 63.5 s.
Then, CoVerD continues to the analysis component. It starts by creating eight

instances of the covering generator (Algorithm 1), one for each GPU. A covering
generator creates blocks for its GPU one-by-one, given q∗ = 23, m∗ = 4, t = 4
and L. For every CVD block S, the GPU worker defines its neighborhood IS(x)
and submits to GPUPoly. If GPUPoly verifies successfully, the next CVD block
is obtained. If GPUPoly fails proving robustness, S is refined. As example, if a
block S of size 34 is refined, the analysis pushes to the stack all blocks in the
covering CS(34, 28, 4), which is the covering for (34, 28, 4) that is in the covering
database, where the numbers are renamed to range over the numbers in S. In
this example, GPUPoly is invoked 659, 326 times, where 44% of these calls are
for blocks in the CVD. The maximal size of block submitted to GPUPoly is 62
and the minimal size is 8. In particular, CoVerD did not submit any block of size
t = 4 (i.e., there are no calls to the MILP verifier). The analysis takes 23.49 min,
which is only 10.8% higher than the estimated time.

5 Evaluation

In this section, we describe the experimental evaluation of CoVerD on multiple
datasets and networks and compare it to Calzone.

Implementation and Setup. We implemented CoVerD1 as an extension of Cal-
zone2. Experiments ran on a dual AMD EPYC 7713 server, 2TB RAM, eight
NVIDIA A100 GPUs and Ubuntu 20.04.1. We evaluate CoVerD on the networks
evaluated by Calzone, whose architectures are described in ERAN3. We consider
networks trained for popular image datasets: MNIST and Fashion-MNIST, con-
sisting of 28 × 28 greyscale images, and CIFAR-10, consisting of 32 × 32 colored
images. CoVerD’s hyper-parameters are: the maximal block size is MAX K = 200,
the number of samples is initially nsamples = 400 and after nfail = 10 failures, it
is reduced to nsamples = 24, and the bound on the estimated number of overly
large blocks is ε = 0.01. Our covering database, used for the refinement steps,
contains coverings for v, k ≤ 200, t ≤ 6. The covering sizes are restricted to at
most 500, 000 blocks. This limitation is stricter than Calzone, which limited to
1 https://github.com/YuvShap/CoVerD.
2 https://github.com/YuvShap/calzone.
3 https://github.com/eth-sri/eran.

https://github.com/YuvShap/CoVerD
https://github.com/YuvShap/calzone
https://github.com/eth-sri/eran
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Fig. 6. CoVerD vs. Calzone on Calzone’s most challenging benchmarks.

107, but in practice this is unnoticeable since CoVerD only uses the coverings
for refinements, and even Calzone typically refines to coverings whose size is
at most 500, 000. Like Calzone, the database consists of coverings computed by
extending coverings from the La Jolla Covering Repository Tables4 using con-
struction techniques from [16, Section 6.1]. Additionally, our database includes
finite geometry coverings (for v, k ≤ 200, t ≤ 6) and extends coverings using the
dynamic programming of [16, Section 5]. Like Calzone, We ran CoVerD with eight
GPUPoly instances and five MILP instances, except for the CIFAR-10 network
where it ran 50 MILP instances. For the matrix multiplication over finite fields
(Algorithm 1), CoVerD relies on an effective library [18] and considers only prime
numbers for q (since matrix multiplication is too slow for prime powers).

Comparison to Calzone. We begin by evaluating CoVerD on Calzone’s bench-
marks (i.e., the same networks, images and timeouts) for t ≥ 3. Figure 6 shows
the comparison for the most challenging benchmarks of Calzone, and Fig. 7 shows
comparisons for t = 4 (the plots for t = 3 are shown in [31, Appendix A]). For
a given network and t, the plot shows the execution time in minutes of CoVerD
and Calzone for every t-ball. The x-axis orders the t-balls by CoVerD’s output:
non-robust (in light red background), robust (in light green background), and
timeout (in light blue background, e.g., Fig. 7, top). Within each section, the t-
balls are sorted by their execution time for clearer visuality. Timeouts, of CoVerD
or Calzone, are shown by bars reaching the red horizontal line. The lower part
of each bar shows in a lighter color the execution time of the initial sampling
(unless it is too short to be visible in the plot). The sampling time is highlighted
since Calzone and CoVerD sample slightly differently: Calzone samples 400 sets
of size k, for every k ≤ 99, while CoVerD samples up to k ≤ 200 and reduces

4 https://ljcr.dmgordon.org/cover/table.html.

https://ljcr.dmgordon.org/cover/table.html
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Fig. 7. CoVerD vs. Calzone for t = 4.

the number of samples after observing ten k values whose average success rate
is zero. We note that the other computations of the planning component take a
few seconds. The plots’ titles include the speedup in the average analysis time
of CoVerD over Calzone for non-robust t-balls (NR) and for robust t-balls (R).

The plots show that, on the most challenging benchmarks (Fig. 6), CoVerD
is always faster than Calzone, except for two non-robust t-balls which CoVerD
completes their analysis within 140 s. In the plots of Fig. 7, CoVerD is always
faster than Calzone except for thirteen 4-balls whose analysis terminates within
seven minutes by both verifiers. In the other plots (Fig. 9 in [31, Appendix A]),
where t = 3, Calzone is sometimes faster, but in these cases the analysis time is
typically short. In other words, the significance of CoVerD is in shortening the
analysis time of t-balls with long analysis time. On average, CoVerD is faster
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Fig. 8. CoVerD’s new benchmarks.

than Calzone in verifying robust t-balls by 1.3x for t = 3, by 2.8x for t = 4, and
by 5.1x for t = 5.

Challenging Benchmarks. Next, we show more challenging benchmarks than
Calzone. We evaluate the robustness of three networks for t-balls with larger
values of t than Calzone considers, for t = 5 and for t = 6 (we remind that
Calzone is evaluated for t ≤ 5). Similarly to Calzone’s most challenging bench-
marks, these benchmarks evaluate CoVerD for ten images (misclassified images
are discarded) and a five hour timeout. Figure 8 shows CoVerD’s analysis time.
CoVerD completes the analysis for 73% t-balls. Further, it verifies robustness
in some 6-balls within 42 minutes. As before, CoVerD is significantly faster for
non-robust t-balls.

We provide additional statistics on CoVerD in [31, Appendix A].

6 Related Work

In this section, we discuss the closest related work.

Robustness Verification of Neural Networks. Many works propose robustness
verifiers for neural networks. Most works focus on local robustness in L∞ neigh-
borhoods, defined by a series of intervals [2,12,13,21,25,32,34,36,37]. Some ver-
ifiers provide a complete analysis, i.e., they determine whether a network is
robust in the given neighborhood [12,21,34]. These approaches typically rely
on constraint solving (SAT/SMT solvers or MILP solvers) and thus they often
do not scale to large networks. Incomplete verifiers scale the analysis by over-
approximating the non-linear computations of the network (e.g., the activation
functions) by linear approximations or abstract domains [13,25,32,36]. Several
local robustness verifiers address L2-balls, e.g., by computing a bound on the
network’s global or local Lipschitz constant [19,22], or L1-balls [38,41]. Other
approaches analyze robustness in Lp-balls for p ∈ {0, 1, 2,∞} using random-
ized smoothing [6,11,23,28,39], providing probabilistic guarantees. To the best
of our knowledge, Calzone [30] is the first work to deterministically verify local
robustness in L0-balls. Other works prove robustness in neighborhoods defined
by high-level features [3,20,24].
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Covering and Combinatorial Designs. CVD is related to several combinatorial
designs: the combinatorial design defined by [27], covering designs [16] and bal-
anced incomplete block designs [7]. Covering designs, in particular finite geome-
try coverings, have been leveraged in various domains, including file information
retrieval [27], file organization [1] and coding theory [5]. General combinatorial
designs have also been leveraged in various domains in computer science [8].

7 Conclusion

We present CoVerD, an L0 robustness verifier for neural networks. CoVerD boosts
the performance of a previous L0 robustness verifier by employing several ideas.
First, it relies on a covering verification design (CVD), a new combinatorial design
partially inducing a projective geometry covering. Second, it chooses between
candidate CVDs without constructing them but only predicting their block size
distribution. Third, it constructs the chosen CVD on-the-fly to keep the memory
overhead minimal. We evaluate CoVerD on fully-connected and convolutional net-
works. We show that it boosts the performance of proving a network’s robustness
to at most t perturbed pixels on average by 2.8x, for t = 4, and by 5.1x, for t = 5.
For t = 6, CoVerD sometimes proves robustness within 42 minutes.
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Abstract. The rapid advance of deep reinforcement learning techniques
enables the oversight of safety-critical systems through the utilization of
Deep Neural Networks (DNNs). This underscores the pressing need to
promptly establish certified safety guarantees for such DNN-controlled
systems. Most of the existing verification approaches rely on qualitative
approaches, predominantly employing reachability analysis. However,
qualitative verification proves inadequate for DNN-controlled systems
as their behaviors exhibit stochastic tendencies when operating in open
and adversarial environments. In this paper, we propose a novel frame-
work for unifying both qualitative and quantitative safety verification
problems of DNN-controlled systems. This is achieved by formulating
the verification tasks as the synthesis of valid neural barrier certificates
(NBCs). Initially, the framework seeks to establish almost-sure safety
guarantees through qualitative verification. In cases where qualitative
verification fails, our quantitative verification method is invoked, yield-
ing precise lower and upper bounds on probabilistic safety across both
infinite and finite time horizons. To facilitate the synthesis of NBCs, we
introduce their k-inductive variants. We also devise a simulation-guided
approach for training NBCs, aiming to achieve tightness in computing
precise certified lower and upper bounds. We prototype our approach
into a tool called and showcase its efficacy on four classic DNN-controlled
systems.

Keywords: Safety verification · DNN-controlled systems · Neural
barrier certificates

1 Introduction

The widespread adoption of deep reinforcement learning techniques has propelled
advancements in autonomous systems, endowing them with adaptive decision-
making capabilities by Deep Neural Networks (DNNs) [36]. Ensuring the safety
of these DNN-controlled systems emerges as a critical concern, necessitating the
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provision of certified safety guarantees. Formal methods, renowned for their rig-
orousness and automaticity in delivering verified safety assurances, stand as a
promising means to address this concern. However, most of the existing formal
verification approaches rely on qualitative approaches, predominantly employing
reachability analysis [47]. Despite their significance, qualitative results fall short
for DNN-controlled systems due to the constant influence of various uncertainties
from different sources, such as environment noises [68], unreliable sensors [55],
and even malicious attacks [67]. When qualitative verification fails, it becomes
both desirable and practical to obtain quantitative guarantees, including quan-
tified lower and upper bounds on the safety probabilities of the systems. This
necessitates the use of quantitative verification engines [47].

Quantitative verification has proven its efficacy in enhancing the design
and deployment across a variety of applications, including autonomous systems
[33], self-adaptive systems [13], distributed communication protocols [26], and
probabilistic programs [57]. These applications are commonly modeled using
automata-based quantitative formalisms [25], such as Markov chains, timed
automata, and hybrid automata, and undergo verification using tools such as
Prism [32] and Storm [27]. Nonetheless, the quantitative verification of DNN-
controlled systems is challenging due to the incorporation of intricate and almost
inexplicable decision-making models by DNNs [46]. Compounding the issue, the
difficulty is amplified by the continuous and infinite state space, as well as the
non-linear dynamics inherent in DNN-controlled systems. First, building a faith-
ful automata-based probabilistic model for a DNN-controlled system is challeng-
ing. This difficulty arises as one cannot predict the action a DNN might take
until a specific state is provided, and exhaustively enumerating all continuous
states is impractical. Second, even if such a model is constructed under certain
constraints, such as bounded steps [9] and state abstractions [31], verification is
susceptible to state exploration issues—a well-known problem in model checking
[52]. For instance, the verification process can take up to 50 minutes for just 7
steps [9].

Leveraging barrier certificates (BCs) for verification emerges as a promis-
ing technique for formally establishing the safety of non-linear and stochastic
systems [34,43]. A BC partitions the state space of the system into two parts,
ensuring that all trajectories starting from a given initial set, located within one
side of the BC, cannot reach a given set of states (deemed to be unsafe), located
on the other side, almost surely (i.e., with probability 1) or with probability at
least p ∈ [0, 1). Once a BC is computed, it can be used to certify systems’ safety
properties either qualitatively or quantitatively. Recently, studies have shown
that BCs can be implemented and trained in neural forms called Neural Bar-
rier Certificates (NBCs). NBCs facilitate the synthesis of BCs and improve their
expressiveness [1,37,38,58,70]. A relevant survey is delegated to [18].

In this paper, we propose a unified framework for both qualitatively and
quantitatively verifying the safety of DNN-controlled systems by leveraging
NBCs. The key idea is to reduce both qualitative and quantitative verification
problems into a cohesive synthesis task of their respective NBCs. Specifically, we
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first seek to establish almost-sure safety guarantees through qualitative verifi-
cation. In cases where qualitative verification fails, our quantitative verification
method is invoked, yielding precise lower and upper bounds on probabilistic
safety across both infinite and finite time horizons.

We also establish relevant theoretical results. In qualitative verification, we
prove that an NBC satisfying corresponding conditions serves as a qualitative
safety certificate. In the quantitative counterpart, we establish that valid NBCs
can be utilized to calculate certified upper and lower bounds on the probabilis-
tic safety of systems, encompassing both infinite and finite time horizons. For
infinite time horizons, as the lower bounds on probabilistic safety approach zero,
indicating a decreasing trend in safety probabilities along the time horizon, we
provide both linearly and exponentially decreasing lower and upper bounds on
the safety probabilities over finite time horizons.

To facilitate the synthesis of valid NBCs, we further relax their constraints
by defining their k-inductive variants [6]. This necessitates the conditions to be
inductive for k-compositions of the transition relation within a specified bound
k [11]. Consequently, synthesizing a qualified NBC becomes more manageable
under these k-inductive conditions, while ensuring safety guarantees. As valid
NBCs are not unique and yield different certified bounds, we devise a simulation-
guided approach to train potential NBCs. This approach aims to enhance their
capability to produce more precise certified bounds. Specifically, we estimate
safety probabilities through simulation. The differences between the simulation
results and the bounds provided by potential NBCs are incorporated into the loss
function. This integration can yield more precise certified bounds after potential
NBCs are successfully validated.

We prototype our approach into a tool, called UniQQ, and apply it to four
classic DNN-controlled problems. The experimental results showcase the effec-
tiveness of our unified verification approach in delivering both qualitative and
quantitative safety guarantees across diverse noise scenarios. Additionally, the
results underscore the efficacy of k-inductive variants in reducing verification
overhead, by 25% on average, and that of our simulation-based training method
in yielding tighter safety bounds, with an up to 47.5% improvement over ordinary
training approaches.

Contributions. Overall, we make the following contributions.

1. We present a novel framework that unifies both qualitative and quantitative
safety verification of DNN-controlled systems by reducing these verification
problems into the cohesive task of synthesizing NBCs.

2. We establish relevant theoretical results, including new constraints of NBCs
for both qualitative and quantitative safety verification and the associated
lower and upper bounds for safety probabilities in both linear and exponential
forms.

3. To accelerate training, we relax the constraints of NBCs by introducing their
k-inductive variants. We also present a simulation-guided approach designed
to train potential NBCs to compute safety bounds as tightly as possible.
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4. We develop a prototype of our approach, showcasing its efficacy across four
classic DNN-controlled systems.

All omitted proofs and supplementary experimental results can be found in the
full version [71].

2 Preliminaries

Let N, Z, and R be the sets of natural numbers, integers, and real numbers,
respectively.

2.1 DNN-Controlled Systems

We consider DNN-controlled systems where the control policies are implemented
by deep neural networks and suppose the networks are trained for specific tasks.
Formally, a DNN-controlled system is a tuple M = (S, S0, A, π, f, R), where
S ⊆ R

n is the set of (possibly continuous and infinite) system states, S0 ⊆ S is
the set of initial states, A is the set of actions, π : S → A is the trained policy
implemented by a neural network, f : S × A → S is the system dynamics, and
R : S × A × S → R is the reward function.

Trajectories. A trained DNN-controlled system M = (S, S0, A, π, f, R) is a
decision-making system that continuously interacts with the environment. At
each time step t ∈ N0, it observes a state st and feeds st into its planted NN
to compute the optimal action at = π(st) that shall be taken. Action at is then
performed, which transits st into the next state st+1 = f(st, at) via the system
dynamics f and earns a reward rt+1 = R(st, at, st+1). Given an initial state
s0 ∈ S0, a sequence of states generated during interaction is called a trajectory,
denoted as ω = {st}t∈N0

. To ease the notation, we denote by ωt the t-th element
of ω, i.e., ωt = st, and by Ω the set of all trajectories.

State Perturbations. As DNN-controlled systems collect state information via
sensors, uncertainties inevitably originate from sensor errors, equipment inaccu-
racy, or even adversarial attacks [66,68]. Therefore, the observed states of the
systems can be perturbed and actions are computed based on the perturbed
states. Formally, an observed state at time step t is ŝt := st + δt where δt ∼ µ
is a random noise and µ is a probability distribution over R

n. We denote by
W := supp (µ) the support of µ. Due to perturbation, the actual successor state
is st+1 := f(st, ât) with ât := π(ŝt) and the reward is rt+1 := R(st, ât, st+1).
Note that the successor state and the reward are calculated according to the
actual state and the action on the perturbed state, and this update is com-
mon [68]. We then denote a DNN-controlled system M perturbed by a noise
distribution µ as Mµ = (S, S0, A, π, f, R, µ).

Assumptions. Given a DNN-controlled system M = (S, S0, A, π, f, R), we
assume that the state space S is compact in the Euclidean topology of R

n,
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its system dynamics f and trained policy π are Lipschitz continuous. We fur-
ther assume that the system has forward invariance [62], i.e., all the states fall
into the state space. These assumptions are common in control theory [4,72].
For perturbation, we require that the noise distribution µ either has bounded
support or is a product of independent univariate distributions.

Probability Space. Given a DNN-controlled system Mµ = (S, S0, A, π, f, R, µ),
for each initial state s0 ∈ S0, there exists a probability space (Ωs0

,Fs0
, Ps0

) such
that Ωs0

is the set of all trajectories starting from s0 by the environmental
interaction, Fs0

is a σ-algebra over Ωs0
(i.e., a collection of subsets of Ωs0

that
contains the empty set ∅ and is closed under complementation and countable
union), and Ps0

: Fs0
→ [0, 1] is a probability measure on Fs0

. We denote the
expectation operator in this probability space by Es0

.

2.2 Barrier Certificate and Its Neural Implementation

Barrier certificates (BCs) are powerful tools to certify the safety of continuous-
time dynamical systems. In the following we describe the discrete-time BCs
which this work is based upon. We refer readers to [42,44] for details about
continuous-time BCs.

Definition 1 (Discrete-time Barrier Certificates). Given a DNN-
controlled system M = (S, S0, A, f, π, R) with an unsafe set Su ⊆ S such
that Su ∩ S0 = ∅. A discrete-time barrier certificate is a real-valued function
B : S → R such that for some constant λ ∈ (0, 1], it holds that:

B(s) ≤ 0 for all s ∈ S0, (1)

B(s) > 0 for all s ∈ Su, (2)

B(f(s, π(s))) − B(s) + λ · B(s) ≤ 0 for all s ∈ S. (3)

If there exists such a BC for the system M , then M is safe, i.e., the system
cannot reach a state in the unsafe set Su from the initial set S0. The intu-
ition is that: Condition (3) implies that for any s ∈ S such that B(s) ≤ 0,
B(f(s, π(s))) ≤ 0. Since Condition (1) asserts that the initial value of B is not
greater than zero, any trajectory ω ∈ Ωs0

starting from an initial state s0 ∈ S0

cannot enter the unsafe set Su, where B(s) > 0 (see Condition (2)), thereby
ensuring the safety of the system.

Finding a BC is restricted to the expressiveness of templates. For example,
even if there exists a function satisfying Condition (1) to (3), it may be not found
under polynomial forms. Recent work [41,69,70] proposes a neural implemen-
tation of BCs as deep neural networks, leveraging the expressiveness of neural
networks. The neural implementation of a BC is called a neural barrier certifi-
cate (NBC), which consists of training and validation. First, a learner trains
a neural network (NN) to fit over a finite set of samples the conditions for a
BC. After training, an NBC is then checked whether it meets the conditions.
This is achieved by a verifier using SMT solvers [41,70] or other methods like
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Sum-of-Squares programming [69]. If the validation result is false, a set of coun-
terexamples can be generated for future training. This iteration is repeated until
a trained candidate is validated or a given timeout is reached. This training
and validation iteration is called CounterExample-Guided Inductive Synthesis
(CEGIS) [2].

3 Verification Problem and Our Framework

3.1 Problem Statement

We consider the safety of DNN-controlled systems from both qualitative
and quantitative perspectives. Below we fix a DNN-controlled system Mµ =
(S, S0, A, π, f, R, µ) and an unsafe set Su ⊆ S such that S0 ∩ Su = ∅ throughout
the paper.

Definition 2 (Almost-Sure Safety). The system Mµ is almost-surely (a.s.)
safe, if a.s. no trajectories starting from any initial state s0 ∈ S0 enter Su, i.e.,

∀s0 ∈ S0.ω ∈ Ωs0
=⇒ ωt 6∈ Su ∀t ∈ N.

This almost-sure safety is a qualitative property and we call it “almost-sure”
due to the stochasticity from state perturbations. Since the almost-sure safety
does not always exist with the increase of state perturbations, we propose the
notion of probabilistic safety over infinite time horizons.

Definition 3 (Probabilistic Safety over Infinite Time Horizons). The
system Mµ is probabilistically safe over infinite time horizons with [linf , uinf ],
where 0 ≤ linf ≤ uinf ≤ 1, if the probability of not entering Su falls into [linf , uinf ]
for all the trajectories from any initial state s0 ∈ S0, i.e.,

∀s0 ∈ S0.Ps0
[{ω ∈ Ωs0

| ωt 6∈ Su for all t ∈ N}] ∈ [linf , uinf ].

The probabilistic safety is a quantitative property and linf , uinf are called
lower and upper bounds on the safety probabilities over infinite time horizons,
respectively. Once both bounds equal one, it implies the almost-sure safety. When
the lower bound linf = 0, indicating that the system reaches the unsafe region at
some time step T < ∞, it is significant to figure out how the safety probability
decreases over the finite time horizon. Therefore, we present the probabilistic
safety over finite time horizons as follows.

Definition 4 (Probabilistic Safety over Finite Time Horizons). The sys-
tem Mµ is probabilistically safe over a finite time horizon T ∈ [0,∞) with
[lfin, ufin], where 0 ≤ lfin ≤ ufin ≤ 1, if the probability of not entering Su within T
falls into [lfin, ufin] for all the trajectories starting from any initial state s0 ∈ S0,

∀s0 ∈ S0.Ps0
[{ω ∈ Ωs0

| ωt 6∈ Su for all t ≤ T }] ∈ [lfin, ufin].
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Safety Verification Problems of DNN-Controlled Systems. Consider a
DNN-controlled system Mµ = (S, S0, A, π, f, R, µ) with an unsafe set Su ∈ S
such that S0 ∩ Su = ∅. We formulate the qualitative and quantitative safety
verification problems of Mµ as follows:

1. Qualitative Verification (QV): To answer whether Mµ is almost-surely
safe.

2. Quantitative Verification over Infinite Time Horizons (QVITH): To
compute certified lower and upper bounds linf , uinf on the safety probability
of Mµ over infinite time horizons.

3. Quantitative Verification over Finite Time Horizons (QVFTH): To
compute certified lower and upper bounds lfin, ufin on the safety probability
of Mµ over a finite time horizon T .

3.2 Overview of Our Framework

We first provide an overview of our unified framework designed to address the
three safety verification problems. Our framework builds on two fundamental
results: (i) all the problems can be reduced to the task of defining BCs under
specific conditions, and the defined BCs can be used to certify almost-sure safety
for QV or safety bounds for QVITH and QVFTH, respectively, and (ii) these
BCs can be implemented and trained in neural forms. The fundamental results
are presented in Sects. 4 to 6, respectively.

The synthesis of NBCs has a preset timeout threshold, i.e., it will fail if NBCs
cannot be successfully synthesized within the time threshold. The procedure of
our framework is sketched in Fig. 1, which consists of the following three steps:

Step 1: QV. We try to synthesize an NBC satisfying conditions in Theorem 1.
If such an NBC is successfully synthesized, we can conclude that the system Mµ

is almost-surely safe by Theorem 1 and finish the verification. Alternatively, we
can resort to synthesizing a k-inductive NBC in Theorem 8 whose conditions are
weaker than those in Theorem 1. If the synthesis fails, we proceed to quantitative
verification.

Step 2: QVITH. We try to synthesize two NBCs under the conditions in
Theorems 2 and 3, respectively. If the synthesis fails, a timeout will be reported
and the process will be terminated. Otherwise, we can obtain the lower bound
linf and the upper bound uinf on probabilistic safety over infinite time horizons.
Alternatively, we can choose to synthesize the k-inductive variants of NBCs in
Theorems 9 and 10. If the lower bound linf is no less than some preset safety
threshold δ ∈ (0, 1), we terminate the verification. The purpose of setting δ is to
prevent the verification from returning a meaningless lower bound such as 0. If
linf is less than δ, we resort to computing safety bounds over finite time horizons.

Step 3: QVFTH. We try to synthesize two NBCs satisfying conditions in
Theorems 4 and 6, respectively. If the synthesis fails, a timeout will be reported
and the verification will terminate. Otherwise, we can compute the linear lower
and upper bounds on probabilistic safety over finite time horizons according
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Fig. 1. UniQQ: The unified verification framework.

to the synthesized NBCs. Alternatively, we can choose to synthesize two NBCs
satisfying conditions in Theorems 5 and 7 to achieve exponential bounds, which
might be tighter than linear ones.

4 Qualitative and Quantitative Safety Verification

In this section, we reduce all three safety verification problems of DNN-controlled
systems into a cohesive problem of defining corresponding BCs. We establish
specific conditions for candidate BCs and provide formulas for computing lower
and upper bounds for quantitative verification based on the defined BCs.

4.1 Qualitative Safety Verification

Theorem 1 (Almost-Sure Safety). Given an Mµ with an initial set S0 and
an unsafe set Su, if there exists a barrier certificate B : S → R such that for
some constant λ ∈ (0, 1], the following conditions hold:
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B(s) ≤ 0 for all s ∈ S0, (4)

B(s) > 0 for all s ∈ Su, (5)

B(f(s, π(s + δ))) − B(s) + λ · B(s) ≤ 0 for all (s, δ) ∈ S × W, (6)

then Mµ is almost-surely safe, i.e., ∀s0 ∈ S0. ω ∈ Ωs0
=⇒ ωt 6∈ Su ∀t ∈ N.

Intuition. The BC in Theorem 1 is similar to that in Definition 1 except Condi-
tion (6), in which we consider all stochastic behaviors of the system from state
perturbations. The proof of Theorem 1 resembles that in [43, Proposition 2].

Proof. We prove Theorem 1 by contradiction. Assume that there exists a barrier
certificate B satisfying conditions (4)-(6), but the system is unsafe, i.e., there is
a time step T > 0 and an initial state s0 ∈ S0 such that sT ∈ Su. Condition
(6) implies that for any state s ∈ S such that B(s) ≤ 0 and a noise δ ∈ W , the
value of B at the next step is no more than zero, i.e., B(f(s, π(s + δ))) ≤ 0. As
a result, B(sT ) must be no more than zero, which is contradictory to Condition
(5). Therefore, the system with a BC in Theorem 1 is almost-surely safe.

4.2 Quantitative Safety Verification over Infinite Time Horizon

Below we present the state-dependent lower and upper bounds on probabilistic
safety over infinite time horizons.

Theorem 2 (Lower Bounds on Infinite-time Safety). Given an Mµ with
an initial set S0 and an unsafe set Su, if there exists a barrier certificate B :
S → R such that for some constant ǫ ∈ [0, 1], the following conditions hold:

B(s) ≥ 0 for all s ∈ S, (7)

B(s) ≤ ǫ for all s ∈ S0, (8)

B(s) ≥ 1 for all s ∈ Su, (9)

Eδ∼µ[B(f(s, π(s + δ))) | s] − B(s) ≤ 0 for all s ∈ S \ Su, (10)

then the safety probability over infinite time horizons is bounded from below by

∀s0 ∈ S0. Ps0
[{ω ∈ Ωs0

| ωt 6∈ Su for all t ∈ N}] ≥ 1 − B(s0). (11)

Intuition. A BC under conditions in Theorem 2 is a non-negative real-valued
function satisfying the supermartingale property, i.e., the expected value of the
function remains non-increasing at every time step for all states not in Su (see
Condition (10)). The proof of Theorem 2 resembles that in [43, Theorem 15].

Proof (Sketch). To obtain the lower bound in Eq. (11), we first construct a
stochastic process {Xt}t≥0 where Xt = B(st) with the safe initial state s0 ∈ S0

(see Condition (8)). Let κ be the first time that the system enters the unsafe set
Su. Then we prove that the stopped process of {Xt}t≥0 w.r.t. κ is a non-negative
supermartingale by Condition (7) and Condition (10). By Condition (9) and
Ville’s inequality [54], we have that Ps0

[st ∈ Su for some t ∈ N] ≤ X0 = B(s0).
Finally, we obtain the lower bound in Eq. (11) by the complementation of the
above upper bound.
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Theorem 3 (Upper Bounds on Infinite-time Safety). Given an Mµ with
an initial set S0 and an unsafe set Su, if there exists a barrier certificate B :
S → R such that for some constants γ ∈ (0, 1), 0 ≤ ǫ′ < ǫ ≤ 1, the following
conditions hold:

0 ≤ B(s) ≤ 1 for all s ∈ S, (12)

B(s) ≥ ǫ for all s ∈ S0, (13)

B(s) ≤ ǫ′ for all s ∈ Su, (14)

B(s) − γ · Eδ∼µ[B(f(s, π(s + δ))) | s] ≤ 0 for all s ∈ S \ Su, (15)

then the safety probability over infinite time horizons is bounded from above by

∀s0 ∈ S0. Ps0
[{ω ∈ Ωs0

| ωt 6∈ Su for all t ∈ N}] ≤ 1 − B(s0). (16)

Intuition. A BC under conditions in Theorem 3 is a bounded non-negative func-
tion satisfying the γ-scaled submartingale property [53], i.e., the expected value
of B is increasing at each time step for states not in Su (Condition (15)). We
prove the theorem by Optional Stopping Theorem [56], while the former work [50]
is based on fixed-point theory [17].

Proof (Sketch). The proof is similar to that in Theorem 2. To obtain the upper
bound in Eq. (16), we first construct a stochastic process {Yt}t≥0 such that
Yt = γtB(st) with the safe initial state s0 ∈ S0 (see Condition (13) and Con-
dition (14)). Let κ be the first time that the system enters the unsafe set Su.
Then we prove that the stopped process of {Yt}t≥0 w.r.t. κ is a submartingale by
Condition (12) and Condition (15). By applying the Optional Stopping Theo-
rem [56], we derive that Ps0

[st ∈ Su for some t ∈ N] ≥ B(s0). Finally, we obtain
the upper bound in Eq. (16) by the complementation of the derived lower bound.

4.3 Quantitative Safety Verification over Finite Time Horizon

When the safety probability over infinite time horizons exhibits a decline, it
becomes advantageous to analyze the decreasing changes over finite time hori-
zons. In the following, we present our theoretical results on finite-time safety
verification, starting with two results related to lower bounds.

Theorem 4 (Linear Lower Bounds on Finite-time Safety). Given an Mµ

with an initial set S0 and an unsafe set Su, if there exists a barrier certificate
B : S → R such that for some constants λ > ǫ ≥ 0 and c ≥ 0, the following
conditions hold:

B(s) ≥ 0 for all s ∈ S, (17)

B(s) ≤ ǫ for all s ∈ S0, (18)

B(s) ≥ λ for all s ∈ Su, (19)

Eδ∼µ[B(f(s, π(s + δ))) | s] − B(s) ≤ c for all s ∈ S, (20)
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then the safety probability over a finite time horizon T is bounded from below
by

∀s0 ∈ S0. Ps0
[{ω ∈ Ωs0

| ωt 6∈ Su for all t ≤ T }] ≥ 1 − (B(s0) + cT )/λ.

Intuition. A BC in Theorem 4 satisfies the c-martingale property [49], i.e., the
expected value of B can increase at every time step as long as it is bounded by a
constant c (Condition (20)), which is less conservative than the supermartingle
property (Condition (10)), at the cost providing safety guarantees over finite
time horizons. We prove the theorem by Ville’s Inequality [54] and the proof
resembles that in [6, Theorem 9].

Theorem 5 (Exponential Lower Bounds on Finite-time Safety). Given
an Mµ if there exists a function B : S → R such that for some constants
α > 0, β ∈ R, and γ ∈ [0, 1), the following conditions hold:

B(s) ≥ 0 for all s ∈ S, (21)

B(s) ≤ γ for all s ∈ S0, (22)

B(s) ≥ 1 for all s ∈ Su, (23)

αEδ∼µ[B(f(s, π(s + δ))) | s] − B(s) ≤ αβ for all s ∈ S \ Su. (24)

then the safety probability over a finite time horizon T is bounded from below by

∀s0 ∈ S0. Ps0
[{ω ∈ Ωs0

| ωt 6∈ Su for all t ≤ T}] ≥ 1−
αβ

α − 1
+ (

αβ

α − 1
−B(s0)) ·α

−T
.

Intuition. A BC in Theorem 5 satisfies that its α-scaled expectation can increase
at most αβ at every time step (Condition (24)). We establish a new result in
discrete-time DNN-controlled systems and prove it by the discrete version of
Gronwall’s Inequality [24], which is inspired by former work [60] in continuous-
time dynamical systems.

Then we propose our two results of upper bounds on safety probabilities.

Theorem 6 (Linear Upper Bounds on Finite-time Safety). Given an
Mµ with an initial set S0 and an unsafe set Su, if there exists a barrier function
B : S → R such that for some constants β ∈ (0, 1), β < α < 1 + β, c ≥ 0, the
following conditions hold:

B(s) ≥ 0 for all s ∈ S, (25)

B(s) ≤ β for all s ∈ S \ Su, (26)

α ≤ B(s) ≤ 1 + β for all s ∈ Su, (27)

Eδ∼µ[B(f(s, π(s + δ))) | s] − B(s) ≥ c for all s ∈ S \ Su. (28)

then the safety probability over a finite time horizon T is bounded from above by

∀s0 ∈ S0. Ps0
[{ω ∈ Ωs0

| ωt 6∈ Su for all t ≤ T }] ≤ 1 − B(s0) −
1

2
c · T + β.
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Intuition. A BC in Theorem 6 is non-negative and its value is bounded when
states are in Su (Condition (27)). Moreover, Condition (28) is the inverse of the
c-martingale property in Theorem 4, i.e., the expected value of B should increase
at least c at every time step.

Theorem 7 (Exponential Upper Bounds on Finite-Time Safety). Given
an Mµ with an initial set S0 and an unsafe set Su, if there exists a barrier
function B : S → R such that for some constants K ′ ≤ K < 0, ǫ > 0 and a
non-empty interval [a, b], the following conditions hold:

B(s) ≥ 0 for all s ∈ S \ Su, (29)

K ′ ≤ B(s) ≤ K for all s ∈ Su, (30)

Eδ∼µ[B(f(s, π(s + δ))) | s] − B(s) ≤ −ǫ for all s ∈ S \ Su, (31)

a ≤ B(f(s, π(s + δ))) − B(s) ≤ b for all s ∈ S \ Su and δ ∈ W, (32)

then the safety probability over a finite time horizon T is bounded from above by

∀s0 ∈ S0. Ps0
[{ω ∈ Ωs0

| ωt 6∈ Su for all t ≤ T }] ≤ exp(−
2(ǫ · T − B(s0))

2

T · (b − a)2
).

Intuition. A BC under Conditions (29) to (32) is a difference-bounded ranking
supermartingale [16]. Condition (31) is the supermartingale difference condi-
tion, i.e., the expectation of B should decrease at least ǫ at each time step,
while Condition (32) implies that the update of B should be bounded. We prove
this theorem by Hoeffding’s Inequality on Supermartingales [28] and the proof
resembles that in the work [16].

Remark 1. In this section, we establish relevant theoretical results from the per-
spectives of qualitative and quantitative verification. In qualitative verification,
we prove that an NBC satisfying corresponding conditions serves as a qualitative
safety certificate. In the quantitative counterpart, we establish that valid NBCs
can be utilized to calculate certified upper and lower bounds on the probabilis-
tic safety of systems. It is worth noting that, for unifying safety verification in
Fig. 1, new theoretical results (Theorem 5 and Theorem 6) are established, which
mitigates the gaps of existing results [42,43].

Common conditions of different BCs. To clarify the construction of different BCs,
we give three common categories of their conditions. The first two categories
define the bounds of BCs for initial states and unsafe states, ensuring they are
disjoint. The third category specifies the monotonicity of the (expected) BC
values for successor states, yielding the possibility of the system reaching the
unsafe set.

5 Relaxed k-Inductive Barrier Certificates

We now introduce k-inductive barrier certificates, capable of offering both quali-
tative and quantitative safety guarantees, while relaxing the strict conditions for
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safety through the utilization of the k-induction principle [11,20]. Prior to pre-
senting our theoretical results, we first define the notion of k-inductive update
functions as follows.

Definition 5 (k-inductive Update Functions). Given an Mµ = (S, S0, A,
π, f, R, µ), a k-inductive update function gk

π,f with respect to π, f is defined
recursively, i.e.,

gk
π,f(st, ∆

k
t ) =











gπ,f(gk−1
π,f (st, ∆

k−1
t ), δt+k−1) if k > 1

f(st, π(st + δt)) if k = 1

st if k = 0

where ∆k
t = [δt, δt+1, . . . , δt+k−1] is a noise vector of length k with each δt ∼ µ,

and gπ,f(st, δt) := f(st, π(st + δt)).

Intuitively, gk
π,f computes the value of a state after k steps given a k-dimensional

noise vector ∆k ∈ W k ⊆ R
n×k, where W = supp (µ) is the support of µ. To cal-

culate the expectation w.r.t. k-dimensional noises, we denote by µk the product
measure on W k.

5.1 k-Inductive Barrier Certificates for Qualitative Safety

Theorem 8 (k-inductive Variant of Almost-Sure Safety). Given an Mµ

with an initial set S0 and an unsafe set Su, if there exists a k-inductive barrier
certificate B : S → R such that the following conditions hold:

∧

0≤i<k B(gi
π,f (s, ∆i)) ≤ 0 ∀(s, ∆i) ∈ S0 × W i,

(33)

B(s) > 0 ∀s ∈ Su,
(34)

∧

0≤i<k(B(gi
π,f (s, ∆i)) ≤ 0) =⇒ B(gk

π,f (s, ∆k)) ≤ 0 ∀(s, ∆i) ∈ S × W i,

(35)

then the system Mµ is almost-surely safe, i.e., ∀s0 ∈ S0. ω ∈ Ωs0
=⇒ ωt 6∈

Su ∀t ∈ N.

Intuition. Condition (33) implies that the state sequences starting from the safe
set will remain in the safe set for the next k − 1 consecutive time steps, while
Condition (35) means that for any k consecutive time steps, if the system is
safe, then the system will still be safe at the (k + 1)-th time step. We prove the
theorem by contradiction.

Note that Condition (35) contains an implication, in order to compute the
k-inductive BC, we replace it with its sufficient condition:

−B(gk
π,f (s, ∆k))−

∑

0≤i<k τi · (−B(gi
π,f (s, ∆i))) ≥ 0, ∀(s, ∆i) ∈ S ×W i. (36)

If there exist τ0, . . . , τk−1 ≥ 0 satisfying Eq. (36), Condition (35) is satisfied.
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5.2 k-Inductive Barrier Certificates for Quantitative Safety

Theorem 9 (k-inductive Lower Bounds on Infinite-time Safety). Given
an Mµ, if there exists a k-inductive barrier certificate B : S → R such that for
some constants k ∈ N≥1, ǫ ∈ [0, 1] and c ≥ 0, the following conditions hold:

B(s) ≥ 0 for all s ∈ S (37)

B(s) ≤ ǫ for all s ∈ S0, (38)

B(s) ≥ 1 for all s ∈ Su, (39)

Eδ∼µ[B(f(s, π(s + δ))) | s] − B(s) ≤ c for all s ∈ S, (40)

E∆k∼µk [B(fk
π,f (s, ∆k)) | s] − B(s) ≤ 0 for all s ∈ S, (41)

then the safety probability over infinite time horizons is bounded from below by

∀s0 ∈ S0. Ps0
[{ω0 ∈ Ωs0

| ωt 6∈ Su for all t ∈ N}] ≥ 1 − kB(s0) −
k(k − 1)c

2
.

Intuition. Condition (40) requires the barrier certificate to be a c-martingale
at every time step and Condition (41) requires the barrier certificate sampled
after every k-th step to be a supermartingale. We prove the theorem by Ville’s
Inequality [54].

Theorem 10 (k-inductive Upper Bounds on Infinite-time Safety).
Given an Mµ, if there exists a barrier certificate B : S → R such that for
some constant γ ∈ (0, 1), 0 ≤ ǫ′ < ǫ ≤ 1, c ≤ 0 the following conditions hold:

0 ≤ B(s) ≤ 1 for all s ∈ S (42)

B(s) ≥ ǫ for all s ∈ S0, (43)

B(s) ≤ ǫ′ for all s ∈ Su, (44)

Eδ∼µ[B(f(s, π(s + δ))) | s] − B(s) ≥ c for all s ∈ S, (45)

B(s) − γk · E∆k∼µk [B(gk
π,f (s, ∆k)) | s] ≤ 0 for all s ∈ S \ Su, (46)

then the safety probability over infinite time horizons is bounded from above by

∀s0 ∈ S0. Ps0
[{ω ∈ Ωs0

| ωt 6∈ Xu for all t ∈ N}] ≤ 1 − kB(s0) −
k(k − 1)c

2
.

Intuition. This BC is non-negative and bounded (Condition 42). Condition (45)
is the inverse of the c-martingale property, while Condition (46) requires the
barrier certificate sampled after every k-th step to be a γk-scaled submartingale.
We prove the theorem by the Optional Stopping Theorem [56].

Remark 2. To make the probabilistic bounds in Theorem 9 and Theorem 10
non-trivial, the value of k should be bounded by

1 ≤ k ≤
(c − 2B(s0)) +

√

4B(s0)2 + c2 − 4c(B(s0) − 2)

2c
.
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Remark 3. In this section, we relax constraints to facilitate the synthesis of valid
NBCs by defining their k-inductive variants [6]. Thus, synthesizing a valid NBC
becomes more manageable under these k-inductive conditions, while ensuring
safety guarantees. Besides, to our best knowledge, Theorem 10 is the first relax-
ation conclusion for upper bounds on infinite-time safety.

6 Synthesis of Neural Barrier Certificates

In this section, we show that the BCs defined in the previous sections for DNN-
controlled systems can be implemented and synthesized in the form of DNNs,
akin to those for linear or nonlinear stochastic systems [69].

We adopt the CEGIS-based method [2] to train and validate target NBCs.
Figure 2 sketches the workflow. In each loop iteration, we train a candidate BC
in the form of a neural network which is then passed to the validation. If the
validation result is false, we compute a set of counterexamples for future training.
This iteration is repeated until a trained candidate is validated or a given timeout
is reached. Moreover, we propose a simulation-guided training method by adding
additional terms to the loss functions to improve the tightness of upper and lower
bounds calculated by the trained NBCs.

We present the synthesis of NBCs in Theorem 2 for probabilistic safety
over infinite time horizons, as an example. We defer to the full version [71] the
synthesis of other NBCs.

6.1 Training Candidate NBCs

Two pivotal factors in the training phase are the generation of training data and
the construction of the loss function.

Fig. 2. CEGIS-based NBC synthesis [2].

Training Data Discretization. As
the state space S is possibly continu-
ous and infinite, we choose a finite set
of states for training candidate NBCs.
This can be achieved by discretizing the
state space S and constructing a dis-
cretization S̃ ⊆ S such that for each
s ∈ S, there is a s̃ ∈ S̃ with ||s−s̃||1 < τ ,
where τ > 0 is called the granularity of
S̃. As S is compact and thus bounded,
this discretization can be computed by
simply picking the vertices of a grid
with sufficiently small cells. For the re-
training after validation failure, S̃ will
be reconstructed with counterexamples
and a smaller granularity τ . Once the
discretization S̃ is obtained, we con-
struct two finite sets S̃0 := S̃ ∩ S0 and
S̃u := S̃ ∩ Su used for the training process.
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Loss Function Construction. A candidate NBC is initialized as a neural
network hθ w.r.t. the network parameter θ. hθ is trained by minimizing the
following loss function:

L(θ) := k1 · L1(θ) + k2 · L2(θ) + k3 · L3(θ) + k4 · L4(θ) + k5 · L5(θ)

where ki ∈ R, i = 1, · · · , 5 are the algorithmic parameters balancing the loss
terms.

The first loss term is defined via the condition in Condition (7) as:

L1(θ) =
1

|S̃|

∑

s∈S̃

(max{0 − hθ(s), 0})

Intuitively, a loss will incur if either hθ(s) is less than zero for any s ∈ S̃.
Correspondingly, the second and third loss terms are defined via Condition

(8) and (9) as:

L2(θ) =
1

|S̃0|

∑

s∈S̃0

(max{hθ(s) − ǫ, 0}) , and L3(θ) = 1

|S̃u|

∑

s∈S̃u

(max{1 − hθ(s), 0}) .

The fourth loss term is defined via the condition in Condition (10) as:

L4(θ) =
1

|S̃ \ S̃u|

∑

s∈S̃\S̃u

(

max{
∑

s′∈Ds

hθ(s′)
N

− hθ(s) + ζ, 0}

)

where for each s ∈ S̃\S̃u, Ds is the set of its successor states such that Ds := {s′ |
s′ = f(s, π(s + δi)), δi ∼ µ, i ∈ [1, N ]}, N > 0 is the sample number of successor
states. We use the mean of hθ(·) at the N successor states to approximate the
expected value Eδ∼µ[B(f(s, π(s + δ)))] for each s ∈ S̃ \ S̃u, and ζ > 0 to tighten
the condition.

Simulation-Guided Loss Term. A trained BC that satisfies the above four
conditions can provide lower bounds on probabilistic safety over infinite time
horizons for the system. However, these conditions have nothing to do with the
tightness of lower bounds and we may obtain a trivial zero-valued lower bound
by the trained BC.

To assure the tightness of lower bounds from trained NBCs, we propose a
simulation-guided method based on Eq. (11). For each s0 ∈ S̃0, we execute the
control system N ′ > 0 episodes, and calculate the safety frequency fs of all the
N ′ trajectories over infinite time horizons. Based on the statistical results, the
last loss term is defined as:

L5(θ) =
1

|S̃0|

∑

s∈S̃0

(max{fs + hθ(s) − 1, 0})

Intuitively, this term is to enforce the value of the derived lower bound to app-
roach the statistical result as closely as possible, ensuring its tightness.

We emphasize that our simulation-guided method plus the NBC validation
(see next section) is sound, as we will validate the trained BC to ensure it satisfies
all the BC conditions (see also Theorem 12).
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6.2 NBC Validation

A candidate NBC hθ is valid if it meets the Conditions (7) to (10). The first
three conditions condition can be checked by the following constraint

inf
s∈S

hθ(s) ≥ 0 ∧ sup
s∈S0

hθ(s) ≤ ǫ ∧ inf
s∈Su

hθ(s) ≥ 1

using the interval bound propagation approach [23,59]. When any state violates
the above equation, it is treated as a counterexample and added to S̃ for future
training.

For Condition (10), Theorem 11 reduces the validation from infinite states
to finite ones, which are easier to check.

Theorem 11. Given an Mµ and a function B : S → R, we have
Eδ∼µ[B(f(s, π(s + δ))) | s] − B(s) ≤ 0 for any state s ∈ S \ Su if the formula
below

Eδ∼µ[B(f(s̃, π(s̃ + δ))) | s̃] ≤ B(s̃) − ζ (47)

holds for any state s̃ ∈ S̃\S̃u, where ζ = τ ·LB ·(1+Lf ·(1+Lπ)) with Lf , Lπ, LB

being the Lipschitz constants of f, π and B, respectively.

To check the satisfiablility of Eq. (47) in hθ and a state s̃, we need to compute
the expected value Eδ∼µ[hθ(f(s̃, π(s̃+δ))) | s̃]. However, it is difficult to compute
its closed form because hθ is provided in the form of neural networks. Hence, We
bound the expected value Eδ∼µ[hθ(f(s̃, π(s̃+ δ))) | s̃] via interval arithmetic [23,
59] instead of computing it, which is inspired by the work [35,72]. In particular,
given the noise distribution µ and its support W = {δ ∈ R

n | µ(δ) > 0}, we
first partition W into finitely m ≥ 1 cells, i.e., cell(W) = {W1, · · · , Wm}, and
use maxvol = max

Wi∈cell(W)
vol(Wi) to denote the maximal volume with respect to

the Lebesgue measure of any cell in the partition, respectively. For the expected
value in Eq. (47), we bound it from above:

Eδ∼µ[hθ(f(s̃, π(s̃ + δ))) | s̃] ≤
∑

Wi∈cell(W)

maxvol · supδ F (δ)

where, F (δ) = hθ(f(s̃, π(s̃ + δ))). The supremum can be calculated via interval
arithmetic. We refer interested readers to [35,72] for more details.

Theorem 12 (Soundness). If a trained NBC is valid, it can certify the almost-
sure safety for the qualitative verification, or the derived bound by the NBC is a
certified lower/upper bound on the safety probability for the quantitative case.

The proof of soundness is straightforward by the NBC validation.
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7 Evaluation

Our experimental goals encompass evaluating the effectiveness of (i) the qual-
itative and quantitative verification methods within our framework, (ii) the k-
inductive BCs, and (iii) the simulation-guided training method, respectively.

7.1 Benchmarks and Experimental Setup

Table 1. Qualitative verification results.
Task Perturbation Verification k #Fail.

CP

0 X 1 0
r = 0.01 Unknown 1 0
r = 0.01 X 2 0
r = 0.03 Unknown 1 207

PD
r = 0 X 1 0
r = 0.01 Unknown 1 675
r = 0.03 Unknown 1 720

Tora

r = 0 X 1 0
r = 0.02 Unknown 1 0
r = 0.02 X 2 0
r = 0.04 Unknown 1 1113

B1
r = 0 X 1 0
r = 0.1 X 1 0
r = 0.2 Unknown 1 43

We assess the effectiveness of our app-
roach on four classic DNN-controlled
tasks from public benchmarks: Pen-
dulum and Cartpole from the DRL
training platform OpenAI’s Gym [12],
while B1 and Tora commonly used by
the state-of-the-art safety verification
tools [30]. All experiments are executed
on a workstation running Ubuntu 18.04,
with a 32-core AMD Ryzen Threadrip-
per CPU, 128GB RAM, and a single
24564MiB GPU.

The NBCs in this work are small
fully-connected feedforward networks
(FNNs) i.e., four-layer ReLU FNNs with
4×64×64×1. For the safety verification
of DNN-controlled systems, we consider
state perturbations of uniform noises with zero means and different radii. Specifi-
cally, for each state s = (s1, . . . , sn), we add noises X1, . . . , Xn to each dimension
of s and obtain the perturbed state (s1 +X1, . . . , sn +Xn), where Xi ∼ U(−r, r)
(1 ≤ i ≤ n, r ≥ 0). We adopt the CEGIS-based method in Fig. 2 to train and
validate target NBCs. For qualitative and various quantitative safety verification
of these four systems, each synthesis of an NBC requires 3 iterations on average
and each iteration produces an average of 1827 counterexamples.

For qualitative evaluations, the existence of an NBC in Theorem 1 can ensure
the almost-sure safety of the whole system. Due to the data sparsity of an initial
state, we randomly choose 10,000 initial states (instead of a single one) from the
initial set S0. For quantitative evaluations, to measure the quantitative safety
probabilities from the system level, we calculate the mean values of lower/upper
bounds by NBCs on these 10,000 states under different perturbations. The cor-
rectness of such system-level safety bounds is witnessed by Theorem 12 as each
lower/upper bound on a single state s0 is a certified bound for the exact safety
probability from s0, and thus the same holds on the system level. We also sim-
ulate 10,000 episodes starting from each of these 10,000 initial states under
different perturbations and use the statistical results as the baseline.
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Fig. 3. The certified upper and lower bounds over infinite (a-d) and finite (e-h) time
horizons, respectively, and their comparison with the simulation results. (Color figure
online)

7.2 Effectiveness of Qualitative Safety Verification

Table 1 shows the qualitative verification results under different perturbation
radii r’s and induction bounds k’s. Given a perturbed DNN-controlled system,
we verify its qualitative safety by training an NBC under the conditions in
Theorem 1. Once such an NBC is trained and validated, the system is verified
to be almost-surely safe, marked as X. If no valid barrier certificates are trained
within a given timeout, the result is marked as Unknown.

As for simulation, we record the number of those episodes where the system
enters the unsafe region, marked as the column #Fail. in the table. We can
observe that for the systems that are successfully verified by NBCs, no failed
episodes are detected by simulation. For systems with failed episodes by simu-
lation, no corresponding NBCs can be trained and validated. The consistency
experimentally reflects the effectiveness of our approach.

Furthermore, we note that for CP with r = 0.01 and Tora with r = 0.02,
there are no failed episodes, but no NBCs in Theorem 1 can be synthesized for
these systems. By applying Theorem 8, we find the 2-inductive NBCs, which
ensures the safety of the systems. It demonstrates that k-inductive variants can
relax the conditions of NBCs and thus ease the synthesis of valid NBCs for
qualitative safety verification.

As the perturbation radius increases, ensuring almost-sure safety becomes
challenging, and qualitative verification only results in the conclusion of
Unknown. Consequently, we proceed to conduct quantitative verification over
infinite time horizons.
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7.3 Effectiveness of Quantitative Safety Verification over Infinite
Time Horizon

Figure 3 (a-d) show the certified upper and lower bounds and simulation results
(i.e., black lines marked with ‘•’) over infinite time horizons. The red lines marked
with ‘�’ and blue lines marked with ‘+’ represent the mean values of the lower
bounds in Theorem 2 and the upper bounds in Theorem 3 on the chosen 10,000
initial states calculated by the corresponding NBCs, respectively. The purple
lines marked with ‘N’ and green lines marked with ‘×’ represent the mean values
of the 2-inductive upper and lower bounds calculated by the corresponding NBCs
in Theorems 10 and 9, respectively. We can find that the certified bounds enclose
the simulation outcomes, demonstrating the effectiveness of our trained NBCs.

Table 2. Synthesis time for different
NBCs.
Task Lower 2-Lower Upper 2-Upper

CP 2318.5 1876.0 2891.9 2275.3
PD 1941.6 1524.0 2282.7 1491.5
Tora 280.3 218.5 895.1 650.7
B1 587.4 313.6 1127.3 840.1

Table 2 shows a comparison of average
synthesis time (in seconds) for different
NBCs. The synthesis time includes both
training time and validation time. On
average, the training time is 846 s and the
validation time is 498 s. We observe that
the synthesis time of 2-inductive NBCs is
25% faster than that of normal NBCs, at
the sacrifice of tightness. Note that the tightness of certified bounds depends
on specific systems and perturbations. Investigating what factors influence the
tightness to yield tighter bounds is an interesting future work to explore.

Approaching zero for infinite time horizons, the lower bounds indicate a
declining trend in safety probabilities over time. Therefore, we proceed to con-
duct quantitative verification over finite time horizons, providing both linear and
exponential lower and upper bounds.

7.4 Effectiveness of Quantitative Safety Verification over Finite
Time Horizon

Figure 3 (e-h) depict the certified upper and lower bounds and simulation results
(i.e., black lines) over finite time horizons from the system level. Fix a sufficiently
large noise level for each system, the x-axis represents the time horizon, while
the y-axis corresponds to the safety probabilities. The purple lines and blue lines
represent the mean values of the exponential lower and upper bounds calculated
by the corresponding NBCs in Theorem 5 and Theorem 7, respectively. The
red lines and green lines represent the mean values of the linear lower and upper
bounds calculated by the corresponding NBCs in Theorem 4 and Theorem 6,
respectively. The results indicate that our computed certified bounds encapsulate
the statistical outcomes. Moreover, the exponential upper bounds are always
tighter than the linear upper bounds, and the exponential lower bounds become
tighter than the linear ones with the increase of time. It is worth exploring the
factors to generate tighter results in future work.
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Fig. 4. The certified bounds w/ and w/o simulation-guided loss terms over infinite
time horizons. (Color figure online)

7.5 Effectiveness of Simulation-Guided Loss Term

The simulation-guided loss term is proposed in Sect. 6.1 to tighten the certified
bounds calculated by NBCs. To evaluate its effectiveness, we choose NBCs in
Theorems 2 and 3, and train them with and without the simulation-guided loss
terms. The comparison between them is shown in Fig. 4. The red lines marked
with ‘�’ and blue lines marked with ‘+’ represent the mean values of the bounds
in Theorems 2 and 3 on initial states calculated by the corresponding NBCs
trained with the simulation-guided loss terms, respectively. The purple lines with
‘N’ and green lines with ‘×’ represent the mean values of the bounds calculated
by the NBCs trained without the simulation-guided loss terms. Apparently, the
upper and lower bounds derived by NBCs trained without the simulation-guided
loss terms are looser than the bounds trained with these terms. Specifically, the
results computed by NBCs with simulation-guided loss terms can achieve an
average improvement of 47.5% for lower bounds and 31.7% for upper bounds,
respectively. Hence, it is fair to conclude that accounting for simulation-guided
loss terms is essential when conducting quantitative safety verification.

8 Related Work

Barrier Certificates for Stochastic Systems. Our unified safety verifica-
tion framework draws inspiration from research on the formal verification of
stochastic systems employing barrier certificates. Prajna et al. [42–44] propose
the use of barrier certificates in the safety verification of stochastic systems.
This idea has been further expanded through data-driven approaches [45] and
k-inductive variants [6]. As the dual problem of computing safety probabili-
ties, computing reachability probabilities in stochastic dynamical systems has
been studied for both infinite [22,62,63] and finite time horizons [60,61]. Alireza
et al. [3] represent non-negative repulsing supermartingales as neural networks
and use them to derive upper bounds on the finite-time reachability probabil-
ity. Probabilistic programs, viewed as stochastic models, have their reachability
and termination probabilities investigated using proof rules [21] and martingale-
based approaches [7,15,16], where the latter are subsequently unified through
order-theoretic fixed-point approaches [50,51,53].
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Formal Verification of DNN-Controlled Systems. Modeling DNN-
controlled systems as Markov Decision Processes (MDPs) and verifying these
models using probabilistic model checkers, such as PRISM [32] and Storm [27],
constitutes a quantitative verification approach. Bacci and Parker [9,10] employ
abstract interpretation to construct interval MDPs and yield safety probabilities
within bounded time. Carr et al. [14] propose probabilistic verification of DNN-
controlled systems by constraining the analysis to partially observable finite-state
models. Amir et al. propose a scalable approach based on DNN verification tech-
niques to first support complex properties such as liveness [5].

Reachability analysis is a pivotal qualitative approach in the safety veri-
fication of DNN-controlled systems. Bacci et al. [8] introduce a linear over-
approximation-based method for calculating reachable set invariants over an
infinite time horizon for DNN-controlled systems. Other reachability analysis
approaches, such as Verisig [30] and Polar [29], focus solely on bounded time.
These approaches do not consider perturbations as they assume actions on states
to be deterministic.

Barrier Certificates for Training and Verifying DNN Controllers. BC-
based methods [1,41] have recently been investigated for training and verifying
DNN controllers. The key idea is to train a safe DNN controller through inter-
active computations of corresponding barrier certificates to ensure qualitative
safety [19,64]. Vishnu et al. [40] present a data-driven algorithm for training a
neural network to represent the closure certificates in [39]. Existing BC-based
approaches for the verification of DNN-controlled systems focus solely on qual-
itative aspects but neglect the consideration of perturbations [40,48,65]. Our
approach complements them by accommodating the inherent uncertainty in
DNN-controlled systems.

9 Conclusion and Future Work

We have systematically studied the BC-based qualitative and quantitative safety
verification of DNN-controlled systems. This involves unifying and transforming
the verification problems into a general task of training corresponding neural
certificate barriers. We have also defined the conditions that a trained certifi-
cate should satisfy, along with the corresponding lower and upper bounds pre-
sented in both linear and exponential forms and k-inductive variants. Through
the unification of these verification problems, we have established a comprehen-
sive framework for delivering various safety guarantees, whether qualitatively or
quantitatively, in a unified manner.

Our framework sheds light on the quest for scalable and multipurpose safety
verification of DNN-controlled systems. It accommodates both qualitative and
quantitative aspects in verified results, spans both finite and infinite time hori-
zons, and encompasses certified bounds presented in both linear and exponential
forms. Our work also showcases the potential to circumvent verification chal-
lenges posed by DNN controllers. From our experiments, we acknowledge that
both qualitative and quantitative verification results are significantly dependent
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on the quality of the trained NBCs. Our next step is to explore more sophisti-
cated deep learning methods and hyperparameter settings (e.g., the architecture
of NBCs and the k-inductive horizon) to train valid NBCs for achieving more
precise verification results.
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