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18.1  INTRODUCTION

Surface modeling refers to the process of simulating a surface by efficiently combining satellite 
remotely sensed data with ground-based observation data, such as a scattered point-form dataset, 
a line-form dataset and/or an area-form dataset. Surface modeling formulates an object in a grid 
system (Yue 2011). Each grid cell includes an estimate of the object that represents the character-
istics for that particular location. There are four advantages to represent data in grid form (Martin 
and Bracken 1991; Deichmann 1996; Yue et al. 2008; 2009, 2010a, 2010b): (1) a regular grid can 
be easily regrouped into any new aerial arrangement; (2) ecological data organized in a grid form 
can facilitate compatibility among heterogeneous datasets; (3) multiresolution and multisource 
information can be amalgamated more easily when data are in a grid form, and (4) some of the 
problems caused by different types of boundaries may be avoided when data are converted into 
a grid form.

Surface modeling began to be used effectively in the 1960s when computers became more 
accessible (Lo and Yeung 2002). However, its development was limited until the 1990s because 
of the limited computational capacity of computers. The application of surface modeling requires 
powerful software and large storage capacities to handle spatially explicit data over large regions. 
Significant advances in surface modeling were intimately associated with developments in sev-
eral areas, including trend surface analysis (TSA) (Ahlberg et  al. 1967; Schroeder and Sjoquist 
1976; Legendre and Legendre 1983), digital terrain modeling (Stott 1977), surface approximation 
(Long 1980), spatial simulation of wetland habitats (Sklar et  al. 1985), spatial pattern matching 
(Costanza 1989), spatial prediction (Turner et al. 1989), and modeling of coastal landscape dynam-
ics (Costanza et al. 1990). Technological advances in remote sensing (RS) and geographic informa-
tion systems (GIS) and the accumulation of spatially explicit data have contributed to the extensive 
development and application of surface modeling to analyze and understand the spatial phenomena 
of ecological processes for the last three decades (Yue 2011). Landmark case examples can be found 
in Sklar et al. (1985) for the spatial simulation model of habitat changes in relation to marsh type, 
hydrology, subsidence, and sediment transport for a generalized coastal wetland area, Turner et al. 
(1989) for the comparison of spatial patterns and Costanza and Maxwell (1991) for application on 
workstations.

Then, methodological developments continued on several fronts, such as the simulation of eco-
systems with spatial heterogeneity (Gao 1996), a pairwise potential modeling approach (Reich et al. 
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1997), a patch-based spatial modeling approach to analyze the effects of spatial heterogeneity on 
ecological processes (Wu and Levin 1997), a daily high-resolution weather generator (Friend 1998), 
and a GIS-based spatial modeling method for the simulation of the geographic distribution of wild-
life populations (Ji and Jeske 2000). The global carbon cycle was examined using different surface 
models that were sensitive to spatial distributions of productivity, biomass, and soil organic matter 
(Haxeltine and Prentice 1996; Svirezhev 2002). Perry and Enright (2002) developed a spatially 
explicit grid-based model to examine the extent to which past and future modifications in distur-
bance regimes may affect landscape structure.

The surface modeling method in forestry applications has embodied the forest properties 
and parameters of surface simulation. The classical method for obtaining forest attributes and 
parameters includes forest resources surveys in which population estimates are derived using 
samples. The measured data from forest resources survey form a point-form dataset. However, 
forest attributes and parameters (e.g., forest type, stock volume, biomass, and carbon storage) 
should be expressed as grid or raster data to explain the distribution. Surface modeling is an 
efficient approach to convert point-form data into grid data and consists of an appropriate 
method to simulate the distribution of forest attributes and parameters based on different data 
amalgamations that may originate from remote sensing observations and ground-based obser-
vation data.

In this chapter, some methods of earth surface modeling are briefly introduced, with a focus on 
the method used for high accuracy surface modeling (YUE-HASM). For more details, readers are 
encouraged to consult Yue (2011) for a complete introduction on the subject. A case study of the 
application of surface modeling to quantify carbon stocks in China is presented.

18.2  METHODS OF SURFACE MODELING

18.2.1  Trend Surface Analysis

Trend surface analysis uses least-squares regression to fit a trend surface from sparse data that 
consist of spatial coordinates. Good approximations can be obtained when the trend surface is for-
mulated as a “n” order polynomial surface:
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Where z(x,y) is the value of the trend surface at the grid (x, y); x and y are the independent variables; 
ai,j(i = 1, . . . , n; j = 1, . . . , n) are parameters to be simulated; and n is the order of the polynomial 
surface. There is a major weakness with TSA. Details can be lost because the poor smoothing in 
some surface regions may affect the fit of other surface regions. Also, TSA assumes that the residu-
als are independent, but this assumption is violated most of the time, which has consequences on the 
estimated variance (Oliver and Webster 1990).

18.2.2 I nverse Distance Weighted Method

The inverse distance weighted method (IDW) can be formulated as (Shepard 1968)
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where, zi,j indicates the estimate made at the location (i, j) for which an estimate is required because 
of the absence of measurements. The estimates are computed from the mi,j neighbor observations; 
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zk is the kth neighbor observation; di,j,k is the distance from zk to (i, j); and a is the parameter to be 
determined. The main shortcoming of IDW is the inability to integrate the spatial structure and 
information beyond the neighborhood (Zhao et al. 2005, Magnussen et al. 2007).

18.2.3  Triangulated Irregular Network

The triangulated irregular network (TIN) method is well recognized to represent surface models 
in GIS (Bengtsson and Nordbeck 1964), as it supports a simple data structure and can easily be 
rendered using common graphics hardware (Yang et al. 2000). TIN is composed of nodes, edges, 
triangles, topological information, and a hull. This method is based on linear interpolation in a 
triangulated irregular network and is used to fit irregularly distributed points into a surface of each 
triangle. It is one of the basic models used to represent digital terrain pieces of land on the Earth’s 
surface (Tse and Gold 2004).

Even though TIN models of the terrain surface are well known in GIS, their main shortcoming 
is that they ignore nonlinear information and are unable to represent cliffs, caves, or holes (Tse and 
Gold 2004).

18.2.4 K riging

Kriging, named after the South African mining engineer D.G. Krige (Kleijnen and van Beers 2005), 
is the term used for a family of generalized linear least-squares regression algorithms that interpo-
late values in a random field for unobserved locations using observations from neighborhood loca-
tions (Krige 1951). Considered as a fundamental method in geostatistics, Kriging includes ordinary 
kriging (OK), co-kriging, and disjunctive kriging (Kleijnen 2009).

18.2.5  Spline

There are different types of spline: uniform rational basis-spline, uniform non-rational basis-spline, 
non-uniform-non-rational basis-spline, and non-uniform rational basis-spline. These different 
methods are based on the basis-spline, which includes cubic polynomial regressions with any num-
ber of curve segments (Watt 2000). Each curve segment has four control points and each control 
point influences four curve segments, which is the local control property of the basis-spline curve. 
The entire set of curve segments, Q(u), is defined as one basis-spline curve
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where i is a nonlocal control point number; u is a global parameter; Pi is the ith control point; m is 
total number of the control points; and Bi(u) is the ith basis-spline.

18.2.6 YUE -HASM

The method used for high accuracy surface modeling (YUE-HASM) is a more complex approach 

than the previous ones. When the surface can be represented as z x y f x y= ( )( ), , , , then the first 
fundamental coefficients can be formulated as:
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The second fundamental coefficients can be formulated as:
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These two coefficient sets must satisfy the following Gauss equation set,
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are the second kind of Christoffel symbols.

If x yi j,( ){ } is an orthogonal division of a computational domain and h  the simulation step 

length, the central point of lattice ( , )x yi j  could be expressed as ( . ( ) , . ( ) )0 5 1 0 5 1h i h h j h+ - + - , 

where i I I= +0 1 2 1, , ,..., ,  and j J J= +0 1 2 1, , ,..., , . If f n
i,j
( )  (n ≥ 0) represents the iterants of f x y( , )  at 

( , )ix yj  in the nth iterative step, the interpolations are represented by fi,j
0( ){ } based on sampling values 

fi,j{ }. In terms of numerical mathematics (Quarteroni et al. 2000), the iterative formulation of the 

YUE-HASM master equation set can be expressed as (Yue et al.,2013b; Zhao and Yue 2014),
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where E n
i,j
( ) , F n

i,j
( )  and G n

i,j
( ) are the iterants of the first fundamental coefficients at the nth iterative step; 

L n
i,j
( ) , Mi,j

(n) and N n
i,j
( )  represent the iterants of the second fundamental coefficients at the nth iterative 

step; ( ) ,G11
1

i j
n( ) , ( ) ,G11

2
i j
n( ) , ( ) ,G22

1
i j
n( )  and ( ) ,G22

2
i j
n( )  are the iterants of the Christoffel symbols of the second 

kind at the nth iterative step, which depend only upon the first fundamental coefficients and their 
derivatives.

The matrix formulation of YUE-HASM master equations can be respectively expressed as,
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only one non-zero element, 1, in every row of the coefficient matrix, S, making it a sparse matrix. 

The solution procedure of YUE-HASM, taking the sampled points as its constraints, can be trans-

formed into solving the following linear equation set in terms of least squares principle.
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The parameter l  is the weight of the sampling points and determines the contribution of the sam-
pling points to the simulated surface. l  can be a real number, which means all sampling points 
have the same weight, or a sector, which means every sampling point has its own weight. An area 
affected by a sampling point in a complex region is smaller than in a flat region. Therefore, a smaller 
value of l  is selected in a complex region, and a bigger value of l  is selected in a flat region.

Let
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, then YUE-HASM has the following formulation:

W z v× =+( ) ( )n n1 	 (18.14)

In terms of Gauss-Codazii equation set, iteration stopping criterion of YUE-HASM is formu-
lated as,

j f j f1 2 2 1

2

y x P Q- - -( ) +

j f j f2 1 1 2

2

x y Q P- - -( )  	 (18.15)

Q Px y+ + -( )j j f f1 2 1 2

2
 <EI

where ; ; ; ; ;j j f f1 2 1 2= = = = = =L

E

N

G
P

E

G
Q

G

E

M

G

M

E

y x ; EI is the iteration stopping 

criterion of YUE-HASM determined by an application requirement for accuracy.
Many studies described the essential significance of both satellite remotely sensed data and 

ground-based observation data, but the challenge is how to combine these two kinds of informa-
tion. YUE-HASM incorporates reinforced machine learning and provides a solution to this chal-
lenge (Haber 2021). It can be transformed into a large sparse linear system and combined with 
the HarrowHassidim-Lloyd (HHL) quantum algorithm to support quantum machine learning (Yue 
et al. 2022, 2023).

There are several applications of YUE-HASM, including the simulation of climate change (Yue 
et  al. 2013a, 2013b, Zhao and Yue 2014), the development of digital elevation maps (Yue et  al. 
2007a, 2010a, 2010b, Yue and Wang 2010), and the interpolation of soil properties (Yue 2011, Shi 
et al. 2009, 2011).

18.3  CASE STUDY: SURFACE MODELING FOR 
FOREST CARBON STOCKS IN CHINA

By integrating photosynthesis, autotrophic respiration, and litterfall fluxes, biomass dynamics 
reflects the potential of vegetation to act as a long-term carbon sink (Thurner et al. 2014). Forest 
ecosystems cover more than 41 million km2 of the Earth’s land area and are thought to contain about 
half of the carbon in terrestrial biomes (Prentice et al. 2001). Many studies on forest carbon stocks 
have been conducted in China in recent years.

According to the Integrated Terrestrial Ecosystem C-budget model, China’s forests were a 
source of 21.0 ± 7.8 TgC yr-1 from 1901 to 1949 due to human activities. This source increased by 
122.3 ± 25.3 TgCyr-1 between 1950 and 1987 due to intensified human activities. However, forests 
became large sinks of 176.7 ± 44.8 TgCyr-1 from 1988 to 2001 because of large-scale plantation pro-
grams and forest regrowth in previously disturbed areas as well as climatic warming, atmospheric 
CO2 fertilization, and N deposition (Wang et al. 2007). The latter factors contributed to increasing 
forest growth, resulting in more CO2 uptake. Vegetation carbon sink was defined as carbon seques-
tration from the atmosphere (1.63 times NPP), vegetation carbon stock as the carbon content that 
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aboveground vegetation holds, and soil carbon stock as the carbon content that soil organic matter 
holds. In terms of these definitions, the vegetation carbon stock was 1.58 Pg C and the soil carbon 
stock was 1.41 Pg C in forest ecosystems of China from 1981 to 2000 (Deng et al. 2011). Forest 
stands have great potential to sequester more biomass carbon in the future due to large fractions of 
young and middle-aged forests. According to available national-scale information, mean vegetation 
carbon in China was 36.98 Pg, and mean soil carbon was 100.75 Pg. Forests had mean vegetation 
carbon of 5.49 Pg, whereas grasslands had 1.41 Pg (Ni 2013).

According to the continuous biomass expansion factor (BEF) method, based on field measure-
ments of forests plots in different age classes and forest inventory data, carbon density (CD) of the 
forests in the Pearl River Delta increased by 14.3% from 1.908 to 2.181 kg C m-2 during the period 
from 1989 to 2003 (Yang and Guan 2008). The factors mean biomass density (MBD), mean ratio 
(MR), and continuous biomass expansion factor (BEF) were applied to forest inventory data to 
estimate China’s forest biomass carbon stocks and their changes from 1984 to 2003. In terms of 
the BEF, carbon stocks of forest biomass increased from 4.0 to 5.9 Pg C. According to the MR, the 
carbon stocks (CS) rose from 4.2 to 6.2 Pg, and according to the MBD, the carbon stocks grew from 
5.7 to 7.7 Pg (Guo et al. 2010). A study based on seven forest inventories from 1973 to 2008 indicated 
that total biomass carbon stock (CS) for all forest types increased by 65% from 1973 to 2008 and 
recently reached 8.12 Pg in China (Zhang et al. 2013).

A satellite-based approach suggested that the averaged forest biomass CS and CD in northeast-
ern China were respectively 2.10 Pg (1 Pg = 1015 g) and 4.465 kg m-2 between 1982 and 1999. The 
forest biomass CS increased by 7% with an annual rate of 0.0082 Pg (Tan et al. 2007). It was high-
lighted that the vegetation restoration in the subalpine coniferous forest was a large carbon sink in 
the western Sichuan province of China (Xian et al. 2009). The total forest biomass of China aver-
aged 5.79 Pg C between 1981 and 1999, with an average biomass density of 4.531 kg C m-2. The 
total forest biomass CS increased from 5.62 Pg in the early 1980s to 5.99 Pg by the end of the 
1990s, giving a total increase of 0.37 Pg and an annual sequestration rate of 19 kg yr-1 (Piao 
et al. 2005). China’s terrestrial ecosystems were a net carbon sink in the range of 0.19–0.26 Pg 
carbon per year and absorbed 28–37% of its cumulated fossil carbon emissions during the 1980s 
and 1990s. Northeast China is a net source of CO2 due to overharvesting and forest degradation 
while southern China accounts for more than 65% of the carbon sink, which can be attributed to 
regional climate change, large-scale plantation programs initiated in the 1980s, and shrub recov-
ery (Piao et al. 2009).

18.3.1 D ata

18.3.1.1  Data Produced Using the National Forest Inventory Database
The national forest inventory database consists of seven datasets obtained from inventory data mea-
sured from 1984 to 1988 (termed as P1), 1989 to 1993 (P2), 1994 to 1998 (P3), 1999 to 2003 (P4), 
2004 to 2008 (P5), 2009 to 2013 (P6), and 2014 to 2018 (P7). The data included 160,000 permanent 
sample plots and 90,000 temporary sample plots scattered over the whole land of China. The bio-
mass density of each forest type in each province was calculated using linear relationships between 
a biomass expansion factor (BEF) and timber volume (Table 18.1):

	 BEF a
b

Vi j i
i

i j
,

,

= +  	 (18.16)

The carbon density of each forest type in each province was calculated by multiplying biomass 
density by a carbon factor (CF) (Table 18.2). The CS by forest type in individual provinces was cal-
culated by multiplying forest type area by CD. The total CS in China was the sum of the CS of all 
forest types in the 31 provinces of China, excluding Taiwan, Hong Kong, and Macao.
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TABLE 18.1 
Parameters Used to Calculate the Biomass Expansion Factor (BEF) for Different Forest 
Types in China (From Fang et al. 2007)

Forest Type a (kg/m3) b (kg/m2) Number of Samples R2

Abies, Picea 551.9 4.8861 24 0.78

Tsuga, Cryptomeria, Keteleeria 349.1 3.9816 30 0.79

Larix 609.6 3.3806 34 0.82

P. koraiensis 572.3 1.6489 22 0.93

P. sylyestris var. mongolica 1,112 0.2695 15 0.85

P. tabulaefomis 869 0.9121 112 0.91

P. armandii 585.6 1.8744 9 0.91

P. massoniana, P. yunnanensis 503.4 2.0547 52 0.87

Cunninghamialanceolata 465.2 1.9141 90 0.94

Cypress 889.3 0.7397 19 0.87

Other pines and conifer forests 529.2 2.5087 19 0.86

Deciduous oaks 1,145.3 0.8547 12 0.98

Betula 1,068.7 1.0237 9 0.7

Mixed deciduous and Sassafras 978.8 0.5376 35 0.93

Eucalyptus 887.3 0.4554 20 0.8

Casuarina 744.1 3.2377 10 0.95

Populus 496.9 2.6973 13 0.92

Lucidophyllous forests 929.2 0.6494 24 0.83

Nonmerchantable woods 1,178.3 0.2559 17 0.95

Mixed conifer and deciduous 813.6 1.8466 10 0.99

Tropical forests 797.5 0.042 18 0.87

TABLE 18.2 
Carbon Factor (CF) for Every Forest Type in China (From Li and Lei 2010)

Forest Type CF Forest Type CF Forest Type CF

Pinuskoraiensis 0.5113 Pinusyunnanensis 0.5113 Tilia 0.4392

Abiesfabri 0.4999 Pinuskesiya var. langbianensis 0.5224 Sassafras tzumu 0.4848

Piceaasperata 0.5208 Pinusdensata 0.5009 Eucalyptus robusta 
Smith

0.5253

Tsugachinensis 0.5022 Cunninghamialanceolata 0.5201 Casuarinaequisetifolia 0.4980

Cupressusfunebris 0.5034 Cryptomeriafortunei 0.5235 Populus 0.4956

Larixgmelinii 0.5211 Metasequoiaglyptostroboides 0.5013 Firmiana 0.4695

Pinussylvestrisvar. 
mongolica

0.5223 Coniferous mixed forest 0.5101 Nonmerchantable 
woods

0.4834

Pinusdensiflora 0.5141 Broad-leaved and coniferous 
mixed forest

0.4978 Broad-leaved mixed 
forest

0.4900

Pinusthunbergii 0.5146 Fraxinusmandschurica, 
Juglansmandshurica, 
Phellodendronamurense

0.4827 Coppice 0.5000

Pinustabuliformis 0.5207 Cinnamomumcamphora 0.4916

Pinusarmandii 0.5225 Phoebe zhennan 0.5030

Keteleeriafortunei 0.4997 Oaks 0.5004

Pinusmassoniana 0.4596 Betula 0.4914
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The following formulations were used to calculate the forest CS in China:

	 TCS A BCDi,j i, j= ⋅ ⋅
==
∑∑
j 1

N

i 1

M
-1210  	 (18.17)

	 BCD W CFi,j i, j i= ⋅  	 (18.18)

	 W BEF Vi, j i i, j= ⋅  	 (18.19)

where,TCS  is the total forest carbon stocks of China (Pg); BCDi j,  is the biomass carbon density of 
the ith forest type in the jth province, area weighted by mean forest carbon stocks (kg/m2); Ai, j is the 
area of the ith forest type in the jth province (m2); M and N are respectively the number of forest types 
and number of provinces in China; Wi j,  is the area weighted mean forest biomass of the ith forest 
type in the jth province (kg m-2); CFi  is the carbon factor of the ith forest type; Vi j,  is the area weighted 
mean timber volume of the ith forest type in the jth province (m3 m-2); BEFi is the biomass expansion 
factor of the ith forest type (kg m-3); ai  (kg m-3) and bi (kg m-2) are constants for the ith forest type to 
be simulated.

The CFi  value for coniferous mixed forests is an average of CFi  values for all coniferous forest 
types. For broad-leaved mixed forests and broad-leaved and coniferous mixed forests, the CFi  val-
ues were the averages of CFi  values for broad-leaved mixed forests and broad-leaved and coniferous 
forests, respectively.

18.3.1.2  Data Produced Using a Satellite-Based Approach (SBA)
The satellite data consisted of the Normalized Difference Vegetation Index (NDVI) from the Earth 
Observation System’s moderate-resolution imaging spectroradiometer (EOS MODIS) at a spatial 
resolution of 1 × 1  km and 1-month interval. The spatial distribution map of China forests was 
obtained from the Vegetation Map of China published by the Institute of Botany, Chinese Academy 
of Sciences, in 2000. The carbon densities from forest inventory data were matched with NDVI data 
through the spatial distribution map of China forests.

The biomass carbon density was closely related to latitude, longitude, and the maximum value of 
the monthly averaged NDVI values during periods of national forest inventories, such as from 2004 
to 2008 (Piao et al. 2005), i.e.,

	
BCD NDVI Lat Lon

Lat L

j j j j

j

= - -

+ +

93 351 2 96 21 388

0 047 0 0912

. ln( ) . .

. . oonj
2 1339 03+ .

	 (18.20)

where, NDVI j  is the mean value of the maximum values of the monthly averaged NDVI values in a 
period of the national forest inventory in the jth province; Lat j  and Lonj are latitude and longitude of 
the center of the jth province, respectively. The coefficient of correlation was 0.91 (P<0.001).

18.3.2  Validation

Cross-validation included four steps: (i) 5% of the control points of each forest type in each province 
were removed for validation prior to model creation; (ii) the spatial distribution of average forest CS 
in China from 2004 to 2008 was simulated at a spatial resolution of 5 × 5 km using the remaining 
95% of the control points; (iii) mean absolute error (MAE) and mean relative error (MRE) were 
calculated using the 5% validation set; and (iv) the 5% validation set was returned to the pool of 
available stations for the next iteration, and another 5% validation set was removed. This process 
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was repeated until all of the control points were used for validation at least one time, and the simula-
tion error statistics for each control point could be calculated.

The MAE and MRE were respectively formulated as,

	 MAE
n

o si i
i

n

= -å1
	 (18.21)

	 MRE
MAE

n
oi

i

n
=
å1

	
(18.22)

where,oi represents forest carbon stocks at the ith control point for validation, si  is the simu-
lated value at the ith control point for validation, and ni  is the total number of control points 
for validation.

The cross-validation results indicated (Figure 18.1) that MAEs from YUE-HASM and SBA were 
1.303 kg·m-2 and 1.919 kg·m-2, respectively, while MREs were 33% and 49%. MRE for YUE-HASM 
was 16% lower than MRE for SBA. A  regression analysis showed that the simulated CS using 
YUE-HASM was related to the observed CS more closely compared with the results obtained using 
SBA. The correlation coefficient between the YUE-HASM results and the observed data was 0.99 
while the coefficient between the SBA results and the observed data was 0.89 (Figure 18.2). In other 
words, YUE-HASM had a much higher accuracy than SBA.

The annual mean carbon stock (AMCS) predicted using YUE-HASM for all forest types in 
China was 7.08 Pg between 2004 and 2008, of which AMCS for coniferous, broadleaf, and mixed 
forests were respectively 2.74, 3.95, and 0.39 Pg, respectively (Table 18.3). The annual mean carbon 
density (AMCD) was 4.55 kg/m2 between 2004 and 2008, of which AMCD for coniferous forests, 
broadleaf forests, and mixed forests were 4.351, 4.742, and 4.198 kg/m2, respectively. SBA under-
estimated AMCD for coniferous and broadleaf forests but overestimated AMCD for mixed forests.

18.3.3 R esults

A zoning system dividing the land mass of China into nine regions with similar temperature, pre-
cipitation, and soil regimes was adopted to facilitate the analysis of the changes in forest carbon 
storage among different locations (Zhou et al. 1981). The nine regions were respectively termed 
as Ri (i=1 to 9) (Figure 18.3). The simulation results using YUE-HASM indicated that about 90% 
of AMCS was distributed in the R3, R5, R6, R7, and R9 regions, which accounted for 28.6%, 
27.9%, 15.3%, 11.7%, and 6.1%, respectively, in the 2004–2008 period. The three largest AMCDs 
were in the regions R5 (Tibet plateau), R2 (arid area), and R3 (northeastern China), and the two 
smallest in R8 and R9 (Table 18.4 and Figure 18.1b). Results by forest types indicated that the 
AMCD of evergreen forests was greater than the AMCD for deciduous forests (Table 18.5). AMCS 
for evergreen coniferous forests had the highest proportion, accounting for 33.05%; which was 
followed by deciduous broad-leaved forests, accounting for 29.8%; and evergreen broad-leaved 
forests, accounting for 25.99% (Table 18.5). The broad-leaved and coniferous mixed forests and 
the deciduous coniferous forests accounted for the first two smallest proportions of the total CS, 
respectively 5.51% and 5.65%.

YUE-HASM simulation results indicated that AMCS rose 4.22 Pg from P1 to P7, mainly 
because of the increase in AMCD and the expansion of forest area (Table 18.6). AMCD increased 
by 1.035 kg m-2 from P1 to P7. The forest area increased by 0.3458 million km2 in the same period. 
The regression analysis of the patterns of increase in AMCS, AMCD, and forest area resulted in 
significant relationships.
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FIGURE 18.1  Spatial distribution of annual mean carbon density (AMCD) in forests during the 2004–2008 
period in China: (a) observed, (b) using a satellite-based approach, and (c) YUE-HASM earth surface model-
ing methods.

(Continued)
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FIGURE 18.2  Comparison between observed and simulated results for annual mean carbon density 
(AMCD) in the 31 provinces obtained by (a) satellite-based approach and (b) YUE-HASM earth surface 
modeling methods.

FIGURE 18.1  (Continued)
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TABLE 18.3 
Comparison of Annual Mean Carbon Stocks (AMCS) and Annual Mean Carbon Density 
(AMCD) Using a Satellite-Based Approach (SBA) and YUE-HASM for Different Forest 
Types in China

Forest Type

SBA YUE-HASM

AMCS (Pg) AMCD (kg/m2) AMCS (Pg) AMCD (kg/m2)

Coniferous forests 2.48 3.937 2.74 4.351

Mixed forests 0.46 4.926 0.39 4.198

Broadleaf forests 3.61 4.338 3.95 4.742

Total 6.55 7.08

FIGURE 18.3  The nine regions of China characterized by similar temperature and precipitation conditions 
and soil regimes. R1 represents Inner Mongolia and the area along the Great Wall, R2 represents Arid area 
of China, R3 represents Northeastern China, R4 represents Loess plateau, R5 represents Tibet plateau, R6 
represents Southwest China, R7 represents Southern China, R8 represents Huang-Huai-Hai River Plain, and 
R9 represents Middle and lower reaches of Yangtze River Basin.
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TABLE 18.5 �
Annual Mean Carbon Density (AMCD) and Annual Mean Carbon Stocks (AMCS) for 
Different Forest Types in China from 2014 to 2018

Forest Types AMCD (kg m-2) AMCS (Pg) Percentage (%)

Deciduous coniferous forests 4.214 0.59 6.51

Evergreen coniferous forests 4.527 2.49 27.48

Broad-leaved and coniferous mixed forests 4.467 0.67 7.40

Deciduous broad-leaved forests 4.847 2.86 31.57

Evergreen broad-leaved forests 6.622 2.45 27.04

Total 9.06 100

TABLE 18.6 
Annual Mean Carbon Stocks (AMCS) and Annual Mean Carbon Density (AMCD) of China 
in the Seven Study Periods (Excluding the Taiwan Province, Hong Kong, and Macao)

Periods Area (million km2) AMCS (Pg) AMCD (kg m-2)

P1 1.2101 4.84 4.001

P2 1.2864 5.55 4.315

P3 1.2920 5.60 4.334

P4 1.4279 6.38 4.469

P5 1.5559 7.08 4.550

P6 1.6460 7.97 4.842

P7 1.7989 9.06 5.036

TABLE 18.4 
Annual Mean Carbon Stocks (AMCS) and Annual Mean Carbon Density (AMCD) for 
Forests in the Nine Regions of China from 2014 to 2018 and from 1984 to 1988

Regions

2014–2018 1984–1988 CS 
Accumulation 

Rate
(Pg·year-1)

AMCD
(kg·m-2)

AMCS
(Pg)

Percentage
(%)

AMCD
(kg·m-2)

AMCS
(Pg)

R1 4.946 0.43 4.75 2.666 0.16 0.0090

R2 7.250 0.26 2.87 6.358 0.15 0.0037

R3 5.122 2.67 29.47 4.493 1.59 0.0360

R4 3.751 0.25 2.76 3.035 0.13 0.0040

R5 11.079 2.45 27.04 6.718 0.99 0.0487

R6 4.204 1.35 14.9 3.734 0.82 0.0177

R7 3.992 0.52 5.74 3.643 0.36 0.0053

R8 2.370 0.08 0.88 1.515 0.03 0.0017

R9 2.736 1.05 11.59 2.358 0.62 0.0143

Total 9.06 100 4.84 0.1407
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	 AMCS t t( ) = +0 6779 3 9286. . , R2=0.96	 (18.23)

	 AMCD t t( ) = +0 1563 3 8817. . , R2=0.95	 (18.24)

	 FA t t( ) = +0 0982 1 10668. . , R2=0.96	 (18.25)

where, t  corresponds to Pt, t = 1 to 7. AMCS t( ), AMCD t( ), and FA t( ) are respectively AMCS, 
AMCD, and forest area in the period of Pt.

Although AMCS increased in the nine regions from P1 to P7, it spatially varied over China, in 
concordance with forest distribution (Figure 18.4, Tables 18.4 and 18.7). In the regions R1 and R8, 
both AMCS and AMCD were characterized by a pattern of increase from P1. The smallest AMCS 
were obtained in R8, which accounted for only 0.88% of the total AMCS of China, and the smallest 
AMCD of 2.37 kg/m2 in the period P7 as well as the lowest CS accumulation rate of 0.0017Pg·yr-1. 
In R1, AMCS accounted for 4.75% of the total AMCS of China in the period P7; the CS accumula-
tion rate was 0.0090 Pg·yr-1 on average.

The region R3 had the largest AMCS accounting for 29.47% of total AMCS of China in P7. 
The AMCS had a monotonically increasing trend since P1. The second largest AMCS appeared in 
the region R5. Its AMCS accounted for 27.04% of the total AMCS. It has the largest AMCD and 
the fastest CS accumulation rate of 0.0487 Pg year-1 (Table 18.7). In the regions R4 (loess plateau), 
R6, and R9, both AMCS and AMCD increased since P3. AMCS in R4, R6, and R9 accounted for 
2.76%, 14.9%, and 11.59%, respectively, in the period P7. The CS accumulation rate was 0.0040, 
0.0177, and 0.0143 Pg year-1. In R2, AMCS accounted for 2.87% in the period P7; AMCS and 
AMCD increased from the periods P4 to P7. The accumulation rate in CS was 0.0037 Pg year-1. In 
R7, AMCS accounted for 5.74%; AMCS and AMCD increased from the period P4 to P7. The CS 
accumulation rate was 0.0053 Pg year-1.

In terms of forest types, evergreen broad-leaved forests had the fastest CS accumulation rate and 
the largest AMCD while deciduous broad-leaved forests had the biggest AMCS (Table 18.8). AMCS 
of broad-leaved forests increased during the seven periods while AMCS for evergreen broad-leaved 
forests increased from 0.63 to 2.45 Pg from P1 to P7, and it increased from 1.38 to 2.86 Pg in 
deciduous broad-leaved forests during the same period. Their patterns of increase had the following 
regression equations, respectively:

	 AMCS t t1 0 305 0 3014( ) = +. . , R2=0.99	 (18.26)

	 AMCS t t2 0 2539 0 9800( ) = +. . , R2=0.97	 (18.27)

where, t corresponds to Pt, t = 1 to 7; AMCS t1 ( ) and AMCS t2 ( ) are, respectively, AMCS for ever-
green broad-leaved and deciduous broad-leaved forests in the period Pt.

AMCS for deciduous coniferous forests fluctuated among periods (Table 18.8). Evergreen conif-
erous and broad-leaved and coniferous mixed forests showed general patterns of increase in AMCS, 
which were formulated by the following regression equations,

	 AMCS t t3 0 1521 1 5257( ) = +. . , R2=0.85	 (18.28)

	 AMCS t t4 0 1046 0 1400( ) = -. . , R2=0.90	 (18.29)

where, t  corresponds to Pt, t = 1 to 7; AMCS t3 ( ) represents AMCS for evergreen coniferous forests 
in the period of Pt, and AMCS t4 ( ) is AMCS for broad-leaved and coniferous mixed forest.
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FIGURE 18.4  Spatial distribution of forest annual mean carbon density (AMCD) in China in the seven study 
periods: (a) 1984–1988 (P1), (b) 1989–1993 (P2), (c) 1994–1998 (P3), (d) 1999–2003 (P4), (e) 2004–2008 (P5), 
(f) 2009–2013 (P6), and (g) 2014–2018 (P7).

(Continued)
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FIGURE 18.4  (Continued)
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FIGURE 18.4  (Continued)
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18.3.4 D iscussion

Ground national forest inventory is able to accurately estimate forest carbon stocks with high tem-
poral resolution using sample plots, but these sample plots are too sparse to satisfy the spatial simu-
lation of carbon stocks with required accuracy. SBA can supply spatially continuous information 
about the surface of forest carbon stocks, which is impossible to obtain from ground-based inves-
tigations, but remote sensing description has considerable uncertainties. YUE-HASM overcame 
the shortcomings of the ground national forest inventory and SBA by fusing information about the 
details of the carbon stocks observed on the Earth surface and the change in the carbon surface 
observed from outside the Earth surface. The cross-validation demonstrates that YUE-HASM is 
16% more accurate than the SBA.

In terms of the results obtained from YUE-HASM, forest carbon stocks of China increased by 
4.42 Pg from 1984 to 2018. The Grain for Green program made a great contribution to this carbon 
stock increase. This program aims at restoring the forests and grasslands of China to prevent soil 
erosion. Program designers made the steepness of slopes, one of the main criteria on which plots 
were selected, for inclusion into the Grain for Green program (Xu et al. 2006). The steepness crite-
rion means that the program targets land with a slope greater than 25°.

The Grain for Green program was divided into three phases: the experimental phase from 1999 
to 2001, the construction phase from 2002 to 2010, and the consolidation phase from 2011 to 2020. 
By the end of 2001, 1.206 million hectares of farmland had been converted into forestland or grass-
land, and 1.097 million hectares of barren land had been afforested. Before 2011, 14.667 million 
hectares of farmland would have been converted to forestland or grassland, for which almost all 

FIGURE 18.4  (Continued)
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TABLE 18.9 
Areas of Converted Farmlands and Afforested Barren Lands in the Grain for Green 
Program in China (Million Hectares)
Year Converted Farmlands Afforestation on Bare Lands Total

1999 0.381 0.066 0.448

2000 0.405 0.468 0.872

2001 0.420 0.563 0.983

2002 2.647 3.082 5.729

2003 3.367 3.767 7.133

2004 0.667 3.333 4.000

2005 1.114 1.321 2.435

1999–2010 14.667 17.333 32

farmland with a slope more than 25° would have been converted, and 2.667 million hectares of 
cultivated desertification land have been converted to grassland; 17.333 million hectares of barren 
land would have been afforested. During the consolidation phase, scientific management of the 
converted land and afforestation land will be strengthened to keep the achievement of the Grain for 
Green program, for which 72.933 billion kg of grains and 11.515 billion of RMB have been planned 
(Li 2006).

In 1999, the pilot program was first experimented in three provinces, Gansu, Shaanxi and 
Sichuan; 0.381 million hectares of farmland were converted into forestland, and 0.066 million hect-
ares of barren land were afforested. In 2000, the experimental area was expanded to 17 provinces; 
the converted farmland and the afforested barren land were respectively 0.41 million hectares and 
0.449 million hectares. In 2001, 20 provinces were involved in the experiment; 0.42 million hect-
ares of farmland were converted into forestland, and 0.563 million hectares of barren land were 
afforested (Table 18.9). In 2002, the Grain for Green program was overall launched in China. By 
2005, 9.001 million hectares had been withdrawn from farmland and planted with trees or con-
verted to permanent grassland.
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