

Technical
Innovation,
Solving
the

Data
Spaces
and
Marketplaces

Interoperability
Problems
for
the

Global
Data-Driven
Economy

i3-MARKET
Series
- Part
III:
The
i3-MARKET

FOSS
Handbook

RIVER
PUBLISHERS
SERIES
IN
COMPUTING
AND
INFORMATION

SCIENCE
AND
TECHNOLOGY

Series
Editors:

K.C.
CHEN

National
Taiwan
University,
Taipei,
Taiwan

University
of
South
Florida,
USA

SANDEEP
SHUKLA

Virginia
Tech,
USA

Indian
Institute
of
Technology
Kanpur,
India

The
 “River
 Publishers
 Series
 in
 Computing
 and
 Information
 Science
 and
 Technology”
 covers

research
which
ushers
the
21st
Century
into
an
Internet
and
multimedia
era.
Networking
suggests

transportation
 of
 such
 multimedia
 contents
 among
 nodes
 in
 communication
 and/or
 computer

networks,
to
facilitate
the
ultimate
Internet.

Theory,
technologies,
protocols
and
standards,
applications/services,
practice
and
implemen­
tation
 of
 wired/wireless
 networking
 are
 all
 within
 the
 scope
 of
 this
 series.
 Based
 on
 network

and
 communication
 science,
 we
 further
 extend
 the
 scope
 for
 21st
 Century
 life
 through
 the

knowledge
in
machine
learning,
embedded
systems,
cognitive
science,
pattern
recognition,
quan­
tum/biological/molecular
computation
and
 information
processing,
user
behaviors
and
 interface,

and
applications
across
healthcare
and
society.

Books
published
in
the
series
include
research
monographs,
edited
volumes,
handbooks
and

textbooks.
The
books
provide
professionals,
researchers,
educators,
and
advanced
students
in
the

field
with
an
invaluable
insight
into
the
latest
research
and
developments.

Topics
included
in
the
series
are
as
follows:­

•
 Artificial
intelligence

•
 Cognitive
Science
and
Brian
Science

•
 Communication/Computer
Networking
Technologies
and
Applications

•
 Computation
and
Information
Processing

•
 Computer
Architectures

•
 Computer
networks

•
 Computer
Science

•
 Embedded
Systems

•
 Evolutionary
computation

•
 Information
Modelling

•
 Information
Theory

•
 Machine
Intelligence

•
 Neural
computing
and
machine
learning

•
 Parallel
and
Distributed
Systems

•
 Programming
Languages

•
 Reconfigurable
Computing

•
 Research
Informatics

•
 Soft
computing
techniques

•
 Software
Development

•
 Software
Engineering

•
 Software
Maintenance

For
a
list
of
other
books
in
this
series,
visit
www.riverpublishers.com

http://www.riverpublishers.com

Technical
Innovation,
Solving
the

Data
Spaces
and
Marketplaces

Interoperability
Problems
for
the

Global
Data-Driven
Economy

i3-MARKET
Series
- Part
III:
The
i3-MARKET

FOSS
Handbook

Editors

Martín
Serrano

Achille
Zappa

Waheed
Ashraf

Pedro
Maló

Márcio
Mateus

Edgar
Fries

Iván
Martínez

Alessandro
Amicone

Justina
Bieliauskaite

Marina
Cugurra

River Publishers

Published
2024
by
River
Publishers

River
Publishers

Alsbjergvej
10,
9260
Gistrup,
Denmark

www.riverpublishers.com

Distributed
exclusively
by
Routledge

4
Park
Square,
Milton
Park,
Abingdon,
Oxon
OX14
4RN

605
Third
Avenue,
New
York,
NY
10017,
USA

Technical
Innovation,
Solving
the
Data
Spaces
and
Marketplaces
Interoperability
Problems
for
the
Global

Data-Driven
Economy
/
by
Martín
Serrano,
Achille
Zappa,
Waheed
Ashraf,
Pedro
Maló,
Márcio
Mateus,

Edgar
Fries,
Iván
Martínez,
Alessandro
Amicone,
Justina
Bieliauskaite,
Marina
Cugurra.

ISBN:
978-87-7004-173-7
(hardback)

978-10-4009-244-6
(online)

978-10-0349-884-1
(master
ebook)

DOI:
10.1201/9788770041737

©
Martín
Serrano,
Achille
Zappa,
Waheed
Ashraf,
Pedro
Maló,
Márcio
Mateus,
Edgar
Fries,
Iván

Martínez,
Alessandro
Amicone,
Justina
Bieliauskaite,
Marina
Cugurra,
2024.
This
book
is
published

open
access.

Open
Access

This
 book
 is
 distributed
 under
 the
 terms
 of
 the
Creative
Commons
Attribution-Non-Commercial
 4.0

International
License,
CC-BY-NC
4.0)
(http://creativecommons.org/licenses/by/4.0/),
which
permits
use,

duplication,
 adaptation,
 distribution
 and
 reproduction
 in
 any
medium
 or
 format,
 as
 long
 as
 you
 give

appropriate
credit
to
the
original
author(s)
and
the
source,
a
link
is
provided
to
the
Creative
Commons

license
and
any
changes
made
are
 indicated.
The
 images
or
other
 third
party
material
 in
 this
book
are

included
in
the
work’s
Creative
Commons
license,
unless
indicated
otherwise
in
the
credit
line;
if
such

material
is
not
included
in
the
work’s
Creative
Commons
license
and
the
respective
action
is
not
permitted

by
statutory
regulation,
users
will
need
to
obtain
permission
from
the
license
holder
to
duplicate,
adapt,

or
reproduce
the
material.

The
use
of
general
descriptive
names,
registered
names,
trademarks,
service
marks,
etc.
in
this
publication

does
not
imply,
even
in
the
absence
of
a
specific
statement,
that
such
names
are
exempt
from
the
relevant

protective
laws
and
regulations
and
therefore
free
for
general
use.

The
publisher,
the
authors
and
the
editors
are
safe
to
assume
that
the
advice
and
information
in
this
book

are
believed
to
be
true
and
accurate
at
the
date
of
publication.
Neither
the
publisher
nor
the
authors
or
the

editors
give
a
warranty,
express
or
implied,
with
respect
to
the
material
contained
herein
or
for
any
errors

or
omissions
that
may
have
been
made.

http://creativecommons.org/licenses/by/4.0/
http://www.riverpublishers.com
https://dx.doi.org/10.1201/9788770041737

Contents

Preface
 xi

Who
Should
Read
this
Book?
 xiii

What
is
Addressed
in
the
i3-MARKET
Book
Series?
 xv

What
is
Covered
in
this
i3-MARKET
Part
III
Book?
 xvii

Acknowledgements
 xix

List
of
Figures
 xxi

List
of
Tables
 xxv

List
of
Contributors
 xxvii

List
of
Abbreviations
 xxxi

1
 i3-MARKET
Overview
 1

1.1
 Context
 .
 1

2
 General
Description
 3

2.1
 Deployment
and
Operational
Concepts

 3

2.1.1
 Consider
the
requirements
of
the
software

 3

2.1.2
 Evaluate
the
deployment
environment

 3

2.1.3
 Consider
automation
and
orchestration

 4

2.1.4
 Evaluate
containerization
options

 4

v

vi
 Contents

2.1.5
 Consider
monitoring
and
reporting
tools

 4

2.2
 Deployment Specification
 4

2.3
 Terminology .
 5

2.4
 i3-MARKET Artifacts Overview

 6

2.5
 Deployment Architecture View

 8

2.6
 i3-MARKET
Network
Infrastructure

 10

2.7
 Software Stack
 .
 10

2.8
 i3-MARKET Master Environment

 12

2.9
 i3-MARKET Pilot Environment

 15

3
 Backplane
API
Gateway
 19

3.1
 Objectives
 .
 19

3.2
 Solution Design/Blocks
 .
 20

3.2.1
 Authentication
and
authorization

 20

3.2.1.1
 Authentication
 21

3.2.1.2
 Authorization

 22

3.2.2
 Subsystem implementation

 23

3.2.3
 Data flows
 .
 24

3.2.4
 Service
Integration
Manager

 24

3.2.5
 Automatic
integration
mechanism

 25

3.2.6
 Subsystem OAS repository

 25

3.2.7
 Backplane repository

 26

3.2.7.1
 Remote images

 27

3.2.8
 Final deployment

 28

3.2.9
 Multiple
environments
support

 29

3.3
 Interfaces
 .
 31

3.3.1
 Developers
 .
 31

3.3.2
 OIDC discovery

 31

3.3.3
 OIDC core
 .
 31

3.3.4
 RegistryBlockchainController

 31

3.3.5
 RegistryController

 32

3.3.6
 AuthController
 .
 32

3.3.7
 Conflict-resolver service

 32

3.3.8
 FarewellController

 32

3.3.9
 HelloController .
 33

3.3.10
 OpenApiController
 33

3.3.11
 Notifications
 .
 33

3.3.12
 Queues
 .
 34

3.3.13
 Subscriptions .
 34

Contents
 vii

3.3.14
 PingController
 .
 35

3.3.15
 Cost-controller
 .
 35

3.3.16
 Price-controller .
 35

3.3.17
 RatingService .
 36

3.3.18
 Agreement
 .
 36

3.3.19
 Explicit user consent

 37

3.3.20
 Registration-offering

 37

3.3.21
 TokenizerController

 40

3.3.22
 Credential .
 41

3.3.23
 Issuer
 .
 41

4
 Deployment
Guides

 43

4.1
 Artifact Deployment Guides

 43

4.2

 MDS1: Manual Deployment

 44

4.3

 ADS1:
Automatized
Deployment
with
Ansible
Scenario
One
 45

4.4

 ADS2:
 Automated
 Deployment
 with
 Ansible
 and
 CI/CD

GitHub Pipelines Two .
 46

4.5

 ADS3:
Automated
Deployment
with
Docker
Compose
 .
 .
 .
 47

4.6

 Tagging Releases Strategy

 50

4.7

 Deployment Process
 .
 50

4.7.1
 Docker Compose

 51

4.7.2
 Technical Requirements

 52

4.7.3
 Specification
and
configurations

 53

4.7.4
 Deployment .
 54

5
 Operative
Specification

 57

5.1
 Libraries .
 57

5.2
 i3-MARKET APIs
 .
 58

5.3
 SDKs
 .
 62

5.4

 User Interfaces
 .
 63

5.5

 Install i3M Wallet
 .
 64

5.6

 Create
a
Wallet
and
a
Consumer
and/or
Provider
Identity
in

the Wallet
 .
 65

5.7

 Creating a Wallet 2/3
 .
 66

5.8

 Register a New OIDC Client

 66

5.9

 SDKs
 .
 74

6
 SDKs
and
WEB-RI

 79

6.1
 Approach
 .
 79

viii
 Contents

6.2
 SDK-Core Specification

 80

6.2.1

 SDK-core implementation

 82

6.2.2

 Core technology

 82

6.3
 SDK
Reference
Implementation
(SDK-RI)
.
 85

6.4
 WEB-RI .
 90

6.4.1

 Purpose .
 90

6.5
 IMPLEMENTATION
 .
 92

6.6
 Navigation:
 .
 95

7
 Deployment
Tools

 103

7.1
 Solution Design
 .
 103

7.1.1

 MDS1: manual deployment

 105

7.1.2

 ADS1:
automated
deployment
with
Ansible

 106

7.1.3

 ADS2:
 automated
 deployment
 with
 Ansible
 and

CI/CD GitHub pipelines

 107

7.1.4

 ADS3:
automated
deployment
with
Docker
Compose
 108

7.2
 i3-MARKET:
Onboarding
Process

 110

8
 SDK-RI
Specification

 113

8.1
 Objectives
 .
 113

8.2
 Technical Requirements .
 113

8.3
 SDK Reference Implementation

 113

8.4
 Core Technology
 .
 114

8.5
 Continuous
Integration
and
Deployment

 114

9
 SDK-RI
Installation
using
Docker

 117

9.1
 Setup
 .
 118

9.2
 Running the SDK-RI with Docker

 118

9.3
 Configuring and using SDK-RI

 118

10
 WEB-RI

 121

10.1 Purpose
 .
 121

10.2 Architecture
 .
 121

10.3 Sitemap
 .
 123

10.4 Run WEB-RI in Docker .
 124

11
 Central
Administration
Guide

 125

11.1 Cloud Management
 .
 125

11.2 Infrastructure Monitoring

 126

Contents
 ix

12
 Repositories
and
Open
Source

 129

12.1 GitLab/GitHub
 .
 131

12.2 GitLab Repository
 .
 132

12.3 GitHub Repository
 .
 132

12.4
 Developers’
portal
with
MKDocs
framework

 133

12.5 Open-Source Portal
 .
 134

12.5.1

 Developers,
users,
and
respective
roles
.
 136

12.5.2

 Roles
and
activities
of
developers
and
experts
in
the

governance model

 137

13
 Other
Content

 139

13.1
 Local Development using Node.js

 139

13.2
 Local Development using Docker

 140

13.2.1

 Development
scripts
in
the
docker
container

 140

14
 Conclusions

 141

References

 145

Index

 151

About
the
Editors

 153

https://taylorandfrancis.com

Preface

Data
 is
 the
oil
 in
 today’s
global
economy.
The
vision
 in
 the
 i3-MARKET

book
 series
 is
 that
 the
 fast-growing
 data
marketplaces
 sector
will
mature,

with
a
large
number
of
data-driven
opportunities
for
commercialization
and

activating
new
innovation
channels
for
the
data.

A
new
data-as-a-service
paradigm
where
the
data
can
be
traded
and
com­
mercialized
securely
and
transparently
and
with
total
liberty
at
the
local
and

global
scale
directly
from
the
data
producer
is
necessary.
This
new
paradigm

is
 the
 result
of
an
evolution
process
where
data
producers
are
more
active

owners
of
 the
collected
data
while
at
 the
 same
 time
catapulting
disruptive

data-centric
applications
and
services.
i3-MARKET
takes
a
step
forward
and

provides
support
tools
for
this
maturity
vision/process.

i3-MARKET
is
a
fully
open-source
backplane
platform
that
can
be
used

as
 a
 set
of
 support
 tools
or
 a
 standalone
platform
 implementation
of
data

economy
support
services.
i3-MARKET
is
the
result
of
shared
perspectives

from
a
 representative
global
group
of
experts,
providing
a
common
vision

in
data
economy
and
 identifying
 impacts
and
business
opportunities
 in
 the

different
areas
where
data
is
produced.

Data
economy
is
commonly
referring
to
the
diversity
in
the
use
of
data

to
provide
social
benefits
and
have
a
direct
 impact
 in
people’s
 life.
From
a

technological
point
of
view,
data
economy
implies
technological
services
to

underpin
 the
delivery
of
data
applications
 that
bring
value
and
address
 the

diverse
 demands
 on
 selling,
 buying,
 and
 trading
 data
 assets.
The
 demand

and
 the
 supply
 side
 in
 the
data
 is
 increasing
exponentially,
and
 it
 is
being

demonstrated
that
the
value
that
the
data
has
today
is
as
relevant
as
any
other

tangible
and
intangible
assets
in
the
global
economy.

xi

xii
 Preface

This
publication
is
supported
with
EU
research
funds
under
grant
agree­
ment
i3-MARKET-871754.
Intelligent,
Interoperable,
Integrative
and
deploy­
able
 open
 source
 MARKETplace
 with
 trusted
 and
 secure
 software
 tools

for
 incentivising
 the
 industry
 data
 economy
 and
 the
 Science
 Foundation

Ireland
 research
 funds
under
grant
agreement
SFI/12/RC/2289_P2.
 Insight

SFI
Research
Centre
 for
Data
Analytics.
The
European
Commission
 and

the
SFI
support
for
the
production
of
this
publication
does
not
constitute
an

endorsement
of
the
contents,
which
reflect
the
views
only
of
the
authors,
and

the
Commission,
the
SFI
or
its
authors
cannot
be
held
responsible
for
any
use

which
may
be
made
of
the
information
contained
therein.

Dr.
J.
Martin
Serrano
O.

i3-MARKET
Scientific
Manager
and
Data
Scientist

Adjunct
Lecturer
and
Senior
SFI
Research
Fellow
at
University
of
Galway

Data
Science
Institute
- Insight
SFI
Research
Centre
for
Data
Analytics

Unit
Head
of
Internet
of
Things,
Stream
Processing
and
Intelligent
Systems

Research
Group

University
of
Galway,
www.universityofgalway.ie
|
Ollscoil
na
Gaillimh

<jamiemartin.serranoorozco@universityofgalway.ie>

<martin.serrano@insight-centre.org>

<martin.serrano@nuigalway.ie>

http://www.universityofgalway.ie
mailto:jamiemartin.serranoorozco@universityofgalway.ie
mailto:martin.serrano@insight-centre.org
mailto:martin.serrano@nuigalway.ie

Who
Should
Read
this
Book?

General
Public
and
Students

This
Book
is
a
unique
opportunity
for
understanding
the
future
of
data
spaces

and
marketplace
assets,
 their
services,
and
 their
ability
 to
identify
different

methodologies
indicators
and
the
data-driven
economy
from
a
human-centric

perspective
supports
the
digital
transformation.

Entrepreneurs
and
SMEs

This
 Book
 is
 a
 unique
 opportunity
 for
 understanding
 the
 most
 updated

software
tools
to
innovate,
increase
opportunities,
and
increase
the
power
of

innovation
into
small
and
entrepreneurs
to
meet
its
full
potential
promoting

participation
across
the
data
economy
values
and
evolution
of
society
towards

a
single
digital
strategy.

Technical
Experts
and
Software
Developers

This
book
 is
a
guide
for
 technolgy
experts
and
open
source
enthusiast
 that

includes
the
most
recent
experiences
in
Europe
towards
innovating
software

technology
for
the
financial
and
banking
sectors.

Data
Spaces
&
Data
Markeplaces
Policy
Makers

This
Book
represent
a
unique
offering
for
non-technical
experts
but
that
par­
ticipates
in
the
data
economy
process
and
the
core
data
economy
servicesto

enable
 the
 sharing
of
 innovation
 and
new
 services
 across
data
 spaces
 and

marketplaces
such
as
policy
makers
and
standardisation
organisatiosna
and

groups.

xiii

https://taylorandfrancis.com

What
is
Addressed
in
the
i3-MARKET
Book

Series?

“Concepts
and
Design
Innovations
for
the
Digital
Transformation
of
Spaces

and
Marketplaces”

In
the
first
part
of
the
i3-MARKET
book
series,
we
begin
by
discussing

the
 principles
 of
 the
modern
 data
 economy
 that
 lead
 to
make
 the
 society

more
aware
about
the
value
of
the
data
that
is
being
produced
everyday
by

themselves
but
also
in
a
collective
manner,
i.e.,
in
an
industrial
manufacturing

plant,
a
 smart
city
 full
of
 sensors
generating
data
about
 the
behaviours
of

the
city
and
their
inhabitants
and/or
the
wellbeing
and
healthcare
levels
of
a

region
or
specific
locations,
etc.
Data
business
is
one
of
the
most
disruptive

areas
in
today’s
global
economy,
particularly
with
the
value
that
large
corpo­
rates
have
embedded
in
their
solutions
and
products
as
a
result
of
the
use
of

data
from
every
individual.

“Systems
and
Implemented
technologies
for
Data-driven
Innovation,

Addressing
Data
Spaces
and
Marketplaces
Semantic
Interoperability
Needs”

In
 the
 second
 i3-MARKET
 series
 book,
 we
 start
 reviewing
 the
 basic

technological
principles
and
software
best
practices
and
standards
for
imple­
menting
and
deploying
data
spaces
and
data
marketplaces.
The
book
provides

a
definition
 for
data-driven
 society
as:
The
process
 to
 transform
data
pro­
duction
 into
data
economy
 for
 the
people
using
 the
emerging
 technologies

and
 scientific
 advances
 in
 data
 science
 to
 underpin
 the
 delivery
 of
 data

economic
models
and
services.
This
book
further
discusses
why
data
spaces

and
 data
marketplaces
 are
 the
 focus
 in
 today’s
 data-driven
 society
 as
 the

trend
 to
 rapidly
 transforming
 the
 data
 perception
 in
 every
 aspect
 of
 our

xv

xvi
 What
is
Addressed
in
the
i3-MARKET
Book
Series?

activities.
In
this
book,
technology
assets
that
are
designed
and
implemented

following
 the
 i3-MARKET
 backplane
 reference
 implementation
 (WebRI)

that
uses
open
data,
big
data,
IoT,
and
AI
design
principles
are
introduced.

Moreover,
the
series
of
software
assets
grouped
as
subsystems
and
composed

by
software
artefacts
are
included
and
explained
in
full.
Further,
we
describe

i3-MARKET
 backplane
 tools
 and
 how
 these
 can
 be
 used
 for
 supporting

marketplaces
and
 its
components
 including
details
of
available
data
assets.

Next,
we
provide
 a
description
of
 solutions
developed
 in
 i3-MARKET
 as

an
overview
of
the
potential
for
being
the
reference
open
source
solution
to

improve
data
economy
across
different
data
marketplaces.

“Technical
Innovation,
Solving
the
Data
Spaces
and
Marketplaces

Interoperability
Problems
for
the
Global
Data-driven
Economy”

In
the
third
i3-MARKET
series
book,
we
are
focusing
on
including
the

best
practices
and
simplest
software
methods
and
mechanisms
that
allow
the

i3-MARKET
backplane
reference
implementation
to
be
instantiated,
tested,

and
validated
even
before
 the
 technical
experts
and
developers
community

decide
to
integrate
the
i3-MARKET
as
a
reference
implementation
or
adopted

open
source
software
tools.
In
this
book,
the
purpose
of
offering
a
guide
book

for
technical
experts
and
developers
is
addressed.
This
book
addresses
the
so-
called
industrial
deployment
or
pilots
that
need
to
have
a
clear
understanding

of
 the
 technological
components
and
also
 the
software
 infrastructures,
 thus

it
 is
 important
 to
provide
 the
easy-to-follow
 steps
 to
avoid
overwhelm
 the

deployment
process.

i3-MARKET
has
three
industrial
pilots
defined
in
terms
of
data
resources

used
to
deploy
data-driven
applications
that
use
the
most
of
the
i3-MARKET

backplane
services
and
 functionalities.
The
different
software
 technologies

developed,
including
the
use
of
open
source
frameworks,
within
the
context

of
 the
 i3-MARKET
 are
 considered
 as
 a
 bill
 of
 software
 artefacts
 of
 the

resources
needed
to
perform
demonstrators,
proof
of
concepts,
and
prototype

solutions.
The
i3-MARKET
handbook
provided
can
actually
be
used
as
input

for
configurators
and
developers
to
set
up
and
pre-test
testbeds,
and,
therefore,

it
is
extremely
valuable
to
organizations
to
be
used
properly.

What
is
Covered
in
this
i3-MARKET
Part
III

Book?

“The
i3-MARKET
FOSS
Handbook”

Technology
 deployment
 tools,
 software
 development
 frameworks
 and

testbed
tools
(sandboxes)
are
popular
these
days,
to
facilitate
the
complexity

of
deploying
applications
and
services
based
on
complex
software
packages,

from
a
practical
point
of
view
the
deployment
and
testing
of
software
technol­
ogy
should
not
be
an
burden
anymore
as
per
the
large
number
of
technologies

that
exist
but
also
because
the
evolution
of
these
software
tools
is
indicating

sooner
 than
 later
 this
will
 only
 relay
 in
 having
 powerful
 systems
 capable

to
 run
 such
 complex
 frameworks
 and
 the
 rest
 is
 just
provide
 few
 steps
 to

configure
and
execute
 the
deployment.
The
 reality
 is
a
bit
different,
while

there
are
excellent
tools
to
deploy
and
run
software
virtually
everywhere,
the

technology
must
run
in
specific
computing
infrastructures
with
well-defined

specifications
and
functionalities.

In
 this
 third
 i3-MARKET
series
book
we
are
focusing
 in
 including
 the

best
practices
and
simplest
software
methods
and
mechanisms
that
allow
the

i3-MARKET
backplane
reference
 implementation
 to
be
 instantiated,
 tested

and
 validated
 even
 before
 the
 technical
 experts
 and
 developers’
 commu­
nity
decide
 to
 integrate
 the
 i3-MARKET
as
a
 reference
 implementation
or

Adopted
Open-Source
Software
tools.
At
this
book
the
purpose
of
offering
a

guidebook
 for
 technical
experts
and
developers
 is
addressed,
 the
 so-called

industrial
 deployment
 or
 pilots
 need
 to
 have
 clear
 understanding
 of
 the

technological
components
but
also
the
software
infrastructures,
alike
the
steps

to
be
followed
to
avoid
overwhelm
the
deployment
activity.

xvii

xviii
 What
is
Covered
in
this
i3-MARKET
Part
III
Book?

i3-MARKET
has
three
industrial
Pilots
defined
in
terms
of
data
resources

used
to
deploy
datadriven
applications
that
uses
the
most
of
the
i3-MARKET

backplane
services
and
 functionalities.
The
different
software
 technologies

developed,
including
the
use
of
open-source
frameworks,
within
the
context

of
 the
 i3-MARKET
 is
 considered
 as
 a
 bill
 of
 software
 artefacts
 of
 the

resources
needed
to
perform
demonstrators,
proof
of
concepts
and
prototype

solutions.
The
i3-MARKET
handbook
provided
can
actually
be
used
as
input

for
configurators

Acknowledgements

Immense
thanks
to
our
families
for
their
incomparable
affection,
jollity,
and

constant
 understanding
 that
 scientific
 career
 is
 not
 a
work
 but
 a
 lifestyle,

for
 encouraging
 us
 to
 be
 creative,
 for
 their
 enormous
 patience
 during
 the

time
 away
 from
 them,
 invested
 in
our
 scientific
 endeavours
 and
 responsi­
bilities,
and
for
their
understanding
about
our
deep
love
to
our
professional

life
and
its
consequences
−
we
love
you!

To
all
our
friends
and
relatives
for
their
comprehension
when
we
had
no

time
to
spend
with
them
and
when
we
were
not
able
to
join
in
time
because
we

were
in
a
conference
or
attending
yet
another
meeting
and
for
their
attention

and
the
interest
they
have
been
showing
all
this
time
to
keep
our
friendship

alive;
be
sure,
our
sacrifices
are
well
rewarded.

To
all
our
colleagues,
staff
members,
and
students
at
our
respective
insti­
tutions,
organizations,
and
companies
 for
patiently
 listening
with
apparent

attention
 to
 the
 descriptions
 and
 progress
 of
 our
 work
 and
 for
 the
 great

experiences
 and
 the
 great
 time
 spent
while
working
 together
with
 us
 and

the
contributions
provided
 to
culminate
 this
book
 series
project.
 In
partic­
ular,
thanks
to
the
support
and
confidence
from
all
people
who
believed
this

series
of
books
would
be
finished
in
time
and
also
to
those
who
did
not
trust

on
 it,
because,
 thanks
 to
 them,
we
were
more
motivated
 to
 culminate
 the

project.

To
 the
scientific
community,
who
 is
our
family
when
we
are
away
and

working
 far
 from
our
 loved
ones,
 for
 their
 incomparable
affection,
 loyalty,

and
constant
encouragement
to
be
creative,
and
for
their
enormous
patience

during
the
time
invested
in
understanding,
presenting,
and
providing
feedback

to
new
concepts
and
ideas
−
sincerely
to
you
all,
thanks
a
million!

Martín
Serrano
on
Behalf
of
All
Authors

xix

https://taylorandfrancis.com

List
of
Figures

Figure
2.1
 i3M
ecosystem
deployment
diagram.

 9

Figure
2.2
 i3M
ecosystem
deployment
diagram.

 11

Figure
2.3
 i3M SW stack four layers.

 12

Figure
2.4
 i3M
centralized
software
stack
layers.
.
 13

Figure
2.5
 i3M
pilots’
software
stack
layers.

 15

Figure
3.1
 Backplane
gateway
architecture.
.
 20

Figure
3.2
 Backplane
authentication
flow
overview.

 21

Figure
3.3
 Backplane
authorization
flow
overview.

 22

Figure
3.4
 Service
integrator
process
overview.
.
 25

Figure
3.5
 Subsystem
OAS
automatic
integration
mechanism

overview.
 26

Figure
3.6
 Backplane
 automatic
 integration
 mechanism

overview.
 28

Figure
3.7
 Ansible
playbook
run
overview.

 29

Figure
3.8
 Server
election
process
example.

 30

Figure
4.1
 MDS1.
 .
 44

Figure
4.2
 ADS1.
 .
 45

Figure
4.3
 Ansible playbook example.

 46

Figure
4.4
 ADS2.
 .
 46

Figure
4.5
 i3-MARKET
CI/CD
with
Ansible
and
GitHub.
 .
 .
 47

Figure
4.6
 Requirement.txt
for
semantic
engine
repository.
 .
 51

Figure
5.1
 Services
and
queues
common
services.

 58

Figure
5.2
 Alerts common services.
 58

Figure
5.3
 Conflict
resolution
common
services.

 59

Figure
5.4
 Contracts common services.

 59

Figure
5.5
 Contracts common services.

 60

xxi

xxii
 List
of
Figures

Figure
5.6
 Exchange common services.
 60

Figure
5.7
 Notification
common
services.
.
 60

Figure
5.8
 Offering common services.

 61

Figure
5.9
 Pricing common services.

 62

Figure
5.10
 Tokens common services.

 62

Figure
5.11
 Implementation pyramid.

 64

Figure
5.12
 Creating a wallet 1/3.

 65

Figure
5.13
 WEB-RI interface.

 66

Figure
5.14
 Creating a wallet 3/3.

 66

Figure
5.15
 OIDC client configuration.
 67

Figure
5.16
 Registering an OIDC Client 1/4.
 67

Figure
5.17
 Registering an OIDC client 2/4.

 68

Figure
5.18
 Registering an OIDC client 3/4.

 68

Figure
5.19
 Registering an OIDC client 4/4.

 69

Figure
5.20
 OIDC client registered.

 69

Figure
5.21
 Username screen.

 70

Figure
5.22
 Pairing wallet.

 70

Figure
5.23
 Configuring wallet 1/2.

 71

Figure
5.24
 Configuring wallet 2/2.

 71

Figure
5.25
 Login in WEB-RI.

 72

Figure
5.26
 Selective disclosure.

 72

Figure
5.27
 Signing with the wallet.

 73

Figure
5.28
 Accessing WEB-RI.

 73

Figure
5.29
 SDK-generator approach.

 75

Figure
5.30
 SDK
generator
supported
programming
languages.
 76

Figure
5.31
 SDK-core CI/CD pipeline.
 76

Figure
6.1
 SDK layered approach.

 80

Figure
6.2
 SDK-core interactions.
 81

Figure
6.3
 SDK-generator approach.

 83

Figure
6.4
 SDK-generator
supported
programming

languages.
 .
 83

Figure
6.5
 SDK-core CI/CD pipeline.
 84

Figure
6.6
 SDK-core
playbook
internal
workflow.

 84

Figure
6.7
 Services
and
queues
common
services.

 85

Figure
6.8
 Alerts common services.
 86

Figure
6.9
 Conflict
resolution
common
services.

 86

Figure
6.10
 Contracts common services.

 86

Figure
6.11
 Credentials
common
services.

 87

Figure
6.12
 Exchange common services.
 87

List
of
Figures
 xxiii

Figure
6.13
 Notification
common
services.
.
 87

Figure
6.14
 Offering common services.

 88

Figure
6.15
 Pricing common services.

 89

Figure
6.16
 Token common services.
 89

Figure
6.17
 WEB-RI architecture.

 91

Figure
6.18
 WEB-RI sitemap.

 92

Figure
6.19
 WEB-RI registration page.
 93

Figure
6.20
 WEB-RI register with wallet.

 94

Figure
6.21
 WEB-RI login page.

 94

Figure
6.22
 WEB-RI login with wallet.

 95

Figure
6.23
 WEB-RI
navigation
(provider).

 95

Figure
6.24
 WEB-RI
navigation
(consumer).

 96

Figure
6.25
 WEB-RI home page.
 96

Figure
6.26
 WEB-RI offerings page.

 97

Figure
6.27
 WEB-RI
offering
details
page.

 98

Figure
6.28
 WEB-RI
offering
registration
page.

 99

Figure
6.29
 WEB-RI
offering
purchase
page.

 100

Figure
6.30
 WEB-RI search page.

 101

Figure
6.31
 WEB-RI notifications page.

 102

Figure
7.1
 Four-layer i3M SW stack.

 104

Figure
7.2
 MDS1.
 .
 105

Figure
7.3
 ADS1.
 .
 106

Figure
7.4
 Ansible playbook example.

 107

Figure
7.5
 ADS2.
 .
 107

Figure
7.6
 CI/CD
with
Ansible
and
GitHub.

 108

Figure
8.1
 SDK-RI
Implementation
Technologies
Used.
 .
 .
 .
 114

Figure
8.2
 SDK-RI
pipeline
based
on
Ansible
AWX.
.
 115

Figure
8.3
 SDK-core/RI
playbook
internal
workflow.

 116

Figure
10.1
 WEB-RI architecture.

 122

Figure
10.2
 WEB-RI sitemap.

 123

Figure
11.1
 Ansible
Tower
dashboard
view.

 125

Figure
11.2
 Ansible
resource
inventory
definition
view.

 126

Figure
11.3
 Ansible
Tower
metrics
data
flow.

 127

Figure
11.4
 i3-MARKET
Zabbix
instance.
.
 128

Figure
12.1
 Open-source
developers
portal
with
MKDocs.
 .
 .
 134

Figure
12.2
 Code repository.

 134

Figure
12.3
 Open-source governance.

 135

Figure
12.4
 Public
repository
governance.

 137

https://taylorandfrancis.com

List
of
Tables

Table
2.1
 i3M
proprietary
conceptual
artifacts.

 7

Table
2.2
 i3M
centralized
cloud
management
and
monitoring

software.
 .
 13

Table
2.3
 i3M
centralized
DevOps
software.

 14

Table
2.4
 i3M
centralized
third-party
software.

 14

Table
2.5
 I3M
centralized
proprietary
software.

 15

Table
2.6
 i3M pilots’ core artifacts.
 16

Table
2.7
 i3M
pilots’
third-party
artifacts.

 17

Table
4.1
 Deployment
scenarios
and
i3M
user
roles
mapping.
 .
 44

Table
4.2
 i3m-pilots-docker-compose.yml.

 48

Table
7.1
 Deployment
scenarios
and
i3M
user
roles
mapping.
 .
 105

xxv

https://taylorandfrancis.com

List
of
Contributors

Achille,
Zappa,
NUIG,
Ireland

Alessandro,
Amicone,
GFT,
Italy

Andrei,
Coman,
Siemens
SRL,
Romania

Andres,
Ojamaa,
Guardtime,
Estonia

Angel,
Cataron,
Siemens
SRL,
Romania

Antonio,
Jara,
Libellium/HOPU,
Spain

Birthe,
Boehm,
Siemens
AG
(Erlangen),
Germany

Borja,
Ruiz,
Atos,
Spain

Bruno,
Almeida,
UNPARALLEL,
Portugal

Bruno,
Michel,
IBM,
Switzerland

Carlos
Miguel,
Pina
Vaz
Gomes,
IBM,
Switzerland

Carmen,
Pereira,
Atos,
Spain

Chi,
Hung
Le,
NUIG,
Ireland

Deborah,
Goll,
Digital
SME,
Belgium

Dimitris,
Drakoulis,
Telesto,
Greece

Edgar,
Fries,
Siemens
AG
(Erlangen),
Germany

Fernando,
Román
García,
UPC,
Spain

Filia,
Filippou,
Telesto,
Greece

xxvii

xxviii
 List
of
Contributors

George,
Benos,
Telesto,
Greece

German,
Molina,
Libellium/HOPU,
Spain

Hoan,
Quoc,
NUIG,
Ireland

Iosif,
Furtuna,
Siemens
SRL,
Romania

Isabelle,
Landreau,
IDEMIA,
France

Ivan,
Martinez,
Atos,
Spain

James,
Philpot,
Digital
SME,
Belgium

Jean
Loup,
Depinay,
IDEMIA,
France

Joao,
Oliveira,
UNPARALLEL,
Portugal

Jose,
Luis
Muñoz
Tapia,
UPC,
Spain

Juan
Eleazar,
Escudero,
Libellium/HOPU,
Spain

Juan,
Hernández
Serrano,
UPC,
Spain

Juan
,
Salmerón,
UPC,
Spain

Justina,
Bieliauskaite,
Digital
SME,
Belgium

Kaarel,
Hanson,
Guardtime,
Estonia

Lauren,
Del
Giudice,
IDEMIA,
France

Luca,
Marangoni,
GFT,
Italy

Lucas,
Asmelash,
Digital
SME,
Belgium

Lukas,
Zimmerli,
IBM,
Switzerland

Márcio,
Mateus,
UNPARALLEL,
Portugal

Marc,
Catrisse,
UPC,
Spain

Mari,
Paz
Linares,
UPC,
Spain

Maria
Angeles,
Sanguino
Gonzalez,
Atos,
Spain

Maria,
Smyth,
NUIG,
Ireland

Marina,
Cugurra,
ETA
Consulting

Marquart,
Franz,
Siemens
AG
(Munich),
Germany

Martin,
Serrano,
NUIG,
Ireland

List
of
Contributors
 xxix

Mirza,
Fardeen
Baig,
NUIG,
Ireland

Oxana,
Matruglio,
Siemens
AG
(Munich),
Germany

Pascal,
Duville,
IDEMIA,
France

Pedro,
Ferreira,
UNPARALLEL,
Portugal

Pedro,
Malo,
UNPARALLEL,
Portugal

Philippe,
Hercelin,
IDEMIA,
France

Qaiser,
Mehmood,
NUIG,
Ireland

Rafael,
Genés,
UPC,
Spain

Raul,
Santos,
Atos,
Spain

Rishabh,
Chandaliya,
NUIG,
Ireland

Rupert,
Gobber,
GFT,
Italy

Stefanie,
Wolf,
Siemens
AG(Erlangen),
Germany

Stratos,
Baloutsos,
AUEB,
Greece

Susanne,
Stahnke,
Siemens
AG
(Munich),
Germany

Tanel,
Ojalill,
Guardtime,
Estonia

Timoleon,
Farmakis,
AUEB,
Greece

Tomas,
Pariente
Lobo,
Atos,
Spain

Toufik,
Ailane,
Siemens
AG
(Erlangen),
Germany

Víctor,
Diví,
UPC,
Spain

Vasiliki,
Koniakou,
AUEB,
Greece

Yvonne,
Kovacs,
Siemens
SRL,
Romania

https://taylorandfrancis.com

List
of
Abbreviations

AI

 Artificial
intelligence

API

 Application
program
interface

APP

 Mobile
application/web
application

CA

 Certificate
authority

CSMT

 Compact
sparse
merkle
tree

DB

 Data
base

DCAT

 Data
catalog
vocabulary

DID

 Decentralized
identifier

DLT

 Distributed
ledger
technology

DSA

 Data
sharing
agreement

ECDSA

 Elliptic
curve
digital
signature
algorithm

HMAC

 Hash-based
message
authentication
code

IAM

 Identity
and
access
management

IDM

 Identity
management

IoT

 Internet
of
things

IRI

 Information
reuse
and
integration

JWT

 JSON
web
token

KOS

 Knowledge
organization
system

NAL

 Nexus
authorization
logic

O-CASUS

 Ontology
for
control,
access,
save,
use
and

security

OIDC

 OpenID
connect

OSS

 Open
source
software

PAV

 Privacy,
anonymity,
and
verifiability

PDU

 Protocol
data
unit

PoO

 Proof
of
origin

xxxi

xxxii
 List
of
Abbreviations

PoP
 Proof
of
publication

PoR
 Proof
of
reception

QoS
 Quality
of
service

RP
 Relying
party

RSA
 Rivest-Shamir-Adleman
cryptosystem

SDA
 Secure
data
access

SDK
 Software
development
kit

SKOS
 Simple
knowledge
organization
system

SLA
 Service
level
agreement

SLS
 Service
level
specification

SME
 Small
and
medium-sized
enterprises

SQL
 Structured
query
language

SSI
 Self-sovereign
identity

TLS
 Transport
layer
security

URI
 Uniform
resource
identifier

VC
 Verifiable
credentials

VDI
 Verifiable
database
integrity

VoID
 Vocabulary
of
interlinked
datasets

1

i3-MARKET
Overview

The
 i3-MARKET
 project
 (i3-market.eu)
 solutions
 address
 the
 growing

demand
for
a
single
European
Data
Market
and
Data
Economy.

i3-MARKET
addresses
the
data
economy
challenge
by
innovating
mar­
ketplace
platforms,
demonstrating
with
 industrial
 implementations
 that
 the

data
economy
growth
is
possible.
The
i3-MARKET
solutions
aim
at
provid­
ing
 technologies
 for
 trustworthy
 (secure
and
 reliable),
data-driven
collabo­
ration
and
federation
of
existing
and
new
future
marketplace
platforms,
with

special
attention
on
industrial
data.
The
i3-MARKET
architecture
is
designed

to
enable
secure
and
privacy-preserving
data
sharing
across
data
spaces
and

marketplaces,
through
the
deployment
of
a
Backplane
across
operational
data

marketplaces.

In
 i3-MARKET,
we
are
not
 trying
 to
create
another
new
Marketplace,

but
 we
 are
 implementing
 the
 Backplane
 solutions
 that
 allow
 other
 data

marketplaces
and
data
spaces
to
expand
their
market,
facilitate
the
registra­
tion
and
discovery
of
data
assets,
 facilitate
 the
 trading
and
sharing
of
data

assets
 among
providers,
 consumers,
 and
owners,
 and
provide
 tools
 to
 add

functionalities
they
lack
for
better
data
sharing
and
trading
processes.

The
 i3-MARKET
 project
 has
 built
 a
 blueprint
 open-source
 soft­
ware
 architecture
 called
 “i3-MARKET
 Backplane”
 (www.open-source.i3­
MARKET.eu)
 that
 addresses
 the
growing
demand
 for
 connecting
multiple

data
spaces
and
marketplaces
in
a
secure
and
federated
manner.

The
i3-MARKET
Consortium
is
contributing
with
the
developed
software

tools
to
build
the
European
Data
Market
Economy
by
innovating
marketplace

platforms,
and
demonstrating
with
three
industrial
reference
implementations

(pilots)
that
a
decentralized
data
economy
and
more
fair
growth
is
possible.

1.1
 Context

A
 software
deployment
guide
 is
a
document
 that
outlines
 the
process
and

best
 practices
 for
 deploying
 software
 to
 a
 production
 environment.
 It
 is

1

http://www.open-source.i3-MARKET.eu
http://www.open-source.i3-MARKET.eu

2
 i3-MARKET
Overview

an
essential
 resource
 for
developers,
system
administrators,
and
operations

teams
who
are
responsible
for
deploying
software
in
a
reliable
and
efficient

manner.

Overall,
 a
 well-written
 software
 deployment
 guide
 is
 an
 invaluable

resource
for
ensuring
that
software
is
deployed
in
a
reliable
and
efficient
man­
ner.
By
following
best
practices
and
established
procedures,
organizations
can

minimize
the
risk
of
downtime
and
ensure
that
their
software
is
delivering
the

intended
benefits
to
end-users.

2

General
Description

i3-MARKET
 leverages
 on
 blockchain
 technologies
 (e.g.
Hyperledger
 and

Ethereum)
 to
 build
 a
 trusted,
 interoperable,
 and
 decentralized
 substrate

(backplane)
 allowing
 to
 create
 a
 federated
 data
market
where
data
 spaces

and
marketplaces
 are
 able
 to
 trade
 data
 assets
 among
 each
 other.
The
 i3­
MARKET
 is
mostly
a
set
of
 independent
subsystems
with
a
self-contained

functionality
such
as
the
identity
and
access
management
system,
the
seman­
tic
engine
subsystem,
data
access
subsystem,
etc.
Most
of
these
subsystems

have
broken
down
their
functionality
into
atomic
and
loosely
coupled
com­
ponents
 exposing
 their
 functionality
 through
 a
REST
API,
which
yields
 a

microservice-based
nature
to
the
i3-MARKET
system

2.1
 Deployment
and
Operational
Concepts

Help
to
choose
the
right
technologies
to
be
used:

Choosing
the
right
technologies
for
software
deployments
can
be
a
complex

process,
but
here
 are
 some
general
guidelines
 to
help
you
make
 informed

decisions:

2.1.1
 Consider
the
requirements
of
the
software

The
 first
 step
 in
 choosing
 the
 right
 technologies
 for
 a
 deployment
 is
 to

consider
 the
 requirements
 of
 the
 software
 being
 deployed.
 This
 includes

factors
 such
as
 the
operating
 system,
 the
programming
 language
used,
 the

database
management
system,
and
any
dependencies
or
third-party
libraries

required.

2.1.2
 Evaluate
the
deployment
environment

The
deployment
 environment
will
 also
play
 a
key
 role
 in
determining
 the

appropriate
 technologies
 to
be
used.
Consider
factors
such
as
 the
hardware

3

4
 General
Description

and
 software
 infrastructure,
 the
 network
 configuration,
 and
 the
 security

requirements.

2.1.3
 Consider
automation
and
orchestration

Automation
and
orchestration
 tools
can
help
 to
 streamline
 the
deployment

process
and
minimize
 the
 risk
of
errors
or
 inconsistencies.
Consider
using

tools
such
as
Ansible,
Chef,
or
Puppet
to
automate
the
deployment
process.

2.1.4
 Evaluate
containerization
options

Containerization
 technologies
 such
 as
Docker
 and
Kubernetes
 can
help
 to

simplify
 the
deployment
process
 and
make
 it
more
portable
 across
differ­
ent
 environments.
Consider
 using
 containerization
 technologies
 to
 deploy

software
in
a
consistent
and
repeatable
way.

2.1.5
 Consider
monitoring
and
reporting
tools

Monitoring
and
reporting
 tools
can
help
 to
ensure
 that
 the
software
 is
per­
forming
 as
 expected
 and
 can
 alert
 teams
 to
 potential
 issues
 before
 they

become
critical.
Consider
using
tools
such
as
Nagios,
Prometheus,
or
Grafana

to
monitor
and
report
on
key
metrics.

2.2
 Deployment
Specification

The
i3-MARKET
architecture
specification
is
based
on
the
4
+
1
architectural

view
model
approach.
One
of
these
views,
physical
view,
is
the
scope
of
this

document.
Physical
view
depicts
the
system
from
a
system
engineer’s
point

of
view.
 It
concerns
 the
 topology
of
 software
components
on
 the
physical

layer
as
well
as
 the
physical
connections
between
 these
components.
This

view
is
also
known
as
the
deployment
view.
UML
diagrams
used
to
represent

the
physical
view
must
include
the
deployment
diagram.

Considering
 this
 in
 the
 i3-MARKET
 context,
 the
 deployment
 specifi­
cation
 should
 define
 execution
 architecture
 of
 systems
 that
 represent
 the

assignment
(deployment)
of
software
artifacts
(i3-MARKET
building
blocks)

to
deployment
targets
(usually
nodes).

Nodes
represent
either
hardware
devices
or
software
execution
environ­
ments.
They
could
be
connected
through
communication
paths
to
create
net­
work
systems
of
arbitrary
complexity.
Artifacts
represent
concrete
elements

in
the
physical
architecture.

2.3
 Terminology
 5

Once
the
deployment
has
been
provided,
a
complementary
specification

would
be
necessary
to
define
how
to
deploy
software
within
the
i3-MARKET

ecosystem.
 In
 the
 context
 of
 i3-MARKET,
 we
 will
 be
 referring
 to
 this

specification
as
management
operative
specification.

Finally,
 an
 end-user
 operative
 specification
 is
 provided,
 defining
 the

interaction
with
i3-MARKET
from
a
stakeholder
point
of
view.

2.3
 Terminology

The
 key
 terms
 behind
 i3-MARKET
 deployment
 terminology
 are
 the

following:

Artifact:

As
it
is
described
in
[1],
an
artifact
is
a
classifier
that
represents
some
physical

entity,
 a
 piece
 of
 information
 that
 is
 used
 or
 is
 produced
 by
 a
 software

development
process,
or
by
deployment
and
operation
of
a
system.
Artifact

is
a
source
of
a
deployment
to
a
node.
A
particular
instance
(or
“copy”)
of

an
artifact
is
deployed
to
a
node
instance.
The
most
common
artifacts
are
as

follows:

•
Source
files

•
Executable
files

•
Database
tables

•
Scripts

•
DLL
files

•
User
manuals
or
documentation

•
Output
files

Artifacts
are
deployed
on
the
nodes.
They
can
provide
physical
manifes­

tation
for
any
UML
element.
Generally,
they
manifest
components.
Artifacts

are
labelled
with
the
stereotype
<<artifact>>,
and
it
may
have
an
artifact

icon
on
the
top
right
corner.

Each
artifact
has
a
filename
in
its
specification
that
indicates
the
physical

location
of
 the
 artifact.
An
artifact
 can
 contain
another
 artifact.
 It
may
be

dependent
on
one
another.

Artifacts
have
properties
and
behaviour
that
manipulate
them.

Node:

As
 it
 is
 introduced
 in
 [2],
a
node
 is
a
computational
 resource
upon
which

artifacts
 are
 deployed
 for
 execution.
 A
 node
 is
 a
 physical
 thing
 that
 can

execute
one
or
more
artifacts.
A
node
may
vary
in
its
size
depending
on
the

size
of
the
project.

6
 General
Description

Node
is
an
essential
UML
element
that
describes
the
execution
of
code

and
the
communication
between
various
entities
of
a
system.
It
is
denoted
by

a
3D
box
with
the
node
name
written
inside
of
it.
Nodes
help
to
convey
the

hardware
that
is
used
to
deploy
the
software.

An
 association
 between
 nodes
 represents
 a
 communication
 path
 from

which
information
is
exchanged
in
any
direction.

Generally,
a
node
has
two
stereotypes
as
follows:

•
<<
device
>>:
It
is
a
node
that
represents
a
physical
machine
capable

of
performing
computations.
A
device
can
be
a
router
or
a
server
PC.
It

is
represented
using
a
node
with
stereotype
<<device>>.
In
the
UML

model,
you
can
also
nest
one
or
more
devices
within
each
other.

•
<<
 execution
 environment
 >>:
 It
 is
 a
 node
 that
 represents
 an

environment
in
which
software
is
going
to
execute.
For
example,
Java

applications
are
executed
in
Java
virtual
machine
(JVM).
JVM
is
con­
sidered
as
an
execution
environment
for
Java
applications.
We
can
nest

an
execution
environment
 into
a
device
node.
You
can
nest
more
 than

one
execution
environments
in
a
single
device
node.

The
following
sections
report
on
the
deployment
strategy
and
the
status

reached
at
the
closure
of
the
final
release.

2.4
 i3-MARKET
Artifacts
Overview

In
 the
context
of
 i3-MARKET,
several
artifacts
have
been
developed,
 inte­
grated,
 and
 deployed.
 These
 artifacts
 have
 been
 built
 on
 top
 of
 a
 set
 of

third-party
 and
 open-source
 frameworks,
 which
 have
 been
 analysed
 and

deployed
as
tech-bed
for
the
construction
of
the
i3-MARKET
backplane.
For

the
final
release,
the
third-party
artifacts
included
on
i3-MARKET
are:

◦
Hyperledger
Besu:
The
blockchain
framework.

◦
CockroachDB:
 Distributed
 database
 deployed
 on
 each
 node.
 Admin

Interface
only
accessible
through
node
1.

◦
RocksDB:
Decentralized
storage
included
with
the
blockchain
network

(ledger).

◦
Loopback4:
Framework
supporting
i3-MARKET
backplane
API.

Regarding
 the
 project-internal
 conceptual
 artifacts,
 i3-MARKET
 has

developed
an
extensive
artifacts
portfolio,
mainly
provided
in
WP3
and
WP4,

for
supporting
the
integration,
registration,
discovery,
and
transfer
of
reliable

trade
of
data.
A
detailed
list
of
these
artifacts
(including
artifact
ID,
artifact

name,
artifact
dependencies,
and
their
status
for
the
final
release)
can
be
seen

in
Table
2.1.

2.4
 i3-MARKET
Artifacts
Overview
 7

Table
2.1
 i3M
proprietary
conceptual
artifacts.

Artifact

ID

Artifact
 Dependencies
 Final
release
use
 Notes

A1
 Blockchain

framework

Decentralized

storage

Deployed
and
used
 Blockchain
framework.

Deployed
on
each
node.

A2
 CockroachDB

(distributed

storage)

Deployed
and
used
 Distributed
database

deployed
on
each
node.

A3
 Decentralized

storage

Blockchain

framework

Deployed
and
used
 Included
with
the

blockchain
framework.

A4
 User-centric

authentication

Deployed
and
used
 Each
instance/pilot
has
its

own
OIDC
and
VC
service.

A5
 Service-centric

authentication

Deployed
and
used
 Each
instance/pilot
has
its

own
Keycloak
service.

A6
 HW
Wallet
 In
progress

A7
 Software
Wallet
 Cloud
Wallet

Client,
Backplane

API
(Cloud
Wallet

server
and

user-centric

authentication),

data
access
SDK,

and
i3-MARKET

SDK

Deployed
and
used

A8
 Smart
contract

manager

SLA/SLE
smart

contract

Deployed
and
used

A9
 SLA/SLE
smart

contract

Deployed
and
used

A10
 Conflict
resolution
 SCM
and
DS
 Deployed
and
used
 Integrated
with
Besu,
smart

contract
manager
and

decentralized
storage.

Each
instance/pilot
has
its

own
service.

A11
 Explicit
user

consent

Backplane
API

(smart
contract

manager,

distributed
ledger,

and
distributed

storage)

Deployed
and
used
 Integrated
with
the
smart

contract
manager.

A12
 Auditable

accounting

Deployed
and
used

A13
 Standard
payment
 Backplane
API

(auditable

accounting,
conflict

resolution,
smart

contract,
and

SLA/SLE
smart

contract)

Deployed
and
used
 Library
to
be
integrated
and

deployed
in
data
access

SDK
and
data
access
API.

Library
for
the

i3-MARKET

non-repudiation
protocol

that
helps

generate/verifying
the

necessary
proofs
and
the

received
block
of
data.

A14
 Tokenization
 Backplane
API

(user-centric

authentication,

smart
contract,
and

SLA/SLE
smart

contract)

Deployed
and
used

8
 General
Description

Table
2.1
 Continued.

Artifact

ID

Artifact
 Dependencies
 Final
release
use
 Notes

A15
 Micro
payment
 Deployed
 Integrated
into
the

Tokenizer.
Low
chance
to

be
used
by
i3-MARKET

because
for
data
payments

is
used
fiat
money
and
the

Tokenizer
and
the
token
are

just
for
the
fees.

A17
 Data
access
API
 Deployed
and
used
 Each
node
has
its
own

endpoint.

A18
 Semantic
data
manager

(triple
store)

Deployed
and
used

A19
 Semantic
models
 Deployed
and
used
 It
is
not
software

component.

A20
 Semantic
engine
 Backplane
API

(user
IDs)
and

decentralized

storage

Deployed
and
used
 This
component
includes

- Semantic
model

management

- Offering
and
discovery

Each
instance/pilot
has

their
own
engine

A21
 Backplane
API
 All
 Deployed
and
used
 Each
node
has
its
own

endpoint

A22
 i3-MARKET

SDK-generator

Deployed
and
used
 Endpoint
at
node
1

Deployed
as
Docker

container
through
Ansible

A26
 SDK-RI
(reference

implementation)

All
 Deployed
and
used
 Each
marketplace
has
its

own
SDK-RI

A27
 SDK-core
 SDK-generatore

All

Deployed
and
used
 Available
at
Nexus

A29
 Secure
server
(Keycloak)
 Deployed
 Available
at
Nexus

Integration
with

user-centric
authentication

component
in
progress

A30
 Notification
manager
 SDK-RI
and

SDK-core

Deployed
and
used

A31
 Rating
 Deployed
and
used

Finally,
 in
 the
 context
 of
CI/CD,
 a
 set
 of
 tools
 has
 been
 used
 for
 the

automation
and
monitoring
of
the
artifacts
deployed
on
i3-MARKET.
These

tools
are
listed
in
the
deliverable
D4.7
and
in
the
sections
below.

2.5
 Deployment
Architecture
View

The
 i3-MARKET
deployment
view
 is
depicted
 in
 the
picture
below.
Four

nodes
 constituted
 the
 i3-MARKET
 R1
 cluster.
 On
 each
 node,
 it
 will
 be

deployed
 a
Backplane
 gateway
 system
 and
 an
 instance
 of
 all
 the
 rest
 i3­
MARKET
main
building
blocks
(trust,
security,
and
privacy
system,
storage

system,
and
data
access
 system)
giving
backend
 support
 to
 the
Backplane

gateway
 system.
 In
 addition
 to
 that,
 node
 4
will
 host
 all
 the
 components

related
with
the
semantic
engine
building
block.

2.6
 i3-MARKET
Network
Infrastructure
 9

di
ag
ra
m
.

ym
en
t

d
ep
lo

ec
os
ys
te
m

i3
M

2.
1

F
ig
ur
e

10
 General
Description

2.6
 i3-MARKET
Network
Infrastructure

Figure
2.1
shows
the
deployment
diagram
associated
with
the
i3-MARKET

network
for
the
last
release.
It
can
be
appreciated
that
the
deployment
strategy

has
 evolved
 from
 the
M18
 centralized
 infrastructure
 (where
 a
 single
 and

centralized
 i3-MARKET
 instance
 gave
 support
 to
 all
 demonstrators)
 to
 a

“hybrid”
decentralized
infrastructure
(where
each
of
the
pilot’s
demonstrator

that
joined
the
i3-MARKET
ecosystem
has
its
own
i3-MARKET
instance).
It

is
important
to
highlight
the
“hybrid”
nature
of
the
network
because
a
master

instance
is
maintaining,
among
other
reasons,
some
centralized
services
such

as
 the
 central
Besu
 node,
 the
 notification
manager,
 etc.,
 and
CI/CD
 tools

needed
for
the
setup
of
the
network.

Therefore,
 in
 this
 landscape,
 it
 can
 be
 appreciated
 the
 existence
 of

marketplaces,
 which
 are
 simple
 instances
 (yellow
 boxes)
 and
 the
 cen­
tral/master
instances
(green
boxes).
The
most
significant
relationship
among

the
instances
is
the
connection
between
each
of
the
Besu
nodes
themselves

and
their
connection
with
the
Besu
central
node.

It
is
important
to
mention
that
the
number
of
nodes
used
for
each
of
the

i3-MARKET
pilot
instances
and
the
maintenance
of
these
nodes
is
up
to
the

pilots’
criteria
and
responsibility.
Thus,
the
node’s
layout
that
appears
on
each

of
the
instances,
depicted
for
hosting
the
i3-MARKET
artifacts,
Figures
2.1

and
2.2,
 is
 just
an
example
and
does
not
have
 to
be
 the
 real
picture
of
 the

instances
deployment.

2.7
 Software
Stack

For
the
final
release,
two
types
of
software
environments
(understood
as
a
set

of
artifacts)
can
be
found
in
i3-MARKET,
which
are
aligned
with
the
infras­
tructures
presented
in
the
previous
section.
On
one
hand,
the
marketplace-side

software
stack
(i3-MARKET
pilot
environment)
and,
on
the
other
hand,
the

stack
 landscape
 deployed
 in
 the
 centralized
 cluster
 (i3-MARKET
 master

environment),
which
 acts
 as
 a
master
 for
 the
 rest
of
marketplaces,
 adhere

to
the
i3-MARKET
network.

A
four-layer
stack
has
been
defined
for
i3-MARKET
(Figure
2.3):
at
the

lowest
layer,
there
is
the
Cloud
provisioning
and
management
layer.
On
top

of
 that,
a
DevOps
software
 layer
 is
placed
 for
assembling
all
 the
software

used
for
the
CI/CD
process.
Then,
a
third-party
software
layer
is
in
charge
of

giving
support
to
the
i3M
Core
Artifacts,
which
can
be
found
at
the
top
level

of
the
stack.

2.7
 Software
Stack
 11

di
ag
ra
m
.

ym
en
t

d
ep
lo

ec
os
ys
te
m

i3
M

2.
2

F
ig
ur
e

12
 General
Description

i3M Core
Artifacts

Third-party Software

DevOps Stack

Cloud Provisioning and Management

Figure
2.3
 i3M
SW
stack
four
layers.

Depending
 on
 the
 environment
 to
 be
 deployed,
 it
 might
 deploy
 one

layer
 or
 another.
More
 details
 on
 the
 specific
 software
 deployed
 on
 each

environment
are
given
in
the
following
sub-sections.

2.8
 i3-MARKET
Master
Environment

The
 i3-MARKET
 centralized
 software
 stack,
 represented
 in
Figure
2.4,
 is

focused
on
providing
the
minimum
and
centralized
services
for
erecting
an

i3-MARKET
network;
these
are
the
“Cloud
provisioning
and
management”

layer,
 the
“DevOps
software”
 layer,
master
nodes
of
 the
“Third-party
soft­
ware”
layer,
and
the
centralized
i3-MARKET
artifacts
provided
in
the
“i3M

centralized
services”
layer.

Cloud
provisioning
and
management
layer
oversees
providing
and
man­
aging
 all
 physical
 nodes
 that
 the
 i3-MARKET
 common
 infrastructure
 is

composed
of.
For
the
management
of
physical
resources
in
a
homogeneous

way,
an
Ansible
Tower1
 instance
is
deployed
for
the
administration
of
said

physical
resources,
thus
having
their
management
centralized
from
Ansible.

On
 the
other
hand,
 for
 the
monitoring
 and
 registering
of
 the
 status
of
 the

i3-MARKET
 central
 services,
 Zabbix
 is
 deployed
 as
 part
 of
 the
 central

1
Ansible
Tower:
https://www.ansible.com/products/tower

https://www.ansible.com/products/tower

2.8
 i3-MARKET
Master
Environment
 13

i3M
Centralized
Services

Third-party
Software

DevOps Stack

Cloud Provisioning and Management

Figure
2.4
 i3M
centralized
software
stack
layers.

environment.
Table
2.2
 shows
 some
deployment
 aspects
of
 the
previously

commented
tools:

Table
2.2
 i3M
centralized
cloud
management
and
monitoring
software.

SW

Component

Building

block

Assigned

VM/PR

Type
 Technology

Ansible
AWX
 Deployment
 I3M-PH-Node2
 Third-party
SW
 Ansible
AWX

Zabbix
 Monitoring
 I3M-PH-Node4
 Third-party
SW
 Zabbix

i3-MARKET
DevOps
will
be
a
set
of
practices
that
will
combine
software

development
and
IT
operations,
and
it
will
aim
to
shorten
the
i3-MARKET

system
 development
 life
 cycle
 and
 provide
 continuous
 delivery
with
 high

software
quality.
Thus,
 the
DevOps
 layer
 combines
 software
development

and
IT
operations
by
means
of
the
artifacts
listed
in
Table
2.3.

Besides
that,
a
set
of
artifacts
from
the
i3-MARKET
third-party
software

is
needed
in
the
centralized
environment
to
master
some
services:

•
Master
Besu
 node,
which
 gives
 authorization
 to
 new
member
 to
 the

blockchain
network.

•
Cockroach
 data
 base,
 which
 hosts
 the
 “Seed
 Index”
 for
 federating

queries.

•
RocksDB,
which
is
the
central
instance
of
the
blockchain.

•
Security
services
for
allowing
authentication
and
authorization
capabil­
ities
to
the
central
node.

14
 General
Description

Table
2.3
 i3M
centralized
DevOps
software.

SW
 Com­
ponent

Building
block
 Assigned

VM/PR

Type
 Technology

Ansible

AWX

Deployment
 I3M-PH-Node2
 Third-
party
SW

Ansible
AWX

Docker

Swarm

Deployment
 I3M-PH-Node1,

I3M-PH-Node2,

I3M-PH-Node3,

and
 I3M-PH­
Node4

Third-
party
SW

Docker

Swarm

GitLab

CI/CD

(Runners)

CI/CD
 GitLab
 (out
 of

i3M
cluster)

Third-
party
SW

GitLab

Nexus
 CI/CD
 I3M-PH-Node4
 Third-
party
SW

Nexus

NGINX
 Management/security
 I3M-PH-Node1,

I3M-PH-Node2,

I3M-PH-Node3,

and
 I3M-PH­
Node4

Third-
party
SW

NGinx

MkDocs
 Documentation
 I3M-PH-Node4
 Third-
party
SW

MkDocs

Table
 2.4
 shows
 some
 deployment
 details
 regarding
 the
 before
 com­
mented
artifacts.

Table
2.4
 i3M
centralized
third-party
software.

SW
 Com­
ponent

Building
block
 Assigned

VM/PR

Type
 Technology

Blockchain

framework

(central

node)

Blockchain
network
 I3M-PH­
Node4

Third-party

SW

Hyperledger

Besu

Distributed

storage

Data
storage
 I3M-PH­
Node4

Third-party

SW

CockroachDB

Decentralized

storage

Data
storage
 I3M-PH­
Node4

Third-party

SW

RocksDB

Security

server

Trust,
 security,
 and

privacy

I3M-PH­
Node4

Third-party

SW

OIDC,
VC,
and

Keycloak

Finally,
 regarding
 the
“i3-MARKET
centralized
services”,
 the
notifica­
tion
manager
and
the
SDK-generator
(which
support
the
SDK-core
generator)

have
 been
 designed
 to
 be
 centralized.
Table
 2.5
 shows
 some
 deployment

details
of
them.

2.9
 i3-MARKET
Pilot
Environment
 15

Table
2.5
 I3M
centralized
proprietary
software.

SW
 Com­
ponent

Building

block

Assigned

VM/PR

Type
 Technology

Notification

manager

Data
storage
 I3M-PH-Node4
 i3-MARKET
SW
 RabittMQ

SDK-
generator

Reference

implementa­
tion

I3M-PH-Node4
 Hybrid
artifact
 OpenAPI

Generator2

2.9
 i3-MARKET
Pilot
Environment

The
i3-MARKET
pilots’
stack
is
represented
in
Figure
2.5
and
it
is
composed

mainly
of
two
layers:
“Third-party
software”
layer
and
“i3M
core
services”

layer.

i3M Core
Artifacts

Third-party Software

DevOps Stack

Cloud Provisioning and Management

Figure
2.5
 i3M
pilots’
software
stack
layers.

The
top
layer
is
composed
of
all
i3-MARKET
core
artifacts
supplied
by

the
project,
which
might
be
deployed
in
a
decentralized
way.
In
other
words,

each
marketplace
willing
to
be
part
of
the
i3-MARKET
ecosystem
might
have

one
instance
of
these
artifacts
running
on
its
own
i3-MARKET
infrastructure.

Table
2.6
shows
more
information
about
these
artifacts/components
as
well

16
 General
Description

as
the
set
of
services
provided
by
each
of
them
(linked
with
the
Microservices

View
in
D2.4).
Other
details
that
can
be
found
in
the
table
are:

•
SW
artifact/component
name

•
Associated
building
block
(see
internal
deliverable
I2.41
[3])

•
Artifact
type

•
Technology
supporting
artifact

Table
2.6
 i3M
pilots’
core
artifacts.

SW

Component

Building
block
 Services
 Type
 Technology

User-centric
 Trust,
 security,
 Verifiable
 i3-MARKET
 Keycloak

authentication
 and
privacy
 Credential
 SW

API

Service-centric
 Trust,
 security,
 OIDC
 i3-MARKET

Authentication
 and
privacy
 provider
 SW

API

Cloud
Wallet
 Trust,
 security,
 Wallet
 Cloud
 i3-MARKET

and
privacy
 Server
 and
 SW

Wallet
APP

HW
Wallet
 Trust,
 security,
 i3-MARKET

and
privacy
 SW

Smart
 contract

manager

Trust,
 security,

and
privacy

Smart

contract

manager
 API

+
explicit
user

i3-MARKET

SW

Hyperledger

Besu,

Solidity

consent

Conflict
 resolu- Trust,
 security,
 Conflict
 reso- i3-MARKET

tion
 and
privacy
 lution
API
 SW

Auditable
 Trust,
 security,
 Auditable
 i3-MARKET

accounting
 and
privacy
 accounting
 SW

API

Monetization
 Trust,
 security,

and
privacy

Pricing

manager
API,

Tokenizer

i3-MARKET

SW

API,
and
non-
repudiation

protocol

library

Data
access
 Data
access
 Data
 access
 i3-MARKET

API,
 standard
 SW

payments

system,
 and

data
transfer

2.9
 i3-MARKET
Pilot
Environment
 17

Table
2.6
 Continued.

SW

Component

Building
block
 Services
 Type
 Technology

Semantic
 Semantics
 Semantic

engine
 API

(metadata

registry

management,

data

offerings,

and
 federated

query

discovery)

i3-MARKET

SW

MongoDB

Backplane
API
 Backplane
 i3-MARKET

SW

LoopBack4

SDK-RI
 Reference

implementation

i3-MARKET

SW

Java

Web-RI
 Reference

implementation

i3-MARKET

SW

Finally,
the
“Third-party
SW”
layer
will
be
mainly
in
charge
of
providing

the
software
stack
 identified
as
software
 requirements
by
 the
 i3-MARKET

system.
These
software
requirements
are:
Hyperledger
Besu,
CockroachDB,

Loopback4,
and
Keycloak.
The
Table
2.7
summarise
the
i3M
pilot
third
party

artifacts
used.

Table
2.7
 i3M
pilots’
third-party
artifacts.

SW
Component
 Building

block

Type
 Technology

Blockchain
framework
 Blockchain

network

Third-party
SW
 Hyperledger
Besu

Distributed
storage
 Data
storage
 Third-party
SW
 CockroachDB

(deployed
standalone)

Decentralized
storage
 Data
storage
 Third-party
SW
 RocksDB

Security
server
 Trust,

security,

and
privacy

Third-party
SW
 Keycloak

Regarding
“DevOps
Stack”
and
“Cloud
provisioning
and
management”,

these
two
layers
are
out
of
scope
of
the
stack
provided
by
i3-MARKET
on

each
external
instance.
This
is
mainly
because
of
two
reasons:

•
Each
pilot
 is
responsible
for
deciding,
deploying,
and
using
 the
nodes

management
and
service
monitoring
tools
most
suitable
to
its
needs
and

18
 General
Description

restrictions.
Thus,
for
example,
IBM
pilot
has
decided
to
use
Trivy3
 for

scanning
vulnerabilities
in
the
deployment
of
its
i3-MARKET
instance.

•
As
it
was
commented
in
the
infrastructure
sections,
self-management
by

the
pilot
is
assumed
where
to
deploy
each
artifact.
Therefore
the
“Cloud

provisioning
and
management”
layer
is
now
under
the
scope
of
the
pilot

administrators.

3
https://www.aquasec.com/products/trivy/

https://www.aquasec.com/products/trivy/

3

Backplane
API
Gateway

3.1
 Objectives

The
Backplane
gateway
system
 is
 the
building
block
 in
charge
of
offering

to
 all
 participants
 and
marketplaces
 access
 to
 the
Backplane
 system.
The

goal
of
 the
Backplane
API
 is
 therefore
 twofold:
on
 the
one
hand,
 it
serves

an
 integrated
API
endpoint
for
all
 the
 i3-MARKET
services
offered
by
 i3­
MARKET
and
implemented
in
the
respective
building
blocks.
On
the
other

hand,
it
provides
secure
mechanisms
for
preventing
not-allowed
accesses.

In
terms
of
internal
connections
with
other
i3-MARKET
building
blocks,

Backplane
gateway
system
has
secure
communication
with
the
rest
of
sub­
systems
to
integrate
their
services
into
the
Backplane
API,
in
order
to
provide

secure
access
to
authorized
clients.

The
Backplane
API
 is
 the
 set
of
endpoints
exposed
by
 the
gateway.
 It

comprises
all
 the
publicly
available
endpoints
of
 the
subsystems
 integrated

with
 the
 Backplane,
 as
 well
 as
 a
 few
 other
 endpoints,
 belonging
 to
 the

Backplane
itself,
used
in
the
authentication/authorization
flows.

The
API
follows
the
OpenApi
Specification
3.01.
Furthermore,
the
end­
points
corresponding
 to
each
subsystem
are
generated
automatically
based

on
the
subsystem’s
own
OpenApi
specification,
using
the
service
integrator

engine,
written
in
Dart.

In
 Figure
 3.1,
 there
 is
 an
 overview
 of
 the
 overall
Backplane
 gateway

architecture.
It
shows
how
the
Backplane
router
incorporates
all
subsystem

endpoints;
 so
 it
 can
 redirect
 each
 query
 to
 the
 corresponding
 subsystem,

applying
an
authentication
layer
above
to
avoid
unauthorized
requests.
Users

can
access
to
the
Backplane
gateway
via
the
Backplane
API,
which
publishes

all
available
subsystems
together
with
their
endpoints,
being
totally
agnostic

of
its
implementation
and
how
to
access
the
subsystem
directly.

1https://swagger.io/specification/

19

https://swagger.io/specification/

20
 Backplane
API
Gateway

Figure
3.1
 Backplane
gateway
architecture.

The
Backplane
gateway
exposes
all
subsystem
endpoints
through
a
single

Backplane
API.
This
simplifies
the
user
interaction
with
the
system;
further­
more,
it
provides
an
auto-generated
documentation
that
follows
the
OpenApi

specification
(OAS).

3.2
 Solution
Design/Blocks

3.2.1
 Authentication
and
authorization

In
the
current
Backplane
API
gateway
implementation,
OAuth
2.02
 authen­
tication
flow
 is
 used.
Combined
 together
with
OpenID
Connect
 (OIDC)3,

that
 provides
 a
 simple
 identity
 layer
 on
 top.
 Using
 OAuth
 Authorization

Code
 flow
 (see
 Figure
 3.2),
 a
 JWT
 token
 is
 generated
 at
 the
 end
 of
 the

login
 flow,
 which,
 later,
 can
 be
 used
 in
 subsequent
 queries
 to
 authen­
ticate
 clients
 against
 subsystem
 endpoints,
 using
 the
 Backplane
 API
 as

gateway.

2https://oauth.net/2/

3https://openid.net/connect/

https://oauth.net/2/
https://openid.net/connect/

3.2
 Solution
Design/Blocks
 21

3.2.1.1
 Authentication

Clients
 are
 expected
 to
 request
 their
 JWT
 token
 through
 a
 given
 login

endpoint,
to
further
request
secured
endpoints
using
those
credentials.

Thanks
to
the
OpenID
Connect
identity
layer,
scopes
and
claims
can
be

used.
Each
endpoint
can
declare
a
 set
of
 scopes,
which
will
be
 later
used

to
 ensure
 that
 the
 requesting
user
has
 enough
privileges,
 in
 a
 claim-based

authorization
fashion.

Figure
3.2
 Backplane
authentication
flow
overview.

There
is
a
description
of
each
connection
considered
during
the
authenti­
cation
flow
described
in
Figure
3.2:

1.
Login
browser
redirect:
When
a
user
requests
a
Backplane
authenti­
cated
endpoint
without
providing
the
required
credentials,
it
is
redirected

to
the
identity
provider
authorization
page
(OIDC
provider).

2.
Auth
 grant
 issue:
 In
 case
 login
 succeeds,
 an
 authorization
 grant
 is

issued
and
provided
to
the
client.

3.
JWT
request:
The
client
requests
an
access
token,
providing
the
Auth

grant
code.

4.
Generate
JWT:
Now,
 the
Backplane
generates
an
access
 token
JWT,

adding
the
user
claims
that
are
requested
to
our
identity
provider.

22
 Backplane
API
Gateway

5.
Request
 endpoint:
The
 client
uses
 the
previously
generated
 JWT
 to

authenticate
their
requests
to
the
Backplane.

6.
Redirect
 request:
 In
 case
 the
 user
 has
 enough
 privileges
 to
 access

the
 requested
endpoint,
checking
 the
endpoint
 scope
and
user
claims,

the
Backplane
will
 redirect
 the
query
 to
 the
corresponding
subsystem

endpoint.

3.2.1.2
 Authorization

After
performing
the
whole
authentication
flow,
clients
will
end
up
with
two

JWT
tokens:

•
access_token:
Contains
the
subject
id,
together
with
the
scope.

•
 id_token:
 Contains
 information
 about
 the
 user
 itself,
 including
 the

Verifiable
Credentials
associated
with
the
corresponding
claims,
based

on
the
user
profile.

Clients
 are
 expecting
 to
provide
 those
 tokens
 in
 the
header
part
when

querying
a
secured
endpoint.
Figure
3.3
illustrates
the
authorization
flow.

Figure
3.3
 Backplane
authorization
flow
overview.

1.
Secured
 endpoint
 query:
 Clients
 are
 expected
 to
 include
 the

access_token
 and
 id_token
 headers
 when
 requesting
 a
 Backplane

authenticated
endpoint.

3.2
 Solution
Design/Blocks
 23

2.
Retrieve
JWKS4:
The
OIDC
uses
 token
asynchronous
validation;
 so

the
 Backplane
 just
 needs
 to
 retrieve
 the
 JWKS,
 an
 array
 of
 public

cryptographic
keys,
in
order
to
validate
each
token
in
offline
mode
using

EdDSA5,
a
public-key
cryptography
signature
algorithm.

3.
Validate
 tokens:
The
Backplane
 internally
 validates
 the
 tokens’
 sig­
nature
and
verifies
 that
 the
user
has
 the
 required
claims
 to
access
 the

endpoint.

4.
Query:
 The
 query
 is
 redirected
 to
 the
 subsystem,
 together
 with
 the

id_token
header,
containing
a
JWT
token
that
describes
the
requester.

3.2.2
 Subsystem
implementation

While
subsystems
do
not
need
 to
worry
about
authentication,
 they
need
 to

indicate
in
their
OAS
specification
which
of
their
endpoints
are
protected
and

which
are
not.
To
mark
an
endpoint
as
protected,
it
must
include:

•
JWT
 security
 reference:
The
 endpoint
 specification
must
 show
 that

JWT
is
used
as
a
means
of
authentication.
This
is
done
by
adding
de
JWT

schema
to
the
security
field,
specifying
if
needed
the
claims
required
to

access
the
endpoint.

“security”: [
{
“jwt”: [“consumer”]

}

]

Then,
clients
must
define
the
security
schema
as
an
ApiKey,
expected
to

be
presented
in
the
header
id_token:

•
JWT
 security
 schema:
 Add
 the
 following
 security
 schema
 to
 the

subsystem
OpenApi
specification
(OAS):

"securitySchemes":{
"jwt":{
 "type": "apiKey",
 "in": "header",
 "name": "id_token"
}
},

4JSON
 Web
 Key
 Sets
 (https://auth0.com/docs/secure/tokens/json-web-tokens/json-web­
key-sets).

5https://www.rfc-editor.org/rfc/rfc8032

https://auth0.com/docs/secure/tokens/json-web-tokens/json-webkey-sets
https://auth0.com/docs/secure/tokens/json-web-tokens/json-webkey-sets
https://www.rfc-editor.org/rfc/rfc8032

24
 Backplane
API
Gateway

Note:
There
is
no
need
to
define
the
access_token
explained
before,
as
it

is
only
being
used
by
the
Backplane
itself;
so,
subsystems
can
ignore
it.

With
 the
above-stated
OAS
modifications,
 the
service
 integrator
engine

will
add
 the
required
authorization
mechanism
 to
each
endpoint,
automati­
cally,
during
Backplane
deployment
pipeline,
as
described
in
Section
3.2.5.

3.2.3
 Data
flows

When
a
service
is
integrated
into
the
Backplane,
it
means
that
its
resources

can
be
accessed
through
the
Backplane
itself.
So,
when
a
client
application

accesses
to
a
resource
into
the
Backplane,
it
will
redirect
the
request
to
the

final
resource
path,
specified
in
the
resource
provider
OAS
file.

Thanks
to
this
approach,
the
client
is
agnostic
of
the
final
location
of
the

required
service,
being
all
handled
by
the
Backplane.

The
Backplane
establishes
a
communication
using
 JWT
authentication

between
 the
 Backplane
 and
 the
 service
 to
 ensure
 data
 protection.
 This

communication
can
also
be
easily
secured
using
certificates
HTTPs/TLS.

3.2.4
 Service
Integration
Manager

The
 service
 integration
manager
 is
 one
 of
 the
 key
 components
 of
 the
 i3­
MARKET
Backplane.
It
ensures
the
easy
integration
of
any
subsystem
ser­
vice
to
the
i3-MARKET
Backplane,
using
OpenAPI
specification
as
bridge.

The
Manager
is
written
in
Dart6
 and
is
the
one
responsible
for
external

service
 integration
 to
 the
 Backplane
 API;
 so
 it
 is
 capable
 of
 acting
 as
 a

gateway
for
this
new
service.
In
Figure
3.4,
there
is
an
overview
of
how
the

service
integration
manager
works,
proceeding
with
the
following
steps:

1.
Generate
 resources:
Given
 a
 new
 service
OpenAPI
 specification,
 it

runs
the
Loopback
CLI
OpenAPI
generator
command7,
which
generates

the
specified
controllers
and
data
sources
 that
 later
will
be
 integrated

into
the
final
Backplane
API
Docker
image.

2.
 Integrate
+
Build:
As
the
Loopback
CLI
just
provides
a
set
of
skeletons,

some
modifications
need
 to
be
performed
 to
 the
previously
generated

sources,
customizing
them
for
our
use
case.
Then,
it
can
be
integrated

to
 the
Backplane
API
base
code,
building
 the
final
Backplane
Docker

image,
ready
to
be
used
for
deployment.

6https://dart.dev/

7https://loopback.io/doc/en/lb4/OpenAPI-generator.html

https://dart.dev/
https://loopback.io/doc/en/lb4/OpenAPI-generator.html

3.2
 Solution
Design/Blocks
 25

Figure
3.4
 Service
integrator
process
overview.

3.2.5
 Automatic
integration
mechanism

In
 order
 to
 provide
 an
 easy
 onboarding
 experience,
 it
 is
 mandatory
 to

build
mechanisms
to
achieve
easy
and
automated
marketplaces
and
service

integration.
 In
order
 to
achieve
 these
goals,
 the
consortium
decided
 to
use

GitLab
CI
pipelines8
together
with
Ansible
playbooks9,
being
GitLab
respon­
sible
of
artifact
generation
and
Ansible
of
 the
deployment
 to
 i3-MARKET

nodes.

3.2.6
 Subsystem
OAS
repository

The
 integration
process
begins
when
an
 i3-MARKET
maintainer
validates

a
given
subsystem
OAS
(OpenApi
specification)
and,
hence,
merges
a
pull

request
into
the
master
branch
adding
or
modifying
a
definition.

The
 lack
of
validation
proofs
hinders
 the
 i3-MARKET
maintainer
 job,

causing
sometimes
the
approval
of
OAS
files
with
errors
or
incompatibilities,

which
 in
 the
end
break
 the
Backplane.
At
 this
point,
we
found
 the
need
of

implementing
 a
 CI/CD
 pipeline
 with
 a
 job
 responsible
 for
 validating
 the

files,
 together
with
 the
correct
 integration
within
 the
Backplane
base
code,

as
described
in
Figure
3.5,
performing
the
following
steps
in
order:

1.
Validate
 the
OAS
file:
All
 the
OAS
files
 are
 collected
 and
 the
API

definition
of
each
one
is
validated,
using
the
npm
swagger-cli10
utility.

8https://docs.gitlab.com/ee/ci/pipelines/

9https://docs.ansible.com/ansible/latest/user_guide/playbooks_intro.html

10https://www.npmjs.com/package/swagger-cli

https://docs.gitlab.com/ee/ci/pipelines/
https://docs.ansible.com/ansible/latest/user_guide/playbooks_intro.html
https://www.npmjs.com/package/swagger-cli

26
 Backplane
API
Gateway

2.
Clone
Backplane
repository:
In
this
step,
we
are
cloning
the
Backplane

repository.
This
 is
 a
needed
 step
 in
order
 to
verify
 the
OAS
files
 are

compatible
with
the
integrator
and
the
Backplane
itself.

3.
 Integrate
OAS:
In
this
step,
using
the
latest
integrator
engine
available,

we
are
 integrating
all
 the
OAS
files
 into
 the
base
Backplane
code.
 In

case
some
error
or
incompatibly
is
reported,
the
whole
pipeline
fails
and

notifies
the
i3-MARKET
maintainer.

4.
 Integration
test:
This
step
starts
a
Backplane
instance
only
accessible

locally.
Then,
using
a
tool
called
schemathesis11,
we
are
testing
all
the

endpoints
of
the
Greeter
subsystem12,
making
sure
none
of
them
return

an
error
5XX.
Note
the
tool
is
not
testing
all
the
subsystem
endpoints,

given
the
fact
that
we
cannot
assume
the
status
of
all
of
them.
We
found

out
that
scanning
a
single
known
subsystem
is
enough
to
detect
common

failures.

5.

Release
new
version:
At
this
moment,
we
could
say
the
OAS
files
are

safe
to
be
deployed;
so,
a
new
tag
is
being
created
and
pushed
into
the

Backplane
 repository.
Triggering
 the
Backplane
automatic
 integration

pipeline
is
explained
in
the
next
section.

Figure
3.5
 Subsystem
OAS
automatic
integration
mechanism
overview.

3.2.7
 Backplane
repository

Validated
updates
on
 the
 subsystem
OAS
 repository
 trigger
 the
Backplane

automatic
 integration
mechanism,
described
 in
Figure
3.6,
performing
 the

following
steps
in
order:

1.
Run
 the
 service
 integrator
 engine:
The
 engine
 artifact
 is
 collected

from
the
corresponding
code
repository,
and
the
code
components
that

11https://github.com/schemathesis/schemathesis

12Mockup
of
an
OAS
subsystem,
created
as
an
example
for
the
rest
of
partners.

https://github.com/schemathesis/schemathesis

3.2
 Solution
Design/Blocks
 27

later
will
be
integrated
to
the
final
Backplane
artifact
are
generated.
The

functionality
of
the
service
integrator
is
fully
explained
in
the
previous

section.

2.
Check
vulnerabilities:
In
this
phase,
a
vulnerability
check
using
Trivy13

is
performed,
a
vulnerability
scanner
developed
by
AquaSecurity14.
This

step
scans
NPM
and
OS
libraries,
marking
the
pipeline
as
failed
in
case

any
critical
vulnerability
is
found.

3.
 Integration
 test:
This
step
verifies
 the
 functionality
of
 the
 fully
 inte­
grated
Backplane,
as
explained
 in
 the
section
before
 (subsystem
OAS

repository).

4.
Build
 image:
 Using
 the
 code
 stored
 in
 the
 Backplane
 repository,

together
with
the
output
of
the
service
integrator,
a
new
Docker
image

for
 production
 deployment
 is
 generated
 and
 uploaded
 to
 the
 project

registry;
so
future
deployment
can
easily
be
performed
using
Docker.

5.
Deploy:
The
pipeline
triggers
the
deployment
Ansible
playbooks,
which

deploy
 the
 Backplane
 API
 using
 the
 Docker
 image
 built
 previously,

along
with
the
i3-MARKET
SDK
Docker
image.

6.
Update
the
developer
portal:
In
parallel
to
this
process,
because
a
new

OAS
 has
 been
 uploaded
 to
 the
 project,
 the
 developer
 portal
must
 be

updated,
triggering
the
documentation
repository
pipeline.
It
generates
a

new
developer
portal
artifact
and
deploys
it
using
GitLab
Pages15.

3.2.7.1
 Remote
images

All
production-ready
 images
can
be
 found
 in
 the
private
and
public
 repos­
itories
managed
by
 the
consortium
 (GitLab
and
Nexus).
Currently,
we
are

providing
two
different
image
flavours:

•
Major.minor.patch:
Base
Backplane
 image,
which
 includes
 the
 latest

subsystem
OAS
available
at
the
build
instant.

•
Major.minor.patch-with-integrator:
 Built
 from
 the
 base
 image,

although
 it
 also
 includes
 the
 integrator
binary
under
 /integrator
 path.

This
image
provides
a
custom
entry
point
that
will
check
the
existence

of
custom
OAS
files
under
/home/node/app/specs.
If
affirmed,
the
inte­
grator
will
integrate
those
specs
into
the
base
Backplane
image
before

13https://github.com/aquasecurity/trivy

14https://www.aquasec.com/

15https://docs.gitlab.com/ee/user/project/pages/

https://github.com/aquasecurity/trivy
https://www.aquasec.com/
https://docs.gitlab.com/ee/user/project/pages/

28
 Backplane
API
Gateway

Figure
3.6
 Backplane
automatic
integration
mechanism
overview.

running
the
Backplane;
otherwise,
the
integration
phase
will
be
skipped,

and
the
Backplane
will
be
executed
using
the
latest
OAS
definitions
at

the
image
compilation
instant.

Both
image
flavours
can
be
pulled
using
the
described
versioning
format

(major.minor.patch) or the
latest
tag
to
get
the
most
recent
version.

3.2.8
 Final
deployment

Final
deployment
phase,
described
in
Figure
3.7,
is
orchestrated
using
a
single

Ansible
playbook
triggered
by
the
GitLab
CI
pipeline
described
before.
Actu­
ally,
during
this
testing
phase,
four
i3-MARKET
nodes
are
being
considered,

each
one
performing
the
following
tasks:

1.
Get
 config
 files:
 Queries
 against
 i3-MARKET
 nexus
 repository
 are

being
executed
in
order
to
obtain
the
required
configuration
files
for
each

node.

2.
Get
Backplane
Docker
image:
The
latest
Backplane
image
is
retrieved

from
the
GitLab
Docker
image
registry
used
in
the
artifact
construction

phase.

3.
Start
Backplane
 container:
Now,
 the
 running
 container
 is
 replaced,

launching
a
new
one
with
the
latest
image,
configuring
the
volumes
and

environment
variables
required.

3.2
 Solution
Design/Blocks
 29

Figure
3.7
 Ansible
playbook
run
overview.

3.2.9
 Multiple
environments
support

One
of
the
limitations
found
in
the
current
Backplane
was
the
lack
of
support

for
multiple
environment
deployments.
Specific
OAS
files
had
to
be
written

for
each
environment,
identical,
except
for
the
servers’
annotation,
that
might

differ
based
on
the
environment
characteristics.
Instead,
we
found
out
a
way

to
support
this
requirement
without
having
to
duplicate
OAS
definitions.

Right
now,
we
are
using
the
Open
API
“servers”
specification
to
indicate

all
servers
providing
the
stated
service,
using
custom
tags
to
identify
the
ones

to
be
used
in
each
environment.
For
example:

{

 "servers": [

{
 "url": "http://conflict-resolver-service:3000/",
"x-tags": ["docker-compose"]

},
{
 "url": "http://node1.i3-MARKET.com:8888/",
"x-tags": ["nodes"]

},
{
 "url": "http://node2.i3-MARKET.com:8888/",
"x-tags": ["nodes"]

}

],

}

30
 Backplane
API
Gateway

In
 the
previous
definition,
 there
are
 three
different
nodes
providing
 the

same
service.
Using
the
“x-tags,”
we
can
tag
each
server
in
order
to
choose

at
start-up
time
which
set
of
servers
has
to
use
the
Backplane
to
redirect
the

queries
for
each
service.

The
Backplane
can
filter
and
choose
 the
most
convenient
 server
based

on
 the
SERVER_FILTER_TAGS
 environment
variable
definition,
a
comma

separated
list
of
tags
to
indicate
the
servers
to
use.

Figure
3.8
shows
one
server
that
can
be
used
to
redirect
queries;
hence,

in
case
the
previous
selector
gets
multiple
server
options,
a
DNS
resolution

probe
 is
 executed
 for
 each
 hostname
 to
 choose
 the
 first
 available
 option.

Given
 the
heterogeneity
of
subsystems,
 the
Backplane
cannot
assure
avail­
ability
 of
 each
 server,
 as
 it
 lacks
 any
 liveness
 endpoint
 definition
 to
 test;

furthermore,
 the
Backplane
 is
 agnostic
 of
 the
 service
 functionality
 that
 it

provides
and
its
behaviour.
Below,
there
is
an
example
considering
only
the

nodes
 tagged
with
 “node,”
where
 node2
 is
 being
 selected
 because
 node1

failed
the
DNS
resolution.

Figure
3.8
 Server
election
process
example.

We
are
aware
that
this
approach
is
quite
naïve,
as
host
DNS
availability

does
not
prove
there
is
a
current
API
working
in
the
server.
However,
it
solves

common
issues
of
multiple
environment
deployments.

In
order
 to
 improve
 the
 server
 election
mechanism,
we
would
need
 to

enforce
a
liveness/readiness
endpoint
in
marketplace
definitions,
which
could

also
lead
to
including
algorithms
to
failback
to
an
alternative
server
in
case

the
main
one
fails.

3.3
 Interfaces
 31

3.3
 Interfaces

Backplane
API
for
the
i3-MARKET
project:

3.3.1
 Developers

GET/OpenIDConnectProvider/release2/developers/login

Obtain a valid initial_access_token for registering a new client

/OpenIDConnectProvider/release2/oidc/reg

Registering a new client

3.3.2
 OIDC
discovery

GET/OpenIDConnectProvider/release2/oidc/.well-known/openid-
configuration

Get OpenID Provider configuration information

3.3.3
 OIDC
core

/OpenIDConnectProvider/release2/oidc/auth

Request authorization code

GET/OpenIDConnectProvider/release2/oidc/jwks

Get JSON Web Key Set

POST/OpenIDConnectProvider/release2/oidc/token

Request access token and id token with authorization code or refresh token

3.3.4
 RegistryBlockchainController

POST/auditableAccounting/calculateMerkleRoot

/auditableAccounting/getCurrentRoot

/auditableAccounting/updateRegistries

POST

GET

GET

POST

32
 Backplane
API
Gateway

3.3.5
 RegistryController

GET/auditableAccounting/registries/count

PUT/auditableAccounting/registries/{id}

PATCH/auditableAccounting/registries/{id}

GET/auditableAccounting/registries/{id}

DELETE/auditableAccounting/registries/{id}

POST/auditableAccounting/registries

PATCH/auditableAccounting/registries

GET/auditableAccounting/registries

3.3.6
 AuthController

GET/auth/openid/callback

GET/auth/openid/login

GET/auth/whoAmI

3.3.7
 Conflict-resolver
service

POST/conflictResolverService/dispute

Initiates a dispute claiming that a cipherblock cannot be decrypted and thus that the data exchange is
invalid

POST/conflictResolverService/verification

Verification request of completeness of non-repudiation protocol regarding a data exchange

3.3.8
 FarewellController

POST/greeter/farewell/body

GET/greeter/farewell/headerParams

/greeter/farewell/pathParams/{name}/{age}

/greeter/farewell/queryParams

GET

GET

3.3
 Interfaces
 33

3.3.9
 HelloController

GET/greeter/hello/authenticated

GET/greeter/hello/consumer

GET/greeter/hello/provider

GET/greeter/hello/unauthenticated/{name}

3.3.10
 OpenApiController

GET/notification-manager-oas/api/v1/health

Version

GET/notification-manager-oas/api/v1/version

Version

3.3.11
 Notifications

POST/notification-manager-oas/api/v1/notification/service

Notification service

GET/notification-manager-oas/api/v1/notification/unread

Get unread notifications

GET/notification-manager-
oas/api/v1/notification/user/{user_id}/unread

Get unread notifications by id

GET/notification-manager-oas/api/v1/notification/user/{user_id}

Get notification by Userid

PATCH/notification-manager-
oas/api/v1/notification/{notification_id}/read

Modify notification

PATCH/notification-manager-
oas/api/v1/notification/{notification_id}/unread

Modify notification

GET/notification-manager-oas/api/v1/notification/{notification_id}

Get notification

DELETE/notification-manager-
oas/api/v1/notification/{notification_id}

Delete notification

POST/notification-manager-oas/api/v1/notification

Notification user

GET/notification-manager-oas/api/v1/notification

Get notifications

34
 Backplane
API
Gateway

3.3.12
 Queues

PATCH/notification-manager-
oas/api/v1/services/{service_id}/queues/{queue_id}/activate

Switch status queue

PATCH/notification-manager-
oas/api/v1/services/{service_id}/queues/{queue_id}/deactivate

Switch status queue

GET/notification-manager-
oas/api/v1/services/{service_id}/queues/{queue_id}

Get queues by id

DELETE/notification-manager-
oas/api/v1/services/{service_id}/queues/{queue_id}

Delete queue

POST/notification-manager-oas/api/v1/services/{service_id}/queues

Post queues

GET/notification-manager-oas/api/v1/services/{service_id}/queues

Get queues

GET/notification-manager-oas/api/v1/services/{service_id}

Get services by id

DELETE/notification-manager-oas/api/v1/services/{service_id}

Delete service

POST/notification-manager-oas/api/v1/services

Create service

GET/notification-manager-oas/api/v1/services

Get services

3.3.13
 Subscriptions

GET/notification-manager-oas/api/v1/users/subscriptions/{category}

Returns a Json containing a list of users subscribed to that category

GET/notification-manager-oas/api/v1/users/subscriptions

Get all user subscriptions

PATCH/notification-manager-
oas/api/v1/users/{user_id}/subscriptions/{subscription_id}/activate

Activate or deactivate user subscription

PATCH/notification-manager-
oas/api/v1/users/{user_id}/subscriptions/{subscription_id}/deactivat
e

Activate or deactivate user subscription

GET/notification-manager-
oas/api/v1/users/{user_id}/subscriptions/{subscription_id}

3.3
 Interfaces
 35

Get user subscription by user_id and subscription_id

DELETE/notification-manager-
oas/api/v1/users/{user_id}/subscriptions/{subscription_id}

Delete subscription by user_id and subscription_id

POST/notification-manager-oas/api/v1/users/{user_id}/subscriptions

Create subscription to category

GET/notification-manager-oas/api/v1/users/{user_id}/subscriptions

Get Subscriptions by Userid

3.3.14
 PingController

GET/ping

GET/pingConsumer

GET

GET/pingUser

/pingProvider

3.3.15
 Cost-controller

GET/pricingManager/fee/getfee

Get I3M fee

PUT/pricingManager/fee/setfee

Set I3M fee

3.3.16
 Price-controller

GET/pricingManager/price/checkformulaconfiguration

Check formula and parameter consistency

GET/pricingManager/price/getformulajsonconfiguration

Get configuration using Json format

GET/pricingManager/price/getprice

Get the price of data

PUT/pricingManager/price/setformulaconstant

Set formula constant

PUT/pricingManager/price/setformulajsonconfiguration

Set configuration using Json format

PUT/pricingManager/price/setformulaparameter

Set formula parameter

PUT/pricingManager/price/setformulawithdefaultconfiguration

Set formula with default values for constants and parameters

36
 Backplane
API
Gateway

3.3.17
 RatingService

GET/rating/api/agreements/{id}/isRated

Check if an agreement is rated

GET/rating/api/agreements/{id}/rating

Get the rating object of a specified agreement

GET/rating/api/consumers/{pk}/agreements

Get the terminated agreements of the consumer

GET/rating/api/consumers/{did}/ratings

Get the ratings of the consumer

GET/rating/api/providers/{pk}/agreements

Get the terminated agreements of the provider

GET/rating/api/providers/{did}/ratings

Get the ratings of the provider

GET/rating/api/providers/{did}/totalRating

Get the average rating of the provider

GET/rating/api/questions

Get all the questions

POST/rating/api/ratings/{id}/respond

Respond to a rating object

PUT/rating/api/ratings/{id}

Edit an existing Rating

GET/rating/api/ratings/{id}

Get a single rating.

DELETE/rating/api/ratings/{id}

Delete a single rating.

POST/rating/api/ratings

Create a new rating

GET/rating/api/ratings

Get all the ratings

3.3.18
 Agreement

GET/sc-manager-oas/check_active_agreements

Check active agreements

POST/sc-manager-oas/check_agreements_by_consumer

Check agreements by consumer

GET/sc-manager-oas/check_agreements_by_data_offering/{offering_id}

Check agreements by data offering

POST/sc-manager-oas/check_agreements_by_provider

Check agreements by provider

POST/sc-manager-

3.3
 Interfaces
 37

oas/create_agreement_raw_transaction/{sender_address}

Create agreement

POST/sc-manager-oas/deploy_signed_transaction

Deploy signed transaction

PUT/sc-manager-oas/enforce_penalty

Enforce penalty

POST/sc-manager-oas/evaluate_signed_resolution

Verify a signed resolution

GET/sc-manager-oas/get_agreement/{agreement_id}

Get agreement

GET/sc-manager-oas/get_pricing_model/{agreement_id}

Get agreement's pricing model

GET/sc-manager-oas/get_state/{agreement_id}

Get the state of the agreement

POST/sc-manager-oas/propose_penalty

Choose penalty

GET/sc-manager-oas/retrieve_agreements/{consumer_public_key}

Retrieve the active agreements, which start date is reached, based on consumer public key

GET/sc-manager-oas/template/{offering_id}

Request template with static and dynamic parameters

PUT/sc-manager-oas/terminate

Terminate agreement

3.3.19
 Explicit
user
consent

GET/sc-manager-oas/check_consent_status/{dataOfferingId}

Check consent status

POST/sc-manager-oas/deploy_consent_signed_transaction

Deploy consent signed transaction

POST/sc-manager-oas/give_consent

Give consent

PUT/sc-manager-oas/revoke_consent

Revoke consent

3.3.20
 Registration-offering

GET/semantic-
engine/api/registration/ActiveOfferingByCategory/{category}

Get a registered active data offerings by category

38
 Backplane
API
Gateway

GET/semantic-
engine/api/registration/ActiveOfferingByProvider/{id}/providerId

Get a registered active data offering by provider

GET/semantic-engine/api/registration/categories-list

Get a list of all categories

GET/semantic-engine/api/registration/contract-
parameter/{offeringId}/offeringId

Get contract parameters by offering id

POST/semantic-engine/api/registration/data-offering

Register a data offering

DELETE/semantic-engine/api/registration/delete-offering/{id}

Delete a data offering

GET/semantic-engine/api/registration/federated-
activeOffering/{id}/providerId

Get a registered active data offering by provider

GET/semantic-engine/api/registration/federated-
activeOffering/{category}

Get a registered active federated data offering by category

GET/semantic-engine/api/registration/federated-contract-
parameter/{id}/offeringId

Get contract parameters by offering id in federated search

GET/semantic-engine/api/registration/federated-
offering/getActiveOfferingByText/{text}/text

Get a registered data offering by text/keyword

GET/semantic-engine/api/registration/federated-
offering/textSearch/text/{text}

Get a registered data offering by text/keyword in federated search

GET/semantic-engine/api/registration/federated-
offering/{id}/offeringId

Get a registered data offering by offering id

GET/semantic-engine/api/registration/federated-offering/{category}

Get a registered data offering by category

GET/semantic-engine/api/registration/federated-offerings-list/on-
Active

Get a list of offerings for active in federated search

GET/semantic-engine/api/registration/federated-offerings-list/on-
SharedNetwork

Get a list of offerings for shared status in federated search

GET/semantic-engine/api/registration/federated-offerings-list

Get a list of offerings

GET/semantic-engine/api/registration/federated-providers-list

3.3
 Interfaces
 39

Get a list of providers

GET/semantic-
engine/api/registration/getActiveOfferingByText/{text}/text

Get a registered data offering by text/keyword

GET/semantic-
engine/api/registration/getOfferingByActiveAndShareDataWithThirdPart
y/{active}/{shareDataWithThirdParty}

Get a registered data offering by active and sharedWithThirdParty status

GET/semantic-
engine/api/registration/getOfferingBySharedAndTransferableAndFreePri
ce/{shared}/{transfer}/{freePrice}

Get a registered data offering by shared and transferable and FreePrice status

GET/semantic-
engine/api/registration/offering/ByTitleAndPricingModelName/{dataOff
eringTitle}/{pricingModelName}

Get a registered data offering by title and pricing model name

GET/semantic-engine/api/registration/offering/offering-template

Download offering template

GET/semantic-engine/api/registration/offering/provider/{providerId}

Get data provider by providerId

GET/semantic-engine/api/registration/offering/{id}/offeringId

Get a registered data offering by offering id

GET/semantic-engine/api/registration/offering/{id}/providerId

Get a registered data offering by provider id

GET/semantic-engine/api/registration/offering/{category}

Get a registered data offering by category

GET/semantic-engine/api/registration/offerings

Get total offering and its list

GET/semantic-engine/api/registration/offerings-list/on-SharedNetwork

Get a list of offerings for shared status

GET/semantic-engine/api/registration/offerings-list/on-active

Get a list of offerings for active

GET/semantic-engine/api/registration/offerings-list

Get a list of offerings

DELETE/semantic-engine/api/registration/provider/{providerId}/delete

Delete a data provider by providerId

GET/semantic-engine/api/registration/providers/{category}/category

Get a list of providers by category

GET/semantic-engine/api/registration/providers-list

Get a list of providers

40
 Backplane
API
Gateway

GET/semantic-engine/api/registration/textSearch/text/{text}

Get a registered data offering by text/keyword

PUT/semantic-engine/api/registration/update-offering

Update already registered offering info

POST/semantic-engine/api/registration

Register provider info

3.3.21
 TokenizerController

POST/tokenization/api/v1/operations/clearing

Retrieve the transaction object to start the marketplace clearing operation

POST/tokenization/api/v1/operations/exchange-in

Retrieve the transaction object to perform an exchangeIn.

POST/tokenization/api/v1/operations/exchange-out

Retrieve the transaction object to perform an exchangeOut

POST/tokenization/api/v1/operations/fee-payment

Generate the fee payment transaction object

POST/tokenization/api/v1/operations/set-paid

Generate the payment transaction object

GET/tokenization/api/v1/operations

Get list of operations

GET/tokenization/api/v1/treasury/balances/{address}

Get the balance for a specific account

POST/tokenization/api/v1/treasury/community-wallet

Alter the community wallet address and the related community fee

GET/tokenization/api/v1/treasury/marketplaces/{address}

Get the index of a registered marketplace

POST/tokenization/api/v1/treasury/marketplaces

Register a marketplace

GET/tokenization/api/v1/treasury/token-transfers/{transferId}

Get the token transfer given a TransferId

POST/tokenization/api/v1/treasury/transactions/deploy-signed-
transaction

Deploy a signed transaction

GET/tokenization/api/v1/treasury/transactions/{transactionHash}

Get the receipt of a transaction given a TransactionHash

3.3
 Interfaces
 41

3.3.22
 Credential

GET/verifiableCredentials/release2/vc/credential/issue/{credential}/
callbackUrl/{callbackUrl}

Create a new credential with Veramo framework and store it in the wallet (full flow)

GET/verifiableCredentials/release2/vc/credential/issue/{did}/{creden
tial}

Generate a new credential with Veramo framework for a specific DID

POST/verifiableCredentials/release2/vc/credential/revoke

Revoke a credential by JWT

POST/verifiableCredentials/release2/vc/credential/verify

Verify a credential by JWT

GET/verifiableCredentials/release2/vc/credential

Get the credential list

3.3.23
 Issuer

GET/verifiableCredentials/release2/vc/issuer/subscribe

Subscribe this issuer in the i3-MARKET trusted issuers list

GET/verifiableCredentials/release2/vc/issuer/unsubscribe

Unsubscribe this issuer from the i3-MARKET trusted issuers list

GET/verifiableCredentials/release2/vc/issuer/verify

Verify the subscription status of the issuer

https://taylorandfrancis.com

4

Deployment
Guides

This
section
aims
to
explain
how
to
deploy
software
within
the
i3-MARKET

Backplane
instances.

4.1
 Artifact
Deployment
Guides

The
 target
 audience
 are
 the
 i3-MARKET
project
developers
who
 are
par­
ticipating
 in
 the
 development
 and
 deployment
 of
 the
 i3-MARKET
Back­
plane.

The
i3-MARKET
operative
considers
four
possible
deployment
scenar­
ios,
categorized
into
manual
and
automatized
deployments.
These
scenarios

are
the
following:

•
Manual
deployment
scenario
one
(MDS1)

•
Automatized
deployment
scenario
with
Ansible
(ADS1)

•
Automatized
 deployment
 scenario
 with
 Ansible
 and
 GitHub
 CI/CD

(ADS2)

•
Automatized
deployment
scenario
with
Docker
Compose
(ADS3)

Considering
 an
 i3-MARKET
 user
 role
 perspective,
 the
 main
 roles

involved
in
the
different
deployment
scenarios
are:

•
 i3M
root
instance
admin

•
 i3M
SW
developer

•
 i3M
third-party
SW
admin

•
 i3M
pilot
instance
admin

Table
4.1
provides
the
mapping
between
the
i3-MARKET
user
roles
and

the
previously
listed
deployment
scenarios.

The
following
subsections
describe
in
detail
each
identified
deployment

scenario.

43

44
 Deployment
Guides

Table
4.1
 Deployment
scenarios
and
i3M
user
roles
mapping.

Deployment
scenario/user role

 i3M root
instance
admin

i3M SW
developer

i3M third-
party
 SW
admin

i3M pilot
instance
admin

MDS1

ADS1

ADS2

ADS3

4.2
 MDS1:
Manual
Deployment

The
manual
 deployment
 scenario
 one
 (MDS1)
 is
 based
 on
 accessing
 the

physical
 resources
 by
 establishing
 an
SSH
 connection.
Once
 the
 physical

resource
is
accessed,
the
user
proceeds
with
the
SW
deployment
manually.

An
 overview
 of
MDS1
 is
 provided
 in
 Figure
 4.1.
The
 actors
 involved
 in

these
scenarios
are
 i3M
SW
developer
and
 i3M
 third-party
SW
admin;
see

Figure
4.1.

Figure
4.1
 MDS1.

4.3
 ADS1:
Automatized
Deployment
with
Ansible
Scenario
One
 45

4.3
 ADS1:
Automatized
Deployment
with
Ansible
Scenario

One

Automated
deployment
scenario
one
(ADS1)
is
based
on
the
provision
of
a

set
of
Ansible
playbooks
containing
deployment
recipes.
Playbooks
are
one

of
 the
core
 features
of
Ansible
and
 tell
Ansible
what
 to
execute.
They
are

like
a
to-do
list
for
Ansible
that
contains
a
list
of
tasks.
Playbooks
contain
the

steps
that
the
user
wants
to
execute
on
a
concrete
physical
resource,
and
they

are
run
sequentially.
From
an
operative
point
of
view,
actors
involved
in
this

scenario
must
cover
the
following
deployment
workflow:

1)
Create
 an
 Ansible
 template
 (playbook)
 with
 concrete
 deployment

instructions
using
the
physical
resources
specified
in
Section
4.3.

2)
Start
an
Ansible
job
by
instantiating
the
playbook
template
provided
in

step
1.

An
overview
of
ADS1
is
provided
in
Figure
4.2.
The
actors
involved
in

this
scenario
are
i3M
IT
admin
and
i3M
third-party
SW
admin.

Figure
4.2
 ADS1.

Finally,
Figure
4.3
contains
a
playbook
example
showing
the
main
struc­
ture
 in
 terms
of
 tags
 to
be
 included
 in
 i3-MARKET
playbooks,
which
are:

name,
hosts,
vars,
and
tasks.

46
 Deployment
Guides

Figure
4.3
 Ansible
playbook
example.

4.4
 ADS2:
Automated
Deployment
with
Ansible
and
CI/CD

GitHub
Pipelines
Two

Automatized
 deployment
 scenario
 two
 (ADS2)
 is
 based
 on
 the
 provision

of
CI/CD
 pipelines
with
Ansible
 and
GitHub.
The
 only
 actor
 involved
 in

this
 scenario
 is
 i3-MARKET
SW
 developer.
The
 goal
 to
 reach
 in
 current

deployment
scenario
should
be
aligned
with
i3-MARKET
DevOps
strategy

and
based
on
the
provision
of
an
Ansible
Tower
CI/CD
architecture.

An
overview
of
ADS2
is
provided
in
Figure
4.4.
The
only
actor
involved

in
this
scenario
is
i3M
SW
developer.

Figure
4.4
 ADS2.

4.5
 ADS3:
Automated
Deployment
with
Docker
Compose
 47

The
goal
to
reach
in
current
deployment
scenario
should
be
aligned
with

i3-MARKET
DevOps
strategy
[3]
and
based
on
the
provision
of
an
Ansible

Tower
CI/CD
architecture.

Considering
the
approach
presented
in
[4],
Figure
4.5
illustrates
what
we

should
build
to
support
CI/CD
in
i3-MARKET
using
Ansible
and
GitHub.

Figure
4.5
 i3-MARKET
CI/CD
with
Ansible
and
GitHub.

As
is
well
known,
the
main
purpose
of
CI
is
of
course
to
protect
the
master

branch
so
 that
 it
always
compiles.
The
only
way
 to
do
 this
 is
 to
check
 the

code
 in
another
branch
 (like
a
 function
branch),
 test
 that
code,
 review
 the

code,
and
only
merge
it
with
the
master
once
all
tests
pass.
The
architecture

above
 achieves
 exactly
 that
 and
 does
 so
with
 a
 very
 simplified
 approach

that
leverages
Ansible
Tower
as
our
CI
engine.
For
the
CD
part,
only
a
few

additional
workflows
would
be
needed
 to
 implement
artifacts
generated
by

the
CI
process
in
dev
->
test
->
production.
Using
this
architecture,
one
could

use
the
GitHub
versions
to
store
artifacts.
GitHub
has
the
ability
to
trigger
a

webhook
when
the
latest
version
is
updated,
which
in
turn
could
trigger
an

Ansible
Tower
CD
workflow.

4.5
 ADS3:
Automated
Deployment
with
Docker
Compose

The
last
way
of
automatizing
the
deployments
on
i3-MARKET
is
by
means
of

Docker
Compose1.
After
the
last
release
of
the
deployment
strategy
adopted

by
i3-MARKET
of
having
N
decentralized
i3-MARKET
instances
+
1
master

1
https://docs.docker.com/compose/

https://docs.docker.com/compose/

version: '3'

services:

backplane:

container_name: backplane

image: "XX.XX.XX.XX:XXXX/backplane:${BACKPLANE_VERSION}"

restart: unless-stopped

ports:

- 3000:3000

env_file: .env.backplane

networks:

- i3m-net

healthcheck:

test: "exit 0"

tokenizer:

48
 Deployment
Guides

i3-MARKET
instance
for
centralizing
some
services,
a
deployment
for
sup­
porting
the
installation
of
an
i3-MARKET
instance
(a
decentralized
node)
has

been
created
based
on
Docker
Compose.
This
Docker
Compose
is
used
for

deploying
and
managing
multiple
Docker
containers,
each
of
them
containing

different
core
and
decentralized
services
developed
by
i3-MARKET.

This
mechanism
will
allow
any
marketplace
 to
deploy
an
 i3-MARKET

“pilot
environment”
 in
order
 to
be
part
and
 interact
with
 the
 i3-MARKET

ecosystem.
 Therefore,
 ADS3
 becomes
 the
 most
 useful
 deployment
 strat­
egy
 for
 supporting
 i3-MARKET
 pilots
 in
 the
 deployment
 of
 those
 i3­
MARKET
services,
which
need
to
be
decentralized
and
installed
in
the
pilot

premises.
These
 services
 are
 (see
more
details
 in
Table
 2.6):
 “backplane”

(Backplane
API
component),
“tokenizer”
+
“pricing-manager”
(Monetization

component),
“sdk-ref-impl”
(SDK-RI
component),
“web-ri”
+
“mongo_web­
ri”
 (Web-RI),
 “oidc-provider-app”
 +
 “oidc-provider-db”
 (Service-centric

authentication
 component),
 “vc-service”
 (User-centric
 authentication
 com­
ponent),
 semantic-engine
 +
 semantic-engine-db
 (Semantic
 engine
 compo­
nent),
data_access
(Data
access
component),
auditable-accounting
(Auditable

accounting
 component),
besu
 (Blockchain
network
pilot
node
+
RocksDB

instance),
 cockroachdb-node
 (Distributed
 storage
 component),
 conflict­
resolver-service
(Conflict
resolution
component),
rating
(Rating
component),

and
“keycloak”
(Security
server
component).

In
terms
of
the
Docker
Compose
file
definition,
a
set
of
“.env.component”

files
has
been
created
for
storing
config
 information
relative
 to
 the
deploy­
ment
of
each
of
the
services
contained
in
the
Docker
Compose
file.
For
a
first

idea
of
the
compose
file,
see
below
in
Table
4.2
the
header
as
reference
of
it.

Table
4.2
 i3m-pilots-docker-compose.yml.

image: registry.gitlab.com/i3-market/code/wp3/t3.3/nodejs-tokenization-treasury-api:${TOKENIZER_VERSION}

container_name: tokenizer

ports:

- 3001:3001

 env_file: .env.tokenizer

restart: unless-stopped

networks:

 - i3m-net

 depends_on:

besu:

 condition: service_healthy

 postgres:

condition: service_healthy

sdk-ri:

 image: registry.gitlab.com/i3-market/code/sdk/i3m-sdk-reference-implementation/sdk-ri:${SDKRI_VERSION}

 container_name: sdk-ref-impl

restart: unless-stopped

env_file: .env.sdk-ri

ports:

- 8181:8080

 networks:

 - i3m-net

 depends_on:

backplane:

condition: service_healthy

command: java -jar /usr/local/jetty/start.jar

healthcheck:

 test: "exit 0"

 web-ri:

image: registry.gitlab.com/i3-market/code/web-ri/web-ri:${WEB_RI_VERSION}

container_name: web-ri

ports:

- 5300:3000

 env_file: .env.web-ri

restart: unless-stopped

networks:

 - i3m-net

depends_on:

 - mongo_web-ri

healthcheck:

 test: "exit 0"

 mongo_web-ri:

image: mongo:${MONGO_WEBRI_VERSION}

container_name: mongo_web-ri

 ports:

4.5
 ADS3:
Automated
Deployment
with
Docker
Compose
 49

- 27017:27017

restart: unless-stopped

env_file: .env.web-ri

networks:

- i3m-net

command: --quiet --setParameter logLevel=0

50
 Deployment
Guides

Besides
 installing
 the
 decentralized
 services
 by
 means
 of
 the
 Docker

Compose
 file,
 the
 administrator
 of
 the
 pilot
 infrastructure
 must
 install
 a

wallet.

4.6
 Tagging
Releases
Strategy

i3-MARKET
has
evolved
 into
a
complex
system
where
a
 large
number
of

pieces
 must
 interact
 together
 for
 a
 comprehensive
 and
 integrated
 perfor­
mance.
 Therefore,
 the
 different
 versions
 released
 by
 each
 single
 compo­
nent/microservice
should
be
managed
and
controlled
to
avoid
incompatibili­
ties
in
the
deployments.

A
strategy
based
on
tagging
and
a
compatibility
matrix
has
been
defined

to
deal
with
the
release’s
compatibility.

Thus,
 every
 version
 released
 by
 a
 component
 is
 formatted
 as

MAJOR.MINOR.PATCH
 tag,
 and
 each
part
 changes
 according
 to
 the
 fol­
lowing
rules.

We
increment:

•
MAJOR
when
breaking
backward
compatibility;

•
MINOR
when
adding
a
new
feature
which
does
not
break
compatibility;

•
PATCH
when
fixing
a
bug
without
breaking
compatibility.

On
 the
 other
 hand,
 a
 matrix
 including
 the
 “microservice
 name”,

“microservice
version”,
and
a
vector
of
dependencies
with
other
components

(and
its
compatible
version)
has
been
defined.

4.7
 Deployment
Process

At
the
deployment
time,
each
artifact/service
must
include
in
the
associated

git
project
a
requirements.txt
file
providing
values
in
the
“USES”
columns;

for
example,
see
the
requirement.txt
for
semantic
engine
in
Figure
4.6.

4.7
 Deployment
Process
 51

Figure
4.6
 Requirement.txt
for
semantic
engine
repository.

4.7.1
 Docker
Compose

Docker
Compose
is
a
tool
for
defining
and
running
multi-container
Docker

applications.
It
allows
you
 to
define
 the
services
and
 their
dependencies
 in

a
YAML
 file
 and
 run
 them
with
 a
 single
 command.
Docker
Compose
 is

especially
useful
for
complex
applications
 that
require
multiple
containers,

such
as
web
applications
that
use
a
database
and
a
web
server.

The
Docker
Compose
file
defines
 the
 services,
networks,
and
volumes

for
 the
 application.
 Each
 service
 is
 defined
 with
 its
 own
 Docker
 image,

command,
environment
variables,
ports,
and
volumes.
Dependencies
between

services
can
be
specified
using
network
connections,
and
shared
volumes
can

be
defined
to
allow
data
to
be
shared
between
containers.

Docker
Compose
can
be
used
to
orchestrate
the
deployment
of
containers

in
a
 local
development
environment
or
 in
a
production
environment.
It
can

be
used
with
Docker
Swarm
to
deploy
multi-node
applications,
and
it
can
be

integrated
with
other
tools
such
as
Jenkins
or
GitLab
CI/CD
for
continuous

integration
and
continuous
deployment.

Using
Docker
Compose
can
provide
many
benefits
for
your
Docker-based

applications,
including
the
following.

1)
Simplified
 deployment:
 Docker
 Compose
 makes
 it
 easy
 to
 deploy

multi-container
applications
with
a
single
command.

52
 Deployment
Guides

2)
 Improved
 scalability:
 By
 defining
 services
 and
 their
 dependencies,

Docker
Compose
 allows
you
 to
 scale
 individual
 components
of
your

application
as
needed.

3)
Consistent
environments:
Docker
Compose
ensures
that
all
services
in

your
application
run
in
a
consistent
environment,
regardless
of
the
host

system.

4)
Easy
testing:
Docker
Compose
makes
 it
easy
 to
spin
up
 test
environ­
ments
with
the
same
configuration
as
your
production
environment.

5)
Better
 collaboration:
By
 defining
 the
 application
 configuration
 in
 a

YAML
file,
Docker
Compose
makes
it
easy
to
share
and
collaborate
on

configurations
with
other
team
members.

Docker
Compose
 is
 a
powerful
 tool
 for
defining
 and
deploying
multi-
container
 Docker
 applications.
 It
 simplifies
 the
 deployment
 process
 and

allows
you
 to
 scale
your
 applications
with
 ease,
while
 also
 ensuring
 con­
sistency
 across
 environments
 and
 enabling
 collaboration
 between
 team

members.

4.7.2
 Technical
Requirements

The
technical
requirements
for
using
Docker
Compose
include:

1)
Docker
 Engine:
 Docker
 Compose
 requires
 Docker
 Engine
 to
 be

installed
and
running
on
the
host
system.
Docker
Engine
is
a
container

runtime
that
allows
you
to
build,
run,
and
manage
Docker
containers.

2)
YAML
file:
Docker
Compose
uses
a
YAML
file
to
define
the
services,

networks,
and
volumes
 for
 the
application.
The
YAML
file
should
be

named
docker-compose.yml
and
should
be
located
in
the
root
directory

of
the
application.

3)
Docker
 images:
Docker
Compose
uses
Docker
 images
 to
create
con­
tainers
 for
 each
 service
 in
 the
 application.
 Docker
 images
 can
 be

obtained
from
Docker
Hub,
a
public
registry
of
Docker
images,
or
from

a
private
registry.

4)
Network
connections:
Services
in
the
application
may
need
to
commu­
nicate
with
each
other
over
the
network.
Docker
Compose
uses
Docker

networks
to
create
isolated
network
environments
for
each
application.

5)
Volumes:
Docker
Compose
allows
you
to
define
volumes
to
share
data

between
 containers
 and
 persist
 data
 beyond
 the
 life
 of
 a
 container.

Volumes
can
be
defined
as
local
host
directories
or
as
named
volumes.

4.7
 Deployment
Process
 53

6)
Environment
variables:
Docker
Compose
allows
you
 to
define
envi­
ronment
 variables
 for
 each
 service
 in
 the
 application.
 Environment

variables
 can
 be
 used
 to
 configure
 the
 behaviour
 of
 the
 container
 at

runtime.

7)
Compose
CLI:
Docker
Compose
can
be
 run
 from
 the
command
 line

using
 the
Compose
CLI.
The
Compose
CLI
allows
you
 to
start,
stop,

and
manage
Docker
Compose
applications.

Docker
 Compose
 requires
 a
 basic
 understanding
 of
 Docker
 and
 con­
tainerization
 concepts,
 as
 well
 as
 familiarity
 with
 YAML
 syntax.
 It
 is

recommended
to
have
a
solid
understanding
of
Docker
Engine
before
using

Docker
Compose,
as
it
relies
heavily
on
Docker
Engine
functionality.

4.7.3
 Specification
and
configurations

The
 specification
 and
 configurations
 of
 Docker
 Compose
 are
 defined
 in

a
 YAML
 file
 named
 “docker-compose.yml”.
 This
 file
 consists
 of
 several

sections
that
define
the
services,
networks,
and
volumes
for
the
application.

1)
Version:
The
version
section
specifies
the
version
of
the
Compose
file

format
to
use.
The
latest
version
is
version
3.9,
but
earlier
versions
may

be
used
depending
on
the
Docker
Engine
version
being
used.

2)
Services:
 The
 services
 section
 defines
 the
 individual
 services
 that

make
up
 the
application.
Each
 service
 is
defined
as
a
 separate
block,

with
 its
own
 image,
environment
variables,
ports,
volumes,
and
other

configuration
options.

3)
Networks:
The
networks
section
defines
the
networks
that
the
services

use
 to
 communicate
 with
 each
 other.
 By
 default,
 Docker
 Compose

creates
 a
network
 for
 the
 application,
but
 additional
networks
 can
be

defined
as
needed.

4)
Volumes:
The
volumes
 section
defines
 the
volumes
 that
 are
used
by

the
services
to
store
persistent
data.
Volumes
can
be
defined
as
named

volumes
or
as
host
directories.

5)
Environment
variables:
The
environment
section
defines
environment

variables
that
are
passed
to
the
services.
Environment
variables
can
be

used
to
configure
the
behaviour
of
the
container
at
runtime.

6)
Deploy:
The
deploy
section
specifies
additional
deployment
options
for

the
services,
such
as
the
number
of
replicas,
placement
constraints,
and

resource
limits.

54
 Deployment
Guides

7)
External
services:
The
external_services
section
is
used
to
define
ser­
vices
that
are
provided
by
external
sources,
such
as
a
load
balancer
or
a

database
that
is
not
part
of
the
Docker
Compose
application.

These
 sections
can
be
 further
configured
with
various
options,
 such
as

image
pull
policies,
container
restart
policies,
logging
options,
and
more.

4.7.4
 Deployment

This
Docker
Compose
is
used
for
deploying
and
managing
multiple
docker

containers,
 each
 of
 them
 containing
 different
 core
 and
 decentralized
 ser­
vices
developed
by
i3-MARKET.
Therefore,
ADS3
becomes
the
most
useful

deployment
strategy
for
supporting
i3-MARKET
pilots
in
the
deployment
of

those
i3-MARKET
services,
which
need
to
be
decentralized
and
installed
in

the
pilot
premises.
 It
 is
a
practical
guide
 that
makes
use
of
 the
automated

deployment
based
on
Docker
Compose
(ADS3).

The
required
steps
are:

1)
Clone
i3-MARKET
deployment
repository:

Execute
the
following
command:

git clone https://i3m-hackathon-user:userX@github.com/i3-Market-V2-Public-Repository/Support---Deployment-Tools.git

2)
Login
into
i3-MARKET
Nexus
and
GitLab:

Execute
the
following
two
commands:

docker login -u i3m-hackathon -p i3m-hackathon X.X.X.X:XXXX

docker login -u i3m-hackathon-user -p userX registry.gitlab.com

3)
Execute
docker
compose:

Go
 to
 your
 cloned_dir/docker-compose/i3m-instance
 and
 execute
 the

following
command:

docker-compose --env-file .env -f .\i3m-pilots-docker-compose.yml up

https://i3m-hackathon-user:userX@github.com/i3-Market-V2-Public-Repository/Support---Deployment-Tools.git

4.7
 Deployment
Process
 55

To
stop
services:

docker-compose --env-file .env -f .\i3m-pilots-docker-compose.yml down

To
verify
that
all
services
are
up
and
running:

If
you
have
Docker
Desktop
installed,
you
can
view
all
running
containers

under
the
“i3m-instance”
as
shown
in
the
following
image:

https://taylorandfrancis.com

5

Operative
Specification

An
operational
specification
provides
a
comprehensive
overview
of
how
the

software
is
expected
to
function
in
various
operating
conditions.
It
serves
as

a
road
map
for
software
development
and
testing
and
ensures
that
the
final

product
meets
the
user’s
requirements
and
expectations.

5.1
 Libraries

The
 list
 of
 the
 different
 libraries
 used
 to
 integrate
 into
 the
 i3-MARKET

framework
is
shown
below.

Auditable
accounting
library:

◦
The
auditable
accounting
component
is
a
service
that
includes
an
API

to
automate
 the
process
of
 logging
and
auditing
 interactions
between

components
 and
 record
 the
 registries
 in
 the
 blockchain.
 The
API
 of

the
auditable
accounting
 is
accessed
 through
 the
Backplane
API
gate­
way.
Additionally,
the
auditable
accounting
component
can
be
accessed

directly
from
any
internal
component
of
the
platform.

◦
License:
MIT.

◦
Source
code:
https://gitlab.com/i3-market-v3-public-repository/sp3-sc

gbssw-aa-auditableaccounting.

Prerequisites:
Node.js,
Docker,
and
Docker
Compose.

◦
Wallet
client
library:

◦
This
 package
 defines
 how
 to
 interact
 with
 wallets
 by
 means
 of
 a

typescript
interface.
Furthermore,
it
provides
a
default
implementation

called
BaseWallet.
It
uses
an
interface
called
KeyWallet
to
delegate
the

complexity
of
key
management
to
other
packages
like
SW
Wallet.
Both

interfaces
are
listed
below.

◦
License:
Apache
License
2.0.

57

https://gitlab.com/i3-market-v3-public-repository/sp3-scgbssw-aa-auditableaccounting
https://gitlab.com/i3-market-v3-public-repository/sp3-scgbssw-aa-auditableaccounting

58
 Operative
Specification

◦
Source
code:
https://gitlab.com/i3-market-v3-public-repository/sp3-sc

gbssw-i3mwalletmonorepo.

◦
Prerequisites:
Node.js.

5.2
 i3-MARKET
APIs

The
update
compared
to
R1
in
terms
of
common
services
is
the
following:

i)
Notification
manager
common
services:
The
functionalities
related
with

notification
services
and
queues
were
the
scope
of
R2
and
R3
and
are

listed
in
Figure
5.1.

Figure
5.1
 Services
and
queues
common
services.

ii)
Alerts
common
services:
The
functionalities
related
with
alerts
were
the

scope
of
R2
and
R3
and
are
listed
in
Figures
5.2,
 5.3,
and
5.4.

Figure
5.2
 Alerts
common
services.

iii)
Conflict
resolution
common
services:

The
functionalities
related
with
contradictory
conditions
enabled
by
two

methods
as
shown
in
Figure
5.3

https://gitlab.com/i3-market-v3-public-repository/sp3-scgbssw-i3mwalletmonorepo
https://gitlab.com/i3-market-v3-public-repository/sp3-scgbssw-i3mwalletmonorepo

5.2
 i3-MARKET
APIs
 59

Figure
5.3
 Conflict
resolution
common
services.

Figure
5.4
 Contracts
common
services.

iv)
Contracts
common
services:
The
functionalities
related
with
smart
con­
tracts
 management
 were
 the
 scope
 of
 R2
 and
 R3
 and
 are
 listed
 in

Figure
5.5.

v)
Credential
common
services:
The
functionalities
related
with
authenti­
cation,
identities,
and
credentials
were
the
scope
of
R2
and
R3
and
are

listed
in
 5.5.

vi)
Exchange
 common
 services:
 The
 functionalities
 related
 with
 data

exchange
were
the
scope
of
R2
and
R3
and
are
listed
in
Figure
5.6.

60
 Operative
Specification

Figure
5.5
 Contracts
common
services.

Figure
5.6
 Exchange
common
services.

vii)
Notification
common
services:
The
functionalities
related
with
notifica­
tions
were
the
scope
of
R2
and
R3
and
are
listed
in
Figure
5.7.

Figure
5.7
 Notification
common
services.

viii)
Offering
management
common
services:
The
functionalities
related
with

data
offering
management
were
the
scope
of
R2
and
R3
and
are
listed
in

Figure
5.8.

5.2
 i3-MARKET
APIs
 61

Figure
5.8
 Offering
common
services.

ix)
Pricing
 managing
 common
 services:
 The
 functionalities
 related
 with

pricing
 managing
 were
 the
 scope
 of
 R2
 and
 R3
 and
 are
 listed
 in

Figure
5.9.

62
 Operative
Specification

Figure
5.9
 Pricing
common
services.

x)
Token
 managing
 common
 services:
 The
 functionalities
 related
 with

token
 management
 were
 the
 scope
 of
 R2
 and
 R3
 and
 are
 listed
 in

Figure
5.10.

Figure
5.10
 Tokens
common
services.

5.3
 SDKs

The
 layered
 SDK
 approach
 defined
 in
 the
 mechanism
 allows
 to
 adapt

and
 extend
 existing
 data
marketplaces
 to
 interface
with
 the
 i3-MARKET

Backplane.

5.4
 User
Interfaces
 63

Specifically,
the
layers
that
are
part
of
the
proposed
solution
for
the
SDK

are
the
following:

•
SDK-core:
This
 layer
aims
 to
 simplify
 the
 i3-MARKET
SDK
build­
ing
 process
 by
 generating
 client
 stubs
 for
 any
 i3-MARKET
 backend

endpoint/API,
defined
with
the
OpenAPI
(formerly
known
as
Swagger)

specification.
 In
 this
way,
 therefore,
 the
development
 team
can
better

focus
on
the
implementation
and
adoption
of
these
backend
endpoints

or
APIs.

•
SDK
reference
implementation
(SDK-RI):
This
layer
aims
to
identify

and
provide
a
set
of
common
services
to
be
implemented
for
consuming

available
Backplane
functionalities.

•
SDK-execution
patterns
 (SDK-EP):
 It
 is
 including
 the
atomic
 func­
tions
that
make
use
of
Backplane
API
(via
SDK)
adding
some
business

logic.

•
SDK
 Web-RI:
 It
 is
 supporting
 the
 frontend
 or
 GUI
 integrating
 the

common
services
provided
by
the
SDK-RI
and
that
can
be
reused
and

customized
as
part
of
the
pilot
specification
and
implementation
defined

in
the
context
of
WP5.

5.4
 User
Interfaces

To
contextualize
the
i3-MARKET
frontend
or
SDK
Web-RI,
it
is
important
to

introduce
the
SDK
global
approach
and
is
shown
in
Figure
5.11.
SDK
Web-
RI
would
be
the
top
layer
on
the
layered
approach
defined
as
part
of
the
SDK

solution
for
i3-MARKET.

i3-MARKET
 Web-RI
 provides
 a
 graphical
 user
 interface
 component,

designed
 to
 use
 the
 reference
 implementation
 (SDK-RI)
 through
 a
 user

interface
 to
 validate
 i3-MARKET
 functionalities
 from
 the
 user’s
 point
 of

view.
It
will
be
provided
as
an
open-source
component
for
the
i3-MARKET

implementation
and
for
future
pilots.

Web-RI
 can
 be
 used
 also
 by
 other
 market
 players
 to
 easily
 integrate

with
 i3-MARKET
and
even
set
up
a
marketplace.
Web-RI
 implements
 the

following
basic
workflows:

•
Register
new
data
offerings
and
delete
data
offerings

•
Search
for
offerings

•
Create
and
sign
smart
contracts

•
Purchase
data

•
Pay
for
data

64
 Operative
Specification

SDK Web -RI

SDK RI
(+SDK EP)

SDK Core

Figure
5.11
 Implementation
pyramid.

•
Transfer
data

•
Rate
data
providers

This
section
aims
to
explain
how
an
end-user
can
operate
within
the
i3­
MARKET
user
interface.

5.5
 Install
i3M
Wallet

Go
 to
 repo
URL
 (https://github.com/i3-Market-V3-Public-Repository/SP3­
SCGBSSW-I3mWalletMonorepo/releases)
and
download
the
v2.5.6
version

suitable
for
your
operating
system
and
do
the
following
actions
for:

•
Windows
operating
system:

◦
Download
and
execute
wallet-desktop-v2.5.6-x64.exe.

◦
The
application
 is
a
standalone
RAR
file.
Extract
 it
and
execute

the
i3M
Wallet.exe
file.

•
MacOS
operating
system:

◦
Open
the
dmg
file
and
install
the
wallet
desktop
application.

https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/releases
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/releases

5.7
 Creating
a
Wallet
2/3
 65

•
Linux
operating
system:

◦
For
Debian-based
systems,
you
can
use
the
deb
package:

•
#
change
x.x.x
for
the
version.

•
 sudo
dpkg-i
wallet-desktop-x.x.x-amd64.deb.

5.6
 Create
a
Wallet
and
a
Consumer
and/or
Provider

Identity
in
the
Wallet

The
first
time
a
user
initiates
the
application,
a
dialog
asking
for
a
password

appears
 (see
 following
 pictures
 for
 more
 details).
 The
 user
 will
 have
 to

introduce
this
password
each
time
the
application
starts
–
see
Figure
5.12.

Figure
5.12
 Creating
a
wallet
1/3.

Create
 a
 wallet
 named
 i3Market,
 type
 HD
 SW
 Wallet,
 and
 i3Market

network
–
see
Figure
5.13.

66
 Operative
Specification

Figure
5.13
 WEB-RI
interface.

5.7
 Creating
a
Wallet
2/3

Create
 a
 consumer
 and/or
 provider
 identity
 (right-click
 over
 the
 i3Market

wallet)
−
Figure
5.14:

Figure
5.14
 Creating
a
wallet
3/3.

5.8
 Register
a
New
OIDC
Client

Access
 to
 your
 local
 instance
 of
 WEB-RI
 (i3-MARKET
 GUI)
 available

in
 http://localhost:5300/
 and
 you
 will
 be
 able
 to
 see
 what
 is
 shown
 in

Figure
5.15:

5.8
 Register
a
New
OIDC
Client
 67

Figure
5.15
 OIDC
client
configuration.

Note:
 The
 OIDC
 client
 configuration
 is
 automatically
 done
 from
 the

WEB-RI.
Figure
5.16
enables
 the
 interaction
directly
 through
 the
SDK-RI

or
SDK-core
must
do
it
by
following
the
next
steps.

No
OIDC
client
registered?
Please
follow
the
following
steps:

Figure
5.16
 Registering
an
OIDC
Client
1/4.

Ask
 your
 i3-MARKET
 admin
 for
 your
 corresponding
 “i3-MARKET

OpenID
Connect
Provider
API”1
 (by
default,
each
instance
of
i3-MARKET

1And
endpoint
similar
to:
https://XXXX.i3-market.eu/release2/api-spec/ui/#/Developers/g

et_release2_developers_login

68
 Operative
Specification

has
 its
own
provider)
endpoint
 to
get
an
 initial
 token
for
registering
a
new

client
(authorize
green
button).

Try
logging
in
and
get
initialAccessToken
as
shown
in
Figure
5.17.

Figure
5.17
 Registering
an
OIDC
client
2/4.

Use
initialAccessToken
as
bearerAuth
as
shown
in
Figure
5.18.

Figure
5.18
 Registering
an
OIDC
client
3/4.

Then
here,
using
the
access
token
as
bearerToken
(press
the
lock
symbol

to
open
the
form
to
paste
the
token)
–
see
Figure
5.19
–
and
you
can
register

a
new
client.
Please
note
that
you
must
add
the
following
information:

•
http://localhost:5300/api/credential
in
redirect_uris
field

•
http://localhost:5300/auth
in
post_logout_redirect_uris
field

5.8
 Register
a
New
OIDC
Client
 69

Figure
5.19
 Registering
an
OIDC
client
4/4.

After
successful
client
registration,
you
can
paste
the
returned
information

in
the
text
area
in
Figure
5.20.

Figure
5.20
 OIDC
client
registered.

70
 Operative
Specification

Generate
credentials
for
the
consumer/provider
identity:

Start
the
authentication
workflow
from
local
WEB-RI
instance
by
following

the
steps
illustrated
in
Figures
5.21–
5.28

Provide
a
username
for
consumer
role:

Figure
5.21
 Username
screen.

Wallet
pairing:

Figure
5.22
 Pairing
wallet.

5.8
 Register
a
New
OIDC
Client
 71

Select
wallet
identity:

Figure
5.23
 Configuring
wallet
1/2.

Add
Verifiable
Credentials
to
the
wallet:

Figure
5.24
 Configuring
wallet
2/2.

72
 Operative
Specification

Login
using
credentials
generated
previously:

Figure
5.25
 Login
in
WEB-RI.

Selective
disclosure:

Figure
5.26
 Selective
disclosure.

5.9
 SDKs
 73

Sign:

Figure
5.27
 Signing
with
the
wallet.

Access
finally
to
the
GUI
of
Web-RI:

Figure
5.28
 Accessing
WEB-RI.

74
 Operative
Specification

5.9
 SDKs

Technical
requirements:

The
current
subsection
contains
a
set
of
SDK
 requirements
 that
have
been

collected
for
releases
2
and
3.
Most
of
them
have
been
extracted
from
D2.5

[3];
meanwhile,
the
other
ones
are
the
result
of
deepening
in
the
last
iterations

of
SDK
elicitation
process.

SDK-core:

The
 SDK-core
 is
 built
 using
 SDK-generator
 REST
 API
 and
 an
 Ansible

playbook
 in
 charge
 of
 generating
 all
 the
 client
 stubs
 for
 Backplane
 API

(semantic
engine,
notification
manager,
and
smart
contract
manager),
OIDC,

VC,
and
Data
Access
API
encapsulated
 into
 the
SDK-core
Java/JavaScript

library.

SDK-core
specification:

Backplane
API
SDK:
The
main
goal
of
the
SDK
is
boasting
the
Backplane

API
 to
create
applications
 for
 the
 i3-MARKET
platform.
 It
will
assist
 the

data
marketplaces
and
stakeholder
developers
with
a
set
of
tools,
examples,

and
documentation,
which
will
reduce
the
developing
effort
to
be
part
of
the

i3-MARKET
ecosystem.
The
Backplane
API
SDK
content
 is
divided
 into

different
 logical
 modules,
 which
 correspond
 to
 each
 of
 the
 i3-MARKET

modules
 integrated
 in
 the
 Backplane
 API.
 In
 the
 following,
 the
 different

modules
identified
for
the
first
version
of
the
requirement
specification
can

be
seen:

◦
User-centric
authentication
SDK

◦
Cloud
Wallet
SDK
module

◦
Data
access
SDK
module

◦
Standard
payments
SDK
module

◦
Tokenization
SDK
module

Enhanced
Backplane
API
SDK:
For
some
cases,
the
SDK
will
complete

the
Backplane
API
services
with
its
own
logic
to
support
the
developers
in

the
use
of
the
i3-MARKET
capabilities.
These
will
be
done
through
a
set
of

workflows.

Automatically
 build
 Backplane
 API
 SDK:
 In
 addition
 to
 the
 inner

SDK
functionality,
i3-MARKET
will
provide
mechanisms
to
automatically

build
 the
SDK
component
and
 it
will
be
offered
 in
different
programming

languages.

5.9
 SDKs
 75

SDK-core
implementations:

The
SDK-core
implementation
is
based
on
the
usage
of
SDK-generator,
and

it
is
described
in
detail
in
the
following
subsections.

Core
technology:

The
SDK-core
is
supported
by
means
of
(a)
the
SDK-generator
REST
API

and
(b)
an
Ansible
playbook
in
charge
of
generating:

•
An
SDK-core
Java
artifact
that
contains
client
stub
for
Backplane
API

(semantic
 engine,
notification
manager,
 and
 smart
 contract
manager),

OIDC
(OpenID
Connect),
VC
(Verifiable
Credentials),
and
data
access

API.

•
An
SDK-core
JavaScript
artifact
contains
client
stub
for
Backplane
API

(semantic
 engine,
notification
manager,
 and
 smart
 contract
manager),

OIDC,
VC,
and
data
access
API.

SDK-generator:

The
SDK-generator
is
the
main
pillar
of
the
SDK-core.
The
SDK-generator

is
based
on
SDK
as
a
service
approach.
SDK-generator
aims
to
automatically

generate
the
client
stubs
needed
to
interact
and
consume
all
the
functional­
ities
exposed
 in
a
REST
API.
The
SDK
as
a
service
approach
 is
shown
 in

Figure
5.29.

Figure
5.29
 SDK-generator
approach.

76
 Operative
Specification

The
 workflow
 behind
 SDK-generator
 is
 based
 on
 the
 provision
 of
 a

programming
language
specification
next
to
an
OAS
file
and
making
use
of

the
OpenAPI
generator
server,
which
is
able
to
produce
as
output
SDK
client

stubs
next
to
associated
documentation
about
how
to
use
it.

The
languages
supported
by
the
SDK-generator
are
shown
in
Figure
5.30

as
part
of
the
SDK
as
a
service
configuration.

Figure
5.30
 SDK
generator
supported
programming
languages.

Continuous
integration
and
delivery:

The
 SDK-core
 artifact
 is
 automatically
 provided
 by
 means
 of
 a
 CI/CD

pipeline
based
on
Ansible
AWX.
A
conceptual
view
of
SDK-core
pipeline

is
shown
in
Figure
5.31.

Figure
5.31
 SDK-core
CI/CD
pipeline.

As
 initial
 step
 in
 the
 pipeline,
 the
 SDK-core
 artifact
 is
 triggering
 the

compilation
 and
deployment
of
 a
new
version
of
 the
SDK-generator
once

5.9
 SDKs
 77

a
commitment
 into
master
branch
of
SDK-generator
project
happens.
As
a

second
 step
 (represented
 as
 green
 area
 in
Figure
 5.31
 - SDK-core
CI/CD

pipeline),
 the
generation
and
publishing
of
a
new
version
of
 the
SDK-core

artifact
 is
 triggered
 by
 using
 a
 new
 version
 of
 backplane
 API
 which
 is

deployed
 each
 time
 the
SDK-core
 artifact
 is
 triggered.
The
CI/CD
behind

backplane
API
includes
a
triggering
to
the
SDK-core
pipeline.
In
this
way,

SDK-core
 covers
 a
 set
of
 tasks
mainly
 in
 charge
of
generating
SDK-core

artifacts
for
Java
and
JavaScript
versions
taking
a
set
of
relevant
OAS
files

associated
with
the
following
artifacts:

•
Backplane
API
 (including
 semantic
engine,
notification
manager,
and

smart
contract
manager)

•
OIDC
API

•
Verifiable
Credentials
API

•
Data
access
API

Finally,
the
pipeline
includes
a
couple
of
tasks
in
charge
of
publishing
the

generated
Java
and
JavaScript
versions
of
SDK-core
into
i3-MARKET
Nexus

repository.

SDK-core
installation:

SDK-core
 is
a
Java/JavaScript
 library
 that
 is
 installed
by
simply
 importing

from
i3-MARKET
official
Nexus
repository.

SDK
reference
implementation
(SDK-RI):

The
current
section
reports
on
SDK-reference
implementation
specification,

its
implementation,
and,
finally,
its
deployment
and
installation.

https://taylorandfrancis.com

6

SDKs
and
WEB-RI

6.1
 Approach

The
 SDK
 global
 approach
 for
 i3-MARKET
 is
 based
 on
 the
 provision
 of

four
 main
 pillars:
 (a)
 SDK-generator,
 (b)
 SDK-core,
 (c)
 SDK
 reference

implementation
or
SDK-RI,
and,
finally,
(d)
Web-RI.

The
 layered
SDK
approach
defined
here
 is
 the
mechanism
 that
allows

to
 adapt
 and
 extend
 existing
 data
 marketplaces
 to
 interface
 with
 the
 i3­
MARKET
Backplane.

Specifically,
the
layers
that
are
part
of
the
proposed
solution
for
the
SDK

and
shown
in
Figure
6.1
are
the
following:

•
SDK-core:
This
 layer
aims
 to
 simplify
 the
 i3-MARKET
SDK
build­
ing
 process
 by
 generating
 client
 stubs
 for
 any
 i3-MARKET
 backend

endpoint/API,
defined
with
the
OpenAPI
(formerly
known
as
Swagger)

specification.
 In
 this
way,
 therefore,
 the
development
 team
can
better

focus
on
the
implementation
and
adoption
of
these
backend
endpoints

or
APIs.

•
SDK-reference
implementation
(SDK-RI):
This
layer
aims
to
identify

and
provide
a
set
of
common
services
to
be
implemented
for
consuming

available
Backplane
functionalities.

•
SDK-execution
patterns
 (SDK-EP):
 It
 is
 including
 the
atomic
 func­
tions
that
make
use
of
Backplane
API
(via
SDK)
adding
some
business

logic.

•
Web-RI:
It
is
supporting
the
front-end
or
GUI
integrating
the
common

services
provided
by
the
SDK-RI
and
that
can
be
reused
and
customized

as
 part
 of
 the
 pilot
 specification
 and
 implementation
 defined
 in
 the

context
of
WP5.

79

80
 SDKs
and
WEB-RI

SDK Web -RI

SDK RI (+SDK EP)

SDK Core

Figure
6.1
 SDK
layered
approach.

6.2
 SDK-Core
Specification

General
objectives:

The
three
main
objectives
identified
are
the
following:

(a)
Backplane
API
SDK

(b)
Enhanced
Backplane
API
SDK

(c)
Automatically
build
Backplane
API
SDK

Considering
the
objectives,
the
following
updates
in
terms
of
capabilities

have
been
provided
for
the
i3-MARKET
FINAL
release.

(a)
Backplane
API
SDK.
Addressing
fully
following
modules:

•
User-centric
authentication
SDK

•
Cloud
Wallet
SDK
module

•
Data
access
SDK
module

•
Standard
payments
SDK
module

•
Tokenization
SDK
module

•
Smart
contracts
SDK
module

•
Notifications
SDK
module

•
Rating
SDK
module

(b)
Enhanced
Backplane
API
SDK

(c)
Automatically
build
Backplane
API
SDK

6.2
 SDK-Core
Specification
 81

Context:

The
updated
 context
 in
 terms
of
 interactions
with
other
SW
pieces
 in
 the

i3-MARKET
ecosystem
is
shown
in
Figure
6.2.

Figure
6.2
 SDK-core
interactions.

As
a
reminder,
the
i3-MARKET
SDK-core
interacts
with:

i.
Backplane
API,
 allowing
 stakeholder’s
 developers
 to
 create
 software

(App
Client)
based
on
the
(Backplane)
API,
in
an
easy
and
efficient
way.

ii.
Cloud
Wallet
to
guarantee
the
security
on
the
interactions
between
the

stakeholders
and
i3-MARKET
Backplane.

iii.
App
Client,
allowing
to
be
part
of
the
i3-MARKET
ecosystem.

Big
picture:

The
SDK-core
is
supported
as
a
main
pillar
for
the
SDK-generator,
which
is

one
of
the
outcomes
of
i3-MARKET
solutions.

The
main
updates
on
SDK-generator
are
the
following:

(a)
Update
on
the
openapi-generator
client
due
to
issues
detected
managing

keywords
oneOf,
anyOf,
and
allOf
 in
some
of
the
OAS
files
supported

by
i3-MARKET
backend
services.

82
 SDKs
and
WEB-RI

(b)
Update
on
the
openapi-generator
setup.
The
concrete
setup
used
in
last

version
was:
openapi-generator-cli
generate
-g
javascript
–additional­
properties=groupId={{
ARTIFACT_GROUP_ID
}},artifactId={{
ARTI­
FACT_NAME
 }},artifactVersion={{
 ARTIFACT_VERSION
 }},

modelPackage=com.i3m.model.data-access,apiPackage=com.i3m.api.

data-acess,
prependFormOrBodyParameters=true,
hideGenerationTimes­
tamp=true
-o
/tmp/oas/javascript
-i
http://xx.xx.x.xxx:yyyy/repository/i3m­
raw/i3m-raw/files/dataaccessapi.json
 –generate-alias-as-model
 –skip­
validate-spec"

This
is
the
same
setup
for
SDK-core
Java
version
but
using
“java”
for
the

option
“- g”.

6.2.1
 SDK-core
implementation

As
 introduced,
 the
 SDK-core
 is
 built
 using
 SDK-generator
 REST
 API

and
 an
 Ansible
 playbook
 in
 charge
 of
 generating
 all
 the
 client
 stub
 for

Backplane
API
 (semantic
engine,
notification
manager,
and
 smart
contract

manager),
OIDC,
VC,
and
data
access
API
encapsulated
into
the
SDK-core

Java/JavaScript
library.

6.2.2
 Core
technology

The
SDK-core
implementation
is
based
on
the
usage
of
SDK-generator,
and

it
is
described
in
detail
in
the
following
subsections.

The
SDK-core
 is
 supported
by
means
of
 (a)
 the
SDK-generator
REST

API
and
(b)
an
Ansible
playbook
in
charge
of
generating:

1)
 an
SDK-core
Java
artifact
 that
contains
client
stub
for
Backplane
API

(semantic
 engine,
notification
manager,
 and
 smart
 contract
manager),

OIDC
(OpenID
Connect),
VC
(Verifiable
Credentials),
and
data
access

API;

2)
 an
 SDK-core
 JavaScript
 artifact
 that
 contains
 client
 stub
 for
 Back­
plane
API
 (semantic
engine,
notification
manager,
and
 smart
contract

manager),
OIDC,
VC,
and
data
access
API.

SDK-generator:

The
SDK-generator
is
the
main
pillar
of
the
SDK-core.
The
SDK-generator

is
based
on
SDK
as
a
service
approach.
SDK-generator
aims
to
automatically

generate
the
client
stubs
needed
to
interact
and
consume
all
the
functionalities

6.2
 SDK-Core
Specification
 83

exposed
 in
 a
 REST
 API.
 The
 SDK
 as
 a
 service
 approach
 is
 shown
 in

Figure
6.3.

Figure
6.3
 SDK-generator
approach.

The
 workflow
 behind
 SDK-generator
 is
 based
 on
 the
 provision
 of
 a

programming
language
specification
next
to
an
OAS
file
and
making
use
of

the
OpenAPI
generator1
server,
which
is
able
to
produce
as
output
SDK
client

stubs
next
to
associated
documentation
about
how
to
use
it.

The
languages
supported
by
the
SDK-generator
are
shown
in
Figure
6.4.

Figure
6.4
 SDK-generator
supported
programming
languages.

1
OpenAPI
generator:
https://github.com/OpenAPITools/openapi-generator

https://github.com/OpenAPITools/openapi-generator

84
 SDKs
and
WEB-RI

Continuous
integration
and
delivery:

The
 SDK-core
 artifact
 is
 automatically
 provided
 by
 means
 of
 a
 CI/CD

pipeline
based
on
Ansible
AWX.
A
conceptual
view
of
SDK-core
pipeline

is
shown
in
Figure
6.5.

Figure
6.5
 SDK-core
CI/CD
pipeline.

As
 initial
 step
 in
 the
 pipeline,
 the
 SDK-core
 artifact
 is
 triggering
 the

compilation
 and
deployment
of
 a
new
version
of
 the
SDK-generator
once

a
commit
into
master
branch
of
SDK-generator
project
happens.
As
a
second

step
(represented
as
a
green
area
in
Figure
6.6),
the
generation
and
publishing

of
a
new
version
of
the
SDK-core
artifact
is
triggering
each
time
a
new
version

of
the
Backplane
API
is
deployed.
The
CI/CD
behind
Backplane
API
includes

a
triggering
to
SDK-core
pipeline.
In
this
way,
SDK-core
covers
a
set
of
tasks

mainly
 in
charge
of
generating
SDK-core
artifacts
 for
 Java
and
 JavaScript

Create oas temp directory

Get access token for accesing SDK Generator REST API

Make an API call to SDK-Generator to generate SDK client stub for
BACKPLANE

Make an API call to SDK-Generator to generate SDK client stub for OIDC

Make an API call to SDK-Generator to generate SDK client stub for VC

Make an API call to SDK-Generator to generate SDK client stub for
DATA_ACCESS

Upload oas-javascript artifacts to Nexus

Send an email notification to inform about new version available

Figure
6.6
 SDK-core
playbook
internal
workflow.

6.3
 SDK
Reference
Implementation
(SDK-RI)
 85

versions
 taking
 a
 set
 of
 relevant
OAS
 files
 associated
with
 the
 following

artifacts:

•
Backplane
API
 (including
 semantic
engine,
notification
manager,
and

smart
contract
manager)

•
OIDC
API

•
Verifiable
Credentials
API

•
Data
access
API

Concretely,
 the
Ansible
playbook
 is
used
 to
 automatize
 the
process
of

generation
of
the
SDK-core
client
stub.

The
 internal
workflow
covered
by
 the
SDK-core
playbook
 is
shown
 in

Figure
6.6.

Finally,
the
pipeline
includes
a
couple
of
tasks
in
charge
of
publishing
the

generated
Java
and
JavaScript
versions
of
SDK-core
into
i3-MARKET
Nexus

repository.

SDK-core
installation:

SDK-core
 is
a
Java/JavaScript
 library
 that
 is
 installed
by
simply
 importing

from
i3-MARKET
Nexus
repository.

6.3
 SDK
Reference
Implementation
(SDK-RI)

The
SDK-RI
implementation
is
based
on
Java
and
Swagger
framework,
and

the
following
subsections
are
focusing
on
the
SDK-RI
specifications.
SDK-RI

is
a
web
app
deployed
within
Jetty
and
encapsulated
in
a
Docker
container.

The
SDK-RI
has
been
updated
 in
 terms
of
common
services
as
per
 the

following
(see
Figure
6.7):

i)
Notification
manager
common
services:
The
functionalities
related
with

notification
services
and
queues
are
listed
in
Figure
6.7.

Figure
6.7
 Services
and
queues
common
services.

86
 SDKs
and
WEB-RI

ii)
Alerts
common
services:
The
functionalities
related
with
alerts
are
listed

in
Figure
6.8.

Figure
6.8
 Alerts
common
services.

iii)
Conflict
resolution
common
services:
This
is
listed
in
Figure
6.9.

Figure
6.9
 Conflict
resolution
common
services.

iv)
Contracts
 common
 services:
 The
 functionalities
 related
 with
 smart

contracts
management
are
listed
in
Figure
6.10.

Figure
6.10
 Contracts
common
services.

6.3
 SDK
Reference
Implementation
(SDK-RI)
 87

v)
Credential
common
services:
The
functionalities
related
with
authenti­
cation,
identities,
and
credentials
are
listed
in
Figure
6.11.

Figure
6.11
 Credentials
common
services.

vi)
Exchange
 common
 services:
 The
 functionalities
 related
 with
 data

exchange
are
listed
in
Figure
6.12.

Figure
6.12
 Exchange
common
services.

vii)
Notification
common
services:
The
functionalities
related
with
notifica­
tions
are
listed
in
Figure
6.13.

Figure
6.13
 Notification
common
services.

88
 SDKs
and
WEB-RI

viii)
Offering
management
common
services:
The
functionalities
related
with

data
offering
management
are
listed
in
Figure
6.14.

Figure
6.14
 Offering
common
services.

ix)
Pricing
 managing
 common
 services:
 The
 functionalities
 related
 with

pricing
managing
are
listed
in
Figure
6.15.

6.4
 WEB-RI
 89

Figure
6.15
 Pricing
common
services.

x)
Token
 managing
 common
 services:
 The
 functionalities
 related
 with

token
management
are
listed
in
Figure
6.16.

Figure
6.16
 Token
common
services.

As
 an
 initial
 stage,
 the
SDK-RI
 imports
 the
 last
 version
 of
 the
SDK-
core
published
 in
 i3-MARKET
Nexus
maven
 repository
 as
 a
 library.
 It
 is

precisely
 in
 this
 part
 where
 the
 way
 to
 generate
 the
 Java
 version
 of
 the

imported
SDK-core
library
has
been
slightly
updated.
As
a
second
stage,
once

a
commit
is
done
into
master
branch
of
SDK-RI
Git
project,
a
compilation
and

deployment
of
a
new
version
is
automatically
launched.

90
 SDKs
and
WEB-RI

6.4
 WEB-RI

The
Web-RI
 is
 a
GUI
web
 interface
 that
 allows
 the
users
 to
 interact
with

the
functionalities
provided
by
i3-MARKET
Backplane
solutions
on
top
of

the
SDK-RI.
 It
 can
 be
 reused
 and
 customized
 as
 part
 of
 each
 pilot
 spec­
ification
 and
deployment
 integration
 as
 a
 reference
 implementation
 of
 the

backbone
data
marketplace
to
facilitate
stakeholder
needs
that
want
to
reuse

i3-MARKET
artifacts
and
functionalities.

6.4.1
 Purpose

The
WEB-RI
proposes
itself
as
a
reference
for
the
implementation
of
a
user

interface
 to
allow
human
users
 to
use
and
 interact
with
 the
 functionalities

provided
by
 i3-MARKET.
The
WEB-RI
has
 three
main
objectives,
which

are:

•
As
a
management
 tool,
 to
allow
 i3-MARKET
developers
 to
 test
 their

functionalities
in
the
context
of
a
user
usage.

•
As
a
marketing
team,
allowing
the
promotion
and
demonstration
of
i3­
MARKET
 functionalities
using
a
generic
approach
and
 language
 that

can
 be
 easily
 translated
 to
 the
 available
 data
 marketplaces
 used
 by

different
domains.

•
As

a
 reference
 implementation,
 providing
 functional
 examples
 of

how
 the
 i3-MARKET
 SDKs
 can
 be
 used
 to
 implement/integrate
 i3­
MARKET
functionalities
into
a
data
marketplace.
As
a
reference
imple­
mentation,
WEB-RI
 is
 also
 a
 useful
 tool
 to
 help
 i3-MARKET
 pilots

on
 the
 implementation
 of
 their
 use-case
 scenarios
 and
 on
 testing
 of

Backplane
 technologies
by
providing
specifications
and
code
 that
can

be
used.

In
Figure
6.17,
the
architecture
of
WEB-RI
is
represented.

A
consumer
or
a
provider
can
access
WEB-RI2
via
internet
browser
and

proceed
with
the
authentication
for
which
the
wallet3
 must
be
installed
and

running
on
his
personal
computer.
The
authentication
process
is
executed
on

WEB-RI
frontend
by
calling
the
OIDC
service,
which
will
call
the
wallet
to

perform
the
authentication
itself.

The
WEB-RI
 frontend
 is
connected
 to
a
backend,
which
has
 two
main

functions:
manage
user
sessions
and
have
a
way
to
interact
with
the
function­
alities
provided
by
i3-MARKET.

2
https://gitlab.com/i3-MARKET-V3-public-repository/i3-MARKET-web-ri

3
https://gitlab.com/i3-MARKET-V3-public-repository/sp3-scgbssw-i3mwalletmonorepo

https://gitlab.com/i3-MARKET-V3-public-repository/i3-MARKET-web-ri
https://gitlab.com/i3-MARKET-V3-public-repository/sp3-scgbssw-i3mwalletmonorepo

6.4
 WEB-RI
 91

Figure
6.17
 WEB-RI
architecture.

To
manage
the
user
sessions,
the
WEB-RI
backend
saves
the
user
session

in
a
session
storage
called
connect-mongo4.

To
 interact
with
 the
 functionalities
provided
by
 i3-MARKET,
a
 library

was
 implemented,
 called
Connector-RI5.
This
 connector
has
 all
 the
meth­
ods
needed
 to
 call
 the
 respective
APIs
 from
 the
SDK-RI,
which
have
 the

functionalities
 to
 interact
with
 the
 i3-MARKET
Backplane.
This
allows
 to

have
a
clean
and
simple
WEB-RI
backend
where
it
is
only
needed
to
call
the

respective
methods
from
the
connector.

Sitemap:

In
Figure
6.18,
the
sitemap
of
WEB-RI
is
represented.

WEB-RI
is
composed
of
several
pages,
which
are
Authentication,
Home-

page,
Offerings,
Search,
and
Notifications.

4
https://github.com/jdesboeufs/connect-mongo

5
https://gitlab.com/i3-MARKET-V3-public-repository/i3-MARKET-connector-ri

https://github.com/jdesboeufs/connect-mongo
https://gitlab.com/i3-MARKET-V3-public-repository/i3-MARKET-connector-ri

92
 SDKs
and
WEB-RI

Figure
6.18
 WEB-RI
sitemap.

In
 the
 Authentication
 page,
 the
 user
 has
 the
 possibility
 to
 register
 a

new
provider
or
consumer
and
 log
 in
with
some
existing
user
registered
 in

WEB-RI.

The
Homepage
is
the
main
page
of
WEB-RI,
which
has
a
navigation
bar

that
allows
the
user
to
navigate
to
the
other
available
pages.
Also,
there
are

statistics
related
with
the
number
of
offerings
and
providers.

The
Offerings
page
is
only
visible
to
a
provider,
where
he
can
manage
the

offerings
registered
by
him
and
register
new
ones.

The
Search
page
is
visible
either
to
a
provider
or
a
consumer.
The
only

difference
is
that
a
consumer
has
the
possibility
to
create
a
purchase
request

for
the
offering
he
searched.

In
 the
Notifications
page,
a
provider
can
receive
a
purchase
request
for

some
of
its
offerings
and
he
can
accept
(and
create
the
agreement)
or
reject
it.

A
consumer
can
sign
the
agreement
if
it
was
accepted
before
by
the
provider.

6.5
 IMPLEMENTATION

In
the
following
subsections,
some
screenshots
of
each
page
are
presented,

and
an
explanation
of
its
content
is
given.

6.6
 Navigation:
 93

Register:

Figure
6.19
shows
the
WEB-RI
register
page.

Figure
6.19
 WEB-RI
registration
page.

Before
 the
 WEB-RI
 page
 is
 opened
 for
 the
 first
 time,
 the
 user
 must

have
 the
 wallet
 running
 on
 his
 personal
 computer.
 When
 the
 user
 opens

the
WEB-RI
 initial
page,
he
will
 see
 the
page
 for
 registering
 a
new
user.

He
 must
 select
 the
 desired
 role
 (consumer
 or
 provider)
 and
 username
 –

Figure
6.20.

After
that,
the
user
must
confirm
the
addition
of
the
new
user
in
the
wallet;

see
Figure
6.20.

Login:

Figure
6.21
shows
the
WEB-RI
login
page.

With
 a
 user
 is
 registered
 in
 the
 wallet,
 it
 is
 possible
 to
 authenticate

in
 WEB-RI.
 The
 user
 must
 select
 the
 role
 (consumer
 or
 provider)
 he

wants
 to
use
 to
 login
 in
 the
 system.
After
having
 selected
 the
 role
 in
 the

login
 page,
 the
 user
 must
 confirm
 the
 authentication
 in
 the
 wallet;
 see

Figure
6.22.

94
 SDKs
and
WEB-RI

Figure
6.20
 WEB-RI
register
with
wallet.

Figure
6.21
 WEB-RI
login
page.

6.6
 Navigation:
 95

Figure
6.22
 WEB-RI
login
with
wallet.

6.6
 Navigation:

With
successful
login,
the
user
accesses
the
WEB-RI
homepage.
This
page

has
a
navigation
bar,
which
is
different
to
each
role.
The
provider
has
access

to
offerings,
search,
and
notifications
pages
and
account
options;
instead,
the

consumer
has
access
to
same
pages
but
not
to
the
offerings
page.

In
Figure
6.23,
the
navigation
bar
for
a
provider
is
presented.

Figure
6.23
 WEB-RI
navigation
(provider).

96
 SDKs
and
WEB-RI

Figure
6.24
presents
the
navigation
bar
for
a
consumer.

Figure
6.24
 WEB-RI
navigation
(consumer).

Homepage:

In
Figure
6.25,
the
WEB-RI
home
page
is
presented.

Figure
6.25
 WEB-RI
home
page.

Besides
 the
navigation
bar,
 the
WEB-RI
home
page
has
also
 the
 infor­
mation
about
 the
 logo
and
details
about
 the
user
 logged-in
 (username
and

role).

As
main
information,
WEB-RI
also
shows
the
total
number
of
providers

and
active
offerings
available
in
the
whole
marketplace
ecosystem.
Also,
it
is

possible
to
see
the
total
number
of
active
offerings
filtered
by
each
category.

6.6
 Navigation:
 97

Offerings:

As
mentioned
before,
the
provider
has
access
to
the
offerings
page.
The
next

subsections
will
describe
each
page
related
to
the
offerings.

Offering
list:

Figure
6.26
shows
the
page
with
the
list
of
offerings
of
a
provider.

Figure
6.26
 WEB-RI
offerings
page.

In
this
page,
the
provider
sees
the
list
of
the
offerings
that
were
registered

by
 him.
 Each
 offering
 is
 displayed
 in
 a
 react-bootstrap
 card6
 with
 some

information
 like
 title,
 description,
 number
 of
 contracts,
 and
 state
 (active,

inactive,
to
be
deleted,
or
deleted).

Also,
the
provider
has
the
option
to
register
a
new
offering,
which
will
be

described
in
the
following
sections.

Offering
details:

Figure
6.27
represents
the
page
with
the
details
of
an
offering.

6
https://react-bootstrap.github.io/components/cards/

https://react-bootstrap.github.io

98
 SDKs
and
WEB-RI

Figure
6.27
 WEB-RI
offering
details
page.

When
a
specific
offering
card
is
selected,
it
will
open
a
new
page
with
the

details
of
the
offering.
Here,
a
user
can
see
all
the
information
related
with

that
offering.

Since
 there
 is
 too
much
 information
 to
be
displayed
 in
 a
 single
page,

a
 react-bootstrap
 accordion7
 was
used
 to
display
 information
 like
 dataset,

contract
 parameters,
 and
 pricing
model.
This
 information
 is
 collapsed
 by

default
but
can
be
expanded
as
well.

This
page
can
be
seen
by
a
provider
(through
offerings
page)
or
consumer

(with
search).
If
the
user
is
a
provider,
he
has
options
to
activate,
update,
or

delete
 the
offering
 (in
 the
 top
 right
corner
of
 the
 site,
next
 to
 the
offering

state).
Instead,
 if
he
 is
a
consumer,
he
has
a
button
called
“Buy
Offering”,

which
allows
to
initiate
the
process
of
creating
a
data
purchase
request.

Offering
registration:

Figure
6.28
represents
the
page
to
register
a
new
offering
or
update
an
existing

one.

7
https://react-bootstrap.github.io/components/accordion/

https://react-bootstrap.github.io

6.6
 Navigation:
 99

Figure
6.28
 WEB-RI
offering
registration
page.

The
provider
can
register
a
new
offering
or
update
an
existing
one
(but

only
the
offerings
registered
by
him).
This
page
shown
in
Figure
6.29
is
used

for
both
purposes;
the
only
difference
is,
when
updating
an
offering,
all
the

fields
are
already
filled.

Since
 there
 is
a
 lot
of
 information
associated
with
an
offering,
a
 react-
bootstrap
tab8
was
used
on
this
page.
With
the
help
of
the
tabs,
all
fields
were

grouped
by
categories,
which
are
general,
dataset,
pricing
model,
and
contract

parameters.

Also,
inside
each
tab,
some
accordions
were
used
to
better
display
all
the

input
fields
to
the
user.

Offering
purchase
request:

Figure
6.29
represents
the
page
where
a
consumer
can
initiate
the
process
of

buying
a
new
offering.

8
https://react-bootstrap.github.io/components/tabs/

https://react-bootstrap.github.io

100
 SDKs
and
WEB-RI

Figure
6.29
 WEB-RI
offering
purchase
page.

6.6
 Navigation:
 101

After
the
consumer
selects
the
“Buy
Offering”
button
in
offering
details

page,
 a
 new
 page
 will
 be
 displayed
 with
 the
 contract
 template
 for
 that

offering.
In
this
page,
the
consumer
must
fill
in
the
dynamic
parameters
of

the
template
and
then
click
on
the
“Data
Purchase
Request”
button
to
proceed

with
the
process
of
buying
an
offering.

Search:

Figure
 6.30
 represents
 the
 page
where
 a
 user
 (provider
 or
 consumer)
 can

search
for
offerings.

Figure
6.30
 WEB-RI
search
page.

In
the
search
page,
the
user
(consumer
or
provider)
can
search
for
active

offerings
available
in
the
whole
marketplace
ecosystem.
He
can
search
offer­
ings
by
category,
provider,
or
free
text.
As
mentioned
in
the
image
above,
the

search
is
executed
by
entering
a
free
text
and
returns
the
offerings
that
match

the
search
criteria.

Notifications:

Figure
6.31
represents
the
page
where
a
user
can
see
his
notifications.

102
 SDKs
and
WEB-RI

Figure
6.31
 WEB-RI
notifications
page.

This
page
has
all
notifications
associated
with
the
user
who
is
logged-in

in
WEB-RI.

If
the
provider
is
logged-in,
he
can
receive
notifications
about
a
purchase

request
regarding
some
of
his
offerings.
In
 this
case,
 if
he
accepts
 the
pro­
posal,
 a
new
page
will
be
displayed
where
 the
provider
 can
 create
 a
new

agreement.
But
he
also
can
reject
the
proposal
by
sending
some
comments

justifying
the
rejection
of
the
proposal
(this
will
be
sent
as
a
notification
to

the
respective
consumer).

If
 the
 consumer
 is
 logged-in,
 he
 can
 receive
 notifications
 about
 data

purchase
requests
that
were
rejected
by
the
provider
or
about
proposals
that

were
accepted
and
then
he
must
sign
the
agreement.

Account:

This
 option,
 represented
 by
 a
 person
 icon
 in
 navigation
 bar,
 shows
 some

options
in
a
dropdown.
One
of
those
options
allows
the
user
to
log
off
from

WEB-RI.

7

Deployment
Tools

The
 deployment
 specification
 should
 define
 execution
 architecture
 of
 sys­
tems
 that
 represent
 the
 assignment
 (deployment)
 of
 software
 artifacts
 (i3­
MARKET
building
blocks)
to
deployment
targets
(usually
nodes).

Nodes
represent
either
hardware
devices
or
software
execution
environ­
ments.
They
could
be
connected
through
communication
paths
to
create
net­
work
systems
of
arbitrary
complexity.
Artifacts
represent
concrete
elements

in
the
physical
architecture.

Once
the
deployment
has
been
provided,
a
complementary
specification

would
be
necessary
to
define
how
to
deploy
software
within
the
i3-MARKET

ecosystem.
 In
 the
 context
 of
 i3-MARKET,
 we
 will
 be
 referring
 to
 this

specification
as
management
operative
specification.

This
 chapter
 gives
 guidance
 on
 how
 the
 solutions
 for
 deploying
 i3­
MARKET
software
are
defined
within
the
i3-MARKET
instances
as
part
of

the
deployment
operative.
The
i3-MARKET
operative
considers
four
possible

deployment
scenarios
categorized
as
manual
or
automated
deployments
and

oriented
 towards
 i3-MARKET
 developers
 and/or
 data
 spaces
 and/or
 data

marketplaces
infrastructure
administrators.

For
the
deployment
and
management
operative,
Ansible
and
Zabbix
have

been
proposed
as
configuration,
management,
and
monitoring
tools,
respec­
tively,
 for
 the
 central
 environment.
 It
 is
 left
 to
 the
 stakeholders
 to
 decide

which
 tools
will
 be
 used
 and
 deployed
 for
managing
 and
monitoring
 the

marketplace
instances.

7.1
 Solution
Design

A
four-layer
stack
has
been
defined
for
i3-MARKET:
at
the
lowest
layer,
there

is
the
Cloud
provisioning
and
management
layer
(Figure
82).
On
top
of
that,

a
DevOps
software
layer
is
placed
for
assembling
all
the
software
used
for

the
CI/CD
process.
Then,
a
third-party
software
layer
is
in
charge
of
giving

103

104
 Deployment
Tools

support
to
the
i3M-core
artifacts,
which
can
be
found
at
the
top
level
of
the

stack.

Core
Artifacts

Third-party Software

DevOps Stack

Cloud Provisioning and Management

Figure
7.1
 Four-layer
i3M
SW
stack.

Depending
on
the
environment
to
be
deployed,
it
might
be
deployed
on

one
layer
or
another.
More
details
on
the
specific
software
deployed
on
each

environment
are
given
in
the
following
sub-sections.

The
target
audience
are
the
i3-MARKET
project
developers
who
are
par­
ticipating
in
the
development
and
deployment
of
the
i3-MARKET
Backplane.

The
i3-MARKET
operative
considers
four
possible
deployment
scenar­
ios,
categorized
into
manual
and
automatized
deployments.
These
scenarios

are
the
following:

•
Manual
deployment
scenario
one
(MDS1)

•
Automatized
deployment
scenario
with
Ansible
(ADS1)

•
Automatized
 deployment
 scenario
 with
 Ansible
 and
 GitHub
 CI/CD

(ADS2)

•
Automatized
deployment
scenario
with
Docker
Compose
(ADS3)

Considering
 an
 i3-MARKET
 user
 role
 perspective,
 the
 main
 roles

involved
in
the
different
deployment
scenarios
are:

•
 i3M
root
instance
admin

Deployment
scenario/user role

 I3m root
instance
admin

i3M SW
developer

i3M third-
party SW
admin

i3M pilot
instance
admin

MDS1

ADS1

ADS2

ADS3

7.1
 Solution
Design
 105

•
 i3M
SW
developer

•
 i3M
third-party
SW
admin

•
 i3M
pilot
instance
admin

Table
7.1
provides
the
mapping
between
the
i3-MARKET
user
roles
and

the
previously
listed
deployment
scenarios:

Table
7.1
 Deployment
scenarios
and
i3M
user
roles
mapping.

The
following
subsections
describe
in
detail
each
identified
deployment

scenario.

7.1.1
 MDS1:
manual
deployment

The
manual
 deployment
 scenario
 one
 (MDS1)
 is
 based
 on
 accessing
 the

physical
 resources
 by
 establishing
 an
SSH
 connection.
Once
 the
 physical

resource
is
accessed,
the
user
proceeds
with
the
SW
deployment
manually.
An

overview
of
MDS1
is
provided
in
the
following
picture.
The
actors
involved

in
 these
 scenarios
 are
 i3M
SW
 developer
 and
 i3M
 third-party
SW
 admin

(Figure
7.2).

Figure
7.2
 MDS1.

106
 Deployment
Tools

7.1.2
 ADS1:
automated
deployment
with
Ansible

Automated
deployment
scenario
one
(ADS1)
is
based
on
the
provision
of
a

set
of
Ansible
playbooks
containing
deployment
recipes.
Playbooks
are
one

of
 the
core
 features
of
Ansible
and
 tell
Ansible
what
 to
execute.
They
are

like
a
to-do
list
for
Ansible
that
contains
a
list
of
tasks.
Playbooks
contain
the

steps
which
the
user
wants
to
execute
on
a
concrete
physical
resource,
and

they
are
run
sequentially.

From
an
operative
point
of
view,
actors
 involved
 in
 this
 scenario
must

cover
the
following
deployment
workflow:

1)
Create
 an
 Ansible
 template
 (playbook)
 with
 concrete
 deployment

instructions
using
the
physical
resources
specified.

2)
Start
an
Ansible
job
by
instantiating
the
playbook
template
provided
in

step
1.

An
overview
of
ADS1
 is
provided
 in
 the
 following
picture.
The
actors

involved
in
this
scenario
are
i3M
IT
admin
and
i3M
third-party
SW
admin

(Figure
7.3).

Figure
7.3
 ADS1.

Finally,
Figure
7.4
contains
a
playbook
example
showing
the
main
struc­
ture
in
terms
of
tags
to
be
included
i3-MARKET
playbooks,
which
are:
name,

hosts,
vars,
and
tasks.

7.1
 Solution
Design
 107

Figure
7.4
 Ansible
playbook
example.

7.1.3
 ADS2:
automated
deployment
with
Ansible
and
CI/CD

GitHub
pipelines

Automated
deployment
 scenario
 two
 (ADS2)
 is
based
on
 the
provision
of

CI/CD
pipelines
with
Ansible
and
GitHub.

An
overview
of
ADS2
is
provided
in
Figure
7.5.
The
only
actor
involved

in
this
scenario
is
i3M
SW
developer
(Figure
7.5).

Figure
7.5
 ADS2.

108
 Deployment
Tools

The
goal
to
reach
in
the
current
deployment
scenario
should
be
aligned

with
i3-MARKET
DevOps
strategy
and
based
on
the
provision
of
an
Ansible

Tower
CI/CD
architecture.

Considering
 the
 approach
 presented
 at
 the
CI/CD
Ansible
Tower
 and

GitHub
 sites
 [78],
 Figure
 7.6
 illustrates
what
we
 should
 build
 to
 support

CI/CD
in
i3-MARKET
using
Ansible
and
GitHub.

Figure
7.6
 CI/CD
with
Ansible
and
GitHub.

As
is
well
known,
the
main
purpose
of
CI
is
of
course
to
protect
the
master

branch
so
 that
 it
always
compiles.
The
only
way
 to
do
 this
 is
 to
check
 the

code
 in
another
branch
 (like
a
 function
branch),
 test
 that
code,
 review
 the

code,
and
only
merge
it
with
the
master
once
all
tests
pass.
The
architecture

above
 achieves
 exactly
 that
 and
 does
 so
with
 a
 very
 simplified
 approach

that
leverages
Ansible
Tower
as
our
CI
engine.
For
the
CD
part,
only
a
few

additional
workflows
would
be
needed
 to
 implement
artifacts
generated
by

the
CI
process
in
dev
->
test
->
production.
Using
this
architecture,
one
could

use
the
GitHub
versions
to
store
artifacts.
GitHub
has
the
ability
to
trigger
a

webhook
when
the
latest
version
is
updated,
which
in
turn
could
trigger
an

Ansible
Tower
CD
workflow.

7.1.4
 ADS3:
automated
deployment
with
Docker
Compose

The
last
way
of
automatizing
the
deployments
on
i3-MARKET
is
by
means
of

Docker
Compose1.
After
the
last
release
of
the
deployment
strategy
adopted

1
https://docs.docker.com/compose/

https://docs.docker.com/compose/

7.1
 Solution
Design
 109

by
i3-MARKET
of
having
N
decentralized
i3-MARKET
instances
+
1
master

i3-MARKET
instance
for
centralizing
some
services,
a
deployment
for
sup­
porting
the
installation
of
an
i3-MARKET
instance
(a
decentralized
node)
has

been
created
based
on
Docker
Compose.
This
Docker
Compose
is
used
for

deploying
and
managing
multiple
Docker
containers,
each
of
them
containing

different
core
and
decentralized
services
developed
by
i3-MARKET.

This
 mechanism
 allows
 any
 marketplace
 to
 deploy
 an
 i3-MARKET

“pilot
environment”
 in
order
 to
be
part
and
 interact
with
 the
 i3-MARKET

ecosystem.
 Therefore,
 ADS3
 becomes
 the
 most
 useful
 deployment
 strat­
egy
 for
 supporting
 i3-MARKET
 pilots
 in
 the
 deployment
 of
 those
 i3­
MARKET
 services,
 which
 need
 to
 be
 decentralized
 and
 installed
 in
 the

pilot
 premises.
 These
 services
 are:
 “Backplane”
 (Backplane
 API
 compo­
nent),
“tokenizer”
+
“pricing-manager”
(Monetization
component),
“sdk-ref­
impl”
(SDK-RI
component),
“web-ri”
+
“mongo_web-ri”
(Web-RI),
“oidc­
provider-app”
 +
 “oidc-provider-db”
 (Service-centric
 authentication
 com­
ponent),
 “vc-service”
 (User-centric
 authentication
 component),
 semantic-
engine
 +
 semantic-engine-db
 (Semantic
 engine
 component),
 data_access

(Data
access
component),
auditable-accounting
(Auditable
accounting
com­
ponent),
 besu
 (Blockchain
 network
 pilot
 node),
 cockroachdb-node
 (Dis­
tributed
 storage
 component),
 conflict-resolver-service
 (Conflict
 resolution

component),
 rating
 (Rating
 Component),
 and
 “keycloak”
 (Security
 server

component).

In
terms
of
the
Docker
Compose
file
definition,
a
set
of
“env.component”

files
has
been
created
for
storing
config
 information
relative
 to
 the
deploy­
ment
of
each
of
the
services
contained
in
the
Docker
Compose
file.

Besides
 installing
 the
 decentralized
 services
 by
 means
 of
 the
 Docker

Compose
 file,
 the
 administrator
 of
 the
 pilot
 infrastructure
 must
 install
 a

wallet.

Interaction
with
i3-MARKET
can
be
done
in
several
ways:

–
By
using
the
API
of
the
Backplane,
the
SDK-RI
or
using
the
SDK-core

libraries
to
integrate
our
application.

–
By
using
the
Web-RI.

–
By
managing
an
instance
(pilot-side
or
central)
of
i3-MARKET.
More

details
on
this
usage
can
be
seen
in
the
marketplace
instance
administra­
tion.

Marketplaces
must
be
accepted
to
join
the
federation.
Currently,
the
rules

of
the
federation
have
been
decided
and
are
defined
as
part
of
the
following

section
for
the
summary
onboarding
process.
Once
a
marketplace
is
part
of

110
 Deployment
Tools

i3-MARKET,
 it
can
 issue
credentials
 to
 its
consumers,
providers,
and
data

owners.

7.2
 i3-MARKET:
Onboarding
Process

This
process
describes
the
onboarding
steps
for
installing
an
operative
node

(pilot
 environment)
 that
 allows
 a
 pilot
 being
 able
 to
 interact
 with
 other

marketplaces
inside
the
i3-MARKET
ecosystem.
It
is
a
practical
guide
that

makes
use
of
the
automated
deployment
based
on
Docker
Compose
(ADS3)

commented
in
the
previous
section.

The
required
steps
are:

1)
Clone
i3-MARKET
deployment
repository

2)
Login
into
i3-MARKET
Nexus
and
Git
repos

3)
Execute
Docker
Compose

4)
 Install
i3M
Wallet

Go
 to
Wallet2
 and
 download
 the
 version
 suitable
 for
 your
 operating

system
and
do
the
following
actions
for:

–
Windows
operating
system:

◦
Download
and
execute
wallet
desktop.

◦
The
 application
 is
 a
 standalone
 RAR
 file.
 Extract
 it
 and

execute
the
i3M
Wallet.exe
file.

–
MacOS
operating
system:

◦
Open
the
dmg
file
and
install
the
wallet
desktop
application.

–
Linux
operating
system:

◦
For
Debian-based
systems,
you
can
use
the
deb
package:

•
#
change
x.x.x
for
the
version.

•
 sudo
dpkg-i
wallet-desktop-x.x.x-amd64.deb.

5)
Create
a
wallet
and
a
consumer
and/or
provider
identity
in
the
wallet.

The
 first
 time
 a
 user
 initiates
 the
 application,
 a
 dialog
 asking
 for
 a

password
appears.
The
user
will
have
 to
 introduce
 this
password
each

time
the
application
starts.

Create
 a
 wallet
 named
 i3-MARKET,
 type
 HD
 SW
 Wallet,
 and
 i3­
MARKET
network.

2https://github.com/i3-MARKET-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMon

orepo/releases

https://github.com/i3-MARKET-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/releases
https://github.com/i3-MARKET-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/releases

7.2
 i3-MARKET:
Onboarding
Process
 111

Create
 a
Consumer
 and/or
 Provider
 identity
 (right-click
 over
 the
 i3­
MARKET
wallet).

6)
Register
a
new
OIDC
client.

Access
your
local
instance
of
WEB-RI
(i3-MARKET
GUI)
available
in

http://localhost:5300/.

Note:
The
OIDC
 client
 configuration
 is
 automatically
 done
 from
 the

WEB-RI.
Just
 those
who
are
 interacting
directly
 through
 the
SDK-RI

or
SDK-core
must
do
it
by
following
the
next
steps:

No
OIDC
client
registered?
Please
follow
the
below
steps:

i.
Ask

 your
 i3-MARKET
 admin
 for
 your
 corresponding
 “i3­
MARKET
 OpenID
 Connect
 Provider
 API”3
 (by
 default,
 each

instance
of
i3-MARKET
has
its
own
provider)
endpoint
to
get
an

initial
token
for
registering
a
new
client
(authorize
green
button)

◦
Try
logging
in
and
get
initialAccessToken.

◦
Use
initialAccessToken
as
bearerAuth.

ii.
Then
here,
using
 the
access
 token
as
bearerToken
(press
 the
 lock

symbol
to
open
the
form
to
paste
the
token),
you
can
register
a
new

client.
Please
note
that
you
must
add
the
following
information:

◦
http://localhost:5300/api/credential
in
redirect_uris
field

◦
http://localhost:5300/auth
in
post_logout_redirect_uris
field

After
 successful
 client
 registration,
 you
 can
 paste
 the
 returned

information
in
the
text
area.

7)
Generate
credentials
for
the
consumer/provider
identity.

Start
 the
 authentication
 workflow
 from
 local
 WEB-RI
 instance
 by

following
next
steps:

a.
Provide
a
username
for
consumer
role

b.
Wallet
pairing

c.
Select
wallet
identity

d.
Add
Verifiable
Credentials
to
the
wallet

e.
Login
using
credentials
generated
previously

f.
Selective
disclosure

g.
Sign

h.
Access
finally
to
GUI
of
Web-RI.

3And
endpoint
similar
to:
https://XXXX.i3-MARKET.eu/release2/api-spec/ui/#/Develope

rs/get_release2_developers_login

https://taylorandfrancis.com

8

SDK-RI
Specification

8.1
 Objectives

The
SDK
reference
implementation,
or
SDK-RI,
has
these
specific
objectives:

•
Provide
 the
 mechanisms
 in
 terms
 of
 SW
 pieces
 for
 testing
 the
 i3­
MARKET
Backplane
services/artifacts.

•
Follow
 the
 approach
 SDK-RI
 as
 a
 service:
 SDK-RI
will
 be
 a
 set
 of

services
needed
 for
simulating
an
 i3-MARKET-ized
data
marketplace

behaviour.

•
SDK-RI
will
 let
 the
 pilots
 check
 this
 reference
 implementation
 as
 a

guide/example
for
developing
their
own
integration
with
i3-MARKET.

•
Context:
SDK-RI
contextualization
was
already
introduced
in
section
6.2

as
part
of
the
SDK-core.

8.2
 Technical
Requirements

The
current
subsection
contains
a
set
of
SDK
 requirements
 that
have
been

collected
 for
 releases
2
and
3;
meanwhile,
 the
other
ones
are
 the
 result
of

deepening
in
the
last
iterations
of
SDK
elicitation
process.

8.3
 SDK
Reference
Implementation

The
SDK-RI
implementation
is
based
on
Java
and
Swagger
framework,
and

the
next
subsections
are
focusing
on
the
update
provided
during
R2
and
R3

developments.
The
SDK-RI
was
first
released
as
a
web
app
deployed
within

Jetty
and
encapsulated
in
a
Docker
container
then
later
in
R2
and
R3
updated

with
Java
and
Swagger.

113

114
 SDK-RI
Specification

8.4
 Core
Technology

In
an
 initial
stage
of
SDK-RI
 implementation,
 the
 technology
options
pre­
sented
 in
Figure
 8.1
−
 Implementation
 technologies
 for
SDK-RI
−
were

considered:

Figure
8.1
 SDK-RI
Implementation
Technologies
Used.

To
sum
up,
the
candidate
technologies
to
support
the
implementation
of

SDK-RI
were
the
following:

•
Node.js

•
Node.js
+
Express

•
 Java
+
RPM

•
 Java
+
Swagger
+
Tomcat

Finally,
option
4
was
selected
but
substituting
Jetty
 for
Tomcat
as
web

application
server.
Therefore,
we
can
conclude
by
saying
 that
SDK-RI
 is
a

web
app
deployed
within
Jetty
and
encapsulated
in
a
Docker
container.

8.5
 Continuous
Integration
and
Deployment

The
SDK-RI
artifact
is
automatically
provided
by
means
of
a
CI/CD
pipeline

based
on
Ansible
AWX.
A
conceptual
view
of
SDK-core
pipeline
is
shown

in
Figure
8.2
–
SDK-RI
pipeline.

As
 initial
stage,
 the
SDK-RI
 is
 imported
as
a
 library
 in
 the
 last
version

of
 the
SDK-core
published
 in
 i3-MARKET
Nexus
maven
 repository.
As
a

second
 stage,
 once
 a
 commit
 is
 done
 into
 the
 master
 branch
 of
 SDK-RI

GitLab
project,
a
compilation
and
deployment
of
a
new
version
of
SDK-RI
is

carried
out.

8.5
 Continuous
Integration
and
Deployment
 115

Figure
8.2
 SDK-RI
pipeline
based
on
Ansible
AWX.

SDK-RI
installation:

The
setup
instructions
and
Docker-based
deployment
of
SDK-RI
is
covered

in
detail
in
the
following
subsections.

Setup:

Clone
the
repository
and
download
the
dependencies:

git@gitlab.com:i3-market/code/sdk/i3m-sdk-reference-implementation.git

Running
the
SDK-RI
with
Docker:

Use
Docker
to
run
the
SDK-RI.
To
do
so,
follow
the
same
setup
instructions

as
above.

Then,
just
build
your
SDK-RI
project
nd
run
it
using
the
jetty
images
as

follow:

SDK-RI
container
is
built
over
a
Jetty
image
and
the
SdkRefIMpl
war
file

is
deployed
into
Jetty.

Finally,
just
go
to
http:/$deploy_host/SdkRefImpl
for
accessing
SDK-RI

REST
API.

Configuring
and
using
SDK-RI

To
configure
SDK-RI
instance,
the
following
steps
should
be
covered:

•
The
marketplace
will
have
all
the
common
services
exposed
in
an
SDK­
RI/endpoint.

Each
marketplace
end-user,
which
pursues
making
use
of
 the
SDK-RI,

should
configure
the
SDK-RI
by
means
of:

•
pointing
to
the
Backplane
endpoint(s)
hosted
in
a
concrete
i3-MARKET

node
(i.e.,
Backplane
API
node1,
OpenID
Connect
Provider
API
node1,

Verifying
and
Credential
service
API
node1);

•
pointing
to
the
wallet
endpoint
hosted
locally.

This
configuration
should
be
defined
in
the
SDK-RI
properties
file
placed

at
‘‘src/resources/sdk_ri_config.properties’’.

mailto:git@gitlab.com:i3-market/code/sdk/i3m-sdk-reference-implementation.git

116
 SDK-RI
Specification

The
internal
workflow
covered
by
the
SDK-core/RI
playbook
is
shown
in

Figure
8.3.

Annex
B
 (SDK-core/RI
playbook)
contains
 the
 last
version
of
Ansible

playbook
that
supports
the
generation
of
the
SDK-core/RI
for
the
final
release

(or
R3).

Create oas temp directory

Get access token for accessing SDK Generator REST API

Make an API call to SDK-Generator to generate SDK client stub for BACKPLANE

Make an API call to SDK-Generator to generate SDK client stub for DATA_ACCESS

Set java 8 as default jvm

Delete authorizations unmodifiableMap in ApiClient

Delete defaults authorizations in ApiClient

Add global import of fasterxml to avoid compilation issues with JsonTypeInfo,
JsonSubTypes

Mvn package sdk-core artifact

Create temp directory

Extract jar file with Java classes

Extract jar file with Java docs

Extract jar file with Java sources

Add all classes and docs into a single JAR file

Upload SDK-Core artifacts to Nexus

Send an email notification to inform about new version available

Figure
8.3
 SDK-core/RI
playbook
internal
workflow.

9

SDK-RI
Installation
using
Docker

The
SDK-RI
is
fully
dockerized
and
the
container
is
built
over
a
Jetty
image

and
deploys
the
SdkRefIMpl
war
file
into
Jetty.

The
SDK-RI
image
is
built
automatically
as
part
of
the
CI/CD
pipeline

and
 pushed
 to
 the
 i3-MARKET
 Docker
 image
 supported
 by
 means
 of

Nexus.

To
build
manually
the
SDK-RI
Docker
image,
the
following
steps
should

be
followed:

i)
 Image
build:

docker build --build-arg --no-cache -t registry.gitlab.com/i3-
market/code/sdk/i3m-sdk-reference-implementation/sdk-ri:version . --build-arg
BACKPLANE_URL=http://backplane:3000 --build-arg OIDC_URL=https://identity1.i3-
market.eu/xxx --build-arg VC_URL=https://identity1.i3-market.eu/xxxx/vc/api-
spec/ui --build-arg DATA_ACCESS_URL=http://xx.xxx.x.xxx:3100

ii)
 Image
push:

docker push registry.gitlab.com/i3-market/code/sdk/i3m-sdk-reference-
implementation/i3market-sdk-ri:version

iii)
Run
container:

docker run --name sdk-ri -p 8181:8080 registry.gitlab.com/i3-
market/code/sdk/i3m-sdk-reference-implementation/i3market-sdk-ri:version

As
a
 reminder
and
 in
 line
with
 the
 tagging
approach
 reported
 in
D4.8

[5],
“version”
is
formatted
as
MAJOR.MINOR.PATCH
and
each
part
changes

according
to
the
following
rules.

We
increment:

•
Major
when
breaking
backward
compatibility.

•
Minor
when
adding
a
new
feature
that
does
not
break
compatibility.

•
Patch
when
fixing
a
bug
without
breaking
compatibility.

117

118
 SDK-RI
Installation
using
Docker

As
part
of
the
setup
in
step
i)
to
configure
SDK-RI
instance,
the
following

endpoints
should
be
provided
to
link
them
to
the
SDK-RI
instance:
Backplane

URL,
OIDC
URL,
Verifiable
Credentials
(VC)
URL,
and
finally
data
access

URL.

9.1
 Setup

Clone
the
repository
and
download
the
dependencies:

git@gitlab.com:i3-market/code/sdk/i3m-sdk-reference-implementation.git

9.2
 Running
the
SDK-RI
with
Docker

You
 can
 use
Docker
 to
 run
 the
SDK-RI.To
 do
 so,
 follow
 the
 same
 setup

instructions
as
above.

Then,
just
build
and
run
using:

docker build --no-cache -t i3m/i3market-sdk-ri:latest .
docker push i3m/i3market-sdk-ri:latest
docker run --name sdk-ri -p 8181:8080 i3m/i3market-sdk-ri

SDK-RI
container
is
built
over
a
jetty
image
and
deploys
the
SdkREfIMpl

war
file
into
jetty.

Finally
just
go
to
http:/$deploy_host/SdkRefImpl
for
accessing
SDK-RI

REST
API.

9.3
 Configuring
and
using
SDK-RI

•

The
marketplace
will
have
all
the
common
services
exposed
in
a
SDK­
RI/endpoint.

•
Each
marketplace
end-user,
who
pursues
making
use
of
 the
SDK-RI,

should
configure
the
SDK-RI
by
means
of:

◦
pointing
 to
 the
 Backplane
 endpoint(s)
 hosted
 in
 a
 concrete
 i3­
MARKET
 node
 (i.e.,
 Backplane
 API
 node1,
 OpenID
 Connect

Provider
API
node1,
and
Verifying
Credential
service
API
node1);

◦
pointing
to
the
wallet
endpoint
hosted
locally.

mailto:git@gitlab.com:i3-market/code/sdk/i3m-sdk-reference-implementation.git

9.3
 Configuring
and
using
SDK-RI
 119

•
This
 configuration
 should
 be
 defined
 in
 the
 SDK-RI
 properties
 file

placed
at
“src/resources/sdk_ri_config.properties”.

•
An
example
of
setup
could
be
the
following:

◦
backplane.url
=
xxxx

◦
oidc.url
=
xxxx

◦
verifiable_credentials.url
=
xxxxx

https://taylorandfrancis.com

10

WEB-RI

10.1
 Purpose

The
WEB-RI
proposes
 itself
as
 reference
 for
 the
 implementation
of
a
user

interface
 to
 allow
 human
 users
 to
 use
 and
 interact
 with
 the
 functional­
ities
 provided
 by
 i3-MARKET.
 The
 WEB-RI
 has
 three
 main
 objectives,

which
are:

•
As
a
management
 tool,
 to
allow
 i3-MARKET
developers
 to
 test
 their

functionalities
in
the
context
of
a
user
usage.

•
As

a
 reference
 implementation,
 providing
 functional
 examples
 of

how
 the
 i3-MARKET
 SDKs
 can
 be
 used
 to
 implement/integrate
 i3­
MARKET
functionalities
into
a
data
marketplace.
As
a
reference
imple­
mentation,
WEB-RI
 is
 also
 a
 useful
 tool
 to
 help
 i3-MARKET
 pilots

on
 the
 implementation
 of
 their
 use-case
 scenarios
 and
 on
 testing
 of

backplane
 technologies
by
providing
 specifications
and
code
 that
can

be
used.

10.2
 Architecture

In
Figure
10.1,
the
architecture
of
WEB-RI
is
represented.

A
consumer
or
a
provider
can
access
WEB-RI1
via
internet
browser
and

proceed
with
the
authentication
for
which
the
wallet2
 must
be
installed
and

running
on
his
personal
computer.
The
authentication
process
is
executed
on

WEB-RI
frontend
by
calling
the
OIDC
service
which
will
call
the
wallet
to

perform
the
authentication
itself.

1https://gitlab.com/i3-market-v2-public-repository/i3-market-web-ri

2https://gitlab.com/i3-market-v2-public-repository/sp3-scgbssw-i3mwalletmonorepo

121

https://gitlab.com/i3-market-v2-public-repository/i3-market-web-ri
https://gitlab.com/i3-market-v2-public-repository/sp3-scgbssw-i3mwalletmonorepo

122
 WEB-RI

Figure
10.1
 WEB-RI
architecture.

The
WEB-RI
 frontend
 is
connected
 to
a
backend,
which
has
 two
main

functions:
manage
user
sessions
and
have
a
way
to
interact
with
the
function­
alities
provided
by
i3-MARKET.

To
manage
the
user
sessions,
the
WEB-RI
backend
saves
the
user
session

in
a
session
storage
called
connect-mongo3.

To
 interact
with
 the
 functionalities
provided
by
 i3-MARKET,
a
 library

was
 implemented,
 called
Connector-RI4.
This
 connector
has
 all
 the
meth­
ods
needed
 to
 call
 the
 respective
APIs
 from
 the
SDK-RI,
which
have
 the

functionalities
 to
 interact
with
 the
 i3-MARKET
Backplane.
This
allows
 to

have
a
clean
and
simple
WEB-RI
backend
where
it
is
only
needed
to
call
the

respective
methods
from
the
connector.

3https://github.com/jdesboeufs/connect-mongo

4https://gitlab.com/i3-market-v2-public-repository/i3-market-connector-ri

https://github.com/jdesboeufs/connect-mongo
https://gitlab.com/i3-market-v2-public-repository/i3-market-connector-ri

10.3
 Sitemap
 123

10.3
 Sitemap

In
Figure
10.2,
the
sitemap
of
WEB-RI
is
represented.

WEB-RI
is
composed
of
several
pages,
which
are
Authentication,
Home-

page,
Offerings,
Search,
and
Notifications.

In
 the
 Authentication
 page,
 the
 user
 has
 the
 possibility
 to
 register
 a

new
provider
or
consumer
and
 login
with
 some
existing
user
 registered
 in

WEB-RI.

The
Homepage
is
the
main
page
of
WEB-RI,
which
has
a
navigation
bar

that
allows
the
user
to
navigate
to
the
other
available
pages.
Also,
there
are

statistics
related
with
the
number
of
offerings
and
providers.

The
Offerings
page
is
only
visible
to
a
provider,
where
he
can
manage
the

offerings
registered
by
him
and
register
new
ones.

Figure
10.2
 WEB-RI
sitemap.

124
 WEB-RI

The
Search
page
is
visible
either
to
a
provider
or
a
consumer.
The
only

difference
is
that
a
consumer
has
the
possibility
to
create
a
purchase
request

for
the
offering
he
searched.

In
 the
Notifications
page,
a
provider
can
receive
a
purchase
request
for

some
of
its
offerings
and
he
can
accept
(and
create
the
agreement)
or
reject
it.

A
consumer
can
sign
the
agreement
if
it
was
accepted
before
by
the
provider.

10.4
 Run
WEB-RI
in
Docker

The
WEB-RI
can
be
reused
and
customized,
in
order
to
do
so
run
the
WEB­
RI
docker,
to
get
the
code,
use
git
clone
command,
the
web-ri
code
available

at
(https://github.com/i3-Market-V3-Public-Repository/WRR-WebRI),
first

you
must
define
the
following
environment
variables
in
docker-compose.yml

file:

environment:

SDK_RI_ENDPOINT:
sdk-ri
endpoint

MONGO_URL:
mongodb
url

OIDC_URL:
oidc
provider

VC_URL:
verifiable
credential
service

MARKET_NAME:
market
of
notification
service

MONGO_INITDB_ROOT_USERNAME:

mongodb
username

MONGO_INITDB_ROOT_PASSWORD:

mongodb
password

Then,

docker-compose
up

https://github.com/i3-Market-V3-Public-Repository/WRR-WebRI

11

Central
Administration
Guide

This
chapter
aims
to
describe
in
detail
how
to
configure
and
maintain
an
i3­
MARKET
central
instance.

11.1
 Cloud
Management

In
this
section,
an
approach
is
presented
for
successfully
deploying,
configur­
ing,
and
monitoring
centralized
core
services
of
i3-MARKET.
This
approach

is
based
on
 the
usage
of
Ansible
Tower1
 as
a
key
pillar
 for
managing
 the

cloud
resources.
With
Ansible
Tower,
we
can
control
the
i3-MARKET
central

infrastructure
 (see
Figure
11.1)
with
a
visual
dashboard,
 role-based
access

Figure
11.1
 Ansible
Tower
dashboard
view.

1
Ansible
tower:
https://www.ansible.com/products/tower

125

https://www.ansible.com/products/tower

126
 Central
Administration
Guide

control,
 job
 scheduling,
 integrated
 notifications,
 and
 graphical
 inventory

management.
The
Ansible
Tower
dashboard
is
shown
in
Figure
11.1.

Regarding
 the
 last
 version
 of
 i3-MARKET,
 the
 proposed
 approach
 is

based
on
the
definition
of
a
physical
resource
inventory
in
Ansible,
in
order

to
be
able
to
automate
the
deployments
of
central
artifacts.
In
line
with
the

i3-MARKET
Docker
Deployment,
 the
 i3-MARKET
 physical
 inventory
 is

composed
of
physical
resources,
whose
nomenclature
is
based
on
allocated

physical
resources
as
it
is
shown
in
the
Figure
11.2
and
explained

•
 I3M-PH-Node1,
 I3M-PH-Node2,

and
 I3M-PH-Node3:
 These
 three

nodes
 contain
 three
 different
 instances
 of
 i3-MARKET
 that
 act
 as

development
 environments
 and
 testing
purposes
 for
 the
 i3-MARKET

developers.

•
 I3M-PH-Node4:
Physical
node
4
contains
master
Besu
node,
Cockroach

data
base
which
hosts
 the
“Seed
 Index”
 for
 federating
queries,
Rocks

data
base
central
instance
of
the
blockchain,
security
services
for
allow­
ing
authentication
and
authorization
capabilities
to
the
central
node
and

notification
manager.

Finally,
 the
 publication
 of
 a
 new
 resource
 inventory
 is
 shown
 in

Figure
11.2.

Figure
11.2
 Ansible
resource
inventory
definition
view.

11.2
 Infrastructure
Monitoring

As
 part
 of
 the
 i3-MARKET
 deployment
 management
 plan,
 a
 monitoring

approach
based
on
the
integration
of
Prometheus
and
Grafana
with
Ansible
as

11.2
 Infrastructure
Monitoring
 127

the
official
configuration
management
tool
for
the
i3-MARKET
infrastructure

was
proposed.

The
 idea
behind
 this
was
 to
 take
 advantage
of
 the
Ansible
Tower
 and

the
metrics
provided
via
the
API
and
feed
them
into
Grafana
by
using
Node

Exporter
and
Prometheus.

Following
the
approach
explained
in
[5],
Ansible
Tower
must
be
config­
ured
to
provide
metrics
for
Prometheus
to
be
viewed
via
Grafana.
In
addition

to
that,
Node
Exporter
is
used
to
export
the
operating
system
metrics
to
an

operating
 system
 (OS)
dashboard
 in
Grafana.
The
data
flow
 is
outlined
 in

Figure
11.3.

Figure
11.3
 Ansible
Tower
metrics
data
flow.

As
it
is
reflected
in
the
diagram,
Grafana
looks
for
data
in
Prometheus.

Prometheus
 itself
collects
 the
data
 in
 its
database
by
 importing
 them
 from

Node
Exporters
and
from
the
Ansible
Tower
APIs.

Figure
11.4
shows
an
updated
approach
based
on
Zabbix
 that
was
pro­
posed
at
M15
and
adopted
as
official
approach
for
i3-MARKET
monitoring.

Zabbix2
 is
an
open-source
monitoring
software
tool
for
diverse
IT
com­
ponents,
including
networks,
servers,
virtual
machines
(VMs)
and
cloud
ser­
vices.
Zabbix
provides
monitoring
metrics,
among
others
network
utilization,

CPU
load,
and
disk
space
consumption.

Zabbix
 is
 used
 to
 monitor
 the
 following
 in
 i3-MARKET
 common

infrastructure:

2
Zabbix:
https://www.zabbix.com/

https://www.zabbix.com/

128
 Central
Administration
Guide

Figure
11.4
 i3-MARKET
Zabbix
instance.

•
Simple
 checks
 to
 verify
 the
 availability
 and
 responsiveness
 of
 back­
plane
 and
 other
 public
 endpoints
 associated
 with
 core
 centralized

i3-MARKET
services.

•
A
Zabbix
 agent
was
 installed
 in
 each
 one
 of
 the
 i3-MARKET
 clus­
ter
 physical
 nodes
 to
 monitor
 statistics
 such
 as
 CPU
 load,
 network

utilization,
disk
space,
etc.

•
Docker
container
monitoring
using
the
Zabbix
agent
type
2
deployed
in

i3-MARKET
physical
nodes.

12

Repositories
and
Open
Source

The
 i3-MARKET
Consortium
 is
 committed
 to
 contributing
 to
 a
 reference

implementation
(community
release)
of
the
individual
building
blocks
as
well

as
 the
overall
 i3-MARKET
data
market
frameworks
corresponding
 to
 their

market
APIs
to
the
developer
community
through
an
open-source
project.

The
 i3-MARKET
Consortium
will
address
 the
open-source
community

along
with
the
dissemination
events,
and
two
hackathons
are
organized
during

the
project
period.
The
hackathons
will
be
aligned
with
 the
releases
of
 the

i3-MARKET
 marketplace.
 Hackathons,
 on
 the
 one
 hand,
 allow
 engaging

new
 stakeholders
 in
 i3-MARKET
and,
on
 the
other
hand,
allow
 retrieving

quick
 and
 contextual
 feedback
 about
 its
 usability,
 business
 potential,
 and

attractiveness.
The
success
of
the
hackathons
will
be
key
since
we
strongly

believe
that
first-hour
enthusiastic
users
are
the
ones
that
best
disseminate
and

spread
the
project’s
results
through
social
networks.

The
open-source
management
project
structure
has
been
updated
to
reach

the
 developers
 and
 entrepreneurs
 (SMEs)
 communities
 largely
 and
 facil­
itate
 their
 onboarding
 or
 innovation
 processes.
 i3-MARKET
 followed
 an

open-source
path
using
 two
of
 the
most
well-known
and
established
open-
source
 organizations,
which
 provide
 open-source
 projects
 hosting:
GitLab

and
GitHub.
We
have
studied
the
options
to
have
better
impact
and
acceptance

in
 the
developers
and
SME’s
communities
and
adopted
 the
procedure
and

roles
 for
 the
users
of
our
 i3-MARKET
open-source
project
 in
 a
way
 that

suited
best
to
the
i3-MARKET
case.

i3-MARKET
project
governance
process
defines
a
support
and
evaluation

process
to
include
software
improvements
as
follows:

•
Request
 for
 changes
 or
 updates:
 A
 technical
 board
 identifies
 any

change
 requests
prior
 to
 a
major
 release,
which
 should
be
 integrated

into
this
major
release.
Before
a
release,
all
changes
have
to
be
tested
by

using
a
pre-production/staging
approach.

129

130
 Repositories
and
Open
Source

•
The
evaluation
of
any
 type
of
 technical
request:
A
 technical
board

approves
 a
 software
 component
or
 initiates
 a
project
 in
 i3-MARKET

OSS.

•
The
communication
of
the
results
from
technical
experts:
A
tagging

release
strategy
as
described
in
Section
5.3
is
used
in
order
to
indicate

the
impact
of
the
changes
made
on
the
i3-MARKET
ecosystem.

•
Evaluation
 of
 contributions
 for
 new
 commits:
 A
 technical
 board

assesses
 and
 evaluates
 the
 contributions
 including
 documentation
 in

i3-MARKET
OSS.

•
Reports
and
changes
report:
A
technical
board
issues
a
short
report,

explaining
the
rationale
of
the
acceptance
or
the
rejection
in
exceptional

cases.

The
 i3-MARKET
 team
 aims
 to
 facilitate
 and
 simplify
development
of

data
services
based
on
 i3-MARKET
Backplane,
and
any
developer
should

be
 capable
 of
 implementing
 and
 developing
 data
 services
 based
 on
 i3­
MARKET
 backplane
 tools.
 The
 i3-MARKET
 open-source
 team
 provides

the
 slack
 tool
 (i3-market.slack.com)
 for
 a
 direct
 communication
 and
 con­
versations
with
 the
developers
 team;
 the
 slack
 channel
 is
used
 as
 a
direct

communication
 channel
 and
 it
 is
 open
 to
 any
 developer
 that
 is
 part
 of

the
 i3-MARKET
 community
but
 also
 for
 those
 external
 that
want
 to
 start

engaging
with
the
project.
The
community
can
join
the
i3-MARKET
slack

channel
and
 start
 reviewing
 the
 selected
 topics
and
also
 initiate
new
ones.

i3-MARKET
slack
open-source
has
served
as
main
channel
for
developers

to
 interact
directly
with
 the
 i3-MARKET
 technical
development
 team.
The

slack
 channel
 facilitates
 access
 to
 a
wide
 range
 of
 information
 about
 the

technologies
 developed.
 i3-MARKET
 OSS
 is
 the
 first
 project
 to
 provide

the
 means
 for
 setting
 up,
 managing,
 and
 using
 open-source
 channels
 for

the
different
developer
communities
and
other
stakeholders
providing
direct

support.

Developers
 require
 technical
 information
 that
 goes
 beyond
 high-level

descriptions
 in
a
website
or
 that
a
normal
 software
project
documentation

can
provide.
The
i3-MARKET
project
has
set
up
an
open-source
developers

portal
 as
 an
online
 tool
 to
 facilitate
 the
members
of
 the
 ecosystem
 to
get

access
 to
 the
 materials,
 documentation,
 technical
 information,
 developers

know-how,
and
code.
The
online
tool
of
the
i3-MARKET
project
is
deployed

to
 actively
 facilitate
 reaching
 out
 not
 only
 to
 the
 open-source
 community

but
also
SMEs
and
entrepreneurs
in
order
to
facilitate
an
easy
adoption
and

building
an
ecosystem
around
the
i3-MARKET
project.

12.1
 GitLab/GitHub
 131

The
 i3-MARKET
 project
 has
 evolved
 from
 R1
 to
 R3
 complet­
ing
 a
 planned
 evolution
 process.
 The
 documentation
 and
 specifications

are
 released
 using
 the
 open-source
 developer
 portal
 at
 http://www.open­
source.i3-market.eu.
Videos
showing
the
progress
and
use
of
the
developed

software
tools
can
be
accessed
via
the
i3-MARKET
YouTube
channel.
The

community
 of
 open-source
 developers
 SMEs
 and
 entrepreneurs
 can
 now

easily
find
 instructions
 that
 are
 available
 at
 the
 i3-MARKET
 open
 source

portal.
 This
 is
 a
 live
 portal,
 which
 is
 a
 continuous
 update
 according
 to

the
 latest
 development
 of
 the
 project.
The
main
 purpose
 of
 releasing
 this

developer-centric
portal
 is
 to
actively
enable
a
channel
 for
 reaching
out
 to

the
open-source
community
and
to
allow
SMEs
and
entrepreneurs
to
get
all

the
latest
developments
and
also
download
and
use
the
different
i3-MARKET

available
software
updates.
More
specific
technical
documentations
about
the

components
and
systems
are
also
available
in
a
specific
“Developer
Portal”

at
https://i3-market.gitlab.io/code/backplane/backplane-api-gateway/backp

lane-api-specification/index.html.

12.1
 GitLab/GitHub

The
i3-MARKET
repository
is
hosted
at
the
GitLab11
which
can
be
found

at
 the
 following
 link:
 https://gitlab.com/i3-market/code.The
 i3-MARKET

repository
is
divided
in
branches.
The
branches
are
divided
in
two
thematic

categories.
One
 is
 the
 documentation
 (i.e.,
 site
 storage
 hosted
 at
 the
 “gh­
pages”)
 and
 the
 other
 is
 the
 i3-MARKET
 source
 code
 branch.
Under
 the

source
code
category,
various
branches
will
exist;
 the
 two
main
categories

are:

•
Main
branches
with
an
infinite
lifetime:

◦
Master
branch

◦
Develop
branch

•
Supporting
branches:

◦
Feature
branches

◦
Release
branches

◦
Hotfix
branches

The
i3-MARKET
strategic
plan
to
enlarge
the
ecosystem
and
reach
out

the
 largest
 developers
 communities
with
 this
 i3-MARKET
 public
 version

has
proceeded
with
 success,
and
 i3-MARKET
backplane
V2
 is
accessible

http://www.open-source.i3-market.eu
http://www.open-source.i3-market.eu
https://i3-market.gitlab.io/code/backplane/backplane-api-gateway/backplane-api-specification/index.html
https://i3-market.gitlab.io/code/backplane/backplane-api-gateway/backplane-api-specification/index.html
https://gitlab.com/i3-market/code

132
 Repositories
and
Open
Source

in
<www.gitlab.com>
and
www.github.com.
The
i3-MARKET’s
developers

team
 has
 done
 an
 extra
 effort
 to
 release
 the
V2
 in
 these
 two
well-known

platforms
 as
 they
 are
 amongst
 the
 largest
 and
 most
 popular
 open-source

communities.
i3-MARKET
has
conducted
all
the
necessary
efforts
to
estab­
lish
 an
 automatic
 synchronization
 mechanism
 transparently
 and
 the
 OSS

governance
methodology
 to
 support
members
 of
 both
 communities;
 thus,

what
 is
 committed
 and
 released
 in
one
platform
 the
other
 community
has

access
to
it
in
a
matter
of
few
minutes.

12.2
 GitLab
Repository

The
code
is
available
open-source
via
the
establishment
of
the
i3-MARKET

spaces
on
GitLab
(available
at:
https://gitlab.com/i3-market-v3-public-repos

itory).

12.3
 GitHub
Repository

The
code
is
available
open-source
via
the
establishment
of
the
i3-MARKET

spaces
on
GitHub
(available
at:
https://github.com/i3-market-V3-public-rep

ository).

https://gitlab.com/i3-market-v3-public-repository
https://gitlab.com/i3-market-v3-public-repository
https://gitlab.com/i3-market-V3-public-repository
https://gitlab.com/i3-market-V3-public-repository
http://www.gitlab.com
http://www.github.com

12.4
 Developers’
portal
with
MKDocs
framework
 133

12.4
 Developers’
portal
with
MKDocs
framework

This
section
contains
the
details
about
the
online
developers
support
tool
and

documentation;
 sections
 remain
 the
 same
as
presented
 in
previous
version

but
its
content
has
been
maintained
and
updated
continuously
since
its
first

release.
The
community
of
open-source
developers
SMEs
and
entrepreneurs

can
now
easily
find
instructions
that
are
available
at
the
i3-MARKET
open-
source
portal
here:
http://open-source.i3-market.eu/
(see
Figure
12.1).

This
is
a
live
portal,
which
is
a
continuous
update
according
to
the
latest

development
of
 the
project.
The
main
purpose
of
 releasing
 this
developer-
centric
portal
 is
 to
actively
enable
a
channel
 for
 reaching
out
 to
 the
open-
source
community
and
to
allow
SMEs
and
entrepreneurs
to
get
all
the
latest

developments
and
also
download
and
use
the
different
i3-MARKET
available

software
updates.

The
binaries
of
the
different
software
artefacts
and
reference
implemen­
tation
modules
will
be
found
at
the
downloading
section
“Get
the
Code”
part

–
see
Figure
12.2.

http://open-source.i3-market.eu/

134
 Repositories
and
Open
Source

Figure
12.1
 Open-source
developers
portal
with
MKDocs.

Figure
12.2
 Code
repository.

12.5
 Open-Source
Portal

(open-source.i3-market.eu)

i3-MARKET
 open-source
 project
 has
 selected
 a
 proper
 governance

scheme,
which
regulates
the
interactions
between
the
members
of
the
open-
source
 community,
 including
 key
 roles
 and
 responsibilities
 for
 the
 devel­
opment
and
expansion
of
 the
project’s
software
code.
 i3-MARKET
adopts

an
 incremental,
 iterative,
 and
 evolutionary
 software
 development
 process,

notably
based
on
agile
development
techniques.
To
identify
and
define
these

roles,
the
i3-MARKET
Consortium
made
the
following
decisions:

http://open-source.i3-MARKET.eu

12.5
 Open-Source
Portal
 135

•
A
master-governed
approach
is
the
starting
scheme
associated
with
the

establishment,
 governance,
 and
 initial
 evolution
 of
 the
 i3-MARKET

open-source
project.
The
goal
of
this
decision
is
to
ensure
proper
inte­
gration
of
the
various
parts
of
the
project,
at
least
in
the
initial
phase
of

the
project
where
some
critical
mass
has
to
be
developed.
It
is
the
phase

where
 the
project
will
be
 looking
 for
good
 reputation
among
 the
 IoT

open-source
communities.

•
 i3-MARKET
members
from
Atos
partner
act
as
master(s)
for
 the
part

of
 the
 project
 that
 concerns
 the
 lower-level
 sensor/ICO
 information

acquisition
and
filtering,
notably
on
 the
basis
of
 the
enhancements
 to

be
realized
on
top
of
the
i3-MARKET
Backplane.

Figure
12.3
depicts
the
i3-MARKET
project
governance
process,
which

is
defined
as
the
support
and
evaluation
process
to
include
software
improve­
ments
as
follows:

•
Request
for
changes
or
updates:
Identify
any
development
previous
to

a
major
 release,
which
should
be
considered
private
and
usually
 is
on

testing
and
pre-production/staging.

•
The
evaluation
of
any
type
of
technical
request:
A
 technical
board,

PM,
TM,
TPMs,
or
WPLs
approves
participation;
in
particular,
software

component
or
initiate
a
project
in
i3-MARKET
OSS.

Figure
12.3
 Open-source
governance.

136
 Repositories
and
Open
Source

•
The
communication
of
the
results
from
technical
experts:
A
tagging

version
using
alpha,
beta,
and
gamma
versions
and
then
tagged
as
major

is
used
here.

•
Evaluation
of
contributions
for
new
commits:
Technical
experts,
PM,

TM,
 TPMs,
 WPLs,
 and
 TaskLs
 asses
 and
 evaluate
 the
 contribution

that
 includes
 documentation
 at
 the
 initiated
 project
 in
 i3-MARKET

OSS.

•
Reports
and
changes
report:
The
technical
board
issues
a
short
report,

explaining
the
rational
on
the
rejection
in
exceptional
cases;
this
step
can

include
rejects/cancel
project
participation.

12.5.1
 Developers,
users,
and
respective
roles

Developer
roles
and
specializations
are
extensively
discussed
in
[Aalto
2013].

The
relevant
extracts
from
this
discussion
are
presented
below.

The
participants
of
an
open-source
community
can
be
divided
into
three

groups
based
on
their
level
of
contributions.
A
joiner
is
someone
who
has
just

recently
joined
the
community
and
does
not
have
access
to
the
repository
yet.

When
that
person
has
made
his
first
changes
to
the
repository,
he
becomes
a

newcomer.
A
developer
is
a
fully
fledged
contributor
that
actively
adds
new

code
to
the
repository
[von
Krogh
2003].

A
 developer
 often
 starts
 out
 by
 making
 bug
 fixes
 that
 are
 related
 to

his
 work
 and
 interests.
 The
 bug
 fixes
 are
 not
 randomly
 scattered
 around

the
 software,
 but
 they
 tend
 to
 focus
 on
 the
 same
modules.
Gradually,
 he

gains
 acceptance
 and
 a
 higher
 status
 in
 the
 community
 through
 his
 bug

fixes
and
participation
 in
discussions
and
debates
about
new
features.
This

process
 characterizes
 how
 a
 developer
 becomes
 an
 expert
 on
 some
 part

of
 the
 architecture
 and
 is
 able
 to
 influence
 its
 development
 [Ducheneaut,

2005].

Many
software
developers
and
users
participate
in
OSS
development
and

communities
 because
 they
want
 to
 learn.
The
 system
 architecture
 can
 be

designed
 in
 a
modularized
way
 to
 create
 independent
 tasks
with
 progres­
sive
difficulties
 so
 that
newcomers
 can
participate
 and
move
on
gradually

to
 take
 care
 of
 harder
 tasks.
This
 approach
 can
 encourage
more
 users
 to

become
 developers.
Developers
 at
 the
 centre
 of
OSS
 communities
 should

focus
on
developing
 the
 system
as
well
as
having
enough
attention
 to
 the

creation
and
maintenance
of
a
dynamic
and
self-reproducing
OSS
community

[Ye
2003].

12.5
 Open-Source
Portal
 137

12.5.2
 Roles
and
activities
of
developers
and
experts
in
the

governance
model

Taking
as
a
reference
the
i3-MARKET
project
governance
model
described

above,
 Figure
 12.4
 shows
 the
 different
 developers
 and
 technical
 experts

and
 their
 impact
 in
 the
 i3-MARKET
project
governance
model
 implemen­
tation.
 The
 developers
 (mainly
 external
 to
 the
 i3-MARKET
 team)
 shall

follow
this
process
playing
a
dynamic
role
in
the
process
to
further
develop

functionalities
and/or
services.

The
 group
 of
 experts,
 on
 the
 other
 hand,
 shall
 evaluate,
 approve,
 and

issue
official
technical
reports
indicating
clearly
what
the
consequences
and

conditions
about
the
decision(s)
about
a
requested
commit
are.
The
user
of

the
code
will
be
notified
by
an
announcement
clearly
describing
the
benefits

or
new
functionalities
that
are
ready
to
be
used
as
a
result
of
implementing

the
governance
model
process.

Figure
12.4
 Public
repository
governance.

https://taylorandfrancis.com

13

Other
Content

The
 deployment
 process,
 as
 defined
 in
 the
 deployment
 guide
 section,
 is

for
 the
whole
project
process.
However,
 if
a
developer
wants
 to
deploy
an

individual
 service
or
 component,
 they
 can
 still
do
 so
by
 cloning
 the
 code

from
GitLab/GitHub,
making
changes,
and
 then
deploying
either
manually

or
using
Docker
Compose,
for
example.

Run
secure
data
access
API
using
docker-compose:

•
Clone
the
repository.

•
 In
the
project
root,
create
a
.env
file
to
insert
environment
variables.
You

have
an
example
in
templates/template.env.

•
To
start
secure
data
access
API,
run
with
this
command:

Local
development
components
like
OpenId
Provider:

Clone
the
repository!

13.1
 Local
Development
using
Node.js

To
 run
 the
 service
 locally
 using
 Node.js,
 it
 is
 necessary
 to
 download
 it

before.
After
 that,
you
can
 install
 the
dependencies
and
start
 the
service
 in

the
following
way:

$
cd
node-oidc-provider/app

$
npm
i

$
npm
start

139

140
 Other
Content

You
 should
 also
update
 the
 configuration
file
 app/src/config.ts
before
 run­
ning
 the
service.
Specifically,
 it
 is
necessary
 to
fill
 the
default
environment

variables,
in
the
same
way
they
are
filled
in
the
.env
file.

13.2
 Local
Development
using
Docker

Run
 the
following
command
 in
 the
project
root.
The
first
 time,
 it
will
 take

a
while
(be
patient)
since
 it
has
 to
build
 images
and
download
all
 the
npm

dependencies.

./docker-dev-start

The
OAS
documentation
can
be
accessed
from
http://localhost:3000/oidc/ap

i-spec/ui.

You
can
stop
the
container
at
any
time
with
Ctrl-C.

If
 you
 want
 to
 delete
 and
 prune
 all
 the
 created
 images,
 containers,

networks,
and
volumes,
just
run:

./docker-dev-prune

Since
 the
 app
 directory
 is
 shared
with
 the
 docker
 container
with
mapped

user
permissions,
you
can
just
edit
any
files
in
the
app
directory
locally.
The

container
will
be
running
ts-node
and
nodemon
to
directly
execute
the
source

code
and
refresh
the
server
if
any
file
has
changed.
You
can
also
attach
any

debugger
in
your
local
machine
to
the
container,
which
will
be
listening
at

default
port
9229.

13.2.1
 Development
scripts
in
the
docker
container

Besides
 rebuilding,
 you
 can
 execute
 any
 command
 in
 the
 oidc-provider­
app
container:

•
 to
execute
it
in
the
running
container:

docker-compose
 -f
 docker-compose.dev.yaml
 exec
 oidc-provider-app

<command>.

•
 to
create
and
delete
on-the-fly
a
new
container
(that
will
update
the
same

files):

docker-compose
 -f
docker-compose.dev.yaml
 run
–rm
–no-deps
oidc­
provider-app
<command>.

14

Conclusions

The
i3-MARKET
Book
series
is
a
detailed
compilation
of
all
about
design

process,
implementation
work
and
the
produced
results
and
outcomes
in
the

form
of
legacy
of
the
i3-MARKET
and
Open
Source
Software
projects.

In
 this
 third
book,
we
concentrated
 in
bringing
 the
 technology
deploy­
ments
and
provide
an
overview
of
the
technologies
and
techniques
that
can

be
used
to
facilitate
an
smooth
deployment
and
adoption
of
the
i3-MARKET

methodologies
and
solutions
 that
are
 the
foundations
of
 i3-MAKRET
soft­
ware.
Additionally
and
 to
provide
a
complete
view
of
 the
 three
books
 this

section
includes
not
only
this
book
conclusions
but
serves
as
a
compilation
of

all
the
findings
and
conclusions
from
the
three
books
in
order
to
list
together

all
 the
advances
and
 improvements
over
 the
state
of
 the
art
 that
 this
books

series
is
aiming
to
share.

The
 i3-MARKET
 project
 addresses
 the
 challenge
 of
 being
 integrative

following
 design
methods
 used
 in
 industry
 and
OSS
 implementation
 best

practices,
 interoperable
 by
 using
 semantic
 models
 that
 define
 a
 common

conceptual
framework
and
information
model
that
enables
cross-domain
data

exchange
 and
 sharing,
 intelligent
 from
 the
 perspective
 of
 smart
 contracts

generated
automatically
and
associating
those
financial
operations
into
a
set

of
 software
 tools
 that
 facilitate
 that
data
assets
can
be
commercialized
via

intra-domain
or
cross-domain
almost
transparently
in
a
secure
and
protected

digital
market
environment.

The
i3-MARKET
Book
Series
presents
an
overview
of
the
i3-MARKET

methodologies
and
solutions
that
are
the
foundations
of
its
software
results

in
 the
 form
of
 a
Backplane
with
 a
 set
of
 software
 support
 tools
 and
 as
 a

solution
addressing
the
challenge
of
enabling
the
coexistence
of
data
spaces

with
marketplaces
for
enlarging
the
European
digital
market
ecosystem.

The
 i3-MARKET
 project
 provided
 a
 blueprint
 open-source
 software

architecture
 called
 “i3-MARKET
 Backplane”
 that
 addresses
 the
 growing

demand
 for
 connecting
multiple
data
 spaces
 and
marketplaces
 in
 a
 secure

141

142
 Conclusions

and
 federated
manner.
The
 i3-MARKET
Consortium
 is
 contributing
with

the
 developed
 software
 tools
 to
 build
 the
European
 data
market
 economy

by
 innovating
 marketplace
 platforms,
 demonstrating
 with
 three
 industrial

reference
 implementations
 (pilots)
 that
 a
 decentralized
 data
 economy
 and

more
fair
growth
is
possible.

The
first
part
of
 the
 i3-MARKET
Book
 series
 introduces
and
explains

the
principles
of
the
modern
data
economy
that
lead
to
make
the
society
more

aware
about
the
value
of
the
data
that
is
produced
everyday
by
themselves
but

also
in
a
collective
manner.
Data
Business
is
one
of
the
most
disruptive
areas

in
today’s
global
economy,
particularly
with
the
value
that
large
corporates

have
embedded
 in
 their
solutions
and
products
as
 result
of
 the
use
of
data

from
every
individual.

The
 i3-MARKET
 architecture
 design
 provides
 adequate
 and
 in-house

developed
building
blocks
for
trustworthy
(secure
and
reliable)
data-sharing

and
 exchange
 of
 existing
 data
 assets
 for
 current
 and
 new
 future
 market­
place
platforms,
with
special
attention
on
commercializing
data
assets
from

individuals,
SMEs,
or
large
industrial
corporations.
We
used
and
developed

the
i3-MARKET
backplane
using
open-source
technologies
that
impulse
the

adoption
and
exploit
the
open-source
culture,
a
tendency
that,
for
more
than

a
 decade,
 is
 hitting
 the
 industry
 markets
 and
 that
 today
 more
 and
 more

industries
are
following.

In
 the
 second
 i3-MARKET
 series
 book,
 is
 discussed
why
 data
 is
 the

focus
of
current
technological
developments
towards
digital
markets
and
the

meaning
of
data
being
 the
next
asset
 to
appear
evolved
 in
 trading
markets.

At
the
same
time,
it
focused
on
introducing
the
i3-MARKET
technology
and

the
proposed
 solutions.
 In
 the
 second
 i3-MARKET
 series
book,
 the
basic

technological
principles
and
software
best
practices
and
standards
for
imple­
menting
and
deploying
data
spaces
and
data
marketplaces
were
 introduced

and
explained.
The
second
book
provides
a
definition
for
data-driven
society

as:
The
process
to
transform
data
production
into
data
economy
for
the
people

using
 the
emerging
 technologies
and
scientific
advances
 in
data
science
 to

underpin
the
delivery
of
data
economic
models
and
services.

In
this
third
i3-MARKET
series
book
the
best
practices,
software
methods

and
mechanisms
that
allow
the
i3-MARKET
backplane
reference
implemen­
tation
to
be
instantiated,
tested
and
validated
are
explained.
This
book
series

part
concentrates
 in
 the
 technical
experts
and
developers’
community
as
a

way
 to
provide
support
 tools
and
guidance
 in
 their
process
 to
 integrate
 the

i3-MARKET
 tools
 and
 its
 reference
 implementation.
This
book
 is
offered

a
guidebook
for
technical
experts
and
developers
is
addressed,
the
so-called

13.2
 Local
Development
using
Docker
 143

industrial
deployment
and
to
provide
clear
understanding
of
the
technological

components
and
the
software
infrastructures.
The
steps
to
install
and
instanti­
ate
the
i3-MARKET
backplane
with
less
efforts
and
to
avoid
overwhelm
the

deployment
activity
is
also
introduced.
in
this
third
part
of
the
i3-MARKET

book
series,
the
different
software
technologies
developed,
including
the
use

of
open-source
frameworks
is
explained.
The
third
book
can
be
considered
the

i3-MARKET
handbook
provisioning
 that
 i3-MAKRET
backplane
software

can
 actually
 be
 used
 as
 input
 for
 configurators
 and
 developers
 to
 set
 up

and
pre-test
 testbeds
and
 therefore
 i3-MARKEt
software
 is
also
extremely

valuable
to
organisations,
scientific
and
academic
communities
to
be
used
as

a
academic
material.

In
 this
 i3-MARKET
 book
 series
 we
 discussed
 the
 technology
 assets

that
 are
designed
 and
 implemented
 following
 the
 i3-MARKET
Backplane

reference
architecture
(RA)
that
uses
open
data,
big
data,
IoT,
and
AI
design

principles
to
help
data
spaces
and
data
marketplaces
to
focus
on
todayâ
ĂŹs

datadriven
society
as
the
trend
to
rapidly
transforming
the
data
perception
in

every
aspect
of
our
activities.
Moreover,
the
series
of
software
assets
grouped

as
subsystems
and
composed
of
software
artefacts
is
included
and
explained

in
full.
Further,
the
book
series
describes
the
i3-MARKET
Backplane
tools

and
how
these
can
be
used
for
supporting
marketplaces
and
its
components.

The
 i3-MARKET
Book
series
 is
an
overview
of
 the
reference
open-source

solution
to
enable
the
data
economy
across
different
data
marketplaces.

https://taylorandfrancis.com

References

[1]
 “https://en.wikipedia.org/wiki/System_context_diagram,’’[Online].

[2]
P.
Kruchten,
 “Architectural
Blueprints
—
The
 “4+1”
View
Model
 of

Software
Architecture,”
IEEE
Software
12,
November
1995,
pp.
42-50.

[3]
 J.
R.
a.
I.
J.
G.
Booch,
UML
User
Guide,
Addison-Wesley
Longman,

1998.

[4]
 “https://leanpub.com/arc42inpractice/read,’’[Online].

[5]
 i3-MARKET,
“i3M-Wallet
monorepo,”
[Online].
Available:
https://gith

ub.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalle

tMonorepo.

[6]
Consensys,
“MetaMask,”
[Online].
Available:
https://metamask.io/.

[7]
 “Trust
Wallet,”
[Online].
Available:
https://trustwallet.com/.

[8]
Exodus,
“Exodus
Bitcoin
&
Crypto
Wallet,”
[Online].
Available:
https:

//www.exodus.com/.

[9]
T.
Voegtlin,
“Electrum
Bitcoin
Wallet,”
[Online].
Available:
https://elec

trum.org/.

[10]
Validated
ID,
“VIDChain,”
[Online].
Available:
https://www.validatedi

d.com/vidchain.

[11]
Evernym,
“Connect.Me
Wallet,”
[Online].
Available:
https://www.conn

ect.me/.

[12]
 IdRamp,
“IdRamp,”
[Online].
Available:
https://idramp.com/.

[13]
 trinsic,
“Identity
Wallets,”
[Online].
Available:
https://trinsic.id/identit

y-wallets/.

[14]
ConsenSys,
“uPort,”
[Online].
Available:
https://www.uport.me/.

[15]
 “Twala,”
[Online].
Available:
https://www.twala.io/.

[16]
ConsenSys,
“Serto,”
[Online].
Available:
https://www.serto.id/.

145

https://en.wikipedia.org/wiki/System_context_diagram
https://leanpub.com/arc42inpractice/read
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo
https://metamask.io/
https://trustwallet.com/
https://www.exodus.com/
https://www.exodus.com/
https://electrum.org/
https://electrum.org/
https://www.validatedid.com/vidchain
https://www.validatedid.com/vidchain
https://www.connect.me/
https://www.connect.me/
https://idramp.com/
https://trinsic.id/identity-wallets/
https://trinsic.id/identity-wallets/
https://www.uport.me/
https://www.twala.io/
https://www.serto.id/

146
 References

[17]
 “Veramo
- A
JavaScript
Framework
for
Verifiable
Data
|
Performant
and

modular
APIs
for
Verifiable
Data
and
SSI,”
[Online].
Available:
https:

//veramo.io/.

[18]
 “OpenTimeStamps,
 a
 timestamping
 proof
 standard,”

[Online].
Avail­
able:
https://opentimestamps.org/.

[19]
Y.
Du,
H.
Duan,
A.
Zhou,
C.
Wang,
M.
H.
Au
and
Q.
Wang,
“Enabling

Secure
and
Efficient
Decentralized
Storage
Auditing
with
Blockchain,”

IEEE
Transactions
on
Dependable
and
Secure
Computing,
2021.

[20]
Y.
Du,
H.
Duan,
A.
Zhou,
C.
Wang,
M.
H.
Au
and
Q.
Wang,
“Towards

Privacy-assured
and
Lightweight
On-chain
Auditing
of
Decentralized

Storage,”
2020
IEEE
40th
International
Conference
on
Distributed,
pp.

201-211,
2020.

[21]
H.
Yu
and
Z.
Yang,
“Decentralized
and
Smart
Public
Auditing
for
Cloud

Storage,”
IEEE
9th
International
Conference
on
Software,
pp.
491-494,

2018.

[22]
 J.
 Shu,
 X.
 Zou,
 X.
 Jia,
 W.

Zhang
 and
 R.
 Xie,
 “Blockchain-Based

Decentralized
Public
Auditing
for
Cloud
Storage,”
IEEE
Transactions

on
Cloud
Computing,
2021.

[23]
K.
Liu,
H.
Desai,
L.
Kagal
 and
M.
Kantarcioglu,
 “Enforceable
Data

Sharing
 Agreements
 Using
 Smart
 Contracts,”
 27
 04
 2018.
 [Online].

Available:
https://arxiv.org/abs/1804.10645.

[24]
E.
J.
Scheid,
B.
B.
Rodrigues,
L.
Z.
Granville
and
B.
Stiller,
“Enabling

Dynamic
 SLA
 Compensation
 Using
 Blockchain-based
 Smart
 Con­
tracts,”
 in
 IFIP/IEEE
Symposium
on
 Integrated
Network
 and
Service

Management
(IM),
2019.

[25]
Ocean
Protocol
Foundation
with
BigchainDB
GmbH
and
Newton
Cir­
cus
(DEX
Pte.
Ltd.),
“Ocean
Protocol:
A
Decentralized
Substrate
for
AI

Data
and
Services,”
2019.

[26]
The
 European
 Parliament
 and
 the
 Council
 of
 the
 European
 Union,

“General
Data
Protection
Regulation
(GDPR).
Directive
95/46/EC,”
27

04
2016.
[Online].
Available:
https://gdpr-info.eu/.

[27]
K.
 Jensen
 and
L.
M.
Kristensen,
Coloured
Petri
 nets:
modelling
 and

validation
of
concurrent
systems,
Springer
Science
&
Business
Media,

2009.

[28]
Digital
Asset
Holdings,
“Digital
Asset
Modelling
Language
(DAML),”

[Online].
Available:
https://daml.com/.

[29]
A.
M.
Antonopoulos,
Mastering
Bitcoin:
unlocking
digital
cryptocur­
rencies,
O’Reilly
Media,
Inc.,
2014.

[30]
 I.
Bashir,
Mastering
blockchain,
Packt
Publishing
Ltd,
2017.

https://veramo.io/
https://veramo.io/
https://opentimestamps.org/
https://arxiv.org/abs/1804.10645
https://gdpr-info.eu/
https://daml.com/

References
 147

[31]
D.
Yaga,
P.
Mell,
N.
Roby
and
K.
Scarfone,
“Blockchain
 technology

overview,”
arXiv
preprint
arXiv:1906.11078,
2019.

[32]
S.
Rouhani
and
R.
Deters,
“Security,
performance,
and
applications
of

smart
contracts:
A
systematic
survey,”
IEEE
Access,
vol.
7,
pp.
50759­
50779,
2019.

[33]
L.
Jing
and
L.
Zhentian,
“A
survey
on
security
verification
of
blockchain

smart
contracts,”
IEEE
Access,
vol.
7,
pp.
77894-77904,
2019.

[34]
G.
Wood,
 “Ethereum:
A
 secure
 decentralised
 generalised
 transaction

ledger,”
Ethereum
Project
White
Paper,
vol.
151,
no.
2014,
pp.
1-32,

2014.

[35]
H.
Chen,
M.
Pendleton,
L.
Njilla
and
S.
Xu,
“A
survey
on
ethereum
sys­
tems
security:
Vulnerabilities,
attacks,
and
defenses,”
ACM
Computing

Surveys
(CSUR),
vol.
53,
no.
3,
pp.
1-43,
2020.

[36]
 “Hyperledger
Besu,”
[Online].
Available:
https://github.com/hyperledg

er/besu.

[37]
 “Solidity,”
[Online].
Available:
https://solidity-es.readthedocs.io/.

[38]
 “BIP-39,”
2021.
[Online].
Available:
https://github.com/bitcoin/bips/bl

ob/master/bip-0039.mediawiki.

[39]
 i3-MARKET,

“i3M-Wallet
 OpenApi
 Specification,”
 2022.
 [Online].

Available:
https://github.com/i3-Market-V3-Public-Repository/SP

3-SCGBSSW-I3mWalletMonorepo/blob/public/packages/wallet-desk

top-openapi/openapi.json.

[40]
W3C,
 “Decentralized
 Identifiers
 (DIDs)
v1.0.
Core
 architecture,
data

model,
 and
 representations,”
 W3C
 Recommendation,
 19
 07
 2022.

[Online].
Available:
https://www.w3.org/TR/did-core/.

[41]
W3C,
“Verifiable
Credentials
Data
Model
v1.1.,”
W3C
Recommenda­
tion,
03
03
2022.
[Online].
Available:
https://www.w3.org/TR/vc-data­
model/.

[42]
F.
Román
García
and
J.
Hernández
Serrano,
“i3M-Wallet
Base
Wallet,”

[Online].
Available:
https://github.com/i3-Market-V3-Public-Repositor

y/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/base-wa

llet.

[43]
F.

Román
García
 and
 J.
Hernández
 Serrano,
 “SW
Wallet,”
 [Online].

Available:
https://github.com/i3-Market-V3-Public-Repository/SP

3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/sw-wallet.

[44]
F.
Román
García
and
J.
Hernández
Serrano,
“BOK
Wallet,”
 [Online].

Available:
https://github.com/i3-Market-V3-Public-Repository/SP3­
SCGBSSW-I3mWalletMonorepo/tree/public/packages/bok-wallet.

https://github.com/hyperledger/besu
https://github.com/hyperledger/besu
https://solidity-es.readthedocs.io/
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/blob/public/packages/wallet-desktop-openapi/openapi.json
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/blob/public/packages/wallet-desktop-openapi/openapi.json
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/base-wallet
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/base-wallet
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/sw-wallet
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/sw-wallet
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/sw-wallet
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/sw-wallet

148
 References

[45]
F.
Román
García
and
J.
Hernández
Serrano,
“Wallet
Desktop,”
[Online].

Available:
https://github.com/i3-Market-V3-Public-Repository/SP3­
SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-desktop.

[46]
 J.
Hernández
Serrano
and
F.
Román
García,
“Server
Walllet,”
[Online].

Available:
https://github.com/i3-Market-V3-Public-Repository/SP3­
SCGBSSW-I3mWalletMonorepo/tree/public/packages/server-wallet.

[47]
 J.
Hernández
Serrano
and
F.
Román
García,
“Wallet
Desktop
OpenAPI,”

[Online].
Available:
https://github.com/i3-Market-V3-Public-Repositor

y/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet­
desktop-openapi.

[48]
F.
Román
García
and
J.
Hernández
Serrano,
“Wallet
Protocol,”
[Online].

Available:
https://github.com/i3-Market-V3-Public-Repository/SP3­
SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-protocol.

[49]
F.

Román
García
 and
 J.
Hernández
 Serrano,
 “Wallet
 Protocol
API,”

[Online].
Available:
https://github.com/i3-Market-V3-Public-Repos

itory/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/walle

t-protocol-api.

[50]
F.
Román
García
 and
 J.
Hernández
Serrano,
 “Wallet
Protocol
Utils,”

[Online].
Available:
https://github.com/i3-Market-V3-Public-Repositor

y/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet­
protocol-utils.

[51]
 IDEMIA,
“Video
proving
the
integration
of
IDEMIA’s
HW
Wallet
into

the
 i3-MARKET
Wallet
Desktop
 application,”
2022.
 [Online].
Avail­
able:
https://drive.google.com/file/d/1Ai_eoDIzIHczOjzOMBR4ctV5

kbR05NOE/view?usp=share_link.

[52]
Bluetooth
SIG
- Core
Specification
Workgroup,
“Bluetooth
Core
Spec­
ification
v2.1
+
EDR:
Secure
Simple
Pairing,”
2007.

[53]
D.
Basin,
C.
Cremers,
 J.
Dreier,
S.
Meier,
R.
Sasse
 and
B.
Schmidt,

“Tamarin
Prover,”
[Online].
Available:
http://tamarin-prover.github.io/.

[54]
OpenJS
Foundation,
“Electron,”
[Online].
Available:
https://www.electr

onjs.org/.

[55]
Ethers
JS,
“The
Ethers
Project,”
[Online].
Available:
https://github.com

/ethers-io/ethers.js/.

[56]
Veramo,
 “Veramo

- A
 JavaScript
 Framework
 for
 Verifiable
 Data,”

[Online].
Available:
https://veramo.io/.

[57]
OpenAPI,
“OpenAPI
Initiative,”
Linux
Foundation,
[Online].
Available:

https://www.openapis.org/.

[58]
 “Express
OpenAPI
Validator,”
[Online].
Available:
https://github.com/c

dimascio/express-openapi-validator.

v
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-desktop
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/server-wallet
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/walletdesktop-openapi
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/walletdesktop-openapi
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-protocol
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-protocol
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-protocol-api
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-protocol-api
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-protocol-utils
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mWalletMonorepo/tree/public/packages/wallet-protocol-utils
https://drive.google.com/file/d/1Ai_eoDIzIHczOjzOMBR4ctV5kbR05NOE/view?usp=share_link
https://drive.google.com/file/d/1Ai_eoDIzIHczOjzOMBR4ctV5kbR05NOE/view?usp=share_link
http://tamarin-prover.github.io/
https://www.electronjs.org/
https://www.electronjs.org/
https://github.com/ethers-io/ethers.js/
https://github.com/ethers-io/ethers.js/
https://veramo.io/
https://www.openapis.org/
https://github.com/cdimascio/express-openapi-validator
https://github.com/cdimascio/express-openapi-validator

References
 149

[59]
TypeDoc,
“TypeDoc,”
[Online].
Available:
https://typedoc.org.

[60]
 J.
Hernández
Serrano,
“i3-MARKET
Non-Repudiation
Library,”
2022.

[Online].
Available:
https://github.com/i3-Market-V3-Public-Repositor

y/SP3-SCGBSSW-CR-NonRepudiationLibrary.

[61]
 J.
Hernández
Serrano,
“i3-MARKET
Conflict
Resolver
Service,”
2022.

[Online].
Available:
https://github.com/i3-Market-V3-Public-Repositor

y/SP3-SCGBSSW-CR-ConflictResolverService.

[62]
 J.
 Hernández
 Serrano,

“API
 of
 the
 i3-MARKET
 Non-Repudiation

Library,”
 i3-MARKET,
2022.
[Online].
Available:
https://github.com

/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-NonRepudiat

ionLibrary/blob/public/docs/API.md.

[63]
Panva,
“JOSE,”
[Online].
Available:
https://github.com/panva/jose.

[64]
Ajv,
“Ajv
JSON
schema
validator,”
[Online].
Available:
https://ajv.js.o

rg/.

[65]
OpenJS
Foundation,
“Express
JS,”
[Online].
Available:
https://expressj

s.com/.

[66]
Y.
Kovacs,
S.
Stanhke
and
J.
L.
Muñoz,
“i3-MARKET
Smart
Contracts,”

[Online].
Available:
https://github.com/i3-Market-V3-Public-Repositor

y/SP3-SCGBSSW-I3mSmartContracts.

[67]
Hans
van
der
Veer
and
Anthony
Wiles,
"Achieving
Technical
Interoper­
ability
- the
ETSI
Approach,"
in
ETSI,
2008.

[68]
Mike
Ushold,
Christopher
Menzel,
and
Natasha
Noy.
Semantic
Integra­
tion
&
Interoperability
Using
RDF
and
OWL.
[Online].
https://www.w3

.org/2001/sw/BestPractices/OEP/SemInt/

[69]
M.
Compton
et
 al.,
 "The
SSN
ontology
of
 the
W3C
 semantic
 sensor

network
incubator
group,"
JWS,
2012.

[70]
EUROPA.
Publications
Office
of
the
EU.
EU
Vocabularies.
Controlled

Vocabularies.
Authority
tables.
Frequency.
https://publications.europa.

eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/frequency

[71]
EUROPA.
Publications
Office
of
the
EU.
EU
Vocabularies.
Controlled

Vocabularies.
Authority
tables.
File
type.
https://publications.europa.eu

/en/web/eu-vocabularies/at-dataset/-/resource/dataset/file-type

[72]
EUROPA.
Publications
Office
of
the
EU.
EU
Vocabularies.
Controlled

Vocabularies.
Authority
tables.
Language.
https://publications.europa.

eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/language/

[73]
EUROPA.
Publications
Office
of
the
EU.
EU
Vocabularies.
Controlled

Vocabularies.
Authority
tables.
Corporate
body.
https://publications.eur

opa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/corporate­
body/

https://typedoc.org
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-NonRepudiationLibrary
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-NonRepudiationLibrary
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-ConflictResolverService
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-ConflictResolverService
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-NonRepudiationLibrary/blob/public/docs/API.md
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-NonRepudiationLibrary/blob/public/docs/API.md
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-CR-NonRepudiationLibrary/blob/public/docs/API.md
https://github.com/panva/jose
https://ajv.js.org/
https://ajv.js.org/
https://expressjs.com/
https://expressjs.com/
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mSmartContracts
https://github.com/i3-Market-V3-Public-Repository/SP3-SCGBSSW-I3mSmartContracts
https://www.w3.org/2001/sw/BestPractices/OEP/SemInt/
https://www.w3.org/2001/sw/BestPractices/OEP/SemInt/
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/frequency
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/frequency
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/file-type
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/file-type
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/language/
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/language/
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/corporate-body/
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/corporate-body/

150
 References

[74]
EUROPA.
Publications
Office
of
the
EU.
EU
Vocabularies.
Controlled

Vocabularies.
Authority
tables.
Continent
https://publications.europa.eu

/en/web/eu-vocabularies/at-dataset/-/resource/dataset/continent

[75]
EUROPA.
Publications
Office
of
the
EU.
EU
Vocabularies.
Controlled

Vocabularies.
Authority
tables.
Country.
https://publications.europa.eu

/en/web/eu-vocabularies/at-dataset/-/resource/dataset/country

[76]
EUROPA.
Publications
Office
of
the
EU.
EU
Vocabularies.
Controlled

Vocabularies.
Authority
tables.
Place.
https://publications.europa.eu/en/

web/eu-vocabularies/at-dataset/-/resource/dataset/place

[77]
European
 Commission.
 Joinup.
 Asset
 Description
 Metadata
 Schema

(ADMS).
https://joinup.ec.europa.eu/solution/asset-description-m

etadata-schema-adms

[78]
CI/CD
with
Ansible
Tower
and
GitHub.
Available
from:
https://keithten

zer.com/2019/06/24/ci-cd-with-ansible-tower-and-github/

[79]
Red
Hat
Ansible
Tower
Monitoring:
Using
Prometheus
+
Node
Exporter

+
Grafana.
Available
from:
https://www.ansible.com/blog/red-hat-ansib

le-tower-monitoring-using-prometheus-node-exporter-grafana

https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/continent
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/continent
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/country
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/country
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/place
https://publications.europa.eu/en/web/eu-vocabularies/at-dataset/-/resource/dataset/place
https://joinup.ec.europa.eu/solution/asset-description-metadata-schema-adms
https://joinup.ec.europa.eu/solution/asset-description-metadata-schema-adms
https://keithtenzer.com
https://keithtenzer.com
https://www.ansible.com/blog/red-hat-ansible-tower-monitoring-using-prometheus-node-exporter-grafana
https://www.ansible.com/blog/red-hat-ansible-tower-monitoring-using-prometheus-node-exporter-grafana

Index

A

application
program
interface
xxxi

D

data
marketplace
 xv,
 1,
 62,
 79,
 90,

121

data
provider
39,
64

decentralized
identifier
xxxi,
147

distributed
ledger
technology
xxxi

E

European
commission
xii,
150

European
union
146

I

i3-MARKET
xi,
1,
6,
8,
15,

47,
58

identity
 and
 access
 management

xxxi,
3

J

JSON
web
key
23,
31

JSON
web
token
xxxi

P

proof
of
origin
xxxi

proof
of
publication
xxxii

S

self-sovereign
identity
xxxii

service
level
agreement
xxxii

service
level
specification
xxxii

smart
contract
74,
82,
141

smart
contract
manager
16,
71,
85

software
development
kit
xxxii

state
of
the
art
141

V

verifiable
credentials
22,
71,
111

151

https://taylorandfrancis.com

About
the
Editors

Dr.
 Martín
 Serrano
 is
 a
 recognized
 expert
 on
 semantic
 interoperability

for
 distributed
 systems
 due
 to
 his
 scientific
 contribution(s)
 to
 using
 liked

data
and
 semantic
 formalisms
 like
ontology
web
 language
 for
 the
 Internet

of
Things
 and
 thus
 store
 the
 collected
 sensor’s
data
 in
 the
Cloud.
He
has

also
 contributed
 to
 define
 the
 data
 interplay
 in
 edge
 computing
 using
 the

linked
data
paradigm;
in
those
works
he
has
received
awards
recognizing
his

scientific
contributions
and
publications.
Dr.
Serrano
has
advanced
the
state

of
the
art
on
pervasive
computing
using
semantic
data
modelling
and
context

awareness
 methods
 to
 extend
 the
 “autonomics”
 paradigm
 for
 networking

systems.
He
has
also
contributed
to
the
area
of
information
and
knowledge

engineering
using
semantic
annotation
and
ontologies
for
describing
data
and

services
relations
 in
 the
computing
continuum.
Dr.
Serrano
has
defined
 the

data
continuum
and
published
several
articles
on
data
science
and
Internet
of

Things
science
and
he
is
a
pioneer
and
visionary
on
proposing
that
semantic

technologies
 applied
 to
policy-based
management
 systems
 can
be
used
 as

an
 approach
 to
 produce
 cognitive
 applications
 capable
 of
 understanding,

service
and
application
events,
controlling
the
pervasive
services
life
cycle.

A
 process
 called
 bringing
 semantics
 into
 the
 box,
 as
 published
 in
 one
 of

his
 academic
 books.
 He
 has
 published
 5
 academic
 books
 and
 more
 than

100
 peer
 reviewed
 articles
 in
 IEEE,
 ACM
 and
 Springer
 conferences
 and

journals.

Dr.
Achille
Zappa
 is
a
Post-Doctoral
Researcher
at
 Insight,
University
of

Galway.
He
received
BSC/MSC
degree
in
Biomedical
Engineering
and
PHD

in
Bioengineering
 from
 the
University
of
Genoa
 (Italy),
his
Ph.D.
project

was
 related
 to
 semantic
web
 integration,
 knowledge
 engineering
 and
 data

153

154
 About
the
Editors

management
 of
 biomedical
 and
 genomic
 data
 and
 his
 research
 interests

include
semantic
web
technologies,
semantic
data
mashup,
linked
data,
big

data
 management,
 knowledge
 engineering,
 big
 data
 integration,
 semantic

integration
 in
 life
 sciences
 and
 health
 care,
 workflow
 management,
 IoT

semantic
 interoperability,
 IoT
 semantic
 data
 and
 systems
 integration.
 Dr.

Zappa
is
the
W3C
Advisory
Committee
representative
for
Insight
Centre
at

University
of
Galway
and
member
of
W3C
working
groups
like
the
HCLS

IG,
 the
Web
 of
Things
 (WoT)
 IG
 and
WG,
 the
Spatial
Data
 on
 the
Web

WG.
He
 currently
work
with
 the
main
 Insight
Linked
Data
 and
Semantic

Web
Groups
and
with
the
UIoT
(Internet
of
Things,
stream
processing
and

intelligent
 systems
unit)
Research
Unit,
 addressing
 collaboration
with
dif­
ferent
units
and
 involvement
 in
various
projects
where
he
seeks
 to
develop

general-purpose
linked
data
analytics
platform(s),
which
enables
(a)
flexible

and
scalable
data
 integration
mechanisms
and
(b)
flexible
use
and
reuse
of

data
analytics
components
 such
as
visualization
components
and
analytics

methods.
Dr.
Zappa
 has
 an
 extensive
 expertise
 of
 applying
 semantic
web

technologies
 and
 linked
 data
 principles
 in
 health
 care
 and
 life
 sciences

domains.

Mr.
Waheed
Ashraf
is
a
Senior
Software
Engineer
with
extensive
experience

in
Java
programming
with
Spring
Boot
and
Project
Management
experience

with
a
strong
background
on
microservices
systems
design
and
 is
an
AWS

Certified
 person.
Mr.
Ashraf
 is
 a
 highly
 skilled
 senior
 software
 engineer,

with
10+
years
of
project
related
professional
experience
in
developing
and

implementing
software
systems
and
developing
and
maintaining
enterprise

applications
working
for
 international
companies
from
USA,
Australia
and

Malaysia.
Mr.
Ashraf
is
also
proficient
in
agile
software
development,
scrum

and
 continuous
 integration
 (Jenkins),
 Amazon
 Web
 Services
 (AWS)
 and

back-end
RDBMS
(using
SQL
in
Databases
Like
Oracle,
DB2,
MySQL
4.0

and
Microsoft
SQL
Server).
He
is
currently
responsible
for
the
design,
devel­
opment
and
implementation
of
a
federated
authentication
and
authorization

infrastructure
 (AAI)
 for
 federated
 access
 to
 data
 providers
 in
 the
 context

of
 the
 Federated
 Decentralized
 Trusted
 Data
 Marketplace
 for
 Embedded

Finance
FAME
Horizon
Europe
project.

Dr.
Pedro
Maló
is
professor
at
the
Electrotechnical
Engineering
and
Com­
puters
Department
 (DEEC)
of
 the
NOVA
School
of
Science
and
Technol­
ogy
 (FCT
NOVA),
Senior
Researcher
 at
UNINOVA
 research
 institute
 and

Entrepreneur
at
UNPARALLEL
Innovation
research-driven
hi-tech
SME.
He

About
the
Editors
 155

obtained
 an
 M.Sc.
 in
 Computer
 Science
 and
 holds
 a
 Ph.D.
 in
 Computer

Engineering
with
 research
 interests
 in
 interoperability
 and
 integrability
 of

(complex)
systems
with
special
emphasis
on
cyber-physical
systems/Internet

of
Things.
Pedro
 coined
novel
methods
 and
 tools
 such
 as
 the
plug’n’play

interoperability
 (PnI)
 solution
 for
 large-scale
 data
 interoperability
 and
 the

NOVAAS
 (NOVA
Asset
Administration
 Shell)
 that
 establishes
 the
 guide­
lines
 and
 methodology
 for
 industry
 digitization
 by
 integrating
 industrial

assets
 into
 a
 Industry
 4.0
 communication
 backbone.
 As
 an
 entrepreneur,

Pedro
 initiated
 the
 development
 of
 the
 IoT
 Catalogue
 that
 aims
 to
 be

the
whole-earth
 catalogue
 of
 the
 Internet
 of
Things
 (IoT)
 –
 the
 one-stop­
source
 for
 innovations,
products,
applications,
 solutions,
etc.
 to
help
users

(developers/integrators/advisors/end-users)
 to
 take
 the
 most
 advantage
 of

the
 IoT
 for
 the
 benefit
 of
 society,
 businesses
 and
 individuals.
 Pedro
 has

20+
 years
 practice
 in
 the
 management,
 research
 and
 technical
 coordina­
tion/development
of
RTD
and
innovation
projects
in
ICT
domains
especially

addressing
data
technologies,
systems’
interoperability
and
integration
solu­
tions.
 Pedro
 is
 a
 recognized
 Project
 Manager
 and
 S&T
 Coordinator
 of

European/National
RTD
and
industry
projects
with
skills
in
the
coordination

of
 both
 co-localized
 and
 geographical
 dispersed
work
 teams
 operating
 in

multidisciplinary
and
multicultural
environments.

Márcio
Mateus
is
project
Manager
at
Unparallel
Innovation,
Lda
Portugal

and
a
Research
engineer
holding
an
M.Sc.
in
electrotechnical
and
computer

engineering
from
the
Faculty
of
Science
and
Technology
of
the
Universidade

Nova
de
Lisboa
 (FCT
NOVA).
Márcio
 is
an
expert
 in
data
 interoperability

measurement
techniques
and
methodologies
for
complex
heterogeneous
envi­
ronments.

Mr.
Edgar
Fries
 is
Senior
System
Architect
at
Siemens
AG,
Germany.
 In

his
early
career
he
acted
as
project
manager
and
consultant
at
SIEMENS
AG

consulting
in
the
field
of
engineering
with
a
focus
on
engineering
tools
and

methods
for
customers
in
the
plant
engineering
and
product
business.
Fries

is
graduated
from
the
Technical
computer
science
in
Esslingen
University
of

Applied
Sciences.

Iván
Martínez
 is
project
manager
and
SW
architect
at
Atos,
Spain,
and
a

senior
researcher
at
the
ARI
department
of
the
company
AtoS.
He
graduated

in
computer
science
from
Technical
University
of
Madrid
and
in
the
past
few

years
he
has
participated
 in
 semantic
web,
cloud,
big
data
and
blockchain

156
 About
the
Editors

related
 industrial
 and
 research
 projects.
 He
 has
 contributed
 to
 national

research
projects
such
as
PLATA,
and
other
Cloud,
HPC
and
big
data
related

projects,
such
as
KHRESMOI,
VELaSCCo,
TOREADOR,
DataBench
and

BODYPASS
mainly
leading
in
the
latter’s
definition
and
integration
of
system

architecture.

Mr.
Alessandro
Amicone
 is
 an
 experience
project
manager
 at
GFT,
 Italy

leading
both
public
funded
and
commercial
market
projects.
In
the
first
part

of
his
professional
career,
he
worked
mainly
 in
projects
 focusing
on
coor­
dinating
documents
management
and
business
process
management
systems

for
 the
bank
 and
 insurance
 industry.
 In
 recent
years
he
has
been
working

on
Horizon2020
 projects
 and
 innovative
market
 projects
 promoting
 smart

communities
and
technology
for
digital
transformation
for
and
between
com­
panies
 in
 the
 industry
 sector
 and
 research
 communities.
The
development

of
 processes
 and
 management
 systems
 mainly
 focuses
 on
 advancing
 the

state
of
art
using
software
engineering
 for
blockchain,
smart
contracts
and

distributed/self-sovereign
identity,
ensuring
cyber-security
solutions.

Justina
Bieliauskaite
is
Innovations
Director
at
the
European
Digital
SME

Alliance
 with
 more
 than
 8
 years
 of
 project
 lead
 and
 management
 expe­
rience
 (previously
 she
worked
 in
Lithuanian
 and
Belgian
NGOs).
 Justina

Bieliauskaite
leads
the
preparation
and
implementation
of
Horizon
Europe,

Digital
Europe
 Programme,
Erasmus+
 and
 other
 tenders/service
 contracts

for
 the
 European
 Commission.
 She
 is
 experienced
 in
 coordinating
 stake­
holder
 engagement,
 policy
 analysis
 and
 recommendations,
 SME
 training,

standardization,
and
communication
activities.
Justina
is
currently
the
main

coordinator
of
the
BlockStand.eu
project.
Currently,
Justina
is
leading
DIGI­
TAL
SME’s
Projects
and
Standardisation
teams,
and
coordinates
the
internal

WG
DIGITALIZATION
which
covers
AI,
IoT,
cloud
computing,
blockchain

and
emerging
technologies,
as
well
as
coordination
among
digital
innovation

hubs.
Justina
holds
a
Master’s
degree
 in
Science
 (cum
 laude),
 focusing
on

political
science
and
international
relations,
from
the
Universities
of
Leiden

and
Vilnius.
Besides
her
mother-tongue
Lithuanian,
Justina
speaks
English,

Italian,
Russian
and
German.

Dr.
Marina
Cugurra
is
a
lawyer
specializing
in
R&I
projects,
in
particular

in
legal
issues
of
new
technologies
and
Information
Society
(e.g.
AI,
GDPR,

data
ownership,
etc.),
with
a
Ph.D.
degree
at
the
“Telematics
and
Information

Society”
Ph.D.
School
 at
University
of
Florence.
She
 is
 also
 an
 expert
 in

About
the
Editors
 157

ethical
and
societal
themes
related
to
ICT
research
and
technological
develop­
ments.
She
is
serving
as
independent
Ethical
Expert
at
European
Commission

and
European
Defense
Agency.
Consolidated
experience
in
national
projects

and
international
and
European
projects.
Scientific
collaboration
with
CNIT

(National
 Inter-University
Consortium
 for
Telecommunications)
 and
CNR

–
ITTIG
(Italian
National
Research
Council,
Institute
of
Legal
Information

Theory
and
Techniques).
Legal
Advisor
in
the
R&I
Division
of
multinational

companies.
She
has
contributed
to
the
activities
of
the
legal
working
groups

of
Eu-wide
initiatives
(EU
Blockchain
Observatory
Forum)
and
is
Chair
of

the
Ethics,
Data
Protection
and
Privacy
(EDPP)
Task
Force
of
the
“Citizen’s

Control
of
Personal
Data”
Initiative
within
Smart
City
Marketplace.

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Table of Contents
	Preface
	Who Should Read this Book?
	What is Addressed in the i3-MARKET Book Series?
	What is Covered in this i3-MARKET Part III Book?
	Acknowledgements
	List of Figures
	List of Tables
	List of Contributors
	List of Abbreviations
	Chapter 1: i3-MARKET Overview
	1.1: Context

	Chapter 2: General Description
	2.1: Deployment and Operational Concepts
	2.1.1: Consider the requirements of the software
	2.1.2: Evaluate the deployment environment
	2.1.3: Consider automation and orchestration
	2.1.4: Evaluate containerization options
	2.1.5: Consider monitoring and reporting tools

	2.2: Deployment Specification
	2.3: Terminology
	2.4: i3-MARKET Artifacts Overview
	2.5: Deployment Architecture View
	2.6: i3-MARKET Network Infrastructure
	2.7: Software Stack
	2.8: i3-MARKET Master Environment
	2.9: i3-MARKET Pilot Environment

	Chapter 3: Backplane API Gateway
	3.1: Objectives
	3.2: Solution Design/Blocks
	3.2.1: Authentication and authorization
	3.2.1.1: Authentication
	3.2.1.2: Authorization

	3.2.2: Subsystem implementation
	3.2.3: Data flows
	3.2.4: Service Integration Manager
	3.2.5: Automatic integration mechanism
	3.2.6: Subsystem OAS repository
	3.2.7: Backplane repository
	3.2.7.1: Remote images

	3.2.8: Final deployment
	3.2.9: Multiple environments support

	3.3: Interfaces
	3.3.1: Developers
	3.3.2: OIDC discovery
	3.3.3: OIDC core
	3.3.4: RegistryBlockchainController
	3.3.5: RegistryController
	3.3.6: AuthController
	3.3.7: Conflict-resolver service
	3.3.8: FarewellController
	3.3.9: HelloController
	3.3.10: OpenApiController
	3.3.11: Notifications
	3.3.12: Queues
	3.3.13: Subscriptions
	3.3.14: PingController
	3.3.15: Cost-controller
	3.3.16: Price-controller
	3.3.17: RatingService
	3.3.18: Agreement
	3.3.19: Explicit user consent
	3.3.20: Registration-offering
	3.3.21: TokenizerController
	3.3.22: Credential
	3.3.23: Issuer

	Chapter 4: Deployment Guides
	4.1: Artifact Deployment Guides
	4.2: MDS1: Manual Deployment
	4.3: ADS1: Automatized Deployment with Ansible Scenario One
	4.4: ADS2: Automated Deployment with Ansible and CI/CD GitHub Pipelines Two
	4.5: ADS3: Automated Deployment with Docker Compose
	4.6: Tagging Releases Strategy
	4.7: Deployment Process
	4.7.1: Docker Compose
	4.7.2: Technical Requirements
	4.7.3: Specification and configurations
	4.7.4: Deployment

	Chapter 5: Operative Specification
	5.1: Libraries
	5.2: i3-MARKET APIs
	5.3: SDKs
	5.4: User Interfaces
	5.5: Install i3M Wallet
	5.6: Create a Wallet and a Consumer and/or Provider Identity in the Wallet
	5.7: Creating a Wallet 2/3
	5.8: Register a New OIDC Client
	5.9: SDKs

	Chapter 6: SDKs and WEB-RI
	6.1: Approach
	6.2: SDK-Core Specification
	6.2.1: SDK-core implementation
	6.2.2: Core technology

	6.3: SDK Reference Implementation (SDK-RI)
	6.4: WEB-RI
	6.4.1: Purpose

	6.5: IMPLEMENTATION
	6.6: Navigation:

	Chapter 7: Deployment Tools
	7.1: Solution Design
	7.1.1: MDS1: manual deployment
	7.1.2: ADS1: automated deployment with Ansible
	7.1.3: ADS2: automated deployment with Ansible and CI/CD GitHub pipelines
	7.1.4: ADS3: automated deployment with Docker Compose

	7.2: i3-MARKET: Onboarding Process

	Chapter 8: SDK-RI Specification
	8.1: Objectives
	8.2: Technical Requirements
	8.3: SDK Reference Implementation
	8.4: Core Technology
	8.5: Continuous Integration and Deployment

	Chapter 9: SDK-RI Installation using Docker
	9.1: Setup
	9.2: Running the SDK-RI with Docker
	9.3: Configuring and using SDK-RI

	Chapter 10: WEB-RI
	10.1: Purpose
	10.2: Architecture
	10.3: Sitemap
	10.4: Run WEB-RI in Docker

	Chapter 11: Central Administration Guide
	11.1: Cloud Management
	11.2: Infrastructure Monitoring

	Chapter 12: Repositories and Open Source
	12.1: GitLab/GitHub
	12.2: GitLab Repository
	12.3: GitHub Repository
	12.4: Developers’ portal with MKDocs framework
	12.5: Open-Source Portal
	12.5.1: Developers, users, and respective roles
	12.5.2: Roles and activities of developers and experts in the governance model

	Chapter 13: Other Content
	13.1: Local Development using Node.js
	13.2: Local Development using Docker
	13.2.1: Development scripts in the docker container

	Chapter 14: Conclusions
	References
	Index
	About the Editors

