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INTRODUCTION

Scientific models in the philosophy of science

Tarja Knuuttila, Natalia Carrillo and Rami Koskinen

Modeling cuts across sundry scientific practices, contributing to theorizing, experimentation,
prediction, measurement, scientific instrumentation, and science education. Beyond the sci-
ences, modeling plays a crucial role in citizen engagement with science and public policy
decision-making. It plays a major role in the efforts to address the huge challenges of the
21st century, including but not limited to climate change, shortage of natural resources,
loss of biodiversity, and economic forecasting in increasingly unforeseeable situations. The
diversity of scientific models is astounding; side-by-side mathematical and scale models,
technological advances such as rapidly expanding big data, computational and synthetic
approaches, and generative Al are pushing modeling toward new frontiers, redefining the
epistemic agency between humans and scientific instruments. A discussion of what we can
achieve through modeling, and how we should manage model-based practices, is critical
for ensuring a good and responsible use of this epistemic resource. The chapters of The
Routledge Handbook of Philosophy of Scientific Modeling, written by experts in various
areas of the philosophy of science, seek to provide enduring philosophical insights and use-
ful analyses for understanding modeling in its multiplicity.

The philosophical discussion on modeling

The philosophical interest in modeling within the philosophy of science has heterogeneous
beginnings, testifying to a variety of theoretical, formal, and practical aspirations that ap-
pear to have different goals. While scientists such as Maxwell, Thomson, Helmholtz, Hertz,
and Boltzmann addressed mechanical models and analogies in the 19th and beginning of
the 20th centuries, the philosophical discussion started to bloom first in the 1950s, only to
explode at the turn of the 21st century. It seems fair to say that within the philosophical
discussion for most of the 20th century, models remained subordinate to theories. In the
last decades, however, the situation has definitely changed. In the present philosophical dis-
cussion, modeling now occupies the center stage, even to the extent that Morrison (2007)
has asked: where have all the theories gone?

Already Wartofsky (1966) paid attention to what he called the “model muddle,” refer-
ring to the proliferation of a wildly heterogeneous assortment of things called models—both

1 DOI: 10.4324/9781003205647-1
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within the sciences as well as within the philosophy of science. In scientific research,
especially technological developments have added new kinds of inhabitants to the ever-
increasing diversity of models, including, among others, mathematical models, scale mod-
els, general circulation models, agent-based simulations, network models, model organisms,
large language models, and synthetic models. Philosophers, for their part, have taken notice
of the growing importance and diversification of scientific models, coining and analyzing an
amazing assortment of model types, such as idealized models, toy models, minimal models,
exploratory models, analog models, fictional models, and caricature models, to name just a
few (for a more comprehensive list and discussion, see Frigg 2023 and Frigg and Hartmann
2020). There have been several attempts to domesticate the wilderness of model kinds and
types through categorization, such efforts extending also to the question of the ontology
of models (e.g., Black 1962, Achinstein 1968, Weisberg 2013, Gelfert 2016, Frigg 2023).
However, as the different model types identified by philosophers typically address some
particular uses of models, the question concerning the ontology of models tends to intersect
with their functional qualities (Gelfert 2016, Frigg 2023).

This Handbook introduces the amazing variety of scientific models and the rich philo-
sophical discussion on them. It also addresses other philosophical topics that relate to mod-
eling, both long-established and more recent, contributing not only to our knowledge of
modeling but also to those topics themselves. Before going into the contents of the Hand-
book, we will shortly discuss the two main ways in which models have been comprehended
within the philosophy of science.

Syntactic and semantic views on theories and models

The very different ways in which models have been approached within the philosophy of
science may puzzle a newcomer to the field. On the one hand, there have been attempts to
establish what scientific models are, within a formal framework (Bailer-Jones 1999, 32).
The syntactic and semantic views on theories, inspired by mathematical logic, are both at-
tempts of this kind, although the place of models in them is quite different. On the other
hand, the present discussion of modeling tends to focus on the pragmatic and cognitive
roles of models in scientific enterprise, without any explicit interest in defining models.

According to the syntactic view of theories, promoted by logical empiricists, a scientific
theory is an uninterpreted or partially interpreted formalism, a syntactic structure consist-
ing of a set of axioms and theorems. The axioms would be formulations of scientific laws,
specifying the relationships between scientific terms. The theory, as a syntactic structure,
is explicated in terms of its logical form. To interpret such a theory would be to specify a
model for it, which makes all the axioms of the theory true. The interpretation provided by
a model could supply, as Ernest Nagel put it, some flesh to the skeletal structure in terms of
more or less familiar conceptual or visualizable materials (Nagel 1961, 90).

The semantic conception of models contested this “linguistic” view of theories, replacing
the focus on the syntactic formulation of the theory and starting rather with the theory’s
models, which are non-linguistic entities. According to the semantic view, theories are not
assemblages of propositions or statements but families of models that can be described or
characterized by a number of different linguistic formulations (Suppe 1977, 221). These
models would be akin to models in mathematical model theory: Suppes (1961, 65) sug-
gested that the “meaning of the concept of model is the same in mathematics and in the
empirical sciences.” The semantic approaches consider models as structures that can be
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defined either by the use of set-theoretical predicates (e.g., Suppes 1961) or by the use of
suitable mathematical language (van Fraassen 1980). Van Fraassen’s version of the seman-
tic approach comes closer to physical theories, considering non-relativistic theories in terms
of systems of physical entities developing in time. A cluster of models is united by a com-
mon state space with a domain of objects and their trajectories in that space.

Within the semantic approach, especially Ronald Giere focused on scientific modeling,
his account becoming increasingly aligned with practice-oriented approaches (e.g., Giere
1999; for a discussion on practice-oriented approaches, see below). While he considered
scientific models to be abstract entities, he did not think that the concept of a model from
formal logic and mathematics was suitable for scientific practice. Giere (1988) developed
his account of models on the basis of classical mechanics as presented in advanced text-
books. He proposed that, for example, the “linear oscillator” is a cluster of models of vary-
ing degrees of specificity. Such models are not true or false with respect to the world; the
role of the theory is rather to claim a “good fit” between the models and some important
types of real systems. Consequently, for Giere, in contrast to most adherents of the seman-
tic conception, the relationship between models and their target systems is not primarily
that of isomorphism (or some other kind of structure-preserving mapping) but similarity.
Also, the links between the models of a theory are relations of similarity, since according
to Giere, nothing in the structure of a model itself determines whether it belongs to a given
family of models or not. It would be up to the scientific community to judge whether the
resemblance is sufficient.

That a conception of theories should provide an approach to scientific models already
seems somewhat paradoxical at the outset and has been challenged by philosophers study-
ing modeling from the perspective of scientific practice. In response, some adherents of the
semantic approach have responded by invoking the so-called “partial structures” view.
It addresses the concern that several kinds of models used in science are not set-theoretical
models, but instead material or iconic (French and Ladyman 1999). The partial structures
approach seems to accommodate such possibilities as it requires only partial isomorphisms
between the model and the modeled (see e.g., Bueno 1997, da Costa and French 2003).
However, French and Ladyman (1999) also claim that it is important to keep in mind that
what is at stake is whether the set-theoretical account can adequately describe scientific
models used in scientific practice. Consequently, the philosopher “‘represents’ the theory
at the meta-level of the philosophy of science in terms of set theory and also ‘represents’
the way the theory latches onto the world via the formal notion of (partial) isomorphism”
(French 2017, 3324). This is a different aim than what motivates those philosophers who
are interested in the models that are constructed and used in actual scientific practices.
It also implies that the notion of a model in mathematical logic is not the notion that is
employed by working scientists.

A practice-oriented approach to models

The philosophical discourse surrounding models has traditionally been driven by practical
concerns. Even those who advocated for a semantic view of theories, such as van Fraassen
(1980), perceived their approach as offering a more realistic account of theories. Instead
of reconstruction, however, the practice-oriented approach focused on different aspects of
actual scientific practice. During the 1950s and 1960s, the examination of models gained
traction within the philosophy of science as several scholars addressed topics such as theory



Tarja Knuuttila et al.

reconstruction, theory change, and scientific discovery (Bailer-Jones 1999, 31). Achinstein
(1968), Black (1962), Hesse (1966), and Hutten (1954) drew comparisons between models
and analogies or metaphors in their efforts to comprehend the functioning of models in
scientific reasoning. Black and Achinstein developed taxonomies of models with the aim of
capturing the range of models employed in scientific practice. Numerous subjects and issues
addressed throughout this early philosophical discourse on models remain pertinent still to-
day. One central contribution was also methodological. Already Hutten (1954) anticipated
the importance of case studies and the exploration of specific models. He recommended
that philosophers “follow the scientists” as closely as possible in order to “avoid forcing
science into a pre-conceived scheme” (81) and “illustrating [the] scientific method by means
of old-fashioned and very simplified examples” (284). The current discourse on modeling
has indeed adhered to this recommendation, with the influential collection Models as Me-
diators (Morrison and Morgan 1999) playing a significant role in this development (see
below).

The physicists of the 19th century discussed mechanical models, either concretely con-
structed or imagined, functioning as illustrations or “working models” that would provide
mechanical analogies to the physical phenomena of interest (Boltzmann 1902, Hon and
Goldstein 2021). Likewise, Black (1962) and Achinstein (1968) started by considering
three-dimensional physical objects, which Black thought were the “standard cases” of
models in the literal sense of the word. Achinstein paid attention to the manipulability or
“workability” of physical models (which he called representational models). According to
him “representational models, although used in all the sciences, are particularly central in
engineering. Instead of investigating an object directly, the engineer may construct a rep-
resentation of it, which can be studied more readily” (1968, 209). Morrison and Morgan
(1999) emphasized the importance of manipulability, extending it to models more gener-
ally. Already in 1953, Hesse (1953) claimed that mathematical formalisms may be thought
of as models and that they functioned in much the same manner as mechanical models.

Morrison and Morgan’s view of models as mediators that serve as investigative tools
draws on this prior practice-oriented tradition, as well as Nancy Cartwright’s work. Mod-
els occupy the middle ground between theory and the world (or data), in both Cartwright’s
account of models as bridges and Morrison and Morgan’s models as mediators. Cartwright
(1983) used models to argue that the fundamental laws of physics do not describe natu-
ral regularities. She believes that there is a disconnect between general theoretical physics
principles and the messiness and complexity of facts that phenomenological laws seek to
convey. Models are tasked with filling that gap:

The route from the theory to reality is from theory to model, and then from model
to the phenomenological law. The phenomenological laws are indeed true of the ob-
jects of reality—or might be; but the fundamental laws are true only of objects in the
model.

(Cartwright 1983, 4)

For a model to function as a bridge between theory and data, it has to include some genu-
ine properties of the objects modeled. Yet models also contain traits of convenience and
fiction. Morrison and Morgan (1999) also emphasize the incorporation of “additional ele-
ments” into models. This is precisely what allows models to connect disparate realms, but
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it is also what allows them to be “at least” partially autonomous. Models can operate as
investigative instruments precisely because of their partial autonomy.

The crucial contribution of Morrison and Morgan’s (1999) approach is their attention
to scientists’ active engagement with models. Morrison and Morgan scrutinize it from the
standpoints of construction, functioning, representing, and learning. Models have tradi-
tionally been considered representations, a perspective that has in fact been shared by both
the structuralist and many practice-oriented approaches to models. However, Morrison
and Morgan’s notion of representation makes it less a truthful depiction that corresponds
to some particular natural or social system than an ongoing investigation of both theories
and empirical findings (see also Wimsatt 2007). Morrison and Morgan’s emphasis on learn-
ing is critical; scientists learn by building and manipulating models. Weisberg (2013) also
highlights the independent nature of models. He considers modeling a particular kind of
theoretical practice that is characterized by indirect representation with which he refers to
how modelers construct and analyze hypothetical systems, i.e., models, without necessarily
attempting to establish any links between them and some determinable real-world systems.

The emphasis on modeling as a particular theoretical strategy raises the question of
its historical antecedents (Godfrey-Smith 2006). According to Hon and Goldstein (2021),
Maxwell’s concept of a “working model” indicates a shift toward a modeling approach.
The working model, according to Maxwell, was “a medium capable of producing the me-
chanical phenomena observed” (Maxwell [1859/1890] 1965, 162). According to Hon and
Goldstein, Maxwell’s working model was not just a tool for understanding but also a re-
search instrument for examining the imagined process at the microlevel. Sudrez (2024) also
traces the origin of what he calls the “modeling attitude”—a set of methodological commit-
ments and style of inquiry—to the 19th century. For Sudrez, the modeling attitude consists
of the construction of analogical, idealized, fictional, or artifactual scenarios within models,
for multiple purposes. Giorgio Israel (1993), a historian of science, places the origin of the
modeling approach in the early 20th century when a new notion about the relationship
of mathematics to reality was born. The classical notion of the uniqueness of mathemati-
cal representation gave way to the modeling approach, which employs the same abstract
mathematical representations across a wide range of domains (see also Knuuttila and Loett-
gers 2023). Modeling endeavors of this type concentrate on formal structures capable of
describing a wide range of isomorphic occurrences or similar patterns. Hon and Goldstein,
and Sudrez, as well as Israel, may have various types of models in mind, but one thing they
appear to agree on is the exploratory aspect of modeling (Gelfert 2016, Massimi 2022).

The contents of the Handbook

The Handbook contains a total of 40 chapters, all specially written for the present collec-
tion by leading scholars from around the world. The chapters are divided into five thematic
parts that go from the general to the particular:

Historical and General Perspectives

Philosophical Accounts of Modeling

Methodological Aspects: Model Construction, Evaluation, and Calibration
Related Topics

Modeling in the Wild

L Wi =
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Part 1, Historical and General Perspectives, places the philosophical discussion of modeling
in perspective. First, it offers a historical overview of how the modeling attitude emerged
in 19th-century physics, addressing how these scientists interpreted the utility of models
for scientific study. Second, the link between theories and models is investigated: how this
relationship was interpreted across semantic and syntactic accounts and how models are
perceived to relate to theories in contemporary debates. Third, the practice-oriented ap-
proaches that pushed modeling to the forefront of the philosophy of science are examined.
These three historical viewpoints set the stage for the Handbook’s subsequent themes.

Part 2, Philosophical Accounts of Modeling, addresses a variety of subjects central to the
contemporary philosophical debates on modeling. The crucial question is the epistemic role
of models. Models are commonly regarded as representations, but what this implies and
whether the representational viewpoint is sufficient to account for models’ varied epistemic
roles is debatable. Other philosophers choose to begin on a different note, arguing that
models may represent, but that does not always explain their epistemic value for scientific
endeavors. The proposal that models should be viewed as epistemic artifacts is an example
of such an account. A related epistemological topic is idealization, traditionally dealing
with the problem of why scientists misrepresent features of the target systems in their mod-
els. Idealization appears to call into question the representational perspective on models,
and de-idealization offers one answer. While de-idealization is sometimes associated with
idealization, it also emerges as a topic of its own. In the next entry, target systems are at-
tended to. They are assumed to be what models are about, and how they are retrieved or
constructed is an important aspect of modeling that has received less attention. Minimal
models and computer simulations are discussed towards the end of Part 2. This part con-
cludes by discussing two classical philosophy of science topics that are also connected to
modeling: scientific laws and explanation.

Part 3, Methodological Aspects: Model Construction, Evaluation, and Calibration, in-
vestigates a variety of methodological issues encountered in modeling practices. The first
chapter discusses the concept of robustness and how it pertains to normative modeling
considerations. This leads to a debate on model evaluation—how to determine whether a
model is adequate for a given purpose. Another critical concern is how scientists determine
which mathematical forms to utilize in their models. The role of models in statistical infer-
ence is also addressed. The final topic covered is model transfer, which describes how and
by what means formalized models can be moved and applied from one scientific domain
to another.

Part 4, Related Topics, examines philosophical issues that are pertinent but not exclu-
sive to modeling. First, the notions of representation-as and exemplification as they apply
to modeling are addressed. Two key philosophical debates on models are discussed in the
chapters that follow: (1) whether understanding is factive or not, and how various answers
to this question affect the epistemological role of models, and (2) to what extent and how
models might provide us with access to possibilities. Moreover, models have been compared
to a variety of objects, and our understanding of them has grown as a result. This part of
the Handbook discusses how models relate to and differ from thought experiments, maps,
metaphors, and narratives, and it recovers the origins and evolution of these comparisons.
Subsequently, the crucial issue of how values are incorporated into modeling is tackled.
Interdisciplinarity and modeling, as well as learning through modeling, are discussed in the
final two chapters.
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While the chapters in Parts 1-4 cover a wide range of issues that have been discussed in
the context of modeling in general, the purpose of the final Part 5, Modeling in the Wild,
is to explore and examine different types of models. The chapters in this part address sev-
eral epistemological, ontological, and methodological challenges related to modeling i situ.
The cases studied include modeling in statistics, climate science, machine learning, biomedi-
cal and engineering sciences, synthetic biology, paleosciences, economics, formal language
theory, and neuroscience. The question of why network models can be applied to such a
wide range of natural and social phenomena is also discussed, relating to the pervasiveness
of certain formal or other templates in modeling practices more generally.

The increasing prominence of modeling in science has generated considerable momen-
tum, making the future of scientific modeling highly exciting. This is particularly evident
in the transformations of modeling due to advancements in technology, encompassing im-
proved experimental equipment, enhanced processing capacity, and novel computational
approaches, including generative Al. We believe that the massive crowdsourcing effort rep-
resented by The Routledge Handbook of Philosophy of Scientific Modeling will continue to
contribute pointers, philosophical insights, and valuable analyses for understanding mod-
eling in the time to come.
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THE EMERGENCE OF THE
MODELLING ATTITUDE

Mauricio Sudrez

1. A History of the Modelling Attitude

An ‘attitude’, or a ‘stance’, is a set of loose methodological and heuristic commitments, a
style of doing science. It is not a thesis or a set of propositions explicitly defining the nature
of science or its aim (Chakravartty 2004; Rowbottom 2011). The modelling attitude is the
mode of scientific work that relies on the construction, development, and application of
models; it does so to achieve the plurality of aims pursued by science. It need not be defined
as a thesis about scientific knowledge: it is merely a methodological stance, a commitment
to a mode of work.

Philosophical discussions about stances or attitudes are by now, of course, rather en-
trenched, and postulating a stance, or attitude, in the study of the nature and aims of sci-
ence is a respected view. Arthur Fine (1984/1987) proposed a natural ontological attitude,
and Bas Van Fraassen (2002) advanced an empirical stance. Both intended their views as
viable hermeneutics in a project of understanding science. The aim of this chapter is more
modest: it aims to defend that a large part of the present-day scientific work in the physical
sciences answers to a ‘modelling attitude’. It does not claim that this is the (only) hermeneu-
tics suitable for natural science, or science in general; in fact, it makes no claims regarding
the appropriate interpretational stance on science, taken as a whole. Rather, it approaches
stances and attitudes as primarily part of the scientists’ own methodological practices and
only derivatively sees them as informing philosophical debates and narratives. Just as philo-
sophical realism is born out of internal scientific disputes regarding the atomic hypothesis,
so is the modelling attitude born out of scientific modelling methodology. Moreover, both
are interconnected fin-de-siecle developments.

Indeed, the modelling attitude has a history, (Sudrez, 2014, 2024) which sees it emerge
in full force in the nineteenth century, in the wake of both British Victorian physics and the
German theory of models or Bildtheorie. The main contention of this chapter is that there
are interesting insights in this history that are relevant to the contemporary debate regarding
modelling and the nature of representation. The story commences at a perhaps unsuspected
place and time, the Scottish Enlightenment at the beginning of the nineteenth century.
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2. The ‘Relativity of Knowledge’ in the Scottish Enlightenment

The roots of ‘analogy’ and its use in British Victorian nineteenth-century science lie in the
Scottish Enlightenment (see Davie 1961; Olson 1975; Harman 1998; Siegel 1991; Smith
and Wise 1989). They can be located more precisely in some common-sense philosophical
views regarding the nature of knowledge that derive from the practice of mathematical ab-
straction. Outstanding amongst this is the so-called relativity of knowledge, a thesis regard-
ing the comparative nature of knowledge (hence in no way related to our contemporary
forms of epistemic relativism).

The Scottish abstract school of mathematics was in many ways shaped over the gen-
erations by Robert Simson’s (1756) commentary on Euclid’s Elements — a book that went
through many editions and was in print in the US until the end of the nineteenth century.
In a much-discussed passage in the book, Simson develops the concept of a surface by ab-
straction, a process carried out entirely in the mind. First, consider a solid geometric object
in physical space shaped as a rectangular block. Then, imagine the solid block divided into
two halves, right down the middle. Had the surface in between any thickness, it would
belong to either half. Yet, it cannot be part of either half because, if we imagine that half
being removed, the surface still exists in the remaining half. By reduction, it follows that the
surface has no thickness and belongs to neither half — it is rather an abstraction. We appre-
hend the nature of a plane, or surface, only when we split the real block in our mind, into
two imaginary situations, and compare them. We can continue this process of abstraction
to generate cognate results regarding one-dimensional lines as the intersection of planes and
non-dimensional points as the intersection of lines.

While the nature of mathematical abstraction is involved and has roots in medieval con-
cepts and doctrines that cannot be discussed here (see Davie, 1961, 127-149), one feature
stands out for our purposes. The method of abstraction is a way to infer a result about a
real physical object and its properties based on a piece of reasoning that is carried out in
some imaginary situations involving this object. The analogy, or comparison, between such
imaginary situations yields knowledge of the nature of the object or its properties. While
this is a method envisaged for abstract mathematical (geometrical) properties, it is not
hard to see how it could be implemented to obtain empirical knowledge regarding physical
properties too.

The method of abstraction was one central ingredient in the intellectual milieu that
saw William Thomson (Lord Kelvin, 1824-1907) and James Clerk Maxwell (1831-1879)
develop analogy as a method for scientific discovery. The other key ingredient was the
cognate thesis in Scottish common-sense philosophy that all knowledge is the result of apt
comparison, the so-called “relativity thesis” (Davie 1961; Olson 1975, chap. 12; see also
related discussions in Harman 1991, chap. 2). This opposed atomistic theories of knowl-
edge, according to which knowledge can be exclusively of a given object. The Scottish
common-sense tradition emphasised the way all knowledge of an object is the product of
a comparison of that object with something else. Thus, the only means to achieve genuine
knowledge of the world necessarily involves likeness, comparison, or analogy. The word
‘analogy’ was common in the nineteenth century, and its use is widespread even now (as a
simple Google search shows) but, as we shall see, its meaning shifts into what we nowadays
refer to as ‘model’. By the time Boltzmann writes his 1902 entry for the Encyclopaedia
Britannica, he has no need for ‘analogy’ and employs ‘model’ instead. A genealogical
study of ‘model’ thus turns out what was considered a method, and an activity, involving
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analogical reasoning. It is a contention of this chapter that this genealogy is not a mere ac-
cident, but the history of the modelling attitude informs our current modelling methodolo-
gies (as well as, arguably, other features of our contemporary scientific culture) and merits
philosophical attention.

3. Kelvin, Maxwell, and the Uses of Analogy

James Clerk Maxwell (1831-1879), Edinburgh-born and educated at its Academy and Uni-
versity, completed three full courses until he left for Cambridge in 1850. William Thomson
(1824-1907) grew up in Glasgow and was linked to the city throughout his life. In 1892,
he was elevated Baron Kelvin after the river that runs through the city and university. Max-
well was mentored by the physicist James David Forbes and the philosopher Sir William
Hamilton, within the broad-based liberal Scottish educational system. Thomson was taught
by his father, the reformist mathematician James Thomson, and the radical professor of
astronomy John Pringle Nichol, who in turn had been trained at Aberdeen’s King’s College.
All of these are habitual localities in the history of Scottish common-sense philosophy and
abstract mathematics, and all mentors and tutees were willing partakers in both traditions.

Maxwell, in particular, was strongly imbued with the relativity thesis, including
Thomas Reid’s tenet that analogical reasoning was an unavoidable — however regret-
table, in Reid’s view — component of scientific reasoning (Olson 1975, chaps. 2 and 3).
He went on to develop his own philosophical views in a paper delivered in 1856 at the
Apostles in Cambridge (Maxwell 1856b/1890). The paper is a disquisition on the nature of
analogy, and it shows that the term had a somewhat more general meaning than we ascribe
it today, rather closer to our current generic notion of ‘model’ (see Cat 2001, for an insight-
ful account of analogy and metaphor in Maxwell’s thought). His central question concerns
whether analogies are in mind or nature. This would nowadays be rendered as a question
regarding whether models are realistic renditions of their targets or not. His response is re-
vealing. Maxwell acknowledges that there exist objects endowed with properties and hold-
ing an array of properties and relations to each other. In our conventional contemporary
terms, he is thus a kind of metaphysical realist. Yet, he also claims there to be a distinct kind
of necessity that applies to thoughts — there are laws amongst thoughts that can only be said
to apply to objects by means of some comparison or likeness. This induces a method for
surrogative reasoning, which, according to Maxwell, is a typical inclination of any student
of analogy (‘modeller’): “Whenever they [men] see a relation between two things they know
well, and think they see there must be a similar relation between things well known, they
reason from the one to the other” (Maxwell 1856b/1890, 382).

We can take this to be a statement for the modelling attitude in the Victorian era. The
mechanical models of the aether so dear to ‘the Maxwellians’ (Hunt 1991) are fine exam-
ples of Maxwell’s view of analogy as reasoning via the perceived shared relations amongst
distinct systems of objects. Mechanical models were taken to bear informative likenesses
to the electromagnetic aether, and they were thus employed by Victorian physicists such
as George Francis Fitzgerald, Oliver Heaviside, or Oliver Lodge to infer a diverse range of
properties of electromagnetic radiation. Maxwell even took care to fill in the concept of
reasoning employed as follows: “A reason or argument is a conductor by which the mind is
led from a proposition to a necessary consequence of that proposition” (1856/1890, 379).
As we shall see, the notion of a ‘conductor’ (itself a useful analogy) turns out to be critical
to the development of a modelling attitude in the nineteenth century.
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Maxwell himself famously put all these ideas to use in his development of Faraday’s
experimental findings on electromagnetic induction in a full electromagnetic theory,
culminating in his celebrated Treatise on Electricity and Magnetism (Maxwell 1873).
This development essentially took place at Cambridge, where Maxwell moved in 1850
for further studies, graduating in 1854, as a Trinity College fellow. He would return to
Cambridge in 1871 as the new Cavendish professor, after short hiatuses at Aberdeen
and King’s College London. Thomson had also been a graduate student at Cambridge a
decade earlier, and Cambridge provided both men with formidable formal skills through
its mathematics tripos.' It was exposure to Cambridge that turned them into what Siegel
(1991) calls ‘deep theory modellers’. In Scottish common-sense philosophy, analogy is es-
sentially a heuristic for research and discovery: however, one that could mislead if taken
at face value. Analogy is to be employed, but not to be trusted too much, and Reid in
particular disparaged against any realist interpretation. Under the influence of John Her-
schel’s theory of errors and William Whewell’s consilience of induction, both Maxwell
and particularly Thomson became wedded to a more realistic form of analogy relying on
classical mechanics.

This is perhaps best exemplified in Maxwell’s two most important contributions on
the road to a comprehensive electromagnetic theory. In the earlier ‘On Faraday’s Lines
of Force’ (Maxwell 1856a/1890), Maxwell exhibits a characteristically ‘Scottish’ attitude:
he compares electrical and magnetic phenomena with the flow of an incompressible fluid
through a porous medium, and he uses the comparison merely as a provisional template
for investigating such phenomena. Anticipating a role for fictional assumptions in science,
Maxwell even claims that the incompressible fluid is ‘imaginary’:

The substance here treated of must not be assumed to possess any of the properties of
ordinary fluids except those of freedom of motion and resistance to compression. It is
not even a hypothetical fluid [...] It is merely a collection of imaginary properties [...].
The use of the word ‘Fluid’ will not lead us into error, if we remember that it denotes
a purely imaginary substance.

(Maxwell, 1856a/1890, 160)

Partly inspired by Thomson’s (1847) and Rankine’s (1855) molecular vortices theory of
elasticity, Maxwell’s attitude changed in the years leading up to 1861. Analogy became
more than merely a useful heuristic. It developed into a magnifying glass for probing into
the world, a window on the underlying laws of apparently detached and distinct phe-
nomena. By the time he published ‘On Physical Lines of Force’ (Maxwell 1860/1890),
the analogical source itself had changed: rather than modelling the induction in cur-
rents as a flow, the aether was then represented as molecular vortices in rotational mo-
tion, in terms of the famous vortices and idle-wheels model. The tiny counter-rotating
‘idle-wheels’ were introduced to account coherently within mechanics for such rotational
motion (see the famous figure 2 in plate VIII in Maxwell’s 1860/1890). This model is
a mixture of heuristically useful assumptions, such as the idle-wheels, and what Max-
well called ‘real” analogies, namely the molecular vortices themselves. The ‘relativity of
knowledge’ drives all these attempts to illustrate electric and magnetic phenomena by
means of mechanical models made up of elastic solids or fluids (Harman 1998, 71-80;
Siegel 1991, chaps 2 and 3).
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The turn away from useful mechanical models towards deep theory was to be completed
in Maxwell’s Treatise, in 1873, where Maxwell finally developed the theory of electromag-
netism that bears his name. The so-called Maxwell equations were a somewhat later de-
velopment arising out of mainly the work of Oliver Heaviside, but essentially all the main
empirical results and theoretical concepts employed by ‘the Maxwellians’ (Hunt 1991) were
already formulated in Treatise. This includes the radical insight that light is a transverse wave
in the electromagnetic aether, as well as the famous equivalence of the speed of light with
the inverse of the square of the ratio of electrostatic and electrodynamic units. The full his-
tory of the development is rich, and there is no space to broach it in detail here (Hunt 1991;
Siegel 1991; Harman 1998; Cat 2001; Nersessian 2008). The main lesson for our purposes
concerns the use of mechanical models in arriving at these theoretical developments. While
there is some debate regarding how necessary the analogies are methodologically to arrive at
the full electromagnetic theory (Hon and Goldstein 2020), it is undeniable that in Maxwell’s
own reasoning, the vortices and idle-wheels model plays a key role, particularly in the deriva-
tion of the displacement current (see Harman 1998; and particularly Siegel 1991, chap. 4).

4. Helmbholtz and the Origins of Bildtheorie

Roughly at the same time as Thomson and Maxwell developed an English-speaking mod-
elling attitude, Hermann von Helmholtz (1821-1894) established his ‘Berlin school’ of
physics and in so doing set up a distinct German-speaking variant of the nineteenth-century
modelling attitude. Helmholtz’s account of Bilder was essentially driven by his sign theory.
The ‘Bildtheorie’ — literally the ‘theory of images’ — is not merely an account of scientific
representation: it is also the name of a movement in scientific modelling practice that
emerged in fin-de-siécle Austria and Germany. While it is expressly inspired by the English-
speaking modellers — most prominently by Thomson and Maxwell’s analogies between
fluid mechanics, heat, and electricity — it also has its own roots in Neo-Kantian empiricism.
Thus, although the Bildtheorie emerges most explicitly in the writings of Heinrich Hertz
(1857-1894) and Ludwig Boltzmann (1844-1906) towards the end of the century, it is re-
ally to their mentor Hermann von Helmholtz (1821-1894) that we must look to searching
for its intellectual and historical sources.?

According to Buchwald (1993), ‘Helmholtzianism’ is an open-ended set of methodologi-
cal maxims for the practice of experimental science. At the core of this practice is the re-
quirement to actively intervene experimental setups to obtain anomalous results or effects.
These would be described in terms of the ascription of dynamic states to systems, together
with functions operating on these states representing interaction potentials. The evolution
of the states is therefore the key to the result of the interaction, and Helmholtz assumed eve-
rything else was essentially redundant or derivative, including charges, currents, or forces.
Thus, contrary to what is sometimes supposed, Helmholtz was never entirely at ease with
action-at-a-distance theories such as those of Wilhelm Weber and Gustav Fechner (or their
equivalent over in Britain, such as those taught by Rouch and the other Cambridge coaches
until well into the 1890s, as described in Warwick (2003)). Rather, he followed Franz
Neumann in not presupposing any account of charges or currents, or the forces supposedly
acting on them at a distance. Thus, Helmholtz — and Neumann — postulate a potential func-
tion between any two charges whose shape depends on their distance. The energy of the
system is thereby determined without making any further assumptions regarding the nature
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of the system of charges itself, or the forces operating, other than the system that can be as-
cribed a ‘state’, which figures in a potential ‘function’ that fully describes its interaction prop-
erties. As Buchwald (1994, 15) puts it: “It could [...] be said of Helmholtz that after the early
1870s nothing was clear to him until it could be formulated in terms of interaction energies”.

This is relevant to our present purposes for three reasons. First, it belies the thought
that Helmholtz was initially resistant to field theories such as Maxwell’s. On the contrary,
Helmbholtzianism is essentially neutral on whether fields mediating inductive currents on
conductors exist, or instead forces acting at a distance displacing charges and thereby set-
ting up such currents. There was no transition in Helmholtz from an action-at-a-distance
to a field-theoretic account of electromagnetism because Helmholtz was never wedded to
an action-at-a-distance theory to begin with.> The models Helmholtzians and Maxwellians
countenanced were in fact similar from the start. This is perhaps not surprising, since Helm-
holtz and Thomson corresponded regularly and read each other’s work avidly (Smith and
Wise 1987, 1989). Furthermore, Helmholtz’s (1870) proof that Fechner—Weber theories
entail the predictions of the Maxwell displacement current model was a noted milestone on
both sides of the channel (Buchwald 1993).

Second, Helmholtz’s initial training was in medicine, and he started as a sort of Neo-
Kantian, committed to the principle of causality and a style of causal realist explanation
(Heidelberger 1993; Turner 1993). Yet, starting with his work on the physiology of percep-
tion in the 1860s, he progressively veered off towards a generic form of empiricism (Eckert
2006, 19; Patton 2010). Thus, Helmholtz moved away from the idea that perceptions are
‘copies’ of the objects perceived towards the view that they are signs instead, standing in the
same conventional relation a name stands to its bearer. Helmholtz’s ‘sign theory’ is a direct
predecessor of the Bildtheorie: it identifies perceptions with representational signs, which
can be operated upon in accordance with certain rules of inference. And indeed, at roughly
this time, Helmholtz begins to employ the term ‘Bild’ to refer to the discovered laws of sci-
ence (Schiemann 1998, 25). Hertz and Boltzmann inherited the insight that models are sign
systems endowed with internal rules of inference.*

Third, and finally, Helmholtz’s characteristic neutrality on issues of ontology is inherited
by both Hertz and Boltzmann and turns out to be at the heart of the German-speaking model-
ling school. The principal lesson that Hertz and Boltzmann derived from their work in Helm-
holtz’s laboratory is that the most appropriate representations must abstract away from the
concrete material details of systems and instead focus on dynamic states and their potential
and interaction functions. Once the appropriate dynamic models are adopted, ontological
disputes will prove beside the point. Are there really forces in nature, or just masses? Do at-
oms exist, or are they just packets of energy? These are ontological disputes that are beyond
the purview of scientific models per se but rather belong to the domain of interpretation.
Hertz’s attempt to derive a representation of mechanics devoid of forces and Boltzmann’s
attachment to atoms do not have the dogmatic character of a believer (in potentials and at-
oms, respectively) so much as that of a sceptic regarding forces and energentism, respectively.
In both cases, they are attempts at justifying introducing alternative scientific models.®

5. Hertz and Boltzmann: Conformity and Information

There is one critical difference between the mentor and mentees, though: where Helmholtz
upheld the principle of ‘sign constancy’ (Schiemann 1998), Hertz and Boltzmann allowed
for multiple alternative representations. Hertz (1894) puts it with characteristic clarity:
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The images which we may form of things are not determined without ambiguity by
the requirement that the consequents of the images must be the images of the conse-
quents. Various images of the same objects are possible, and these images may differ
in various respects. (1894, 3)

Ultimately, it is this multiplicity of models of phenomena — and their underdetermina-
tion by both experimental evidence and dynamic presuppositions — that gives rise to both
Hertz’s and Boltzmann’s unusual scientific views at the time (D’Agostino 1990; De Regt
1999, 2005).

Heinrich Hertz’s full formulation of the Bildtheorie came in early enough in his astonish-
ingly deep Principles of Mechanics, where he famously wrote:

We form for ourselves images or symbols of external objects; and the form which
we give them is such that the necessary consequents of the images in thought are
always the images of the necessary consequents in nature of the things pictured.
(1894, 3)

This is through and through a Helmholtzian insight. There is first the idea that models
are symbolic representations endowed with certain rules of inference (symbolic or logical
necessity). There is then the thought that such models are related to the systems repre-
sented not by standing as copies of them, but only in the way in which conventional signs
stand for their bearers — merely, at best, by exhibiting correlations between their conse-
quents. The laws of nature and the rules of Bilder answer to different sorts of necessity
(natural or physical; and logical or symbolic, respectively), but the consequences of rules
and laws must correspond to each other. Thus, Hertz goes on to write: “The images that
we here speak of are our conceptions of things. With the things themselves they are in
conformity in one important respect, namely, in satisfying the above-mentioned require-
ment” (1894, 3).

It can then be argued, following Hertz, that ‘conformity’ is the only necessary condi-
tion on Bilder, the only defining condition on a scientific model or representation. It is
not, however, the only virtue that a model can have. Hertz lists another four desirable
properties in a Bild, namely permissibility, correctness, distinctness, and appropriate-
ness. These conditions, Hertz argues, are not always fulfilled in every model. In fact,
they often militate against each other, so that they must be traded wisely within their
context of use. Thus, in practice, no model possesses them all, and most models strug-
gle to possess one of them at all. Hertz’s introduction of these conditions is interesting
for what it lets in as desirable virtues of a model, but even more so for what it leaves
out: ‘conformity’ is not taken to be an optional virtue, but the only necessary condition
on any model.®

Thus, ‘permissibility’ is coherence “with the laws of our thought” (Hertz 1894, 2), which
on the face of it appears to be a requirement of consistency or non-contradiction. Yet, Hertz
is clear that a model may be contradictory, yet conform. And if a model conforms, it remains
indeed a model. This makes room for models of fictional or impossible worlds, which may
be ‘impermissible’ in this terminology, but are nonetheless allowed if they conform. ‘Cor-
rectness’ is the requirement of consistency with the properties of the target system, since an
incorrect model, according to Hertz, is one whose “essential relations contradict the rela-
tions of external things” (1894, 2). Again, a model may be grossly ‘incorrect’, or inaccurate,
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or even an artefact, in the sense of being built to purpose but not necessarily truth-apt, yet
conform and hence remain a model. According to Hertz, ‘distinctness’ is the requirement
that a Bild provides an accurate rendition of every aspect of the target; we would nowadays
refer to this roughly as ‘completeness’, and obviously, it is not a plausible requirement on
any model. Thus, many models are highly streamlined, idealised, abstract, or ‘indistinct’
in Hertz’s terminology, yet of course, they remain models if they conform to their targets.
Finally, ‘appropriateness’, according to Hertz, is a measure of simplicity. A minimal model
is ‘appropriate’ if it does not make or contain superfluous claims regarding its target system.
Another way to put Hertz’s thought is that an appropriate model lacks any properties that
have no role at all in the sorts of inferences that the model promotes with respect to its
target. Hertz most clearly does not think that every scientific representation is appropriate:
his Principle of Mechanics is a forceful argument to the effect that the standard represen-
tation of mechanics in terms of forces acting at a distance is inappropriate, at least when
compared to his own much more streamlined and scarce representation in terms merely of
mass and potentials. More generally, it seems indeed clear that the conformity of a scientific
model in no way requires its appropriateness: most models are far from minimal, and they
contain elements that are extraneous to their representational tasks.

Hertz’s discussion, I argue, is a four de force and sets the stage for the ensuing modelling
attitude. Nevertheless, Hertz’s Principles of Mechanics remained controversial, and Hertz’s
untimely death in 1894 curtailed this work. So it was down to a devoted admirer, Ludwig
Boltzmann, working in Vienna, to promote the Bildtheorie most firmly. The high peak of
the German-speaking school of modelling may well be signalled by the publication of Boltz-
mann’s Popularen Schriften in 1905.” Boltzmann’s goals for modelling are also arguably
less lofty than Hertz’s, imbued instead with characteristic Viennese pragmatism and empiri-
cism. The modelling attitude is, in Boltzmann’s hands, what results from the application of
principles of economy of thought to scientific theorising: “As the facts of science increase
in number, the greatest effort had to be observed in comprehending them [models] and in
conveying them to others” (Boltzmann 1902, 2).

Boltzmann also added a requirement of informational gain to Hertz’s minimal condition
of conformity. In discussing the models in thermodynamics that he was so instrumental in
establishing, he wrote: “If for one of the elements [in the model] a quantity which occurs
in calorimetry be chosen - for example, entropy — information is also gained about the
behaviour of the body when heat is taken in or abstracted” (1902, 2). A model must show
conformity to its target, but not any conformity will do: the model must provide us with rel-
evant new information about that target. It is this combination of minimal conformity and
informational gain that makes a model scientific — and a valuable instrument for surrogate
reasoning regarding its target. Together, these two requirements bring into relief Maxwell’s
notion of a ‘conductor’ as an instrument for reasoning, which was reviewed in the first part
of this chapter. It is not a coincidence: Boltzmann was arguably led to the informational
gain requirement through Maxwell’s analogies, which he had studied very closely (Klein
1973). Furthermore, it is through these two conditions that we can ultimately understand
the work that analogy and metaphor can do for us in scientific inquiry. Reasoning by anal-
ogy requires both a degree of conformity (to make it possible to inquire into the nature of
an object or system by means of a comparison to other systems or objects) and a measure of
informativeness, the capacity of the source of the analogy to enlighten us regarding aspects
of the target that had not been considered before.
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In setting such a minimal bar on acceptable Bilder, Hertz paved the way for the under-
determination of theoretical models — and hence for pluralism, as the thesis that more than
one model is often available for any phenomena, effect, or process of interest. And in the
insistence that the logical necessity in a Bild is distinct from the natural necessity in the
phenomena pictured or in their represented causes, he opened up models to the norma-
tive practices that sanction the rules of reasoning within Bilder, beyond those of logical
consequence or necessity. Hertz’s ‘conformity’ appears similar in this regard to the cognate
notion of ‘conformation’ in Helen Longino’s celebrated The Fate of Knowledge (Long-
ino 2001). Both notions are attempts to set a lower bar for scientific representation, thus
widening its scope and generating room for underdetermination and genuine pluralism.
Moreover, they both seek to do this by grounding the activity of modelling in our socially
sanctioned surrogate inferential practices, thus placing greater emphasis on the communal
sets of norms required to functionally set and maintain representations. Yet, ‘conformation’
is not ‘conformity’. According to Longino (2001, 117) ‘conformation’ is “a general term
for a family of epistemological success concepts, including truth, but also isomorphism,
homomorphism, similarity, fit, alignment and other such notions”. In terms of the recent
debates over representation, Longino advances a general noun for the variety of conditions
of accuracy or adequacy of scientific representation, not the conditions for representation
per se. By contrast, I shall argue, Hertz’s ‘conformity’, like Maxwell’s analogy, is a mini-
mal requirement on the conceptually prior obtaining of representation, however erroneous,
false, or inaccurate.

6. The Philosophical Reception of the Modelling Attitude

The modelling attitude in science reached a high peak at the turn of the century, as signalled
by Boltzmann’s entry in the Encyclopaedia Britannica (Boltzmann 1902). It is a fin-de-siecle
development that changes the character of scientific work and inquiry, and it continues to
the present day. Whereas modern science had taken inspiration from the ancients to base
indubitable knowledge upon the twin sources of demonstrative proof and empirical obser-
vation, the modelling attitude adds a third prominent layer involving the construction of
figurative, idealised, fictional, or artefactual scenarios within scientific models. In practice,
models often mediate between the lofty realms of high explanatory theory, on the one
hand, and low-level renditions and records of data and phenomena, on the other (Morgan
and Morrison 1999). As such, models continue to take place of pride in scientific work
throughout the natural and social sciences — including the physical, chemical, earth, and life
sciences, as well as in economics, psychology, or sociology.

Yet, the fortunes of the modelling attitude in the philosophy of science and amongst phi-
losophers have been varied, experiencing ups and downs, and always subject to a measure of
controversy. The object of some fierce criticism in the work of Pierre Duhem (1861-1916),
the modelling attitude nonetheless experienced much philosophical attention and influence
in the early decades of the twentieth century, in the wake of formidable endorsements by
the likes of Boltzmann, Norman Campbell (1880-1949), Henri Poincaré (1854-1912), and
Hans Vaihinger (1852-1933). However, with the ascent of logical positivism, particularly
its North American version from the 1930s onwards, the modelling attitude went into a
period of relative philosophical decline. There was for many years scant regard for model-
ling generally amongst philosophers, and a return to the dismissive cautionary warnings so
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acutely voiced by Pierre Duhem (Bailer-Jones 1999). A renaissance of philosophical interest
began in the 1960s, and the modelling attitude as a philosophical object of inquiry slowly
surged back in the wake of pioneering work by authors such as Max Black (1909-1988),
Mary Hesse (1924-2016), and Stephen Toulmin (1922-2009). The last years of the twenti-
eth century finally saw the modelling attitude gain centre stage in the philosophy of science
once more, with the publication of the celebrated Models as Mediators collected volume
(Morgan and Morrison 1999), signalling the start of an entire movement that endures to
the present day. Philosophical discussions of the nature, role, and practice of modelling are
now very prominent and are an absolutely central piece in contemporary philosophy of
science, as is shown by even a cursory look at the major philosophy of science journals and
publishing houses.

The most striking episode in this remarkable history (gracefully told in Bailer-Jones
1999) is perhaps that unusual, slow, and gradual upsurge in interest in models during the
1960s. Where did authors like Max Black and Mary Hesse gain inspiration from? Not en-
tirely surprisingly, they were mostly inspired by the originators of the modelling attitude, by
Hertz and Boltzmann, and, most prominently, by James Clerk Maxwell. Black and Hesse,
in particular, both went back to Maxwell to the point of restoring the focus on the sort of
analogical thinking practised by Maxwell.® ‘Analogy’ as a form of reasoning thus took the
stage again, with ‘model’ consigned to the secondary role of its main product.

Black focused on analogies that turn fully into metaphors, which he argued required a
realist reading distinct from Maxwell’s early typically Scottish attitude. As he writes (Black
1962, 228): “One approach uses a detached comparison reminiscent of simile and argu-
ment from analogy; the other requires an identification typical of metaphor”. The nature
of metaphor is debated to this day, and its application to science remains controversial (see
Sudrez 2024, chap. 3, for an assessment). By contrast, Hesse’s nuanced analysis of analogi-
cal reasoning caught on quickly and is widely regarded to be central to any understanding
of modelling. It informs the sort of philosophy that focuses on scientists’ inferential pro-
cesses and practices at the expense of just analysing their product in ready-made models. In
her highly influential Models and Analogies in Science (Hesse 1966), Hesse distinguished
between three parts in any analogy or model: the positive, negative, and neutral analogies.
The first includes those properties and relations shared between the source and the target;
the second, those properties denied in the target; the third, those properties about which
it is unknown whether they are shared between the source and target. She also helpfully
distinguished vertical and horizontal relations in analogical thinking, thus emphasising the
fact that model sources are dynamic structured entities endowed with parts and often dy-
namically evolving in time (see Bartha 2019 for further development). The vertical relations
thus capture some causal principles at work. As Hesse puts it (Hesse 1966, 87; quoted in
Bartha 2019, 28):

The vertical relations in the model [source] are causal relations in some acceptable
scientific sense, where there are no compelling a priori reasons for denying that causal
relations of the same kind may hold between terms of the explanandum [target].

This is exactly in line with Hertz’s ‘conformity’ when suitably extended to capture all kinds
of dynamic relations within the model source that may not be ruled out to have correlates
in the target. Whether it actually corresponds to existing causal relations in nature is rather
a question for the further Hertzian ‘correctness’ of the model.
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7. Lessons for Contemporary Debates

The modelling attitude has Scottish and Cantabrigian origins in Victorian science and is
deeply enmeshed in James Clerk Maxwell’s work and thought. Yet, it developed most
firmly in Berlin, Bonn, and Vienna, as the German-speaking Bildtheorie took hold. This key
development in the emergence of a modelling attitude characterises much of the twentieth-
century science. In the proficient hands of Maxwell, Hertz, and Boltzmann, the model-
ling attitude gained weight and developed into a formidably precise tool for mathematical
and quantitative prediction and understanding. Nevertheless, Maxwell’s insights regarding
analogy (especially his apt metaphor of a model as a ‘conductor’ of surrogative reasoning)
are deeply embedded in Bildtheorie’s conception. The outlines of a twofold conception of
scientific representation emerged around two minimal conditions of conformity and infor-
mational gain, which every scientific model minimally complies with. These two require-
ments, as they appear in Hertz’s and Boltzmann’s work, lead naturally to a deflationary,
functionalist, and pragmatist conception of representation.

The dominant accounts of representation in recent literature fall into one of two kinds:
substantive and deflationary. The ostensive thought in a substantive account is that every
case of representation is the instantiation of a particular type of relation between what
we may call the representational source and its target. Thus, there is a substantive re-
lation r of type R, {r eR}, such that for any pair of objects or systems {x, y}, x is the
source S, and y is the target T of a representation if and only if x and y stand in that rela-
tion: r (x, y). It is important to get the order of the quantifiers right in this expression:
dre RiV{x,y}: (S (x)&T (y)) < r(x,y). That is, the quantifier that determines the domain
of the universal substantive relation of representation ranges over all source-target pairs. In
other words, a substantive account of representation assumes that a certain type of relation
(similarity, isomorphism, or some variety thereof) is invariably instantiated in every case
of representation by models in science. Model building is then essentially all about find-
ing out that relation as it applies to each {source, target} pair. The Victorian models of the
aether, for example, are attempts to characterise the main properties of the aether through
the similarities or isomorphisms that the aether (or its ‘structure’, whatever that may mean)
holds to the mechanical models advanced to represent it, such as the vortex model. If there
is no substantive relation to speak of, or none that actually holds, then there is no actual
representation. Since the aether is nowadays not a recognised real entity, it seems to follow
that Maxwell’s model was never a representation in the first place. This seems farfetched
to say the least and does poor justice to the historical record, which does not contain any
indication that the model worked as anything other than a model and invited the sorts of in-
ferences in practice that any model would. A metaphysical distinction without any practical
consequence is arguably, on a pragmatist maxim at least, an idle posit lacking any content.

Substantive accounts of representation suffer from additional problems, canvassed thor-
oughly in the literature (including Sudrez 2003; 2010; 2024). These need not detain us here,
though. The historical observation above regarding the representational use of Maxwell’s
vortex model already ought to prompt a search for an alternative account of representa-
tion, one that stays resolutely close to the practice, while avoiding reifying the diversity of
representational means and relations into any essential constitutive element in all scientific
representations. These accounts are deflationary because they skip any substantive consti-
tutive relation. Thus, another way to characterise the difference is that in a deflationary
pragmatic account, the quantifiers appear inverted relative to the statement of a substantive
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account. Hence, there is in fact no constitutive relation that universally applies to all repre-
sentations. Rather, for all {x, y} pairs where x is the representational source, S(x), and y is
the representational target, T (y), there may be some functional relation {r eR} that applies
to that {source, target} pair: V{x,y}: (S(x) & T(y)) <> 3reR:r(x, y). Here, the quantifier
ranges over all the various relations that instantiate representations; it merely affirms that
there is one such relation for every source—target pair. Since the relation is merely a function
and the set may contain the null relation, this definition, significantly, does not require all
representational sources to have targets. Nor does it require that all those representational
sources that do have targets be related to them via the same universally applicable relation.
Thus, Maxwell’s vortices and idle-wheel model is a representation of the aether, properly
speaking, even if it lacks a target. And if we were to insist that Maxwell’s model represents
not the aether but properties of the electromagnetic field (such as the displacement current),
it would not need to be related to it by means of the same type of relation as, say, Maxwell’s
equations hold to the electromagnetic field. The former ones may be related by similarity,
while the latter ones are by convention, or through a statement of some structural mor-
phism in their phase spaces.

There are a number of deflationary accounts in the recent literature, including RIG
Hughes” DDI model (Hughes 1998), the artefactual approach (Knuuttila 2011; Carrillo
and Knuuttila 2022), and a variety of inferential approaches (Kuorikoski and Ylikoski
2015; De Donato and Zamora-Bonilla 2012; Khalifa et al, 2022). They all have consid-
erable merits and are apt in confronting a large variety of modelling cases. The original
inferential conception [inf] (Sudrez 2004; 2010; 2024) has the additional virtue to accord
with the history of the modelling attitude reviewed in this chapter. The only two necessary
conditions on representation, according to [inf], are what I refer to as the ‘representational
force’ of a source, and its ‘inferential capacities’ with respect to the (real or fictitious) target.
Each of these conditions describes, properly speaking, an aspect of the normative practice
of reasoning by analogy and is not to be conceived as a relation in any metaphysical sense.
Thus [inf] is anticipated by the twofold requirements adumbrated by Hertz and Boltzmann
in the wake of Maxwell’s innovations: Hertz’s conformity requirement anticipates [inf]’s
‘representational force’, while Boltzmann’s information requirement informs [inf]’s ‘infer-
ential capacities’.
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Notes

1 Warwick (2003) is an unsurpassed account of the Cambridge tripos system in the nineteenth cen-
tury, while Buchwald (1985) and Darrigol (2000) are key historiographical references.
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2 The literature on Helmholtz is large, and the account that follows leans heavily on Darrigol (2000),
Eckert (2006), Patton (2010), as well as the superb essays in Cahan (1993). In addition, Hatfield
(1991), Patton (2009), and Schiemann (1998) are insightful accounts of Helmholtz’s work on
perception and his ‘sign theory’.

3 This is curiously in contrast with the sorts of pedagogical resistance that field theories encountered
initially precisely in Cambridge, where they were first adumbrated — see Warwick (2003, 306-56).

4 There are essentially two kinds of rules, referred to in Sudrez (2024) as horizontal and vertical
rules of inference, which mirror Mary Hesse’s (1966) similar distinctions reviewed later in the
chapter.

5 For Hertz’s views regarding the underdetermination of ontology, see the essays in Baird et al.
(1998). For Boltzmann’s epistemology, see Blackmore (1995) and de Regt (1999, 2005).

6 Hertz is uncharacteristically not entirely clear in his presentation of the relation between correct-
ness and conformity. I follow the reconstruction in (Sudrez, 2024, pp. 38—41).

7 Boltzmann’s entry on ‘models’ in the Encyclopaedia Britannica in 1902 is also climatic for the
Bildtheorie, but it had less of an impact on the public and the modelling community in the
German-speaking world.

8 A revival of interest in Aristotelian analogy at Cambridge may have been involved too — Lloyd’s
seminal Polarity and Analogy (Lloyd, 1966) was published in the same year as the revised version
of Hesse’s book.
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2
THEORIES AND MODELS

Roman Frigg

1. Introduction

There are models, and there are theories. This invites the question of how the two are re-
lated. Traditionally, it was assumed that this question had a simple answer, and attempts
have been made to explain the relation between models and theories at a general level. In
this chapter, I argue that there is no such thing as “the” relation between models and theo-
ries. How models relate to theories depends on the cases at hand, and models can stand in
a multiplicity of relations to theories.

The chapter starts with a discussion of the Syntactic View and Semantic View of theories
and points out that these views have too narrow a vision of what models are and of how
they relate to theories (Section 2). We then discuss different relations between models and
theories in descending order of models’ independence from theory. We begin by looking at
models that are constructed without the aid of a theoretical framework and that therefore
end up being independent from theory (Section 3). An interesting class of models serves
the purpose of exploring the properties of a theory by providing simplified renderings of a
theory’s features (Section 4). In some cases, models live in a symbiotic relation with theo-
ries, adding specifics about which the theory remains silent (Section 5). In other cases, the
reliance of theories on models is even stronger because theories require interpretative and
representative models in order to relate to real-world targets (Section 6), which motivates
the view that models are mediators between theories and the world (Section 7). Sometimes
it is difficult to draw the line between models and theories, and we discuss how, and where,
such a line could be drawn (Section 8). Section 9 concludes.!

2. Two orthodoxies

Twentieth-century philosophy of science has produced two broad views of what scientific
theories are, and both imply a position on how models relate to theories. For better or
worse, these two views form the backdrop of most discussions of models and theories to-
day, and so our discussion should begin with them.
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The first view, often referred to as the Syntactic View of Theories (“Syntactic View”,
for short), is associated with logical empiricism. Early statements of the Syntactic View in-
clude Carnap (1923) and Schlick (1925); full developments can be found in Carnap (1938,
sec. 23), Braithwaite (1953, chaps. 1-3; 1954), Nagel (1961, chap. 5), and Hempel (1966,
chap. 6; 1970).2 The Syntactic View regards a theory T as a linguistic entity that satisfies
the following three requirements:

(R1) T is formulated in an appropriate system of formal logic.

(R2) T contains axioms, which, when interpreted, are the theory’s laws.

(R3) T’s extralogical terms are divided into observation terms and theoretical terms,
and theoretical terms are connected to observation terms by correspondence rules.

R1 is often said to mean that the theory is formulated in first-order predicate logic, but this
restriction is unnecessary and T can be formulated in any system of logic (Lutz 2012). R2
requires there to be general propositions in the logical system which are the theory’s laws
when the extralogical terms are given an empirical interpretation. As a simple example,
consider the sentence (Vx)(Fx — Gx). Taken on its own, this is just a formal sentence (say-
ing that for every object x, if x has property F, then x also has property G). This sentence
becomes a statement of a law of nature of a simple theory of electricity if we interpret F as
“is a piece of copper” and G as “conducts electricity”. Under this interpretation, the sen-
tence says that every object that is a piece of copper also conducts electricity. R3 harbours
the view’s empiricist commitments. Extralogical terms are terms that relate to objects and
properties in the world (in contrast to logical terms like “and” and “or”, which concern
the structure of sentences). The Syntactic View separates these into observation terms and
theoretical terms. The former are terms like “round”, “green”, “ball”, “liquid”, “wheel”,
“hot”, “longer than”, and “contiguous with”, which refer to directly observable objects,
properties, and relations. The latter are terms like “electron”, “entropy”, “orbital”, “elec-
tromagnetic field”, “gene”, “quantum jump”, “temperature”, and “rate of inflation”,
which (purportedly) refer to objects, properties, and relations beyond direct observation.
The view postulates that theoretical terms are related to observation terms by so-called
correspondence rules. By way of illustration, consider “temperature”. The temperature of
an object is not directly observable. What is observable are thermometer readings. So the
Syntactic View postulates that the term “temperature” be connected to an observation term
through a rule like “an object has temperature 6 if, and only, a thermometer shows 6 when
brought in contact with the object”.?

Let us call the theory’s system of formal logic together with its uninterpreted axioms the
theory’s formalism. The formalism of a theory is a set of formal sentences. Given such a
set of sentences, one can always look for a set of objects, along with their properties and
relations, which make the sentences true if the sentences’ terms are interpreted as refer-
ring to those objects, properties, and relations. Such a set of objects constitutes a logical
model. Tt is then common to say that the model satisfies the formal sentences in the sense
that the model makes the sentences true if the terms of the sentences are taken to refer to
the objects, properties, and relations in the model. In the context of a discussion of scien-
tific theories, the relevant formal sentences are stated in the language of the formalism of
a theory, and hence logical models are sometimes referred to as “models of a theory” or
“models for a theory”.
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If, for the sake of illustration, we assume that the formalism of our theory consists only
of the sentence (Vx)(Fx — Gx), then a set of objects is a model for that theory if it is the case
that to every object to which the predicate F applies, the predicate G also applies. Earlier we
interpreted F as “is a piece of copper” and G as “conducts electricity”. But interpretations
are not unique, and formalisms can often be interpreted in several different ways. Rather
than interpreting F and G in terms of copper and conductivity, we could interpret F as “is a
piece of granite” and G as “contains quartz”, which also makes the sentence (Vx)(Fx — Gx)
true. Hence, a set of objects in which it is the case that every object to which “is a piece of
granite” applies is such that also “contains quartz” applies to it is a model of the theory.

In the Syntactic View, scientific models are essentially alternative interpretations of a
theory’s formalism. Braithwaite expresses this clearly when he says that a model is “another
interpretation of the theory’s calculus” (1962, 225), whereby his “calculus” is synonymous
with our “formalism”. However, for an alternative interpretation to be useful, it must have
an additional feature: the objects of the alternative interpretation must be familiar to us.
In Hesse’s words, “a model is drawn from a familiar and well-understood process” (1961,
21). Crucially, this requirement applies to all terms of the formalism. That is, it applies also
to the terms that were considered theoretical terms under the standard interpretation of
the theory. In R3, these terms were given an “indirect” interpretation via correspondence
rules, which made them difficult to grasp intuitively. In the context of a model, these terms
receive a direct interpretation based on something familiar to us. In sum, then, we can say
that according to the Syntactic View, a scientific model (often just “model”) is a logical
model of a theory’s entire formalism that consists of objects, properties, and relations that
are familiar to us.

As an example, consider the kinetic theory of gases. The theory takes a gas to consist
of molecules that move freely unless they either collide with each other or the walls of the
vessel containing the gas. Since “gas molecule” and “trajectory of a molecule” are theoreti-
cal terms, the theory is not easy to comprehend. To get an intuitive grip on the theory, we
can reinterpret the theory in terms of billiard balls and their paths. The terms that were
formerly interpreted as referring to molecules are now interpreted as referring to billiard
balls; the terms that were interpreted as referring to the trajectories of molecules are now
interpreted as referring to the paths of billiard balls. A bunch of billiard balls is therefore
a model of the kinetic theory of gases. Other well-known examples of models of this kind
are water waves as a model of the acoustic theory of sound waves and the solar system as
a model of the Bohr theory of the atom.

The second view of theories in 20th-century philosophy of science is the so-called Se-
mantic View of Theories (“Semantic View”, for short). Historically this view was intended
to replace the Syntactic View, which has been reported to suffer from a number of serious
problems. It is a matter of controversy whether these problems are as severe as critics
have said they were, or whether they are problems at all. However, this is not the place
to review this debate and the reader is referred to the relevant literature on the subject.*
Important statements of the Semantic View include Suppes (2002), van Fraassen (1980),
Balzer, Moulines and Sneed (1987), Giere (1988), and Da Costa and French (1990). Dif-
ferent authors develop the view in different ways, but there is a common denominator, the
focus on a theory’s models. As we have seen previously, a logical model is a set of objects
(along with their properties and relations) that make the theory’s formalism true. We can
then ask what the class of all logical models of a formalism looks like, and this will give us
important information about the nature of a theory. Hence, rather than focussing on the
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formalism itself when characterising a theory, we can focus on its models. The Semantic
View submits that this is not just another way of doing the same thing; on the contrary,
characterising a theory in terms of its models is superior to characterising it in terms of its
formalism. The primary reason for this is that formalisms can change and yet describe the
same things. We are familiar with this phenomenon from everyday contexts, where we can
say the same thing in different languages. “Copper conducts electricity” and “Kupfer leitet
Elektrizitat” are different sentences but they have the same truth-maker, namely the fact
that copper conducts electricity. In the context of theories, we can choose different formal
tools to describe the same models, which, however, would not result in a new theory be-
cause such reformulations merely describe the same thing in different ways. This motivates
the Semantic View’s core posit: a scientific theory is a family of models. For instance, in the
Semantic View, Newtonian mechanics is not a set of postulates about motion and force; it
is the set of models in which these postulates are true.

Two points deserve note. The first is that different authors have different ontologies of
models. Suppes and Balzer, Moulines and Sneed take them to be set-theoretical structures;
Da Costa and French take them to be partial structures; van Fraassen takes them to be state
spaces; and Giere takes them to be abstract objects. These differences are important in other
contexts, but they are immaterial to the discussion in this chapter. The second is the role
of a formalism. We introduced the Semantic View by appealing to the notion of a logical
model, and indeed, it is that notion that gives the view its name: the view is called the “Se-
mantic” View due to the fact that models provide the formalism’s semantics because models
are what the formalism is taken to be about. Yet, providing a semantics for a formalism
is like Wittgenstein’s ladder, which is pushed away after it has been climbed. Proponents
of the Semantic View insist that interpreting a formalism is in no way essential, nor is the
presence of a formalism to begin with. At bottom, a theory is simply a family of models, no
matter how (if at all) they are described by a formalism.

As indicated previously, much can be said about the pros and cons of these two views,
but this is not our subject matter. What interests us here is the analysis of the relation be-
tween models and theories that the two approaches offer. The core argument of this chapter
is that both analyses are too narrow. To see why and how, note that in both conceptions,
models play a subsidiary role to theories. In the Syntactic View, they are merely reinterpre-
tations of a formalism in terms of something familiar; in the Semantic View, they are the
building blocks of which theories are made up. Both notions capture some cases of model-
ling. The Syntactic View successfully explicates analogue models, which often connect to
their target via a shared formalism.’ The Semantic View offers a cogent analysis of what
happens in certain areas of fundamental physics, most notably in theories of space and
time.® However, there are many cases, and indeed entire areas of science, where the relation
between models and theories fits neither the mould of the Syntactic View nor that of the
Semantic View. The plan for the remainder of this chapter is to discuss cases of this kind.

3. Models without theory

There are models that are independent of any theory. An often-discussed example of such
a model is the so-called Lotka—Volterra model.” Volterra’s version of the model is about the
fish population in the Adriatic Sea. Volterra conceptualised the problem as a population-
level phenomenon with a population of predators interacting with a population of prey.
The populations are described solely in terms of their sizes, and no biological facts about
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the animals that constitute the populations are taken into account (beyond the obvious tru-
ism that predators eat prey and not vice versa). Let Ny be the number of prey and N the
number of predators. Volterra then asked how these numbers change over time. The change
in these numbers is due to intrinsic births and deaths in both populations, as well as to the
interaction between the two. The general form of the interaction can therefore be expressed
as follows (Kingsland 1985, 109-100):

Change in Ny per unit of time = Natural increase in Ny per unit of time
minus decrease in Ny per unit of time due to
destruction of prey by predators

Change in N, per unit of time = Increase in N, per unit of time due to ingestion of
prey by predators minus decrease of N,
due to deaths of predators per unit of time.

These “verbal equalities” can be turned into proper mathematical equations by replacing
the natural numbers Ny and N, by the continuous quantities V (for the quantity of prey)
and P (for the quantity of predators) and by choosing specific functions for the population
growth and the interactions between the populations. The simplest choice is to assume that
each population grows linearly and that the interaction between the populations (predators
eating prey and growing as result) is proportional to the product of the two densities. In-
putting these formal choices into the above equalities leads to the so-called Lotka—Volterra
equations (Weisberg and Reisman 2008, 111):

V=1V —(aV)P

P =b(aV)P-mP, (2.1)

where 7 is the birth rate of the prey population; 7 is the death rate of the predator popula-
tion; and @ and b are linear response parameters. The dots on V and P indicate the first
derivative with respect to time. Intuitively, V is the rate of change of V and ditto for P.

Even though Volterra notes that Darwin had made an observation similar to his own
(1926, 559), neither Darwinian evolutionary theory nor any other biological theory is at
work in the model. Indeed, the model has been constructed without a theoretical frame-
work, and it does not instantiate theoretical principles. As a result, the model is independ-
ent of theory.

The Lotka—Volterra model is not an isolated instance. The Schelling model of social
segregation (Schelling 1978), the Fibonacci model of population growth (Bacaér 2011,
chap. 1), the logistic model of population growth (May 1976), the Akerlof model of the
market for used cars (Akerlof 1970), and complexity models for the behaviour of sand piles
(Bak 1997) are “theory-free” in the same way. Models of this kind are sometimes charac-
terised as bottom-up models. A model is bottom-up if the process of model construction
departs from the basic features of the target and from what we know about the unfolding
of events in the domain of interest, while not relying on general theories. Bottom-up models
contrast with top-down models. A model is top-down if the process of model construction
starts with a theoretical framework, and the model is built by working the way down from
the theory to the phenomena. The Newtonian model of planetary motion is an example of a
top-down model. The process of model construction starts with Newton’s general equation
of motion and the law of gravity, and then various steps are made to apply these general
principles to the phenomenon of interest, namely the movement of planets.
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A special case of models that are independent of theories are models that are built with
the express aim of aiding the construction of theories. Leplin emphasises the importance of
models in the construction of theories and calls models that are constructed with this pur-
pose in mind developmental models (1980, 274). A developmental model “opens several
lines of research toward the development” of a theory (278). The importance of models
in the development of theories has also been emphasised by other authors. Cushing notes
that “[a]n important tool in this process of theory construction is the use of models” (1982,
32), and he illustrates this with a detailed case study from high-energy physics. Hartmann
observes that “[a]s a major tool for theory construction, scientists use models” (1995, 49),
and he illustrates this with how quantum chromodynamics, the fundamental theory of
strong interactions, has been constructed “by means of a hierarchy of consecutive Develop-
mental Models” (59). Wimsatt, finally, sees “false models as a means to truer theories” and
discusses their construction in the context of evolutionary biology (Wimsatt 2007, chap. 6).

4. Models as a means to explore theories

Models can also be used to explore the features of theories. A case in point is the study of
non-linear dynamics. For a long time, it was thought that Newtonian mechanics was dy-
namically stable, meaning that a small variation in the initial condition of the system would
result in a small variation in the trajectory of the system. This belief was shattered at the be-
ginning of the 20th century when Poincaré discovered that Newtonian systems can display
what is now known as sensitive dependence on initial conditions, which is often taken to be
the defining feature of chaos.® This raises the question of how the dynamic of such systems
looks like. Unfortunately, one cannot simply write down the solutions of the equations of
motion of such systems and study their properties; and even if one could write down the
solutions, they would be objects in high-dimensional mathematical spaces that are hard to
trace and impossible to visualise. Thus, other means to understand the behaviour of such
systems must be found, and models play a crucial role in this.

Abstract considerations about the qualitative behaviour of solutions in chaotic systems
show that there is a mechanism that has been dubbed stretching and folding. Nearby initial
conditions drift away from each other, which amounts to stretching the area where they lie.
The motion of chaotic systems is such that the system’s movement is confined to a restricted
part of the state space. This means that the stretching cannot continue forever, and the
stretched bits must be folded back onto each other. In practice, it is impossible to trace this
stretching and folding in the full state space of a system. To obtain an idea of the complex-
ity of the dynamic exhibiting stretching and folding, Smale proposed to study a model of
the flow. The model is a simple two-dimensional map, now known as the horseshoe map
(Tabor 1989, 200-202), which is illustrated in Figure 2.1.

— I ] —>
)

Figure 2.1 The horseshoe map. The dots indicate that the strip is longer than can be shown in the
figure.
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The map begins by stretching a rectangle horizontally while squeezing it vertically, which
turns the rectangle into a strip; it then folds the strip back onto the initial square. The map
is designed to “mimic” the stretching and folding motion of the full Newtonian dynamic,
but without having any of its mathematical complexities. In this way, the horseshoe map
provides a model of an important aspect of the full dynamic of Newtonian theory. The
horseshoe map has a number of interesting and important features (Ott 1993, 108-114).
An invariant set is a set of states that does not change under the dynamic of a model - it
is as if the set was not “affected” by the changes that the dynamic brings with it. One can
show that the so-called Cantor set is an invariant set of the horseshoe. This is interesting
because the Cantor set is a fractal, and so we learn from the model that chaotic dynamical
systems can have invariant sets that are fractals. In this way, the simple model of the horse-
shoe provides a crucial insight into the properties of the theory. The horseshoe is no isolated
instance: chaos theory is rife with maps that model certain aspects of the full dynamic and
thereby shed light on the nature of the theory itself.”

Chaos theory is no exception, and models are used in many contexts to explore the
properties of theories. In statistical mechanics, the Kac ring model is used to study the equi-
librium properties of the full theory (Jebeile 2020; Lavis 2008). In quantum field theory,
the @* model is used to explore theoretical properties like symmetry breaking and renor-
malisability (Hartmann 1995). The Phillips—Newlyn machine, a material model, is used to
explore the properties of Hicks’ formalisation of Keynes’ theory (Barr 2000; Morgan and
Boumans 2004). And the dome model is used to understand causality and determinism in
Newtonian mechanics (Norton 2008).

5. Models complementing theories

Theories can be incompletely specified. Models can then step in and add what is missing.
The model and the theory thereby enter into a symbiotic relationship in which a model
complements the theory. The nature of this “completion” depends on the specifics of the
case. Redhead (1980, 147) mentions the case of axiomatic quantum field theory. The the-
ory is an attempt to offer a mathematically rigorous formulation of quantised fields. In
its most common formulation, the theory is based on the so-called Wightman axioms.
Roughly, the axioms say things like that fields must be invariant under the transformations
of Einstein’s theory of special relativity and that fields can be expressed as sums of opera-
tors acting on the vacuum state.'® This means that the theory’s axioms only impose certain
general constraints on fields, and the specifics of particular fields and their interactions are
given by models. In doing so, the model provides missing details and enriches the theory.
This is not an easy task because it turns out that identifying models that satisfy the axioms
of the theory is rather difficult.

Another way in which a theory can be incompletely specified is identified by Apostel
when he notes that there are cases where “a qualitative theory is known for a field and the
model introduces quantitative precision” (1961, 2). As an example, consider the so-called
quantity theory of money in monetary economics.'! The “quantity theory” is purely quali-
tative and essentially says that the price of goods in an economy is determined by the
amount of money in circulation. This law leaves open what the price levels are and how
they vary as a function of money supply. To answer these quantitative questions, Fisher
constructed a model that is now known as Fisher’s equation of exchange. The model con-
siders an economy that can be characterised by four quantities: the amount M of money
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in circulation, the transaction velocity V of money, the level of prices P, and the volume
of trade Y. All these are variables with precise numerical values that can, in principle, be
measured empirically. The equation of exchange is MV = PY. If velocity and volume are
constant, the equation says that P = cM, where ¢ is a constant. So if the amount of money
increases by AM, then prices go up by cAM. In this way, Fisher’s model gives quantitative
specificity to the qualitative law of the theory.

Harré (2004) noted that models can complement theories by providing mechanisms for
processes left unspecified in the theory but that are nevertheless responsible for bringing
about the observed phenomena (2004, chap. 1). In some cases, the model mechanism is
known; in other cases, it is hypothesised. The notion of a mechanism is broad, and Harré
emphasised that it is not restricted to “anything specifically mechanical”: a “[c]lockwork
is a mechanism, Faraday’s strained space is a mechanism, electron quantum jumps is a
mechanism, and so on” (2004, 4).

Models can also step in when theories are too complex to handle. This can happen, for
instance, when the equations of the theory are mathematically intractable. In such cases,
one can find a model that approximates the theory. As Redhead noted, this can be done
in two ways (1980, 150-152): either one finds approximate solutions to exact equations
or one finds an approximate equation that one can solve exactly. If one finds either an ap-
proximate solution or an approximate equation, these can be seen as approximate models
of the theory. However, models can also step in when the relation between the model
and the theory is not a clearly defined mathematical approximation. Hartmann (1999)
discusses the case of quark confinement in elementary particle physics. The nucleus of
atoms is made up of nucleons: protons and neutrons. Nucleons themselves are made up of
quarks. How do quarks interact to form a stable nucleon? The general theory covering the
behaviour of quarks is quantum chromodynamics. Unfortunately, the theory is too com-
plicated to apply to protons. Computer simulations suggest that at low energies so-called
quark confinement occurs, and quarks come together to form nucleons. This, however,
leaves the nature of this confinement unexplained and poorly understood, with a number
of different kinds of confinement possible and the theory unable to adjudicate between
them. To fill in this gap, physicists constructed a phenomenological model, now known as
the MIT bag model, which takes the main known features of the theory into account and
fills the missing details with postulated configurations. According to the model, nucleons
consist of three massive quarks that move freely in a rigid sphere of radius R, where the
sphere guarantees that the quarks remain confined within the nucleon. This assumption
is motivated by the basic theory, but it does not deductively follow from it. The model
then allows for the calculation of the radius R and the total energy of the particle. In this
way, the model yields results where the theory is silent, and it fills a gap that the theory
leaves open.

6. Applying theories through models

Cartwright argues that models not only aid the application of theories that are somehow
incomplete; she submits that models are always involved when a theory with an overarch-
ing mathematical structure is applied to a target system. The main theories in physics fall
into this category: classical mechanics, quantum mechanics, electrodynamics, and so on.
In fact, applying such theories involves two kinds of models: interpretative models and
representative models.
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Let us begin with interpretative models. Overarching mathematical theories like classical
mechanics appear to provide general descriptions of a wide range of objects that fall within
their scope. However, on closer inspection, it turns out that these theories do not apply to
the world directly. The reason for this is that they employ abstract terms, i.e. terms that
apply to a target system only if a description couched in more concrete terms also applies
to the target. Cartwright offers the following two conditions for a concept to be abstract
relative to another concept:

First, a concept that is abstract relative to another more concrete set of descriptions
never applies unless one of the more concrete descriptions also applies. These are the
descriptions that can be used to “fit out” the abstract description on any given occa-
sion. Second, satisfying the associated concrete description that applies on a particu-
lar occasion is what satisfying the abstract description consists in on that occasion.
(19995, 39)

She offers the example of work. Having responded to an email, having revised a section of
a paper, and having attended a meeting is what my having done work this morning consists
in. If T tell a friend over lunch what I have done and he responds, “well, you’ve responded
to an email, revised a section, and attended a meeting, but when did you work?”, he either
does not understand the concept of work or, more likely, is joking with me.

Cartwright submits that important concepts that appear in mathematised theories are
abstract in the same way as work. The concept of force, for instance, is abstract in that it
applies only if a more concrete concept also applies. There is no such thing as “nothing but
a force” acting on a body. There being a force between two bodies on a particular occa-
sion consists in them gravitationally attracting each other, or electrostatically repelling each
other, or ... These more concrete claims fit out the abstract claim of there being a force.
Force, therefore, is an abstract property and “Newton’s law tells that whatever has this
property has another, namely having a mass and an acceleration which, when multiplied
together, give the [...] numerical value, F” (1999b, 43). Force, therefore, has no independ-
ent existence; it exists only in its more specific forms like gravity, electrostatics, and so on.
Specifying what concrete claims fit out abstract claims amounts to specifying an interpreta-
tive model. An interpretative model then consists of the “actors” that fit out the abstract
claims of the theory.

Let us now turn to representative models. Cartwright regards representative models as
ones that are built to “represent real arrangements and affairs that take place in the world”
(1999b, 180). These models have two crucial features. The first is that they are highly ide-
alised. Constructing a representative model involves twisting and distorting the properties
of the target in many ways and the result of this process is in no way a mirror image of the
target. Indeed, Cartwright notes that “it is not essential that the models accurately describe
everything that actually happens; and in general it will not be possible for them to do so”
(1983, 140). Second, all these distortions notwithstanding, the model still is a representa-
tion of the target, albeit one that is inaccurate in certain respects. The principles of the
theory therefore apply to “highly fictionalized objects” (1983, 136) in the representational
model. So, one has to distort reality to force it into the corset of the theory: “our prepared
descriptions lie” because “in general we will have to distort the true picture of what hap-
pens if we want to fit it into the highly constrained structures of our mathematical theories”
(139). Without these distortions, the theory would be inapplicable.
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We are now in a position to see how the two notions of an interpretative model and a
representational model work together in the application of a theory to a real-world target.
To apply a theory, scientists must construct a model. This model must be such that it is, at
once, an interpretative model of the general theory at hand (which means that it is couched
in terms of concepts that fit out the abstract concepts of the theory) and a representative
model of the target system (which means that it stands in a certain representational relation
to the target).

7. Models as mediators

The relation between models and theories can be even looser than in the cases we have
discussed so far. The contributors to a programmatic collection of essays edited by Mor-
gan and Morrison (1999b) rally around the idea of “models as mediators”, and so it is
apt to call the vision of modelling that emerges from this project the Models as Mediators
View. This view sees models as instruments that mediate between theories and the world
while remaining independent from both. Models are, therefore, as Morgan and Morrison
put it, “autonomous agents” (1999a, 10). The autonomy of models has four dimensions:
construction, functioning, representing, and learning (10-12). Let us look at each of these
in turn.

The first and most important dimension is independence in construction. Morgan and
Morrison observe that “model construction is carried out in a way which is to a large extent
independent of theory” (1999a, 13), and Morrison locates models as being “between phys-
ics and the physical world” (1998, 65). This is because “theory does not provide us with
an algorithm from which the model is constructed and by which all modelling decisions
are determined” (Morgan and Morrison 1999a, 16). In her contribution to the collection,
Cartwright portrays the Semantic View of theories as a “vending machine” view of model
construction:

The theory is a vending machine: you feed it input in certain prescribed forms for the
desired output; it gurgitates for a while; then it drops out the sought-for representa-
tion, plonk, on the tray, fully formed, as Athena from the brain of Zeus. This image
of the relation of theory to the models we use to represent the world is hard to fit with
what we know of how science works. Producing a model of a new phenomenon such
as superconductivity is an incredibly difficult and creative activity.

(1999b, 247)

According to Cartwright, the “vending machine view” of theories is wrong on at least two
counts. First, it erroneously assumes that all ingredients that are needed for the construction
of a model are already contained in the theory. As we have seen in the previous section,
she sees representative models as an essential ingredient for the application of a theory.
The construction of such a model requires resources that go beyond what theories can of-
fer. Discussing quantum models of superconductivity, Cartwright notes that theories leave
out much of what is needed to produce a model capable of generating an empirical predic-
tion. While theories contain general principles, they contain no information either about
the real materials from which a superconductor is built or about the various approxima-
tion schemes and the mathematical techniques needed to handle them. Second, the view is
wrong in assuming that models embody only one theory. The internal setup of a model is
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often a complicated conglomerate of elements from different theories. Cartwright illustrates
this point with the Ginzburg-Landau model of superconductivity (1999a, 244-245), but
the point also holds about other models like the classical London model of superconductiv-
ity (Sudrez 1999) and models of business cycles (Boumans 1999). The same is also true of
contemporary climate models which incorporate elements from different theories, includ-
ing mechanics, fluid dynamics, electrodynamics, quantum theory, chemistry, and biology
(Frigg, Thompson, and Werndl 2015). Models of this kind do not belong to a family of
models that form a theory in anything like the way that the Semantic View posits; in fact,
they do not belong to any particular theoretical framework at all.

The second dimension of autonomy is functioning: models can perform many functions
without relying on theories. One of these functions is to aid theory construction (Morgan
and Morrison 1999a, 18). As we have seen previously, models can play a role in theory
construction (Section 3) and in exploring theories (Section 4), which they can do only if
they are autonomous from theories. Models also serve as a means for policy intervention
(Morgan and Morrison 1999a, 24). Central banks use economic models to inform mon-
etary policy decisions, for instance, whether to change the base rate, and models can do this
independently from theory.

Representation is the third dimension of autonomy. Morgan and Morrison point out
that the “critical difference between a simple tool and a tool of investigation is that the lat-
ter involves some form of representation: models typically represent either some aspect of
the world, or some aspect of our theories about the world, or both at once” (1999a, 11).
They emphasise that representing does not presuppose that there is “a kind of mirroring of
a phenomenon, system or theory by a model” because representing is in no way tantamount
to producing a copy, or effigy, of the target."

The final dimension of autonomy is learning. Morgan and Morrison point out that we
learn from models and argue that this happens in two places: in building the model and in
manipulating it (1999a, 11-12). As we have seen earlier in this section, there are no general
rules or algorithms for model building and hence insights gained into what fits together and
how during the process of construction are invaluable sources for learning about the model
(30-31). The second place to learn about the model is when we manipulate it. Morgan
(1999) notes that Fisher did not find out about the properties of his monetary models by
contemplating them, but by manipulating them to show how the various parts of the model
work together to produce certain results.

8. Separating models from theories

So far, we worked under the assumption that models and theories are clearly distinct, and
we focussed on the relation between them. In practice, this is not always a realistic assump-
tion. In fact, in some cases it is not clear where the line between them should be drawn, and
whether something is a model or a theory. An example is Bohr’s account of the atom, which
is sometimes referred to as the “Bohr model” and sometimes as the “Bohr theory” of the
atom. This problem not only besets philosophical analysis; it also arises in scientific practice.
Bailer-Jones interviewed a group of nine physicists about their understanding of models and
their relation to theories. She reports that the following views were expressed (2002, 293):

1 There is no real difference between model and theory.
2 Models turn into theories once they are better and better confirmed.
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3 Models contain necessary simplifications and deliberate omissions, while theories are the
best we can do in terms of accuracy.

4 Theories are more general than models. Modelling becomes a case of applying general
theories to specific cases.

The first suggestion is too radical to do justice to many aspects of practice, where a dis-
tinction between models and theories is clearly made. The second view is encapsulated in
phrases like “it’s just a model”, which indicate either that scientists take a cautious attitude
towards a certain proposition that they regard as speculative or provisional, or that some-
thing is known to be false and entertained only for heuristic purposes. But, models and
theories are not distinguished by their degree of confirmation. There can be well-confirmed
models and unconfirmed theories. The third proposal is up to something, but it ultimately
does not hold water. It is true that models involve idealisations and omissions of all kinds,
but so do theories. Newtonian mechanics, for instance, deals with point masses that move
in a Euclidean space, and it omits most properties of the objects in its target domain (it
omits, for instance, colour, temperature, and chemical constitution of its targets) but that
does not seem to strip Newtonian mechanics of its status as a theory.

The fourth suggestion is closely aligned with a view that has emerged in the literature on
models. In the wake of the debates we have reviewed in this chapter, models have become
the focal point of attention and the emphasis has shifted so far away from theories that
Morrison detects the need for a “redress of the imbalance” (2007, 195). She asks “where
have all the theories gone” and then sets out to articulate how theories are different from
models. Morrison points out that models contain a great deal of “excess” structure like
approximation methods, mathematical techniques, and highly stylised descriptions of cer-
tain parts of the target, and she notes that one would not want to count these as part of a
theory (197). This can be avoided if “theory” is reserved for a “theoretical core”, which
contains the constitutive assumptions of the theory. In the case of Newtonian mechanics,
the core consists of the three laws of motion and the law of universal gravitation (197),
in the case of classical electrodynamics of Maxwell’s equations, in the case of relativistic
quantum mechanics of the Dirac equation (205), and in the case of quantum mechanics of
the Schrodinger equation (214). The core of a theory constrains the behaviour of objects
that fall within the scope of the theory, and it plays a crucial role in the construction of
models. Models concretise the abstract laws of the theory and put them to use by adding
elements that are specific to the situation. In this way, theories assist the construction of
models without determining the way in which they are built. Models are specific in that
they are adapted to a particular situation and a particular problem, while the theories on
which they are based contain the general principles of wide scope.

The problem with the “theoretical core” view of theories as presented by Morrison is
that the notion of a theoretical core is introduced through examples — Newton’s laws of mo-
tion, Maxwell’s equations, and so on — and is then not further analysed. Morrison seems to
regard this as an advantage when she observes that “nothing about this way of identifying
theories requires that they be formalized or axiomatized” (2007, 205). However, this prag-
matism must seem unsatisfactory to those who have contributed to the development of the
two grand views of theories and who will feel that we have now come full circle. Neither the
Syntactic View nor the Semantic View would disagree that what makes a theory a theory is
a theoretical core. The question they are concerned with is how this notion can be analysed
and what kind of objects theoretical principles are. This question is left open.
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9. Conclusion

We have discussed a number of different relationships between models and theories that
can be found in the practice of science. These range from complete independence to total
dependence, and many things in between. Many of these cases do not seem to sit well either
with the Syntactic View or with the Semantic View, and they show that there is nothing like
“the” relation between models and theories.

Notes

1 Sections 3-8 of this chapter are based on Chapter 13 of my (2023).

2 I note that the label “Syntactic View” is a misnomer because it gives the mistaken impression that
the view only deals with the syntax of theories. Some readers may object to calling the Syntactic
View an orthodoxy because it has been superseded by the Semantic View long ago. This narrative
has become untenable in the last decade, when the Syntactic View had a veritable revival. For a
discussion, see, for instance, Halvorson (2016).

3 The exact form of correspondence rules has been the subject matter of extensive debates. For a
survey, see, for instance, Percival (2000).

4 For a detailed discussion of the problems faced by both the Syntactic View and the Semantic View,
see Chapters 1-8 of my (2023) and references therein.

5 The locus classicus for a discussion of analogies is Hesse (1963). For further discussions of analo-
gies and analogical models, see Chapter 10 of my (2023) and references therein.

6 For a discussion, see, for instance, Friedman (1983).

7 The model was formulated by Lotka (1925) and Volterra (1926). Kingsland (19835, chap. 5) gives
a historical account of the development of the model. For philosophical discussions, see, for in-
stance, Knuuttila and Loettgers (2017) and Weisberg and Reisman (2008).

8 For basic introductions to chaos and discussions of its philosophical ramifications, see Kellert
(1993) and Smith (1998). Argyris, Faust and Haase (1994) and Tabor (1989) offer advanced discus-
sions. Parker (1998) discusses the question of whether it was really Poincaré who discovered chaos.

9 For instance, the dynamics of KAM type systems near a hyperbolic fixed point can be modelled by
the baker’s transformation. For a discussion, see Berkovitz, Frigg, and Kronz (2006, 680-687).

10 For a discussion of quantum field theory, see, for instance, Ruetsche (2011).

11 Apostel does not provide an example. I am grateful to Julian Reiss for suggesting the quantity
theory of money to me. For a discussion of the theory, see Humphrey (1974).

12 For a discussion of how models represent their targets, see Frigg and Nguyen (2020) and Nguyen
and Frigg (2022).
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3

PRACTICE-ORIENTED
APPROACHES TO SCIENTIFIC
MODELING

Axel Gelfert

1. Introduction

Whether we are dealing with climate change or the dynamics of an unfolding pandemic,
with developing new materials or genetically modifying model organisms: models, and the
practice of modeling, are indispensable to our contemporary ways of navigating the world.
This is true not only for basic research, but also for applied questions in relation to global
social, economic, and ecological challenges, which often require modeling possible scenar-
ios in which events, or the dynamics of global systems, may unfold. For this reason, in con-
junction with computer simulations and visualization methods, models are fast becoming
the dominant interface between science and the public. Within science, modeling is indis-
pensable whenever theoretical derivation or direct observation of phenomena is beyond our
reach. Yet despite this central role, scientific models are still often treated as mere makeshift
solutions that we may have to depend on for practical purposes but which we would rather
do without. In doing so, models are often treated as isolated products, stripped of any
contextual information about their origins, the underlying motivating concerns, and the
model-building practices that gave rise to them. This chapter attempts to shift the focus to
the practice of scientific modeling. To this end, it surveys (and adds to) a number of philo-
sophical proposals that conceive of models not as abstract, self-contained entities, but as
temporary, dynamically shifting intermediate formations of underlying scientific practices —
where the latter, in particular, can serve a multiplicity of epistemic and non-epistemic goals.

The rest of this chapter is organized as follows: Section 1 sketches the historical
background to the emergence of scientific modeling as a separate, discernible methodol-
ogy within scientific practice. Section 2 distinguishes between representational and non-
representational uses of scientific models, while arguing that scientific practice casts doubt
on the idea that scientific models are primarily representational in character. Section 3
elaborates on artifactualism as an attempt to respond to this practice-based insight and also
discusses more radical proposals that seek to eliminate any representational idiom from
philosophical discussions of scientific models. Settling for a more pluralistic outlook, Sec-
tion 4 then argues that the practice of scientific modeling is constituted by a range of compo-
nent activities, some of which may be illustrated (in an idealized fashion) by a hypothetical
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episode of model-building, from the initial articulation of the model all the way to a final
assessment of its adequacy relative to the goal in question. Section 5 concludes by arguing
that modeling has a stabilizing influence on scientific practice by allowing model users to
switch back and forth between different kinds of what has been called “intentionality rela-
tions” (Thde 1990), i.e., ways of relating to the world with, and through, models.

1. Models as products and the practice of modeling

Ludwig Boltzmann (1844-1906), in an entry on “model” he wrote for the 1902 edition of
the Encyclopedia Britannica, characterizes a model as

a tangible representation, whether the size be equal, or greater, or smaller, of an object
which is either in actual existence, or has to be constructed in fact or in thought. More
generally it denotes a thing, whether actually existing or only mentally conceived of,
whose properties are to be copied.

(Boltzmann 1902/1911, 638)

While this particular definition is no more than a snapshot in the varied and conflicted
evolution of the scientific term “model,” two aspects of it are noteworthy and cast a light
on the term’s layered meanings. First, coming from the perspective of a scientific practi-
tioner, this characterization suggests that there is parity between material models (“tan-
gible representations”) and abstract (mental) models (“...mentally conceived of...”) — an
observation whose full significance to the philosophy of science only came to be appreci-
ated much later. Second, Boltzmann’s characterization emphasizes the constructive element
of model-building by acknowledging that a model “has to be constructed in fact or in
thought.” Without reading too much into this passing remark, it is perhaps significant
that Boltzmann does not regard models as timeless entities that, as a matter of mere for-
tune, stand in the right sort of similarity relation to their target system; rather, models
need to be constructed — brought into existence (as material objects in the world, or in
thought) — based on active determinations by their users as to which properties of the target
system “are to be copied.” Thus understood, a model is not just a mere copy of a segment
of reality but rather serves as a tool for attributing corresponding properties to the object
it represents: “On this view our thoughts stand to things in the same relation as models to
the objects they represent” (1902/1911, 638).!

Boltzmann refers to James Clerk Maxwell (1831-1879), whose mechanical ether model
prepared the ground for the modern theory of electromagnetism, which he later elaborated.
The analysis and explanation of electrical and magnetic phenomena initially faced seem-
ingly insurmountable difficulties, not least since it was unclear what the substrate of these
phenomena would have to be in order to explain the variety of newly observed phenomena.
According to Boltzmann, Maxwell managed to circumvent these difficulties by combining
two lines of thinking. On the one hand, if the “true nature and form” of the “constituents
constituting the phenomena” was “absolutely unknown,” then one should at least explore
how far a genuine attempt at explanation in purely mechanical terms (“a conception of
purely mechanical processes”) might take us. On the other hand, Maxwell urges us to
refrain from attributing any reality to the mechanical processes postulated in this way;
they were merely “mechanical analogies” — mere means to the end of reproducing the ob-
served phenomena within a theoretical description. The successful description of observed
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phenomena by means of such mechanical models was not meant to support the realist claim
that the entities and processes posited by the analogies enjoy an independent reality; rather,
the goal was to uncover partial similarities, whatever their underlying basis in reality.

Contemporary commentators have no qualms about referring to Maxwell’s mechanical
analogies as “models” — as, indeed, was done in the previous paragraph. Yet, as Giora Hon
and Bernard Goldstein (2012) have argued, one should make an effort to disentangle the
terminologies of “analogy,” “model,” and “hypothesis,” lest one engage in the anachro-
nistic projection of contemporary notions onto history. For, at the time Maxwell was first
attempting to use mechanical terms to make sense of the newly observed electromagnetic
phenomena, he still considered his mechanical analogies to be hypotheses, from which ex-
perimentally observed predictions could be derived. Only later, as he moved from physical
analogies to what he dubbed “mathematical analogies,” did Maxwell realize the artificial-
ity of such representational tools as “lines of force”: that is, of “mathematically identical”
systems, which were acknowledged from the start to be imaginary (and so not hypotheses
about nature per se), yet which nonetheless could stand in insightful relations to the real
systems under investigation (see Hon and Goldstein 2012, 42). It is this further step of
severing the link between models and their hitherto assumed status as actual hypotheses
which, Hon and Goldstein argue, creates room for a genuinely new methodology of mod-
eling. From our contemporary vantage point, which has a well-developed (albeit not uni-
formly shared) understanding of the term “model” at its disposal, it is easy to miss that the
transition from isolated uses of “physical” or “mechanical” analogies to a methodology of
modeling is a significant leap in scientific practice from the 19th century onwards. As Hon
and Goldstein (2021) remind us: “That a model (a concept) is invoked in some scientific
discussion does not mean that the methodology applied is modeling” (332).

Once a distinction is made between models as finished “products” and the activity of
modeling, a space opens up for realizing that model-building is not merely some sort of pro-
paedeutic exercise, the details of which become irrelevant once a model has been derived,
but is itself an integral — and epistemically significant — part of the activity of modeling. This
contrasts sharply with traditional views of how models are arrived at. On the simplest, and
perhaps most naive, view, models — specifically, theoretical models — were regarded as ap-
proximations or limiting cases of an underlying fundamental theory, serving either as toy
examples for didactical purposes or as convenient ways of simplifying a complex situation
s0 as to allow for a more straightforward application of the theory. To this day, this cari-
cature of models as mere simplifications of a theory for particular conditions can be found
in introductory science textbooks and popularizations of science. Early philosophical ac-
counts of scientific models tended to maintain this close link between theories and models.
Within the syntactic view of scientific theories, the role of models was limited to providing
a semantics for a theory by specifying an interpretation on which all of its axioms come out
true; models, thus, were primarily treated as a philosophical device for clarifying the nature
of theories, not as a way of capturing the complexities of scientific practice. The semantic
view replaced this quasi-linguistic approach with a conception of theories as a family of
abstract structures — the models that constitute them — which stand, at least in part, in a
relation of isomorphism to selected aspects of nature. Theories, as the slogan goes, were
“collections of models.” On the one hand, this moved philosophical accounts of models
closer to scientific practice: where the syntactic view demanded “formulating abstract theo-
retical axioms which remain uninterpreted until observable consequences are derived,” the
semantic view was able to make sense of how “scientists build in their mind’s eye systems of
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abstract objects whose properties or behavior satisfy certain constraints” (Liu 1997, 154).
On the other hand, the austere conception of models as abstract structures still is a far cry
from what scientists have in mind when they speak of “models,” and it leaves out much of
what motivates us to turn to models in inquiry — not least the fact that “they are inherently
intended for specific phenomena” (Sudrez 1999, 75).

In their seminal work on models as mediators, Margaret Morrison and Mary Morgan
(1999), made a compelling case that it is the very process of model construction that im-
bues a model with a certain independence from both theory and data. Precisely because
“model construction involves a complex activity of integration” (Morrison 1999, 44), it
proceeds partly independently of both theory and data, thereby placing models “outside the
theory-world axis” (Morrison and Morgan 1999, 18). Even when models aim to represent
real-world target systems, or when they are derived from theory, they are not reducible
to either, but retain a certain autonomy from both. This way, they acquire characteristics
typically associated with tools (such as multiple utilizability), rendering them “technologies
for investigation”: “[W]e make use of these characteristics of partial independence, func-
tional autonomy and representation to learn something from the manipulation” of models
(Morrison and Morgan 1999, 32), where such manipulation is enabled through the diver-
sity of formats and media — whether material, mathematical, or diagrammatic — in which
a model system is realized. To be sure, earlier philosophical accounts of scientific models
had occasionally acknowledged the existence of “surplus content” on the part of models;
Ernan McMullin, who coined this phrase, traces this to the fact that “model-structure has
some sort of basis in the ‘real world’” (McMullin 1968, 395). The “models as mediators”
view can be seen as one attempt at making explicit just what, in detail, constitutes this sur-
plus content, and at acknowledging its heterogeneity. A further influence can be traced to
Mary Hesse, whose work on models as analogies prepared the ground later for subsequent
practice-based accounts of models, and who noted that in addition to positive and negative
analogies (i.e., ways in which a model system is similar or dissimilar to its target system),
there are also neutral analogies — viz., additional features contributed by a model, which
hold out the promise of novel insights and predictions. When dealing with models, Hesse
argues, we are “not dealing with static and formalized theories, corresponding only to the
known positive analogy, but with theories in the process of growth” (Hesse 1963, 11-12).

Insisting on the distinction between models (understood as specific theoretical, concep-
tual, or analogical means of representation and inquiry) and an overarching methodology
of modeling is more than a historical quibble. At the same time, the distinction is easy to
miss — and may even seem quaint — from the viewpoint of contemporary science and tech-
nology, which are steeped in models and modeling approaches, and which often include
explicit, discipline-specific methodologies for generating domain-adequate models. Prac-
titioners of contemporary science are well aware of the fact that their reliance on models
is not a matter of the mere ad-hoc use of specific models in isolated instances. Instead, it
is widely acknowledged that scientific work across many disciplines is thoroughly infused
with modeling approaches. This is evident from such work as Daniela Bailer-Jones’ qualita-
tive study, based on a large number of interviews conducted with scientists in early 2001,
of how scientists think about scientific models. In the article, one interviewee after another
is quoted as acknowledging, variously, that “modeling” as a way of self-describing what
their scientific work is all about, “is much more used now amongst theorists, amongst
physicists, amongst mathematicians than it used to be” (282); that “they are almost entirely
concerned with the process of modeling” (282); and that science, in particular “the whole
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of physics,” “whether you like it or not, is actually building models all the time” (281).
While the distinction between modeling (as process) and individual models (as products)
is not always strictly kept apart by practitioners, Bailer-Jones’ conclusion that “scientific
practice [...] is significantly shaped by modeling efforts” (299) certainly stands. Whereas
in Maxwell’s time, scientists grappled with the emergence of a new, self-reflective method-
ology of modeling, contemporary scientists take modeling to be a fundamental feature of
scientific practice.

2. Representationalism and non-representational uses of scientific models

One of the core functions of modeling is the provision of representations of target systems
(or target phenomena). This much is uncontroversial. Straightforward representational
models are easy to come by: an architectural model may serve as a small-scale replica of a
large, existing building; the original stick-and-ball model of the DNA double helix, made
famous through the iconic photo of its creators standing next to it, represents the molecule
that makes up the genetic material inside our cells; the 3D orrery depicting the planets
and their relative position to the sun, and to one another, represents the solar system (or
at least one possible configuration of it). Equating models with representations has had a
long tradition in philosophical discussions of scientific models — from Boltzmann’s defini-
tion, quoted earlier, of a model as “a tangible representation [...] which is either in actual
existence, or has to be constructed in fact or in thought” to such passing remarks as Paul
Teller’s statement that “in principle, anything can be a model, and that what makes a thing
a model is the fact that it is regarded or used as a representation of something by the model
users” (Teller 2001, 397). On such a view, models are to be characterized in terms of the
representational relation they stand in with respect to their target system or phenomenon
(typically, some observable part of the world around us). The core question, thus, becomes
not whether models represent, but rather how models manage to pull off this remarkable
feat of standing in the right sort of relation to a target system that allows us to extract
knowledge about the target from the model itself.

Two broad types of approaches to the problem of how models represent can be dis-
tinguished. Two-place accounts render the problem of model-based representation inde-
pendent of any third parties (such as model users), reducing it essentially to a two-place
relation between the model and the target, where this is typically taken to be a similarity
relation or a (partial) isomorphism. Understood in this way, a model represents its target if
and only if the two are sufficiently similar to one another or if the elements in one can be
mapped onto the elements of the other in a structure-preserving way. Three-place accounts
include the model user (or, less frequently, the community of model users) in the picture,
thereby introducing a wider range of considerations such as relevance to a particular audi-
ence, and more generally (epistemic and non-epistemic) interests and goals. On this view,
model-based representation cannot be a matter solely of the features of models and their
targets alone; instead, it is regarded as depending on “the essentially intentional judgments
of representation-users,” which cannot be reduced “to facts about the source and target
objects or systems and their properties” (Sudrez 2004, 768).

In recent years, there has been a shift toward acknowledging the pragmatic dimension
of models by making the role of the model user more explicit. This also applies to those
philosophical accounts that initially highlighted two-place relations such as similarity.
As an example, consider Ronald Giere’s position on the relationship between models and
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theories. Giere initially conceived of a scientific theory as “a population of models” with
various associated “hypotheses linking those models with systems in the real world,” where
the links between models and the real world were “again relations of similarity between a
whole model and some real system” (Giere 1988, 85-86). In this early version, a link with
scientific practice was achieved mainly by likening models to the idealized systems discussed
in textbooks (such as the ubiquitous discussions of the harmonic oscillator in physics text-
books). Later, Giere pushes back against the idea “that the model itself represents an aspect
of the world because it is similar to that aspect,” since, he argues, there exists no “objective
measure of similarity between the model and the real system” (Giere 2004, 747). Represen-
tation does not spontaneously emerge from any relation between the model and its target
according to fixed criteria, but instead requires comparative judgments by the model user;
likewise, “judging the fit of a model to the world is a matter of decision, not logical infer-
ence” (Giere 1999, 7).

An exclusive focus on representation faces a number of difficulties. For one, there are a
number of important non-representational purposes which models frequently serve. Some
of these may of course be entirely compatible with a model’s also serving a (different)
representational function: We may employ a model of X, not in order to represent X, but
in order to try out new methods of approximation, develop our skill in modifying or ma-
nipulating the model by toying around with it, or even gain an understanding of the model
system (rather than its target) — all the while acknowledging that someone else may very
well use the model in order to represent X. In other cases, e.g., the overtly “false models,”
as discussed by William Wimsatt among others, it is more difficult to see how they could
be regarded as anything more than “mere heuristic tools to be used in making predictions
or as an aid in the search for explanations” (Wimsatt 2007, 94), let alone as full-fledged
representations of any (real or imaginary) system. Even if one widens the scope of targets to
include abstract or hypothetical systems, many models do not, in any obvious sense, have
such targets which they could be said to represent. The line is not always easy to draw: As
an example, consider biological models of sexually reproducing three-sex species. Results
from computational biology based on such models demonstrate that any such arrange-
ment would incur a heavy evolutionary cost, which goes some way toward explaining why
such systems are not found in nature.? In physics, too, models may be constructed (e.g., by
restricting or inflating the number of spatial dimensions, or by varying the laws of nature)
such that we know that the situation they purport to describe could not possibly be realized
in the world. In such a case, there may not be much to choose between saying that a model
represents a merely logically possible scenario and describing it as non-representational.
Even if one were to insist on the former so as to save one’s representational idiom, not much
insight for analyzing scientific practice should be expected from such usage. This much
seems safe to say, then: The diversity and range of models and their uses — including those
that are not easily assimilated to the task of depicting real target systems and processes in
simplified terms — put pressure on any narrow version of representationalism, where the
latter combines an ontological claim — that models are representations — with an epistemo-
logical assumption (viz., that we learn from models iz virtue of their being representations).

Indeed, it is the latter assumption — the idea that what makes scientific models epistermi-
cally productive is solely due to their standing in certain representational relations to their
targets — which lies at the heart of the controversy, perhaps more so than definitional issues.
On one side are those who think that, in order for us to answer the question of how we can
successfully learn from models, we need a unified account of how models represent, since it
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is in virtue of their representational success that we can acquire knowledge from them. Put
crudely, we first need to reason our way up to an account of model-based representation
before we can legitimately place trust in scientific models as a source of knowledge. On the
other side are those who question the centrality of representation to the epistemic utility of
models. The epistemic function of models is not reducible to the issue of representation, as
if the only way to gain knowledge from a model were by holding it against the target system
and assessing its degree of representational fidelity and completeness; rather, we ascribe
epistemic value to models because of how they are being used — which varies across differ-
ent domains, research questions, and stages of inquiry. There may be no general answer to
how models can generate knowledge, and it may simply be misguided to hope for a general
theory of scientific representation to hold the key to why models are epistemically valuable.

The various examples discussed thus far point to a great heterogeneity of the kinds
of knowledge claims in support of which models are routinely deployed: claims concern-
ing specific aspects of existing target systems, existence claims and impossibility theorems,
ways of aggregating data, relations of evidential support, and many others. Which models
are deemed most insightful, and which uses they are subsequently put to, depends on the
goal and context of the inquiry. Unlike what the representational focus on the abstract
two-place relation between model and target might suggest, models are rarely “parachuted
in” from the outside, but instead gain their significance from being embedded into theo-
retical frameworks, experimental practices, and research programs; models need to prove
their mettle, and acquire their epistemic merits, through successful uses and applications,
typically over an extended period of time. What makes a model epistemically meritorious,
and by which standards, depends on the specifics of the case at hand. This is why, in order
to give satisfactory answers to these questions, philosophers in recent decades have turned
toward case studies, rather than one-size-fits-all proposals, in order to deepen our under-
standing of model-based scientific practice.

3. Artifactualism and its challenges

What the preceding discussion suggests is that a proper understanding of scientific models
need not be premised on, and does not require, a fully developed philosophical theory of
scientific representation. Instead, we should acknowledge the variety of uses and functions
of models, highlight the active role of model-builders and users — in line with the pragmatic
turn and its emphasis on the triad of model/user/world — and begin to characterize scientific
models as instruments of inquiry.

This, at least, is the recommendation issued by proponents of artifactualism. Instead of
conceiving of models as abstract entities distinct from any particular (physical, or otherwise
cognitively accessible) realization, we should treat models the way we encounter them in sci-
entific practice: as epistemic tools, developed for the study of particular scientific questions,
which — in virtue of the specific qualities of their concrete realization — afford us opportu-
nities for learning about aspects of reality by interacting with, and actively manipulating,
them. Once we shift the focus from the abstract question of how a model relates to, or
represents, the world, to the question of how a model is constructed and used within a given
context of inquiry, the urgency of providing a general account of model-based representa-
tion dissipates. As Tarja Knuuttila puts it: “Models are not freely floating objects in need of
being linked to the real world: they are already linked to our knowledge of the real world
by way of the scientific questions that motivate their construction” (Knuuttila 2011, 267).
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By putting the construction and use of models center-stage, artifactualism highlights two
important aspects that traditional (representationalist) approaches tend to sideline: first,
models are often used for a variety of purposes, not all of which need to be commensurable
with one another or need to conform to the goal of providing accurate representations. In
this regard, they function like ordinary tools — that is, other artifacts we help ourselves to
in daily life — which are to be judged by whether they are fit for the purpose at hand, not by
some transcendent ideal. Second, models are artificial creations: we have designed them in
ways that allow us to manipulate them in order to achieve specific ends. The latter aspect is
central to understanding how models function in scientific practice: for, typically we are not
passively confronted with models, needing to ascertain which aspects of reality they could
possibly apply to, but instead we actively deploy them in order to make sense of, or other-
wise engage with, a limited aspect of reality.’> The scientific questions at hand constrain the
design of models, while simultaneously their very constructedness allows for the concrete
manipulability needed to make a model an effective tool of inquiry (see Knuuttila 2011).

The greater amenability of artifactualism to accounts of scientific practice stems not only
from its pragmatic orientation, in the sense discussed above as acknowledging the triadic
relation between model, target, and user, but also from the way it links models to the social
and material dimensions of doing science. Rather than conceiving of models as offering,
in the abstract (or at best in the mind of an individual user), a (perhaps distorted) mirror
image of its target, models are recognized as essential communicative tools among the com-
munity of scientists: “Scientists do not read the minds of each other, and neither are they
able to process even modestly complicated relations or interactions between different com-
ponents without making use of external representational scaffolding” (Knuuttila 2017, 12),
and models are often the preferred ways for constructing just such representational scaf-
folding. Concretely, representational means — be they physical, diagrammatic, or notational
in character — provide cognitive access and allow for structured interventions according to
shared (or potentially shareable) rules and conventions.

Its reliance on the notion of representational means — by which artifactualists mean such
a diverse bunch as “diagrams, pictures, scale models, symbols, natural language, math-
ematical notations, 3D images on screen” (Knuuttila 2011, 268), each with its specific
affordances and limitations — has exposed artifactualism to criticism from a minority of
radical anti-representationalists, who fault it for still being “couched in thoroughly repre-
sentational language” (Sanches de Oliveira 2022, 15). While it may be one thing to pursue
the (laudable) project of shifting the emphasis from abstract philosophical characteriza-
tions of scientific representation to the “actual representational means with which a model
is constructed and through which it is manipulated” (Knuuttila 2017), it is quite another,
and indeed a more radical step, to give up on the idea of models as ways of representing
(some aspect of) a target system, treating them instead as “tools that scaffold the activities
of agents as they try to solve problems and make sense of the world” (Sanches de Oliveira
2022, 30).

Yet, upon closer inspection, what such “radical artifactualists” need to reject is not so
much the notion of representation per se, but what has been called “zargetism,” i.e., the
belief that models must be thought of “as the sort of thing that is defined by something
else it refers to, something else it is a source of information about, because that’s what it
represents, or is a model of” (Sanches de Oliveira 2022, 36). This, however, is not how
moderate artifactualists need to think about models. From their perspective, models are
constructed for a variety of purposes, including — often enough — goals that explicitly or
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implicitly demand learning more about the world. We may, of course, learn about the
world in the course of pursuing other goals, but if we are to take scientific practice seri-
ously, we must acknowledge that models are often constructed in the search for answers
to pertinent scientific questions. As already discussed, such questions need not be about
existing targets, but can also be about (non-actual) possibilities, impossibility results, or the
reliability of new methods or approximations. When a model represents (“internally,” as it
were) a counterfactual, hypothetical, or even a physically impossible state (e.g., by tweak-
ing the known laws of physics), it would seem misguided to criticize such activity as unduly
representational or as hampered by an excessive focus on an “external” (real, hypothetical,
or merely fictional) target.

4. Component activities of modeling practice

Once it is acknowledged that models serve a multiplicity of uses and functions in science,
the mired debate about the status of representation may be considered something of a red
herring.

Not only are scientific models used for all sorts of goals and purposes, but the scien-
tific practice of modeling is itself constituted by a heterogeneous admixture of compo-
nent activities that constitute it. Representational uses of models are but one aspect of
the complex fabric of modeling activities. Ultimately, both representationalists and anti-
representationalists are at risk of overshooting the mark: Those who reduce models to
their representational function without attending to the details of how a given model
system mobilizes representational resources, tend to abstract away from the process of
model construction and instead jump to conclusions about the kind of representational
relation in which the finished product — the model - stands (or ought to stand) to reality.*
By contrast, those who, in a radically anti-representationalist spirit, reject the representa-
tional idiom altogether assimilate scientific modeling to the somewhat amorphous cluster
of problem-solving activities that human beings have developed as ways of coping with the
manifold challenges in their environment. As this juxtaposition already makes clear, most
well-developed views on how models work fall somewhere between these two extremes.
And for good reason too: For, if we are to understand why models are of special significance
to scientific practice, we should aim to be attuned to the variety of recurring patterns and
component activities which together constitute the practice of scientific modeling. These
patterns and component activities display, if not uniformity, then at least local stability
within (and sometimes across) disciplinary boundaries. They are neither necessitated by
the abstract demands of representationalism, nor can their local stability — the fact that not
anything goes — easily be explained by a view that treats modeling as simply an extension
of our regular problem-solving capacities.

A first take on the kinds of component activities that make up the practice of scientific
modeling may be gleaned from a somewhat idealized timeline of a hypothetical episode of
modeling. In this reconstruction of how modeling proceeds (methodologically, though not
necessarily in strict temporal sequence), the first step is typically called “model-building,”
which may be variously followed by understanding (or “gaining a grasp”) of a model,
before testing its explanatory and predictive power, and subsequently applying — or, as
the case may be, modifying — it in an iterative fashion that accords with the overall goal
of inquiry. When model-building targets a specific phenomenon, it requires, first and
foremost, settling on a relevant research question and choosing an appropriate medium
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or format, whether this be a mathematical calculus or a material medium (as in the case
of physical scale models). Some properties of the target system will usually be considered
negligible, so that no attempt is made to include these in the model system. The practice
of deliberately neglecting or ignoring some properties or features of the target, such that
only a subset of target properties is included in the model, is typically referred to as ab-
straction. Yet, this is rarely the only type of simplification, and further distortions, e.g.,
in the form of approximations and idealizations, are usually required in order to create
a workable model.’ Sometimes, additional variables or parameters will need to be pos-
ited, even as modelers are aware of their non-referring character. As is evident from this
thumbnail caricature, “model construction involves a complex activity of integration”
(Morrison 1999, 44).

Even as a model is being formulated, much work goes into integrating, and calibrat-
ing, the various ingredients in such a way that it meets — or at least does not stray too far
from — both theoretical background assumptions (where these are available and are suffi-
ciently explicit) and empirical constraints. Which desiderata enjoy priority — e.g., predictive
power, explanatory success, generality, or simplicity — will vary across, and even within, dis-
ciplines, which specific weights should be attached to them and how the (as Levins (1966)
reminds us: inevitable) trade-offs are to be negotiated, depends on standards recognized by
other researchers. These are influenced by disciplinary expectations and are context-specific
and may well vary across research programs within what is nominally the same discipline.
The crucial point is that models do not spontaneously emerge, “fully-formed, as Athena
from the brain of Zeus” (as Nancy Cartwright once put it, 1999, 247), but need to be ar-
ticulated. This process of articulation draws on prior commitments, rendering models, as
Mieke Boon argues, “embedded in a network consisting of different types of intellectual,
epistemic and conceptual aspects” (Boon 2020, 31).

The specific strategies and recurring approaches that make up modeling as a practice,
over and above the (representational or non-representational) function of its products
and their overall contribution to our generic problem-solving activities, likewise vary
across disciplines and research programs. Which strategies of abstraction and idealization
are appropriate, and how the resulting models are to be assessed, is often hotly contested.
Two examples illustrate this. First, among philosophers of economics, there has been
considerable debate as to whether the core strategy of economic modeling consists in
theoretically isolating a target phenomenon by means of idealization (akin to what hap-
pens in scientific experimentation, where one usually seeks to isolate the system under
investigation from external influences) or whether economic models amount to construc-
tions of credible worlds.® Second, in climate modeling, the tension between what one
might call the “models-as-representations” and “models-for-use” views has played out
in debates about what constitutes an improvement of existing climate models. In revis-
ing our climate models, should we be guided by the representational ideal of complete-
ness, effectively treating climate models as candidates for truth or empirical adequacy, or
should we settle for what Wendy Parker (2009) has called “adequacy-for-purpose,” for
example, by focusing on those (and only those) aspects of the climate system that we have
reason to believe are most important to the task of ensuring reliable future predictions?
Such questions cannot be answered in the abstract but can only be approached and de-
bated from within an established practice of modeling, taking into account the interlink-
ing activities and recurring strategies of model-building, testing, calibration, and — where
necessary — revision.
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5. The contribution of modeling to scientific practice

While it is one thing to claim that models “are highly structured entities which are woven
into, and give stability to, scientific practice” (as I myself once did; Gelfert 2015, 224),
it is quite another to fill such a programmatic statement with meaning and make clear
precisely what the contribution of modeling to scientific practice consists of and how it
has become so central to contemporary science. Philosophers have tended to search for
a one-size-fits-all answer to this question — especially those who have operated on the
assumption that a general account of representation (one that focuses on the dyadic rela-
tion between model and target) holds the key to explaining how models function. Others
went instrumentalist: Since modeling has proven to be useful across a large number of
scientific disciplines, should not its past successes — along with the fact that scientists
routinely turn to modeling and profess to find it useful to do so — give us a reason to
consider it central to contemporary scientific practice? Yet this amounts to little more
than a re-description of the explanandum: why is modeling indispensable to contempo-
rary scientific practice? Perhaps, then, no general answer to how models function can
be given, precisely because models are “technologies for investigation” (Morrison and
Morgan 1999) or “epistemic artifacts” (Knuuttila 2005): In order to see what their epis-
temic role is, one must consider models in context — how they were constructed, what
they are built for, what potential applications they afford their users, how they are i fact
used, etc. There simply is no shortcut to answering the question of how models function,
and at most one can hope to identify recurring patterns, partially shared characteristics,
and preliminary taxonomies of what kinds of uses have proven successful in which do-
mains of inquiry.

Artifactualists acknowledge this when they characterize modeling “as a specific scientific
practice in which concrete entities, i.e., models, are constructed with the help of specific
representational means and used in various ways, for example, for the purposes of scientific
reasoning, theory construction and design of other artifacts and instruments” (Boon and
Knuuttila 2008, 689); moreover, “modellers typically proceed by turning the constraints
[...] built into the model into affordances” (695). Modeling thus focuses attention on a se-
lect number of features of a target system and concretizes them into a model system whose
affordances match our cognitive capacities; this way, we can learn about the target system
by engaging with the model system, not as an abstract place-holder, but as a concrete,
manipulable entity with specific affordances — much like ordinary tools — and with select
cognitive “entry points.”

Yet there remains a tension between viewing modeling as, basically, a practice of tool
use and its epistemic orientation toward generating novel insights and creating knowl-
edge. This tension is not unique to modeling as an epistemic practice: As Karin Knorr-Ce-
tina has argued, while the concept of “practice” is typically associated with habituation
and rule-guidedness, contemporary knowledge-based practices thrive on curiosity and
innovation and therefore need to be “more differentiated than current conceptions of
practice as skill or habitual task performance” (Knorr-Cetina 2001, 184). Put differently,
whereas tools tend to blend into the background and, in Heideggerian terminology, are
“ready-to-hand” - that is, experienced in a state of immersion into a practice — models
are typically being encountered as objects of inquiry: they demand attention and cogni-
tive engagement. Unlike an ordinary tool, the success of a scientific model is not wholly
exhausted by how seamlessly and efficiently it allows its user to achieve an intended
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outcome; nor is this something that artifactualists must assume or endorse. Scientific
models, in this regard, are more akin to what Hans-Jorg Rheinberger has called “techni-
cal objects”: temporarily “defined in a characteristic manner,” but able to “gain or regain
an epistemic status and [to] be re-transformed into research objects” (Rheinberger 2011,
312). As such, they can impose much-needed (local, temporary) order on the process of
inquiry, but at the same time hold out the prospect of novel insight — and, on occasion,
are even capable of surprising us.

The philosopher of technology Don Thde, drawing on Heidegger’s distinction be-
tween tools being used in a “ready-to-hand” manner and objects being encountered as
“present-at-hand,” has coined the term intentionality relations to refer to such different
phenomenological ways of engaging with the world around us, in particular with techno-
logical artifacts. Some technologies (e.g., binoculars) blend in with our experience, once
we have mastered them; others (e.g., computers) demand constant cognitive engagement.
The former give rise to embodiment relations, whereby we incorporate them into our
experience, by habitually adjusting, in a self-reflexive way, our perceptual and bodily
senses, allowing us to perceive “through” such technologies; the latter require a “special
interpretive action” (Ihde 1990, 80), akin to deciphering a text, thereby giving rise to
hermeneutic relations. When it comes to scientific modeling, it seems clear that different
types of models cater to both sorts of intentionality relations to varying degrees: mate-
rial models lend themselves more obviously to embodied engagement, whereas complex
mathematical models may require significant hermeneutic input from both the modeler
and the user. This does not mean that sustaining a hermeneutic relation is always more
strenuous than finding oneself immersed in an embodied state of interaction; after all, the
act of reading — the paradigmatic case of a hermeneutic relation — is itself one that, for
most of us, has become “second nature.” Similarly, the activity of reading a mathemati-
cal equation or performing a calculation in physics with the help of a series of Feyn-
man diagrams, for those who use them on a daily basis, may over time become routine.
Sometimes, both types of relationships are simultaneously co-present, for example, when
modelers use integrated software packages that afford quasi-immersive visualizations
while at the same time offering a vast range of options to select from. As Natasha My-
ers describes the user’s phenomenology of engaging in protein modeling with molecular
graphics software: “In one window, data will be streaming up the screen, and in another,
the crystallographer holds the skeleton-like interactive rendering of a model. She keeps it
alive in space and depth, rotating it onscreen and zooming in and out, keeping it visible
at multiple angles, constantly shifting her visual and haptic relationship to it” (Myers
2008, 179).

Thus, similar to the way tools afford us different ways of manipulating the world and
representations allow us to access information about their targets, scientific models, com-
bining both, enable different forms of encountering the world via models, e.g., (using Thde’s
terminology) in an embodied or a hermeneutic fashion.” While different types of models
may have greater affinities with one or the other, in any real-life cases of scientific models,
this is rarely an either/or affair. Not only does working with models often require switching
between embodied and hermeneutic modes of interaction but also many models are specifi-
cally designed to facilitate such switching. Perhaps, then, what makes scientific models so
valuable to science, and what modeling contributes to scientific practice, is the ability of
scientific models to function not only as representations or tools but as mediators between
different ways in which we relate with the world.

53



Axel Gelfert

Notes

1 On the representationalist assumption underlying Boltzmann’s account (and, traditionally, most
of the other conceptions) of models, see the next section.

2 It is worth pointing out that this only holds for a specific conception of sexual reproduction, so
this is at best a ceteris paribus conclusion. Since nature has been rather inventive when it comes
to matters of reproduction and the evolution of the sexes, it should come as no surprise that sci-
entists have since identified species with three sex phenotypes in a number of taxa such as algae,
nematodes, and others.

3 This also applies to contexts of exploratory modeling, where the target may itself be undergoing
revision, or where the main concern is with exploring what is possible. On this point, see (Gelfert
2019).

4 Whether or not a model “is representational” becomes a moot point, once emphasis is shifted
towards its uses; for, surely, there are representational and non-representational uses of models, as
indeed moderate artifactualism concurs.

5 This may later be matched by a process of de-idealization, when a model is being applied to a
specific case, though it has been doubted whether de-idealization is indeed a frequent occurrence:
As Roman Frigg and Stephan Hartmann argue, “it seems that de-idealization is not in accordance
with scientific practice because it is unusual that scientists invest work in repeatedly de-idealizing
an existing model” (Frigg and Hartmann 2020).

6 See (Miki 1992) for the former view and (Sugden 2000) for the latter, as well as (Maki 2009) for
a conciliatory review of the debate.

7 This proposal is developed more fully in Section 5.5 (“Models as Enablers of Scientific Knowl-
edge”) of (Gelfert 2016).
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4
REPRESENTATION

Julia Sanchez-Dorado

1. Introduction

The problem of scientific representation has become a central topic of debate in contemporary
philosophy of science. Early considerations can be already found in the nineteenth century:
in Hertz’s and Boltzmann’s accounts of scientific theories as images (Bildtheorie), in Max-
well’s discussions on analogical reasoning in science, and in Whewell’s ideas on colligation
and idealization in the inductive sciences. The proposals of these philosophers and scientists
are now respectively read as forerunners of structuralist, inferentialist, and pragmatic ac-
counts of scientific representation (see Sudrez 2024, chap. 2; van Fraassen 2008; Cristalli
and Sdnchez-Dorado 2021). Yet, the problem of scientific representation as we normally
frame it today only started to be explicitly discussed in the second half of the twentieth
century, once the semantic view had gained a central stage in the philosophy of science.

In the semantic view, models were regarded as structures that provide tools for interpret-
ing the axioms of a scientific theory (Suppes 1960). A group of adherents to the semantic
view progressively started to emphasize that models should be primarily taken as repre-
sentational structures, that is, structures standing in relation to certain targets in the world
(van Fraassen 1980; Giere 1988; see Bailer-Jones 1999, 32-33). By the 1980s, talk on
models and talk on representation became closely connected in philosophy of science. That
connection was strengthened even more in the early 2000s, when the stance of “models
as mediators” acquired popularity (Morgan and Morrison 1999; Cartwright et al. 1995).
Only in recent years, have there been explicit attempts to disentangle the by-now famil-
iar conception of models as scientific representations. The observation that models play
a diversity of epistemic roles in science has motivated some scholars to contend that such
diversity cannot be fairly investigated if models are primarily conceived as representational
units (Hacking 1983; Knuuttila 2017, 2021).

In approaching the problem of scientific representation, we should be wary not to con-
flate different questions that are involved in it. At some point in the 2000s, disagreements
about scientific representation became so vivid and intricate that some philosophers started
to suspect that they were in fact dealing with several problems at the same time (Hughes
1997; Frigg 2006; Sudrez 2004). Indeed, when asking “how do models represent natural
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phenomena?”, one might be interested in identifying the necessary and sufficient conditions
for something to be a scientific representation. But it is also possible that what one wants
to understand is how a model can become an epistemically adequate representation and be
used to make fruitful inferences about the world. It is additionally possible that the problem
one wants to address is whether scientific representations constitute a genuine way of repre-
senting the world, different from representations in other domains. And even one might be
interested in determining whether the only, or most genuine function, of scientific models is
to represent, or if, on the contrary, it is possible to talk about the epistemic contribution of
models independently of their representational capacity.! These different questions will be
discussed in the following sections:

e Section 2 discusses the question: “in virtue of what does a model represent a certain
target in the world?”. This has been called the “constitutional question” of representa-
tion (Sudrez 2010; Callender and Cohen 2006), the problem of “mere representation”
(van Fraassen and Sigman 1993; Bolinska 2013), and the problem of “representation
simpliciter” (Contessa 2007).

e Section 3 discusses the question: “what makes a model an adequate representation in
practice?”. In recent philosophy of science, this has been also understood as the problem
of the “faithfulness of representation” (Contessa 2007), the “means of representation”
(Sudrez 2003; 2010; 2015), or the “standards of accuracy” of representation (Frigg
2006). But this question has been also addressed by scholars in iHPS and STS, with a
focus not on model-target accuracy standards, but on the learning process afforded by
adequate-for-purpose models (Parker 2020).

e Section 4 addresses the question: “is there anything distinctive about scientific repre-
sentations, in contrast to representations in other domains?”. This has been called the
“demarcation problem” of representation (Frigg and Nguyen 2021), or the “special
problem of scientific representation” (Callender and Cohen 2006; Boesch 2017), and it
has encouraged philosophers of science to look at debates on representation in aesthet-
ics, philosophy of language, and philosophy of mind.

e Section 5 deals with the question: “is representation the epistemic core of scientific
modeling?”. This question concerns whether representation is all we need to explain
the value of models in epistemological terms. It has been also described as the issue of
“representationalism” or “targetism” and has motivated the advancement of artifactual
accounts of scientific modeling in response to it (Knuuttila 2017; 2021; Oliveira 2021;
2022).

2. In virtue of what do models represent?

The constitutional question of scientific representation presupposes that representation is a
relation between a certain vehicle (model) and a certain target system in the world (natural
or social phenomenon), and demands an analysis of such a relation in terms of something
else more elementary. One reason why it is important to differentiate the constitutional
question from the adequacy question of representation (discussed in Section 3) is that if we
want to explain why a certain model is not a good representation of a target, we first ought
to accept that the model in question is a representation of the said target. Only then can one
discuss the reasons for its inadequacy. In other words, the distinction between these two
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questions helps to account for the fact that misrepresentation is a species of representation
(van Fraassen 2008, 13).

The standard way of answering the constitutional question of scientific representation is
to offer a set of necessary and jointly sufficient conditions, which identify in a unique and
universal way the existing relation for any vehicle-target pair (Sudrez 2010, 93). Probably
the most frequent answer to this question has consisted in appealing to a relation of simi-
larity or structural similarity (i.e., isomorphism, partial isomorphism, homomorphism) be-
tween the vehicle and the target of the representation. However, similarity-based accounts
of representation have faced severe criticisms, so some alternatives have been proposed in
response (see Sections 2.2 and 2.3).

2.1 Similarity-based accounts of representation

Many philosophers and non-philosophers alike would intuitively agree that, for example,
an orrery representing the solar system is similar in some respect to the solar system; a scale
model of a river shares important similarities with the behavior of flows in the real river;
model organisms (like non-obese diabetic mice) are similar to humans with respect to how
a certain condition (type 1 diabetes) develops; and a computer simulation of a tornado is
similar to how a tornado progresses in reality.

However, going from these intuitions to explaining the relation of representation in
terms of a more fundamental relation of similarity has become a highly contentious pro-
ject in the debate of scientific representation. A group of philosophers associated with the
semantic view attempted to formalize the similarity intuition by appealing to the sharing
of structures or “mapping” between models and targets. The central postulate of these ac-
counts is that a model (M) represents a target (T) if and only if M and T instantiate similar
structures.> When a structure-preserving bijection between M and T is assumed, their struc-
tures are isomorphic (van Fraassen 1980); when not all relations defined in the domain of T
are mapped into M, their structures are partially isomorphic (French and Ladyman 1999;
French and Bueno 2011); and, if some parts of the structure of M do not match any part of
the structure of T, and parts of T are not included in the mapping, the structures of M and
T are homomorphic (Bartels 2006; Ambrosio 2013).

Similarity-based accounts of representation, including structural versions of it, face at
least three fundamental challenges when addressing the problem of the constituents of rep-
resentation: the logical argument against similarity, the problem of vagueness, and the chal-
lenge of misrepresentation. A reference point when spelling out these challenges is Nelson
Goodman (1968; 1972). In Languages of Art, Goodman argues that “copy theories of
representation” endorse the naive view that a symbol represents an object if and only if it
appreciably resembles that object (1968, 3—4). Vestiges of that naive view were found for
Goodman in theories in aesthetics that explained depiction in terms of a similarity relation
between a picture and the real scene depicted, producing a visual illusion in the viewer
(Gombrich 1960). Philosophers of science have substantially drawn on Goodman’s views
to also reject what they see as “vestiges of copy theories of representation” in structuralist
(and more generally, similarity-based) accounts of scientific representation (Sudrez 2003;
Hughes 1997; Contessa 2007; Frigg 2006).

The first challenge faced by similarity-based accounts of representation, namely,
Goodman’s logical argument, says that similarity cannot constitute the relation of
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representation because while similarity entails symmetrical, reflexive, and transitive rela-
tions, representation entails asymmetrical, non-reflexive and non-necessarily transitive re-
lations (1968, 4-5). If A is similar to B, then B is similar to A; but the fact that a painting
represents a certain person does not imply that the person represents the painting. Likewise,
an object resembles itself to a maximum degree but rarely represents itself. And if object
A is similar to object B, and object B is similar to object C, we would say that A and C are
similar to one another; in contrast, representation does not necessarily establish that kind
of transitive relation (Goodman 1968, 4-35). In short, similarity lacks the logical properties
to define representation.

The second challenge of similarity-based accounts of representation is the problem of
vagueness. The idea is that the concept of similarity is so poorly defined that it becomes
trivial, since anything can be similar in some respect to anything else: “That a given two
things are similar will hardly be notable news if there are no two things that are not simi-
lar” (Goodman 1972, 443). Thus, it would be pointless to treat similarity as a necessary
condition for representation. Some philosophers of science have further maintained, fol-
lowing Goodman, that “an unqualified similarity claim is empty” (Frigg 2006, 61), and
that without an objective measure of similarity, similarity-based accounts of representation
are relativistic (Chakravartty 2001).

The third challenge to similarity-based accounts of representation concerns misrepre-
sentation. All models simplify, occlude, and distort some aspects of reality, irrespective
of whether they are judged highly successful, or plainly inaccurate, models. In either case,
we would treat them still as representations of their target system. A satisfactory account
of what constitutes the relation of representation ought to be able to accommodate the
persistent phenomenon of misrepresentation (Sudrez 2003; Frigg 2006). However, this re-
quirement invites one to think that similarity is a poor candidate as a constituent of rep-
resentation, since misrepresenting involves accepting dissimilarities and distortions of a
target, precisely the opposite of what the similarity condition seems to demand.

There have been numerous attempts to respond to these three challenges. For instance,
to circumvent Goodman’s logical argument, some scholars have resorted to empirical
evidence on how epistemic agents actually formulate similarity judgments in everyday
situations. The claim is that, in practice, epistemic agents do not always treat similarity
relations as symmetrical and transitive, so similarity might actually establish more analo-
gous relationships to representational model-target relations than we may have initially
thought (Tversky 1977).> However, this move to subjects’ judgments in practice can be
read more as a refocusing of the problem of similarity than as a solution to Goodman’s
logical argument, which is directed against analytic attempts to offer universal, in ab-
stracto, explanations that reduce the relation of representation to a relation of similarity.
A different strategy to respond to this challenge is adopted by Bartels (2006), who endorses
homomorphism because this version of structural similarity is explicitly non-symmetrical.
That is, Bartels’ homomorphism, different from other morphisms, can only occur when a
vehicle already refers to a certain target, establishing a unidirectional relation from vehicle
to target.*

In response to the problem of vagueness, philosophers like Giere (2004) and Teller (2001)
have sustained that representing does not require the existence of an objective measure of
similarity and that the lack of such a measure does not introduce an undesirable amount
of relativity in claims about the similarity between specific models and real systems (Giere
2004, 748). However, if we accept this response and the possibility of adopting different
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measures of similarity for particular cases, then it appears that the question we start deal-
ing with is what the degree of adequacy between a given representation and a target is (see
Section 3), instead of the initial question of what constitutes representation.

Regarding the challenge of misrepresentation, it might seem that appealing to notions
like “partial isomorphism” or “homomorphism”, which allow for the incomplete matching
of properties between vehicle and target, would be enough to account for the phenomenon
of misrepresentation. However, these morphisms struggle to accommodate typical ways in
which models misrepresent: Bartels” (2006) homomorphism is unable to account for cases
of abstraction (when the model neglects some features of the target it refers to) (see Pero
and Sudrez 2016, 86), while da Costa and French’s (2003) partial isomorphism cannot ac-
commodate idealizations unless they are reinterpreted exclusively as approximations (see
Pincock 20035, 1257).

In addition to these challenges, structural similarity accounts have given rise to sus-
picions about how target systems can actually instantiate structures, given that these are
typically objects or events (a cell, an earthquake, an economic crisis) and not mathemati-
cal entities. We can grant that any target can instantiate a structure if some relationships
between its parts (objects, features) are recognized, but then the problem is that each tar-
get could instantiate many different structures. The response originally offered by Suppes
(1962) was that what models are actually isomorphic to are “models of data”, that is,
models that do not involve any theoretical assumption. Yet, we might be unsatisfied with
an account of representation that only explains how models of data, but not real targets,
are represented (in Frigg and Nguyen 2021, § 4). Furthermore, many models are themselves
not mathematical entities (e.g., scale models built by civil engineers), so these could also
instantiate different structures.

2.2 Denotation and DEKI

In response to the shortcomings of similarity-based accounts of representation, some phi-
losophers have advanced alternative proposals that leave similarity aside and bring denota-
tion to the center. Callender and Cohen (2006) defend a version of the denotational account
of scientific representation, insofar as they sustain that a vehicle represents a certain target
if and only if the user stipulates that the vehicle denotes the target.’ But the most prominent
denotational account of scientific representation in recent years is Frigg and Nguyen’s pro-
posal (2018;2021; 2022).

Inspired by Goodman (1968), where “denotation is the core of representation”, and
Elgin’s (2010) developments of it, Frigg and Nguyen propose the DEKI account. That is,
denotation, exemplification, keying up, and imputation are the necessary, and jointly suf-
ficient, conditions for scientific representation. Denotation is defined as a dyadic relation
between an existing symbol (e.g., a model) and an existing object (2022, 54). This implies
that targetless models do not denote, but it is still possible that they are Z-representations;
that is, they can still belong to the class of things that portrays Z (even if they cannot be
representations of Z)° (see Goodman 1968, 30; Frigg and Nguyen 2022, 56-58). The next
condition, exemplification, is a special form of symbolization that involves the instantia-
tion of certain properties and the selective reference to some of those properties (Goodman
1968; Elgin 2010; 2017). However, exemplification does not work in a straightforward
way, since models frequently do not literally instantiate the properties they are meant to
refer to (or which are being imputed to a target). To deal with this problem, Goodman and
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Elgin appealed to the intricate notion of “metaphorical exemplification”, while Frigg and
Nguyen refer to the idea of “instantiation under an interpretation”. Lastly, the existence of
a “key”, different in each modeling practice, affords the means to convert model features
into target features, some of which are eventually imputed to a specific target.

The DEKI account is a systematic attempt to formalize the compelling idea that things
are always represented as being thus or so, as much in science as in art. This account has
not been free from criticism, however. Salis (2021, 165-168) identifies several problems of
the DEKI account when it is used to explain how theoretical models represent (as opposed
to physical models, cases it can account for more successfully) (see also Knuuttila 2017),
while Millson and Risjord (2022) criticize it for being unable to block unjustified surroga-
tive inferences, that is, appealing to DEKI does not say how the content of a representation
(i.e., a map, a model) justifies the inferences drawn from it.

2.3 Deflationism

The difficulties in sustaining a general theory of what constitutes the relation of representa-
tion have made a group of philosophers wonder if it is actually possible to offer universal
conditions for representation. Some have even questioned whether this problem is at all
worth addressing epistemologically, and advanced deflationary accounts of scientific rep-
resentation accordingly (Hughes 1997; van Fraassen 2008; Sudrez 2015). A deflationary
approach sustains that no attempt should be made to explain representation in terms of
something more elementary than itself, such as similarity or denotation. Deflationism is still
compatible, however, with studying typical features that representations exhibit in practice.

According to van Fraassen (2008, 23), whose work has noticeably transitioned from
the semantic view to a pragmatic conception of models, we should endorse a deflation-
ary account that puts the “use” of representations at the center. That is, he identifies the
constituents of representation with its means (or the specific relations that are established
by epistemic agents when using particular models to make inferences about particular tar-
gets) (Sudrez 2015, 45; for a critique of van Fraassen’s deflationary approach, see Frisch
2015). Hughes’ (1997) DDI account can also be considered an early deflationary account
of representation. He proposes taking denotation, demonstration, and interpretation not
as necessary conditions for representation, but rather as “three activities” which, if kept in
mind when studying a scientific model, could help “achieve some insight into the kind of
representation it is” (1997, 329). In recent years, the most notable advocate of the defla-
tionary approach has been Sudrez (2015). He suggests reinterpreting “denotation” in defla-
tionist terms as “representational force”, a notion that more clearly describes the activity
performed by epistemic agents using a vehicle with a denotative function, whether it tracks
any real target or not. Together with representational force, the “inferential capacity” of a
vehicle relative to a target would be the most typical feature of scientific representations in
practice (Suarez 2015, 43-45).

A question that has been raised against deflationary accounts is whether they give up too
quickly in the endeavor of giving an answer to the constitutional question of representation
(Chakravartty 2009). They would be in a sense conformist, pointing out some “surface
features” of representations in practice (Sudrez 2004, 771), but potentially disregarding
the epistemic virtues that make it possible for scientific representations to in fact be used
to learn about the world (Liu 2015, 42; Knuuttila 2021, 3). Despite these observations,
something that deflationary views have helped to make manifest is that certain avenues in
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the research about scientific representation — mainly, the investigation of the constituents
of representation — is becoming exhausted, and have encouraged philosophers to shift their
attention to the study of pragmatic questions concerning representation.

3. What makes a model an adequate representation in practice?

The conceptual systematicity with which the constitutional question can be and has been
addressed is not easily applicable to the study of the adequacy of representation. This is be-
cause of the pragmatic, situated, and thus slippery nature of this problem, which demands a
practical type of inquiry to study it (Sudrez 2010, 91-93). Besides, while the problem of the
constituents of representation has been exclusively addressed by a group of philosophers of
science in the analytic tradition, the problem of adequate representation has also been dis-
cussed from other disciplinary perspectives, such as iHPS (integrated history and philoso-
phy of science) and STS (science and technology studies). To clarify, iHPS and STS accounts
of adequate representation are interested in examining how epistemically fruitful models
are built and assessed by scientific communities, while analytic accounts have tended to
focus on the identification of adequate model-target relations in practice — also referred to
as the “standards of accuracy” (Frigg 2006) or “means” of representation (Sudrez 2010).

At the risk of encompassing many different perspectives under this heading, it is help-
ful to recognize two broad methodological approaches to the study of the problem of ad-
equate representation: a generalist approach, which aims to identify general standards for
adequate model-target relations in practice; and non-generalist approaches, which draw on
specific cases of model construction to advance a pragmatic reading of what it takes for a
scientific community to produce adequate-for-purpose models.

3.1 Generalist approach to the adequacy question

There are many different formats and styles of representation in science, including the use
of mathematical equations, three-dimensional models, images, computer simulations, and
graphs. The generalist approach to the study of the adequacy of representation searches for
rules of correctness that go beyond the idiosyncrasies of individual modeling styles.

Examples of the generalist approach are found in the proposals of Giere (2004; 2010)
and Weisberg (2013). Surprisingly or not, these are also similarity-based accounts. For
Giere (2004; 2010), it is intentional similarity, specified in “respects and degrees”, that
determines the adequacy of representations. Giere defines similarity as a triadic relation,
where scientists are responsible for picking out certain features of models, “claiming them
to be similar to features of the real system”, and thus building adequate representations
for their specific purposes (2004, 747-748). For Weisberg (2013), the weighted feature-
matching account that he proposes captures the intuition that a model is similar to its tar-
get, and therefore an adequate representation, when it shares many features, and does not
fail to share too many features that are considered salient, with its target. Which features
are considered shared or not shared, as well as their relative importance, is defined by the
goals of the scientific community doing the representing.”

A question posed to the generalist approach is whether it can in fact account for the
variety of models there is in science. Given the huge number of ways in which scientists
can potentially employ relations between vehicles and targets to learn about the world, we
could expect to find a variety of standards of adequacy or means of representation (Frigg
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20065 Sudrez 2010). Similarity and structural similarity are two among those means, but
they might not exhaust the possibilities to build adequate models: model-target relations
could be highly conventional, too (Frigg and Nguyen 2022, 64).

A more fundamental criticism of generalist accounts is that even if they acknowledge
that dealing with the problem of adequate representation requires carrying out a practical
inquiry, they are largely rational reconstructions of modeling practices. That is, their at-
tention is focused on identifying the correct epistemological criteria that define adequate
model-target relations, failing to engage with how scientists actually gain knowledge about
the world, as well as about science, throughout their practices of model construction.

3.2 Non-generalist approaches to the adequacy question

In contrast to the generalist approach, some approaches to the problem of adequate repre-
sentation do not aim to find a determinate set of criteria for the adequacy of model-target
relations. Instead, they look carefully at concrete practices where scientific communities
reach context-dependent agreements about the adequacy (that may be described as accu-
racy, fruitfulness, or usefulness by scientists) of a certain model depending on their particu-
lar goals. The starting point of these approaches is the analysis of the process of designing,
constructing, calibrating, and validating specific models in their historical context. The
endpoint is usually the advancement of a pragmatic conclusion, more or less broad in
scope, about what it takes for scientists to build models that are “adequate-for-a-purpose”
(Parker 2020).

Examples of non-generalist analyses of scientific representation are found in Chang’s
(2004) study of the historical process of representing temperature, going through different
iterative stages and uses of instruments; in Schaffer’s (2004) work on the production of
models of ships on a small scale in late 18th-century London; in Oreskes’ (2007) account of
the use of compression boxes as material models of orogenesis in the 19th century; and in
Knuuttila and Loettgers’ (2016) study of the Lotka-Volterra model and the different philo-
sophical readings triggered by it.

Also, collective volumes like Lynch and Woolgar (1990), de Chaderevian and Hopwood
(2004), and Coopmans et al. (2014) advance a rich collection of pragmatic accounts of
representation sustained on a systematic investigation of case studies across the natural and
social sciences. Taken together, these accounts shed light on the understanding of the activ-
ity of modeling from both an epistemological and a historical perspective. Furthermore, the
case-study perspective sometimes motivates the reevaluation of central assumptions in the
philosophy of science, including the pertinence of the notion of representation itself (Das-
ton 2014; Woolgar 2014; Lynch 2014).

Whereas the authors just mentioned focus on singular, historically localized cases, other
non-generalist approaches place emphasis on the analysis of a relatively large set of case
studies. In so doing, they try to elucidate, also from a practice-based perspective, how
certain modeling resources (cognitive and material) end up being entrenched in a scien-
tific field or shared by scientists working across fields. A recent proposal that adopts this
mid-level generality approach is Ankeny and Leonelli’s (2020) study of model organisms.
Working with model organisms proved to be very fruitful in the biological and medical sci-
ences throughout the twentieth century. Ankeny and Leonelli analyze the long processes of
standardization that using this type of modeling technique required, and the fundamental
epistemic role played by “repertoires” shared by different scientific teams, which served
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as guidelines to experiment with and extrapolate from living organisms. Sterrett’s (2009;
2017) work is another good example of this approach. She examines how practices of scale
modeling across the engineering and physical sciences consolidate systematic ways of pro-
ducing adequate inferences using the principles of physical similarity. Also, Bokulich and
Parker (2021) developed a mid-level generality type of account of the entrenched ways in
which scientists take data models to represent, differently from other kinds of models.

Looking back at Morgan and Morrison’s (1999, 11-12) — by now classic — account of
models as mediators helps locate some early motivations for advancing mid-level generality
accounts of adequate representation. The understanding of models as autonomous entities
requires studying the ways in which scientific communities in specific disciplines (physics
and economics in Morgan and Morrison’s study) stabilize certain uses of models to learn
about the world, about theories, and about models themselves, using the tacit skills and
creative strategies characteristic of each field.

4. Is there anything special about scientific representations?

Scientific models are not the only vehicles used to represent aspects of the world and learn
about them. Paintings, photographs, thought experiments, and narratives are employed
across the arts, humanities, and other realms of everyday life to represent objects and states
of affairs and gain understanding of them. There is indeed a long tradition in fields like
aesthetics, philosophy of language, and philosophy of mind of debating the problem of
representation, where questions such as: “How do symbols refer?”, “What is the content
of mental representations?”, or “What is the role of similarity in depiction?” have been
thoroughly examined. This seems to be a good reason to think that philosophers of science
have a good deal to learn from previous and ongoing debates on representation in other
domains. Philosophers who admit the compatibility of debates on representation in dif-
ferent fields have for instance exploited comparisons between scientific models and maps
(Winther 2020), caricatures (van Fraassen 2008), and artworks (Sudrez 2003; 2004; French
2003; Downes 2009; Ambrosio 2013). Some have made the even stronger claim that there
are no significant differences between scientific and artistic representations with regard to
their ultimate epistemic aim, namely, understanding (Elgin 2017). Several recent collec-
tive volumes show the popularity of this integrative approach to the study of representa-
tion across the arts and sciences (Frigg and Hunter 2010; Bueno et al. 2018; Ivanova and
French 2020). Yet, the jump from recognizing the strengths of other traditions in dealing
with analogous problems to the conclusion that it is possible to bring together various ac-
counts of representation into a unified theory is more problematic than it might first seem
(Sanchez-Dorado 2018). Only the careful attention to the specific questions and motiva-
tions underlying the debates in each field can grant a fertile integration of perspectives.

There is another line of argumentation regarding the problem of whether scientific rep-
resentation is a unique form of representing. Callender and Cohen (2006, 67) published an
influential article where they contended that much of the literature on scientific representa-
tion had been “concerned with non-issues”. Mental states are, in their view, the fundamen-
tal representational objects, from which the rest are derived. Therefore, scientific models,
like linguistic utterances and artworks, would be “just one more special case of derivative
representation” (Callender and Cohen 2006, 75). It is, thus, only at the fundamental level
(of mental representation) at which philosophers need to ask the constitutional question,
not at the other levels.
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Callender and Cohen’s proposal was provocative. There are some who sympathize with
it, like Ruyant (2021), who tries to spell out in more detail how scientific representations
can be ultimately reduced to mental representations in a non-trivial way. Others, like Liu
(2015), however, argue that Callender and Cohen’s reductive account of representation — in
terms of stipulation — fails to distinguish between mere symbols and epistemic represen-
tations (such as scientific models). Also, Boesch (2017) rejects the reduction of scientific
representation to mental representation, as the former has a communal nature, while the
latter is private.

5. Is representation the epistemic core of scientific modeling?

Philosophers of science have typically avoided making explicit claims about representation
being all that matters when they discuss the role of scientific models, possibly foreseeing
potential criticisms. However, the pervasive identification of models as representational
vehicles in the literature suggests a rather strong commitment to “representationalism”,
that is, the received view that the epistemic role of scientific models is best understood in
representational terms (Oliveira 2021). The fact that misrepresentation has been a topic of
epistemological concern is also evidence of the assumption that “modeling is an epistemic
activity because it is representational” (2021, 212). This assumption has elicited discomfort
among a group of commentators in recent times.

It is uncontroversial that models play a diversity of epistemic, as well as non-epistemic,
roles in science and beyond. If the epistemic value of models, and our learning from them
is, however, explained in terms of their representational capacity, those other roles can
hardly be given the prominence they deserve. Design models are, for instance, built with
the aim of implementing a new engineering structure or modifying a technological device.
They are distinct from representational models either because their target does not exist yet
or because the direction of fit is from target to vehicle — instead of from vehicle to target
(Poznic 2016). Exploratory models are also targetless or have very roughly defined targets.
Without aiming to represent any actual empirical phenomenon, an exploratory model can
be used to feature proof-of-principle demonstrations, generate potential explanations, or
help scientists gain greater mastery of the repertoire of modeling techniques available in a
field (Gelfert 2016, 41, 79). Other epistemic functions that models can play — whether they
are representational or not — are testing the compatibility of various concepts, generating
hypotheses, constructing other models, and producing new target systems (Luczak 2017;
Peschard 2011).

Hacking (1983) was influential in resisting representationalism as the only conceptual
framework for the study of scientific practices and emphasized intervention as a fruitful al-
ternative (Cassini and Redmond 2021, 43). In recent years, Knuuttila’s artifactual account
of models has openly positioned itself against general representationalism (2017; 2021).
She proposes a “novel candidate for a unified approach” that neither assumes that models
are inherently representational at the outset, nor that the model-target pair should be the
fundamental unit of epistemological analysis. Instead, looking at model construction is the
key to understanding how a model can achieve its epistemic purposes (2021, 2). Crucially,
for Knuuttila the artifactual and the representational approaches do not necessarily clash,
as long as one adopts a pragmatist conception of the representational relation (20175 2021).
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While some philosophers of science might still be resistant to endorsing the consequences
of the artifactual approach to modeling, others, like Oliveira (2021; 2022), think that arti-
factualism has not yet gone far enough. The presumed compatibility of the artifactual and
the representational approaches — in Knuuttila’s (2017) account and also in Morgan and
Morrison’s (1999) account — is too mild in his view, since it merely shifts the emphasis of
the debate. A more radical artifactualism would completely avoid the “representationalist
quagmire”, and focus instead on the skill development and learning transfer afforded by
models, which should be literally understood as tools and not as referring signs (in anal-
ogy to linguistic signs) (Oliveira 2022). It remains to be seen if philosophers of science will
accept in the coming years that representationalism is a dead end, or if the debate opens
new paths of inquiry on representation in light of the variety of pragmatist and artifactual
approaches to scientific modeling that are currently proliferating.
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Notes

1 There are further questions involved in the problem of scientific representation, such as those
concerning the ontology of models as representations, as discussed by Frigg and Nguyen (2022).

2 Structural similarity is treated here as a special kind of similarity. There are no explicit attempts in
the contemporary literature to advance an account of what constitutes the relation of representa-
tion based on a non-structural conception of similarity. Sometimes Giere (2004, 2010) has been
treated as an advocate of such an account, but he explicitly clarifies that he is not taking similarity
as a necessary condition for representation (2004, 747). Instead, he aims to give a similarity-based
response to the problem of adequate representation. Thus, his proposal will be mentioned in
Section 5.3.

3 For instance, experimental subjects would normally say that “an ellipse is similar to a circle” and
not that “a circle is similar to an ellipse”, which questions the symmetry condition (Tversky 1977,
333-336). Other tests showed that similarity is not necessarily treated by experimental subjects
as transitive either, while with reflexivity the differences between similarity and representational
relations still seem to hold.

4 Bartels (2006) also introduces intentional mechanisms to address the logical argument concern-
ing reflexivity. This move has the problem, however, of making the role of homomorphism in his
constitutional account unclear, since it is then the intentional mechanism, and not the structural
similarity, that defines the directionality of the representational relation (on reflexivity, see Dipert
1996; for a fully-fledged criticism of Bartels 2006, see Pero and Sudrez 2016).

5 Here I am following Contessa’s (2011, 124-125) reading. For Frigg and Nguyen (2021, §2), “stip-
ulative fiat”, rather than denotation, would be more precisely the condition of representation in
Callender and Cohen’s (2006) account.

6 Goodman (1968, 22) argues that common expressions such as “a certain painting is a picture of
an unicorn” are highly ambiguous. The locution “picture of” is a two-place predicate, so there
cannot be pictures of unicorns since there are no such things as unicorns. But we can still produce
as many unicorn pictures as we like. Being a Z-picture or a Z-representation is belonging to the set
of things that represent Z.

7 For a discussion on whether Weisberg (2013) is actually advancing an account of adequate
representation — or, rather, an account of the constituents of representation, or an account of what
underlies modelers’ judgments in practice — see Parker (2015) and Khosrowi (2020).
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5
IDEALIZATION

Collin Rice

1. Introduction

Scientific models are always idealized to some degree. Indeed, many philosophers have
suggested that a model just is an idealized representation of some real or possible target
system(s). While perhaps not all models have target systems, certainly the vast majority
involve assumptions that are inaccurate with respect to real-world systems. Moreover,
idealizations are typically intentionally introduced into scientific models. Scientists’ use
of myriad idealizations results in most scientific models providing drastically distorted
representations of reality. This has led philosophers to investigate the crucial roles that
idealizations play within scientific practice. One of the lessons of these investigations
has been the discovery of several distinct aims and contexts that motivate the introduc-
tion of idealizations into scientific models. These different modeling contexts have, in
turn, given rise to a plurality of ways in which scientists justify their use of idealiza-
tions. In this chapter, I take idealization to be the intentional introduction of distortion
into a scientific model or theory for some purpose. For example, removing negligible or
insignificant factors from a model of a complex ecosystem in order to simplify calcula-
tions, or assuming that a system has an infinite number of particles in order to apply
various mathematical modeling techniques in physics. The chapter begins by providing
a (non-exhaustive) survey of some of the scientific contexts and goals that motivate the
introduction and maintenance of idealizations. These different contexts and aims will
then be used to discuss various philosophical questions concerning the use of idealiza-
tion in science.

2. Pluralism about idealization

Rather than a univocal account of idealizations, or of how they are justified, what we
find in scientific practice is a plurality of types, motivations, and justifications (Potochnik
2017; Rice 2021; Weisberg 2007; Cassini and Redmond 2021). In this section, I provide
a non-exhaustive survey of several “types” of idealization by looking at the reasons that
motivate their introduction and how they are justified.
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Idealization

To begin, Michael Weisberg (2007, 2013) has usefully distinguished three kinds of ideali-
zation by looking at the reasons for their introduction and what he calls their ultimate “rep-
resentational ideals” (2007, 639). The three kinds of idealization are Galilean idealization,
minimalist idealization, and multiple-model idealization. The two first kinds of idealization
are already differentiated in Nowak (1992, 2000), whose work on idealization inspired
much of the lively philosophical discussion of idealization in the 1980s and 1990s, result-
ing in several volumes on idealization in Poznan Studies in the Philosophy of the Sciences
and the Humanities. Frigg and Hartmann (2012) introduce a similar kind of distinction
between Galilean and Aristotelian idealization.

Galilean idealizations are introduced to address issues of computational tractability and
are justified by noting that they make the calculations of the model simpler. Yet, as science
advances (e.g., more powerful computers are built), this motivation for idealizing can fade
such that “Galilean idealization takes place with the expectation of future deidealization
and more accurate representation” (Weisberg 2007, 642). According to Ernan McMullin’s
account, this means that Galilean idealizations can ultimately “be made more specific by
eliminating simplifying assumptions and ‘de-idealizing’ as it were” (1985, 261). Similarly,
William Wimsatt (2007) argues that idealized models can be justified by showing that they
eventually lead to truer theories. According to Galilean accounts, idealized models are tem-
porarily justified waystations on the way to the production of more accurate models and
theories.

Weisberg also groups a number of views under the category of minimalist idealization.
Minimalist accounts focus on the aim of providing explanations and suggest that the model
that best explains a phenomenon will include only the core causal, or difference-making,
factors that gave rise to the explanandum (Weisberg 2007, 643-645). Indeed, several phi-
losophers have suggested that idealized models are able to explain just when they accurately
describe the difference-making, contextually salient, or otherwise important explanatory
factors. Idealizations are then used to distort other features to emphasize that those fea-
tures are irrelevant, non-difference-making, not of interest, or negligible. These accounts
justify idealizations in scientific models by noting that, while the models distort a variety
of irrelevant or non-difference-making features, they still provide accurate descriptions of
the system’s relevant features used in providing the explanation. Prominent examples of the
minimalist approach are provided by Uskali Maki (1992), Nancy Cartwright (1999), Me-
hmet Elgin and Elliott Sober (2002), David Kaplan and Carl Craver (2011), and Michael
Strevens (2008). As a specific example, both Strevens and Weisberg cite Boyle’s law, which
assumes that the gas molecules do not collide with each other. This idealization is justified,
they argue, because “the no-collision assumption is a way of asserting that collisions are
actually irrelevant and make no difference” (Weisberg 2007, 643). However, despite these
distortions, the model is still able to explain because “it accurately captures the core causal
factors” (Weisberg 2007, 643).

In contrast with minimalist accounts, several philosophers have gone further and ar-
gued that idealizations within models that explain, frequently distort difference-making
factors as well (Elgin 2017; Potochnik 2017; Rice 2021). For example, several philosophers
have noted that an important motivation for introducing idealizing assumptions into mod-
els that explain is that they are often necessary for the use of mathematical frameworks
and modeling techniques (Batterman 2002; Morrison 2015; Rice 2021). As examples,
these philosophers have noted that various idealizations are required to enable scientists
to apply game-theoretic modeling, statistical modeling, the renormalization group, or
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homogenization techniques (just to name a few). These idealizations can enable scientists
to provide explanations that would otherwise be inaccessible, but their introduction often
requires the models to distort features that are known to make a difference and are of inter-
est to the scientists using the model to explain.

Scientific models are also frequently used to produce understanding of a phenomenon
(Elgin 2017; Potochnik 2017; Rice 2016; Strevens 2013). For example, Yasha Rohwer
and Collin Rice have argued that there is a distinctive (fourth) type of idealization used in
biology and economics that aims at the production of understanding by investigating hypo-
thetical scenarios (Rohwer and Rice 2013). Rohwer and Rice refer to this as hypothetical
pattern idealization because the models aim to generate understanding by investigating
background assumptions, necessity claims, or how-possibly stories via the construction of
hypothetical scenarios that display widely observed patterns. For example, the Hawk-Dove
game improves biologists’ understanding of restraint in combat by showing that the ob-
served patterns of behavior could possibly be produced by individual-level selection in a
highly idealized population. What is distinctive about this kind of idealization is that it aims
to produce understanding of a general pattern by investigating a hypothetical scenario, i.e.,
one that is not intended to be actual or even possible. Since this aim is often best achieved by
building a highly idealized model of a particular hypothetical scenario, these idealizations
typically will not be removed as science progresses. Moreover, these models do not aim at
providing an explanation for why the phenomenon actually occurred. Consequently, rather
than (ultimately) aiming for a model that accurately represents the system or explanatory
factors, these models aim to deepen our understanding by exploring a distant counterfac-
tual situation that often is impossible to realize (de Donato Rodriguez and Zamora 2009).
Along similar lines, Angela Potochnik (2017) and Catherine Elgin (2017) both analyze a
variety of ways that idealized models are used to produce scientific understanding via the
embodiment of causal patterns or the exemplification of features of real systems.

Weisberg also discusses “the practice of building multiple related but incompatible mod-
els, each of which makes distinct claims about the nature and causal structure giving rise
to a phenomenon” (Weisberg 2007, 645). These cases of multiple-model idealization are
distinguished by “not expecting a single best model to be generated” (Weisberg 2007, 646).
Since model builders often have multiple goals that are difficult (if not impossible) to si-
multaneously achieve with a single model (Levins 1966), scientists often construct multiple
models that each make different idealizing assumptions about the phenomenon in order
to achieve different modeling goals. As a specific example, Margaret Morrison (2011) dis-
cusses the use of over 30 different models of the nucleus that are used to explain, under-
stand, and predict various features of nuclear behavior. As a result, rather than aiming
for a single best model that provides an explanation, yields understanding, or can later be
deidealized, these contexts typically give rise to the production and maintenance of several
conflicting idealized models of the same phenomenon.

Before moving on to some of the philosophical questions surrounding the above kinds
of idealization, it is important to note that these reasons, motivations, and justifications are
often intertwined in complex ways within scientific practice (Potochnik 2017; Rice 2021).
First, a single scientific model might include multiple types of idealization; e.g., a single
model might include both Galilean and minimalist idealizations. Second, a single ideal-
izing assumption might have multiple reasons that motivate its introduction. As a result,
even if one of those motivations is removed (e.g., through improved computational capaci-
ties), there may be several other reasons for maintaining a particular idealizing assumption
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within the scientific model. Third, because idealizations are often foundational to the
application of general modeling frameworks, they often become deeply embedded within
modeling research programs (Pincock 2012; Potochnik 2017; Rice 2021; Weisberg 2013).
These overlapping, intertwined, and embedded reasons for using idealizations give rise to
a plethora of philosophical questions that have been the focus of much of the literature on
scientific modeling.

3. Can idealization be eliminated?

Accounts of Galilean idealization raise the question of whether, generally, idealizations
can be eliminated from scientific models as science progresses. If idealizations can often be
removed, then their introduction can be justified as an important first step toward eventu-
ally generating more accurate (or truer) models and theories. There are certainly numerous
ways in which idealizations contribute to the aims of science by making mathematical or
computational models more tractable. However, if most idealizations were Galilean, then
we ought to be able to see how they could be removed or replaced by true assumptions
without undermining the models” ability to contribute to the aims of science for which they
were constructed. Yet, several philosophers have argued that this is not what we find when
we look at actual scientific practice.

One reason for this is that, in practice, even when deidealization is possible, in many
cases, idealizations are not actually removed from scientific models (Knuuttila and Morgan
2019). Indeed, even when more realistic models are available, scientists routinely opt for
the more highly idealized model because it is better suited for their purposes (Elgin 2017;
Potochnik 2017; Rice 2021). As Catherine Elgin notes, in science, “Elimination of idealiza-
tions is not a desideratum” (2017, 62). One example of this is the ideal gas law. Even though
more accurate models are available—e.g., models that include van der Waal’s equations—
the ideal gas law is still widely used. Similar cases can be found throughout biology where
idealized models that include only the influence of natural selection are often preferred de-
spite the ability to construct models that would more accurately represent other evolution-
ary factors like mutation, migration, or drift (Potochnik 2017; Rice 2021). As a result, even
if idealizations can sometimes be replaced, in practice they rarely are.

In addition, several philosophers have argued that some idealizations cannot be removed
in principle without losing the epistemic achievements (e.g., explanation and understand-
ing) enabled by those idealizations. One reason for this is that there are several cases in
which scientific explanations require infinite idealizations that are necessary for the math-
ematical techniques used in providing the explanation. For example, Robert Batterman’s
(2002) pioneering work on the use of the renormalization group argues that the thermody-
namic limit (in which the number of particles goes to infinity) is essential to mathematical
modeling techniques that are widely used in physics to explain the universality (i.e., stabil-
ity) of critical behaviors of various fluids and magnets. In a similar way, Margaret Morrison
argues that:

The occurrence of phase transitions requires a mathematical technique known as
taking the ‘thermodynamic limit,” N—oo; in other words we need to assume that a
system contains an infinite number of particles in order to understand the behavior
of a real, finite system...[since| the assumption that the system is infinite is necessary
for the symmetry breaking associated with phase transitions to occur. In other words,
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we have a description of a physically unrealizable situation (an infinite system) that
is required to explain a physically realizable phenomenon (the occurrence of phase
transitions).

(Morrison 2009, 128)

Without these limiting idealizations—in which a parameter or variable is taken to infinity
or zero—the explanations physicists have provided for various phase transition phenom-
ena would no longer be applicable. In addition, Alisa Bokulich (2008) argues that fictional
models, such as Bohr’s model of the atom, also play indispensable roles in the explanations
provided in other areas of physics. While some philosophers have argued that many of
these cases can be subject to reduction or relaxation (Butterfield 2011), it is still debatable
whether those less idealized models or theories are able to provide the same explanations or
understanding and, if so, why the more idealized models continue to be central to the way
physicists investigate these systems.

Other philosophers have argued that several idealizing assumptions are essential to vari-
ous research programs in biology (Potochnik 2017; Rice 2021). For example, within the
adaptationist research program, biological modelers routinely idealize other evolutionary
factors (e.g., the processes involved in genetic drift, mutation, migration, or inheritance) of
the system in order to focus on the role of natural selection in producing an observed trait.
Because these adaptationist models can often provide unique explanations and understand-
ings of a trait, these idealizations often cannot be removed without losing the explanation
or understanding provided by the adaptationist model. Another set of cases involves the use
of idealizing assumptions to enable the application of statistical modeling techniques within
population genetics (Ariew et al. 2015). In these cases, in order to apply various statisti-
cal theorems—e.g., the central limit theorem—Dbiological modelers routinely introduce as-
sumptions of infinitely large populations where mating (or other interactions) is completely
random. Removing or relaxing these idealizations makes many of these statistical modeling
techniques inapplicable.

In fact, across multiple scientific disciplines, we find that many idealizing assumptions
cannot be removed in principle because they are necessary to apply the modeling techniques
that enable scientists to explain and understand complex phenomena (Rice 2021). In short,
even if scientists would sometimes prefer to deidealize their models in the way suggested by
Galilean accounts of idealization, often the modeling approaches available and the com-
plexity of the phenomenon of interest make it such that eliminating the idealizations from
the model or theory would also eliminate the explanations and understanding that moti-
vated their introduction in the first place.

4. Do models accurately represent relevant features
or are they holistic distortions?

As I noted above, in order to account for these more permanent contributions of idealiza-
tions within models that explain, a number of philosophers have developed views that
follow Weisberg’s characterization of minimalist idealization. These minimalist accounts
require that it is possible (at least in principle) to decompose scientific models into their
accurate and inaccurate parts. The idealized parts of the model can then be justified by
showing that they only distort features that are irrelevant, non-difference-making, not
contextually salient, or otherwise not of interest. Moreover, the models are claimed to be
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suitable for purposes of explanation because they accurately represent (or describe) the
relevant, difference-making, or contextually salient features of interest.

As a first example, many defenders of mechanistic accounts of modeling and explana-
tion have argued that the widespread use of idealization, “should not lead us to dispense
with the idea that models can more or less accurately represent features of the mechanism
in the case at hand” (Kaplan and Craver 2011, 610). Indeed, despite the use of idealiza-
tions, according to most mechanistic accounts, “the goal is to describe correctly enough (to
model more or less accurately) the relevant aspects of the mechanism under investigation”
(Craver and Darden 2013, 94). Another proponent of this approach is Strevens, who argues
that idealized models can provide superior explanations when they accurately represent the
causal difference-makers that produced the explanandum and use idealizations to indicate
that the distorted features do not make a difference. As Strevens summarizes his view:

The content of an idealized model, then, can be divided into two parts. The first
part contains the difference-makers for the explanatory target...The second part is
all idealization; its overt claims are false but its role is to point to parts of the actual
world that do not make a difference to the explanatory target. The overlap between
an idealized model and reality...is a standalone set of difference-makers for the target.

(Strevens 2008, 318)

A similar kind of view is defended by Elgin and Sober (2002) in which they argue that
idealizations are “harmless” if correcting them would not make much difference to the
predictions of the model (448). The goal of these accounts is to show that the “factors
distorted by idealized models are details that do not matter to the explanatory target—they
are explanatory irrelevancies. The distortions of the idealized model are thus mitigated”
(Strevens 2008, 315).

A related, but importantly different, approach has focused on the features that are of
interest within a particular context of inquiry. According to these philosophers, causes or
features that make a difference to the phenomenon can be justifiably distorted by idealized
models as long as those features are not of interest to the scientists using the model to ex-
plain (or understand). For example, Potochnik argues that “significant causal factors that
are not central to the research program can still be set aside” (2015, 1178). Rather than
appealing solely to difference-making considerations, Potochnik’s account uses the research
program and context of inquiry to determine which causes are important for providing the
desired explanation. However, “posits central to representing the focal causal pattern in
some phenomenon must accurately represent the causal factors contributing to this pat-
tern” (Potochnik 2017, 157). That is, in order to explain, the model must accurately rep-
resent the features deemed relevant by the context of inquiry. Along similar lines, Elgin’s
account allows for many difference-making causes to be distorted by models that contribute
to scientific understanding (Elgin 2017). Moreover, Elgin also appeals to the interests of
scientists in various places by suggesting that idealized models can provide genuine under-
standing, “because the models are approximately true, or because they diverge from truth
in irrelevant respects, or because the range of cases for which they are not true is a range of
cases we do not care about” (Elgin 2017, 261). More generally, a wide range of accounts
have argued that the best way to justify the use of idealizations to accomplish the epistemic
aims of science is to show that the idealizations only distort features that are irrelevant,
non-difference-making, or otherwise not of interest to scientists.
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In contrast with these views, other philosophers have argued that the idealized models
used to explain in scientific practice are far more pervasive distortions. In particular, these
philosophers argue that many of the scientific models that are used to explain and under-
stand directly and deliberately distort features that are known to make a difference to the
explanandum and that are of interest to the scientists using the models to explain. Many of
the foundational ideas of this approach can be found in the pioneering work of Nancy Cart-
wright (1983), who argues that idealization and abstraction of relevant causes are essential
to the ability of models, theories, and laws to explain. One way of developing this approach
comes from Bokulich (2008; 2011; 2016), who argues that many of the idealized models
used to explain in science are “fictions” that distort difference-making or relevant causes
of the phenomenon in a variety of ways. For one thing, Bokulich argues that constructing
an accurate representation of the system is not required for scientific modelers to extract
explanatory (in her view, modal) information. She contends, “Certainly having an accurate
representation is one way to get such modal information, but the success of idealized and
fictional models in science teaches us that it is not the only way” (Bokulich 2016, 271). As
examples, Bokulich points to Bohr’s model of the atom and fictional electron trajectories in
quantum dots in which entities that are known not to exist are postulated and play crucial
roles within the explanation (Bokulich 2008; 2011).

Another version of this approach argues that the models used to explain in science ought
to be construed as holistic distortions of their target systems; i.e., they are pervasive mis-
representations of both difference-making and non-difference-making features (Rice 2018;
2021). There are three main arguments for this type of view. First, by looking at a variety
of examples from scientific practice, we find that a number of models that are used to ex-
plain directly distort known difference-makers that are of interest to the research program
in which they are formulated. For example, physicists routinely distort the processes that
lead to phase transitions despite the fact that they know that the features distorted by their
idealizations make a difference to the real system’s critical behaviors and those features are
certainly of interest to physicists attempting to explain and understand those behaviors
(Rice 2018). Similarly, within evolutionary biology, adaptationists routinely use optimiza-
tion models to explain although the models distort the very processes of natural selection
that are known (or at least assumed) to make a difference to the evolution of the trait and
are of interest to biologists studying adaptations (Rice 2021). The second line of argu-
ment points to the various cases discussed above in which idealizations are introduced into
scientific models because they are necessary for the use of various mathematical modeling
frameworks (Rice 2021). In each of these cases, the idealizations are so foundational to the
overall mathematical frameworks used in these models that the resulting representations
typically distort a wide range of difference-making and non-difference-making features—
many of which are of interest to the modelers working within those research programs.
This is not to say that models typically distort all the features of their target systems, but
that very often their distortions are far more pervasive/holistic than is assumed by accounts
of minimalist idealization. The final argument for this kind of holistic distortion view is that
both scientists and philosophers are rarely in the required epistemic situation to be able to
identify precisely which features are being accurately represented by a model and which
are being distorted. For one thing, this would require us to know what is true of the target
system in a way that is often inaccessible when it comes to extremely complex systems.
In addition, idealizing assumptions do not make their contributions to models and expla-
nations in isolation, but are rather collaborative members of larger sets of assumptions,
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inferences, and applications that constitute the model and the explanation it is used to
provide (Carrillo and Knuuttila 2022). As a result, the justification offered for using these
idealized models to explain and understand ought to be one that can be provided in situ-
ations where we are unsure which parts of the system are relevant/irrelevant and which
parts of the model are accurate/inaccurate. Characterizing scientific models as holistically
distorted representations ensures that the justifications offered for using scientific models to
explain and understand take this epistemic limitation seriously. Adopting a holistic distor-
tion view is not the only way to draw attention to those limitations, but it is an effective way
of focusing philosophical accounts on the question of how to justify idealizations within
that epistemic context.

5. How should we interpret the use of multiple conflicting models?

Weisberg’s characterization of multiple-models idealization is related to what has come to
be known as the problem of inconsistent models (Chakravartty 2010; Massimi 2018; Mor-
rison 20115 2015; Rice 2021). For example, as Morrison notes, “nuclear spin, size, binding
energy, fission and several other properties of stable nuclei are all accounted for using mod-
els that describe one and the same entity (the nucleus) in different and contradictory ways”
(2011, 349). In addition, Wendy Parker notes that “complex climate models generally are
physically incompatible with one another—they represent the physical processes acting in
the climate system in mutually incompatible ways and produce different simulations of
climate” (2006, 350). These cases raise philosophical questions concerning how multiple
conflicting idealized models can contribute to a scientific understanding of the same phe-
nomenon and how models constructed for different scales of the system can be connected
to one another. I will briefly discuss these two debates.

The first issue is attempting to clarify how the construction of multiple conflicting models
for the same phenomenon could produce genuine scientific explanations or understanding.
Specifically, given that most philosophical accounts have required models to provide ac-
curate representations in order to provide scientific explanations or understanding—what
Michela Massimi calls the “representationalist assumption” (2018, 335)—it is unclear how
constructing multiple conflicting models could produce genuine explanations or under-
standings of real phenomena.

One way of analyzing these cases is to argue that the models produce understanding
when they each target different aspects, features, or patterns within the system (Elgin 2017;
Potochnik 2017). For example, Elgin responds to the use of multiple conflicting models of
the nucleus by arguing that:

If what one model highlights is that in some significant respects the nucleus behaves
like a liquid drop, and another model highlights that in some other significant respects
it behaves as though it has a shell structure, there is in principle no problem. There is
no reason why the same thing should not share some significant properties with liquid
drops and other significant properties with rigid shells.

(Elgin 2017, 270)

Similarly, Potochnik (2017) suggests that many of these cases can be handled by argu-

ing that the models can produce understanding when they target different causal patterns
embodied by the real phenomenon. Like Weisberg’s characterization of multiple-models
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idealization, these accounts suggest that we can accommodate instances of multiple con-
flicting models by showing that the models are each built with different goals in mind and,
as a result, they each aim to capture different aspects of their target system(s).

In contrast, Morrison (2011), Rice (2021), and Carrillo and Knuuttila (2022) have
argued that this approach fails to capture instances in which each of the models “makes
very different assumptions about exactly the same thing” (Morrison 2011, 347). In these
cases, we cannot resolve the issue just by arguing that the models are accurate with respect
to different aspects of the system because the models aim to capture the same relevant
features of their target system(s), but they each do so using contradictory idealizing as-
sumptions. One way to respond to these cases is to separate—or at least put some distance
between—the requirements for scientifically understanding a phenomenon and the con-
ditions of accurate representation, exemplification, or truth for the model being used to
understand that phenomenon (Massimi 2018; Rice 2021). For example, Massimi (2018)
argues that these models should be interpreted as being constructed within different per-
spectives rather than as models that each aim to accurately describe their target systems
in contradictory ways. Alternatively, Rice (2021) argues that multiple conflicting models
can produce understanding by providing different sets of modal information about uni-
versal patterns that hold across different ranges of real and possible systems. Both of these
accounts emphasize the use of multiple conflicting models to explore possibilities and
provide information about counterfactual situations rather than attempting to accurately
describe real-world systems.

A related set of issues arises in cases of multiscale modeling (Batterman 2021; Jhun
2021; Rice 2021; Wilson 2017). In these cases, multiple conflicting models are constructed
because the phenomenon of interest depends on features of the system that span across
a wide range of spatial and temporal scales, but the available models (or modeling tech-
niques) are restricted to a relatively small range of scales. Batterman and others have
referred to this challenge as the tyranny of scales (Batterman 2013; 2021; Green and Bat-
terman 2017; Wilson 2017). A key philosophical question here is how multiple conflicting
models constructed for each of these scales ought to be combined, coupled, or used to pass
information from one scale to another. For example, Eric Winsberg (2006) has analyzed
multiscale modeling cases in which “handshakes” between the models are used to com-
bine conflicting idealized models at different scales. This is accomplished by first modeling
the boundary regions within one (macroscale) modeling framework, then modeling those
same regions with another (more microscale) modeling framework, and then averaging the
results for various key parameters. While this is certainly one way to have models com-
municate across scales, as Julia Bursten (2018) argues, the handshakes will need to be quite
different in different modeling contexts. Therefore, we still need to look at the details of
particular multiscale modeling cases in order to determine just which multiscale modeling
techniques and conceptual strategies ought to be used to integrate the models constructed
for different scales of the system (Bursten 2018). As another example, Batterman (2002;
2013; 2021) and Mark Wilson (2017) discuss a number of cases in which renormaliza-
tion or homogenization techniques are used to bridge between different scales in physics.
Rice (2021) discusses similar cases in biological contexts. These multiscale modeling ap-
proaches routinely involve a number of idealizing assumptions that enable the applica-
tion of modeling techniques that identify a set of key parameters across a variety of more
macroscale scales that are essential for capturing the general patterns of behavior of the
system(s) of interest.
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6. Conclusion: how do idealizations relate to the aims of science?

Each of the debates discussed here provides an example of a more general question concern-
ing how the widespread use of idealizations is able to contribute to the aims of science. As
we saw above, a number of philosophers have tried to show how idealizations can be made
compatible with the widely held assumption that scientific explanations ought to be true de-
scriptions of the reasons why the phenomenon occurred (Kaplan and Craver 2011; Strevens
2008). Others have argued that models can explain even when they distort the explanato-
rily relevant features of interest (Batterman and Rice 2014; Potochnik 2017; Rice 2021). In
a similar way, a number of philosophers have aimed to show how idealized models contrib-
ute to scientific understanding. Some of these accounts have suggested that the use of ide-
alizations requires us to adopt non-factive accounts of scientific understanding (Elgin 2017;
Potochnik 2017), while others have argued that even pervasively distorted models can give
rise to factive understanding of real phenomena (Khalifa and Sullivan 2019; Rice 2021).
Finally, several philosophers have argued that idealized models improve our ability to make
predictions (Douglas 2009; Odenbaugh 2005). Despite the disagreements about precisely
how idealizations contribute to each of these aims, philosophers generally agree that most
of the representations provided in scientific practice are “idealized, inaccurate, but success-
ful” (Odenbaugh 2005, 231). As a result, philosophers ought to continue investigating the
variety of ways that idealizations contribute to the central aims of science.
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6
DEIDEALIZATION

Alejandro Cassini

1. Deidealizing models

All scientific models are idealized to some degree. This presupposes that idealization itself
is a matter of degree and, consequently, that we can build more or less idealized models
of the same phenomena. In principle, at least, a highly idealized model of a given domain
is capable of being deidealized, that is, becoming less idealized. Some idealizations can
be removed from the model - or modified, or replaced - in such a way that the resulting
model becomes less simple, less abstract, or less distorted than the original model. In posi-
tive terms, the deidealized model is more complicated, more concrete, and perhaps more
“realistic” than the more idealized model of which it is a deidealization. Some philosophers
and scientists would claim that a deidealized model provides a better approximate descrip-
tion of the phenomena, or even that it is more truthlike or verisimilar than its idealized
predecessor.

Although many philosophical studies have been devoted to the concept of idealization,
the study of deidealization is just getting off the ground. What exactly deidealization is and
how it must be carried out are questions whose answers depend essentially on what we un-
derstand as idealization. There is no widespread agreement among philosophers of science
on how to define the concept, though there exists a body of different approaches to ideali-
zation; see Jones (2005), Weisberg (2013), Morrison (2015), Potochnik (2017), Wheeler
(2018), Cassini and Redmond (2021), Rice (2021), Frigg (2023), and Shech (2023). By con-
trast, no monographic book has yet been published on deidealization. For articles specifi-
cally devoted to the topic, see those by Knuuttila and Morgan (2019), and Cassini (2021).
The recent books by Rice (2021) and Shech (2023) include extensive discussions of deide-
alization within a broader philosophical context.

Roughly speaking, idealized models are usually described as simplified, abstract, dis-
torted, and approximate representations of some domain of phenomena. These concepts,
in turn, are in need of elucidation. Sometimes, models are qualified as false representations
of the phenomena. However, given that models are not bearers of truth values, at least not
primarily, it is convenient to avoid calling them true or false. Some decisions concerning
the use of the concepts associated with idealization are unavoidable for starting an analysis
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of the notion of deidealization. Without much justification, I will assume here that idealiza-
tion implies abstracting and distorting procedures, and that the simplified and approximate
character of idealized models is the outcome of both abstraction and distortion. Some phi-
losophers, however, have conceived of abstraction as something different from idealiza-
tion. For a sample of different positions concerning how the concepts of idealization and
abstraction are related, see Cartwright (1989, 1999), Jones (2005), Godfrey-Smith (2009),
Morrison (2015), Levy (2021), and Portides (2021).

An idealized model contains some abstractions and distortions. Some constants, param-
eters, or variables that we believe to be relevant to the phenomena to be modeled are not
included in the model. Besides, the model contains some constants, parameters, or variables
that we regard as non-representational of features of the modeled phenomena, or that are
set to values that we do not regard as the correct ones considering our experience (typically,
values such as 0, 1, or infinite). Deidealizing a model essentially consists of removing or
replacing some of the abstractions and distortions it contains, for instance, adding and/or
removing new constants, parameters, or variables, and/or setting some of its parameters to
different, more empirically adequate values.

2. A deidealized model

The so-called kinetic theory of gases (the term model was not fashionable when the theory
was put forward) provides a good example of how idealizations and deidealizations work.
A model of an ideal gas is built based on some general hypotheses concerning the compo-
sition of all gases and some idealizations concerning the specific properties of ideal gases.
Without intending a complete formulation of the model, we can list four hypotheses and
four idealizations.

H,: All gases are composed of many molecules of different elements (say, hydrogen,
helium, oxygen). H,: All the molecules move spontaneously at random in empty space, col-
liding frequently with each other and, more often, with the walls of the vessel containing
the gas. H,: The motion of the molecules satisfies all the laws of Newtonian mechanics. H,:
Every macroscopic volume of a gas is composed of a huge number of microscopic molecules
(to the order of Avogadro’s number, namely 10 or higher).

Given the enormous number of molecules that compose it, a macroscopic volume of
any real gas is a very complex physical system, whose dynamical state (the position and
momentum of every molecule) we cannot know in practice. Thus, to be able to state some
regularities about the behavior of the gases, some simplifying assumptions are required.
The ideal gas model is obtained by means of the following idealizations:

I,: The size of the molecules is negligible compared to the distances between them (pro-
vided that the pressure of the gas is not very high). For that reason, the internal structure
of the molecules is not taken into account, and they can be regarded as point-like masses.
I: The collisions of the molecules among themselves and with the walls of the container-
from a microscopic point of view, that is just to say they are colliding with other kinds of
molecules—are perfectly elastic (that is, the total kinetic energy of the colliding molecules
remains constant). I,: The different components of the velocity of each molecule are sta-
tistically independent of each other. I,: There are no intermolecular forces, meaning no
molecule exerts any attractive or repulsive force on other molecules.

As far as we know, the four hypotheses can be regarded as true about real gases, whereas
the four idealizations can be regarded as false hypotheses consciously introduced to build
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the ideal gas model. We do not believe that the molecules that compose a real gas are per-
fectly elastic, point-like particles that do not exert any force on other molecules. Quite to
the contrary, we accept that they have a definite volume, and an internal structure, interact
via intermolecular forces, and undergo more or less inelastic collisions (in which a part of
their kinetic energy is converted to other forms of energy, such as heat). Nonetheless, we
need all the false assumptions contained in the four stated idealizations if we want to build
a model from which we can infer some approximately true regularities about the behavior
of real gases. We do not believe that ideal gases exist, but the model of the ideal gas allows
us to know some general laws that approximate the behavior of real gases in some specified
conditions of temperature and pressure.

The equation of state for an ideal gas is PV = nRT (where P is the pressure, V is the vol-
ume, 7 is the amount of substance or number of moles of the gas, T is the thermodynamic
temperature, and R is the molar gas constant). An ideal gas, by definition, obeys exactly,
among others, Boyle’s law (according to which, if a given mass of gas is compressed at
a constant temperature, the product PV remains constant) and Joule’s law (according to
which the internal energy of a gas is independent of its volume). Those laws are only ap-
proximately true of real gases at low pressures; they are exactly true in the limit when the
pressure tends to zero. The ideal gas equation of state provides a good approximation of
the behavior of real gases at relatively low pressures and high temperatures. As pressure
increases, however, the approximation worsens. The ideal gas model has, then, a limited
dominion of application and does not deliver good approximate predictions for the behav-
ior of gases at high pressures or low temperatures.

The van der Waals gas model can be regarded as a deidealization of the ideal gas model.
It keeps all the general hypotheses of the kinetic theory of gases but removes some idealiza-
tions of the ideal gas model, specifically I, and I,. The van der Waals equation of state for

2

a gas is [P+a€2 (V—nb)=nRT (where parameters a and b, called the attraction and
repulsion parameters, are characteristic of a given substance). When the temperature and
volume of a gas are high enough, this equation, in the limit, reduces to the equation of the
state of the ideal gases. The van der Waals equation of state takes into account the volume
of the molecules and the existence of short-range intermolecular forces, both attractive and
repulsive, of electrostatic origin (the van der Waals forces). This equation of state permits
a more accurate account of the properties of real gases than the equation of the ideal gas.
It can be applied as a good approximation of gases at higher pressures and lower tempera-
tures than the ideal gas equation. It also works for fluids generally, but it delivers worse ap-
proximations for the behavior of liquids, where the molecules are tightly packed and move
with less freedom than they do in gases.

The van der Waals model also permits explaining why the ideal gas model provides a
good approximation of the behavior of gases at low pressures, relatively large volumes,
and high temperatures. The explanation hinges on the properties of the van der Waals in-
termolecular forces. These electrostatic forces are repulsive when the distance 7 between the
molecules is lower than a critical distance d but are attractive when 7 is higher than d (being
d of the order of the size of the molecules). The attractive force between two molecules is

. . . a
inversely proportional to the 7th power of the distance r that separates them ( fare = —7),

and the repulsive force to the 13th power [ frep = T)’ the net intermolecular force being
7
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a

the addition of the two (f :—7+€73). This fact explains why intermolecular forces
roor

are short-ranged: they quickly tend to zero when the distance 7 increases. Given that in a
low-pressure gas all the molecules are very far apart from each other, the attractive and re-
pulsive forces are so low as to be considered negligible. In high-pressure gases, by contrast,
the distances between the molecules are much shorter and, consequently, the intermolecular
forces become significant and cannot be neglected.

The van der Waals model has been tested by measuring the properties of different gases
at a wide range of temperatures and pressures. Its predictions have been confirmed as good
approximations to the measured values, except for critical temperatures in which gases ap-
proach a change of phase and undergo liquefaction. This indicates the limits of the domain
of application of the model, which is, nonetheless, much broader than the domain of appli-
cation of the ideal gas model. In this sense, it can be said that the deidealized van der Waals
model justifies the idealizations built into the ideal gas model (compare Shech 2023, 33).
The less idealized van der Waals model delimitates the domain of application of the ideal gas
model and explains why it works in such a domain. More generally, one is entitled to appeal
to deidealized models to justify the use of more idealized models under certain conditions.

3. The realist construal of deidealization

“Deidealization” is not a word that appears very often in the language of science, but the
idea is pervasive. Here is how a theoretical physicist characterizes the recipe he calls a
“general principle”—a methodological norm—of his discipline:

Idealize a difficult problem down to a simple one by ignoring as many complications
as you can. Get an answer to the simple problem. Then put the complications back in

and calculate how they affect the answer to the simple problem.
(Carroll 2022, 27)

This advice suggests that the method of physics prescribes first building a simplified and
idealized model, and then deidealizing it and comparing the performance of both models in
solving the problem you are interested in.

The term deidealization (sometimes spelled de-idealization) was introduced into the
mainstream philosophy of science by Ernan McMullin in a pioneering article devoted to
distinguishing different kinds of idealizations (19835). Deidealization is defined therein as
“the way in which models can be made more specific by eliminating simplifying assump-
tions” (1985, 261). According to McMullin, idealizing consists of a “deliberate simplifying
of something complicated with the view of achieving at least a partial understanding of that
thing” (248). The aim of idealized models is then not just to make some complex phenom-
ena tractable, but rather to understand some features of the real world (248). Idealizations
are “false assumptions” and for that reason, idealized models are “departures from truth”
(257). This departure from truth may take the form of deliberate neglect of some properties
we know the phenomena to possess, or of the deliberate attribution of properties we know
the phenomena not to. Those are the strategies of abstraction and distortion by which ideal-
ized models are built in the first place.

In McMullin’s view, deidealization proceeds by “adding back” details that had been ne-
glected when a model was built. This is the case of the van der Waals “corrections” to the
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ideal gas model, an example used by McMullin himself (1985, 259). The outcome of this
procedure is an “improved” model, that is, a model that delivers a better approximation
of the properties or the behavior of a real system. The new model, in turn, can be further
deidealized and so on. The first deidealized model then “serves as the basis for a continuing
research program” (261), a program that consists of obtaining a sequence of less idealized
models of the same domain of phenomena. In McMullin’s words, “this technique will work
only if the original model idealizes the real structure of the object” (261). Here we find an
overtly realist assumption (one that we do not know how to satisfy): How could we pos-
sibly verify that a model idealizes “the real structure” of something? From the realist point
of view, deidealization basically consists of removing the false assumptions of a very simple
model and replacing them with more verisimilar assumptions. Consequently, deidealized
models do not only permit better approximations of the data we have collected about a
given phenomenon but also provide a more truthlike description of the real world. McMul-
lin, as most present-day realists do, acknowledges that “models are necessarily incomplete”
(1985, 262) and, therefore, that no model, no matter how deidealized, could give us a com-
plete true description of any real system in the world. Presumably, the sequence of more
realistic models will never come to an end. Nonetheless, from a realist standpoint such as
McMullin, it can be said that the more deidealized a model is, the more approximately true
the description of the phenomena it provides.

The realist stance toward idealization can be found, sometimes in weaker or implicit
ways, in most endorsements of the representationalist conception of models. Models can
provide only distorted and incomplete representations of the phenomena precisely because
they are idealized. In the best case, idealized models give us partial and inaccurate represen-
tations of the modeled phenomena. They always misrepresent the phenomena in one way or
another. Nonetheless, some models can provide better (more accurate or more approximate)
representations of the structure and behavior of systems in the world. For representational-
ists, richer and more complex (i.e., less idealized) models provide better representations of
the phenomena than simpler and highly idealized models. From this point of view, which
has been called the “deficiency account of idealization” (Carrillo and Knuuttila 2022, 50),
all idealizations are problematic because they introduce deliberate distortions or false as-
sumptions, whereas the fundamental aim of science is to reach truthlike representations
of the world. Specifically, models aim at providing approximately true descriptions of the
phenomena in the real world. Among the many representationalist accounts of scientific
models within the philosophical literature, those of Laymon (1995), Niiniluoto (1999),
Sklar (2000), Giere (2006, 2009), and Teller (2008, 2009, 2012) are overtly realist concern-
ing the question of how idealizations represent the real world, whereas more pragmatically
oriented others, such as Jones (2005), Wimsatt (2007), Godfrey-Smith (2009), Morrison
(2015), and Strevens (2008, 2017), have dealt with idealizations in terms that show at least
some commitment to realist assumptions on ontological and epistemological issues. For
more references, see Cassini and Redmond (2021) and Frigg (2023).

A positive assessment of deidealization follows from a realist stance toward modeling
and representation. Deidealized models are perceived as epistemically superior to highly
idealized models because, to the extent that they eliminate abstractions and remove distor-
tions, they provide more concrete and truthful representations of phenomena. Given that
idealizations are understood as “false assumptions”, deidealized models are “truer” repre-
sentations of the phenomena precisely because they dispose of some falsehoods. Although
we cannot conceive of a model entirely devoid of idealizations, one that would give us a
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complete true description of the real world, deidealized models are more verisimilar than
the more idealized models from which they have originated. In this view, deidealization is
a valuable aim of science. A sequence of deidealized models gives us a way to gradually ap-
proach a more accurate representation of phenomena and, in the end, a truer description of
the world. In this sense, they constitute progress in our knowledge of the world. To come
back to our previous examples, from the realist standpoint, the van der Waals model pro-
vides a truer representation of real gases than the ideal gas model, although not a complete
or entirely undistorted one. We should notice, however, that all idealizations we regard as
false assumptions are relative to a background of accepted knowledge, and the same holds
for “truer” deidealizations. Modeling water as a continuous fluid counts as an idealiza-
tion relative to the accepted atomic theory of matter; in a different historical context—say,
Cartesian physics—it would have been regarded as a literally true description.

4. The pragmatic approach to deidealization

A different approach to idealization emphasizes the advantages and benefits of idealized
models. The standpoint of the pragmatic approach to idealization consists of acknowl-
edging that idealized models are often very efficient means for exploring, describing, ex-
plaining, and predicting some complex domain of phenomena that is inaccessible by other
means. This attitude goes beyond the indisputable claim that the world of our experience
is extremely complex and human agents have very limited epistemic capacities. It is not
that humans must resign themselves to using simplified and distorted models to represent
(or rather, misrepresent) an otherwise intractable domain of phenomena. Instead, ideal-
ized models are powerful tools for gaining epistemic access to phenomena that cannot be
known without employing idealizations. Idealization can be regarded as a virtue in itself,
not necessarily as a defect due to the incompleteness of our knowledge or our limited
computational powers. For instance, a highly idealized model, no matter how simplified
or approximate, can be a flexible tool that may be applied to different domains, including
many that were not intended when that model was built. There are many examples of these
beneficial side effects of modeling in the history of recent science. The Lotka—Volterra prey—
predator model, for instance, has found useful applications, among other domains outside
biology, in the field of economic theory. Abstract models are sometimes useful precisely
because they are very general; by contrast, deidealized models tend to be more specific and,
as a consequence, are hardly applicable to different domains of phenomena.

The pragmatic approach to idealization does not necessarily imply a non-realist con-
strual of the aims of science, and for that reason, it must be distinguished from pragmatism.
It is also not necessarily linked to an antirepresentationalist stance toward models. It is
an approach focused mainly on the many functions and applications of scientific models.
From a pragmatic point of view, models are built primarily to be used to solve a diversity
of well-posed problems, rarely to obtain a verisimilar description of real-world systems
underlying the phenomena. Sometimes, obtaining predictions of relative accuracy about
the values of just one variable, under definite initial conditions, is all that is required from
a model. In this respect, a purely predictive model may be regarded as highly successful
even though it does not give us any description of the underlying dynamics of a system and,
much less, of the causes responsible for the measured values of the variable in which we are
interested. Models must be assessed in light of the purposes of the designers and users. They
are successful to the extent that they are adequate for those specific purposes. Whether they
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provide verisimilar representations of the real world or not, assuming we could provide
them, might be in some contexts entirely irrelevant to satisfy the purposes of the model
users. As Winsberg (2018, 33) concisely puts it, “to be a good model is purpose relative”,
and this includes relativity to a specific domain of phenomena to which the model is to be
applied and to a desired standard of accuracy.

From this point of view, models are primarily useful tools for guiding our actions, regard-
less of whether they provide a verisimilar representation of the world or not. Maps, for in-
stance, can be regarded as idealized models of a given territory, according to a well-known
analogy. A very simplified map, such as the train stops displayed on a straight line, where
all the stops are placed at the same distance from each other, can be sufficiently accurate
for traveling from one place to another if our purpose is just to get off at the right station.
These kinds of idealized maps are usually distorted representations of the real train ride
because the real path is not a straight line, and the stops are not located at the same dis-
tance from each other. Those maps truthfully represent some topological properties of the
territory, such as the order of the stops, but not its metrical properties, such as the distances
between them. If our purpose is to calculate the total distance we must travel or the time
the trip will take, purely topological maps are not adequate for such purposes. Conversely,
a fine-grained representation of a territory may be counterproductive to our purposes; if all
that is wanted is to find the shortest route to the main highway, a very detailed representa-
tion of the rivers and the mountains of the lands traversed can make the map more difficult
to use. That is why road maps are usually simplified and represent just what is useful for
the sole purpose of making a car trip.

The pragmatic approach to idealization stresses the benefits of simple idealized models
more than their deficiencies. Often what we want is not a detailed representation of a phe-
nomenon, but rather a coarse-grained representation of it. In those cases, we do not need to
deidealize a model that works well enough for our purposes, as is the case with road maps.
From the pragmatic point of view, deidealizing a model is not always convenient and could
even be counterproductive to the purposes for which the model was built. Consequently,
deidealization cannot be conceived of as a valuable end in itself, much less as one of the ba-
sic aims of science. Deidealizing a model is not always a step forward on the path of science
because the primary aim of scientific models is not to provide a sequence of progressively
truthlike representations of the world. Deidealized models are valuable—and desirable—to
the extent they provide us with better epistemic tools to interact with the phenomena of
one’s experience and to satisfy the purposes regarding them. Those purposes can be ex-
tremely diverse, including all the functions that models may fulfill in scientific contexts,
such as exploring, discovering, explaining, and predicting phenomena, to mention just the
most relevant ones. A deidealized model is welcome when it contributes to satisfying one’s
purposes in more efficient or expedient ways. Obviously, sometimes this is not the case.
Assume, for instance, that the main purpose of a highly idealized model is to make the dy-
namic equations that describe the evolution of a physical system mathematically tractable;
a deidealized but mathematically intractable model of the same system is far from useful for
that purpose, and for that reason, it can hardly be regarded as progress toward the intended
aim, even when it provides a finer-grained description of that dynamics.

The pragmatic approach to deidealization is not yet a well-defined stance, although it
can be found among the authors, either realists or anti-realists, that have pointed out the
benefits of idealization and the possible counterproductive consequences of deidealization
(such as Strevens 2008, 2017; Potochnik 2017; Rice 2021). It has been recently developed
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within the framework of the artifactual conception of models by Carrillo and Knuuttila
(2022). One of the main outcomes of this approach has been to alleviate the concerns about
the distorted character of idealized models (and the consequent virtues of deidealization)
by focusing on the adequacy for purposes of all scientific models. From this standpoint, the
costs and benefits of deidealizing models have to be assessed case-by-case in each context,
relative to the purposes that such deidealized models intend to fulfill.

Real gases provide a good example of how practical considerations determine which
model must be employed in each context. The ideal gas model can be generalized by means
of the following equation: PV = znRT (where z is a non-dimensional number called the
compressibility factor). This law (which reduces to the ideal gas law when z = 1) gives a bet-
ter approximation of the behavior of real gases in conditions of pressure and temperature in
which the ideal gas law can be applied. In turn, the van der Waals model does not provide
a good approximation of the behavior of real gases in conditions of low temperatures and/
or high pressures. For that reason, it is not of very much use to solve many problems in the
domains of physics and engineering of low-temperature fluids. Other models (that physi-
cists use to call simply “equations”) have replaced the van der Waals model, among them,
the Redlich-Kwong model, the Soave model, and the Peng-Robinson model. These models
include more complicated equations than the van der Waals model, but they give better ap-
proximations of the behavior of real gases in a wide variety of conditions of temperature
and pressure, as is required to solve different problems, mainly in the field of engineering.

5. Disputed questions on deidealization

In recent years, there have been several controversies concerning the very possibility of dei-
dealizing models and the costs and benefits of deidealization. There cannot be any doubt that
deidealization is possible because we have enough examples of deidealized models. The dif-
ferent models of the physical pendulum have been the standard case study for philosophers
of science for years (Morrison 2015; Cassini 2021). The ideal or simple pendulum model is
highly idealized, but it can deliver approximate predictions for the period of real pendula
when the oscillations of the bob are small enough. In contrast, the compound pendulum
model, which is a deidealized model, is built by removing some idealizations of the simple
pendulum model, resulting in a model that takes into account mass, moment of inertia, and
the distance from the pivot point to the center of mass of the pendulum. The physical pendu-
lum model can also be deidealized in many ways by introducing what physicists call “correc-
tions”, a strategy that consists of adding new parameters to the physical pendulum model.
These include (i) finite amplitude corrections for different angles of oscillation, (ii) mass dis-
tribution corrections, where the finite mass of the bob and the cord are taken into account,
(iii) correction for air effects, such as buoyancy and friction, and (iv) elasticity corrections,
in which the stretching of the chord and the motion of the support are considered. Those
corrections are mathematically complicated (for details see Baker and Blackburn 2005).
Besides, the many deidealized models cannot be ordered in a linear sequence of successively
less idealized models. In any event, the example suffices to show not only that deidealization
is possible but also the many ways in which one model can be deidealized.

The pendulum example, however, does not show that every model can be deidealized or
that all models can be deidealized by removing one-by-one the idealizations they contain.
Several philosophers of science have argued that certain kinds of models contain inelimi-
nable idealizations. Batterman (2002, 2009, 2010) and Weisberg (2013) have claimed that
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the so-called minimal models—those that aim to explain the occurrence of some physical
regularity by isolating the dominant causal factors responsible for the observed regular
behavior—cannot be deidealized. If we were to deidealize a minimal model by introducing
new independent parameters, we would lose its explanatory power. We do not get a deeper
understanding of a natural regularity by adding more details to a minimal model because
those details generally obscure or screen off the dominant causal factors that produce that
regularity. In Batterman’s words: “adding more details counts as explanatory noise -noise
that often obscures or completely hides the features of interest” (Batterman 2010, 17).

Another argument against the possibility of deidealization was put forward by Batterman
and Rice (2014) and further elaborated by Rice (2021). According to Batterman and Rice,
models represent their targets in a rather holistic way and not through separable com-
ponents. That is why idealized models must be conceived of as holistic distortions of the
phenomena, in which the idealized components cannot be isolated from the non-idealized
components. Consequently, a model cannot be gradually deidealized by removing its ide-
alizations one-by-one. Most idealizations are introduced globally into a model to allow for
the application of mathematical modeling techniques that would be otherwise inapplicable.
Such global idealizations then cannot be removed without impairing the explanatory power
of the model, or even without destroying the model as a whole. The argument concludes
that at least some idealizations are not eliminable and have to be conceived of as inescap-
able features of a given model.

A related argument against the possibility of deidealization appeals to the epistemic
opacity of highly complex models, such as global climate models. Winsberg (2018) has
claimed that those models have a modular architecture that does not permit decompos-
ing them into separately manageable pieces. Climate models are built from many different
modules and submodules and involve many parameter options. The interaction between
the different modules is itself very complex and the process of coupling some submodules,
which include their specific parametrizations, is often a very difficult problem. According
to Winsberg (2018, 142), this complex architecture, which he calls “fuzzy modularity”,
has the consequence that “the overall dynamics of one global climate model is the complex
result of the interaction of the modules - not the interaction of the results of the modules”.
Those complex models are “analytically impenetrable”, as Winsberg (2010, 105) has called
them. In practice, it is impossible to track the sources of successes and failures of these kinds
of models up to single separable modules or submodules, which are epistemically inscruta-
ble. Such complex models cannot be deidealized because one cannot even know precisely
which idealizations are embedded into them.

Another holistic argument against the possibility of deidealizing models points out that
idealizations come in bundles and, consequently, cannot be separated. In this respect, Knu-
uttila and Morgan (2019) have argued that the idealizations embedded in several economic
models cannot be reversed because they cannot be separated from each other. In many
cases, economic models are not decomposable into independent parts, which could eventu-
ally be controlled, edited, and corrected. For that reason, it may not be possible to deideal-
ize a definite assumption without collapsing the functionality of the model. Models cannot
be deidealized step-by-step because they were not constructed this way, rather all the ide-
alizations were jointly embedded when the model was built.

These arguments, however, do not prove that deidealization is impossible or that no
model can be deidealized. They point out that many scientific models holistically repre-
sent their targets and, consequently, function as non-decomposable wholes. What the
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arguments do show is that some models cannot be deidealized step-by-step, as some realist
philosophers have thought. The idealizations embedded in a model sometimes cannot be
dismantled individually, rather they are subject to an all-or-nothing choice: either we use
them as units that represent holistically the intended target, or we have to replace them with
entirely different models. While we use a highly idealized holistic model for the purposes
for which it was built, its central idealizations cannot be corrected or removed. In any case,
this conclusion cannot be extended to all scientific models; as the example of the deidealized
models of the physical pendula shows, sometimes one can identify the idealizations a model
contains and remove or replace at least some of them in a non-holistic way.

A different controversy deals with the question of whether idealizations provide some
understanding of the phenomena in the real world and, if that is the case, what kind of
understanding they provide. At first glance, if all idealizations are regarded as false hy-
potheses, they must lack explanatory power by themselves. On the other hand, if highly
idealized models are explanatory and give us a genuine understanding of the phenomena,
deidealized models of the same phenomena should give us a better understanding of them.
Several philosophers of science have claimed that idealizations are effective means to obtain
understanding, either because they explain the phenomena (Bokulich 2016) or because they
help identify causal influences by highlighting causally relevant factors (Strevens 2017).
From these points of view, deidealized models do not necessarily provide a better under-
standing of the phenomena. On the contrary, they can make explanations more difficult
(for instance, mathematically more complicated) or obscure the causal factors that one
wishes to isolate.

The stance according to which idealized models provide understanding of phenomena
has been the target of a variety of criticisms. In this respect, Sullivan and Khalifa (2019, 1)
have claimed that idealizations have merely an instrumental value: to the extent that they
are falsehoods, they are mere “conveniences that aid in easing calculations and making
things salient”. These authors endorse the idea that deidealized models have more epistemic
value because they are more veridical or approximately true than their idealized counter-
parts. Here, the realist and pragmatic approaches to deidealization show their differences.
For the realists, deidealized models are more explanatory than their idealized counterparts,
and for that reason, they give us a better understanding of the phenomena. The ideal gas
model, again, is a good example. It is understandable why the false assumption according
to which there are no intermolecular forces is a good idealization when one grasps the
explanation provided by the van der Waals deidealized model. Then, we understand that
the ideal gas model is a good approximation for the behavior of gases at low pressures and
high temperatures because we know why those forces are negligible in such conditions. By
contrast, for the pragmatic approach, some deidealized models actually provide less under-
standing of the phenomena than the more idealized ones because they are more complex,
epistemically opaque, and often mathematically intractable.

The question of whether deidealized models provide a better understanding of the phe-
nomena than their more idealized counterparts is sensitive to several very general issues
concerning scientific explanation. There certainly are different kinds of explanations and
different types of understanding. Consequently, some explanatory models can provide one
or another sort of understanding, depending on which kind of explanation they provide.
On the other hand, whether non-explanatory models can provide some understanding of
the phenomena will depend on whether we are disposed to accept that it is possible to
understand a phenomenon without explaining it in any way. This is a contentious issue on
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which no consensus has emerged among philosophers of science. There is extensive and
growing literature on scientific understanding and its relations to scientific explanations.
Strevens (2008) is a classic on the topic. For more references, see Grimm, Baumberger, and
Ammon (2017) and Sullivan and Khalifa (2019).

As the ideal gas and ideal pendulum examples have shown, there is no doubt that at least
some models can be successfully deidealized. Furthermore, these examples show that dei-
dealized models are sometimes necessary for achieving certain well-defined purposes, such
as making precise measurements or obtaining accurate predictions. However, it does not
follow from this that deidealization is always possible or desirable. The issue must be re-
solved in each specific case. When we are faced with a particular model, four different issues
should be distinguished. First, there is the question of whether deidealizing is possible at
all, or more concretely, whether that model can be deidealized. Second, we can ask whether
we know how to deidealize it. If we do not know how to do it, we cannot conclude that
deidealization is impossible, because nothing follows from our ignorance. Third, we can try
to determine how many ways to deidealize such a model are feasible. Fourth, there is the
issue of whether deidealizing that model is convenient or not, considering the purposes for
which it was built or subsequently used.

Deidealization is far from a simple or trivial task. Sometimes we simply do not know how
to deidealize a model, and sometimes there are several possible ways of deidealizing it. In
that case, the different deidealized models must be assessed pragmatically as some of them
might be useless or even counterproductive given their intended applications. In any case,
from a pragmatic point of view, deidealization is not an end in itself but rather a means of
accomplishing more efficiently the purposes for which a given model was designed or used.
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7

MODELS, FICTION,
AND THE IMAGINATION

Arnon Levy

1. Introduction

Science and fiction seem to lie at opposite ends of the cognitive—epistemic spectrum. The
former is typically seen as the study of hard, real-world facts in a rigorous manner. The latter
is treated as an instrument of play and recreation, dealing in figments of the imagination.
Initial appearances notwithstanding, several central features of scientific modeling suggest
a close connection with the imagination, and recent philosophers have developed detailed
accounts of models that treat them, in one way or another, as akin to fictions. This chapter
will critically discuss the fictions approach. The chapter first motivates the appeal to fiction
(section 2); then looks at several ways of developing the basic idea that models are a form
of fiction (section 3); and finally considers how models, understood in a fiction-based way,
can play the epistemic roles they are typically thought to play, namely as tools of scientific
reasoning, representation, and explanation (section 4.) The final section provides a sum-
mary and points to some possible directions for further development and expansion.

2. Motivating the models-as-fictions view

A central feature of modeling is idealization: the introduction of false assumptions—
infinite populations, point masses, and perfectly rational agents—to facilitate analysis and
understanding (Jones 2005; Levy 2021). These entities seem concrete, but they cannot be
encountered in any spatiotemporal location, nor can they be studied by empirical methods;
they are posits. It is natural to regard such posits as imaginary, and this is often how they
are referred to within scientific discourse. Another way to put this, to quote Godfrey-Smith
(2006, 734-5), is that “model systems are often treated as ‘imagined concrete things’—
things that are imaginary or hypothetical, but which would be concrete if they were real.”
In this, models appear not unlike the persons, places, and events populating novels, films,
and other fictions—Holmes, Middle Earth, The War of the Worlds, etc. Thus, a central
motivation for treating models as fictions is their shared imagined, concrete-hypothetical
character.
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Several related features of the practice of modeling strengthen this line of thinking.
For one thing, modelers often describe models in a way that is not unlike the introduction
and development of a fictional setup. Consider this example, drawn from Chapter 19 of
Richard Feynman’s celebrated Lectures on Physics, which discusses centers of mass. Early
on, Feynmann explains how to calculate the center of mass of a compound object:

Suppose that we imagine an object to be made of two pieces, A and B. Then the center
of mass of the whole object can be calculated as follows. First, find the center of mass
of piece A, and then of piece B. Also, find the total mass of each piece, M, and M,.
Then consider a new problem, in which a point mass M, is at the center of mass of
object A, and another point mass M, is at the center of mass of object B. The center
of mass of these two point masses is then the center of mass of the whole object.

This little text has the look and feel of a (very) short (if rather unblemished) story.
Moreover, Feynman begins by asking the reader to use their imagination. Such examples
can be multiplied,' suggesting a kinship between modeling and fictionalizing.

A further aspect of similarity involves the presence of an internal/external distinction.
In fiction, it is natural to distinguish what is the case “in” or “according to” the fiction
from what is true simpliciter. According to Thomas Mann’s The Magic Mountain, a young
shipbuilder named Hans Castrop goes to visit his ailing cousin at a sanitorium near the
Alpine resort town of Davos, Switzerland, and ends up staying for seven years. That this is
true “in” Magic Mountain is settled by the text of the novel. Whether such a place actually
existed is a different question, to be settled “outside” the novel—most straightforwardly by
visiting Davos (at least around the time of the novel’s writing—i.e., 1924.)*

A final, more theoretical, consideration motivating appeals to fiction is the thought that
this will allow one to use resources from the philosophy of fiction. There is a fairly rich
tradition of philosophical discussion about fiction, including its representational and onto-
logical aspects. As we shall see in the next section, several ideas from this area have been
utilized in accounts of modeling.

Before that, two preliminary points to clarify these notions and the use to which they
will be put to here should be discussed. First, the term “fiction” is sometimes used to indi-
cate that a statement or narrative is false (“the story he told us was a complete fiction.”).
But fictions can contain true propositions, and more generally there is no contrast between
fictionality and truth. This is clearest in cases of fictions that are extensively grounded in
fact, like historical novels, where much of the fiction’s content may be factually accurate.
Even in many “ordinary” fictions much of what is depicted—including mundane facts such
as names of places as well as more subtle aspects of culture and society—may well be factu-
ally accurate.’ Thus, the fictional is not fundamentally opposed to the factual. That said, the
fictional, as should be obvious, is not necessarily anchored in the factual. Fictions contain
many statements that are not true of any part or aspect of the real world—invented persons,
places, and events. More fundamentally, fiction-making is not based on truth in the way
factual description normally is, or at least is expected to be. In producing fiction, either in a
literary context or in a scientific (modeling) context, one is not attempting to describe real-
ity, at least not in the first instance, and the success of the product—the fiction—isn’t to be
assessed, at least not in the first instance, in terms of factual accuracy.
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The second point concerns the relevant notion of imagination, which can be understood
in thinner and thicker ways. In a thin sense, to imagine is to merely entertain, to take under
consideration without presuming the truth. In this sense, we imagine whenever we perform
hypothetical reasoning. But in a richer sense, to imagine is to “see in the mind’s eye.” In
this sense, imagining involves a special psychological capacity, a kind of offline sensory
experience. Philosophers have differed on which of these senses is important in the context
of modeling (Salis and Frigg 2020) and on its epistemic significance more broadly (Kinberg
and Levy 2022). It could be argued that the significance of appeals to the imagination is
diminished if it is confined to the thick sense. Since some authors discussed in this chapter
would disagree, this is not presumed in what follows.

One final remark is in order, before moving on to consider fiction-based accounts in
more detail. While the idea that models can be understood in terms of fiction has gained
some popularity, with more than a few authors arguing for it and developing it, significant
dissent has been voiced as well. A moderate criticism, presented by Adrian Currie (2017)
is that a fiction-based view is insufficiently general. Currie gives examples from engineering
and argues that the fictions approach does not capture them well. Gregory Currie (2016)
has made a more far-reaching critique, suggesting that the appeal to fiction is philosophi-
cally unilluminating. He is unimpressed, in particular, by the idea that models and fictions
are alike in terms of the internal/external distinction. Perhaps the harshest critic of the
appeal to fiction is one of the forefathers of the modeling literature, namely Ronald Giere
(2009). He holds that models function differently from fictions, in society and culture.
Moreover, he worries that the assimilation of models into fiction might provide fodder for
anti-scientific forces such as the Intelligent Design movement.

These objections should be taken seriously and may at the very least point to limitations
of and problems with the fictions view of models. But they do not seem to nullify the ap-
peal of the view, certainly not to the point where we should avoid looking into it in further
detail. That is what the chapter turns to next.

3. Developing the models-as-fictions view

3.1 Models and the imagination

The idea that models are akin to (or perhaps a species of) fiction can be developed along vari-
ous interrelated dimensions. One such dimension concerns the relationship between a model,
construed fictionally, and the imagination. Suppose we accept that modeling, in some of its
phases at least, involves the use of the imagination. What exactly is the nature of the imagina-
tive exercise in question and how does it relate to the way we engage our imagination when
consuming fiction? This is relevant, not merely to understanding the relationship between
models and fiction. It is also central to understanding what determines a fiction’s content,
and what makes claims regarding it correct or incorrect (note that the notion of “true” is not
used here deliberately, as per the remarks about truth and fictionality made above).

Almost everyone in the philosophy of fiction agrees that we engage with novels, films,
and other central forms of fiction by means of our imagination. Fleshing out the connection
to fiction has been key to most views of the semantics of fiction, but this can be done in
several ways. Two will be discussed, as they seem to illustrate not only the similarities but
also the potential differences between models and fiction. The first move is to distinguish
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actual from prescribed uses of the imagination. What makes something fiction could be, on
the one hand, that people actually use their imaginations when consuming it. Or it might
be that they ought to use their imaginations when consuming it. A central insight attrib-
uted to Walton (1990) and Currie (1990), now endorsed by most philosophers of fiction,
is that fictionality has a normative element to it. It is about what we should imagine when
encountering a novel or a painting. While it seems true that people often do in fact use their
imaginations when reading a novel or watching a film, that is not what makes it fiction,
and not what determines its fictional content. It is the fact that we should respond to it a
certain way: by employing the imagination (and not, as in the case of non-fictional work,
by believing its content).

But what determines what we should imagine when consuming fiction? A simple an-
swer is the fictional work at issue, be it a novel, a painting, or a play. However, this simple
answer calls for elaboration: how does the work determine what we ought to imagine? At
least two sorts of views can be outlined. An ”intentionalist” outlook holds that when, say,
we read a novel, we are supposed to imagine what its author intends for us to imagine.
And to the extent that we have succeeded in doing so, we have correctly grasped the fic-
tion’s content, can make correct statements about it, etc. Stated in this simple form, this
view seems implausible, but several writers about fiction have developed it in ways that
overcome its apparent simplemindedness (Currie 1990; Stock 2017). Without entering into
detail, we can note that on such a view, fictions are seen as a form of communication, inas-
much as the reader (or, more broadly, the consumer) is engaged in interpreting the words
(or splotches of paint, etc.) of the author. It is for this basic reason that such a view is not
well suited to account for models. Modeling is, of course, a human activity, and does in-
volve communications—among modelers, for instance—but a model is not fundamentally
a vehicle of interaction between people. Moreover, while the intentions of a modeler (i.e.,
someone who originates a model) may matter in some contexts, they do not in general de-
termine what the model is about. For this reason, while intentionalism may be a plausible
view of fiction it is not suitable for an account of models.

An alternative to intentionalism is the make-believe view from Kendall Walton (1990),
an influential account of fiction and artistic representation. In this view, fiction is a regi-
mented, “grown up” version of children’s pretend play. A game, in this analysis, involves
two key elements: a prop, which is a concrete real-world object; and a set of rules—Walton
calls them “principles of generation”—which specify what the game’s participants are to
imagine given the prop’s properties. To use an example from Walton, in a game of “Spot
the Bear,” the prop might be a tree stump and principles of generation might say, for in-
stance, that when seeing a stump, one is to imagine encountering a bear, that the stump’s
color should determine how one is to imagine the color of the bear’s fur and so on. The
extension to fiction is straightforward: a novel or a painting is a prop, which together with
principles of generation mandates that certain propositions are “fictional,” namely, to be
imagined. Given the text of Thomas Mann’s The Magic Mountain, it is fictional, i.e., one is
to imagine, that Hans Castrop visits his ailing cousin at a sanitarium near Davos. That is,
given the novel’s text and the relevant principles of generation, this is a correct (in Walton’s
terms ‘fictional’) claim in the game of The Magic Mountain. A further distinction made
by Walton is significant here: some claims in a game are primary, i.e., they are explicitly
specified in the work of fiction. That the hero’s name is Hans Castrop, for instance. Other
claims are implied, that is, they are inferable from the primary claims, given principles of
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generation (as well as features of the context). For instance, it is implied, but never stated
explicitly, in The Magic Mountain that Hans Castrop is killed on the battlefields of WWTI.
Indeed, for Walton most of a fiction’s content is implied, since only a small portion of what
is to be imagined when, say, reading a novel, is explicitly stated in it.

Walton’s view is much more readily applied to modeling than intentionalism. We can
regard a model’s equations (or even a verbal description of the model) as a prop that,
given suitable (scientific) principles of generation, implies what the model’s content is.
The primary truths are those propositions that are explicitly specified in the equations or
text, and the implied propositions are those that follow from them, given principles of
inference from logic, mathematics, and the relevant scientific discipline. Several authors
have adopted such a view of modeling (e.g., Frigg 2010; Toon 2010; Levy 2015.) Notice
that it suggests that the contents of the model are not dependent on the modeler, or her
intentions. They are a matter of accepted principles of generation that (we may suppose)
are part of the practice of the relevant scientific community. Moreover, while some such
principles may be general, applying across many or all scientific disciplines—perhaps basic
principles of logic and mathematics—others may be specific to a given area or modeling
tradition.

4. Direct versus indirect

The next point concerns the manner in which models relate to their targets, i.e., the things
(systems, phenomena) in the world that we intend to study by means of modeling. Suppose
one introduces a model as follows: “imagine an ideal pendulum with length / and period p.”
We may call this a model specification. What is the status of such a specification—what is
it about? And how does the specified model relate to its target in the world? Two sorts of
answers are possible: a direct and an indirect approach. Let’s start with the latter.

It may be easiest and most natural to understand the indirect approach by thinking
first of a concrete actual model—such as a stick-and-wire model of a molecule or the San
Francisco Bay Model developed by the US Army Corps of Engineers (Weisberg 2013,
chap. 1). In these sorts of cases, scientists construct an object—a concrete, actual one, that
is—so as to serve as a simple and accessible surrogate for the system they are ultimately
interested in. They study this system for a while, figuring out (if successful) how the model
behaves under various circumstances. They then apply the lessons to a target, transferring
their finding about the model to the system they are ultimately interested in (the chemical,
the bay, etc.). This process is indirect in a straightforward manner: to study the actual bay,
one first studies a surrogate. The indirect approach to modeling can be seen as a generaliza-
tion of this, to include models that are not concrete (which is to say, most models). It should
be noted that the indirect approach need not be coupled to a fictionalist attitude to models.
Indeed, one of its central advocates, Michael Weisberg, has been explicitly skeptical of the
connection between models and fiction (2013, chap. 4). But others have developed an indi-
rect fictionalist outlook, and this will be the focus here.

In the indirect approach, fictionally construed, the modeling process involves two
“things” corresponding to the two phases of a model-based investigation: a fictional model
system and a real-world target system. While the second of these is fairly straightforward,
ontologically speaking, the first is puzzling: what is a fictional model system? Does it genu-
inely exist and if so, what does its existence consist in? Here too philosophers of science
have looked to discussions of fiction for guidance. One option is to view the model as a
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possible entity. In the context of fiction, this view was developed by David Lewis (1978).*
It has some initial attraction since it seems that at least many literary fictions describe a
possible world, a way the (actual) world might be. It might initially seem that such a view is
even more attractive as a view of fictional models. Recall the phrase used by Godfrey-Smith:
models appear to be objects which “would be concrete if they were real.” Isn’t this close
enough to saying that models are possibilia? Perhaps (although this is not his view—see
Godfrey-Smith 2020 for discussion). Be that as it may, the possibilia view has not garnered
much support. One reason for this is that there are well-known cases of models that de-
pict impossible states of affairs (Thomson-Jones 2010).° A more basic reason is that many
philosophers of science are wary of the metaphysical commitments of such a view (Levy
2015). They do not think acknowledging possibilia is a price worth paying for an account
of modeling.

Might models be construed notas concrete hypotheticals but asabstract objects? Some have
suggested so. Weisberg identified models with mathematical structures (2013)—although
it is not clear that he intends this as an ontological claim. Recently, Thomson-Jones (2020)
and Thomasson (2020) have suggested that models be understood as abstract artifacts.
Based on Thomasson’s previous work on social ontology and the metaphysics of fiction,
this approach has it that models are “thin” abstract objects. They are generated—or, more
precisely, modelers bring them into being—in the course of scientific modeling but have no
more reality to them than is needed to serve as loci of reference and property attribution.
They are “hypostasized” objects that serve the purpose of coordinating our talk of mod-
els. This kind of view is ontologically economical (unlike modal realism about models).
Thomasson and Thomson-Jones argue that there are real similarities between models and
fictions inasmuch as both are created systems, and that the artifactual approach captures
this. But there are concerns about this approach, too. Perhaps the most serious of these is
that abstract artifacts do not play a genuine cognitive role (Godfrey-Smith 2020): they are
too thin to constrain the practice of modeling, and are of doubtful explanatory significance
(Frigg 2022, chap. 14 provides further discussion.)

So much for the indirect approach. It is fair to say that it sits well with modeling prac-
tice but generates an ontological puzzle that is not easy to resolve. To the extent that one
is troubled by this puzzle, one might at this point opt for a direct approach to modeling.
On such an approach, there is no model system that stands apart from the target and can
be explored independently of it. Both Toon (2012) and Levy (2015) developed such an ap-
proach. Relying on Walton’s make-believe approach to modeling, they suggest that it allows
one to view models as ways of thinking about real-world targets, and nothing more.® Levy
and Toon argue for this approach primarily on the grounds of ontological parsimony: the
direct approach does not need to view models as entities in any substantive sense. They
merely involve imaginative descriptions of real-world systems.

Toon develops the direct view as a straightforward application of Walton’s general ideas
about fiction. He thinks that model specifications can serve the role of Waltonian props,
with the rest of the account largely parallel to how Walton views fiction in general. Levy’s
account is a variant of this general strategy, which relies on Walton’s notion of a prop-
oriented make-believe—the idea, in essence, is that we can play a game of make-believe in
which our interest is geared at a real-world system. Thus, (to use an example from Walton
1993) suppose you ask a person where in Italy the town of Crotone is and they reply, “on
the arch of the Italian boot.” Here, you are enjoined to imagine Italy as a boot as a means
for informing you of the location of Crotone. Applying this to models, the idea would be
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that we imagine certain systems as different than they in fact are so as to highlight certain
properties, make evident certain processes, ease certain inferences about them, etc.

As can be seen, the direct approach is ontologically parsimonious. It recognizes only
actual target systems and creative descriptions of them. Some have argued that this parsi-
moniousness is also a source of trouble. Frigg and Nguyen (2016) think that some cases of
idealization cannot be accommodated within a direct approach. They also argue that the
direct approach cannot handle cases in which models have either generalized targets or no
apparent target (see also Salis 2021). If this is so then the direct approach seems doomed,
since many models have generalized or non-existent targets, and idealization is central to
the practice of modeling. But this topic is still being debated, and the jury is out on whether
the direct approach can overcome these difficulties.

Before moving on, two recent accounts should be mentioned. In a sense, these views aim
for the best of both worlds—both to neatly capture the practice as the indirect approach
does and to remain as ontologically lean as the direct approach. The first view is expounded
in Frigg and Nguyen (2016). These authors offer an elaborate account of model-based rep-
resentation which we cannot fully recap here (although one of its elements is examined in
section 4, when discussing keys.) They too employ Walton’s make-believe approach but do
so while aiming to remain ontologically neutral. As they put it at one point:

Game-driven make-believe can be seen as a way to refer to, or even create, a Meinon-
gian fictional entity (Priest 2011), as a method to create an abstract artifact of the
kind Thomasson (1999) describes, or simply as inducing mental content in those who
play the game. (2016, 27)

In the present context, this claim to ontological neutrality cannot be assessed in detail. The
main worry about it is that it may cause trouble when we come to account for model-target
comparisons (which will be discussed more fully in section 4), inasmuch as such compari-
sons may pose constraints on the ontology of modeling. Frigg and Nguyen are somewhat
terse in their treatment of comparative statements, seeming to suggest that they are less
important than some authors hold.

A second best-of-both-worlds attempt is put forth by Fiora Salis. She has recently pro-
posed an approach that incorporates elements of both the direct and indirect views. Salis’
suggestion is that models be seen as complex objects: “According to [this] view, model
M is a complex object constituted by model description D and content C, so that M =
[D, C].” She adds that “From an ontological point of view, the model is analogous to a
literary work of fiction; the model description is analogous to the text of a fictional story
(the prop that prescribes imagining certain f-truths); and the model content is analogous
to the content of a fictional story...” (2021, 729). She goes on to argue that the model’s
content (the C in the above formula) is no more than the contents of a mental file, having
no further, “heavy duty” reality. While this suggestion seems to do a better job with cases
of generalized and/or non-existent targets, it arguably faces a version of the criticism lev-
eled by Godfrey-Smith at the abstract artifacts view: can mental files explain the uses to
which models are put, in the course of model exploration? Salis does not address this point
directly, and she may well have a response. Given the difficulties of both the direct and the
indirect approaches, her third option seems promising, and at any rate well worth further
development.
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5. Knowledge of models

A further set of questions that arises for a view of models as fictions is epistemological.
Here we can divide the terrain in two: knowledge of the model itself will be discussed in
this section. The next section will discuss issues relating to knowledge of the world outside
the model, as it were, under the heading of “exportation.”

If a model is a fiction, then investigating the model is akin to figuring out the content of
a fictional scenario. But this leads to a concern: why think there is a definite, discoverable
content to fictions? Doesn’t the fictions approach portray model-based investigation as a
much less systematic and objective affair than it is (and should be)?

A basic response to this worry can be obtained by appealing, yet again, to the work of
Kendal Walton. Recall the distinction drawn above, in connection with Walton’s frame-
work, between primary and implied fictional statements. The former is explicitly stated in
the fictional text (or expressed in a non-verbal ways, if the fiction isn’t literary) whereas the
latter is implicit, to be inferred from the explicit ones. If a model is to be construed along
these lines, then clearly much of what constitutes modeling is a matter of figuring out what
the implied propositions are: what follows from the model’s explicitly specified elements.
Thus, if we model some system as an ideal pendulum, the bulk of our work would be to
solve the pendulum equation for the relevant values, i.e., to figure out what the mathemati-
cal expressions (given an interpretation, and given values for variables, boundary condi-
tions, etc.) imply.

Walton’s framework supplies a general answer to the question of what governs these
implications: it is the relevant principles of generation. Such principles just are principles
for inferring fictional statements, either from props or (more importantly) from primary
propositions. Whether such principles exist for artistic fiction can be disputed: arguably, in
literary fiction, there simply is no determinate implied content (Levy 2020). But it is much
more plausible that they exist in scientific contexts. Some of the relevant principles are
general, including principles of mathematics and logic, while others are domain-specific,
i.e., particular to this or that scientific field. But this seems to be as far as we can go within
a general discussion of models: the notion of principles of generation supplies an answer to
the question of how knowledge of fictional models works in principle, but it also suggests
that beyond basic principles of mathematics and logic, there will not be a general account
of how model content is determined.

Before moving on to questions about exploration, one final issue pertaining to knowl-
edge of models, to which relatively little attention has been paid in the literature so far,
should be mentioned: the role of the imagination. Early on, thinner and thicker senses of
the imagination were distinguished. The first is closely related to hypothetical reasoning,
while the latter involves a sensory-like component. Which kind of imagination is involved
in the exploration of a model? Weisberg (2013, chap. 4) assumes that it is the richer sense,
and on this basis voices concerns about the fictions view of models—he worries that some
common elements of models (such as probabilistic ensembles) cannot be imagined (in the
rich sense of imagining, that is.) Salis and Frigg (2020) argue, to the contrary, that a thin
notion of imagination suffices. This allows the view to avert concerns such as Weisberg’s. A
worry about a view like Salis and Frigg’s, however, is that it dilutes the role of the imagina-
tion, and consequently of imagination-based views of fiction. These and related issues have
not been hashed out in much detail as of yet and remain largely open.
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6. From models to targets

The final set of issues to be discussed is perhaps the most important, as it concerns the very
purpose of modeling, namely learning about the world. While a modeling project often in-
volves an extensive phase in which the model is explored, that is typically done, ultimately,
in service of using the information gathered from the model to predict, understand, and
explain some real-world set of targets. Several philosophical issues arise in this context,
from relatively general questions pertaining to realism versus anti-realism to more specific
questions concerning the manner in which model-based knowledge is exported to worldly
targets. These are tackled in order.

First, do models, understood as fictions, generate special problems for a realist
standpoint?” Here realism is understood as a view both about science’s goals—seeking true
descriptions of phenomena and their underpinnings; and as a statement about its results—
science sometimes succeeds in producing true descriptions of phenomena and their under-
pinnings. It might at first seem that the fictional perspective on models does indeed generate
problems, for isn’t the claim that a model is a fiction tantamount to saying that it does not
accurately describe reality?

But this is too quick. First, recall the fact that modeling often involves idealization—
making false assumptions in order to simplify and facilitate model analysis. Indeed, that
was part of the motivation for the fictions view. It is not as if treating a model as fiction adds
further tension with realism. Another point made earlier concerns the relation between
fictionality and truth: it is not one of opposition but of independence. Fictions need not,
but certainly can, contain true propositions. Indeed, fiction can—and many artistic fictions
arguably do—aim at truth. That is, fiction can, by presenting the world in a fictional way,
try and sometimes succeed, in telling us a larger (or simply different) truth about the world.
This is equally, if not more so, the case in science as it is in art. Thus, the mere fact that a
model is seen as fiction does not entail that it cannot also tell us true things about its targets.

That said, the fictions view does remind us that one central argument for realism—the No
Miracles Argument (NMA)—may have limited applicability in the context of model-based
science. Briefly put, the NMA is an argument that states that since the best explanation for
the success of science is that its underlying theories are (at least approximately) correct, we
should accept that it is (at least approximately) correct. This argument is seen by many as
realism’s “master argument” (Musgrave 1988; Psillos 2003). The NMA takes the form of
an inference to the best explanation—it suggests that since truth (or approximate truth) is
the best explanation of the success of scientific theories, we should believe that at least many
of these theories are true (or approximately so). However, like in any case of inference to
the best explanation, we cannot use such an inference rule to reach a conclusion that we
know, in advance, to be untrue. It may well be that the conspiracy theory according to which
the CIA is behind the assassination of JFK, is very attractive in terms of sheer explanatory
“loveliness” (Lipton, 2004.) But we have independent information confirming the falsehood
of this theory, and so we cannot move from its explanatory prowess to its truth. In the case
of modeling the situation is, in a sense, even more extreme: we know that the central ele-
ments of the model are idealizations. That is, we know them to be false. So, we cannot use
model-based explanations in an IBE, at least not without extreme care. Thus, by focusing our
attention on idealizations as the fictions view of models does, it helps us see the limitations
of an argument such as the NMA. This is not an in-principle blow to realism, but it does
limit its relevance—or at least the relevance of its master argument—in many real-life cases.
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But realism, as a broad philosophical question, is not the only or even perhaps the main
question on the agenda, when learning from models is at issue. A more immediate set of
questions concerns how models inform us about their targets. In asking such a question,
we presume, at least provisionally, that models do indeed inform us about targets. There
is room for further distinctions in this context: we can ask whether and how models allow
us to make predictions, how they enter into explanations, and so on. But this direction
will not be examined here further. Instead, two broad sorts of answers to the “how models
inform” question will be addressed: one based on similarity relations, the other based on
the concept of a key.

The notion that we learn from a model about its target by means of, and to the extent
that, it is similar to its target, need not be associated with a fictions view of models and
is in fact embraced and developed by authors who explicitly oppose the fictions view. But
it sits well with a view in which models are concrete hypothetical systems, to return to
Godfrey-Smith’s locution. In this kind of view, models and targets may share certain prop-
erties, or at least have a degree of resemblance in their properties. The ideal pendulum’s
length may be similar to a real pendulum’s; the rate of predation of a model population may
resemble the rate at which a real population is preyed upon, etc.

A similarity account of model-target relations merits further elaboration. For one thing,
it should spell out an account of similarity and of the kinds of similarities that are relevant
in the assessment of model-target relations. The philosopher who has done the most to
articulate such an account appears to be Michael Weisberg (2013, chap. 8).® Weisberg
explicitly distinguishes similarity with respect to the target’s attributes in contrast to an un-
derlying similarity of mechanisms. He then offers an account in terms of feature-matching,
inspired by the seminal work of psychologist Amos Tversky (1977). Whether Weisberg’s
account succeeds in part or in whole is not an issue that will be discussed here (see Parker
2015). But surely some such account is needed if claims about model-target similarities are
to be illuminating.

A similarity account of model-target relations should also be seen in light of the discus-
sion of the previous section, concerning model ontology. A simple and straightforward un-
derstanding of similarity says, roughly speaking, that two things are similar insofar as they
share properties. Obviously, for an object to share a property with some other object, it
must have that property. But recall that at least some versions of the fictions view of models
contend that the model is a “mere” fiction and not an object at all. It is unclear whether and
how such a view is consistent with a similarity-based account of model-target relations.

A second, more abstract approach to model-target relations has been developed by Ro-
man Frigg, partly in collaboration with James Nguyen (2010; 2022; Frigg and Nguyen
2016; 2018). A crucial element in their approach is the notion of a key, namely a mapping
from properties of the model to properties of the target. A key tells one how properties of
the model translate into properties of the target. In this sense it tells one how to “read” the
model inasmuch as one wants to learn from it about the target. A key can utilize relations
of similarity—it can map the size of an element in the model to the size of a corresponding
element of the target—but similarity need have no role. A key can map size onto, say, a
location relative to some point of reference. All that is required is a consistent, one-to-one
mapping between relevant elements of the model and elements of interest in the target.

An advantage of the appeal to keys is that it can be applied very widely. As previously
indicated, keys can rely on similarity relations but need not. In this sense, the keys approach
is a generalization of the similarity approach. This approach is, as noted, rather abstract.
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Keys are mappings, and the specific mapping used will vary by context. This means that
much of the “action” concerning how models represent targets will depend on the relevant
key, a matter which varies as a function of the area of science, and indeed the type of model
being used. Frigg and Nguyen probably view this as an advantage of their view. Others may
take such generality to deprive the view of some of its explanatory power, relative to a more
concrete approach such as Weisberg’s. It is possible, perhaps ironically in view of his rejec-
tion of it, that Weisberg’s view is a better match to the fictions view of modeling, relative to
Frigg and Nguyen’s more abstract approach.

7. Summary and open questions

The fictions view of modeling is motivated by features of the practice and embodies the
thought that a focus on the role of the imagination can illuminate modeling. We have seen
that such a view can be fleshed out along several dimensions, with choice points for each
of them. Questions arise about the semantics, metaphysics, and epistemology of models,
understood as fictions.

Kendal Walton’s make-believe account of fiction has been central to the development
of the fictions view. It plays a role in accounting for the semantics of models as fictions,
inasmuch as modeling differs from artistic practices such as literary fiction (where an in-
tentionalist view is at least a plausible candidate). Walton’s account is also central to the
metaphysics of fiction, since some philosophers take it to permit an attractive anti-realist
stance toward models. This is so especially if the Waltonian framework is combined with
an indirect view of modeling that many take to be true to modeling practice.

Finally, we have seen two sorts of accounts of the manner in which the results of model
exploration can be exported to the target. One of these, the similarity-based account, is
more closely connected with the motivations for the fictions account but raises semantic
and ontological concerns. The other, Frigg and Nguyen’s keys approach is more abstract
and more general, but its fit with the fictions approach may be somewhat less tight.

The fictions approach is still a lively area of research in which several questions remain
under active debate, and several avenues for development remain untrodden. The chapter
has tried to indicate these throughout. Let us highlight, in closing, two areas outside of the
philosophy of science, with which fruitful connections can be made. The first concerns the
ontology of modeling—as noted in discussing this, beyond the direct and indirect approach,
several recent authors have offered what may be regarded as intermediate stances, and the
prospects of these are yet to be fully determined. Here it is notable that there is a large lit-
erature in metaphysics concerning fiction, as well as related questions (such as social ontol-
ogy; see surveys in: Epstein 2021; Kroon and Voltolini 2018; 2019). Contact between the
literature on modeling and this larger body of work in metaphysics has, to date, been rela-
tively minimal. Another area with which the fictions view can make contact is the large (and
increasing) literature on the imagination (Kind and Kung 2016; Badura and Kind 2021). In
particular, much of the recent writing on the imagination, has dealt with its epistemic as-
pects: whether and how can imagining play a role in justifying belief? How does this relate
to other forms of justification and knowledge acquisition? What role do different forms of
imagining play in this process? Since modeling is a central epistemic practice within science,
and since the fictions approach tightly connects it to the use of the imagination, it seems
likely this is an area with which potentially fruitful contact can be made.
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Notes

1 The collection edited by Suarez (2009) contains many examples. See especially the chapters by
Morrison, Teller and Winsberg.

2 In fact, there was indeed a Schatzalp Sanatorium near Davos. So the statement “There exists
a sanitorium near Davos” is true (or was, at the time, since it was converted to a hotel in the
1950s.)

3 In this sense, the current discussion departs from ideas familiar from Vaihinger (1925, in which the
“philosophy of as if” is explicitly linked to claims that are untrue of, often even in conflict with,
reality (on linking Vahinger to modern treatments of fiction, and to its role in science, see Fine
1993).

4 To be precise, Lewis provides a possible worlds semantics for fictional statements. He does not, in
his 1978 article, tie this to an ontological stance on possible worlds. But since Lewis is well-known
for his modal realism, many understand him as offering, indirectly, a view of the metaphysics of
fiction, as well.

5 Lewis, in his 1978 paper, considered the parallel problem for fictions and offered some solutions.
But these solutions have been criticized (Byrne, 1993) and in any event it is not clear that they can
be transferred as is to the context of modeling.

6 It should be noted, however, that Walton’s approach, in and of itself, is neutral as between the
direct and indirect views, and more generally is compatible with a variety if takes on the ontology
of fictions.

7 These issues are discussed at greater length in Levy (2018).

8 It should be recalled, however, that Weisberg is a critic of the fictions view of models. He regards
his account of model-target similarity as independent of such a view.
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THE ARTIFACTUAL APPROACH
TO MODELING

Tarja Knuuttila

1. Why an artifactual approach to modeling?

The artifactual approach to models is a relatively recent perspective on modeling. Artifactu-
alism serves as a unifying concept for a variety of approaches that regard models as instru-
ments, tools, or artifacts. In and of itself, the fact that scientific models are human-made
objects, used in scientific practices for particular purposes, is something that is hardly con-
tested in philosophical discussion. For instance, for van Fraassen “science presents us with
representations of the phenomena through artifacts, both abstract, such as theories and
mathematical models, and concrete such as graphs, tables, charts, and ‘table-top’ models”
(van Fraassen 2008, 265). The artifactuality of models is implicit in many accounts of sur-
rogate and analogical reasoning (see Nersessian, this volume), and as such, already present
in the classic entry on modeling by Boltzmann where he conceives of models as objects,
constructed or imagined, that “assist our conceptions of space by figures, by the methods of
descriptive geometry, by various thread and object models; our topography by plans, charts
and globes; and our mechanical and physical ideas by kinematic models” (Boltzmann 1911,
638). What, then, is specific about the current artifactual perspective to modeling? As hu-
man life is surrounded by artifacts of all kinds, ranging from coffee machines to sophisti-
cated technologies, novels, and artworks, considering models as artifacts may not, at first
blush, seem too helpful in understanding the place of models in scientific practice. Artifacts
are just all too numerous and all too diverse. How could considering models inhabitants
of such a multitude possibly enhance our understanding of their epistemic contribution?
What is common to the artifactual approaches discussed below is their pragmatic ap-
proach to modeling, and the loosening of what could be called the representational bind,
the idea that models give knowledge because they represent their supposed target systems
more or less accurately. From the artifactual perspective, and in agreement with the prag-
matic accounts of representation (Sudrez 2004; Giere 2010; Hughes 1997), the representa-
tional model-target pair is too restrictive a unit of analysis. However, while the pragmatic
approaches to representation make room for subjects and communities, the artifactual
approaches reach further in not assuming, as Isaac has put it, that “representation [is]
conceptually prior to success” (Isaac 2013, 3612). Such a starting point does not rule out
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the possibility of representation playing a role in artifactual approaches, though the arti-
factualists differ in how they understand the role of representation in modeling (see below).
Furthermore, given the artifactual account’s purpose of providing an alternative to repre-
sentational approaches to models, it goes beyond highlighting other uses of models such as
prediction, developing testable hypotheses and engineering designs, or providing didactic
tools.

This entry will first discuss the main artifactual approaches within philosophy of sci-
ence, starting from Morrison and Morgan’s models as mediators and Knuuttila’s models as
epistemic artifacts accounts (Sections 2 and 3). Section 4 discusses the relationship between
fictional and artifactual accounts, also introducing Currie’s models-as-tools account. The
question of whether the artifactual accounts can, or should, do without the notion of rep-
resentation is raised in Section 3, introducing Sanches de Oliveira’s radical artifactualism.

2. Models as mediating instruments

The importance of the edited volume Models as Mediators (Morgan and Morrison 1999)
for the present discussion of modeling is hard to overestimate. Although the philosophi-
cal accounts of modeling have traditionally been oriented toward scientific practice (Black
1962; Hesse 1963; Cartwright 1983; Giere 1988), Morrison and Morgan (henceforth MM)
put the practice-oriented approaches to modeling right at the center of the philosophi-
cal agenda, claiming that “before we even begin to identify criteria for what comprises a
model, we need much more information about their place in practice” (Morrison and Mor-
gan 1999, 12).

The four pillars on which the MM account of models as mediating instruments rests are
construction, functioning, representing, and learning. MM conceive of mediating mostly in
terms of mediation between theory and data, in contrast to science and technology stud-
ies, where mediation is understood more widely, e.g., between different social groups and
between human and non-human actors (Latour 1994). MM base the ability of models to
function “like a tool or instrument” on their construction, which is partially independent of
theory and data. They claim that “[by] its nature, an instrument or tool is independent of the
thing it operates on, but connects with it in some way” (Morrison and Morgan 1999, 11).
Apart from this observation, they do not offer any specific argument for why the autonomy
of models enables them to function as instruments, but instead invoke an analogy to corre-
lations. They point out that one does not learn much either from perfect or zero correlation,
while some correlation between these two extremes provides information of the degree of
association, providing a starting point for further investigations. The partial autonomy of
models is due to the fact that apart from theory and data, models are also constructed from
other elements. In the same volume, Boumans (1999) analyzes the various business cycle
theories, showing how they are “baked” with various kinds of ingredients: theoretical no-
tions, mathematical concepts and techniques, stylized facts, empirical data, policy views,
analogies, and metaphors. He calls “mathematical molding” the process in which the vari-
ous ingredients are integrated such that a suitable mathematical form is arrived at. Another
side of mathematical molding is calibration, i.e., choosing the parameter values in view of
integration.

The functions of models are many in science. MM discuss models in theory construction
and exploration, theory application, and the role of models in measurement, design, and in-
tervention. They underline, however, that they do not consider models “simple tools” such

112



The artifactual approach to modeling

as hammers, but as investigative instruments that involve “some form of representation,”
of either theories or worldly systems, or both. In their view, the investigative function of
models ensues from the activities of model building and manipulation. Such experimental
and interventive uses of models presuppose that they can be regarded as representations
of some systems, however theoretical or hypothetical such systems may be (Morrison and
Morgan 1999, 26). Consequently, for MM, the function of models as a means of interven-
tion is intertwined with representation.

MM declare, however, that they do not think about representation in a traditional way.
Rather than “mirroring” a natural system or a theory, “representation is seen as a kind of
rendering—a partial representation that either abstracts from, or translates into another
form, the real nature of the system or theory, or one that is capable of embodying only a
portion of a system” (27). Moreover, for them, the legitimacy of representation is “a func-
tion of the model’s performance in specific contexts” (28). These formulations do not differ
much from the present mainstream philosophy of science discussion of representation that
stresses the partial, context-dependent, and goal-oriented nature of representation, though
MM have surely inspired many of these discussions. The notions of performance and ren-
dering also invoke approaches other than representational ones. For instance, rendering has
been used by ethnomethodologists precisely to avoid a commitment to the idea of represen-
tation (Lynch 1990).

Morrison and Morgan consider the task of models to represent theories as equally im-
portant as that of representing the world. Yet, it is their stress on learning from models
resting on the combined instrumental and representational role of models that distinguishes
their account from the mainstream representational accounts of modeling. Models are not
“passive” entities; to be epistemically fruitful, they must be used, built, developed, and
manipulated. It is then not merely in virtue of their representational qualities that models
give us knowledge, but rather through the activities of building and manipulating a model,
understood as “a representative structure” within which learning can take place (Morrison
and Morgan 1999, 3). Such learning not only concerns some actual or possible (or impos-
sible) systems, but also the model itself. Clearly then, much of the representation that MM
talk about concerns the model world and not just model-world relations. Focusing on the
epistemic usefulness of the world in a model (Morgan 2012), the MM account comes close
to indirect representation as depicted by Weisberg (Weisberg 2007) and Godfrey-Smith
(Godfrey-Smith 2006). However, while Weisberg and Godfrey-Smith approach models as
abstract or fictional entities, MM’s emphasis on the construction and manipulation of mod-
els is more concrete in character, paving the way for artifactual approaches.

3. Epistemic artifacts

Although MM do not explicitly refer to models as artifacts, their discussion of models as
investigative instruments, and how scientists learn from building and manipulating them
emphasizes the epistemic value of working with purposefully designed artifacts. Building on
their account and some more general accounts of artifacts, Knuuttila has argued for con-
sidering models as epistemic artifacts (Knuuttila 2005; 2011; 2021). Knuuttila’s artifactual
account originated in her study of language models within the emerging field of natural lan-
guage processing (Knuuttila and Voutilainen 2003). These language models process large
natural language data sets for useful purposes, yet they cannot be claimed to understand
language, nor to represent human linguistic capacity (Bender et al. 2021). To accommodate
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such tools as models would require another kind of approach to modeling than the repre-
sentational one that assumes models to be representations of some determinable natural or
social systems. Apart from language models and other computational models, the artifac-
tual account can also deal with more traditional models, and model-uses, whose epistemic
value is difficult to render in terms of (more or less accurate) representation. For instance,
both within economics and biology, there has been a long tradition of criticizing highly
simplified and idealized mathematical models that appear far removed from the complexi-
ties of natural and social systems (Kingsland 1985; Sugden 2000).

It does seem intuitive to think that for a model to give us knowledge, it would need to
represent (more or less) correctly some system that it is constructed to model. However,
many models do not have any unique or even actual target systems, and in cases in which
they do appear to have determinable targets, they typically grossly misrepresent them.
Another problem concerning the supposed representational nature of models is due to
the deflationary character of pragmatic accounts of representation. Though pragmatic
accounts of representation do not make the problematic assumptions of the structuralist
and similarity accounts of representation (Sudrez 2003; Frigg 2010; Giere 2004), neither
do they have resources to tackle the question of what makes scientific modeling epistemi-
cally rewarding (apart from referring to surrogate reasoning). The DEKI account of rep-
resentation (Demonstration, Exemplification, Keying-Up, and Imputing), which relies on
exemplification (Elgin 2004) and pretense theory of fiction (Walton 1990), goes further
than other pragmatic accounts of representation in this regard (Nguyen and Frigg 2022;
Frigg and Nguyen 2016). The DEKI account nevertheless relies on imputing some features
of the model to a target system, though it also admits that a model may not have a target
system.

In contrast to the representational accounts, Knuuttila’s artifactual approach seeks to ex-
plain the epistemic value of models by not building on the model-target relationship, which
is the usual unit of analysis of representational approaches. The reasons for dissociating
the philosophical account of modeling from the model-target relationship are many. First,
given that there is no consensus on how representation should be analyzed, that invoking
the representational relationship cannot, in and of itself, account for the epistemic value
of modeling. Second, many scientific models are highly idealized and so unrealistic that by
structuralist or any other similarity criteria, their continued scientific use appears puzzling.
As already mentioned, this has been especially the case in economics and biology, where
theoretical models typically do not have the predictive value that many idealized models
in physics have. Neither do many such models succeed in isolating some causal differ-
ence makers, or even studying some causal difference makers on their own (Strevens 2011;
Cartwright 1999; Miki 1992). Third, as a result of the accumulation of data and the ad-
vancement of computational methods, the inventory of different kinds of models is rapidly
accumulating, as recent large language models show. Such developments tend to reduce the
importance of theoretical modeling, and at any rate, they cannot be properly accommo-
dated by the representational approach (see Knuuttila and Voutilainen 2003; and Knuuttila
and Honkela 2005 for early philosophical discussions of language models). One of the
benefits of the artifactual approach is precisely its ability to cover many different types of
models and modeling practices. Fourth, scientific models typically study generic phenom-
ena and possibilities of various kinds. The representational model-target unit of analysis is
not in tune with the modal dimension of modeling (Sjolin Wirling and Griine-Yanoff 2021;
Knuuttila 2021; Knuuttila and Koskinen 2020).
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Knuuttila approaches scientific models as epistemic artifacts that are constructed in view
of the purposes they aim to accomplish. Such purposes are many: prediction, understand-
ing, data mining, experimental and engineering design, etc. That the artifactual approach
is applicable to models, whose primary tasks are instrumental, is without doubt. But what
about theoretical models? From the artifactual perspective, the key to the epistemic value
of theoretical modeling is the question or problem that a model is constructed to address.
Models are epistemic objects that serve as erotetic devices, that is, they are purposefully
designed artificial systems of dependencies, whose construction enables scientists to tackle
pending scientific questions. As such, questions are theoretically and/or empirically moti-
vated; a model will typically incorporate a substantial amount of theoretical and empirical
knowledge in its construction. Consequently, despite their artificial nature, models are not
accidental things in need of connection to worldly systems via a relation of representation
as the representational approach implicitly assumes. The epistemological conundrum of
how to analyze the representational relationship between a model and some real-world
system shifts to the examination of how the model’s design facilitates the investigation of
some open scientific problems.

Often the starting point of modeling is a question concerning observed phenomena. For
instance, in his design of the Lotka—Volterra model, Volterra explicitly addressed the ques-
tion of whether “oscillations [...] in the number of the individuals of the various species”
could be produced by what he called “internal causes” that are due to the interactions
between the populations and “would exist even if [external causes] were withdrawn” (Vol-
terra 1928). To study this question, he constructed a highly idealized model consisting of a
pair of nonlinear differential equations that depict two populations, one of which preys on
the other. The Lotka—Volterra equations are but one of the models of population dynamics
developed by Volterra over the course of more than a decade. These different models depict
diverse types of hypothetical situations, taking into account more species, and different
kinds of interactions (Knuuttila and Loettgers 2017). As shown also by its popularity in the
philosophical discussion, the Lotka—Volterra model is in many ways a paradigmatic model
in the sense that it displays several features that are common to many mathematical models.
Rather than being a representation of some determinable real-world system, it addresses a
particular type of general phenomena, i.e., oscillations in different kinds of populations, and
the model is part of an ensemble of related models already in Volterra’s work. Moreover, in
constructing his version of the Lotka—Volterra model, Volterra made use of mathematical
methods and concepts from physics, resulting in a model that itself became a transdiscipli-
nary model template, which would go on to be applied to study the properties of nonlinear
dynamics and oscillations in vastly different kinds of material systems from biology and
chemistry to social systems, and even technological innovations (Houkes and Zwart 2019;
Knuuttila and Loettgers 2017; 2023).

The fact that models characteristically come in multiple versions and families of models
and that the same model templates are applied across different disciplinary domains casts
doubt on the fertility of the representational model-target unit of analysis. The idea that
the epistemic value of a model would primarily derive from its representational relation-
ship to some uniquely identifiable real-world target system does not seem to capture many
epistemic enablements of modeling. The simultaneous existence of different versions of the
same basic model and the cross-disciplinary dissemination of particular models is a phe-
nomenon familiar to us from the rotation, evolution, and compounding of other cultural
artifacts and appears easier to account for from the artifactual viewpoint.
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Apart from addressing the purposeful nature of artifacts, the conventional definitions
of “artifact” also refer to their production, which involves the modification of materials.
Knuuttila’s account of models as epistemic artifacts also focuses on the epistemic ena-
blements of the representational tools used in model construction. She emphasizes that
irrespective of the representational tools employed, scientific models have a material em-
bodiment that allows for the manipulation of the model and is needed for intersubjective
communication between scientists. In order to analyze the epistemic contribution of rep-
resentational tools, it is useful to make a distinction between their representational mode
and representational media (Kress and Leeuwen 2001). Representational mode refers to
the symbolic or semiotic ordering that is rendered by various symbolic, mathematical,
diagrammatic, pictorial, and 3-D/geometric devices, while representational media consist
of the material means through which the symbolic or semiotic articulation takes place
(e.g., ink on paper, electric signals in computers, various materials of physical artifacts or
even biological organisms and their parts). The representational mode and media are not
necessarily coupled: one can write equations, for example, by using a pen and paper, or
chalk and chalkboard.

The focus on representational tools has unifying benefits. First, the artifactual ap-
proach does not distinguish between models and “model descriptions” as do the conven-
tional approaches that consider models as either abstract or fictional entities (Giere 1988;
Godfrey-Smith 2006; Frigg 2010; Weisberg 2013; Frigg and Nguyen 2016). From the ar-
tifactual perspective, the “vehicle” of a model, rendered by representational tools, is an ir-
reducible part of it, as the representational tools employed crucially influence the epistemic
affordances of a model. Second, the artifactual approach does not make a sharp distinction
between concrete models such as scale models and “nonconcrete” ones such as mathemati-
cal models. All models have a material, sensorially perceptible dimension that functions as
a scaffold for interpretation, and theoretical or other inferences. However, the representa-
tional mode and media play different roles in different kinds of models.

In mathematical modeling, the focus is on the representational mode. For instance, one
can model genetic networks using different methods such as coupled ordinary differential
equations (ODE), Boolean networks, or stochastic methods. All these different methods
make use of different mathematical representational modes. In mathematical modeling, the
representational media play a less crucial role than the representational mode, i.e., mathe-
matical methods and notation. The media functions primarily as an external aid for memo-
rizing, reasoning, communication, computing, or demonstration. However, mathematical
models are often not analytically solvable and must be turned into simulation models,
whose epistemic features are dependent on a physical device. In the case of simulations,
several philosophers have pinpointed the important epistemic role of the representational
medium: the digital computer (Humphreys 2009; Lenhard 2006).

In contrast to mathematical models, concrete media play a more direct epistemic role in
physical 3D models. When working with physical models, scientists typically draw infer-
ences by examining the material features of the model. It is important to note, however, that
the material features of the model also embody a symbolic, conceptual dimension—a fact
that shows that the distinction between abstract models and concrete models is relative at
best. For example, the Phillips—Newlyn hydraulic model is far from being just a physical,
three-dimensional object. It embodies and makes visible economic ideas such as the princi-
ple of effective demand and the conceptualization of macroeconomy in terms of stocks and
flows. Consequently, the way the water pools and flows in the containers and the tubes of
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the model takes on economic significance—showing how the material and symbolic aspects
become coupled in model construction (Morgan and Boumans 2004).

4. Artifacts and fictions

The artifactual approach comes close to (indirect) fictional approaches in that both of them
consider models to be objects, separating that which is represented within a model from
model-world relations (Godfrey-Smith 2006; Frigg 2010; Frigg and Nguyen 2016). Cur-
rie (2018) argues that while the fictional approach suits many kinds of models and model
uses, the artifactual account can accommodate fictionalism while thus being broader. By
“broadness” Currie refers to the use of models in engineering and design, where models
are world-directed, but their success does not derive from their representational success
vis-a-vis some actual real-world target systems. Such engineering models often serve as
“scaffolds for the construction of real-world systems as well as further models” (Currie
2018, 759). Following Frigg’s (2010) discussion of the advantages of fictionalism regard-
ing models, Currie seeks to show that artifactualism can also provide an adequate answer
to the semantic, metaphysical, and model-world questions. As for the semantic question
concerning the truth of claims about models, the artifactual approach functions just as the
fictional account: claims such as “pipe friction pressure is exponentially proportional to
flow” are internal to models (Currie 2018, 763).

How should such internal-to-model claims be understood? Instead of referring to, e.g.,
possible worlds, fictionalist philosophers of science have typically sought to stay metaphysi-
cally uncommitted, adopting Kendall Walton’s theory of fiction as make-believe (1990). In
Walton’s games of make-believe, various kinds of props are used according to some rules of
generation, prescribing the players to adopt various kinds of imaginings. In scientific mod-
eling, the “model descriptions” function as props. From the artifactual perspective, viewing
models as props appears unproblematic, though the artifactual approach does not distin-
guish between model descriptions and models (more on that below). Where the paths of
the artifactual and fictionalist approaches part is that the Waltonian approaches within phi-
losophy of science typically turn on representation, while the artifactualist approaches posi-
tion themselves as not limited to representational uses of models. In fact, Frigg and Nguyen
use the Waltonian approach to develop their DEKI account of representation (Nguyen and
Frigg 2022; Frigg and Nguyen 2020). Currie also points out that another advantage of the
artifactualist approach is that it does not require acts of imagination on the part of model
users. For instance, many modeling processes are increasingly carried out automatically or
the goal is to optimize the output, to use the model as a calculating device, to clean data,
and so on.

Given the different ways in which models can be useful, Currie emphasizes that the
aboutness of models need not be cashed out in representational terms. If the purpose of the
model is to scaffold further model-making or to construct various kinds of objects (as kinds
of future targets), the success of a model does not depend on model-target comparisons
since the target does not yet exist, or its future properties are still in the process of specifica-
tion. Consequently, there is no access to the possible future object apart from the different
models and other renderings that typically are unfolding objects, further developed in the
design process.

Currie claims that “understanding models qua tools is deeper, more unified and more
metaphysically kosher than understanding models qua fictions” (Currie 2018, 773).
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Following Hilpinen (Hilpinen 1993; 1999), he identifies tools with material objects that
are used to manipulate other material objects. Tools as intentional objects have two kinds
of features: their material properties and F-properties. The latter are related to the suit-
ability of a tool for some function F. For instance, the size of a sewing needle’s eye is
an F-property, while its color usually is not an F-property. While Currie distinguishes
between the content of a model (“F-properties”) and the vehicle of a model (“material
properties”), the distinction between them appears contextual; F-properties are a subset of
vehicle properties. Consequently, Currie does not separate a model vehicle from the model
as the fictional approaches do, arguing instead for equating the model with its vehicle
(Currie 2018, 777).

The model vehicle and its material affordances are central for both Knuuttila and Currie.
Knuuttila (2021) offers an extended critique of the distinction between model descriptions
(i.e., model vehicles) and model systems (see below). Currie (2018) addresses, in turn, the
common criticism that proper individuation of models is not possible if model descrip-
tions are allowed to be parts of models (Frigg 2010; Weisberg 2013). The argument is that
the same model can be realized in different ways, e.g., the Lotka—Volterra model can be
expressed by equations on paper or implemented as an algorithm running on a computer.
Currie’s counterargument is that tools are classifiable objects as well. Indeed, there exists a
large discussion on artifact kinds, with different positions regarding whether artifact kinds
are similar to or different from natural kinds (Preston 2013). Currie claims that different
kinds of vehicles can be classified according to the relevant F-properties that they share.
While he appears to invoke the functional features of an artifact, he simultaneously agrees
with Hilpinen (1993) and Thomasson (2007) that the intentions of the authors or makers
are constitutive of artifact kinds. Currie nevertheless declares not being too moved by the
problem of individuation, because the multi-usability of models makes the question of the
individuation of models a pragmatic rather than a metaphysical one.

The fictionalists have taken notice of the artifactualist critique of the distinction between
model description and model system. Salis (2021a, 2021b) suggests that the fictionalist ac-
count should be combined with the artifactual account to amend the shortcomings of both
accounts, affirming Knuuttila’s criticism concerning the fictionalist separation of the model
systems from the model descriptions. Knuuttila (2021) discusses three kinds of problems to
which such separation leads (see also Weisberg 2013). First, if the imaginary entities are the
locus of representation, this poses the question of how such merely imagined entities are
supposed to represent external target systems. Second, there is the problem of how model
descriptions are able to provide access to the supposedly more fully-fledged imaginary sys-
tems (that are more like concrete systems than what the abstract representations as such
entail). Finally, how are the imaginings of different scientists to be coordinated, if not by
external representational means? Knuuttila concludes: “Inasmuch as representational tools
are merely ascribed the task of describing or generating imagined objects, the imaginary
approaches largely ignore the way humans as cognitive agents are able to creatively use
different kinds of representational means” (Knuuttila 2017, 5086).

Salis also mentions two other problems of the fictional approaches, claiming that the ar-
tifactual approach has in turn problems of its own that require combining the two in a kind
of fictionalist synthesis (Salis’ “new fiction view” [2021b]). In contrast to Salis, both Knuut-
tila and Currie think that the artifactual approaches are in fact able to cover the fictional
approaches. Fictions, too, can be approached from the artifactual perspective (Thomasson
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1999; Thomson-Jones 2020). Salis finds, however, the artifactual account lacking in four
different ways, concentrating on Knuuttila’s account. She claims, first, that the artifactual
approach cannot in fact explain how scientists build and manipulate models, and second,
that it does not distinguish between the representational relationship between the model
description and the model system, and the representational relationship between the model
and a target system. The first claim concerning the inability of scientists to manipulate their
models is premised on the idea that the artifactual approach would only be dealing with
uninterpreted concrete objects. This is not the case. Knuuttila (2021) distinguishes between
internal and external representations and argues that both mathematical representations,
such as the Lotka—Volterra equations, and concrete things, such as the Phillips—Newlyn
machine, need to be interpreted in order to function as scientific models. Consequently, the
artifactual approach does not reduce models to mere equations or material objects devoid
of any content but rather emphasizes that the representational modes and media used in
model construction are important for their cognitive and epistemic functioning—precisely
what Salis also recognizes.

The other two criticisms that Salis (2021a) launches against the artifactual approach
concern its supposed inability to explain how scientists can attribute concrete properties to
(fictional) model systems, as a result of which the artifactual cannot explain model-world
comparisons. Both of these things are “difficult to explain without some sort of imagination
and pretense,” according to Salis (2021a, 171). The question is what qualifies as imagina-
tion. Does interpreting the Lotka—Volterra equation in terms of a hypothetical system of
two (fictional) species of fish, one of which preys on the other, qualify as imagination? If
this is the case, the artifactual approach has the capacity to address both problems raised
by Salis. The artifactual approaches do not aim to dispense with imagination. Knuuttila
rather focuses on how representational and other artifactual means employed by modelers
scaffold their imagination and the construction of fictional or hypothetical systems.

Salis (2021a) concludes that “models are intersubjectively available tools of enquiry
and objects of knowledge that crucially rely on the social activity of make-believe for their
construction and manipulation in particular scientific communities” (175). An artifactualist
could agree, apart from pointing out that modeling does not need to rely on imagination,
as Currie (2018) argues in his discussion of engineering practices. Salis needs Walton’s
(1990) account of fiction to explain how model-world comparisons are possible in the case
of theoretical models. While mathematically formulated models are abstract, their target
systems are often concrete. Consequently, make-believe and pretense are needed to imagine
the model system as concrete, thus making model-world comparisons between pretended
concrete systems and the actual concrete systems possible. In contrast, the philosophical
gist of the artifactual account is to tackle the epistemic value of modeling without suppos-
ing, at the outset, that the model would need to correspond more or less accurately to some
determinable actual target system. Such an idea of comparison lies at the heart of the rep-
resentational accounts of modeling, including the present fictional accounts of modeling.
From the artifactual perspective, one does not need to construe fictions representationally,
but one can rather approach the fictional use of models in terms of them being hypothetical
systems constructed to study some pending scientific questions. These questions can con-
cern actual systems, but also possible, or even impossible ones (Knuuttila 2021). One may
ask, however, to what extent Salis’ criticism of the artifactual approaches applies to radical
artifactualism (Sanches de Oliveira 2022).
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5. Hybrid vs radical artifactualism

While all the artifactual accounts discussed above seek an alternative way to approach
modeling, beyond invoking representation, the question is to what extent their accounts
still rely, at least implicitly, on a representational approach to modeling. Recently, Sanches
de Oliveira has claimed that the aforementioned artifactual accounts of Morrison and
Morgan, Knuuttila and Currie, are in fact hybrid artifactual accounts in being all too wed-
ded to representation, in one way or another.

Sanches de Oliveira criticizes the accounts of Morrison and Morgan, Knuuttila, and
Currie on different grounds, respectively. The ties of the models as mediators account to
representationalism appear easiest to establish since representing is one of the functions of
models according to Morrison and Morgan. In discussing representing, they make a dis-
tinction between a “simple tool” and “a tool of investigation” on the basis that the latter
“involves some form of representation: models typically represent either some aspect of the
world, or some aspect of our theories about the world, or both at once” (Morrison and
Morgan 1999, 11).

The arguments that Sanches de Oliveira offers for maintaining that Knuuttila’s and Currie’s
accounts remain within the realm of representationalism are less straightforward. Sanches
de Oliveira labels Knuuttila’s account representationalist on the basis that she talks about
“representational means” in referring to “diagrams, pictures, scale models, symbols, natural
language, mathematical notations, 3D images on screen” (Sanches de Oliveira 2022, 5). How-
ever, Knuuttila does not claim that models constructed with various representational means
necessarily represent any external target system (external, that is, to the model itself). Instead,
she takes a departure from representational accounts in not approaching the epistemic value
in terms of a model-target relationship, but rather seeking to explain it by viewing models as
entities that are constructed to answer some pending theoretical or empirical questions.

In addressing the supposed representational nature of Currie’s models-as-tools account,
Sanches de Oliveira concentrates on Currie’s content/vehicle distinction. Such distinction,
according to Sanches de Oliveira, is inherently representational, since assuming that a
model as a vehicle “carries content” is another way of saying that a model represents. In
choosing to consider any meaning or content in representational terms, Sanches de Oliveira
ends up presuming that even such accounts that do not approach the epistemic value of
models through the representational model-target relationship are nevertheless represen-
tational or “targetist”. They are “targetist” since attributing content to a model makes it
“defined by something else it refers to, something else it is a source of information about”
(Sanches de Oliveira 2022, 19).

In his earlier article “Representationalism is a dead end” (2021), Sanches de Oliveira
criticized the representationalist approaches mainly for assuming that models stand in for
real-world target phenomena (Sanches de Oliveira 2021, 210). However, the notion of tar-
getism introduced in his later article on radical artifactualism also covers fictional models
as supposedly being defined by something else they refer to (Sanches de Oliveira 2022). But
can a fictional system be separated from the model such that the model would give informa-
tion about this distinct system? Such an assumption does not agree with how the philoso-
phers of science entertaining fictionalism usually consider fictions, since according to them
the (nonconcrete) model itself is fictional (Godfrey-Smith 2006; Frigg and Nguyen 2016).
Irrespective of this difficulty, the more important question is whether Sanches de Oliveira’s
own radical alternative succeeds to do without any (representational or other) content.

120



The artifactual approach to modeling

Sanches de Oliveira’s (2022) account of modeling aims to do without invoking the repre-
sentational idiom entirely, approaching models as “simple tools” rather than as “represen-
tational tools.” The paradigmatic tool for him is a hammer, through which he approaches
scientific modeling. Sanches de Oliveira invokes Heidegger in explaining “the aboutness of
a tool,” turning to what the model is for, instead of what the model is a model of. Many
practice-oriented accounts have indeed approached models also as “models for” as already
suggested by Fox Keller (2000). Moreover, most pragmatists of representation would nei-
ther contest the claim that “tools (including models) are inherently and objectively mean-
ingful for users engaged in particular practices” (Sanches de Oliveira 2022, 25). However,
Sanches de Oliveira uses the Heideggerian approach precisely to help him to approach
aboutness non-representationally: tools relate to a totality of equipment such that learning
through using a tool amounts to an understanding of how it relates to other tools in some
practice (23). Having thus clarified the aboutness of tools, Sanches de Oliveira formu-
lates his radical alternative to the representationalist (and hybrid artifactualist) approaches
to modeling in terms of “limited action-relevant similarities that a model bears to some
system(s) of interest” (26).

Sanches de Oliveira explicates the action-relevant similarities in the following way: “the
action-relevant similarities and dissimilarities between model-artifacts and the systems we
usually conceptualize as targets enable scientists to think about interventions in those sys-
tems by means of manipulating the model-artifact” (2022, 28). It is unclear whether this
notion enables radical artifactualism to shed the remnants of representationalism, however.
Sanches de Oliveira claims that the action-relevant similarity between a butter knife and a
screwdriver allows users to learn how to employ one by manipulating the other, without in-
volving a representation of any kind. But does this kind of learning apply to scientific mod-
els? Sanches de Oliveira thinks that it does. He uses the Phillips-Newlyn hydraulic model
of economy as an example, claiming that “actively intervening water flow rates in [this]
model supports reasoning about how specific interventions such as changes in tax or invest-
ment rates might affect the economy” (26). But it does not seem possible to comprehend
the action-oriented similarities between the Phillips—Newlyn machine and the economy of,
say Guatemala (Frigg and Nguyen 2018), without assuming that the different parts of this
material machine can somehow be related to economic concepts and magnitudes. Morgan
and Boumans (2004) discuss the complexity of these linkages, and the theoretical economic
thinking and new interpretations that the model gave rise to.

The crucial artifactual point is this: one does not need to relate the Phillips—Newlyn
model to some determinable real-world economy, via action-relevant (or any other) simi-
larities to learn from it, as Sanches de Oliveira assumes. The model has economic import
by making use of our theoretical and empirical knowledge; it addresses some general fea-
tures of economic theories and economies without any determinable relationship to some
real-world economy. The problem of radical artifactualism is precisely that it does not
make a distinction between what can be represented within the model and whether a model
is a representation of some real-world target systems, e.g., a representation of some par-
ticular economy. This is a distinction that the (indirect) fictional and other artifactual ac-
counts make. As a consequence, Sanches de Oliveira blends together representationalism
(i.e., the idea that in order to give us knowledge models would need to correspond to some
target systems) with the interpretation of signs and cultural representations. Yet, it is quite
a different thing to claim that something is represented within a model than that a model
represents or refers to some external target system. It is difficult to analyze fiction or diverse
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scientific and other displays without invoking the idea that various kinds of semiotic and
symbolic devices are able to create meaning and prompt interpretations. Consequently,
it seems that hammers and other “simple tools” do not get us all the way to the scientific
understanding and explanation that models are able to offer.

6. Conclusion

So far, few philosophers of science have explicitly entertained the artifactual approach,
yet the artifactuality of models is implicit in many practice-oriented approaches to mod-
eling (Gelfert 2016; Parker 2020). The artifactual approach also holds promise when it
comes to many traditional philosophical topics other than modeling, like idealization (see
Carrillo and Knuuttila 2021; 2022). Although within philosophy of science artifactual-
ism is a rather recent approach, in the grand scheme of things, this clearly is not the case.
The artifactual approach to models has drawn inspiration from Science and Technology
Studies (e.g., Lynch and Woolgar 1990), research on mathematical practices (Johansen
and Misfeldt 2020), and extended, embodied, enactivist, and distributed approaches to
cognition (e.g., Clark 1997; Hutchins 1995). One can expect the cross-pollination be-
tween these different fields to further enrich the philosophical discussion of scientific
modeling.
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9
TARGET SYSTEMS

Francesca Pero

1. The rise of the concept of target system

Philosophers conventionally refer to the other end of the representational relation as the
model’s “target system.”! The term likely made its first appearance in French and Ladyman
(1999), although it is with the representation’s “source/target” distinction by Sudrez (2003)
that its use spread. This term has gradually replaced terms like “phenomena,” “empirical
system,” or “(parts of) the world.” The main reason for the wide use of “target system”
is philosophers’ recognition that modelers tackling a specific research question do not use
models to represent a phenomenon in its entirety. The focus is rather on some aspects
of the phenomenon that are deemed relevant to address the question.”? The term “target
system” conceptually catches the selective activity exerted on real-world phenomena and
denotes the product of these activities. The use of the term suggests a conceptual distinction
between what is used to represent (the model), what stands in the representational relation
with the model as a reliable, yet simplified version of the targeted phenomenon (the target
system), and the phenomenon itself (what the model is used to understand).

To this day, accounts explicitly addressing target systems—what they are and how they
are constructed—are only a handful. Such a shortage is surprising given the many philo-
sophical accounts of modeling. Even before the concept of “target system” caught on in the
literature, philosophers advocating different approaches to modeling subscribed to the idea
that models do not represent the world directly, because some preliminary work is manda-
tory for fitting phenomena with models. Cartwright (1983) refers to “prepared descrip-
tions” as necessary to ensure that facts can be “fitted to” their (mathematical) treatment.
These descriptions belong to an informal stage of modeling that mainly requires “a good
deal of practical wisdom” (133) and is not fully standardized by the theory, although it is
guided by disciplinary and theoretical goals. After the term “target system” officially en-
tered the philosophical jargon, it has been pointed out that a target must be “determined”
(Sudrez 2010; Nguyen and Frigg 2021) or “constructed” (Knuuttila and Boon 2011; Tee
2019; Zuchowski 2019). Some accounts even address a process in which the target itself is
to be “refined” once it is determined (a refinement that can either lead to amendments in the
model or be due to such amendments; see Sudrez forthcoming). Acts such as determination,
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construction, or refinement hint at the fact that target systems are not out there in the
world, at least not in the same way phenomena are assumed to be. Consequently, target
systems and phenomena are not—conceptually at least—the same. Unfortunately, in most
of the aforementioned discussions, the distinction between target systems and phenomena
is not further articulated, and often the terms “target system” and “phenomena” are used
interchangeably.

Another way to accommodate the relation between models and phenomena has contin-
ued to exploit the concept of the “model of data” as presented by Suppes (1962). This con-
cept was developed within the context of the semantic view of scientific theories to spell out
the intuition that there exists an intermediate entity between models and phenomena that
makes raw phenomena amenable to the model’s treatment (French and Ladyman 1999;
Bueno, French and Ladyman 2002; French 2020; van Fraassen 2008).

Conceiving target systems as a separate and intermediary item between models and phe-
nomena is a recent perspective in the literature on modeling. So far, there have been few at-
tempts to clarify what target systems are and how they carry out their twofold function, i.e.,
to be what models are in a representational relation and to stand for the phenomena models
are meant to account for.> The following sections focus on the philosophical attempts to
flesh out the function of target systems. To this end, the chapter first analyses the distinction
between target systems and phenomena set forth by authors explicitly dealing with target
systems, as well as the concept of phenomena of interest they lay out. It then provides an
overview of the kinds of target systems philosophers have considered so far. Finally, it
considers possible ways the philosophical investigation of scientific modeling could benefit
from integrating the analysis of target systems and their construction.

2. Target system construction

Providing a philosophical analysis that covers all instances of target system construction in
actual practice is a demanding task. Such a project faces the same practical difficulty as that
of analyzing the model concept: given the different kinds of target systems flooding actual
scientific practice, is it possible to provide a philosophical account encompassing them? As
we are going to see in the following sections, philosophers engaging in this project are quite
cautious about this possibility. In fact, they admittedly present their proposals of target
system construction as conceptual stretches useful only for the sake of clarification, hardly
reflecting any logical or temporal order of phases in actual practice.

The starting point of target system construction is generally identified with the selection
of relevant features of a phenomenon that should feature in the target system. Relevance
criteria for selecting these features can be cast in terms of causality: a feature of the phenom-
enon is retained in the target system construction if, for different reasons (e.g., scientists’
educated guess, indications contained in the background knowledge or provided by experi-
ments, etc.), it is deemed to causally influence the occurrence or the behavior of the phe-
nomenon of interest (Bailer-Jones 2009; Weisberg 2013; Serban and Green 2020; Tee 2019
Elliot-Graves 2020). Independently of whether causality is called upon as a criterion for
selecting relevant features, the process of target construction is usually presented in terms
of partitioning, i.e., as the identification of parts and properties of a phenomenon. Struc-
tural approaches to modeling lie on the back of this intuition (Bueno, French, and Lady-
man 2002; da Costa and French 2003; Bartels 2006; French 2020). These accounts present
the model-target relation as a mathematical morphism of some sort holding between the
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structures of the model and the target system, respectively. Models successfully represent
their targets as they pinpoint their structure, which is identifiable once the target system has
been partitioned into a domain of objects and a set of properties and relations among them.

Partitioning plays a role in deflationary approaches as well. Deflationary approaches
offer a pragmatic account of modeling practice (Sudrez 2003; Giere 2004; Bailer-Jones
2009). Contrary to the structuralist’s approach, deflationists deny that the model-target
relation can be spelled out in a univocal manner, let alone in mathematical terms. Sudrez
suggests that the philosophical analysis of modeling should say nothing about the relation
per se and only account for the capacity of a model to allow its competent user to draw
inferences on the target system. The inferential suitability of the model with respect to its
target is presented by Sudrez as the possibility to employ the model’s “internal structure”
(2010, 98)—informally intended as its division into parts and relations—as an approxima-
tion so that the model’s parts and relations can be interpreted in terms of those of the target.
Finally, approaches that attempt to retain both structural and pragmatic components in
their analysis present partitioning as a crucial moment in representation to make a model’s
structure ascription meaningful (van Fraassen 2008; Bueno and Colyvan 2011; Sudrez and
Pero 2019; Nguyen and Frigg 2021).

Structural and inferential accounts mainly focus on spelling out the explanatory and
predictive functions of models. Although none of their advocates would likely object that
the process of target system construction is part and parcel of the modeling activity, in these
accounts such a process is considered a readymade stage and rarely thoroughly addressed.
This gap has been noticed by philosophers such as Weisberg (2007, 2013) and Elliot-Graves
(2020), who provide thorough analyses of the phase of target system construction.* They
both label the stage of the modeling activity that corresponds to target system construction
as the “specification of the target system” and divide it into phases. The target system speci-
fication is generally presented as following the phase of model construction. However, as
Weisberg points out, neither this placement nor that of the phases of target system specifica-
tion actually reflect a logical or empirical order. The first step in specifying a target system is
identifying the phenomenon of interest, which involves determining the spatiotemporal re-
gions of the world the scientist wants to study. Also, in this case, partitioning plays a pivotal
role. According to Weisberg, after modelers have decided which aspects of the phenomenon
should be represented by the model, they carve the target system from the phenomenon
of interest. Weisberg presents this process as a form of partitioning as well, guided by the
“conceptualization of the target and model into properties” (149).

Elliot-Graves also describes target system specifications in terms of partitioning. Mod-
elers first pinpoint the phenomenon of interest by identifying the boundaries of the spati-
otemporal regions of the domain of study. In order to identify the domain, the latter has
to be partitioned and arranged into parts and properties. At this stage, there is partitioning
only: no criterion of usefulness or relevance is applied. Once the domain has been parti-
tioned, the theorist will decide which parts of a phenomenon she will consider relevant, i.e.,
objects, properties, or dynamical processes, together with anything exogenous that none-
theless exerts a causal influence on the phenomenon.® After the phenomenon of interest is
thus identified on the backdrop of a wider domain of study, the modeler will partition the
phenomenon of interest into parts and properties as well, select those parts to be retained
as relevant for the sake of investigation, and omit the others.

Both Weisberg and Elliot-Graves present the process of target system construction as a
gradual thinning-out process that begins by separating the domain of study from the whole
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world, then the phenomenon of interest from the domain of study, and, finally, the target
system from the phenomenon of interest. This process is carried out by partitioning, select-
ing, and omitting until the final product is carved out.°

A few modeling approaches in their analyses include cases where the moments of model
and target construction cannot be sharply distinguished and layout target specification as
something that happens concurrently with the model development. Such co-construction of
the target system alongside its model can be either conceptual (Knuuttila and Boon 2011)
or physical (Tee 2019). In the act of isolating a phenomenon of interest, scientists rely
on scientific concepts that are called on by the very research question. Thus, the targeted
phenomenon is endowed with conceptual content without which it “is not even recognized
as a phenomenon in need of scientific explanation” (Knuuttila and Boon 2011, 320). The
targeted phenomenon is then re-described theoretically by the model (as a target system)
to answer the pending research question. The research question, as well as the concepts
and principles it calls upon, may undergo amendments or further developments during the
construction of the target system.

Bueno and Colyvan (2011) provide a formal reconceptualization of this process of mu-
tual construction and adjustments appealing to “composite mappings” that allow scientists
to go back and forth between the structures of model and target. In particular, Bueno and
Colyvan aim at accommodating cases where the model structure needs to be adjusted, as it
turned out to be empirically inadequate after it has been applied to the target system. Con-
versely, the possibility to amend the “initial” structure of the target system on the grounds
of refinements and revisions informed by the model is also accommodated.

With the exception of Weisberg and Elliot-Graves, most of these accounts focus on
where to place the target system construction throughout the modeling activity and rarely
acknowledge or articulate (or give us reasons not to develop) a distinction between target
systems and phenomena. The following section focuses on those accounts that lay out this
distinction.

3. The distinction between target systems and phenomena

Philosophers dealing explicitly with the issue of target systems present the latter as con-
ceptually different from phenomena. The concepts of target system and phenomena that
emerge from these analyses are pragmatic in the sense of being strictly determined by the
discipline at stake (and the background knowledge it is built upon), its research question,
and the focus it determines.

According to Weisberg (2013), the identification of the phenomenon of interest is prelimi-
nary to the construction of the target system. A phenomenon is identified by circumscribing
a spatiotemporal region of the world with the main objects and properties and whatever
may have a causal influence on them. Modelers are not interested in all the properties of the
phenomenon (the total state of the phenomenon), but in a subset of these properties. The
identification of objects, properties, and potential causal factors by a theorist is constrained
by her background knowledge (and the background theories it brings into play) and the
procedural rules followed by her scientific community. Target systems are “abstractions per-
formed over these phenomena” (90): anything featuring the total state of the phenomenon
but lying outside the intended scope determined by the research question is abstracted away.”

Analogously, Elliot-Graves (2020) presents the identification of a phenomenon of inter-
est as preliminary to target construction. In order to identify the phenomenon, we first have
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to determine the spatiotemporal location at which the phenomenon takes place (the domain
of study). Target systems are generated by partitioning the domain of study into elements,
their properties, and relations: those deemed relevant to answer the research question are
retained, and the others are omitted. Elliot-Graves also casts relevance in causal terms:
the retained factors are those that causally influence the phenomenon.® The identification
of relevant causal factors is based on the available background knowledge (or, in case no
background knowledge is available, on educated guesses).’

What is particularly relevant about Weisberg’s and Elliot-Grave’s conception of phenom-
enon of interest, and their rendition of how a target system is carved out of it, is that it does
not rely on any metaphysical stance about phenomena. Phenomena are not conceived as
entities out there to be observed (or detected, if not observable). They are constructed dur-
ing the modeling process, which is strictly guided by the discipline at stake. Massimi (2011)
insightfully articulates the idea of “constituted phenomena”, which fits nicely with the no-
tion of phenomenon of interest presented by Weisberg and Elliot-Graves: “Phenomena are
not ready-made in nature; instead we have somehow to make them. And we make them by
first ascribing certain spatiotemporal properties to appearances [objects given in sensibil-
ity], and then by subsuming them under a causal concept” (2011, 110). The construction
of target systems can be conceived as the further step one needs to take to make these “con-
ceptual constructions” amenable to model treatment by partitioning and arranging them in
an ordered ensemble of properties and relations. The selection (and omission) of features
used to build up the target system is a function of the modelers’ goals and, according to
which desideratum the modeler wants to comply with, different models and target systems
are considered to fit better the same phenomenon of interest—provisionally, at least.

4. What is a target system: ontology and taxonomy

This section examines what kind of objects target systems are. This issue can be tackled
in a twofold, complementary manner. First, if we subscribe to the distinction drawn in the
previous section, according to which target systems are the product of abstraction over phe-
nomena, we may wonder whether target systems are by default abstract entities or if they
can be concrete. Second, we may wonder what kinds of target systems there are in modeling
practice, a question that may be tackled by providing a sort of taxonomy. In the following,
full-blown attempts to provide a classification of possible target systems are considered, as
well as other insights into the subject from contributions not directly dealing with this issue.

The previous section points out that target systems are mainly obtained by selecting rel-
evant features of otherwise too complex phenomena. The supposition that target systems
are somehow carved out from presumably actual phenomena and that selective activity is
guided by abstract theoretical guidelines, concepts, or (mental) conjectures might lead to
conceiving target systems themselves as abstract. However, philosophers engaged with this
issue do not take this answer for granted. Peschard (2010) argues that target systems are
both abstract and concrete. Target systems are abstract in two senses. First, they can be
conceived of as types instantiated in different contexts or experimental settings. For exam-
ple, a spring can be chosen by the scientific community as a target system and used in those
laboratories in which the dynamical properties of a mechanical system are investigated.
Therefore, two springs, each used in a different laboratory, are tokens of the same type,
i.e., of the spring that is preliminary (or conventionally) chosen as a fit target system for
that specific purpose. Second, materiality is not sufficient to individuate a target system.
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The same material system can be analyzed or manipulated by two scientists of different
disciplines in different ways and for different purposes, thus being conceivable as two differ-
ent target systems on the grounds of functional criteria. On the other hand, target systems
are also concrete. In fact, whether they are tokens of a type of target system (as in the case
of the two springs) or two different target systems tout court, they are particular, spatiotem-
porally identifiable objects.

Elliot-Graves (2002) argues that target systems gain their ontological status from their
domain of study. The fact that target systems are generally construed via partitioning and
omitting characterizing features of a phenomenon does not necessarily make them abstract:
if the domain of study is concrete, so will the target system carved out of it.!” The core of the
argument is that the parts of the phenomenon that have been selected to compose the target
system are not ontologically modified in the process of partitioning the domain: “All we do
when we partition and identify relevant parts and properties is group a part of the world
in a particular way. But this does not change the parts themselves. [...] If we think that my
laptop is concrete and real, then the ‘R’ key on the keyboard is also concrete and real” (10).

Weisberg does not seem to take a stance on what determines, if anything, the abstract-
ness or concreteness of target systems. Surely, he does not consider models as determining
whether their target systems are abstract or concrete. He stresses that there might be cases
where a target system is even more abstract than its model. This can happen when a con-
crete model is constructed out of model organisms, or in cases of “individual-based mod-
eling” where populations of organisms, generally treated as aggregates, are represented by
focusing on individuals and their properties.

While there is not a univocal view on what determines target systems’ abstractness or
concreteness, different authors seem to agree that the modeling practice will determine
the kind of target system employed. In the following, a taxonomy of target systems is
considered, expanding on that provided by Weisberg (2013) to incorporate other authors’
insights:

Specific targets: The target is a specific entity (or group of entities), phenomenon, or
process. Instances of specific targets are those represented by scale models (e.g., the
San Francisco Bay modeled by a hydraulic scale model), a particular species used as
an exemplar to study a class of species (e.g., the Australian rabbits investigated to
study invasive species).

Generalized targets: The target is a class of phenomena, not a specific instance
(e.g., the target of the model of sexual reproduction is sex in general rather than re-
production as performed by a specific species).

This level of generality of the target system is achieved by identifying the relevant features
shared by all the specific targets and finding out those generalizable properties, which Weis-
berg considers to be at “the intersection of the total states for each target” (116). In the case
of the model of sexual reproduction of two-sex species, the generalized target is meant to
have the set of properties shared by all sexually reproducing species. This level of abstrac-
tion in a target system is useful when the model is supposed to provide a how-possibly
explanation for some kind of phenomenon (e.g., “What is a possible reason for sexual
reproduction when asexual reproduction is less costly?”).

In the cases considered by Weisberg, the generalization is performed over classes of phe-
nomena made of similar elements (species, autonomous agents, etc.) that exhibit the same
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behavior (sexual reproduction, segregation, etc.). There are cases where the generalization
is performed over target systems of unrelated phenomena, also pertaining to different disci-
plines, whose behavior nonetheless exhibits similar patterns. These different phenomena can
be modeled by a model template, i.e., a “mathematical structure that is coupled with a general
conceptual idea that is capable of taking on various kinds of interpretations in view of empiri-
cally observed patterns in materially different systems” (Knuuttila and Loettgers 2016, 379).
In this case, the construction of the generalized target system is suggested by the conceptual
idea the template is endowed with. There are also cases where the generalized target system
is constructed not by the intersection of the total states of specific and similar target systems,
nor by the intersection of specific yet different target systems whose similarity pattern is sug-
gested by a template. These are cases, as considered by Godfrey-Smith (2009), where the gen-
eralization is suggested by the description of a specific target system that “acts as a ‘hub’ that
anchors a large number of other cases” (Godfrey-Smith 2009, 107). Once the modeler de-
termines the target’s hub role, she will combine the knowledge of the hub-target system with
ad hoc tools (concepts and methods external or internal to her discipline) relevant to apply
the “exact knowledge” of the hub-target system to other target systems she is interested in.

Non-existent targets: In this case, targets stand for non-existent phenomena. Modeling
non-existent targets is dubbed hypothetical modeling by Weisberg. The non-existence of
the target can be either contingent or nomically necessary. In the case of contingently non-
existent target systems, the target does not exist although the laws of nature would not
prevent its existence (e.g., the xDNA whose physical model led scientists to conclude that
DNA is likely no# the only possible genetic system, that is, its existence is contingent)."!

The non-existence of the target system can be also nomically necessary, i.e., it is physi-
cally impossible for the target to exist. This is, for example, the case of perpetual motion
machines described by models such as the ratchet and pawl machines. The existence of these
models’ target systems is impossible as it would violate the second law of thermodynamics.

Both contingently and nomically non-existent target systems are to be conceived as mere
possibilities, and models that provide information about such targets are hypothetical mod-
els, i.e., models that tell us something about real-world phenomena by telling us something
about a target that exists ex hypothesis only. Both kinds of hypothetical models are use-
ful as they provide counterfactual knowledge, i.e., “what the world would be like if the
model’s structure and behavior were instantiated in our own world” (128), which deepens
our understanding of actual phenomena, showing how they could have been different and
even why they are not so.

No target system at all: In this case, the object of the representation is the model itself
“without regard to what it tells us about any specific real-world system” (Weisberg 2013,
129)."2 This is often the case in mathematical and computer simulation modeling (see Parker
2009). An example is the Game of Life by Conway, a two-dimensional cellular automaton
made of a grid of square cells whose possible states are determined by some rules of interac-
tion inspired by real-life behaviors (e.g., being in a neighborhood, living, dying, surviving,
etc.). The simulation is employed to study the behavior of the cellular automaton, hence
of a mathematical model."* Levy (20135) refers to the Game of Life to reach the opposite
conclusion, i.e., there are no targetless models: the Game of Life was originally presented
as recreational mathematics, i.e., as a piece of mathematics that taken by itself has no target
system yet; once the model has been put to use to predict real-life human behaviors, it has
instantly gained a target system. A similar claim appears in Cassini’s work (2018), with at-
tention to the target construction processes.
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Bokulich (2003) and Zuchowski (2019) argue that modeling with no target systems at
all is typical of the “horizontal model construction.” While vertical models are constructed
either top-down from theory or bottom-up from empirical data, horizontal models are con-
structed by mathematically manipulating, e.g., a set of equations for investigative reasons.
For example, in complexity science, it is common to modify the dynamics of an “ancestor
model” (used to model a target system). The dynamics thus generated lead to a “lineage
of models” none of which, contrary to their ancestor, has a target system for its dynamics
as it is automatically generated by artificial intelligence (Zuchowski 2019). Analogously,
in physics, quantum maps are models generated by discretizing the equations of classical
models and for the sole purpose of clarifying the relation between quantum and classical
mechanics (Bokulich 2003).

5. DPlacing target systems between models and phenomena:
possible consequences for philosophical analysis

The conflation of targets with phenomena and data models has proven to be quite problem-
atic when one of the major conundrums of scientific representation via models is at stake,
i.e., how can something abstract—such as a mathematical model—represent something
concrete, e.g., the behavior of a physical system (van Fraassen 2008 calls this the “link to
reality objection”; see also Nguyen and Frigg 2021). On the other hand, what is missing in
accounts that distinguish target systems from phenomena and data models is a fully-fledged
analysis of the possible consequences of rethinking the relation between (abstract) models
and (concrete) targeted phenomena in light of this distinction.'* The scope of this section
is to highlight these consequences and to briefly consider how the philosophical analysis of
scientific modeling could benefit from integrating the issue of target system construction.
Conflating target systems with phenomena is particularly problematic for those accounts
that make representation depend on some intrinsic property of the model and the target
system, such as that of sharing (some) structure (Bueno, French and Ladyman 2002; da
Costa and French 2003; French 2020.) These accounts provide a formal rendition of this
relation in terms of different kinds of morphisms between the structures of the model and
the target (see Pero and Sudrez 2016 for a comparative analysis). The issue at stake is that
the only justification for the fact that models (structures) are applicable is that phenomena
naturally exhibit some kind of structure and that the model correctly pinpoints such struc-
ture. However, metaphysical justifications of the form “models successfully represent (are
morphic to their target systems) as they correctly identify that the structure phenomena are
actually equipped with” (Ladyman 1998; French 2000) would jibe the issue of scientific
representation with philosophical problems it is proclaimed to be neutral about. As stressed
in a recent and milder formulation of these accounts, such as Bueno and Colyvan’s inferen-
tial conception, the way we carve up phenomena and arrange them into a set of objects and
relations (a structure) is something we obtain under the guidance of our theories and not
something the world comes equipped with (2011, 347). Notwithstanding, as pointed out by
Nguyen and Frigg (2021), the target system’s structure in Bueno and Colyvan’s account is
only “assumed” as necessary for articulating their mapping account, and no story is given
on where the assumed structure of the target system comes from. Nguyen and Frigg (2021)
claim to fill this lacuna by offering an account of how structures for target systems are
“actually” generated via structure generating descriptions. These are descriptions of phe-
nomena that “strip” away the physical nature of their elements and relations and replace
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them respectively with featureless dummy objects and pure extensions of the relations (the
latter specify between which object the relation holds, but not what the relation itself is).

A different strategy to fill in the gap between (abstract) models and (concrete) targeted
phenomena has been developed by van Fraassen, who identifies data models as intermedi-
ate elements between models and phenomena. Placing data models between models and
phenomena is presented by van Fraassen (2008) as a possible solution to the “link to reality
objection” as he claims that “construction of data models is precisely the selective relevant
depiction of the phenomena by the user of the theory required for the possibility of repre-
sentation of the phenomenon” (253). Such identification is nonetheless problematic as data
models are conceived as (mathematical) structures. The same question arises regarding how
to justify the use of their (the data models’) structure to represent phenomena (Brading and
Landry 2006; Le Bihan 2012; Nguyen 2016).

It has been previously highlighted that the few accounts explicitly dealing with target
systems, their ontology and construction, present target systems as the final recipient of
the representational relation having models on the other side. Target systems are carved
out from phenomena and, consequently, rephrasing van Fraassen’s pragmatic tautology,
claiming that the model represents a target system is the same as claiming that it represents
the phenomenon the target “stands for.” However, it has been pointed up that the notion
of phenomenon of interest is not metaphysically loaded, nor does it imply any ontologi-
cal commitment: a phenomenon is a conceptual construction identified as the content of
a spatiotemporal region in the world that a competent research isolates according to the
focus posed by the research question raised by the discipline at stake. Target systems are
possible ways of carving out the phenomenon of interest into elements and relations that
are conjectured to have a causal influence in determining the phenomenon or its behavior.

This conception of target systems and phenomena could help to spell out the representa-
tion relation between models and targeted parts of the world more precisely and neutrally:

i the representation relation holds between a model and its target system;

ii we are entitled to draw inferences from the model to the phenomenon the target system
was carved out from;

iii the “reality” that is being addressed via (i) and (ii) need not be that of the world but
of the content of the spatiotemporal region of the domain of study the phenomenon
pertains to, which includes all the objects, properties and relations characterizing the
phenomenon, together with the exogenous causes that affect its behavior.

The relation between target systems and phenomena, as pointed out by Elliot-Graves
(2020), could be analyzed in terms of aptness: a target system is apt for explaining a phe-
nomenon if the partition displayed in the target is useful for understanding the domain of
study and the selected parts contain all the factors that are deemed relevant in order to
understand the domain of study.'

A final remark concerns the relevance of the issue of target system construction for a
philosophical analysis of modeling that aims at being closer to scientific practice. Which
features should be included in the construction of a target system is itself subject to scientific
research. Moreover, assessing the adequacy of target systems as refined versions of phenom-
ena of interest requires some normative constraints that govern the construction of target
systems. As these processes may be performed differently, there may be more than one
target system for a single phenomenon. Hence some standards of adequacy are to be set.'®
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As pointed out in Section 1, the idea that phenomena are to be “prepared” for model
application floated from the beginning of the philosophical debate on modeling as represent-
ing. However, it has taken some lexical creativity and conceptual efforts to identify target
systems and their construction as a distinct moment in the reconstruction of the modeling
practice with respect to model construction or phenomena preparation, as well as to iden-
tify target systems as a proper item with respect to the other components that modeling is
traditionally reduced to. This entry has focused on such recent efforts and tried to underline
the insights they could bring to the philosophical analyses of modeling and representation.
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Notes

1 Representation is not the only way the model-target relation can be cast (see Peschard 2009;
Knuuttila 2011, Tee 2019). However philosophical the accounts considered here mostly stick to
the representational conception of the relationship.

2 Another reason for the replacement is that these terms are ontologically loaded, and philosophers
rarely engaged with the issue of modeling are concerned with taking an ontological stance.

3 Cases of models with no target systems at all are also considered in the literature (see Section 4).

4 Elliot-Graves does not take side in the debate between structuralists and inferentialists. On the
other hand, Weisberg does subscribe to the structuralist approach as he considers models inter-
preted structure that stand in a mapping relation to their target systems (2013, chap. 2), and he
shares with champions of structural approaches the view that “comparing structures to structures
is at the core of modeling” (ibid., 15, fn. 3). In spite of that, his account of target-system construc-
tion and partitioning, as Elliot-Grave’s, is spelled out in neutral terms. Weisberg’s structural setting
resurfaces when, once the target has been construed, it is put in relation to the model. This is the
coordination phase, when there are “specifications of how parts of real or imagined target systems
are to be mapped onto parts of the model” (39).

5 Elliot-Graves acknowledges that presenting the partitioning of the domain into parts and proper-
ties and the omission of parts and properties as irrelevant, as two separate steps may be superflu-
ous since they may be indistinguishable steps in actual practice. However, she claims there is a
conceptual difference between partitioning and omitting. Partitioning can be performed in dif-
ferent manners thus leading to different arrangements of parts and their properties, yet “all those
partitions will contain the same amount of ‘stuff’” (2020, 28). On the other hand, omission leads
to thinning out elements of the partitioned domain as they are deemed irrelevant.

6 The following quote from Weisberg nicely takes stock of the process of target-construction: “When
a scientist is interested in studying some phenomenon in the world, she begins by identifying a
spatio-temporal region of interest. [...] Call the entire set of these properties the total state of the
phenomenon. In almost every instance, modelers are not interested in studying the total states of
phenomena, but rather some scientifically important subset of these properties. These restricted
subsets are target systems. In other words, when scientists choose a focus, or an intended scope
([...]), they focus on some set of properties and abstract away the others. This yields a target sys-
tem, a subset of the total state of the system.” (2013, 90).

7 Winsberg (2009) distinguishes as well “target systems” from “objects,” yet he provides a different
interpretation of both the terms. Target systems are the class of systems of scientists’ interest, while
the “object” of the investigation is the artifact that they observe and intervene on during investiga-
tion. In this context, the target system is what Weisberg identifies as the phenomenon of interest,
not the outcome of the abstraction performed over the latter.

8 Elliot-Graves prefers to lay out the process of target system construction in terms of omission
rather than abstraction as the latter has not a univocal meaning in the philosophical literature on
models (see Frigg and Hartmann 2020).
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9 Peschard (2010) questions Weisberg’s point that the individuation of the phenomenon of inter-
est is a prerequisite for the modeling activity to get started (and her concern can be applied to
Elliot-Grave’s analysis as well): if the phenomenon of interest is the item upon which the research
question is built, how could the modeler know what to include in the preparation of the target
system as relevant to answer the question? In particular, Peschard does not subscribe the claim that
modeling and targeting phenomena amounts to an investigation of the causes for a given effect
since there might not be a clear-cut effect in the first place.

10 In her contribution, Elliot-Graves is not only defending the equivalence of statuses for the target
system and its domain of reference. She is actually claiming that target systems are always “real
parts of the world” and concrete. What is missing in Elliot-Graves’ argument in favor of the
concrete status of target systems is the explicit assumption, or premise, that domains of study are
always concrete.

11 For a thorough analysis of alternative genetic systems see Koskinen (2017), Knuuttila and Koskinen
(2020).

12 Weisberg seems to partially contravene this understanding of models with no target at all when
he claims few lines later that “the development of such models has often been motivated by ideas
about the way the world might work [...] even if they are not intended to be models of such phe-
nomena” (130).

13 Only later, because of the possibility the Game of Life offered to simulate real-life processes, the
model has been ascribed to target systems, thus becoming target directed.

14 Weisberg presents the model-target relationship in terms of similarity, in line with Giere’s (2004)
understanding of the concept as more a theoretical hypothesis by scientists (that the model is
similar to the phenomenon of interest) than substantive properties of the model and the target. As
such, similarity comes “in respects and degrees”, according to scientists’ goals.

15 Elliot-Graves does acknowledge that both the selection of some parts as relevant and of other parts
as irrelevant can be incorrectly performed. A re-examination of the target system thus constructed
may reveal whether this is the case (2020, 11).

16 The possibility of multiple target systems at stake here is not the one due to the difference among re-
search questions. As exemplified by Weisberg (2007): two scientists might be studying the Adriatic
Sea after World War I with two different research questions in mind. One might be interested in
predator-prey relations after the conflict, and another in the effect of surface temperature on algae
blooms. Different target systems correspond to each of these two questions. The issue is rather if,
once the research question is determined, a target system could in principle be arbitrarily generated.
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10
MINIMAL MODELS

Christopher Pincock

1. Introduction

This chapter considers some defenses of the use of minimal models or toy models, treat-
ing them interchangeably (cf. Gelfert 2019). As these terms suggest, minimal models are
especially simple, and so they seem to be too unrealistic to be used for ordinary modeling
purposes such as accurate description, prediction, or explanation. Section 2 sketches three
examples of minimal models and uses these examples to motivate a provisional definition.
Section 3 discusses some modal strategies for making sense of the use of minimal models.
Section 4 engages with some alternative reinterpretation approaches to minimal models. Sec-
tion 5 considers the argument developed by Batterman and Rice that there is a special kind of
“minimal model explanation” where a minimal model plays a crucial part. This short survey
suggests that there are many questions about minimal models and their viable uses that re-
main open to debate. While there may be no single answer to the question of how minimal
models are useful in science, a variety of strategies can be fruitfully combined to cover many
of the initially puzzling cases.

2. A puzzle for the use of minimal models

In many cases of model-based science, a model is used to describe, predict, or explain some
aspect of a target system only after it has been extensively tested. Users of the model then
often maintain that the model can afford new, justified beliefs. While there is no consensus
on how testing a model leads to new, justified beliefs, one popular proposal is that said test-
ing often involves establishing a representational relation between a model and its intended
target. This representational relation provides some assurance that a generic feature of the
model will also be present in the target. In general, a minimal model or a toy model will
fail these sorts of tests, in part because it is too simple to stand in such a representational
relation. This suggests the following provisional definition: a scientific model is a minimal
model just in case the users of the model believe that it lacks a representational relation to
its target that would license a user to infer that a generic feature of the model is present in
the target (cf. Grine-Yanoff 2009, 83). The puzzle for the use of minimal models is then
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immediate: when is it appropriate for a user of a minimal model to infer that some specific
feature of the model is present in the target, given that they believe that there is no license
for this inference in general?

This provisional definition of minimal model fits well with two of the most commonly
mentioned minimal models: the Ising model of phase transitions and the Schelling model of
racial segregation. The Ising model of phase transitions is typically identified with a special
sort of system that undergoes a phase transition: “The most important and simplest system
that exhibits a phase transition is the Ising model” (Gould and Tobochnik 2010, 248). The
two-dimensional Ising model is composed of elements placed on a square lattice, where
each element is assigned spin-up or spin-down. In the simplest case, interactions are allowed
only between nearest neighbors. These interactions then generate blocks of aligned ele-
ments, which produce some net magnetic field. Below some critical temperature, the system
will generate a magnetic field via the contribution of blocks of similarly aligned elements.
However, when the critical temperature for the system is reached, the model’s magnetic
field goes to 0. This is a “continuous” phase transition because the magnetic field, the sali-
ent “order parameter,” “vanishes continuously rather than discontinuously” (Gould and
Tobochnik 2010, 266). More generally, a phase transition occurs when a system’s order pa-
rameter changes from non-zero to zero. The same basic approach can be used to formulate
a three-dimensional Ising model where elements are arranged in a three-dimensional cubic
lattice. Other phase transitions can be modeled in terms of the vanishing of other kinds of
order parameters. For example, for materials that may be in either a liquid state or a gas
state, the order parameter is the difference between the density of the liquid and the density
of the gas. Phase transitions occur in these materials when the difference between these den-
sities goes to 0. This occurs when a critical temperature and critical pressure are reached.

The Schelling model of racial segregation is often introduced as a 64-square checker-
board, where some of the squares are occupied by nickels and some of the other squares
are occupied by dimes (Schelling 1978, 147-155). We suppose that the coins are initially
randomly distributed across the checkerboard, with many squares left blank (e.g., 19). Each
coin is then given an opportunity to move. A coin’s movement is determined by the occu-
pants of its neighboring squares: if 33% or fewer of its neighbors are the same coin as it,
then it moves to an unoccupied square where more than 33% of its neighbors will match its
coin type. Otherwise, the coin stays where it is. Schelling found that for nearly all starting
configurations, the initially random arrangement would be transformed into a highly seg-
regated pattern of coins over several rounds of movement. Just as the Ising model of phase
transitions exhibits a phase transition, the Schelling model of racial segregation exhibits
a process of “racial” segregation, where coins of different types wind up in homogenous
groups on the checkerboard.

Hamilton’s selfish herd model of gregarious behavior considers an infinitely large field
with cows randomly distributed across it (Hamilton 1971; Pincock 2012a). Every so often,
a lion emerges from a random location in the field and consumes the cow that is spatially
closest to it. Hamilton used this setup to consider various rules that cows could follow to
avoid being eaten. He argued that the best movement rule for an individual cow would be
to move toward its nearest neighbor. This results in “gregarious behavior,” that is, animals
of the same species staying in close spatial proximity to one another. A cow following this
movement rule would reduce its chance of being eaten by lions as this movement rule would
be the best way for the cow to reduce its so-called “domain of danger,” i.e., the region made
up of points closer to that cow than any other cow.
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Each of these models is a model of some phenomenon, i.e., phase transitions, racial
segregation, and gregarious behavior, and yet the simplicity of the model creates doubts
about the use of the model for generating new, justified beliefs about these phenomena.
If taken at face value, hardly any of the features present in the model system are also present
in the target phenomenon. The same point holds for other popular examples of minimal
models: hardly any features of the model systems can be found in the target phenom-
ena. Other common examples are the Hawk-Dove model of restraint in combat (Rohwer
and Rice 2013; Fumagalli 2016), the Lotka—Volterra model of predator—prey interaction
(Weisberg 2013; Knuuttila and Loettgers 2017; Reutlinger, Hangleiter, and Hartmann
2018), and the Hotelling model of market competition (Aydinonat and Koksal 2019). The
puzzle for these minimal models is that such models are widely used throughout the sci-
ences, and yet their simple character stands in the way of understanding their use.

3. Modal approaches to minimal models

One proposed solution to the puzzle of the use of minimal models is that model users are
careful to restrict the sort of properties that they transfer from what they find in the model
to the target phenomenon. Griine-Yanoff argues that only modal properties are apt to be
transferred from a minimal model to a target. A model user who respects this restriction can
then learn something about the phenomenon, even though the model lacks the usual repre-
sentational relation to the target. For Griine-Yanoff this “learning” from a minimal model
involves a rational revision of the credence of some hypothesis. In summary form, he pro-
poses that “If we are to learn from a model ... it must (1) present a relevant possibility that
(2) contradicts an impossibility hypothesis that is held with sufficiently high confidence by
the potential learners” (Grine-Yanoff 2009, 97). He applies this proposal to the Schelling
model. Suppose that some scientists believed that it was impossible for racial segregation
to arise in the absence of strong racial preferences. The model presents a “relevant possibil-
ity” where racial segregation arises on the checkerboard, even though the racial preferences
are very weak (Griine-Yanoff 2009, 96). A similar point can be made for Hamilton’s selfish
herd model: biologists had claimed that gregarious behavior required group selection, but
the model indicates how gregarious behavior could arise through ordinary, individual se-
lection. This would then count as another example of learning from a minimal model. (See
also Knuuttila (2021) for another proposal along these lines.)

Griine-Yanoff’s proposal seems adequate for cases where scientists are interested in all
the possible instances of some phenomenon. Suppose, though, that scientists are interested
only in the actual causes of actual instances of the phenomenon. For this sort of investiga-
tion, the modal strategy is not well suited to make sense of the use of a minimal model. As
Fumagalli puts the worry, even though Schelling’s model “may prompt a justified change
in confidence in hypotheses about the segregation processes figuring in the possible worlds
envisioned by his [Schelling’s] model ... [this] does not imply a justified change in model-
ers’ confidence in hypotheses about any real-world segregation process” (Fumagalli 2016,
445, emphasis in original). Similarly, one could complain that Hamilton’s model does not
establish that any actual instances of gregarious behavior arose (or even could have arisen)
as the model depicts, i.e., entirely through individual selection (cf. Sjolin Wirling 2021).

Another modal strategy is pursued by Reutlinger, Hangleiter, and Hartmann. Their pro-
posal is based on a distinction between models that are “embedded” within a theory and
models that are “autonomous” from a theory. An embedded model can draw on the theory
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it is tied to in order to provide “an interpretation and justification of the idealizations”
of the model (Reutlinger, Hangleiter, and Hartmann 2018, 1086). Reutlinger et al. admit
that many minimal models fail to satisfy these conditions: even if they are models of some
theory, no theory is able to legitimate or interpret the idealizations so that they correspond
to true claims about genuine causes. This is how they characterize the Schelling model. In
such cases, Reutlinger et al. maintain that a minimal model can still provide a how-possibly
explanation. This means that the model does not explain how racial segregation actually
arose, but instead how racial segregation could have arisen (Reutlinger, Hangleiter, and
Hartmann 2018, 1094). This is quite similar to Griine-Yanoff’s proposal, except Reutlinger
et al. add that legitimating this sort of modal claim also explains what they call a “modal
phenomenon” (Reutlinger, Hangleiter, and Hartmann 2018, 1094). A modal phenomenon
in their sense involves the necessity or possibility of something. Two examples of modal
phenomena would be the possibility of extraterrestrial life and the impossibility of a per-
petual motion machine. (See Verreault-Julien (2019) for a general discussion of this kind
of explanation.)

As with Griine-Yanoff’s point about learning about possibilities, it is important to be
clear on what these how-possibly explanations target. Neither Schelling’s model nor Ham-
ilton’s model show, for any actual instance of racial segregation or gregarious behavior,
that this instance could have arisen in the way the model depicts. Instead, the models show
that some non-actual instances of the phenomenon arose in this way. This is a very weak
explanatory claim. Analogously, one could explain how life could have arisen by invoking a
minimal model that includes special creation: this does not explain how actual life on earth
could have arisen, but only how life arose in some remote possible scenario. It is not clear
that the importance of minimal models can be clarified if these claims were all that minimal
models could offer.

4. Reinterpretation approaches to minimal models

Reutlinger et al. allow that some autonomous minimal models can be used to provide ex-
planations of the actual features of some phenomenon. However, they seem to assume that
the most common way that this occurs is by developing a new, more complicated model
(Reutlinger, Hangleiter, and Hartmann 2018, 1092). This section considers three attempts
to legitimate the explanatory use of the minimal model without developing another, more
realistic model. These attempts all involve reinterpreting the minimal model so that its fea-
tures are changed. This then licenses relating these new features to the features of the target
phenomenon.

Perhaps the most well-known reinterpretation strategy for minimal models has been
developed by Weisberg as part of his account of what he calls “minimalist idealization.”
Minimalist idealization is a process of model construction that aims at what Weisberg calls
a “minimalist model”: “a minimalist model contains only those factors that make a differ-
ence to the occurrence and essential character of the phenomenon in question” (Weisberg
2007, 642). Weisberg allows for a variety of ways that this sort of model could be obtained.
The goal is to obtain an explanation using the model that relies on “a special set of explana-
torily privileged causal factors” (Weisberg 2007, 645) found in the model, which is taken to
make a difference to the target phenomenon. There is a considerable gap, though, between
the usual presentation of minimal models like the three introduced in Section 2 and an in-
terpretation of the model of the special sort that Weisberg describes. For example, Weisberg
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says of the Ising model: “What it seems to capture are the interactions and structures that
really make a difference, or the core causal factors giving rise to the target phenomenon”
(Weisberg 2007, 642-643). However, it is not clear what notion of difference-making or
core causal factors we should use to interpret the Ising model so that it presents “only those
factors.” When compared to the typical instance of the target phenomenon, many features
of the Ising model seem more like idealizations or deliberate distortions than genuine dif-
ference makers. For example, as was noted in Section 2, the Ising model only allows in-
teractions between an element and its nearest neighbors. Should we dismiss this feature of
the model as a distortion, or does it somehow reflect a difference-making factor for phase
transitions quite generally? Reutlinger et al. are also unsure how to implement Weisberg’s
proposal for the Schelling model. How should we reinterpret the assumption that agents
know the color of their neighbors so that it reflects a genuine difference maker for racial
segregation quite generally (Reutlinger, Hangleiter, and Hartmann 2018, 1090)? Or, if we
are to dismiss this assumption as a distortion that is not really part of the intended rein-
terpretation of the model, then how is this reading to be identified? Until this procedure is
clarified, the widespread use of minimal models remains unmotivated.

Nguyen considers a more open-ended process of reinterpretation in “It’s Not a Game:
Accurate Representation with Toy Models” (Nguyen 2020). He criticizes approaches to
the representational relationship between models and targets that rely on similarity. For
Nguyen, a better way to think about this relationship is in terms of more flexible interpre-
tation functions that lead a feature X of the model to stand for a distinct feature Y of the
target: once these functions are applied “the model can generate true claims about a target
system, and thereby accurately represent said system, despite failing to share any relevant
feature with its target ...” (Nguyen 2020, 1024). One way to capture this process of reinter-
pretation is to suppose that the initial presentation of the model offers only a superficial or
naive interpretation. For example, in the Schelling model, we have a model system made up
of differently colored coins, and in the Hamilton model, we have an infinitely large grassy
plain occupied by randomly placed cows. However, users of the model reinterpret the fea-
tures of the model system so that the model generates claims that are apt to be exported
from the model and applied to real-world targets, such as residential patterns in Chicago
or some actual school of fish. Nguyen argues that this sort of reinterpretation can lead to
explanations of the actual features of real-world instances of these phenomena.

Two sorts of reinterpretation are central to Nguyen’s analysis of how minimal models
can afford explanations of real-world phenomena. First, a reinterpretation may take a spe-
cific, inevitable process found in the model and translate it into a claim about a less specific
tendency that is present in the target. For the Schelling model, this less specific claim is that
“A city whose residents have weak preferences regarding the skin colour of their neighbors
has a susceptibility towards global segregation” (Nguyen 2020, 1030). So, what is more or
less guaranteed to result in the model is now taken to represent only a tendency or suscep-
tibility of the target phenomenon. The second sort of reinterpretation that Nguyen empha-
sizes concerns the idealizations of the minimal model. For example, it is not initially clear
how to interpret the assumption that agents in the model (i.e., the coins) know the makeup
of their neighbors. Nguyen argues that “As long as a model user understands the idealiza-
tions in question, then they shouldn’t interpret those features in a way that entails exporting
them, incorrectly, to the model’s target” (Nguyen 2020, 1035). The enlightened user should
appreciate that a claim like this assumption of the Schelling model involves “precisely the
sorts of features that get altered by the interpretation function” (1035). Nguyen does not
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say much about how idealized assumptions are altered, but he may think that we will
typically weaken those claims so they are true of the target. For example, in this case, we
will interpret the model claim that agents in the model know everything about the makeup
of their neighbors to the exportable claim that humans know a lot about this makeup.
In both reinterpretations, then, the minimal model is used to generate less specific claims
about processes or features that are arguably present in the target phenomenon.

Nguyen’s flexible reinterpretation strategy is quite promising and similar to Pincock’s
account of how to deal with these sorts of highly idealized mathematical models. For ex-
ample, “an idealization transforms a representation that only obscurely represents a feature
of interest into one that represents that same feature with more prominence and clarity.
This involves, among other things, decoupling some parts of the representation from their
original interpretation” (Pincock 2012b, 97). In Pincock’s discussion of Hamilton’s model,
this approach was generalized to allow for what he called gambit idealizations: “we sac-
rifice truth with respect to one feature with the aim of accurately representing some other
features” (Pincock 2012a, 493). On this understanding of Hamilton’s model, there are
aspects of the model that are idealized and also essential to the modeling purpose. So we
do not reinterpret these aspects of the model. For example, recall that Hamilton’s model
uses the size of the domain of danger of a cow to estimate the chance that the cow will be
eaten. This is an idealization of any actual biological population, but it is required in order
to evaluate the fitness of various movement rules. These fitnesses need to be well-defined so
that Hamilton can argue that his preferred movement rule has evolved through ordinary
processes of individual selection. The idealization may be necessary to use the model to
explain how gregarious behavior evolved, even though users of the model are aware that
the idealization is false. However, the model can still be used to explain if there is good
reason to think that this falsity is consistent with accurately representing genuine causes of
the evolution of that trait. The general suggestion, then, is to allow for even more options
for reinterpretation than Nguyen explicitly considers. Some uses of minimal models will
require only the sorts of weakenings that he mentions, while other uses will involve a more
involved reinterpretation or selective appeal to interpreted aspects of the model.

The key point to keep in mind is that even when users of a model lack assurances that a
generic feature of the model will be found in the target, they can still have good reason to
think that some special features associated with the model will be found in the target. These
special features may not be immediately apparent and so investigations of the model may
motivate novel or creative reinterpretations of its representational content. If we consider
the Schelling model or Hamilton’s model in this light, then there is no puzzle about how
these minimal models can be used to generate accurate descriptions, predictions, or even
explanations of real-world phenomena.

5. Minimal model explanations

In their paper, “Minimal Model Explanations,” Batterman and Rice argue that minimal
models may be used in a special sort of explanation. This involves “a fundamentally dif-
ferent kind of story about how these minimal models ‘latch onto the world’ ...” (Batter-
man and Rice 2014, 350). To illustrate their proposal, I will consider their account of how
the Ising model may function in an explanation of the universality of critical phenomena
(Batterman 2019). Recall from Section 2 that the Ising model exhibits how the magnetic
field of a system vanishes at some critical temperature T.. Other systems exhibit a second
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sort of phase transition tied to the vanishing of the difference between the densities of the
liquid and gas present at some critical temperature T_and pressure P_. Somewhat remark-
ably, it turns out that the order parameters involved in both transitions change in the same
way as the temperature is raised to T : in both cases, the order parameter is proportional to
¢/. While the interpretation of ¢ varies from the magnetic case to the liquid/gas case, B has
the same value: for two-dimensional systems, f is 1/8, while for three-dimensional systems,
B is approximately 0.324. This striking correspondence was discovered decades before it
was explained in the 1970s.

The apparently unified character of phase transitions, despite their many physical dif-
ferences, motivates what Kadanoff has called a “hypothesis of universality”: “All phase
transition problems can be divided up into a small number of different classes depending
upon the dimensionality of the system and the symmetries of the order state” (given at Bat-
terman 2019, 33). For Batterman and Rice, this is the sort of target that requires a minimal
model explanation: why are these critical phenomena divided up into a small number of
“universality” classes?

To reconstruct Batterman and Rice’s argument, suppose that an explanation of the uni-
versality of some phenomenon has a special sort of target that forces a special sort of
explanation. For a phenomenon to be universal, that phenomenon must arise in the same
way across a wide variety of systems despite their differences. So to explain the universality
of some phenomenon, one must indicate how the differences between these systems fail to
matter for the outcome, and also indicate what common aspects of these systems do matter
for the outcome. In our case, the universality of the phenomenon in question partly consists
in the fact that two-dimensional systems of this kind have a critical exponent of 1/8, while
three-dimensional systems of this kind have a critical exponent of 0.324.

To explain the identity of these critical exponents despite the differences between these
systems, Batterman and Rice first invoke “a space of possible systems.” The next step in
the explanation is to group these systems together based on how a special sort of trans-
formation maps one system to another. This sort of transformation is identified through
“renormalization group” methods. If the transformation is appropriately chosen, it “in
effect eliminates details or degrees of freedom that are irrelevant.” Systems S1 and S2 can
then be grouped into a universality class when this transformation takes both S1 and S2
to the same fixed point S$*, i.e., applying the transformation to S* yields S*. According to
Batterman and Rice, “A derivative, or by-product, of this analysis is the identification of the
shared features of the class of systems” (Batterman and Rice 2014, 362-363). In our case,
the transformation takes systems with very different characters to the same fixed point.
The transformation is chosen so that the critical exponent is the same for all systems in a
given universality class. But the only other common features of significance of the systems
in a class are the dimensionality of the system and the structure of the order parameter. All
remaining differences between the systems have thereby been shown to be irrelevant to the
value of the critical exponent. The explanation should thus be clear: these systems share a
critical exponent because they have the same dimension and the salient order parameters
have a common structure, and not because of any additional features that differentiate
those systems, e.g., their microphysical constitution.

Notice that minimal model explanations involve three different elements: (i) a minimal
model like the Ising model, (ii) models for ordinary real-world systems, and (iii) a trans-
formation that appropriately connects them all together. The combined role of all these
models and the choice of transformation highlight the limitations of both the modal and
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reinterpretation strategies. Neither approach can make sense of the role of minimal models
in explanations of universality. As we have seen, both the modal and reinterpretation strat-
egies deal with the inaccuracies of the minimal models by limiting the features of the model
that a scientist should use to characterize the target. Modal approaches supposed that these
special features would be modal in character, while reinterpretation approaches allowed for
more flexible shifts in how the model depicts the target. However, not even the most liberal
reinterpretation can transform the Ising model into an explanation of the universality of
critical phenomena. What is needed instead is a way of relating or connecting the Ising
model to other models in a way that fits this special sort of explanatory target.

Batterman and Rice emphasize this point when they insist that “What makes such mod-
els explanatory has nothing to do with representational accuracy to any degree” (Batterman
and Rice 2014, 356). As they elaborate in a footnote, “in the case of minimal models the
features that correspond are inadequate to explain why so many diverse systems, including
the model system, will display the same macroscale behavior” (Batterman and Rice 2014,
356, fn. 7). This rejection of a central role for accuracy in these model-based explana-
tions has prompted a number of objections (Povich 2018; Franklin 2018; Sullivan 2019;
Rodriguez 2021). One concern emphasized by Lange is that if we give up focus on the com-
mon features between some model and its target, then we will lose the asymmetry that is
central to the contrast between genuine explanation and mere description. As Lange puts it,
“The target system and the minimal model are simply two systems in the universality class.
Why does the behavior of one of these systems help to explain the behavior of the other?”
(Lange 2015, 295). Here Lange is thinking of a target system that exhibits a phase transi-
tion with the very same critical exponent as we find in the Ising model. This is arguably
a misunderstanding of the explanatory target that Batterman and Rice emphasize: as was
noted above, they aim to explain the universality of the phenomenon, which is that many
systems exhibit this feature despite their differences. In a reply to Lange, McKenna makes
the same point: “the explanatory target of minimal model explanations is in the first place
the ubiquity of the macrobehavior” (McKenna 2021, 737).

Another concern raised by Lange is that Batterman and Rice’s explanation relies on some
common features between the minimal model and the other systems that exhibit the phase
transition. As we have seen, at the core of the explanation is the way that a transformation
unites the Ising model with the other systems that exhibit that phase transition. One option
that Lange considers is that “the given fluid’s macroscale behavior is explained by its pos-
sessing the property of being such that it is brought to a certain fixed point in the state space
(the same point for every member of the universality class) when it repeatedly undergoes a
certain transformation ... Since this property is common to all members of the universality
class, it constitutes a ‘common feature’ of the kind that B&R deny explains the system’s
macrobehavior” (Lange 2015, 299-300). That is, some real-world systems and the Ising
model both have the same critical exponent because they get mapped to the same fixed
point by this transformation. So, there is a common feature present after all.

It seems that Batterman and Rice should concede this point, but argue that their claims
about common features and accuracy were more limited in scope: the explanation does
not consist of simply pointing to this common feature between the Ising model and these
real-world systems. Instead, the core of the explanation is the way the transformation works
to connect the Ising model to these real-world systems. There is a common feature, but,
as McKenna says, “this common feature does not furnish us with the accuracy conditions
that are required for the model to explain” (2021, 740). The Ising model does not explain
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because it accurately represents real-world systems to be in the same universality class as
the Ising model. Instead, the Ising model may figure into the explanation, as a proper part,
because it is in the same universality class as these real-world systems.

A residual worry could be raised on Lange’s behalf, though: is a minimal model like the
Ising model essential to a minimal model explanation of the universality of some phenom-
enon? Batterman and Rice’s label of “minimal model explanation” certainly suggests that
some minimal model is essential for these explanations to work. There are two different
explanatory targets that are easy to confuse. The first target is the division of systems ex-
hibiting critical phenomena into a small number of classes. The second target is the very
same division with the additional stipulation that the two-dimensional Ising model is in one
class and the three-dimensional Ising model is in another class. The first target thus makes
no mention of the Ising model, and for this reason, there is no need to mention the Ising
model or any other minimal model in the explanation. All one needs to do is show how the
real-world systems that exhibit this phenomenon are mapped to distinct fixed points, and
how this transformation accounts for the critical exponents that are shared. By contrast,
a scientist who considers the second target has already included the features of the Ising
models in their explanatory target. Thus, for this target, it is essential that one mention
the Ising models and illustrate how they are affected by the transformation in question.
Historically, it seems clear that the Ising models played a central role in the investigation of
critical phenomena, and so it is plausible to suppose that most scientists were interested in
this second target. But for others who cared only about the first target, there is an explana-
tion of the universality of real-world critical phenomena that does not rely essentially on a
minimal model.

In more recent work, Batterman and Rice have emphasized how a minimal model
can contribute to scientific goals like prediction and explanation by being appropriately
linked to a larger ensemble of models. In A Middle Way: A Non-Fundamental Approach
to Many-Body Physics, Batterman (2021) emphasizes the importance of a result in statis-
tical mechanics known as the fluctuation—dissipation theorem. This theorem considers a
many-body system such as a gas or fluid. If such a system starts in an equilibrium state, it
may transition to a non-equilibrium state through either a spontaneous internal fluctuation
or a small external disturbance, followed by a transition back to an equilibrium state. The
theorem claims that, in Batterman’s words, “That evolution ... is the same regardless of
the origin of the non-equilibrium” (Batterman 2021, 21). In addition, Batterman argues,
minimal models like the Ising model prove to be the right models to use to appreciate the
mesoscale structures of these systems that mediate between the various microscale differ-
ences between such systems and the macroscale commonalities that they exhibit. The very
same mesoscale structures that govern the processes of returning to equilibrium are promi-
nent in minimal models. As a result, minimal models are “so apt ... because they do not
model ‘fundamental’ properties of systems, but they do model the natural properties of
many-body systems” (Batterman 2021, 131). These non-fundamental, natural properties
are best modeled by minimal models. Of course, Batterman is clear that the features of the
minimal model must be carefully chosen if they are to allow for the identification of these
natural properties. A key result of the book is that these minimal models arise in a more
general setting than cases where renormalization group methods are available.

Another sort of generalization is developed by Rice by considering various ways that
universality classes can be identified through minimal models. Rice considers several in-
stances of complex phenomena where a minimal model is used to explain (Rice 2022).
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Each explanation involves two steps. First, “show how the observed macroscale pattern
(the explanandum) depends on (changes to) the features that characterize/distinguish the
universality class,” such as the dimensions of these systems. Second, “demonstrate that
the remaining heterogeneous features of the systems within the universality class (e.g., the
features ignored or idealized by the minimal model) are irrelevant to displaying the univer-
sal patterns of behavior” (Rice 2022, 28). This combination of information about what is
relevant and irrelevant is often achieved through the use of a minimal model. However, the
explanation consists in relating this minimal model to other models in the right way. As any
number of modeling techniques can furnish these relations, the scope of these explanations
is much wider than it might initially seem to be.

6. Conclusion

This survey of debates about minimal models has focused on the simplicity of minimal
models and the barriers that this places on the use of minimal models for description, pre-
diction, and explanation. While it is clear that this simplicity stands in the way of any in-
discriminate extension of the features of the model to the model’s target, a number of more
sophisticated uses are defensible. First, one could focus on the modal properties found in
the model and consider the appropriate ways to apply these modal properties to the target.
Second, one could allow for various reinterpretations of the model so that some non-modal
properties could be ascribed to the target. Third, one could embed the minimal model in a
larger class of systems through various mathematical transformations. This last embedding
seems to permit a special sort of explanation where the minimal model plays a central role.
One point to emphasize in conclusion is that a combination of strategies may be needed to
clarify the scientific value of models as different as the Ising model, Schelling model, and
Hamilton’s model. For this reason, future work on minimal models can be expected to
develop all of these approaches further as part of a broader attempt to make sense of the
central role of minimal models in many scientific investigations.
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11
COMPUTER SIMULATIONS

Juan M. Duran

1. Introduction

Computer simulations are found in a myriad of scientific fields and practices. In some cases,
they constitute whole lines of research (e.g., climate modeling and molecular simulations
in chemistry (Goldman 2014). The debate over their philosophical merits involves a wide
range of topics, including, but not restricted to, their function as experiments (e.g., Beisbart
2017; Boge 2019; El Skaf and Imbert 2013); their value as sources of scientific evidence
(e.g., Morgan 2004; Parker 2020); their role as measuring devices (e.g., Morrison 2009;
Tal 2011); their place in the scientific methodological map (e.g., Rohrlich 1990); and their
scientific and philosophical novelty (e.g., Humphreys 2009; Frigg and Reiss 2009).

A key issue common to many of these debates is how philosophers have conceived—and
even defined—computer simulations and the models they implement. This chapter pre-
sents and discusses three chief views found in the literature. The first one takes computer
simulations to implement mathematical models simpliciter. A second one takes computer
simulations to be a richer and more complex unit of analysis than mathematical models,
yet still related to mathematics. A third viewpoint is sketched, where computer simulations
depart even further from implementing mathematical models, gaining the status of mod-
eling in its own right. To simplify the analysis, the focus will primarily be on equation-based
simulations and their application to medicine and the natural sciences. Since significant
philosophical issues also emerge in relation to diverse fields such as biology, sociology, and
psychology, and in relation to a variety of other kinds of computer simulations such as
cellular automata, agent-based simulations, and Monte Carlo simulations, let us first look
briefly at these. The chapter ends with a discussion on epistemic opacity, arguably a chief
philosophical issue pertaining to all computer simulations.

2. Kinds of computer simulations

Cellular automata are the first of our examples of computer simulations. They were
devised in the 1940s by Stanislaw Ulam and John von Neumann while Ulam was studying
the growth of crystals using a simple lattice network as a model and von Neumann was
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working on the problem of self-replicating systems. It is said that Ulam suggested to von
Neumann that the latter use the same kind of lattice network to create a two-dimensional,
self-replicator algorithm.

Cellular automata are simple forms of computer simulations. Their simplicity inheres in
both their programming and underlying conceptualization. A standard cellular automaton
is an abstract mathematical system in which space and time are considered to be discrete;
it consists of a regular grid of cells, each of which can be in any state at a given time. Typi-
cally, all the cells are governed by the same rule, which describes how the state of a cell at
a given time is determined by the states of itself and its neighbors at the preceding moment.
Wolfram defines cellular automata as:

[...] mathematical models for complex natural systems containing large numbers of
simple identical components with local interactions. They consist of a lattice of sites,
each with a finite set of possible values. The value of the sites evolves synchronously
in discrete time steps according to identical rules. The value of a particular site is
determined by the previous values of a neighborhood of sites around it.

(Wolfram 1984, 1)

Although a rather general characterization of this class of simulation, the definition already
provides the first ideas as to their domain of applicability. Cellular automata have been
successfully used for modeling many areas in social dynamics (e.g., Thomas Schelling’s
social segregation model), biology (e.g., patterns of some seashells), and chemical types
(e.g., the Belousov—Zhabotinsky reaction). But perhaps the most canonical example is Con-
way’s Game of Life. This simulation is remarkable because it constitutes a key example of
self-organization dynamics and the emergence of patterns seen in some real-world systems.
In this simulation, a cell can survive only if there are either two or three other living cells
in its immediate neighborhood. Without these companions, the rule indicates that the cell
dies either from overcrowding if it has too many living neighbors or from loneliness if it
has too few.

Cellular automata embody a unique set of methodological and epistemological virtues.
To name a few, they deal better with errors because they render exact results of the model
they implement. Since there is rarely any attempt to approximate the detailed setup of the
target system, any disagreement between the model and the empirical data can be ascribed
directly to the model that realized the set of rules. Another epistemologically interesting
characteristic of cellular automata pointed out by Fox-Keller is that they lack theoreti-
cal underpinning in the familiar sense of the term: “what is to be simulated is neither a
well-established set of differential equations [...] nor the fundamental physical constituents
(or particles) of the system [...]| but rather the phenomenon itself” (Fox-Keller 2003, 208).
Consequently, approximations, idealizations, abstractions, and the like are concepts that
worry the practitioner of cellular automata very little.

Having said that, cellular automata have been criticized on several grounds. One of
these criticisms touches on the metaphysical assumptions behind this class of simulation.
It is not clear, for instance, that the natural world is characterized by discrete rather than
continuous phenomena, as assumed by the cellular automata. Much contemporary work
in science and engineering work assumes that phenomena are, in fact, continuous. On less
speculative grounds, it is a fact that cellular automata lack presence in many scientific and
engineering fields. The reasons for this might be partially cultural. The physical sciences
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are still the accepted viewpoint for describing the natural world, which largely takes form
in the language of partial differential equations (PDEs) and ordinary differential equations
(ODEs).

Advocates of cellular automata have made efforts to demonstrate their relevance. It has
been argued that cellular automata are more adaptable and structurally similar to empirical
phenomena than are PDEs or ODEs. Lesne (2007) points out that discrete and continuous
behaviors coexist in many natural phenomena (with their proportions depending on the
scale of observation) and suggests that this is an indicator not only of the metaphysical
basis of natural phenomena, but also of the need to deploy cellular automata to under-
stand them. In a similar vein, Gérard Vichniac believes that cellular automata not only seek
numerical agreement with a physical system, but also attempt to match the simulated sys-
tem’s own structure, its topology, its symmetries, and its “deep” properties (Vichniac 1984,
113). Despite these and many other authors’ efforts to show that the world might be more
adequately described by cellular automata, the majority of scientific and engineering disci-
plines have not made a significant shift in that direction as of yet. Most of the work done
in these disciplines is predominantly based on agent-based and equation-based simulations.
As mentioned before, in the natural sciences and engineering, most physical and chemical
theories used in astrophysics, geology, climate change, and the like implement PDEs and
ODEs, the primary forms of equation-based simulations. Social and economic systems, on
the other hand, are better described and understood by means of agent-based simulations.

While there is no general agreement on what precisely an “agent” is, the term typically
refers to self-contained programs that control their own actions based on perceptions of
their overall operating environment: agent-based simulations “intelligently” interact with
their peers as well as their environment.

A key characteristic of these simulations is that they can show how the total behavior of
a system emerges from the collective interaction of their parts. Deconstructing these simu-
lations into their constituent elements would remove the added value provided in the first
place by the computation of the agents. It is a fundamental characteristic of these simula-
tions, then, that the interplay of the various agents and their environment generates unique
behavior in the entire system.

Good examples of agent-based simulations come from the social and behavioral sci-
ences, where they are heavily represented. Perhaps the most well-known example of an
agent-based simulation is Schelling’s Model of Social Segregation.! A very simple descrip-
tion of Schelling’s model consists of two groups of agents living in a 2-D,* n by m matrix
“checkerboard” where agents are placed randomly. Each individual agent has a 3 by 3
neighborhood, which is evaluated by a utility function that indicates the migration criteria.
That is, the set of rules that indicates how to relocate—if possible—in case of discontent
by an agent.

Schelling’s model is a canonical example, but other, more complex agent-based simula-
tions can also be found in the literature. It is now standard for researchers to model a range
of different attributes, preferences, and overall behavior in agents. Gilbert and Troitzsch list
the attributes that are typically modeled by agent-based simulations, including knowledge
and beliefs of the agents, inferences from beliefs, goals, overall planning, and language
(Gilbert and Troitzsch 2005).3

Monte Carlo methods are the second of our examples of computer simulations. Their
basic operation is to use stochastic techniques to compute the properties of a model. A key
feature of these methods is that they use random sampling for target systems that could
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in principle be deterministic. Monte Carlo is a very powerful technique that is typically
applied to systems with many coupled degrees of freedom, such as fluids, gases, crystal-
lizable polymers, and strongly coupled solids, among others. Within the philosophical
literature, there has been some debate over its status as a method for discovery and ex-
perimentation. Grine-Yanoff and Weirich, for instance, indicate that “the Monte Carlo
approach does not have a mimetic purpose: It imitates the deterministic system not in order
to serve as a surrogate that is investigated in its stead but only in order to offer an alterna-
tive computation of the deterministic system’s properties. In other words, the probabilistic
analogy does not serve as a representation of the deterministic system” (Griine-Yanoff and
Weirich 2010, 30). To these authors, then, Monte Carlo experiments are merely methods
of calculation and not simulations in a proper sense, for the latter are “used to learn some-
thing about the world, and they are used as stand-ins or surrogates for whatever is of inter-
est for the simulationist” (Griine-Yanoff and Weirich 2010, 30). Beisbart and Norton seem
to agree with this idea when they claim that “Monte Carlo simulations are like experiments
that discover novel results. We will argue, however, that these sorts of similarities are su-
perficial. They do not and cannot make them function like real experiments epistemically”
(Beisbart and Norton 2012, 404).

In what follows, the focus is on the use of computers to find solutions to a set of equa-
tions. Equation-based simulations are most commonly used in scientific domains in which
the governing theories and models are based on differential equations.

3. Equation-based computer simulations

Suppose we are interested in a simulation of a satellite orbiting around a planet under
tidal stress such that it stretches along the direction of the radius vector. Suppose further
that this model represents the orbit as non-circular with variable stress, making the sat-
ellite expand and contract periodically along the radius vector. Since the satellite is not
perfectly elastic, the mechanical energy is converted into heat and radiated away. Despite
this, the system as a whole is capable of conserving angular momentum (see, for details,
Woolfson and Pert 1999, 18-19). In this context, we have equations of total energy (e.g.,
Eq. (1) below), angular momentum, and others. We also have other relevant components
of the system and their interactions represented in the model. The planet has mass M; the
satellite mass 7 (<< M); the orbit is of semi-major axis a; and the gravitational constant is
represented by G; and so forth. The masses are represented by connected springs, each of
unstressed length [, and the same spring constant, k. Thus, a spring constantly stretched
to a length I’ will exert an inward force (e.g., Eq. (2)—see also Woolfson and Pert 1999,
19, fig. 1.8).

E:_GMWZ (1)
2a
F=k(i+1) 2)

For simplicity, the above set of equations will be referred to as a mathematical model*
that describes the behavior of and interaction between any planet and any satellite under
the specified conditions. Now, to have a simulation, this mathematical model needs to be
implemented in the form of an algorithmic structure. That is, the sets of variables, proce-
dures, data, functions, and other structures that are tractable in a digital computer (e.g.,
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algorithms (3) and (4) partially implementing the mathematical equations). Let us call this
algorithmic structure a simulation model.

TOTM = CM(1) + CM(2) + CH(3) + CM(4);
EN = -G * TOTM + 0.5 * V2 (3)
R = SQRT(POS(1)**2 + POS(2)**2 + POS(3)**2) (4)

The above algorithms suggest that mathematical equations can be implemented as a simula-
tion model rather straightforwardly. These algorithms effectively do so. Algorithm (3) par-
tially implements equation (1) simpliciter, and algorithm (4) does something similar with
equation (2). Naturally, the simulation model will require some discretizations for tracta-
bility reasons (i.e., continuous equations cannot be implemented on physical computers),
aggregation of procedures for the treatment of errors, and a handful of ad hoc modifica-
tions for smooth numerical integration (e.g., computers cannot represent infinite orbiting).

A critical issue that divides philosophers is how to interpret the simulation model that
is at the basis of computer simulations, as well as the computer simulations themselves. To
some, computer simulations are numerical methods for finding sets of solutions to math-
ematical models. To some others, computer simulations are more than numerical meth-
ods destined to have merely instrumental value. Instead, they are part of—or stand for—a
novel and more comprehensive form of scientific methodology. Thus understood, simula-
tion models are conceived as a new type of model, related to but not entirely obtained from
mathematical models and modeling. Key observations favoring this latter view are that
any given simulation model will, in fact, involve several layers of models, each potentially
requiring differing modeling practices; it will represent structures that are not necessarily
present in mathematical models nor secured by mathematical modeling; and it will not
necessarily derive from a chain of inferences and varying adjustments and aggregations that
started with one or more mathematical models. This second view revolves around the idea
that a proper methodology of simulations requires a distinctive ontology leading to specific
epistemic and methodological issues.

The remainder of this chapter discusses some of these interpretations and their resulting
characterization of simulation models and computer simulations.

3.1 Simulations for analytically intractable mathematics

Let us start with an often-quoted working definition of computer simulation:

A computer simulation is any computer-implemented method for exploring the prop-
erties of mathematical models where analytic methods are unavailable.
(Humphreys 1990, 501)

According to this working definition, computer simulations are instrumental in finding the
set of solutions to an analytically intractable mathematical model. Understood as numerical
methods, they explore the mathematical properties of the simulation models. Hartmann pre-
sents a similar definition. According to him, (a) a simulation is the result of solving the equa-
tions of a dynamic model, and (b) a computer simulation is the result of having a simulation
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run on a physical computer. Taken together, (a) and (b) entail that a computer simulation
results when a dynamic mathematical model is solved by a physical computer (Hartmann
1996). Let us note that Hartmann is also claiming that the physical dimension of the com-
puter plays a relevant role in imitating the dynamics of a real-world system. Interestingly,
some philosophers have developed this idea (e.g., Parker 2009, and Boge 2020), arguing
for meaningful morphisms between the (physical) computer processes and the target sys-
tem.’ Others, opposing this claim (e.g., Beisbart 2014; Durdn 2018), argue that the multi-
realizability of physical processes means that the resulting analogy is thin and contrived.

These definitions come with varying methodological and epistemological assumptions.
For starters, the adjustments required for implementing the mathematical model onto the
computer must be minimal. That is, the discretizations and ad hoc modeling must go only
as far as is required for the tractability of the mathematical model. By themselves, simu-
lations do not possess—nor should they possess—any representational value other than
that inherited from the mathematical models they deploy. No aggregates to the simulation
model could suggest a deviation from the implemented mathematical models.

Humphreys’ and Hartmann’s definitions loom large in the philosophical and techni-
cal literature. Parker, for instance, adopts Hartmann’s definition in her analysis of the ex-
perimental value of simulations. In her 2009 paper, she makes explicit reference to it by
characterizing a computer simulation as a time-ordered sequence of states that represents
another time-ordered sequence of states. In her latest publication, however, she seems to
have distanced herself from this commitment. She states that “a computer simulation model
is a computer program that is designed to iteratively solve a set of dynamical modeling
equations, either exactly or approximately, following a particular algorithm” (Parker 2020,
sec. 2). Moreover, Parker also calls attention to the plurality of models in simulation prac-
tice and their role in computer simulations in climate models (see the next section). It would
require some argumentative acrobatics to make a convincing case that climate simulations
hold nontrivial morphisms at the physical level.

Guala has also made explicit reference to Hartmann’s definition in discussing the time
evolution of systems, the use of simulations to provide numerical solutions to sets of math-
ematical equations, and in distinguishing between static and dynamic models (Guala 2002).
Krohs (2008) adopts Humphreys’ and Hartmann’s definitions to account for the role and
merits of computer simulations in scientific explanation (Durdn 2017). Frigg and Reiss
largely base their disapproval of the philosophical novelty of computer simulations on a
narrow sense of simulations, assuming that they are, ultimately, about mathematical mod-
els (Frigg and Reiss 2009, 596).

Recently, Boge has claimed that a simulation model “will usually (if not always) be
based on some previously existing numerical, i.e., discrete mathematical model of a system
of interest (the ‘target system’), which in many cases is an approximation to another model
based on continuous mathematics, and hence not suited for a translation into algorithms”
(Boge 2019, 3). Boge goes on to discuss simulations in terms of mathematical language and
derivations, as well as the physical characteristics of the target system mimicked by, and
emerging from, the execution of such simulations.

3.2 Simulations as a “new type” of mathematical model

The alternative viewpoint takes that simulation models are related to, but not entirely
obtained from, mathematical models and modeling. Weisberg, in his analysis of the anatomy
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of models, considers simulation models as “a subset of mathematical models” (Weisberg
2013, 30) but holds that they constitute an especially important subset. Morrison has also
urged that more philosophical attention must be given to computer simulations, in light of
their being a special kind of experimental practice related to modeling (Morrison 2015).6
In his recent book, Lenhard explicitly refers to simulations as a “new type” of mathemati-
cal model. There are two sides to this interpretation. Whereas simulation models must be
“counted into the established classical and modern class of mathematical modeling,” one
must also take stock on how they “contribute to a novel explorative and iterative mode
of modeling characterized by the ways in which simulation models are constructed and
fitted” (Lenhard 2019, 7). Lenhard cements this view by saying: “[o|ne direction seems
self-evident: the (further) development of computers is based primarily on mathematical
models. However, the other direction is at least just as important: the computer as an
instrument channels mathematical modeling” (Lenhard 2019, 8). Simulations are a “new
type” of model primarily because of the plasticity of their modeling, which “draws on the
effects that arise from the ways in which the (artificial) parameters are set. The more flexible
a model is, the more significant is the phase of modeling during which the parameters are
adjusted.”” (Lenhard 2019, 11).

What does the methodology of simulations as a “new type” of mathematical model
look like? Winsberg provides an answer to this question. This author advances a hierarchy
of models that begins, at the top, with a given theory (i.e., general physical and modeling
assumptions) and terminates, after a series of specifications, alterations, and inferences at
each level of modeling with a model of the phenomena, which represents the outcome of the
simulation research in question (Winsberg 1999, 277). In Winsberg’s view, this inferential
hierarchy suggests a distinct epistemology—and, it could be added, a distinct methodology—
for simulations whose chief features are being downwards, autonomous,® and motley
(Winsberg 2001, S447). It follows that “simulations often do not bear a simple, straightfor-
ward relation to the theories from which they stem” (Winsberg 1999, 276).

Humphreys also offers an elaborated, multi-level methodology and epistemology for
simulation models. He presents it in the following way: “System S provides a core simu-
lation of an object or process B just in case S is a concrete computational device that
produces, via a temporal process, solutions to a computational model |...] that correctly
represents B, either dynamically or statically. If in addition the computational model used
by S correctly represents the structure of the real system R, then S provides a core simula-
tion of system R with respect to B” (Humphreys 2004, 110, emphasis added). The compu-
tational model comprises six different elements, each performing a specific function. These
are the computational template, the construction assumptions of that model, the correction
set, an interpretation, an initial justification, and the output representation (see Humphreys
2004, 102). The first element of this sextuple, i.e., the computational template, is the heart
of the computational model and can essentially be understood as a set of computationally
tractable equations (61).

Taking stock of these interpretations, simulation models are still obtained from math-
ematical models in varying degrees and fashions. With Winsberg, this comes through the
hierarchical-inferential process that ultimately results in a model of the phenomena. For
Humphreys, the unit of analysis for computational science is the computational template.
Following his example, a simulation utilizing Newton’s Second Law consists of a theoreti-
cal template that “describes a very general constraint on the relationship between any force,
mass, and acceleration, but to use it in any given case, we need to specify a particular force
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function, such as a gravitational force, an electrostatic force, a magnetic force, or some
other variety of force” (Humphreys 2004, 60). A computational template emerges when
“the resulting, more specific, equation form is computationally tractable” (60). Finally,
Lenhard intends to balance the transformations of mathematical models introduced by the
computer with the role of simulations as instruments that channel mathematical modeling.

One must then ask, to what extent are these interpretations aligned or misaligned with
the notion of simulations as a way of approaching analytically intractable mathematics?
While there is some evident overlap, there are also a handful of reasons to separate these
two notions. For starters, simulation models are conceived as a richer structure than math-
ematical models by philosophers arguing for the novelty of simulation modeling (e.g., they
use external databases, involve multiple layers of models). This also means that the goal of
simulations has substantially shifted from finding solutions to a set of equations represent-
ing a complex target system. Finally, scientific research involving computer simulations
does not necessarily reflect the same epistemic and methodological principles, social organi-
zation, and research questions as those involving mathematical models.

Climate simulations have made visible the rich and complex structure of simulations,
primarily through the implementation of a plurality of models. In fact, many philosophers
agree that model pluralism is an inherent and inevitable feature of simulation models. As
Lenhard and Winsberg (2010, 261) put it, “pluralism is not a temporary failure that even-
tually will be overcome, but will remain for principled reasons of simulation modeling
methodology.” Parker has argued that “complex climate models generally are physically
incompatible with one another—they represent the physical processes acting in the cli-
mate system in mutually incompatible ways and produce different simulations of climate”
(Parker 2006, 350). Durdn (2020) has reflected on the plurality of models in regard to
the architecture of simulation models. There, simulation models recast a host of models
pertaining to different kinds of representational values, methodological principles, and
epistemic goals. The resulting architecture includes kernel simulations, understood as the
implementation of each individual model in the formalism of a programming language, and
integration modules—modules “which play two fundamental roles, namely, they integrate
external databases, protocols, libraries and the like with [each kernel simulation], and en-
sure the synchronization and compatibility among [the kernel simulations]” (Duran 2020,
307). Computer simulations are therefore conceived as non-hierarchical, non-inferential,
and non-homogeneous units of analysis.

3.3 Can simulations be autonomous from mathematical models?

The view that simulations are a “new type” of mathematical models tends to obscure the
tension between acknowledging that simulation models both provide an unprecedented
form of modeling and a forceful attempt to stay rooted in mathematical modeling. For
instance, Winsberg introduced the idea of ad hoc modeling, understood as “relatively sim-
ple mathematical relationships designed to approximately capture some physical effect in
nature. When ‘coupled’ to the more theoretical equations of a simulation, they allow the
simulation to produce outputs that are more realistic than they could have been with-
out some consideration of that physical effect” (Winsberg 1999, 282). Another distinctive
methodological practice in simulation is “kludging,” roughly understood as adding bits of
code to simulation that are not principled in their design and whose purpose is to optimize
the performance and improve the simulation in a “quick and dirty” way (Lenhard 2019).

156



Computer simulations

But kludging is not the only distinctive methodological trick implemented in simulations.
Fuzzy modularity (i.e., the piecemeal adjustment of models for their use in multiple simula-
tions) and generative entrenchment (i.e., the multiple sources on which the model depends
because they played a role in generating it) also cement claims about confirmatory holism
and explain the failure of analytic understanding in climate models, for instance (Lenhard
and Winsberg 2010, 256-257). Yet another interesting example is the so-called Arakawa
operator, also discussed by Lenhard and Winsberg, which can be used to overcome the
nonlinear instability of the mathematics in meteorological models. In this respect, Lenhard
says: “[iln my opinion, this was a decisive point: the discreteness of the model required
artificial and also nonrepresentative elements in the simulation model whose dynamic ef-
fects could be determined only in a (computer) experiment” (Lenhard 2019, 36). Finally,
parametrizations further engross the list as they are “pragmatic decisions that balance fidel-
ity to what we know about the target system with the need for effective implementation”
(Lenhard and Winsberg 2010, 256).

What does this alleged distinctive form of modeling mean for the representational merits
of simulations? In principle, not much. Ad hoc modeling takes it that “more” modeling is
added to the simulation for reasons of tractability, but there is no claim of added represen-
tational value. Kludging, fuzzy modularity, Arakawa-like operators, and parametrization
are genuine simulation-inspired practices, but they are also “nonrepresentative” of the tar-
get system (Lenhard 2019, 36). Again, they are solely dedicated to making the simulation
model tractable.

Interestingly, it is increasingly the case that mathematical and logical formalism is omit-
ted in favor of readymade algorithmic structures. Researchers prefer to dispense with the
trouble of first developing a mathematical model and then figuring out how to implement
it as (part of) a simulation model by representing target systems directly into their codes.
For instance, DeAngelis and Grimm (2014) and Peck (2012) show how a (total or partial)
representation by the simulation model might take place directly at the level of algorithmic
structures and without the mediation of any formal mathematical modeling. The represen-
tation is built from hypothesized relational structures abstracted from the target system and
directly coded as the simulation model.

One could object at this point that readymade algorithmic structures are conducive to
other forms of modeling. That the practice of dispensing with the writing of mathematical
equations before coding the algorithm does not necessarily imply that there is no math-
ematical model underpinning the algorithm.” But the critical point here is that, on occa-
sion, researchers encode forms of behavior of the target system that do not correlate with
mathematical modeling. To put this idea somewhat differently: if we want to recreate the
algorithm as a mathematical model, we would face the problem that specific structures and
patterns of behavior relevant to the representation of the target system and encoded in the
algorithm do not correspond to mathematical machinery. Durdn (2020) explores this idea,
arguing that programming languages allow researchers to encode into their simulation-
specific structures and patterns of behavior of the target system. The key intuition here is
that a given simulation might represent two non-trivially different target systems depending
on the chosen programming language, code execution, and the like. Constraints on behav-
ior and behavioral decisions are, on many occasions, conditional on circumstances. For
example, if-then statements and other forms of programming conditionals might constrain
the behavior of the simulation and, as such, configure non-trivially different target systems.
Durén (2022) illustrates this with a simulation of spatiotemporal patterns of respiratory
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anthrax infection in a population (see Cooper et al. 2004). In this simulation, the network
of nodes and subnodes can be directly coded into the simulation through nested condition-
als (i.e., no mathematical formalism is required). As such, and depending on the condi-
tional executed, the simulation would represent different valid paths in the proliferation
and spread of the infection, distinctive states of the infection at any given time, and the like.

Can it be assumed that programming languages and code execution constitute legit-
imate forms of representation that are not necessarily reliant on mathematical models?
Some researchers seem to think so (Aronis et al. 2020). Simulation models also seem to
allow this kind of philosophical speculation. Clearly, more research is needed in this direc-
tion. It remains an open question, whether kludging, Arakawa-like operators, and other
computational-inspired practices have representational value or are solely instrumental to
the tractability of the simulation model.

4. A new scientific methodology

Where can computer simulations be located in the methodological map? Famously, Rohr-
lich placed them somewhere intermediate between theoretical physical science and its
empirical methods of experimentation and observation (Rohrlich 1990, 507). This view
strikes now as too narrow, even for equation-based simulations. The prevailing view is
that computer-based methodologies rather extend the class of tractable mathematics and
representation and thereby broaden the ranges of modeling (Morgan 2003), observations
(Beisbart 2017), predictions (Parker 2014), measurements (Morrison 2009; Tal 2011), and
explanation of phenomena (Durdn 2017), among several other scientific endeavors. That
is to say, computer simulation is not just an intermediate between two familiar ends, but
rather a scientific methodology in its own right. Furthermore, there are good reasons to
believe that computer simulations raise new epistemological issues, arguably without a
precedent in the philosophy of science. This point has forcefully been made by Humphreys
and constitutes a central element of his understanding of computer-based methodologies.
To be precise, Humphreys distinguishes between anthropocentric epistemologies, which
“involve representational intermediaries that are tailored to human cognitive capacities”
(Humphreys 2009, 617), and non-anthropocentric epistemologies, where “there now exist
superior, non-human, epistemic authorities” (Humphreys 2009, 617). Computer simula-
tions belong to the latter class.

In this context, the claim arises that computer simulations are epistemically opaque in
that “no human can examine and justify every computational step performed by the com-
puter, because those steps are too numerous” (Parker 2014).'° What, more precisely, does
epistemic opacity amount to? Humphreys discusses two related but distinct definitions. The
first definition—sometimes referred to as general epistemic opacity (GEO) (Alvarado 2021;
Beisbart 2021)—says that a given process is opaque to an agent to the extent that the said
agent does not know (that is, cannot check, trace, or survey) all of the epistemically relevant
elements of the process. Here, a process is broadly understood as the different methods,
devices, systems, or instruments of interest. What constitutes an epistemically relevant ele-
ment of the process will depend on the kind of process involved (Humphreys 2009, 618).
For instance, a mathematical proof can be considered the process, and a given lemma is a
relevant element in that process. The second definition specifies that a process is essentially
epistemically opaque (EEO) to an agent if it is impossible, given the nature of the agent,
to know all the epistemically relevant elements of the process. For instance, the weather
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forecast for the next two years is impossible to predict by climatologists given their cogni-
tive limitations to handle all the variables involved in such complex systems.

Philosophically speaking, there are a few distinctions of interest between GEO and EEO.
For instance, the former is tailored to diverse contingencies, such as context, efforts, goals,
and the current state of knowledge of the agent(s). In other words, GEO comes in degrees."!
Consider Humphreys’ own example: “for a mathematical proof, one agent may consider
a particular step in the proof to be an epistemically relevant part of the justification of the
theorem, whereas to another, the step is sufficiently trivial to be eliminable” (Humphreys
2009, 618). The first agent’s knowledge of the proof might change over time, say, in light
of a new piece of information. This agent then decides to join the second agent in that that
particular step in the mathematical proof is utterly irrelevant. Context, goals, efforts, and
the current state of an agent’s (or agents’) knowledge vary over time, as does practice, and
the agents themselves. In contrast, EEO takes it that it is the very nature of agents that pre-
vents knowing all the relevant elements of the process: “[m]any, perhaps all, of the features
that are special to simulations are a result of this inability of human cognitive abilities to
know and understand the details of the computational process” (Humphreys 2009, 618-
619). In other words, a process is essentially epistemically opaque, not because the agent
does not know a given relevant epistemic element in the process, but because the agent will
never know, given their nature, any of the relevant epistemic elements in the process. EEO
is not contingent upon the agent’s epistemic context, goals, or efforts, but rather it is an
absolute matter about the nature of the agent.

Here we should note that both GEO and EEO are understood from the agent-relative
perspective. Whereas in GEO there might be a point in the future where a process ceases to
be opaque (e.g., because the mathematician decides that the step is irrelevant for the proof),
in EEO agents are by their constitutional nature unable to access the relevant elements
of the process. This might either be because they are cognitively limited (e.g., a computer
algorithm involves too many steps) or time-restricted (e.g., the algorithm would take long
to compute). Agent-relative epistemic opacity is very much the way in which the literature
has discussed this issue so far (Beisbart 2021; Durdn and Formanek 2018), including the
most recent and, sadly, last article on computer simulations by Humphreys (Humphreys,
2022). Interestingly, in this article, Humphreys extends the interpretation of “agent” to
also include computer algorithms, with the result that, if we ask questions about amelio-
rating opacity, one could always think of a third-party algorithm fulfilling this role. This
idea is extensively exploited in the literature on transparency, especially in the context of
machine learning. This said, while trading human agents for algorithms does have some
appeal, it does not come cheap. A particularly pressing issue is the algorithmic regress that
transparency presupposes. To illustrate this, consider an algorithm A that is epistemically
opaque. Suppose we make use of A, a third-party algorithm that can, presumably, provide
knowledge on the relevant elements ¢ in A. Given that A, is by definition also epistemically
opaque, we are not yet in a position to claim knowledge of e. For this, we need to turn to a
second algorithm, A, for dealing with the opacity of A,. The regress continues until either
we reach a simple algorithm A of which we know all the relevant elements or we abruptly
decide to stop the regress.

In a later work, Alvarado challenges the agent-based view on opacity on the basis that
“there are instances of epistemic opacity that are either neutral to and/or independent from
the limitations of agents. That is, they arise in virtue of factors that are not responsive to or
are not related to agential resources” (Alvarado 2021, 9). Whereas Alvarado admits that this
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description of agent neutrality remains close to agent-based viewpoints (e.g., “as far as ac-
counts of epistemic opacity go, agent-neutral instances of opacity can still be formulated in re-
lation to agential limitations™ (10)), agent independency poses an interesting departure from
both standard views. According to Alvarado, “an account of agent-independent opacity must
include both the fact that the opacity does not arise in virtue of anything related to an agent
and the fact that it is not responsive to agential resources and/or efforts” (13). In other words,
a process is EEO to an agent if it is impossible, given the nature of the process, to know all
its epistemically relevant elements.!> Borrowing Alvarado’s example, we can say that a sto-
chastic process is agent-independent opaque in virtue of “the combination of its stochasticity
(the randomness of paths chosen) and the vast overdetermination (the fact that many—too
many—different paths lead to the same outcome) [which makes] inquiry into the actual paths
taken (the relevant epistemic elements of the process) inaccessible” (Alvarado 2021, 14).

This more nuanced, process-centered approach to EEO proposed by Alvarado is a wel-
come addition to the literature, particularly because it offers a way to account for cases
where opacity cannot be explained by the cognitive limitations of agents. However, more
needs to be said. For instance, it remains unexplained on what grounds a process is to be
considered inherently opaque. Without this, it is difficult to distinguish between processes
that permanently remain opaque from those that might cease to be opaque at some point
in the future. Furthermore, an argument must be provided such that it excludes non-human
agents (e.g., algorithms) from accessing inherently opaque processes. Indeed, Alvarado’s
argument doesn’t seem to work if the agent is non-human. Let us recall that Humphreys
accepts that algorithms can channel insight into the epistemically relevant elements of a
process (Humphreys, 2004, p. 150).

Complementary to these debates are attempts to deal with opacity. Above, I mentioned
transparency, nowadays gaining significant traction in philosophical debates over machine
learning. The core idea of transparency is to make algorithms accessible by showing the
inner workings and properties of the algorithm (e.g., Creel 2020). The opposing view is
computational reliabilism, understood as a set of methods and practices that credit reliabil-
ity to an algorithm under conditions of opacity (Durdn and Formanek 2018; Humphreys
2022; Durén, forthcoming). In other words, whereas transparency makes efforts to grant
(human) access to algorithms, computational reliabilism accepts their opacity and focuses
instead on the conditions for epistemically trusting them.

There is still plenty of room for further philosophical debate on epistemic opacity and
the different specific conceptions of it that figure in debates over computer simulations. But
perhaps the greatest contribution of these debates to our understanding of computer simu-
lations (and machine learning) is to bring to the fore their merits as units of philosophical
analysis in their own right.
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Notes

1 Although nowadays Schelling’s model is implemented using computers, Schelling himself warned
against their use for understanding the model. Instead, he used coins or other elements to show
how segregation occurred. In this respect, Schelling says: “I cannot too strongly urge you to get
the nickels and pennies and do it yourself. I can show you an outcome or two. A computer can
do it for you a hundred times, testing variations in neighborhood demands, overall ratios, sizes of
neighborhoods, and so forth. But there is nothing like tracing it through for yourself and seeing
the thing work itself out. In an hour you can do it several times and experiment with different rules
of behavior, sizes and shapes of boards, and ... subgroups of dimes and pennies that make differ-
ent demands on the color compositions of their neighborhoods” (Schelling 1971, 85). Schelling’s
warning against the use of computers is an amusing anecdote that illustrates how scientists could
sometimes fail in predicting the role of computers in their own respective fields.

2 Schelling also introduced a 1-D version, with a population of 70 agents, with the four nearest
neighbors on either side, the preference consists of not being minority, and the migration rule is
that whoever is discontented moves to the nearest point that meets her demands (Schelling 1971,
149).

3 For a more thorough review of kinds of computer simulations, see (Durdn chap. 1).

4 Here, a mathematical model is a generic term covering any scientific, non-physical model, such
as theoretical models, data models, phenomenological models, and the like (Frigg and Hartmann
2020).

5 Thanks to Florian Boge for pressing on this point.

6 In her view, computer simulations are the “result of applying a particular kind of discretization to
the theoretical/mathematical model [...] There are several reasons for characterizing this type of
investigation as an experiment, or more properly, a computer experiment” (Morrison 2015, 219).
Thanks to Ramén Alvarado for this reminder.

7 The flexibility of a model is measured as the capacity to implement “generic structures” and the
associated possibility of reusing the model in different contexts.

8 Autonomy is attributable to the scarcity of data rather than being a methodological principle of
models and modeling.

9 Thanks to Edoardo Datteri for pressing on this point.

10 There is a burgeoning literature that discusses other forms of opacity, such as social opacity (Long-
ino 1990), methodological opacity (Beisbart 2021), corporate opacity (Burrell 2016), and repre-
sentational opacity (Humphreys 2022), just to mention a few.

11 In Humphrey’s words, “[i]t is obviously possible to construct definitions of ‘partially epistemically
opaque’ and ‘fully epistemically opaque’” (Humphreys 2009, n. 5).

12 Alvarado provides his own working definition; see (Alvarado 2021, 13).
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SCIENTIFIC LAWS AND
THEORETICAL MODELS

Jarostaw Boruszewski and Krzysztof Nowak-Posadzy

1. Introduction

In contemporary philosophy and methodology of science, discussions have focused
on models and modeling with special attention put to the polysemy of the very term
“model.” At the same time, the polysemy of the term “law” has been somewhat omit-
ted. However, if one focuses on the problem of law-model relation it turns out that
these semantic ambiguities are related in specific ways. A certain distinction between
laws of science and laws of nature is therefore needed — a distinction found already in
19th-century methodological treatises (i.e., Mill 1843). Traditionally, discussions on
laws concerned either the logical and cognitive status of law statements or ontological
and metaphysical properties of the objective dependency expressed by law statements.
However, in modern discussions on law-model relation, the term “law of nature” is
understood differently, namely as a law of science describing or representing a certain
natural regularity (Cartwright 1983, 54-55; Giere 1999, 86). This semantic shift is only
seemingly insignificant as it determines the status of laws of nature understood this way.
These laws, thus, adopt the status of universal statements which refer to the real world
and are applied to empirical objects. Such an understanding of laws was the basis for the
deductive-nomological account of explanation. Some contemporary authors believe this
account provides an answer to the question about the relations between laws and the-
oretical models. When it comes to the law-model relation, traditional approaches to
theoretical models contain at least one law of nature as well as initial and boundary con-
ditions (Carrier 2004; Carrier, Golzhauser, Kohse-Hoinghaus 2018). This understand-
ing of models, as an auxiliary to theoretical laws, has been subject to numerous critical
analyses most extremely expressed as “science without laws.”! The latter expression is
elliptic because it is about science without laws of nature or, to put it differently, about
a transition from laws of nature to laws-of-models (van Fraassen 1989, 188). What
played an important role in this turn was the tradition of the semantic view of theories
and the approach of Nancy Cartwright, who pointed out that “situations that fall un-
der the fundamental laws are generally the fictional situations of a model” (Cartwright
1983, 160). However, not only was there no consensus on the precise understanding
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of law-model relation, but there also emerged a new incarnation of the problem of the
logical and cognitive status of laws of science.

An instructive starting point for such a new understanding of laws would be to identify
the various ways of using law sentences, as proposed by Norwood Russell Hanson. Using
broad material from the history of science, Hanson established a view that theoretical law
sentences or formulae “can be used to express — definitions, a priori statements, heuristic
principles, empirical hypotheses, rules of inference, etc.” (Hanson 1958, 112). Contempo-
rary philosophy of science reconstructs the multitude of usages of law sentences in scientific
modeling, although this reconstruction differs depending on the philosophical approaches
adopted. This analysis presents different options for those usages, including usages not
mentioned by Hanson. A review of various ways of using laws as laws-of-models is in-
cluded in the second section of the chapter. The third section deals with yet another turn
in the discussion on the law-model relation, which can be described as a transition from
laws of models to laws-for-modeling.* The fourth section demonstrates different usages of
law sentences based on the example of the Copernicus—Gresham Law, as this law still raises
interest among philosophers of science and economists because it is seen both as “an easily
understandable” and as a “complex issue” (Bernholz and Gersbach 1992, 288).

At this point, several reservations need to be mentioned. Firstly, while in the context of
law-model relation the distinction between fundamental and phenomenological laws plays
an important role (for instance, in Nancy Cartwright’s approach), such a strict dichotomy is
questionable (i.e., Laymon 1989; Weinert 1995). Therefore, following Ronald Giere, there
is no reason to exclusively consider fundamental laws as laws-of-models or as laws-for-
modeling. Secondly, when it comes to the division into quantitative and qualitative laws, it
can be questioned whether only the former is treated as important in scientific modeling, as
a review of usages of the Copernicus—Gresham Law demonstrates that qualitative laws are
also important in model-building. Thirdly, it seems justified to speak about laws in special
sciences — the Copernicus—Gresham Law is actually treated as an “archetypal special-science
law” (Shahvisi 2019). Last but not least, the ways of presenting and formulating laws do
matter, as demonstrated in the terminology chosen by the scholars referred to in this chap-
ter. On the one hand, some authors often use expressions in the form of alternatives, for
instance, “principles, equations or laws” (Lorenzano and Diaz 2020, 164). On the other,
Giere, for instance, avoids speaking about laws, because “[i]nterpreting the equations as
laws assumes that [...] there is an implicit universal quantifier out front” (Giere 1999, 92).
Giere, therefore, suggests that the way of speaking about laws presupposes the way of their
logical reconstruction. However, one needs to differentiate between explicit formulations of
laws functioning in the research practice of a given science from their reconstructed forms,
which anyway have to include what is implicitly embedded in laws according to a given
scholar. For instance, Cartwright claims that laws include implicit ceteris paribus clauses.
In what follows, no implicit content is attributed to or imputed to laws and they are treated
at face value. As far as the logical status of a given law is concerned, laws are then propo-
sitional schemata or simply open formulae (Mejbaum 1977).

2. Laws-of-models

This section discusses different approaches to separating models from laws. Laws are
characterizations of models, thus resulting in laws-of-models. What is specific here is
that modeling is understood as an indirect representation — therefore a triad emerges:
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specification—-model-target. The notion of specification is the least ambiguous, as under-
lined by Cartwright: “laws of the theory are true of the objects in the model, and they
are used to derive a specific account of how these objects behave” (Cartwright 1983, 17;
emphasis added). This duality of laws is manifested in Cartwright’s work (1983) by explicit
references to a definitional understanding of laws and allusions to understanding them as
rules of inference.

The approach to laws as definitions in the context of theoretical modeling has been
developed since the 1970s by Giere (1979), although he most frequently wrote about prin-
ciples* or equations that define model systems recognized as non-linguistic abstract objects.
To be more precise, principles or equations are stipulative definitions of abstract model
systems, in which they are perfectly satisfied. Linguistic formulations of principles incorpo-
rated into the specification of a given model are always true of the model system, although
in a trivial sense. On the other hand, the function of principles in modeling is far from
trivial: “principles thus help both to shape and also constrain the structure of these more
specific models” (Giere 2006, 62). Giere also deals with the problem of low-level gener-
alizations (phenomenological laws); however, he declines to treat them as implicit ceteris
paribus laws because it could lead to eventually reducing them to trivial statements such
as a “law holds except where it does not.” He believes it is much better “to keep the sin-
gle law statements, but understand them as part of characterization of an abstract model
and thus being true of the model” (Giere 2004, 749). Contrary to the “science-without-
laws” thesis, all laws, not only high-level theoretical principles, play an important role in
Giere’s approach to modeling: “laws are to be interpreted as providing definitions of vari-
ous models” (Giere 1988, 84). The law-model relation can then be briefly referred to as
stipulation-and-satisfaction.

The trial set by Giere is followed by Michael Weisberg and Peter Godfrey-Smith, who
in the first place differentiate between model system and model description. Equations,
diagrams, or language expressions are included in the model description while a model
executes its description, although there is no unequivocal assignment between model and
model description. A given model can have many descriptions and a given description can
specify many models. Therefore, a many-to-many relation is obtained. A relation between
description and model is understood as specification, which is a weaker relation than defini-
tion. A description is only a partial characteristic of models. Therefore, it can be assumed
that principles or equations incorporated in the model description are partial definitions of
the model system. What is extremely important is that in modeling, the model description
does not have to precede the model: “In some cases, the model is constructed before or
without description. In others, the description comes first. And perhaps most commonly,
the two are produced in tandem” (Weisberg 2013, 38). A model description plays a crucial
role in the case of mathematical models because such models can be explored and manipu-
lated only via their description. And although a mathematical model in this approach is
not a system of equations, it can only be used by proxies in the form of equations. This can
explain the propensity of some scholars to call equation models. It makes the strict dualism
description system difficult to maintain in practice — “It would be a mistake to insist that
one of these is ‘the model’ and the other is not. Each kind of talk can constrain the other”
(Godfrey-Smith 2006, 736). This can lead to stating that a model need not be considered
distinct from its description.

Roman Frigg and James Nguyen present a more expanded version of model descrip-
tion on the grounds of indirect fictionalism, namely the DEKI (denotation, exemplification,
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keying up, and imputation) account. They make a distinction between a description of
the model’s carrier and the principles of generation. The former functions as a prop that
prescribes scientists to imagine something (i.e., two-body system), which is a basic assump-
tion of a given model and is presupposed to be true within this model. The principles of
generation, on the other hand, play a crucial role, especially in the context of the law-model
relation:

The ‘working out’ of the details of a model consist in deriving conclusions from the
basic assumptions of the model and some general principles or laws that are taken to
be in operation in the context in which the model is used. [...] The laws and principles
that are used in these derivations play the role of principles of generation.

(Frigg and Nguyen 2020, 122)

Models are incomplete without principles of generation as these principles provide mod-
els with certain internal dynamics and properties not specified in their basic assumptions.
Getting acquainted with those principles means in fact learning from the model and deriv-
ing implicit truth from it: “implicit fictional truths can be inferred according to certain prin-
ciples of generation” (Salis and Frigg 2020, 45; emphasis added). The status of principles of
generation is difficult to determine in a general way because it is always relative to specific
domains of knowledge. Sometimes those principles are ad hoc, but more significant are
those that have the status of intersubjective, though often implicit, rules of inference (Frigg
2010, 258). It can therefore be assumed that on the grounds of indirect fictionalism laws
and principles of science are used as rules of inference in such a way that secondary truths,
not directly specified in model assumption, are inferred from the model.

A different approach to the problem of the status of laws and their functions in mod-
eling can be found in some proposals in the field of philosophy and methodology of biol-
ogy, namely proposals treating biological laws as a priori laws (Sober 1997; Elgin 2003).
A widely discussed example here is the Hardy—Weinberg law of population genetics. The
discussions reject both the empiricist view of laws and the definitional approach; this law
is understood neither as an empirical statement nor as a stipulative definition of a model,
and becomes an a priori conditional tying contingent statement. The conditional is a priori
because important conceptual relations occur between its antecedent and consequent. Pro-
ponents of a priori laws as key elements of mathematical models pay attention to the fact
that those laws are important guides in understanding the living world and enable grasping
it precisely, thus contradicting the view that a priori equals uninformative:

For those who find the idea of the synthetic a priori unattractive, the a priori tends to
suggest examples like ‘Bachelors are unmarried men’; such statements merely provide
definitional abbreviations and furnish zero insight into the nature of reality. [...] If a
priori generalizations figure in explanations and predictions in the same way that
empirical laws do, we should regard these a priori generalizations as laws.

(Sober 2011, 588)

Laws, therefore, play a role in modeling: “laws do some work in the models they are part
of” (Elgin 2010, 442). It is worth noticing that this finding, in a way, restores the utility of
laws. Laws are thus an integral part of models, they are laws of models, although this comes
at the expense of changing their logical status.
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3. Laws-for-modeling

Cartwright’s investigation provides another valuable insight into the law-model relation
problem as she uses the concept of theoretical instrumentalism, namely a toolbox of sci-
ence. While in her earlier works Cartwright considered theoretical laws tell the truth when
it comes to objects in models and “lie” when it comes to the real world, she subsequently
understood theoretical laws as purely instrumental. In the toolbox approach, the answer
to the question about what a law represents is categorical — nothing (Cartwright, Shomar,
and Sudrez 1995, 139-140). Laws “do not model anything, but are rather useful tools to
build models” (Sudrez and Cartwright 2008, 75). Laws are an important starting point in
model-building, because they provide a wider theoretical context. This function, however,
is instrumental — laws are only theoretical context providers that are evident when scien-
tists improve the model, construct a more accurate model, or customize it to special needs.
In Giere’s approach, a more accurate model still meets model-defining principles, but ac-
cording to Cartwright, such a statement is overly optimistic. Corrections made to a model
rarely, if at all, result in a model consistent with the principles that served as a starting point
in its construction. Generally, model customization often results in a situation where the
model fails to fulfill the initial law (Cartwright 1999, 250-252). This is why it is imprecise
to call the toolbox approach one consistent with the “laws-of-models.” It is rather consist-
ent with “laws-for-modeling” as laws are only one of many tools used to build a model,
usually used at the early stages of model construction and can be even dropped.

Yet another understanding of laws-for-modeling comes with direct fictional approaches.
They are a reaction to indirect fictionalism which keeps the model separated from its de-
scription. The main difference is that direct fictional approaches reject the very existence
of model systems. According to Adam Toon, in this approach, a model is what in indirect
fictionalism is viewed as model description. A law being a part of a model loses its descrip-
tive status at the expense of the prescriptive one; a law functions as a prop that prescribes
imaginings about target systems. Toon’s solution to the law-model relation question is
categorical:

[it] is simply to deny that we need to regard theoretical principles formulated in mod-
elling as genuine statements. Instead, they are prescriptions to imagine. If theoretical
principles are understood in this way then there is no reason to think that there needs
to be any object which they describe.

(2012, 44)

The antirealistic approach to model systems results in a situation where there is no room
for a satisfaction relation — there are no abstract, fictional, or any other objects satisfying
the laws or equations of models. A rejection of the existence of mediating model systems
does not imply that modeling becomes a purely subjective issue. Toon’s and Arnon Levy’s
criticism of indirect modeling and abstract or fictional model systems can even go further:
“on a direct account, there is no model system, not even imaginary one” (Levy 20135,
792). Moreover, Levy considers that the biggest weakness of indirect approaches is that
they discredit models formulated in natural language; they treat models merely as model
descriptions. Levy thus shares the view of some representatives of deflationism (Downes
1992) — another influential side in the discussion of the law-model relation.
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Deflationary approaches are characterized by a very liberal attitude — in fact, everything
can be a model, and it is not possible to discern any intrinsic property of a given object
which makes it a model or to point to a constitutive property of the representational re-
lation (Teller 2001; Callender and Cohen 2006). One of the most important proposals
here is the inferential approach to representation as a variant of use-based deflationism
(Sudrez 2016). While analyzing the notion of representation, Maurizio Suarez distinguishes
its vehicle — source S and its object — target T. In modeling practice, sources of modeling are
multiple, “from concrete physical objects and diagrams to abstract mathematical structures
or laws” (Sudrez 2015, 41). Therefore, a law can be a model; for instance, the second law of
thermodynamics represents entropy as an abstract property and asserts entropy’s increase
in closed systems.

Deflationism is therefore liberal when it comes to vehicles of representation. Moreover,
representation is not considered a conceptual relation, but an activity making the source
S useful as a representation of target T. The usefulness of S means that some users of the
model “draw inferences about T from S” (Sudrez 2010, 93). If a law is a model, then its in-
ferential function becomes principal. Such inferences are not based on properties of S which
are necessary and sufficient conditions of representation of T. Deflationary “flattening” of
representation relation implies that the complex issue of representational vehicles becomes
significant, thus exposing key semiotic aspects of modeling: “representational vehicles and
the content they express are the models. We might say models are nothing over and above
their mode of presentation” (Odenbaugh 2021,11; emphasis in original).

Therefore, the question of whether the models’ content is derivative from the individual
mental states of modeling agents or whether it goes beyond them becomes important. If
the former is the case, then, similarly to direct fictionalism, this account can be accused of
lacking the guarantee of intersubjectivity, which for scientific models is a non-negligible
issue. What emerges from this account is a rather naive and highly dubitable image of mod-
eling, in which agents’ intentions attribute content to models, regardless of models’ history,
reception, and usages. The inherent intersubjective aspect of models then goes missing:
“Scientists do not merely start using a model however they would like, without recourse
to the history of the use of the model. There are autonomous elements of the model which
are carried with it” (Boesch 2017, 978). These autonomous elements constitute salient yet
long-neglected dimensions of models, namely materiality and, more importantly, semio-
ticity. A model’s semioticity is not an intrinsic feature of models; it is formed and trans-
formed by model builders, users, and recipients in specific socio-cultural functionings of
models. Generally, models are then ascribed to the status of culturally established artifacts
(Knuuttila 2017). Bringing out issues of materiality and semioticity makes it possible to
move to the artifactual approach to scientific modeling, which is nowadays gaining recog-
nition. Theoretical models are built by making use of various “tools and other resources”
(Knuuttila and Loettgers 2017). When it comes to the question of law-model relation, laws
can be resources for models or ingredients of models as built-in dependencies (Knuuttila
2021a, 2021b). In the artifactual approach, questions of linguistic formulations, omitted in
indirect approaches, regain importance. Representational means are an ineliminable part
of the model itself, not secondary to abstract or imagined entities. Therefore, attention is
put on the cultural significance of models and the question of style (Boruszewski, Nowak-
Posadzy 2021).
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4. One law — many uses

The variety of uses of laws in modeling will now be demonstrated with the Copernicus—
Gresham Law as an example. When addressing the questions concerning the uses of this
law, it is hardly possible not to refer to the work of Renaissance polymath Nicolaus Coper-
nicus, “Monetae cudendae ratio,” the final version of which was released in 1528:

While it is quite inappropriate to introduce new and good money at a time when the
old, cheaper money remains in circulation, how much greater is the fault of introduc-
ing new and cheaper money while the old and better remains in circulation: it not
only corrupted the old but, so to speak, conquered it entirely.

(Copernicus 1979, 307)

This excerpt shows that Copernicus captured the idea behind the law which became explic-
itly formulated as a scientific law by Henry Macleod as late as in the 19th century when
scholars quested after theoretical economic laws analogous to the principles of classical
mechanics: “good and bad coin cannot circulate together, but the bad coin will drive out
the good” (Macleod 1872, 375).

However, with time, the status of the Copernicus—Gresham Law was systematically
weakened: it moved from being treated as a great fundamental law (Macleod) to a prin-
ciple of economics (Jevons 1875) and a universal law (Fetter 1932), until finally ending
up being treated by some as a trivial law (Schumpeter 1954). Almost parallelly, proposals
started to appear of treating the Copernicus—Gresham Law as an empirical generaliza-
tion, set relatively independently of theory and having its own historical exemplifications.
It was Francois R. Velde who explicitly pointed out that the disputes over the nature of
the Copernicus—Gresham Law were carried out by those who viewed it as a theoretical
proposition and by those who read it as an empirical regularity (2008, 769). What was
little discussed then, was the nature of relations between the Copernicus—Gresham Law
and the explanatory models offered. Two options can be distinguished here: either the law
can be located on the explanandum side or on the explanans side. In the first option, mod-
els can provide a theoretical explanation of the Copernicus—Gresham Law operation — the
Copernicus—Gresham Law is then explanandum and the theoretical model is the explanans.
Currently, such models include mainly, but not exclusively, theoretical models of commod-
ity money. They differ in terms of the theoretical apparatus used from, for instance, asym-
metric information theory (Akerlof 1970), search theory (Velde, Weber, Wright 1999), or
game theory with prisoner’s dilemma (Selgin 2020).

In the second option, the Copernicus—Gresham Law (located on the explanans side) is a
useful tool for building economic models. Although this law is far from being new, it is by
no means irrelevant or redundant. Greenfield and Rockoff’s model built on the quantitative
theory of money is a good case in point here: the authors conclude that “Gresham’s law still
belongs in the monetary economist’s tool kit” (1992, 1). This law can be used in different
ways as will be demonstrated below.

Let us start with the usage of the Copernicus—Gresham Law as an empirical generaliza-
tion, which is the starting point for Charles P. Kindleberger, who, however, generalizes the
scope of the law from two kinds of money to two different kinds of assets, both financial
and non-financial. Secondly, Kindleberger extends the law to a model in which the ques-
tion of the quantity of money is separated from market instability and asset convertibility,
which are linked to the operation of the Copernicus—Gresham Law:
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Gresham’s law thus extended is a highly useful analytical model for the economic his-
torian to keep in his toolbox [...]. Convertibility of one money into another, of money
into assets, and of normally marketable assets into money is the touchstone. When
such convertibility is maintained, Gresham’s law is held at bay.

(Kindleberger 1989, 44-53)

The generalization of the Copernicus—Gresham Law range and extending it to a model
of market instability is an example of how the Copernicus—Gresham Law can be used in
modeling. After extension, the monies appearing in the law no longer represent only coins:

Foreign-exchange crises can be assimilated to Gresham’s law, with the two monies
representing one national money on the one hand, and all other currencies into which
it is convertible on the other.

(Kindleberger 1989, 57; emphasis added)

In research concerning monetary history and the application of the method of ideal types,
one contends with a completely different use of the Copernicus—Gresham Law in model-
building. Although it is still subject to methodological controversies, ideal types tend to be
accepted as theoretical models in the social sciences (i.e., Weinert 1996; Aronovitch 2012).
The Copernicus—Gresham Law then “provides historians with concrete (although qualita-
tive) comparative counterfactual ideal types” (Elliott 2020, 165). Models formulated as ideal
types determine boundaries of market conditions within which certain values, for instance,
the exchange rates, are set. As researchers do not have credible data concerning these val-
ues, they commonly adopt certain extreme values and use them for comparative purposes.
In such modeling strategies, the Copernicus—Gresham Law is not used as an empirical law:
“It is better to deploy Gresham’s law as a complex and interconnected set of conditions and
premises” (Elliott 2020, 171). The conditions concern the structure of the monetary system,
while the premises concern the motives of money users’ behaviors. The ideal type determined
by the Copernicus—Gresham Law provides insights into those conditions and improves un-
derstanding of the premises. This use of the Copernicus—Gresham Law in economic modeling
is in line with Giere’s approach — a law defines a model system, in this case, as an ideal type.

George Akerlof offers yet another use of the Copernicus—Gresham Law, which can be
understood here as a heuristic principle. In his seminal paper, “Market for ‘Lemons’,”
Akerlof points out that a modified form of the Copernicus—Gresham Law appears in his
model of the market of bad quality commodities and considers such a reappearance as “in-
structive” (Akerlof 1970, 480). The use of the Copernicus—Gresham Law by Akerlof is a
heuristic device enabling a better understanding of the target system (“market of lemons”).

The Copernicus—Gresham Law can also be used not as an empirical generalization but as
an intended theoretical statement, although this use is quite specific and not entirely clear. For
instance, Arthur Burns pointed out that when in historical research a theoretical model is con-
structed, a historian’s investigation starts to resemble the investigation of a theoretical economist:

the historian to be making a calculation in which theoretical concepts were being used
as they would have been had he been proving Gresham’s Law gua economist, and not
just illustrating it gua economic historian. [...] Preeminently this will be so whenever
the historian has need to construct a model.

(Burns 1960, 66)
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Friedrich von Hayek, by continuing Burns’ considerations, advocated for such usage. Hayek
concluded that using the Copernicus—Gresham Law as a theoretical statement is a useful re-
search tool because it orientates the research process toward the search for the causes of the
driving-out dependency, as long as the condition of having at least two types of money is met:
“which are of equivalent value for some purposes and of different value for others” (Hayek
1962, 101). This is how researchers can acquire additional valuable information of a general
kind, to which they have no direct access. Hayek’s approach has been taken up by Richard
Mundell, who introduces two significant qualifications. The first qualification is that using
the Copernicus—Gresham Law in historical research allows one “to draw inferences about
the monetary policies at the time the coins disappeared” (Mundell 1998). Secondly, he points
out that on top of the condition set by Hayek, an additional condition has to be introduced,
namely whether the two types of money exchange for the same price. Only then, according
to Mundell, the Copernicus—Gresham Law becomes a powerful research tool. However, as
Alex Rosenberg noted when discussing the status of the Copernicus—Gresham Law, “this
qualification comes dangerously close to making the law a necessary truth” (2018, 29).
Mundell suggested the usage of the Copernicus—Gresham Law points to the possibility of
converting the law into an inference rule. Rosenberg’s friendly warning seems to apply more
to instances of using the Copernicus—Gresham Law as an a priori statement.

Last but not least, the Copernicus—Gresham Law can also function as a commentary on
a model, which was for instance the case with Schelling’s segregation model. The author
directly refers to the Copernicus—Gresham Law, while introducing the question of depend-
encies obtained in the model: “small incentives can lead to striking results; Gresham’s Law
is a good example” (Schelling 1969, 488). This function of the law is fairly modest, but its
discernable character undoubtedly enables achieving the intended rhetorical effect. Such a
reference while discussing the model can be called an illustrative function of the law.

5. Conclusions

This chapter explored the many ways in which scientific laws and theoretical models in-
tersect. Investigating this relation seems particularly important as philosophers of science
have gradually reoriented their inquiries from the analysis of laws, through the analysis of
models, to the analysis of modeling practices. A clear illustration of this tendency is the
science-without-laws thesis or thought-provoking questions about what science without
laws looks like (Morgan 2007, 271). The answer depends on the interpretation of the
science-without-laws thesis with at least two interpretations possible. The first interpreta-
tion offers what can be called an unqualified version of the thesis and states that scientists’
interest in formulating, using, and applying laws will continue to decrease. Accepting this
version seems premature, although laws did lose their privileged status in the realm of sci-
ence. The second interpretation offers what can be called a qualified version of the thesis
and says science without laws is possible only if laws are understood as laws of nature. This
version can be accepted provided it includes various cognitive and extra-cognitive functions
performed by scientific laws and theoretical models.

It is certainly possible to speak about a transition from laws to models. This also implies
an interchange of their respective functions — functions traditionally attributed to laws are
currently performed by models and the other way around. For instance, explanatory and
predictive cognitive functions, once exclusive to laws, are now attributed to models. At the
same time, educational and heuristic functions once reserved to models are now assigned
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to laws. The difficulties stemming from explanation by means of laws have been widely
discussed in the literature and currently, it is the explanation by means of model-building
that seems most promising, although it also raises some controversies. The issue of the
explanatory function of science will likely remain subject to animated discussions. As far
as predicting is concerned, it was noticed a long ago that laws are not needed for mak-
ing predictions. Already Rudolf Carnap stated that “the use of laws is not indispensable
for making predictions. Nevertheless, it is expedient, of course, to state universal laws
in books on physics, biology, psychology, etc.” (Carnap 1950, 574). This leads to the
communication-educational function of scientific laws. The dominant belief nowadays is
that theoretical models are able to perform the indicated cognitive functions of science much
better than laws. However, one can question whether models are able to better execute the
communication-educational function. Scientific handbooks, reliable popular science works,
and even good science-fiction literature cannot do without scientific laws. While models can
provide more efficient knowledge, scientific laws seem to be irreplaceable when it comes to
the communication-educational function.

The general message of this chapter is that the law-model relation can be understood in
a simple or complex way. The simple understanding suggests substitutability or rivalry of
laws and models, as exemplified by the use of such words as “without,” “or,” “versus.”
For instance, it is not the quest for laws but model constructing that dominates contempo-
rary research activity. However, if the diversity of laws’ usages is taken into account, the
issue becomes complex in the sense that while model-building remains at the forefront, the
role of laws in modeling is far from marginal. Another complex issue is that the discus-
sion concerns differently understood laws-of-models and laws-for-modeling. One cannot
forget that laws and their various formulations belong not only to the history of science
but also to up-to-date resources of scientific thought. Sometimes scientific laws are close
at hand, sometimes they need to be dusted off, but their use is always a matter of scientific
invention.

» <«

Notes

1 Giere (1999), Creager, Lunbeck, Wise (2007), Hardt (2017).

2 Differences between laws-of-models and laws-for-modeling take the form of differentiating “model
view” (canonical work on the matter by Giere 1988) from “hybrid view” (canonical work on the
matter by Morrison and Morgan 1999) (Teller 2001; Contessa 2014).

3 The Copernicus—Gresham Law continues to raise numerous controversies; for instance, it is re-
ferred to in debates concerning the issue of multi-realizability (Fodor 1974) and the conditional
form of laws (Friend 2016); philosophers of science continue to argue whether this law is causal
(Loewer 2009) or functional (Rosenberg 2018).

4 Apart from principles of physics, Giere also refers to the principle of natural selection and “eco-
nomics boasts of various equilibrium principles” (2006, 61).
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THE PUZZLE OF MODEL-BASED
EXPLANATION

N. Emrah Aydinonat

1. Introduction

Among the many functions of models, explanation is central to the aims and functions of
science; models explain in various ways. However, the discussions surrounding modeling
and explanation in philosophy have remained largely separate from each other. Accounts of
models have mainly focused on questions of representation, idealization, and fiction, mostly
paying attention to the relation between models and their targets (e.g., Weisberg 2013;
Frigg and Nguyen 2020). Accounts of explanation, on the other hand, have predominantly
concentrated on the nature and types of explanation, developing alternative accounts of ex-
planation (e.g., Woodward 2003; Strevens 2008). As philosophers generally agree that ide-
alizations play indispensable roles both in modeling and explanation, one possible way to
bring these two lines of inquiry together is to focus on the role of idealized models in expla-
nation. In both literatures, idealizations are commonly conceived of as distortions (however,
see Carrillo and Knuuttila 2022): like fictions, they introduce falsehoods into models. There
is also a common presumption that explanations must be true. The question is, if idealiza-
tions and fictions are “false,” how can idealized models provide true explanations? This
is the puzzle of model-based explanation (henceforth, the puzzle). To solve it, one would
need to resolve many debates in the philosophy of science and, ideally, provide compatible
accounts of models, truth, fiction, idealization, representation, understanding, and explana-
tion. This chapter has the more modest aim of giving a selective and critical overview of the
available strategies to solve the puzzle, mainly considering idealized models—although the
discussion naturally extends to the case of fictional models. The chapter does not explicitly
address applied models (i.e., those fine-tuned to a specific particular real-world target) or
statistical models (including econometric models, machine learning models, and the like),
although some of the strategies for solving the puzzle may apply to them as well.

2. What is the puzzle?

The puzzle has been discussed in a variety of ways. Let us look at some examples—
reformulated here as dilemmas or trilemmas.
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Strevens (2008, 297) discusses the puzzle in terms of the difficulty of explaining the
widespread use of idealizations for causal accounts of explanation.

(S,) Nonveridical models cannot explain.
(S,) Idealized causal models misrepresent their targets.
(S,) Idealized causal models are commonly used to provide explanations.

Bokulich (2008, 140, fn. 9) focuses on the tension between the requirement of truth for
explanation, and the practice of providing model-based explanations that are “not entirely
true” (Bokulich 2009, 105).

(B,) “Widely received philosophical accounts of scientific explanation” have a “strict
requirement of truth.” (2009, 104)

(B,) Scientists nevertheless explain using idealized or fictional models and provide
explanations that are “not entirely true.”

In the philosophy of economics, the puzzle is dubbed an explanation paradox:

(R.) “Economic models are false.

(R,) Economic models are nevertheless explanatory.

(R,;) Only true accounts can explain.” (Reiss 2012, 49)
Love and Nathan (2015, 768) underscore the conflict between the goal of accurate repre-
sentation in explanation and the “deliberate misrepresentation” of mechanisms in models:

(LN)) Accurate representation is necessary for mechanistic explanations.
(LN,) Idealized models of mechanisms that are cited in mechanistic explanations mis-
represent those mechanisms.

Potochnik (2017) highlights the contradiction between the beliefs that explanations must
be true and that idealizations are untrue:

(P.) Explanations must be true.

(P.) Idealizations are patently untrue.
(P..) Idealized models explain.

Examples can be multiplied. Formulations of the puzzle assume that (i) a good explanation
is a true explanation, (ii) idealized models explain, and (iii) idealizations are falsehoods or
distortions. Proposed solutions to the puzzle often involve the rebuttal of one or more of
these assumptions.

To solve the puzzle, philosophers of science have employed multiple strategies (cf. Reiss
2012): (A) abandoning the requirement of truth for explanation (Explanations need not be
true), (B) arguing that models cannot explain (Models cannot explain ... but they might
help), (C) arguing that models can contain truths, enable correct inferences, or provide
true explanations despite (or thanks to) idealizations (Models explain), and (D) arguing
that Models are not explanations, but tools. Without trying to be exhaustive, let us look at
examples from each strategy.
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3. Explanations need not be true

Catherine Elgin (2004; 2017) famously argued that “laws, models, idealizations, and ap-
proximations which are acknowledged not to be true [...] figure ineliminably in the success
of science” (2004, 113-114, emphasis added). Thus, she said, if we were to stick to the
requirement of truth strictly, we would have to conclude that “much of our best science”
is “epistemologically unacceptable” (2004, 114). Thinking of the puzzle, one way to fol-
low Elgin is to argue that explanations need not be true. This would be a straightforward
solution since nothing is puzzling about “false” models providing false explanations. Even
so, philosophers rarely follow this strategy explicitly, most likely because they commonly
subscribe to the factivity of explanation.! One notable exception is Potochnik (2017), who
argues that “because idealizations are patently untrue,” (93) model-based explanations can-
not be true either (134). Because Potochnik accepts that models are “false” and that models
can explain, she sacrifices the factivity of explanation. However, on closer inspection, she
does not give up on the truth completely. She argues that “idealized representations can
truly depict causal patterns” and that “scientific representations generate understanding of
phenomena in virtue of being true of causal patterns” (2017, 119, emphasis added). She
also substitutes the truth requirement with the following: explanations must depict real
causal patterns. That is, according to Potochnik, a good explanation “must capture what
is responsible for the explanandum” and “depict dependence relations” (135). Therefore,
Potochnik transforms the puzzle into a new one: how can patently “untrue” models depict
what is truly responsible for the explanandum? Consequently, we are no closer to the solu-
tion of the original puzzle than we started. Before moving on, note that if we were to brush
Potochnik’s points about explanation aside, her account would find a better home under
Models explain ... thanks to representational failure.

4. Models cannot explain ... but they might help

The second strategy is to reject the premise that “models explain,” saying that most ideal-
ized models cannot provide true explanations by themselves, but are nevertheless explana-
torily useful. There are variations on this theme.

Consider McMullin’s (1978) hypothetico-structural (HS) account of explanation.
McMullin conceives of structural explanations as causal explanations that explain the
“properties or behavior of a complex entity [...] by alluding to the structure of that entity”
(139). He argues that HS explanations, where a structure is postulated with a theoretical
model (HS model) to explain a phenomenon, are common in science. They are hypothetical
because “a different structure might also account for the features to be explained” (139).
They are provisional and tentative because they do not satisfy the truth requirement and
cannot be considered complete definitive explanations. In Hempel’s terms, HS explanations
are potential explanations, i.e., explanations where the truth or falsity of the propositions
constituting the explanans are not known yet (Hempel 1965, 338). They can be turned into
true explanations if their explanans can be justified by de-idealization.

Craver’s (2006) account of mechanistic models also acknowledges the usefulness of
models for explanation, while introducing strong requirements for explanations. Accord-
ing to Craver, models have many explanatory functions, including tools for demonstration,
sketching explanations, and conjecturing how-possibly explanations (355). However, to
be an explanation or to explain, a model needs to “characterize the phenomenon” and
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“describe the behavior of an underlying mechanism,” and the components it describes
“should correspond to components in the mechanism” in its real-world target (361).
Accordingly, Craver sees models on a continuum based on how well they satisfy these
requirements: (i) “phenomenal” models, which are mere descriptions that do not explain
(2006, 358); (ii) how-possibly models, which are “loosely constrained conjectures” (2006,
361); (iii) how-plausibly models, which are how-possibly models that fit better into what
we already know; and (iv) how-actually models, which give complete descriptions of the
actual mechanism “that in fact produces the phenomenon” and “show how a mechanism
works, not merely how it might work” (2006, 361).

Craver’s account does not accept anything less than a complete description of a mecha-
nism for a true explanation. Note, however, that this statement concerns the descriptions of
explanatory mechanisms in an explanation, not models. It does not assume that more de-
tailed models are better (Craver and Kaplan 2020). In this account, most idealized models
cannot be considered explanations, but they can be helpful in providing explanatorily rel-
evant information that can be used in explanations. On the other hand, if a model explains,
it must be because it captures the truths about actual mechanisms, and idealizations must
have been harmless in this sense. Either way, the puzzle is resolved.

Kaplan’s (2011) 3M account, which is related, introduces “a model-mechanism-mapping
(3M) constraint on explanatory mechanistic models” (347): components of the model should
map onto and match the actual mechanisms producing the phenomenon. Models that do not
satisfy this requirement can only provide how-possibly explanations, not true explanations.
The 3M account does not necessarily ask for de-idealization for explanatory usefulness. If
there is some “model-mechanism correspondence [...] the model will be endowed with ex-
planatory force,” Kaplan argues (348). Nevertheless, according to Kaplan, anything short of
a complete description of the actual mechanism(s) will be an incomplete explanation (348).

McMullin, Craver, and Kaplan agree that even though most idealized models cannot
be considered explanations, they are still explanatorily useful. Many philosophers agree,
and some openly propose a weaker reading of models. For example, Alexandrova (2008)
suggests that we should conceive of models as open-formulae that help in formulating ex-
planatory hypotheses. In this account, models are not explanations in and of themselves,
but just recipes, schemata, or templates for explanatory causal claims (397). Using models
in explanations requires further steps like identifying the relevant causal hypothesis and
ensuring that it holds for the case at hand.

As should be clear by now, the philosophers who argue that most models cannot ex-
plain do not deny that models can be useful in the process of producing true explanations.
Models have many functions, most of which can help in producing explanations: they
can generate explanatory hypotheses, help explore possible explanations, provide concep-
tual frameworks, assist in sketching explanations, aid in devising potential explanations,
etc. (e.g., see Pielou 1981; Wimsatt 1987; Odenbaugh 2005). There is considerable lit-
erature on the exploratory role of models (Aydinonat 2007; 2008; Gelfert 2015; Shech
and Gelfert 2019; Massimi 2019), their modal functions (e.g., Rappaport 1989; Massimi
2019; Sjolin Wirling and Griine-Yanoff 2021), and the relation between idealized models
and how-possibly explanations (e.g., Craver 2006; Ylikoski and Aydinonat 2014; Bokulich
2014; Verreault-Julien 2019; Nguyen 2022). Most of this literature agrees with Craver,
Kaplan, Alexandrova, and others that idealized models can help us discover true explana-
tions. Interestingly, as we will see shortly, philosophers who argue that models can and
do explain are also happy to accept this claim, arguing that some models are useful in
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developing how-possibly explanations, potential explanations, sketches, or comparison
cases. All this suggests that perhaps the solution to the puzzle is to be sought by analyzing
how models are used as zools for explanatory purposes rather than conceiving models as
explanations (more on this below).

5. Models explain

Another way to solve the puzzle is to argue that models can provide true explanations
thanks to their (i) representational adequacy, (ii) capacity to be used to make correct infer-
ences, or (iii) falsities.

5.1 ... thanks to representational adequacy

Showing that idealized models can be true or contain truths would make their ability to
explain less puzzling. Many philosophers take this route. Consider Miki’s functional de-
composition account. Miaki argues that idealized models represent selective aspects of their
targets and isolate explanatorily relevant factors, and with respect to these aspects and
factors, they can be true (e.g., Mdki 1992; 2010). Similarly, Strevens (2008) thinks that the
function of idealizations is to remove explanatorily irrelevant aspects of the explanandum
phenomenon from the model. He argues, if “done right” (300), an idealized model contains
two parts: idealizations and “difference-makers for the explanatory target” (318). In both
accounts, idealizations do not distort or misrepresent explanatory factors; they help in iso-
lating them. If this were true, the puzzle would be resolved.

Both accounts presume that models have modular components and can be decomposed
into idealized and difference-making parts. But can we decompose models in this way?
Rice (2019) argues that most models do not decompose this way for two main reasons.
First, idealizations are indispensable for many mathematical techniques employed in model
building without which explanation would not be possible (193). Second, the assumption
that idealizations will not distort a model’s representation of explanatorily relevant (e.g.,
difference-making) relations is often not true. Hence, it is often not possible to “map the
accurate parts of the model onto what is relevant and its inaccurate parts onto what is ir-
relevant” (194). This would at least require further steps, such as some interpretation of
and commentary on the model, by the model user.

If Rice is right, and if some idealizations are ineliminable (Batterman 2009; see also
Elgin 2004), then it becomes difficult to solve the puzzle with a naive decompositional
strategy. However, a closer look reveals that Miki and Strevens’ strategies are not so na-
ive after all. For example, Strevens agrees that some interpretation might be required to
determine explanatory (ir)relevance and even gives a role to the explanatory framework,
which could include the “nature and goals of a particular conversation” (2008, 151); hence
the explanatory practices, conventions, and norms within a field. Similarly, Miki (2010,
180) emphasizes the importance of the intention and purpose of the model user, and model
commentary that connects a model’s elements with the real world. Both Miki and Strevens
are aware that determining whether a model explains requires some interpretation and
information about the context, but they do not provide enough guidance about concepts
such as explanatory framework and model commentary. Moreover, both accounts allow
for incomplete model-based explanations with varying degrees of explanatory power and
how-possible explanations.
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To overcome the difficulties that these accounts face with regard to ineliminable ideali-
zations, Pincock (2020; 2021) recommends abandoning the commitment to the truth of
model parts that perform the explanatory task and accepting that generalizations generated
by models are often only partially true. But how can partially false generalizations provide
wholly true explanations? According to Pincock, the presence of falsehoods in models is
consistent with true model explanations if “there is an appropriate truth underlying each
falsehood” (2021, 18). The problem with this is that we do not know how to determine the
truths underlying falsehoods any better than we know the answer to the original puzzle.
While Pincock talks about underlying truths, Niiniluoto (2018, 57) argues that although
each idealization might not be partially or approximately true, “together with other claims,
an idealized theory or model as a whole may be truthlike or sufficiently similar to the real
system.” Either way, the basis on which the model user infers the true claims that will con-
stitute the explanans remains unclear.

An alternative route is to argue that model-based explanations are partial in the Hemp-
elian sense. In a partial explanation, “the explanans does not account for the explanandum-
phenomenon in the specificity with which it is characterized by the explanandum-sentence”
(Hempel 1965, 416). Elgin and Sober (2002) think that models can provide partial explana-
tions without necessarily being false. They argue that idealized models can explain if their
idealizations are harmless in the sense that removing these idealizations would not “make
much difference in the predicted value of the effect variable”; that is, the explanandum
(448). In this account, the explanandum, E, need not be entailed by the explanans or be
derivable from it: it is enough if the explanans implies E’, provided that it is close enough
to E (448). The difficulty is that this approach presumes not only that successful idealiza-
tions (“done right”) will be harmless in the sense that they will distort the model results
only slightly, but also that the idealizations do not influence the truth of the explanans.
However, if idealizations are ineliminable, how can we know that they are harmless in both
senses? The similarity between E and E’ will not do. Robustness analysis might help (e.g.,
Levins 1966), but it has limited use without empirical evidence (Orzack and Sober 1993).
So, after all, it appears that idealized models can explain only if we can make sure that their
idealizations play no role whatsoever in explanations, other than removing disturbing fac-
tors. Hence, given the ineliminability of idealizations, the puzzle remains (see also Bokulich
2011, 36).

5.2 ... thanks to correct inferences

The preceding accounts in this section agree that explanatory inferences are made possible
if a model (M) successfully represents a real-world target (T). An alternative approach is
to reconsider what “M represents T” means and to reverse the relation between explana-
tory inferences and representation. The inferential conception of representation does just
this, saying that if one can draw inferences about T by using M, then M represents T (e.g.,
Sudrez 2004). Can this approach solve the puzzle?

Recall that the puzzle is a puzzle because it starts with the premise that idealized models
are “false” and explanations are true. The inferentialist approach does not impose truth
conditions for inferences, only requiring that the model user can make inferences about T
using M. That M represents T does not imply that M provides a true explanation. Hence,
conceived this way, the inferentialist approach does not even address the puzzle, let alone
solve it. However, there is a version of inferentialism that explicitly addresses the puzzle.
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Kuorikoski and Ylikoski (2015) amend the inferentialist approach to argue that
“model-based (explanatory) reasoning” is “a matter of drawing conclusions from given
assumptions using external inferential aids” (i.e., models) and this basically explains the
“epistemic role of models” (3827). In this account, models help answer what-if questions
and in making what-if inferences. It is argued that if M can be used to make correct infer-
ences about T, then M represents T (3827).

The puzzle is then transformed into a new one: how can “false” models help in making
correct inferences about their targets, and what ensures the reliability of these inferences
and the truth of their conclusions? In answering these questions, Kuorikoski and Ylikoski
drift away from the basic inferentialist view and draw close to Miki and Strevens. First,
they argue that some assumptions of a model help isolate real-world dependency relations
and as such, they are not the source of falsities in a model (2015, 3829). These substantial
assumptions allow model users to use what they learn about models as guides to inferences
about real-world phenomena: an explanatory model, despite the falsities introduced by ide-
alizations, “get[s] the target explanatory dependence right” (3831) thanks to its substantial
assumptions. Second, they argue that derivational robustness analysis (Woodward 2006;
Kuorikoski, Lehtinen, and Marchionni 2010) increases the reliability of model inferences.

In brief, in this account, substantial assumptions and robustness analysis are doing the
heavy lifting with respect to the solution of the puzzle. There is a concern, however. The
ineliminability of idealizations also undermines robustness analysis since altering inelimi-
nable idealizations will change the nature of the model, and this would make model com-
parisons, which are required for robustness analysis, problematic (Lisciandra 2017). Thus,
the advertised epistemic benefits of robustness analysis might not be realized, and the puzzle
would remain (see also Verreault-Julien 2021).

On the positive side, Kuorikoski and Ylikoski avoid overemphasizing representation and
settle for the modest claim concerning model explanation that models “capture a small set
of explanatory dependencies that are assumed to be central” (2015, 3830), and when they
are used to explain particular empirical phenomena, they do not necessarily provide com-
plete or actual explanations: a model can sometimes bemerely “a part of a how-possibly
explanation” (3831). By both emphasizing the role of robustness in enabling model-based
inferences and acknowledging the selectiveness and partiality of representation, Kuorikoski
and Ylikoski establish that model-based explanations cannot be fully understood by exam-
ining an isolated model, a family-of-models perspective often being needed (Ylikoski and
Aydinonat 2014; see also Love and Nathan 2015).

5.3 ... thanks to representational failure

We have seen that accounts that focus on representational adequacy encounter difficulties
with the ineliminability of idealizations. Batterman (2009, 45) argues that some idealiza-
tions are necessary for explanation, and de-idealization might even reduce the explanatory
power of some models. Batterman and Rice (2014) take this argument one step further,
arguing that “highly idealized models can play explanatory roles despite near complete
representational failure” (2014, 355, emphasis added). They argue that accounts that fo-
cus merely on representational adequacy fail to explain why idealizations are explana-
tory (365). To make their point, Batterman and Rice focus on a class of explanations of
macro-level patterns across systems using highly idealized models. They show that as a
representation of any particular system, these models are inadequate because they leave out
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the important particular details of individual systems. Nevertheless, they argue that these
models are explanatory exactly because they leave these details out. If one asks why a set
of different systems are strikingly similar in a certain aspect (e.g., a macro-level pattern or
feature), this might make the details of individual systems unnecessary from an explana-
tory point of view: the reason why these systems are similar might have nothing to do with
their particular details but with some general features that are shared by all of them. If this
is the case, adding detail—to increase the representational adequacy of the model from the
perspective of one given individual system—would hinder the explanatory focus and power
of the model. Thus, in such a case, idealization would in fact be necessary for explanation.

This point is well taken, but does it really go against the representational adequacy point
of view? Representational adequacy depends on the explanatory task at hand. If the task
is to explain common macro features of heterogenous systems, a model that focuses only
on a small number of common features among these systems would be representationally
adequate, even according to a hardheaded representationalist. When Batterman and Rice
talk about “complete representational failure,” they are talking about the representational
adequacy of the model with respect to a particular system, which is not relevant given
the explanatory task. Thus, contrary to appearances, the disagreement is not that severe
(see also Lange 2015; Reutlinger 2017). Whereas representationalists argue that falsities
introduced by idealizations are irrelevant, Batterman and Rice ask for an explanation of
why the details left out are irrelevant. They argue that at least for the class of models they
discuss, “the real explanatory work is done by showing why the various heterogeneous
details of these systems are irrelevant and, along the way, by demonstrating the relevance
of the common features” (2014, 365). Using examples from fluid dynamics and biology,
they argue that these models are explanatory because they have a backstory showing that
the model and the heterogenous systems it is supposed to explain belong to the same uni-
versality class. Note that merely providing a model that is in the same universality class as
the phenomena it is supposed to explain does not provide much information. Batterman
and Rice are asking for more: a demonstration, a story that explains the explanatoriness
of the model. “The models are explanatory in virtue of there being a story about why
large classes of features are irrelevant,” they say (2014, 356, emphasis added).? For the
class of models that Batterman and Rice are analyzing, this appears to solve the puzzle,
in principle. In practice, however, explaining explanatory irrelevance involves considering
the context of modeling and explanation. This is perhaps the larger lesson to extract from
Batterman and Rice: answering why the relevant isolations are in place, why they were
introduced, what modelers discovered by employing certain idealizations, etc. is crucial
to an understating of explanatory value. In this regard, studying the broader context of
modeling is often superior to just studying an isolated model-target pair (Aydinonat and
Koksal 2019). As we will see, philosophers who see models as tools take this suggestion
one step further.

Although many philosophers offer potential solutions to the puzzle, only very few ad-
dress it directly. Bokulich is one of these exceptions and sets her task to show that “ideali-
zations themselves are capable of doing some real explanatory work” (2011, 36). She first
defines model-based explanation or model explanation as an explanation whose explanans
“makes essential reference to” (38) an idealized or fictional model. Next, she defines what it
means for a model to explain: a model explains when it shows how its elements “correctly
capture the patterns of counterfactual dependence in the target system” (2017, 106) or can
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“‘reproduce’ the relevant features of the explanandum phenomenon” (2011, 39), enabling
model users to answer a wide range of what-if questions. How does this solve the puzzle?
How can a “false” model get the counterfactual structure right (i.e., provide a true expla-
nation)? To answer this, Bokulich introduces another step, a justificatory step that specifies
the model’s domain of applicability, shows that the explanandum “falls within that do-
main” and ensures that it “adequately capture[s] the relevant features of the world” (39).

According to Bokulich, justification might come from theory, showing that the “model
can be trusted as an adequate representation of the world” or “through various empirical
investigations” (39, emphasis added). Moreover, a justificatory step is “to be understood as
playing a role analogous to Hempel’s condition of truth [...].” It is “intended to rule out as
explanatory those models that we know to be merely phenomenological” (39, fn. 11). So,
in this account, the justificatory step does “the heavy lifting” (2012, 736).

Where are we at concerning the puzzle? Bokulich’s account is not very different from
representationalist accounts insofar as the justificatory step is intended to ensure that falsi-
ties or fictionalizations in the model are harmless with respect to the model’s ability to cap-
ture the truths about the counterfactual structure of the explanandum phenomenon given
the explanatory task. A model might be idealized or refer to fictional entities, but what
matters for explanation is whether it gets the explanatory relations, connections, structures,
etc. right. The important point is that without the justificatory step, which is often contex-
tual and dependent on the current state of knowledge (Bokulich 2012), we cannot know
whether the explanatory hypotheses generated using the model are true or not. Without it,
we only have sketches, templates, and potential explanations.

Nguyen (2021) argues that to get the counterfactual dependence right, a model must
represent the dependence relation in its target, say, between A and B, correctly. However, in
contrast to Bokulich, he contends that since the explanation concerns the relation between
A and B, it cannot be said that the falsities in the model play any role in the explanation
even though they “play an essential role in generating the explanation” (2021, 3232, em-
phasis added). More generally, according to Frigg and Nguyen’s (2020) DEKI (Denota-
tion, Exemplification, Keying-up, and Imputation) account of representation, idealized and
fictional models can explain provided that they represent the target appropriately. This,
however, requires (i) an appropriate interpretation of the model given the goals of modeling
and explanation, and (ii) a key that translates the model’s properties to the properties that
will be imputed to the target. Although Frigg and Nguyen’s solution to the puzzle is like
Bokulich’s solution in that it argues that models can explain thanks to representational
failure, it does not assume that models explain by themselves. Without interpretation and
keying-up there would be no model explanation according to the DEKI account. Frigg and
Nguyen argue that idealizations and fictions could play an essential role in producing the
explanation; they do not argue that they are necessarily a part of the explanation. In this
sense, their account would perhaps be more at home next to those who argue that models
explain thanks to their representational adequacy.

The importance of context and goals of modeling and explanation appears to be a point
agreed upon by most philosophers, despite their differences. Another point of agreement,
without explicit acknowledgment, seems to be that merely focusing on the model-target
relation is not entirely helpful in understanding or solving the puzzle since such things as
interpretation, model commentary, model use, explanatory goals, model justification, and
exploration have been repeatedly invoked in dealing with the puzzle.
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6. Models are not explanations, but tools

6.1 Models are not explanations

If one assumes that explanations must be true and idealized models are false, then consider-
ing false models as explanatory seems paradoxical. However, the paradox arises if we also
assume either that (i) models are explanations, or (ii) that models are featured in the set of
explanans directly, without any interpretation. If models are not explanations and are not
commonly used in the explanans without modification, the puzzle would dissolve because
the fact that models contain idealizations would not necessarily mean that the explanantia
of model-based explanations are false.

Consider the first assumption. Can an idealized or fictional model be an explanation?
One difficulty with equating a model with an explanation is that models and explanations
might be different sorts of things. If this is true, conceiving of models as explanations would
be misguided. However, even if we assume that models and explanations are the same sort
of things, it is hard to conceive of idealized or fictional models as explanations. For the sake
of argument, Rohwer and Rice (2016) assume that both models and explanations can be
“characterized or reinterpreted as sets of propositions” (2016, 1130) and explore where
this assumption leads us. They show that if this assumption were true, a model and an
explanation would be identical only for some simple cases that do not involve idealizations
or fictions. For a model to be identical to an explanation, its assumptions (or a subset of
these assumptions) must constitute the explanans, and the model result they imply must be
identical to the explanandum. If a model were to employ idealizing assumptions, this would
mean that the explanans of the model explanation cannot be true—unless the model’s
idealizing assumptions are reinterpreted in some way. In short, in the case of idealized
and fictional models, it is hard to say that there would be an identity-preserving matching
between the elements of a model and an explanation if we cling to the truth requirement
for an explanation. In fact, Rohwer and Rice (2016) show that in most cases, some inter-
pretation of a model is required for an explanation. Relatedly, Marchionni (2017) argues
that seeing models as explanations is too limiting and leaves out many explanatory models,
particularly explanatory idealized ones. In most cases, models help explain rather than be-
ing explanations in themselves.

If most idealized models are not explanations, perhaps the second assumption is true,
and models are featured in the set of explanans directly, without any interpretation. Recall
that Bokulich argues that the explanans of a model explanation “makes an essential refer-
ence to” (2011, 38) a model. Thus, Bokulich does not equate models with explanations
but argues that models are featured in explanations. In her other work, she uses alternative
formulations: “makes central use of” (2018, 144) and “appeal[s] to certain properties or
behaviors observed in” (2017, 104) a model. But what do these mean? Essential in what
sense? What kind of reference, use, or appeal? Bokulich does not answer these questions.
Moreover, her justificatory step requirement, which is external to the model, implies that
there must be some interpretation of the model involved in a model explanation. In conclu-
sion, there does not appear to be good reasons to believe in either of the two presumptions
of the puzzle. This constitutes yet another solution: it is perhaps a pseudo puzzle after all.

Even though clarifying the relation between a model and an explanation is a promising
strategy to resolve the puzzle, there are only a few explicit attempts at doing this. We have
seen that Bokulich tells us that a model explanation makes an essential reference to a
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model. In contrast, Marchionni (2017) argues that we should not consider any explanation
that cites a model as explanatory. She recommends asking whether the model provides
explanatorily relevant information independently of whether the model or some of its parts
are cited in the explanans. Lawler and Sullivan (2020), on the other hand, advise us against
seeing model-based explanations as a special kind of explanation. The sheer diversity of
models and their explanatory uses suggest that they might have a point. They argue that in
most cases “model explanations” are just model-induced explanations, rather than models
being explanations.

The statements of the puzzle appear to make the implicit assumption that idealized mod-
els, their premises, or results are or could be somehow added to the set of explanantia with-
out modification and that the falsity of idealizations is preserved in the explanatory context.
However, throughout the chapter, we have seen that when challenged, philosophers repeat-
edly invoked concepts such as justification, interpretation, commentary, and context to
defend their versions of how models explain. In most cases, they have argued that models
contribute to explanations in several ways.

6.2 Models are tools

Taking seriously the arguments concerning various explanatory functions of models, the
importance of context, exploration, and justification suggests that we should not ignore
what scientists do with their models and how they use them to explain. Looking at how
models are used and manipulated for explanatory purposes can provide a key to the puzzle.
There are several arguments to this effect. For example, Kennedy (2012), and Jebeile and
Kennedy (2015) argue that false idealizations enable model-based explanation by allowing
scientists to produce comparison cases. Idealizations then allow “scientists to determine
what is causally relevant” (Kennedy 2012, 327) by comparing the model to the real-world
case at hand. Jebeile and Kennedy suggest that merely focusing on representational ade-
quacy is a mistake: explanatory functions of models can be better understood if we consider
models as “epistemic tools that are designed by and for scientists to make inferences, and
explanations” and explanation as “a process or an activity, rather than simply a product”
(2015, 384, emphases added). In other words, model-based explanation cannot be fully
understood without studying how model users use models to explain.

Another example is an argument by Boesch (2021) who says that dissimilarities found in
models enable “novel forms of manipulation” (504) and thereby facilitate the attainment
of epistemic aims, such as explanation. Many representationalists would agree on the point
about dissimilarity or function of false idealizations: “It is thanks to the dissimilarities
we are able to focus on what matters,” they would say (see, e.g., Miki 2011). However,
Boesch, Kennedy, and Jebeile are right in arguing that representationalists put too little em-
phasis on how model use and manipulation make explanatory inferences possible, crippling
their ability to solve the puzzle.

This point is closely related to and follows from the view that sees models as tools that
scientists build and manipulate to learn about the world (Morgan and Morrison 1999;
Morgan 2012). On this view, models have been characterized in a variety of related ways:
as mediators (Morgan and Morrison 1999), epistemic artifacts (Knuuttila 2005), and ero-
tetic devices (Carrillo and Knuuttila 2022; Knuuttila 2021). In contrast to the represen-
tationalist accounts of models, which start from questions concerning representation and
model-target relations, this view focuses on how models are built, used, and manipulated
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to allow epistemic access to the world. It is argued that the widely held view that idealiza-
tions are distortions is misleading since it moves the focus away from the process and con-
text of modeling to mere comparisons between models and their targets (e.g., Carrillo and
Knuuttila 2022). This approach emphasizes that understanding models as tools capable
of performing useful epistemic functions such as explanation requires moving beyond the
model-target dyad and taking the purposes of model building and manipulations into ac-
count, as well as the context of modeling and its place in scientific practice (Knuuttila 2010;
2011; see also Morgan 2012).

How does this so-called artifactual approach view the puzzle? First, it sees the puzzle
as pointless, since its proponents assume that there is no independent way of accessing the
world without representation. Nevertheless, one lesson we can extract is that, faced with
the ineliminability of idealizations, solving the puzzle appears to require more than a focus
on the model-target dyad (Knuuttila 2010; Carrillo and Knuuttila 2022). Following up on
this point requires getting rid of the straightjacket of representationalist and inferential-
ist accounts, and more detailed case studies on actual model-based explanations. Second,
more recent work that characterizes models as erotetic devices provides a more explicit
link between models and explanations. Recall that several philosophers argued that models
provide how-possibly explanations. Knuuttila (2021) argues that by seeing models as ero-
tetic devices that are constructed to answer theoretical and explanatory questions, we can
understand the modal functions of models and hence how they can provide how-possibly
explanations better. This appears to be a fruitful line of research that could help in resolving
the puzzle conceived as an inference gap; i.e., one between what we know about the model
and our model-based inferences concerning the real world.

7. Concluding remarks

This chapter started by saying that to solve the puzzle, one needs to resolve many debates in
the philosophy of science and ideally provide compatible accounts of models, truth, fiction,
idealization, representation, understanding, and explanation. This is because the puzzle is
about all of these things. Philosophical accounts of models and explanations, on the other
hand, are like scientific models in that they employ many abstractions and idealizations.
They set out to answer very specific questions concerning a limited set of philosophical
problems, but not about the full set of questions relating to how models help us explain. For
this reason, although each account provided insights into how model-based explanations
work and what they might be, they were also vulnerable to criticism, being limited by their
assumptions. This short discussion suggests that we still have a long way to go in explicat-
ing how model-based explanations explain.

What should the next steps be?

Firstly, it should be obvious that preconceptions concerning what model explanations
are can only take us so far. Given that there are several ways in which models can contrib-
ute to explanations, more detailed studies of how explanations are produced using models
are needed (Rice, Rohwer, and Ariew 2019). Moreover, the roles of interpretation, model
commentary, and explanatory context (and all other escape routes we encountered) in
model-based explanation need to be investigated further, and with more case studies. Do-
ing this might require a more historical approach (Aydinonat and Koksal 2019). It will also
be useful if such studies explicitly and clearly state the explananda and explanantia of the
model-based explanations that they discuss.
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Secondly, and relatedly, we should pay more attention to the diversity of types of models
and model-based explanations. Both Aydinonat (2008) and Marchionni (2017) suggest that
in discussing model-based explanations one needs to make further elementary distinctions.
Model-based explanations have different types of explananda. Some explain singular events,
some explain generic events, and some explain laws and law-like generalizations. Accord-
ingly, we have singular and generic model-based explanations, as well as model-based expla-
nations of laws. Some model-based explanations are complete, others are incomplete, and
incomplete ones are such in different ways. Then we have potential explanations, possible
explanations, actual explanations, causal explanations, structural explanations, non-causal
explanations, equilibrium explanations, etc. Moreover, in practice, explanations are never
perfect, being far from the ideals set by philosophers. Consequently, as Marchionni (2017)
suggests, if we would like to study model-based explanations, we should also be willing to
incorporate varying degrees of explanatory power into our frameworks.

Thirdly, it appears that seeing models as tools or epistemic artifacts will serve the useful
purpose of settling many debates, if proponents of this view can show how model use and
manipulation contribute to explanation, understanding, or learning—i.e., providing an ac-
count of how the inference gap is closed.

Fourthly, recognizing that in practice many explanations make use of multiple models
(e.g., Aydinonat 2018) will help in seeing the actual explanatory contribution of individual
models.

And finally, more attention needs to be paid to models that fail to explain—to avoid the
positive results bias in the philosophy of science.

Notes

1 It is possible for a pragmatist to argue that an explanation need not be true, but as Achinstein
(1984, 290) notes, “a pragmatic theory of explanation does not commit one to anti-realism” (or
realism). Even versions of a pragmatic theory of explanation employ some conditions concerning
the truth or correctness of the explanation.

2 In later work, Rice (2019, 201) loosens this requirement: “scientists can justifiably use idealized
models within a universality class to explain the behaviours of real-world systems in that class
even when they fail to have a complete explanation of why that universality class occurs.” Also,
see Woodward (2018) on the sufficiency of information about irrelevance for explanation.
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ROBUSTNESS ANALYSIS

Wybo Houkes, Dunja Seselja and Krist Vaesen

1. Introduction: what is robustness analysis?

In most modeling practices, researchers do more than construct and manipulate models.
In order to draw conclusions on the phenomena that these models are taken to address, they
also vary features of the model and study the impact of these changes on the model’s behav-
ior. These practices are found across disciplines and contexts of application and, in many
of these, are known as robustness analysis." Under this heading, we may find, e.g., ecolo-
gists examining how changes in parameter settings affect the behavior of Lotka—Volterra
equations, taken to represent interacting populations of organisms, physicists studying the
impact of perturbation terms on Navier-Stokes equations that represent turbulence, and
social scientists checking how Schelling models of segregation depend on particular reloca-
tion rules.

For philosophers of science, the main interest has been to understand why modelers
engage in this practice, i.e., what is epistemically valuable in robustness analysis (hence-
forth: RA).

As James Woodward put it in the context of economic modeling, the aim is to understand
whether and, if so, why ‘robustness (of inferences, measurements, models, phenomena and
relationships discovered in empirical investigations etc.) is a Good Thing’ (2006: 219).
Robustness here stands for the stability of these inferences / measurements / models / phe-
nomena under perturbations affecting the broader context or the system they belong to.

While robustness in a broader sense has been used to capture different notions of stabil-
ity, we focus on the robustness of results obtained by means of scientific models and RA as
a method of examining this property.?

The most prominent explanation, which arguably started the current discussion, is found
in Richard Levins’ work. Levins describes RA as a powerful strategy available to modelers
like him:

[...] we attempt to treat the same problem with several alternative models each with
different simplifications but with a common biological assumption. Then, if these
models, despite their different assumptions, lead to similar results we have what we
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can call a robust theorem which is relatively free of the details of the model. Hence
our truth is the intersection of independent lies.
(Levins 1966: 423, emphasis added)

Levins’ description makes evident the potential value of RA: it would allow modelers to
derive true claims from models that are in important respects inaccurate or (over)simplified.

In the extreme case, genuine insights into complex real-world systems could be gained by
studying only a variety of highly unrealistic, minimal, or ‘toy’ models. Although this would
clearly be ‘a Good Thing’, philosophers have understandably suspected that it is too good
to be true.

In this chapter, we review the ensuing debate. In the philosophy of science, a key role was
played by William Wimsatt (1981), who identified the three central elements of RA that
philosophers are still mainly concerned with: its core definition and varieties; its epistemic
value; and the conditions under which it realizes this value. We briefly review each, also to
set the stage for this paper.

Regarding the central definition, Wimsatt notes that a broad variety of practices can be
gathered under the heading of ‘robustness analysis’. This includes checking which implica-
tions of models remain the same under change to those models, but also practices such as
triangulation, which check whether observational results remain the same under change of
method. In all of these, the aim is to determine whether something is ‘robust’, where:

‘X is robust = X remains invariant under a multi llClty Of at least artially inde end-
ent derivations’

(Soler et al. 2012: 3, paraphrasing Wimsatt 1981)

Wimsatt’s reasons for discussing the practices under the same heading refer directly to
RA’s most contentious features: its overriding purpose or epistemic value, as well as the
conditions for realizing this purpose or value — the reason for engaging in these practices,
and their proper implementation. For both, Wimsatt extends and partly specifies Levins’
characterizations. Regarding purpose, ‘[a]ll the variants and use of robustness have a com-
mon theme in ... distinguishing ... which is regarded as ontologically and epistemologically
trustworthy and valuable from that which is unreliable, ungeneralizable, worthless, and
fleeting’ (Wimsatt 1981/2012, 63). More extensively than Levins, Wimsatt identifies neces-
sary conditions for realizing this, as well as a risk of engaging in RA:

[a]ll these procedures require at least some partial independence of the various pro-
cesses across which invariance is shown. And each of them is subject to a kind of
systematic error leading to a kind of illusory robustness when we are led, on less than
definitive evidence, to presume independence

(1981/2012, 64; emphasis in original)

As the latter part of the quote makes clear — more so than Levins” much-quoted claim — there
is a risk to engaging in RA. Because of this systematic error, which Wimsatt claims is intrin-
sic to the practice, it makes sense to investigate which, if any, of the varieties of RA meet
which conditions for successfully realizing the envisaged purpose.

In this chapter, we review this debate and its results so far. We do so by focusing, like
most philosophers of science, on the role of RA in the testing of model-derived theorems

196



Robustness analysis

for an epistemic (rather than ontological) purpose. Some authors in the debate defend that
RA can realize the purpose envisaged by Levins and Wimsatt — albeit only in some forms
and under strict conditions and qualifications. Others reject this, mainly by problematiz-
ing Wimsatt’s condition of independence; they submit that any robustness will, on closer
inspection, turn out to be illusory for evidential purposes. However, critical authors have
identified alternative epistemic purposes of robustness analysis. Interestingly, in some cases
negative results (i.e., the “fragility’ of an implication) can be equally or even more valuable
than positive results. So, where Woodward’s framing suggests that lack of robustness is a
‘Bad Thing’, modeling practice does not always conform, and modelers might have many
options to manage the risk of ‘illusory robustness’ mentioned by Wimsatt and emphasized
by many philosophers.

We start by introducing some terminology and reviewing the three most prominent types
of RA that have been distinguished by philosophers of science (Section 2). In Section 3, we
turn from types of RA to the various roles or epistemic functions of RA, focusing on the
contested issue of its evidential import. Section 4 concludes the chapter.

2. Different types of robustness analysis

Before presenting the most prominent types of RA discussed in the philosophical litera-
ture, we define some key terms. In the literature, ‘robustness analysis’ refers to any prac-
tice of varying aspects of the model and studying which implications remain invariant;
and ‘robustness’ refers to any invariance revealed. In RA, relevant aspects of a model are
changed, and it is established whether particular implications of this model are invariant
under those changes. Implications that are invariant to a relevant degree are called ‘robust’;
and we refer to the models that share the implication as the ‘robustness set’ for the impli-
cation. Some authors, following Levins (1966), take the result of (successful) robustness
analysis to be a robust theorem rather than an implication. This requires an additional ana-
lytical step, to identify the minimal features shared by members of the robustness set that
entail the invariant implication (Weisberg 2006; Weisberg and Reisman 2008).3

Robustness analysis is a systematic way or strategy of identifying a robustness set: it
starts from a model M, varies it in some respect, and checks whether some relevant impli-
cation p is conserved. Here, M and p may be called the ‘targets’. RA is thus a generative
method, rather than merely a comparative one, in which one would search for some arbi-
trary alternative model that has a sufficiently similar implication. Finding out, for instance,
which (if any) implications are shared by magnetohydrodynamic models of fusion plasmas
and Schelling’s checkerboard models of segregation would not be called ‘robustness analy-
sis’, if it is a meaningful scientific practice at all.

Following the relevant literature in the philosophy of science, one can distinguish three
prominent types of RA. Each concerns a different way of generating the robustness set, i.e.,
each type primarily indicates in which respect a target model is changed to determine the ef-
fects on a target implication. In the literature, different typologies as well as nomenclatures
can be found.* We follow Weisberg and Reisman (2008) both in the nomenclature and in
distinguishing these three types of RA.

In parameter RA, it is checked whether some implication of a model and its auxiliary
assumptions is robust to the extent that the implication holds over different parameter set-
tings. Thus, the robustness set is generated by varying the parameters of a target model over
some interval. Take, for instance, Schelling’s model of social segregation. The model was
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designed to examine factors concerning individual preferences that lead two groups within
a society to segregate. Schelling approached this question in terms of an abstract model: by
randomly placing members of two groups of an equal size on a checkerboard, he examined
how the population changes if we assume that individuals have a specific preference about
the composition of their neighborhood. One striking result of this model is that, even when
agents prefer as little as one-third of their neighborhood to consist of members of their
own group, the society ends up clustered in homogenous neighborhoods: there is ‘de facto
segregation with mild in-group preferences’. To examine the parameter robustness of this
implication of the Schelling model, we can test whether similar de facto segregation obtains
once we change the size of the population, the size of the checkerboard, and so forth.

Some authors have called the parameter RA ‘sensitivity analysis’ (e.g., Raerinne 2013;
Gribner 2018). In some disciplines, such as many forms of economic modeling, practices
under the latter name indeed largely match what we described immediately above (i.e.,
checking to what extent implications are conserved under varying parameter settings).
However, in some contexts and disciplines, ‘sensitivity analysis’ refers to a broader set of
practices, in which one investigates how the output of a model changes under variations
in input parameters (see, e.g., Saltelli et al. 2008 for an overview of techniques). Here,
modelers are not specifically interested in output invariance, i.e., robustness; rather, they
seek a more general understanding of the relations between a model’s input and output,
e.g., to identify which input variables most strongly affect output (‘importance assessment’;
Saltelli 2002).

Structural RA pertains to structural features of the target model, in particular its central
assumptions.’ In this case the modeler aims to find out which parts of the model’s structure
govern an implication. Such an analysis can take two forms. First, the modeler might re-
move or relax certain existing assumptions. Second, the modeler might add assumptions or
replace existing ones. In either of these ways, modelers may find out which assumptions are
genuine difference-makers with regard to the implication. In particular, structural robust-
ness may test the implication’s dependence on what Kuorikoski et al. (2010) distinguish
as ‘tractability assumptions’ and ‘substantial assumptions’. The former are mathematical
formulations allowing for an easier or more efficient solution to the represented problem.

Such assumptions usually have no clear causal interpretation and/or are highly unrealis-
tic. They are a ‘necessary evil’, intended to facilitate derivations or even to make them fea-
sible at all. Substantial assumptions, on the other hand, are empirically informed and they
serve to identify the causal structure of the target phenomenon.® While tractability assump-
tions may impact the formal representation of substantial assumptions, substantial assump-
tions may impact the tractability of the model. Such dependencies may restrict the scope of
structural RA for some implications and assumptions: for lack of tractable results, it may
be impossible to determine the effects of target implications for some relevant changes.”

For instance, network epistemology models, which study the impact of social networks
on the production of knowledge, usually represent the structure of information flow in
terms of directed graphs, with nodes standing for agents and edges between them for com-
munication channels. This allows for the representation of communities that have varying
degrees of connectivity, that is, a varying degree of information flow. Structural RA can,
on the one hand, be used to examine whether changing such a tractable representation of
information flow impacts the result of the model. For instance, Borg et al. (2017) examine
whether the results of their model remain stable once a network in which the probability
that an agent shares information with others is a parameter of the model, is replaced with
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networks that have stable links between agents. On the other hand, structural RA can be
used to study the impact of different substantial assumptions, such as those that underpin
the representation of learning. For example, if agents stand for scientists who are trying
to identify the better of two available theories, we can represent their research in different
ways. We could, for instance, assume that scientists have ‘inertia’ toward their preferred
theory in the sense that they do not immediately abandon it even if they learn from others
that an alternative theory appears to be better. Because such behavior of scientists may be
more characteristic of some contexts of inquiry over others, the assumption is an empirical
issue. Frey and Seselja (2020) use structural RA to examine the impact of adding such iner-
tia to the process of scientific research in Zollman’s (2010) network epistemology model to
specify the context of learning to which the results of the model apply.

Representational RA goes beyond structural RA in varying the representational frame-
work, modeling technique, or modeling medium. The aim here is to determine the extent to
which the target model’s specific representational framework or implementation makes a
difference with respect to its implications. For instance, the Volterra principle was originally
derived from a set of differential equations, which describe predation at the population level.
Using representational RA, one may study whether the principle also holds if the predatory
system is represented in terms of individuals and their individual-level properties. Indeed,
Weisberg and Reisman (2008) present a set of such agent-based models and find that they
too produce the Volterra principle. From this, the authors conclude that the principle is
robust across at least two representational frameworks. Another example is evolutionary
game-theoretic modeling, which is based either on mathematical analytical frameworks
or on computational frameworks such as agent-based models (ABMs). As de Marchi and
Page (2009) argue, ABMs allow for the representation of features that may be impossible
to represent in analytical models due to tractability constraints. Again, implications that are
shared by ABMs and analytical models may be called (representationally) robust; here, one
may conclude specifically that these implications are not artifacts of the constraints inherent
to analytical frameworks. Accordingly, representational RA can, like structural RA, serve
to study the impact of certain tractability assumptions in the models. Finally, modelers may
vary the medium in which models are realized or implemented: Knuuttila and Loettgers
(2021) discuss how, in synthetic biology, a particular network design (the repressilator
model) was implemented in multiple media to test whether it produced robust oscillations
in genetic networks.

Intuitively, the change made in representational RA is ‘larger’ than the one in structural
RA: it concerns the very formal modeling technique rather than a particular tractability
assumption made in implementing a technique. The robustness set in representational RA
thus also consists of models that hold a stronger (intuitive) claim to being independent,
since they are not constructed with the same technique or, more broadly, epistemic means.
In light of Levins’ claim, this would seem to make positive results of representational RA
more valuable than those of structural or parameter RA. Admittedly, examples of such
positive results are also difficult to find, whereas variations of parameter settings and struc-
tural features are part and parcel of modeling practice. This, however, may only underline
how valuable representationally robust implications are if they can be obtained (cf. Houkes
and Vaesen 2012; Lisciandra 2017).

The main purpose of representational RA is perhaps in negative findings: failing to
replicate a result with a different framework may help to identify a set of difference-making
assumptions in the original model, which may otherwise remain overlooked. For instance,
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in the above-mentioned field of network epistemology, Borg et al. (2018) use an agent-based
model (ABM) based on argumentation dynamics to examine the robustness of results pre-
viously obtained with an ABM employing a Bayesian framework based on bandit models
(Zollman 2010). While Zollman’s results are representationally robust with respect to a
number of ABMs employing the epistemic landscape framework (e.g., Lazer and Friedman
2007; Grim et al. 2013), Borg et al. fail to reproduce the same findings. In light of this,
Borg et al. identify assumptions in their model, absent from the previous ones, which are
responsible for this outcome. This in turn helps to specify the context of learning to which
previous results apply.

3. Epistemic roles

Philosophers of science have discussed various epistemic roles that robustness analysis can
play. Most of the discussion has focused on the question under which conditions (if any)
this role can be evidential — roughly, when modelers have indeed found a ‘truth at the inter-
section of independent lies’; and slightly less roughly, whether positive results of RA should
increase one’s credence in the truth of some hypothesis. Insofar as other epistemic roles
have been discussed, this was mainly to identify an alternative, which would make sense of
modelers’ engaging in RA even when it cannot play an evidential role. In this section, we
first outline the main arguments regarding the evidential role of RA and then review some
of the alternative roles that have been identified.

3.1 Does robustness analysis have evidential value?

Levins’ original claim can be read in a strong way: showing that an implication is robust
provides evidence for regarding this claim as true, i.e., by studying whether a set of models
behaves similarly, one can learn something about the world. Furthermore, Levins suggests
that RA could play this strong evidential role regardless of any observational evidence
for this implication or a robust theorem. This would make RA especially valuable if it is
difficult or impossible to validate a model or its implications in another way, e.g., by suc-
cessful prediction. Such an epistemic situation obtains in many modeling contexts across
research fields, e.g., in economics, evolutionary biology, climate science, and computational
philosophy. Consequently, many contributions to the debate draw on one or more of these
contexts to illustrate their general claims — positive or negative — about the role of RA.

It is broadly acknowledged (e.g., Cartwright 1991; Orzack and Sober 1993; Sugden
2000) that RA does not have the strong, complementary evidential role suggested by Lev-
ins’ dictum — or at least that the conditions for RA playing this role are so strict that this
cannot reasonably explain the widespread use of the practice. To see why, take an extended
Schelling model in which agents’ behavior is governed by their ‘range of vision’ R € N over
the grid, rather than only their immediate neighbors (corresponding to R = 1) (Laurie and
Jaggi 2003). Suppose for the sake of our argument that some interesting implication p holds
for all ranges R, i.e., that p is parameter-robust with respect to R. Then, we may conclude
that p is true for actual urban areas — or other target systems to which Schelling models are
applied — only if a modeler has reason to believe that the correct model of the target system
was to be found in this robustness set, consisting of models in which R €[1,m], where m
is the measure of the grid length. If the modeler does not know whether this is the case,
let alone if she has reason to think that all members of the robustness set are unrealistic
in some relevant respect, R-robustness alone does not have sufficient evidential impact to
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warrant accepting the target implication. In Levins’ terms, something has been found at the
intersection of lies, but it cannot be said to be a truth.

In response, it could be pointed out that this analysis ignores one important aspect of
Levins’ statement: the models in the robustness set need to be independent. Recall that
according to Wimsatt, failure of independence produces illusory robustness and that the
models in the set need to have ‘at least some partial independence’ (see Section 1). Only if
the models are mutually independent can RA play a role similar to triangulation, making it
less likely that the implication is false.

A well-established line of argumentation shows the difficulties in spelling out a suit-
able notion of independence. As Orzack and Sober (1993) point out, competing models
of the same phenomenon cannot be logically independent, since the truth of one implies
the falsity of all the others. Models in robustness sets tend to be competing. Take, for
instance, our case from above: at most one value of R can be descriptively adequate for a
given urban area. The models in a robustness set are not statistically or probabilistically
independent, in the sense that a certain result following from one model has no bearing
on the probability that the same result will be detected by the other model (cf. Schupbach
2018, who also discusses other notions of independence in this context). However, when
doing RA, modelers do not review models that are independent in this way. Review-
ing whether target implications still hold under changes in parameter settings requires
holding fixed a model’s structural assumptions. While the latter assumptions may be re-
laxed or changed (in structural RA), deriving implications typically requires holding fixed
the model’s tractability assumptions. Finally, checking whether implications hold under
changes in tractability assumptions requires holding fixed substantial assumptions (in-
cluding structural assumptions and those concerning parameter values). Even if this is
done via representational RA, the chosen representational frameworks need to have the
core substantial assumptions in common. Therefore, in a crucial sense, the models in a ro-
bustness set must share some of their assumptions. As a result, robustness might still only
reflect commonalities of the models and/or the representational frameworks (cf. Oden-
baugh and Alexandrova 2011, 763). In Orzack and Sober’s words, there is always the
possibility that ‘robustness simply reflects something common among the frameworks and
not something about the world those frameworks seek to describe’ (1993, 539). Phrased
more negatively, using Wimsatt’s terms, no notion of ‘partial’ independence seems avail-
able that would dispel the suspicion that robustness might be illusory and confer eviden-
tial value on RA.

A recent, powerful defense of the evidential role of RA grants the validity of this criti-
cal argument, but submits that it largely misses the point of how RA can be and is used in
modeling practice. According to Kuorikoski et al. (2010; 2012), epistemically impactful
RA does not feature just any change to a model (let alone every possible change); rather, it
focuses on specific assumptions to show that a target implication does not crucially depend
on them. While this does not amount to empirical confirmation of the implication, it should
also not be dismissed as epistemically futile. According to the authors, the primary value
of RA lies in making our inferences more reliable and increasing our confidence in them by
showing that they do not depend on problematic modeling assumptions. Since RA serves to
identify assumptions that the result of the model depends on, if such assumptions are prob-
lematic, this will lower our confidence in the given inference. However, if the result appears
to depend mainly on plausible substantial assumptions, we should have more confidence in
its validity than prior to conducting the RA. Importantly, for RA to play such an evidential
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role, the substantial modeling assumptions need to be ‘reasonably realistic’. In other words,
RA can increase our confidence in the given inference only in combination with empirical
evidence supporting the assumptions of the model.®* Moreover, for RA to have this effect,
there should be no reason, prior to RA, to think that differences in tractability assumptions
of the studied models ‘have a similar mathematical and empirically interpretable impact on
the modelling result’ (Kuorikoski et al. 2012, 898). In Levins’ terms, RA requires independ-
ence of the specific lies inherent to each model in the set; then, a robust result might still not
be true, but it is at least not an artifact of one specific lie.

This debate on the evidential role of RA has revealed that this role is tightly connected
to the empirical underpinnings of the studied models. For models with realistic substantial
assumptions, RA can serve to insulate (some) implications from (some) specific lies, such
as particular parameter settings, auxiliary assumptions, idealizations, or even tractability
assumptions. It might also provide indirect confirmation if the robustness set of the impli-
cations consists of models that have other confirmed results (Lehtinen 2018).” Defenders
of this evidential value admit, however, that robustness could always prove to be illusory,
because implications could be the result of shared and unquestioned assumptions within
or even across modeling frameworks. The use of a large number of such frameworks may
alleviate this worry to some extent, since they are unlikely to all share such assumptions.
Whether or not they do, however, remains an empirical question; there is no strength in
numbers here per se.

3.2 Which other epistemic roles can robustness analysis play?

An interesting side effect of the debate on the evidential role of RA has been the identifica-
tion of various alternative purposes that RA can and does serve in modeling practices. The
reason is, of course, that if RA cannot or hardly ever increases our credence in hypotheses,
it becomes all the more puzzling ‘what modelers get out of it’: why is the practice so wide-
spread if positive robustness checks do not give (additional) reasons to believe that particu-
lar modeling results are true? Even if one would assign an evidential role to RA, alternative
roles could be used as supplementary reasons to engage in the practice. Here, we briefly
describe several alternatives that have been identified.

3.2.1 Discovery of causal structure

Even those who are not convinced that RA might have evidential value often subscribe to
its usefulness in generating causal hypotheses. Specifically, RA allows exploration of the im-
plications of substantial assumptions, together with varying parameter settings, tractability
assumptions, auxiliary assumptions, etc. If such substantial assumptions identify the causal
structure of a phenomenon, these explorations allow statements about the conditions in the
model world under which the causal mechanism holds. In this way RA allows for the for-
mulation of more precise causal hypotheses,'® or to identify the common causal mechanism
in a family of models, rather than providing evidence for any implications. Thus, Knuuttila
and Loettgers (2011) distinguish ‘causal isolation” RA from the ‘independent determina-
tion’ RA on which most of the philosophical literature has focused. In this epistemic role,
RA can also help to formulate pursuit-worthy hypotheses. It does so by providing ‘inquisi-
tive reasons’ (Fleisher 2022), which are reasons that concern promoting successful inquiry
(such as showing that a hypothesis is testable, that it is based on a heuristic analogy, etc.).
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By identifying specific conditions under which the given causal mechanism holds in the
model world, RA helps to delineate the application domain in which the causal hypothesis
should be further pursued in terms of empirical studies.

3.2.2  Deepened causal understanding

Relatedly, and perhaps a bit more distinctively, RA might help to develop and deepen our
causal understanding of real-world systems and phenomena. It may do so by presenting a
way in which to vary systematically the factors that could be causally responsible for cer-
tain system behavior — albeit through their representation in substantial assumptions, and
heavily mediated by tractability assumptions and other auxiliaries. All forms of RA would
appear to be useful in this respect. Parameter RA helps to study the range under and extent
to which factors cause behavior (e.g., how the ‘range of vision’ influences segregation in
Schelling models; Laurie and Jaggi 2003). Structural RA contributes to developing more
sophisticated causal understanding, because it allows studying the effects of adding or re-
moving factors as well as possible confounders and mediators. Finally, representational RA
allows studying alternative or supplementary causal mechanisms, perhaps at different levels
of organization (e.g., population-level versus individual)."

3.2.3  Elimination of (alternative) potential explanations

As a complement to the previous role, RA might serve an eliminative role in explanatory
reasoning, as argued by Schupbach (2018). Suppose that we have a model that has some
empirically validated implications and we are trying to explain why the model gives this
result. Then, studying how these implications of the model vary under changes to the model
may serve to rule out competing possible explanations of this kind. For instance, in the case
of the Volterra principle, this means ruling out various explanations which stipulate that
the result is due to idealizing and simplifying assumptions in the model. Specifically, if such
competing alternatives entail that implications fail to hold under particular changes, this
provides a way of discriminating between them and the target explanation. In the case of the
above example, this means that RA can help to discriminate between two explanations: that
the model accurately represents the given predator-prey dynamics and therefore continues to
behave in accordance with the Volterra principle if we relax certain unrealistic assumptions;
or that the result is due to the given unrealistic assumption (so that, once this assumption is
removed, we should fail to observe the same output). RA could thus amount to a strategy
of systematically and incrementally generating such explanatorily discriminating means.'

3.2.4 Calibration of alternative modeling techniques

RA may have a role in constructing models rather than in studying and evaluating their
implications. This is most straightforwardly illustrated with representational RA. When
developing a modeling technique as an alternative to existing approaches, some implica-
tions may be used to calibrate or even test the alternative: only if those implications can be
replicated, the alternative will be considered. Houkes and Vaesen (2012, 361) argue that
this applies to Weisberg and Reisman’s agent-based alternative to Lotka—Volterra models:
an alternative that does not display the Volterra property (i.e., the desired implication) is
discarded in favor of another, more sophisticated agent-based model.
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Structural RA might play out similarly, for instance if changing structural features of
a model only reproduces desired results under specific parameter settings or with addi-
tional auxiliary assumptions. This calibrative role of RA is, in many ways, complementary
to the eliminative role discussed above. Clearly, it has no bearing on one’s credence in
any hypothesis, since there is not even the semblance of independence; thus, if one adopts
Levin’s and Wimsatt’s characterization of RA, this practice may be taken as a degenerate
case of the practice.

4. Conclusion

Robustness analysis is commonly used in modeling practices as the method of examin-
ing the stability of results under various perturbations of features of the model. In light
of this, philosophers of science have inquired which kinds of RA there are, and what
exactly their epistemic function is. In this chapter, we have reviewed this debate. We
started by defining key terms and distinguishing between parameter RA, structural RA,
and representational RA. While each kind of RA can increase our understanding of the
studied models, philosophers have debated whether any of them can have an evidential,
confirmatory value in the sense that a robust modeling result can be considered true of
real-world phenomena. Even though there is general consensus in the literature that RA
on its own does not provide an evidential import of that kind, different proposals of its
alternative epistemic functions have been put forward. As our discussion shows, RA
can help to improve not only our understanding of the inner functioning of models, but
also our causal and explanatory insights obtained by them. Yet, for RA to play such a
role, it has to be combined with empirical methods, on the basis of which the model and
its results can be empirically embedded in the first place. Whether and to which extent
this is possible remains a challenge for each domain of modeling, especially for those
researchers that employ either highly idealized, theoretical models or highly complex
but difficult-to-validate models. Moreover, which types of RA are most epistemically
useful in such cases — and whether negative results of RA can be as much of a Good
Thing as positive results — is another question that may vary from one modeling context
to another.
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Notes

1 See, e.g., Soler et al. (2012) for discussions of robustness analysis in various contexts of application.

2 This means that we leave out other forms of robustness analysis, which would fit under Wimsatt’s
more encompassing ‘multiple-determination’ heading. For instance, scholars have written about
evidence robustly corroborating theories (Eronen 2015; Calcott 2011), about phenomena being
robustly present in different contexts (Calcott 2011), or about robustness of scientific knowledge
in a given domain (Sefelja and Strafer 2014).

3 The same goes for understanding robustness analysis in terms of robustness arguments, e.g.,
Stegenga and Menon (2017), in which the set of statements in our scheme are the premises for the
conclusion that p is more likely to be true.
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4 For instance: many authors follow Woodward (2006) in referring to parameter and structural ro-
bustness as ‘derivational robustness’; Kuhlmann (2021) calls representational robustness ‘multiple-
model robustness’; etc.

5 We prefer the term ‘structural’ to ‘derivational’ RA since, similar to ‘parameter’ RA, it indicates
the aspect of a model that is varied during the generative process of analysis.

6 Kuorikoski et al. (2010) also distinguish ‘Galilean assumptions’ which are idealizations used to
isolate the purported causal mechanism from all other interfering factors (see also, e.g., Miki 1994).

7 While Kuorikoski et al. (2010) consider derivational RA as an RA with respect to tractability as-
sumptions, Raerinne (2013) introduces RA with respect to substantial assumptions as ‘sufficient
parameter RA’ since different parameter values could be based on different substantial assump-
tions in the model.

8 In a similar defense of RA, Michael Weisberg (2006) refers to the ‘low-level confirmation’ of
central modeling assumptions. Houkes and Vaesen (2012) identify some complications in this ac-
count. See Lloyd (2010) for an application of evidential RA to climate models based on Weisberg’s
account, and Parker (2011) and Justus (2012) for a discussion of complications.

9 Schupbach (2018; Section 2) provides an in-depth review of other attempts to coin out the eviden-
tial value of RA. Also see Fuller and Schulz (2021) and Casini and Landes (2022).

10 One way to develop this idea is in terms of open formulae — templates for formulating hypotheses
that should then be empirically examined (Odenbaugh and Alexandrova 2011, 769).

11 Paternotte and Grose (2017) discuss this and other explanatory roles of RA, focusing on evolu-
tionary biology.

12 Schupbach (2018; Section 3.2) reconstructs this role of RA so that it can have evidential value
(e.g., with regard to mutually exclusive competing explanations). We discuss it as an alternative
role here since identifying this eliminative role does not seem to depend strictly on this reconstruc-
tion; Forber (2010), for instance, identifies a similar role for RA prior to empirical testing.
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15
MODEL EVALUATION

Wendy S. Parker

1. Introduction

Assessment of model quality occurs informally throughout the model development process.
For instance, when constructing a model, the aim is not to produce just any model of the
target system but to produce a good model, and this informs the choices made. Model
evaluation, however, is also frequently identified as a distinct step in model development,
occurring after a model has been fully constructed. It is this formal evaluative step in model
development that will be the focus of the present chapter.

In several scientific and engineering domains, there has been extensive discussion of ap-
propriate terminology and methods to employ in model evaluation, in some cases resulting
in official guides for evaluation under the auspices of professional societies (e.g., AIAA
1998). In many other modeling contexts, however, conceptual frameworks and standards
of practice for model evaluation are not articulated explicitly, and evaluation activities are
only selectively reported. This can make it difficult for individuals not directly involved in
the evaluation process to interpret evaluative claims (e.g., that a model is “credible”) or to
have a sense of the strength of evidence that underlies those claims.

The topic of model evaluation has received relatively little attention from philosophers of
science. An influential contribution by Oreskes et al. (1994) called attention to the limits of
what can be learned in model evaluation. Teller (2001) emphasized the purpose-relativity
of model quality, understood as relevant similarity (see also Cartwright 1983; Giere 1988).
More recently, Weisberg (2013) has offered an account of model-target similarity intended
to facilitate the evaluation of scientific models, and Parker (2020) has advocated for an
adequacy-for-purpose approach to model evaluation. A number of other contributions
have emerged as a byproduct of work on the epistemology of computational modeling (e.g.,
Winsberg 1999; 2010; 2018; Lloyd 2010; Lenhard and Winsberg 2010; Jacquart 2016).
Very recently, a massive volume edited by Beisbart and Saam (2019), Computer Simulation
Validation, brings together both philosophical and scientific perspectives on the evaluation
of computational models and constitutes a major addition to the literature.

The present chapter situates existing work within a general philosophical discussion
of model evaluation.' Section 2 addresses a foundational question: what does it mean for
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a model to be a good model? Three common answers are presented: quality as accurate
and comprehensive representation, quality as relevant similarity, and quality as fitness-for-
purpose. Section 3 considers the task of model evaluation from the perspective of each of
these three conceptions of model quality and discusses allied approaches to evaluation that
have been advocated by scientists and philosophers. Section 4 outlines several obstacles and
challenges that can arise when performing model evaluation, which can prevent evaluators
from reaching confident conclusions about model quality. Finally, Section 5§ summarizes
key points and identifies some directions for future research.?

2. Models and model quality

Assessment of the quality of a scientific model depends, at least implicitly, on some concep-
tion of model quality, i.e., of what constitutes a good model. This section presents three
common conceptions of model quality, which are associated with different views of what
scientific models are: quality as accurate and comprehensive representation, associated with
a view of models as representations; quality as relevant similarity, associated with a view of
models as representational tools; and quality as fitness-for-purpose, associated with a view
of models as tools or artifacts, not necessarily representational.

What will here be called the mirror view of model quality is only sometimes explicitly es-
poused, but it seems implicit in much modeling practice (see also Saltelli et al. 2020). In this
view, a model is a representation, and it is of higher quality the more accurately and com-
prehensively it represents its target system. The hypothetical limit is a model that mirrors
the target system, in the sense that every element (part, property, relationship) of the target
system is represented by a corresponding element in the model, and with perfect accuracy.’
Increasing the comprehensiveness of a model by adding a representation of a target system
process that was previously unrepresented, or increasing the fidelity with which some fea-
ture of the target system is represented, will count as improving the model on the mirror
view, regardless of the purposes for which the model will be used. Conversely, idealizations,
distortions, and omissions in representation necessarily detract from model quality on this
view, regardless of the purposes for which the model will be used.

On many other views of model quality, however, the intended use of the model is relevant
to the assessment of model quality. In the philosophy of science, a prominent view is that
model quality is a matter of relevant similarity: a good model is similar enough to its target
in the relevant respects, where the relevant respects are determined by the model user’s pur-
pose (Giere 1988; 2004; Teller 2001; Weisberg 2013). A closely related view is expressed
in terms of representation: a good model represents its target system with sufficient fidelity
in the relevant respects, given the modeler’s purpose. This way of thinking of model qual-
ity is associated with a view of models as representational tools: they are representations,
intended to be useful for particular purposes (e.g., predicting X with specified accuracy,
explaining Y).

If model quality is a matter of relevant similarity (or relevant representational fidelity),
then idealizations, distortions, and omissions in modeling do not necessarily detract from
model quality; it depends on whether they render the model dissimilar to its target in ways
that impede achieving the purposes of interest. Indeed, idealizations, distortions, and omis-
sions can even enhance the quality of a model in many cases, insofar as the resulting model
represents the target system in a way that better serves the purpose of interest (see also
Bokulich 2013; Potochnik 2018). For example, “artificial viscosity” in fluid simulations is

209



Wendy S. Parker

a distortion that allows for a more accurate prediction of the evolution of shock waves (see
Winsberg and Mizra 2017 for more examples). Likewise, if the aim is to learn whether a
particular causal process plays an important role in producing a phenomenon, it might be
advantageous for a computer simulation model to omit that process (while representing
other contributing processes with sufficient fidelity) in order to reveal how the phenomenon
changes, if at all, when the process is absent.

A third perspective on model quality is closely associated with an understanding of sci-
entific models as tools or artifacts (Caswell 1976; Beck 2002; Knuuttila 2005; 2011; NRC
2007; Boon and Knuuttila 2009; Currie 2017). On this fitness-for-purpose view, a model is
a good model to the extent that it has properties that make it a suitable tool for the task at
hand. These properties will often include more than representational properties — properties
like manipulability, computational tractability, cognitive accessibility, and so on, can con-
tribute to a model’s quality. Moreover, whether a model has such properties can vary with
the context of the use, i.e., with the model user, with the methodology employed, and with
the background conditions in which the use of the model will occur. For example, a model
might be computationally tractable for a user who has access to a supercomputer, but not
for a user who has only an ordinary desktop computer. The fitness-for-purpose of a model
thus can vary with the context of use (Parker 2020).*

As with the relevant similarity view, idealizations, simplifications, and omissions need
not detract from the model’s quality on a fitness-for-purpose view and are sometimes ad-
vantageous. Here, however, they can be advantageous not only for reasons having to do
with how the model relates to a target system but also for reasons having to do with how
the model relates to model users and other features of the context of use. For example,
compared to a complex, hyper-realistic model, a simpler model, which omits many pro-
cesses at work in the target system and represents others in an idealized way, might better
facilitate understanding of a particular phenomenon, given humans’ (i.e., users’) cognitive
limitations (see also Isaac 2013; Potochnik 2018). Indeed, such a view regarding the value
of simple models for purposes of understanding is frequently expressed in the study of
complex systems.

3. Model evaluation

The aim of model evaluation is to learn about model quality, whether quality is conceptual-
ized as accurate and comprehensive representation, relevant similarity, fitness-for-purpose,
or in some other way.’ Put differently, model evaluation activities are directed at obtain-
ing evidence regarding hypotheses of interest about model quality, such as the hypothesis
that the model is similar enough to the target in the relevant respects, given the modeling
purpose of interest. This section considers the task of model evaluation from the perspec-
tive of each of the views of model quality introduced in Section 2 and discusses allied
approaches to model evaluation that have been advocated by scientists and philosophers.
Throughout, the analysis attends to two complementary sources of evidence regarding
model quality: evidence related to the model’s composition, i.e., its ingredients and how
they are put together, and evidence related to the model’s performance, i.e., its behavior or
output.® Although it will not be emphasized below, it is important to recognize that evalu-
ation is typically an iterative process: what is learned when evaluating a model often leads
to further adjustments to the model, after which the new version of the model is evaluated,
and so on.”
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Mirror view. From the perspective of the mirror view, model evaluation is an activity
that seeks to learn to what extent a model accurately and comprehensively represents a
target system. When examining a model’s composition, the mirror-view evaluator will be
interested in whether any elements of the target system are omitted from (i.e., not repre-
sented at all in) the model as well as how closely, from the perspective of theoretical and
other background knowledge, the elements of the model come to perfectly representing the
corresponding elements of the target system. For example, the evaluator of a mathematical
model of an ecosystem might note that some species in the ecosystem have not been repre-
sented at all in the model and that interactions among other species have been represented
in a quite simplistic way relative to what is known about those species’ interactions; this
will be judged to detract from the model’s quality.

When examining model performance, the mirror-view evaluator will be interested in
how closely the behaviors of the model resemble those observed for the target system in
corresponding circumstances. For mathematical models and computer simulation models,
this typically will involve comparing the values of model variables to observational data.
Assessing the fit between model results and observational data is considered a crucial part
of the evaluation of such models regardless of the conception of model quality adopted. For
the mirror-view evaluator, output for every model variable (and combinations/aggregations
of such variables) for which observations are available will in principle be of interest, since
any such model-data comparison can provide some (indirect) evidence regarding the extent
to which the model accurately and comprehensively represents the target system. Perfor-
mance scores for individual variables might even be averaged or otherwise aggregated to
produce an indication of “overall” performance.

In scientific publications, evaluative discussions of computational models sometimes are
strongly suggestive of a mirror view of model quality. Reasons are given for thinking that
a model is a “credible” representation of the target system in some general or overall sense.
For instance, it might be reported that a model “includes” (i.e., includes some representa-
tion of) many target system processes, that the model’s core equations are grounded in
established theory, and that the model achieves a relatively good fit with available obser-
vational data across a range of output variables. In some cases, this approach to model
evaluation might reflect a simple commitment to a mirror view of model quality. In other
cases, however, it may be intended as a kind of “purpose-neutral” evaluation, motivated
by the expectation that the model will be used for a wide range of (perhaps yet-to-be-fully-
specified) purposes.® Either way, from the fact that a model is “credible” in this general or
overall sense, it does not follow that any particular results from the model will be accurate,
since a model that represents a target system reasonably well in some overall sense might
represent relatively poorly the aspects that matter for a specific question or task.

Relevant similarity view. Unlike the mirror-view evaluator, the evaluator of relevant sim-
ilarity will be interested in only some aspects of a model’s composition and performance,
namely, those for which sufficient similarity to the target system is needed in order for the
model to serve the purpose of interest. For example, when evaluating an animal model to
be used in investigating the toxicity of a chemical, the relevant-similarity evaluator might
check whether a particular set of biochemical pathways operative in humans — and expected
to mediate any toxic effects of the chemical — are also operative in the animal; the evaluator
will not be concerned with aspects of the animal’s composition that are expected to make
no difference to whether it will be informative about the toxicity of the chemical in humans.
Continuing with the example, when focusing on model performance, an evaluator might
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investigate how the response of the animal to other toxic chemicals compares to the known
effects of those chemicals in humans, but many other aspects of the animal’s behavior —
such as whether it is quieter than humans when eating, whether it wakes up earlier in the
morning than humans — are unlikely to be of interest.

The selectiveness of relevant similarity evaluation is formalized in Weisberg’s (2013)
weighted-feature-matching account of model-target similarity. On his account, models can
be assigned a similarity score, depending on the extent to which they have specific features
(attributes and/or mechanisms) that match those of the target system, where the features
of interest and their relative importance are determined by the modeling purpose (e.g.,
predicting X, explaining how-possibly Y). What counts as a “match” between features of
a model and target system on this account merits further attention, however; in general,
relevant features of a model do not need to be identical to those of the target system in order
for a model to serve a purpose of interest, yet what it means for features to be “sufficiently
similar” is not so clear either (Parker 2015; Khosrowi 2020). A further question is whether
Weisberg’s account can be usefully applied in practice (Jacquart 2016).

Fitness-for-purpose view. Fitness-for-purpose evaluation seeks to determine whether a
model is a suitable tool for the task at hand. In contrast to mirroring and relevant similarity
evaluation, fitness-for-purpose evaluation will often need to consider more than just how a
model relates to a target; it will need to consider how the model relates to the model user
and other aspects of the context of use (Parker 2020). The evidence cited regarding the
model’s fitness-for-purpose can likewise be broader. Consider, for example, an evaluation
of the fitness of a computer model for the purpose of ranking the effectiveness of various
possible interventions to curb algae blooms in a given lake. Evidence that the model is fit for
purpose could include not only facts about how the model represents certain biological and
chemical processes in the lake but also the fact that the model has an interface that allows
its users to easily adapt the model to represent the different possible interventions and the
fact that the model takes only a short period of time to run on available computers.’

A fitness-for-purpose approach to the evaluation of models has been advocated by a num-
ber of practitioners in the earth and environmental sciences. An important early contribu-
tion comes from Caswell (1976) in the context of ecological modeling. He argues that, since
models are artificial systems designed to serve particular purposes, they should be evaluated
relative to their intended task environment; for some purposes, such as gaining insight or
understanding, whether a model produces output that closely fits observations may be rela-
tively unimportant. Building on this, Beck (2002) notes that environmental models are used
not only for “scientific” purposes, such as making predictions or gaining understanding,
but also for various “pragmatic” purposes, such as supporting decision-making, formulat-
ing public policy, or communicating scientific information to lay audiences, and he raises
the question of how to evaluate the fitness of models for such pragmatic purposes. Some
progress in this regard is made in a report from the U.S. National Academies of Science,
Models in Environmental Regulatory Decision Making (2007). It develops an extensive list
of considerations relevant to evaluating the fitness-for-purpose of environmental models
in regulatory contexts, including considerations like model transparency to stakeholders.

Many other discussions of fitness-for-purpose evaluation, however, largely ignore the
context of use of a model, focusing attention instead on how to probe whether a model
represents its target system accurately enough in relevant respects to provide sought-
after information. Here, the language of fitness-for-purpose (or adequacy-for-purpose)
is adopted, but the evaluation is essentially concerned with relevant similarity or relevant
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representational fidelity. For instance, Baumberger et al. (2017) develop a framework for
evaluating the fitness-for-purpose of climate models for projecting long-term changes in
climate, but the potential lines of evidence that they identify — coherence with background
knowledge, sufficient fit with relevant observational data, and robustness of projections
across models — are of interest because they bear on whether models represent sufficiently
well the causal processes that will shape the long-term evolution of climate characteristics
(see also Knutti 2018 on process understanding and Kawamleh 2022 on process-based
evaluation). Another example can be found in the context of hydrological modeling. Beven
(2018) argues for the benefits of a falsificationist approach to fitness-for-purpose evalua-
tion, whereby hydrological models — understood as hypotheses about how water catch-
ments function — are tested against relevant observational data and rejected if they fail to
meet pre-specified performance criteria identified in light of the modeling purpose.

Pre-specified performance criteria are also an important part of the evaluation of the
fitness-for-purpose of computational models in engineering contexts. Here, it is well recog-
nized that the fitness-for-purpose of a model can depend on more than how it represents a
target system: computational demands, adaptability, ease of use for model users of a given
experience level, etc., can all be relevant (Oberkampf and Roy 2010, 37). Nevertheless, the
core of model evaluation is often conceptualized as consisting of two activities: verification
investigates whether the model’s computational algorithm delivers results that approximate
closely enough the solutions of the modeling equations that have been selected; validation
investigates whether those modeling equations represent the target system with sufficient fi-
delity in relevant respects for the application of interest, primarily by comparing results ob-
tained from the computational model with observational data (see contributions in Beisbart
and Saam 2019 for further discussion of these concepts and related practices). Ideally, this
comparison is pursued in a systematic way such that individual model components (rep-
resenting a particular process or part of the target system), and then various combinations
of those components, are tested against high-quality observational data obtained from spe-
cialized validation experiments, in order to see if pre-specified levels of accuracy are met,
where those levels of accuracy are determined by the model application (Oberkampf and
Roy 2010). Though verification and validation are often conceptualized as distinct activi-
ties, Winsberg (2010; 2019) argues that in practice they are not so neatly separable (see also
Lenhard 2018; 2019; and further discussion by Beisbart 2019a).

Evidence synthesis. Regardless of the conception of model quality that is adopted, evalu-
ators may also wish (or be expected) to provide some summary judgment or conclusion
about model quality. Doing so in effect involves a kind of evidence synthesis, where the
evidence consists of what has been learned about model composition and/or performance.
How to perform this synthesis, and when evidence is sufficient to warrant various conclu-
sions about model quality, are complicated matters. Not infrequently, practitioners seem
to adopt a kind of informal Bayesian perspective (Schmidt and Sherwood 2015), where
particular findings about model composition or performance — such as the finding that the
model’s results for a given variable closely track observations — are taken to confirm or dis-
confirm (and thus build or reduce confidence in) a hypothesis about model quality, e.g., the
hypothesis that the model is fit for a particular purpose or is a credible representation of the
target system (see also Baumberger et al. 2017; Beisbart 2019b; Gelfert 2019).

A quite different sort of approach involves specifying criteria in advance of model
evaluation which, if met, will be considered sufficient to warrant a conclusion of interest
about model quality. For example, Haasnoot et al. (2014, 112), evaluating a model for
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screening and ranking different water policy pathways, conclude that their model is fit
for purpose after reaching affirmative answers to a series of questions about the model’s
composition and performance. Similarly, in engineering contexts, evaluators sometimes
specify accuracy requirements (with respect to high-quality data from experiments) for a
series of model variables, such that meeting those requirements will be sufficient to con-
sider the model (or its results) accurate enough for its intended use. In many modeling
contexts, however, it is difficult to confidently specify such a set of sufficient criteria, much
less to demonstrate that they are met by a given model, in part for reasons discussed in
the next section.

4. Obstacles and challenges in model evaluation

Ideally, the activity of model evaluation will deliver strong evidence regarding model
quality, such that confident conclusions — e.g., that a model is fit for purpose P — will be
warranted. For a number of reasons, however, confident conclusions can remain out of
reach. This section surveys some of these reasons.

Limited observations of the target system. First, scientific models are often employed
when, for practical or ethical reasons, target systems are inaccessible to observation and
experiment under conditions of interest. As a consequence, there are limited relevant obser-
vations of the target system, which can significantly hinder model assessment. For example,
assessment of the fitness of today’s climate models (for the purpose of projecting future
temperature change in response to rising greenhouse gas concentrations) is hindered by
the fact that, during the past periods for which reliable observations of the climate system
are available, greenhouse gas concentrations were lower than in the scenarios for which
projections are being made. In such situations — when available data were collected under
conditions quite different from those that are ultimately of interest — it can be difficult to
tell what a model’s performance on the data indicates about its fitness-for-purpose (Parker
2009). This is especially so when models could have been constructed in awareness of, or
even partially tuned to reproduce, the available data (Baumberger et al. 2017).

Model opacity. Another obstacle is model opacity, i.e., the inscrutability or incompre-
hensibility of aspects of a model, including its behavior, to an evaluator (see also Humphreys
2004 on epistemic opacity). Especially when models are complex and nonlinear, they are
somewhat opaque even to individuals intimately involved in their development. A relevant-
similarity evaluator, for instance, may find it difficult to understand — just by observing the
behavior of a complex computational model — why it behaves in a particular way and may
thus be unsure what that behavior indicates about the fidelity with which the model repre-
sents relevant target system processes (Baumberger et al. 2017; see also Lenhard and Wins-
berg 2010 on analytic impenetrability). Opacity can be just that much greater for evaluators
who were not involved in the development of a model, especially when that development
involved ad hoc elements (e.g., kludging) and when the model is poorly documented, i.e.,
when little accompanying information is provided and/or the model code is undocumented.
Such an evaluator may have a difficult time deciding where to focus their evaluation efforts
and determining whether the results of model tests provide strong evidence regarding model
quality. They may also be left unaware of how non-epistemic (social, political, ethical)
values shaped choices in the model’s development, which in some cases might be relevant
to their evaluation (see, e.g., Parker and Winsberg 2018; Hirsch Hadorn and Baumberger
2019; Lusk and Elliott 2022).
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Holism in assessment. Holism is a challenge that arises primarily when assessing relevant
similarity or fitness-for-purpose: in many cases, what is learned about the composition
or performance of a model component in isolation cannot on its own serve as evidence
regarding model quality (Parker 2020; see also Lenhard and Winsberg 2010; Lenhard 2018;
2019). Suppose that the purpose of a modeling study is to predict whether applications to
a university will increase or decrease in number over the next several years. Finding that
a model grossly underestimates a factor that is an important determinant of application
numbers might or might not be evidence that the model is not fit for purpose, depending on
whether that error is sufficiently compensated for by errors elsewhere in the model or by the
broader methodology in which the model is embedded (e.g., a bias correction step). Like-
wise, whether the degree of similarity between a component of a model and a part of a tar-
get system counts as evidence for or against a relevant similarity hypothesis (for the model
overall) can depend on how similar other components are and in what ways. The fact that
components of models sometimes cannot be assessed in isolation makes evaluation a more
complicated task, both practically and cognitively, especially when models are complex.'

Quantifying quality. Further challenges arise when evaluators seek to quantify model
quality, i.e., to assign each of several models a quantitative score indicative of its quality.
Such scores might be used, for instance, to differentially weight results from different mod-
els or to select from a set of models the ones that are best for a given purpose. A fundamen-
tal challenge here is quantifying the contribution of model composition to model quality
(see also Baumberger et al. 2017). Weisberg’s (2013) weighted feature-matching approach,
mentioned in Section 3, might be one way forward for relevant-similarity evaluators, in-
sofar as its scoring procedure takes account of both mechanisms (pertaining to composi-
tion) and attributes (covering performance aspects). Yet relevant-similarity evaluators will
still need to determine how to assign weights indicating the relative importance of various
mechanisms, how to avoid double-counting when both mechanisms and attributes they
help to bring about are among the relevant features, and more."

A different approach that is sometimes employed in practice is for evaluators to limit their
attention to models that, based on expert judgment, seem of at least roughly equal quality
from the perspective of composition, and then assign quality scores based on performance
metrics.'? Challenges here include determining which performance metrics should be em-
ployed and how they should be combined to produce an overall quality score. Mirror-view
evaluators will need to choose from a host of measures of model-data fit (root mean square
error, max absolute error, etc.) for each model variable for which observational data are
available and will need some method for aggregating findings across variables into an over-
all score. Relevant-similarity and fitness-for-purpose evaluators will, in addition to choos-
ing among measures of model-data fit, need to identify which model variables to focus
on and how to weight performance on these variables to produce an overall quality score
(Knutti 2018). Typically, there will be many reasonable ways to proceed for all three types
of evaluators, with different choices resulting in somewhat different assessments of the rela-
tive quality of different models. In other words, there will be uncertainty about the models’
relative (and absolute) quality.

5. Concluding remarks

Model evaluation is an important part of the model development process, occurring infor-
mally even during the building of models, and more formally once they are fully constructed.
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The aim of model evaluation is to learn about the quality of one or more models, whether
the quality is conceptualized as accurate and comprehensive representation, relevant simi-
larity, fitness-for-purpose, or in some other way. The conception of model quality that is
adopted carries implications for the practice of model evaluation, including whether evalu-
ation must attend to the purposes for which models are being used and whether factors
other than how the model relates to a target system, such as aspects of the context of use,
are relevant.

Whatever the operative conception of model quality, evidence regarding model quality
can come via two complementary routes: by examining the model’s composition, i.e., its
ingredients and how they are put together, and by examining the model’s performance,
especially its performance against observations of the target system. A number of obsta-
cles and challenges can arise in the course of gathering such evidence and attempting to
reach conclusions about model quality, including limited observations of the target system,
model opacity, holism in assessment, and uncertainty about how to quantify model quality.
Because of obstacles and challenges like these, it is sometimes difficult to reach confident
conclusions about model quality.

Many questions about model evaluation merit further attention from philosophers of
science. To name just a few: How do practices of model evaluation vary across different
types of scientific models and in different scientific fields? How should evidence regarding
model quality be synthesized to reach conclusions about model quality? How and to what
extent should non-epistemic values figure in the evaluation of scientific models? A topic that
can be expected to attract attention in the near future is the evaluation of “models” pro-
duced via machine learning methods; they present an especially interesting case for philo-
sophical analysis, given their opacity, their questionable representational status, and their
increasing use in high-stakes practical applications.

Notes

1 The discussion of existing work will — of necessity — be far from comprehensive, especially when it
comes to scientific work on model evaluation. The author apologizes for omissions of important works.

2 This chapter is concerned with the evaluation of scientific models whose targets are real systems
or phenomena, such as earth’s atmosphere or the spread of flu virus through a population. The
evaluation of models that have only imagined/imaginary target systems will not be addressed, e.g.,
a model of the population dynamics of a hypothetical species with four sexes and particular mat-
ing strategies. Likewise, the evaluation of statistical/data models, which are intended to capture
relationships among variables in datasets, may merit separate treatment.

3 All elements of the target system might be represented in a model if the target system is speci-
fied such that it encompasses only a finite set of elements, e.g., particular relationships in a set of
chemical reactions.

4 A “fitness-for-purpose” view of model quality is often adopted in scientific practice today, though
exactly what practitioners mean by “fitness-for-purpose”, and whether they understand it to be
relative to a context of use, is sometimes unclear.

5 This is not to suggest that practitioners always have a clear and explicit conception of model qual-
ity; in some cases, for instance, evaluation proceeds in a way that simply follows what is usually
done in a particular lab, community, or field.

6 Jacquart (2016) understands relevant similarity to be a matter of a model’s composition and
adequacy-for-purpose to be a matter of a model’s performance. This differs from the present dis-
cussion, which allows that a model’s performance might make it relevantly similar to a target, a
model’s composition might be essential to its fitness-for-purpose, etc.

7 Likewise, even after a model is fully constructed and put to use, it may subsequently undergo fur-
ther development and evaluation. This is common, for instance, in weather and climate modeling,
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and is reflected in the labels given to successive versions of a model, e.g., CESM1.0, CESM1.1,
CESM1.2.

8 Thanks to Donal Khosrowi for prompting me to consider this possible motivation and for supply-
ing the language of “purpose-neutral” evaluation.

9 For a similar, real example of fitness-for-purpose evaluation, see Haasnoot et al. (2014).

10 Rice (2019) argues that many highly idealized models are “holistically distorted representations”
that are “greater than the sum of their accurate and inaccurate parts.” If so, then even when a
mirror view of model quality is adopted, it might be misguided in some cases to assess models by
examining the representational fidelity of each component in isolation and aggregating the find-
ings. (Note, however, that Rice’s analysis is not concerned with the assessment of model quality; it
is intended to challenge the view that, when models are used successfully for explanation and un-
derstanding, it is because their idealized/inaccurate parts do not “get in the way” of the accurately
representing parts that do the real work.) Taking an artifactual perspective, Carrillo and Knuuttila
(2022) offer a view of “holistic idealizations” that downplays the idea that they are distortions
and emphasizes that they “result from more systematic research programs that integrate different
concepts, analogies, measuring apparatus and mathematical approaches” (50).

11 In the context of statistical model selection, scoring criteria like the Akaike information criterion
(AIC) take account of model composition by penalizing models for having more adjustable param-
eters; models receive a higher quality score to the extent that they can fit some set of data well with
a smaller number of adjustable parameters. When it comes to models of real-world phenomena,
the quality of a model’s composition is usually understood to be a matter of much more than the
number of adjustable parameters it contains.

12 Note that, for fitness-for-purpose evaluators, composition will need to be evaluated taking ac-
count of the model user, methodology, and background circumstances, not just the model’s target
system.
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16
MATHEMATIZATION

Marcel Boumans

1. Introduction

In most disciplines, models, as embodiments of knowledge, are mathematical objects,
where the mathematics can range from algebra to algorithms to geometry. In other words,
most models are built with mathematical material. The building of models as mathematical
expressions of knowledge is often the way the mathematization in a discipline has taken
place.! This chapter discusses mathematization in terms of this kind of model building.

This chapter starts from the viewpoint that sees models as instruments of investigation
(Morgan and Morrison 1999), modelmaking as the integration of several “ingredients”
in such a way that the resulting model meets certain a priori criteria of quality (Boumans
1999), and the process of model building as being epistemologically compared with the
process of instrument making (Boumans 2005). This particular starting point has been
chosen because it allows for a model-based mathematization account in which the role
of mathematics is not that of translator but one in which mathematics functions as mate-
rial and, as such, plays a critical role in the model construction process. The ingredients
mentioned by Boumans (1999) are metaphors, analogies, mathematical concepts and tech-
niques, stylized facts, data, and policy views. As the focus of this latter account is the inte-
gration process, it does not detail the considerations that play a role in the selection of the
ingredients. However, when designing a new instrument, the choice of the materials from
which the instrument will be made is a critical aspect of its design. This chapter shows that
for designing a mathematical model, the selection process of the appropriate mathematical
ingredients is equally critical.

The more general approach that includes the above models-as-instruments accounts is
the artifactual account, which sees models as epistemic artifacts (Knuuttila 2021). The
artifactual account views models as purposefully designed objects that are used in view of
particular questions or aims in the context of specific scientific practices; in other words,
they function as erotetic devices. The advantage of this approach is that, due to its view of
models as epistemic artifacts, it directs attention to questions like how the model construc-
tion facilitates the answering of pending scientific questions or to the materials that are used
and modified as constituents for its construction.
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Relevant for understanding mathematization is that the type of question confines the type
of model that will function as an appropriate erotetic device: it defines the criteria that a
model should meet and thereby conditions how the model should be constructed and what
kind of materials are needed. For example, the answer to a “why” question is an explana-
tion, and the answer to a “how much” question is a measurement. Boumans (2006) and
(2009) have shown that for “why” questions, the model should be a white-box model, that
is, a model that includes a representation of the structure of the target system, while for “how
much” questions, the model can be a black-box model, for which any representation of the
target’s structure is no longer required. The assessment of the appropriateness of an answer
depends on the kind of question investigated, e.g., in the case of measurement, the answer’s
accuracy is established by calibration. Moreover, the choice of the materials from which
the model is made is contingent on the kind of question the model should investigate. Since
this chapter discusses mathematization, it focuses on the choice of the mathematical forms
that are needed to make the model as satisfactory as possible. A model is satisfactory when
it satisfies criteria that are defined by the kind of question to be addressed (Morgan 1988).

In brief, to answer a model-based question satisfactorily, the model should meet specific
criteria that are closely intertwined: The structure of the model, its validation as well as
the chosen mathematical materials should meet specific requirements, which in close inter-
dependence with each other, determine whether the model provides satisfactory answers.

The next section shows how model structure and validation criteria are mutually de-
pendent. Section 3 discusses how rigorous the structure and validation requirements have
to be met by the model to be satisfactory. The mathematical materials are selected in such
a way as to allow the model to perform its purpose as satisfactorily as possible. Section 4
examines how this selection is done. Section 5 presents the process of modeling as the in-
tegration of all these requirements and materials. Section 6 presents the tradition in which
this model-based mathematization is embedded.

2. Structure and validation

Remember that all models are wrong; the practical question is how wrong do they
have to be not to be useful.
(Box and Draper 1987, 78)

The relevant question about models as erotetic devices is not, “How true are they?” but
rather, “How useful are these instruments to answer specific questions?” The validity of
a model is therefore defined as its usefulness with respect to some purpose. Barlas (1996)
notes that for the exploration of the validation of models, it is crucial to make a distinction
between white-box models and black-box models. In black-box models, what matters is the
output behavior of the model. The model is assessed to be valid if its output matches the
behavior of the target system within some specified range of accuracy, without any ques-
tion of the accuracy of the individual model equations. White-box models, in contrast, are
statements on how the target system actually operates in some aspects. Generating accurate
output behavior is not sufficient for model validity; the accuracy of the model’s internal
structure is also critical.

Barlas (1996) discusses three stages of model validation: “direct structure tests,”
“structure-oriented behavior tests,” and “behavior pattern tests.” Direct structure tests
assess the validity of the model structure by direct comparison with knowledge about the
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target system structure. The model structure here is a system of mathematical equations.
The direct structure test then involves taking each model equation individually and com-
paring it with available knowledge about the target system. The list of direct structure
tests includes tests such as chi-square tests. The structure-oriented behavior tests assess the
validity of the structure indirectly by applying certain behavior tests to model-generated
behavior patterns. These tests include the extreme-condition test, the behavior sensitivity
test, and the Turing test. Pattern and point prediction tests are examples of behavior pattern
tests. For the validation of white-box models, all three stages are equally important. For
black-box models, only the last stage is required.

While the second-stage tests—the structure-oriented behavior tests—do not give direct
access to the model structure, they nevertheless can provide information on potential struc-
tural flaws. To see this, we first need to further qualify what is meant by model structure.
The notion of model structure is not limited to a system of equations that is assumed to rep-
resent the systems of relationships of the target system, as in the case of white-box models.
It can also include other arrangements, like modular organizations, in which these modules
are lower-level models or sub-models.

In systems engineering, a module is defined as a self-contained component with a stand-
ard interface to the other components within a system (White 1999). Each module can be
validated prior to assembly, and new systems can be realized by new combinations of exist-
ing and improved modules. The notion of structure, then, refers not only to relationships
between causal factors, but also to relationships between modules. These modular-designed
models — in line with the labeling of the other two types of models — are called gray-box
models. The modules can then themselves be a white-, gray-, or black-box model. For the
validation of these gray-box models, they should pass structure-oriented behavior tests and
behavior pattern tests.

To answer “why” questions, we need white-box models, and for “how much” questions,
we can do with black-box models. Boumans (2006) shows that for “what-is-the-effect of”
questions, gray-box models are most appropriate. In other words, there is a close connec-
tion between the kind of question one is investigating, the required model structure, and the
way the model should be validated.?

In the case of black-box models, the choice of the mathematical forms is only constrained
by the applied behavior pattern tests. The objects are chosen such that a specific combina-
tion of them produces the required pattern. For example, if the required output pattern is
cyclical, the input-output relationship could well be a differential equation, without suppos-
ing that this differential equation is an accurate representation of the target system.

For the construction of white-box models, the composition of the mathematical objects
must comply with both specific behavior pattern tests and structure-oriented behavior tests,
as well as specific direct structure tests. This does not mean that each selected mathematical
component needs to satisfy every test. Some components are selected to make the model
meet the behavior pattern test and some to meet the direct structural test. Because the
structure of the white box is considered to be a representation of the target system, only the
mathematical components selected to meet the direct structure tests are chosen to represent
parts of the target system directly. For example, if the target system is a cyclical mechanism,
the chosen mathematical objects could again be differential equations, but now with the
claim that they represent the mechanism of the target system.

The structure of gray-box models is a specific combination of modules. This combination
of modules can represent the structure of the target system (when the structure of the target
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system is also modular), but it may also just be an arrangement of the modules such that
the overall behavior meets the behavior pattern tests and structure-oriented behavior tests.
The paper in which this modeling methodology was proposed for the first time is von
Neumann’s paper, “The general and logical theory of automata,” first published in 1951.
In this paper, this methodology was called the ‘Axiomatic Procedure’ and was explained as
follows:

The natural systems are of enormous complexity, and it is clearly necessary to sub-
divide the problem that they represent into several parts. One method of subdivision
[...] is this: The organism can be viewed as made up of parts which to a certain extent
are independent, elementary units. We may, therefore, to this extent, view as the first
part of the problem the structure and functioning of such elementary units individu-
ally. The second part of the problem consists of understanding how these elements are
organized into a whole, and how the functioning of the whole is expressed in terms
of these elements.

(von Neumann 1963, 289)

Instead of the more familiar mathematical equations, the interaction between the modules
can also be formulated as algorithms. This is usually the case when the model is used for
simulation purposes, that is, to answer “what-would-happen-if” questions.

3. Formalization and rigor

Studying the methods of solving problems, we perceive another face of mathemat-
ics. Yes, mathematics has two faces; it is the rigorous science of Euclid but it is also
something else. Mathematics presented in the Euclidean way appears as a systematic,
deductive science; but mathematics in the making appears as an experimental, induc-
tive science.

(Polya 1957, vii)

The process of model-making has often been labeled as “formalization.” In her account
of how models are made, Morgan (2012, 19-20) makes a useful distinction between two
meanings of formalization in order to understand what model-making entails. If we think
about its active form, ‘to formalize’ implies to give form to, to shape, or to provide an out-
line of something. The second meaning can be clarified if we take its passive form ‘formal.’
Formal implies something rule-bound, following prescribed forms. According to Morgan,
making models involves both meanings: “models give form to, in the sense of providing a
more explicit or exact representation of our ideas about the world, and in creating those
forms we make them subject to rules of conduct or manipulation” (20).

These rules of conduct or manipulation, which are the rules for reasoning with a
model, come, according to Morgan (2012), from two distinct aspects of the model: First,
these rules should be in accordance with “the kind of the stuff that the model is made
from, or language it is written in, or the format it has,” or in other words, “they are given
and fixed by the substance of the model” (26, italics added). Second, these rules are also
determined and constrained by the subject matter represented in the model. This chap-
ter focuses on the first aspect of rules, namely the constraining features of the model’s
substance on the kind of reasoning one can do with the model. This implies that in the
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selection of the mathematical ingredients, one also has to take into account the kind of
reasoning one wishes to perform with the model.?

In answering the crucial question about modeling, “How can we get knowledge from
models?” Morrison (2015) also emphasizes the role of constraints. They are induced not
only by what we already know about the phenomenon to be modeled, but also by the ma-
terials from which the model will be built: “Once we decide what needs to be modelled [i.e.
what the target is], these constraints determine, to some extent, how to do it. They function
like rules in a game” (153).

The rule-bound aspect of formalization is usually referred to as rigor. What is taken to
be rigorous depends on the underlying assumption of what a model is: whether it is seen as
an epistemic instrument or as a formal object.

The model accounts that see models as formal objects are the axiomatic approaches;
for them, rigor means consistency of the rules, famously expressed by Hilbert (1902, 448):
“If contradictory attributes be assigned to a concept, I say, that mathematically the concept
does not exist.” But rigor has not always been identified with axiomatics. Israel (1981)
shows that a shift from rigor in its older (19th-century) meaning of meeting empirical
requirements to the current meaning of logical consistency came with a loss of the applica-
bility of mathematics in empirical science: “What appears to be missing, is a codification
of the rules which should define and guide the use of mathematics as an instrument for the
description, interpretation and control of phenomena” (Israel 1981, 219). This means that
modeling for dealing with practical issues requires a different codification of rules than
models that aim at solving axiomatic problems.

To fulfill its purpose, a model has to meet a set of requirements. For practical prob-
lems, it is often the case that these requirements are not consistent with each other. Ac-
cording to the axiomatic view, it would mean that in these cases, such a model cannot be
built. If one nevertheless wishes to keep to this kind of axiomatic rigor, it means that one
has to decide which of the requirements has to be abandoned based on some theoretical
considerations, such that the remaining set of requirements is consistent. An instrumental
approach to this problem is that one seeks an appropriate balance or compromise be-
tween these requirements, in the sense that one decides to what extent each requirement
should be met.

This instrumental approach towards rigor can be nicely illustrated by the problem of
designing a world map, which is a two-dimensional projection of the world globe. To flat-
ten out a globe, one must stretch and/or shrink it in certain directions and tear it at several
places. In mathematical terms, the world map and the world globe are not topological
equivalents. In particular, there is a trade-off between interruption and distortion: only by
increasing the interruptions of the map can we lessen distortion. In a book on the design of
world maps (Fisher and Miller 1944, 27-28), the requirements a world map should meet
are stated as the following objectives:

to have distances correctly represented;

to have shapes correctly represented;

to have areas correctly represented;

to have great circles represented by straight lines.

AW =

It is a geometric impossibility to have all four objectives met on a flat surface and to have
them in every part. So, Fisher and Miller concluded that “projections are confessedly
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compromises, being perfect in none of the four ways but balancing the different kinds of
errors against one another” (34).

4. The choice of the mathematical ingredients

It is imperative to notice that whenever we apply a definition to nature we must wait
to see if it will correspond to it. With the exception of pure mathematics we can create
our concepts at will, even in geometry and still more in physics, but we must always
investigate whether and how reality corresponds to these concepts.

(Mach quoted in Ellis 1966, 185)

Mathematical models are compositions of mathematical objects. The selection of them is
determined by the question the model needs to address, the related model structure, as well
as to what extent the validation requirements should be met. With respect to these three
aspects of model building, mathematical objects have different functions in model construc-
tion. In line with Morgan’s conceptualization of formalization, on the one hand, the math-
ematical objects are stuff that the model is made from, and on the other hand, they are also
determined and constrained by the nature of the target system. But this does not mean each
mathematical object has to be constrained in both ways. Some objects are selected to enable
the model to fulfill its purpose, and other — not necessarily the same — objects are chosen to
enable a representational relationship to the target system.

To see the difference between these two roles of mathematical objects in models, it is
helpful to compare a mathematical model with a physical model, for example, with the
Newlyn-Phillips machine. This hydraulic machine is a physical 3-D model made of Perspex,
water, springs, wire, etc., built to represent a Keynesian economy, in which the circulating
water represents money (Phillips 1950).* One of the most important characteristics of 3-D
physical objects is that they are subject to gravity. The circulation in this hydraulic machine
worked because of this force and an electronic motor to pump the water up. Both grav-
ity and the electronic motor do not have economic equivalents. Because the machine was
meant as a representation of an economy, the motor was hidden. Besides the motor, the
machine consisted of many other parts, hidden or not, which had no economic equivalents
but were critical to the working of the machine. For such a model, it is not expected that
every part of the model represents something of the Keynesian economy. There are always
some things, which are likely to be untranslatable or just plain wrong. But these elements
do not necessarily cause difficulties in the functioning of the model. On the contrary, they
are installed to enable its functioning.

This physical model also makes us better aware of the material aspects of model building.
Morgan and Boumans’ (2004) study of the model building process of this 3-D hydraulic
machine showed that model building involves dealing with both a great many constraints
imposed from the physical side and a whole lot of commitments about how the economics
are physically represented.

Working with mathematics means taking into account the same kind of constraints.
Just as one has to choose which material is both strong and transparent enough to carry
the colored water and keep it visible, the different kinds of mathematical objects need to
be chosen to make the model carry out its purpose. This constraining aspect is typical of
materiality. The substance aspect of materiality constrains the kinds of things one can do
with any given material. Wood does not conduct electricity, but iron does. According to
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Fleischhacker (1992), this is because substance has structure and because mathematical
objects also have structure, he characterizes mathematical objects as “quasi-substantial.”
This structural aspect of mathematical objects conditions their functioning.

This structural aspect of mathematical objects means that one has to consider the kind
of mathematics that allows the kind of functioning one is aiming for. Because each math-
ematical object has its own structure with its own structural properties, one has to take
these properties into account when deciding which of them may be useful for the model in
question.

To better understand how mathematical objects are selected based on their structural
properties, it is useful to draw on material selection accounts in mechanical design.’ Each
material can be thought of as having a set of properties, such as density, modulus, strength,
toughness, and thermal conduction. But it is not a material, per se, that the designer seeks; it
is a specific combination of these properties, a specific property-profile. The material name
can then be seen as the identifier for a particular property-profile. Knowing the property-
profile is relevant because these material properties constrain performance.

The selection process works as follows: A material has properties, such as its density and
strength. A design demands a certain profile of these, for example, a low density and a high
strength. The problem is that of identifying the desired property-profile and then comparing
it with those of real engineering materials to find the best match. The immensely wide choice
is narrowed, first, by applying property limits that screen out the materials which cannot
meet the design requirements. Further narrowing is achieved by ranking the candidates by
their ability to maximize performance. Performance is generally limited not by a single prop-
erty, but by a combination of them. For example, the best materials for a light, stiff tie-rod
are those with the greatest value of stiffness, which is a specific ratio of modulus and density.
Combinations such as these are called material indices: they are groupings of material prop-
erties which, when maximized, maximize some aspect of performance. There are many such
indices. They are derived from the design requirements for a device through an analysis of
function, objectives, and constraints. Property limits isolate candidates that are capable of
doing the job; material indices identify those among them that can do the job well.

To show that the selection of mathematical objects in model construction is similar to
the choice of materials in instrument design, the case of business cycle modeling in the
1930s by the founders of mathematical model building in economics, Frisch and Tinbergen,
will be briefly presented.® As there were no mathematical theories available at that time
which could instruct them on how to build these models, they had to start almost from
scratch. They were looking for mathematical equations that could represent the business
cycle mechanism. First of all, such an equation would have to be dynamic. This meant,
that the equation must at least have a term that denotes a rate of change with respect to

time. They considered the following terms: x(¢—8), x(z), %(z), and Zx(t) or Jx(t)dt.

Second, the dynamic equation should describe a specific kind of cyclictal behavior. These
latter conditions were called “wave conditions” by Tinbergen. This meant that the values
of the coefficients of the dynamic equation must be chosen in such a way that the resulting
cyclical behavior meets some specified characteristics, such as the periodicity and amplitude
of a real business cycle.

This case shows that mathematical objects, like physical materials, have properties that
need to be accounted for when building a model for a specific purpose. The property pro-
file one was looking for in business cycle modeling is a particular equation that consists of

226



Mathematization

a variable, say x(t), to which are added specific dynamic terms, such as x (¢ — 9) or 5c(t),

in such a way that the equation represents cyclical behavior. Any such dynamic equation
can be considered a material index, that is to say, a combination of dynamic properties.
The values of the equation’s coefficients determine its specific property profile. The builder
of a business cycle model then seeks a property-profile that meets some specified wave
conditions.

5. The process of model building

I think of a modeler as starting with some disparate pieces — some wood, a few bricks,
some nails, and so forth — and attempting to build an object for which he (or she) has
only a very inadequate plan, or theory. The modeler can look at related constructs
and can use institutional information and will eventually arrive at an approximation
of the object that they are trying to represent, perhaps after several attempts.
(Granger 1999, 6-7)

Knowledge of materials is necessary, but it is not the only epistemic requirement of model
building. Model building is an attempt at a successful integration of various ingredients so
that they meet the validation criteria (Boumans 1999). The ingredients include, besides the
mathematical objects, theoretical notions, analogies, and metaphors, as well as empirical
data and facts. Because of the integration of the latter ingredients, the positivist distinction
between “discovery” and “justification” cannot be sustained.

To clarify this integration process, Tinbergen’s attempts to arrive at a model of the busi-
ness cycle mechanism which culminated in his (1931) ship-building model will be taken as
an exemplary case. This ship-building model consists of one equation:

%(t)=—ax(t-0)

where x represents available world tonnage, ¢ time, and 6 production time of a new ship,
thus new tonnage.

This model was, in Tinbergen’s view, the successful result of a long search for a represen-
tation of the business cycle mechanism that had to integrate the following two ingredients:
Aftalion’s crisis theory and the empirical fact that the business cycle period is about eight
years.

Aftalion’s theory was, according to Tinbergen (1927, 715; my translation), the only
economic theory that could explain “most clearly ... that every cycle already contains the
seed for the next cycle and thus real periodicity occurs.” Aftalion’s thesis was “that the chief
responsibility for cyclical fluctuations should be assigned to one of the characteristics of
modern industrial technique, namely, the long period required for the production of fixed
capital” (Aftalion 1927, 1635). For producers, the value of a product depends on the price
it is expected to fetch; that is to say, their values depend on the forecast of future prices.
Aftalion assumed that the expectations of those directing production are, alternately, either
too optimistic or too pessimistic. The cycle is a consequence of the long delay, which often
separates the moment at which the production is decided upon and a forecast is made from
the moment when the manufacture is terminated, because the forecast of future prices is
based on the present prices and the present state of demand.
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It took Tinbergen about five years before he could find a satisfactory cycle profile, that is,
the right combination of the mathematical dynamic terms, that would integrate both ingre-
dients. His starting point was harmonic oscillation, whose dynamics can be mathematically
described by a second-order differential equation. However, the differential terms, % () and
%(2), had to be combined with a lag term x(z — ) to integrate Aftalion’s theory. He tried
out several combinations of dynamic terms, of which each combination had to include the
lag term. Each of them implied either an unrealistic production time or a periodicity that
was too short or too long. Only the ship-building equation led to satisfactory results. With
a production time of two years, 6 = 2, and the equation’s parameter g having a value that
confirms the data he had about the ship-building market, the resulting cycle has a period
equal to eight years.

Tinbergen’s ship-building model is a nice example of the model-building process as the
satisfactory (to the model builder) integration of several ingredients, such as theoretical
ideas (Aftalion’s crisis theory), analogies (harmonic oscillation), mathematical concepts
(dynamic time functions), stylized facts (the cycle’s period of eight years), and empirical
data (data of the ship-building market). It was the result of a long trial-and-error process to
get all the ingredients integrated. Because this set of ingredients also contained the facts the
model was supposed to explain, justification was built in.

6. The artifactual view of mathematization

But scientific accuracy requires of us that we should in no wise confuse the simple and
homely figure, as it is presented to us by nature, with the gay garment which we use
to clothe it. Of our own free will we can make no change whatever in the form of the

one, but cut and colour of the other we can choose as we please.
(Hertz 1962, 28)

This model-based mathematization finds its roots in Hertz’s Kantian account presented in
his The Principles of Mechanics Presented in a New Form (1956):”

It is impossible to carry our knowledge of the connections of the natural systems fur-
ther than is involved in specifying models of the actual systems. We can then, in fact,
have no knowledge as to whether the system which we consider in mechanics agree in
any other respect with the actual systems of nature which we intend to consider, than
this alone, — that the one set of systems are models of the other.

(Hertz 1956, 177)

Hertz formulated three requirements a model should fulfill: logical permissibility, correct-
ness, and appropriateness.® Hertz considered correctness as the “fundamental require-
ment”: models are incorrect “if their essential relations contradict the relations of external
things” (2). Hertz was thinking about this requirement in terms of the model’s predictive
performance, but one could state more generally that a model must be empirically vali-
dated. It should, however, be noted that the requirement of correctness applies only to the
model as a whole and not to the individual equations or terms of the model, so it was not a
direct-structure-test requirement, or in other words, a white-box requirement.

The second criterion, logical permissibility, is analytic: a model is not permissible if it
“contradicts the laws of thought” (2). In other words, the mathematics or logic used to
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formulate the model should not consist of any contradictions. This refers to the above
rigor requirement of the axiomatic approaches. The approach that emphasized this logical
requirement evolved into the semantic account of models, according to which a model is an
interpretation of a theory in which all the axioms of that theory are true. But such a model
can only exist if the axioms are logically consistent. According to Hertz, we can decide
“without ambiguity” whether a model meets these two criteria.

In the model literature, these two requirements, or variations of them, are usually men-
tioned, while the appropriateness criterion is often ignored. But, according to Nagel (1961),
it is “important to remember” that a model is a human artifact, and therefore “likely to
contain some elements that are simply expressions of the special objectives and idiosyncra-
sies of their human inventors, rather than symbols with a primary referential or representa-
tive function” (103). This point was also stressed by Hertz’s criterion of appropriateness.

A model will unavoidably contain what Hertz called “superfluous or empty relations”—
mathematical objects that are not representative of anything in the subject matter for which
the model is devised. According to Hertz, these “empty relations cannot be altogether
avoided: they enter into the images because they are simply images, — images produced by
our mind and necessarily affected by the characteristics of its mode of portrayal” (Hertz
1956, 2).

According to the criterion of appropriateness, of two models equally permissible and
correct, the better model is the simpler one, that is, the one which contains “the smaller
number of superfluous or empty relations” (2) and that is more “distinct” if it “pictures
more essential relations of the object” (2). In modern terms, a more distinct model has a
larger scope. According to Liitzen (2005), the issue of simplicity is related to the avoid-
ance of “conceptual and mathematical complication” (92) and involves “such properties as
intuitive clarity, elegance, and beauty” (93). In other words, as meeting the permissibility
and correctness criteria still allows for several different models, the final choice for a model
was determined by balancing between the scope of analysis and tractability. Nevertheless,
the relations that are empirically “empty” were needed to enable the model to be correct.”

A 20th-century version of the artifactual view is Simon’s (1969) artifact account. Simon
defines an artifact as an “interface”:

between an “inner” environment, the substance and organization of the artifact itself,
and an “outer” environment, the surroundings in which it operates. If the inner envi-
ronment is appropriate to the outer environment, or vice versa, the artifact will serve
its intended purpose.

(Simon 1969, 7)

The advantage of factoring an artificial system into goals, outer environment, and inner
environment is “that we can often predict behavior from knowledge of the system’s goals
and its outer environment, with only minimal assumptions about the inner environment”
(8), or in Hertz’s terminology, a model can meet the fundamental correctness requirement
with only minimal assumptions about its structure, and therefore it also complies with
the appropriateness requirement. Different materials and organizations can accomplish
identical goals in similar outer environments. For example, both weight-driven clocks and
spring-driven clocks measure the same time.

The choice of the inner environment of the model, its material, and its organization, is
thus determined by the kind of question one is aiming to address and the characteristics
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of the outer environment. Whether a clock will, in fact, tell the time accurately is also
dependent on its location. A sundial performs very well in sunny climates, but to devise
a clock that would tell the time on a rolling and pitching ship, it has to be endowed with
many delicate properties, some of them largely or totally irrelevant to the performance of
a chimney clock. The design of the model must be such that there is an invariant relation
between the inner system and goal across some specified range in most of the parameters
that characterize the outer environment (see also Simon 1969, 9). According to Simon,
therefore, the model needs to be assessed for its validity, at least by the structure-oriented
behavior tests and behavior pattern tests. The direct structure tests are only needed for a
rather restricted set of questions, such as ‘why’ questions, for which a white-box structure
is needed.

7. Conclusion

Its modest aim is to elaborate the point that informal, quasi-empirical, mathematics
does not grow through a monotonous increase of the number of indubitably estab-
lished theorems but through the incessant improvement of guesses by speculation and
criticism.

(Lakatos 1976, 5)

Mathematization, in the sense of finding a mathematical expression of what we would like
to know about a certain phenomenon, is a modeling operation. In the process of building
a mathematical model, we hope to find an answer to a specific question we have about this
phenomenon. These questions can be of various kinds, such as “why” questions, “how
much” questions, or “what would happen if” questions. Each answer has to meet specific
requirements to be satisfactory. These different requirements can come from different direc-
tions; they can come from specific theoretical frameworks, from methodological demands
about validation, and from what is already known about the phenomenon. The kind of
mathematics that must be used can also be defined in advance, for example, the mathemati-
cal expression has to be in terms of calculus. But even if a mathematical framework is set in
advance, it still does not tell the modeler which mathematical forms of that framework are
the most appropriate. This selection of the most appropriate mathematical objects is similar
to the selection of materials in mechanical design: one is to take into account the properties
of the considered materials and what the (optimal) performance is of combinations of them.
These materials are not only selected for enabling a representational relationship with the
target system, that is, meeting Hertz’s requirement of correctness. Some of the mathemati-
cal objects are chosen only in order to enable the model to achieve its goal.

In this chapter, mathematization is thus seen as mathematical modeling, where modeling
is the attempt to integrate various kinds of ingredients, such as specific theoretical notions,
specific facts, and data about the phenomenon in question, (mathematical) analogies, and
metaphors. Finding the appropriate mathematical forms is crucial for the success of this
integration. Although material knowledge and knowledge of the phenomenon to be in-
vestigated, as well as further background knowledge and training are essential, finding the
right combinations of the materials remains an explorative process, largely comparable to
empirical research.'” Modeling is a trial-and-error process, “not driven by a logical process
but rather involves the scientist’s intuitive, imaginative, and creative qualities” (Morgan
2012, 25). The design of epistemic artifacts is an experimental, inductive process.
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Notes

1 Although the standard view holds that mathematization takes place through translation of verbal
expressions of knowledge into mathematical language, there is little to no (historical) evidence for
this view.

2 See Tieleman (2021) for a more recent discussion of the validation of grey-box models.

3 This chapter focuses on mathematical functions. Chao (2018) provides nice cases of reasoning in
which geometrical shapes, like hexagons, triangles, and circles, are used.

4 A Keynesian economy is not a real economy but a theoretical model, designed to account some
macroeconomic features of actual economies. So, what we have here is actually a material model
of a theoretical model, a “nesting of models” (Hughes 1997). I thank Tarja Knuuttila for remind-
ing me about Hughes’s DDI account which nicely fits with the model account presented here, see
also Section 5.

5 This discussion is based on Ashby (1999).

6 This highly condensed presentation will only discuss the main choices that have been made. See
Boumans (2005) and Morgan (2012) for more detailed accounts of this kind of model building.

7 See Nagel (1961, 103) and Hughes (1997, 333) for similar accounts.

8 See Liitzen (2005) for a detailed discussion of these three criteria.

9 A similar view can be found in Cartwright’s (1983) simulacrum account of explanation. According
to this account, some properties of the objects in the model are “properties of convenience,” “to
bring the objects modelled into the range of the mathematical theory”, of which some are “not
even approached in reality. They are pure fictions” (153).

10 In this sense, the “logic” of mathematical modeling is similar to Lakatos’s “logic of mathematical
discovery.”
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EPISTEMOLOGY AND
PRAGMATISM

The debated role of models in statistics

Johannes Lenhard

1. Introduction

Statistics occupies a special place both in the sciences and in philosophy. In the sciences,
statistical methods are at work whenever empirical data are of concern. Students of many
scientific professions will likely have to go through a mandatory statistics course. Even if
many of such courses are infamous for teaching standard recipes rather than critical think-
ing, working with statistical tools is a widely accepted indicator of being scientific. From a
philosophical perspective, statistics deals with the interface between the world and scien-
tific apparatuses. For example, when do data falsify a hypothesis? When does inconclusive
evidence change into conclusive evidence? Neither the data nor the theory or hypothesis
alone can tell. What is needed to get an answer from statistics is a statistical model. In short,
statistical modeling occupies a special place because it is involved in mediating between
(almost all kinds of) data and (almost all kinds of) theory. On the one hand, statistical
modeling is part of everyday scientific practice, on the other hand, operating with data is a
fundamental condition of scientific epistemology. This chapter acknowledges this tension
between pragmatism and epistemology.

Furthermore, modeling has not yet received proper attention from the philosophical
side. The philosophy of statistics is infamous for the longstanding and deeply entrenched
opposition between Bayesian and classical standpoints regarding probability.! Although
the concept of statistical model has an important function in both classical and Bayesian
accounts, the role of modeling in statistics is seriously under-examined.?

This chapter presents an uncommon cut through the philosophy of statistics, namely a
cut that follows the concept of modeling. The hope is to invite philosophical and histori-
cal research into hitherto under-explored terrain. The following text has three parts that
entertain three different—though related—perspectives on statistical modeling. The first
part (Section 2) is devoted to the classical standpoint and the origins of the concept of a
statistical model. Ronald A. Fisher introduced this concept in (1922) to mathematize the
logic of inference. A model mediates between mathematics, data, judgment, and economy
of computation. The philosophical significance of this mediating role elucidates a contro-
versy about modeling between the main proponents of the classical camp (Fisher, Neyman
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and Pearson). Section 3 discusses the counter-movement of “Exploratory Data Analysis”
(EDA) led by John W. Tukey in the 1960s and 1970s who pleaded to abandon models
and let the data speak for themselves. EDA makes use of computer software and visu-
alization. Based on recent computer methods, in connection with big data and machine
learning, the prospect of letting the data speak for themselves has attracted a range of new
followers. Finally, Section 4 turns to the career of Bayesian models in statistical practice,
told as a tale about the impact of computer use on epistemology. A remarkable upswing
of Bayesian methods in the 1990s is tied to a modeling practice that challenges Bayesian
epistemology. The section closes with a brief look at recent accounts of practicing statisti-
cians (of varying camps) who discovered the notion of modeling as a new focus and as a
common ground.

2. Models mathematize the logic of inference

The mathematical theory of statistical inference—the classical account—was developed
during the 1920s and 1930s mainly by three scholars: Ronald A. Fisher (1890-1962), Jerzy
Neyman (1894-1981), and Egon S. Pearson (1895-1980). While Neyman and Pearson
argued their account would provide a mathematical foundation to Fisher’s older approach,
Fisher disagreed fiercely and an embittered controversy set in that was never settled (com-
pare Hacking 1965, 89). This section argues that the controversy rests, aside from any
personal aspects, on a profound conceptual basis, while both sides held conflicting views
about statistical modeling.?

2.1 Fisher’s account of modeling

Fisher elaborated a comprehensive logic of inductive inference, as he called it. His presum-
ably philosophically fundamental innovation consists of precisely describing what is to be
understood by a model, and how models are to be embedded in the logic of inference. In
1922, Fisher published his seminal contribution, “On the Mathematical Foundations of
Theoretical Statistics,” where we find a number of influential new concepts, among them,
the level of significance (for rejecting a null hypothesis) and the parametric model, whose
systematic role within statistical inference was elaborated for the first time. Fisher describes
the general goal of statistics as follows:

In order to arrive at a distinct formulation of statistical problems, it is necessary to
define the task which the statistician sets himself: briefly, and in its most concrete
form, the object of statistical methods is the reduction of data. A quantity of data,
which usually by its mere bulk is incapable of entering the mind, is to be replaced
by relatively few quantities which shall adequately represent the whole, or which,
in other words, shall contain as much as possible, ideally the whole, of the relevant
information contained in the original data.

(1922, 311)

At first glance, it may seem that Fisher’s concern is merely a technical question of the re-
duction of data. This, however, is not the case, for the problem of whether certain stand-
ard quantities “adequately represent” the entirety of data cannot be solved based on the
data alone. The same holds for “relevant information”—whether it is still contained in
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a data-reducing statistic will have to be evaluated according to further criteria. In other
words, the mathematical part first requires modeling. Fisher continues:

This object is accomplished by constructing a hypothetical infinite population, of
which the actual data are regarded as constituting a random sample. The law of distri-
bution of this hypothetical population is specified by relatively few parameters, which
are sufficient to describe it exhaustively in respect of all qualities under discussion.
(311)

Fisher explicitly mentions the constructive character of this undertaking, which conceives of
the data observed as an instance of the underlying model-type population. The merit of this
is that such a population, i.e., its distribution law, is exhaustively (“in respect of all quali-
ties under discussion,” i.e., with regard to a concrete question of application) described by
a small number of parameters. It is this law, in combination with specified parameters, that
transfers the testing problem into a mathematical problem.

Fisher subdivided the general task of statistics into three types of problems:

1 Problems of Specification. “These arise in the choice of the mathematical form of the
population” (1922, 366). This step thus is part of the modeling activity; and it cannot be
derived, but requires deliberations, like those on the basis of practical experience gained
in similar situations.

2 Problems of Estimation. They are formulated on the basis of a mathematical-statistical
model. Fisher saw his own work as a solution to these problems.

3 Problems of Distribution. The matter here is mathematical tractability. The most beau-
tiful model is good for nothing if it yields no distribution curves (with available math-
ematical means).

For Fisher, the main task of modeling consists in balancing judgment and experience with
tractability. A model may assume a certain family of distributions whose parameters have
to be specified by estimation from the data. A simple, admittedly very simplified, example
may explain the terminology. During his work, Fisher was intensely engaged in agro-science
experiments such as estimating the effect of a certain fertilizer. A model could look as fol-
lows: the yield of the various acreages is equally distributed, that is, normally distributed to
the two parameters (11, 62). This establishes essential assumptions of the model. The effect
of the fertilizer, it is further assumed, will only change the parameter 7. In other words, the
yield of a fertilized acreage is normally distributed to a mean #2’. A typical question regard-
ing the statistical inference to be drawn from the data, i.e., the yields of all acreages, would
then be: Which effect is produced by treating with the fertilizer? The null hypothesis, which
is part of Fisher’s logic, H, would be that the fertilizer has no effect at all, that is, that the
means are equal, and all differences observed are random: H: m = 2.

Based on the modeling assumptions, all information contained in the data not concern-
ing the two parameters is irrelevant. Given the model, the specification is achieved by as-
signing the values of these parameters: It is a mathematical fact that the normal distribution
is characterized by mean and variance. In Fisher’s terms, the normal distribution is part of
the model while assigning concrete values to the parameters specifies a hypothesis. In this
way, only the assumption of a model makes it possible to speak of the “relevant informa-
tion” contained in the data and to assess the hypothesis mathematically.
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2.2 The Neyman—Pearson theory: the fundamental lemma

During the following decade, Jerzy Neyman and Egon Pearson elaborated the theory of
statistical inference that bears their names. Their seminal essay “On the Problem of the
Most Efficient Test of Statistical Hypothesis” of 1933 can be considered the founding
document—an essay referred to by the authors as “the big paper.” The theoretical back-
bone of the Neyman-Pearson theory is expressed by their “fundamental lemma.” Only
further specification of what modeling should consist of allowed them to prove this lemma.

Neyman and Pearson criticized the asymmetrical treatment of the null-hypothesis as a
deficit of Fisher’s logic of testing. Fisher started with the null hypothesis that no effect could
be observed, and a test might lead to accepting another hypothesis, thereby rejecting the
null hypothesis. This name alone already testifies to the asymmetrical conception. Neyman
and Pearson insisted that a model should produce a symmetrical situation where two hy-
potheses compete with each other (“hypothesis” versus “alternative”); observing the data
should lead to the decision on which hypothesis was to be preferred. For guiding this deci-
sion, Neyman and Pearson introduced the errors of the first and second kinds. Choosing
one of two competing hypotheses can be wrong. One can commit errors of the first kind
(accepting a false hypothesis) and errors of the second kind (rejecting a true hypothesis),
and one should therefore make the relative assessment between the two types of error an
object of the method as well.

From their analysis of the two types of statistical error, Neyman and Pearson derived
two further concepts, namely, the concept of the size of a test that corresponds to the level
of significance and the concept of the power of a test that corresponds to the analogous
quantity for the error of the second kind. According to the Neyman-Pearson account, mod-
eling must create a situation in which two hypotheses confront one another, and then, one
has to fix a test’s size before optimizing its power. The Fundamental Lemma states that, in
the case of a simple dichotomy of hypotheses, there exists, for any possible size, a uniquely
most powerful test of that size.

Consequently, modeling is not concerned with individual cases, but rather with what
happens if one proceeds in accordance with such a rule. Framed by a model in this way,
the (remaining) possible courses of action have mathematical properties, namely, they form
convex risk sets. Technically speaking, there is a unique element in this set with minimal
distance (maximal power) to any point specified by size. Neyman-Pearson realized that the
proof of their lemma required a strict delineation of modeling: at stake is an iterated proce-
dure with two alternatives: one first determines size and then maximizes power.

2.3 Controversy about modeling

Although Neyman and Pearson see their work as a mathematical rounding off and improve-
ment of Fisher’s approaches, Fisher responded with a polemical attack. In the literature, this
controversy has repeatedly been treated both mathematically and philosophically.* Cutting
through the controversy from the perspective of modeling offers a view of why the contro-
versy has not been resolved: models should fulfill incompatible tasks.

In the frame of the Neyman—Pearson theory, the reiterated application of a procedure
forms the basis for statistical inferences. The paradigmatic example is a procedure for ac-
cepting or rejecting shipments of some product based on a random sample taken from the
shipment. The Neyman-Pearson theory then suggests an optimal rule by considering the
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statistical properties when the procedure is applied over and over again. This particular
conceptualization was the only way that Neyman and Pearson could provide an objec-
tive basis for the logic of inference, thereby dispensing with Fisher’s hypothetical infinite
populations. Therefore, Neyman and Pearson rely on a model concept that includes many
more preconditions, according to which much of the statistician’s method is already fixed.
According to Fisher, a statistician uses mathematical reasoning within the logic of inference,
e.g., building and adjusting a model according to the data at hand and the questions under
discussion. In the Neyman—Pearson theory, the reasoning of the statistician (e.g., finding an
appropriate acceptance procedure) has become subject to modeling.

With this, however, they place themselves in strict opposition to Fisher. For him, mod-
eling creates the objects one can argue about mathematically, whereas Neyman and Pear-
son shape the basic situation in which modeling takes place, requiring reiterated procedures
and competing hypotheses. Fisher considered the applied mathematician’s situation fraught
in principle with many subjective components—working on an applied problem requires
a high degree of “judgment” and is also sensitive to the concrete case at hand. According
to Fisher, reflecting this application situation and its non-mathematical components is an
integral part of applied mathematics or statistics. Modeling thus has the task of mediating
between real-world problems and mathematics. Hence, Neyman and Pearson intended to
get rid of precisely the constructive act of modeling at the center of Fisher’s inductive infer-
ence logic. This somewhat ironic point teaches a cautionary lesson about modeling that is
relevant far beyond statistics. In modeling, mathematization is not neutral but can impose
critical conditions that change the concept of modeling.

3. Abandon models and let the data speak for themselves

This section takes a look at the anti-modeling standpoint. It is not at all misplaced in a
chapter on modeling because modeling is about mediation and the data-centric standpoint
holds that much of the modeling task can be replaced by the data themselves. There are
many variants of this standpoint. This section focuses on an early example, Tukey’s work
on “Exploratory Data Analysis” (EDA), and at the end takes a brief look at recent com-
puter methods that have brought new prominence to the data-centric view.

EDA was initiated and propagated by John Wilder Tukey in the 1960s, and Tukey’s
programmatic book, “Exploratory Data Analysis,” appeared in 1977. In contrast to its
influence on the practice of statistics, EDA is often neglected in philosophically oriented
considerations. In the context of models, EDA is of great interest because Tukey combined
his programmatic design with a strong critique of the concept and use of models. What is
data analysis about? The Encyclopedia of Statistics summarizes:

Exploratory data analysis is the manipulation, summarization, and display of data to
make them more comprehensible to human minds, thus uncovering underlying struc-
ture in the data and detecting important departures from that structure

(Kruskal 1978, 3)

This statement expresses a fine, but decisive difference to Fisher’s account of statistics in
which, “reducing the data to relevant information,” was key, which requires reference
to an underlying model. EDA, in contrast, concerns a process preceding the construc-
tion of a model. Tukey conceived of EDA very consciously as a counter-model and as a

237



Johannes Lenhard

necessary complement to what he called hypothesis testing-oriented confirmatory data
analysis (CDA). Not working with a model should liberate the skilled judgment of the
statistician. In a certain sense, Tukey considered mathematical models in statistics to be
a dangerous gift, as they suggested the applicability of rigorous mathematical arguments.
Often, Tukey says, the complex difficulties arising from amorphous data are passed over
too quickly. In other words, Tukey was convinced that application-oriented statistics
must begin methodologically even before the data are inserted into the Procrustes bed
of a model. For Tukey, mathematical, model-dependent arguments should enter at a late
stage of the application process that would have to begin with exploring the data without
a potential bias by modeling assumptions. For instance, the judgment of what part of the
data are outliers and may therefore be ignored is often decided too quickly by reference
to a model. For him, the very process of model building has to be guided by EDA—a
position quite contrary to Neyman and Pearson’s effort to integrate model building into
a mathematical framework.

Tukey illustrated the relationship between exploratory and confirmatory data analysis
with the metaphor of the detective and the judge:

Unless the detective finds the clues, judge or jury has nothing to consider. Unless ex-
ploratory data analysis uncovers indications, usually quantitative ones, there is likely
to be nothing for confirmatory data analysis to consider.

(1977, 3)

Was that not the initial motivation for modeling as well> Modeling was indeed also one
of the prerequisites for applying mathematical propositions to reality, by having models
bring a practical situation into a sufficiently exact form. While Tukey does not challenge
this, he insists on the systematic importance of the first preparatory steps in the process of
modeling. His main issue is to clarify how the judgment necessary to construct an adequate
mathematical-statistical model can depend on an investigation by means of mathematical
tools. This extended frame of mathematical tools (far from deductive reasoning) then en-
compasses decidedly less precise concepts. In this context, Tukey pleads in favor of vague
concepts, a rather uncommon recommendation, at least in a mathematical context:

Effective data analysis requires us to consider vague concepts, concepts that can be
made definite in many ways. To help understand many definite concepts, we need to
go back to more primitive and less definite concepts and then work our way forward

(Mosteller and Tukey 1977, 17)

At the very outset of a problem of application, Tukey says, there is mostly quite a number
of possible ways to attain a more abstract, more rigorous, or more precise formulation of
the problem. This view recalls Fisher’s position that there is a multitude of possible infinite
populations which come under consideration during the first steps of modeling. Confirma-
tory data analysis assumes a class of models and then makes the data decide which the
best model is in said class, while explorative data analysis aims to let the data speak for
themselves. Fisher’s and Tukey’s conceptions do not contradict one another; rather, what
becomes evident if one integrates the two is that the process of modeling is based on an
interplay of data and models in the course of which both have to be considered variable.
When Tukey and Wilks (1970) underline that using models to evaluate data is different
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from using data to evaluate models, they do not intend to play down the use of models, but
rather assign some autonomy to both approaches that then require mediation.

Tukey introduced a set of new tools like stem-and-leaf diagrams that are intended to
make the explorative analysis of the data possible. These tools are fundamentally based on
the capacities of modern computers, in particular, visualization. EDA may well be seen as
the herald of instrument-driven and ongoing multifaceted changes in modern statistics that
have been triggered by the computer.

The advent of cheaply available and networked computers enlarged these possibilities.
Some of them address elements of the modeling process,’ but some even claim to replace
modeling altogether. One example that created particularly big waves in philosophy is
Bayesian networks. Formal epistemologists (Spohn 2001; Pearl 2000) claimed that causal
reasoning can be completely expressed in the technique of Bayesian networks (technical de-
tails do not matter here). When Spirtes, Glymour, and Scheines (1993) claimed that they had
coded an algorithm that would automatically construct the causal network for given data,
a heated controversy set in. Can data processing replace (causal) modeling? Cartwright or
Humphreys and Freedman (1996) insisted on a negative answer—as Cartwright put it: no
causes in, no causes out (1989, Ch. 2). According to them, causal inference requires statisti-
cal (and causal) modeling that cannot be substituted by computational statistics.

Another instance is the purported impact of data-driven science and machine learning
on epistemology. Most variations of this claim (see Kitchin 2014 for a sample) hold that
deep learning, combined with a sufficient amount of data, will be able to detect all kinds
of patterns, independent of any foregoing theory. In other words, statistical modeling al-
legedly becomes obsolete because there will be one general, powerful model (a deep neural
network, much like a human brain) that is able to handle all tasks. I am skeptical whether
such a broad claim is warranted. My point here is that the vision of getting rid of statistical
modeling, and all the related problems of mediating between the world and our conceptions
of it, is getting fueled by computer methods, especially AL

4. The career of Bayesian models in statistical practice

Philosophers have discussed Bayesian statistics vigorously and elaborated Bayesianism as a
philosophical position.” Bayesian epistemology lays claim to capturing knowledge acquisi-
tion in a fairly general manner. The central piece is Bayes’ rule which prescribes how one
should update prior beliefs in light of new evidence. This rule captures how to calculate
conditional probabilities. Let m(H) stand for the probability of a statement or hypothesis
H, and n(H | D) for the conditional probability of H given D. Now, both H and D happen
if (for the moment, think of temporal order) D happens and then H happens given D, or
equivalently, H happens and then D happens given H. In other signs: ©(D) x & (H | D) =
n(H) x (D | H). Separating © (H | D) on the left side provides Bayes’ rule:

(*) mHID)=n(H) xn(DIH)/nD)

It is named after Reverend Thomas Bayes (c. 1701-1761), a Presbyterian minister, philoso-
pher, and statistician. Bayesianism starts with a special interpretation of this rule. Consider
you have some hypothesis H—for example, that it will rain tomorrow. You do not know
for sure, so (in a Bayesian mood) the degree of your belief can be expressed as a probability,
7(H). Now there arrives new evidence D—say, you wake up the next morning and have a
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look at the sky. This should give you additional evidence and will change your (subjective)
probability of rain on this day. Therefore, t(H) is also called the “prior” that will be updated.
The updated probability, written 7, , of your hypothesis given the data is also called the
“posterior.” Which numerical value does it have? Bayesians take the position that updating
needs to happen by conditionalization. The posterior is the conditional probability: ;=

7 (H | D). In other words, equation (*) answers the question: The posterior is proportlonal
to the (subjective) prior m(H) and to ©(D | H), the so-called likelihood—that is, the prob-
ability of the data given your hypothesis (how likely it is that the sky looks like it does in
the morning if it were to rain). The term (D) plays the role of a (normalizing) constant.

Although Bayes’ rule works with basic concepts, actually calculating with it, i.e., deter-
mining the conditional probability on the left side of (*) from the terms on the rlght side—
the probability of a hypothesis t(H), the probability of the data ©(D) (often expressed via
conditioning on different possibilities), and the conditional probability 7(D | H)—requires a
detailed model. Moreover, even if a model is given that determines these values, computing
them was restricted to the most simple cases, which made Bayesian statistics impractical.
The use of Bayesian approaches in scientific practice has an illustrious history. Despite their
philosophical prominence, they remained a small minority group in science with a consist-
ent share of only 2-4% among papers in leading traditional statistical journals. However,
the 1990s saw an increase in interest, and Bayesian methods quickly acquired a high level
of popularity (about 20% of papers).

4.1 Exploration and flexibility

A common viewpoint holds that Bayesian modeling was initially impractical because of
computational difficulties, and later became practical thanks to computational methods, all
without changing its rationale. This section looks at the matter from a different perspective.
Working with computational methods might change the concept of modeling and, conse-
quently, change the rationale of Bayesian epistemology. Namely, these methods undercut
the interpretation of priors, turning them from an expression of beliefs held prior to new
evidence into an adjustable parameter that can be manipulated flexibly by computational
machinery.

At this point, the argument rests on an analysis of the computational methods of which
this section can only provide a glimpse (see Lenhard 2022 for details). By the 1980s, it had
become a widely shared view that computational methods were the key to making Bayes-
ian statistics practical. The statistician A. F. M. Smith, a leading voice, argued in a sort of
manifesto that efficient numerical integration procedures were needed for the success of
Bayesian methods (Smith 1984). There is wide agreement that Markov chain Monte Carlo
(MCMC) methods provided these procedures.

MCMC methods simulate relevant properties of mathematical objects (such as integrals
or distributions) in numerous iterated trials to gain a picture or approximation of these
properties. One can compare MCMC with sounding out unknown territory by taking simu-
lated random walks.® This modeling approach thus explores the behavior of a (complex)
mathematical object, like a posterior distribution, with the help of the MCMC machinery.
When proponents such as Smith and Roberts (1993) state that MCMC methods are for
“exploring and summarizing posterior distributions in Bayesian statistics” (p. 3), the point
about exploration is important. In a way, MCMC explores mathematical properties with the
help of probabilistic and iterative means. One can see a frequentist element sneaking in here.’
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However, there is another point about exploration to be made. The speed of MCMC
is also an invitation to engage in an exploratory mode of modeling in the following sense.
Modelers can work with incompletely specified models that contain parameters that get ad-
justed only in a feedback loop where model behavior is observed and modified. Researchers
do not need to determine parameters from the beginning; rather, they can adapt them dur-
ing the process to obtain a better match. For Bayesian modeling, MCMC made exploration
on this level feasible. With the help of adjustable parameters, a model can be specified in
flexible ways. The MCMC trick brings this flexibility to Bayesian modeling.

However, the exploratory-iterative mode affects the Bayesian rationale. The core of Bayes-
ian epistemology, indeed the defining feature for many philosophers, is the subjective stance.
The modeling process starts with one’s degree of belief. We have seen, however, that this
characteristic of Bayesian epistemology fades away over the course of the development of
MCMC approaches. Priors now appear as part of the adaptation machinery. Importantly,
seen as adjustable parameters, priors lose their interpretation as prior knowledge. To the
extent that they are treated like adjustable parameters, the resulting values no longer express
(degrees of) prior belief, but rather correspond to an overall fit of a model to data, resulting
from the exploratory-iterative process of modeling. In a nutshell, the priors cease to be prior.

4.2 Modeling and pragmatism

Bayesian approaches are a success story in statistics that began in the 1990s. This story piv-
ots on the co-development of computational methods and a concept of modeling that uti-
lizes flexibility, much like a pragmatic tool that comes with more philosophical laissez-faire.
The situation looks different from the seasoned positions in the philosophy of statistics. This
pragmatic turn has the potential to fundamentally affect the philosophy of statistics. How
the new situation should be captured conceptually is not yet clear. However, leading statisti-
cians have engaged in a philosophical debate.

According to Bradley Efron, classical frequentist and Bayesian approaches work together
and mutually complement each other in computer modeling. Especially when analyzing
large amounts of (“big”) data—according to Efron (2005)—it is often hopeless to construe
priors subjectively. Sander Greenland (2010) argues that Efron’s stance on mutually com-
plementing virtues is not correct and that it would be better to use the term “ecumenism”
to describe how statistical methods come together. He traces this back to G. E. P. Box’s
(1983) plea for ecumenism. Despite its prominent advocates—according to Greenland—
ecumenism has not yet had a large impact on the teaching or practice of statistics.!® Robert
Kass is another prominent statistician who reflects on the ongoing changes in a conceptual
way. He advocates what he calls “statistical pragmatism,” a position that sees modeling as
the core activity of statistics (Kass 2011). He makes a careful attempt to sketch the com-
mon ground between Bayesian and frequentist positions regarding how statistical models
are connected with data. Thus, the dynamics of computational modeling seem to be a unit-
ing feature of formerly separated camps of philosophy of statistics: “The loyalists of the
1960s and 1970s failed to realize that Bayes would ultimately be accepted, not because of
its superior logic, but because probability models are so marvelously adept at mimicking
the variation in real-world data” (Kass, cited according to McGrayne 2011, 234)."! Steven
Goodman (2011) disagrees because Kass’ pragmatism looks like a mere truce rather than
a new foundation. Also commenting on Kass, Hal Stern (2011, 17) worries “more broadly
that pragmatism might appear to reinforce the notion of statistics as a set of techniques that
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we ‘pull off the shelf” when confronted with a data set of a particular type.” Finally, An-
drew Gelman (2011, 10) observes that this pragmatism, though thriving on the flexibility
of methods to obtain calibration between model and data, is still objective.

In sum, notions such as complement, truce, ecumenism, or pragmatism signal how stat-
isticians capture conceptually what is going on in recent practices of modeling. All philo-
sophically minded practitioners as well as practice-oriented philosophers should welcome
the debate around the conception of modeling. It breathes fresh air into the philosophy of
statistics. Furthermore, following the practices of modeling provides a lens, both to prac-
titioners and philosophers, on how new instrumentation, i.e., the computer and computa-
tional methods, reconfigures the relationship between scientific knowledge and scientific
data—the primary reason why the philosophy of statistics is so intriguing.
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Notes

1 The entry on philosophy of statistics by Romeijn (2017) in the Stanford Encyclopedia provides
a good overview with many references. I would like to highlight accounts of classical statistics,
written by the pioneers (Neyman 1957; Fisher 1955), recent philosophical work on the classical
account (Mayo 1996; Spanos 2011), and also overviews of the Bayesian standpoint (Press 2002;
Howson and Urbach 2006; Gelman et al. 2013; Earman 1992).

2 An exception is the literature on model selection, i.e., finding the optimal model, including the
philosophical discussion on what criteria are adequate (see Romeijn 2017 for references). How-
ever, this literature takes modeling for granted and starts from there.

3 Lenhard (2006) provides much more historical and mathematical detail to this argument.

4 For a sample, see Hacking (1965), Gigerenzer et al. (1989), or Lehmann (1993).

5 Examples are principal component analysis for data reduction, see Jolliffe (2002), or support vec-
tor machines, see Vapnik (2006).

6 Pearl (2000) has elaborated the machinery of causal inference based on (Bayesian) networks.
However, he has dropped the claim of doing without modeling, but assumes a causal model and
then shows how to refine and modify it based on the data.

7 The Stanford Encyclopedia of Philosophy has entries on the philosophy of statistics (Romeijn 2017)
and a separate one on Bayesian epistemology (Talbott 2016). Part of “formal epistemology,” too.
Taken together, these provide a guide to the large body of philosophical literature on Bayesianism.

8 At the heart of MCMC is how fast Markov chains converge to their equilibrium distribution.
Obviously, simulating random walks fits exactly to the iterative capacity of the computer.

9 Quite different from a Bayesian, a frequentist considers the probability of an event as the fraction
of occurrences in repeated trials.

10 Greenland further acknowledges that this theme is not new, but also has been brought up repeat-
edly by Good (1983), Diaconis and Freedman (1986), or Samaniego and Reneau (1994).

11 This capability is based heavily on adaptable parameters, especially on priors that can be changed
to increase the ability of a model to mimic the data—quite in line with our prior analysis of MCMC.
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MODELS, DATA MODELS,
AND BIG DATA

Leticia Castillo Brache and Alisa Bokulich

1. Introduction

Although the distinction between models and data may be intuitively clear, adequate
definitions can be surprisingly subtle and elusive, and the relationships between models
and data can turn out to be quite complex. Data can be defined as records of a process of
inquiry, involving causal interactions with features of the world (e.g., Bokulich and Parker
2021; Leonelli 2016). Data are typically the results of experiments, measurements, or ob-
servations and are usually (though not necessarily) represented numerically. Data models,
by contrast, are usually thought of as an organized or processed version of a data set de-
signed to help the data serve as evidence for various purposes. The line between models and
data can be blurred due to what Paul Edwards (2001, 2010) calls model-data symbiosis,
according to which not only are models data-laden, but data are also model-filtered.

This chapter provides an introduction to these issues as well as other issues that arise
out of the complex relationship between data and models. It starts off by exposing differ-
ent views about data. The chapter moves then, in the section titled “Data Processing and
Model-Data Symbiosis,” to explain the complexities that arise out of the relationships
between data and modeling. In the subsequent section, the processes of data reuse, data re-
purposing, and data rescue are explored and the differences between them and how they are
useful under different circumstances are explained. In the penultimate section, the impor-
tance of metadata and data empathy and issues in big data are discussed. The chapter con-
cludes by highlighting central debates in data ethics, including the problem of “dirty data.”

2. Measurements, raw data, and data models

Although there are different conceptual views of data, including the relational account of
data (Leonelli 2015) and the pragmatic-representational account of data (Bokulich and
Parker 2021), these views agree that data are made, not given, and that while data may be
causally tied to the world, they are not perfect in capturing it.

Typically, in science, data are the outcomes of various measurements or observations.
Thus, further philosophical insight into the nature of data can be gained by relating it
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to work in the philosophy of measurement. Following official guidelines on measurement
from metrological organizations such as the International Bureau of Weights and Measures
(BIPM), it has become standard to distinguish between a measurement “indication” and
a measurement “outcome.” Eran Tal (2017), for example, explains that an indication is a
preliminary property of the measuring instrument, whose information is to be used as a
basis from which to infer a measurement outcome, which by contrast is a claim about the
object or system being measured. A measurement outcome requires taking the instrument
indication—often along with other measurement indications, background knowledge, or
other resources—and using it as a basis from which to calculate or infer that a particular
property or value can be ascribed to the object or system being measured. Because this
process requires having an abstract and idealized model of the measurement process, Tal
(2012, 2017) refers to it as a model-based account of measurement. The output of this
process can then be collected as data.

Even after the data are collected, the resulting data set often needs to be further pro-
cessed, converted, or corrected before it can be used as reliable evidence. Take, for example,
a mercury thermometer. In addition to the implicit conversion of data about the height of
a mercury column (measured in millimeters) into data about temperature (measured in
degrees Fahrenheit or Celsius) that is automatically performed by a well-calibrated ther-
mometer, a doctor may need to further adjust the temperature data based on how the ther-
mometer reading was taken (e.g., orally) and perhaps involving a child who did not keep
the instrument properly under their tongue for the full time (an imperfect measurement pro-
cedure was followed). In other cases, one might make multiple temperature measurements,
taking the average before ascribing a final temperature to the system being measured. In
all these cases, one is taking what might be described as “raw data” and converting it into
a data model that can more reliably be used as evidence about some claim, such as the
health of the patient. The notion of raw data is a slippery one and is often used in a relative
rather than absolute sense to mean any given data set before some further data processing
is applied (Bokulich 2018/2021; Bokulich and Parker 2021). To further complicate the
distinction between raw data and data models, many instruments (such as the thermometer
described above) have some form of data processing built in, so that even the seemingly
raw data coming out of the instrument already contain a significant level of theory-based
data processing.

In sum, data models are data sets that have been processed in some way in order to make
salient some features that the data are intended to capture, hence enabling them to better
serve as evidence in some context of inquiry. The next section describes the various ways
data can be processed in order to construct a data model and the central role that tradi-
tional theoretical models can play in that process.

3. Data processing and model-data symbiosis

Paul Edwards (1999, 2010) has argued that data and theoretical models are part of an
interdependent and mutually beneficial relationship he calls model-data symbiosis. Model-
data symbiosis involves two components. On the one hand, models are data-laden, in
that large quantities of data can go into the construction, calibration, and evaluation
of scientific models. On the other hand, and more controversially, data are also model-
filtered—theoretical models can play a central role in data processing. There are many
different ways that data can be processed into a data model in order for it to be used as
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evidence, many of which can make use of substantive theoretical models. Bokulich (2020b)
provides a taxonomy of seven different ways that data can be model-filtered. Each of these
is explained below.

The first processing technique, which was already discussed, is data conversion, where a
measurement of one quantity is converted into a measurement of a different quantity. Data
conversion can involve conversions about the same quantity or different quantities. For ex-
ample, one may use data conversion to figure out what the temperature is in Celsius if one
has the value in Fahrenheit. In this case, the conversion is about the same quantity, namely
temperature. Alternatively, when one uses data conversion to figure out, say, the momen-
tum of an object by combining its mass and velocity, one can say a conversion between
different quantities is being done. Data conversion is one of the most common processing
techniques used in everyday life.

Second, one can model unwanted influences on a measurement process and then remove
them in a process of data correction. This involves knowing the magnitude of an error in
order to correct for it. For example, one can use data correction when a kitchen or bath-
room scale is not calibrated in order to correct for the incorrect value. In instances in which
it is observed that a scale does not start off with a zero quantity, it must be corrected for
by adding or subtracting the right value after getting the measurement indication in order
to get an accurate measurement result. Certainly, no measurement is perfect, so modeling
sources of error is of key importance in order to get accurate results. How precise one needs
to be with the measurements depends on how accurate of a result a research project needs.
The uncertainty budget for any project will depend on how fine a resolution is needed to
achieve the purpose of the research project. Knowing what level of precision is needed aids
in making the process of data correction successful.

Third, models of how a field quantity might vary spatially can be used to fill in gaps
in sparse data measurements through a process of data interpolation. For example, in the
medical field, doctors may be able to use the process of data interpolation to fill in missing
medical records from a patient, such as heart rate values or body temperature. In a case
where a doctor has recorded values every two hours, they can interpolate using the known
data to find the missing values of the hours they did not record. Data interpolation can
also be used to find patients’ missing individual variables such as body mass index (BMI),
systolic and diastolic blood pressure, and arterial oxygen saturation (Sa0,). The use of data
interpolation allows scientists to have more complete data samples for their studies.

Fourth, theoretical models can also be used to upscale data, which involves going from
a small to a large scale, or to downscale data, which involves going from a coarse to a
fine scale—these processes are known as data scaling. Examples of upscaling can be seen
in biological research, where scientists must upscale their laboratory findings in order to
understand how their results would affect complex ecosystems. This sort of upscaling is
necessary for the results of laboratory research to be usable in a broader sense. Examples of
downscaling, on the other hand, can often be seen in climate science with the development
of Regional Climate Models (RCM), which are used to understand local meteorological
parameters. RCMs have a much finer scale than their counterparts Global Climate Models
(GCM), which exist at a much larger scale.

Fifth, models can be used to assist in integrating diverse data sets in what is called data
fusion, also called data integration. The main function of data fusion is to combine het-
erogeneous data sources into a coherent product. For example, data fusion is often used
in neuroscience in order to get more complete images of the brain. A doctor might order
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different types of scans, such as MRIs, fMRIs, and EEGs, to better understand how a
patient’s neural activity might be currently affected by a disease, which in turn aids them in
recommending a more adequate treatment. Given that different kinds of data can be used
for data fusion, researchers must make sure that all the data used is commensurable and
meaningfully integrated.

Sixth, models can be used to address the uncertainty in both data and theoretical models
through an iterative, dynamic process known as data assimilation. Wendy Parker (2016)
defines data assimilation as “a process that relies on both observations and model-based
forecasts to estimate conditions” (2016, 1565). This processing technique happens when
models adjust their initial conditions to be more consistent with observed data. The adjust-
ment does not happen only once, but it is rather an iterative back and forth between model
prediction and empirical data. There are many examples of data assimilation in weather
forecast models. Parker (2017) explores a specific way in which atmospheric data assimila-
tion can play a role in computer simulations and highlights how the use of data assimilation
complicates the picture of what counts as a measurement given the entanglements between
observed measurements and model-based outputs.

Lastly, artificial or synthetic data can be generated as the output of computer simulation
models. Synthetic data can be used to test algorithms in such a way that private informa-
tion can be fixed and exchanged for synthetic identifiers, which in turn helps protect an
individual’s privacy. For example, instead of using private individual information, one can
run the information through an algorithm to get the values of interest and replace the indi-
vidual’s private information with synthetic identifiers. The synthetic data produced has the
information that needs to be recorded without it being attached to someone specific.

These complex and interdependent relations between models and data illustrate the idea
of model-data symbiosis and are essential practices across the sciences and, indeed, most
areas of data-intensive inquiry. Processes that allow data to be more accurate for research
purposes are, e.g., data conversion, data correction, and data assimilation. Other processes
that allow for more complete sets of data for model evaluation are, e.g., data interpolation,
data fusion, and data assimilation. Lastly, synthetic data allow models to explore possible
worlds and test various data processing methods. All in all, model-data symbiosis high-
lights the beneficial reciprocal relationship between models and data.

4. Data reuse, data repurpose, and legacy data

Although data are often collected for specific purposes, data sets can also be reused and
reprocessed for different ends. Although data reuse and data repurpose are sometimes
used interchangeably, Bokulich and Parker (2021) argue that a key difference should be
drawn between them. Data reuse is best understood as using a given data set to reinter-
rogate the same question multiple times, typically refining the analysis and improving the
study’s reliability. On the other hand, data repurposing involves using the same data set to
answer a different question. Data repurpose highlights the ability of a data set to answer a
wide variety of different questions, not just the initial purpose it may have been collected
for. Both data reuse and data repurpose require that different methods of data process-
ing (e.g., data correction or data conversion) be applied and are often undertaken when
new discoveries, methods, or technologies come to light that allow further information
to be extracted from a given data set. Indeed, it is precisely the ability of a data set to be
reused and reprocessed that drives the open data movement to preserve data and make it
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permanently findable and accessible in public databases (more on what are known as the
FAIR data principles below).

Two further key concepts are legacy data and data rescue. Legacy data (also sometimes
referred to as dark data) are data that are no longer accessible or usable in their current
form. This can occur for a variety of reasons: the data may be stored in a substrate (e.g.,
handwritten in a ship’s log or scientist’s lab notebook) that either has not been digitized yet
or perhaps even if digitized, might not be properly processed or stored to be usable today.
It is important to exercise proper care to update data and data storage systems, backup
systems, and error-checking procedures. Data require different kinds of maintenance in
order to continue to be usable. Moreover, it is also important to update data standards
as they evolve with time. Legacy data can also arise when the data have been collected or
processed using instruments or information that is out of date. For example, the values of
the fundamental physical constants are periodically remeasured and updated to more ac-
curate values (e.g., Bokulich and Bocchi 2024). In order for these data sets that make use of
those constants to be integrated (e.g., through data fusion) or meaningfully compared with
other more recent data sets, they need to first be reprocessed in light of the new community-
accepted constant values, standards, and protocols (Bokulich 2020a).

When researchers set out to find legacy data and make it accessible and usable again,
this is known as data rescue. Why rescue legacy data? Why not just perform new measure-
ments with the latest instruments and protocols? There are a number of reasons: Many data
sources are ephemeral (e.g., historical weather events) and so cannot be remeasured because
they no longer exist. Further, data can be extremely difficult and expensive to collect. These
are in fact key drivers of the open data movement, which emphasizes the importance of en-
suring that data remains accessible and usable for future projects (i.e., reuse and repurpose).
Whether it is changing the substrate of the data set as part of a data rescue or reprocessing
the data in light of new information or purposes, these transformations illustrate what is
more broadly called data journeys (Leonelli and Tempini 2020).

5. Metadata and data empathy

Proper interpretation and use of data typically require what is known as metadata. Meta-
data (i.e., data about the data) is information about how, when, why, and by whom the
data were initially collected. It can involve a detailed specification of what above was called
a model of the measurement process: What types of instruments or measurement protocols
were used to collect that data? When were they collected, and under what circumstances?
What data correction or processing has already been applied? If fundamental constants
were used in the production of the data set, what values for those constants were used (e.g.,
Bokulich and Bocchi 2024)? Metadata is essential, because as new sources of error are iden-
tified in the measurement or data-collection process, or more generally as new theoretical
insights come to light, metadata allows researchers to assess the impact of new information
on the data set and correct it appropriately, thereby extending the life of the data. Not only
this, but also having the necessary metadata along with different lines of evidence allows
for what Nora Boyd (2018) calls “enriched evidence,” which she argues allows the results
of scientific research to be repurposed across different contexts.

In many scientific contexts, there has been a call for some standardization of the metadata
collected as a way to advance the project of open science. However, it is important to rec-
ognize that different pieces of metadata are of different significance to each field. Therefore,
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one would expect that the standardization of metadata will look different for different fields
if the purpose is to make the data more widely useful. This raises several questions: How
can scientists create open databases that include all the different kinds of metadata needed
for different scientific fields? How do scientists decide what information should be included
and what information can be ignored? These are some of the difficult questions that must
be confronted in efforts to standardize metadata and figure out best practices.

While the notion of metadata is relatively straightforward, some have gone a step fur-
ther, arguing that researchers should also consider what has been called “data empathy.”
James Faghmous and Vipin Kumar argue, “Every dataset has a story, and understanding it
can guide the choice of suitable analyses; some have labeled this data understanding as data
empathy” (2014, 157). Similarly, Anissa Tanweer and colleagues write, “data empathy
refers to developing this ability for sharing and understanding different data valences, or
the values, intentions, and expectations around data. Data empathy is an ethical and epis-
temological approach” (2016, 2). In the context of climate data, Stefan Bronnimann and
Jeannine Wintzer emphasize that knowledge about the broader context in which the data
were collected or produced is an essential part of data empathy. They write, “atmospheric
data sets also embed political, economic, technological, and cultural histories. The context,
however, is often overlooked, and not provided along with the data. We term awareness
of and sensitivity to context-dependence climate data empathy” (Bronnimann and Wintzer
2019, 1). The history, philosophy, and sociology of science, broadly construed, have an
important role to play in recontextualizing data, identifying their valences, and drawing out
their epistemic, social, and moral implications (some of these moral dimensions of data are
further discussed in the Data Ethics section below).

6. Big data

Technological advancements have allowed for much faster collection, storage, and process-
ing of data sets from many different sources, including people’s digital footprints. It has
become common to characterize big data in terms of a number of various “Vs” (e.g., Leo-
nelli and Beaulieu 2022). These can include volume, velocity, variety, validity, volatility,
and vulnerability. Volume obviously refers to the large quantity or “bigness” of big data.
What counts as big data has certainly evolved over time. For example, William Whewell’s
“Great Tide Experiment” of 1835 (e.g., Reidy 2008), which collected half a million data
points on simultaneous tides around the globe, every 15 minutes over two weeks, measured
by a hodge-podge of deputized “scientists,” ranging from members of the British Navy and
officers in their colonial outposts to various missionaries and ordinary citizens around the
globe, was certainly a “big data” project for its time, though not one that would be consid-
ered a large quantity of data today. Some, such as Leonelli (2020), have argued that size is
not big data’s most salient feature. Equally important, if not more so, is big data’s velocity,
which refers to the speed at which large quantities of data can now be gathered, processed,
searched, and analyzed—aiding in the rapid identification of patterns and correlations,
transforming the traditional research process.

Big data’s variety refers to the great diversity of data sources that are being amalgamated
into a single database. In big data contexts, this often takes place in a more forced, hap-
hazard way than in traditional data fusion or data integration contexts, where the com-
mensurability of the data sets being combined is given more careful consideration. Related
to variety, Japec et al. (2015) discuss how one of the important characteristics of big data
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that often goes unrecognized is its derived, secondary nature—i.e., how it is “found” or
borrowed from a variety of primary data collections, rather than the data being “made”
or produced specifically for some intended purpose. Big data users often do not carry out
any observations, measurements, or experiments of their own; rather they compile differ-
ent kinds of data collected by others. This at times indiscriminate amalgamation of various
sources of differing quality—and perhaps even incommensurabilities—raises a number of
epistemological issues about validity (or veracity) and whether statistical methods can over-
come, or see through, the noisy data. For example, recently, social media data have been
used to examine things ranging from social media usage to national political sentiment. As
Japec et al. (2015) point out, however, social media data are not evaluated for accuracy and
can lead to erroneous results. Social media data also raise a number of issues, such as those
related to data ownership and privacy, which are discussed more below.

Another characteristic of big data is volatility, which refers to whether data remain avail-
able and usable despite changes in storage technologies or hosts. The continuous availabil-
ity of big data depends on substantial investments in infrastructure and maintenance, which
are required to host, back up, maintain, and update databases regularly and in perpetuity.
Finally, vulnerability raises familiar concerns, such as privacy and whether all data should
be open access. Information is power, and big data can be used to reveal sensitive informa-
tion even when it has supposedly been anonymized or redacted. Furthermore, making big
data available to anyone increases the potential for misuse of this data. Such concerns arise,
for example, in the context of climate data, where climate deniers may cherry-pick data or
analyze it using inappropriate methods to advance misinformation, disinformation, and
political agendas. Benchmarking tools attached to open databases might be one way to
address unintentional misuse of open data, though they are unlikely to address many prob-
lems. These last characteristics of big data point to the urgent need to develop adequate
data ethics theories, frameworks, and guidelines, as well as appropriate legislation.

The availability and prominence of big data are bringing about many transformations
in how data are collected, used, and stored, and in how research is conducted. Some such
as Foster et al. (2017) and Japec et al. (2015) have argued that big data poses a paradigm
shift in the social sciences, which traditionally have relied on survey data, given the new
ways in which human behavior is now being measured. Social scientists must adapt their
methodologies in order to successfully harness big data. Moreover, social scientists must
take precautions in using big data so as to prevent injustices that may arise due to the prob-
lematic nature of the data and algorithms being used.

A number of challenges also arise when big data is used for the development of con-
temporary generative Al systems such as Large Language Models (LLMs), including high-
profile examples such as ChatGPT. Current evidence suggests that these challenges are not
being adequately considered or addressed. Birhane et al. (2022) examined 100 highly cited
machine learning papers, only to find that the researchers rarely justify how their project
helps society (15%) and barely ever discuss potential negative effects (1%). This study gives
evidence for how the values currently used in machine learning further centralize power and
therefore continue to disproportionally benefit the already advantaged and harm the disad-
vantaged. Additionally, Birhane (2021) recognizes the possible ethical downsides to the use
of big data for machine learning due to the potential recurrence of unjust and discriminatory
patterns (such as the encoded values examined in Birhane et al. 2022) and calls for critical
work to be done on Al ethics, fairness, and justice. The next section elaborates further on
issues related to data ethics, which are now more prominent due to the spread of big data.
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7. Data ethics

Data ethics is a topic of critical importance, though one that has only recently begun to at-
tract attention, and there remains an enormous amount of philosophical work to be done.
Given the tremendous harm that may arise through big data, it is imperative that data be
produced, gathered, analyzed, and disseminated in ethical ways that take into account
the various stakeholders and the significant risks and harms that might arise for different
groups in various contexts. While some of these harms can be easily anticipated, others
may require investing in sustained interdisciplinary inquiry to identify (e.g., Creel and Hell-
man 2022).

Traditionally, ethical considerations about data have been very limited, with a focus on
thin principles such as FAIR, which stands for Findability, Accessibility, Interoperability,
and Reusability (e.g., Wilkinson et al. 2016). Despite the acronym “fair”, these princi-
ples are more concerned with maximizing the instrumental value or exploitability of data,
rather than any deeper issues of fairness or justice. For example, de Lima et al. (2022) point
out how rainforest data that satisfy the FAIR principles can still be extremely unfair for the
people who are actually on the ground making the forest measurements, i.e., gathering the
data, and adhering to the FAIR principles can even endanger the very natural resources that
the data were intended to protect.

Indigenous leaders have been at the forefront of developing deeper ethical frameworks,
such as the CARE principles of indigenous data governance (Carroll et al. 2020, Jennings
et al. 2023). CARE stands for Collective benefit, Authority to control, Responsibility,
and Ethics. Collective benefit calls attention to the importance of developing data in-
clusively and for equitable outcomes. Authority to control recognizes the rights of self-
determination, especially when it comes to whom the data is about. For example, genetic
data has long been collected from indigenous communities and used by researchers in
ways that have harmed—rather than benefited—those communities (Fleskes et al. 2022).
During the COVID-19 pandemic, data about rates of infection, hospitalization, and death
among Native Americans were aggregated by the U.S. government into a generic racial
and ethnic category of “Other” obscuring the impact that this disease was having on their
communities. Responsibility is understood as an obligation to nurture respectful relation-
ships, in this context with indigenous peoples, lands, and worldviews. Ethics requires
paying attention to one’s moral obligations, minimizing harms, maximizing benefits, and
advancing justice.

In addition to the FAIR and CARE principles, another central topic in the ethics of data
is privacy. Data are routinely gathered, aggregated, interrogated, and sold to other parties
about almost every aspect of our lives, from our online searches to our grocery shopping
habits. Even more troublingly, those data are used to manipulate everything from what
we buy to whom we vote for, with little regard to privacy and why it matters (e.g., Solove
2015). Currently, there are few data protections, and click-the-box informed consent ap-
proaches have proven woefully inadequate (Nissenbaum 2011). Helen Nissenbaum (2019),
for example, argues that we need a new, more complex approach to data privacy that she
calls the contextual integrity approach, which better governs data flow.

A final class of issues in data ethics concerns the ways in which data can encode and
reinforce cultural biases, such as sexism and racism. In their landmark article, Rashida
Richardson and colleagues introduce an expanded notion of dirty data to mean “data that
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is derived from or influenced by corrupt, biased, and unlawful practices, including data
that has been intentionally manipulated or ‘juked,” as well as data that is distorted by in-
dividual and societal biases” (Richardson et al. 2019, 195). Although their primary focus
is on data from corrupt police reports, racially motivated arrests, tampered evidence, and
over-policing of minority neighborhoods (data which then get fed back into policing algo-
rithms, sentencing algorithms, algorithms for risks of recidivism, in an ever-reinforcing and
self-fulfilling loop), the term “dirty data” as they note can be used to describe data tainted
by any sort of societal biases.

Big data that is indiscriminately collected from online and social media sources brings
with it the sexist and racist biases of that culture. In her paper “How Our Data Encodes
Systematic Racism,” Deborah Raji (2020) notes that Google image searches for “Black
girls” return primarily pornography; searches for “healthy skin” return only images
of White skin, despite the fact that Black/Brown/Colored skin is the norm worldwide.
This biased or “dirty” data then infects any machine learning or Al algorithms that are
trained on it, from education algorithms to the use of Al in medicine. In their AT Now
Report 2018, Meredith Whittaker and colleagues discuss a high-profile case from Ama-
zon corporation, whose hiring algorithm “learned” that men are more frequently CEOs
and so down-graded women applicant’s CVs from being considered for more prestigious
and higher paying jobs at the company (Whittaker et al. 2018, 38). These biases inherent
in the data then become entrenched in opaque and automated systems that are difficult
to interrogate, challenge, or change. These big data problems have profound and perni-
cious social consequences and are just some of the issues that data ethics will have to
confront.

8. Conclusion

This chapter has provided a philosophical introduction to the concept of a data model,
discussing the complex multi-layered relationship between data and theoretical models,
as well as the various processes by which scientists transform the “raw” data of measure-
ment indications into data models that can begin to serve as evidence for various claims.
Data can be model-filtered in many different ways, through processes like data correction,
conversion, and interpolation—leading to what is more generally known as model-data
symbiosis. These data processing techniques are critical for projects like data reuse, data re-
purposing, and data rescue. The chapter emphasized the importance of metadata—that is,
data about data—and even more subtly, what has been termed data empathy—a sensitivity
to the values and valences inherent in data sets. These are often the aspects of data that are
overlooked in the era of big data and can lead to various epistemic and ethical problems.
After reviewing some of the key characteristics of big data, the chapter discussed what are
known as the FAIR data principles and their limitations and concluded with a discussion
of the many ethical issues that arise in big data, ranging from “dirty data” to privacy.
Finally, a complementary set of data principles, arising from the work of indigenous schol-
ars, known as the CARE data principles, which reorient the traditional discussions about
data to broader ethical considerations, was outlined. Although any one of the topics in this
chapter could be its own volume, hopefully, the overview given here provides a founda-
tion for further critical philosophical work to be done on the philosophy of models, data
models, and big data.
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MODELS AND MEASUREMENT

Eran Tal

1. Introduction

Modeling and idealization play central roles in measurement. This may not be imme-
diately apparent. Measuring weight with a kitchen scale, for example, seems to be as
simple as placing an object on the weighing platform and reading the result off the dis-
play. Yet the reliability of the result is established by a long chain of inferences, which
direct-reading instruments like kitchen scales are designed to conceal. The complex epis-
temic “work” involved in measuring is revealed when one investigates the design, con-
struction, and calibration of measuring instruments and the measurement standards and
unit systems that guarantee their comparability. Such investigations reveal that models
and idealizations of various kinds are necessary for establishing what, and how well,
instruments measure. This holds true for physical measuring instruments like clocks
and thermometers as it does for non-material instruments like psychological tests and
questionnaires.

This chapter will discuss three kinds of models involved in measurement. Section 2 will
focus on how mathematical logic and model theory are used to elucidate the concept of
measurement scale. Section 3 will discuss two other kinds of models: statistical models of
data and theoretical models of the measurement process. The role of statistical and theo-
retical models in measurement has received increasing attention from philosophers over
the past two decades. Section 4 will elaborate on a specific view of measurement, known
as the model-based account, that has emerged from these discussions. Section 5 will offer
concluding remarks.

2. Models, homomorphisms, and measurement scales

The term “model” has multiple meanings in scientific discourse. Accordingly, there are dif-
ferent senses in which measurement can be said to involve models and modeling. One im-
portant sense of “model” comes from mathematical logic. Here, a model is understood as
a set of entities that satisfy a theory. A “theory” in mathematical logic is a linguistic entity,
namely a set of sentences in a formal language. A model of the theory is a non-linguistic
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entity of which those sentences are true (Suppes 1960, 290). For example, consider a theory
that contains only the following sentence:

For all a, b, and c:aO(boc) ~ (aOb)oc ,

where o is a binary operation and ~ a binary relation. One of the models of this theory is
the real numbers with the binary operation of addition (+) and binary relation of equal-
ity (=) among them. This is because for any three real numbers, x, y, and z, it is true that
x+(y+z)=(x+y)+z. The sentences of the theory are thus satisfied by the model. The
model is also called a “structure,” because it is composed of a set of entities along with
relations and operations among them.

Another model of the same theory is a set of physical, rigid rods, when ~ is interpreted as
a relation of equivalence among the lengths of two rods, and o is interpreted as the opera-
tion of end-to-end concatenation (combination) of two rods.! The sentence above is then
interpreted as the claim that the combined length of three rigid rods is indifferent to the
order in which they are combined.

This example shows that the same theory can sometimes be satisfied by both a math-
ematical model and an empirical model. This insight turns out to be useful for clarifying
the mathematical foundations of measurement. Numbers and other mathematical objects?
are commonly used to express the results of measurements. Such mathematical expressions
are meant to represent something empirical. For example, the outcome of measuring the
length and width of a desk with a measuring tape is intended as a representation of aspects
of that desk. Such representations are often expressed numerically, e.g., the desk’s length is
measured as 120 cm and its width as 60 cm. These measurement outcomes are mathemati-
cal representations of aspects of the desk on a particular scale, namely the centimeter scale.

The mathematical representation of empirical objects gives rise to a central question in
measurement theory: when is it justified to represent empirical objects and events math-
ematically? Philosophers of science, as well as scientists, have written extensively on the
nature and types of measurement scales, and on the conditions under which objects and
events may be represented on measurement scales (Helmholtz 1887; Campbell 1920; Ste-
vens 1946; Ellis 1966). Starting in the 1950s, Patrick Suppes and his colleagues showed that
an axiomatic, set-theoretical approach is useful for such investigation (Suppes 1951). In the
decades that followed, this approach was developed into the Representational Theory of
Measurement (RTM) (Krantz et al. 1971).

In RTM, one begins with a set of formal assumptions (“axioms”) about the relations
among empirical objects or events. Suppose that one is interested in measuring the lengths
of solid rods in a given set. The first step is to list axioms, namely, sentences that are as-
sumed to be true for the solid rods in the set. One such sentence may be the one mentioned
above (“For all a, b, and c: g o (b ° c) ~ (a ob)oc 7). This axiom is called “weak associativ-
ity.” Additional axioms may be listed, together forming a theory. For example, the theory
called “positive closed extensive structures” lists weak associativity alongside four other
axioms (Krantz et al. 1971, 73).% If the set of solid rods and their relations satisfy all five
axioms, then the solid rods and their relations constitute a model of the theory of positive
closed extensive structures. This model is called an “empirical relational structure” because
it is composed of empirical objects and relations among them.

The crucial move in justifying the assignment of numbers to the lengths of solid rods is to
show that the same five axioms are also satisfied by another structure, namely a numerical
relational structure. RTM proves that the “positive real numbers with the usual ordering
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> and addition + provide a model for the axioms” of positive closed extensive structures
(Krantz et al. 1971, 77). The two models — the empirical structure of solid rods along with
ordering and combination relations among them, and the numerical structure of positive
real numbers along with ordering and addition relations among them — satisfy the same axi-
oms and therefore have a shared structure. The statement of this shared structure is called
a “representational theorem” because it guarantees the possibility of representing empirical
entities with mathematical ones. Due to the shared structure of the two models, it is pos-
sible to construct a mapping function (a “homomorphism”) that matches specific rods with
specific numbers and specific operations among rods (such as concatenation) with specific
operations among numbers (such as numerical addition).

Measurement scales are such mapping functions. For example, the meter scale of length
can be understood as a homomorphic function, from physical objects (along with specific
relations among them) into the positive real numbers (along with specific relations among
them), which assigns the number 1 to the standard meter. The analysis of measurement
scales as structure-preserving functions has resulted in a systematic typology of measure-
ment scales and a clear understanding of the invariance and meaningfulness of quantitative
representations (Narens 2002). It has also led to unexpected new results. For example,
RTM shows that under specific conditions, a quantitative representation of an empirical at-
tribute is justified even without assuming the existence of a concatenation operation (Luce
and Tukey 1964). This result is often cited as vindicating the quantification of mental at-
tributes, for which concatenation operations are not available. An in-depth introduction to
representational measurement theory is by Luce and Suppes (2002).

3. Statistical and theoretical models

In addition to their role in elucidating the concept of measurement scale, models are also in-
volved in the process of designing measurement procedures and analyzing their results. The
two main kinds of models used at these stages are statistical models of data and theoretical
models of the measurement process. These are models in a different sense of “model” than
in mathematical logic. Contemporary philosophers of science use the term “model” with
a variety of meanings, several of which are covered in other chapters of this Handbook.
In what follows, the term “model” will be used to denote an abstract entity that is used
to approximately represent a system or a type of system. Models are constructed from as-
sumptions that may be theoretical, statistical, pragmatic, or of some other kind. Models are
idealized, that is, they involve deliberate distortions of the target system, such as point par-
ticles and massless springs. While models often borrow assumptions from a theory, models
function autonomously from theories and are more detailed and narrower in scope than
theories (Giere 1988; Cartwright, Shomar, and Sudrez 1995; Morgan and Morrison 1999).

3.1 Statistical models of data

The first kind of model in the above sense that this chapter will discuss is statistical models
of data. The concept of data is itself multifaceted, and different definitions have been of-
fered. This chapter will follow Bokulich and Parker in understanding data as “records of
the results of a process of inquiry that involves interacting with the world” and as “taken
to be about one or more aspects of the world, namely, those thought to be involved in a
particular process of inquiry” (Bokulich and Parker 2021, 6-7).
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Measurement involves the production of at least two kinds of data. First, measuring
procedures produce records of instrument indications. Instrument indications are the final
states of the measuring system once the measurement process is complete. Examples of
instrument indications are the displacement angle of an ammeter needle, the color of a
pH test strip after being dipped in a solution, and a subject’s responses to a questionnaire.
Instrument indications are usually recorded in some form, such as handwritten marks or
symbols, photographs, graphs, audio recordings, or bits in digital computer memory. Re-
cords of instrument indications are an important kind of data and serve as evidence for
knowledge claims about the values of the attribute intended to be measured. To continue
the same examples, records of the displacement angle of the ammeter needle may be used to
infer the intensity of electric current; the color of the pH test strip may be used to infer the
acidity of the solution; and responses to the questionnaire may be used to infer the subject’s
degree of happiness. Knowledge claims about these attributes are known as “measurement
outcomes” (or “measurement results”). Measurement outcomes are claims about the object
or event being measured, rather than about the final state of the measurement process. They
are often expressed in numerical form on a specific scale and involve uncertainty, such as
the claim that the current in the wire is 0.5 = 0.02 ampere.

A second kind of data produced in measurement, then, are records of measurement out-
comes. These often take the form of numerals, graphs, or maps, and may appear on paper
or be stored digitally. In some cases, records of measurement outcomes seem deceptively
similar to records of instrument indications. This is especially the case for direct-reading
instruments such as household measuring tapes and kitchen scales, which are pre-calibrated
to indicate numerals corresponding to an estimate of the value of the quantity of inter-
est. The design of such instruments provides the illusion that the value of the quantity is
read directly off their displays. Yet the road from instrument indications to measurement
outcomes turns out to involve non-trivial and often complex model-based inferences. In-
strument users typically “outsource” these inferences to the scientists and engineers who
design measuring instruments, and to metrologists, i.e., scientists who specialize in accurate
calibration and maintain measurement standards.’

One source of inferential complexity in measurement is that data of the first kind —
records of instrument indications — tend to be idiosyncratic and high-dimensional. Instru-
ment indications are idiosyncratic insofar as they are the product of many local factors
besides the attribute of interest. Indications are affected by the way instruments are de-
signed and operated, by the way the object of interest is isolated and prepared, and by
elements in the environment. Many of these factors are difficult to predict or control, such
as small temperature fluctuations in a physics lab or day-to-day fluctuations in the mood
of participants in a survey. Some data artifacts, such as the effects of eye blinking on EEG
recordings or the geometric distortion of fMRI images, can be predicted and corrected, but
often only imperfectly. Instrument indications are also often of much higher dimensionality
than the variable of interest. For example, the verbal comprehension index of the Wechsler
Adult Intelligence Scale (WAIS-IV) is calculated from responses to three or four subsets
of questions. Each subject generates up to 92 distinct data points — answers to individual
questions — that are then used to calculate a single number representing the subject’s level
of verbal comprehension. This sort of steep reduction of dimensionality from instrument
indications to measurement outcomes is commonplace.

Statistical models of data are abstract and approximate representations of data that are
used to reduce the complexity and dimensionality of data and to identify patterns of interest
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in data. They do so by employing a wide array of statistical techniques, from simple linear
regression to sophisticated Monte Carlo methods.

A common application of statistical models is the analysis of indications from repeated
measurements of the same attribute. When a measurement procedure is repeatedly applied
to the same (or relevantly similar) object or event, the resulting instrument indications often
vary. This is because some extrinsic factors vary as the measurement is repeated. Modeling
the distribution of repeated indications is helpful for evaluating the influence of extrinsic
factors on indications, and hence for evaluating measurement precision. For example, when
a stopwatch is repeatedly used to measure the period of a pendulum, it usually yields a
somewhat different reading with each use. One cause of variability is that human users
are somewhat inconsistent in identifying the beginning and end of pendulum periods. The
numerals displayed by the stopwatch are recorded, thus producing data of the first kind,
i.e., records of instrument indications. A common method of inferring the period of the
pendulum (the measurement outcome) from stopwatch indications is to model the distribu-
tion of indications as a Gaussian (“normal”) distribution. This is an example of a statistical
model of indication data.

The Gaussian model is an abstract and approximate representation of the data. The
concrete data — records of individual stopwatch readings — are discrete and have a finite
range. By contrast, the ideal Gaussian distribution is defined over a continuous variable of
infinite range. Nonetheless, the Gaussian model is a highly useful simplification that allows
scientists to infer a value range of the quantity of interest from the data. In this case, the
period of the pendulum can be estimated as the distribution mean of stopwatch indications.
Similarly, the uncertainty concerning the period of the pendulum due to varying extrinsic
factors can be evaluated as the standard deviation of the mean.*

Extracting the mean and standard deviation from a Gaussian model of repeated instru-
ment indications is often useful but is neither necessary nor sufficient for arriving at a reli-
able estimate of the quantity value of interest (e.g., the period of the pendulum). It is not
necessary because repeated instrument indications do not always approximate a Gaussian
distribution. Depending on the kind of measuring system and object being measured, other
statistical models may be a better fit. For example, electrical engineers use a variety of statis-
tical models to characterize the random fluctuations of an oscillator, such as a quartz crystal
oscillator used in many clocks. These models represent different patterns of noise — such
as white noise, flicker noise, and random walk noise — as different power functions of the
oscillator’s Fourier frequency. This in turn allows engineers to calculate the contribution
of random fluctuations to the uncertainty of clocks at different run times. To return to the
same example, the noise associated with stopwatch indications is an additional source of
uncertainty about the pendulum period, in addition to the variability of the operation of the
stopwatch by humans. Hence several different statistical models of instrument indications
may be combined to evaluate measurement uncertainty.

Despite their usefulness, statistical models of repeated indications are generally insuf-
ficient to arrive at a reliable measurement outcome. This is because other sources of un-
certainty may be present that cannot be identified by such models. Measurement is usually
affected by systematic biases, that is, biases that do not behave randomly. The person op-
erating the stopwatch may have a delayed response, resulting in systematically biased time
readings. The stopwatch may have been imperfectly calibrated, such that its “second” is
somewhat longer or shorter than the standard, SI second. This would lead to a clock in-
dication error that increases linearly with time. The stopwatch may also suffer from a
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systematic frequency drift, such that its “second” becomes shorter or longer over time. This
would lead to a non-linear clock indication error. Additional sources of uncertainty depend
on the precise definition of the quantity of interest. For example, one may be interested in
measuring the pendulum period at sea level. If the pendulum itself is located somewhat
above or below sea level, a correction to the indicated period would be required to infer
the period at sea level. This correction would involve a secondary measurement of the dif-
ference in gravitational potential between the location of the pendulum and sea level. This
secondary measurement itself would involve some uncertainty, which would affect the total
uncertainty associated with the outcome of the pendulum measurement.

In all the examples in the previous paragraph, the extent of uncertainty cannot be calcu-
lated as a statistical property of repeated instrument indications. The biases have a non-zero
expectation value — they do not “average out” — across repeated applications of the meas-
urement procedure and are therefore not estimable from the variation of indications alone.
Rather, the uncertainty in these examples depends on substantive features of the instru-
ments used, the object being measured, the persons performing the measurement, and the
environment, as well as on the quality of background knowledge, measurement standards,
and calibration procedures. The evaluation of such uncertainties requires theoretical mod-
els of the measurement process, which will be discussed below.

Besides statistical models of instrument indications, measurement may involve statistical
models of measurement outcomes. Such models are often useful for comparing different
measurement outcomes for mutual compatibility. In the physical sciences, measurement
outcomes are commonly reported alongside an uncertainty margin. Such uncertainty mar-
gins may be over- or under-estimated, and this can be discovered when different measure-
ments of the same quantity are compared to each other. For example, the velocity of light
in a vacuum has been measured in different ways since the late 19th century. Some of the
reported values, especially during the 1920s and 1930s, were significantly lower than the
currently accepted value, even after taking into account their reported uncertainty margins
(Henrion and Fischhoff 1986). This suggests that the uncertainties of those measurements
were under-estimated. A common method of determining whether different measured val-
ues agree within their respective reported uncertainties is to calculate their Birge ratio (Birge
1932). This ratio is based on a statistical model that views each measurement as an inde-
pendent sample from a larger set of potential measurements. The ratio is equal to 1 (agree-
ment) when the reported uncertainties match the variability among measured values. Large
deviations from 1 indicate that uncertainties have been over- or under-estimated. Such tests
for agreement among measurement outcomes are especially important for adjusting the
accepted values of fundamental physical constants (Grégis 2019).”

3.2 Theoretical models of the measurement process

The previous section showed that statistical models of data are highly useful for meas-
urement. At the same time, inferring measurement outcomes from instrument indications
requires more than a statistical analysis of indications. Patterns of distribution and cor-
relation among the indications of instruments cannot by themselves establish which - if
any — attribute the instrument is measuring, nor how well it is measuring that attribute.
Substantive assumptions about the measurand - i.e., the attribute intended to be measured —
and the measurement process are also needed. Examples of substantive assumptions al-
ready encountered above are the assumption that the stopwatch suffers from a constant
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frequency drift and that the pendulum’s period is affected in a specific way by its vertical
distance from sea level. These assumptions are theoretical, that is, they concern the consti-
tution, internal dynamics, and mutual interactions of elements of the measurement process,
as well as elements of the calibration process.®

Taken together, such assumptions are often used to construct a theoretical model of the
measurement process. As in the previous section, the term “model” is meant to denote an
abstract and approximate representation of a system. Like statistical models of data, theo-
retical models of measurement processes are idealized, and describe the components and
dynamics of the measurement process in a somewhat simplified way. The frequency drift of
a real stopwatch is not exactly constant and the formula that corrects the period of a pen-
dulum for elevation differences is not exact. Corrections can be introduced into the model
to make it more realistic, but no model captures the full complexity of the measurement
process, and some degree of idealization is inescapable. As will be discussed below, idealiza-
tion is not a weakness, but an essential feature of measurement. For example, idealizations
are necessary for justifying claims about measurement accuracy. They are also necessary
for establishing which quantity an instrument measures, and for deciding whether different
instruments measure the same quantity (Tal 2019).

There are different ways to model a measurement process theoretically. If a full-fledged
theory of the measurand is available, it will usually contribute to the construction of a
theoretical model of the measurement process. For example, contemporary acoustic gas
thermometry exploits known relations between the temperature of a monatomic gas such
as helium and the speed of sound in that gas. These relations are predicted by thermody-
namics, and used as key assumptions in the theoretical model of an acoustic gas thermom-
eter (Moldover et al. 2014). Nonetheless, a mature theory of the measurand is not necessary
for the construction of a theoretical model of the measurement process. During the 1830s
and 1840s, the study of temperature lacked an agreed-upon theory, and thermometry was
developed mainly empirically, by comparing the behaviors of different putative thermom-
eters (Chang 2004, chap. 2). Still, some substantive assumptions had to be made to make
such comparisons possible. For example, temperature was assumed to be a single-valued
(i.e., one-dimensional) property, to be roughly correlated with human sensations of heat
and cold, and to cause the monotonic expansion of thermometric fluids such as mercury
and air. These assumptions formed the basis for an elementary and crude theoretical model
of early thermometers that was later refined.

The last example shows that a theoretical model of the measurement process need not
be quantitative. In many cases, substantive assumptions about the measurand and the in-
strument are qualitative. For example, a widely used method in educational assessment is
to specify a construct map, which describes the skills and content a student is expected to
command at each level of their study of a given topic (Wilson 2009). This map is used to
design tests for assessing student achievement, and is iteratively improved with feedback
from educators, test designers, and test scores themselves. Such construct maps can be
viewed as sets of qualitative theoretical assumptions about what the test is measuring and
how specific questions on the test assess different levels of achievement.

In other cases, a theoretical model of the measurement process is specified either par-
tially or completely in quantitative terms. When designing a new measuring instrument,
contemporary metrologists typically express each of their theoretical assumptions as an
equation that relates two or more physical quantities to each other and then use these
equations to derive the expected relationship between the indications of the instrument
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and measurement outcomes. For example, a Kibble balance (also known as watt balance)
is a sensitive instrument for realizing the definition of the kilogram. It works by linking the
mass of an object placed on the pan of the balance with the Planck constant, a fundamental
physical constant that since 2019 has served to define the kilogram. The linking of mass
to the Planck constant is achieved by specifying a set of theoretical equations that describe
how different quantities are related to each other through the operation of the balance.
According to these equations, the balance relates (i) mass to electric current and magnetic
flux density, (ii) magnetic flux density to voltage, and (iii) voltage and electric current to the
Planck constant.” The theoretical model of the balance, therefore, establishes an inferential
link that allows metrologists to use the indications of the balance to measure the mass of
the object in terms of the Planck constant. It is impossible to understand the design and
function of a Kibble balance without being familiar with the quantitative theoretical model
of the instrument and with background physical theories, such as quantum mechanics and
electromagnetism.

This example illustrates that in contemporary physical sciences and engineering, a theo-
retical model of the measurement process is an essential part of measurement itself. The
theoretical model specifies the quantity intended to be measured, provides the rationale for
the design and operation of the instrument, provides the justification for inferring values of
the measurand from instrument indications, and underlies (together with statistical mod-
els of data) the evaluation of accuracy and error. The centrality of theoretical models to
measurement is closely linked to the centrality of theory itself. As Bas van Fraassen notes,
scientific theories provide the logical space in which measurement locates objects and events
and specify which kinds of objects or events can be located in that space (2008, 164).

The distinction between theoretical and statistical models is useful as an analytical
tool, but in practice, it is often blurry. Scientists who design, test, and calibrate measur-
ing instruments frequently use a combination of statistical and theoretical assumptions
to construct their models. For example, when a caliper is calibrated against gauge blocks
(metal objects of known length), scientists are interested in learning the functional rela-
tion between the indications of the caliper and the lengths of gauge blocks. The response
function of the caliper is typically calculated via simple linear regression, that is, by find-
ing a linear function that best fits the data. Among other assumptions, the model assumes
that the caliper’s response function is linear and that the variance of errors does not
depend on the value of the independent variable (i.e., the length of the gauge blocks).
The first assumption would usually be considered theoretical and the second statistical.
However, this classification matters little for the practical conduct of measurement, and
the resulting model can rightly be called “theoretical-statistical.” The distinction between
the two types of models is an abstraction that helps philosophers trace different traditions
and bodies of knowledge that are involved in model building, rather than a substantive
demarcation.

4. A model-based account of measurement

The understanding that theoretical and statistical models are central to measurement has
led to a novel understanding of measurement itself and the ways measurement produces
knowledge. Starting in the early 2000s, the centrality of theoretical models to measure-
ment became increasingly recognized by philosophers including Marcel Boumans (1999;
2005), Mary Morgan (2001; 2007), and Margaret Morrison (2009). Boumans and
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Morgan showed that theoretical models in economics are used to generate measurements
of economic variables, such as price levels, and that such models are calibrated in a similar
way to physical measuring instruments. Morrison argued that theoretical models of physi-
cal measuring instruments, such as a pendulum for measuring gravitational acceleration,
are necessary for justifying the approximation techniques that guarantee the accuracy of the
measurement outcome (2009, 35).

These insights, along with lessons from the empirical sciences, gave rise to the model-
based account of measurement (Tal 2011, 2016b, 2019; Parker 2017; McClimans, Browne,
and Cano 2017; Basso 2017, 2021). According to the model-based account, the aim of
measurement is to evaluate one or more parameters in an abstract and idealized model of a
process, based on the final states of that process and additional information. Measurement
is considered successful to the extent that the evaluation meets certain desiderata, includ-
ing coherence, objectivity, and accuracy. This section will briefly clarify how the aims and
quality of measurement are conceptualized under the model-based account.

Under the model-based account, measurement consists of two levels, one concrete, and
one abstract. The concrete level is a process, such as the process of a triple point cell inter-
acting with a platinum resistance thermometer and generating an indication, or the process
of a person responding to questions on the WAIS-IV. The second, abstract level, is a model
(or sometimes several models) representing the processes mentioned above and the elements
that compose them. The model is constructed from theoretical and statistical assumptions
about the nature, structure, composition, and dynamics of different elements of the meas-
urement process and the interactions among them.

Viewing measurement in this way provides new solutions to long-standing epistemo-
logical problems. One such problem is the possibility of evaluating measurement accuracy.
A naive realist may think of measurement accuracy, as the closeness of the measured value
to the true value of the measurand, where a value true is taken to be independent of human
beliefs and practices.!® The main difficulty with this view is that scientists have no reliable
cognitive access to measurand values other than through measurement, which involves
human beliefs and practices. Consequently, scientists have no access to true measurand
values and no way to evaluate measurement accuracy in accordance with its naive realist
conception. Indeed, for a naive realist it is possible for all the measurements ever taken
of a given quantity — say, the melting point of copper — to be arbitrarily distant from its
true value, even if the measured values are mutually consistent and cohere with accepted
theories.

Alternatively, under an extreme form of operationalism, the quantity to be measured
is defined by the operation of its measurement (Bridgman 1927). Temperature, for exam-
ple, is defined by the operation of a given thermometer. By definition, each measurement
operation produces a perfectly accurate evaluation of its own sui generis quantity. If two
thermometers seem to disagree, it is only because each of them measures a different type
of quantity, which may be labeled “temperature-A” and “temperature-B.” A slightly more
moderate version of operationalism would maintain that measurement outcomes are ac-
curate relative to the outcomes of a standard measurement procedure. In this case, the dif-
ficulty for an operationalist is justifying the claim that the standard procedure measures the
same type of quantity as the procedure being evaluated for accuracy (Tal 2019, 865-866).
As with naive realism, accuracy evaluation turns out to be impossible under strong versions
of operationalism, although for very different reasons.
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Under the model-based account, theoretical and statistical models are necessary for
justifying claims about measurement accuracy. The model-based account takes measure-
ment accuracy to be a multifaceted concept, which can be defined metaphysically, epistemi-
cally, or operationally, among other ways (Tal 2011, 1084). Regardless of how it is defined,
measurement accuracy is evaluated relative to a model of the measurement process. Specifi-
cally, accuracy is evaluated by how tightly the indications produced by the measurement
process (along with other available information) constrain the values that may be reasonably
attributed to the measurand under a given model of the measurement process. The same
stopwatch, for example, may be justifiably deemed more or less accurate depending on how
it is modeled. Suppose that the stopwatch is represented using a detailed model that cor-
rects for the stopwatch’s time offset, frequency offset, and frequency drift. The accuracy of
measurements of time duration under such a model is higher than if the stopwatch were rep-
resented with a simpler model that does not account for such errors. Under a simpler model
of the stopwatch, the extent of errors would be less precisely known, and thus the range of
values of duration that can be reasonably attributed to events based on the indications of the
stopwatch would be larger than under the more detailed model. This model-relativity of ac-
curacy claims is consistent with metrological practice, which emphasizes models as precon-
ditions for evaluating accuracy (Joint Committee for Guides in Metrology [JCGM] 2008).

The idealized nature of models is of central importance to the possibility of evaluating
measurement accuracy. Rather than evaluating accuracy against a true value (as a naive real-
ist would maintain)! or against an arbitrarily chosen standard measurement procedure, the
model-based account takes accuracy and error to be evaluated relative to an idealized model
of the measurement process. Error is evaluated by comparing the predictions of an idealized
model to the actual indications of the instrument. For example, an idealized model of a ce-
sium atomic clock assumes that the cesium atoms are at absolute zero temperature and are
completely unperturbed by magnetic or gravitational fields. These conditions cannot be com-
pletely fulfilled by a real clock. The extent of error associated with the frequency produced
by a real atomic clock is calculated by theoretically predicting the extent to which it deviates
from the ideal (Jefferts et al. 2002; Heavner et al. 2005). Accordingly, the accuracy of the
clock depends on the uncertainty of these model-based theoretical predictions. The more
accurately the model can be used to predict the deviation of the real clock from its idealized
representation, the more accurate the clock is under that model. This is again consistent with
modern metrological practice, which takes measurement accuracy to be the predictability of
error (i.e., uncertainty) rather than the absence of error (Giordani and Mari 2014).

Another aspect of measurement that models shed light on is the nature of calibration.
According to the model-based account, the calibration of a measuring instrument is a mod-
eling activity, namely, the activity of constructing, testing, and improving a theoretical-
statistical model of the measurement process (Tal 2017b). During calibration, scientists
assess the degree of fit between their model and the measurement process and attempt to
improve this fit by modifying the model, the measurement process, or both. When assess-
ing model fit, scientists often make use of known and stable objects or phenomena, such as
standard weights or the triple point of water (Franklin 1997; Boumans 2007, 236; JCGM
2012, sec. 2.39).12 These stable objects are helpful for determining parameters in the model
and for testing whether the measurement process behaves as the model predicts. Nonethe-
less, the ultimate goal of calibration is not simply to replicate the known values associated
with such objects, but to construct an accurate model of the measurement process.
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Once the model is deemed sufficiently accurate, it is used to predict the indications that
the instrument will produce when it interacts with objects of various quantity values. For
example, the model of the caliper is used to predict the indications the caliper will produce
when it interacts with objects of various diameters. This “calibration function” is then
inverted and used to infer the quantity values associated with objects based on the indica-
tions that the instrument will produce (JCGM 2012, sec. 2.39). For example, the inverted
calibration function of the caliper is used to infer which diameters will produce a given in-
dication of the caliper. When the caliper is used to measure some concrete object, the meas-
urement outcome is taken to be the diameter value range that best predicts the observed
indications of the caliper under the model. Putting things more generally, measurement out-
comes are the best predictors of patterns of instrument indications under a specific model
of the measurement process. The model-based account, therefore, reveals the centrality of
prediction to measurement.

The model-based nature of inferences from instrument indications to measurement
outcomes has important implications for the objectivity of measurement. A measurement
outcome constitutes an objective knowledge claim when one is justified in attributing the
quantity values to the object (or event) being measured, rather than to an artifact of the
measurement procedure or to one or more background assumptions. The inevitable reliance
on models means that measurement outcomes cannot be assessed for truth or accuracy in-
dependently of any model. At best, measurement outcomes can be deemed objective to the
extent that they are robust under a wide variety of measurement procedures and assump-
tions. Robustness does not mean model independence, but a coherent fit between different
model-based predictors (Basso 2017). Hence, an important lesson of the model-based ac-
count is that the standard of objectivity in measurement is context-invariance, rather than
context-independence (Tal 2017a). This conclusion has important implications for under-
standing how measurement can serve as a source of scientific evidence, and how measure-
ment differs from other model-based, data-driven procedures, such as computer simulation
(Morrison 2009; Tal 2016a; Parker 2017).

5. Conclusions

This chapter briefly surveyed three ways in which models and modeling are central to
measurement. First, a measurement scale can be helpfully understood as a mapping func-
tion between models, i.e., structures that satisfy a common set of axioms. This provides
insight into the possibility of representing empirical objects mathematically. Second, sta-
tistical models play a central role in analyzing measurement data, evaluating some types
of measurement uncertainty, and detecting inconsistencies among measurement outcomes.
Third, theoretical models of the measurement process are crucial for specifying what an
instrument is measuring, for the design and calibration of the instrument, and for evaluat-
ing uncertainties that are not accessible through the application of statistical tools alone.
Recent scholarship on the philosophy of measurement has benefited from close atten-
tion to the roles of models in measurement, especially statistical and theoretical models.
This literature is fast evolving, and this chapter is meant to provide an entry point into the
discussion rather than a comprehensive introduction. Interested readers are encouraged to
follow the references provided in this chapter for more detailed treatments of the topics
covered above. Being a relatively new subdiscipline, many open problems and research
areas in the philosophy of measurement remain to be explored. Among these are: the way
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measurement produces scientific evidence, the role of causality in measurement, differences
and commonalities in conceptions of measurement across scientific disciplines, the role of
ethical and social values in measurement, the relationship between measurement, predic-
tion, and information, and the conditions for detecting quantitative structure in empirical
data. Progress on many of these topics will likely involve an appeal to models.
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Notes

1 Equivalence is sometimes interpreted as empirical indistinguishability, e.g., the rods appearing to
have the same length. This interpretation leads to complications when the sensitivity of empirical
comparisons is low. See Krantz et al. (1971, 2-3) for discussion.

2 Such as vectors and geometric line segments.

3 The other axioms are weak order, monotonicity, positivity, and the Archimedean axiom.

4 This chapter does not presuppose any specific view about the ontology of models or their repre-
sentational capacity.

5 Other kinds of data are commonly produced in the course of measurement besides the two dis-
cussed here. For example, measurement typically involves the production of data about the prop-
erties and performance of various components of the measuring system, about the properties
of measurement standards, and about properties of the environment in which the measurement
takes place. Measurement may also involve the collection of data about the individual people who
take measurements, e.g., to determine their individual biases in reading and recording instrument
indications.

6 The standard deviation of the mean is the standard deviation of the sample divided by the square
root of the sample size: 6y = S

7 This brief survey of statistical models of data is not meant to be comprehensive. Measurement
involves many other uses of statistical models of data not discussed here, such as regression, factor
analysis, data smoothing, signal-noise separation, uncertainty propagation, significance testing,
and the generation of simulated data as a tool for accuracy evaluation, to mention a few.

8 The distinction between theoretical and statistical assumptions is not strict. The assumption that
a stopwatch’s frequency drift follows a random-walk pattern, for example, could plausibly be
categorized as both theoretical and statistical.

9 This description is a vast oversimplification of the measurement procedure. Detailed descriptions
of the design of Kibble balances and how they use quantum effects to link voltage and current to
the Planck constant can be found in (Robinson 2011; Sanchez et al. 2014).

10 More precisely, a naive realist takes the true value on a given measurement scale to be independent
of human beliefs and practices. This leaves room for the arbitrary choice of, e.g., measurement
unit and zero point, depending on the type of scale. For a discussion and critique of realism about
measured values, see (Teller 2018).

11 Being an epistemological rather than metaphysical position, the model-based account is compat-
ible with many realist and anti-realist views about measurement. For example, it is consistent with
the (non-naive) realist view that instrument indications are caused by mind-independent magni-
tudes that are themselves unknown (Trout 1998, chap. 2). At the same time, the model-based ac-
count is compatible with anti-realism about quantity values of the sort defended by (Teller 2018).

12 These known signals may be, but need not be, metrologically certified standards. While meas-
urement standards are often helpful for testing the predictions of models of a measurement
process, calibration often proceeds by comparing measurement procedures directly to each other
in a round robin. For examples see (Philipona et al. 1998; Cabibbo et al. 2012; Dennison et al.
2016).
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20
MODEL TRANSFER IN SCIENCE

Catherine Herfeld

1. Introduction

Scientific research is characterized by strong disciplinary specialization that often manifests
in highly abstract models tailored to particular target systems. At the same time, a perti-
nent feature of contemporary science is that there is increasing interaction across different
fields or even disciplines. One way this interaction manifests is in an intensified transfer of
models across domains. For instance, the well-known Lotka—Volterra model has not only
been used to explain predator—prey interactions in population biology but has also been
transferred into medicine and economics to study phenomena as disparate as the growth
of cancer cells and the business cycle (for a historical account, see Knuuttila and Loettgers
2017). Modern science is full of examples of such model transfer. This transfer can be
successful but might also confront severe challenges and can even sometimes fail. Beyond
its pertinence in scientific practice, model transfer can also have critical functions, such as
potentially serving as a catalyst for scientific progress and a driver of innovation (e.g., Bou-
mans and Herfeld 2023; Price 2020).

Although knowledge transfer generally and model transfer in particular have recently
gained more attention in philosophy of science (e.g., Bokulich 2015; Donhauser and Shaw
2019; Du Crest et al. 2023, Griine-Yanoff 2011; Herfeld and Lisciandra 2019; Houkes and
Zwart 2019; Humphreys 2019; Knuuttila and Loettgers 2014; 2016; 2023; Knuuttila and
Garcia-Deister 2019; Lin 2022; Marchionni 2013; Price 2019; 2020; Tan 2023; Zuchowski
2019), the phenomenon has not yet been extensively studied by philosophers of scientific
modeling. There is a vast amount of literature that has studied the cross-domain transfer
of a variety of epistemic objects and what could be considered to belong to the category of
knowledge generally. It concerns the circulation of knowledge (e.g., Ash 2006; Herfeld and
Lisciandra 2019; Howlett and Morgan 2011; Lipphardt and Ludwig 2011; Kaiser 1998;
Nersessian 2002), the nature of interdisciplinarity, the transfer of facts, and the travel jour-
neys of data (e.g., Andersen 2016; Howlett and Morgan 2011; Leonelli and Tempini 2020;
Miki et al. 2019). While this literature proves instructive in locating the phenomenon of
model transfer in the scholarly landscape, it has not straightforwardly been concerned with
model transfer itself. Rather, the debate on model transfer is still in its early stages.
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The main goal of this chapter is, therefore, to systematically survey the existing literature
on model transfer, thereby pointing to possible routes for future research. The review is
structured around three kinds of closely connected questions that have been addressed so
far. The first question is how we can conceptually think of those models that are transferred,
asking for a proper account of the unit of analysis for such transfer. The second question is
why some models are transferable across domains to address often fundamentally distinct
problems, asking for an explanation of model transfer. The third set of questions is whether
and in what way the practice of model transfer can contribute to scientific progress.

2. Approaches to model transfer

Most of the existing literature has focused on the question of why models are transferrable
across domains. The question is, when we take specialized models as representations of
some target system, how can the same model provide insights about fundamentally dis-
tinct systems from different domains? Most philosophers have sought the answer by asking
whether the object of transfer has specific characteristics that allow for its transfer; in other
words, they have provided an answer to the question of what exactly the object of transfer
is. However, there is neither agreement about the exact object of transfer nor, more impor-
tantly, about the core characteristics that enable or prevent cross-domain model transfer.
Some philosophers argue that the generality, tractability, and flexibility of models explain
their transfer (Humphreys 2002; 2004). Others argue that rather general conceptual fea-
tures and their justification — in addition — make the model attractive for using them in
other domains (Knuuttila and Loettgers 2014; 2016; 2023).

Many philosophers either defend an analogy-based or a template-based approach
to thinking about the unit of transfer. An analogy-based approach refers to analogical
reasoning as a cognitive or research strategy that allows for using concepts, models, or
methods that are familiar in one domain in one in which they are less familiar. They do
so by positing shared features of the respective phenomena (or some theoretical descrip-
tions of them) in both domains and/or similarities of the models used in both domains
to study phenomena (e.g., Hesse 1963; 2017). What explains the transfer of concepts,
formal structures, and methods across domains is this similarity relation either between
two target systems or between the models of both target domains. On this view, positing
such material or formal relations licenses inferences from a system in the source domain
to a system in the target domain, or inferences from one model used to theorize about a
target system in the source domain to a model used to theorize about a target system in
a new target domain (e.g., Hesse 2017; Knuuttila and Loettgers 2016; Bokulich 20135;
Zuchowski 2019).

Jhun et al. (2018) provide an analysis of the Johansen-Ledoit-Sornette (JLS) model of
critical market crashes from econophysics in light of proclaimed analogies between criti-
cal phase transitions in statistical physics and stock market crashes. While they show the
limitations of this analogy in enabling the unconstrained use of common explanatory strat-
egies from physics in economics, they argue that the JLS model is useful in that it can
offer different kinds of explanations of and theoretically describe stock market crashes as
critical phenomena analogous to critical phase transitions of physical phenomena. Gener-
ally, relying on analogical inference in explaining model transfer implies a commitment to
the view that models represent their target system not by correspondence or isomorphism
but by analogy (e.g., Hesse 2017, 305). On this view, the justification of predictions from
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transferred models about new target systems — potentially in different domains — becomes
a matter of the strength of analogous argument (see the entry on analogies and metaphors
in this Handbook).

The template-based accounts originate in Paul Humphreys’ suggestion that contempo-
rary computational science is organized around a limited number of computational tem-
plates for the use of which explicit assumptions can often be formulated (Humphreys 2002;
2004). As such, the decision of whether such templates can be transferred across domains
does not have to rely on vague or implicit similarities between phenomena. Templates are
general, representational devices that ground the construction of computational models.
On this view, what is thus transferred across domains is not the model itself, but the tem-
plate that a model can be built on. Such templates are more easily transferred than most
models because they are based on mathematical or computational forms and methods that
are flexible enough to study a variety of different problems in distinct domains (Humphreys
2002; 2004; 2019). Different kinds of templates differ on various levels with respect to
their degree of abstractness, their relation to an existing scientific theory, and the degree
to which they were originally developed for a specific target system, etc. Examples are the
Poisson distribution from probability theory, mathematical models from game theory, the
Ising and the Lotka—Volterra models, Newton’s second law, or the Barabdsi-Albert pref-
erential attachment model of network formation. Albeit to different degrees, those tem-
plates have in common that they — apart from being abstract — are general and as such
subject-independent, which is why they are highly flexible and applicable to fundamentally
different target systems. Besides their generality, a second distinguishing feature is their
tractability. While some templates are mathematically tractable, most templates become
computationally tractable when turned into computational models. Both features explain
why templates are transferrable across domains.

In addressing model and template transfer, Humphreys (2019) introduces the notion of a
formal template contrasting it to theoretical templates. He defines a theoretical template as:

a general representational device occurring within a theory, containing at least one
schematic, second order, property variable (where a second order variable is one that
has n-ary predicates as substitution instances) and is such that, when all of the sche-
matic variables have been substituted for, can be successfully used to represent a
variety of different phenomena within the domain of that theory.

(Humphreys 2019, 3)

So defined, theoretical templates are to some degree domain-specific, if they are grounded
in a specific theory which in turn determines the scope of the domain. To turn them into
computational templates, they go through a construction process in which they are com-
plemented by construction assumptions and a correction set. The resulting computational
template becomes complemented by an interpretation and an output representation to turn
it into a computational model that is ready to be applied to some target system. While a
concrete ontology is only specified in the construction process, theoretical templates usually
originate in some interpreted scientific theory and are, as such, accompanied by a physical
interpretation that constrains them. A theoretical template is, as such, often considered
to be part of the fundamental principles of this theory (Humphreys 2019, 3). This is why
the domain of application of theoretical templates — before and after its transfer — can be
constrained in part by the scientific theory the template is derived from.
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This last characteristic is what mainly differentiates theoretical from formal templates.
Although formal templates are applied to a variety of different systems, they constitute at
first instance purely mathematical objects that are either independent or that have been
fully separated from any scientific theory (Humphreys 2019, 3) — they only come with a
mathematical or computational interpretation. Also, the assumption is that formal tem-
plates only have mathematical content. Humphreys takes a representative example to be
the Barabdsi-Albert preferential attachment model. It provides a formal derivation of the
result that networks with a scale-free topology (i.e., those whose distribution follows a
power law) emerge by way of a two-step procedure: First, there is a continuously growing
network whose number of nodes steadily increases (growth); second, new nodes tend to
connect to those nodes that are already highly connected within the network (preferential
attachment). This result is simulated and relies only on a few mathematical assumptions
about, for example, how the initial connections of the nodes look (Barabasi and Albert
1999). The construction process of formal templates, such as the power law distribution
template, differs from theoretical ones in that the former does not require a correction set
that specifies the need for adjustment of the computational template to match the empiri-
cal data in light of its empirical falsity (Humphreys 2019, 3, fn. 10). At the same time,
Humphreys argues that the proper empirical justification of the transfer of formal rep-
resentational devices — e.g., of the power law distribution template — is given by empiri-
cally checking whether the construction assumptions — e.g., of the preferential attachment
template — are “representationally correct” when applied to a particular system. It is only
then that we are justified and thus can acquire knowledge about the causal process bring-
ing about the phenomenon that the template is meant to represent. This is one reason why
analogical reasoning alone is not a good guide to re-apply those formal templates to seem-
ingly fitting systems. In the case of the power law distribution template, for example, the
template might seem to be a representationally correct system. However, given that this
and (more generally) other templates could in principle be derived from different kinds
of construction assumptions, its application is properly justified only by making sure that
the construction assumptions are representationally accurate in that application (see also
Knuuttila and Loettgers 2012).

Because of their high degree of abstractness, formal templates lend themselves to inter-
disciplinary transfer. According to Humphreys, psychological aspects, analogical reasoning,
and thus, anticipation and identification of vague resemblances between different target
systems can only be heuristic devices in re-applying a template. Also, analogical reason-
ing stemming from the previous success of a template in some other domain could be
used for justificatory purposes; both might even explain to some extent cases of template
transfer. However, they cannot provide a proper justification for a template’s transfer or
re-application: “[T]he empirical justification for transferring a formal template ultimately
rests on the satisfaction of the construction assumptions in the new domain” according to
Humphreys (2019, 4). Because those assumptions are explicit, analogical reasoning is not
necessary for template transfer. It is their abstractness, their independence from any physi-
cal interpretation, and the fact that assumptions are specified only according to the need
given by the system in the target domain that is necessary for their transfer. In such a view,
all empirical content of a formal template is only located in its empirical mapping, which
implies that only knowledge of the target domain is required for its re-application (Hum-
phreys 2019, 6). This is a view that appreciates the analogy-based approach as capturing
the psychological and heuristic function of analogies in the context of discovery but rejects
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them as necessary to think about the object of transfer and thus understands model transfer
within the context of justification.

Humphreys’ template account offers important insights into model transfer in science.
It is applicable to cases of model transfer within and across both the natural and the so-
cial sciences, especially those areas of the social sciences that use mathematical and com-
putational models. Besides the criterion of generality, Humphreys’ tractability criterion
explains, for example, why models from the natural sciences have been adopted by highly
mathematized social scientific domains such as economics (e.g., Hindriks 2006; Lisciandra
2019). However, the concept of a template has limitations in understanding model transfer.
While Humphreys has refined it toward a more fine-grained distinction between different
kinds of templates (Humphreys 2019), the template concept is often still too general to be
properly applied. For instance, when the model transfer occurs from the physical to the
social sciences, the template-based account neglects a number of elements. There might be
potential preconditions for enabling the transfer, such as the commitment of scientists in
the target domain to a specific modeling methodology, a set of concepts, or specific theories
long accepted in that domain. Many analytical sociologists, for example, hold strong meth-
odological commitments that profoundly shape their modeling choices, such as that human
agents should be modeled as rational choice makers. Such factors conducive to transferring
a specific kind of model are not acknowledged in the template-based account.

Indeed, epistemic and methodological features such as the structural similarity of phe-
nomena in the source and target domain, a shared methodology in both domains, shared
validation criteria for models depending on their purpose, or the goal of theoretical uni-
fication have been shown to play a role in enabling model transfer (e.g., Griine-Yanoff
2011; Marchionni 2013; Tieleman 2022). Or, there might be specific methodological, epis-
temological, or conceptual features originating in the source domain that play a crucial
role in preventing the transfer (e.g., Anzola 2019). For example, economists are strongly
committed to epistemic values such as the predictive power of economic models rather
than their ability to give causal explanations, or to conceptual commitments such as that
their models should be conceptually compatible with the equilibrium concept. Economists
have therefore been generally more open to model transfer if the transferred unit can ac-
commodate their main commitments; they have been hesitant towards the transfer lead-
ing either to a more fundamental conceptual and/or theoretical change of the neoclassical
paradigm (Basso et al. 2017; Sent 2004; Thébault et al. 2018; Bradley and Thébault 2019)
or to questioning their explanatory desiderata of using micro-founded models and provid-
ing general explanations (e.g., Marchionni 2013; Lisciandra 2019). In such cases, “when
disciplinary conventions about ... modelling play a larger role in dictating modifications of
common templates, the tendency toward the kind of interdisciplinary organisation Hum-
phreys identifies may not take place after all; disciplinary rather than interdisciplinary unity
remains stronger” and thus, prevents model transfer (Marchionni 2013, 348). A further
factor that could be relevant for explaining model transfer, especially from the physical to
the social sciences and vice versa, is that social scientists might also implicitly hold on to
non-epistemic values that play a role in their modeling choices. Such commitments might
not only partially explain why a template is transferred, but also why some templates, al-
though also general and tractable, might not be.

Humpbhreys’ template-based account implicitly allows for building epistemological, con-
ceptual, and methodological commitments via the construction assumptions. However, the
specification process is not part of the explanation of the template’s transfer. His account
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also leaves open questions regarding whether such factors are transferred together with the
template and whether that would be relevant for explaining serious challenges and even
failures of such transfers. More needs to be said about the nature and role of such com-
mitments in enabling or preventing model transfer. In the next section, a few attempts by
philosophers to take up those issues will be presented.

3. Open issues in the literature on model transfer

Most of the recent literature starts from a template-based account to think about model
transfer. Taking a template as the unit of transfer seems to best capture essential features
of model-based disciplines of contemporary science on the one hand, and an increasing
cross-disciplinary engagement via the transfer of abstract mathematical tools and computa-
tional models on the other. However, the previously mentioned factors have been neglected.
This section will present some of the efforts to extend the template-based account by focus-
ing on three sets of issues.

One set of issues relates to the disagreement about the object of transfer and its features,
which could explain why some models are transferred while others are not. This disa-
greement goes beyond the nature of models as analogies or templates and also relates to
the level at which model transfer should be studied. Some philosophers analyze modeling
frameworks (Lin 2022) as the object of transfer. Others focus on case studies of particular
models, e.g., the Fisher model or the Ising model, to study how such models can give rise
to transferrable templates (Morrison 1997; Knuuttila and Loettgers 2014; 2016; 2020;
Price 2020). Yet others, most prominently Humphreys, consider highly generic mathemati-
cal forms, namely those that Humphreys calls formal templates, e.g., coupled harmonic
oscillators, network models, or even probability theory, to be the objects transferred (Hum-
phreys 2004; 2019). Such disagreement might partly originate in the fact that in scientific
practice, all those objects could be or have been transferred; depending not only on what
the object of transfer is, but also what can explain it. Consequently, sometimes the relevant
object of philosophical analysis is a specific model, e.g., an interpreted or otherwise contex-
tualized formal structure, while at other times it is the formal template alone. To capture
this potential diversity, the existing conceptual proposals of formal, theoretical, computa-
tional, and model templates provide a useful starting point for thinking about the nature of
the study object, about the justification of its transfers, and about the level of abstraction
at which model transfer should be studied in different cases to understand how it can be
explained.

Recent philosophical research on model transfer has further elaborated on Humphreys’
account to address the relevant unit of analysis for model transfer. Houkes and Zwart
(2019) point to a tension arriving from the functions of a template as a representational
device on the one hand, and allowing for quantitative manipulation on the other. According
to them, this tension arises because computational performance can compromise the repre-
sentational function in the template’s reduction to computation-enabling formal structures
(2019, 93). By studying the case of the Lotka—Volterra model as applied to the diffusion
of technological innovations, they do not define the notion of a template in terms of a
purely formal structure from which its interpretation can be detached before its transfer,
proposing instead to reconceptualize Humphreys’ notion of a “template.”. They show that
in some cases, such a formal structure comes with an inseparable and intended “thin” in-
tentional interpretation reflected in the construction assumptions that, for example, specify
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the variables of a differential equation or the generic mechanism the equations describe.
This interpretation is different from Humphreys’ interpretation, which they call “analytic
interpretation,” which is added when turning a template into a computational model. Ac-
knowledging the difference between both kinds of interpretations allows for distinguishing
between transferring a mere formalism (a formal template in Humphreys’ proposal) and a
template, in which case the formalism together with the intentional interpretation is trans-
ferred across domains. The distinction between analytic and intentional interpretation al-
lows for templates to fulfill a dual function. It allows retaining the usefulness of the notion
of a template to study cross-domain transfer while acknowledging that what is transferred
can have proper representational functions despite being different from the application-
specific computational model that is grounded in a template.

An account that aims to revise Humphreys’ proposal more fundamentally in light of
scientific practice has been proposed by Knuuttila and Loettgers (2014; 2016, 2023). They
introduce the notion of what they call a “model template” to not only account for what is
transferred, but also to explain why it is transferred. By studying a variety of cases such as
scale free network, the Sherrington-Kirkpatrick model, the Kuramoto model, the Ising and
spin glass models, Knuuttila and Loettgers show that generality and tractability are not the
only characteristics that explain their inter- and intradisciplinary transfer. Rather, it is also
the general conceptual idea associated with the mathematical form together with a set of
computational methods that makes them attractive for model transfer. According to their
definition, a model template consists of the mathematical structure — the template — that is
complemented by a general conceptual vision associated with it, “that is capable of taking
on various kinds of interpretations in view of empirically observed patterns in materially
different systems” and that explains its transfer via its mediating capabilities between dif-
ferent target systems (Knuuttila and Loettgers 2016, 396; see also 2023). Such a conceptual
idea is equally independent from a specific target system, but at the same time, allows for
the application of computational methods and equations associated with a specific tem-
plate. It is thus the conceptual framework coupled with a formal template that renders the
model template applicable to a specific set of phenomena in different domains and thereby
explains the model transfer. Importantly, this application can be achieved by relying on
analogical reasoning.

The notion of a model template is in many respects a significant advancement in further
clarifying Humphreys® different templates. In its implication to exclude the transfer of a
piece of pure mathematics as an instance of template transfer, the idea of a conceptual vi-
sion is also similar to the thin interpretation by Houkes and Zwart. Whether conceptual
(as well as methodological) features play a role in enabling the transfer is also particularly
important to consider when those features might not align across domains that concern
substantially different subject matters. The conceptual features of a model in physics to
predict magnetic moments, for example, might prima facie not be shared and easily justifi-
able in the social sciences that model the behavior of human agents.' If they indeed played a
role in enabling the transfer, the underlying ontology and conceptualization might constrain
the kinds of domains the template can be transferred into in each case. To what extent the
general conceptual idea constrains a template and its application also seems to depend on
the level of abstraction at which model transfer is studied. If the formal template is the unit
of transfer, for example, in cases of transferring specific distributions or purely mathemati-
cal equations, the conceptual vision attached to the template can help in identifying specific
patterns that those equations could describe.
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However, at a high level of abstraction, while a conceptual vision often seems to be a
central ingredient of a template, it does not have to be part of all our philosophical template
concepts. If we consider a theoretical template, such as Newton’s second law, a conceptual
vision of some person being described as behaving as the sum of individual forces that can
be added up by vector addition indeed constrains the application of this template to only
entities whose behavior can be described in this way (Humphreys 2019, 3). In this case,
Humphreys’ concept of a theoretical template might be satisfactory to capture the concep-
tual vision through the larger theoretical framework the template is a part of. That is not to
say that the concept of a theoretical template is always sufficient. In other examples, it be-
comes clear that the concept of a theoretical template might fit specific cases but not others.
One clear difference between the concepts of theoretical and model templates is that the
latter is not bound to a specific theoretical context while the former is. Dynamical systems
theory and network models are thus examples of templates that do not seem to be part of
a specific theoretical framework but nevertheless come with conceptual content attached to
them, for instance, different systems behaviors, kinds of interactions, or network structures
that the mathematics of those templates could capture. Consequently, given that both con-
cepts are useful supports the view that a pluralism of templates is required if the diverse set
of transferred objects should be captured by our philosophical concepts. Thus, even though
Knuuttila and Loettgers argue for the unificatory power of the notion of a model template,
a one-case-fits-all template concept might neither be desirable nor possible. Provided the va-
rieties in which models occur (for an overview, see Frigg and Hartmann 2020) and the ex-
isting disagreement about the exact object of transfer, the question of what concept is best
used to capture the object of transfer might have to be answered on a case-by-case basis.

A second set of issues relates to the question of what the characteristics of the transfer
process are. For some time philosophical analyses implicitly assumed that model trans-
fer occurs without substantially changing the model throughout the process; and indeed,
this can be the case. Rational choice models in economics — subsumed under the label of
“economics imperialism” — have been transferred into fields such as sociology, political
science, or anthropology, often without any conceptual or theoretical change. However,
that the object transferred does not undergo any change seems unrealistic, as illustrated by
a number of recent case studies. Rather, significant changes in the model are often crucial
for its transfer (Herfeld and Lisciandra 2019; Knuuttila and Loettgers 2013; 2014). For
example, models from engineering have been used in synthetic biology only after extensive
modification and rational choice models also had to be adapted to the various target sys-
tems in the domains into which they were transferred (e.g., Knuuttila and Garcia-Deister
2019; Griine-Yanoff 2011; Herfeld and Doehne 2019). To capture such modifications,
template-based approaches focus on the transfer process as a model construction process
(or “template-to-target mapping” as Kaznatcheev and Lin (2022) have labeled it) by add-
ing construction assumptions and an interpretation that allow for a derivation of an output
representation (Humphreys 20045 2019; Tieleman 2022). In this view, the template itself
remains unchanged and its modification is dependent on the target system.

Price (2019; 2020) has studied in detail how the target domain shapes the modification
of the model template being transferred and how the target domain might itself be changed
to enable the model transfer. Employing Knuuttila and Loettgers’ notion of a model tem-
plate, Price notes that the general conceptual vision and thus some basic ontological com-
mitments that come with the template have to be compatible with the target system in
the domain the template is transferred into. Price thinks of this as a preparation process
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for which he introduces the notion of a “landing zone,” basically referring to a model’s
envisaged target system providing an ontology that enables the template transfer. Price
discusses the case of the topological atom as a landing zone for transferring a set of model
templates from physics into chemistry to construct and apply the so-called quantum theory
of atoms to molecules. Broadly defined as a mathematical model’s target system, a landing
zone enables the transfer and use of the model’s mathematics — of a model template — in a
new target domain by shaping the way in which the model becomes designed to ensure its
applicability in the new domain (Price 2019, 22). Because the landing zone identifies the
ontological features of a target system that enable the use of a template in that domain, it
can also suggest possible modifications of the template in light of changes in ontological
commitments needed to apply the template.

Other philosophers who acknowledge that templates are not static entities have pro-
posed different notions to describe this modification process. Bradley and Thébault (2019),
for example, introduce the distinction between “model imperialism,” an extension of the
scope of problems addressed with the same, unmodified interpreted model, and “model
migration” which describes model modification in terms of a radical reinterpretation of
the original model requiring what they call a “re-sanctioning” of the fundamental ide-
alizing assumptions to enable the model’s application in the new target domain. Others
have proposed the view of this process as one of translation (Herfeld and Doehne 2019)
and have discussed the role of informal features as complementing features of the formal
model, such as model narratives in this translation (Quack and Herfeld 2023). Given that
such discussions are highly case-dependent, more systematic and conceptual work is needed
to work out what such “translation” exactly entails. Moreover, the relations between a
model template, the source domain, and the target domain can be very complicated. Ena-
bling the transfer of a model might entail rethinking basic principles and methodological
commitments, or revising accepted theoretical frameworks in the target domain (Knuuttila
and Loettgers 2014). Transferring a model from mathematical game theory into political
science, for example, required not only the specification of construction assumptions and
an interpretation, but also a substantial reconsideration of the methodologies accepted to
study political phenomena (Quack and Herfeld 2023).

The transfer might also lead to such substantial modifications of the model in that
its original identity as an epistemic object is affected. Kaznatcheev and Lin (2022) show
how model transfer can imply that the template switches from a theoretical modeling
mode into an experimental measurement mode. This implies, in turn, that the process of
template-to-target mapping can be quite complex. To appreciate this complexity, they in-
troduce the distinction between conceptual and concrete mapping. The former maps the
formal template and the theoretical concepts in the target domain, which they understand
to be similar to the intentional interpretation introduced by Houkes and Zwart (2019).
While after the conceptual mapping, the template still lacks empirical content, the concrete
mapping from concepts to concrete objects in the target domain allows empirical content to
enter the template, which Kaznatcheev and Lin (2022) understand to be similar to Houkes
and Zwart’s analytic interpretation. They also show that in their case of the transfer of
game theory from mathematical oncology into experimental cancer biology, it is already
in the first step that the conceptual mapping could be separated from the template, which
suggests that not all templates come with a conceptual vision attached to it.

How a model’s identity is affected by the transfer also raises questions about the role of
the modeler in enabling model transfer and the kind of knowledge that is required on the
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side of the researcher to do so. While most template-based accounts keep the modeler out
of the picture and limit the expert knowledge needed to that of the target domain (e.g.,
Humphreys 2019), some cases of model transfer require knowledge of the source domain,
for example, about its theoretical and technical languages as well as its modeling practices,
to engage with the template as a formal framework, interpret the template, repurpose the
template, and anticipate its epistemic potentials (Bradley and Thébault 2019; Kaznatcheev
and Lin 2022; Lin 2022). Lin (2022) has furthermore argued that sometimes so-called
“spillovers” — defined as knowledge-claims that are “indispensable to the justification of
another knowledge-claim” (Lin 2022, 6) — are essential for the justification of a model’s
re-application. An important question is why scientists engage in model transfer in the first
place. Aside from the general importance of having tractable representations in science, the
structural similarity of the target system, a shared methodology, or the goal of theoretical
unification, different social and psychological factors might be involved: opportunism, at-
tempts to imitate success, the lack of a comparable alternative, and finally “imperialist” ten-
dencies have certainly initiated model transfer processes in the past (e.g., Miki et al. 2018).

Some philosophers have pointed out the importance of considering the relation between
the researchers involved in the transfer and those in the source and target domains to under-
stand the degree of model modification in the transfer. Griine-Yanoff (2011) discusses the
degree of modification in the case of transferring game theoretic models from economics to
biology and back. He argues that a modeler’s knowledge of, the degree of modification of,
and reference to, the original model is inversely proportional to the influence of the modeler
in the transfer process and their distance to the source domain. Such relations can tell us a
lot about the degree of model modification in transfer processes. In the case of imperialistic
transfers, for example, a model from some source domain is applied to a set of problems
traditionally tackled in some target domain that is distant from the modeler that applies the
model to those problems. Economists applied rational choice models to problems — be that
crime, addiction, discrimination, marriage decisions, or breastfeeding — traditionally stud-
ied in fields that were distant to them and did so without substantially changing the models
(e.g., Becker 1976). In contrast, when biologists transferred game theoretic models into
their own discipline, core concepts and formal results of game theoretical models — such
as players, strategies, and payoff matrices — were re-interpreted and successively replaced
by biologists’ own theoretical constructions (e.g., Griine-Yanoff 2011, 389). For instance,
while core concepts and formal results of game theoretical models — such as players, strat-
egies, and payoff matrices — were initially imported into, and re-interpreted in biology,
biologists would successively replace them with their own theoretical constructions (e.g.,
Griine-Yanoff 2011, 389). Considering this distance between the modeler and the respec-
tive domains to which a model is transferred can thus be informative in that it tells about
the nature of the transfer and the degree of modification it brings with it.

A final set of issues that have not yet been extensively addressed in the literature on
model transfer concerns the relationship between model transfer and scientific progress.
In part, this gap in the literature originates in the lack of an explicit discussion of the chal-
lenges that hamper model transfers or prevent them from being successful. The existence
of such challenges most likely depends upon the factors that need to be in place to enable a
model’s transfer in the first place (e.g., Price 2019). The aforementioned factors that might
hamper model transfer, such as structural dissimilarities between templates and target sys-
tems or differences in accepted methodologies in both domains, might certainly play a role
(Grune-Yanoff 2011; Knuuttila and Loettgers 2016). However, given that the philosophical
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literature has focused mostly on cases of successful model transfer, there is not yet a sys-
tematic discussion about how model transfer might generally lead to empirical, theoretical,
or conceptual progress — or prevent it. A philosophical analysis of the relationship between
model transfer and progress would be important. Progress may only be an apparent result
of model transfer. Particularly when models are substantially modified in the transfer pro-
cess or when they imply profound theoretical and methodological changes in the target
domain, their epistemic contribution to a better empirical understanding of phenomena in
the target domain, and more generally, might not be straightforward.

For template-based accounts, model transfer and scientific progress seem to be closely con-
nected, in that progress is frequently achieved by applying tractable mathematics. For instance,
Humphreys observes that “whenever you have a sudden increase in usable mathematics, there
will be a sudden, concomitant increase in scientific progress in the area affected” (Humphreys
2004, 55). To discuss conceptual progress, Price (2020) focuses on the relation between the
unit of transfer and the target system to which it is applied (i.e., the landing zone). In his view,
the reconceptualization of the phenomenon in the target domain required for model transfer
can lead to conceptual progress. Template transfer can provoke discussions about the ap-
propriate ontology for applying the model and about the appropriate assumptions, that can
motivate theorizing in the new domain. Insofar as the resulting conceptual pressure leads to
changes in, or replacements of, concepts of the target domain, it can lead to the emergence
of new concepts and thus to conceptual progress in that domain. Similarly, such conceptual
pressure can be perceived as a threat to an existing conceptual framework that needs to be
avoided. The existence of such pressures can thus challenge or even prevent model transfers.

Boumans and Herfeld (2023) offer another proposal to appreciate the different ways in
which model transfer can lead to epistemic benefits in the target domain. By studying a
historical case from econometrics, they explore the way in which a functional account to
progress can be used to analyze ways in which model transfer can lead to progress. This
so-called new functional approach defines progress in terms of usefulness for defining and
solving problems (Shan 2019). Applied to model transfer, epistemic benefit is then translated
into the usefulness of a model not only for solving concrete problems but also for proposing,
refining, and specifying new problems and thereby guiding future research in some domains.
Templates are part of a “common recipe” consisting of a set of concepts; a set of practical
guides specifying the procedures and methodologies as a means to solve a problem; a set of
hypotheses, and a set of patterns of reasoning indicating how to use other components to
solve a problem (Shan 2019, 745). As such, this account already provides indicators to think
concretely about success conditions for model transfer as well as reference points to identify
some of the major challenges to model transfer in science. By adopting this account and the
concept of a model template, Boumans and Herfeld show that the conceptual vision of the
business cycle in a core econometric model template was essential to its construction and
transfer, but that the resulting progress was also disrupted when the conceptual vision of the
phenomenon changed in such a way that the template transferred is no longer considered to
be sufficiently representative of the phenomenon in question.

4. Conclusion

Given that the philosophical analysis of model transfer as a prominent phenomenon in
modern science is only in its beginning stages, this survey has pointed out open issues that
should be addressed to advance the debate further. Surveying the literature not only reveals
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the relevance of the phenomenon but also shows its philosophical importance for multiple
areas within the philosophy of science. Reaching a deeper understanding of model transfer
and its challenges in science is therefore highly desirable. Results promise to have profound
implications for the way in which we think about scientific models, the practice of mod-
eling, and model integration in the philosophy of scientific modeling.
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Thébault (2019).
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