

An
Introduction
to
Quantitative
Text
Analysis
for
Linguistics

An
 Introduction
 to
Quantitative
Text
Analysis
 for
Linguistics:
Reproducible
Re-
search
Using
R
is
a
pragmatic
textbook
that
equips
students
and
researchers
with
the
essential
concepts
and
practical
programming
skills
needed
to
con-
duct
quantitative
text
analysis
in
a
reproducible
manner.
Designed
for
under-
graduate
students
and
those
new
to
the
field,
this
book
assumes
no
prior
ex-
perience
with
statistics
or
programming,
making
it
an
accessible
resource
for
anyone
embarking
on
their
journey
into
quantitative
text
analysis.

Through
a
pedagogical
approach
which
emphasizes
intuitive
understanding
over
technical
details,
readers
will
gain
data
literacy
by
learning
to
identify,
interpret,
and
evaluate
data
analysis
procedures
and
results.
They
will
also
de-
velop
research
skills,
enabling
them
to
design,
implement,
and
communicate
quantitative
text
analysis
projects
effectively.
The
book
places
a
strong
empha-
sis
on
programming
skills,
guiding
readers
through
interactive
lessons,
tuto-
rials,
and
 lab
activities
using
the
R
programming
 language
and
real-world
datasets.

This
practical
 textbook
 is
enriched
with
 features
 that
 facilitate
 learning,
 in-
cluding
thought
and
practical
exercises,
a
companion
website
which
includes
programming
demonstrations
to
develop
and
augment
readers’
recognition
of
how
programming
strategies
are
implemented,
and
a
GitHub
repository
which
contains
both
a
set
of
interactive
R
programming
lessons
and
lab
exer-
cises,
which
guide
readers
through
practical
hands-on
programming
applica-
tions.
This
textbook
is
an
essential
companion
to
any
linguist
looking
to
learn
how
to
incorporate
quantitative
data
analysis
into
their
work.

Jerid
Francom
is
Associate
Professor
of
Spanish
and
Linguistics
at
Wake
For-
est
University.
His
research
focuses
on
the
use
of
 language
corpora
from
a
variety
of
sources
(news,
social
media,
and
other
internet
sources)
to
better
understand
 the
 linguistic
and
cultural
similarities
and
differences
between
language
varieties
for
both
scholarly
and
pedagogical
projects.
He
has
pub-
lished
on
 topics
 including
 the
development,
annotation,
and
evaluation
of
linguistic
 corpora
and
analyzed
 corpora
 through
 corpus,
psycholinguistic,
and
computational
methodologies.
He
also
has
experience
working
with
and
teaching
statistical
programming
with
R.

https://taylorandfrancis.com

An
Introduction
to

Quantitative
Text
Analysis
for
Linguistics

Reproducible
Research
Using
R

Jerid
Francom
0000-0001-5972-6330

Designed
cover
image:
Getty
Images
|
Man
As
Thep

First
published
2025
by
Routledge
4
Park
Square,
Milton
Park,
Abingdon,
Oxon
OX14
4RN

and
by
Routledge
605
Third
Avenue,
New
York,
NY
10017

Routledge
is
an
imprint
of
the
Taylor
&
Francis
Group,
an
informa
business

©
2025
Jerid
Francom

The
right
of
Jerid
Francom
to
be
identified
as
author
of
this
work
has
been
asserted
in
accordance
with
sections
77
and
78
of
the
Copyright,
Designs
and
Patents
Act
1988.

The
Open
Access
version
of
this
book,
available
at
www.taylorfrancis.com,
has
 been
 made
 available
 under
 a
 Creative
 Commons
 Attribution-Non

Commercial-No
Derivatives
(CC-BY-NC-ND)
4.0
license.

Any
third
party
material
in
this
book
is
not
included
in
the
OA
Creative
Com-
mons
license,
unless
indicated
otherwise
in
a
credit
line
to
the
material.
Please
direct
any
permissions
enquiries
to
the
original
rightsholder.

Trademark
notice:
Product
or
corporate
names
may
be
trademarks
or
registered
trademarks,
and
are
used
only
for
identification
and
explanation
without
in-
tent
to
infringe.

British
Library
Cataloguing-in-Publication
Data
A
catalogue
record
for
this
book
is
available
from
the
British
Library

ISBN:
978-1-032-49427-2
(hbk)

ISBN:
978-1-032-49426-5
(pbk)

ISBN:
978-1-003-39376-4
(ebk)

DOI:
10.4324/9781003393764

Typeset
in
Palatino/
Hack

by
Jerid
Francom

Publisher’s
Note

This
book
has
been
prepared
from
camera-ready
copy
provided
by
the
author.

Visit
the
web
and
companion
sites
at
qtalr.com
and
qtalr.com/resources/.

https://dx.doi.org/10.4324/9781003393764
http://www.taylorfrancis.com
http://qtalr.com
http://qtalr.com/resources/

Contents

Acknowledgments
 ix

Preface
 xi

I
 Orientation
 1

1
 Text
analysis
 5

1.1
 Enter science
 .
 5

1.2
 Data analysis
 .
 7

1.2.1
 Emergence of data science

 7

1.2.2
 Data science toolbelt

 7

1.2.3
 Quant everywhere
 .
 8

1.3
 Language analysis
 .
 9

1.3.1
 Qualities and quantities

 9

1.3.2
 The nature of data .
 10

1.4
 Text analysis .
 12

1.4.1
 Aims
 .
 12

1.4.2

. .
 14

Implementation
 .
 13

1.4.3
 Applications
Actitivies
 .
 16

Summary
 .
 16

II
 Foundations
 17

2
 Data
 21

2.1
 Data
 .
 22

2.1.1
 Populations and samples
 22

2.1.2
 Corpora
 .
 23

2.1.3
 Other considerations

 25

2.1.4
 Access
 .
 25

2.2
 Information
 .
 30

2.2.1
 Organization
 .
 30

2.2.2
 Transformation
 .
 34

2.3
 Documentation
 .
 40

v

vi
 Contents

2.3.1
 Data origin
 .
 41

2.3.2
 Data dictionaries
 .
 41

Activities
 .
 42

Summary
 .
 43

3
 Analysis
 45

3.1
 Describe
 .
 45

3.1.1
 Central tendency
 .
 47

3.1.2
 Dispersion .
 48

3.1.3
 Distributions
 .
 50

3.1.4
 Association
 .
 56

3.2
 Analyze
 .
 60

3.2.1
 Explore
 .
 60

3.2.2
 Predict
 .
 62

3.2.3
 Infer
 .
 64

3.3
 Communicate
 .
 66

3.3.1
 Report
 .
 66

3.3.2
 Document
 .
 66

Activities
 .
 67

Summary
 .
 68

4
 Research
 69

4.1
 Frame
 .
 70

4.2
 Connect
 .
 70

4.2.1
 Research area
 .
 70

4.2.2
 Research problem .
 71

4.3
 Define
 .
 73

4.3.1
 Research aim
 .
 73

4.3.2
 Research question .
 74

4.4
 Blueprint
 .
 75

4.4.1
 Plan
 .
 76

4.4.2
 Scaffold
 .
 79

Activities
 .
 81

Summary
 .
 81

III
 Preparation
 83

5
 Acquire
 87

5.1
 Downloads
 .
 88

5.1.1
 Manual
 .
 88

5.1.2
 Programmatic
 .
 92

5.2
 APIs
 .
 99

Activities
 .
 109

Summary
 .
 109

Contents
 vii

6
 Curate
 111

6.1
 Unstructured
 .
 112

6.1.1
 Reading data
 .
 112

6.1.2
 Orientation
 .
 112

6.1.3
 Tidy the data
 .
 115

6.2
 Structured
 .
 118

6.2.1
 Reading datasets
 .
 118

6.2.2
 Orientation
 .
 119

6.2.3
 Tidy the dataset
 .
 121

6.3
 Semi-structured
 .
 126

6.3.1
 Reading data
 .
 126

6.3.2
 Orientation
 .
 127

6.3.3
 Tidy the data
 .
 129

6.4
 Documentation
 .
 134

Activities
 .
 135

Summary
 .
 136

7
 Transform
 137

7.1
 Preparation
 .
 137

7.1.1
 Normalization .
 139

7.1.2
 Tokenization .
 142

7.2
 Enrichment
 .
 147

7.2.1
 Generation
 .
 148

7.2.2

. .
 155

Recoding
 .
 152

7.2.3
 Integration

Activities
 .
 163

Summary
 .
 164

IV
 Analysis
 165

8
 Explore
 169

8.1
 Orientation
 .
 170

8.2
 Analysis
 .
 171

8.2.1
 Descriptive analysis .
 172

8.2.2
 Unsupervised learning

 192

Activities
 .
 210

Summary
 .
 211

9
 Predict
 213

9.1
 Orientation
 .
 213

9.2
 Analysis
 .
 216

9.2.1
 Text classification
 .
 218

9.2.2
 Text regression
 .
 246

Activities
 .
 257

Summary
 .
 258

viii
 Contents

10
 Infer
 259

10.1 Orientation
 .
 259

10.2 Analysis
 .
 263

10.2.1
 Categorical
 .
 264

10.2.2
 Numeric
 .
 285

Activities
 .
 303

Summary
 .
 304

V
 Communication
 305

11
 Contribute
 309

11.1 Public-facing
 .
 309

11.1.1
 Structure .
 310

11.1.2
 Purpose
 .
 311

11.1.3
 Strategies
 .
 312

11.2 Peer-facing
 .
 314

11.2.1
 Structure .
 314

11.2.2

. .
 316

Purpose
 .
 316

11.2.3
 Strategies

Activities
 .
 324

Summary
 .
 324

References
 325

Index
 335

Acknowledgments

The
journey
of
creating
this
textbook
has
been
both
challenging
and
reward-
ing,
and
 it
would
not
have
been
possible
without
 the
 inspiration,
support,
and
invaluable
feedback
from
many
individuals.
First
and
foremost,
I
extend
my
deepest
gratitude
to
my
students
at
Wake
Forest
University.
Your
enthu-
siasm
and
curiosity
have
been
a
constant
source
of
inspiration,
pushing
me
to
address
my
blind
spots
and
meet
your
needs
more
effectively.

I
am
particularly
grateful
for
the
generous
feedback
from
the
following
 in-
dividuals,
whose
insights
and
suggestions
have
significantly
shaped
the
de-
velopment
of
this
book:
Laura
Aull,
Andrea
Bowling,
Caroline
Brady,
Declan
Golsen,
Logan
Jacobs,
Abby
Komiske,
Asya
Little,
Elaine
Lu,
Jack
Nelson,
and
Sicheng
Wang.
Your
contributions
have
been
instrumental
in
refining
the
con-
tent
and
making
it
more
accessible
and
engaging
for
future
readers.

A
 special
 thanks
 to
my
 colleague
and
 spouse,
Dr.
Claudia
Valdez,
 for
her
unwavering
support,
encouragement,
and
patience
throughout
this
project.
Your
 feedback
 and
 guidance
have
 been
 invaluable,
 and
 I
 am
 grateful
 for
your
willingness
to
engage
in
countless
discussions
about
the
content,
struc-
ture,
and
pedagogical
approach
of
this
book.
Most
importantly,
thank
you
for
your
love
and
understanding,
which
have
sustained
me
through
the
ups
and
downs
of
this
journey.

Finally,
I
would
 like
to
express
my
appreciation
to
the
R
community,
espe-
cially
 the
developers
 and
 contributors
of
 the
 {tidyverse}
 and
 {tidymodels}
packages.
Your
dedication
 to
creating
user-friendly
and
powerful
 tools
 for
data
analysis
has
 revolutionized
 the
field
of
quantitative
 text
analysis
and
made
it
accessible
to
a
broader
audience.

ix

https://taylorandfrancis.com

Preface

|
Outcomes

•
 Comprehend
 the
 book’s
 rationale,
 learning
 goals,
 and
 pedagogical
 ap-
proach.

•
 Navigate
and
engage
with
the
book’s
structure
and
content
effectively.
•
 Set
up
 the
 computing
environment
and
utilize
 textbook
and
 support
 re-
sources
for
an
optimal
learning
experience.

The
purpose
of
this
preface
is
to
present
the
rationale
behind
this
textbook,
outline
the
key
learning
objectives,
describe
the
pedagogical
approach,
and
identify
the
intended
audience.
Additionally,
this
chapter
will
provide
read-
ers
with
a
guide
to
the
book’s
structure
and
the
scope
of
its
content,
as
well
as
a
summary
of
supporting
learning
and
instructor
resources.
Finally,
this
chapter
will
provide
readers
with
information
on
setting
up
their
computing
environment
and
where
to
seek
support.

Rationale

Data
science,
an
interdisciplinary
field
that
combines
knowledge
and
skills
from
 statistics,
 computer
 science,
 and
domain-specific
 expertise
 to
 extract
meaningful
insight
from
structured
and
unstructured
data,
has
emerged
as
an
exciting
and
rapidly
growing
field
in
recent
years,
driven
in
large
part
by
the
increase
in
computing
power
available
to
the
average
individual
and
the
abundance
of
electronic
data
now
available
through
the
internet.
These
ad-
vances
have
become
an
integral
part
of
the
modern
scientific
landscape,
with
data-driven
 insights
now
being
used
 to
 inform
decision-making
 in
a
wide
variety
of
academic
fields,
 including
 linguistics
and
 language-related
disci-
plines.

This
textbook
seeks
to
meet
this
growing
demand
by
providing
an
introduc-
tion
to
the
fundamental
concepts
and
practical
programming
skills
from
data
science
applied
to
the
task
of
quantitative
text
analysis.
It
is
intended
primar-
ily
 for
undergraduate
 students,
but
may
also
be
useful
 for
graduates
and

xi

xii

 Preface

researchers
 seeking
 to
 expand
 their
methodological
 toolbox.
The
 textbook
takes
a
pedagogical
approach
which
assumes
no
prior
experience
with
statis-
tics
or
programming,
making
it
an
accessible
resource
for
novices
beginning
their
exploration
of
quantitative
text
analysis
methods.

Aims

The
overarching
goal
of
this
textbook
is
to
provide
readers
with
foundational
knowledge
and
practical
skills
to
conduct
and
evaluate
quantitative
text
anal-
ysis
using
the
R
programming
language
and
other
open
source
tools
and
tech-
nologies.
The
specific
aims
are
to
develop
the
reader’s
proficiency
 in
three
main
areas:

•

Data
 literacy:
 Identify,
 interpret
and
evaluate
data
analysis
procedures

and
results.

Throughout
 this
 textbook
we
will
 explore
 topics
which
will
 help
 you
understand
how
data
analysis
methods
derive
insight
from
data.
In
this
process
you
will
be
encouraged
to
critically
evaluate
connections
across
linguistic
and
language-related
disciplines
using
data
analysis
knowledge
and
skills.
Data
literacy
is
an
invaluable
skillset
for
academics
and
profes-
sionals
but
also
is
indispensable
for
21st-century
citizens
to
navigate
and
actively
participate
 in
 the
“Information
Age”
 in
which
we
 live
 (Carmi,
Yates,
Lockley,
&
Pawluczuk,
2020).

•

Research
skills:
Design,
implement,
and
communicate
quantitative
text
analysis
research.
This
aim
does
not
differ
significantly,
in
spirit,
from
common
learning
out-
comes
in
a
research
methods
course.
However,
working
with
text
will
in-
cur
a
series
of
key
steps
in
the
selection,
collection,
and
preparation
of
the
data
that
are
unique
to
text
analysis
projects.
In
addition,
I
will
stress
the
importance
of
research
documentation
and
creating
reproducible
research
as
an
integral
part
of
modern
scientific
inquiry
(Buckheit
&
Donoho,
1995).

•

Programming
skills:
Develop
and
apply
programming
skills
to
text
anal-
ysis
tasks
in
a
reproducible
manner.
Modern
data
analysis,
and
by
extension,
text
analysis
is
conducted
using
programming.
There
are
various
key
reasons
for
this:
a
programming
ap-
proach
 (1)
affords
researchers
unlimited
research
 freedom
—if
you
can
envision
it,
you
can
program
it,
(2)
underlies
well-documented
and
repro-
ducible
research
(Gandrud,
2015),
and
(3)
 invites
researchers
 to
engage
more
intimately
with
the
data
and
the
methods
for
analysis.

Approach
 xiii

These
aims
are
important
for
linguistics
students
because
they
provide
a
foun-
dation
for
concepts
and
in
the
skills
required
to
succeed
in
the
rapidly
evolv-
ing
landscape
of
21st-century
research.
These
abilities
enable
researchers
to
evaluate
and
conduct
high-quality
empirical
 investigation
across
 linguistic
fields
on
a
wide
variety
of
topics.
Moreover,
these
skills
go
beyond
linguis-
tics
research;
they
are
widely
applicable
across
many
disciplines
where
quan-
titative
data
analysis
and
programming
are
becoming
increasingly
important.
Thus,
 this
 textbook
provides
 students
with
 a
 comprehensive
 introduction
to
quantitative
text
analysis
that
 is
relevant
to
 linguistics
research
and
that
equips
them
with
valuable
skills
for
their
future
careers.

Approach

The
approach
taken
in
this
textbook
is
designed
to
accommodate
linguistics
students
and
researchers
with
little
to
no
prior
experience
with
programming
or
quantitative
methods.
With
this
in
mind
the
objective
is
connect
concep-
tual
understanding
with
practical
application.
Real-world
data
and
research
tasks
relevant
to
linguistics
are
used
throughout
the
book
to
provide
context
and
 to
motivate
 the
 learning
process1.
Furthermore,
as
an
 introduction
 to
the
field,
the
textbook
focuses
on
the
most
common
and
fundamental
meth-
ods
and
techniques
for
quantitative
text
analysis
and
prioritizes
breadth
over
depth
and
intuitive
understanding
over
technical
explanations.
On
the
pro-
gramming
side,
the
Tidyverse
approach
to
programming
in
will
be
adopted
(Wickham,
2014b).
This
approach
provides
a
consistent
syntax
across
differ-
ent
packages
and
 is
known
for
its
 legibility,
making
 it
easier
for
readers
to
understand
and
write
code.
Together,
these
strategies
form
an
approach
that
is
intended
to
provide
readers
with
an
accessible
resource
to
gain
a
foothold
in
the
field
and
to
equip
them
with
the
knowledge
and
skills
to
apply
quanti-
tative
text
analysis
in
their
own
research.

Structure

The
aims
and
approach
described
above
are
reflected
in
the
overall
structure
of
the
book
and
each
chapter.

1Research
data
and
questions
are
primarily
based
on
English
for
wide
accessibility
as
it
is
the
de
facto
language
of
academics
and
research.
However,
the
methods
and
techniques
presented
in
this
textbook
are
applicable
to
many
other
languages.

xiv
 Preface

Book
level

At
the
book
level,
there
are
five
interdependent
parts:

Part
I
“Orientation”
provides
the
necessary
background
knowledge
to
situate
quantitative
text
analysis
in
the
wider
context
of
data
analysis
and
linguistic
research
and
to
provide
a
clearer
picture
of
what
text
analysis
entails
and
its
range
of
applications.

The
subsequent
parts
are
directly
aligned
with
the
data
analysis
process.
The
building
blocks
of
 this
process
are
 reflected
 in
 ‘Data
 to
 Insight
Hierarchy

(DIKI)’
visualized
in
Figure
0.1.

Figure
0.1:
Data
to
Insight
Hierarchy
(DIKI)2

The
DIKI
Hierarchy
highlights
the
stages
and
intermediate
steps
required
to
derive
insight
from
data.
Part
II
“Foundations”
provides
a
conceptual
intro-
duction
to
the
DIKI
Hierarchy
and
establishes
foundational
knowledge
about
data,
information,
knowledge,
and
insight
which
is
fundamental
to
develop-
ing
a
viable
research
plan.

Parts
III
“Preparation”
and
IV
“Analysis”
focus
on
the
implementation
pro-
cess.
Part
III
covers
the
steps
involved
in
preparing
data
for
analysis,
includ-
ing
data
acquisition,
curation,
and
transformation.
Part
IV
covers
the
steps
involved
in
conducting
analysis,
including
exploratory,
predictive,
and
infer-
ential
data
analysis.

The
final
part,
Part
V
“Communication”,
covers
 the
final
stage
of
 the
data
analysis
process,
which
 is
 to
communicate
 the
results
of
 the
analysis.
This
includes
the
structure
and
content
of
research
reports
as
well
as
the
process
of
publishing,
sharing,
and
collaborating
on
research.

2Adapted
from
Ackoff
(1989)
and
Rowley
(2007).

Structure
 xv

Chapter
level

At
the
chapter
level,
both
conceptual
and
programming
skills
are
developed
in
stages3.
The
chapter-level
structure
is
consistent
across
chapters
and
can
be
seen
in
Table
0.1.

Table
0.1:
The
general
structure
and
learning
progression
of
a
chapter

Component
 Purpose
 Resource
 Stage

Outcomes

Overview

Coding

Lessons

Identify
the
 learning
objectives
for
the

chapter

Provide
a
brief
 introduction
to
the
chapter

topic

Teach
programming
techniques
with

hands-on
 interactive
exercises

Textbook

Textbook

GitHub

Indicate

Outline

Interact

Content

Recipes

Labs

Summary

Combine
conceptual
discussions
and

programming
skills,
 incorporating

thought-provoking
questions,
relevant

studies,
and
advanced
topic
references

Offer
step-by-step
programming
examples

related
to
the
chapter
and
relevant
for
the

upcoming
 lab

Allow
readers
to
apply
chapter-specific

concepts
and
techniques
to
practical
tasks

Review
the
key
concepts
and
skills
covered

in
the
chapter

Textbook

Resources

Kit
website

GitHub

Textbook

Explore

Examine

Apply

Review

Each
chapter
will
begin
with
a
list
of
key
learning
outcomes
followed
by
a
brief
introduction
to
the
chapter’s
content.
The
goal
is
to
orient
the
reader
to
the
chapter.
Next
there
will
be
a
prompt
to
complete
the
interactive
coding
lesson(s)
 to
 introduce
readers
 to
key
programming
concepts
related
 to
 the
chapter
though
hands-on
experience
and
then
the
main
content
of
the
chap-
ter
will
follow.
The
content
will
be
a
combination
of
conceptual
discussions
and
programming
skills,
incorporating
thought-provoking
questions
(‘Ď
Con-
sider
this’),
relevant
studies
(‘ş
Case
study’),
and
advanced
topic
references

(‘̪
Dive
deeper’).
Together
these
components
form
the
skills
and
knowledge
phase.

The
next
phase
is
the
application
phase.
This
phase
will
include
step-by-step
programming
demonstrations
related
to
the
chapter
(Recipes)
and
lab
exer-
cises
that
allow
readers
to
apply
their
knowledge
and
skills
to
chapter-related
tasks.
Finally,
the
chapters
conclude
with
a
summary
of
the
key
concepts
and
skills
covered
in
the
chapter
and
in
the
associated
activities.

3These
stages
attempt
to
capture
the
general
progression
of
learning
reflected
in
Bloom’s
Tax-
onomy.
See
Krathwohl
(2002)
for
a
description
and
revised
version.

xvi
 Preface

Resources

The
description
and
location
of
the
available
resources
to
support
the
aims
and
approach
of
this
textbook
appear
in
Table
0.2.

Table
0.2:
Resources
available
to
support
the
aims
and
approach
of
this
text-
book

Resource
 Description
 Location

Textbook
 Prose
discussion,
figures/
tables,
R
code,
case
studies,
 Physical/

and
thought
and
practical
exercises
 Web4

{qtkit}
 R
package
with
functions
for
accessing
data
and
 CRAN/

datasets,
as
well
as
various
useful
functions
developed
 GitHub

specifically
for
this
textbook

Resources
 Includes
Recipes,
programming
tutorials
to
enhance
the
 GitHub

Kit
 reader’s
recognition
of
how
programming
strategies
are

implemented,
and
other
supplementary
materials

including
setup
Guides,
and
 Instructor
materials

Lessons
 A
set
of
 interactive
R
programming
 lessons
associated
 GitHub

with
each
chapter

Labs
 A
set
of
 lab
exercises
designed
to
direct
the
reader
 GitHub

through
practical
hands-on
programming
applications

All
resources
are
freely
available
and
accessible
to
readers
and
are
found
on
the
GitHub
organization
https://github.com/qtalr/.
For
 the
 textbook
and
Resources
Kit,
the
code
and
a
link
to
the
website
are
provided
in
each
respec-
tive
repository.
The
development
version
of
the
{qtkit}
package
is
available
on
GitHub
and
the
stable
version
is
available
on
the
Comprehensive
R
Archive
Network
(CRAN)
(Francom,
2024).
The
interactive
programming
lessons
and
lab
exercises
are
also
available
on
GitHub.
Errata
should
be
reported
in
the
respective
repository’s
issue
tracker
on
GitHub.

Getting
started

Before
 jumping
in
to
this
and
subsequent
chapter’s
textbook
activities,
it
is
important
to
prepare
your
computing
environment
and
understand
how
to
take
advantage
of
the
resources
available,
both
those
directly
and
indirectly
associated
with
the
textbook.

4https://qtalr.com

https://github.com/qtalr/
https://qtalr.com

Getting
started
 xvii

R
environment

Programming
is
the
backbone
for
modern
quantitative
research.
Among
the
many
 programming
 languages
 available,
R
 is
 a
 popular
 open-source
 lan-
guage
and
software
environment
for
statistical
computing.
R
is
popular
with
statisticians
and
has
been
adopted
as
 the
de
 facto
 language
by
many
other
fields
in
natural
and
social
sciences,
including
linguistics.
It
is
freely
down-
loadable
from
The
R
Project
for
Statistical
Programming
website
(The
R
Foun-
dation,
2024)
and
is
available
for
macOS,
Linux,
and
Windows
operating
sys-
tems.

Successfully
installing
R
is
rarely
the
last
step
in
setting
up
your
R-enabled
computing
environment.
The
majority
of
R
users
also
 install
an
integrated

development
environment
(IDE).
An
IDE,
such
as
RStudio
(Posit,
2024),
or
a
text
editor,
such
as
Visual
Studio
Code
(Microsoft,
2024),
provide
a
graphical

user
interface
(GUI)
for
working
with
R5.
In
effect,
these
interfaces
provide
a
dashboard
for
working
with
R
and
are
designed
to
make
it
easier
to
write
and
execute
R
code.
IDEs
also
provide
a
number
of
other
useful
features
such
as
syntax
highlighting,
code
completion,
and
debugging.
IDEs
are
not
required
to
work
with
R
but
they
are
highly
recommended.

Choosing
to
install
R
and
an
IDE
directly
on
your
personal
computer,
which
is
know
as
your
local
environment,
is
not
the
only
option
to
work
with
R.
Other
options
include
working
with
R
in
a
remote
environment
or
a
virtual

environment.

Ɗ
Guides
For
more
information
and
instructions
on
setting
up
an
R
environ-
ment
for
using
this
book,
consult
the
Resources
Kit
“Setting
up
an
R
environ-
ment”
guide.

There
are
trade-offs
in
terms
of
cost,
convenience,
and
flexibility
when
choos-
ing
to
work
with
R
in
a
local,
remote,
or
virtual
environment.
The
choice
is
yours
and
you
can
always
change
your
mind
 later.
The
 important
 thing
 is
to
get
started
and
begin
learning
R.
Furthermore,
any
of
the
approaches
de-
scribed
here
will
be
compatible
with
this
textbook.

R
packages

As
 you
progress
 in
 your
R
programming
 experience,
 you’ll
find
 yourself
leveraging
 code
 from
 other
R
users,
which
 is
 typically
provided
 as
pack-
ages.
Packages
are
sets
of
functions
and/or
datasets
that
are
freely
accessible
for
download,
designed
to
perform
a
specific
set
of
interrelated
tasks.
They

5For
those
who
prefer
a
terminal-based
text
editor,
Neovim
is
a
popular
choice.
Neovim
is
a
text
editor
that
is
designed
to
be
extensible
and
customizable.
It
is
a
modern
version
of
the
classic
Vim
text
editor.

xviii
 Preface

enhance
the
capabilities
of
R.
Official
R
packages
can
be
found
in
reposito-
ries
like
CRAN
(R
Community,
2024)
or
R-universe
(ROpenSci,
2024),
while
other
packages
can
be
obtained
from
code-sharing
platforms
such
as
GitHub
(GitHub,
2024).

Ď
Consider
this

CRAN
includes
groupings
of
popular
packages
related
to
a
given
applied
pro-
gramming
task
called
Task
Views
https://cran.r-project.org/web/views/.
Ex-
plore
the
available
CRAN
Task
Views
listings.
Note
the
variety
of
areas
(tasks)
that
are
covered
in
this
listing.
Now
explore
in
more
detail
one
of
the
following
task
views
which
are
directly
related
to
topics
covered
in
this
textbook
noting
the
associated
packages
and
their
descriptions:
(1)
Cluster,
(2)
MachineLearn-
ing,
(3)
NaturalLanguageProcessing,
or
(4)
ReproducibleResearch.

You
will
download
a
number
of
packages
at
different
stages
of
this
textbook,
but
there
is
a
set
of
packages
that
will
be
key
to
have
from
the
get
go.
Once
you
have
access
to
a
working
R
environment,
you
can
proceed
to
install
the
following
packages.

Ɗ
Guides

For
instructions
on
how
to
install
the
qtkit
package
from
CRAN
or
GitHub
and
download
and
use
the
interactive
R
programming
lessons
for
this
textbook,
see
the
Resources
Kit
“Getting
started”
guide.

Install
the
following
packages
from
CRAN.

•
 tidyverse
(Wickham,
2023c)
•
 tinytex
(Xie,
2024)
•
 swirl
(Kross,
Carchedi,
Bauer,
&
Grdina,
2020)
•
 qtkit
(Francom,
2024)

You
can
do
this
by
running
Example
0.1
in
an
R
console:

Example
0.1.

1
 #
 install
 key
 packages
 from
 CRAN

2
 install.packages(c("tidyverse",
 "tinytex",
 "swirl",
 "qtkit"))

Git
and
GitHub

GitHub
is
a
code
sharing
website.
Modern
computing
is
highly
collaborative
and
GitHub
is
a
very
popular
platform
for
sharing
and
collaborating
on
cod-
ing
projects.
The
lab
exercises
for
this
textbook
are
shared
on
GitHub.
To
ac-
cess
and
complete
these
exercises
you
will
need
to
sign
up
for
a
(free)
account
and
then
set
up
the
version
control
software
Git
on
your
computing
environ-
ment.

https://cran.r-project.org/web/views/

xix
Getting
started

Ɗ
Guides

For
more
 information
and
 instructions
on
 setting
up
version
control
and
 in-
teracting
with
GitHub
consult
the
Resources
Kit
“Setting
up
Git
and
GitHub”
guide.

Getting
help

The
 technologies
 employed
 in
 this
 approach
 to
 text
 analysis
will
 include
a
 somewhat
 steep
 learning
 curve.
And
 in
 all
 honesty,
 the
 learning
 never
stops!
Both
seasoned
programmers
and
beginners
alike
need
assistance.
For-
tunately,
there
is
a
very
large
community
of
programmers
who
have
devel-
oped
many
official
support
resources
and
who
actively
contribute
to
official
and
unofficial
discussion
forums.
Together
these
resources
provide
many
av-
enues
for
overcoming
challenges.

In
Table
0.3,
I
provide
a
list
of
steps
for
seeking
help
with
R.

Table
0.3:
Recommended
order
for
seeking
help
with
R

Step
 Resource
 Description

1
 Official
R

Documentation

2
 Web
Search

3

4

RStudio
Help

Toolbar

Online
Discussion

Forums

5
 Post
Questions
with

Reprex

Access
the
official
documentation
by
running

help(package
 =
 "package_name")
 in
an
R
console.
Use
the

?
 operator
followed
by
the
package
or
function
name.

Check
out
available
Vignettes
by
running

browseVignettes("package_name").

Look
for
package
documentation
and
vignettes
on
the

web.
A
popular
site
for
this
 is
R-Universe.

If
you’re
using
RStudio,
use
the
“Help”
toolbar
menu.
 It

provides
 links
to
help
resources,
guides,
and
manuals.

Sites
 like
Stack
Overflow
and
RStudio
Community
are

great
platforms
where
the
programming
community
asks

and
answers
questions
related
to
real-world
 issues.

When
posting
a
question,
especially
those
 involving

coding
 issues
or
errors,
provide
enough
background
and

include
a
reproducible
example
(reprex)
—a
minimal

piece
of
code
that
demonstrates
your
 issue.
This
helps

others
understand
and
answer
your
question
effectively.

Ɗ
Guides

For
 information
on
how
 to
 create
a
minimal
 reproducible
example
with
 the
{reprex}
package
(Bryan,
Hester,
Robinson,
Wickham,
&
Dervieux,
2024),
con-
sult
the
Resources
Kit
“Creating
reproducible
examples”
guide.

xx

 Preface

The
take-home
message
here
is
that
you
are
not
alone.
There
are
many
people
world-wide
that
are
learning
to
program
and/or
contribute
to
the
learning
of
others.
The
more
you
engage
with
these
resources
and
communities
the
more
successful
your
learning
will
be.
As
soon
as
you
are
able,
pay
it
forward.
Posting
questions
and
offering
answers
helps
 the
community
and
engages
and
refines
your
skills
—a
win-win.

Conventions

To
facilitate
the
learning
process,
this
textbook
will
employ
a
number
of
con-
ventions.
These
conventions
are
intended
to
help
the
reader
navigate
the
text
and
to
signal
the
reader’s
attention
to
important
concepts
and
information.

Prose

The
following
typographic
conventions
are
used
throughout
the
text:

•

Italics

–

File
names,
file
extensions,
directory
paths,
and
URLs.

•

Fixed-width

–

Function
names,
variable
and
object
names,
and
in-line
code
includ-
ing
expressions
and
operators.

•
 {Curly
brackets}

–

R
package
names

•

Bold

–

Key
concepts
when
first
introduced.

•
 Linked
text6

–

Links
to
internal
and
external
resources
and
footnotes.

Code
blocks

More
lengthy
code
will
be
presented
in
code
blocks,
as
seen
in
Example
0.2.

Example
0.2.

1
 #
 A
 function
 that
 takes
 a
 name
 and
 returns
 a
 greeting

2
 greetings
 <- function(name)
 {

3
 paste("Hello",
 name)

4
 }

5

6https://qtalr.com/resources/

https://qtalr.com/resources/

Conventions
 xxi

6
 #
 Apply
 function
 to
 a
 name

7
 greetings(name
 =
 "R
 user")

[1]
 "Hello
 R
 user"

There
are
a
couple
of
things
to
note
about
the
code
in
Example
0.2.
First,
it
shows
the
code
that
 is
run
 in
R
as
well
as
the
output
that
 is
returned.
The
code
will
appear
 in
a
box
and
 the
output
will
appear
below
 the
box.
Both
code
and
output
will
appear
in
fixed-width
font.
Second,
the
#
symbol
within

a
code
block
is
used
to
signal
a
code
comment,
a
human-facing
description.

Everything
right
of
a
#
 is
not
run
as
code.
In
this
textbook
you
will
see
code
comments
above
code
on
a
separate
line
and/or
to
the
right
of
code
on
the
same
line.
It
is
good
practice
to
comment
your
code
to
enhance
readability
and
to
help
others
understand
what
your
code
is
doing.

All
figures,
tables,
and
images
in
this
textbook
are
generated
by
code
blocks,
but
 only
 code
 for
 those
 elements
 that
 are
 relevant
 for
 discussion
will
 be
shown.
However,
if
you
wish
to
see
the
code
for
any
element
in
this
textbook,
you
can
visit
the
GitHub
repository
https://qtalr.github.io/book/.

When
referencing
a
file
or
portion
of
a
file,
it
will
appear
as
in
Snippet
0.1.

Snippet
0.1.
 example.R
file

1
 #
 Load
 package

2
 library(tidyverse)

3

4
 #
 Add
 1
 and
 1

5
 1
 +
 1

Callouts

Callouts
are used to signal the reader’s attention
to content, activity, and other
important
sections.
The
following
callouts
are
used
in
this
textbook:

Content

|
Outcomes

Learning
outcomes
for
the
chapter.

Ď
Consider
this

Points
to
consider
and
questions
to
explore.

https://qtalr.github.io/book/

xxii
 Preface

ş
Case
study
Case
studies
which
highlight
conceptual
knowledge
and
coding
skills.

̪
Dive
deeper
Additional
comments
and
resources
for
diving
deeper
into
a
topic.

Activities

ı
Lessons

Links
to
interactive
lessons
for
practicing
coding
skills.

Ɗ
Recipe
Reading
to
examine
programming
concepts.

ð
Lab

Exercises
for
applying
conceptual
knowledge
and
coding
skills.

Other

á
Tip
Tips
for
using
R
and
related
tools.

Á
Warning
Warnings
for
using
R
and
related
tools.

Activities

At
this
point
you
should
have
a
working
R
environment
with
the
core
pack-
ages
including
{qtkit}
installed.
You
should
also
have
verified
that
you
have
a
working
Git
 environment
 and
 that
 you
 have
 a
GitHub
 account.
 If
 you
have
not
completed
these
tasks,
return
to
the
guides
listed
above
in
“Getting
started”
of
this
Preface
and
complete
them
before
proceeding.

The
following
activities
are
designed
to
help
you
become
familiar
with
the
tools
and
resources
that
you
will
be
using
throughout
this
textbook.
These
and
subsequent
activities
are
designed
to
be
completed
in
the
order
that
they
are
presented
in
this
textbook.

Summary
 xxiii

ı
Lessons

What:
Intro
to
Swirl

How:
In
the
R
console
load
{swirl},
run
swirl(),
and
follow
prompts
to
select

the
lesson.

Why:
 To
 familiarize
 you
 with
 navigating,
 selecting,
 and
 completing
 swirl
lessons
for
interactive
R
programming
tutorials.

Ɗ
Recipe
What:
Literate
Programming
and
Quarto

How:
Read
Recipe
0,
complete
comprehension
check,
and
prepare
for
Lab
0.

Why:
To
introduce
the
concept
of
Literate
Programming
and
how
to
create
lit-

erate documents using R and Quarto.

ð
Lab

What:
Writing
with
code

How:
Clone,
fork,
and
complete
the
steps
in
Lab
0.

Why:
To
put
literate
programming
techniques
covered
in
Recipe
0
into
practice.
Specifically,
you
will
create
and
edit
a
Quarto
document
and
render
a
report
in
PDF
format.

Summary

This
preface
 outlines
 the
 textbook’s
underlying
principles,
 learning
 goals,
teaching
methods,
and
target
audience.
The
chapter
also
offers
advice
on
how
to
navigate
the
book’s
layout,
comprehend
its
subject
matter,
and
make
use
of
supplementary
materials.
With
this
foundation,
you’re
now
prepared
to
dig
into
quantitative
text
analysis.
I
hope
you
enjoy
the
journey!

To
the
instructor

For
 recommendations
on
how
 to
use
 this
 textbook
 in
your
 course
 and
 to
access
additional
resources,
visit
the
Resources
Kit
“Instructor
Guide”.
The
guide
provides
information
on
how
to
structure
your
course,
how
to
use
the
textbook,
and
how
to
access
additional
resources
to
support
your
teaching.

https://taylorandfrancis.com

Part
I

Orientation

https://taylorandfrancis.com

3

In
this
introductory
part,
we
explore
fundamental
concepts
that
are
essential
for
understanding
 text
analysis
 in
 its
research
and
methodological
context.
We
start
by
pointing
to
the
limitations
of
human
cognition
in
processing
vast
amounts
of
information
and
that
underscore
the
need
for
scientific
methods

to
objectively
analyze
data.
A
brief
history
of
quantitative
data
analysis
high-
lights
the
commonalities
between
text
analysis
and
other
quantitative
meth-
ods.
We
then
discuss
the
role
of
quantitative
methods
in
language
research,
and
how
text
analysis
contributes
to
the
field.

https://taylorandfrancis.com

1

Text
analysis

|
Outcomes

•
 Understand
the
role
and
goals
of
data
analysis
both
within
and
outside
of
academia.

•
 Describe
the
various
approaches
to
quantitative
language
research.
•
 Identify
the
applications
of
text
analysis
in
different
contexts.

In
this
chapter,
I
introduce
the
topic
of
text
analysis
and
provide
the
context
needed
to
understand
how
it
fits
in
a
larger
universe
of
science
and
the
ever-
ubiquitous
methods
of
data
science.
Approaches
to
language
analysis,
includ-
ing
methodological
approaches
and
the
nature
of
data,
are
discussed.
I
then
introduce
text
analysis
as
a
branch
of
data
science
and
discuss
its
aims,
ap-
proaches,
implementation,
and
applications.

ı
Lessons

What:
Workspace,
Vectors

How:
In
an
R
console
load
{swirl},
run
swirl(),
and
follow
prompts
to
select
the

lesson.

Why:
To
examine
your
local
workspace
in
RStudio
and
understand
the
relation-
ship
between
your
R
workspace
and
the
file
system
of
your
computing
environ-
ment.
To
explore
the
key
building
blocks
of
the
R
programming
language.

1.1
 Enter
science

The
world
around
us
 is
 full
of
countless
actions
and
 interactions.
As
 indi-
viduals,
we
experience
this
world,
gaining
knowledge
and
building
heuristic
understanding
of
how
it
works.
Our
minds
process
countless
sensory
inputs,
which
enable
skills
and
abilities
that
we
often
take
for
granted,
such
as
pre-
dicting
what
will
happen
if
someone
is
about
to
knock
a
wine
glass
off
a
table
and
onto
a
concrete
floor.
Even
if
we
have
never
encountered
this
specific
sit-
uation
before,
our
minds
somehow
instinctively
make
an
effort
to
warn
the
potential
glass-breaker
before
it
is
too
late.

5
DOI:
10.4324/9781003393764-2
This
chapter
has
been
made
available
under
a
CC-BY-NC-ND
license.

6
 CHAPTER
1.
 TEXT
ANALYSIS

You
may
have
attributed
this
predictive
knowledge
to
‘common
sense’.
De-
spite
 its
 commonality,
 it
 is
an
 incredible
display
of
 the
brain’s
 capacity
 to
monitor
the
environment,
make
connections,
and
store
information
without
consciously
informing
us
about
its
processes.

Our
brains
are
efficient
but
not
infallible.
They
do
not
store
every
experience
in
raw
form;
we
don’t
have
access
to
records
like
a
computer
would.
Instead,
our
brains
excel
in
making
associations
and
predictions
that
help
us
navigate
the
complex
world
we
inhabit.
In
addition,
our
brains
are
prone
to
biases
that
can
influence
our
understanding
of
the
world.
For
example,
confirmation
bias
leads
us
to
seek
out
information
that
confirms
our
beliefs,
while
the
availabil-
ity
heuristic
causes
us
to
overestimate
the
likelihood
of
easily
recalled
events.

Our
brains
are
doing
some
amazing
work,
but
that
work
can
give
us
the
im-
pression
that
we
understand
the
world
better
and
in
more
detail
than
we
ac-
tually
do.
In
this
way,
what
we
think
the
world
is
like
and
what
the
world
is
actually
like
can
be
two
different
things.
This
is
problematic
for
making
sense
of
the
world
in
an
objective
way.
This
is
where
science
comes
in.

Ď
Consider
this

How
might
your
own
experiences
and
biases
influence
your
understanding
of
the
world?
What
are
some
ways
that
you
can
mitigate
these
biases?
Is
it
ever
possible
to
be
completely
objective?
How
might
biases
influence
the
way
you
approach
text
analysis?

Science
starts
with
a
question,
identifies
and
collects
data,
carefully
selected
slices
of
the
complex
world,
submits
this
data
to
analysis
through
clearly
de-
fined
and
reproducible
procedures,
and
reports
the
results
for
others
to
eval-
uate.
This
process
is
repeated,
modifying,
and
manipulating
the
procedures,
asking
new
questions
and
positing
new
explanations,
all
in
an
effort
to
make
inroads
to
bring
the
complex
into
tangible
view.

In
essence
what
science
does
is
attempt
to
subvert
our
inherent
limitations
by
drawing
on
carefully
and
purposefully
collected
samples
of
observable
experience
and
letting
the
analysis
of
these
observations
speak,
even
if
it
goes
against
our
intuitions
(those
powerful
but
sometime
spurious
heuristics
that
our
brains
use
to
make
sense
of
the
world).

7
1.2.
 DATA
ANALYSIS

1.2
 Data
analysis

1.2.1
 Emergence
of
data
science

This
science
I’ve
described
is
the
one
you
are
likely
quite
familiar
with
and,
if
you
are
like
me,
this
description
of
science
conjures
visions
of
white
coats,
labs,
and
petri
dishes.
While
science’s
 foundation
still
stands
strong
 in
 the
21st
century,
a
series
of
 intellectual
and
 technological
events
mid-20th
cen-
tury
set
in
motion
changes
that
have
changed
aspects
about
how
science
is
done,
not
why
it
is
done.
We
could
call
this
Science
2.0,
but
let’s
use
the
more
popularized
term
data
science.

The
 recognized
 beginnings
 of
 data
 science
 are
 attributed
 to
work
 in
 the
“Statistics
and
Data
Analysis
Research”
department
at
Bell
Labs
during
the
1960s.
Although
primarily
conceptual
and
theoretic
at
the
time,
a
framework
for
quantitative
data
analysis
took
shape
that
would
anticipate
what
would
come:
sizable
datasets
which
would
“[…]
 require
advanced
statistical
and
computational
techniques
[…]
and
the
software
to
implement
them.”
(Cham-
bers,
2020)
This
framework
emphasized
both
the
inference-based
research
of
traditional
science,
but
also
embraced
exploratory
research
and
recognized
the
need
to
address
practical
considerations
that
would
arise
when
working
with
and
deriving
insight
from
an
abundance
of
machine-readable
data.

Fast-forward
 to
 the
21st
century,
a
world
 in
which
machine-readable
data
is
 truly
 in
abundance.
With
 increased
computing
power,
 the
emergence
of
the
internet,
and
the
wide
adoption
of
mobile
devices,
electronic
communi-
cation
skyrocketed
around
 the
globe.
To
put
 this
 in
perspective,
 in
2019
 it
was
estimated
that
every
minute
511
thousand
tweets
were
posted,
18.1
mil-
lion
text
messages
were
sent,
and
188
million
emails
were
sent
(“Data
never
sleeps
7.0,”
2019).
The
data
flood
has
not
been
limited
to
language,
there
are
more
sensors
and
recording
devices
than
ever
before
which
capture
evermore
swaths
of
the
world
we
live
in
(Desjardins,
2019).

Where
increased
computing
power
gave
rise
to
the
influx
of
data,
it
is
also
one
of
 the
primary
methods
 for
gathering,
preparing,
 transforming,
analyzing,
and
communicating
insight
derived
from
this
data
(Donoho,
2017).
The
vision
laid
out
in
the
1960s
at
Bell
Labs
had
come
to
fruition.

1.2.2
 Data
science
toolbelt

Data
science
is
not
predicated
on
data
alone.
Turning
data
into
insight
takes
computing
skills,
statistical
knowledge,
and
domain
expertise.
This
triad
has
been
popularly
represented
as
a
Venn
diagram
such
as
in
Figure
1.1.

8
 CHAPTER
1.
 TEXT
ANALYSIS

Figure
1.1:
Data
science
Venn
diagram
adapted
from
D.
Conway
(2010).

The
computing
skills
component
of
data
science
is
the
ability
to
write
code
to
perform
the
data
analysis
process.
This
is
the
primary
approach
for
working
with
data
at
scale.
The
statistical
knowledge
component
of
data
science
 is
the
ability
to
apply
statistical
methods
to
data
to
derive
insight
by
bringing
patterns
and
relationships
in
the
data
into
view.
Domain
expertise
provides
researchers
insight
at
key
junctures
in
the
development
of
a
research
project
and
aids
researchers
in
evaluating
results.

This
triad
of
skills
in
combination
with
reproducible
research
practices
is
the
foundational
toolbelt
of
data
science
(Hicks
&
Peng,
2019).
Reproducible
re-
search
entails
the
use
of
computational
tools
to
automate
the
process
of
data
analysis.
This
automation
is
achieved
by
writing
code
that
can
be
executed
to
replicate
the
data
analysis.
This
code
can
then
be
shared
through
code
shar-
ing
repositories,
where
it
can
be
viewed,
downloaded,
and
executed
by
others.
This
adds
transparency
to
the
process
and
allows
others
to
build
on
previous
work
enhacing
scientific
progress
along
the
way
(Baker,
2016).

1.2.3
 Quant
everywhere

Equipped
with
the
data
science
toolbelt,
the
interest
in
deriving
insight
from
data
 is
now
almost
ubiquitous.
The
science
of
data
has
now
reached
deep
into
all
aspects
of
life
where
making
sense
of
the
world
is
sought.
Predicting
whether
a
loan
applicant
will
get
a
loan
(Bao,
Lianju,
&
Yue,
2019),
whether

9
1.3.
 LANGUAGE
ANALYSIS

a
 lump
 is
cancerous
 (Saxena
&
Gyanchandani,
2020),
what
films
 to
recom-
mend
based
on
your
previous
viewing
history
(Gomez-Uribe
&
Hunt,
2015),
what
players
a
sports
team
should
sign
(Lewis,
2004),
now
all
incorporate
a
common
set
of
data
analysis
tools.

The
data
science
toolbelt
also
underlies
well-known
public-facing
language
applications.
From
the
language-capable
chat
applications,
plagiarism
detec-
tion
software,
machine
translation
algorithms,
and
search
engines,
tangible
results
of
quantitative
approaches
to
language
are
becoming
standard
fixtures
in
our
lives.

The
spread
of
quantitative
data
analysis
too
has
taken
root
in
academia.
Even
in
areas
that
on
first
blush
don’t
appear
readily
approachable
in
a
quantita-
tive
manner,
such
as
fields
in
the
social
sciences
and
humanities,
data
science
is
making
important
and
sometimes
disciplinary
changes
to
the
way
that
aca-
demic
research
is
conducted.

This
textbook
focuses
in
on
a
domain
that
cuts
across
many
of
these
fields;
namely
language.
At
this
point
let’s
turn
to
quantitative
approaches
to
lan-
guage
analysis
as
we
work
closer
to
contextualizing
text
analysis
in
the
field
of
linguistics.

1.3
 Language
analysis

1.3.1
 Qualities
and
quantities

Language
is
a
defining
characteristic
of
our
species.
Since
antiquity,
language
has
attracted
interest
across
disciplines
and
schools
of
thought.
In
the
early
20th
century,
the
development
of
the
rigorous
approach
to
study
of
language
as
a
field
in
its
own
right
took
root
(Campbell,
2001),
yet
a
plurality
of
theoret-
ical
views
and
methodological
approaches
remained.
Contemporary
linguis-
tics
bares
this
complex
history
and
even
today,
it
is
far
from
a
theoretically
and
methodologically
unified
discipline.

Either
based
on
 the
 tenets
of
 theoretical
 frameworks
and/or
 the
objects
of
study
of
particular
fields,
methodological
approaches
to
 language
research
vary.
On
the
one
hand,
some
 language
research
commonly
applies
qualita-
tive
assessment
of
 language
structure
and/or
use.
Qualitative
approaches
describe
and
account
for
characteristics,
or
“qualities”,
that
can
be
observed,
but
not
measured
(e.g.
introspective
methods,
ethnographic
methods,
etc.)

10
 CHAPTER
1.
 TEXT
ANALYSIS

ş
Case
study
Manning
(2003)
discusses
the
use
of
probabilistic
models
in
syntax
to
account
for
the
variability
in
language
usage
and
the
presence
of
both
hard
and
soft
con-
straints
in
grammar.
The
paper
touches
on
the
statistical
methods
in
text
anal-
ysis,
the
importance
of
distinguishing
between
external
and
internal
language,
and
the
 limitations
of
Generative
Grammar.
Overall,
the
paper
suggests
that
usage-based
and
formal
syntax
can
learn
from
each
other
to
better
understand
language
variation
and
change.

On
the
other
hand,
other
language
research
programs
employ
quantitative
research
methods
either
out
of
necessity
given
the
object
of
study
(phonet-
ics,
psycholinguistics,
etc.)
or
based
on
 theoretical
principles
 (cognitive
 lin-
guistics,
connectionism,
etc.).
Quantitative
approaches
involve
“quantities”

of
properties
that
can
be
observed
and
measured
(e.g.
frequency
of
use,
reac-
tion
time,
etc.).

These
latter
research
areas
and
theoretical
paradigms
employ
methods
that
share
much
of
the
common
data
analysis
toolbox
described
in
the
previous
section.
 In
 effect,
 this
 establishes
 a
 common
methodological
 language
 be-
tween
other
language-based
research
fields
but
also
with
research
outside
of
linguistics.

1.3.2
 The
nature
of
data

In
quantitative
language
analysis,
there
is
a
key
methodological
distinction
between
experimental
and
observational
data,
which
affects
both
procedure
and
interpretation
of
research.

Experimental
 approaches
 start
with
 an
 intentionally
designed
hypothesis
and
lay
out
a
research
methodology
with
appropriate
instruments
and
a
plan
to
collect
data
that
shows
promise
for
shedding
light
on
the
likelihood
of
the
hypothesis.
Experimental
approaches
are
 conducted
under
 controlled
 con-
texts,
usually
a
lab
environment,
in
which
participants
are
recruited
to
per-
form
a
task
with
stimuli
that
have
been
carefully
curated
by
researchers
to
elicit
some
aspect
of
language
behavior
of
interest.
Experimental
approaches
to
language
research
are
heavily
influenced
by
procedures
adapted
from
psy-
chology.

Observational
approaches
are
a
bit
more
of
a
mixed
bag
in
terms
of
the
ra-
tionale
for
the
study;
they
may
either
start
with
a
testable
hypothesis
or
in
other
cases
may
start
with
a
more
open-ended
research
question
to
explore.
But
a
more
fundamental
distinction
between
the
two
approaches
is
drawn
in
the
amount
of
control
the
researcher
exerts
on
the
contexts
and
conditions
in

which
the
language
behavior
data
to
be
collected
is
produced.
Observational
approaches
seek
out
records
of
 language
behavior
that
 is
produced
by
 lan-
guage
speakers
for
communicative
purposes
in
natural(-istic)
contexts.
This

11
1.3.
 LANGUAGE
ANALYSIS

may
take
place
in
labs
(language
development,
language
disorders,
etc.),
but
more
often
than
not,
language
is
collected
from
sources
where
speakers
are
performing
language
as
part
of
their
daily
lives
—whether
that
be
posting
on
social
media,
speaking
on
the
telephone,
making
political
speeches,
writing
class
essays,
reporting
the
latest
news
for
a
newspaper,
or
crafting
the
next
novel
destined
to
be
a
New
York
Times
best-seller.

The
data
acquired
from
either
of
these
approaches
have
their
trade-offs.
The
directness
and
level
of
control
of
experimental
approaches
has
the
benefit
of
allowing
 researchers
 to
precisely
 track
how
particular
experimental
condi-
tions
effect
language
behavior.
As
these
conditions
are
an
explicit
part
of
the
design,
the
resulting
language
behavior
can
be
more
precisely
attributed
to
the
experimental
manipulation.

The
primary
shortcoming
of
experimental
approaches
is
that
there
is
a
level
of
artificialness
to
this
directness
and
control.
Whether
it
is
the
language
materi-
als
used
in
the
task,
the
task
itself,
or
the
fact
that
the
procedure
takes
place
un-
der
supervision
the
language
behavior
elicited
can
diverge
quite
significantly
from
language
behavior
performed
in
natural
communicative
settings.

Observational
approaches
show
complementary
strengths
and
shortcomings,
visualized
in
Figure
1.2.
Whereas
experimental
approaches
may
diverge
from
natural
 language
use,
observational
 approaches
 strive
 to
 identify
 and
 col-
lected
language
behavior
data
in
natural,
uncontrolled,
and
unmonitored
con-
texts.
This
has
the
benefit
of
providing
a
more
ecologically
valid
representa-
tion
of
language
behavior.

However,
the
contexts
in
which
natural
language
communication
take
place
are
complex
relative
to
experimental
contexts.
Language
collected
from
nat-
ural
contexts
are
nested
within
 the
complex
workings
of
a
complex
world
and
as
such
 inevitably
 include
a
host
of
 factors
and
conditions
which
can
prove
challenging
to
disentangle
from
the
language
phenomenon
of
interest
but
must
be
addressed
in
order
to
draw
reliable
associations
and
conclusions.

The
upshot,
then,
is
two-fold:
(1)
data
collection
methods
matter
for
research
design
and
interpretation
and
(2)
there
is
no
single
best
approach
to
data
col-
lection,
each
have
their
strengths
and
shortcomings.

Ideally,
a
robust
science
of
 language
will
 include
 insight
 from
both
experi-
mental
and
observational
approaches
(Gilquin
&
Gries,
2009).
And
evermore
there
is
greater
appreciation
for
the
complementary
nature
of
experimental
and
observational
approaches
and
a
growing
body
of
research
which
high-
lights
this
recognition.

12
 CHAPTER
1.
 TEXT
ANALYSIS

Figure
1.2:
Trade-offs
between
experimental
and
observational
data
collection
methods

1.4
 Text
analysis

In
a
nutshell,
text
analysis
is
the
process
of
leveraging
the
data
science
toolbelt
to
derive
 insight
 from
 textual
data
collected
via
observational
methods.
 In
the
next
subsections,
 I
will
unpack
 this
definition
and
discuss
 the
primary
components
that
make
up
text
analysis
 including
research
approaches
and
technical
implementation,
as
well
as
practical
applications.

1.4.1
 Aims

Text
 analysis
 is
 a
 multifaceted
 research
 methodology.
 It
 can
 be
 used
 to

facilitate
 the
 qualitative
 exploration
 of
 smaller,
 human-digestible
 textual
information,
but
is
more
often
employed
quantitatively
to
bring
to
the
sur-
face
patterns
and
relationships
in
large
samples
of
textual
data
that
would
be
otherwise
difficult,
if
not
impossible,
to
identify
manually.

The
aims
of
text
analysis
are
as
varied
as
the
research
questions
that
can
be
asked
of
language
data.
Some
research
questions
are
data-driven,
where
the
researcher
 is
 interested
 in
exploring
and
uncovering
patterns
and
relation-
ships
in
the
data.
Other
research
questions
are
theory-driven,
where
the
re-
searcher
is
interested
in
testing
a
hypothesis
or
evaluating
a
theory.
In
either
case,
the
researcher
is
interested
in
gaining
insight
from
the
data.

13
1.4.
 TEXT
ANALYSIS

The
relationship(s)
of
interest
in
text
analysis
may
be
language
internal,
where
the
researcher
is
interested
in
the
patterns
and
relationships
between
linguis-
tic
 features,
or
 language
external,
where
 the
researcher
 is
 interested
 in
 the
patterns
and
relationships
between
linguistic
features
and
some
external
vari-
able.

1.4.2
 Implementation

Text
analysis
is
a
branch
of
data
science.
As
such,
it
takes
advantage
of
the
data
science
toolbelt
to
derive
insight
from
data.
It
is
important
to
note
that,
while
all
of
the
components
of
the
data
science
toolbelt
are
present
 in
text
analy-
sis,
the
relative
importance
of
each
varies
with
the
stage
research.
Computing
skills
being
the
most
 important
at
the
data
and
 information
stages,
statisti-
cal
knowledge
being
the
most
important
to
derive
knowledge,
and
domain
knowledge
leading
the
way
towards
insight.

Text
is
a
rather
raw
form
of
data.
It
is
more
often
that
not
unstructured,
mean-
ing
that
it
is
not
organized
in
a
way
such
that
it
can
be
easily
analyzed.
The
collection,
organization,
and
transformation
of
text
data
is
a
key
component
of
text
analysis
and
computers,
are
well-suited
for
this
task,
as
we
will
see
in
Chapter
2
and
Part
III
“Preparation”.

Once
text
 is
transformed
to
a
dataset
that
can
be
analyzed,
we
 lean
on
sta-
tistical
methods
to
gain
perspective
on
the
relationship(s)
of
interest.
By
and
large,
these
methods
are
the
same
as
those
used
in
other
areas
of
data
science.
We
will
provide
an
overview
of
these
methods
in
Chapter
3
and
do
a
deeper
dive
in
Part
IV
“Analysis”.

With
the
results
of
the
analysis
in
hand,
the
researcher
must
interpret
the
re-
sults
and
evaluate
their
significance
in
disciplinary
context.
This
is
where
do-
main
knowledge
comes
to
the
fore.
The
researcher
must
be
able
to
interpret
the
results
in
light
of
the
research
question
and
the
context
in
which
the
data
was
collected
and
communicate
the
value
of
the
results
to
the
broader
com-
munity.
Domain
knowledge
also
plays
a
vital
role
 in
 framing
 the
research
question
and
designing
 the
research
methodology,
as
we
will
see
 in
Chap-
ter
4.
Then
we
will
return
to
the
role
of
domain
knowledge
 in
 interpreting
and
communicating
the
results
in
Part
V
“Communication”.

To
ensure
that
the
results
of
text
analysis
projects
are
replicable
and
transpar-
ent,
programming
strategies
and
documentation
play
an
integral
role
at
each
stage
of
the
implementation
of
a
research
project.
While
there
are
a
number
of
programming
languages
that
can
be
used
for
text
analysis,
R,
widely
adopted
in
linguistics
research
and
is
the
language
of
choice
for
this
textbook.
R,
in
combination
with
 literate
programming
and
other
 tools,
provides
a
robust
and
reproducible
workflow
for
text
analysis
projects.

14
 CHAPTER
1.
 TEXT
ANALYSIS

1.4.3
 Applications

So
what
are
some
applications
of
text
analysis?
Most
applications
stem
from
Computational
Linguistic
research,
often
known
as
Natural
Language
Pro-
cessing
 (NLP)
by
practitioners.
Whether
 it
be
using
search
engines,
online
translators,
 submitting
 your
 paper
 to
 plagiarism
 detection
 software,
 etc.,
many
of
the
text
analysis
methods
we
will
cover
are
at
play.

Ď
Consider
this

What
are
some
other
applications
of
text
analysis
that
you
are
aware
of?
Con-
sider
examples
from
social
media,
news,
entertainment,
or
other
areas
of
inter-
est.
You
may
also
consider
how
 text
analysis
 is
used
 in
academia,
 if
you
are
familiar
with
any
examples.

In
academia,
the
use
of
quantitative
text
analysis
is
even
more
widespread,
despite
the
lack
of
public
fanfare.
In
linguistics,
text
analysis
research
is
of-
ten
falls
under
Corpus
Linguistics
(CL).
And
this
approach
is
applied
to
a
wide
range
of
topics
and
research
questions
in
both
theoretical
and
applied
linguistics
fields
and
subfields,
as
seen
in
Examples
1.1
and
1.2.

Example
1.1.
 Theoretical
linguistics

•
 Hay
 (2002)
use
a
corpus
study
 to
 investigate
 the
role
of
 frequency
and
phonotactics
in
affix
ordering
in
English.

•
 Riehemann
(2001)
explores
the
extent
to
which
idiomatic
expressions
(e.g.

‘raise
hell’)
are
lexical
or
syntactic
units.

•
 Bresnan
 (2007)
 investigates
 the
claim
 that
possessed
deverbal
nouns
 in
English
(e.g.
‘the
city’s
destruction’)
are
subject
to
a
syntactic
constraint
that
requires
 the
possessor
 to
be
affected
by
 the
action
denoted
by
 the
deverbal
noun.

Example
1.2.
 Applied
linguistics

•
Wulff,
Stefanowitsch,
&
Gries
(2007)
explore
differences
between
British
and
American
English
at
 the
 lexico-syntactic
 level
 in
 the
 into-causative

construction
(e.g.
‘He
tricked
me
into
employing
him.’).

•
 Eisenstein,
O’Connor,
Smith,
&
Xing
(2012)
track
the
geographic
spread
of
neologisms
(e.g.
‘bruh’,
‘af’,
’-__-’)
from
city
to
city
in
the
United
States
using
Twitter
data
collected
between
6/2009
and
5/2011.

•
 Bychkovska
&
 Lee
 (2017)
 investigate
 possible
 differences
 between
 L1-
English
and
L1-Chinese
undergraduate
students’
use
of
lexical
bundles,
multiword
sequences
which
are
extended
collocations
(e.g.
‘as
the
result

of’),
in
argumentative
essays.

•
 Jaeger
&
Snider
(2007)
use
a
corpus
study
to
investigate
the
phenomenon
of
syntactic
persistence,
the
increased
tendency
for
speakers
to
use
a
par-
ticular
syntactic
form
over
an
alternate
when
the
syntactic
form
has
been
recently
processed.

15
1.4.
 TEXT
ANALYSIS

•
 Voigt
et
al.
(2017)
explore
potential
racial
disparities
in
officer
respect
in
police
body
camera
footage.

•
 Olohan
 (2008)
 investigates
 the
 extent
 to
which
 translated
 texts
 imbue
more
information
than
source
texts
through
a
process
known
as
‘explici-
tation’.

So
too,
text
analysis
is
used
in
a
variety
of
fields
outside
of
linguistics
where
insight
from
language
is
sought,
as
seen
in
Example
1.3.

Example
1.3.
 Language-related
fields

•
 Kloumann,
Danforth,
Harris,
&
Bliss
(2012)
explore
the
extent
to
which
languages
are
positively,
neutrally,
or
negatively
biased.

•
 Mosteller
&
Wallace
(1963)
provide
a
method
for
solving
the
authorship
debate
surrounding
The
Federalist
papers.

•
 L.
G.
Conway
et
al.
(2012)
investigate
whether
the
established
drop
in
lan-
guage
complexity
of
rhetoric
in
election
seasons
is
associated
with
election
outcomes.

Ď
Consider
this

Language
is
a
key
component
of
human
communication
and
interaction.
What
are
some
other
areas
of
research
in
and
outside
linguistics
that
you
think
could
be
explored
using
text
analysis
methods?

These
studies
in
Examples
1.1,
1.2,
and
1.3
are
just
a
few
illustrations
of
the
contributions
of
text
analysis
used
as
the
primary
method
to
gain
a
deeper
understanding
of
language
structure,
function,
variation,
and
acquisition.

As
a
method,
however,
text
analysis
can
also
be
used
to
support
other
research
methods.
For
 example,
 text
 analysis
 can
be
used
 to
 collect
data,
generate
authentic
materials,
provide
linguistic
annotation,
and
generate
hypotheses,
for
either
qualitative
or
quantitative
approaches.
Together
these
efforts
con-
tribute
to
a
more
robust
language
science
by
incorporating
externally
valid
language
data
and
materials
and
support
methodological
triangulation
in
lan-
guage
research
(Francom,
2022).

In
sum,
the
applications
highlighted
in
this
section
underscore
the
versatility
of
text
analysis
as
a
research
method.
Whether
it
be
in
the
public
sphere
or
in
academia,
text
analysis
methods
furnish
a
set
of
powerful
tools
for
gaining
insight
into
the
nature
of
language.

16
 CHAPTER
1.
 TEXT
ANALYSIS

Actitivies

The
following
activities
build
on
your
 introduction
to
R
and
Quarto
 in
the
preface.
In
these
activities
you
will
uncover
more
features
offered
by
Quarto
which
will
enhance
your
ability
to
produce
comprehensive
reproducible
re-
search
documents.
You
will
apply
the
capabilities
of
Quarto
in
a
practical
con-
text
conveying
 the
objectives
and
key
discoveries
 from
a
primary
research
article.

Ɗ
Recipe
What:
Academic
writing
with
Quarto

How:
Read
Recipe
1,
complete
comprehension
check,
and
prepare
for
Lab
1.

Why:
To
explore
additional
functionality
in
Quarto:
numbered
sections,
table
of
 contents,
 in-line
 citations
 and
 a
document-final
 references
 list,
 and
 cross-
referenced
tables
and
figures.

ð
Lab

What:
Crafting
scholarly
documents

How:
Clone,
fork,
and
complete
the
steps
in
Lab
1.

Why:
To
put
into
practice
Quarto
functionality
to
communicate
the
aim(s)
and
main
finding(s)
from
a
primary
research
article.

Summary

In
this
chapter,
I
started
with
some
general
observations
about
the
difficulty
of
making
sense
of
a
complex
world.
The
standard
approach
to
overcoming
inherent
human
 limitations
 in
sense
making
 is
science.
 In
 the
21st
century
the
toolbelt
for
doing
scientific
research
and
exploration
has
grown
in
terms
of
the
amount
of
data
available,
the
statistical
methods
for
analyzing
the
data,
and
the
computational
power
to
manage,
store,
and
share
the
data,
methods,
and
results
from
quantitative
research.
The
methods
and
tools
for
deriving
insight
from
data
have
made
significant
inroads
in
and
outside
academia,
and
increasingly
figure
in
the
quantitative
investigation
of
language.
Text
analysis
is
a
particular
branch
of
this
enterprise
based
on
observational
data
from
real-
world
language
and
is
used
in
a
wide
variety
of
fields.

Part
II

Foundations

https://taylorandfrancis.com

19

Before
working
on
the
specifics
of
a
data
project,
it
is
important
to
establish
a
solid
understanding
of
the
characteristics
of
each
of
the
levels
in
the
“Data,
Information,
Knowledge,
and
Insight
Hierarchy
(DIKI)”
and
the
roles
each
of
these
levels
have
in
deriving
insight
from
data.
In
Chapter
2,
we
will
ex-
plore
the
data
and
information
levels
drawing
a
distinction
between
two
main
types
of
data
and
then
cover
how
data
is
structured
and
transformed
to
gen-
erate
information
that
is
fit
for
statistical
analysis.
In
Chapter
3,
I
will
outline
the
importance
and
distinct
types
of
statistical
procedures
that
are
commonly
used
in
text
analysis.
Chapter
4
aims
to
tie
these
concepts
together
and
cover
the
required
steps
for
preparing
a
research
blueprint
to
guide
the
implemen-
tation
of
a
text
analysis
project.

https://taylorandfrancis.com

2

Data

|
Outcomes

•
 Describe
the
difference
between
data
and
information.

•
 Understand
how
the
tidy
approach
to
data
organization
can
enhance
the
quality
and
usability
of
data.

•
 Articulate
the
importance
of
documentation
in
promoting
reproducible
re-
search.

In
this
chapter,
I
lay
the
groundwork
for
deriving
 insights
from
text
analy-
sis
by
focusing
on
content
and
structure
of
data
and
 information.
The
con-
cepts
of
populations
and
samples
are
introduced,
highlighting
their
similar-
ities
and
key
differences.
Connecting
these
topics
to
text
analysis,
language
samples,
or
corpora,
are
explored,
discussing
 their
 types,
sources,
 formats,
and
ethical
considerations.
Subsequently,
 I
highlight
key
concepts
 in
creat-
ing
information
from
corpus
data,
such
as
organization
and
transformation.
Documentation
in
quantitative
research
is
emphasized
addressing
the
impor-
tance
of
data
origin
files
and
data
dictionaries.

ı
Lessons

What:
Objects,
Packages
and
functions

How:
In
an
R
console,
load
{swirl},
run
swirl(),
and
follow
prompts
to
select

the
lesson.

Why:
To
introduce
you
to
the
main
types
of
objects
in
R
and
to
understand
the
role
and
use
of
functions
and
packages
in
R
programming.

21
DOI:
10.4324/9781003393764-4
This
chapter
has
been
made
available
under
a
CC-BY-NC-ND
license.

22
 CHAPTER
2.
 DATA

2.1
 Data

Data
 is
data,
right?
The
term
 ‘data’
 is
so
common
 in
popular
vernacular
 it
is
easy
 to
assume
we
know
what
we
mean
when
we
say
 ‘data’.
But
as
 in
most
things
in
science,
where
there
are
common
assumptions
there
are
im-
portant
details
that
require
more
careful
consideration.
Let’s
turn
to
the
first
key
distinction
that
we
need
to
make
to
start
to
break
down
the
term
‘data’:
the
difference
between
populations
and
samples.

2.1.1
 Populations
and
samples

The
first
thing
that
comes
to
many
people’s
mind
when
the
term
population
is
used
is
human
populations
(derived
from
Latin
‘populus’).
Say
for
exam-
ple
we
pose
the
question
—What’s
the
population
of
Milwaukee?
When
we
speak
of
a
population
in
these
terms
we
are
talking
about
the
total
sum
of
indi-
viduals
living
within
the
geographical
boundaries
of
Milwaukee.
In
concrete
terms,
a
population
is
an
idealized
set
of
objects
or
events
in
reality
which
share
a
common
characteristic
or
belong
to
a
specific
category.
The
term
to
highlight
here
is
idealized.
Although
we
can
look
up
the
US
Census
report
for
Milwaukee
and
retrieve
a
figure
for
the
population,
this
cannot
truly
be
the
population.
Why
is
that?
Well,
whatever
method
that
was
used
to
derive
this
numerical
figure
was
surely
incomplete.
If
not
incomplete,
by
the
time
someone
recorded
the
figure
some
number
of
residents
of
Milwaukee
moved
out,
moved
in,
were
born,
or
passed
away.
In
either
case,
this
example
serves
to
point
out
that
populations
are
not
fixed
and
are
subject
to
change
over
time.

Likewise
when
we
talk
about
populations
in
terms
of
language
we
are
deal-
ing
with
an
idealized
aspect
of
linguistic
reality.
Let’s
take
the
words
of
the
English
language
as
an
analog
to
our
previous
example
population.
In
this
case
the
words
are
the
people
and
English
is
the
grouping
characteristic.
Just
as
people,
words
move
out,
move
 in,
are
born,
and
pass
away.
Any
 com-
pendium
of
the
words
of
English
at
any
moment
is
almost
instantaneously
incomplete.
This
is
true
for
all
populations,
save
those
relatively
rare
cases
in
which
the
grouping
characteristics
select
a
narrow
slice
of
reality
which
is
objectively
measurable
and
whose
membership
is
fixed
(the
complete
works
of
Shakespeare,
for
example).

Therefore,
 (most)
 populations
 are
 amorphous
moving
 targets.
We
 subjec-
tively
hold
them
to
exist,
but
in
practical
terms
we
often
cannot
nail
down
the
specifics
of
populations.
So
how
do
researchers
go
about
studying
pop-
ulations
if
they
are
theoretically
impossible
to
access
directly?
The
strategy
employed
is
called
sampling.

23
2.1.
 DATA

A
sample
is
the
product
of
a
subjective
process
of
selecting
a
finite
set
of
obser-
vations
from
an
idealized
population
with
the
goal
of
capturing
the
relevant
characteristics
of
this
population.
When
we
talk
about
data
in
data
science,
we
are
talking
about
samples.

Whether
selecting
a
sample
 for
your
research
or
evaluating
a
sample
used
in
someone
else’s
research,
there
are
two
key
characteristics
to
consider:
the
sampling
frame
and
the
representativeness.
The
sampling
frame
is
the
set
of

characteristics
that
define
the
population
of
interest.
The
representativeness
is
the
degree
to
which
the
sample
reflects
the
characteristics
of
the
population.
Both
of
these
concern
bias,
albeit
in
different
ways.
By
defining
the
popula-
tion,
a
sampling
frame
sets
the
boundaries
of
the
population
and
therefore
the
scope
of
research
based
on
the
sample.
This
bias
is
not
a
bad
thing,
in
fact,
the
more
clearly
defined
the
sampling
frame
the
better.
Low
representativeness,
on
the
other
hand,
is
a
type
of
bias
we
would
like
to
avoid.
Given
the
nature
of
samples,
perfect
representativeness
is
not
achievable.
That
said,
there
are
a
series
of
sampling
strategies
that
tend
to
increase
the
representativeness
of
a
sample,
seen
in
Table
2.1.

Table
2.1:
Sampling
strategies
to
increase
representativeness

Strategy
 Description

Size
 Larger
samples
 increase
the
 likelihood
of
representing
the
population

Randomized
 Avoid
 invertently
 including
bias
 in
selection

Stratified
 Divide
the
population
 into
sub-populations,
 ‘strata’,
and
sample
from

each

Balanced
 Ensure
that
the
relative
size
of
the
strata
 is
reflected
 in
the
sample

Together,
 large
 randomly
 selected
 and
balanced
 stratified
 samples
 set
 the
benchmark
for
sampling.
However,
hitting
this
ideal
is
not
always
feasible.
There
are
situations
where
 larger
samples
are
not
accessible.
Alternatively,
there
may
be
instances
where
the
population
or
its
strata
are
not
well
under-
stood.
In
such
scenarios,
researchers
have
to
work
with
the
most
suitable
sam-
ple
they
can
obtain
given
the
limitations
of
their
research
project.

2.1.2
 Corpora

A
sample,
as
 just
defined,
of
a
 language
population
 is
called
a
corpus
 (pl.
corpora)
.
Corpora
are
often
classified
into
various
types.
These
types
reflect
general
characteristics
of
the
scope
of
the
corpus
sampling
frame.
The
most
common
types
of
corpora
appear
in
Table
2.2.

24
 CHAPTER
2.
 DATA

Table
2.2:
Types
of
corpora

Type
 Sampling
scope

Reference
 General
characteristics
of
a
 language
population

Specialized
 Specific
populations,
e.g.
spoken
 language,
academic
writing,
etc.

Parallel
 Directly
comparable
texts
 in
different
 languages
(i.e.
translations)

Comparable
 Indirectly
comparable
texts
 in
different
 languages
or
 language
varieties

(i.e.
similar
sampling
frames)

Of
the
corpus
types,
reference
corpora
are
the
least
common
and
most
ambi-
tious.
These
resources
aim
to
model
the
characteristics
of
a
language
popula-
tion.
Specialized
corpora
aim
to
represent
more
specific
populations.
What
specialized
corpora
lack
in
breadth
of
coverage,
they
make
up
for
in
depth
of
coverage
by
providing
a
more
targeted
representation
of
specific
language
populations.
Parallel
and
comparable
corpora
are
both
types
of
specialized
corpora
which
aim
to
model
different
languages
or
different
language
vari-
eties
for
direct
or
indirect
comparison,
respectively.

Ď
Consider
this

The
 ‘Standard
 Sample
 of
 Present-Day

American
 English’
 (known
 commonly
as
 the
 Brown
Corpus)
 is
widely
 recog-
nized
as
one
of
 the
first
 large,
machine-
readable
corpora.
Compiled
by
Kucera
&
Francis
 (1967),
 the
 corpus
 is
 comprised
of
1,014,312
words
 from
 edited
English
prose
published
 in
 the
United
States
 in
1961.

Given
the
sampling
frame
and
the
strata
and
balance
for
this
corpus
visualized
in
this
 plot,
 can
 you
 determine
what
 lan-
guage
population
this
corpus
aims
to
rep-
resent?
What
types
of
research
might
this
corpus
support
or
not
support?

In
text
analysis,
corpora
are
the
raw
materials
of
research.
The
aim
of
the
quan-
titative
text
researcher
is
to
select
the
corpus,
or
corpora,
which
best
align
with
the
purpose
of
the
research.
For
example,
a
reference
corpus
such
as
the
Amer-
ican
National
Corpus
(Ide
&
Macleod,
2001)
may
be
better
suited
to
address
a
question
dealing
with
the
way
American
English
works,
but
this
general
resource
may
lack
detail
in
certain
areas,
such
as
medical
language,
that
may
be
vital
for
a
research
project
aimed
at
understanding
changes
in
medical
ter-
minology.
Furthermore,
a
researcher
studying
spoken
language
might
collect
a
corpus
of
transcribed
conversations
from
a
particular
community
or
region,

25
2.1.
 DATA

such
as
the
Santa
Barbara
Corpus
of
Spoken
American
English
(Du
Bois
et
al.,
2005).
While
this
would
not
include
every
possible
spoken
utterance
pro-
duced
by
members
of
that
group,
it
could
be
considered
a
representative
sam-
ple
of
the
population
of
speech
in
that
context.

2.1.3
 Other
considerations

In
preparing
and
conducting
research
using
corpora,
the
most
primary
con-
cerns
is
aligning
research
goals
with
the
corpus
resource.
However,
there
are
other,
more
practical,
considerations
to
keep
in
mind.

2.1.4
 Access

Ensuring
access,
both
in
terms
of
physical
access
to
the
data
and
legal
access
to
the
data,
should
not
be
overlooked
in
the
design
and
execution
of
a
project.
Simply
put,
without
access
to
the
data,
research
cannot
proceed.
It
is
better
to
consider
access
early
in
the
research
process
to
avoid
delays
and
complica-
tions
later
on.

The
medium
to
acquire
corpus
data
most
used
in
contemporary
quantitative
research
is
the
internet.
Although
a
general
search
query
can
lead
you
to
cor-
pus
data,
there
are
a
few
primary
sources
of
corpora
you
should
be
aware
of,
summarized
in
Table
2.3.

Table
2.3:
Sources
of
corpus
data

Source
 Description
 Examples

Language
 Repositories
that
specialize
 in

repositories
 language
data

Data
sharing
 Platforms
that
enable
researchers
to

platforms
 securely
store,
manage,
and
share

data

Developed
corpora
 Corpora
prepared
by
researchers
for

research
purposes

Language
Data

Consortium1,
TalkBank2

GitHub3,
Zenodo4
,

Open
Science

Framework5

APIs6,
web
scraping

1https://www.ldc.upenn.edu/

2https://talkbank.org/

3https://github.com/

4https://zenodo.org/

5https://osf.io/

6https://ropensci.org/packages/data-access/

https://www.ldc.upenn.edu/
https://talkbank.org/
https://github.com/
https://zenodo.org/
https://osf.io/
https://ropensci.org/packages/data-access/

26
 CHAPTER
2.
 DATA

It
is
always
advisable
to
start
looking
for
data
in
a
language
repository.
The

advantage
of
beginning
your
data
search
in
repositories
is
that
a
repository,
especially
those
geared
towards
the
linguistic
community,
will
make
identify-
ing
language
corpora
faster
than
through
a
general
web
search
.
Furthermore,
repositories
often
require
certain
standards
for
corpus
format
and
documen-
tation
for
publication.

Ď
Consider
this

Explore
some
of
the
resources
listed
on
the
Resources
Kit
“Identifying
data
and
data
sources”
guide
and
consider
 their
sampling
 frames.
Can
you
 think
of
a
research
question
or
questions
that
this
resource
may
be
well-suited
to
support?
What
types
of
questions
would
be
less-than-adequate
for
a
given
resource?

As
part
of
a
general
movement
 towards
 reproducibility,
more
corpora
are
available
on
data
sharing
platforms.
These
platforms
enable
researchers
to
securely
store,
manage,
and
share
data
with
others.
Support
is
provided
for
various
types
of
data,
including
documents
and
code,
and
as
such
they
are
a
good
place
to
look
as
they
often
include
reproducible
research
projects
as
well.

Finally,
 if
satisfactory
data
cannot
be
found
 in
a
repository
or
data
sharing
platform,
researchers
may
need
to
develop
their
own
corpus.
There
are
two
primary
ways
 to
 attain
 language
data
 from
 the
web.
The
first
 is
 through

an
application
programming
interface
(API).
APIs
are,
as
the
title
suggests,
programming
 interfaces
which
 allow
 access,
 under
 certain
 conditions,
 to
information
that
a
website
or
database
accessible
via
the
web
contains.

̪
Dive
deeper
The
process
of
corpus
development
is
a
topic
in
and
of
itself.
For
a
more
in-depth
discussion
of
the
process,
see
Ädel
(2020).

The
second,
more
involved,
way
to
acquire
data
from
the
web
is
is
through
the
process
of
web
scraping.
Web
scraping
is
the
process
of
harvesting
data
from
the
public-facing
web.
Language
texts
may
be
found
on
sites
as
uploaded
files,
such
as
PDF
or
DOCX
(Word)
documents,
or
found
displayed
as
the
primary
text
of
a
site.
Given
the
wide
variety
of
documents
uploaded
and
language
behavior
recorded
daily
on
news
sites,
blogs
and
the
like,
compiling
a
corpus
has
never
been
easier.
Having
said
that,
how
the
data
is
structured
and
how
much
data
needs
to
be
retrieved
can
pose
practical
obstacles
to
collecting
data
from
the
web,
particularly
if
the
approach
is
to
acquire
the
data
by
manually
instead
of
automating
the
task.

Beyond
physical
access
to
the
data,
legal
access
is
also
a
consideration.
Just
be-
cause
data
is
available
on
the
web
does
not
mean
it
is
free
to
use.
Repositories,
APIs,
and
 individual
data
 resources
often
have
 licensing
agreements
and

terms
of
use,
ranging
from
public
domain
to
proprietary
 licenses.
Respect-

27
2.1.
 DATA

ing
intellectual
property
rights
is
crucial
when
working
with
corpus
data.
Vi-
olating
these
rights
can
 lead
to
 legal
and
ethical
 issues,
 including
 lawsuits,
fines,
and
damage
to
one’s
professional
reputation.
To
avoid
these
problems,
researchers
must
ensure
 they
have
 the
necessary
permissions
 to
use
copy-
righted
works
in
their
research.
Consult
the
copyright
office
in
your
country
and/or
an
academic
librarian
for
guidance
on
copyright
law
and
fair
use
as
it
pertains
to
your
use
case.

Formats

Whether
you
are
using
a
published
corpus
or
developing
your
own,
it
is
im-
portant
to
understand
how
the
data
you
want
to
work
with
is
formatted
so
you
can
ensure
that
you
are
prepared
to
conduct
the
subsequent
processing
steps.
When
referring
to
the
format
of
a
corpus,
this
includes
the
folder
and
file
structure,
the
file
types,
and
how
file
content
is
encoded
electronically.
Yet,
the
most
important
characteristic,
especially
for
language-based
data,
is
the
internal
structure
of
the
files
themselves.
With
this
in
mind
let’s
discuss
the

difference
between
unstructured,
semi-structured,
and
structured
data.

A
corpus
may
include
various
types
of
linguistic
(e.g.
part
of
speech,
syntactic

structure,
named
entities,
 etc.)
or
non-linguistic
 (e.g.
source,
dates,
speaker

information,
etc.)
attributes.
These
attributes
are
known
as
metadata,
or
data
about
data.
As
a
general
rule,
files
which
include
more
metadata
tend
to
be
more
internally
structured.
Internal
file
structure
refers
to
the
degree
to
which
the
content
has
been
formatted
such
that
these
pieces
of
information
are
easy
to
query
and
analyze
by
a
computer.
Let’s
review
characteristics
of
the
three
main
types
of
file
structure
types
and
associate
common
file
extensions
that
files
in
each
have.

Unstructured
data
is
data
which
does
not
have
a
machine-readable
internal

structure.
This
is
the
case
for
plain
text
files
(.txt),
which
are
simply
a
sequence
of
characters.
For
example,
 in
Snippet
2.1
we
see
a
plain
 text
file
 from
 the
Manually
Annotated
Sub-Corpus
of
American
English
 (MASC)(Ide,
Baker,
Fellbaum,
Fillmore,
&
Passonneau,
2008):

Snippet
2.1.
 MASC
.txt
file

Sound
 is
 a
 vibration.
 Sound
 travels
 as
 a
 mechanical
 wave
 through
 a
 medium,
↪
 and
 in
 space,
 there
 is
 no
 medium.
 So
 when
 my
 shuttle
 malfunctioned
 and
↪
 the
 airlocks
 didn't
 keep
 the
 air
 in,
 I
 heard
 nothing.

28
 CHAPTER
2.
 DATA

Other
examples
of
files
which
often
contain
unstructured
data
include
 .pdf

and
.docx
files.
While
these
file
types
may
contain
data
which
appears
struc-
tured
to
the
human
eye,
the
structure
is
not
designed
to
be
machine-readable.
As
such
the
data
would
typically
be
read
into
R
as
a
vector
of
character
strings.

It
is
possible
to
perform
only
the
most
rudimentary
queries
on
this
type
of
data,
such
as
string
matches.
For
anything
more
informative,
it
is
necessary
to
further
process
this
data,
as
we
will
see
in
Sections
2.2.1
and
2.2.2.

On
the
other
end
of
the
spectrum,
structured
data
 is
data
which
conforms

to
a
 tabular
 format
 in
which
elements
 in
 tables
and
relationships
between
tables
are
defined.
This
makes
querying
and
analyzing
easy
and
efficient.
Re-
lational
databases
(e.g.
MySQL,
PostgreSQL,
etc.)
are
designed
to
store
and
query
structured
data.
The
data
frame
object
 in
R
 is
also
a
structured
data
format.
In
each
case,
the
data
is
stored
in
a
tabular
format
in
which
each
row
represents
a
single
observation
and
each
column
represents
a
single
attribute
whose
values
are
of
the
same
type.

In
Snippet
2.2
we
see
an
example
of
an
R
data
frame
object
which
overlaps
with
the
language
in
the
plain
text
file
in
Snippet
2.1:

Snippet
2.2.
 MASC
R
data
frame

doc_id
 date
 modality
 token_id
 word
 lemma
 pos

<int>
 <dbl>
 <fct>
 <int>
 <chr>
 <chr>
 <chr>

1
 1
 2008
 Writing
 1
 Sound
 sound
 NNP

2
 1
 2008
 Writing
 2
 is
 be
 VBZ

3
 1
 2008
 Writing
 3
 a
 a
 DT

4
 1
 2008
 Writing
 4
 vibration
 vibration
 NN

5
 1
 2008
 Writing
 5
 .
 .
 .

6
 1
 2008
 Writing
 6
 Sound
 sound
 NNP

7
 1
 2008
 Writing
 7
 travels
 travel
 VBZ

8
 1
 2008
 Writing
 8
 as
 as
 IN

9
 1
 2008
 Writing
 9
 a
 a
 DT

10
 1
 2008
 Writing
 10
 mechanical
 mechanical
 JJ

Here
we
see
 that
 the
data
 is
stored
 in
a
 tabular
 format
with
each
row
rep-
resenting
a
single
observation
(word)
and
each
column
representing
a
single
attribute.
This
tabular
structure
supports
the
increased
number
of
metadata
attributes.
Internally,
R
applies
a
schema
to
ensure
the
values
in
each
column
are
of
the
same
type
(e.g.
<chr>,
<dbl>,
<fct>,
etc.).
This
structured
format
 is
designed
to
be
easy
to
query
and
analyze
and
as
such
is
the
primary
format
for
data
analysis
in
R.

Semi-structured
data
data
 falls
between
unstructured
and
structured
data.

This
 covers
 a
wide
 range
 of
file
 structuring
 approaches.
 For
 example,
 an
otherwise
plain
text
file
with
part-of-speech
tags
appended
to
each
word
is
minimally
structured,
Snippet
2.3.

29
2.1.
 DATA

Snippet
2.3.
 MASC
.txt
file
with
part-of-speech
tags

Sound/NNP
 is/VBZ
 a/DT
 vibration/NN
 ./.
 Sound/NNP
 travels/VBZ
 as/IN
 a/DT
↪
 mechanical/JJ
 wave/NN
 through/IN
 a/DT
 medium/NN
 ,/,
 and/CC
 in/IN
↪
 space/NN
 ,/,
 there/EX
 is/VBZ
 no/DT
 medium/NN
 ./.
 So/RB
 when/WRB
 my/PRP$
↪
 shuttle/NN
 malfunctioned/JJ
 and/CC
 the/DT
 airlocks/NNS
 did/VBD
 n't/RB
↪
 keep/VB
 the/DT
 air/NN
 in/IN
 ,/,
 I/PRP
 heard/VBD
 nothing/NN
 ./.

Towards
the
more
structured
end
of
semi-structured
data,
many
file
formats
including
.xml
and
.json
contain
hierarchical
data.
For
example,
in
Snippet
2.4

shows
a
snippet
from
a
.xml
file
from
the
MASC
corpus.

Snippet
2.4.
 MASC
.xml
file

<a
 xml:id="penn-N264215"
 label="tok"
 ref="penn-n7345"
 as="anc">

<fs>

<f
 name="base"
 value="sound"/>

<f
 name="msd"
 value="NNP"/>

<f
 name="string"
 value="Sound"/>

</fs>

<node
 xml:id="penn-n7346">

<link
 targets="seg-r13152"/>

</node>

<a
 xml:id="penn-N264243"
 label="tok"
 ref="penn-n7346"
 as="anc">

<fs>

<f
 name="string"
 value="is"/>

<f
 name="msd"
 value="VBZ"/>

<f
 name="base"
 value="be"/>

</fs>

<node
 xml:id="penn-n7347">

<link
 targets="seg-r13154"/>

</node>

The
format
of
semi-structured
data
is
often
influenced
by
characteristics
of
the
data
or
reflect
an
author’s
individual
preferences.
It
is
sometimes
the
case
that
data
will
be
semi-structured
in
a
less-standard
format.
For
example,
the
Switchboard
Dialog
Act
Corpus
 (SWDA)
 (University
of
Colorado
Boulder,
2008),
in
Snippet
2.5,
includes
a
.utt
file
extension
for
files
which
contain
ut-
terances
annotated
with
dialog
act
tags.

30
 CHAPTER
2.
 DATA

Snippet
2.5.
 SWDA
.utt
file

o
 A.1
 utt1:
 Okay.
 /

qw
 A.1
 utt2:
 {D
 So,
 }

qy^d
 B.2
 utt1:
 [
 [
 I
 guess,
 +

+
 A.3
 utt1:
 What
 kind
 of
 experience
 [
 do
 you,
 +
 do
 you
]
 have,
 then
 with
↪
 child
 care?
 /

+
 B.4
 utt1:
 I
 think,
]
 +
 {F
 uh,
 }
 I
 wonder
]
 if
 that
 worked.
 /

qy
 A.5
 utt1:
 Does
 it
 say
 something?
 /

Whether
 standard
 or
 not,
 semi-structured
 data
 is
 often
 designed
 to
 be
machine-readable.
As
with
unstructured
data,
the
ultimate
goal
is
to
convert
the
data
into
a
structured
format
and
augment
the
data
where
necessary
to
prepare
it
for
a
particular
research
analysis.

2.2
 Information

Identifying
an
adequate
corpus
resource,
in
terms
of
content,
access,
and
for-
matting,
for
the
target
research
question
 is
the
first
step
 in
moving
a
quan-
titative
 text
research
project
 forward.
The
next
step
 is
 to
select
 the
compo-
nents
or
characteristics
of
this
resource
that
are
relevant
for
the
research
and

then
move
to
organize
the
attributes
of
this
data
into
a
more
informative
for-
mat.
This
is
the
process
of
converting
corpus
data
into
a
dataset
—a
tabular

representation
of
particular
attributes
of
the
data
as
the
basis
for
generating
information.
Once
the
data
is
represented
as
a
dataset,
it
is
often
manipulated
and
transformed,
adjusting
and
augmenting
the
data
such
that
it
better
aligns
with
the
research
question
and
the
target
analytical
approach.

2.2.1
 Organization

Data
alone
is
not
informative.
Only
through
explicit
organization
of
the
data
in
a
way
 that
makes
relationships
and
meaning
explicit
does
data
become
information.
In
this
form,
our
data
is
called
a
dataset.
This
is
a
particularly
salient
hurdle
in
text
analysis
research.
Many
textual
sources
are
unstructured
or
semi-structured.
This
means
relationships
that
will
be
used
in
the
analysis
have
yet
to
be
purposefully
drawn
and
organized
as
a
dataset.

31
2.2.
 INFORMATION

Tidy
Data

The
selection
of
the
attributes
from
a
corpus
and
the
juxtaposition
of
these
at-
tributes
in
a
relational
format,
or
dataset,
that
converts
data
into
information
is

deriving
a
base
dataset,
or
curated
dataset,
which
establishes
the
main
infor-
mational
associations
according
 to
 the
philosophical
approach
outlined
by
Wickham
(2014a).

In
this
work,
a
tidy
dataset
refers
both
to
the
structural
(physical)
and
infor-

known as data curation. The process of data curation minimally involves

mational
(semantic)
organization
of
the
dataset.
Physically,
a
tidy
dataset
is
a
tabular
data
structure,
illustrated
in
Figure
2.1,
where
each
row
is
an
obser-
vation
and
each
column
is
a
variable
that
contains
measures
of
a
feature
or

attribute
of
each
observation.
Each
cell
where
a
given
row-column
intersect

contains
a
value
which
is
a
particular
attribute
of
a
particular
observation
for
the
particular
observation-feature
pair
also
known
as
a
data
point.

Figure
2.1:
Visual
summary
of
the
tidy
dataset
format

In
terms
of
semantics,
columns
and
rows
both
contribute
to
the
informational
value
of
the
dataset.
Let’s
start
with
columns.
In
a
tidy
dataset,
each
column
is
a
variable,
an
attribute
that
can
take
on
a
number
of
values.
Although
vari-
ables
vary
in
terms
of
values,
they
do
not
in
type.
A
variable
is
of
one
and
only
one
informational
type.
Statistically
speaking,
informational
types
are
defined
as
levels
of
measurement,
a
classification
system
used
 to
semanti-
cally
distinguish
between
types
of
variables.
There
are
four
levels
(or
types)
in
this
system:
nominal,
ordinal,
interval,
and
ratio.

32
 CHAPTER
2.
 DATA

In
practice,
however,
text
analysis
researchers
often
group
these
levels
into
three
 main
 informational
 types:
 categorical,
 ordinal,
 and
 numeric
 (Gries,
2021).
What
do
these
informational
types
represent?
Categorical
data
is
for

labeled
data
or
classes
that
answer
the
question
“what?”
Ordinal
data
is
cat-
egorical
data
with
rank
order
that
answers
the
question
“what
order?”
Nu-
meric
data
is
ordinal
data
with
equal
intervals
between
values
that
answers
the
question
“how
much
or
how
many?”

Let’s
look
at
an
example
of
a
tidy
dataset.
Using
the
criteria
 just
described,
let’s
see
if
we
can
identify
the
informational
values
(categorical,
ordinal,
or
numeric)
of
the
variables
that
appear
in
a
snippet
from
the
MASC
corpus
in
dataset
form
in
Table
2.4.

Table
2.4:
MASC
dataset
variables

doc_id
 modality
 date
 token_id
 word
 pos
 num_let

1
 Writing
 2008
 1
 Sound
 NNP
 5

1
 Writing
 2008
 2
 is
 VBZ
 2

1
 Writing
 2008
 3
 a
 DT
 1

1
 Writing
 2008
 4
 vibration
 NN
 9

1
 Writing
 2008
 5
 .
 .
 1

1
 Writing
 2008
 6
 Sound
 NNP
 5

1
 Writing
 2008
 7
 travels
 VBZ
 7

1
 Writing
 2008
 8
 as
 IN
 2

1
 Writing
 2008
 9
 a
 DT
 1

1
 Writing
 2008
 10
 mechanical
 JJ
 10

We
have
seven
variables
listed
as
headers
for
each
of
the
columns.
We
could

go
one-by-one
left-to-right
but
let’s
take
another
tack.
Instead,
let’s
identify
all
those
variables
that
cannot
be
numeric
—these
are
all
the
non-numeral
vari-
ables:
modality,
word,
and
pos.
The
question
to
ask
of
these
variables
is
whether
they
represent
an
order
or
rank.
Since
modalities,
words,
and
parts
of
speech
are
not
ordered
values,
they
are
all
categorical.
Now
in
relation
to
doc_id,
date,

token_id,
and
num_let.
All
four
are
numerals,
so
they
could
be
numeric.
But
they
could
also
be
numeral
representations
of
categorical
or
ordinal
data.
Be-
fore
we
can
move
forward,
we
need
to
make
sure
we
understand
what
each
variable
means
and
how
 it
 is
measured,
or
operationalized
 .
The
variable

name
and
the
values
can
be
helpful
in
this
respect.
doc_id
and
token_id
are

unique
identifiers
for
each
document
and
word.
date
is
what
it
sounds
like,
a
date,
and
is
operationalized
as
a
year
in
the
Gregorian
calendar.
And
num_let

seems
quite
descriptive
as
well,
number
of
letters,
appearing
as
a
letter
count.

With
this
in
mind,
let’s
return
to
the
question
of
whether
these
variables
are
numeric,
ordinal,
or
categorical.
Starting
with
the
trickiest
one,
date,
we
can
ask
the
question
to
identify
numeric
data:
“how
much
or
how
many?”.
In
the
case
of
date,
the
answer
is
neither.
A
date
is
a
point
in
time,
not
a
quantity.

33
2.2.
 INFORMATION

So
date
 is
not
numeric.
But
it
does
provide
information
about
order.
Hence,

date
is
ordinal.
Next,
num_let
is
numeric
because
it
answers
the
question
“how

many?”.
Now,
doc_id
 and
token_id
 are
both
 identifiers,
so
 they
are
not
nu-
meric,
but
the
question
is
whether
they
encode
order
as
well.
In
this
case,
it
depends.
If
the
identifiers
are
assigned
in
a
way
that
reflects
the
order
of
the
documents
or
tokens,
then
they
are
ordinal.
It
is
more
likely
the
case
that
the

doc_id
is
not
ordinal,
but
the
token_id
is.
This
is
because
the
token_id
is
likely

assigned
in
the
order
the
words
appear
in
the
document.

Let’s
 turn
 to
 the
second
semantic
value
of
a
 tidy
dataset.
In
a
 tidy
dataset,
each
 row
 is
an
observation.
But
an
observation
of
what?
This
depends
on
what
the
unit
of
observation
is.
That
sounds
circular,
but
its
not.
The
unit
of

observation
is
simply
the
primary
entity
that
is
being
observed
or
measured
(Sedgwick,
2015).
Even
without
context,
it
can
often
be
identified
in
a
dataset
by
looking
at
the
level
of
specificity
of
the
variable
values
and
asking
what
each
variable
describes.
When
one
variable
appears
to
be
the
most
individ-
ualized
and
other
variables
appear
to
describe
that
variable,
then
the
most
individualized
variable
is
likely
the
unit
of
observation
of
the
dataset,
i.e.
the

meaning
of
each
observation.

Ď
Consider
this

Data
can
be
organized
in
many
ways.
It
is
important
to
make
clear
that
data
in
tabular
format
in
itself
does
not
constitute
a
dataset,
in
the
tidy
sense
we
will
be
using.
Can
you
think
of
examples
of
tabular
information
that
would
not
be
in
a
tidy
format?
What
would
be
the
implications
of
this
for
data
analysis?

Applying
these
strategies
to
Table
2.4,
we
can
see
that
each
observation
at
its
core
is
a
word.
We
see
that
the
values
of
each
observation
are
the
attributes
of

each
word.
word
is
the
most
individualized
variable
and
the
pos,
num_let,
and

token_id
all
describe
the
word.

The
other
variables
doc_id,
modality,
and
date
are
not
direct
attributes
of
the

word.
Instead,
they
are
attributes
of
the
document
in
which
the
word
appears.
Together,
however,
they
all
provide
information
about
the
word.

As
we
round
out
this
section
on
data
organization,
it
is
important
to
stress
that
 the
purpose
of
curation
 is
 to
represent
 the
corpus
data
 in
an
 informa-
tive,
tidy
format.
A
curated
dataset
serves
as
a
reference
point
making
rela-
tionships
explicit,
enabling
more
efficient
querying,
and
paving
the
way
for
further
processing
before
analysis.

34
 CHAPTER
2.
 DATA

2.2.2
 Transformation

At
this
point,
have
introduced
the
first
step
towards
creating
a
dataset
ready
for
analysis,
data
curation.
However,
a
curated
dataset
is
rarely
the
final
or-
ganizational
step
before
proceeding
to
statistical
analysis.
Many
times,
if
not
always,
 the
 curated
dataset
 requires
 transformation
 to
derive
or
generate
new
data
for
the
dataset.
This
process
may
incur
row-wise
(observation)
or
column-wise
(variable)
level
changes,
as
illustrated
in
Figure
2.2.

Figure
2.2:
Visualization
of
row-wise
and
column-wise
transformation
oper-
ations
on
a
dataset

The
results
build
on
and
manipulate
the
curated
dataset
to
produce
a
trans-
formed
dataset.
While
there
is
typically
one
curated
dataset
that
serves
as
the
base
organizational
dataset,
there
may
be
multiple
transformed
datasets,
each
aligning
with
 the
 informational
needs
of
 specific
 analyses
 in
 the
 research
project.

In
what
follows,
we
will
group
common
transformation
processes
into
two
purpose-based
groupings:
preparation
and
enrichment.
The
process
may
in-
clude
one
or
more
of
the
subsequent
transformations
but
is
rarely
linear
and
is
most
often
iterative.
The
bottom
line
is,
however,
to
make
the
dataset
more
informative
and
more
amenable
to
the
particular
aims
of
a
given
analysis.

Preparation

The
purpose
of
preparation
transformations
is
to
clean,
standardize,
and
de-
rive
the
key
attributes
of
the
dataset
on
which
further
processing
will
depend.
Common
preparation
transformations
include
text
normalization
and
text
to-
kenization.

Let’s
take
a
toy
dataset,
in
Table
2.5,
as
a
starting
point
for
exploring
various
transformations.
In
this
dataset,
we
have
three
variables,
text_id,
sent_id,
and

sentence.
It
has
five
observations.

35
2.2.
 INFORMATION

Table
2.5:
A
toy
dataset
with
three
variables,
text_id,
sent_id,
and
sentence

text_id
 sent_id
 sentence

1

1

1

2

It’s
a
beautiful
day
 in
the
US,
and
our
group
decided
to
visit
the

famous
Grand
Canyon.

As
we
reached
the
destination,
Jane
said,
“I
can’t
believe
we’re

1
 3

finally
here!”

The
breathtaking
view
 left
us
speechless;
 indeed,
 it
was
a
sight
to

behold.

1

1

4

5

During
our
trip,
we
encountered
tourists
from
different
countries,

sharing
stories
and
 laughter.

For
all
of
us,
this
experience
will
be
cherished
forever.

Text
normalization
 is
 the
process
of
standardizing
 text
 to
convert
 the
 text
into
a
uniform
format
and
reduce
unwanted
variation
and
noise.
It
is
often

a
preliminary
step
in
data
transformation
processes
which
include
variables
with
text.

The
normalization
we
apply
will
depend
on
the
specific
needs
of
the
project,
but
can
include
operations
such
as
eliminating
missing,
redundant,
or
anoma-
lous
observations,
changing
the
case
of
the
text,
removing
punctuation,
stan-
dardizing
forms,
etc.
The
goal
is
to
reduce
the
noise
in
the
text
and
make
it
more
amenable
to
analysis.

Normalization
should
be
applied
with
an
understanding
of
how
the
changes
will
impact
the
analysis.
For
example,
looking
at
Table
2.5,
lowercasing
can
be
useful
for
reducing
differences
between
words
that
are
otherwise
identi-
cal,
yet
differ
in
case
due
to
word
position
in
a
sentence
(“The”
versus
“the”).
However,
 lowercasing
can
also
be
problematic
 if
 the
case
of
 the
word
car-
ries
 semantic
value,
 such
as
 in
 the
 case
of
“US”
 (United
States)
and
“us”
(first-person
plural
pronoun).
In
this
case,
lowercasing
would
conflate
the
two
words.
Other
normalization
tasks,
and
their
implications,
should
be
consid-
ered
in
a
similar
manner.

Text
tokenization
involves
adapting
the
text
such
that
it
reflects
the
target
lin-
guistic
unit
that
will
be
used
in
the
analysis.
This
is
a
row-wise
operation
ex-
panding
the
number
of
rows,
if
the
linguistic
unit
is
smaller
than
the
original
variable,
or
reducing
the
number
of
rows,
if
the
linguistic
unit
is
larger
than
the
original
variable.

Text
variables
can
be
tokenized
at
any
linguistic
level,
to
the
extent
we
can
op-
erationalize
the
linguistic
unit.
The
operationalized
linguistic
unit
is
known

as
a
term.
For
example,
terms
can
be
characters,
words,
sentences,
etc.
When

we
refer
to
the
individual
units
of
term,
we
use
the
expression
tokens.
An-
other
key
term
to
introduce
is
types,
which
refers
to
the
unique
tokens
in
a

36
 CHAPTER
2.
 DATA

Table
2.6:
Word
and
character
tokenization
examples

(a)
Character
trigram
tokenization
 (b)
Word
bigram
tokenization

text_id
 sent_id
 trigram
 text_id
 sent_id
 bigram

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

its

tsa

sab

abe

bea

eau

aut

uti

tif

ifu

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

it’s
a

a
beautiful

beautiful
day

day
 in

in
the

the
us

us
and

and
our

our
group

group
decided

term
variable.
For
example,
in
sentence
1
in
Table
2.5,
there
are
16
types
and
17
tokens
—as
‘the’
is
repeated.
Note
that
there
will
always
be
at
least
as
many
tokens
as
types,
but
there
can
be
many
more
tokens
than
types
for
any
given
term
variable.

Sequential
 groupings
 of
 characters
 and
words,
ngrams,
 are
 also
 common
terms
used
in
text
analysis.
For
example,
a
word
bigram
is
a
sequence
of
two
words,
and
a
character
trigram
is
a
sequence
of
three
characters.

ş
Case
study
Serigos
(2020)
explores
the
social
stratification
of
anglicisms
in
Argentine
media.
The
author
presents
a
method
for
automatically
detecting
anglicisms
in
Spanish
texts.
In
combination
with
other
methods,
character
ngrams
are
used
to
deter-
mine
the
language
of
a
word.
The
method
is
based
on
the
observation
that
the
distribution
of
character
ngrams
is
different
between
languages.

In
Table
2.6,
we
see
examples
of
tokenization
at
word
and
character
levels.
At
its
core,
tokenization
is
the
process
which
enables
the
quantitative
analysis
of
text.
Choosing
the
right
tokenization
level
is
crucial
for
the
success
of
the
analysis.

Enrichment

Enrichment
 transformations
 are
 designed
 to
 add
 new
 attributes
 to
 the

dataset.
These
attributes
may
be
derived
from
the
existing
attributes
or
may
be
integrated
from
other
datasets.
Common
enrichment
transformations
in-
clude
generation,
recoding,
and
integration
of
observations
and/or
variables.

37
2.2.
 INFORMATION

Generation
 is
 the
 process
 of
 creating
 new
 variables
 based
 on
 implicit

information
within
existing
variables.
 It
 is
a
 row- and
column-wise
opera-
tion
which
in
text
analysis
often
includes
linguistic
annotation
such
as
part-
of-speech
tagging,
morphological
features,
syntactic
constituents,
etc.
These

annotations
 can
be
used
 to
generate
new
variables
 that
 capture
 linguistic
information
that
is
not
explicitly
present
in
the
text.

Linguistic
annotation
can
be
done
manually
by
linguist
coders
and/or
done
automatically
using
natural
language
processing
(NLP)
tools.
To
illustrate
the
process
of
automatic
linguistic
annotation,
we
will
start
with
the
dataset
from
Table
2.5.
Applying
a
pre-trained
English
model
(Silveira
et
al.,
2014)
from
the
Universal
Dependencies
(UD)
project
(de
Marneffe,
Manning,
Nivre,
&
Zeman,
2021),
we
can
generate
linguistic
annotation
for
each
word
in
the
sen-
tence
variable.

Table
2.7:
Automatic
linguistic
annotation
example

id
 token
 pos
 feats
 relation

1
 As
 IN
 NA
 mark

2

3

4

5

6

7

8

9

10

11

12

we

reached

the

destination

,

Jane

said

,

”

I

ca

PRP

VBD

DT

NN

,

NNP

VBD

,

“

PRP

MD

Case=Nom|Number=Plur|Person=1|PronType=Prs

Mood=Ind|Tense=Past|VerbForm=Fin

Definite=Def|PronType=Art

Number=Sing

NA

Number=Sing

Mood=Ind|Tense=Past|VerbForm=Fin

NA

NA

Case=Nom|Number=Sing|Person=1|PronType=Prs

VerbForm=Fin

nsubj

advcl

det

obj

punct

nsubj

root

punct

punct

nsubj

aux

13
 n’t
 RB
 NA
 advmod

14

15

16

17

18

19

20

believe

we

’re

finally

here

!

”

VB

PRP

VBP

RB

RB

.

’
’

VerbForm=Inf

Case=Nom|Number=Plur|Person=1|PronType=Prs

Mood=Ind|Tense=Pres|VerbForm=Fin

NA

PronType=Dem

NA

NA

ccomp

nsubj

cop

advmod

ccomp

punct

punct

The
annotated
dataset
in
Table
2.7
is
now
tokenized
by
word
and
includes
the
key
variables
pos
(Penn
treebank
tagset7),
feats
(morphological
features),
and

relation
 (dependency
relations).
These
variables
provide
information
about
the
grammatical
category
and
syntactic
structure
of
each
word
in
the
sentence.
The
results
of
this
process
enables
more
direct
access
during
analysis
to
fea-
tures
that
were
hidden
or
otherwise
difficult
to
access.

7https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

38
 CHAPTER
2.
 DATA

Á
Warning
Automated
linguistic
annotation
can
offer
rapid
access
to
abundant
and
highly
dependable
 linguistic
data
 for
numerous
 languages.
However,
 linguistic
 an-
notation
tools
are
not
infallible.
They
are
tools
developed
by
training
compu-
tational
algorithms
 to
 identify
patterns
 in
previously
annotated
and
verified
datasets,
resulting
in
a
language
model.
This
model
is
then
employed
to
pre-
dict
linguistic
annotations
for
new
language
data.
The
accuracy
of
the
linguis-
tic
annotation
heavily
relies
on
the
congruence
between
the
language
sampling
frame
of
the
trained
data
and
that
of
the
dataset
to
be
automatically
annotated.

Recoding
is
the
process
of
transforming
the
values
of
one
or
more
variables
into
new
values
which
are
more
amenable
to
analysis.
This
is
a
column-wise
operation
which
is
used
to
make
explicit
information
more
accessible.
Typical
operations
include
extraction,
reclassification,
and
calculation.

In
terms
of
extraction,
the
goal
is
to
distill
relevant
information
from
existing
variables.
For
example,
extracting
the
year
from
a
date
variable,
or
extracting
the
first
name
from
a
full
name
variable.
In
text
analysis,
extraction
is
often
used
to
extract
information
from
text
variables.
Say
we
have
a
dataset
with
a
variable
containing
conversation
utterances.
We
may
want
to
extract
some
characteristic
 from
 those
utterances
and
capture
 their
occurrence
 in
a
new
variable.

Reclassification
aims
to
simplify
complex
variables,
making
it
easier
to
iden-
tify
patterns
and
trends
relevant
for
the
research
question.
For
example,
the
surface
forms
of
words
can
be
reduced
to
their
stemmed
or
lemmatized
forms.

Stemming
is
the
process
of
reducing
inflected
words
to
their
word
stem,
base,
or
root
 form.
Lemmatization
 is
 the
process
of
reducing
 inflected
words
 to
their
dictionary
form,
or
lemma.

In
Table
2.8,
we
see
an
example
of
recoding
surface
forms
of
words
to
their
stemmed
and
lemmatized
forms.

Table
2.8:
Reclassification
of
surface
 forms
of
words
 to
 their
stemmed
and

lemmatized
forms

text_id
 sent_id
 word
 stem
 lemma

1
 2
 as
 a
 as

1
 2
 we
 we
 we

1
 2
 reached
 reach
 reach

1
 2
 the
 the
 the

1
 2
 destination
 destin
 destination

1
 2
 jane
 jane
 jane

1
 2
 said
 said
 say

1
 2
 i
 i
 i

1
 2
 can
 can
 can

1
 2
 not
 not
 not

39
2.2.
 INFORMATION

Table
2.8:
Reclassification
of
surface
 forms
of
words
 to
 their
stemmed
and

lemmatized
forms

text_id
 sent_id
 word
 stem
 lemma

1
 2
 believe
 believ
 believe

1
 2
 we
 we
 we

1
 2
 are
 are
 be

1

1

2

2

finally

here

final

here

finally

here

ş
Case
study
Inflectional
family
size
is
the
number
of
inflectional
forms
for
a
given
word
and
can
be
calculated
from
a
corpus
by
counting
the
number
of
surface
forms
for
each
lemma
in
the
corpus
(Kostić,
Marković,
&
Baucal,
2003).
Baayen,
Feldman,
&
Schreuder
 (2006)
 found
 that
words
with
 larger
 inflectional
 family
size
are
associated
with
faster
word
recognition
times
in
lexical
processing
tasks.

Reclassification
transformations
can
be
useful
for
simplifying
complex
vari-
ables,
making
it
easier
to
identify
patterns,
as
we
see
in
Table
2.8.
However,
it
is
important
to
consider
the
trade-offs
of
reclassification
and
to
ensure
that
the
result
aligns
with
the
research
question.
For
example,
reclassifying
a
numeric
variable
to
a
categorical
variable
or
a
categorical
variable
into
a
variable
with
fewer
levels
variable
can
lead
to
loss
of
information
about
the
original
levels
(Baayen,
2010).

Calculations
of
measures
can
also
be
seen
as
a
recoding
operation.
 In
 text
analysis,
measures
are
often
used
to
describe
the
properties
of
a
document
or
linguistic
unit.
For
example,
the
number
of
words
in
a
corpus
document,
the
lengths
of
sentences,
the
number
of
clauses
in
a
sentence,
etc.
In
turn,
these
measures
can
be
used
to
calculate
other
measures,
such
as
lexical
diversity
or
syntactic
complexity
measures.
The
end
result
makes
the
dataset
more
infor-
mative
and
amenable
to
analysis.

Integration
is
a
transformation
step
which
can
be
row-wise
or
column-wise.
Row-wise
integration
is
the
process
of
combining
datasets
by
appending
ob-
servations
from
one
dataset
to
another.
Column-wise
integration
is
the
pro-
cess
of
combining
datasets
by
appending
variables
from
one
dataset
to
an-
other.

To
integrate
in
row-wise
manner,
the
datasets
involved
in
the
process
must
have
the
same
variables
and
variable
types.
This
process
is
often
referred
to
as
concatenating
datasets,
and
is
visualized
in
Figure
2.3a.
It
can
be
thought
of
as
stacking
datasets
on
top
of
each
other
to
create
a
larger
dataset.
Remember,
having
the
same
variables
and
variable
types
is
not
the
same
has
having
the
same
values.

40
 CHAPTER
2.
 DATA

Take,
for
example,
a
case
when
a
corpus
resource
contains
data
for
two
popu-
lations.
In
the
course
of
curating
and
transforming
the
datasets,
it
may
make
more
sense
 to
work
with
 the
datasets
separately.
However,
when
 it
comes
time
to
analyze
the
data,
it
may
be
more
convenient
to
work
with
the
datasets
as
a
single
dataset.
In
this
case,
the
datasets
can
be
concatenated
to
create
a
single
dataset.

(a)
Concatenating

(b)
Joining

Figure
2.3:
Visual
summary
of
row-wise
and
column-wise
integration
opera-
tions
on
datasets

Integrating
datasets
can
be
performed
in
a
column-wise
manner
as
well.
In
this
process,
the
datasets
need
not
have
the
exact
same
variables
and
variable
types,
rather
it
is
required
that
the
datasets
share
a
common
variable
of
the
same
informational
type
that
can
be
used
to
index
the
datasets.
This
process
is
often
referred
to
as
joining
datasets
and
is
visualized
in
Figure
2.3b.

Corpus
resources
often
include
metadata
in
stand-off
annotation
format.
That
is,
the
metadata
is
not
embedded
in
the
corpus
files,
but
rather
is
stored
in
a
separate
file.
The
metadata
and
corpus
files
will
share
a
common
variable
which
can
be
used
to
join
the
metadata
with
the
corpus
files,
in
turn
creating
a
more
informative
dataset.

2.3
 Documentation

As
we
have
seen
in
this
chapter,
acquiring
corpus
data
and
converting
that
data
into
information
involves
a
number
of
conscious
decisions
and
imple-
mentation
steps.
As
a
favor
to
ourselves,
as
researchers,
and
to
the
research
community,
it
is
crucial
to
document
these
decisions
and
steps.
Documenta-
tion
includes
a
data
origin
file
for
the
acquired
corpus
data,
data
dictionaries
for
the
curated
and
transformed
datasets,
and
well-documented
code
for
the
processing
steps.

2.3.
 DOCUMENTATION
 41

2.3.1
 Data
origin

Data
acquired
from
corpus
resources
should
be
accompanied
by
information
about
the
data
origin.
Table
2.9
provides
the
types
of
information
that
should
be
included
in
the
data
origin
file.

Table
2.9:
Data
origin
information

Information
 Description

Resource
name
 Name
of
the
corpus
resource.

Data
source
 URL,
DOI,
etc.

Data
sampling
frame
 Language,
 language
variety,
modality,
genre,
etc.

Data
collection
date(s)
 The
date
or
date
range
of
the
data
collection.

Data
format
 Plain
text,
XML,
HTML,
etc.

Data
schema
 Relationships
between
data
elements:
files,
folders,
etc.

License
 CC
BY,
CC
BY-NC,
etc.

Attribution
 Citation
 information
for
the
data
source.

For
many
corpus
resources,
the
corpus
documentation
will
include
all
or
most
of
this
information
as
part
of
the
resource
download
or
documented
online.
If
this
information
is
not
present
in
the
corpus
resource
or
you
compile
your
own,
it
is
important
to
document
this
information
yourself.
This
information
can
be
documented
 in
a
file,
usually
 in
a
 tabular
plain
 text
file,
 such
as
a
comma-separated
values
(CSV)
or
spreadsheet
file
,
for
example
an
Microsoft
Excel
.xlsx
file,
that
is
included
with
the
corpus
resource.

2.3.2
 Data
dictionaries

The
process
of
organizing
the
data
into
a
dataset,
curation,
and
modifications
to
the
dataset
in
preparation
for
analysis,
transformation,
each
include
a
num-
ber
of
project-specific
decisions.
These
decisions
should
be
documented.

On
the
one
hand,
each
dataset
that
is
created
should
have
a
data
dictionary
file.
A
data
dictionary
is
a
document
that
describes
the
variables
in
a
dataset
including
the
information
in
Table
2.10.
Organizing
this
information
in
a
tab-
ular
format,
such
as
a
CSV
file
or
spreadsheet,
can
make
it
easy
for
others
to
read
and
understand
your
data
dictionary.

On
the
other
hand,
the
data
curation
and
transformation
steps
should
be
doc-
umented
in
the
code
that
is
used
to
create
the
dataset.
This
is
one
of
the
valu-
able
features
of
a
programmatic
approach
to
quantitative
research.
The
trans-
parency
of
this
documentation
is
enhanced
by
using
literate
programming
strategies
to
intermingling
prose
descriptions
and
code
the
steps
in
the
same,
reproducible
document.

42
 CHAPTER
2.
 DATA

Table
2.10:
Data
dictionary
information

Information
 Description

Variable
name
 The
name
of
the
variable
as
 it
appears
 in
the
dataset,
e.g.

participant_id,
modality,
etc.

Readable
name
 A
human-readable
name
for
the
variable,
e.g.
 ‘Participant
 ID’,

‘Language
modality’,
etc.

Variable
type
 The
type
of
 information
that
the
variable
contains,
e.g.

‘categorical’,
 ‘ordinal’,
etc.

Variable
 A
prose
description
expanding
on
the
readable
name
and
can

description
 include
measurement
units,
allowed
values,
etc.

By
providing
a
comprehensive
data
dictionary
and
using
a
programmatic
ap-
proach
to
data
curation
and
transformation,
you
ensure
that
you
can
retrace
your
own
steps
and
others
can
easily
understand
and
work
with
your
dataset.

á
Tip
It
is
conventional
to
work
with
variable
names
for
datasets
in
R
using
the
same
conventions
that
are
used
for
naming
objects.
It
is
a
matter
of
taste
which
con-
vention
is
used.
I
have
adopted
‘snake_case’
as
my
personal
preference
(e.g
to-
ken_id).
There
are
also
alternatives
such
as
‘camelCase’
(e.g.
tokenId)
and
‘Pascal-
Case’
(e.g.
TokenId).
Regardless
of
the
convention
you
choose,
it
is
good
practice

to
be
consistent.

It
 is
also
of
note
that
the
variable
names
should
be
balanced
for
meaningful-
ness
and
brevity.
This
brevity
is
of
practical
concern
but
can
lead
to
somewhat
opaque
variable
names.
Ensure
you
provide
a
description
of
your
variables
in
a
data
dictionary.

Activities

In
the
following
activities,
we
will
be
tackle
a
common
scenario
in
data
anal-
ysis:
 to
 read,
 to
 inspect,
and
 to
write
datasets.
The
 recipe
will
discuss
 the
necessary
packages
and
functions
to
accomplish
these
tasks
including
{readr}
and
{dplyr}.
The
recipe
will
also
refresh
and
expand
on
the
elements
of
code
blocks
in
Quarto
documents
such
as
the
label,
echo,
message,
and
include
op-
tions.

Summary
 43

Ɗ
Recipe
What:
Reading,
inspecting,
and
writing
datasets

How:
Read
Recipe
2,
complete
comprehension
check,
and
prepare
for
Lab
2.

Why:
To
use
literate
programming
in
Quarto
to
work
with
R
coding
strategies
for
reading,
inspecting,
and
writing
datasets.

ð
Lab

What:
Dive
into
datasets

How:
Clone,
fork,
and
complete
the
steps
in
Lab
2.

Why:
To
read
datasets
from
packages
and
from
plain-text
files,
inspect
and
re-
port
characteristics
of
datasets,
and
write
datasets
to
plain-text
files.

Summary

In
this
chapter
we
have
focused
on
data
and
information
—the
first
two
com-
ponents
of
DIKI
Hierarchy.
First,
a
distinction
is
made
between
populations
and
samples,
the
latter
being
a
intentional
and
subjective
selection
of
obser-
vations
from
the
world
which
attempt
to
represent
the
population
of
interest.
The
result
of
this
process
is
known
as
a
corpus.
Whether
developing
a
corpus
or
selecting
an
existing
corpus,
it
is
important
to
vet
the
sampling
frame
for
its
applicability
and
viability
as
a
resource
for
a
given
research
project.

Once
a
viable
corpus
is
identified,
then
that
corpus
is
converted
into
a
curated
dataset
which
adopts
the
tidy
dataset
format
where
each
column
is
a
variable,
each
row
is
an
observation,
and
the
intersection
of
columns
and
rows
contain
values.
This
curated
dataset
serves
to
establish
the
base
 informational
rela-
tionships
from
which
your
research
will
stem.

The
curated
dataset
will
most
likely
require
transformations
which
may
in-
clude
normalization,
tokenization,
recoding,
generation,
and/or
integration
to
 enhance
 the
 usefulness
 of
 the
 information
 to
 analysis.
 A
 transformed

dataset
or
set
of
datasets
will
the
result
from
this
process.

Finally,
documentation
should
be
implemented
at
the
acquisition,
curation,
and
transformation
stages
of
the
analysis
project
process.
The
combination
of
data
origin,
data
dictionary,
and
literate
programming
files
establishes
doc-
umentation
of
the
data
and
implementation
steps
to
ensure
transparent
and
reproducible
research.

https://taylorandfrancis.com

3

Analysis

|
Outcomes

•
 Recall
the
fundamental
concepts
and
principles
of
statistics
in
data
analysis.
•
 Articulate
 the
 roles
 of
 diagnostic,
 analytic,
 and
 interpretive
 statistics
 in
quantitative
analysis.

•
 Compare
 the
similarities
and
differences
between
analytic
approaches
 to
data
analysis.

The
goal
of
an
analysis
is
to
break
down
complex
information
into
simpler
components
which
are
more
readily
interpretable.
In
what
follows,
we
will
cover
the
main
steps
in
this
process.
The
first
is
to
inspect
the
data
to
ensure
its
quality
and
understand
its
characteristics.
The
second
is
to
interrogate
the
data
to
uncover
patterns
and
relationships
and
interpret
the
findings.
To
con-
clude
this
chapter,
I
will
outline
methods
for
and
the
importance
of
commu-
nicating
the
analysis
results
and
procedure
in
a
transparent
and
reproducible

manner.

ı
Lessons

What:
Summarizing
data,
Visual
summaries

How:
In
an
R
console,
load
{swirl},
run
swirl(),
and
follow
prompts
to
select

the
lesson.

Why:
To
showcase
methods
for
statistical
summaries
of
vectors
and
data
frames

and
to
create
informative
graphics
that
enhance
data
interpretation
and
analy-
sis.

3.1
 Describe

The
goal
of
descriptive
statistics
is
to
summarize
the
data
in
order
to
under-
stand
and
prepare
the
data
for
the
analysis
approach
to
be
performed.
This
is
accomplished
through
a
combination
of
statistic
measures
and/or
tabular
or
graphic
summaries.
The
choice
of
descriptive
statistics
is
guided
by
the
type
of
data,
as
well
as
the
question(s)
being
asked
of
the
data.

This
chapter
has
been
made
available
under
a
CC-BY-NC-ND
license.

45
DOI: 10.4324/9781003393764-5

46
 CHAPTER
3.
 ANALYSIS

In
descriptive
statistics,
there
are
four
basic
questions
that
are
asked
of
each
of
the
variables
in
the
dataset.
Each
correspond
to
a
different
type
of
descriptive

measure.

1.

 Central
tendency:
Where
do
the
data
points
tend
to
be
located?

2.

 Dispersion:
How
spread
out
are
the
data
points?

3.

 Distribution:
What
is
the
overall
shape
of
of
the
data
points?

4.

 Association:
 How
 are
 these
 data
 points
 related
 to
 other
 data

points?

To
ground
this
discussion
I
will
introduce
a
new
dataset.
This
dataset
is
drawn
from
the
Barcelona
English
Language
Corpus
(BELC)
(Muñoz,
2006),
which
is
found
in
the
TalkBank
repository.
I’ve
selected
the
“Written
composition”
task
from
this
corpus
which
contains
80
writing
samples
from
36
second
lan-
guage
learners
of
English
at
different
ages.
Participants
were
given
the
task
of
writing
for
15
minutes
on
the
topic
of
“Me:
my
past,
present
and
future”.
Data
was
collected
for
participants
from
one
to
three
times
over
the
course
of
seven
years
(at
10,
12,
16,
and
17
years
of
age).

In
Table
3.1
we
see
the
data
dictionary
for
the
BELC
dataset
which
reflects
structural
and
transformational
steps
I’ve
done
so
we
start
with
a
tidy
dataset
with
essay_id
as
the
unit
of
observation.

Table

variable
 name
 type
 description

essay_id

part_id

sex

group

tokens

types

Essay
 ID

Participant
 ID

Sex

Group

Tokens

Types

categorical
 Unique
 identifier
for
each
essay

categorical
 Identifier
for
each
participant
 learner

categorical
 Sex
of
the
participant

ordinal
 Time
group
of
the
essay,
ordered
from

T1
to
T4
(10,
12,
16,
and
17
years
old)

numeric
 Number
of
word
tokens
 in
the
essay

numeric
 Number
of
unique
word
types
 in
the

ttr

prop_l2

TTR

Proportion
of

numeric

L2
 numeric

essay

Type-Token
Ratio
(TTR)
of
the
essay

Proportion
of
words
 in
the
essay

identified
as
second
(target)
 language

(L2)

3.1: Data dictionary for the BELC dataset

Now,
let’s
take
a
look
at
the
first
few
observations
of
the
BELC
dataset
to
get
another
perspective
on
the
dataset
as
we
view
the
values
of
the
dataset.

3.1.
 DESCRIBE
 47

Table
3.2:
First
5
observations
of
the
BELC
dataset

essay_id
 part_id
 sex
 group
 tokens
 types
 ttr
 prop_l2

E1
 L01
 female
 T2
 79
 46
 0.582
 0.987

E2
 L02
 female
 T1
 18
 18
 1.000
 0.667

E3
 L02
 female
 T3
 101
 53
 0.525
 1.000

E4
 L05
 female
 T1
 20
 17
 0.850
 0.900

E5
 L05
 female
 T3
 158
 80
 0.506
 0.987

ş
Case
study
Type-token
ratio
(TTR)
is
a
standard
metric
for
measuring
lexical
diversity,
but
it
is
not
without
its
flaws.
Most
importantly,
TTR
is
highly
sensitive
to
the
word
length
of
the
text.
Duran
(2004)
discusses
this
limitation,
and
the
limitations
of
other
lexical
diversity
measures
and
proposes
a
new
measure
𝐷
which
shows

a
stronger
correlation
with
language
proficiency
in
their
comparative
studies.j

In
Table
3.2,
each
of
the
variables
is
an
attribute
or
measure
of
the
essay_id

variable.
tokens
 is
the
number
of
total
words,
types
 is
the
number
of
unique

words,
ttr
 is
the
ratio
of
unique
words
to
total
words.
This
is
known
as
the
Type-Token
Ratio
and
it
is
a
standard
metric
for
measuring
lexical
diversity.
Finally,
the
proportion
of
L2
words
(English)
to
the
total
words
(tokens)
 is
provided
in
prop_l2.

Let’s
now
 turn
 our
 attention
 to
 exploring
descriptive
measures
using
 the
BELC
dataset.

3.1.1
 Central
tendency

The
central
tendency
is
a
measure
which
aims
to
summarize
the
data
points
in
a
variable
as
the
most
representative,
middle,
or
most
typical
value.
There
are
three
common
measures
of
central
tendency:
the
mode,
mean
and
median.
Each
differ
in
how
they
summarize
the
data
points.

The
mode
is
the
value
that
appears
most
frequently
in
a
set
of
values.
If
there
are
multiple
values
with
the
highest
frequency,
then
the
variable
is
said
to
be
multimodal.
A
versatile
central
tendency
measure,
the
mode
can
be
applied
all
levels
of
measurement.
However,
in
practice
is
almost
exclusively
used
to
summarize
categorical
variables.

The
most
common
central
tendency
measures
for
numeric
variables
are
the
mean
and
the
median.
The
mean
is
a
summary
statistic
calculated
by
sum-
ming
all
the
values
and
dividing
by
the
number
of
values.
The
median
is
cal-
culated
by
sorting
all
the
values
in
the
variable
and
then
selecting
the
middle
value.

48
 CHAPTER
3.
 ANALYSIS

Table
3.3:
Central
tendency
measures
for
the
BELC
dataset

(a)
Categorical
variables
 (b)
Numeric
variables

Variable
 Top
Counts
 Variable
 Mean
 Median

essay_id
 E1:
1,
E10:
1,
E11:
1,
E12:
1
 tokens
 67.62
 56.5

part_id
 L05:
3,
L10:
3,
L11:
3,
L12:
3
 types
 41.85
 38.5

sex
 fem:
48,
mal:
32
 ttr
 0.68
 0.66

group
 T1:
25,
T3:
24,
T2:
16,
T4:
15
 prop_l2
 0.96
 0.99

Ď
Consider
this

Grieve,
Nini,
&
Guo
(2018)
compiled
an
 8.9
 billion-word
 corpus
 of
 geo-
tagged
posts
from
Twitter
2013-2014
in
the
United
States.
The
authors
pro-
vide
a
search
interfacea
to
explore
the

relationship
 between
 lexical
 usage
and
geographic
location.
Explore
this
corpus
searching
for
terms
related
to
slang
(“hella”,
“wicked”),
geograph-
ical
 (“mountain”,
 “river”),
meteoro-
logical
(“snow”,
“rain”),
and/or
any
other
terms.
What
types
of
patterns
do
you
find?
What
are
the
benefits
and/or
limitations
of
this
type
of
data,
data
summarization,
and/or
interface?

ahttps://isogloss.shinyapps.io/isogloss/

As
the
mode
is
the
most
frequent
value,
the
top_counts
measure
in
Table
3.3

provides
the
most
frequent
value
for
the
categorical
variables.
Mean
and
me-
dian
appear
but
we
notice
that
the
mean
and
median
are
not
the
same
for
the
numeric
variables.
Differences
 that
appear
between
 the
mean
and
median
will
be
of
interest
to
us
later
in
this
chapter.

3.1.2
 Dispersion

To
understand
how
representative
a
central
 tendency
measure
 is
we
use
a
calculation
of
the
spread
of
the
values
around
the
central
tendency,
or
dis-
persion.
Dispersion
 is
a
measure
of
how
spread
out
the
values
are
around
the
central
tendency.
The
more
spread
out
the
values,
the
less
representative
the
central
tendency
measure
is.

https://isogloss.shinyapps.io/isogloss/

49
3.1.
 DESCRIBE

Table
3.4:
Dispersion
measures
for
the
BELC
dataset

(a)
Categorical
variables
 (b)
Numeric
variables

Variable
 Norm
Entropy
 Variable
 SD
 IQR

essay_id
 1
 tokens
 44.2
 61.25

part_id
 0.98
 types
 23.03
 31.5

sex
 0.97
 ttr
 0.13
 0.149

group
 0.98
 prop_l2
 0.1
 0.027

For
categorical
variables,
the
spread
is
framed
in
terms
of
how
balanced
the
values
are
across
the
levels.
One
way
to
do
this
is
to
use
proportions.
The
pro-
portion
of
each
level
is
the
frequency
of
the
level
divided
by
the
total
number
of
values.
Another
way
is
to
calculate
the
(normalized)
entropy.
Entropy
is

a
single
measure
of
uncertainty.
The
more
balanced
the
values
are
across
the
levels,
the
closer
entropy
is
1.
In
practice,
however,
proportions
are
often
used
to
assess
the
balance
of
the
values
across
the
levels.

The
most
common
measure
of
dispersion
for
numeric
variables
is
the
stan-
dard
deviation.
The
standard
deviation
 is
calculated
by
 taking
 the
square
root
of
the
variance.
The
variance
is
the
average
of
the
squared
differences
from
the
mean.
So,
more
succinctly,
the
standard
deviation
is
a
measure
of
the
spread
of
the
values
around
the
mean.
Where
the
standard
deviation
is
anchored
 to
 the
mean,
 the
 interquartile
range
 (IQR)
 is
 tied
 to
 the
median.
The
median
represents
the
sorted
middle
of
the
values,
in
other
words
the
50th
percentile.
The
IQR
is
the
difference
between
the
75th
percentile
and
the
25th
percentile.

̪
Dive
deeper
The
 inability
 to
compare
summary
statistics
across
variables
 is
a
key
 reason
why
standardization
is
often
applied
before
submitting
a
dataset
for
analysis
(Baayen,
2008;
Johnson,
2008).
Standardization
is
a
scale-based
transformation
that
changes
the
scale
of
the
val-
ues
to
a
common
scale,
or
z-scores
.
The
result
of
this
transformation
puts
data
points
of
each
variable
on
the
same
scale
and
allows
for
direct
comparison.
Fur-
thermore,
standardization
also
mitigates
the
influence
of
variables
with
large
values
relative
 to
other
variables.
This
 is
particularly
 important
 in
multivari-
ate
(i.e.
multiple
variable)
analysis
where
the
influence
of
variables
with
large
values
can
be
magnified.
The
caveat
is
that
standardization
masks
the
original
meaning
of
the
data.
That
is,
 if
we
consider
 token
 frequency,
before
standardization,
we
can
say
 that
a
value
of
1000
tokens
is
1000
tokens.
After
standardization,
we
can
only
say
that
a
value
of
1
is
1
standard
deviation
from
the
mean.
This
is
why
standardization
is
often
applied
after
the
descriptive
phase
of
analysis.

50
 CHAPTER
3.
 ANALYSIS

Table
3.5:
Frequency
table
for
variables
sex
and
group.

sex

(a)
Sex

Frequency
 Proportion

group

T1

(b)
Time
group

Frequency
 Proportion

25
 0.312

female
 48
 0.6
 T2
 16
 0.200

male
 32
 0.4
 T3
 24
 0.300

T4
 15
 0.188

In
Table
3.4a,
the
entropy
helps
us
understand
the
balance
of
the
values
across
the
levels
of
the
categorical
variables.
In
Table
3.4b,
the
standard
deviation
and
IQR
provide
a
sense
of
the
spread
of
the
values
around
the
mean
and
median,
respectively,
for
the
numeric
variables.

When
interpreting
numeric
central
tendency
and
dispersion
values,
it
is
im-
portant
 to
only
directly
compare
column-wise.
That
 is,
 focusing
only
on
a
single
variable,
not
across
variables.
Each
variable,
as
 is,
 is
measured
on
a
different
scale
and
only
relative
to
itself
can
we
make
sense
of
the
values.

3.1.3
 Distributions

Summary
 statistics
 of
 the
 central
 tendency
 and
 dispersion
 of
 a
 variable
provide
a
 sense
of
 the
most
 representative
value
and
how
 spread
out
 the
data
 is
around
 this
value.
However,
 to
gain
a
more
comprehensive
under-
standing
of
the
variable,
it
is
key
to
consider
the
frequencies
of
all
the
data
points.
The
distribution
of
a
variable
is
the
pattern
or
shape
of
the
data
that
emerges
when
the
frequencies
of
all
data
points
are
considered.
This
can
re-
veal
patterns
that
might
not
be
immediately
apparent
from
summary
statis-
tics
alone.

When
assessing
 the
distribution
of
 categorical
variables,
we
 can
use
a
 fre-
quency
table
or
bar
plot.
Frequency
tables
display
the
frequency
and/or
pro-
portion
each
level
in
a
categorical
variable
in
a
clear
and
concise
manner.
In
Table
3.5
we
see
the
frequency
table
for
the
variable
sex
and
group.

A
bar
plot
is
a
type
of
plot
where
the
x-axis
is
a
categorical
variable
and
the
y-
axis
is
the
frequency
of
the
values.
The
frequency
is
represented
by
the
height
of
the
bar.
The
variables
can
be
ordered
by
frequency,
alphabetically,
or
some
other
order.
Figure
3.1
is
a
bar
chart
for
the
variables
sex
and
group
ordered

alphabetically.

40

80
 80

60
 60

F
re

qu
en

cy

female
 male

Sex

T1
 T2
 T3
 T4

Time group

F
re

qu
en

cy

40

20
 20

0
 0

(a)
Bar
plot
for
sex
 (b)
Bar
plot
for
group

Figure
3.1:
Bar
plots
for
categorical
variables
sex
and
group

3.1.

DESCRIBE 51

So
for
a
frequency
table
or
bar
plot,
we
can
see
the
frequency
of
each
level
of
a
categorical
variable.
This
gives
us
some
knowledge
about
the
BELC
dataset:
there
are
more
girls
in
the
dataset
and
more
essays
appear
in
first
and
third
time
groups.
If
we
were
to
see
any
clearly
lopsided
categories,
this
would
be
a
sign
of
imbalance
in
the
data
and
we
would
need
to
consider
how
this
might
impact
our
analysis.

Ď
Consider
this

The
goal
of
descriptive
statistics
is
to
summarize
the
data
in
a
way
that
is
mean-
ingful
and
interpretable.
With
this
in
mind,
compare
the
frequency
tables
and
bar
plots
 in
Table
3.5
and
Figure
3.1.
Does
one
provide
a
more
 interpretable
summary
of
the
data?
Why
or
why
not?
Are
there
any
other
ways
you
might
communicate
this
distribution
more
effectively?

Numeric
variables
are
best
understood
visually.
The
most
common
visual-
izations
of
the
distribution
of
a
numeric
variable
are
histograms
and
density
plots.
Histograms
are
a
type
of
bar
plot
where
the
x-axis
is
a
numeric
variable
and
the
y-axis
is
the
frequency
of
the
values
falling
within
a
determined
range
of
values,
or
bins.
The
frequency
of
values
within
each
bin
is
represented
by
the
height
of
the
bars.

Density
plots
are
a
smoothed
version
of
histograms.
The
y-axis
of
a
density
plot
is
the
probability
of
the
values.
When
frequent
values
appear
closely
to-
gether,
the
plot
line
is
higher.
When
the
frequency
of
values
is
lower
or
more
spread
out,
the
plot
line
is
lower.

Both
the
histogram
in
Figure
3.2a
and
the
density
plot
in
Figure
3.2b
show
the
distribution
of
the
variable
tokens
 in
slightly
different
ways
which
translate
into
trade-offs
in
terms
of
interpretability.

52
 CHAPTER
3.
 ANALYSIS

0.0

2.5

5.0

7.5

F
re

qu
en

cy

0.0000

0.0025

0.0050

0.0075

P
ro

ba
bi

lit
y

0
 50
 100
 150
 0
 50
 100
 150

Number of tokens
 Number of tokens

(a)
Histogram
 (b)
Density
plot

Figure
3.2:
Distribution
plots
for
the
variable
tokens.

The
histogram
shows
the
frequency
of
the
values
in
bins.
The
number
of
bins
and/or
bin
width
can
be
changed
for
more
or
less
granularity.
A
rough
grain
histogram
shows
the
general
shape
of
the
distribution,
but
it
is
difficult
to
see
the
details
of
the
distribution.
A
fine
grain
histogram
shows
the
details
of
the
distribution,
but
it
is
difficult
to
see
the
general
shape
of
the
distribution.
The
density
plot
shows
the
general
shape
of
the
distribution,
but
it
hides
the
de-
tails
of
the
distribution.
Given
this
trade-off,
it
is
often
useful
explore
outliers
with
histograms
and
the
overall
shape
of
the
distribution
with
density
plots.

0.000

0.005

0.010

0.015

0
 50
 100
 150

(a)
Number
of
tokens

0.02

0.01

0.00

0
 25
 50
 75
 100

(b)
Number
of
types

0

1

2

3

4

0.4
 0.6
 0.8
 1.0

(c)
Type-token
ratio
score

Figure
3.3:
Histograms
for
numeric
variables
tokens,
types,
and
ttr.

In
Figure
3.3
we
see
both
histograms
and
density
plots
combined
for
the
vari-
ables
tokens,
types,
and
ttr.
Focusing
on
the
details
captured
in
the
histogram
we
are
better
able
to
detect
potential
outliers.
Outliers
can
reflect
valid
values
that
are
simply
extreme
or
they
can
reflect
something
erroneous
in
the
data.
To
distinguish
between
 these
 two
possibilities,
 it
 is
 important
 to
know
 the
context
of
the
data.

53
3.1.
 DESCRIBE

Take,
for
example,
Figure
3.3c.
We
see
that
there
is
a
bin
near
the
value
1.0.
Given
that
the
type-token
ratio
is
a
ratio
of
the
number
of
types
to
the
num-
ber
of
tokens,
it
is
unlikely
that
the
type-token
ratio
would
be
exactly
1.0
as
this
would
mean
 that
every
word
 in
an
essay
 is
unique.
Another,
 less
dra-
matic,
example
is
the
bin
to
the
far
right
of
Figure
3.3a.
In
this
case,
the
bin
represents
the
number
of
tokens
in
an
essay.
An
uptick
in
the
number
of
es-
says
with
a
large
number
of
tokens
is
not
surprising
and
would
not
typically
be
considered
an
outlier.
On
the
other
hand,
consider
the
bin
near
the
value
0
in
the
same
plot.
It
is
unlikely
that
a
true
essay
would
have
0,
or
near
0,
words
and
therefore
a
closer
look
at
the
data
is
warranted.

It
is
important
to
recognize
that
outliers
contribute
undue
influence
to
overall
measures
of
central
tendency
and
dispersion.
To
appreciate
this,
let’s
consider
another
helpful
visualization
called
a
boxplot.
A
boxplot
 is
a
visual
repre-
sentation
which
aims
to
represent
the
central
tendency,
dispersion,
and
dist-
ribution
of
a
numeric
variable
in
one
plot.

0.4
 0.6
 0.8
 1.0

(a)
Histogram

0.4
 0.6
 0.8
 1.0

(b)
Boxplot

Figure
3.4:
Understanding
the
similarities
between
boxplots
and
histograms

In
Figure
3.4b
we
see
a
boxplot
 for
ttr
 variable.
The
box
 in
 the
middle
of

the
plot
represents
the
interquartile
range
(IQR)
which
is
the
range
of
values
between
the
first
quartile
and
the
third
quartile.
The
solid
line
in
the
middle
of
the
box
represents
the
median.
The
lines
extending
from
the
box
are
called
‘whiskers’
and
provide
the
range
of
values
which
are
within
1.5
times
the
IQR.
Values
outside
of
this
range
are
plotted
as
individual
points.

54
 CHAPTER
3.
 ANALYSIS

Now
 let’s
consider
boxplots
 from
another
angle.
 Just
above
 in
Figure
3.4a
I’ve
plotted
a
histogram.
In
this
view,
we
can
see
that
a
boxplot
is
a
simplified
histogram
augmented
with
central
tendency
and
dispersion
statistics.
While
histograms
focus
on
the
frequency
distribution
of
data
points,
boxplots
focus
on
the
data’s
quartiles
and
potential
outliers.

Concerning
outliers,
 it
 is
 important
to
address
them
to
safeguard
the
accu-
racy
of
the
analysis.
There
are
two
main
ways
to
address
outliers:
eliminate
observations
with
outliers
or
 transform
 the
data.
The
elimination,
or
 trim-
ming,
of
outliers
is
more
extreme
as
it
removes
data
but
can
be
the
best
ap-
proach
for
true
outliers.
Transforming
the
data
is
an
approach
to
mitigating
the
influence
of
extreme
but
valid
values.
Transformation
involves
applying
a
mathematical
function
to
the
data
which
changes
the
scale
and/or
shape
of
the
distribution,
but
does
not
remove
data
nor
does
it
change
the
relative
order
of
the
values.

The
exploration
of
the
data
points
with
histograms
and
boxplots
has
helped
us
to
identify
outliers.
Now
we
turn
to
the
question
of
the
overall
shape
of
the
distribution.

When
values
are
symmetrically
dispersed
around
the
central
tendency,
the
distribution
 is
said
 to
be
normal.
The
normal
distribution
 is
characterized

by
a
distribution
where
the
mean
and
median
are
the
same.
The
normal
dist-
ribution
has
a
key
role
in
theoretical
inference
and
is
the
foundation
for
many
statistical
tests.
This
distribution
is
also
known
as
the
Gaussian
distribution

or
a
bell
curve
 for
 the
hallmark
bell
shape
of
 the
distribution.
In
a
normal
distribution,
extreme
values
are
less
likely
than
values
near
the
center.

When
values
are
not
symmetrically
dispersed
around
the
central
tendency,
the
distribution
is
said
to
be
skewed.
A
distribution
in
which
values
tend
to

disperse
to
the
left
of
the
central
tendency
is
left
skewed
and
a
distribution

in
which
values
tend
to
disperse
to
the
right
of
the
central
tendency
is
right

skewed.

Simulations
of
these
distributions
appear
in
Figure
3.5.

Values

D
en

si
ty

Values

D
en

si
ty

Values

D
en

si
ty

(a)
Left-skewed
 (b)
Normal
 (c)
Right-skewed

Figure
3.5:
Mean
and
median
for
normal
and
skewed
distributions

55
3.1.
 DESCRIBE

0

25

50

75

100

4

F
re

qu
en

cy
 (

lo
g)

0
 25
 50
 75
 100

Rank

0
 25
 50
 75
 100

Rank

F
re

qu
en

cy 3

2

1

0

(a)
Zipfian
distribution
 (b)
Log-transformed
Zipfian
distribution

Figure
3.6:
Zipfian
distribution

Assessing
 the
distribution
of
a
variable
 is
 important
 for
 two
reasons.
First,
the
 distribution
 of
 a
 variable
 can
 inform
 the
 choice
 of
 statistical
 test
 in

theory-based
hypothesis
 testing.
Data
 that
 are
normally,
or
near-normally
distributed
are
often
analyzed
using
parametric
tests
while
data
that
exhibit
a
skewed
distributed
are
often
analyzed
using
non-parametric
tests.
Second,
highly
skewed
distributions
have
the
effect
of
compressing
the
range
of
val-
ues.
This
can
lead
to
a
loss
of
information
and
can
make
it
difficult
to
detect

patterns
in
the
data.

Skewed
frequency
distributions
are
commonly
found
for
linguistic
units
(e.g.

phonemes,
morphemes,
words,
etc.).
However,
these
distributions
tend
to
a
follow
a
particular
type
of
skew
known
as
a
Zipf
distribution.
According
to
Zipf’s
law
(Zipf,
1949),
the
frequency
of
a
linguistic
unit
is
inversely
propor-
tional
to
its
rank.
In
other
words,
the
most
frequent
units
will
appear
twice
as
often
as
the
second
most
frequent
unit,
three
times
as
often
as
the
third
most
frequent
unit,
and
so
on.

The
plot
in
Figure
3.6a
is
simulated
data
that
fits
a
Zipfian
distribution.

Zipf’s
law
describes
a
theoretical
distribution,
and
the
actual
distribution
of
units
in
a
corpus
is
affected
by
various
sampling
factors,
including
the
size
of
the
corpus.
The
larger
the
corpus,
the
closer
the
distribution
will
be
to
the
Zipf
distribution.

̪
Dive
deeper
As
stated
above,
Zipfian
distributions
are
typical
of
natural
language
and
are
observed
at
various
linguistic
levels.
This
is
because
natural
language
is
a
com-
plex
system,
and
complex
systems
tend
to
exhibit
Zipfian
distributions.
Other
examples
of
complex
systems
that
exhibit
Zipfian
distributions
include
the
size
of
cities,
the
frequency
of
species
in
ecological
communities,
the
frequency
of
links
in
the
World
Wide
Web,
etc.

56
 CHAPTER
3.
 ANALYSIS

In
the
case
that
a
variable
is
highly
skewed
(such
as
in
linguistic
frequency
distributions),
 it
 is
often
useful
 to
attempt
 to
 transform
 the
variable
 to
 re-
duce
the
skewness.
In
contrast
to
scale-based
transformations
(e.g.
centering
and
scaling),
shape-based
transformations
change
the
scale
and
the
shape
of
the
distribution.
The
most
common
shape-based
transformation
is
the
loga-
rithmic
transformation.
The
logarithmic
transformation
(log
transformation)
takes
the
log
(typically
base
10)
of
each
value
in
a
variable.
The
log
transfor-
mation
is
useful
for
reducing
the
skewness
of
a
variable
as
it
compresses
large
values
and
expands
small
values.
If
the
skewness
is
due
to
these
factors,
the
log
transformation
can
help,
as
in
the
case
of
the
Zipfian
distribution
in
Fig-
ure
3.6b.

It
is
important
to
note,
however,
that
if
scale-based
transformations
are
to
be
applied
to
a
variable,
they
should
be
applied
after
the
log
transformation
as
the
log
of
negative
values
is
undefined.

3.1.4
 Association

We
have
covered
the
first
three
of
the
four
questions
we
are
interested
in
ask-
ing
in
a
descriptive
assessment.
The
fourth,
and
last,
question
is
whether
there
is
an
association
between
variables.
If
so,
what
is
the
directionality
and
what
is
the
apparent
magnitude
of
the
dependence?
Knowing
the
answers
to
these
questions
will
help
frame
our
approach
to
analysis.

To
 assess
 association,
 the
 number
 and
 information
 types
 of
 the
 variables
under
consideration
are
important.
Let’s
start
by
considering
two
variables.
If
 we
 are
 working
 with
 two
 variables,
 we
 are
 dealing
 with
 a
 bivariate

relationship.
 Given
 there
 are
 three
 informational
 types
 (categorical,
 ordi-
nal,
and
numeric),
 there
are
six
 logical
bivariate
combinations:
categorical-
categorical,
categorical-ordinal,
categorical-numeric,
ordinal-ordinal,
ordinal-
numeric,
and
numeric-numeric.

The
directionality
of
a
relationship
will
take
the
form
of
a
tabular
or
graphic
summary
depending
on
the
informational
value
of
the
variables
involved.
In
Table
3.6,
we
see
the
appropriate
summary
types
for
each
of
the
six
bivariate
combinations.

Table
3.6:
Summaries
for
different
combinations
of
variable
types

Categorical
 Ordinal
 Numeric

Categorical

Ordinal

Numeric

Contingency
table

-

-

Contingency
table/

Bar
plot

Contingency
table/

Bar
plot

-

Pivot
table/
boxplot

Pivot
table/
boxplot

scatterplot

80
 1.00

60
 Group
 0.75
 Group

F
re

qu
en

cy

P
ro

po
rt

io
n

T1
 T1

T4
 T4
20
 0.25

0
 0.00

40
 T2
 0.50
 T2

T3
 T3

female
 male
 female
 male

Sex
 Sex

(a)
Counts
 (b)
Proportions

Figure
3.7:
Bar
plots
for
the
relationship
between
sex
and
group

57
3.1.
 DESCRIBE

Table
3.7:
Contingency
tables
for
categorical
variable
sex
and
ordinal
variable

group

(a)
Counts
 (b)
Percentages

group
 female
 male
 Total
 group
 female
 male
 Total

T1
 14
 11
 25
 T1
 56.00%
 44.00%
 100.00%

T2
 11
 5
 16
 T2
 68.75%
 31.25%
 100.00%

T3
 13
 11
 24
 T3
 54.17%
 45.83%
 100.00%

T4
 10
 5
 15
 T4
 66.67%
 33.33%
 100.00%

Total
 48
 32
 80
 Total
 60.00%
 40.00%
 100.00%

Let’s
 first
 start
 with
 the
 combinations
 that
 include
 a
 categorical
 or
 ordi-
nal
variable.
Categorical
and
ordinal
variables
reflect
measures
of
class-type
information.
To
assess
a
relationship
with
these
variable
types,
a
table
is
al-
ways
a
good
place
 to
 start.
When
 combined
 together,
a
 contingency
 table
is
 the
 appropriate
 table.
A
 contingency
 table
 is
 a
 cross-tabulation
of
 two

class-type
variables,
basically
a
 two-way
 frequency
 table.
This
means
 that
three
of
the
six
bivariate
combinations
are
assessed
with
a
contingency
table:
categorical-categorical,
categorical-ordinal,
and
ordinal-ordinal.

In
Table
3.7
we
see
contingency
tables
for
the
categorical
variable
sex
and
ordi-
nal
variable
group
in
the
BELC
dataset.
A
contingency
table
may
include
only
counts,
as
in
Table
3.7a,
or
may
include
proportions
or
percentages
in
an
effort
to
normalize
the
counts
and
make
them
more
comparable,
as
in
Table
3.7b.

It
 is
sometimes
helpful
to
visualize
a
contingency
table
as
a
bar
plot
when
there
are
a
larger
number
of
levels
in
either
or
both
of
the
variables.
Again,
looking
at
the
relationship
between
sex
and
group,
we
see
that
we
can
plot
the
counts
or
the
proportions.
In
Figure
3.7,
we
see
both.

58
 CHAPTER
3.
 ANALYSIS

To
summarize
and
assess
the
relationship
between
a
categorical
or
an
ordinal
variable
and
a
numeric
variable
,
we
cannot
use
a
contingency
table.
Instead,
this
type
of
relationship
is
best
summarized
in
a
table
using
a
summary
statis-
tic
in
a
pivot
table.
A
pivot
table
is
a
table
in
which
a
class-type
variable
is
used
to
group
a
numeric
variable
by
some
summary
statistic
appropriate
for
numeric
variables,
e.g.
mean,
median,
standard
deviation,
etc.

In
Table
3.8,
we
see
a
pivot
table
for
the
relationship
between
group
and
tokens

in
the
BELC
dataset.
Specifically,
we
see
the
mean
number
of
tokens
by
group.
We
see
the
mean
number
of
tokens
increases
from
Group
T1
to
T4,
which
is
consistent
with
 the
 idea
 that
 the
students
 in
 the
higher
groups
are
writing
longer
essays.

Table
3.8:
Pivot
table
for
the
mean
tokens
by
group

group
 mean_tokens

T1
 29.6

T2
 58.7

T3
 83.9

T4
 114.5

Although
a
pivot
table
may
be
appropriate
for
targeted
numeric
summaries,
a
visualization
is
often
more
informative
for
assessing
the
dispersion
and
dist-
ribution
of
a
numeric
variable
by
a
categorical
or
ordinal
variable.
There
are
two
main
types
of
visualizations
for
this
type
of
relationship:
a
boxplot
and
a
violin
plot.
A
violin
plot
is
a
visualization
that
summarizes
the
distribution
of
a
numeric
variable
by
a
categorical
or
ordinal
variable,
adding
the
overall
shape
of
the
distribution,
much
as
a
density
plot
does
for
histograms..

In
Figure
3.8,
we
see
both
a
boxplot
and
a
violin
plot
for
the
relationship
be-
tween
group
and
tokens
in
the
BELC
dataset.
From
the
boxplot
in
Figure
3.8a,
we
 see
 a
 general
 trend
 towards
more
 tokens
 used
 by
 students
 in
 higher
groups.
But
we
can
also
appreciate
 the
dispersion
of
 the
data
within
each
group
looking
at
the
boxes
and
whiskers.
On
the
surface
it
appears
that
the
data
for
groups
T1
and
T3
are
closer
to
each
other
than
groups
T2
and
T4,
in
which
there
is
more
variability
within
these
groups.
Furthermore,
we
can
see
outliers
in
groups
T1
and
T3,
but
not
in
groups
T2
and
T4.
From
the
violin
plot
in
Figure
3.8b,
we
can
see
the
same
information,
but
we
can
also
see
the
overall
shape
of
the
distribution
of
tokens
within
each
group.
In
this
plot,
it
is
very
clear
that
group
T4
includes
a
wide
range
of
token
counts.

The
last
bivariate
combination
is
numeric-numeric.
To
summarize
this
type
of
relationship
a
scatterplot
is
used.
A
scatterplot
is
a
visualization
that
plots
each
data
point
as
a
point
in
a
two-dimensional
space,
with
one
numeric
vari-
able
on
the
x-axis
and
the
other
numeric
variable
on
the
y-axis.
Depending
on
the
type
of
relationship
you
are
trying
to
assess,
you
may
want
to
add
a
trend

1.0
 1.0

0
 25
 50
 75
 100

Number of types

Ty
pe

−
To

ke
n

R
at

io
 s

co
re

0.8

Ty
pe

−
To

ke
n

R
at

io
 s

co
re

0.8

0.6

0.4

0
 25
 50
 75
 100

Number of types

(a)
Points
 (b)
Points
with
a
linear
trend
line

Figure
3.9:
Scatterplot
for
the
relationship
between
ttr
and
types

0.4

0.6

59

100

150

To
ke

ns

T1
 T2
 T3
 T4

Group

T1
 T2
 T3
 T4

Group

150

To
ke

ns

100

50
 50

0
 0

(a)
Boxplot
 (b)
Violin
plot

Figure
3.8:
Boxplot
and
violin
plot
for
the
relationship
between
group
and
to-
kens

3.1.
 DESCRIBE

line
to
the
scatterplot.
A
trend
line
is
a
line
that
summarizes
the
overall
trend
in
the
relationship
between
the
two
numeric
variables.
To
assess
the
extent
to
which
the
relationship
is
linear,
a
straight
line
is
drawn
which
minimizes
the
distance
between
the
line
and
the
points.

In
Figure
3.9,
we
see
a
scatterplot
and
a
scatterplot
with
a
trend
line
for
the
relationship
between
ttr
and
types
 in
the
BELC
dataset.
We
see
there
is
an

apparent
positive
relationship
between
these
two
variables,
which
is
consis-
tent
with
the
idea
that
as
the
number
of
types
increases,
the
type-token
ratio
increases.
In
other
words,
as
the
number
of
unique
words
increases,
so
does
the
lexical
diversity
of
the
text.
Since
we
are
evaluating
a
linear
relationship,
we
are
assessing
the
extent
to
which
there
is
a
correlation
between
ttr
and

types.
A
correlation
simply
means
that
as
the
values
of
one
variable
change,
the
values
of
the
other
variable
change
in
a
consistent
manner.

60
 CHAPTER
3.
 ANALYSIS

3.2
 Analyze

The
goal
of
analysis,
generally,
is
to
generate
knowledge
from
information.
The
type
of
knowledge
generated
and
the
process
by
which
it
is
generated,
however,
differ
and
 can
be
broadly
grouped
 into
 three
analysis
 types:
 ex-
ploratory,
predictive,
and
inferential.

In
 this
section,
I
will
elaborate
briefly
on
 the
distinctions
between
analysis
types
seen
in
Table
3.9.
I
will
structure
the
discussion
moving
from
the
least
structured
 (inductive)
 to
most
structured
(deductive)
approach
 to
deriving
knowledge
 from
 information
with
 the
aim
 to
provide
enough
 information
for
you
to
 identify
these
research
approaches
 in
the
literature
and
to
make
appropriate
decisions
as
to
which
approach
your
research
should
adopt.

Table
3.9:
Overview
of
analysis
types

Type

 Aims
 Approach
 Methods
 Evaluation

Exploratory

 Explore:
gain

insight

Predictive

 Predict:

validate

associations

Inferential

 Explain:
test

hypotheses

Inductive,
 Descriptive,
 Associative

data-driven,
and
 pattern

iterative
 detection
with

machine
 learning

(unsupervised)

Semi-deductive,
 Predictive
 Model

data-/
 modeling
with
 performance,

theory-driven,
 machine
 learning
 feature

and
 iterative
 (supervised)
 importance,
and

associative

Deductive,
 Hypothesis
 Causal

theory-driven,
 testing
with

and
non-iterative
 statistical
tests

3.2.1
 Explore

In
exploratory
data
analysis
(EDA),
we
use
a
variety
of
methods
to
identify
patterns,
trends,
and
relations
within
and
between
variables.
The
goal
of
EDA
is
uncover
insights
in
an
inductive,
data-driven
manner.
That
is
to
say,
that
we
do
not
enter
into
EDA
with
a
fixed
hypothesis
in
mind,
but
rather
we
ex-
plore
intuition,
probe
anecdote,
and
follow
hunches
to
identify
patterns
and
relationships
and
to
evaluate
whether
and
why
they
are
meaningful.
We
are
admittedly
treading
new
or
unfamiliar
terrain
letting
the
data
guide
our
anal-
ysis.
This
means
that
we
can
use
and
reuse
the
same
data
to
explore
different
angles
and
approaches,
adjusting
our
methods
and
measures
as
we
go.
In
this
way,
EDA
is
an
iterative,
meaning
generating
process.

61
3.2.
 ANALYZE

In
 line
with
the
 investigative
nature
of
EDA,
the
 identification
of
variables
of
interest
is
a
discovery
process.
We
most
likely
have
an
intuition
about
the
variables
we
would
 like
to
explore,
but
we
are
able
to
adjust
our
variables
as
need
be
to
suit
our
research
aims.
When
the
 identification
and
selection

of
variables
is
open,
the
process
is
known
as
feature
engineering.
A
process
that
is
as
much
an
art
as
a
science,
feature
engineering
leverages
a
mixture
of
relevant
domain
knowledge,
intuition,
and
trial
and
error
to
identify
features
that
serve
to
best
represent
the
data
and
to
best
serve
the
research
aims.
Fur-
thermore,
the
roles
of
features
in
EDA
are
fluid
—no
variable
has
a
special
status,
as
seen
in
Figure
3.10.
We
will
see
that
in
other
types
of
analysis,
some
or
all
the
roles
of
the
variables
are
fixed.

Figure
3.10:
Roles
of
variables
in
exploratory
data
analysis

Any
given
dataset
could
serve
as
a
starting
point
to
explore
many
different
types
of
research
questions.
In
order
to
maintain
research
coherence
so
our
efforts
to
not
careen
into
a
free-for-all,
we
need
to
tether
our
feature
engineer-
ing
to
a
unit
of
analysis
that
is
relevant
to
the
research
question.
A
unit
of

analysis
is
the
entity
that
we
are
interested
in
studying.
Not
to
be
confused
with
the
unit
of
observation,
which
is
the
entity
that
we
are
able
to
observe
and
measure
(Sedgwick,
2015).
Depending
on
the
perspective
we
are
inter-
ested
in
investigating,
the
choice
of
how
to
approach
engineering
features
to
gain
insight
will
vary.

By
 the
same
 token,
approaches
 for
 interrogating
 the
dataset
can
differ
sig-
nificantly,
between
research
projects
and
within
the
same
project,
but
for
in-
structive
purposes,
let’s
draw
a
distinction
between
descriptive
methods
and
unsupervised
learning
methods,
as
seen
in
Table
3.10.

62
 CHAPTER
3.
 ANALYSIS

Table
3.10:
Some
common
exploratory
data
analysis
methods

Descriptive
Methods
 Unsupervised
Learning
Methods

Frequency
analysis
 Cluster
analysis

Co-occurence
analysis
 Principal
component
analysis

Keyness
analysis
 Topic
Modeling

Vector
space
models

The
first
group,
descriptive
methods
can
be
seen
as
an
extension
of
the
de-
scriptive
statistics
covered
earlier
in
this
chapter
including
statistic,
tabular,
and
visual
techniques.
The
second
group,
unsupervised
learning,
is
a
sub-
type
of
machine
learning
in
which
an
algorithm
is
used
to
find
patterns
within
and
between
variables
in
the
data
without
any
guidance
(supervision).
In
this
way,
the
algorithm,
or
machine
learner,
is
left
to
make
connections
and
asso-
ciations
wherever
they
may
appear
in
the
input
data.

Either
through
descriptive,
unsupervised
learning
methods,
or
a
combination
of
both,
EDA
employs
quantitative
methods
to
summarize,
reduce,
and
sort
complex
datasets
in
order
to
provide
the
researcher
novel
perspective
to
be
qualitatively
assessed.
Exploratory
methods
produce
results
that
require
as-
sociative
thinking
and
pattern
detection.
Speculative
as
they
are,
the
results
from
exploratory
methods
can
be
highly
informative
and
lead
to
new
insight
and
inspire
further
study
in
directions
that
may
not
have
been
expected.

3.2.2
 Predict

Predictive
data
analysis
(PDA)
employs
a
variety
of
techniques
to
examine
and
evaluate
the
association
strength
between
a
variable
or
set
of
variables,
with
a
specific
 focus
on
predicting
a
 target
variable.
The
aim
of
PDA
 is
 to
construct
models
that
can
accurately
forecast
future
outcomes,
using
either
data-driven
or
theory-driven
approaches.
In
this
process,
supervised
learn-
ing
methods,
where
the
machine
learning
algorithm
is
guided
(supervised)
by
a
target
outcome
variable,
are
used.
This
means
we
don’t
begin
PDA
with
a
completely
open-ended
exploration,
but
rather
with
an
objective
—accurate
predictions.
However,
the
path
to
achieving
this
objective
can
be
flexible,
al-
lowing
us
freedom
to
adjust
our
models
and
methods.
Unlike
EDA,
where
the
entire
dataset
can
be
reused
for
different
approaches,
PDA
requires
a
portion
of
the
data
to
be
reserved
for
evaluation,
enhancing
the
validity
of
our
predic-
tive
models.
Thus,
PDA
is
an
iterative
process
that
combines
the
flexibility
of
exploratory
analysis
with
the
rigor
of
confirmatory
analysis.

63
3.2.
 ANALYZE

There
are
two
types
of
variables
in
PDA:
the
outcome
variable
and
the
pre-
dictor
variables,
or
 features.
The
outcome
variable
 is
 the
variable
 that
 the

researcher
is
trying
to
predict.
It
is
the
only
variable
that
is
necessarily
fixed
as
part
of
the
research
question.
The
features
are
the
variables
that
are
used
to
predict
the
outcome
variable.
An
overview
of
the
roles
of
these
variables
in
PDA
is
shown
in
Figure
3.11.

Figure
3.11:
Roles
of
variables
in
predictive
data
analysis

Feature
selection
can
be
either
data-driven
or
theory-driven.
Data-driven
fea-
tures
are
those
that
are
engineered
to
enhance
predictive
power,
while
theory-
driven
features
are
those
that
are
selected
based
on
theoretical
relevance.

The
approach
to
interrogating
the
dataset
includes
three
main
steps:
feature
engineering,
model
selection,
and
model
evaluation.
We’ve
discussed
feature
engineering,
so
what
is
model
selection
and
model
evaluation?

Model
selection
is
the
process
of
choosing
a
machine
learning
algorithm
and
set
of
 features
 that
produces
 the
best
prediction
accuracy
 for
 the
outcome
variable.
To
refine
our
approach
such
that
we
arrive
at
the
best
combination
of
algorithm
and
features,
we
need
to
train
our
machine
learner
on
a
variety
of
combinations
and
evaluate
the
accuracy
of
each.

There
are
many
different
 types
of
machine
 learning
algorithms,
each
with
their
own
strengths
and
weaknesses.
The
first
rough
cut
 is
 to
decide
what
type
of
outcome
variable
we
are
predicting:
categorical
or
numeric.
If
the
out-
come
variable
is
categorical,
we
are
performing
a
classification
task,
and
if

the
outcome
variable
is
numeric,
we
are
performing
a
regression
task.
As
we

see
in
Table
3.11,
there
are
various
algorithms
that
can
be
used
for
each
task.

64
 CHAPTER
3.
 ANALYSIS

Table
3.11:
Some
common
supervised
learning
algorithms
used
in
PDA

Classification
 Regression

Logistic
Regression
 Linear
Regression

Random
Forest
Classifier
 Random
Forest
Regressor

Support
Vector
Machine
 Support
Vector
Regression

Neural
Network
Classifier
 Neural
Network
Regressor

There
are
a
number
of
algorithm-specific
strengths
and
weaknesses
to
be
con-
sidered
 in
the
process
of
model
selection.
These
hinge
on
characteristics
of
the
data,
such
as
the
size
of
the
dataset,
the
number
of
features,
the
type
of
features,
and
the
expected
type
of
relationships
between
features
or
on
com-
puting
resources,
such
as
the
amount
of
time
available
to
train
the
model
or
the
amount
of
memory
available
to
store
the
model.

Model
evaluation
is
the
process
of
assessing
the
accuracy
of
the
model
on
the
test
set,
which
is
a
proxy
for
how
well
the
model
will
generalize
to
new
data.
Model
evaluation
is
performed
quantitatively
by
calculating
the
accuracy
of
the
model.
It
is
important
to
note
that
whether
the
accuracy
metrics
are
good
is
to
some
degree
qualitative
judgment.

3.2.3
 Infer

The
most
commonly
recognized
of
 the
 three
data
analysis
approaches,
 in-
ferential
data
analysis
(IDA)
is
the
bread-and-butter
of
science.
IDA
is
a
de-
ductive,
theory-driven
approach
in
which
all
aspects
of
analysis
stem
from
a
premise,
or
hypothesis,
about
the
nature
of
a
relationship
in
the
world
and
then
aims
to
test
whether
this
relationship
is
statistically
supported
given
the
evidence.
Since
the
goal
is
to
infer
conclusions
about
a
certain
relationship
in
the
population
based
on
a
statistical
evaluation
of
a
(corpus)
sample,
the
rep-
resentativeness
of
the
sample
is
of
utmost
importance.
Furthermore,
the
use
of
the
data
is
limited
to
the
scope
of
the
hypothesis
—that
is,
the
data
cannot
be
used
iteratively
for
exploratory
purposes.

The
selection
of
variables
and
 the
roles
 they
play
 in
 the
analysis
are
deter-
mined
by
the
hypothesis.
In
a
nutshell,
a
hypothesis
 is
a
formal
statement

about
the
state
of
the
world.
This
statement
is
theory-driven,
meaning
that
it
is
predicated
on
previous
research.
We
are
not
exploring
or
examining
rela-
tionships,
rather
we
are
testing
a
specific
relationship.
In
practice,
however,
we
are
in
fact
proposing
two
mutually
exclusive
hypotheses.
The
first
is
the
alternative
hypothesis,
or
𝐻1.
This
is
the
hypothesis
I
 just
described
—the
statement
grounded
in
the
previous
literature
outlining
a
predicted
relation-
ship.
The
second
 is
 the
null
hypothesis,
or
𝐻0.
This
 is
 the
flip-side
of
 the
hypothesis
testing
coin
and
states
that
there
is
no
difference
or
relationship.
Together
𝐻1
and
𝐻0
cover
all
logical
outcomes.

65
3.2.
 ANALYZE

Now,
in
standard
IDA
one
variable
is
the
response
variable
and
one
or
more
variables
 are
 explanatory
 variables.
The
 response
 variable,
 sometimes
 re-
ferred
to
as
the
outcome
or
dependent
variable,
is
the
variable
which
contains
the
information
which
is
hypothesized
to
depend
on
the
information
in
the
explanatory
variable(s).
 It
 is
 the
variable
whose
variation
a
research
study
seeks
to
explain.
An
explanatory
variable,
sometimes
referred
to
as
an
inde-
pendent
or
predictor
variable,
is
a
variable
whose
variation
is
hypothesized
to
explain
the
variation
in
the
response
variable.

Explanatory
variables
add
to
the
complexity
of
a
study
because
they
are
part
of
our
research
focus,
specifically
our
hypothesis.
It
is,
however,
common
to
include
other
variables
which
are
not
of
central
focus,
but
are
commonly
as-
sumed
to
contribute
to
the
explanation
of
the
variation
of
the
response
vari-
able.
These
are
known
as
control
variables.
Control
variables
are
included
in

the
analysis
to
account
for
the
influence
of
other
variables
on
the
relationship
between
the
response
and
explanatory
variables,
but
will
not
be
included
in
the
hypothesis
nor
interpreted
in
our
results.

We
can
now
see
in
Figure
3.12
the
variables
roles
assigned
to
variables
in
a
hypothesis-driven
study.

Figure
3.12:
Roles
of
variables
in
inferential
data
analysis

The
type
of
statistical
test
that
one
chooses
is
based
on
(1)
the
informational
value
of
 the
dependent
variable
and
 (2)
 the
number
of
predictor
variables
included
 in
 the
analysis.
Together
 these
 two
characteristics
go
a
 long
way
in
determining
the
appropriate
class
of
statistical
test
(see
Gries
(2013)
and
Paquot
&
Gries
(2020)
for
a
more
exhaustive
description).

IDA
relies
heavily
on
quantitative
evaluation
methods
to
draw
conclusions
that
can
be
generalized
to
the
target
population.
It
is
key
to
understand
that
our
goal
in
hypothesis
testing
is
not
to
find
evidence
in
support
of
𝐻1,
but

rather
to
assess
the
likelihood
that
we
can
reliably
reject
𝐻0.

66
 CHAPTER
3.
 ANALYSIS

Traditionally,
𝑝-values
have
been
used
to
determine
the
likelihood
of
rejecting
𝐻0. A
p-value
 is
 the
probability
of
observing
a
 test
statistic
as
extreme
as
the
one
observed,
given
that
𝐻0
 is
true.
However,
𝑝-values
are
not
the
only

metric
used
to
evaluate
the
likelihood
of
rejecting
𝐻0.
Other
metrics,
such
as
effect
size
and
confidence
intervals,
are
also
used
to
interpret
the
results
of
hypothesis
tests.

3.3
 Communicate

Conducting
research
should
be
enjoyable
and
personally
rewarding
but
the
effort
 you
 have
 invested
 and
 knowledge
 you
 have
 generated
 should
 be
shared
with
others.
Whether
part
of
a
blog,
presentation,
journal
article,
or
for
your
own
purposes
it
is
important
to
document
your
analysis
results
and
pro-
cess
in
a
way
that
is
informative
and
interpretable.
This
enhances
the
value
of
your
work,
allowing
others
to
learn
from
your
experience
and
build
on
your

findings.

3.3.1
 Report

The
most
widely
recognized
form
of
communicating
research
is
through
a
re-
port.
A
report
is
a
narrative
of
your
analysis,
including
the
research
question,
the
data
you
used,
the
methods
you
applied,
and
the
results
you
obtained.
We
are
both
reporting
our
findings
and
documenting
our
process
to
inform
others
of
what
we
did
and
why
we
did
it
but
also
to
invite
readers
to
evaluate
our
findings
for
themselves.
The
scientific
process
is
a
collaborative
one
and
evaluation
by
peers
is
a
key
component
of
the
process.

3.3.2
 Document

While
a
good
report
will
 include
the
most
vital
 information
 to
understand
the
 procedures,
 results,
 and
 findings
 of
 an
 analysis,
 there
 is
much
more
information
generated
in
the
course
of
an
analysis
which
does
not
tradition-
ally
appear
in
prose.
If
a
research
project
is
conducted
programmatically,
how-
ever,
data,
code,
and
documentation
can
be
made
available
to
others
as
part
of
the
communication
process.
Increasingly,
researchers
are
sharing
their
data
and
code
as
part
of
the
publication
process.
This
allows
others
to
reproduce
the
analysis
and
verify
the
results
contributing
to
the
collaborative
nature
of
the
scientific
process.

Activities
 67

Together,
data,
code,
and
documentation
form
a
research
compendium.
As

you
can
imagine,
the
research
process
can
quickly
become
complex
and
un-
wieldy
as
the
number
of
files
and
folders
grows.
If
not
organized
properly,
it
can
be
difficult
to
find
the
information
you
need.
Furthermore,
if
not
doc-
umented,
decisions
made
in
the
course
of
the
analysis
can
be
difficult
or
im-
possible
to
trace.
For
this
reason,
it
is
recommendable
to
follow
a
set
of
best
practices
for
organizing
and
documenting
your
research
compendium.
We
will
cover
this
in
more
detail
in
subsequent
chapters.

Activities

In
the
following
activities,
we
will
build
on
our
understanding
of
how
to
sum-
marize
data
using
statistics,
tables,
and
plots.
We
will
dive
deeper
into
the
use
of
{skimr}
(Waring
et
al.,
2022)
to
summarize
data
and
the
{ggplot2}
(Wick-
ham,
Chang,
et
al.,
2024)
to
create
plots.
We
also
introduce
producing
Quarto

tables and figures with appropriate code block options. We will reinforce our
understanding
of
{readr}
(Wickham,
Hester,
&
Bryan,
2024)
to
read
in
data
and
{dplyr}
(Wickham,
François,
Henry,
Müller,
&
Vaughan,
2023)
to
manip-
ulate
data.

Ɗ
Recipe
What:
Descriptive
assessment
of
datasets

How:
Read
Recipe
3,
complete
comprehension
check,
and
prepare
for
Lab
3.

Why:
To
explore
appropriate
methods
for
summarizing
variables
 in
datasets
given
the
number
and
informational
values
of
the
variable(s).

ð
Lab

What:
Trace
the
datascape

How:
Clone,
fork,
and
complete
the
steps
in
Lab
3.

Why:
To
identify
and
apply
the
appropriate
descriptive
methods
for
a
vector’s
informational
value
and
to
assess
both
single
variables
and
multiple
variables
with
the
appropriate
statistical,
tabular,
and/or
graphical
summaries.

68
 CHAPTER
3.
 ANALYSIS

Summary

In
this
chapter
we
have
focused
on
description
and
analysis
—the
third
com-
ponent
of
 the
DIKI
Hierarchy.
This
 is
 the
 stage
where
we
begin
 to
derive
knowledge
from
the
data
which
includes
first
performing
a
descriptive
assess-
ment
of
the
individual
variables
and
relationships
between
variables.
Only
after
we
have
a
better
understanding
of
our
data,
we
move
to
the
analysis
stage.
We
outlined
three
data
analysis
types
in
this
chapter:
exploratory,
pre-
dictive,
and
inferential.
Each
of
these
embodies
distinct
approaches
to
deriv-
ing
knowledge
 from
data.
Ultimately
 the
choice
of
analysis
 type
 is
highly
dependent
on
the
goals
of
the
research.

I
rounded
out
this
chapter
with
a
short
description
of
the
importance
of
com-
municating
the
analysis
process
and
results.
Reporting,
in
its
traditional
form,
is
documented
 in
prose
 in
an
article.
Yet
even
 the
most
detailed
 reporting
in
a
write-up
still
 leaves
many
practical,
but
key,
points
of
the
analysis
ob-
scured.
A
programming
approach
provides
the
procedural
steps
taken
that
when
shared
provide
the
exact
methods
applied.
Together
with
the
write-up,
a
research
compendium
which
provides
the
scripts
to
run
the
analysis
and
documentation
on
how
to
run
the
analysis
forms
an
integral
part
of
creating
reproducible
research.

4

Research

|
Outcomes

•
 Identify
a
research
area
and
problem
by
listing
key
strategies
and
describing
their
contribution
towards
research
identification.

•
 Explain
 the
significance
of
a
well-framed
 research
question
 in
guiding
 the
overall
research
project.

•
 Comprehend
how
the
conceptual
and
practical
steps
involved
in
developing
a
research
blueprint
aid
not
only
the
researcher
but
also
the
broader
scientific
community.

In
this
chapter,
we
discuss
how
to
frame
research
—that
is,
how
to
position
your
research
project’s
findings
to
contribute
insight
to
understanding
of
the
world.
We
will
cover
how
to
connect
with
the
literature,
selecting
a
research
area
and
identifying
a
research
problem,
and
how
to
design
research
best
po-
sitioned
to
return
relevant
findings
that
will
connect
with
this
literature,
estab-
lishing
a
research
aim
and
research
question.
We
will
round
out
this
chapter
with
a
guide
on
developing
a
research
blueprint
—a
working
plan
to
organize
the
conceptual
and
practical
steps
to
implement
the
research
effectively
and
in
a
way
that
supports
communicating
the
research
findings
and
the
process
by
which
the
findings
were
obtained.

ı
Lessons

What:
Project
Environment

How:
In
an
R
console,
load
{swirl},
run
swirl(),
and
follow
prompts
to
select

the
lesson.

Why:
To
highlight
the
importance
of
the
computing
environment
in
R
for
project
management
and
reproducibility.

This
chapter
has
been
made
available
under
a
CC-BY-NC-ND
license.

69
DOI: 10.4324/9781003393764-6

70
 CHAPTER
4.
 RESEARCH

4.1
 Frame

Together,
 a
 research
 area,
 problem,
 aim
 and
 question,
 and
 the
 research
blueprint
that
forms
the
conceptual
and
practical
scaffolding
of
the
project
ensure
from
the
outset
that
the
project
is
solidly
grounded
in
the
main
charac-
teristics
of
good
research.
These
characteristics,
summarized
by
Cross
(2006),
are
found
in
Table
4.1.

Table
4.1:
Characteristics
of
good
research
(Cross,
2006)

Characteristic
 Description

Purposive
 Based
on
 identification
of
an
 issue
or
problem
worthy
and
capable

of
 investigation

Inquisitive
 Seeking
to
acquire
new
knowledge

Informed
 Conducted
from
an
awareness
of
previous,
related
research

Methodical
 Planned
and
carried
out
 in
a
disciplined
manner

Communicable
 Generating
and
reporting
results
which
are
feasible
and
accessible

by
others

With
these
characteristics
in
mind,
let’s
get
started
with
the
first
component
to
address
—connecting
with
the
literature.

4.2
 Connect

4.2.1
 Research
area

The
first
decision
 to
make
 in
 the
 research
process
 is
 to
 identify
a
 research
area.
A
research
area
is
a
general
area
of
interest
where
a
researcher
wants
to
derive
insight
and
make
a
contribution
to
understanding.
For
those
with
an
established
research
trajectory
in
language,
the
area
of
research
to
address
through
text
analysis
will
likely
be
an
extension
of
their
prior
work.
For
others,
which
include
new
researchers
or
researchers
that
want
to
explore
new
areas
of
language
research
or
approach
an
area
through
a
language-based
lens,
the
choice
of
area
may
be
less
obvious.
In
either
case,
the
choice
of
a
research
area
should
be
guided
by
a
desire
to
contribute
something
relevant
to
a
theoretical,
applied,
and/
or
practical
matter
of
personal
interest.
Personal
relevance
goes
a
long
way
to
developing
and
carrying
out
purposive
and
inquisitive
research.

71
4.2.
 CONNECT

So
how
do
we
get
started?
Consider
your
 interests
 in
a
 language
or
set
of
languages,
a
discipline,
a
methodology,
or
some
applied
area.
Language
is
at
the
heart
of
the
human
experience
and
therefore
found
in
some
fashion
any-
where
one
seeks
to
find
it.
But
it
is
a
big
world
and
more
often
than
not
the
general
question
about
what
area
to
select
is
sometimes
the
most
difficult.
To
get
the
ball
rolling,
it
is
helpful
to
peruse
disciplinary
encyclopedias
or
hand-
books
of
linguistics
and
language-related
academic
fields
(e.g.
Encyclopedia
of
Language
and
Linguistics
(Brown,
2005),
A
Practical
Guide
to
Electronic
Resources
in
the
Humanities
(Dubnjakovic
&
Tomlin,
2010),
Routledge
Ency-
clopedia
of
Translation
Technology
(Chan,
2014))

A
more
personal,
less
academic,
approach
is
to
consult
online
forums,
blogs,
etc
that
one
already
frequents
or
can
be
accessed
via
an
online
search.
Through
social
media
 you
may
 find
 particular
 people
 that
maintain
 a
 blog
worth
browsing.
Perusing
 these
resources
can
help
spark
 ideas
and
highlight
 the
kinds
of
questions
that
interest
you.

Regardless
of
whether
your
 inquiry
stems
 from
academic,
professional,
or
personal
interest,
try
to
connect
these
findings
to
academic
areas
of
research.
Academic
research
 is
highly
structured
and
well-documented,
and
making
associations
with
this
network
will
aid
in
subsequent
steps
in
developing
a
research
project.

4.2.2
 Research
problem

Once
you’ve
made
a
rough-cut
decision
about
the
area
of
research,
it
is
now
time
to
take
a
deeper
dive
into
the
subject
area
and
jump
into
the
literature.
This
is
where
the
rich
structure
of
disciplinary
research
will
provide
aid
to
tra-
verse
the
vast
world
of
academic
knowledge
and
identify
a
research
problem.
A
research
problem
highlights
a
particular
topic
of
debate
or
uncertainty
in
existing
knowledge
which
is
worthy
of
study.

Surveying
the
relevant
literature
is
key
to
ensuring
that
your
research
is
in-
formed,
that
is,
connected
to
previous
work.
Identifying
relevant
research
to
consult
can
be
a
bit
of
a
‘chicken
or
the
egg’
problem
—some
knowledge
of
the
area
is
necessary
to
find
relevant
topics,
some
knowledge
of
the
topics
is
necessary
to
narrow
the
area
of
research.
Many
times
the
only
way
forward
is
to
jump
into
conducting
searches.
These
can
be
world-accessible
resources
(e.g.
Google
Scholar)
or
 limited-access
resources
 that
are
provided
 through
an
academic
 institution
 (e.g.
Linguistics
and
Language
Behavior
Abstracts,

ERIC,
PsycINFO,
etc.).
Some
organizations
and
academic
institutions
provide
research
guides
to
help
researcher’s
access
the
primary
literature.
There
are
even
a
new
breed
of
 search
engines
 that
are
designed
 to
help
 researchers

72
 CHAPTER
4.
 RESEARCH

aggregate
and
search
academic
literature
(e.g.
Scite,
Elicit,
etc.).
Another
av-
enue
 to
 explore
 are
 journals
 and
 conference
proceedings
dedicated
 to
 lin-
guistics
and
language-related
research.
Text
analysis
is
a
rapidly
expanding
methodology,
which
is
being
applied
to
a
wide
range
of
research
areas.

To
 explore
 research
 related
 to
 text
 analysis
 it
 is
 helpful
 to
 start
with
 the
(sub)discipline
 name(s)
 you
 identified
when
 selecting
 your
 research
 area,
more
specific
terms
that
occur
to
you
or
key
terms
from
the
literature,
and
terms
such
as
‘corpus
study’
or
‘corpus-based’.
The
results
from
first
searches
may
not
turn
out
to
be
sources
that
end
up
figuring
explicitly
in
your
research,
but
it
is
important
to
skim
these
results
and
the
publications
themselves
to
mine
 information
that
can
be
useful
to
formulate
better
and
more
targeted
searches.

Relevant
information
for
honing
your
searches
can
be
found
throughout
an
academic
publication.
However,
pay
particular
attention
 to
 the
abstract,
 in
articles,
 and
 the
 table
 of
 contents,
 in
 books,
 and
 the
 cited
 references.
Ab-
stracts
and
tables
of
contents
often
include
discipline-specific
 jargon
that
is
commonly
used
in
the
field.
In
some
articles,
there
is
even
a
short
list
of
key
terms
listed
below
the
abstract
which
can
be
extremely
useful
to
seed
better
and
more
precise
search
results.
The
references
section
will
contain
relevant
and
influential
research.
Scan
these
references
for
publications
which
appear
to
narrow
in
on
your
topic
of
interest
and
treat
it
like
a
search
in
its
own
right.

Once
your
searches
begin
to
show
promising
results
it
is
time
to
keep
track
and
organize
these
references.
Whether
you
plan
to
collect
thousands
of
refer-
ences
over
a
lifetime
of
academic
research
or
your
aim
is
centered
around
one
project,
software
such
as
Zotero1,
Mendeley2,
or
BibDesk3
provide
powerful,
flexible,
and
easy-to-use
tools
to
collect,
organize,
annotate,
search,
and
ex-
port
references.
Citation
management
software
is
indispensable
for
modern
research
—and
often
free!

As
your
list
of
relevant
references
grows,
you
will
want
to
start
the
investi-
gation
process
in
earnest.
Begin
skimming
(not
reading)
the
contents
of
each
of
these
publications,
starting
with
what
appears
to
be
the
most
relevant
first.
Annotate
these
publications
using
highlighting
features
of
the
citation
man-
agement
software
to
identify:
(1)
the
stated
goal(s)
of
the
research,
(2)
the
data
source(s)
used,
(3)
the
information
drawn
from
the
data
source(s),
(4)
the
anal-
ysis
approach
employed,
and
(5)
the
main
finding(s)
of
the
research
as
they
pertain
to
the
stated
goal(s).

1https://www.zotero.org/

2https://www.mendeley.com/

3https://bibdesk.sourceforge.io/

1https://www.zotero.org/
https://www.mendeley.com/
https://bibdesk.sourceforge.io/

73
4.3.
 DEFINE

Next,
 in
your
own
words,
summarize
these
five
key
areas
 in
prose
adding
your
summary
to
the
notes
feature
of
the
citation
management
software.
This
process
will
allow
you
 to
efficiently
gather
and
document
 references
with
the
relevant
information
to
guide
the
identification
of
a
research
problem,
to
guide
the
formation
of
your
problem
statement,
and
ultimately,
to
support
the
literature
review
that
will
figure
in
your
project
write-up.

From
 your
 preliminary
 annotated
 summaries
 you
will
 undoubtedly
 start
to
recognize
overlapping
and
contrasting
aspects
 in
 the
research
 literature.
These
aspects
may
be
 topical,
 theoretical,
methodological,
or
appear
along
other
lines.
Note
these
aspects
and
continue
to
conduct
more
refine
searches,
annotate
new
references,
and
monitor
for
any
emerging
uncertainties,
limita-
tions,
debates,
and/
or
contradictions
which
align
with
your
research
inter-
est(s).
When
a
promising
pattern
takes
shape,
it
is
time
to
engage
with
a
more
detailed
reading
of
those
references
which
appear
most
relevant
highlighting
the
potential
gap(s)
in
the
literature.

At
this
point
you
can
focus
energy
on
more
nuanced
aspects
of
a
particular
gap
in
the
literature
with
the
goal
to
formulate
a
problem
statement.
A
prob-
lem
statement
directly
acknowledges
a
gap
in
the
literature
and
puts
a
finer
point
on
the
nature
and
relevance
of
this
gap
for
understanding.
This
state-
ment
reflects
your
first
deliberate
attempt
to
establish
a
line
of
inquiry.
It
will
be
a
targeted,
but
still
somewhat
general,
statement
framing
the
gap
in
the
literature
that
will
guide
subsequent
research
design
decisions.

4.3
 Define

4.3.1
 Research
aim

With
a
problem
statement
in
hand,
it
is
now
time
to
consider
the
goal(s)
of
the
research.
A
research
aim
frames
the
type
of
inquiry
to
be
conducted.
Will
the
research
aim
to
explore,
predict,
or
explain?
As
you
can
appreciate,
the
research
aim
is
directly
related
to
the
analysis
methods
we
touched
upon
in
Chapter
3.

To
gauge
how
to
frame
your
research
aim,
reflect
on
the
literature
that
led
you
to
your
problem
statement
and
the
nature
of
the
problem
statement
itself.
If
the
gap
at
the
center
of
the
problem
statement
is
a
lack
of
knowledge,
your
research
aim
may
be
exploratory.
 If
 the
gap
concerns
a
conjecture
about
a
relationship,
then
your
research
may
take
a
predictive
approach.
When
the
gap
points
to
the
validation
of
a
relationship,
then
your
research
will
likely
be
inferential
in
nature.
Before
selecting
your
research
aim
it
is
also
helpful
to
consult
 the
research
aims
of
 the
primary
 literature
 that
 led
you
 to
your
research
statement.

74
 CHAPTER
4.
 RESEARCH

Typically,
a
problem
 statement
addressing
a
 subtle,
 specific
 issue
 tends
 to
adopt
research
objectives
similar
to
prior
studies.
In
contrast,
a
statement
fo-
cusing
on
a
broader,
more
distinct
issue
is
likely
to
have
unique
research
goals.
Yet,
this
is
more
of
a
guideline
than
a
strict
rule.

It’s
crucial
to
understand
both
the
existing
literature
and
the
nature
of
various
types
of
analyses.
Being
clear
about
your
research
goals
is
important
to
ensure
that
your
study
is
well-placed
to
produce
results
that
add
value
to
the
current
understanding
in
an
informed
manner.

4.3.2
 Research
question

The
next
step
in
research
design
is
to
craft
the
research
question.
A
research

question
is
a
clearly
defined
statement
which
identifies
an
aspect
of
uncer-
tainty
and
the
particular
relationships
that
this
uncertainty
concerns.
The
re-
search
question
extends
and
narrows
 the
 line
of
 inquiry
established
 in
 the
research
statement
and
research
aim.
To
craft
a
research
question,
we
can
use
the
research
statement
for
the
content
and
the
research
aim
for
the
form.

Form

The
form
of
a
research
question
will
vary
based
on
the
research
aim,
which
as
I
mentioned,
is
intimately
connected
to
the
analysis
approach.
For
inferential-
based
research,
the
research
question
will
actually
be
a
statement,
not
a
ques-
tion.
This
statement
makes
a
testable
claim
about
the
nature
of
a
particular
relationship
—i.e.
asserts
a
hypothesis.

For
illustration,
let’s
posit
a
hypothesis
(𝐻1),
leaving
aside
the
implicit
null

hypothesis
(𝐻0),
seen
in
Example
4.1.

Example
4.1.
 Women
use
more
questions
than
men
in
spontaneous
conversations.

For
predictive- and
exploratory-based
research,
 the
research
question
 is
 in
fact
a
question.
A
reframing
of
the
example
hypothesis
for
a
predictive-based
research
question
might
take
the
form
seen
in
Example
4.2.

Example
4.2.
 Can
the
number
of
questions
used
in
spontaneous
conversations
pre-
dict
if
a
speaker
is
male
or
female?

And
a
similar
exploratory-based
research
question
might
take
the
form
seen
in
Example
4.3.

Example
4.3.
 Do
men
and
women
differ
in
terms
of
the
number
of
questions
they
use
in
spontaneous
conversations?

The
central
research
interest
behind
these
hypothetical
research
questions
is,
admittedly,
quite
basic.
But
from
these
simplified
examples,
we
are
able
to
ap-
preciate
the
similarities
and
differences
between
the
forms
of
research
state-
ments
that
correspond
to
distinct
research
aims.

75
4.4.
 BLUEPRINT

Content

In
terms
of
content,
the
research
question
will
make
reference
to
two
key
com-
ponents:
unit
of
analysis
and
unit
of
observation.
As
seen
in
previous
chap-
ters,
together
the
unit
of
analysis
and
unit
of
observation
form
the
semantic
and
structural
backbone
of
the
research
design.
The
unit
of
analysis
is
the
pri-
mary
element
on
which
the
insight
into
the
research
question
is
derived
and
the
unit
of
observation
is
the
primary
element
which
provides
the
organiza-
tional
structure
of
the
dataset
to
be
analyzed.

In
our
examples,
the
unit
of
analysis
is
speakers.
Note,
however,
that
the
cur-
rent
unit
of
analysis
is
somewhat
vague
in
the
example
research
questions.
A
more
precise
unit
of
analysis
would
include
more
information
about
the
pop-
ulation
from
which
the
speakers
are
drawn
(i.e.
English
speakers,
American
English
speakers,
American
English
speakers
of
the
Southeast,
etc.).
The
unit

of
observation
is
spontaneous
conversations.
This
will
be
reflected
in
our
dataset

as
the
meaning
of
each
row
in
the
dataset.

In
examples
4.1,
4.2,
and
4.3,
we
identified
the
number
of
conversations
as
part
of
the
research
question.
Later
in
the
research
process
it
will
be
key
to
op-
erationalize
this
variable.
For
example,
will
the
number
of
conversations
be
the
total
number
of
conversations
in
the
dataset
or
will
it
be
the
average
num-
ber
of
conversations
per
speaker?
These
are
important
questions
to
consider
as
they
will
influence
variable
selection,
statistical
choices,
and
ultimately
the
interpretation
of
the
results.
Operationalizing
the
variables
is
a
key
part
of
the
research
design.
Without
inclusion
and
exclusion
criteria,
the
research
ques-
tion
is
not
well-defined
and
the
meaningfulness
of
the
results
will
be
obscured
(Larsson
&
Biber,
2024).

4.4
 Blueprint

The
efforts
to
develop
a
research
question
will
produce
a
clear
and
focused
line
of
inquiry
with
the
necessary
background
literature
and
a
well-defined
problem
statement
that
forms
the
basis
of
purposeful,
inquisitive,
and
informed

research
(returning
to
Cross’s
characteristics
of
research
in
Table
4.1).

Moving
beyond
the
research
question
in
the
project
means
developing
and
laying
out
the
research
design
in
a
way
such
that
the
research
is
methodical
and

communicable.
In
this
textbook,
the
method
to
achieve
these
goals
is
through
the
development
of
a
research
blueprint.
The
blueprint
includes
two
compo-
nents:
(1)
the
conceptual
plan
and
(2)
the
organizational
scaffolding
that
will
support
the
implementation
of
the
research
(Ignatow
&
Mihalcea,
2017).

76
 CHAPTER
4.
 RESEARCH

In
 what
 follows,
 I
 will
 cover
 the
 main
 aspects
 of
 developing
 a
 research
blueprint.
I
will
start
with
the
conceptual
plan
and
then
move
on
to
the
or-
ganizational
scaffolding.

4.4.1
 Plan

Importance
of
establishing
a
feasible
research
design
from
the
outset
and
doc-
umenting
the
key
aspects
required
to
conduct
the
research
cannot
be
under-
stated.
On
 the
one
hand,
 this
process
 links
a
conceptual
plan
 to
a
 tangible
implementation.
In
doing
so,
a
researcher
is
better-positioned
to
conduct
re-
search
with
a
clear
view
of
what
will
be
entailed.
On
the
other
hand,
a
promis-
ing
research
question
may
present
unexpected
challenges
once
a
researcher
sets
about
to
implement
the
research.
This
is
not
uncommon
to
encounter
is-
sues
that
require
modification
or
reevaluation
of
the
viability
of
the
project.
However,
a
well-documented
research
plan
will
help
a
researcher
to
identify
and
address
many
of
these
challenges
at
the
conceptual
level
before
expend-
ing
unnecessary
effort
during
implementation.

Let’s
now
consider
the
subsequent
steps
to
develop
a
research
plan,
outlined
in
Table
4.2.

Table
4.2:
Research
plan
checklist

Step
 Stage
 Activity

1
 Research
 Formulate
a
research
question
or
hypothesis
based
on
a

Question
or
 thorough
review
of
existing
 literature
 including
references.

Hypothesis
 This
will
guide
every
subsequent
step
from
data
selection
to

interpretation
of
results.

2
 Data
Source(s)
 Identify
viable
data
source(s)
and
vet
the
sample
data
in
light

of
the
research
question.
Consider
to
what
extent
the
goal
 is

to
generalize
findings
to
a
target
population,
and
ensure
that

the
corpus
aligns
as
much
as
feasible
with
this
target.

3
 Key
Variables
 Determine
the
key
variables
needed
for
the
research,
define

how
they
will
be
operationalized,
and
ensure
they
can
be

derived
from
the
corpus
data.
Additionally,
 identify
any

features
that
need
to
be
extracted,
recoded,
generated,
or

integrated
from
other
data
sources.

4
 Analysis
 Choose
an
appropriate
method
of
analysis
to
 interrogate
the

Method
 dataset.
This
choice
should
be
 in
 line
with
your
research
aim

(e.g.,
exploratory,
predictive,
or
 inferential).
Be
aware
of
what

each
method
can
offer
and
how
 it
addresses
your
research

question.

5
 Interpretation
&
 Establish
criteria
to
 interpret
and
evaluate
the
results.
This

Evaluation
 will
be
a
function
of
the
relationship
between
the
research

question
and
the
analysis
method.

77
4.4.
 BLUEPRINT

First,
identify
a
viable
data
source.
Viability
includes
the
accessibility
of
the
data,
availability
of
the
data,
and
the
content
of
the
data.
If
a
purported
data
source
is
not
accessible
and/
or
it
has
stringent
restrictions
on
its
use,
then
it
is
not
a
viable
data
source.
If
a
data
source
is
accessible
and
available,
but
does
not
contain
the
building
blocks
needed
to
address
the
research
question,
then
it
is
not
a
viable
data
source.
A
corpus
resource’s
sampling
frame
should
align,
to
the
extent
feasible,
with
the
target
population(s).

The
second
step
is
to
identify
the
key
variables
needed
to
conduct
the
research
and
then
ensure
that
this
information
can
be
derived
from
the
corpus
data.
The
research
question
will
reference
the
unit
of
analysis
and
the
unit
of
obser-
vation,
but
it
is
important
to
pinpoint
what
the
key
variables
will
be.
We
want
to
envision
what
needs
to
be
done
to
derive
these
variables.
There
may
be
fea-
tures
that
need
to
be
extracted,
recoded,
generated,
and/
or
integrated
from
other
sources
to
address
the
research
question,
as
discussed
in
Chapter
2.

The
third
step
is
to
identify
a
method
of
analysis
to
interrogate
the
dataset.
The
selection
of
the
analysis
approach
that
was
part
of
the
research
aim
(i.e.

explore,
predict,
or
explain)
and
then
the
research
question
goes
a
long
way
to
narrowing
the
methods
that
a
researcher
must
consider.
But
there
are
a
num-
ber
of
factors
which
will
make
some
methods
more
appropriate
than
others.

Exploratory
research
is
the
least
restricted
of
the
three
types
of
analysis
ap-
proaches.
Although
 it
may
be
 the
 case
 that
 a
 research
will
not
be
 able
 to
specify
from
the
outset
of
a
project
what
the
exact
analysis
methods
will
be,
an
attempt
to
consider
what
types
of
analysis
methods
will
be
most
promising
to
provide
results
to
address
the
research
question
goes
a
long
way
to
steering
a
project
in
the
right
direction
and
grounding
the
research.
As
with
the
other
analysis
approaches,
it
is
important
to
be
aware
of
what
analysis
methods
are
available
and
what
type
of
information
they
produce
in
light
of
the
research
question.

For
predictive-based
research,
the
informational
value
of
the
outcome
vari-
able
is
key
to
deciding
whether
the
prediction
will
be
a
classification
task
or
a
regression
task.
This
has
downstream
effects
when
 it
comes
time
to
eval-
uate
and
 interpret
the
results.
Although
 the
feature
engineering
process
 in
predictive
analyses
means
that
the
features
do
not
need
to
be
specified
from
the
outset
and
can
be
tweaked
and
changed
as
needed
during
an
analysis,
it
is
a
good
idea
to
start
with
a
basic
sense
of
what
features
most
likely
will
be
helpful
in
developing
a
robust
predictive
model.

78
 CHAPTER
4.
 RESEARCH

In
inferential
research,
the
number
and
information
values
of
the
variables
to
be
analyzed
will
be
of
key
 importance
 (Gries,
2013).
The
 informational
value
of
 the
 response
variable
will
again
narrow
 the
search
 for
 the
appro-
priate
method
and
statistical
test
to
employ.
The
number
of
explanatory
vari-
ables
also
plays
an
important
role.
All
details
need
not
be
nailed
down
at
this
point,
but
it
is
helpful
to
have
them
on
your
radar
to
ensure
that
when
the
time
comes
to
analyze
the
data,
the
appropriate
steps
are
followed.

The
last
of
the
main
components
of
the
research
plan
concerns
the
interpre-
tation
and
evaluation
of
 the
results.
This
step
brings
 the
research
plan
 full
circle,
connecting
 the
research
question
 to
 the
methods
employed.
 It
 is
 im-
portant
to
establish
from
the
outset
what
the
criteria
will
be
to
evaluate
the
results.
This
is
in
large
part
a
function
of
the
relationship
between
the
research
question
and
the
analysis
method.
For
example,
in
exploratory
research,
the
results
will
be
evaluated
qualitatively
in
terms
of
the
associative
patterns
that
emerge.
Predictive
and
inferential
research
leans
more
heavily
on
quantita-
tive
metrics,
in
particular
the
accuracy
of
the
prediction
or
the
strength
of
the
relationship
between
the
response
and
explanatory
variable(s),
respectively.
However,
these
quantitative
metrics
require
qualitative
interpretation
to
de-
termine
whether
the
results
are
meaningful
in
light
of
the
research
question.

In
addition
to
addressing
the
steps
outlined
in
Table
4.2,
it
is
also
important
to
document
the
strengths
and
shortcomings
of
the
research
plan
including
the
data
source(s),
the
information
to
be
extracted
from
the
data,
and
the
anal-
ysis
methods.
If
there
are
potential
shortcomings,
which
there
most
often
are,
sketch
out
contingency
plans
to
address
these
shortcomings.
This
will
help
buttress
your
research
and
ensure
that
your
time
and
effort
is
well-spent.

̪
Dive
deeper
You
may
consider
pre-registering
your
prospectus
 to
ensure
 that
your
plans
are
 well-documented
 and
 to
 provide
 a
 timestamp
 for
 your
 research.
 Pre-
registration
can
also
be
a
helpful
way
to
get
feedback
on
your
research
from
colleagues
and
experts
in
the
field.
Popular
pre-registration
platforms
include
Open
Science
Frameworka
and
Center
for
Open
Scienceb.

ahttps://osf.io/

bhttps://www.cos.io/initiatives/prereg/

The
research
plan
together
with
the
information
collected
to
develop
the
re-
search
question
is
known
as
a
prospectus.
A
prospectus
is
a
document
that

outlines
the
key
aspects
of
the
research
plan
and
is
used
to
guide
the
research
process.
It
is
a
living
document
that
will
be
updated
as
the
research
progresses
and
as
new
information
is
collected.

https://osf.io/
https://www.cos.io/initiatives/prereg/

79
4.4.
 BLUEPRINT

4.4.2
 Scaffold

The
next
step
in
developing
a
research
blueprint
is
to
consider
how
to
phys-
ically
implement
your
project.
This
includes
how
to
organize
files
and
direc-
tories
in
a
fashion
that
provides
the
researcher
a
logical
and
predictable
struc-
ture
to
work
with.
As
the
research
progresses,
the
structure
will
house
the
data,
code,
and
output
of
the
research
as
well
as
the
documentation
of
the
research
process
—together
known
as
a
research
compendium.
In
addition

to
a
strong
write-up
of
the
research,
a
research
compendium
ensures
that
the
research
is
communicable.

Communicable
research
is
reproducible
research.
Reproducibility
strategies
are
a
benefit
to
the
researcher
(in
the
moment
and
in
the
future)
as
it
leads
to
better
work
habits
and
 to
better
 teamwork
and
 it
makes
changes
 to
 the
project
easier.
Reproducibility
is
also
of
benefit
to
the
scientific
community
as
shared
reproducible
research
enhances
replicability
and
encourages
cumula-
tive
knowledge
development
(Gandrud,
2015).

In
Table
4.3,
I
outline
a
set
of
guiding
principles
that
characterize
reproducible
research
 (Gentleman
&
Temple
Lang,
2007;
Marwick,
Boettiger,
&
Mullen,
2018).

Table
4.3:
Reproducible
research
principles

No.
 Principle
 Description

1
 Plain
text
 All
files
should
be
plain
text
which
means
they
contain
no

formatting
 information
other
than
whitespace.

2
 Clear
separation
 There
should
be
a
clear
separation
between
the
 inputs,

process
steps,
and
outputs
of
research.
This
should
be

apparent
from
the
directory
structure.

3
 Original
data
 A
separation
between
original
data
and
data
created
as
part

of
the
research
process
should
be
made.
Original
data
should

be
treated
as
 ‘read-only’.
Any
changes
to
the
original
data

should
be
 justified,
generated
by
the
code,
and
documented

(see
point
7).

4
 Modular
scripts
 Each
computing
file
(script)
should
represent
a
particular,

well-defined
step
 in
the
research
process.

5
 Modular
files
 Each
script
should
be
modular
—that
 is,
each
file
should

correspond
to
a
specific
goal
 in
the
analysis
procedure
with

input
and
output
only
corresponding
to
this
step.

6
 Main
script
 The
project
should
be
tied
together
by
a
 ‘main’
script
that
 is

used
to
coordinate
the
execution
of
all
the
project
steps.

7
 Document
 Everything
should
be
documented.
This
 includes
data

everything
 collection,
data
preprocessing,
processing
steps,
script
code

comments,
data
description
 in
data
dictionaries,
 information

about
the
computing
environment
and
packages
used
to

conduct
the
analysis,
and
detailed
 instructions
on
how
to

reproduce
the
research.

project/

├──
 input/

│
 └──
 ...

├──
 code/

│
 └──
 ...

├──
 output/

│
 └──
 ...

├──
 DESCRIPTION

├──
 Makefile

└──
 README

80
 CHAPTER
4.
 RESEARCH

These
seven
principles
in
Table
4.3
can
be
physically
implemented
in
numer-
ous
ways.
In
recent
years,
there
has
been
a
growing
number
of
efforts
to
cre-
ate
R
packages
and
templates
to
quickly
generate
the
scaffolding
and
tools
to
facilitate
reproducible
research.
Some
notable
R
packages
include
{work-
flowr}
 (Blischak,
Carbonetto,
&
 Stephens,
 2019),
 {ProjectTemplate}
 (White,
2023),
and
 {targets}
 (Landau,
2021),
but
 there
are
many
other
resources
 for
R
included
on
the
CRAN
Task
View
for
Reproducible
Research4.

There
are
many
advantages
to
working
with
pre-existing
frameworks
for
the
savvy
R
programmer
including
the
ability
to
quickly
generate
a
project
scaf-
fold,
to
efficiently
manage
changes
to
the
project,
and
to
buy
in
to
a
common
framework
that
is
supported
by
a
community
of
developers.

On
 the
other
hand,
 these
 frameworks
can
be
a
bit
daunting
 for
 the
novice
R
programmer.
At
 the
most
basic
 level,
a
project
can
 implement
 the
seven
principles

in
Snippet
4.1.

Snippet
4.1.
 Minimal
Project
Framework

outlined above with a directory structure and a set of key files seen

The
project/
directory
is
composed
of
three
main
sections:
input/,
code/,
and
out-
put/
making
the
distinction
between
each
transparent
in
the
directory
struc-
ture.
The
input/
will
house
the
data
used
and
created
in
the
project,
ensuring
that
the
original
data
is
kept
separate
from
the
data
created
in
the
research
pro-
cess.
The
code/
section
will
house
the
scripts
that
will
conduct
the
project
steps
including
acquiring,
curating,
transforming,
and
analyzing
the
data.
These
scripts
will
 read
and
write
data
and
generate
output
 including
figures,
 re-
ports,
results,
and
tables.
Lastly,
the
output/
section
will
house
the
resulting

output
from
the
project
steps.

At
the
root
of
the
project
directory
are
three
files
which
describe,
document,
and
execute
the
project.
The
Makefile
is
used
to
automate
the
execution
of
the

project
steps.
In
effect,
 it
 is
a
script
 that
runs
scripts.
In
addition
 to
coordi-
nating
the
execution
of
the
project
steps,
a
Makefile
will
often
include
com-
mands
to
set
up
the
computing
environment
and
packages.
The
README

4https://cran.r-project.org/web/views/ReproducibleResearch.html

https://cran.r-project.org/web/views/ReproducibleResearch.html

Activities
 81

and
DESCRIPTION
files
provide
on
overview
of
the
project
from
both
a
con-
ceptual
and
technical
perspective.
The
README
file
includes
a
description
of
the
project
rationale,
aims,
and
findings
and
instructions
on
how
to
reproduce
the
research.
The
DESCRIPTION
file
includes
technical
information
about
the

computing
environment
and
packages
used
to
conduct
the
analysis.

The
project
 structure
 in
 Snippet
 4.1
meets
 the
minimal
 structural
 require-
ments
for
reproducible
research
and
is
a
good
starting
point
for
a
project
scaf-
fold.
However,
aspects
of
this
structure
can
be
adjusted
in
minimal
or
more
sophisticated
ways
to
meet
the
needs
of
a
particular
project
while
still
con-
forming
to
the
principles
outlined
in
Table
4.3,
as
we
will
see
when
we
return
to
this
topic
in
Chapter
11.

Activities

The
following
activities
will
build
on
your
experience
with
R
and
cloning
a
GitHub
repository,
and
recent
experience
with
understanding
the
computing
environment.
The
goal
will
be
to
bring
you
up
to
speed
such
that
you
can
begin
to
work
on
your
own
research
projects
and
understand
how
to
use
the
tools
and
resources
available
to
you
to
manage
your
project.

Ɗ
Recipe
What:
Understanding
the
computing
environment

How:
Read
Recipe
4,
complete
comprehension
check,
and
prepare
for
Lab
4.

Why:
To
introduce
components
of
the
computing
environment
and
how
to
man-
age
a
reproducible
research
project
structure.

ð
Lab

What:
Scaffolding
reproducible
research

How:
Clone,
fork,
and
complete
the
steps
in
Lab
4.

Why:
To
establish
a
repository
and
project
structure
for
reproducible
research
and
apply
new
Git
and
Github
skills
to
fork,
clone,
commit,
and
push
changes.

Summary

The
aim
of
this
chapter
is
to
provide
the
key
conceptual
and
practical
points
to
guide
the
development
of
a
viable
research
project.
Good
research
is
pur-
posive,
inquisitive,
informed,
methodological,
and
communicable.
It
is
not,
however,
always
a
linear
process.
Exploring
your
area(s)
of
interest
and
con-

82
 CHAPTER
4.
 RESEARCH

necting
with
existing
work
will
help
couch
and
refine
your
research.
But
prac-
tical
considerations,
such
as
the
existence
of
viable
data,
technical
skills,
and/
or
time
constrains,
sometimes
pose
challenges
and
require
a
researcher
to
re-
think
and/
or
redirect
the
research
in
sometimes
small
and
other
times
more
significant
ways.
The
process
of
formulating
a
research
question
and
devel-
oping
a
viable
research
plan
is
key
to
supporting
viable,
successful,
and
in-
sightful
research.
To
ensure
that
the
effort
to
derive
 insight
from
data
 is
of
most
value
to
the
researcher
and
the
research
community,
the
research
should
strive
to
be
methodological
and
communicable,
adopting
best
practices
for
re-
producible
research.

Part
III

Preparation

https://taylorandfrancis.com

85

This
part,
Preparation,
will
address
data
acquistion,
curation,
and
transforma-
tion
steps
and
present
strategies
to
implement
them.
The
goal
of
data
prepa-
ration
is
to
create
a
dataset
which
is
ready
for
analysis.
In
each
of
these
three
upcoming
chapters,
I
will
outline
some
of
the
main
characteristics
to
consider
in
each
of
these
research
steps
and
provide
authentic
examples
of
working
with
R
to
implement
these
steps.
In
Chapter
5,
this
includes
the
most
com-
mon
 strategies
 for
acquiring
data:
downloads
and
APIs.
 In
Chapter
6,
we
turn
 to
organize
data
 into
rectangular,
or
 ‘tidy’,
 format.
Depending
on
 the
data
or
dataset
acquired
for
the
research
project,
the
steps
necessary
to
shape
our
data
into
a
base
dataset
will
vary,
as
we
will
see.
In
Chapter
7,
we
will
work
to
manipulate
curated
datasets
to
create
datasets
which
are
aligned
with
the
research
aim
and
research
question.
This
often
includes
normalizing
val-
ues,
recoding
variables,
and
generating
new
variables
as
well
as
sourcing
and
integrating
information
from
other
datasets
with
the
dataset
to
be
submitted
for
analysis.

Each
of
these
chapters
will
cover
the
necessary
documentation
to
trace
our
steps
and
provide
a
record
of
the
data
preparation
process.
Documentation
serves
to
inform
the
analysis
and
interpretation
of
the
results
and
also
forms
the
cornerstone
of
reproducible
research.

https://taylorandfrancis.com

5

Acquire

|
Outcomes

•
 Identify
common
strategies
for
acquiring
corpus
data.
•
 Describe
how
to
organize
and
document
data
acquisition
to
support
repro-
ducibility.

•
 Recall
R
programming
concepts
and
strategies
relevant
to
acquiring
data.

As
we
start
down
the
path
to
executing
our
research
blueprint,
our
first
step
is
to
acquire
the
primary
data
that
will
be
employed
in
the
project.
This
chap-
ter
covers
two
strategies
for
acquiring
corpus
data:
downloads
and
APIs.
We
will
encounter
various
file
formats
and
folder
structures
in
the
process
and
we
will
address
how
to
effectively
organize
our
data
for
subsequent
process-
ing.
Crucial
 to
our
efforts
 is
 the
process
of
documenting
our
data.
We
will
learn
to
provide
data
origin
information
to
ensure
key
characteristics
of
the
data
and
its
source
are
documented.
Along
the
way,
we
will
explore
R
coding
concepts
including
control
statements
and
custom
functions
relevant
to
the
task
of
acquiring
data.
By
the
end
of
this
chapter,
you
will
not
only
be
adept
at
acquiring
data
 from
diverse
sources
but
also
capable
of
documenting
 it
comprehensively,
enabling
you
to
replicate
the
process
in
the
future.

ı
Lessons

What:
Control
Statements,
Custom
Functions

How:
In
an
R
console,
load
{swirl},
run
swirl(),
and
follow
prompts
to
select

the
lesson.

Why:
To
recognize
the
logic
behind
code
that
can
make
dynamic
choices
and
to
recall
how
functions
serve
to
produce
efficient,
reusable,
and
more
legible
code.

This
chapter
has
been
made
available
under
a
CC-BY-NC-ND
license.

87
DOI:
10.4324/9781003393764-8

88
 CHAPTER
5.
 ACQUIRE

5.1
 Downloads

The
most
common
and
straightforward
method
for
acquiring
corpus
data
is
through
direct
downloads.
In
a
nutshell,
this
method
involves
navigating
to
a
website,
locating
the
data,
and
downloading
it
to
your
computing
environ-
ment.
In
some
cases
access
to
the
data
requires
manual
intervention
and
in
others
the
process
can
be
implemented
programmatically.
The
data
may
be
contained
in
a
single
file
or
multiple
files.
The
files
may
be
archived
or
unar-
chived.
The
data
may
be
hierarchically
organized
or
not.
Each
resource
will
have
its
own
unique
characteristics
that
will
influence
the
process
of
acquir-
ing
the
data.
In
this
section,
we
will
work
through
examples
to
demonstrate
the
general
process
of
acquiring
data
through
downloads.

5.1.1
 Manual

In
contrast
to
the
other
data
acquisition
methods
we
will
cover
in
this
chap-
ter,
manual
downloads
require
human
 intervention.
This
means
 that
man-
ual
downloads
 are
non-reproducible
 in
 a
 strict
 sense
 and
 require
 that
we
keep
track
of
and
document
our
procedure.
It
is
a
very
common
for
research
projects
to
acquire
data
through
manual
downloads
as
many
data
resources
require
some
legwork
before
they
are
accessible
for
downloading.
These
can
be
resources
that
require
institutional
or
private
licensing
and
fees,
require
authorization/
registration,
and/
or
are
only
accessible
via
resource
search
interfaces.

The
resource
we
will
use
for
this
demonstration
is
the
Corpus
Escrito
del
Es-
pañol
como
L2
(CEDEL2)1
 (Lozano,
2022),
a
corpus
of
Spanish
learner
writ-
ing.
It
includes
L2
writing
from
students
with
a
variety
of
L1
backgrounds.
For
comparative
purposes
it
also
includes
native
writing
for
Spanish,
English,
and
several
other
languages.

The
CEDEL2
corpus
is
a
freely
available
resource,
but
to
access
the
data
you
must
first
use
a
search
 interface
 to
select
 the
relevant
characteristics
of
 the

data
of
interest.
Following
the
search/download
link
you
can
find
a
search
interface
that
allows
the
user
to
select
the
sub-corpus
and
filter
the
results
by
a
set
of
attributes.

For
this
example
let’s
assume
that
we
want
to
acquire
data
to
use
in
a
study
comparing
the
use
of
the
Spanish
preterit
and
imperfect
past
tense
aspect
in
written
texts
by
English
L1
learners
of
Spanish
to
native
Spanish
speakers.
To
acquire
data
for
such
a
project,
we
will
first
select
the
sub-corpus
“Learners
of

1http://cedel2.learnercorpora.com/

http://cedel2.learnercorpora.com/

89
5.1.
 DOWNLOADS

L2
Spanish”.
We
will
set
the
results
to
provide
full
texts
and
filter
the
results
to
“L1
English
- L2
Spanish”.
Additionally,
we
will
set
the
medium
to
“Written”.
This
will
provide
us
with
a
set
of
texts
for
the
L2
learners
that
we
can
use
for
our
study.
The
search
parameters
and
results
are
shown
in
Figure
5.1.

Figure
5.1:
Search
results
for
the
CEDEL2
Corpus

The
‘Download’
link
now
appears
for
this
search
criteria.
Following
this
link
will
provide
 the
user
a
 form
 to
fill
out.
This
particular
resource
allows
 for
access
to
different
formats
to
download
(Texts
only,
Texts
with
metadata,
CSV
(Excel),
CSV
(Others)).
I
will
select
the
‘CSV
(Others)’
option
so
that
the
data
is
structured
for
easier
processing
downstream
in
subsequent
processing
steps.
Then
I
save
the
CSV
in
the
data/original/
directory
of
my
project
and
create
a

sub-directory
named
cedel2/,
as
seen
in
Snippet
5.1.

data/

├──
 analysis/

├──
 derived/

└──
 original/

└──
 cedel2/

└──
 cedel2-l1-english-learners.csv

90
 CHAPTER
5.
 ACQUIRE

Snippet
5.1.
 Project
structure
for
the
CEDEL2
corpus
learner
data
download

Note
that
the
file
is
named
cedel2-l1-english-learners.csv
to
reflect
the
search
cri-
teria
used
to
acquire
the
data.
In
combination
with
other
data
documentation,
this
will
help
us
to
maintain
transparency.

Now,
after
downloading
the
L2
learner
and
the
native
speaker
data
into
the
appropriate
directory,
we
move
on
to
the
next
processing
step,
right?
Not
so
fast!
Imagine
we
are
working
on
a
project
with
a
collaborator.
How
will
they
know
where
the
data
came
from?
What
if
we
need
to
come
back
to
this
data
in

the
future?
How
will
we
know
what
characteristics
we
used
to
filter
the
data?

The
directory
and
file
names
may
not
be
enough.
To
address
these
questions
we
need
to
document
the
origin
of
the
data,
and
in
the
case
of
data
acquired
through
manual
downloads,
we
need
to
document
the
procedures
we
took
to
acquire
the
data
to
the
best
of
our
ability.

á
Tip
There
 are
 many
 ways
 to
 create
 and
 edit
 CSV
 files.
 You
 can
 use
 a
 spread-
sheet
program
 like
MS
Excel
or
Google
Sheets,
a
 text
editor
 like
Notepad
or
TextEdit,
or
an
IDE
 like
RStudio.
{qtkit}
provides
a
convenient
function,
cre-
ate_data_origin()
to
create
a
CSV
file
with
the
data
origin
boilerplate
structure.
This
CSV
file
then
can
be
edited
to
add
the
relevant
information
in
any
of
the

programs.
Using
a
spreadsheet
program
is
the
easiest
method
for
editing
tabular
data.
The
key
 is
to
save
the
file
as
a
CSV
file,
and
not
as
an
Excel
file,
to
maintain
our
adherence
to
the
principle
of
using
open
formats
for
reproducible
research.

As
discussed
in
Section
2.3.1,
all
acquired
data
should
be
accompanied
by
a
data
origin
file.
The
majority
of
this
information
can
typically
be
identified
on
the
resource’s
website
and/
or
the
resource’s
documentation.
In
the
case
of
the
CEDEL2
corpus,
the
corpus
homepage
provides
most
of
the
information
we
need.
The
data
origin
file
for
the
CEDEL2
corpus
is
seen
in
Table
5.1.

Structurally,
data
documentation
files
should
be
stored
close
to
the
data
they
describe.
So
for
our
data
origin
file
this
means
adding
it
to
the
data/original/
directory.
Naming
the
file
in
a
transparent
way
is
also
important.
I’ve
named
the
file
cedel2_do.csv
to
reflect
the
name
of
the
corpus,
the
meaning
of
the
file

91
5.1.
 DOWNLOADS

as
data
origin
with
a
suffixed
*_do,
and
 the
file
extension
 .csv*
 to
reflect
 the

file
format.
CSV
files
reflect
tabular
content.
It
is
not
required
that
data
origin
files
are
 tabular,
but
 it
makes
 it
easier
 to
read
and
display
 them
 in
 literate
programming
documents.

Table
5.1:
Data
origin
file
for
the
CEDEL2
corpus

attribute

 description

Resource
name
 CEDEL2:
Corpus
Escrito
del
Español
como
L2.

Data
source
 http://cedel2.learnercorpora.com/,

https://doi.org/10.1177/02676583211050522

Data
sampling
frame

 Corpus
that
contains
samples
of
the
 language
produced
from

learners
of
Spanish
as
a
second
 language.
For
comparative

purposes,
 it
also
contains
a
native
control
subcorpus
of
the

language
produced
by
native
speakers
of
Spanish
from
different

varieties
(peninsular
Spanish
and
all
varieties
of
Latin
American

Spanish),
so
 it
can
be
used
as
a
native
corpus
 in
 its
own
right.

Data
collection
 2006-2020.

date(s)

Data
format
 CSV
file.
Each
row
corresponds
to
a
writing
sample.
Each

column
 is
an
attribute
of
the
writing
sample.

Data
schema
 A
CSV
file
for
L2
 learners
and
a
CSV
file
for
native
speakers.

License
 CC
BY-NC-ND
3.0
ES

Attribution
 Lozano,
C.
(2022).
CEDEL2:
Design,
compilation
and
web

interface
of
an
online
corpus
for
L2
Spanish
acquisition

research.
Second
Language
Research,
38(4),
965–983.

https://doi.org/10.1177/02676583211050522.

Given
this
is
a
manual
download
we
also
need
to
document
the
procedure
used
 to
 retrieve
 the
data
 in
prose.
The
 script
 in
 the
process/
directory
 that
is
 typically
 used
 to
 acquire
 the
 data
 is
 not
 used
 to
 programmatically
 re-
trieve
data
in
this
case.
However,
to
keep
things
predictable
we
will
use
this
file
to
document
the
download
procedure.
I’ve
created
a
Quarto
file
named
1_acquire_data.qmd
 in
 the
process/
directory
of
my
project.
A
glimpse
at
 the
directory
structure
of
the
project
at
this
point
is
seen
in
Snippet
5.2.

Even
though
the
1_acquire_data.qmd
file
is
not
used
to
programmatically
re-
trieve
the
data,
it
is
still
a
useful
place
to
document
the
download
procedure.
This
includes
the
uniform
resource
locator
(URL)
of
the
resource,
the
search
criteria
used
to
filter
the
data,
and
the
file
format
and
location
of
the
data.
It
is
also
good
to
include
and
display
your
data
origin
file
in
this
file
as
a
formatted
table.

http://cedel2.learnercorpora.com/
https://doi.org/10.1177/02676583211050522
https://doi.org/10.1177/02676583211050522

project/

├──
 process/

│
 ├──
 1_acquire_data.qmd

│
 └──
 ...

├──
 data/

│
 ├──
 analysis/

│
 ├──
 derived/

│
 └──
 original/

│
 ├──
 cedel2_do.csv

│
 └──
 cedel2/

│
 ├──
 cedel2-l1-english-learners.csv

│
 └──
 cedel2-native-spanish-speakers.csv

├──
 reports/

├──
 DESCRIPTION

├──
 Makefile

└──
 README

92
 CHAPTER
5.
 ACQUIRE

Snippet
5.2.
 Project
structure
for
the
CEDEL2
corpus
data
acquisition

Manually
downloading
other
resources
will
 inevitably
 include
unique
pro-
cesses
for
obtaining
the
data,
but
in
the
end
the
data
should
be
archived
in
the
project
structure
in
the
data/original/
directory
and
documented
in
the
appro-
priate
places.
Note
that
acquired
data
is
always
treated
as
‘read-only’,
mean-
ing
it
is
not
modified
in
any
way.
This
gives
us
a
fixed
starting
point
for
sub-
sequent
steps
in
the
data
preparation
process.

5.1.2
 Programmatic

There
are
many
resources
that
provide
corpus
data
that
is
directly
accessible
for
which
programmatic
downloads
can
be
applied.
A
programmatic
down-
load
 is
a
download
 in
which
 the
process
 can
be
automated
 through
 code.
Thus,
this
is
a
reproducible
process.
The
data
can
be
acquired
by
anyone
with
access
to
the
necessary
code.

In
this
case,
and
subsequent
data
acquisition
procedures
in
this
chapter,
we
use
the
1_acquire_data.qmd
Quarto
file
to
its
full
potential
intermingling
prose,
code,
and
code
comments
to
execute
and
document
the
download
procedure.

To
illustrate
how
this
works
to
conduct
a
programmatic
download,
we
will
work
with
the
Switchboard
Dialog
Act
Corpus
(SWDA)
(University
of
Col-
orado
Boulder,
2008).
The
version
that
we
will
use
is
found
on
the
Linguis-
tic
Data
Consortium
under
the
Switchboard-1
Release
2
Corpus.
The
corpus
and
related
documentation
are
linked
on
the
catalog
page
https://catalog.ldc.
upenn.edu/docs/LDC97S62/.

https://catalog.ldc.upenn.edu/docs/LDC97S62/
https://catalog.ldc.upenn.edu/docs/LDC97S62/

93
5.1.
 DOWNLOADS

From
the
documentation
we
learn
that
the
corpus
contains
transcripts
for
1155
5-minute
two-way
telephone
conversations
among
English
speakers
for
all
areas
of
 the
United
States.
The
speakers
were
given
a
 topic
 to
discuss
and
the
conversations
were
recorded.
The
corpus
metadata
and
annotations
for
sociolinguistic
and
discourse
features.

This
corpus,
as
you
can
image,
could
support
a
wide
range
of
interesting
re-
search
questions.
Let’s
assume
we
are
following
research
conducted
by
Tottie
(2011)
to
explore
the
use
of
filled
pauses
such
as
“um”
and
“uh”
and
tradi-
tional
sociolinguistic
variables
such
as
sex,
age,
and
education
in
spontaneous
speech
by
American
English
speakers.

̪
Dive
deeper
You
may
be
wondering
what
the
difference
between
 .zip,
.tar,
and
 .tar.gz
files

are.
The
.zip
file
format
is
the
most
common.
It
groups
file
and
directories
into
one
file
(an
archive)
and
compresses
it
to
reduce
the
size
of
the
file
in
one
step
when
the
file
is
created.

The
.tar
file
format
is
used
archive
files
and
folders,
it
does
not
perform
compres-
sion.
Gzipping
performs
the
compression
to
the
.tar
file
resulting
in
a
file
with

the
 .tar.gz
extension.
Notably
 the
 .gz
compression
 is
highly
efficient
for
 large

files.
Take
the
swda.tar.gz
file
for
example.
It
has
a
compressed
file
size
of
4.6
MB,
but
when
uncompressed
it
is
16.9
MB.
This
is
a
73%
reduction
in
file
size.

With
this
goal
in
mind,
let’s
get
started
writing
the
code
to
download
and
or-
ganize
the
data
in
our
project
directory.
First,
we
need
to
identify
the
URL
for
the
data
that
we
want
to
download.
More
often
than
not
this
file
will
be
some

type
of
archive
file
with
an
extension
such
as
.zip
(Zipped
file),
.tar
(Tarball

file),
or
tar.gz
(Gzipped
tarball
file),
which
is
the
case
for
the
SWDA
corpus.
Archive
files
make
downloading
multiple
files
easy
by
grouping
files
and
di-
rectories
into
one
file.

Example
5.1.

1
 #
 URL
 to
 SWDA
 corpus
 archive
 file

2
 file_url
 <-

3
 "https://catalog.ldc.upenn.edu/docs/LDC97S62/swb1_dialogact_annot.tar.gz"

4

5
 #
 Relative
 path
 to
 project/data/original
 directory

6
 file_path
 <- "../data/original/swda.tar.gz"

7

8
 #
 Download
 SWDA
 corpus
 archive
 file

9
 download.file(url
 =
 file_url,
 destfile
 =
 file_path)

https://catalog.ldc.upenn.edu/docs/LDC97S62/swb1_dialogact_annot.tar.gz
http://swda.tar.gz

data/

├──
 analysis/

├──
 derived/

└──
 original/

└──
 swda.tar.zip

94
 CHAPTER
5.
 ACQUIRE

In
R,
we
can
use
the
download.file()
 function
from
base
R,
as
seen
in
Exam-
ple
5.1.
The
download.file()
function
minimally
requires
two
arguments:
url

and
destfile.
These
correspond
to
the
file
to
download
and
the
location
where
it
is
to
be
saved
to
disk.
To
break
out
the
process
a
bit,
I
will
assign
the
URL
and
destination
file
path
to
variables
and
then
use
the
download.file()
 func-
tion
to
download
the
file.

Á
Warning
Note
 that
 the
 file_path
 variable
 in
 Example
 5.1
 is
 a
 relative
 path
 to
 the

data/original/
directory.
A
relative
path
specifies
the
location
of
a
file
or
directory
relative
to
the
current
working
directory.
The
../
at
the
beginning
of
the
path
indicates
that
the
file
is
located
in
the
parent
directory
of
the
current
working
directory.
It
is
also
possible
to
use
a
full
or
absolute
path
to
specify
the
location
of
a
file
or
directory.
An
absolute
path
specifies
the
location
of
a
file
or
directory
from
the
root
directory
of
the
file
system.
For
example,
on
a
Unix-like
system
(e.g.
Linux,
macOS,
etc.)
the
root
directory
is
/
and
on
a
Windows
system
it
is

C:\.
An
absolute
path
also
 includes
 the
 intermediate
directories
between
 the
root
directory
and
the
file
or
directory.
As
an
absolute
path
reflects
both
operat-
ing
system
and
unique
file
system
structure
not
related
to
the
project,
it
is
not
recommended
for
use
in
a
reproducible
research
project.

As
we
can
see
looking
at
the
directory
structure,
in
Snippet
5.3,
the
swda.tar.zip

file
has
been
added
to
the
data/original/
directory.

Snippet
5.3.
 Project
structure
for
the
SWDA
archive
file
download

Once
an
archive
file
is
downloaded,
however,
the
file
needs
to
be
‘unarchived’
to
reveal
the
directory
structure
and
files.
To
unarchive
this
.tar.gz
file
we
use

the
untar()
 function
with
 the
arguments
tarfile
 pointing
 to
 the
 .tar.gz
file

and
exdir
specifying
the
directory
where
we
want
the
files
to
be
extracted
to.
Again,
I
will
assign
the
arguments
to
variables.
Then
we
can
unarchive
the
file
using
the
untar()
function.

Example
5.2.

1
 #
 Relative
 path
 to
 the
 archive
 file

2
 tar_file
 <- "../data/original/swda.tar.gz"

3

4
 #
 Relative
 path
 to
 the
 directory
 to
 extract
 to

5
 extract_to_dir
 <- "../data/original/swda/"

data/

├──
 analysis/

├──
 derived/

└──
 original/

├──
 swda/

│
 ├──
 README

│
 ├──
 doc/

│
 ├──
 sw00utt/

│
 ├──
 sw01utt/

│
 ├──
 sw02utt/

│
 ├──
 sw03utt/

│
 ├──
 sw04utt/

│
 ├──
 sw05utt/

│
 ├──
 sw06utt/

│
 ├──
 sw07utt/

│
 ├──
 sw08utt/

│
 ├──
 sw09utt/

│
 ├──
 sw10utt/

│
 ├──
 sw11utt/

│
 ├──
 sw12utt/

│
 └──
 sw13utt/

└──
 swda.tar.gz

95
5.1.
 DOWNLOADS

6

7
 #
 Unarchive/
 decompress
 .zip
 file
 and
 extract
 to
 our
 target
 directory

8
 untar(tar_file,
 extract_to_dir)

The
directory
structure
of
data/
in
Snippet
5.4
now
shows
the
swda.tar.gz
file

and
the
swda
directory
that
contains
the
unarchived
directories
and
files.

Snippet
5.4.
 Project
structure
for
the
SWDA
files
unarchived

At
this
point
we
have
acquired
the
data
programmatically
and
with
this
code
as
part
of
our
workflow
anyone
could
run
this
code
and
reproduce
the
same
results.

The
code
as
it
is,
however,
is
not
ideally
efficient.
First,
the
swda.tar.gz
file
is

not
strictly
needed
after
we
unarchive
it,
and
it
occupies
disk
space
if
we
keep
it.
And
second,
each
time
we
run
this
code
the
file
will
be
downloaded
from
the
remote
server
and
overwrite
the
existing
data.
This
leads
to
unnecessary
data
transfer
and
server
traffic
and
will
overwrite
the
data
if
it
already
exists
in
our
project
directory,
which
could
be
problematic
if
the
data
changes
on
the
remote
server.
Let’s
tackle
each
of
these
issues
in
turn.

http://swda.tar.gz
http://swda.tar.gz
http://swda.tar.gz

96
 CHAPTER
5.
 ACQUIRE

To
avoid
writing
the
swda.tar.gz
file
to
disk
(long-term)
we
can
use
the
temp-
file()
 function
 to
open
a
 temporary
holding
space
 for
 the
file
 in
 the
com-
puting
environment.
This
space
can
then
be
used
to
store
the
file,
unarchive
it,
and
then
the
temporary
file
will
automatically
be
deleted.
We
assign
the
temporary
space
to
an
R
object
we
will
name
temp_file
with
the
tempfile()

function.
This
object
can
now
be
used
as
the
value
of
the
argument
destfile

in
the
download.file()
function.

Example
5.3.

1
 #
 URL
 to
 SWDA
 corpus
 archive
 file

2
 file_url
 <-

3
 "https://catalog.ldc.upenn.edu/docs/LDC97S62/swb1_dialogact_annot.tar.gz"

4

5
 #
 Create
 a
 temporary
 file
 space
 for
 our
 .tar.gz
 file

6
 temp_file
 <- tempfile()

7

8
 #
 Download
 SWDA
 corpus
 archive
 file

9
 download.file(file_url,
 temp_file)

á
Tip
In
Example
5.3,
I’ve
used
the
values
stored
in
the
objects
file_url
and
temp_file

in
the
download.file()
function
without
specifying
the
argument
names
—only
providing
the
names
of
the
objects.
R
will
assume
that
values
of
a
function
map
to
the
ordering
of
the
arguments.
If
your
values
do
not
map
to
ordering
of
the
arguments
you
are
required
to
specify
the
argument
name
and
the
value.
To
view
the
ordering
of
objects
hit
tab
after
entering
the
function
name
or
consult
the
function
documentation
by
prefixing
the
function
name
with
?
and
hitting

enter.

At
this
point
our
downloaded
file
is
stored
temporarily
on
disk
and
can
be
accessed
and
unarchived
to
our
target
directory
using
temp_file
as
the
value

for
the
argument
tarfile
 from
the
untar()
 function.
I’ve
assigned
our
target

directory
path
 to
extract_to_dir
 and
used
 it
as
 the
value
 for
 the
argument

exdir.

Example
5.4.

1
 #
 Assign
 our
 target
 directory
 to
 `extract_to_dir`

2
 extract_to_dir
 <- "../data/original/swda/"

3

4
 #
 Unarchive/
 decompress
 .tar.gz
 file
 and
 extract
 to
 our
 target
 directory

5
 untar(tarfile
 =
 temp_file,
 exdir
 =
 target_dir)

Our
directory
structure
in
Example
5.4
is
the
same
as
in
Snippet
5.4,
minus
the
swda.tar.gz
file.

https://catalog.ldc.upenn.edu/docs/LDC97S62/swb1_dialogact_annot.tar.gz
http:swda.tar.gz
http:swda.tar.gz

97
5.1.
 DOWNLOADS

The
second
issue
I
raised
concerns
the
fact
that
running
this
code
as
part
of
our
project
will
repeat
the
download
each
time
our
script
is
run.
Since
we
would
like
to
be
good
citizens
and
avoid
unnecessary
traffic
on
the
web
and
avoid
potential
issues
in
overwriting
data,
it
would
be
nice
if
our
code
checked
to
see
if
we
already
have
the
data
on
disk
and
if
it
exists,
then
skip
the
download,
if
not
then
download
it.

The
desired
functionality
we’ve
described
can
be
implemented
using
the
if()

function.
The
if()
 function
 is
one
of
a
class
of
 functions
known
as
control

statements.
Control
statements
allow
us
to
control
the
flow
of
our
code
by
evaluating
logical
statements
and
processing
subsequent
code
based
on
the
logical
value
it
is
passed
as
an
argument.

So
in
this
case
we
want
to
evaluate
whether
the
data
directory
exists
on
disk.
If
it
does,
then
skip
the
download,
if
not,
proceed
with
the
download.
In
com-
bination
with
else
which
provides
the
‘if
not’
part
of
the
statement,
we
have
the
following
logical
flow
in
Example
5.5.

Example
5.5.

1
 if
 (DIRECTORY_EXISTS)
 {

2
 #
 Do
 nothing

3
 }
 else
 {

4
 #
 Download
 data

5
 }

We
 can
 simplify
 this
 statement
 by
 using
 the
 !
 operator
 which
 negates

the
 logical
 value
 of
 the
 statement
 it
 precedes.
 So
 if
 the
 directory
 exists,

!DIRECTORY_EXISTS
will
return
FALSE
 and
 if
not,
!DIRECTORY_EXISTS
will
return

TRUE.
In
other
words,
if
the
directory
does
not
exist,
download
the
data.
This
is
shown
in
Example
5.6.

Example
5.6.

1
 if
 (!DIRECTORY_EXISTS)
 {

2
 #
 Download
 data

3
 }

Now,
to
determine
if
a
directory
exists
in
our
project
directory
we
will
turn
to
{fs}
(Hester,
Wickham,
&
Csárdi,
2024).
{fs}
provides
a
set
of
functions
for
interacting
with
the
file
system,
including
dir_exists().
dir_exists()
 takes
a

path
to
a
directory
as
an
argument
and
returns
the
logical
value,
TRUE,
if
that

directory
exists,
and
FALSE
if
it
does
not.

98
 CHAPTER
5.
 ACQUIRE

We
can
use
this
function
to
evaluate
whether
the
directory
exists
and
then
use
the
if()
function
to
process
the
subsequent
code
based
on
the
logical
flow
we
set
out
in
Example
5.6.
Applied
to
our
project,
the
code
will
look
like
Exam-
ple
5.7.

Example
5.7.

1
 #
 Load
 the
 {fs}
 package

2
 library(fs)

3

4
 #
 URL
 to
 SWDA
 corpus
 archive
 file

5
 file_url
 <-

6
 "https://catalog.ldc.upenn.edu/docs/LDC97S62/swb1_dialogact_annot.tar.gz"

7

8
 #
 Create
 a
 temporary
 file
 space
 for
 our
 .tar.gz
 file

9
 temp_file
 <- tempfile()

10

11
 #
 Assign
 our
 target
 directory
 to
 `extract_to_dir`

12
 extract_to_dir
 <- "../data/original/swda/"

13

14
 #
 Check
 if
 our
 target
 directory
 exists

15
 #
 If
 it
 does
 not
 exist,
 download
 the
 file
 and
 extract
 it

16
 if
 (!dir_exists(extract_to_dir))
 {

17
 #
 Download
 SWDA
 corpus
 archive
 file

18
 download.file(file_url,
 temp_file)

19

20
 #
 Unarchive/
 decompress
 .tar.gz
 file
 and
 extract
 to
 our
 target
 directory

21
 untar(tarfile
 =
 temp_file,
 exdir
 =
 extract_to_dir)

22
 }

The
code
 in
Example
5.7
 is
added
to
 the
1_acquire_data.qmd
file.
When
 this

file
is
run,
the
SWDA
corpus
data
will
be
downloaded
and
extracted
to
our
project
directory.
If
the
data
already
exists,
the
download
will
be
skipped,
just
as
we
wanted.

Now,
before
we
move
on,
we
need
to
make
sure
to
document
the
process.
Now
 that
our
Quarto
document
 includes
code,
add
code
comments
 to
ex-
plain
the
processing
logic.
And,
as
always,
create
a
data
origin
file
as
with
the
relevant
information.
The
data
origin
file
will
be
stored
in
the
data/original/

directory
and
the
Quarto
file
will
be
stored
in
the
process/
directory.

We’ve
leveraged
R
to
automate
the
download
and
extraction
of
the
data,
de-
pending
on
 the
existence
of
the
data
 in
our
project
directory.
But
you
may
be
asking
yourself,
“Can’t
I
just
navigate
to
the
corpus
page
and
download
the
data
manually
myself?”
The
simple
answer
is,
“Yes,
you
can.”
The
more
nuanced
answer
is,
“Yes,
but
consider
the
trade-offs.”

https://catalog.ldc.upenn.edu/docs/LDC97S62/swb1_dialogact_annot.tar.gz

99
5.2.
 APIS

The
 following
scenarios
highlight
some
advantages
 to
automating
 the
pro-
cess.
If
you
are
acquiring
data
from
multiple
files,
it
can
become
tedious
to
document
the
manual
process
for
each
file
such
that
 it
 is
reproducible.
It’s
possible,
but
it’s
error
prone.

Now,
if
you
are
collaborating
with
others,
you
will
want
to
share
this
data
with
them.
It
is
very
common
to
find
data
that
has
limited
restrictions
for
use
in
academic
projects,
but
the
most
common
limitation
is
redistribution.
This
means
that
you
can
use
the
data
for
your
own
research,
but
you
cannot
share
it
with
others.
If
you
plan
on
publishing
your
project
to
a
code
repository
to
share
the
data
as
part
of
your
reproducible
project,
you
would
be
violating
the
terms
of
use
for
the
data.
By
 including
the
programmatic
download
 in
your
project,
you
can
ensure
that
your
collaborators
can
easily
and
effectively
acquire
the
data
themselves
and
that
you
are
not
violating
the
terms
of
use.

5.2
 APIs

A
convenient
alternative
method
for
acquiring
data
in
R
is
through
package
interfaces
 to
web
services.
These
 interfaces
are
built
using
R
code
 to
make
connections
with
resources
on
 the
web
 through
application
programming

interfaces
(APIs).
Websites
such
as
Project
Gutenberg,
Twitter,
Reddit,
and
many
others
provide
APIs
to
allow
access
to
their
data
under
certain
condi-
tions,
some
more
limiting
for
data
collection
than
others.
Programmers
(like
you!)
in
the
R
community
take
up
the
task
of
wrapping
calls
to
an
API
with
R
code
to
make
accessing
that
data
from
R
convenient,
and
of
course
repro-
ducible.

̪
Dive
deeper
Many,
many
web
services
provide
API
access.
These
APIs
span
all
kinds
of
data,

from
text
to
images
to
video
to
audio.
Visit
the
Public
APIs
websitea
 to
explore

the
diversity
of
APIs
available.

ROpenSci
maintains
a
curated
 list
of
R
packages
 that
provide
access
 to
data

from
web
services.
Visit
the
ROpenSci
websiteb
 to
explore
the
packages
avail-
able.

ahttps://publicapis.io/

bhttps://ropensci.org/packages/data-access/

https://publicapis.io/
https://ropensci.org/packages/data-access/

100
 CHAPTER
5.
 ACQUIRE

In
addition
to
popular
public
APIs,
there
are
also
APIs
that
provide
access
to
repositories
and
databases
which
are
of
particular
interest
to
linguists.
For
example,
Wordbank2
 provides
access
to
a
large
collection
of
child
language
corpora
 through
 {wordbankr}
 (Braginsky,
2024),
and
Glottolog3,
World
At-
las
of
Language
Structures4
 (WALS),
and
PHOIBLE5
provide
access
to
large
collections
of
language
metadata
that
can
be
accessed
through
{lingtypology}
(Moroz,
2017).

Let’s
work
with
an
R
package
that
provides
access
to
the
TalkBank6
database.

The
TalkBank
project
(Macwhinney,
2024)
contains
a
large
collection
of
spo-
ken
 language
corpora
 from
various
contexts:
conversation,
child
 language,
multilinguals,
etc.
Resource
information,
web
interfaces,
and
links
to
down-
load
data
in
various
formats
can
be
found
by
perusing
individual
resources
linked
from
the
main
page.
However,
{TBDBr}
(Kowalski
&
Cavanaugh,
2024)
provides
convenient
access
to
corpora
using
R
once
a
corpus
resource
is
iden-
tified.

The
CABNC
(Albert,
de
Ruiter,
&
de
Ruiter,
2015)
contains
the
demographi-
cally
sampled
portion7
of
the
spoken
portion
of
the
British
National
Corpus

(BNC)
(Leech,
1992).

Useful
for
a
study
aiming
to
research
spoken
British
English,
either
in
isola-
tion
or
in
comparison
to
American
English
(SWDA)..

First,
we
need
to
install
and
load
{TBDBr},
as
in
Example
5.8.

Example
5.8.

1
 #
 Load
 the
 TBDBr
 package

2
 library(TBDBr)

{TBDBr}
provides
a
set
of
common
get*()
 functions
for
acquiring
data
from
the
 TalkBank
 corpus
 resources.
 These
 include:
 getParticipants(),
 getTran-
scripts(),
getTokens(),
getTokenTypes(),
and
getUtterances().

For
each
of
these
functions,
the
first
argument
is
corpusName,
which
is
the
name
of
the
corpus
resource
as
it
appears
in
the
TalkBank
database.
The
second
ar-
gument
is
corpora,
which
takes
a
character
vector
describing
the
path
to
the
data.
For
the
CABNC,
these
arguments
are
"ca"
and
c("ca",
 "CABNC")
respec-
tively.
To
determine
these
values,
TBDBr
provides
the
getLegalValues()
inter-
active
function
which
allows
you
to
interactively
select
the
repository
name,
corpus
name,
and
transcript
name,
if
necessary.

2http://wordbank.stanford.edu/

3https://glottolog.org/

4https://wals.info/

5https://phoible.org/

6https://talkbank.org/

7http://www.natcorp.ox.ac.uk/docs/URG/BNCdes.html

http://wordbank.stanford.edu/
https://glottolog.org/
https://wals.info/
https://phoible.org/
https://talkbank.org/
http://www.natcorp.ox.ac.uk/docs/URG/BNCdes.html

5.2.
 APIS
 101

á
Tip
For
any
package
loaded
in
your
R
session,
you
can
list
all
of
its
functions
and

datasets
using
the
ls()
function.
For
example,
ls("package:TBDBr")
will
list
all
of

the
functions
and
datasets
in
{TBDBr}.

To
view
all
of
the
arguments
for
a
function,
use
the
args()
function.
For
example,

args(getUtterances)
will
list
all
of
the
arguments
for
the
getUtterances()
 func-
tion.

Another
 important
aspect
of
 these
functions
 is
 that
they
return
data
frame
objects.
Since
we
are
accessing
data
that
is
in
a
structured
database,
this
makes
sense.
However,
we
should
always
check
the
documentation
for
the
object
type
that
is
returned
by
function
to
be
aware
of
how
to
work
with
the
data.

Let’s
start
by
retrieving
the
utterance
data
for
the
CABNC
and
preview
the
data
frame
it
returns
using
glimpse().

Example
5.9.

1
 #
 Set
 corpus_name
 and
 corpus_path

2
 corpus_name
 <- "ca"

3
 corpus_path
 <- c("ca",
 "CABNC")

4

5
 #
 Get
 utterance
 data

6
 utterances
 <-

7
 getUtterances(

8
 corpusName
 =
 corpus_name,

9
 corpora
 =
 corpus_path

10
)

11

12
 #
 Preview
 the
 data

13
 glimpse(utterances)

Rows:
 235,901

Columns:
 10

$
 filename
 <list>
 "KB0RE000",
 "KB0RE000",
 "KB0RE000",
 "KB0RE000",
 "KB0RE000",~

$
 path
 <list>
 "ca/CABNC/KB0/KB0RE000",
 "ca/CABNC/KB0/KB0RE000",
 "ca/CABNC~

$
 utt_num
 <list>
 0,
 1,
 2,
 3,
 4,
 5,
 6,
 7,
 8,
 9,
 10,
 11,
 12,
 13,
 14,
 15,
 16,
 1~

$
 who
 <list>
 "PS002",
 "PS006",
 "PS002",
 "PS006",
 "PS002",
 "PS006",
 "PS00~

$
 role
 <list>
 "Unidentified",
 "Unidentified",
 "Unidentified",
 "Unidentifi~

$
 postcodes
 <list>
 <NULL>,
 <NULL>,
 <NULL>,
 <NULL>,
 <NULL>,
 <NULL>,
 <NULL>,
 <NU~

$
 gems
 <list>
 <NULL>,
 <NULL>,
 <NULL>,
 <NULL>,
 <NULL>,
 <NULL>,
 <NULL>,
 <NU~

$
 utterance
 <list>
 "You
 enjoyed
 yourself
 in
 America",
 "Eh",
 "did
 you",
 "Oh
 I
 c~

$
 startTime
 <list>
 "0.208",
 "2.656",
 "2.896",
 "3.328",
 "5.088",
 "6.208",
 "8.32~

$
 endTime
 <list>
 "2.672",
 "2.896",
 "3.328",
 "5.264",
 "6.016",
 "8.496",
 "9.31~

Inspecting
the
output
from
Example
5.9,
we
see
that
the
data
frame
contains
235,901
observations
and
10
variables.

102
 CHAPTER
5.
 ACQUIRE

The
summary
provided
by
glimpse()
also
provides
other
useful
information.
First,
 we
 see
 the
 data
 type
 of
 each
 variable.
 Interestingly,
 the
 data
 type
for
each
variable
 in
 the
data
 frame
 is
a
 list
object.
Being
 that
a
 list
 is
 two-
dimensional
data
type,
like
a
data
frame,
we
have
two-dimensional
data
in-
side
two-dimensional
data.
This
is
known
as
a
nested
structure.
We
will
work

with
nested
structures
in
more
depth
later,
but
for
now
it
will
suffice
to
say
that
we
would
like
to
‘unnest’
these
lists
and
reveal
the
list-contained
vector

types
at
the
data
frame
level.

To
do
this
we
will
pass
the
utterances
data
frame
to
the,
appropriately
named,

unnest()
function
from
{tidyr}
(Wickham,
Vaughan,
&
Girlich,
2024).
unnest()

takes
a
data
frame
and
a
vector
of
variable
names
to
unnest,
cols
 =
 c().
To

unnest
all
variables,
we
will
use
the
everything()
function
from
{dplyr}
to
se-
lect
all
variables
at
once.
We
will
use
the
result
to
overwrite
the
utterances

object
with
the
unnested
data
frame.

Example
5.10.

1
 #
 Unnest
 the
 data
 frame

2
 utterances
 <-

3
 utterances
 |>

4
 unnest(cols
 =
 everything())

5

6
 #
 Preview
 the
 data

7
 glimpse(utterances)

Rows:
 235,901

Columns:
 10

$
 filename
 <chr>
 "KB0RE000",
 "KB0RE000",
 "KB0RE000",
 "KB0RE000",
 "KB0RE000",
 ~

$
 path
 <chr>
 "ca/CABNC/KB0/KB0RE000",
 "ca/CABNC/KB0/KB0RE000",
 "ca/CABNC/~

$
 utt_num
 <dbl>
 0,
 1,
 2,
 3,
 4,
 5,
 6,
 7,
 8,
 9,
 10,
 11,
 12,
 13,
 14,
 15,
 16,
 17~

$
 who
 <chr>
 "PS002",
 "PS006",
 "PS002",
 "PS006",
 "PS002",
 "PS006",
 "PS002~

$
 role
 <chr>
 "Unidentified",
 "Unidentified",
 "Unidentified",
 "Unidentifie~

$
 postcodes
 <lgl>
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 ~

$
 gems
 <lgl>
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 ~

$
 utterance
 <chr>
 "You
 enjoyed
 yourself
 in
 America",
 "Eh",
 "did
 you",
 "Oh
 I
 co~

$
 startTime
 <chr>
 "0.208",
 "2.656",
 "2.896",
 "3.328",
 "5.088",
 "6.208",
 "8.32"~

$
 endTime
 <chr>
 "2.672",
 "2.896",
 "3.328",
 "5.264",
 "6.016",
 "8.496",
 "9.312~

The
 output
 from
 Example
 5.10
 shows
 that
 the
 variables
 are
 now
 one-
dimensional
vector
types.

Returning
to
the
information
about
our
data
frame
from
glimpse(),
the
second
thing
to
notice
is
we
get
a
short
preview
of
the
values
for
each
variable.
There
are
a
couple
of
things
we
can
glean
from
this.
One
is
that
we
can
confirm
or
clarify
the
meaning
of
the
variable
names
by
looking
at
the
values.
The
other
thing
to
consider
is
whether
the
values
show
any
patterns
that
may
be
worthy
of
more
scrutiny.
For
example,
various
variables
appear
to
contain
the
same

5.2.
 APIS
 103

values
for
each
observation.
For
a
variable
like
filename,
this
is
expected
as
the
first
values
likely
correspond
to
the
same
file.
However,
for
the
variables

postcodes
and
gems
the
values
are
‘NA’.
This
suggests
that
these
variables
may
not
contain
any
useful
information
and
we
may
want
to
remove
them
later.

For
now,
however,
we
want
to
acquire
and
store
the
data
in
its
original
form
(or
as
closely
as
possible).
So
now,
we
have
acquired
the
utterances
data
and
have
it
in
our
R
session
as
a
data
frame.
To
store
this
data
in
a
file,
we
will
first
need
to
consider
the
file
format.
Data
frames
are
tabular,
so
that
gives
us
a
few
options.

Since
we
are
working
in
R,
we
could
store
this
data
as
an
R
object,
in
the
form
of
an
R
data
serialization
(RDS)
file.
An
RDS
file
is
a
binary
file.
Binary
files
cannot
be
viewed
in
plain
text
format.
However,
these
files
can
be
read
back
into
R
as
an
R
object
exactly
as
 there
were
 (including
 factors,
sorting,
etc.).
This
is
a
good
option
if
we
want
to
store
the
data
for
use
in
R,
but
not
if
we
want
to
share
the
data
with
others
or
use
it
in
other
software.

Another
option
is
to
store
the
data
as
a
spreadsheet
file,
such
as
XSLX
(MS
Excel).
This
may
make
viewing
and
editing
the
contents
more
convenient,
but
it
depends
on
the
software
available
to
you
and
others.
A
third,
more
viable
option,
is
to
store
the
data
as
a
CSV
file.
CSV
files
are
plain
text
files
that
can
be
read
and
written
by
most
software.
This
makes
CSV
files
one
of
the
most
popular
for
sharing
tabular
data.
For
this
reason,
we
will
store
the
data
as
a
CSV
file.

{readr}
provides
the
write_csv()
function
for
writing
data
frames
to
CSV
files.
The
first
argument
is
the
data
frame
to
write,
and
the
second
argument
is
the
path
to
the
file
to
write.
Note,
however,
that
the
directories
 in
the
path
we
specify
need
to
exist.
If
they
do
not,
we
will
get
an
error.

In
 this
 case,
 I
 would
 like
 to
 write
 the
 file
 utterances.csv
 to
 the

../data/original/cabnc/
 directory.
 The
 original
 project
 structure
 does
 not

contain
 a
 cabnc/
 directory,
 so
 I
 need
 to
 create
 one.
 To
 do
 this,
 I
will
 use

dir_create()
from
{fs}.

Example
5.11.

1
 #
 Create
 the
 target
 directory

2
 dir_create("../data/original/cabnc/")

3

4
 #
 Write
 the
 data
 frame
 to
 a
 CSV
 file

5
 write_csv(utterances,
 "../data/original/cabnc/utterances.csv")

Chaining
the
steps
covered
in
Examples
5.9,
5.10,
and
5.11,
we
have
a
succinct
and
legible
code
to
acquire,
adjust,
and
write
utterances
from
the
CABNC
in
Example
5.12.

104
 CHAPTER
5.
 ACQUIRE

Example
5.12.

1
 #
 Set
 corpus_name
 and
 corpus_path

2
 corpus_name
 <- "ca"

3
 corpus_path
 <- c("ca",
 "CABNC")

4

5
 #
 Create
 the
 target
 directory

6
 dir_create("../data/original/cabnc/")

7

8
 #
 Get
 utterance
 data

9
 getUtterances(

10
 corpusName
 =
 corpus_name,

11
 corpora
 =
 corpus_path

12
)
 |>

13
 unnest(cols
 =
 everything())
 |>

14
 write_csv("../data/original/cabnc/utterances.csv")

If
our
goal
is
just
to
acquire
utterances,
then
we
are
done
acquiring
data
and
we
move
on
to
the
next
step.
However,
if
we
want
to
acquire
other
datasets
from
the
CABNC,
say
participants,
tokens,
etc.,
then
we
can
either
repeat
the
steps
in
Example
5.12
for
each
data
type,
or
we
can
write
a
function
to
do
this
for
us!

A
 function
 serves
us
 to
make
our
 code
more
 legible
 and
 reusable
 for
 the
CABNC,
and
since
the
TalkBank
data
is
structured
similarly
across
corpora,
we
can
also
use
the
function
to
acquire
data
from
other
corpora,
if
need
be.

To
write
a
function,
we
need
to
consider
the
following:

1.
 What
is
the
name
of
the
function?

2.
 What
arguments
does
the
function
take?

3.
 What
functionality
does
the
function
provide?

4.
 Does
the
function
have
optional
arguments?

5.
 How
does
the
function
return
the
results?

Taking
each
in
turn,
the
name
of
the
function
should
be
descriptive
of
what
the
function
does.
In
this
case,
we
are
acquiring
and
writing
data
from
Talkbank
corpora.
A
possible
name
is
get_talkbank_data().
The
required
arguments
of

the
get*()
functions
will
definitely
figure
in
our
function.
In
addition,
we
will
need
to
specify
the
path
to
the
directory
to
write
the
data.
With
these
consid-
erations,
we
can
write
the
function
signature
in
Example
5.13.

5.2.
 APIS
 105

Example
5.13.

1
 get_talkbank_data
 <- function(corpus_name,
 corpus_path,
 target_dir)
 {

2
 #
 ...

3
 }

The
next
thing
to
consider
is
what
functionality
the
function
provides.
In
this
case,
we
want
to
acquire
and
write
data
from
Talkbank
corpora.
We
can
start
by
leveraging
the
code
steps
in
Example
5.12,
making
some
adjustments
to
the
code
replacing
the
hard-coded
values
with
the
function
arguments
and
adding
code
to
create
the
target
file
name
based
on
the
target_dir
argument.

Example
5.14.

1
 get_talkbank_data
 <- function(corpus_name,
 corpus_path,
 target_dir)
 {

2

3
 #
 Create
 the
 target
 directory

4
 dir_create(target_dir)

5

6
 #
 Set
 up
 file
 path
 name

7
 utterances_file
 <- path(target_dir,
 "utterances.csv")

8

9
 #
 Acquire
 data
 and
 write
 to
 file

10
 getUtterances(corpusName
 =
 corpus_name,
 corpora
 =
 corpus_path)
 |>

11
 unnest(cols
 =
 everything())
 |>

12
 write_csv(utterances_file)

13
 }

Before
we
address
the
obvious
feature
missing,
which
is
the
fact
that
this
func-
tion
in
Example
5.14
only
acquires
and
writes
data
for
utterances,
let’s
con-
sider
some
functionality
which
would
make
this
function
more
user-friendly.

What
if
the
data
is
already
acquired?
Do
we
want
to
overwrite
it,
or
should
the
function
skip
the
process
for
files
that
already
exist?
By
skipping
the
pro-
cess,
we
can
save
time
and
computing
resources.
If
the
files
are
periodically
updated,
then
we
might
want
to
overwrite
existing
files.

To
achieve
this
functionality
we
will
use
an
if()
statement
to
check
if
the
file

exists.
If
 it
does,
then
we
will
skip
 the
process.
If
 it
does
not,
then
we
will
acquire
and
write
the
data.

106
 CHAPTER
5.
 ACQUIRE

Example
5.15.

1
 get_talkbank_data
 <- function(corpus_name,
 corpus_path,
 target_dir)
 {

2

3
 #
 Create
 the
 target
 directory

4
 dir_create(target_dir)

5

6
 #
 Set
 up
 file
 path
 name

7
 utterances_file
 <- path(target_dir,
 "utterances.csv")

8

9
 #
 If
 the
 file
 does
 not
 exist,
 then...

10
 #
 Acquire
 data
 and
 write
 to
 file

11
 if(!file_exists(utterances_file))
 {

12
 getUtterances(corpusName
 =
 corpus_name,
 corpora
 =
 corpus_path)
 |>

13
 unnest(cols
 =
 everything())
 |>

14
 write_csv(utterances_file)

15
 }

16
 }

We
can
also
add
functionality
to
Example
5.15
to
force
overwrite
existing
files,
if
need
be.
To
do
this,
we
will
add
an
optional
argument
to
the
function,
force,
which
will
be
a
logical
value.
We
will
set
the
default
to
force
 =
 FALSE
to
pre-
serve
the
existing
functionality.
If
force
 =
 TRUE,
then
we
will
overwrite
existing

files.
Then
we
add
another
condition
to
the
if()
statement
to
check
if
force
 =

TRUE.
If
it
is,
then
we
will
overwrite
existing
files.

Example
5.16.

1
 get_talkbank_data
 <- function(corpus_name,
 corpus_path,
 target_dir,
 force
 =
↪
 FALSE)
 {

2

3
 #
 Create
 the
 target
 directory

4
 dir_create(target_dir)

5

6
 #
 Set
 up
 file
 path
 name

7
 utterances_file
 <- path(target_dir,
 "utterances.csv")

8

9
 #
 If
 the
 file
 does
 not
 exist,
 then...

10
 #
 Acquire
 data
 and
 write
 to
 file

11
 if(!file_exists(utterances_file)
 |
 force)
 {

12
 getUtterances(corpusName
 =
 corpus_name,
 corpora
 =
 corpus_path)
 |>

13
 unnest(cols
 =
 everything())
 |>

14
 write_csv(utterances_file)

15
 }

16
 }

project/

├──
 process/

│
 ├──
 1_acquire_data.qmd

│
 ├──
 ...

│
 └──
 functions.R

├──
 .../

5.2.
 APIS
 107

From
this
point,
we
add
the
functionality
to
acquire
and
write
the
other
data
available
 from
Talkbank
 corpora,
 such
as
participants,
 tokens,
 etc.
This
 in-
volves
adding
additional
file
path
names
and
if()
statements
to
check
if
the

files
exist
surrounding
the
processing
steps
to
Example
5.16.
It
may
be
helpful
to
perform
other
input
checks,
print
messages,
etc.
for
functions
that
we
plan
to
share
with
others.
I
will
leave
these
enhancements
as
an
exercise
for
the

reader.

̪
Dive
deeper
If
you
are
 interested
 in
 learning
more
about
writing
functions,
check
out
the
Writing
Functions
chaptera
 in
the
R
for
Data
Scienceb
book.

If
you
find
yourself
writing
functions
that
are
useful
for
multiple
projects,
you
may
want
to
consider
creating
an
R
package.
R
packages
are
a
great
way
to
share
your
code
with
others.
If
you
are
interested
in
learning
more
about
creating
R
packages,
check
out
the
R
Packages
bookc
by
Wickham
&
Bryan
(2023).

ahttps://r4ds.had.co.nz/functions.html

bhttps://r4ds.had.co.nz/

chttps://r-pkgs.org/

Before
we
leave
the
topic
of
functions,
let’s
consider
where
to
put
functions
after
we
write
them.
Here
are
a
few
options:

1.
 In
the
same
script
as
the
code
that
uses
the
function.

2.
 In
a
separate
script,
such
as
functions.R.

3.
 In
a
package,
which
is
loaded
by
the
script
that
uses
the
function.

The
general
heuristic
for
choosing
where
to
put
functions
is
to
put
them
in
the
same
script
as
the
code
that
uses
them
if
the
function
is
only
used
in
that
script.
If
the
function
is
used
in
multiple
scripts
or
the
function
or
number
of
functions
clutters
the
readability
of
the
code,
then
put
it
in
a
separate
script.
If
the
function
is
used
in
multiple
projects,
then
put
it
in
an
R
package.

In
this
case,
we
will
put
the
function
in
a
separate
file,
functions.R,
in
the
same

directory
as
the
other
process
files
as
in
Snippet
5.5.

Snippet
5.5.
 Project
structure
with
functions.R
file

https://r4ds.had.co.nz/functions.html
https://r4ds.had.co.nz/
https://r-pkgs.org/

data/

├──
 analysis

├──
 derived

└──
 original

└──
 cabnc

├──
 participants.csv

├──
 token_types.csv

├──
 tokens.csv

├──
 transcripts.csv

└──
 utterances.csv

108
 CHAPTER
5.
 ACQUIRE

Á
Warning
Note
that
the
functions.R
file
is
an
R
script,
not
a
Quarto
document.
Therefore
code
blocks
that
are
used
in
.qmd
files
are
not
used,
only
the
R
code
and
code

comments.

To
include
this,
or
other
functions
in
the
R
session
of
the
process
file
that
uses
them,
use
the
source()
 function,
with
the
correct
relative
path
to
the
file,
as

seen
in
Example
5.17.

Example
5.17.

1
 #
 Source
 functions

2
 source("functions.R")

It
is
common
to
source
functions
at
the
top
of
the
process
file
as
part
of
the
package
setup.

Given
the
utility
of
this
function
to
my
projects
and
potentially
others’,
I’ve
included
the
get_talkbank_data()
function
in
{qtkit}.
You
can
view
the
source
code
by
calling
the
function
without
parentheses
(),
or
on
the
{qtkit}
GitHub

repository.

After
running
the
get_talkbank_data()
function,
we
can
see
that
the
data
has

been
acquired
and
written
to
the
data/original/cabnc/
directory
in
Snippet
5.6.

Snippet
5.6.
 Project
structure
with
CABNC
data
files

Add
comments
to
your
code
 in
1-acquire-data.qmd
and
create
and
complete
the
data
origin
documentation
file
 for
 this
 resource,
and
 the
acquisition
 is
complete.

Activities
 109

Activities

Building
on
the
activities
in
the
previous
chapter,
these
activities
will
focus
on
the
implementation
of
the
data
acquisition
process.
Key
programming
con-
cepts
including
writing
custom
functions,
control
statements,
and
applying
functions
 iteratively
will
be
covered
 in
addition
to
packages
and
functions
which
provide
access
to
data
from
the
web.

Ɗ
Recipe
What:
Collecting
and
documenting
data

How:
Read
Recipe
5,
complete
comprehension
check,
and
prepare
for
Lab
5.

Why:
To
refine
programming
strategies
introduced
in
the
lesson
for
controlling
program
flow
and
making
code
more
reusable
in
the
service
of
programmati-
cally
acquiring
and
documenting
data.

ð
Lab

What:
Harvesting
research
data

How:
Fork,
clone,
and
complete
the
steps
in
Lab
5.

Why:
To
 investigate
data
 sources,
plan
data
 collection
 strategies,
 and
 apply
skills
and
knowledge
to
use
R
to
collect
and
document
data.

Summary

In
this
chapter,
we
have
covered
a
lot
of
ground.
On
the
surface,
we
have
dis-
cussed
a
few
methods
for
acquiring
corpus
data
for
use
in
text
analysis.
In
the
process,
we
have
examined
various
aspects
of
the
R
programming
language.
Some
key
concepts
include
writing
control
statements
and
custom
functions.
We
have
also
considered
topics
that
are
more
general
in
nature
and
concern
interacting
with
data
found
on
the
internet.

Each
of
these
methods
should
be
approached
in
a
way
that
is
transparent
to
the
researcher
and
to
would-be
collaborators
and
the
general
research
com-
munity.
For
this
reason,
the
documentation
of
the
steps
taken
to
acquire
data
are
key
both
in
the
code
and
in
human-facing
documentation.

At
this
point
you
have
both
a
bird’s
eye
view
of
the
data
available
on
the
web
and
strategies
on
how
to
access
a
great
majority
of
it.
It
is
now
time
to
turn
to
the
next
step
in
our
data
analysis
project:
data
curation.
In
the
next
chapter,
I
will
cover
how
to
wrangle
your
raw
data
into
a
tidy
dataset.

https://taylorandfrancis.com

6

Curate

|
Outcomes

•
 Describe
the
importance
of
data
curation
in
text
analysis
•
 Recognize
the
different
types
of
data
formats
•
 Associate
the
types
data
formats
with
the
appropriate
R
programming
tech-
niques
to
curate
the
data

In
this
chapter,
we
will
now
 look
at
the
next
step
 in
a
text
analysis
project:
data
curation.
That
is,
the
process
of
converting
the
original
data
we
acquire
to
a
tidy
dataset.
Acquired
data
can
come
in
a
wide
variety
of
formats.
These
formats
 tend
 to
signal
 the
richness
of
 the
metadata
 that
 is
 included
 in
 the
file
content.
We
will
consider
three
general
types
of
content
formats:
(1)
un-
structured
data,
(2)
structured
data,
and
(3)
semi-structured
data.
Regardless
of
the
file
type
and
the
structure
of
the
data,
it
will
be
necessary
to
consider
how
to
curate
a
dataset
such
that
the
structure
reflects
the
basic
unit
of
analy-
sis
that
we
wish
to
investigate.
The
resulting
dataset
will
form
the
base
from
which
we
will
work
to
further
transform
the
dataset
such
that
it
aligns
with
the
unit(s)
of
observation
required
for
the
analysis
method
that
we
will
im-
plement.
Once
 the
dataset
 is
curated,
we
will
create
a
data
dictionary
 that
describes
 the
dataset
and
 the
variables
 that
are
 included
 in
 the
dataset
 for

transparency
and
reproducibility.

ı
Lessons

What:
Pattern
Matching,
Tidy
Datasets

How:
In
an
R
console,
load
{swirl},
run
swirl(),
and
follow
prompts
to
select

the
lesson.

Why:
To
familiarize
yourself
with
the
basics
of
using
the
pattern
matching
syn-
tax
Regular
Expressions
and
the
{dplyr}
package
to
manipulate
data
into
Tidy
datasets.

This
chapter
has
been
made
available
under
a
CC-BY-NC-ND
license.

111
DOI: 10.4324/9781003393764-9

112
 CHAPTER
6.
 CURATE

6.1
 Unstructured

The
bulk
of
textual
data
is
of
the
unstructured

data
that
has
not
been
organized
to
make
the
i
machine-readable.
Remember
that
text
in
itself
i

variety.
Unstructured
data
is
nformation
contained
within
s
not
information.
Only
when

given
explicit
context
in
the
form
of
metadata
does
text
become
informative.
Metadata
can
be
 linguistic
or
non-linguistic
 in
nature.
So
 for
unstructured
data
there
is
little
to
no
metadata
directly
associated
with
the
data.

6.1.1
 Reading
data

Some
of
the
common
file
formats
which
contain
unstructured
data
include

TXT,
PDF,
and
DOCX.
Although
these
formats
are
unstructured,
they
are
not
the
same.
Reading
these
files
into
R
requires
different
techniques
and
tools.

There
are
many
ways
to
read
TXT
files
into
R
and
many
packages
that
can
be
used
to
do
so.
For
example,
using
{readr},
we
can
choose
to
read
the
entire
file
into
a
single
vector
of
character
strings
with
read_file()
or
read
the
file
by

lines
with
read_lines()
in
which
each
line
is
a
character
string
in
a
vector.

Less
commonly
used
 in
prepared
data
resources,
PDF
and
DOCX
files
are
more
complex
than
TXT
files
as
they
contain
formatting
and
embedded
doc-
ument
metadata.
However,
these
attributes
are
primarily
for
visual
presenta-
tion
and
not
for
machine-readability.
Needless
to
say,
we
need
an
alternate
strategy
to
extract
the
text
content
from
these
files
and
potentially
some
of
the
metadata.
For
example,
using
{readtext}
(Benoit
&
Obeng,
2024),
we
can
read
the
text
content
from
PDF
and
DOCX
files
into
a
single
vector
of
character
strings
with
readtext().

Whether
in
TXT,
PDF,
or
DOCX
format,
the
resulting
data
structure
will
re-
quire
further
processing
to
convert
the
data
into
a
tidy
dataset.

6.1.2
 Orientation

As
an
example
of
curating
an
unstructured
source
of
corpus
data,
let’s
take
a
look
at
the
Europarl
Parallel
Corpus1
(Koehn,
2005).
This
corpus
contains
par-
allel
texts
(source
and
translated
documents)
from
the
European
Parliamen-
tary
proceedings
between
1996
and
2011
for
some
21
European
languages.

Let’s
assume
we
selected
this
corpus
because
we
are
interested
in
researching
Spanish
to
English
translations.
After
consulting
the
corpus
website,
down-
loading
the
archive
file,
and
inspecting
the
unarchived
structure,
we
have
the
file
structure
seen
in
Snippet
6.1.

1https://www.statmt.org/europarl/

https://www.statmt.org/europarl/

project/

├──
 process/

│
 ├──
 1-acquire-data.qmd

│
 ├──
 2-curate-data.qmd

│
 └──
 ...

├──
 data/

│
 ├──
 analysis/

│
 ├──
 derived/

│
 └──
 original/

│
 │──
 europarl_do.csv

│
 └──
 europarl/

│
 ├──
 europarl-v7.es-en.en

│
 └──
 europarl-v7.es-en.es

├──
 reports/

├──
 DESCRIPTION

├──
 Makefile

└──
 README

113
6.1.
 UNSTRUCTURED

Snippet
6.1.
 Project
directory
structure
for
the
Europarl
Parallel
Corpus

The
europarl_do.csv
file
contains
the
data
origin
information
documented
as
part
of
the
acquisition
process.
The
contents
are
seen
in
Table
6.1.

Table
6.1:
Data
origin:
Europarl
Corpus

attribute
 description

Resource
name

Data
source

Data
sampling
frame

Data
collection

date(s)

Data
format

Data
schema

License

Attribution

Europarl
Parallel
Corpus

https://www.statmt.org/europarl/

Spanish
transcripts
from
the
European
Parliament
proceedings

1996–2011

TXT
files
with
 ‘.es’
for
source
(Spanish)
and
 ‘.en’
for
target

(English)
files.

Line-by-line
unannotated
parallel
text

See:
https://www.europarl.europa.eu/legal-notice/en/

Please
cite
the
paper:
Koehn,
P.
2005.
 ‘Europarl:
A
Parallel

Corpus
for
Statistical
Machine
Translation.’
MT
Summit
X,

12–16.

Now
 let’s
get
 familiar
with
 the
corpus
directory
structure
and
 the
files.
 In
Snippet
6.1,
we
 see
 that
 there
are
 two
 corpus
files,
 europarl-v7.es-en.es
and

europarl-v7.es-en.en,
that
contain
the
source
and
target
language
texts,
respec-
tively.
The
file
names
indicate
that
the
files
contain
Spanish-English
parallel
texts.
The
.es
and
.en
extensions
indicate
the
language
of
the
text.

https://www.statmt.org/europarl/
https://www.europarl.europa.eu/legal-notice/en/
http:europarl-v7.es-en.es

114
 CHAPTER
6.
 CURATE

Looking
at
the
beginning
of
the
.es
and
.en
files,
in
Snippet
6.2
and
Snippet
6.3,
we
see
that
the
files
contain
a
series
of
lines
in
either
the
source
or
target
lan-
guage.

Snippet
6.2.
 europarl-v7.es-en.es
file

Reanudación
 del
 período
 de
 sesiones

Declaro
 reanudado
 el
 período
 de
 sesiones
 del
 Parlamento
 Europeo,

↪
 interrumpido
 el
 viernes
 17
 de
 diciembre
 pasado,
 y
 reitero
 a
 Sus
 Señorías
↪
 mi
 deseo
 de
 que
 hayan
 tenido
 unas
 buenas
 vacaciones.

Como
 todos
 han
 podido
 comprobar,
 el
 gran
 "efecto
 del
 año
 2000"
 no
 se
 ha

↪
 producido.
 En
 cambio,
 los
 ciudadanos
 de
 varios
 de
 nuestros
 países
 han
↪
 sido
 víctimas
 de
 catástrofes
 naturales
 verdaderamente
 terribles.

Sus
 Señorías
 han
 solicitado
 un
 debate
 sobre
 el
 tema
 para
 los
 próximos
 días,
↪
 en
 el
 curso
 de
 este
 período
 de
 sesiones.

A
 la
 espera
 de
 que
 se
 produzca,
 de
 acuerdo
 con
 muchos
 colegas
 que
 me
 lo
 han
↪
 pedido,
 pido
 que
 hagamos
 un
 minuto
 de
 silencio
 en
 memoria
 de
 todas
 las
↪
 víctimas
 de
 las
 tormentas,
 en
 los
 distintos
 países
 de
 la
 Unión
 Europea
↪
 afectados.

We
can
clearly
appreciate
that
the
data
 is
unstructured.
That
 is,
there
 is
no
explicit
metadata
associated
with
the
data.
The
data
is
just
a
series
of
character
strings
separated
by
 lines.
The
only
 information
that
we
can
surmise
from
structure
of
the
data
is
that
the
texts
are
line-aligned
and
that
the
data
in
each
file
corresponds
to
source
and
target
languages.

Snippet
6.3.
 europarl-v7.es-en.en
file

Resumption
 of
 the
 session

I
 declare
 resumed
 the
 session
 of
 the
 European
 Parliament
 adjourned
 on
 Friday
↪
 17
 December
 1999,
 and
 I
 would
 like
 once
 again
 to
 wish
 you
 a
 happy
 new
↪
 year
 in
 the
 hope
 that
 you
 enjoyed
 a
 pleasant
 festive
 period.

Although,
 as
 you
 will
 have
 seen,
 the
 dreaded
 'millennium
 bug'
 failed
 to

↪
 materialise,
 still
 the
 people
 in
 a
 number
 of
 countries
 suffered
 a
 series
↪
 of
 natural
 disasters
 that
 truly
 were
 dreadful.

You
 have
 requested
 a
 debate
 on
 this
 subject
 in
 the
 course
 of
 the
 next
 few
↪
 days,
 during
 this
 part-session.

In
 the
 meantime,
 I
 should
 like

to
 observe
 a
 minute'
 s
 silence,
 as
 a
 number
↪
 of
 Members
 have
 requested,
 on
 behalf
 of
 all
 the
 victims
 concerned,
↪
 particularly
 those
 of
 the
 terrible
 storms,
 in
 the
 various
 countries
 of
↪
 the
 European
 Union.

Now,
before
embarking
on
a
data
curation
process,
it
is
recommendable
to
de-
fine
the
structure
of
the
data
that
we
want
to
create.
I
call
this
the
“idealized

structure”
of
the
data.
For
a
curated
dataset,
we
want
to
reflect
the
contents
of
the
original
data,
yet
in
a
tidy
format,
to
maintain
the
integrity
of
and
con-
nection
with
the
data.

http:europarl-v7.es-en.en
http:europarl-v7.es-en.es

115
6.1.
 UNSTRUCTURED

Given
what
we
know
about
the
data,
we
can
define
the
idealized
structure
of
the
data
as
seen
in
Table
6.2.

Table
6.2:
Idealized
structure
for
the
curated
Europarl
Corpus
datasets

variable
 name
 type
 description

type

line

Document

type

Line

character

character

Contains
the
type
of
document,
either

‘Source’
or
 ‘Target’

Contains
the
text
of
each
 line
 in
the

document

Our
task
now
is
to
develop
code
that
will
read
the
original
data
and
render
the
idealized
structure
as
a
curated
dataset
for
each
corpus
file.
We
will
then
write
the
datasets
to
the
data/derived/
directory.
The
code
we
develop
will
be
added

to
the
2-curate-data.qmd
file.
And
finally,
the
datasets
will
be
documented
with

a
data
dictionary
file.

6.1.3
 Tidy
the
data

To
create
 the
 idealized
dataset
structure
 in
Table
6.2,
 let’s
start
by
 reading
the
files
by
 lines
 into
R.
As
 the
files
are
aligned
by
 lines,
we
will
use
 the

read_lines()
function
to
read
the
files
into
character
vectors.

Example
6.1.

1
 #
 Load
 package

2
 library(readr)

3

4
 #
 Read
 Europarl
 files
 .es
 and
 .en

5
 europarl_es_chr
 <-

6
 read_lines("../data/original/europarl-v7.es-en.es")

7

8
 europarl_en_chr
 <-

9
 read_lines("../data/original/europarl-v7.es-en.en")

Using
the
read_lines()
function,
we
read
each
line
of
the
files
into
a
character
vector.
Since
the
Europarl
corpus
is
a
parallel
corpus,
the
lines
in
the
source
and
 target
files
are
aligned.
This
means
 that
 the
first
 line
 in
 the
source
file
corresponds
to
the
first
line
in
the
target
file,
the
second
line
in
the
source
file
corresponds
to
the
second
line
in
the
target
file,
and
so
on.
This
alignment
is
important
for
the
analysis
of
parallel
corpora,
as
it
allows
us
to
compare
the
source
and
target
texts
line
by
line.

116
 CHAPTER
6.
 CURATE

Let’s
inspect
our
character
vectors
to
ensure
that
they
are
of
the
length
and
appear
to
be
structured
as
we
expect.
We
can
use
the
length()
function
to
get

the

head()

few
lines
of
each
file.

Example
6.2.

number of lines in each file and the function to preview the first

1
 #
 Inspect
 Spanish
 character
 vector

2
 length(europarl_es_chr)

[1]
 1965734

1
 head(europarl_es_chr,
 5)

[1]
 "Reanudación
 del
 período
 de
 sesiones"

[2]
 "Declaro
 reanudado
 el
 período
 de
 sesiones
 del
 Parlamento
 Europeo,
 interrumpido

el
 viernes
 17
 de
 diciembre
 pasado,
 y
 reitero
 a
 Sus
 Señorías
 mi
 deseo
 de
 que
 hayan

tenido
 unas
 buenas
 vacaciones."

[3]
 "Como
 todos
 han
 podido
 comprobar,
 el
 gran
 \"efecto
 del
 año
 2000\"
 no
 se
 ha

producido.
 En
 cambio,
 los
 ciudadanos
 de
 varios
 de
 nuestros
 países
 han
 sido
 víctimas

de
 catástrofes
 naturales
 verdaderamente
 terribles."

[4]
 "Sus
 Señorías
 han
 solicitado
 un
 debate
 sobre
 el
 tema
 para
 los
 próximos
 días,
 en

el
 curso
 de
 este
 período
 de
 sesiones."

[5]
 "A
 la
 espera
 de
 que
 se
 produzca,
 de
 acuerdo
 con
 muchos
 colegas
 que
 me
 lo
 han

pedido,
 pido
 que
 hagamos
 un
 minuto
 de
 silencio
 en
 memoria
 de
 todas
 las
 víctimas
 de

las
 tormentas,
 en
 los
 distintos
 países
 de
 la
 Unión
 Europea
 afectados."

1
 #
 Inspect
 English
 character
 vector

2
 length(europarl_en_chr)

[1]
 1965734

1
 head(europarl_en_chr,
 5)

[1]
 "Resumption
 of
 the
 session"

[2]
 "I
 declare
 resumed
 the
 session
 of
 the
 European
 Parliament
 adjourned
 on
 Friday

17
 December
 1999,
 and
 I
 would
 like
 once
 again
 to
 wish
 you
 a
 happy
 new
 year
 in
 the

hope
 that
 you
 enjoyed
 a
 pleasant
 festive
 period."

[3]
 "Although,
 as
 you
 will
 have
 seen,
 the
 dreaded
 'millennium
 bug'
 failed
 to

materialise,
 still
 the
 people
 in
 a
 number
 of
 countries
 suffered
 a
 series
 of
 natural

disasters
 that
 truly
 were
 dreadful."

[4]
 "You
 have
 requested
 a
 debate
 on
 this
 subject
 in
 the
 course
 of
 the
 next
 few

days,
 during
 this
 part-session."

[5]
 "In
 the
 meantime,
 I
 should
 like
 to
 observe
 a
 minute'
 s
 silence,
 as
 a
 number
 of

Members
 have
 requested,
 on
 behalf
 of
 all
 the
 victims
 concerned,
 particularly
 those

of
 the
 terrible
 storms,
 in
 the
 various
 countries
 of
 the
 European
 Union."

117
6.1.
 UNSTRUCTURED

The
output
of
Example
6.2
shows
that
the
number
of
lines
in
each
file
is
the
same.
This
is
good.
If
the
number
of
lines
in
each
file
was
different,
we
would
need
to
figure
out
why
and
fix
it.
We
also
see
that
the
content
of
the
files
is
aligned
as
expected.

Let’s
now
create
a
dataset
for
each
of
the
character
vectors.
We
will
use
the

tibble()
function
from
{tibble}
to
create
a
data
frame
object
with
the
character
vectors
as
the
line
column
and
add
a
type
column
with
the
value
‘Source’
for

the
Spanish
file
and
 ‘Target’
for
 the
English
file.
We
will
assign
 the
output
two
new
objects
europarl_source_df
 and
europarl_target_df,
respectively,
as

seen
in
Example
6.3.

Example
6.3.

1
 #
 Create
 source
 data
 frame

2
 europarl_source_df
 <-

3
 tibble(

4
 type
 =
 "Source",

5
 lines
 =
 europarl_es_chr

6
)

7
 #
 Create
 target
 data
 frame

8
 europarl_target_df
 <-

9
 tibble(

10
 type
 =
 "Target",

11
 lines
 =
 europarl_en_chr

12
)

Inspecting
these
data
frames
with
glimpse()
in
Example
6.4,
we
can
see
if
the

data
frames
have
the
structure
we
expect.

Example
6.4.

1
 #
 Preview
 source

2
 glimpse(europarl_source_df)

3

4
 #
 Preview
 target

5
 glimpse(europarl_target_df)

Rows:
 1,965,734

Columns:
 2

$
 type
 <chr>
 "Source",
 "Source",
 "Source",
 "Source",
 "Source",
 "Source",
 "Sou~

$
 lines
 <chr>
 "Reanudación
 del
 período
 de
 sesiones",
 "Declaro
 reanudado
 el
 per~

Rows:
 1,965,734

Columns:
 2

$
 type
 <chr>
 "Target",
 "Target",
 "Target",
 "Target",
 "Target",
 "Target",
 "Tar~

$
 lines
 <chr>
 "Resumption
 of
 the
 session",
 "I
 declare
 resumed
 the
 session
 of
 t~

118
 CHAPTER
6.
 CURATE

We
now
have
our
type
 and
lines
 columns
and
 the
associated
observations

for
our
 idealized
dataset,
 in
Table
6.2.
We
can
now
write
 these
datasets
 to
the
data/derived/
directory
using
write_csv()
 and
create
corresponding
data

dictionary
files.

6.2
 Structured

Structured
data
already
reflects
the
physical
and
semantic
structure
of
a
tidy
dataset.
This
means
that
the
data
 is
already
 in
a
tabular
format
and
the
re-
lationships
between
columns
and
rows
are
already
well-defined.
Therefore,
the
heavy
lifting
of
curating
the
data
is
already
done.
There
are
two
remain-
ing
questions,
however,
 that
need
 to
be
 taken
 into
account.
One,
 logistical
question,
is
what
file
format
the
dataset
is
in
and
how
to
read
it
into
R.
And
the
second,
more
research-based,
is
whether
the
data
may
benefit
from
some
additional
curation
and
documentation
to
make
it
more
amenable
to
analysis
and
more
understandable
to
others.

6.2.1
 Reading
datasets

Let’s
consider
some
common
formats
for
structured
data,
 i.e.
datasets,
and
how
 to
read
 them
 into
R.
First,
we
will
consider
R-native
formats,
such
as
package
datasets
and
RDS
files.
Then
will
consider
non-native
formats,
such
as
relational
databases
and
datasets
produced
by
other
software.
Finally,
we
will
consider
software
agnostic
formats,
such
as
CSV.

R
and
 some
R
packages
provide
 structured
datasets
 that
are
available
 for
use
directly
within
R.
For
example,
{languageR}
(Baayen
&
Shafaei-Bajestan,
2019)
provides
the
dative
dataset,
which
is
a
dataset
containing
the
realization
of
the
dative
as
NP
or
PP
in
the
Switchboard
corpus
and
the
Treebank
Wall
Street
Journal
collection.
{janeaustenr}
(Silge,
2022)
provides
the
austen_books

dataset,
which
 is
 a
dataset
 of
 Jane
Austen’s
novels.
Package
datasets
 are

loaded
 into
an
R
session
using
either
 the
data()
 function,
 if
 the
package
 is

loaded,
or
the
::
operator,
if
the
package
is
not
loaded,
data(dative)
or
lan-
guageR::dative,
respectively.

̪
Dive
deeper
To
explore
the
available
datasets
in
a
package,
you
can
use
the
data(package
 =

"package_name")
function.
For
example,
data(package
 =
 "languageR")
will
list
the

datasets
available
 in
 {languageR}.
You
can
also
explore
all
 the
datasets
avail-
able
in
the
loaded
packages
with
the
data()
 function
using
no
arguments.
For

example,
data().

119
6.2.
 STRUCTURED

R
also
provides
a
native
file
format
for
storing
R
objects,
the
RDS
file.
Any
R
object,
including
data
frames,
can
be
written
from
an
R
session
to
disk
by
using
the
write_rds()
function
from
readr.
The
.rds
files
will
be
written
to
disk

in
a
binary
format
that
is
not
human-readable,
which
is
not
ideal
for
transpar-
ent
data
sharing.
However,
the
files
and
the
R
objects
can
be
read
back
into
an
R
session
using
the
read_rds()
function
with
all
the
attributes
intact,
such

as
vector
types,
factor
levels,
etc.

R
provides
a
 suite
of
 tools
 for
 importing
data
 from
non-native
 structured
sources
 such
 as
databases
 and
datasets
 from
 software
 such
 as
 SPSS,
 SAS,
and
Stata.
For
instance,
if
you
are
working
with
data
stored
in
a
relational

database
such
as
MySQL,
PostgreSQL,
or
SQLite,
you
can
use
{DBI}
(R
Special
Interest
Group
on
Databases
(R-SIG-DB),
Wickham,
&
Müller,
2024)
to
con-
nect
to
the
database
and
{dbplyr}
(Wickham,
Girlich,
&
Ruiz,
2024)
to
query
the
database
using
the
SQL
language.
Files
from
SPSS
(.sav),
SAS
(.sas7bdat),

and
Stata
(.dta)
can
be
read
into
R
using
{haven}
(Wickham,
Miller,
&
Smith,

2023).

Software
agnostic
file
formats
include
delimited
files,
such
as
CSV,
TSV,
etc.

These
file
formats
lack
the
robust
structural
attributes
of
the
other
formats,
but
balance
this
shortcoming
by
storing
structured
data
in
more
accessible,
human-readable
format.
Delimited
files
are
plain
text
files
which
use
a
delim-
iter,
such
as
a
comma
(,),
tab
(\t),
or
pipe
(|),
to
separate
the
columns
and
rows.
For
example,
a
CSV
file
is
a
delimited
file
where
the
columns
and
rows
are
separated
by
commas,
as
seen
in
Example
6.5.

Example
6.5.

1
 column_1,column_2,column_3

2
 row
 1
 value
 1,row
 1
 value
 2,row
 1
 value
 3

3
 row
 2
 value
 1,row
 2
 value
 2,row
 2
 value
 3

Given
the
accessibility
of
delimited
files,
they
are
a
common
format
for
shar-
ing
structured
data
 in
reproducible
research.
It
is
not
surprising,
then,
that
this
is
the
format
which
we
have
chosen
for
the
derived
datasets
in
this
book.

6.2.2
 Orientation

With
an
understanding
of
the
various
structured
formats,
we
can
now
turn
to
considerations
about
how
the
original
dataset
is
structured
and
how
that
structure
is
to
be
used
for
a
given
research
project.
As
an
example,
we
will
work
with
the
CABNC
datasets
acquired
in
Chapter
5.
The
structure
of
the
original
dataset
is
shown
in
Snippet
6.4.

data/

├──
 analysis/

├──
 derived/

└──
 original/

├──
 cabnc_do.csv

└──
 cabnc/

├──
 participants.csv

├──
 token_types.csv

├──
 tokens.csv

├──
 transcripts.csv

└──
 utterances.csv

120
 CHAPTER
6.
 CURATE

Snippet
6.4.
 Directory
structure
for
the
CABNC
datasets

In
addition
to
other
important
information,
the
data
origin
file
cabnc_do.csv

shown
in
Table
6.3
informs
us
the
datasets
are
related
by
a
common
variable.

Table
6.3:
Data
origin:
CABNC
datasets

attribute

 description

Resource
name
 CABNC.

Data
source
 https://ca.talkbank.org/access/CABNC.html,

doi:10.21415/T55Q5R

Data
sampling
frame

 Over
400
British
English
speakers
from
across
the
UK
stratified

age,
gender,
social
group,
and
region,
and
recording
their

language
output
over
a
set
period
of
time.

Data
collection
 1992.date(s)

Data
format
 CSV
Files

Data
schema
 The
recordings
are
 linked
by
filename
 and
the
participants
are

linked
by
who.

License
 CC
BY
NC
SA
3.0

Attribution
 Saul
Albert,
Laura
E.
de
Ruiter,
and
J.P.
de
Ruiter
(2015)

CABNC:
the
Jeffersonian
transcription
of
the
Spoken
British

National
Corpus.
https://saulalbert.github.io/CABNC/.

The
CABNC
datasets
are
structured
in
a
relational
format,
which
means
that
the
data
is
stored
in
multiple
tables
that
are
related
to
each
other.
The
tables
are
related
by
a
common
column
or
set
of
columns,
which
are
called
keys. A

key
is
used
to
join
the
tables
together
to
create
a
single
dataset.
There
are
two
keys
in
the
CABNC
datasets,
filename
and
who.
Each
variable
corresponds
to
recording- and/
or
participant-oriented
datasets.

https://ca.talkbank.org/access/CABNC.html
https://doi.org/10.21415/T55Q5R
https://saulalbert.github.io/CABNC/

121
6.2.
 STRUCTURED

Now,
 let’s
 envision
 a
 scenario
 in
 which
 we
 are
 preparing
 our
 data
 for
a
 study
 that
 aims
 to
 investigate
 the
 relationship
 between
 speaker
 demo-
graphics
 and
 utterances.
 In
 their
 original
 format,
 the
 CABNC
 datasets

separate
 information
 about
 utterances
 and
 speakers
 in
 separate
 datasets,

cabnc_utterances
and
cabnc_participants,
respectively.
Ideally,
we
would
like
to
curate
these
datasets
such
that
the
information
about
the
utterances
and

the
speakers
are
ready
to
be
joined
as
part
of
the
dataset
transformation
pro-
cess,
while
still
retaining
the
relevant
original
structure.
This
usually
involves
removing
redundant
and/
or
uninformative
variables
and/
or
adjusting
vari-
able
names
and
writing
these
datasets
and
their
documentation
files
to
disk.

6.2.3
 Tidy
the
dataset

With
 these
goals
 in
mind,
 let’s
start
 the
process
of
curation
by
reading
 the
relevant
datasets
into
an
R
session.
Since
we
are
working
with
CSV
files
we
will
use
the
read_csv()
function,
as
seen
in
Example
6.6.

Example
6.6.

1
 #
 Read
 the
 relevant
 datasets

2
 cabnc_utterances
 <-

3
 read_csv("data/cabnc/original/utterances.csv")

4
 cabnc_participants
 <-

5
 read_csv("data/cabnc/original/participants.csv")

The
 next
 step
 is
 to
 inspect
 the
 structure
 of
 the
 datasets.
We
 can
 use
 the

glimpse()
function
for
this
task.

Example
6.7.

1
 #Preview
 the
 structure
 of
 the
 datasets

2
 glimpse(cabnc_utterances)

3
 glimpse(cabnc_participants)

Rows:
 235,901

Columns:
 10

$
 filename
 <chr>
 "KB0RE000",
 "KB0RE000",
 "KB0RE000",
 "KB0RE000",
 "KB0RE000",
 ~

$
 path
 <chr>
 "ca/CABNC/KB0/KB0RE000",
 "ca/CABNC/KB0/KB0RE000",
 "ca/CABNC/~

$
 utt_num
 <dbl>
 0,
 1,
 2,
 3,
 4,
 5,
 6,
 7,
 8,
 9,
 10,
 11,
 12,
 13,
 14,
 15,
 16,
 17~

$
 who
 <chr>
 "PS002",
 "PS006",
 "PS002",
 "PS006",
 "PS002",
 "PS006",
 "PS002~

$
 role
 <chr>
 "Unidentified",
 "Unidentified",
 "Unidentified",
 "Unidentifie~

$
 postcodes
 <lgl>
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 ~

$
 gems
 <lgl>
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 ~

$
 utterance
 <chr>
 "You
 enjoyed
 yourself
 in
 America",
 "Eh",
 "did
 you",
 "Oh
 I
 co~

$
 startTime
 <dbl>
 0.208,
 2.656,
 2.896,
 3.328,
 5.088,
 6.208,
 8.320,
 8.480,
 10.2~

$
 endTime
 <dbl>
 2.67,
 2.90,
 3.33,
 5.26,
 6.02,
 8.50,
 9.31,
 11.23,
 14.34,
 15.9~

122
 CHAPTER
6.
 CURATE

Rows:
 6,190

Columns:
 13

$
 filename
 <chr>
 "KB0RE004",
 "KB0RE004",
 "KB0RE004",
 "KB0RE006",
 "KB0RE006",
 ~

$
 path
 <chr>
 "ca/CABNC/0missing/KB0RE004",
 "ca/CABNC/0missing/KB0RE004",
 ~

$
 who
 <chr>
 "PS008",
 "PS009",
 "KB0PSUN",
 "PS007",
 "PS008",
 "PS009",
 "KB0~

$
 name
 <chr>
 "John",
 "Gethyn",
 "Unknown_speaker",
 "Alan",
 "John",
 "Gethyn~

$
 role
 <chr>
 "Unidentified",
 "Unidentified",
 "Unidentified",
 "Unidentifie~

$
 language
 <chr>
 "eng",
 "eng",
 "eng",
 "eng",
 "eng",
 "eng",
 "eng",
 "eng",
 "eng~

$
 monthage
 <dbl>
 481,
 481,
 13,
 949,
 481,
 481,
 13,
 637,
 565,
 13,
 637,
 565,
 13,~

$
 age
 <chr>
 "40;01.01",
 "40;01.01",
 "1;01.01",
 "79;01.01",
 "40;01.01",
 "~

$
 sex
 <chr>
 "male",
 "male",
 "male",
 "male",
 "male",
 "male",
 "male",
 "mal~

$
 numwords
 <dbl>
 28,
 360,
 156,
 1610,
 791,
 184,
 294,
 93,
 3,
 0,
 128,
 24,
 0,
 150~

$
 numutts
 <dbl>
 1,
 9,
 27,
 7,
 5,
 7,
 6,
 5,
 1,
 0,
 11,
 6,
 0,
 110,
 74,
 96,
 12,
 1,~

$
 avgutt
 <dbl>
 28.00,
 40.00,
 5.78,
 230.00,
 158.20,
 26.29,
 49.00,
 18.60,
 3.0~

$
 medianutt
 <dbl>
 28,
 39,
 5,
 84,
 64,
 9,
 3,
 15,
 3,
 0,
 9,
 3,
 0,
 7,
 6,
 4,
 3,
 12,
 ~

From
visual
inspection
of
the
output
of
Example
6.7
we
can
see
that
there
are
common
variables
in
both
datasets.
In
particular,
we
see
the
filename
and
who

variables
mentioned
in
the
data
origin
file
cabnc_do.csv.

The
next
step
is
to
consider
the
variables
that
will
be
useful
for
future
analy-
sis.
Since
we
are
creating
a
curated
dataset,
the
goal
will
be
to
retain
as
much
information
as
possible
from
the
original
datasets.
There
are
cases,
however,
in
which
there
may
be
variables
that
are
not
informative
and,
thus,
will
not
prove
useful
for
any
analysis.
These
removable
variables
tend
to
be
of
one
of
two
types:
variables
which
show
no
variation
across
observations
and
vari-
ables
where
the
information
is
redundant.

As
an
example
case,
let’s
look
at
the
cabnc_participants
data
frame.
We
can

use
the
skim()
function
from
{skimr}
to
get
a
summary
of
the
variables
in
the
dataset.
We
can
add
the
yank()
function
to
look
at
variable
types
one
at
a
time.
We
will
start
with
the
character
variables,
as
seen
in
Example
6.8.

Example
6.8.

1
 #
 Summarize
 character
 variables

2
 cabnc_participants
 |>

3
 skim()
 |>

4
 yank("character")

-- Variable
 type:
 character
 --

skim_variable
 n_missing
 complete_rate
 min
 max
 empty
 n_unique
 whitespace

1
 filename
 0
 1
 8
 8
 0
 2020
 0

2
 path
 0
 1
 21
 26
 0
 2020
 0

3
 who
 0
 1
 4
 7
 0
 581
 0

4
 name
 0
 1
 3
 25
 0
 269
 0

5
 role
 0
 1
 12
 12
 0
 1
 0

6
 language
 0
 1
 3
 3
 0
 1
 0

123
6.2.
 STRUCTURED

7 age
 0
 1 7 8 0
 83
 0

8 sex
 0
 1 4 6 0 2
 0

We
see
from
the
output
in
Example
6.8,
that
the
variables
role
and
language

have
 a
 single
unique
value.
This
means
 that
 these
variables
do
not
 show
any
variation
across
observations.
We
will
remove
these
variables
from
the
dataset.

Continuing
on,
let’s
look
for
redundant
variables.
We
see
that
the
variables

filename
and
path
have
the
same
number
of
unique
values.
And
if
we
combine
this
with
the
visual
summary
in
Example
6.7,
we
can
see
that
the
path
variable

is
redundant.
We
will
remove
this
variable
from
the
dataset.

Another
potentially
 redundant
 set
of
variables
are
 who
 and
 name
 —both
of

which
are
speaker
identifiers.
The
who
variable
is
a
unique
identifier,
but
there

may
be
some
redundancy
with
the
name
variable,
that
is,
there
may
be
two
speakers
with
the
same
name.
We
can
check
this
by
looking
at
the
number
of
unique
values
in
the
who
and
name
variables
from
the
skim()
output
in
Ex-
ample
6.8.
who
has
568
unique
values
and
name
has
269
unique
values.
This
suggests
that
there
are
multiple
speakers
with
the
same
name.

Another
way
to
explore
this
is
to
look
at
the
number
of
unique
values
in
the

who
variable
for
each
unique
value
in
the
name
variable.
We
can
do
this
using

the
group_by()
and
summarize()
functions
from
{dplyr}.
For
each
value
of
name,
we
will
count
the
number
of
unique
values
in
who
with
n_distinct()
and
then

sort
the
results
in
descending
order.

Example
6.9.

1
 cabnc_participants
 |>

2
 group_by(name)
 |>

3
 summarize(n
 =
 n_distinct(who))
 |>

4
 arrange(desc(n))
 |>

5
 slice_head(n
 =
 5)

#
 A
 tibble:
 5
 x
 2

name
 n

<chr>
 <int>

1
 None
 59

2
 Unknown_speaker
 59

3
 Group_of_unknown_speakers
 21

4
 Chris
 9

5
 David
 9

It
 is
good
 that
we
performed
 the
check
 in
Example
6.9
beforehand.
 In
ad-
dition
 to
 speakers
with
 the
 same
 name,
 such
 as
 ‘Chris’
 and
 ‘David’,
we

also
 have
multiple
 speakers
with
 generic
 codes,
 such
 as
 ‘None’
 and
 ‘Un-
known_speaker’.
It
is
clear
that
name
is
redundant.

124
 CHAPTER
6.
 CURATE

With
this
in
mind,
we
can
then
safely
remove
the
following
variables
from
the
dataset:
role,
language,
name,
and
path.
To
drop
variables
from
a
data
frame

we
can
use
the
select()
 function
in
combination
with
the
- operator.
The
-
operator
tells
the
select()
function
to
drop
the
variable
that
follows
it.

Example
6.10.

1
 #
 Drop
 variables

2
 cabnc_participants
 <-

3
 cabnc_participants
 |>

4
 select(-role,
 -language,
 -name,
 -path)

5

6
 #
 Preview
 the
 dataset

7
 glimpse(cabnc_participants)

Rows:
 6,190

Columns:
 9

$
 filename
 <chr>
 "KB0RE004",
 "KB0RE004",
 "KB0RE004",
 "KB0RE006",
 "KB0RE006",
 ~

$
 who
 <chr>
 "PS008",
 "PS009",
 "KB0PSUN",
 "PS007",
 "PS008",
 "PS009",
 "KB0~

$
 monthage
 <dbl>
 481,
 481,
 13,
 949,
 481,
 481,
 13,
 637,
 565,
 13,
 637,
 565,
 13,~

$
 age
 <chr>
 "40;01.01",
 "40;01.01",
 "1;01.01",
 "79;01.01",
 "40;01.01",
 "~

$
 sex
 <chr>
 "male",
 "male",
 "male",
 "male",
 "male",
 "male",
 "male",
 "mal~

$
 numwords
 <dbl>
 28,
 360,
 156,
 1610,
 791,
 184,
 294,
 93,
 3,
 0,
 128,
 24,
 0,
 150~

$
 numutts
 <dbl>
 1,
 9,
 27,
 7,
 5,
 7,
 6,
 5,
 1,
 0,
 11,
 6,
 0,
 110,
 74,
 96,
 12,
 1,~

$
 avgutt
 <dbl>
 28.00,
 40.00,
 5.78,
 230.00,
 158.20,
 26.29,
 49.00,
 18.60,
 3.0~

$
 medianutt
 <dbl>
 28,
 39,
 5,
 84,
 64,
 9,
 3,
 15,
 3,
 0,
 9,
 3,
 0,
 7,
 6,
 4,
 3,
 12,
 ~

Now
we
have
 a
 frame
with
 9
more
 informative
variables
which
describe

the
participants.
We
would
then
repeat
this
process
for
the
cabnc_utterances

dataset
to
remove
redundant
and
uninformative
variables.

Another,
optional
step,
is
to
rename
and/
or
organize
the
order
the
variables
to
make
the
dataset
more
understandable.
Let’s
organize
the
columns
to
read
left
 to
 right
 from
most
general
 to
most
specific.
Again,
we
 turn
 to
 the
se-
lect()
function,
this
time
including
the
variables
in
the
order
we
want
them
to
appear
in
the
dataset.
We
will
take
this
opportunity
to
rename
some
of
the
variable
names
so
that
they
are
more
informative.

Example
6.11.

1
 #
 Rename
 variables

2
 cabnc_participants
 <-

3
 cabnc_participants
 |>

4
 select(

5
 doc_id
 =
 filename,

6
 part_id
 =
 who,

7
 part_age
 =
 monthage,

125
6.2.
 STRUCTURED

8
 part_sex
 =
 sex,

9
 num_words
 =
 numwords,

10
 num_utts
 =
 numutts,

11
 avg_utt_len
 =
 avgutt,

12
 median_utt_len
 =
 medianutt

13
)

14

15
 #
 Preview
 the
 dataset

16
 glimpse(cabnc_participants)

Rows:
 6,190

Columns:
 8

$
 doc_id
 <chr>
 "KB0RE004",
 "KB0RE004",
 "KB0RE004",
 "KB0RE006",
 "KB0RE0~

$
 part_id
 <chr>
 "PS008",
 "PS009",
 "KB0PSUN",
 "PS007",
 "PS008",
 "PS009",~

$
 part_age
 <dbl>
 481,
 481,
 13,
 949,
 481,
 481,
 13,
 637,
 565,
 13,
 637,
 565~

$
 part_sex
 <chr>
 "male",
 "male",
 "male",
 "male",
 "male",
 "male",
 "male",~

$
 num_words
 <dbl>
 28,
 360,
 156,
 1610,
 791,
 184,
 294,
 93,
 3,
 0,
 128,
 24,
 0~

$
 num_utts
 <dbl>
 1,
 9,
 27,
 7,
 5,
 7,
 6,
 5,
 1,
 0,
 11,
 6,
 0,
 110,
 74,
 96,
 1~

$
 avg_utt_len
 <dbl>
 28.00,
 40.00,
 5.78,
 230.00,
 158.20,
 26.29,
 49.00,
 18.60~

$
 median_utt_len
 <dbl>
 28,
 39,
 5,
 84,
 64,
 9,
 3,
 15,
 3,
 0,
 9,
 3,
 0,
 7,
 6,
 4,
 3,~

The
variable
order
 is
organized
after
running
Example
6.11.
Now
 let’s
sort
the
rows
by
doc_id
and
part_id
so
that
the
dataset
is
sensibly
organized.
The

arrange()
function
takes
a
data
frame
and
a
list
of
variables
to
sort
by,
in
the
order
they
are
listed.

Example
6.12.

1
 #
 Sort
 rows

2
 cabnc_participants
 <-

3
 cabnc_participants
 |>

4
 arrange(doc_id,
 part_id)

5

6
 #
 Preview
 the
 dataset

7
 cabnc_participants
 |>

8
 slice_head(n
 =
 5)

#
 A
 tibble:
 5
 x
 8

doc_id
 part_id
 part_age
 part_sex
 num_words
 num_utts
 avg_utt_len
 median_utt_len

<chr>
 <chr>
 <dbl>
 <chr>
 <dbl>
 <dbl>
 <dbl>
 <dbl>

1
 KB0RE~
 KB0PSUN
 13
 male
 2
 2
 1
 1

2
 KB0RE~
 PS002
 721
 female
 759
 74
 10.3
 7

3
 KB0RE~
 PS006
 601
 male
 399
 64
 6.23
 5

4
 KB0RE~
 KB0PSUN
 13
 male
 7
 3
 2.33
 1

5
 KB0RE~
 PS005
 481
 female
 257
 32
 8.03
 8

126
 CHAPTER
6.
 CURATE

Applying
 the
 sorting
 in
Example
 6.12,
we
 can
 see
 that
 the
utterances
 are
now
our
desired
order,
a
dataset
 that
reads
 left
 to
right
 from
document
 to
participant-oriented
attributes
and
top
to
bottom
by
document
and
partici-
pant.

6.3
 Semi-structured

Between
unstructured
and
structured
data
falls
semi-structured
data.
And
as

the
name
suggests,
it
is
a
hybrid
data
format.
This
means
that
there
will
be
important
structured
metadata
included
with
unstructured
elements.
The
file
formats
and
approaches
to
encoding
the
structured
aspects
of
the
data
vary
widely
from
resource
to
resource
and
therefore
often
require
more
detailed
attention
 to
 the
structure
of
 the
data
and
often
 include
more
sophisticated
programming
strategies
to
curate
the
data
to
produce
a
tidy
dataset.

6.3.1
 Reading
data

The
file
formats
associated
with
semi-structured
data
include
a
wide
range.
These
include
file
formats
conducive
to
more
structured-leaning
data,
such
as
XML,
HTML,
and
JSON,
and
file
formats
with
more
unstructured-leaning
data,
such
as
annotated
TXT
files.
Annotated
TXT
files
may
 in
 fact
appear
with
the
.txt
extension,
but
may
also
appear
with
other,
sometimes
resource-
specific,
extensions,
such
as
.utt
for
the
Switchboard
Dialog
Act
Corpus
or
.cha

for
the
Child
Language
Data
Exchange
System
(CHILDES)
annotation
files,
for
example.

The
more
structured
file
formats
use
standard
conventions
and
therefore
can

be
 read
 into
an
R
session
with
 format-specific
 functions.
Say,
 for
example,
we
are
working
with
data
in
a
JSON
file
format.
We
can
read
the
data
into
an
R
session
with
the
read_json()
 function
from
{jsonlite}
(Ooms,
2023).
For
XML
and
HTML
files,
{rvest}
(Wickham,
2024)
provides
the
read_xml()
and

read_html()
functions.

Semi-structured
data
in
TXT
files
can
be
read
either
as
a
file
or
by
lines.
The
choice
of
which
approach
to
take
depends
on
the
structure
of
the
data.
If
the
data
structure
is
line-based,
then
read_lines()
often
makes
more
sense
than

read_file().
However,
 in
some
cases,
 the
data
may
be
structured
 in
a
way
that
requires
the
entire
file
to
be
read
into
an
R
session
and
then
subsequently
parsed.

data/

├──
 analysis/

├──
 derived/

└──
 original/

├──
 enntt_do.csv

└──
 enntt/

├──
 natives.dat

├──
 natives.tok

├──
 nonnatives.dat

├──
 nonnatives.tok

├──
 translations.dat

└──
 translations.tok

127
6.3.
 SEMI-STRUCTURED

6.3.2
 Orientation

To
provide
an
example
of
the
curation
process
using
semi-structured
data,
we
will
work
with
the
Europarl
corpus
of
native,
non-native
and
translated
texts
(ENNTT)
corpus
 (Nisioi,
Rabinovich,
Dinu,
&
Wintner,
2016).
The
ENNTT
corpus
contains
native
and
translated
English
drawn
from
European
Parlia-
ment
proceedings.
Let’s
look
at
the
directory
structure
for
the
ENNTT
corpus
in
Snippet
6.5.

Snippet
6.5.
 Data
directory
structure
for
the
ENNTT
corpus

We
now
 inspect
the
data
origin
file
for
 the
ENNTT
corpus,
enntt_do.csv,
 in

Table
6.4.

Table
6.4:
Data
origin:
ENNTT
Corpus

attribute

 description

Resource
name

 Europarl
corpus
of
Native,
Non-native
and
Translated
Texts
—

ENNTT

Data
source

 https://github.com/senisioi/enntt-release

Data
sampling
frame

 English,
European
Parliament
texts,
transcribed
discourse,

political
genre

Data
collection

 Not
specified
 in
the
repository

date(s)

Data
format

 .tok,
 .dat

Data
schema

 .tok
files
contain
the
actual
text;
 .dat
files
contain
the

annotations
corresponding
to
each
 line
 in
the
 .tok
files.

License

 Not
specified.
Contact
the
authors
for
more
 information.

Attribution

 Nisioi,
S.,
Rabinovich,
E.,
Dinu,
L.
P.,
&
Wintner,
S.
(2016).
A

corpus
of
native,
non-native
and
translated
texts.
Proceedings

of
the
Tenth
 International
Conference
on
Language
Resources

and
Evaluation
(LREC
2016).

https://github.com/senisioi/enntt-release

128
 CHAPTER
6.
 CURATE

According
to
the
data
origin
file,
there
are
two
important
file
types,
.dat
and

.tok.
The
.dat
files
contain
annotations
and
the
.tok
files
contain
the
actual
text.

Let’s

nonnatives.dat,
in
Snippet
6.6.

Snippet
6.6.
 Example
.dat
file
for
the
non-native
speakers

<LINE
 STATE="Poland"
 MEPID="96779"
 LANGUAGE="EN"
 NAME="Danuta
 Hübner,"
↪
 SEQ_SPEAKER_ID="184"
 SESSION_ID="ep-05-11-17"/>

<LINE
 STATE="Poland"
 MEPID="96779"
 LANGUAGE="EN"
 NAME="Danuta
 Hübner,"

↪
 SEQ_SPEAKER_ID="184"
 SESSION_ID="ep-05-11-17"/>

inspect the first couple of lines in the .dat file for the native speakers,

We
see
that
the
.dat
file
contains
annotations
for
various
session
and
speaker
attributes.
 The
 format
 of
 the
 annotations
 is
 XML-like.
 XML
 is
 a
 form
 of

markup
language,
such
as
YAML,
JSON,
etc.
Markup
languages
are
used
to

annotate
text
with
additional
information
about
the
structure,
meaning,
and/
or
presentation
of
text.
In
XML,
structure
is
built
up
by
nesting
of
nodes.
The
nodes
are
named
with
 tags,
which
are
enclosed
 in
angle
brackets,
<
 and
>.

Nodes
are
opened
with
<TAG>
and
closed
with
</TAG>.
In
Snippet
6.7
we
see
an

example
of
a
simple
XML
file
structure.

Snippet
6.7.
 Example
.xml
file
structure

<?xml
 version="1.0"
 encoding="UTF-8"?>

<book
 category="fiction">

<title
 lang="en">The
 Catcher
 in
 the
 Rye</title>

<author>J.D.
 Salinger</author>

<year>1951</year>

</book>

In
Snippet
6.7
there
are
four
nodes,
three
of
which
are
nested
inside
of
the

<book>
node.
The
<book>
node
in
this
example
is
the
root
node.
XML
files
re-
quire
a
 root
node.
Nodes
can
also
have
attributes,
such
as
 the
category
 at-
tribute
in
the
<book>
node,
but
they
are
not
required.
Furthermore,
XML
files
also
require
a
declaration,
which
is
the
first
line
in
Snippet
6.7.
The
declaration
specifies
the
version
of
XML
used
and
the
encoding.

So
the
.dat
file
is
not
strict
XML,
but
is
similar
in
that
it
contains
nodes
and
attributes.
An
XML
variant
you
are
 likely
 familiar
with,
HTML,
has
more
relaxed
rules
than
XML.
HTML
is
a
markup
language
used
to
annotate
text
with
information
about
the
organization
and
presentation
of
text
on
the
web
that
does
not
require
a
root
node
or
a
declaration
—much
like
our
.dat
file.
So

suffice
it
to
say
that
the
.dat
file
can
safely
be
treated
as
HTML.

And
the
.tok
file
for
native
speakers,
nonnatives.tok,
in
Snippet
6.8,
shows
the

actual
text
for
each
line
in
the
corpus.

129
6.3.
 SEMI-STRUCTURED

Snippet
6.8.
 Example
.tok
file
for
the
non-native
speakers

The
 Commission
 is
 following
 with
 interest
 the
 planned
 construction
 of
 a
↪
 nuclear
 power
 plant
 in
 Akkuyu
 ,
 Turkey
 and
 recognises
 the
 importance
 of
↪
 ensuring
 that
 the
 construction
 of
 the
 new
 plant
 follows
 the
 highest
↪
 internationally
 accepted
 nuclear
 safety
 standards
 .

According
 to
 our
 information
 ,
 the
 decision
 on
 the
 selection
 of
 a
 bidder
 has
↪
 not
 been
 taken
 yet
 .

In
a
study
in
which
we
are
interested
in
contrasting
the
language
of
natives
and
non-natives,
we
will
want
 to
 combine
 the
 .dat
and
 .tok
files
 for
 these

groups
of
speakers.

The
question
 is
what
attributes
we
want
 to
 include
 in
 the
curated
dataset.
Given
the
research
focus,
we
will
not
need
the
LANGUAGE
or
NAME
attributes.
We

may
want
to
modify
the
attribute
names
so
they
are
a
bit
more
descriptive.

An
idealized
version
of
the
curated
dataset
based
on
this
criteria
is
shown
in

Table
6.5.

Table
6.5:
Idealized
structure
for
the
curated
ENNTT
Corpus
datasets

variable
 name
 type
 description

session_id

speaker_id

state

type

Session
 ID

Speaker
 ID

State

Type

character

integer

character

character

Unique
 identifier
for
each
session.

Unique
 identifier
for
each
speaker.

The
political
state
of
the
speaker.

Indicates
whether
the
text
 is
native
or

non-native

session_seq

text

Session

Sequence

Text

integer

character

The
sequence
of
the
text
 in
the
session.

Contains
the
text
of
the
 line,
and

maintains
the
structure
of
the
original

data.

6.3.3
 Tidy
the
data

Now
that
we
have
a
better
understanding
of
the
corpus
data
and
our
target
curated
dataset
structure,
let’s
work
to
extract
and
organize
the
data
from
the
native
and
non-native
files.

The
general
approach
we
will
take
is,
for
native
and
then
non-natives,
to
read
in
the
.dat
file
as
an
HTML
file
and
then
extract
the
line
nodes
and
their
at-
tributes
combining
them
into
a
data
frame.
Then
we’ll
read
in
the
.tok
file
as

a
text
file
and
then
combine
the
two
into
a
single
data
frame.

Starting
with
 the
natives,
we
use
 {rvest}
 to
read
 in
 the
 .dat
file
as
an
XML

file
with
 the
read_html()
 function
and
 then
extract
 the
 line
nodes
with
 the

html_elements()
function
as
in
Example
6.13.

130
 CHAPTER
6.
 CURATE

Example
6.13.

1
 #
 Load
 packages

2
 library(rvest)

3

4
 #
 Read
 in
 .dat
 file
 as
 HTML

5
 ns_dat_lines
 <-

6
 read_html("../data/original/enntt/natives.dat")
 |>

7
 html_elements("line")

8

9
 #
 Inspect

10
 class(ns_dat_lines)

11
 typeof(ns_dat_lines)

12
 length(ns_dat_lines)

[1]
 "xml_nodeset"

[1]
 "list"

[1]
 116341

We
can
see
 that
 the
ns_dat_lines
 object
 is
a
special
 type
of
 list,
xml_nodeset

which
contains
116,341
line
nodes.
Let’s
now
jump
out
of
sequence
and
read
in
the
.tok
file
as
a
text
file,
in
Example
6.14,
again
by
lines
using
read_lines(),
and
compare
the
two
to
make
sure
that
our
approach
will
work.

Example
6.14.

1
 #
 Read
 in
 .tok
 file
 by
 lines

2
 ns_tok_lines
 <-

3
 read_lines("../data/enntt/original/natives.tok")

4

5
 #
 Inspect

6
 class(ns_tok_lines)

7
 typeof(ns_tok_lines)

8
 length(ns_tok_lines)

[1]
 "character"

[1]
 "character"

[1]
 116341

We
do,
in
fact,
have
the
same
number
of
lines
in
the
.dat
and
.tok
files.
So
we

can
proceed
with
extracting
the
attributes
from
the
line
nodes
and
combining
them
with
the
text
from
the
.tok
file.

Let’s
start
by
 listing
 the
attributes
of
 the
first
 line
node
 in
 the
ns_dat_lines

object.
To
do
this
we
will
draw
on
the
pluck()
function
from
{purrr}
(Wickham
&
Henry,
2023)
to
extract
the
first
line
node.
Then,
we
use
the
html_attrs()

function
to
get
the
attribute
names
and
the
values,
as
in
Example
6.15.

131
6.3.
 SEMI-STRUCTURED

Example
6.15.

1
 #
 Load
 package

2
 library(purrr)

3

4
 #
 List
 attributes
 line
 node
 1

5
 ns_dat_lines
 |>

6
 pluck(1)
 |>

7
 html_attrs()

state
 mepid
 language
 name

"United
 Kingdom"
 "2099"
 "EN"
 "Evans,
 Robert
 J"

seq_speaker_id
 session_id

"2"
 "ep-00-01-17"

No
surprise
here,
these
are
the
same
attributes
we
saw
in
the
.dat
file
preview
in
Snippet
6.6.
At
this
point,
it’s
good
to
make
a
plan
on
how
to
associate
the
attribute
names
with
the
column
names
in
our
curated
dataset.

•
 session_id
=
session_id

•
 speaker_id
=
MEPID

•
 state
=
state

•
 session_seq
=
seq_speaker_id

We
can
do
this
one
attribute
at
a
time
using
the
html_attr()
function
and
then

combine
them
into
a
data
frame
with
the
tibble()
function
as
in
Example
6.16.

Example
6.16.

1
 #
 Extract
 attributes
 from
 first
 line
 node

2
 session_id
 <- ns_dat_lines
 |>
 pluck(1)
 |>
 html_attr("session_id")

3
 speaker_id
 <- ns_dat_lines
 |>
 pluck(1)
 |>
 html_attr("mepid")

4
 state
 <- ns_dat_lines
 |>
 pluck(1)
 |>
 html_attr("state")

5
 session_seq
 <- ns_dat_lines
 |>
 pluck(1)
 |>
 html_attr("seq_speaker_id")

6

7
 #
 Combine
 into
 data
 frame

8
 tibble(session_id,
 speaker_id,
 state,
 session_seq)

#
 A
 tibble:
 1
 x
 4

session_id
 speaker_id
 state
 session_seq

<chr>
 <chr>
 <chr>
 <chr>

1
 ep-00-01-17
 2099
 United
 Kingdom
 2

The
results
from
Example
6.16
show
that
the
attributes
have
been
extracted
and
mapped
to
our
idealized
column
names,
but
this
would
be
tedious
to
do
for
each
line
node.
A
function
to
extract
attributes
and
values
from
a
line
and

add
them
to
a
data
frame
would
help
simplify
this
process.
The
function
in
Example
6.17
does
just
that.

132
 CHAPTER
6.
 CURATE

Example
6.17.

1
 #
 Function
 to
 extract
 attributes
 from
 line
 node

2
 extract_dat_attrs
 <- function(line_node)
 {

3
 session_id
 <- line_node
 |>
 html_attr("session_id")

4
 speaker_id
 <- line_node
 |>
 html_attr("mepid")

5
 state
 <- line_node
 |>
 html_attr("state")

6
 session_seq
 <- line_node
 |>
 html_attr("seq_speaker_id")

7

8
 tibble(session_id,
 speaker_id,
 state,
 session_seq)

9
 }

It’s
a
good
 idea
to
test
out
the
function
to
verify
that
 it
works
as
expected.
We
can
do
this
by
passing
the
various
indices
to
the
ns_dat_lines
object
to
the

function
as
in
Example
6.18.

Example
6.18.

1
 #
 Test
 function

2
 ns_dat_lines
 |>
 pluck(1)
 |>
 extract_dat_attrs()

3
 ns_dat_lines
 |>
 pluck(20)
 |>
 extract_dat_attrs()

4
 ns_dat_lines
 |>
 pluck(100)
 |>
 extract_dat_attrs()

#
 A
 tibble:
 1
 x
 4

session_id
 speaker_id
 state
 session_seq

<chr>
 <chr>
 <chr>
 <chr>

1
 ep-00-01-17
 2099
 United
 Kingdom
 2

#
 A
 tibble:
 1
 x
 4

session_id
 speaker_id
 state
 session_seq

<chr>
 <chr>
 <chr>
 <chr>

1
 ep-00-01-17
 1309
 United
 Kingdom
 40

#
 A
 tibble:
 1
 x
 4

session_id
 speaker_id
 state
 session_seq

<chr>
 <chr>
 <chr>
 <chr>

1
 ep-00-01-18
 4549
 United
 Kingdom
 28

It
 looks
 like
 the
extract_dat_attrs()
 function
 is
ready
 for
prime-time.
Let’s
now
 apply
 it
 to
 all
 of
 the
 line
 nodes
 in
 the
 ns_dat_lines
 object
using
 the

map_dfr()
function
from
{purrr}
as
in
Example
6.19.

Example
6.19.

1
 #
 Extract
 attributes
 from
 all
 line
 nodes

2
 ns_dat_attrs
 <-

3
 ns_dat_lines
 |>

4
 map_dfr(extract_dat_attrs)

5

133
6.3.
 SEMI-STRUCTURED

6
 #
 Inspect

7
 glimpse(ns_dat_attrs)

Rows:
 116,341

Columns:
 4

$
 session_id
 <chr>
 "ep-00-01-17",
 "ep-00-01-17",
 "ep-00-01-17",
 "ep-00-01-17"~

$
 speaker_id
 <chr>
 "2099",
 "2099",
 "2099",
 "4548",
 "4548",
 "4541",
 "4541",
 "4~

$
 state
 <chr>
 "United
 Kingdom",
 "United
 Kingdom",
 "United
 Kingdom",
 "Uni~

$
 session_seq
 <chr>
 "2",
 "2",
 "2",
 "4",
 "4",
 "12",
 "12",
 "12",
 "12",
 "12",
 "12~

̪
Dive
deeper
The
map*()
functions
from
{purrr}
are
a
family
of
functions
that
apply
a
function
to
each
element
of
a
vector,
list,
or
data
frame.
The
map_dfr()
function
is
a
variant

of
the
map()
function
that
returns
a
data
frame
that
is
the
result
of
row-binding
the
results,
hence
*_dfr.

We
can
see
that
the
ns_dat_attrs
object
is
a
data
frame
with
116,341
rows
and
4
columns,
just
has
we
expected.
We
can
now
combine
the
ns_dat_attrs
data

frame
with
the
ns_tok_lines
vector
to
create
a
single
data
frame
with
the
at-
tributes
and
the
text.
This
 is
done
with
the
mutate()
 function
assigning
the

ns_tok_lines
vector
to
a
new
column
named
text
as
in
Example
6.20.

Example
6.20.

1
 #
 Combine
 attributes
 and
 text

2
 ns_dat
 <-

3
 ns_dat_attrs
 |>

4
 mutate(text
 =
 ns_tok_lines)

5

6
 #
 Inspect

7
 glimpse(ns_dat)

Rows:
 116,341

Columns:
 5

$
 session_id
 <chr>
 "ep-00-01-17",
 "ep-00-01-17",
 "ep-00-01-17",
 "ep-00-01-17"~

$
 speaker_id
 <chr>
 "2099",
 "2099",
 "2099",
 "4548",
 "4548",
 "4541",
 "4541",
 "4~

$
 state
 <chr>
 "United
 Kingdom",
 "United
 Kingdom",
 "United
 Kingdom",
 "Uni~

$
 session_seq
 <chr>
 "2",
 "2",
 "2",
 "4",
 "4",
 "12",
 "12",
 "12",
 "12",
 "12",
 "12~

$
 text
 <chr>
 "You
 will
 be
 aware
 from
 the
 press
 and
 television
 that
 ther~

This
is
the
data
for
the
native
speakers.
We
can
now
repeat
this
process
for
the
non-native
speakers,
or
we
can
create
a
function
to
do
it
for
us.

134
 CHAPTER
6.
 CURATE

Ď
Consider
this

Using
 the
previous
code
as
a
guide,
consider
what
steps
you
would
need
 to
take
 to
create
a
 function
 to
combine
 the
 .dat
and
 .tok
files
 for
 the
non-native

speakers
(and/
or
the
translations).
What
arguments
would
the
function
take?
What
would
the
function
return?
What
would
the
processing
steps
be?
In
what
order
would
the
steps
be
executed?

After
applying
the
curation
steps
to
both
the
native
and
non-native
datasets,
we
will
 have
 two
 data
 frames,
 enntt_ns_df
 and
 enntt_nns_df,
 respectively
that
meet
the
idealized
structure
for
the
curated
ENNTT
Corpus
datasets,
as
shown
in
Table
6.5.
The
enntt_ns_df
and
enntt_nns_df
data
frames
are
ready
to

be
written
to
disk
and
documented.

6.4
 Documentation

After
applying
the
curation
steps
to
our
data,
we
will
now
want
to
write
the
dataset
to
disk
and
to
do
our
best
to
document
the
process
and
the
resulting
dataset.

Since
data
frames
are
a
tabular,
we
will
have
various
options
for
the
file
type
to
write.
Many
of
these
formats
are
software-specific,
such
as
*.xlsx
 for
Mi-
crosoft
Excel,
 *.sav
 for
SPSS,
 *.dta
 for
Stata,
and
 *.rds
 for
R.
We
will
use

the
*.csv
 format
since
it
is
a
common
format
that
can
be
read
by
many
soft-
ware
packages.
We
will
use
the
write_csv()
function
from
{readr}
to
write
the

dataset
to
disk.

Now
the
question
is
where
to
save
our
CSV
file.
Since
our
dataset
is
derived
by
our
work,
we
will
added
 it
 to
 the
derived/
directory.
If
you
are
working
with
multiple
data
sources
within
the
same
project,
it
is
a
good
idea
to
create
a
sub-directory
for
each
dataset.
This
will
help
keep
the
project
organized
and
make
it
easier
to
find
and
access
the
datasets.

The
final
step,
as
always,
is
to
provide
documentation.
For
datasets
the
doc-
umentation
is
a
data
dictionary,
as
discussed
in
Section
2.3.2.
As
with
data
origin
files,
you
can
use
spreadsheet
software
to
create
and
edit
the
data
dic-
tionary.

á
Tip
The
create_data_dictionary()
function
from
{qtkit}
provides
a
rudimentary
data
dictionary
template
by
default.
However,
the
model
argument
let’s
you
take
ad-
vantage
of
OpenAI’s
text
generation
models
to
generate
a
more
detailed
data
dictionary
for
you
to
edit.
See
the
function
documentation
for
more
information.

Activities
 135

In
{qtkit}
we
have
a
function,
create_data_dictionary()
that
will
generate
the
scaffolding
for
a
data
dictionary.
The
function
takes
two
arguments,
data
and

file_path.
It
reads
the
dataset
columns
and
provides
a
template
for
the
data
dictionary.

An
example
of
a
data
dictionary,
a
data
dictionary
for
the
enntt_ns_df
dataset

is
shown
in
Table
6.6.

Table
6.6:
Data
dictionary:
enntt_ns_df
dataset

variable
 name
 type
 description

session_id

speaker_id

state

Session
 ID

Speaker
 ID

State

categorical

categorical

categorical

Unique
 identifier
for
each
session

Unique
 identifier
for
each
speaker

Name
of
the
state
or
country
the
session
 is

linked
to

session_seq

text

type

Session

Sequence

Text

Type

ordinal

categorical

categorical

Sequence
number
 in
the
session

Text
transcript
of
the
session

The
type
of
the
speaker,
whether
native
or

nonnative

Activities

The
following
activities
build
on
your
skills
and
knowle
inspect,
and
write
data
and
datasets
 in
R.
 In
 these
activ

dge
to
use
R
to
read,
ities
you
will
have

an
opportunity
to
learn
and
apply
your
skills
and
knowledge
to
the
task
of
curating
datasets.
This
is
a
vital
component
of
text
analysis
research
that
uses
unstructured
and
semi-structured
data.

Ɗ
Recipe
What:
Organizing
and
documenting
datasets

How:
Read
Recipe
6,
complete
comprehension
check,
and
prepare
for
Lab
6.

Why:
To
 rehearse
methods
 for
deriving
 tidying
datasets
 to
use
 as
 the
 base
for
further
project-specific
purposes.
We
will
explore
how
regular
expressions
are
helpful
 in
developing
strategies
 for
matching,
extracting,
and/
or
replac-
ing
patterns
in
character
sequences
and
how
to
organize
datasets
in
rows
and
columns.
We
will
also
explore
how
to
document
datasets
in
a
data
dictionary.

136
 CHAPTER
6.
 CURATE

ð
Lab

What:
Taming
data

How:
Fork,
clone,
and
complete
the
steps
in
Lab
6.

Why:
To
gain
experience
working
with
coding
strategies
 to
manipulate
data
using
Tidyverse
functions
and
regular
expressions,
to
practice
reading/
writing
data
from/
to
disk,
and
to
implement
organizational
strategies
for
organizing
and
documenting
a
dataset
in
reproducible
fashion.

Summary

In
 this
chapter
we
 looked
at
 the
process
of
structuring
data
 into
a
dataset.
This
included
a
discussion
on
three
main
types
of
data
—unstructured,
struc-
tured,
and
semi-structured.
The
level
of
structure
of
the
original
data(set)
will
vary
from
resource
to
resource
and
by
the
same
token
so
will
the
file
format
used
to
support
the
level
of
metadata
included.
The
results
from
data
cura-
tion
results
in
a
dataset
that
is
saved
separate
from
the
original
data
in
order
to
maintain
modularity
between
what
 the
data(set)
 look
 like
before
we
 in-
tervene
and
afterwards.
Since
there
can
be
multiple
analysis
approaches
ap-
plied
to
the
original
data
in
a
research
project,
this
curated
dataset
serves
as
the
point
of
departure
for
each
of
the
subsequent
datasets
derived
from
the
transformational
steps.
In
addition
to
the
code
we
use
to
derive
the
curated
dataset’s
structure,
we
also
include
a
data
dictionary
which
documents
the
variables
and
measures
in
the
curated
dataset.

7

Transform

|
Outcomes

•
 Understand
the
role
of
data
transformation
in
a
text
analysis
project.
•
 Identify
the
main
types
of
transformations
used
to
prepare
datasets
for
anal-
ysis.

•
 Recognize
the
importance
of
planning
and
documenting
the
transformation

process.

In
this
chapter,
we
will
focus
on
transforming
curated
datasets
to
refine
and
possibly
expand
their
relational
characteristics
to
align
with
our
research.
I
will
approach
the
transformation
process
by
breaking
it
down
into
two
sub-
processes:
preparation
and
enrichment.
The
preparation
process
involves
nor-
malizing
and
 tokenizing
 text.
The
enrichment
process
 involves
generating,
recoding,
and
 integrating
variables.
These
processes
are
not
sequential
but
may
occur
in
any
order
based
on
the
researcher’s
evaluation
of
the
dataset
characteristics
and
the
desired
outcome.

ı
Lessons

What:
Reshape
Datasets
by
Rows,
Reshape
datasets
by
Columns

How:
In
an
R
console,
load
{swirl},
run
swirl(),
and
follow
prompts
to
select

the
lesson.

Why:
Explore
data
preprocessing
skills
 to
manipulate
rows
and
columns
us-
ing
powerful
packages
 like
 {dplyr}
and
 {tidytext}
 to
normalization,
 tokenize,
and
integrate
datasets
equipping
you
with
the
essential
techniques
to
structure
datasets
for
analysis.

7.1
 Preparation

In
this
section,
we
will
cover
the
processes
of
normalization
and
tokenization.
These
processes
are
particularly
relevant
for
text
analysis,
as
text
conventions
can
introduce
unwanted
variability
in
the
data
and,
therefore,
the
unit
of
ob-
servation
may
need
to
be
adjusted
to
align
with
the
research
question.

This
chapter
has
been
made
available
under
a
CC-BY-NC-ND
license.

137
DOI:
10.4324/9781003393764-10

138
 CHAPTER
7.
 TRANSFORM

To
illustrate
these
processes,
we
will
use
a
curated
version
of
the
Europarl
Par-
allel
Corpus
(Koehn,
2005).
This
dataset
contains
transcribed
source
language
(Spanish)
and
translated
target
language
(English)
from
the
proceedings
of
the
European
Parliament.
The
unit
of
observation
is
the
lines
variable
whose

values
are
lines
of
dialog.
We
will
use
this
dataset
to
explore
the
normalization
and
tokenization
processes.

The
contents
of
the
data
dictionary
for
this
dataset
appears
in
Table
7.1.

Table
7.1:
Data
dictionary
for
the
curated
Europarl
Parallel
Corpus.

variable
name
 type
 description

doc_id
 Document
 ID
 numeric
 Unique
 identification
number
for
each

document

type

line_id

lines

Document
Ty

Line
 ID

Lines

pe
 categorical
 Type
of
document;
either
 ‘Source’
(Spanish)

or
 ‘Target’
(English)

numeric
 Unique
 identification
number
for
each
 line
 in

each
document
type

categorical
 Content
of
the
 lines
 in
the
document

Let’s
read
in
the
dataset
CSV
file
with
read_csv()
and
inspect
the
first
lines
of

the
dataset
with
slice_head()
in
Example
7.1.

Example
7.1.

1
 #
 Read
 in
 the
 dataset

2
 europarl_tbl
 <-

3
 read_csv(file
 =
 "../data/derived/europarl_curated.csv")

4

5
 #
 Preview
 the
 first
 10
 lines

6
 europarl_tbl
 |>

7
 slice_head(n
 =
 10)

#
 A
 tibble:
 10
 x
 4

doc_id
 type
 line_id
 lines

<dbl>
 <chr>
 <dbl>
 <chr>

1
 1965735
 Source
 1
 "Reanudación
 del
 período
 de
 sesiones"

2
 1
 Target
 1
 "Resumption
 of
 the
 session"

3
 1965736
 Source
 2
 "Declaro
 reanudado
 el
 período
 de
 sesiones
 del
 Parlame~

4
 2
 Target
 2
 "I
 declare
 resumed
 the
 session
 of
 the
 European
 Parlia~

5
 1965737
 Source
 3
 "Como
 todos
 han
 podido
 comprobar,
 el
 gran
 \"efecto
 de~

6
 3
 Target
 3
 "Although,
 as
 you
 will
 have
 seen,
 the
 dreaded
 'millen~

7
 1965738
 Source
 4
 "Sus
 Señorías
 han
 solicitado
 un
 debate
 sobre
 el
 tema
 ~

8
 4
 Target
 4
 "You
 have
 requested
 a
 debate
 on
 this
 subject
 in
 the
 c~

9
 1965739
 Source
 5
 "A
 la
 espera
 de
 que
 se
 produzca,
 de
 acuerdo
 con
 mucho~

10
 5
 Target
 5
 "In
 the
 meantime,
 I
 should
 like
 to
 observe
 a
 minute'
 ~

139
7.1.
 PREPARATION

This
dataset
includes
3,931,468
observations
and
four
variables.
The
key
vari-
able
for
our
purposes
is
the
lines
variable.
This
variable
contains
the
text
we

will
be
working
with.
The
other
variables
are
metadata
that
may
be
of
interest
for
our
analyses.

7.1.1
 Normalization

The
process
of
normalizing
datasets
in
essence
is
to
sanitize
the
values
of
a
variable
or
set
of
variables
such
that
there
are
no
artifacts
that
will
contami-
nate
subsequent
processing.
It
may
be
the
case
that
non-linguistic
metadata
may
require
normalization,
but
more
often
than
not,
linguistic
information
is
the
most
common
target
for
normalization
as
text
often
includes
artifacts
from
the
acquisition
process
which
will
not
be
desired
in
the
analysis.

Simply
looking
at
the
first
10
lines
of
the
dataset
from
Example
7.1
gives
us
a
clearer
sense
of
 the
dataset
structure,
but,
 in
 terms
of
normalization
pro-
cedures
we
might
apply,
 it
 is
 likely
not
 sufficient.
We
want
 to
get
a
 sense
of
any
potential
inconsistencies
in
the
dataset,
in
particular
in
the
lines
vari-
able.
Since
this
is
a
large
dataset
with
3,931,468
observations,
we
will
need
to
explore
the
dataset
in
more
detail
using
procedures
for
summarizing
and
filtering
data.

After
exploring
variations
in
the
lines
variable,
I
identified
a
number
of
ar-
tifacts
in
this
dataset
that
we
will
want
to
consider
addressing.
These
are
in-
cluded
in
Table
7.2.

Table
7.2:
Characteristics
of
 the
Europarl
Parallel
Corpus
dataset
 that
may
require
normalization

Description
 Examples

Non-speech
annotations
 (Abucheos),
(A4-0247/98),
(The
 sitting
 was
 opened
 at

09:00)

Inconsistent
whitespace
(␣)
 5␣%␣,
␣,
Palacio'␣s

Non-sentence
punctuation
 -,
:,
...,
;

(Non-)Abbreviations
 Mr.,
Sr.,
Mme.,
Mr,
Sr,
Mme,
Mister,
Señor,
Madam

Text
case
 The,
the,
White,
white

These
artifacts
either
may
not
be
of
interest
or
may
introduce
unwanted
vari-
ability
that
could
prove
problematic
for
subsequent
processing
(e.g
tokeniza-
tion,
calculating
frequencies,
etc.).

The
majority
of
 text
normalization
procedures
 incorporate
 {stringr}
 (Wick-
ham,
2023b).
This
package
provides
a
number
of
 functions
 for
manipulat-
ing
text
strings.
The
workhorse
functions
we
will
use
for
our
tasks
are
the

str_remove()
and
str_replace()
functions.
These
functions
give
us
the
ability

140
 CHAPTER
7.
 TRANSFORM

to
remove
or
replace
text
based
on
literal
strings,
actual
text,
or
Regular
Ex-
pressions.
Regular
Expressions
 (regex,
pl.
regexes)
are
a
powerful
 tool
 for
pattern
matching
and
text
manipulation
which
employs
a
syntax
that
allows
for
the
specification
of
complex
search
patterns.

Our
first
step,
however,
is
to
identify
the
patterns
we
want
to
remove
or
re-
place.
For
demonstration
purposes,
let’s
focus
on
removing
non-speech
an-
notations
 from
 the
 lines
 variable.
To
develop
 a
 search
pattern
 to
 identify
these
annotations,
there
are
various
possibilities,
str_view(),
str_detect()
 in-
side
a
filter()
call,
or
str_extract()
 inside
a
mutate()
call.
No
matter
which

approach
we
choose,
we
need
to
be
sure
that
our
search
pattern
does
not
over-
or
under-generalize
the
text
we
want
to
remove
or
replace.
If
we
are
too
gen-
eral,
we
may
end
up
removing
or
replacing
text
that
we
want
to
keep.
If
we
are
too
specific,
we
may
not
remove
or
replace
all
the
text
we
want
to
remove
or
replace.

In
Example
7.2,
I’ve
used
str_detect()
which
detects
a
pattern
in
a
character

vector
and
returns
a
logical
vector,
TRUE
if
the
pattern
is
detected
and
FALSE
if
it

is
not.
In
combination
with
filter()
we
can
identify
a
variable
with
rows
that

match
a
pattern.
I’ve
added
the
slice_sample()
function
at
the
end
to
return
a

small,
random
sample
of
the
dataset
to
get
a
better
sense
how
well
our
pattern
works
across
the
dataset.

Now,
how
about
our
search
pattern?
From
the
examples
in
Table
7.2
above,
we
can
see
that
the
 instances
of
non-speech
are
wrapped
with
parentheses

(
and
).
The
text
within
the
parentheses
can
vary,
so
we
need
a
regex
to
do
the
heavy
lifting.
To
start
out
we
can
match
any
one
or
multiple
characters
with
.+.
But
it
is
important
to
recognize
the
+
 (and
also
the
*)
operators
are

‘greedy’,
meaning
 that
 if
 there
are
multiple
matches
 (in
 this
case
multiple
sets
of
parentheses)
in
a
single
line
of
text,
the
longest
match
will
be
returned.
That
is,
the
match
will
extend
as
far
as
possible.
This
is
not
what
we
want
in
this
case.
We
want
to
match
the
shortest
match.
To
do
this
we
can
append
the

?
operator
to
make
the
+
operator
‘lazy’.
This
will
match
the
shortest
match.

Example
7.2.

1
 #
 Load
 package

2
 library(stringr)

3

4
 #
 Identify
 non-speech
 lines

5
 europarl_tbl
 |>

6
 filter(str_detect(lines,
 "\\(.+?\\)"))
 |>

7
 slice_sample(n
 =
 10)

141
7.1.
 PREPARATION

#
 A
 tibble:
 10
 x
 4

doc_id
 type
 line_id
 lines

<dbl>
 <chr>
 <dbl>
 <chr>

1
 3225772
 Source
 1260038
 (PT)
 Señor
 Presidente,
 quisiera
 plantear
 dos
 pregunta~

2
 3715842
 Source
 1750108
 (El
 Parlamento
 decide
 la
 devolución
 a
 la
 Comisión)

3
 1961715
 Target
 1961715
 (Parliament
 adopted
 the
 resolution)

4
 1429470
 Target
 1429470
 27,
 originally
 Greens/EFA
 amendment
 in
 FEMM);
 binding~

5
 51632
 Target
 51632
 Question
 No
 8
 by
 (H-0376/00):

6
 2482671
 Source
 516937
 La
 Comisión
 propone
 proporcionar
 a
 las
 Agencias
 nacio~

7
 1059628
 Target
 1059628
 (The
 President
 cut
 off
 the
 speaker)

8
 1507254
 Target
 1507254
 in
 writing.
 - (LT)
 I
 welcomed
 this
 document,
 because
 ~

9
 2765325
 Source
 799591
 (Aplausos)

10
 2668536
 Source
 702802
 Las
 preguntas
 que,
 por
 falta
 de
 tiempo,
 no
 han
 rec~

The
results
from
Example
7.2
show
that
we
have
identified
the
lines
that
con-
tain
at
least
one
of
the
parliamentary
session
description
annotations.
A
more
targeted
search
to
identify
specific
instances
of
the
parliamentary
session
de-
scriptions
can
be
accomplished
adding
the
str_extract_all()
function
as
seen

in
Example
7.3.

Example
7.3.

1
 #
 Extract
 non-speech
 fragments

2
 europarl_tbl
 |>

3
 filter(str_detect(lines,
 "\\(.+?\\)"))
 |>

4
 mutate(non_speech
 =
 str_extract_all(lines,
 "\\(.+?\\)"))
 |>

5
 slice_sample(n
 =
 10)

#
 A
 tibble:
 10
 x
 5

doc_id
 type
 line_id
 lines
 non_speech

<dbl>
 <chr>
 <dbl>
 <chr>
 <list>

1
 3225772
 Source
 1260038
 (PT)
 Señor
 Presidente,
 quisiera
 plantear
 d~
 <chr
 [1]>

2
 3715842
 Source
 1750108
 (El
 Parlamento
 decide
 la
 devolución
 a
 la
 C~
 <chr
 [1]>

3
 1961715
 Target
 1961715
 (Parliament
 adopted
 the
 resolution)
 <chr
 [1]>

4
 1429470
 Target
 1429470
 27,
 originally
 Greens/EFA
 amendment
 in
 FEM~
 <chr
 [1]>

5
 51632
 Target
 51632
 Question
 No
 8
 by
 (H-0376/00):
 <chr
 [1]>

6
 2482671
 Source
 516937
 La
 Comisión
 propone
 proporcionar
 a
 las
 Age~
 <chr
 [2]>

7
 1059628
 Target
 1059628
 (The
 President
 cut
 off
 the
 speaker)
 <chr
 [1]>

8
 1507254
 Target
 1507254
 in
 writing.
 - (LT)
 I
 welcomed
 this
 documen~
 <chr
 [1]>

9
 2765325
 Source
 799591
 (Aplausos)
 <chr
 [1]>

10
 2668536
 Source
 702802
 Las
 preguntas
 que,
 por
 falta
 de
 tiempo,~
 <chr
 [1]>

OK,
that
might
not
be
what
you
expected.
The
str_extract_all()
function
re-
turns
a
 list
of
character
vectors.
This
 is
because
 for
any
given
 line
 in
lines

there
may
be
a
different
number
of
matches.
To
maintain
the
data
frame
as
rectangular,
a
list
is
returned
for
each
value
of
non_speech.
We
could
expand

the
list
into
a
data
frame
with
the
unnest()
function
if
our
goal
were
to
work
with
these
matches.
But
that
is
not
our
aim.
Rather,
we
want
to
know
if
we

142
 CHAPTER
7.
 TRANSFORM

have
multiple
matches
per
line.
Note
that
the
information
provided
for
the

non_speech
column
by
the
data
frame
object
tells
use
that
we
have
some
lines
with
multiple
matches,
as
we
can
see
in
line
6
of
our
small
sample.
So
good
thing
we
checked!

Let’s
now
remove
these
non-speech
annotations
from
each
line
in
the
lines

column.
We
turn
to
str_remove_all(),
a
variant
of
str_remove(),
that,
as
you
expect,
will
remove
multiple
matches
in
a
single
line.
We
will
use
the
mutate()

function
to
overwrite
the
lines
 column
with
the
modified
text.
The
code
is

seen
in
Example
7.4.

Example
7.4.

1
 #
 Remove
 non-speech
 fragments

2
 europarl_tbl
 <-

3
 europarl_tbl
 |>

4
 mutate(lines
 =
 str_remove_all(lines,
 "\\(.+?\\)"))

I
recommend
spot
checking
the
results
of
this
normalization
step
by
running
the
code
in
Example
7.2
again,
if
nothing
appears
we’ve
done
our
job.

When
you
are
content
with
the
results,
drop
the
observations
that
have
no
text
in
the
lines
column.
These
were
rows
where
the
entire
line
was
non-speech
annotation.
This
can
be
done
with
the
is.na()
function
and
the
filter()
func-
tion
as
seen
in
Example
7.5.

Example
7.5.

1
 #
 Drop
 empty
 lines

2
 europarl_tbl
 <-

3
 europarl_tbl
 |>

4
 filter(!is.na(lines))

Normalization
goals
will
vary
from
dataset
to
dataset
but
the
procedures
of-
ten
follow
a
similar
line
of
attack
to
those
outlined
in
this
section.

7.1.2
 Tokenization

Tokenization
is
the
process
of
segmenting
units
of
language
into
components
relevant
 for
 the
 research
 question.
This
 includes
 breaking
 text
 in
 curated
datasets
into
smaller
units,
such
as
words,
ngrams,
sentences,
etc.
or
combin-
ing
smaller
units
into
larger
units.

The
process
of
 tokenization
 is
 fundamentally
row-wise.
Changing
 the
unit
of
observation
changes
the
number
of
rows.
It
is
important
both
for
the
re-
search
and
the
text
processing
to
operationalize
our
 language
units
before-
hand
For
example,
while
it
may
appear
obvious
to
you
what
‘word’
or
‘sen-

143
7.1.
 PREPARATION

tence’
means,
a
computer,
and
your
reproducible
research,
needs
a
working
definition.
This
can
prove
trickier
than
it
seems.
For
example,
in
English,
we
can
segment
 text
 into
words
by
splitting
on
whitespace.
This
works
 fairly
well,
but
there
are
some
cases
where
this
is
not
ideal.
For
example,
in
the
case
of
contractions,
such
as
don't,
won't,
can't,
etc.
the
apostrophe
is
not
a
white-
space
character.
If
we
want
to
consider
these
contractions
as
separate
words,
then
perhaps
we
need
to
entertain
a
different
tokenization
strategy.

Ď
Consider
this

Consider
the
following
paragraph:

“As
the
sun
dipped
below
the
horizon,
the
sky
was
set
ablaze
with
shades
of
orange-red,
illuminating
the
landscape.
It’s
a
sight
Mr.
Johnson,
a
long-time
observer,
never
tired
of.
On
the
lakeside,
he’d
watch
with
friends,
enjoying
the
ever-changing
hues—especially
those
around
6:30
p.m.—and
reflecting
on
nature’s
grand
display.
Even
in
the
half-light,
the
water’s
glimmer,
cou-
pled
with
the
echo
of
distant
laughter,
created
a
timeless
scene.
The
so-called
‘magic
hour’
was
indeed
magical,
yet
fleeting,
like
a
well-crafted
poem;
it
was
the
essence
of
life
itself.”

What
 text
 conventions
would
pose
 issues
 for
word
 tokenization
based
on
a
whitespace
criterion?

Furthermore,
tokenization
strategies
can
vary
between
languages.
In
German,
for
example,
words
are
often
compounded
together,
meaning
many
‘words’
will
not
be
captured
by
the
whitespace
convention.
Whitespace
may
not
even
be
relevant
 for
word
 tokenization
 in
 logographic
writing
systems,
such
as
Chinese
characters.
The
take-home
message
is
there
is
no
one-size-fits-all
to-
kenization
strategy.

̪
Dive
deeper
For
processing
Chinese
 text,
 including
 tokenization,
see
 {jiebaR}
 (Wenfeng
&
Yanyi,
2019)
and
{gibasa}
(Kato,
Ichinose,
&
Kudo,
2024).

Let’s
continue
to
work
with
the
Europarl
Parallel
Corpus
dataset
to
demon-
strate
tokenization.
We
will
start
by
tokenizing
the
text
into
words.
If
we
en-
vision
what
this
should
look
like,
we
might
imagine
something
like
Table
7.3.

Table
7.3:
Example
of
tokenizing
the
lines
variable
into
word
tokens

doc_id
 type
 line_id
 token

1
 Target
 2
 I

1
 Target
 2
 declare

1
 Target
 2
 resumed

1
 Target
 2
 the

1
 Target
 2
 session

144
 CHAPTER
7.
 TRANSFORM

Comparing
Table
7.3
to
the
fourth
row
of
the
output
of
Example
7.1,
we
can
see
that
we
want
to
segment
the
words
in
lines
and
then
have
each
segment
appear
as
a
separate
observation,
retaining
the
relevant
metadata
variables.

Tokenization
that
maintains
the
tidy
dataset
structure
is
a
very
common
task
in
 text
 analysis
 using
R.
 So
 common,
 in
 fact,
 that
 {tidytext}
 (Robinson
&
Silge,
2024)
 includes
a
 function,
 unnest_tokens()
 that
 tokenizes
 text
 in
 just
such
a
way.
Various
tokenization
types
can
be
specified
including
‘characters’,
‘words’,
‘ngrams’,
‘sentences’
among
others.
We
will
use
the
‘word’
tokeniza-
tion
type
to
recreate
the
structure
we
envisioned
in
Table
7.3.

In
Example
7.6,
we
set
our
output
variable
to
token
and
our
input
variable
to

lines.

Example
7.6.

1
 #
 Load
 package

2
 library(tidytext)

3

4
 #
 Tokenize
 the
 lines
 into
 words

5
 europarl_unigrams_tbl
 <-

6
 europarl_tbl
 |>

7
 unnest_tokens(

8
 output
 =
 token,

9
 input
 =
 lines,

10
 token
 =
 "words"

11
)

Let’s
preview
the
very
same
lines
we
modeled
in
Table
7.3
to
see
the
results
of
our
tokenization.

Example
7.7.

1
 #
 Preview

2
 europarl_unigrams_tbl
 |>

3
 filter(type
 ==
 "Target",
 line_id
 ==
 2)
 |>

4
 slice_head(n
 =
 10)

#
 A
 tibble:
 10
 x
 4

doc_id
 type
 line_id
 token

<dbl>
 <chr>
 <dbl>
 <chr>

1
 2
 Target
 2
 i

2
 2
 Target
 2
 declare

3
 2
 Target
 2
 resumed

4
 2
 Target
 2
 the

5
 2
 Target
 2
 session

6
 2
 Target
 2
 of

7
 2
 Target
 2
 the

145
7.1.
 PREPARATION

8
 2
 Target
 2
 european

9
 2
 Target
 2
 parliament

10
 2
 Target
 2
 adjourned

In
Example
7.7,
the
token
column
now
contains
our
word
tokens.
One
thing
to
note,
however,
is
that
text
is
lowercased
and
punctuation
is
stripped
by
de-
fault.
If
we
want
to
retain
the
original
case
or
punctuation,
keep
the
original
variable,
or
 change
 the
 tokenization
 strategy,
we
 can
update
 the
 to_lower,

strip_punct,
drop,
or
token
parameters,
respectively.

As
we
derive
datasets
to
explore,
let’s
also
create
bigram
tokens.
We
can
do
this
by
changing
the
token
parameter
to
"ngrams"
and
specifying
the
value
for
𝑛
with
the
n
parameter.
I
will
assign
the
result
to
europarl_bigrams_tbl
as
we

will
have
two-word
tokens,
as
seen
in
Example
7.8.

Example
7.8.

1
 #
 Tokenize
 the
 lines
 into
 bigrams

2
 europarl_bigrams_tbl
 <-

3
 europarl_tbl
 |>

4
 unnest_tokens(

5
 output
 =
 token,

6
 input
 =
 lines,

7
 token
 =
 "ngrams",

8
 n = 2

9
)

10
 #
 Preview

11
 europarl_bigrams_tbl
 |>

12
 filter(type
 ==
 "Target",
 line_id
 ==
 2)
 |>

13
 slice_head(n
 =
 10)

#
 A
 tibble:
 10
 x
 4

doc_id
 type
 line_id
 token

<dbl>
 <chr>
 <dbl>
 <chr>

1
 2
 Target
 2
 i
 declare

2
 2
 Target
 2
 declare
 resumed

3
 2
 Target
 2
 resumed
 the

4
 2
 Target
 2
 the
 session

5
 2
 Target
 2
 session
 of

6
 2
 Target
 2
 of
 the

7
 2
 Target
 2
 the
 european

8
 2
 Target
 2
 european
 parliament

9
 2
 Target
 2
 parliament
 adjourned

10
 2
 Target
 2
 adjourned
 on

146
 CHAPTER
7.
 TRANSFORM

̪
Dive
deeper
{tidytext}
 is
 one
 of
 a
 number
 of
 packages
 that
 provide
 tokenization
 func-
tions.
 Some
 other
notable
packages
 include
 {tokenizers}
 (Mullen,
 2022)
 and
{textrecipes}
(Hvitfeldt,
2023).
In
fact,
the
functions
from
{tokenizers}
are
used
under
the
hood
in
{tidytext}.
{textrecipes}
is
part
of
the
Tidymodels
framework
and
is
designed
to
work
with
a
suite
of
packages
for
computational
modeling.
It
 is
particularly
useful
for
 integrating
 tokenization
with
other
preprocessing
steps
and
machine
learning
models,
as
we
will
see
in
Chapter
9.

The
most
common
tokenization
strategy
is
to
segment
text
into
smaller
units,
often
words.
However,
 there
are
 times
when
we
may
want
 text
 segments
to
be
 larger
 than
 the
 existing
 token
unit,
 effectively
 collapsing
over
 rows.
Let’s
 say
 that
we
 are
working
with
 a
 dataset
 like
 the
 one
we
 created
 in

europarl_unigrams_tbl
 and
we
want
 to
group
 the
words
 into
sentences.
We

can
again
turn
to
the
unnest_tokens()
 function
to
accomplish
this.
In
Exam-
ple
7.9,
we
use
the
token
 =
 "sentences"
and
collapse
 =
 c("type",
 "line_id")

parameters
to
group
the
words
into
sentences
by
the
type
and
line_id
vari-
ables.

Example
7.9.

1
 #
 Tokenize
 the
 lines
 into
 sentences

2
 europarl_sentences_tbl
 <-

3
 europarl_unigrams_tbl
 |>

4
 unnest_tokens(

5
 output
 =
 token,

6
 input
 =
 token,

7
 token
 =
 "sentences",

8
 collapse
 =
 c("type",
 "line_id")

9
)

10

11
 #
 Preview

12
 europarl_sentences_tbl
 |>

13
 slice_head(n
 =
 5)

#
 A
 tibble:
 5
 x
 3

type
 line_id
 token

<chr>
 <dbl>
 <chr>

1
 Source
 1
 reanudación
 del
 período
 de
 sesiones

2
 Target
 1
 resumption
 of
 the
 session

3
 Source
 2
 declaro
 reanudado
 el
 período
 de
 sesiones
 del
 parlamento
 europe~

4
 Target
 2
 i
 declare
 resumed
 the
 session
 of
 the
 european
 parliament
 adjou~

5
 Source
 3
 como
 todos
 han
 podido
 comprobar
 el
 gran
 efecto
 del
 año
 2000
 no~

147
7.2.
 ENRICHMENT

In
this
example,
we
have
collapsed
the
word
tokens
into
sentences.
But
note,
the
token
column
contained
no
punctuation
so
all
the
tokens
grouped
by
type

and
line_id
were
concatenated
 together.
This
works
 for
our
 test
dataset
as
lines
are
sentences.
However,
in
other
scenarios,
we
would
need
punctuation
to
ensure
that
the
sentences
are
properly
segmented
—if,
in
fact,
punctuation
is
the
cue
for
sentence
boundaries.

7.2
 Enrichment

Where
preparation
steps
are
focused
on
sanitizing
and
segmenting
the
text,
enrichment
steps
are
aimed
towards
augmenting
the
dataset
either
through
recoding,
generating,
or
integrating
variables.
These
processes
can
prove
in-
valuable
for
aligning
the
dataset
with
the
research
question
and
facilitating
the
analysis.

As
a
practical
example
of
these
types
of
transformations,
we’ll
posit
that
we
are
conducting
translation
research.
Specifically,
we
will
set
up
an
investiga-
tion
into
the
effect
of
translation
on
the
syntactic
simplification
of
text.
The
basic
notion
is
that
when
translators
translate
text
from
one
language
to
an-
other,
 they
subconsciously
simplify
 the
 text,
relative
 to
native
 texts
 (Liu
&
Afzaal,
2021).

To
address
this
research
question,
we
will
use
the
ENNTT
corpus,
introduced
in
Section
6.3.2.
This
data
contains
European
Parliament
proceedings
and
the
type
of
text
(native,
non-native,
or
translation)
from
which
the
text
was
ex-
tracted.
There
is
one
curated
dataset
for
each
of
the
text
types.

The
data
dictionary
for
the
curated
native
dataset
appears
in
Table
7.4.

Table
7.4:
Data
dictionary
for
the
curated
native
ENNTT
dataset.

variable
 name
 type
 description

session_id
 Session
 ID
 categorical
 Unique
 identifier
for
each
session

speaker_id
 Speaker
 ID
 categorical
 Unique
 identifier
for
each
speaker

state
 State
 categorical
 The
country
or
region
the
speaker
is
from

session_seq
 Session
Sequence
 ordinal
 The
order
 in
which
the
session
occurred

text
 Text
 categorical
 The
spoken
text
during
the
session

type
 Type
 categorical
 The
type
of
speaker.
Natives
 in
this

dataset.

All
three
curated
datasets
have
the
same
variables.
The
unit
of
observation

for
each
dataset
is
the
text
variable.

148
 CHAPTER
7.
 TRANSFORM

Before
we
get
started,
let’s
consider
what
the
transformed
dataset
might
look
like
and
what
its
variables
mean.
First,
we
will
need
to
operationalize
what
we
mean
by
syntactic
simplification
There
are
many
measures
of
syntactic
com-
plexity
(Szmrecsanyi,
2004).
For
our
purposes,
we
will
focus
on
two
measures
of
syntactic
complexity:
number
of
T-units
and
sentence
 length
 (in
words).
A
T-unit
is
a
main
clause
and
all
of
its
subordinate
clauses.
To
calculate
the

number
of
T-units,
we
will
need
to
identify
the
main
clauses
and
their
subor-
dinate
clauses.
The
sentence
length
is
straightforward
to
calculate
after
word
tokenization.

An
 idealized
 transformed
dataset
dictionary
 for
 this
 investigation
 should
look
something
like
Table
7.5.

Table
7.5:
Idealized
transformed
dataset
for
the
syntactic
simplification
inves-
tigation

variable
 name
 type
 description

doc_id
 Document
 ID
 integer
 Unique
 identifier
for
each
document.

type
 Type
 character
 Type
of
text
(native
or
translated).

t_units
 T-units
 integer
 Number
of
T-units
 in
the
text.

word_len
 Word
Length
 integer
 Number
of
words
 in
the
text.

We
will
be
using
the
native
and
translated
datasets
for
our
purposes,
so
let’s
go
ahead
and
read
in
these
datasets.

1
 #
 Read
 in
 curated
 natives

2
 enntt_natives_tbl
 <-

3
 read_csv("data/enntt_natives_curated.csv")

4

5
 #
 Read
 in
 curated
 translations

6
 enntt_translations_tbl
 <-

7
 read_csv("data/enntt_translations_curated.csv")

7.2.1
 Generation

The
process
of
generation
involves
the
addition
of
information
to
a
dataset.
This
differs
from
other
transformation
procedures
in
that
instead
of
manipu-
lating,
classifying,
and/
or
deriving
information
based
on
characteristics
ex-
plicit
 in
a
dataset,
generation
 involves
deriving
new
 information
based
on
characteristics
implicit
in
a
dataset.

149
7.2.
 ENRICHMENT

The
most
common
 type
of
operation
 involved
 in
 the
generation
process
 is
the
addition
of
linguistic
annotation.
This
process
can
be
accomplished
man-
ually
by
a
researcher
or
research
 team
or
automatically
 through
 the
use
of
pre-trained
linguistic
resources
and/
or
software.
Ideally,
the
annotation
of
linguistic
information
can
be
conducted
automatically.

To
identify
the
main
clauses
and
their
subordinate
clauses
in
our
datasets,
we
will
need
to
derive
syntactic
annotation
 information
from
the
ENNTT
text

variable.

As
fun
as
it
would
be
to
hand-annotate
the
ENNTT
corpus,
we
will
instead
turn
to
automatic
linguistic
annotation.
{udpipe}
(Wijffels,
2023)
provides
an
interface
for
annotating
text
using
pre-trained
models
from
the
Universal
De-
pendencies1
 (UD)
project
(Nivre
et
al.,
2020).
The
UD
project
is
an
effort
to
develop
cross-linguistically
consistent
syntactic
annotation
 for
a
variety
of
languages.

Our
first
 step,
 then,
 is
 to
peruse
 the
 available
pre-trained
models
 for
 the
languages
we
are
interested
in
and
selected
the
most
register-aligned
mod-
els.
The
models,
model
names,
and
licensing
information
are
documented
in
the
{udpipe}
documentation
for
the
udpipe_download_model()
 function.
For
il-
lustrative
purposes,
we
will
use
the
english
 treebank
model
from
the
https:

//github.com/bnosac/udpipe.models.ud
repository
which
is
released
under
a
CC-
BY-SA
 license2.
This
model
 is
 trained
 on
various
 sources
 including
news,
Wikipedia,
and
web
data
of
various
genres.

Let’s
set
the
stage
by
providing
an
overview
of
the
annotation
process.

1.

 Load
{udpipe}.

2.

 Select
 the
pre-trained
model
 to
use
and
 the
directory
where
 the

model
will
be
stored
in
your
local
environment.

3.

 Prepare
the
dataset
to
be
annotated
(if
necessary).
This
includes
en-

suring
that
the
dataset
has
a
column
of
text
to
be
annotated
and
a
grouping
column.
By
default,
the
names
of
these
columns
are
ex-
pected
to
be
text
and
doc_id,
respectively.
The
text
column
needs

to
be
a
character
vector
and
the
doc_id
column
needs
to
be
a
unique

index
for
each
text
to
be
annotated.

4.

 Annotate
the
dataset.
The
result
returns
a
data
frame.

1https://universaldependencies.org/

2https://creativecommons.org/licenses/by-sa/4.0/

https://github.com/bnosac/udpipe.models.ud
https://github.com/bnosac/udpipe.models.ud
https://universaldependencies.org/
https://creativecommons.org/licenses/by-sa/4.0/

150
 CHAPTER
7.
 TRANSFORM

Since
we
are
working
with
two
datasets,
steps
3
and
4
will
be
repeated.
For
brevity,
I
will
only
show
the
code
for
the
dataset
for
the
natives.
Additionally,
I
will
subset
the
dataset
to
10,000
randomly
selected
lines
for
both
datasets.
Syntactic
annotation
 is
a
computationally
expensive
operation
and
 the
na-
tives
and
translations
datasets
contain
116,341
and
738,597
observations,
re-
spectively.
This
subset
will
suffice
for
illustrative
purposes.

̪
Dive
deeper
In
your
own
research
computationally
expensive
operations
cannot
be
avoided,
but
 they
can
be
managed.
One
strategy
 is
 to
work
with
a
subset
of
 the
data
until
your
code
is
working
as
expected.
Once
you
are
confident
that
your
code
is
working
as
expected,
then
you
can
scale
up
to
the
full
dataset.
If
you
are
using
Quarto,
you
can
use
the
cache:
 true
metadata
field
in
your
code
blocks
to
cache
the
results
of
computationally
expensive
code
blocks.
This
will
allow
you
to
run
your
code
once
and
then
use
the
cached
results
for
subsequent
runs.
Parallel
processing
is
another
strategy
for
managing
computationally
expensive
code.
Some
packages,
such
as
{udpipe},
have
built-in
support
for
parallel
processing.
Other
packages,
such
as
{tidytext},
do
not.
In
these
cases,
you
can
use
{future}
(Bengtsson,
2024)
to
parallelize
your
code.

With
the
subsetted
enntt_natives_tbl
object,
let’s
execute
steps
1
through
4,
as

seen
in
Example
7.10.

Example
7.10.

1
 #
 Load
 package

2
 library(udpipe)

3

4
 #
 Model
 and
 directory

5
 model
 <- "english"

6
 model_dir
 <- "../data/"

7

8
 #
 Prepare
 the
 dataset
 to
 be
 annotated

9
 enntt_natives_prepped_tbl
 <-

10
 enntt_natives_tbl
 |>

11
 mutate(doc_id
 =
 row_number())
 |>

12
 select(doc_id,
 text)

13

14
 #
 Annotate
 the
 dataset

15
 enntt_natives_ann_tbl
 <-

16
 udpipe(

17
 x
 =
 enntt_natives_prepped_tbl,

18
 object
 =
 model,

19
 model_dir
 =
 model_dir

20
)
 |>

21
 tibble()

22

151
7.2.
 ENRICHMENT

23
 #
 Preview

24
 glimpse(enntt_natives_ann_tbl)

Rows:
 264,124

Columns:
 17

$
 doc_id
 <chr>
 "1",
 "1",
 "1",
 "1",
 "1",
 "1",
 "1",
 "1",
 "1",
 "1",
 "1",
 "~

$
 paragraph_id
 <int>
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,~

$
 sentence_id
 <int>
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,~

$
 sentence
 <chr>
 "It
 is
 extremely
 important
 that
 action
 is
 taken
 to
 ensur~

$
 start
 <int>
 1,
 4,
 7,
 17,
 27,
 32,
 39,
 42,
 48,
 51,
 58,
 63,
 66,
 73,
 77,~

$
 end
 <int>
 2,
 5,
 15,
 25,
 30,
 37,
 40,
 46,
 49,
 56,
 61,
 64,
 71,
 75,
 82~

$
 term_id
 <int>
 1,
 2,
 3,
 4,
 5,
 6,
 7,
 8,
 9,
 10,
 11,
 12,
 13,
 14,
 15,
 16,
 1~

$
 token_id
 <chr>
 "1",
 "2",
 "3",
 "4",
 "5",
 "6",
 "7",
 "8",
 "9",
 "10",
 "11",~

$
 token
 <chr>
 "It",
 "is",
 "extremely",
 "important",
 "that",
 "action",
 ~

$
 lemma
 <chr>
 "it",
 "be",
 "extremely",
 "important",
 "that",
 "action",
 ~

$
 upos
 <chr>
 "PRON",
 "AUX",
 "ADV",
 "ADJ",
 "SCONJ",
 "NOUN",
 "AUX",
 "VE~

$
 xpos
 <chr>
 "PRP",
 "VBZ",
 "RB",
 "JJ",
 "IN",
 "NN",
 "VBZ",
 "VBN",
 "TO"~

$
 feats
 <chr>
 "Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs"~

$
 head_token_id
 <chr>
 "4",
 "4",
 "4",
 "0",
 "8",
 "8",
 "8",
 "4",
 "10",
 "8",
 "13",~

$
 dep_rel
 <chr>
 "expl",
 "cop",
 "advmod",
 "root",
 "mark",
 "nsubj:pass",
 "~

$
 deps
 <chr>
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 ~

$
 misc
 <chr>
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 ~

There
is
quite
a
bit
of
information
which
is
returned
from
udpipe().
Note
that

the
 input
 lines
have
been
 tokenized
by
word.
Each
 token
 includes
 the
to-
ken,
lemma,
part
of
speech
(upos
and
xpos)3,
morphological
features
(feats),
and

syntactic
relationships
(head_token_id
and
dep_rel).
The
token_id
keeps
track

of
the
token’s
position
in
the
sentence
and
the
sentence_id
keeps
track
of
the

sentence’s
position
in
the
original
text.
Finally,
the
doc_id
column
and
its
val-
ues
correspond
to
the
doc_id
in
the
enntt_natives_tbl
dataset.

The
 number
 of
 variables
 in
 the
 udpipe()
 annotation
 output
 is
 quite
 over-
whelming.
However,
 these
attributes
come
 in
handy
 for
manipulating,
ex-
tracting,
and
plotting
information
based
on
lexical
and
syntactic
patterns.
See
the
dependency
tree
in
Figure
7.1
for
an
example
of
the
syntactic
information
that
can
be
extracted
from
the
udpipe()
annotation
output.

̪
Dive
deeper
The
plot
 in
Figure
7.1
was
created
using
 {rsyntax}
 (Welbers
&
van
Atteveldt,
2022).
In
addition
to
creating
dependency
tree
plots,
{rsyntax}
can
be
used
to
extract
syntactic
patterns
from
the
udpipe()
annotation
output.

3The
Universal
POS
tags
are
defined
by
the
Universal
Dependencies
project.
The
upos
tag
is
a

coarse-grained
POS
tag
and
the
xpos
(Penn)
tag
is
a
fine-grained
POS
tag.
For
more
information,
see
the
UD
Project
https://universaldependencies.org/u/pos/.

https://universaldependencies.org/u/pos/

152
 CHAPTER
7.
 TRANSFORM

1
 2
 3

4

5

6

7
 8

9

10

11

12
 13
 14

15

16

nsubj:pass
 aux:pass
 advmod

ROOT

case

obl

case
 det

obl

nsubj

acl:relcl

case
 det
 amod

obl

punct

It
 is
 now
 brought
 into
 line
 with
 the
 decision
 we
 took
 on
 the
 earlier
 amendment
 .

PRON
 AUX
 ADV
 VERB
 ADP
NOUN
ADP
DET
 NOUN
 PRON
 VERB
 ADP
DET
 ADJ
 NOUN
 PUNCT

Figure
 7.1:
Plot
of
 the
 syntactic
 tree
 for
 a
 sentence
 in
 the
ENNTT
natives
dataset

In
Figure
7.1
we
see
the
syntactic
tree
for
a
sentence
in
the
ENNTT
natives
dataset.
Each
node
 is
 labeled
with
 the
 token_id
 which
provides
 the
 linear

ordering
of
the
sentence.
Above
the
nodes
the
dep_relation,
or
dependency
relationship
label
is
provided.
These
labels
are
based
on
the
UD
project’s
de-
pendency
relations.
We
can
see
that
the
‘ROOT’
relation
is
at
the
top
of
the
tree
and
corresponds
to
the
verb
‘brought’.
‘ROOT’
relations
mark
predicates
in
the
sentence.
Not
seen
in
the
example
tree,
‘cop’
relation
is
a
copular,
or
non-
verbal
predicate
and
should
be
included.
These
are
the
key
syntactic
pattern
we
will
use
to
identify
main
clauses
for
T-units.

7.2.2
 Recoding

Recoding
processes
can
be
characterized
by
the
creation
of
structural
changes
which
are
derived
from
values
in
variables
effectively
recasting
values
as
new
variables
to
enable
more
direct
access
in
our
analyses.

153
7.2.
 ENRICHMENT

Specifically,
we
will
need
 to
 identify
and
count
 the
main
clauses
and
 their
subordinate
clauses
to
create
a
variable
t_units
 from
our
natives
and
trans-
lations
annotations
objects.
In
the
UD
project’s
listings,
the
relations
‘ccomp’
(clausal
complement),
‘xcomp’
(open
clausal
complement),
and
‘acl:relcl’
(rel-
ative
clause)
are
subordinate
clauses.
Furthermore,
we
will
also
need
to
count
the
number
of
words
in
each
sentence
to
create
a
variable
word_len.

To
calculate
T-units
and
words
per
sentence
we
turn
to
{dplyr}.
We
will
use
the

group_by()
 function
to
group
the
dataset
by
doc_id
and
sentence_id
and
then

use
the
summarize()
function
to
calculate
the
number
of
T-units
and
words
per
sentence,
where
a
T-unit
is
the
combination
of
the
sum
of
main
clauses
and
sum
of
subordinate
clauses.
The
code
is
seen
in
Example
7.11.

Example
7.11.

1
 #
 Calculate
 the
 number
 of
 T-units
 and
 words
 per
 sentence

2
 enntt_natives_syn_comp_tbl
 <-

3
 enntt_natives_ann_tbl
 |>

4
 group_by(doc_id,
 sentence_id)
 |>

5
 summarize(

6
 main_clauses
 =
 sum(dep_rel
 %in%
 c("ROOT",
 "cop")),

7
 subord_clauses
 =
 sum(dep_rel
 %in%
 c("ccomp",
 "xcomp",
 "acl:relcl")),

8
 t_units
 =
 main_clauses
 +
 subord_clauses,

9
 word_len
 =
 n()

10
)
 |>

11
 ungroup()

12

13
 #
 Preview

14
 glimpse(enntt_natives_syn_comp_tbl)

Rows:
 10,199

Columns:
 6

$
 doc_id
 <chr>
 "1",
 "10",
 "100",
 "1000",
 "10000",
 "1001",
 "1002",
 "100~

$
 sentence_id
 <int>
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1~

$
 main_clauses
 <int>
 1,
 0,
 0,
 0,
 2,
 0,
 0,
 1,
 1,
 0,
 1,
 1,
 1,
 0,
 2,
 0,
 1,
 1,
 1~

$
 subord_clauses
 <int>
 3,
 2,
 1,
 0,
 1,
 2,
 1,
 1,
 0,
 2,
 1,
 0,
 3,
 2,
 0,
 4,
 2,
 1,
 1~

$ t_units
 <int> 4, 2, 1, 0, 3, 2, 1, 2, 1, 2, 2, 1, 4, 2, 2, 4, 3, 2, 2~

$
 word_len
 <int>
 21,
 25,
 27,
 15,
 40,
 43,
 29,
 23,
 13,
 30,
 33,
 9,
 68,
 35,
 ~

A
quick
spot
check
of
some
sentences
calculations
enntt_natives_syn_comp_tbl

dataset
against
the
enntt_natives_ann_tbl
is
good
to
ensure
that
the
calculation
is
working
as
expected.
In
Figure
7.2
we
see
a
sentence
that
has
a
word
length
of
13
and
a
T-unit
value
of
5.

Now
we
can
drop
the
intermediate
columns
we
created
to
calculate
our
key
syntactic
complexity
measures
using
select()
 to
 indicate
 those
 that
we
do

want
to
keep,
as
seen
in
Example
7.12.

154
 CHAPTER
7.
 TRANSFORM

1
 2
 3

4

5
 6
 7

8

9

10

11

12

13

nsubj
 cop
 det

ROOT

obj
 nsubj
 aux

acl:relcl

mark

xcomp

xcomp

xcomp

punct

That
 is
 a
 post
 that
 we
 would
 like
 to
 have
 seen
 advertised
 .

Figure
7.2:
Sentence
with
a
word
length
of
13
and
a
T-unit
value
of
5

Example
7.12.

1
 #
 Select
 columns

2
 enntt_natives_syn_comp_tbl
 <-

3
 enntt_natives_syn_comp_tbl
 |>

4
 select(doc_id,
 sentence_id,
 t_units,
 word_len)

Now
we
can
repeat
the
process
for
the
ENNTT
translated
dataset.
I
will
as-
sign
the
result
to
enntt_translations_syn_comp_tbl.
The
next
step
is
to
join
the

sentences
 from
the
annotated
data
frames
into
our
datasets
so
that
we
have

the
information
we
set
out
to
generate
for
both
datasets.
Then,
we
will
com-
bine
the
native
and
translations
datasets
into
a
single
dataset.
These
steps
are
part
of
the
transformation
process
and
will
be
covered
in
the
next
section.

155
7.2.
 ENRICHMENT

7.2.3
 Integration

One
final
class
of
transformations
that
can
be
applied
to
curated
datasets
to
enhance
their
informativeness
for
a
research
project
is
the
process
of
integrat-
ing
two
or
more
datasets.
There
are
two
integration
types:
joins
and
concate-
nation.
Joins
can
be
row- or
column-wise
operations
that
combine
datasets
based
on
a
common
attribute
or
set
of
attributes.
Concatenation
is
exclusively
a
row-wise
operation
that
combines
datasets
that
share
the
same
attributes.

Of
the
two
types,
joins
are
the
most
powerful
and
sometimes
more
difficult
to
understand.
When
two
datasets
are
joined
at
least
one
common
variable
must
be
shared
between
the
two
datasets.
The
common
variable(s)
are
referred
to

as
keys.
The
keys
are
used
to
match
observations
in
one
dataset
with
obser-
vations
in
another
dataset
by
serving
as
an
index.

There
are
a
number
of
join
types.
The
most
common
are
left,
full,
semi,
and
anti.
The
type
of
 join
determines
which
observations
are
retained
in
the
re-
sulting
dataset.
Let’s
see
this
in
practice.
First,
let’s
create
two
datasets
to
join
with
a
common
variable
key,
as
seen
in
Example
7.13.

Example
7.13.

1
 a_tbl
 <-

2
 tibble(

3
 key
 =
 c(1,
 2,
 3,
 5,
 8),

4
 a
 =
 letters[1:5]

5
)

6

7
 a_tbl

8
 b_tbl
 <-

9
 tibble(

10
 key
 =
 c(1,
 2,
 4,
 6,
 8),

11
 b
 =
 letters[6:10]

12
)

13

14
 b_tbl

A tibble: 5
 x 2
 # A tibble: 5
 x 2

key a
 key b

<dbl>
 <chr>
 <dbl>
 <chr>

1 1 a
 1 1 f

2 2 b
 2 2 g

3 3 c
 3 4 h

4 5 d
 4 6 i

5 8 e
 5 8 j

156
 CHAPTER
7.
 TRANSFORM

The
a_tbl
and
the
b_tbl
datasets
share
the
key
variable,
but
the
values
in
the

key
variable
are
not
identical.
The
two
datasets
share
values
1,
2,
and
8.
The

a_tbl
dataset
has
values
3
and
5
in
the
key
variable
and
the
b_tbl
dataset
has

values
4
and
6
in
the
key
variable.

If
we
apply
a
 left
 join
 to
 the
a_tbl
 and
b_tbl
datasets,
 the
result
will
be
a
dataset
that
retains
all
of
the
observations
in
the
a_tbl
dataset
and
only
those

observations
in
the
b_tbl
dataset
that
have
a
match
in
the
a_tbl
dataset.
The

result
is
seen
in
Example
7.14.

Example
7.14.

1
 left_join(x
 =
 a_tbl,
 y
 =
 b_tbl,
 by
 =
 "key")

#
 A
 tibble:
 5
 x
 3

key a
 b

<dbl>
 <chr>
 <chr>

1
 1 a
 f

2
 2 b
 g

3
 3
 c
 <NA>

4
 5
 d
 <NA>

5
 8 e
 j

Now,
if
the
key
variable
has
the
same
name,
R
will
recognize
and
assume
that
this
is
the
variable
to
join
on
and
we
don’t
need
the
by
 =
argument,
but
if
there

are
multiple
potential
key
variables,
we
use
by
 =
to
specify
which
one
to
use.

A
full
join
retains
all
observations
in
both
datasets,
as
seen
in
Example
7.15.

Example
7.15.

1
 full_join(x
 =
 a_tbl,
 y
 =
 b_tbl)

#
 A
 tibble:
 7
 x
 3

key a
 b

<dbl>
 <chr>
 <chr>

1
 1 a
 f

2
 2 b
 g

3
 3
 c
 <NA>

4
 5
 d
 <NA>

5
 8 e
 j

6
 4
 <NA>
 h

7
 6
 <NA>
 i

Left
and
full
joins
maintain
or
increase
the
number
of
observations.
On
the
other
hand,
semi
and
anti
joins
aim
to
decrease
the
number
of
observations.
A
semi
join
retains
only
those
observations
in
the
left
dataset
that
have
a
match
in
the
right
dataset,
as
seen
in
Example
7.16.

157
7.2.
 ENRICHMENT

Example
7.16.

1
 semi_join(x
 =
 a_tbl,
 y
 =
 b_tbl)

#
 A
 tibble:
 3
 x
 2

key
 a

<dbl>
 <chr>

1
 1
 a

2
 2
 b

3
 8
 e

And
an
anti
join
retains
only
those
observations
in
the
left
dataset
that
do
not
have
a
match
in
the
right
dataset,
as
seen
in
Example
7.17.

Example
7.17.

1
 anti_join(x
 =
 a_tbl,
 y
 =
 b_tbl)

#
 A
 tibble:
 2
 x
 2

key
 a

<dbl>
 <chr>

1
 3 c

2
 5 d

Of
these
join
types,
the
left
join
and
the
anti
join
are
some
of
the
most
common
to
encounter
in
research
projects.

Ď
Consider
this

In
addition
to
datasets
that
are
part
of
an
acquired
resource
or
derived
from
a
corpus
resource,
there
are
also
a
number
of
datasets
that
are
 included
 in
R
packages
that
are
particularly
relevant
for
text
analysis.
For
example,
{tidytext}
includes
sentiments
 and
stop_words
datasets.
 {lexicon}
 (Rinker,
2019)
 includes
large
number
of
datasets
that
include
sentiment
lexicons,
stopword
lists,
con-
tractions,
and
more.

With
this
in
mind,
let’s
return
to
our
syntactic
simplification
investigation.
Re-
call
that
we
started
with
two
curated
ENNTT
datasets:
the
natives
and
trans-
lations.
We
manipulated
these
datasets
subsetting
them
to
10,000
randomly
selected
lines,
prepped
them
for
annotation
by
adding
a
doc_id
column
and

dropping
all
columns
except
text,
and
then
annotated
them
using
{udpipe}.
We
then
calculated
the
number
of
T-units
and
words
per
sentence
and
created
the
variables
t_units
and
word_len
for
each.

158
 CHAPTER
7.
 TRANSFORM

These
steps
produced
two
datasets
for
both
the
natives
and
for
the
transla-
tions.
The
first
dataset
for
each
is
the
annotated
data
frame.
The
second
is
the

data
 frame
with
 the
syntactic
complexity
measures
we
calculated.
The
en-
ntt_natives_ann_tbl
 and
enntt_translations_ann_tbl
 contain
 the
annotations

and
enntt_natives_syn_comp_tbl
and
enntt_translations_syn_comp_tbl
the
syn-
tactic
complexity
measures.
In
the
end,
we
want
a
dataset
that
take
the
form
in
Table
7.6.

Table
7.6:
Idealized
integrated
dataset
for
the
syntactic
simplification

doc_id
 type
 t_units
 word_len
 text

1
 natives
 1
 5
 I
am
happy
right
now.

2
 translation
 3
 11
 I
think
that
John
believes
that
Mary
 is

a
good
person.

To
create
this
unified
dataset,
we
will
need
to
apply
joins
and
concatenation.
First,
we
will
join
the
prepped
datasets
with
the
annotated
datasets.
Then,
we
will
concatenate
the
two
resulting
datasets.

Let’s
start
first
by
joining
the
annotated
datasets
with
the
datasets
with
the
syntactic
complexity
calculations.
In
these
joins,
we
can
see
that
the
prepped
and
calculated
datasets
share
a
couple
variables,
doc_id
and
sentence_id,
in

Example
7.18.

Example
7.18.

1
 #
 Preview
 datasets
 to
 join

2
 glimpse(enntt_natives_ann_tbl)

3
 glimpse(enntt_natives_syn_comp_tbl)

Rows:
 264,124

Columns:
 17

$
 doc_id
 <chr>
 "1",
 "1",
 "1",
 "1",
 "1",
 "1",
 "1",
 "1",
 "1",
 "1",
 "1",
 "~

$
 paragraph_id
 <int>
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,~

$
 sentence_id
 <int>
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,~

$
 sentence
 <chr>
 "It
 is
 extremely
 important
 that
 action
 is
 taken
 to
 ensur~

$
 start
 <int>
 1,
 4,
 7,
 17,
 27,
 32,
 39,
 42,
 48,
 51,
 58,
 63,
 66,
 73,
 77,~

$
 end
 <int>
 2,
 5,
 15,
 25,
 30,
 37,
 40,
 46,
 49,
 56,
 61,
 64,
 71,
 75,
 82~

$
 term_id
 <int>
 1,
 2,
 3,
 4,
 5,
 6,
 7,
 8,
 9,
 10,
 11,
 12,
 13,
 14,
 15,
 16,
 1~

$
 token_id
 <chr>
 "1",
 "2",
 "3",
 "4",
 "5",
 "6",
 "7",
 "8",
 "9",
 "10",
 "11",~

$
 token
 <chr>
 "It",
 "is",
 "extremely",
 "important",
 "that",
 "action",
 ~

$
 lemma
 <chr>
 "it",
 "be",
 "extremely",
 "important",
 "that",
 "action",
 ~

$
 upos
 <chr>
 "PRON",
 "AUX",
 "ADV",
 "ADJ",
 "SCONJ",
 "NOUN",
 "AUX",
 "VE~

$
 xpos
 <chr>
 "PRP",
 "VBZ",
 "RB",
 "JJ",
 "IN",
 "NN",
 "VBZ",
 "VBN",
 "TO"~

$
 feats
 <chr>
 "Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs"~

$
 head_token_id
 <chr>
 "4",
 "4",
 "4",
 "0",
 "8",
 "8",
 "8",
 "4",
 "10",
 "8",
 "13",~

159
7.2.
 ENRICHMENT

$
 dep_rel
 <chr>
 "expl",
 "cop",
 "advmod",
 "root",
 "mark",
 "nsubj:pass",
 "~

$
 deps
 <chr>
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 ~

$
 misc
 <chr>
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 NA,
 ~

Rows:
 10,199

Columns:
 4

$
 doc_id
 <chr>
 "1",
 "10",
 "100",
 "1000",
 "10000",
 "1001",
 "1002",
 "1003",~

$
 sentence_id
 <int>
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1~

$ t_units
 <int> 4, 2, 1, 0, 3, 2, 1, 2, 1, 2, 2, 1, 4, 2, 2, 4, 3, 2, 2, 1~

$
 word_len
 <int>
 21,
 25,
 27,
 15,
 40,
 43,
 29,
 23,
 13,
 30,
 33,
 9,
 68,
 35,
 16,~

The
doc_id
 and
sentence_id
variables
are
both
keys
 that
we
will
use
to
 join
the
datasets.
The
reason
being
that
if
we
only
use
one
of
the
two
we
will
not
align
the
two
datasets
at
the
sentence
level.
Only
the
combination
of
doc_id

and
sentence_id
isolates
the
sentences
for
which
we
have
syntactic
complexity

measures.

Beyond
having
a
common
variable
(or
variables
in
our
case),
we
must
also
ensure
that
join
key
variables
are
of
the
same
vector
type
in
both
data
frames
and
that
we
are
aware
of
any
differences
in
the
values.
From
the
output
in
Example
7.18,
we
can
see
that
the
doc_id
and
sentence_id
variables
aligned
in

terms
of
vector
type;
doc_id
is
character
and
sentence_id
is
integer
in
both
data
frames.
If
they
happened
not
to
be,
their
types
would
need
to
be
adjusted.

Now,
we
need
to
check
for
differences
in
the
values.
We
can
do
this
by
using
the
setequal()
function.
This
function
returns
TRUE
if
the
two
vectors
are
equal

and
FALSE
 if
they
are
not.
If
the
two
vectors
are
not
equal,
the
function
will
return
the
values
that
are
in
one
vector
but
not
the
other.
So
if
one
has
10001

and
the
other
doesn’t
we
will
get
FALSE.
Let’s
see
this
in
practice,
as
seen
in

Example
7.19.

Example
7.19.

1
 #
 Check
 for
 differences
 in
 the
 values

2
 setequal(

3
 enntt_natives_ann_tbl$doc_id,

4
 enntt_natives_syn_comp_tbl$doc_id

5
)

6

7
 setequal(

8
 enntt_natives_ann_tbl$sentence_id,

9
 enntt_natives_syn_comp_tbl$sentence_id

10
)

[1]
 TRUE

[1]
 TRUE

160
 CHAPTER
7.
 TRANSFORM

So
the
values
are
the
same.
The
final
check
is
to
see
if
the
vectors
are
of
the

same
 length.
We
know
 the
values
are
 the
same,
but
we
don’t
know
 if
 the
values
are
repeated.
We
do
this
by
simply
comparing
the
length
of
the
vectors,
as
seen
in
Example
7.20.

Example
7.20.

1
 #
 Check
 for
 differences
 in
 the
 length

2
 length(enntt_natives_ann_tbl$doc_id)
 ==

3
 length(enntt_natives_syn_comp_tbl$doc_id)

4

5
 length(enntt_natives_ann_tbl$sentence_id)
 ==

6
 length(enntt_natives_syn_comp_tbl$sentence_id)

[1]
 FALSE

[1]
 FALSE

So
they
are
not
the
same
length.
Using
the
nrow()
function,
I
can
see
that
the
an-
notated
dataset
has
264,124
observations
and
the
calculated
dataset
has
10,199
observations.
The
annotation
data
frames
will
have
many
more
observations
due
to
the
fact
that
the
unit
of
observations
is
word
tokens.
The
recoded
syn-
tactic
complexity
data
frames’
unit
of
observation
is
the
sentence.

To
appreciate
the
difference
in
the
number
of
observations,
let’s
look
at
the
first
10
observations
of
the
natives
annotated
frame
for
 just
the
columns
of
interest,
as
seen
in
Example
7.21.

Example
7.21.

1
 #
 Preview
 the
 annotated
 dataset

2
 enntt_natives_ann_tbl
 |>

3
 select(doc_id,
 sentence_id,
 sentence,
 token)
 |>

4
 slice_head(n
 =
 10)

#
 A
 tibble:
 10
 x
 4

doc_id
 sentence_id
 sentence
 token

<chr>
 <int>
 <chr>
 <chr>

1
 1
 1
 It
 is
 extremely
 important
 that
 action
 is
 taken
 to
 e~
 It

2
 1
 1
 It
 is
 extremely
 important
 that
 action
 is
 taken
 to
 e~
 is

3
 1
 1
 It
 is
 extremely
 important
 that
 action
 is
 taken
 to
 e~
 extr~

4
 1
 1
 It
 is
 extremely
 important
 that
 action
 is
 taken
 to
 e~
 impo~

5
 1
 1
 It
 is
 extremely
 important
 that
 action
 is
 taken
 to
 e~
 that

6
 1
 1
 It
 is
 extremely
 important
 that
 action
 is
 taken
 to
 e~
 acti~

7
 1
 1
 It
 is
 extremely
 important
 that
 action
 is
 taken
 to
 e~
 is

8
 1
 1
 It
 is
 extremely
 important
 that
 action
 is
 taken
 to
 e~
 taken

9
 1
 1
 It
 is
 extremely
 important
 that
 action
 is
 taken
 to
 e~
 to

10
 1
 1
 It
 is
 extremely
 important
 that
 action
 is
 taken
 to
 e~
 ensu~

161
7.2.
 ENRICHMENT

The
annotated
data
frames
have
a
lot
of
redundancy
in
for
the
join
variables
and
the
sentence
variable
that
we
want
to
add
to
the
calculated
data
frames.

We
can
reduce
the
redundancy
by
using
the
distinct()
function
from
{dplyr}.

In
this
case
we
want
all
observations
where
doc_id,
sentence_id
and
sentence

are
distinct.
We
then
select
these
variables
with
distinct(),
as
seen
in
Exam-
ple
7.22.

Example
7.22.

1
 #
 Reduce
 annotated
 data
 frames
 to
 unique
 sentences

2
 enntt_natives_ann_distinct
 <-

3
 enntt_natives_ann_tbl
 |>

4
 distinct(doc_id,
 sentence_id,
 sentence)

5

6
 enntt_translations_ann_distinct
 <-

7
 enntt_translations_ann_tbl
 |>

8
 distinct(doc_id,
 sentence_id,
 sentence)

We
 now
 have
 two
 datasets
 that
 are
 ready
 to
 be
 joined
with
 the
 recoded
datasets.
The
next
step
 is
to
 join
the
two.
We
will
employ
a
 left
 join
where
the
syntactic
complexity
data
frames
are
on
the
left
and
the
join
variables
will
be
both
the
doc_id
and
sentence_id
variables.
The
code
is
seen
in
Examples
7.23

and
7.24.

Example
7.23.

1
 #
 Join
 the
 native
 datasets

2
 enntt_natives_transformed_tbl
 <-

3
 left_join(

4
 x
 =
 enntt_natives_syn_comp_tbl,

5
 y
 =
 enntt_natives_ann_distinct,

6
 by
 =
 c("doc_id",
 "sentence_id")

7
)

8

9
 #
 Preview

10
 glimpse(enntt_natives_transformed_tbl)

Rows:
 10,199

Columns:
 5

$
 doc_id
 <chr>
 "1",
 "10",
 "100",
 "1000",
 "10000",
 "1001",
 "1002",
 "1003",~

$
 sentence_id
 <int>
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1~

$ t_units
 <int> 4, 2, 1, 0, 3, 2, 1, 2, 1, 2, 2, 1, 4, 2, 2, 4, 3, 2, 2, 1~

$
 word_len
 <int>
 21,
 25,
 27,
 15,
 40,
 43,
 29,
 23,
 13,
 30,
 33,
 9,
 68,
 35,
 16,~

$
 sentence
 <chr>
 "It
 is
 extremely
 important
 that
 action
 is
 taken
 to
 ensure
 ~

162
 CHAPTER
7.
 TRANSFORM

Example
7.24.

1
 #
 Join
 the
 translations
 datasets

2
 enntt_translations_transformed_tbl
 <-

3
 left_join(

4
 x
 =
 enntt_translations_syn_comp_tbl,

5
 y
 =
 enntt_translations_ann_distinct,

6
 by
 =
 c("doc_id",
 "sentence_id")

7
)

8

9
 #
 Preview

10
 glimpse(enntt_translations_transformed_tbl)

Rows:
 10,392

Columns:
 5

$
 doc_id
 <chr>
 "1",
 "10",
 "100",
 "1000",
 "10000",
 "1001",
 "1002",
 "1003",~

$
 sentence_id
 <int>
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1,
 1~

$ t_units
 <int> 0, 2, 0, 1, 3, 0, 3, 2, 3, 3, 2, 0, 1, 0, 3, 1, 0, 1, 2, 2~

$
 word_len
 <int>
 24,
 31,
 5,
 39,
 44,
 26,
 67,
 23,
 46,
 28,
 24,
 68,
 19,
 18,
 36,~

$
 sentence
 <chr>
 "To
 my
 great
 surprise
 ,
 on
 leaving
 the
 sitting
 ,
 I
 found
 t~

The
two
data
frames
now
have
the
same
columns
and
we
are
closer
to
our

final
dataset.
The
next
step
is
to
move
toward
concatenating
the
two
datasets.
Before
we
do
that,
we
need
to
do
some
preparation.
First,
and
most
impor-
tant,
we
need
to
add
a
type
column
to
each
dataset.
This
column
will
indicate

whether
the
sentence
is
a
native
or
a
translation.
The
second
is
that
our
doc_id

does
not
serve
as
a
unique
identifier
for
the
sentences.
Only
in
combination
with
sentence_id
can
we
uniquely
identify
a
sentence.

So
our
plan
will
be
to
add
a
type
column
to
each
dataset
specifying
the
values
for
all
the
observations
in
the
respective
dataset.
Then
we
will
concatenate
the
two
datasets.
Note,
if
we
combine
them
before,
distinguishing
the
type
will
be
more
difficult.
After
we
concatenate
the
two
datasets,
we
will
add
a
doc_id

column
that
will
serve
as
a
unique
identifier
for
the
sentences
and
drop
the

sentence_id
column.
OK,
that’s
the
plan.
Let’s
execute
it
in
Example
7.25.

Example
7.25.

1
 #
 Add
 a
 type
 column

2
 enntt_natives_transformed_tbl
 <-

3
 enntt_natives_transformed_tbl
 |>

4
 mutate(type
 =
 "natives")

5

6
 enntt_translations_transformed_tbl
 <-

7
 enntt_translations_transformed_tbl
 |>

8
 mutate(type
 =
 "translations")

9

Activities
 163

10
 #
 Concatenate
 the
 datasets

11
 enntt_transformed_tbl
 <-

12
 bind_rows(

13
 enntt_natives_transformed_tbl,

14
 enntt_translations_transformed_tbl

15
)

16

17
 #
 Overwrite
 the
 doc_id
 column
 with
 a
 unique
 identifier

18
 enntt_transformed_tbl
 <-

19
 enntt_transformed_tbl
 |>

20
 mutate(doc_id
 =
 row_number())
 |>

21
 select(doc_id,
 type,
 t_units,
 word_len,
 text
 =
 sentence)

22

23
 #
 Preview

24
 glimpse(enntt_transformed_tbl)

Rows:
 20,591

Columns:
 5

$
 doc_id
 <int>
 1,
 2,
 3,
 4,
 5,
 6,
 7,
 8,
 9,
 10,
 11,
 12,
 13,
 14,
 15,
 16,
 17,
 18~

$
 type
 <chr>
 "natives",
 "natives",
 "natives",
 "natives",
 "natives",
 "nativ~

$ t_units
 <int> 4, 2, 1, 0, 3, 2, 1, 2, 1, 2, 2, 1, 4, 2, 2, 4, 3, 2, 2, 1, 1~

$
 word_len
 <int>
 21,
 25,
 27,
 15,
 40,
 43,
 29,
 23,
 13,
 30,
 33,
 9,
 68,
 35,
 16,
 53~

$
 text
 <chr>
 "It
 is
 extremely
 important
 that
 action
 is
 taken
 to
 ensure
 tha~

The
output
of
Example
7.25
now
looks
structurally
like
the
idealized
form
in
Table
7.6.
We
have
a
dataset
that
has
the
syntactic
complexity
measures
for
both
the
natives
and
the
translations.
We
can
now
write
this
dataset
to
disk

and
document
it
in
the
data
dictionary.

Activities

In
the
following
activities,
you
will
review
the
concept
of
transforming
data
to
prepare
it
for
analysis
and
working
to
implement
these
steps
with
R.
This
includes
preparation
and
enrichment
of
curated
datasets
using
normalization,
tokenization,
recoding,
generation,
and/
or
integration
strategies.

Ɗ
Recipe
What:
Transforming
and
documenting
datasets

How:
Read
Recipe
7,
complete
comprehension
check,
and
prepare
for
Lab
7.

Why:
To
work
with
 two
primary
 types
of
 transformations,
 tokenization
and
joins.
Tokenization
is
the
process
of
recasting
textual
units
into
units
of
other
sizes.
The
process
of
joining
datasets
aims
to
incorporate
other
datasets
to
aug-
ment
or
filter
the
dataset
of
interest.

164
 CHAPTER
7.
 TRANSFORM

ð
Lab

What:
Dataset
alchemy

How:
Fork,
clone,
and
complete
the
steps
in
Lab
7.

Why:
 To
 gain
 experience
 working
 with
 coding
 strategies
 for
 transforming
datasets
using
tidyverse
functions
and
regexes,
practice
reading
from
and
writ-
ing
to
disk,
and
implement
organizational
strategies
for
organizing
and
docu-
menting
a
dataset
in
reproducible
fashion.

Summary

In
this
chapter
we
covered
the
process
of
transforming
datasets.
The
goal
is
to
manipulate
the
curated
dataset
to
make
it
align
better
for
analysis.

We
covered
various
types
of
transformation
procedures
from
text
normaliza-
tion
to
data
frame
integrations.
In
any
given
research
project
some
or
all
of
these
steps
will
be
employed
—but
not
necessarily
in
the
order
presented
in
this
chapter.
It
is
not
uncommon
to
mix
procedures
as
well.
The
etiology
of
the
transformation
is
as
unique
as
the
data
that
you
are
working
with.

Since
you
are
applying
techniques
that
have
a
significant
factor
on
the
shape
and
contents
of
your
dataset(s)
it
is
important
to
perform
data
checks
to
en-
sure
 that
 the
 transformations
are
working
as
expected.
You
may
not
catch
everything,
and
some
things
may
not
be
caught
until
later
in
the
analysis
pro-
cess,
but
it
is
important
to
do
as
much
as
you
can
as
early
as
you
can.

In
line
with
the
reproducible
research
principles,
it
is
important
to
write
the
transformed
dataset
to
disk
and
to
document
it
in
the
data
dictionary.
This
is
especially
important
if
you
are
working
with
multiple
datasets.
Good
nam-
ing
conventions
also
come
into
play.
Choosing
descriptive
names
is
so
easily
overlooked
by
your
present
self
but
so
welcomed
by
your
future
self.

Part
IV

Analysis

https://taylorandfrancis.com

167

This
part
turns
to
the
analysis
of
datasets,
the
evaluation
of
results,
and
the
interpretation
of
the
findings.
We
will
outline
the
three
main
types
of
anal-
yses:
exploratory
data
analysis
(EDA),
predictive
data
analysis
(PDA),
and
inferential
data
analysis
(IDA).
Each
of
these
analysis
types
have
distinct,
non-
overlapping
aims
and
therefore
should
be
determined
from
the
outset
of
the
research
project
and
 included
as
part
of
the
research
blueprint.
The
aim
of
this
section
is
to
establish
a
clearer
picture
of
the
goals,
methods,
and
value
of
each
of
these
approaches.

https://taylorandfrancis.com

8

Explore

|
Outcomes

•
 Determine
the
suitability
of
exploratory
data
analysis
for
a
research
project.
•
 Understand
descriptive
analysis
and
unsupervised
 learning
methods,
their
strengths
in
pattern
recognition
and
data
summarization.

•
 Interpret
insights
from
data
summarization
and
pattern
recognition,
consid-
ering
their
potential
to
guide
further
research.

In
this
chapter,
we
examine
a
wide
range
of
strategies
for
exploratory
data
analysis.
The
chapter
outlines
two
main
branches
of
exploratory
data
anal-
ysis:
descriptive
analysis
which
statistically
and/or
visually
summarizes
a
dataset
and
unsupervised
learning
which
is
a
machine
learning
approach
that
does
not
assume
any
particular
relationship
between
variables
in
a
dataset.
Ei-
ther
through
descriptive
or
unsupervised
learning
methods,
exploratory
data
analysis
employs
quantitative
methods
to
summarize,
reduce,
and
sort
com-
plex
datasets
and
statistically
and
visually
interrogate
a
dataset
in
order
to
provide
the
researcher
novel
perspective
to
be
qualitatively
assessed.

ı
Lessons

What:
Advanced
objects

How:
In
an
R
console,
load
{swirl},
run
swirl(),
and
follow
prompts
to
select

the
lesson.

Why:
To
learn
about
advanced
objects
in
R,
including
lists
and
matrices,
and
create,
inspect,
access,
and
manipulate
these
objects.

This
chapter
has
been
made
available
under
a
CC-BY-NC-ND
license.

169
DOI:
10.4324/9781003393764-12

170
 CHAPTER
8.
 EXPLORE

8.1
 Orientation

The
 goal
 of
 exploratory
 data
 analysis
 is
 to
 discover,
 describ
new
hypotheses.
This
analysis
approach
is
best-suited
for
resear
where
the
literature
is
scarce,
where
the
gap
in
knowledge
is
wi

e,
 and
 posit
ch
questions
de,
or
where

new territories are being explored. The researcher may not know
what
to
ex-
pect,
but
 they
are
willing
 to
 let
 the
data
speak
 for
 itself.
The
 researcher
 is
open
to
new
insights
and
new
questions
that
may
emerge
from
the
analysis

process.

While
exploratory
data
analysis
allows
flexibility,
it
is
essential
to
have
a
guid-
ing
research
question
that
provides
a
focus
for
the
analysis.
This
question
will
help
to
determine
the
variables
of
interest
and
the
methods
to
be
used.
The
research
question
will
also
help
to
determine
the
relevance
of
the
results
and
the
potential
for
the
results
to
be
used
in
further
research.

The
general
workflow
for
exploratory
data
analysis
is
shown
in
Table
8.1.

Table
8.1:
Workflow
for
exploratory
data
analysis

Step
 Name
 Description

1

2

3

4

5

Identify

Inspect

Interrogate

Interpret

Iterate

(Optional)

Consider
the
research
question
and
 identify
variables
of
potential

interest
to
provide
 insight
 into
our
question.

Check
for
missing
data,
outliers,
etc.
and
check
data
distributions

and
transform
 if
necessary.

Submit
the
selected
variables
to
descriptive
(frequency,
keyword,

co-occurrence
analysis,
etc.)
or
unsupervised
 learning
(clustering,

dimensionality
reduction,
vector
spacing
modeling,
etc.)
methods

to
provide
quantitative
measures
to
evaluate.

Evaluate
the
results
and
determine
 if
they
are
valid
and

meaningful
to
respond
to
the
research
question.

Repeat
steps
1-4
as
new
questions
emerge
from
your

interpretation.

171
8.2.
 ANALYSIS

8.2
 Analysis

To
frame
our
demonstration
and
discussion
of
exploratory
data
analysis,
let’s
tackle
a
task.
The
task
will
be
to
 identify
relevant
materials
for
an
English-
language
 learner
 (ELL)
 textbook.
This
will
 involve
multiple
research
ques-
tions
and
allow
us
to
illustrate
some
very
fundamental
concepts
that
emerge
across
text
analysis
research
in
both
descriptive
and
unsupervised
learning
approaches.

Since
our
task
is
geared
towards
English
language
use,
we
will
want
a
rep-
resentative
data
sample.
For
this,
we
will
use
the
Manually
Annotated
Sub-
Corpus
of
American
English
(MASC)
of
the
American
National
Corpus
(Ide
et
al.,
2008).

The
data
dictionary
for
the
dataset
we
will
use
as
our
point
of
departure
is
shown
in
Table
8.2.

Table
8.2:
Data
dictionary
for
the
MASC
dataset

variable
 name
 type
 description

doc_id
 Document

ID

numeric
 Unique
 identifier
for
each
document

modality

genre

term_num

Modality

Genre

Term

Number

categorical

categorical

numeric

The
form
 in
which
the
document
 is

presented
(written
or
spoken)

The
category
or
type
of
the
document

Index
number
term
per
document

term

lemma

pos

Term

Lemma

Part
of

Speech

categorical

categorical

categorical

Individual
word
forms
 in
the
document

Base
or
dictionary
form
of
the
term

Grammatical
category
of
the
term

(modified
PENN
Treebank
tagset)

First,
I’ll
read
in
and
preview
the
dataset
in
Example
8.1.

Example
8.1.

1
 #
 Read
 the
 dataset

2
 masc_tbl
 <-

3
 read_csv("../data/masc/masc_transformed.csv")

4

5
 #
 Preview
 the
 MASC
 dataset

6
 glimpse(masc_tbl)

172
 CHAPTER
8.
 EXPLORE

Rows:
 591,036

Columns:
 7

$ doc_id
 <dbl> 1, 1~

$
 modality
 <chr>
 "Written",
 "Written",
 "Written",
 "Written",
 "Written",
 "Writt~

$
 genre
 <chr>
 "Letters",
 "Letters",
 "Letters",
 "Letters",
 "Letters",
 "Lette~

$
 term_num
 <dbl>
 0,
 1,
 2,
 3,
 4,
 5,
 6,
 7,
 8,
 9,
 10,
 11,
 12,
 13,
 14,
 15,
 16,
 17,~

$
 term
 <chr>
 "December",
 "1998",
 "Your",
 "contribution",
 "to",
 "Goodwill",~

$
 lemma
 <chr>
 "december",
 "1998",
 "your",
 "contribution",
 "to",
 "goodwill",~

$
 pos
 <chr>
 "NNP",
 "CD",
 "PRP$",
 "NN",
 "TO",
 "NNP",
 "MD",
 "VB",
 "JJR",
 "I~

From
the
output
 in
Example
8.1,
we
get
some
sense
of
the
structure
of
the
dataset.
However,
we
also
need
to
perform
diagnostic
and
descriptive
pro-
cedures.
This
will
include
checking
for
missing
data
and
anomalies
and
as-
sessing
 central
 tendency,
dispersion,
and/or
distributions
of
 the
variables.
This
may
 include
using
{skimr},
{dplyr},
{stringr},
{ggplot2},
etc.
to
 identify
the
most
relevant
variables
for
our
task
and
to
identify
any
potential
issues
with
the
dataset.

After
a
descriptive
and
diagnostic
assessment
of
 the
dataset,
not
 included
here,
I
identified
and
addressed
missing
data
and
anomalies
(including
many
non-words).
 I
also
recoded
 the
doc_id
 variable
 to
a
character
variable.
The

dataset
now
has
486,368
observations,
a
reduction
from
the
original
591,036
observations.
There
are
392
documents,
2
modalities,
18
genres,
almost
38k
unique
 terms
 (which
are
words),
almost
26k
 lemmas,
and
34
distinct
POS
tags.

8.2.1
 Descriptive
analysis

Descriptive
analysis
includes
common
techniques
such
as
frequency
analysis
to
determine
the
most
frequent
words
or
phrases,
dispersion
analysis
to
see
how
terms
are
distributed
throughout
a
document
or
corpus,
keyword
anal-
ysis

terms
tend
to
appear
together.

Using
the
MASC
dataset,
we
will
entertain
questions
such
as:

•
What
are
the
most
common
terms
a
beginning
ELL
should
learn?

•
 Are
 there
 term
 differences
 between
 spoken
 and
written
 discourses
 that
should
be
emphasized?

•
What
are
some
of
the
most
common
verb
particle
constructions?

Along
the
way,
we
will
discuss
frequency,
dispersion,
and
co-occurrence
mea-
sures.
In
addition,
we
will
apply
various
descriptive
analysis
techniques
and
visualizations
to
explore
the
dataset
and
identify
new
questions
and
new
vari-
ables
of
interest.

to identify distinctive terms, and/or co-occurrence analysis to see what

173
8.2.
 ANALYSIS

Frequency
analysis

At
its
core,
frequency
analysis
is
a
descriptive
method
that
counts
the
number
of
times
a
linguistic
unit
occurs
in
a
dataset.
The
results
of
frequency
analysis
can
be
used
to
describe
the
dataset
and
to
identify
terms
that
are
linguistically
distinctive
or
distinctive
to
a
particular
group
or
sub-group
in
the
dataset.

Raw
frequency

Let’s
consider
what
the
most
common
words
in
the
MASC
dataset
are
as
a

starting
point
to
making
inroads
on
our
task
by
identifying
relevant
vocabu-
lary
for
an
ELL
textbook.

In
the
masc_tbl
data
frame
we
have
the
linguistic
unit
term
which
corresponds

to
the
word-level
annotation
of
the
MASC.
The
lemma
corresponds
to
the
base
form
of
each
term,
for
words
with
inflectional
morphology,
the
lemma
is
the
word
sans
the
inflection
(e.g.
is/be,
are/be).
For
other
words,
the
term
and
the

lemma
will
be
the
same
(e.g.
the/the,
in/in).
These
two
variables
pose
a
choice
point
for
us:
do
we
consider
words
to
be
the
actual
forms
or
the
base
forms?
There
is
an
argument
to
be
made
for
both.
In
this
case,
I
will
operationalize
our
linguistic
unit
as
the
lemma
variable,
as
this
will
allow
us
to
group
words
with
distinct
inflectional
morphology
together.

To
perform
a
basic
word
frequency
analysis,
we
can
apply
summarize()
in
com-
bination
with
n()
or
the
convenient
count()
function
from
{dplyr}.
Our
sorted

lemma
counts
appear
in
Example
8.2.

Example
8.2.

1
 #
 Lemma
 count,
 sorted
 in
 descending
 order

2
 masc_tbl
 |>

3
 count(lemma,
 sort
 =
 TRUE)

#
 A
 tibble:
 25,923
 x
 2

lemma
 n

<chr>
 <int>

1
 the
 26137

2
 be
 19466

3
 to
 13548

4
 and
 12528

5
 of
 12005

6
 a
 10461

7
 in
 8374

8
 i
 7783

9
 that
 7082

10
 you
 5276

#
 i
 25,913
 more
 rows

174
 CHAPTER
8.
 EXPLORE

The
output
of
this
raw
frequency
tabulation
in
Example
8.2
is
a
data
frame
with
two
columns:
lemma
and
n.

As
we
discussed
 in
Section
3.1.3,
 the
 frequency
of
 linguistic
units
 in
a
cor-
pus
tends
to
be
highly
right-skewed
distribution,
approximating
the
Zipf
dist-
ribution.
If
we
calculate
the
cumulative
frequency,
a
rolling
sum
of
the
fre-
quency
term
by
term,
of
the
lemmas
in
the
masc_tbl
data
frame,
we
can
see
that
the
top
10
types
account
for
around
25%
of
the
lemmas
used
in
the
entire
corpus
—by
100
types
that
increases
to
near
50%
and
1,000
around
75%,
as
seen
in
Figure
8.1.

C
um

ul
at

iv
e

fr
eq

ue
nc

y
(%

)
 100%

75%

50%

25%

0%

10 lemmas

100 lemmas

1000 lemmas

Types

Figure
8.1:
Cumulative
frequency
of
lemmas

If
we
look
at
the
types
that
appear
within
the
first
50
most
frequent,
you
can
likely
also
appreciate
another
thing
about
language
use.
Let’s
list
the
top
50
types
in
Table
8.3.

Table
8.3:
Top
50
lemma
types

the

be

have

it

at

from

your

an

all

there

to

and

for

on

he

but

say

what

me

would

of

a

do

with

by

will

so

his

about

know

in

i

we

as

my

or

if

’s

get

make

that
 this
 n’t
 can
 out

you
 not
 they
 go
 up

For
 the
most
part,
 the
most
 frequent
words
are
 function
words.
Function

words
are
a
closed
class
of
relatively
few
words
that
are
used
to
express
gram-
matical
relationships
between
content
words
(e.g.
determiners,
prepositions,
pronouns,
and
auxiliary
verbs).
Given
the
importance
of
these
words,
it
then
is
no
surprise
that
they
comprise
many
of
the
most
frequent
words
in
a
cor-
pus.

175
8.2.
 ANALYSIS

Another
key
observation
is
that
for
those
the
content
words
(e.g.
nouns,
verbs,
adjectives,
adverbs)
that
do
figure
in
the
most
frequent
words,
we
find
that
they
are
quite
generic
semantically
speaking.
That
is,
they
are
words
that
are
used
in
a
wide
range
of
contexts
and
take
a
wide
range
of
meanings.
Take
for
example
the
adjective
‘good’.
It
can
be
used
to
describe
a
wide
range
of
nouns,
such
as
‘good
food’,
‘good
people’,
‘good
times’,
etc.
A
sometimes
near-
synonym
of
‘good’,
for
example
‘good
student’,
is
the
word
‘studious’.
Yet,
‘studious’
is
not
as
frequent
as
‘good’
as
it
is
used
to
describe
a
narrower
range
of
nouns,
such
as
‘studious
student’,
‘studious
scholar’,
‘studious
researcher’,

etc.
In
this
way,
‘studious’
is
more
semantically
specific
than
‘good’.

Ď
Consider
this

Based
on
what
you
now
know
about
the
expected
distribution
of
words
in
a
corpus,
what
if
your
were
asked
to
predict
what
the
most
frequent
English
word
used
is
in
each
U.S.
State?
What
would
you
predict?
How
confident
would
you
be
in
your
prediction?
What
if
you
were
asked
to
predict
what
the
most
frequent
word
used
is
in
the
language
of
a
given
country?
What
would
you
want
to
know
before
making
your
prediction?

So
common
across
corpus
samples,
 in
some
analyses
these
function
words
(and
sometimes
generic
content
words)
are
considered
irrelevant
and
are
fil-
tered
out.
 In
our
ELL
materials
 task,
however,
we
might
exclude
 them
 for
the
simple
fact
that
it
will
be
a
given
that
we
will
teach
these
words
given
their
overall
frequency.
Let’s
aim
to
focus
solely
on
the
content
words
in
the
dataset.

One
approach
to
filtering
out
these
words
is
to
use
a
list
of
words
to
exclude,
known
as
a
stopwords
 lexicon.
 {tidytext}
 includes
a
data
 frame
stop_words

which
includes
stopword
lexicons
for
English.
We
can
select
a
lexicon
from

stop_words
and
use
anti_join()
to
filter
out
the
words
that
appear
in
the
word

variable
from
the
lemma
variable
in
the
masc_tbl
data
frame.

Eliminating
words
in
this
fashion,
however,
may
not
always
be
the
best
ap-
proach.
Available
lists
of
stopwords
vary
in
their
contents
and
are
determined
by
other
researchers
for
other
potential
uses.
We
may
instead
opt
to
create
our
own
stopword
list
that
is
tailored
to
the
task,
or
we
may
opt
to
use
a
statistical
approach
based
on
their
distribution
in
the
dataset
using
frequency
and/or
dispersion
measures.

For
our
case,
however,
we
have
another
available
strategy.
Since
our
task
is
to
identify
relevant
vocabulary,
beyond
the
fundamental
function
words
in
English,
we
can
use
 the
POS
 tags
 to
reduce
our
dataset
 to
 just
 the
content
words,
that
is
nouns,
verbs,
adjectives,
and
adverbs.
Using
the
Penn
tagset
as
reference,
we
can
create
a
vector
with
the
POS
tags
we
want
to
retain
and
then
use
the
filter()
function
on
the
datasets.
I
will
assign
this
new
data
frame
to

masc_content_tbl
to
keep
it
separate
from
our
main
data
frame
masc_tbl,
seen

in
Example
8.3.

176
 CHAPTER
8.
 EXPLORE

Example
8.3.

1
 #
 Penn
 Tagset
 for
 content
 words

2
 #
 Nouns:
 NN,
 NNS,

3
 #
 Verbs:
 VB,
 VBD,
 VBG,
 VBN,
 VBP,
 VBZ

4
 #
 Adjectives:
 JJ,
 JJR,
 JJS

5
 #
 Adverbs:
 RB,
 RBR,
 RBS

6

7
 content_pos
 <- c("NN",
 "NNS",
 "VB",
 "VBD",
 "VBG",
 "VBN",
 "VBP",
 "VBZ",
 "JJ",
↪
 "JJR",
 "JJS",
 "RB",
 "RBR",
 "RBS")

8

9
 #
 Select
 content
 words

10
 masc_content_tbl
 <-

11
 masc_tbl
 |>

12
 filter(pos
 %in%
 content_pos)

Let’s
now
preview
the
top
50
lemmas
in
the
masc_content_tbl
data
frame
to

see
how
the
most
frequent
words
have
changed
in
Table
8.4.

Table
8.4:
Frequency
of
tokens
after
filtering
out
lemmas
with
POS
tags
that
are
not
content
words

be
 think
 work
 also
 t

have
 more
 year
 need
 first

do
 just
 come
 way
 help

not
 time
 use
 back
 day

n’t
 so
 well
 here
 many

say
 other
 look
 new
 man

go
 see
 then
 find
 ask

know
 people
 right
 give
 very

get
 take
 only
 thing
 much

make
 now
 want
 tell
 even

The
resulting
list
in
Table
8.4
paints
a
different
picture
of
the
most
frequent
words
in
the
dataset.
The
most
frequent
words
are
now
content
words,
and
included
in
most
frequent
words
are
more
semantically
specific
words.
We
now
have
reduced
the
number
of
observations
by
50%
focusing
on
the
content
words.
We
are
getting
closer
to
identifying
the
vocabulary
that
we
want
to
include
in
our
ELL
materials,
but
we
will
need
some
more
tools
to
help
us
identify
the
most
relevant
vocabulary.

177
8.2.
 ANALYSIS

Dispersion

Dispersion
is
a
measure
of
how
evenly
distributed
a
linguistic
unit
is
across
a
dataset.
This
 is
a
key
concept
 in
 text
analysis,
as
 important
as
 frequency.
It
 is
 important
 to
recognize
 that
 frequency
and
dispersion
are
measures
of
different
characteristics.
We
can
have
two
words
that
occur
with
the
same
fre-
quency,
but
one
word
may
be
more
evenly
distributed
across
a
dataset
than
the
other.
Depending
on
the
researcher’s
aims,
this
may
be
an
important
dis-
tinction
to
make.
For
our
task,
 it
 is
 likely
the
case
that
we
want
to
capture
words
that
are
well-dispersed
across
the
dataset,
as
words
that
have
a
high
frequency
and
a
low
dispersion
tend
to
be
connected
to
a
particular
context,
whether
 that
be
a
particular
genre,
a
particular
speaker,
a
particular
 topic,
etc.
In
other
research,
the
aim
may
be
the
reverse;
to
identify
words
that
are
highly
 frequent
and
highly
concentrated
 in
a
particular
context
 to
 identify
words
that
are
distinctive
to
that
context.

There
are
a
variety
of
measures
that
can
be
used
to
estimate
the
distribution
of
types
across
a
corpus.
Let’s
focus
on
three
measures:
document
frequency
(𝑑𝑓),
inverse
document
frequency
(𝑖𝑑𝑓),
and
Gries’
Deviation
of
Proportions

(𝑑𝑝).

The
most
basic
measure
is
document
frequency
(𝑑𝑓).
This
is
the
number
of
documents
in
which
a
type
appears
at
least
once.
For
example,
if
a
type
ap-
pears
in
10
documents,
then
the
document
frequency
is
10.
This
is
a
very
basic
measure,
but
it
is
a
decent
starting
point.

A
nuanced
version
of
document
frequency
is
inverse
document
frequency

(𝑖𝑑𝑓).
This
measure
takes
the
total
number
of
documents
and
divides
it
by
the
document
frequency.
This
results
in
a
measure
that
is
inversely
proportional
to
the
document
frequency.
That
is,
the
higher
the
document
frequency,
the
lower
the
inverse
document
frequency.
This
measure
is
often
log-transformed
to
spread
out
the
values.

One
thing
to
consider
about
𝑑𝑓
and
𝑖𝑑𝑓
is
that
neither
takes
into
account
the

length
of
the
documents
 in
which
the
type
appears
nor
the
spread
of
each
type
within
each
document.
To
take
these
factors
 into
account,
we
can
use
Gries’
deviation
of
proportions
(𝑑𝑝)
measure
(Gries,
2023,
pp.
87–88).
The
𝑑𝑝
measure
considers
the
proportion
of
a
type’s
frequency
in
each
document
relative
to
its
total
frequency.
This
produces
a
measure
that
is
more
sensitive
to
the
distribution
of
types
within
and
across
documents
in
a
corpus.

178
 CHAPTER
8.
 EXPLORE

Let’s
consider
how
these
measures
differ
with
three
scenarios:

1.

 Scenario
A:
A
type
with
a
token
frequency
of
100
appears
in
each
of
the
10
documents
in
a
corpus.
Each
document
is
100
words
long,
and
the
type
appears
10
times
in
each
document.

2.

 Scenario
B:
The
same
type
with
a
token
frequency
of
100
appears
in
each
of
the
10
documents,
each
100
words
long.
However,
in
this
scenario,
the
type
appears
once
in
9
documents
and
91
times
in
1
document.

3.

 Scenario
C:
Nine
of
 the
documents
constitute
99%
of
 the
corpus.
The
type
appears
once
in
each
of
these
9
documents
and
91
times
in
the
10th
document.

In
 these
scenarios,
Scenario
A
 is
 the
most
dispersed,
Scenario
B
 is
 less
dis-
persed,
 and
 Scenario
 C
 is
 the
 least
 dispersed.
 Despite
 these
 differences,

the
type’s
document
frequency
(𝑑𝑓)
and
inverse
document
frequency
(𝑖𝑑𝑓)
scores
remain
 the
same
across
all
 three
scenarios.
However,
the
dispersion
(𝑑𝑝)
score
will
accurately
 reflect
 the
 increasing
concentration
of
 the
 type’s
dispersion
from
Scenario
A
to
Scenario
B
to
Scenario
C.

̪
Dive
deeper
You
may
wonder
why
we
would
want
to
use
𝑑𝑓
or
𝑖𝑑𝑓
at
all.
The
answer
is
some

combination
of
the
fact
that
they
are
computationally
less
expensive
to
calculate,
they
are
widely
used
(especially
𝑖𝑑𝑓),
and/or
in
many
practical
situations
they

often
highly
correlated
with
𝑑𝑝.

So
for
our
task
we
will
use
𝑑𝑝
as
our
measure
of
dispersion.
{qtkit}
includes

the
calc_type_metrics()
 function
which
calculates,
among
other
metrics,
the

dispersion
metrics
𝑑𝑓 ,
𝑖𝑑𝑓 ,
and/or
𝑑𝑝.
Let’s
select
dp
and
assign
the
result
to

masc_lemma_disp,
as
seen
in
Example
8.4.

Example
8.4.

1
 #
 Load
 package

2
 library(qtkit)

3

4
 #
 Calculate
 deviance
 of
 proportions
 (DP)

5
 masc_lemma_disp
 <-

6
 masc_content_tbl
 |>

7
 calc_type_metrics(

8
 type
 =
 lemma,

9
 documents
 =
 doc_id,

10
 dispersion
 =
 "dp"

11
)
 |>

12
 arrange(dp)

179
8.2.
 ANALYSIS

13

14
 #
 Preview

15
 masc_lemma_disp
 |>

16
 slice_head(n
 =
 10)

#
 A
 tibble:
 10
 x
 3

type
 n
 dp

<chr>
 <dbl>
 <dbl>

1
 be
 19231
 0.123

2
 have
 5136
 0.189

3
 not
 2279
 0.240

4
 make
 1149
 0.266

5
 other
 882
 0.269

6
 more
 1005
 0.276

7
 take
 769
 0.286

8
 only
 627
 0.286

9
 time
 931
 0.314

10
 see
 865
 0.327

We
would
like
to
identify
lemmas
that
are
frequent
and
well-dispersed.
But
an
important
question
arises,
what
is
the
threshold
for
frequency
and
dispersion
that
we
should
use
to
identify
the
lemmas
that
we
want
to
include
in
our
ELL
materials?

There
are
statistical
approaches
to
identifying
natural
breakpoints
but
a
visual
inspection
is
often
good
enough
for
practical
purposes.
Let’s
create
a
density
plot
to
see
if
there
is
a
natural
break
in
the
distribution
of
our
dispersion
mea-
sure,
as
seen
in
Figure
8.2.

Example
8.5.

1
 #
 Density
 plot
 of
 dp

2
 masc_lemma_disp
 |>

3
 ggplot(aes(x
 =
 dp))
 +

4
 geom_density()
 +

5
 scale_x_continuous(breaks
 =
 seq(0,
 1,
 .1))
 +

6
 labs(x
 =
 "Deviation
 of
 Proportions",
 y
 =
 "Density")

What
we
are
looking
for
is
a
distinctive
bend
in
the
distribution
of
dispersion
measures.
In
Figure
8.2,
we
can
see
one
roughly
between
0.87
and
0.97.
The

inflection
point
appears
 to
be
near
0.95.
This
bend
 is
called
an
elbow,
and
using
 this
bend
 to
make
 informed
decisions
about
 thresholds
 is
called
 the
elbow
method.

In
Example
8.6,
I
filter
out
lemmas
that
have
a
dispersion
measure
less
than0.95.

180
 CHAPTER
8.
 EXPLORE

0

10

20

D
en

s

0.1

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1.0

Deviation of Proportions

Figure
8.2:
Density
plot
of
lemma
dispersion

ity

Example
8.6.

1
 #
 Filter
 for
 lemmas
 with
 dp
 <=
 0.95

2
 masc_lemma_disp_thr
 <-

3
 masc_lemma_disp
 |>

4
 filter(dp
 <=
 0.95)
 |>

5
 arrange(desc(n))

Then
in
Tables
8.5
and
8.6,
I
preview
the
top
and
bottom
25
lemmas
in
the
dataset.

Table
8.5:
Top
25
lemmas
after
our
dispersion
threshold

be

have

do

not

n’t

say

go

know

get

make

think

more

just

time

so

other

see

people

take

now

work

year

come

use

well

Table
8.6:
Bottom
25
lemmas
after
our
dispersion
threshold

ramification
 contradiction
 deckhand
 injustice
 imaginative

trickled
 flatly
 graveyard
 intimately
 pastime

conceivably
 mindset
 rooftop
 preoccupation
 rickety

charade
 mischaracterized
 wharf
 specifics
 scroll

traipse
 shameful
 commend
 checkered
 uphill

We
now
have
a
solid
candidate
list
of
common
vocabulary
that
is
spread
well
across
the
corpus.

181
8.2.
 ANALYSIS

Relative
frequency

Gauging
frequency
and
dispersion
across
the
entire
corpus
sets
the
founda-
tion
for
any
frequency
analysis,
but
it
is
often
the
case
that
we
want
to
com-
pare
 the
 frequency
and/or
dispersion
of
 linguistic
units
across
corpora
or
sub-corpora.

In
the
case
of
the
MASC
dataset,
for
example,
we
may
want
to
compare
met-
rics
across
the
two
modalities
or
the
various
genres.
Simply
comparing
raw
frequency
counts
across
these
sub-corpora
is
not
a
good
approach,
and
can
be
misleading,
as
the
sub-corpora
will
likely
vary
in
size.
For
example,
if
one
sub-corpus
is
twice
as
large
as
another
sub-corpus,
then,
all
else
being
equal,
the
frequency
counts
will
be
twice
as
large
in
the
larger
sub-corpus.
This
is
why
we
use
relative
frequency
measures,
which
are
normalized
by
the
size
of
the
sub-corpus.

Ď
Consider
this

A
variable
in
the
MASC
dataset
that
has
yet
to
be
used
is
the
pos
variable.
How

could
we
use
this
POS
variable
to
refine
our
frequency
and
dispersion
analysis

of
lemma
types?

Hint:
consider
lemma
forms
that
may
be
tagged
with
different
parts
of
speech.

To
normalize
the
frequency
of
linguistic
units
across
sub-corpora,
we
can
use
the
relative
frequency
(𝑟𝑓)
measure.
This
is
the
frequency
of
a
linguistic
unit
divided
by
the
total
number
of
linguistic
units
in
the
sub-corpus.
This
bakes
in
the
size
of
the
sub-corpus
into
the
measure.
The
notion
of
relative
frequency
is
key
 to
all
research
working
with
 text,
as
 it
 is
 the
basis
 for
 the
statistical
approach
to
text
analysis
where
comparisons
are
made.

There
are
some
field-specific
terms
that
are
used
to
refer
to
relative
frequency
measures.
For
example,
in
NLP
literature,
the
relative
frequency
measure
is
often
referred
to
as
the
term
frequency
(𝑡𝑓).
In
corpus
linguistics,
the
relative
frequency
measure
is
often
modified
slightly
to
include
a
constant
(e.g.
𝑟𝑓
∗
100)
which
is
known
as
the
observed
relative
frequency
(𝑜𝑟𝑓).
Although
the
observed
relative
frequency
per
number
of
tokens
is
not
strictly
necessary,
it
is
often
used
to
make
the
values
more
interpretable
as
we
can
now
talk
about
an
observed
relative
frequency
of
1.5
as
a
linguistic
unit
that
occurs
1.5
times
per
100
linguistic
units.

Let’s
consider
how
we
might
compare
the
frequency
and
dispersion
of
lem-
mas
across
the
two
modalities
in
the
MASC
dataset,
spoken
and
written.
To
make
this
a
bit
more
interesting
and
more
relevant,
let’s
add
the
pos
variable

to
our
analysis.
The
intent,
then,
will
be
to
identify
lemmas
tagged
with
par-
ticular
parts
of
speech
that
are
particularly
indicative
of
each
modality.

We
can
do
this
by
collapsing
the
lemma
and
pos
variables
into
a
single
variable,

lemma_pos,
with
the
str_c()
function,
as
seen
in
Example
8.7.

182
 CHAPTER
8.
 EXPLORE

Example
8.7.

1
 #
 Collapse
 lemma
 and
 pos
 into
 type

2
 masc_content_tbl
 <-

3
 masc_content_tbl
 |>

4
 mutate(lemma_pos
 =
 str_c(lemma,
 pos,
 sep
 =
 "_"))

5

6
 #
 Preview

7
 masc_content_tbl
 |>

8
 slice_head(n
 =
 5)

#
 A
 tibble:
 5
 x
 8

doc_id
 modality
 genre
 term_num
 term
 lemma
 pos
 lemma_pos

<chr>
 <chr>
 <chr>
 <dbl>
 <chr>
 <chr>
 <chr>
 <chr>

1
 1
 Written
 Letters
 3
 contribution
 contribution
 NN
 contribution~

2
 1
 Written
 Letters
 7
 mean
 mean
 VB
 mean_VB

3
 1
 Written
 Letters
 8
 more
 more
 JJR
 more_JJR

4
 1
 Written
 Letters
 12
 know
 know
 VB
 know_VB

5
 1
 Written
 Letters
 15
 help
 help
 VB
 help_VB

Now
this
will
increase
the
number
of
lemma
types
in
the
dataset
as
we
are
now
considering
lemmas
where
the
same
lemma
form
is
tagged
with
different
parts
of
speech.

Getting
back
to
calculating
the
frequency
and
dispersion
of
lemmas
in
each
modality,
we
can
use
the
calc_type_metrics()
 function
with
lemma_pos
as
our

type
argument.
We
will,
however,
need
 to
apply
 this
 function
 to
each
sub-
corpus
independently
and
then
concatenate
the
two
data
frames.
This
func-
tion
returns
a
(raw)
frequency
(𝑛)
measure
by
default,
but
we
can
specify
the

frequency
argument
to
rf
 to
calculate
the
relative
frequency
of
the
linguistic

units
as
in
Example
8.8.

Example
8.8.

1
 #
 Calculate
 relative
 frequency

2
 #
 Spoken

3
 masc_spoken_metrics
 <-

4
 masc_content_tbl
 |>

5
 filter(modality
 ==
 "Spoken")
 |>

6
 calc_type_metrics(

7
 type
 =
 lemma_pos,

8
 documents
 =
 doc_id,

9
 frequency
 =
 "rf",

10
 dispersion
 =
 "dp"

11
)
 |>

12
 mutate(modality
 =
 "Spoken")
 |>

13
 arrange(desc(n))

183
8.2.
 ANALYSIS

14

15
 #
 Written

16
 masc_written_metrics
 <-

17
 masc_content_tbl
 |>

18
 filter(modality
 ==
 "Written")
 |>

19
 calc_type_metrics(

20
 type
 =
 lemma_pos,

21
 documents
 =
 doc_id,

22
 frequency
 =
 "rf",

23
 dispersion
 =
 "dp"

24
)
 |>

25
 mutate(modality
 =
 "Written")
 |>

26
 arrange(desc(n))

27

28
 #
 Concatenate
 metrics

29
 masc_metrics
 <-

30
 bind_rows(masc_spoken_metrics,
 masc_written_metrics)

31

32
 #
 Preview

33
 masc_metrics
 |>

34
 slice_head(n
 =
 5)

#
 A
 tibble:
 5
 x
 5

type
 n
 rf
 dp
 modality

<chr>
 <dbl>
 <dbl>
 <dbl>
 <chr>

1
 be_VBZ
 2612
 0.0489
 0.0843
 Spoken

2
 be_VBP
 1282
 0.0240
 0.111
 Spoken

3
 be_VBD
 1020
 0.0191
 0.300
 Spoken

4
 n't_RB
 829
 0.0155
 0.139
 Spoken

5
 have_VBP
 766
 0.0143
 0.152
 Spoken

With
the
rf
measure,
we
are
now
in
a
position
to
compare
‘apples
to
apples’,
as
you
might
say.
We
can
now
compare
the
relative
frequency
of
lemmas
across
the
two
modalities.
Let’s
preview
the
top
5
lemmas
in
each
modality,
as
seen
in
Example
8.9.

Example
8.9.

1
 #
 Preview
 top
 10
 lemmas
 in
 each
 modality

2
 masc_metrics
 |>

3
 group_by(modality)
 |>

4
 slice_max(n
 =
 10,
 order_by
 =
 rf)

184
 CHAPTER
8.
 EXPLORE

#
 A
 tibble:
 20
 x
 5

#
 Groups:
 modality
 [2]

type
 n
 rf
 dp
 modality

<chr>
 <dbl>
 <dbl>
 <dbl>
 <chr>

1
 be_VBZ
 2612
 0.0489
 0.0843
 Spoken

2
 be_VBP
 1282
 0.0240
 0.111
 Spoken

3
 be_VBD
 1020
 0.0191
 0.300
 Spoken

4
 n't_RB
 829
 0.0155
 0.139
 Spoken

5
 have_VBP
 766
 0.0143
 0.152
 Spoken

6
 do_VBP
 728
 0.0136
 0.180
 Spoken

7
 be_VB
 655
 0.0123
 0.147
 Spoken

8
 not_RB
 638
 0.0119
 0.137
 Spoken

9
 just_RB
 404
 0.00757
 0.267
 Spoken

10
 so_RB
 387
 0.00725
 0.357
 Spoken

11
 be_VBZ
 4745
 0.0249
 0.230
 Written

12
 be_VBD
 3317
 0.0174
 0.366
 Written

13
 be_VBP
 2617
 0.0137
 0.237
 Written

14
 be_VB
 1863
 0.00976
 0.218
 Written

15
 not_RB
 1640
 0.00859
 0.259
 Written

16
 have_VBP
 1227
 0.00643
 0.291
 Written

17
 n't_RB
 905
 0.00474
 0.540
 Written

18
 have_VBD
 859
 0.00450
 0.446
 Written

19
 have_VBZ
 777
 0.00407
 0.335
 Written

20
 say_VBD
 710
 0.00372
 0.609
 Written

We
can
appreciate,
now,
that
there
are
similarities
and
a
few
differences
be-
tween
 the
most
 frequent
 lemmas
 for
each
modality.
First,
 there
are
similar
lemmas
in
written
and
spoken
modalities,
such
as
‘be’,
‘have’,
and
‘not’.
Sec-
ond,
the
top
10
include
verbs
and
adverbs.
Now
we
are
looking
at
the
most
frequent
types,
so
it
is
not
surprising
that
we
see
more
in
common
than
not.
However,
looking
close
we
can
see
that
contracted
forms
are
more
frequent
in
the
spoken
modality,
such
as
‘isn’t’,
‘don’t’,
and
‘can’t’
and
that
ordering
of
the
verb
tenses
differs
to
some
degree.
Whether
these
are
important
distinc-
tions
for
our
task
is
something
we
will
need
to
consider.

We
 can
 further
 cull
 our
 results
 by
filtering
 out
 lemmas
 that
 are
not
well-
dispersed
across
 the
sub-corpora.
Although
 it
may
be
 tempting
 to
use
 the
threshold
 we
 used
 earlier,
 we
 should
 consider
 that
 the
 sizes
 of
 the
 sub-
corpora
are
different
and
the
distribution
of
the
dispersion
measure
may
be
different.
With
this
in
mind,
we
need
to
visualize
the
distribution
of
the
dis-
persion
measure
for
each
modality
and
apply
the
elbow
method
to
identify
a
threshold
for
each
modality.

After
assessing
the
density
plots
for
the
dispersion
of
each
modality
via
the
elbow
method,
we
update
our
thresholds.
We
maintain
the
0.95
threshold
for

the
written
sub-corpus
and
use
a
0.79
threshold
for
the
spoken
sub-corpus.
I
apply
these
filters
as
seen
in
Example
8.10.

185
8.2.
 ANALYSIS

Example
8.10.

1
 #
 Filter
 for
 lemmas
 with

2
 #
 dp
 <=
 0.95
 for
 written
 and

3
 #
 dp
 <=
 .79
 for
 spoken

4
 masc_metrics_thr
 <-

5
 masc_metrics
 |>

6
 filter(

7
 (modality
 ==
 "Written"
 &
 dp
 <=
 0.95)
 |

8
 (modality
 ==
 "Spoken"
 &
 dp
 <=
 .79)

9
)
 |>

10
 arrange(desc(rf))

Filtering
the
less-dispersed
types
reduces
the
dataset
from
33,428
to
7,459
ob-
servations.
This
will
provide
us
with
a
more
succinct
list
of
common
and
well-
dispersed
lemmas
that
are
used
in
each
modality.

As
much
as
 the
 frequency
and
dispersion
measures
can
provide
us
with
a
starting
point,
it
does
not
provide
an
understanding
of
what
types
are
more
indicative
of
a
particular
sub-corpus,
modality
sub-corpora
in
our
case.
We
can
do
this
by
calculating
the
log
odds
ratio
of
each
lemma
in
each
modality.

The
 log
odds
ratio
 is
a
measure
 that
quantifies
 the
difference
between
 the
frequencies
of
a
type
in
two
corpora
or
sub-corpora.
In
spirit
and
in
name,
it
compares
the
odds
of
a
type
occurring
in
one
corpus
versus
the
other.
The
val-
ues
range
from
negative
to
positive
infinity,
with
negative
values
indicating
that
the
type
is
more
frequent
in
the
first
corpus
and
positive
values
indicat-
ing
that
the
lemma
is
more
frequent
in
the
second
corpus.
The
magnitude
of
the
value
indicates
the
strength
of
the
association.

{tidylo}
provides
a
convenient
 function
bind_log_odds()
 to
calculate
 the
 log
odds
 ratio,
and
a
weighed
variant,
 for
 each
 type
 in
 each
 sub-corpus.
The
weighted
log
odds
ratio
measure
provides
a
more
robust
and
interpretable
measure
 for
 comparing
 term
 frequencies
 across
 corpora,
 especially
when
term
frequencies
are
low
or
when
corpora
are
of
different
sizes.
The
weighting
(or
standardization)
also
makes
it
easier
to
identify
terms
that
are
particularly
distinctive
or
characteristic
of
one
corpus
over
another.

Let’s
calculate
the
weighted
log
odds
ratio
for
each
lemma
in
each
modality
and
preview
the
top
10
lemmas
in
each
modality,
as
seen
in
Example
8.11.

186
 CHAPTER
8.
 EXPLORE

Example
8.11.

1
 #
 Load
 package

2
 library(tidylo)

3

4
 #
 Calculate
 log
 odds
 ratio

5
 masc_metrics_thr
 <-

6
 masc_metrics_thr
 |>

7
 bind_log_odds(

8
 set
 =
 modality,

9
 feature
 =
 type,

10
 n = n

11
)

12

13
 #
 Preview
 top
 10
 lemmas
 in
 each
 modality

14
 masc_metrics_thr
 |>

15
 group_by(modality)
 |>

16
 slice_max(n
 =
 10,
 order_by
 =
 log_odds_weighted)

#
 A
 tibble:
 20
 x
 6

#
 Groups:
 modality
 [2]

type
 n
 rf
 dp
 modality
 log_odds_weighted

<chr>
 <dbl>
 <dbl>
 <dbl>
 <chr>
 <dbl>

1
 be_VBZ
 2612
 0.0489
 0.0843
 Spoken
 20.7

2
 n't_RB
 829
 0.0155
 0.139
 Spoken
 13.6

3
 be_VBP
 1282
 0.0240
 0.111
 Spoken
 13.4

4
 do_VBP
 728
 0.0136
 0.180
 Spoken
 13.2

5
 have_VBP
 766
 0.0143
 0.152
 Spoken
 11.4

6
 think_VBP
 350
 0.00655
 0.259
 Spoken
 10.2

7
 be_VBD
 1020
 0.0191
 0.300
 Spoken
 9.18

8
 well_RB
 334
 0.00626
 0.283
 Spoken
 8.90

9
 know_VBP
 282
 0.00528
 0.260
 Spoken
 8.78

10
 just_RB
 404
 0.00757
 0.267
 Spoken
 8.53

11
 t_NN
 475
 0.00249
 0.778
 Written
 9.62

12
 figure_NN
 140
 0.000733
 0.868
 Written
 5.21

13
 financial_JJ
 138
 0.000723
 0.880
 Written
 5.18

14
 city_NN
 137
 0.000718
 0.766
 Written
 5.16

15
 email_NN
 133
 0.000697
 0.866
 Written
 5.08

16
 eye_NNS
 129
 0.000676
 0.731
 Written
 5.00

17
 style_NN
 108
 0.000566
 0.829
 Written
 4.58

18
 mail_NN
 106
 0.000555
 0.876
 Written
 4.54

19
 channel_NN
 103
 0.000540
 0.919
 Written
 4.47

20
 text_NN
 103
 0.000540
 0.845
 Written
 4.47

187
8.2.
 ANALYSIS

Let’s
 imagine
we
would
 like
 to
extract
 the
most
 indicative
verbs
 for
each
modality
using
the
weighted
log
odds
as
our
measure.
We
can
do
this
with
a
little
regex
magic.
Let’s
use
the
str_subset()
function
to
filter
for
lemmas
that

contain
_V
and
then
use
slice_max()
to
extract
the
top
10
most
indicative
verb

lemmas,
as
seen
in
Example
8.12.

Example
8.12.

1
 #
 Preview
 (ordered
 by
 log_odds_weighted)

2
 masc_metrics_thr
 |>

3
 group_by(modality)
 |>

4
 filter(str_detect(type,
 "_V"))
 |>

5
 slice_max(n
 =
 10,
 order_by
 =
 log_odds_weighted)
 |>

6
 select(-n)

#
 A
 tibble:
 20
 x
 5

#
 Groups:
 modality
 [2]

type
 rf
 dp
 modality
 log_odds_weighted

<chr>
 <dbl>
 <dbl>
 <chr>
 <dbl>

1
 be_VBZ
 0.0489
 0.0843
 Spoken
 20.7

2
 be_VBP
 0.0240
 0.111
 Spoken
 13.4

3
 do_VBP
 0.0136
 0.180
 Spoken
 13.2

4
 have_VBP
 0.0143
 0.152
 Spoken
 11.4

5
 think_VBP
 0.00655
 0.259
 Spoken
 10.2

6
 be_VBD
 0.0191
 0.300
 Spoken
 9.18

7
 know_VBP
 0.00528
 0.260
 Spoken
 8.78

8
 go_VBG
 0.00534
 0.207
 Spoken
 8.29

9
 do_VBD
 0.00603
 0.321
 Spoken
 8.03

10
 be_VB
 0.0123
 0.147
 Spoken
 7.92

11
 post_VBN
 0.000372
 0.928
 Written
 3.71

12
 don_VB
 0.000361
 0.839
 Written
 3.66

13
 doe_VBZ
 0.000351
 0.870
 Written
 3.61

14
 walk_VBD
 0.000320
 0.790
 Written
 3.44

15
 associate_VBN
 0.000304
 0.777
 Written
 3.35

16
 reply_VBD
 0.000293
 0.837
 Written
 3.30

17
 develop_VBG
 0.000288
 0.812
 Written
 3.27

18
 require_VBN
 0.000272
 0.793
 Written
 3.18

19
 fall_VBD
 0.000267
 0.757
 Written
 3.15

20
 meet_VB
 0.000241
 0.729
 Written
 2.99

Note
that
the
log
odds
are
larger
for
the
spoken
modality
than
the
written
modality.
This
indicates
that
theses
types
are
more
strongly
indicative
of
the
spoken
modality
than
the
types
in
the
written
modality
are
indicative
of
the
written
modality.
This
is
not
surprising,
as
the
written
modality
is
typically
more
diverse
in
terms
of
lexical
usage
than
the
spoken
modality,
where
the
terms
tend
to
be
repeated
more
often,
including
verbs.

188
 CHAPTER
8.
 EXPLORE

Co-occurrence
analysis

Moving
forward
on
our
task,
we
have
a
general
idea
of
the
vocabulary
that
we
want
to
include
in
our
ELL
materials
and
can
identify
lemma
types
that
are
particularly
indicative
of
each
modality.
Another
useful
approach
to
comple-
ment
our
analysis
is
to
identify
words
that
co-occur
with
our
target
lemmas
(verbs).
In
English,
 it
 is
common
for
verbs
to
appear
with
a
preposition
or
adverb,
such
as
‘give
up’,
‘look
after’.
These
‘phrasal
verbs’
form
a
semantic
unit
that
is
distinct
from
the
verb
alone.

In
 a
 case
 such
 as
 this,
we
 are
 aiming
 to
do
 a
 co-occurrence
 analysis.
Co-
occurrence
analysis
is
a
set
of
methods
that
are
used
to
identify
words
that
appear
in
close
proximity
to
a
target
type.

An
 exploratory,
 primarily
 qualitative,
 approach
 is
 to
 display
 the
 co-
occurrence
of
words
 in
a
Keyword
 in
Context
 (KWIC)
 search.
KWIC
pro-
duces
 a
 table
 that
displays
 the
 target
word
 in
 the
 center
of
 the
 table
 and
the
words
that
appear
before
and
after
the
target
word
within
some
defined
window
context.
This
is
a
useful
approach
for
spot
identifying
co-occurring
patterns
which
include
the
target
word
or
phrase.
However,
it
can
be
a
time-
consuming
process
to
manually
inspect
these
results
and
is
likely
not
a
feasi-
ble
approach
for
large
datasets.

á
Tip
KWIC
 tables
are
a
common
tool
 in
corpus
 linguistics
and
can
be
used
either
before
or
after
a
quantitative
analysis.
If
you
are
interested,
{quanteda}
includes
a
function
kwic()
that
can
be
used
to
create
a
KWIC
table.

A
straightforward
quantitative
way
to
explore
co-occurrence
is
to
set
the
unit
of
observation
to
an
ngram
of
word
terms.
Then,
the
frequency
and
disper-
sion
metrics
can
be
calculated
for
each
ngram.
Yet,
there
is
an
issue
with
this
approach
for
our
purposes.
The
frequency
and
dispersion
of
ngrams
does
not
necessarily
relate
to
whether
the
two
words
form
a
semantic
unit.
For
exam-
ple,
 in
any
given
corpus
 there
will
be
highly
 frequent
pairings
of
 function
words,
such
as
‘of
the’,
‘in
the’,
‘to
the’,
etc.
These
combinations
our
bound
to

occur
frequently
in
large
part
because
the
high
frequency
of
each
individual
word.
However,
these
combinations
do
not
have
the
same
semantic
cohesion
as
other,
likely
lower-frequency,
ngrams
such
as
‘look
after’,
‘give
up’,
etc.

To
better
address
our
question,
we
can
use
a
statistical
measure
to
estimate
col-
locational
strength
between
two
words.
A
collocation
is
a
sequence
of
words
that
co-occur
more
often
than
would
be
expected
by
chance.
A
common
mea-
sure
of
collocation
is
the
pointwise
mutual
information
(PMI)
measure.
PMI
scores
reflect
the
likelihood
of
two
words
occurring
together
given
their
indi-
vidual
frequencies
and
compares
this
to
the
actual
co-occurrence
frequency.
A
high
PMI
indicates
a
strong
semantic
association
between
the
words.

189

8.2. ANALYSIS

One
consideration
that
we
need
to
take
into
account
for
our
goal
to
identify
verb
particle
constructions,
is
how
we
ultimately
want
to
group
our
lemma_pos

values.
This
is
particularly
important
given
the
fact
that
our
pos
tags
for
verbs
include
information
about
the
verb’s
tense
and
person
attributes.
This
means
that
a
verb
in
a
verb
particle
bigram,
such
as
‘look
after’,
will
be
represented
by
multiple
lemma_pos
values,
such
as
look_VB,
look_VBP,
look_VBD,
and
look_VBG.

We
want
 to
group
 the
verb
particle
bigrams
by
a
single
verb
value,
so
we
need
to
reclassify
the
pos
values
for
verbs.
We
can
do
this
with
the
case_when()

function
from
{dplyr}.

In
Example
8.13,
I
recode
the
pos
values
for
verbs
to
V
and
then
join
the
lemma

and
pos
columns
into
a
single
string.

Example
8.13.

1
 masc_lemma_pos_tbl
 <-

2
 masc_tbl
 |>

3
 mutate(pos
 =
 case_when(

4
 str_detect(pos,
 "^V")
 ~
 "V",

5
 TRUE
 ~
 pos

6
))
 |>

7
 group_by(doc_id)
 |>

8
 mutate(lemma_pos
 =
 str_c(lemma,
 pos,
 sep
 =
 "_"))
 |>

9
 ungroup()

Let’s
calculate
the
PMI
for
all
the
bigrams
in
the
MASC
dataset.
We
can
use
the

calc_assoc_metrics()
function
from
{qtkit}.
We
need
to
specify
the
association

argument
to
pmi
and
the
type
argument
to
bigrams,
as
seen
in
Example
8.14.

Example
8.14.

1
 masc_lemma_pos_assoc
 <-

2
 masc_lemma_pos_tbl
 |>

3
 calc_assoc_metrics(

4
 doc_index
 =
 doc_id,

5
 token_index
 =
 term_num,

6
 type
 =
 lemma_pos,

7
 association
 =
 "pmi"

8
)

9

10
 #
 Preview

11
 masc_lemma_pos_assoc
 |>

12
 arrange(desc(pmi))
 |>

13
 slice_head(n
 =
 10)

190
 CHAPTER
8.
 EXPLORE

#
 A
 tibble:
 10
 x
 4

x
 y
 n
 pmi

<chr>
 <chr>
 <dbl>
 <dbl>

1
 #Christian_NN
 bigot_NN
 1
 12.4

2
 #FAIL_NN
 phenomenally_RB
 1
 12.4

3
 #NASCAR_NN
 #indycar_NN
 1
 12.4

4
 #PALM_NN
 merchan_NN
 1
 12.4

5
 #Twitter_NN
 #growth_NN
 1
 12.4

6
 #college_NN
 #jobs_NN
 1
 12.4

7
 #education_NN
 #teaching_NN
 1
 12.4

8
 #faculty_NN
 #cites_NN
 1
 12.4

9
 #fb_NN
 siebel_NNP
 1
 12.4

10
 #glitchmyass_NN
 reps_NNP
 1
 12.4

One
caveat
to
using
the
PMI
measure
is
that
it
is
sensitive
to
the
frequency
of
the
words.
If
the
words
in
a
bigram
pair
are
infrequent,
and
especially
if
they
only
occur
once,
then
the
PMI
measure
will
be
unduly
inflated.
To
mitigate
this
issue,
we
can
apply
a
frequency
threshold
to
the
bigrams
before
calcu-
lating
the
PMI
measure.
Let’s
filter
out
bigrams
that
occur
less
than
10
times
and
have
a
positive
PMI,
and
while
we
are
at
it,
let’s
also
filter
x
and
y
for
the

appropriate
forms
we
are
targeting,
either
_V
and
_IN,
as
seen
Example
8.15.

Example
8.15.

1
 #
 Filter
 for
 target
 bigrams

2
 masc_verb_part_assoc
 <-

3
 masc_lemma_pos_assoc
 |>

4
 filter(n
 >=
 10
 &
 pmi
 >
 0)
 |>

5
 filter(str_detect(x,
 "_V"))
 |>

6
 filter(str_detect(y,
 "_IN"))

7

8
 #
 Preview

9
 masc_verb_part_assoc
 |>

10
 slice_max(order_by
 =
 pmi,
 n
 =
 10)

#
 A
 tibble:
 10
 x
 4

x
 y
 n pmi

<chr>
 <chr>
 <dbl>
 <dbl>

1
 figure_V
 out_IN
 17
 4.93

2
 worry_V
 about_IN
 27
 4.78

3
 walk_V
 up_IN
 10
 4.62

4
 talk_V
 about_IN
 114
 4.57

5
 sound_V
 like_IN
 15
 4.42

6
 post_V
 by_IN
 57
 4.29

7
 derive_V
 from_IN
 17
 4.27

8
 stem_V
 from_IN
 10
 4.13

9
 deal_V
 with_IN
 53
 4.12

10
 associate_V
 with_IN
 48
 4.05

come

work
associate

agree

go

result

pay

feel

compare

involve

engage

arrive

consist

fall

reach

point

emerge

enter

disagree

dress

stem

at

about

like

from

with

for

into

in

out

through

around

surround

follow

replace

cause

postcreate
 stare

by

support
 cover
 speak

find
 get
 iflaugh
fill
 figure
 wonder

turn

tag
 look

deal
 seem

pmi

dependsit

on

4meet
 sound

base
 3suffer
 focus

recover

 walk
 describe

up
 act

vote

derive
 as

invest
 account

benefit
 serve

participate
 fight
concern

read
 wait
take
 talk

of

care

over

write

thinkworry

Figure
8.3:
Network
plot
of
verb
particle
constructions

191
8.2.
 ANALYSIS

We
have
a
working
method
for
identify
verb
particle
constructions.
We
can
clean
up
the
results
a
bit
by
removing
the
POS
tags
from
the
x
and
y
variables,
up
our
minimum
PMI
value,
and
create
a
network
plot
to
visualize
the
results.
A
network
plot
is
a
type
of
graph
that
shows
relationships
between
entities.
In
this
case,
the
entities
are
verbs
and
particles,
and
the
relationships
are
the
PMI
values
between
them.
The
connections
between
are
represented
by
edges,
and
the
thickness
of
the
edges
is
proportional
to
the
PMI
value.

̪
Dive
deeper

{ggplot2}
cannot
create
network
plots
directly,
so
we
use
 {ggraph}
 (Pedersen,

2024)
and
 {igraph}
 (Csárdi
et
al.,
2024)
 to
create
 the
network
plot.
For
more

information
on
creating
network
plots,
see
the
{ggraph}
documentation.

From
Figure
8.3,
and
from
the
underlying
data,
we
can
explore
verb
particle
constructions.
We
could
go
further
and
apply
our
co-occurrence
methods
to
each
modality
separately,
if
we
wanted
to
identify
verb
particle
constructions
that
are
distinctive
to
each
modality.
We
could
also
apply
our
co-occurrence
methods
to
other
parts
of
speech,
such
as
adjectives
and
nouns,
to
identify
collocations
of
these
parts
of
speech.
There
is
much
more
to
explore
with
co-
occurrence
analysis,
but
this
should
give
you
a
good
idea
of
the
types
of
ques-
tions
that
can
be
addressed.

192
 CHAPTER
8.
 EXPLORE

8.2.2
 Unsupervised
learning

Aligned
in
purpose
with
descriptive
approaches,
unsupervised
learning
ap-
proaches
to
exploratory
data
analysis
are
used
to
identify
patterns
in
the
data
from
an
algorithmic
perspective.
Common
methods
in
text
analysis
include
principal
component
analysis,
clustering,
and
vector
space
modeling.

We
will
continue
to
use
the
MASC
dataset
as
we
develop
materials
for
our
ELL
textbook
to
illustrate
unsupervised
learning
methods.
In
the
process,
we
will
explore
the
following
questions:

•

Can
we
identify
and
group
documents
based
on
linguistic
features
or
co-
occurrence
patterns
of
the
data
itself?

•

Do
the
groups
of
documents
relate
to
categories
in
the
dataset?

•

Can
 we
 estimate
 the
 semantics
 of
 words
 based
 on
 their
 co-occurrence

patterns?

Through
these
questions
we
will
build
on
our
knowledge
of
frequency,
dis-
persion,
and
co-occurrence
analysis
and
introduce
concepts
and
methods
as-
sociated
with
machine
learning.

Clustering

Clustering
is
an
unsupervised
learning
technique
that
can
be
used
to
group
similar
 items
 in
 the
 text
 data,
 helping
 to
 organize
 the
 data
 into
 distinct
categories
and
discover
relationships
between
different
elements
in
the
text.
The
main
steps
in
the
procedure
includes
identifying
the
relevant
linguistic
features
to
use
for
clustering,
representing
the
features
in
a
way
that
can
be
used
for
clustering,
applying
a
clustering
algorithm
to
the
data,
and
then
in-
terpreting
the
results.

In
our
ELL
 textbook
 task,
we
may
very
well
want
 to
explore
 the
 similari-
ties
and/or
differences
between
the
documents
based
on
the
distribution
of
linguistic
 features.
This
provides
us
a
view
 to
evaluate
 to
what
extent
 the
variables
 in
 the
dataset,
say
genre
 for
 this
demonstration,
map
 to
 the
dist-
ribution
of
linguistic
features.
Based
on
this
evaluation,
we
may
want
to
con-
sider
re-categorizing
 the
documents,
collapsing
categories,
or
even
adding
new
categories.

Instead
of
relying
entirely
on
the
variables’
values
in
the
MASC
dataset,
we
can
let
the
data
itself
say
something
about
how
documents
may
or
may
not
be
 related.
Yet,
 a
pivotal
 question
 is
what
 linguistic
 features
we
will
use,
otherwise
known
as
feature
selection.
We
could
use
terms
or
 lemmas,
but
we
may
want
to
consider
other
features,
such
as
parts
of
speech
or
some
co-
occurrence
pattern.
We
are
not
locked
into
using
one
criterion,
and
we
can
perform
clustering
multiple
times
with
different
features,
but
we
should
con-
sider
 the
 implications
of
our
 feature
selection
 for
our
 interpretation
of
 the
results.

193
8.2.
 ANALYSIS

Imagine
that
among
the
various
features
that
we
are
 interested
 in
associat-
ing
documents,
we
consider
lemma
use
and
POS
use.
However,
we
need
to
operationalize
what
we
mean
by
 ‘use’.
In
machine
learning,
this
process
is
known
as
feature
engineering.
We
likely
want
to
use
some
measure
of
fre-
quency.
Since
we
are
comparing
documents,
a
 relative
 frequency
measure
will
be
most
useful.
Another
consideration
it
means
to
use
lemmas
or
POS

tags
as
our
features.
Each
represents
a
different
linguistic
of
the
documents.
Lemmas
represent
the
lexical
diversity
of
the
documents
while
POS
tags
ap-
proximate
 the
grammatical
diversity
of
 the
documents
 (Petrenz
&
Webber,
2011).

Let’s
assume
 that
our
 interest
 is
 to
gauge
 the
grammatical
diversity
of
 the
documents,
so
we
will
go
with
POS
tags.
With
this
approach,
we
aim
to
dis-
tinguish
between
documents
in
a
way
that
may
allow
us
to
consider
whether
genre-document
categories
are
meaningful,
along
grammatical
lines.

The
next
question
to
address
in
any
analysis
is
how
to
represent
the
features.
In
machine
learning,
the
most
common
way
to
represent
document-feature
relationships
is
in
a
matrix.
In
our
case,
we
want
to
create
a
matrix
with
the
documents
in
the
rows
and
the
features
in
the
columns.
The
values
in
the
ma-
trix
will
be
the
operationalization
of
grammatical
diversity
in
each
document.
This
configuration
is
known
as
a
document-term
matrix
(DTM).

To
recast
a
data
frame
into
a
DTM,
we
can
use
the
cast_dtm()
 function
from

{tidytext}.
This
function
takes
a
data
frame
with
a
document
identifier,
a
fea-
ture
identifier,
and
a
value
for
each
observation
and
casts
it
into
a
matrix.
Op-
erations
such
as
normalization
are
easily
and
efficiently
performed
in
R
on
matrices,
so
initially
we
can
cast
a
frequency
table
of
POS
tags
into
a
matrix
and
then
normalize
the
matrix
by
documents.

Let’s
see
how
this
works
with
the
MASC
dataset
in
Example
8.16.

Example
8.16.

1
 #
 Load
 package

2
 library(tidytext)

3

4
 #
 Create
 a
 document-term
 matrix
 of
 POS
 tags

5
 masc_pos_dtm
 <-

6
 masc_tbl
 |>

7
 count(doc_id,
 pos)
 |>

8
 cast_dtm(doc_id,
 pos,
 n)
 |>

9
 as.matrix()

10

11
 #
 Inspect

12
 dim(masc_pos_dtm)

13

194
 CHAPTER
8.
 EXPLORE

14
 #
 Preview

15
 masc_pos_dtm[1:5,
 1:5]

[1]
 392

 32

Terms

Docs

 CC DT EX IN JJ

1
 14 35
 1 44 27

10
 11 38
 0 39 18

100
 0
 2
 0
 2
 3

101
 3 16
 0 23
 7

102 20 29
 0 34 20

The
matrix
masc_pos_dtm
has
392
documents
and
32
POS
tags.
The
values
in
the
matrix
are
the
frequency
of
each
POS
tag
in
each
document.
Note
to
preview
a
subset
of
the
contents
of
a
matrix,
such
as
in
Example
8.16,
we
use
bracket
syntax
[]
instead
of
the
head()
function.

We
can
now
normalize
the
matrix
by
documents.
We
can
do
this
by
dividing
each
feature
count
by
the
total
count
in
each
document.
This
is
a
row-wise
transformation,
so
we
can
use
the
rowSums()
function
from
base
R
to
calculate

the
total
count
in
each
document.
Then
each
count
divided
by
its
row’s
total
count,
as
seen
in
Example
8.17.

Example
8.17.

1
 #
 Normalize
 pos
 matrix
 by
 documents

2
 masc_pos_dtm
 <-

3
 masc_pos_dtm
 /
 rowSums(masc_pos_dtm)

There
are
 two
concerns
 to
address
before
we
can
proceed
with
clustering.
First,
clustering
algorithm
performance
tends
to
degrade
with
the
number
of
features.
Second,
clustering
algorithms
perform
better
with
more
informative
features.
That
is
to
say,
features
that
are
more
distinct
across
the
documents
provide
better
information
for
deriving
useful
clusters.

We
can
address
both
of
these
concerns
by
reducing
the
number
of
features
and
increasing
the
informativeness
of
the
features.
To
accomplish
this
is
to
use
dimensionality
reduction.
Dimensionality
reduction
is
a
set
of
methods

that
are
used
to
reduce
the
number
of
features
in
a
dataset
while
retaining
as
much
information
as
possible.
The
most
common
method
for
dimensional-
ity
reduction
is
principal
component
analysis
(PCA).
PCA
is
a
method
that
transforms
a
set
of
correlated
variables
 into
a
set
of
uncorrelated
variables,
known
as
principal
components.
The
principal
components
are
ordered
by
the
amount
of
variance
that
they
explain
in
the
data.
The
first
principal
com-
ponent
explains
the
most
variance,
the
second
principal
component
explains
the
second
most
variance,
and
so
on.

195
8.2.
 ANALYSIS

We
can
apply
PCA
to
the
matrix
and
assess
how
well
it
accounts
for
the
varia-
tion
in
the
data
and
how
the
variation
is
distributed
across
components.
The

prcomp()
function
from
base
R
can
be
used
to
perform
PCA.

Let’s
apply
PCA
to
the
matrix,
as
seen
in
Example
8.18.

Example
8.18.

1
 set.seed(123)
 #
 for
 reproducibility

2

3
 #
 Apply
 PCA
 to
 matrix

4
 masc_pos_pca
 <-

5
 masc_pos_dtm
 |>

6
 prcomp()

We
can
visualize
 the
amount
of
variance
explained
by
each
principal
com-
ponent
with
a
scree
plot.
A
scree
plot
 is
a
bar
plot
ordered
by
the
amount
of
variance
explained
by
each
principal
component.
The
fviz_eig()
function

from
 {factoextra}
 implements
a
scree
plot
on
a
PCA
object.
We
can
set
 the
number
of
components
to
visualize
with
ncp
 =,
as
seen
in
Example
8.19.

Example
8.19.

1
 #
 Load
 package

2
 library(factoextra)

3

4
 #
 Scree
 plot:
 POS
 relative
 frequency

5
 fviz_eig(masc_pos_pca,
 ncp
 =
 10)

V
ar

ia
nc

e
ex

pl
ai

ne
d

(%
)

30%

20%

10%

0%

1
 2
 3
 4
 5
 6
 7
 8
 9 10

Dimensions

Figure
8.4:
Scree
plot
of
 the
principal
 components
of
 the
POS
 relative
 fre-
quency

196
 CHAPTER
8.
 EXPLORE

̪
Dive
deeper
As
with
many
modeling
techniques
we
will
encounter,
it
is
possible
to
extract
the
 importance
of
 features
 that
contribute
 to
 the
model.
 In
 the
case
of
PCA,
we
 can
 extract
 the
 feature
 values
 from
 the
principal
 components
using
 the

get_pca_var()
function
from
{factoextra}.
Feature
importance
provides
more
de-
tailed
insight
into
the
inner
workings
of
the
algorithms
we
employ
in
our
re-
search
and
therefore
can
serve
to
inform
our
interpretation
of
the
results.

From
the
scree
plot
for
the
matrix
in
Figure
8.4,
we
can
see
that
the
first
com-
ponent
shows
the
most
variance
explained,
around
just
over
30%,
and
then
drops
for
subsequent
drops
as
the
number
of
dimensions
increase.
Visually
we
will
apply
the
elbow
method
to
identify
the
number
of
dimensions
to
use
for
clustering.
It
appears
the
variance
explained
decreases
after
4
dimensions.
This
is
a
good
indication
that
we
should
use
4
dimensions
for
our
clustering
algorithm.

Let’s
go
ahead
and
create
a
matrix
of
the
first
four
principal
components
for
the
POS
data,
as
seen
in
Example
8.20.

Example
8.20.

1
 #
 Create
 a
 matrix
 of
 the
 first
 four
 principal
 components

2
 masc_pos_pca_pc
 <-

3
 masc_pos_pca$x[,
 1:4]

Now
that
we
have
identified
the
features
that
we
want
to
use
for
clustering
and
we
have
represented
the
features
in
a
way
that
can
be
used
for
clustering,
we
can
apply
a
clustering
algorithm
to
the
data.

Some
algorithms
are
better
suited
for
certain
types
of
data
and
certain
types
of
tasks.
For
example,
hierarchical
clustering
is
best
when
we
are
not
sure
how

many
clusters
we
want
 to
 identify,
as
 it
does
not
require
us
 to
specify
 the
number
of
clusters
from
the
outset.
However,
it
is
not
ideal
when
we
have
a
 large
dataset,
as
 it
can
be
computationally
expensive
compared
 to
some
other
algorithms.
k-means
clustering,
on
 the
other
hand,
 is
a
good
choice
when
we
want
to
identify
a
pre-defined
number
of
clusters,
and
the
aim
is
to
gauge
how
well
the
data
fit
the
clusters.
These
two
clustering
techniques,
therefore,
complement
each
other,
with
hierarchical
clustering
being
favored
for
initial
exploration
and
k-means
clustering
being
better
suited
for
targeted
evaluation.

197
8.2.
 ANALYSIS

Since
we
are
exploring
the
usefulness
of
the
18
genre
labels
used
in
the
MASC
dataset
we
have
an
idea
of
how
many
clusters
we
want
to
start
with.
This
is
a
good
case
to
employ
the
k-means
clustering
algorithm.

In
k-means
clustering,
we
specify
the
number
of
clusters
that
we
want
to
iden-
tify.
For
each
cluster
number,
a
random
center
is
generated.
Then
each
obser-
vation
 is
assigned
to
the
cluster
with
the
nearest
center.
The
center
of
each
cluster
is
then
recalculated
based
on
the
distribution
of
the
observations
in

the
cluster.
This
process
iterates
either
a
pre-defined
number
of
times,
or
un-
til
the
centers
converge
(i.e.
observations
stop
switching
clusters).

The
kmeans()
function
from
base
R
takes
the
matrix
of
features
as
its
first
argu-
ment
and
the
number
of
clusters
as
its
second
argument.
We
can
specify
the
number
of
clusters
with
the
centers
argument.
Other
arguments
nstart
and

iter.max
 can
be
used
to
specify
the
number
of
random
starts
and
the
maxi-
mum
number
of
iterations,
respectively.
Since
the
starting
point
for
centers
is
random,
it
is
recommendable
to
run
the
algorithm
multiple
times
with
dif-
ferent
starting
points.
Furthermore,
we
will
limit
the
iterations
to
avoid
the
algorithm
running
indefinitely.

Our
goal,
then,
will
be
to
assess
how
well
this
number
of
clusters
fits
the
data.
After
finding
the
optimal
number
of
clusters,
we
can
then
compare
the
results
with
the
genre
variable
to
see
how
well
the
clusters
map
to
the
values
of
this
variable.

One
way
to
assess
the
fit
of
the
clustering
algorithm
is
to
visualize
the
results,
interpret,
and
adjust
the
number
of
clusters,
if
necessary,
any
number
of
times.
Another,
more
efficient,
approach
is
to
algorithmically
assess
the
variability
of
the
clusters
based
on
differing
number
of
clusters
and
then
select
the
number
of
clusters
that
best
fits
the
data.

We
will
take
the
later
approach
and
plot
the
within-cluster
sum
of
squares

(WSS)
for
a
range
of
values
for
𝑘.
The
WSS
is
the
sum
of
the
squared
distance
between
each
observation
and
its
cluster
center.
With
a
plot
of
the
WSS
for
a
range
of
values
for
𝑘,
we
can
identify
the
value
for
𝑘
where
the
WSS
begins
to
level
off,
using
the
elbow
method.
It
is
not
always
clear
where
the
elbow
is,
yet
it
is
a
good
starting
point
for
identifying
the
optimal
number
of
clusters.

The
fviz_nbclust()
function
can
be
used
to
plot
the
WSS
for
a
range
of
values

for
𝑘.
The
fviz_nbclust()
function
takes
the
kmeans()
function
as
its
first
argu-
ment
and
the
matrix
of
features
as
its
second
argument.
The
fviz_nbclust()

function
also
takes
arguments
method
 =
 "wss"
to
specify
the
WSS
method
and

k.max
 =
 20
to
specify
the
maximum
number
of
clusters
to
plot.
Let’s
plot
the
WSS
for
a
range
of
values
for
𝑘,
as
seen
in
Figure
8.5,
using
the
code
in
Exam-
ple
8.21.

198
 CHAPTER
8.
 EXPLORE

Example
8.21.

1
 masc_pos_pca_pc
 |>

2
 fviz_nbclust(

3
 FUNcluster
 =
 kmeans,

4
 method
 =
 "wss",
 #
 method

5
 k.max
 =
 20,

6
 nstart
 =
 25,

7
 iter.max
 =
 20

8
)

1

2

3

To
ta

l w
ith

in
 s

um
 o

f s
qu

ar
es

1
 2
 3
 4
 5
 6
 7
 8
 9
 10 11 12 13 14 15 16 17 18 19 20

Number of clusters k

Figure
8.5:
Elbow
method
for
k-means
clustering

It
is
clear
that
there
are
significant
gains
in
cluster
fit
from
1
to
4
clusters,
but
the
gains
begin
to
level
off
after
5
clusters.

Now
we
have
an
informed
selection
for
𝑘.
Let’s
use
4
clusters
in
the
kmeans()

function
and
collect
the
results,
as
seen
in
Example
8.22.

Example
8.22.

1
 set.seed(123)
 #
 for
 reproducibility

2

3
 #
 k-means:
 for
 4
 clusters

4
 masc_pos_kmeans_fit
 <-

5
 masc_pos_pca_pc
 |>

6
 kmeans(

7
 centers
 =
 4,

8
 nstart
 =
 25,

9
 iter.max
 =
 20

10
)

11

199
8.2.
 ANALYSIS

12
 #
 Preview

13
 masc_pos_kmeans_fit$cluster[1:10]

1
 10
 100
 101
 102
 103
 104
 105
 106
 107

1 1 2 3 3 2 2 2 4 3

The
preview
from
Example
8.22
shows
the
cluster
assignments
for
the
first
10
documents
(doc_id)
in
the
dataset.

From
 this
point
we
can
 join
document-cluster
pairings
produced
by
 the
k-
means
algorithm
with
the
original
dataset.
We
can
then
explore
the
clusters
in
terms
of
the
original
features.
We
can
also
explore
the
clusters
in
terms
of
the
original
labels.

Let’s
 join
 the
cluster
assignments
 to
 the
original
dataset,
as
 seen
 in
Exam-
ple
8.23.

Example
8.23.

1
 #
 Organize
 k-means
 clusters
 into
 a
 tibble

2
 masc_pos_cluster_tbl
 <-

3
 tibble(

4
 doc_id
 =
 names(masc_pos_kmeans_fit$cluster),

5
 cluster
 =
 masc_pos_kmeans_fit$cluster

6
)

7

8
 #
 Join
 cluster
 assignments
 to
 original
 dataset

9
 masc_cluster_tbl
 <-

10
 masc_tbl|>

11
 left_join(

12
 masc_pos_cluster_tbl,

13
 by
 =
 "doc_id"

14
)

15

16
 #
 Preview

17
 masc_cluster_tbl
 |>

18
 slice_head(n
 =
 5)

#
 A
 tibble:
 5
 x
 8

doc_id
 modality
 genre
 term_num
 term
 lemma
 pos
 cluster

<chr>
 <chr>
 <chr>
 <dbl>
 <chr>
 <chr>
 <chr>
 <int>

1
 1
 Written
 Letters
 2
 Your
 your
 PRP$
 1

2
 1
 Written
 Letters
 3
 contribution
 contribution
 NN
 1

3
 1
 Written
 Letters
 4
 to
 to
 TO
 1

4
 1
 Written
 Letters
 6
 will
 will
 MD
 1

5
 1
 Written
 Letters
 7
 mean
 mean
 VB
 1

200
 CHAPTER
8.
 EXPLORE

We
now
see
that
the
cluster
assignments
from
the
k-means
algorithm
have
been
joined
to
the
original
dataset.
We
can
now
explore
the
clusters
in
terms
of
the
original
features.
For
example,
let’s
look
at
the
distribution
of
the
clusters
across
genre,
as
seen
in
Example
8.24.
To
do
this,
we
first
need
to
reduce
our
dataset
to
the
distinct
combinations
of
genre
and
cluster.
Then,
we
can
use
{janitor}’s
tabyl()
function
to
provided
formatted
percentages.

Example
8.24.

1
 #
 Load
 package

2
 library(janitor)

3

4
 #
 Reduce
 to
 distinct
 combinations
 of
 genre
 and
 cluster

5
 masc_meta_tbl
 <-

6
 masc_cluster_tbl
 |>

7
 distinct(genre,
 cluster)

8

9
 #
 Tabulate:
 cluster
 by
 genre

10
 masc_meta_tbl
 |>

11
 tabyl(genre,
 cluster)
 |>

12
 adorn_percentages("col")
 |>

13
 adorn_pct_formatting(digits
 =
 1)
 |>

14
 as_tibble()
 |>

15
 tt(width
 =
 1)

Table
8.7:
Distribution
of
clusters
by
genre

genre
 1
 2
 3
 4

Blog

Email

7.7%

7.7%

20.0%

20.0%

8.3%

8.3%

0.0%

20.0%

Essay

Face-to-face

7.7%

7.7%

0.0%

0.0%

8.3%

0.0%

20.0%

0.0%

Fiction
 7.7%
 0.0%
 8.3%
 0.0%

Fictlets
 7.7%
 0.0%
 0.0%
 0.0%

Government
 0.0%
 0.0%
 8.3%
 0.0%

Jokes
 7.7%
 0.0%
 0.0%
 0.0%

Journal
 7.7%
 0.0%
 8.3%
 0.0%

Letters
 7.7%
 20.0%
 8.3%
 0.0%

Movie
Script

Newspaper

Non-fiction

7.7%

7.7%

0.0%

0.0%

20.0%

0.0%

8.3%

8.3%

8.3%

0.0%

20.0%

20.0%

Technical
 0.0%
 0.0%
 8.3%
 20.0%

Telephone

Transcript

Travel
Guide

7.7%

7.7%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

8.3%

0.0%

0.0%

0.0%

Twitter
 0.0%
 20.0%
 0.0%
 0.0%

201
8.2.
 ANALYSIS

From
Example
8.24,
we
can
see
that
the
clusters
are
not
evenly
distributed
across
 the
genres.
 In
particular,
cluster
2
 tends
 to
be
more
associated
with
‘blog’,
‘email’,
‘letters’,
‘twitter’,
and
‘newspaper’.
Another
interesting
clus-
ter
is
cluster
4,
which
is
more
associated
with
‘non-fiction’,
and
interestingly,
‘email’
and
‘newspaper’.
This
suggest
that
the
clusters
are
capturing
some
of
the
variation
in
the
across
the
genres
and
potential
within
some
of
the
genres.

We
could
continue
to
explore
genre,
but
we
could
also
entertain
the
possibil-
ity
that
the
clusters
may
capture
differences
between
modality
—even
some
interaction
between
modality
 and
genre!
This
highlights
how
 exploratory
data
analysis
through
clustering
can
be
used
to
identify
new
questions
and
new
variables
of
interest.

Ď
Consider
this

Given
the
cluster
assignments
derived
using
the
distribution
of
POS
tags,
what
other
relationships
between
the
clusters
and
the
original
features
could
one
ex-
plore?
What
are
the
limitations
of
this
approach?
What
are
the
implications
of
this
approach
for
the
interpretation
of
the
results?

Vector
space
models

In
our
discussion
of
clustering,
we
targeted
associations
between
documents
based
on
the
distribution
of
linguistic
features.
We
now
turn
to
targeting
as-
sociations
between
linguistic
features
based
on
their
distribution
across
doc-
uments.
The
technique
we
will
introduce
is
known
as
vector
space
modeling.

Vector
space
modeling
aims
to
represent
linguistic
features
as
numerical
vec-
tors
which
reflect
the
various
linguistic
contexts
in
which
the
features
appear.
Together
these
vectors
form
a
feature-context
space
 in
which
features
with
similar
contextual
distributions
are
closer
together.

An
interesting
property
of
vector
space
models
is
that
they
are
able
to
cap-
ture
semantic
and/or
syntactic
relationships
between
features
based
on
their
distribution.
In
this
way,
vector
space
modeling
can
be
seen
as
an
implemen-
tation
of
the
distributional
hypothesis
—that
is,
terms
that
appear
in
simi-
lar
linguistic
contexts
tend
to
have
similar
meanings
(Harris,
1954).
As
Firth
(1957)
states,
“you
shall
know
a
word
by
the
company
it
keeps”.

Let’s
 assume
 in
 our
 textbook
 project
 we
 are
 interested
 in
 gathering
information
about
English’s
expression
of
the
semantic
concepts
of
manner
and
motion.
For
learners
of
English,
this
can
be
an
area
of
difficulty
as
lan-
guages
differ
in
how
these
semantic
properties
are
expressed.
English
is
an
ex-
ample
of
a
“satellite-framed”
language,
that
is
that
manner
and
motion
are
of-
ten
encoded
in
the
same
verb
with
a
particle
encoding
the
motion
path
(“rush
out”,
“climb
up”).
Other
languages
such
as
Spanish,
Turkish,
and
Japanese
are
“verb-framed”
languages,
that
is
that
motion
but
not
manner
is
encoded
in
the
verb
(“salir
corriendo”,
“koşarak
çıkmak”,
“走り出す”).

202
 CHAPTER
8.
 EXPLORE

ş
Case
study
Garg,
Schiebinger,
 Jurafsky,
&
Zou
 (2018)
quantify
and
compare
gender
and
ethnic
 stereotypes
 over
 time
 using
word
 embeddings.
 The
 authors
 explore
the
 temporal
dynamics
 of
 stereotypes
using
word
 embeddings
 as
 a
 quanti-
tative
measure
 of
 bias.
The
data
used
 includes
word
 embeddings
 from
 the
Google
News
dataset
for
contemporary
analysis,
as
well
as
embeddings
from
the
COHA
and
Google
Books
datasets
for
historical
analysis.
Additional
vali-
dation
is
done
using
embeddings
from
the
New
York
Times
Annotated
Corpus.
Several
word
lists
representing
gender,
ethnicity,
and
neutral
words
are
collated
for
analysis.
The
main
finding
is
that
language
reflects
and
perpetuates
cultural
stereotypes,
and
the
analysis
shows
consistency
 in
the
relationships
between
embedding
bias
and
external
metrics
across
datasets
over
time.
The
results
also
highlight
the
impact
of
historical
events,
such
as
the
women’s
movement
of
the
1960s,
on
the
encoding
of
stereotypes.

We
can
use
vector
space
modeling
 to
attempt
 to
represent
 the
distribution
of
verbs
 in
 the
MASC
dataset
and
 then
 target
 the
concepts
of
manner
and
motion
to
then
explore
how
English
encodes
these
concepts.
The
question
will
be
what
our
features
will
be.
They
could
be
terms,
lemmas,
POS
tags,
etc.
Or

they
could
be
some
combination.
Considering
the
task
at
hand,
which
we
will
ultimately
want
to
know
something
about
verbs,
it
makes
sense
to
include
the
POS
information
in
combination
with
either
the
term
or
the
lemma.

If
we
 include
 term
and
POS
 then
we
have
a
 feature
 for
every
morphologi-
cal
variant
of
the
term
(e.g.
house_VB,
housed_VBD,
housing_VBG).
This
can
make
 the
model
 larger
 than
 it
needs
 to
be.
 If
we
 include
 lemma
and
POS
then
we
have
a
feature
for
every
lemma
with
a
distinct
grammatical
category
(e.g.
house_NN,
house_VB).
Note
 that
 as
 the
POS
 tags
 are
 from
 the
Penn
tagset,
many
morphological
variants
appear
in
the
tag
itself
(e.g.
house_VB,
houses_VBZ,
housing_VBG).
This
demonstrates
how
the
choice
of
features
can
impact
the
size
of
the
model.
In
our
case,
it
is
not
clear
that
we
need
to
include
 the
morphological
variants
of
 the
verbs,
so
 I
will
use
 lemmas
and
recode
the
POS
variables
as
a
simplified
tagset.

After
 simplifying
 the
 features,
we
 can
 then
apply
 the
vector
 space
model
(VSM)
 to
 the
MASC
dataset.
When
VSM
 is
applied
 to
words,
 it
 is
known

as
word
 embedding.
To
 calculate
word
 embeddings
 there
 are
 various
 al-
gorithms
 that
 can
 be
used
 (BERT,
word2vec,
GloVe,
 etc.)
We
will
use
 the

word2vec
 (Mikolov,
 Sutskever,
 Chen,
 Corrado,
 &
 Dean,
 2013)
 algorithm.
Word2vec
is
a
neural
network-based
algorithm
that
learns
word
embeddings
from
a
 large
corpus
of
 text.
 In
 the
word2vec
algorithm,
 the
researcher
can
choose
to
 learn
embeddings
from
a
Continuous
Bag
of
Words
(CBOW)
or

a
Skip-gram
model.
The
CBOW
model
predicts
a
target
word
based
on
the

203
8.2.
 ANALYSIS

context
words.
The
Skip-gram
model
predicts
 the
context
words
based
on
the
target
word.
The
CBOW
model
is
faster
to
train
and
is
better
for
frequent
words.
The
Skip-gram
model
 is
slower
to
train
and
 is
better
for
 infrequent
words.

̪
Dive
deeper
Choosing
window
size
and
dimensions
for
word2vec
models
is
another
impor-
tant
consideration.
The
window
size
is
the
number
of
words
that
the
model
will

consider
as
context
for
the
target
word.
Smaller
window
sizes
tend
to
capture
more
syntactic
 information,
while
 larger
window
sizes
 tend
 to
capture
more
semantic
information.

The
number
of
dimensions
is
the
number
of
features
that
the
model
will
learn.

More
dimensions
can
capture
more
information,
but
can
also
lead
to
overfitting
—picking
up
on
nuances
that
are
particular
to
the
dataset
and
that
do
not
gener-
alize
well.
Fewer
dimensions
can
capture
less
information,
but
can
also
lead
to
underfitting
—not
picking
up
on
nuances
that
are
particular
to
the
dataset
and
that
do
generalize
well.
The
number
of
dimensions
 is
a
hyperparameter
that
can
be
tuned
to
optimize
the
model
for
the
task
at
hand.

Another
consideration
to
take
into
account
is
the
size
of
the
corpus
used
to
train
the
model.
VSM
provide
more
reliable
results
when
trained
on
larger
corpora.
The
MASC
dataset
is
relatively
small.
We’ve
simplified
our
features
in
order
to
have
a
smaller
vocabulary
in
hopes
to
offset
this
limitation
to
a
degree.
But
the
choice
of
either
CBOW
or
Skip-gram
can
also
help
to
offset
this
limitation.
CBOW
can
be
better
for
smaller
corpora
as
it
aggregates
context
information.
Skip-gram
can
be
better
for
larger
corpora
as
it
can
capture
more
nuanced
relationships
between
words.

To
implement
the
word2vec
algorithm
on
our
lemma
+
POS
features,
we
will
use
{word2vec}.
The
word2vec()
 function
takes
a
text
file
and
uses
it
to
train

the
vector
representations.
To
prepare
the
MASC
dataset
for
training,
we
will
need
 to
write
 the
 lemma
+
POS
 features
 to
a
 text
file
as
a
single
character
string.
We
can
do
this
by
first
collapsing
the
lemma_pos
variable
into
a
single

string
for
the
entire
corpus
using
the
str_c()
 function.
Then
we
can
use
the

write_lines()
function
to
write
the
string
to
a
text
file,
as
in
Example
8.25.

Example
8.25.

1
 #
 Write
 lemma
 +
 POS
 to
 text
 file

2
 masc_tbl
 |>

3
 summarize(text
 =
 str_c(lemma_pos,
 collapse
 =
 "
 "))
 |>

4
 pull(text)
 |>

5
 write_lines(

6
 file
 =
 "../data/analysis/masc_lemma_pos.txt"

7
)

204
 CHAPTER
8.
 EXPLORE

With
the
single
line
text
file
on
disk,
we
will
read
it
in,
apply
the
word2vec
al-
gorithm
using
{word2vec}
(Wijffels
&
Watanabe,
2023),
and
write
the
model
to
disk.
By
default,
the
word2vec()
function
applies
the
CBOW
model,
with
50
di-
mensions,
a
window
size
of
5,
and
a
minimum
word
count
of
5.
We
can
change
these
parameters
as
needed,
but
let’s
apply
the
default
algorithm
to
the
text
file
splitting
features
by
sentence
punctuation,
as
seen
in
Example
8.26.

Example
8.26.

1
 #
 Load
 package

2
 library(word2vec)

3

4
 #
 Traing
 word2vec
 model

5
 masc_model
 <-

6
 word2vec(

7
 x
 =
 "../data/analysis/masc_lemma_pos.txt",

8
 type
 =
 "cbow",
 #
 or
 "skip-gram"

9
 dim
 =
 100,

10
 split
 =
 c("
 "),

11
 threads
 =
 8L

12
)

13

14
 #
 Write
 model
 to
 disk

15
 write.word2vec(

16
 masc_model,

17
 file
 =
 "../data/analysis/masc_lemma_pos.bin"

18
)

Writing
the
model
to
disk
is
important
as
it
allows
us
to
read
the
model
in
without
having
to
retrain
it.
In
cases
where
the
corpus
is
large,
this
can
save
a
lot
of
computational
time.

Now
that
we
have
a
trained
model,
we
can
read
it
in
with
the
read.vectors()

function
from
{wordVectors}
as
in
Example
8.27.

Example
8.27.

1
 #
 Load
 package

2
 library(wordVectors)

3

4
 #
 Read
 word2vec
 model

5
 masc_model
 <-

6
 read.vectors(

7
 filename
 =
 "../data/analysis/masc_lemma_pos.bin"

8
)

205
8.2.
 ANALYSIS

The
read.vectors()
function
returns
a
matrix
where
each
row
is
a
term
in
the

model
and
each
column
is
a
dimension
in
the
vector
space,
as
seen
in
Exam-
ple
8.28.

Example
8.28.

1
 #
 Inspect

2
 dim(masc_model)

3

4
 #
 Preview

5
 masc_model[1:5,
 1:5]

[1]
 5808
 100

A
 VectorSpaceModel
 object
 of
 5
 words
 and
 5
 vectors

[,1]
 [,2]
 [,3]
 [,4]
 [,5]

abbreviated_ADJ
 1.068
 1.103
 -0.3439
 0.386
 -1.0062

absent_ADJ
 -1.839
 -1.753
 0.0658
 0.119
 0.9376

absorb_VERB
 -1.772
 -1.528
 -0.0554
 0.664
 -1.2453

accidentally_ADV
 -1.264
 -0.742
 -0.6870
 0.613
 -1.0750

aesthetic_ADJ
 0.567
 0.524
 1.0638
 -0.332
 -0.0424

attr(,".cache")

<environment:
 0x16fca1ac0>

The
row-wise
vector
in
the
model
is
the
vector
representation
of
each
feature.
The
notion
is
that
these
values
can
now
be
compared
with
other
features
to
explore
distributional
relatedness.
We
can
extract
specific
features
from
the
matrix
using
the
[]
operator.

As
an
example,
let’s
compare
the
vectors
for
noun-verb
pairs
for
the
lemmas
‘run’
and
‘walk’.
To
do
this
we
extract
these
features
from
the
model.
To
ap-
preciate
the
relatedness
of
these
features
it
is
best
to
visualize
them.
We
can
do
this
by
first
reducing
the
dimensionality
of
the
vectors
using
principal
com-
ponents
analysis.
We
can
then
plot
the
first
two
principal
components
with
the
code
in
Example
8.29
which
produces
Figure
8.6.

Example
8.29.

1
 #
 Extract
 vectors

2
 word_vectors
 <-

3
 masc_model[c("run_VERB",
 "walk_VERB",
 "run_NOUN",
 "walk_NOUN"),
]
 |>

4
 as.matrix()

5

6
 set.seed(123)
 #
 for
 reproducibility

7

8
 pca
 <-

9
 word_vectors
 |>

10
 scale()
 |>

206
 CHAPTER
8.
 EXPLORE

11
 prcomp()

12

13
 pca_tbl
 <-

14
 as_tibble(pca$x[,
 1:2])
 |>

15
 mutate(word
 =
 rownames(word_vectors))

16

17
 pca_tbl
 |>

18
 ggplot(aes(x
 =
 PC1,
 y
 =
 PC2,
 label
 =
 word))
 +

19
 geom_point(size
 =
 1)
 +

20
 ggrepel::geom_text_repel(size
 =
 2)

run_VERB

walk_VERB

run_NOUN

walk_NOUN

−5.0

−2.5

0.0

2.5

5.0

P
C

2

−5 0
 5 10

PC1

Figure
8.6:
Similarity
between
‘run’
and
‘walk’

From
Figure
8.6,
we
can
see
 that
each
of
 these
 features
occupies
a
distinct
position
in
the
reduced
vector
space.
But
on
closer
inspection,
we
can
see
that
there
is
a
relationship
between
the
lemma
pairs.
Remember
that
PCA
reduces
the
dimensionality
of
the
data
by
identifying
the
dimensions
that
capture
the
greatest
amount
of
variance
in
the
data.
This
means
that
of
the
50
dimensions
in
 the
model,
 the
PC1
and
PC2
correspond
 to
orthogonal
dimensions
 that
capture
the
greatest
amount
of
variance
in
the
data.
If
we
look
along
PC1,
we
can
see
that
there
is
a
distinction
between
POS.
Looking
along
PC2,
we
see
some
parity
between
lemma
meanings.
Given
these
features,
we
can
see
that
meaning
and
grammatical
category
can
be
approximated
in
the
vector
space.

207
8.2.
 ANALYSIS

An
interesting
property
of
vector
space
models
is
that
we
can
build
up
a
di-
mension
of
meaning
by
adding
vectors
that
we
expect
to
approximate
that
meaning.
For
example,
we
can
add
the
vectors
for
typical
motion
verbs
to
cre-
ate
a
vector
for
motion-similarity
and
one
for
manner-similarity.
We
can
then
compare
the
feature
vectors
for
all
verbs
and
assess
their
motion-similarity
and
manner-similarity.

To
do
this
let’s
first
subset
the
model
to
only
include
verbs,
as
in
Example
8.30.
We
will
also
remove
the
POS
tags
from
the
row
names
of
the
matrix
as
they
are
no
longer
needed.

Example
8.30.

1
 #
 Filter
 to
 verbs

2
 verbs
 <- str_subset(rownames(masc_model),
 ".*_VERB")

3
 verb_vectors
 <- masc_model[verbs,
]

4

5
 #
 Remove
 POS
 tags

6
 rownames(verb_vectors)
 <-

7
 verb_vectors
 |>

8
 rownames()
 |>

9
 str_replace_all("_VERB",
 "")

10

11
 #
 Inspect

12
 dim(verb_vectors)

13

14
 #
 Preview

15
 verb_vectors[1:5,
 1:5]

[1]
 1115
 100

A
 VectorSpaceModel
 object
 of
 5
 words
 and
 5
 vectors

[,1]
 [,2]
 [,3]
 [,4]
 [,5]

absorb
 -1.772
 -1.528
 -0.0554
 0.6642
 -1.245

auction
 -2.083
 -0.977
 -0.2505
 -0.0204
 -0.874

bid
 0.217
 -0.490
 -0.4588
 0.1373
 0.247

brief
 1.215
 -0.674
 -0.7121
 0.5072
 -0.445

cap
 -0.135
 0.884
 0.2278
 -0.2563
 -0.207

attr(,".cache")

<environment:
 0x119d71dc0>

We
now
have
verb_vectors
which
includes
the
vector
representations
for
all
verbs
 1,115
 in
 the
MASC
dataset.
Next,
 let’s
 seed
 the
 vectors
 for
motion-
similarity
and
manner-similarity
and
calculate
 the
vector
 ‘closeness’
to
 the
motion
and
manner
seed
vectors
with
the
closest_to()
function
from
{word-
Vectors}
package,
in
Example
8.32.

208
 CHAPTER
8.
 EXPLORE

Example
8.31.

1
 #
 Add
 vectors
 for
 motion-similarity
 and
 manner-similarity

2
 motion
 <-

3
 c("go",
 "come",
 "leave",
 "arrive",
 "enter",
 "exit",
 "depart",
 "return")

4

5
 motion_similarity
 <-

6
 verb_vectors
 |>
 closest_to(motion,
 n
 =
 Inf)

7

8
 #
 Preview

9
 glimpse(motion_similarity)

10

11
 manner
 <-

12
 c("run",
 "walk",
 "jump",
 "crawl",
 "swim",
 "fly",
 "drive",
 "ride")

13

14
 manner_similarity
 <-

15
 verb_vectors
 |>
 closest_to(manner,
 n
 =
 Inf)

16

17
 #
 Preview

18
 glimpse(manner_similarity)

Rows:
 1,115

Columns:
 2

$
 word
 <chr>
 "walk",
 "step",
 "return",
 "enter",
 "leave",
 "le~

$
 `similarity
 to
 motion`
 <dbl>
 0.742,
 0.741,
 0.732,
 0.727,
 0.682,
 0.669,
 0.664~

Rows:
 1,115

Columns:
 2

$
 word
 <chr>
 "walk",
 "drop",
 "step",
 "hang",
 "rub",
 "shut",
 ~

$
 `similarity
 to
 manner`
 <dbl>
 0.865,
 0.841,
 0.831,
 0.826,
 0.826,
 0.824,
 0.820~

The
motion_similarity
and
manner_similarity
data
frames
each
contain
all
the

verbs
with
a
corresponding
closeness
measure.
We
can
 join
these
two
data
frames
by
feature
to
create
a
single
data
frame
with
the
motion-similarity
and
manner-similarity
measures,
as
seen
in
Example
8.32.

Example
8.32.

1
 #
 Join
 motion-similarity
 and
 manner-similarity

2
 manner_motion_similarity
 <-

3
 manner_similarity
 |>

4
 inner_join(motion_similarity)

5

6
 #
 Preview

7
 glimpse(manner_motion_similarity)

Rows:
 1,115

Columns:
 3

$
 word
 <chr>
 "walk",
 "drop",
 "step",
 "hang",
 "rub",
 "shut",
 ~

S
im

ila
rit

y
to

 m
ot

io
n

0.8
 return
 walk

enter

leave

drive

jump
arrive
 rub
swim

come

depart
practice

go
 gather
modify
 run
arrange

face
 beg
unleash
 fly
 crawl
titlecode
 exit
present

donate
 sleep

explode
pend
 raise
cite
 ride

launch0.4
 smileseize
 tearstrengthenadjust

convict

manage
 lodgevary
 pin

hire

overlap

apply
 warn
consider

complete

contain

 assess
 comment

stem

learn
 accuse
 lend

harm

despise

induce

prove

wish
 evaluate
 yield0.0

don
 meander

0.0

 0.4
 0.8

Similarity to manner

Figure
8.7:
Motion-similarity
and
manner-similarity
of
verbs

209
8.2.
 ANALYSIS

$
 `similarity
 to
 manner`
 <dbl>
 0.865,
 0.841,
 0.831,
 0.826,
 0.826,
 0.824,
 0.820~

$
 `similarity
 to
 motion`
 <dbl>
 0.742,
 0.642,
 0.741,
 0.635,
 0.624,
 0.589,
 0.561~

The
 result
of
Example
8.32
 is
a
data
 frame
with
 the
motion-similarity
and
manner-similarity
measures
for
all
verbs
in
the
MASC
dataset.
We
can
now
visualize
 the
distribution
of
motion-similarity
 and
manner-similarity
mea-
sures,
as
seen
in
Figure
8.7.

From
Figure
8.7,
we
see
that
manner-similarity
is
plotted
on
the
x-axis
and
motion-similarity
on
the
y-axis.
I’ve
added
lines
to
divide
the
scatterplot
into
quadrants:
the
top-right
shows
high
manner- and
motion-similarity,
while
the
bottom-left
shows
low
manner- and
motion-similarity.
Verbs
in
the
top-left
quadrant
have
high
motion-similarity
but
low
manner-similarity,
and
verbs
in
the
bottom-right
quadrant
have
high
manner-similarity
but
 low
motion-
similarity.

210
 CHAPTER
8.
 EXPLORE

I’ve
randomly
sampled
50
verbs
from
the
dataset
and
plotted
them
with
text
labels,
along
with
the
motion
and
manner
seed
vectors
as
triangle
and
box
points,
 respectively.
Motion- and
manner-similarity
 seed
 verbs
 appear
 to-
gether
in
the
top-right
quadrant,
indicating
their
semantic
relationship.
Verbs
in
other
quadrants
exhibit
 lower
similarity
 in
either
manner
or
motion,
or
both.
Qualitatively,
many
verbs
align
with
 intuition,
 though
 some
do
not,
which
 is
expected
given
 the
model’s
 training
on
a
 relatively
 small
corpus.
This
example
demonstrates
how
vector
space
modeling
can
explore
semantic
relationships
between
linguistic
features.

Activities

Exploratory
analysis
is
a
wide-r

anging
term
that
encompasses
many
different
methods. In these activities, we will
focus
on
the
methods
that
are
most
com-
monly
used
in
the
analysis
of
textual
data.
These
include
frequency
and
dis-
tributional
analysis,
clustering,
and
word
embedding
models.
We
will
model
how
to
explore
iteratively
using
the
output
of
one
method
to
inform
the
next
and
ultimately
to
address
a
research
question.

Ɗ
Recipe
What:
Exploratory
analysis
methods

How:
Read
Recipe
8,
complete
comprehension
check,
and
prepare
for
Lab
8.

Why:
To
illustrate
how
to
prepare
a
dataset
for
descriptive
and
unsupervised
machine
learning
methods
and
evaluate
the
results
for
exploratory
data
analy-
sis.

ð
Lab

What:
Pattern
discovery

How:
Clone,
fork,
and
complete
the
steps
in
Lab
8.

Why:
To
gain
experience
working
with
coding
strategies
to
prepare,
feature
en-
gineer,
explore,
and
evaluate
results
from
exploratory
data
analyses,
practice
transforming
datasets
 into
new
object
 formats
and
visualizing
 relationships,
and
implement
organizational
strategies
for
organizing
and
reporting
results
in
a
reproducible
fashion.

Summary
 211

Summary

In
this
chapter,
we
surveyed
a
range
of
methods
for
uncovering
insights
from
data,
particularly
when
we
do
 not
have
 a
predetermined
 hypothesis.
We
broke
the
chapter
discussion
along
the
two
central
branches
of
exploratory
data
analysis:
descriptive
analysis
and
unsupervised
 learning.
Descriptive
analysis
offers
statistical
or
visual
summaries
of
datasets
through
frequency,
dispersion,
 and
 co-occurrence
measures,
while
unsupervised
 learning
uti-
lizes
machine
learning
techniques
to
uncover
patterns
without
pre-defining
variable
relationships.
Here
we
covered
a
few
unsupervised
learning
meth-
ods
including
clustering,
dimensionality
reduction,
and
vector
space
model-
ing.
Through
either
descriptive
or
unsupervised
learning
methodologies,
we
probe
questions
in
a
data-driven
fashion
and
apply
methods
to
summarize,
reduce,
and
sort
complex
datasets.
This
in
turn
facilitates
novel,
quantitative
perspectives
that
can
subsequently
be
evaluated
qualitatively,
offering
us
a
robust
approach
to
exploring
and
generating
research
questions.

https://taylorandfrancis.com

9

Predict

|
Outcomes

•
 Identify
the
research
goals
of
predictive
data
analysis
•
 Describe
the
workflow
for
predictive
data
analysis
•
 Recognize
 quantitative
 and
 qualitative
methods
 for
 evaluating
 predictive
models

In
this
chapter,
I
introduce
supervised
learning
as
an
approach
to
text
analy-
sis.
Supervised
learning
aims
to
establish
a
relationship
between
a
target
(or
outcome)
variable
and
a
set
of
feature
variables
derived
from
text
data.
By
leveraging
 this
 relationship,
statistical
generalizations
 (models)
can
be
cre-
ated
to
accurately
predict
values
of
the
target
variable
based
on
the
values
of
the
feature
variables.
Throughout
the
chapter,
we
explore
practical
tasks
and
theoretical
applications
of
statistical
learning
in
text
analysis.

ı
Lessons

What:
Advanced
Visualization

How:
In
an
R
console,
load
{swirl},
run
swirl(),
and
follow
prompts
to
select

the
lesson.

Why:
To
dive
deeper
into
{ggplot2}
to
enhance
visual
summaries
and
provide
an
introduction
to
{factoextra}
and
{ggfortify}
that
extend
{ggplot2}
capabilities
to
model
objects.

9.1
 Orientation

Predictive
data
analysis
(PDA)
is
a
powerful
analysis
method
for
making
pre-
dictions
about
new
or
future
data
based
on
patterns
in
existing
data.
PDA
is
a
type
of
supervised
learning,
which
means
that
it
involves
training
a
model
on
a
labeled
dataset
where
the
input
data
and
desired
output
are
both
pro-
vided.
The
model
is
able
to
make
predictions
or
classifications
based
on
the

This
chapter
has
been
made
available
under
a
CC-BY-NC-ND
license.

213
DOI:
10.4324/9781003393764-13

214
 CHAPTER
9.
 PREDICT

input
data
by
learning
the
relationships
between
the
input
and
output
data.
Supervised
machine
learning
is
an
important
tool
for
linguists
studying
lan-
guage
and
communication,
as
it
allows
us
to
analyze
language
data
to
identify
patterns
or
trends
in
language
use,
assess
hypotheses,
and
prescribe
actions.

The
approach
to
conducting
predictive
analysis
shares
some
commonalities
with
exploratory
data
analysis
 (Section
8.1)
 (as
well
as
 inferential
analysis
Chapter
10),
but
there
are
also
some
key
differences.
Consider
the
workflow
in
Table
9.1.

Table
9.1:
Workflow
for
predictive
data
analysis

Step
 Name
 Description

1
 Identify
 Consider
the
research
question
and
aim
and
 identify
relevant

variables

2

3

4

5

6

7

Inspect

Interrogate

(Optional)

Iterate

Interpret

Split
the
data
 into
representative
training
and
testing
sets

Apply
variable
selection
and
engineering
procedures

Inspect
the
data
to
ensure
that
 it
 is
 in
the
correct
format
and

that
the
training
and
testing
sets
are
representative
of
the
data

Train
and
evaluate
the
model
on
the
training
set,
adjusting

models
or
hyperparameters
as
needed,
to
produce
a
final
model

Repeat
steps
3-5
to
select
new
variables,
models,

hyperparameters

Interpret
the
results
of
the
final
model
 in
 light
of
the
research

question
or
hypothesis

Focusing
on
the
overlap
with
other
analysis
methods,
we
can
see
some
fun-
damental
steps
such
as
identifying
relevant
variables,
inspecting
the
data,
in-
terrogating
the
data,
and
interpreting
the
results.
And
if
our
research
aim
is
exploratory
in
nature,
iteration
may
also
be
a
part
of
the
workflow.

There
are
 two
main
differences,
however,
between
 the
PDA
and
 the
EDA
workflow
we
discussed
in
Chapter
8.
The
first
is
that
PDA
requires
partition-
ing
the
data
into
training
and
testing
sets.
The
training
set
is
used
to
develop
the
model,
and
the
testing
set
is
used
to
evaluate
the
model’s
performance.
This
strategy
is
used
to
ensure
that
the
model
is
robust
and
generalizes
well
to
new
data.
It
is
well
known,
and
makes
intuitive
sense,
that
using
the
same
data
to
develop
and
evaluate
a
model
likely
will
not
produce
a
model
that
generalizes
well
to
new
data.
This
is
because
the
model
will
have
potentially
conflated
the
nuances
of
the
data
(‘the
noise’)
with
any
real
trends
(‘the
sig-
nal’)
and
 therefore
will
not
be
able
 to
generalize
well
 to
new
data.
This
 is
called
overfitting
and
by
holding
out
a
portion
of
 the
data
 for
 testing,
we
can
evaluate
the
model’s
performance
on
data
that
it
has
not
seen
before
and
therefore
get
a
more
accurate
estimate
of
the
generalizable
trends
in
the
data.

215
9.1.
 ORIENTATION

̪
Dive
deeper
Prediction
modeling
is
a
hot
topic.
Given
the
potential
to
make
actionable
pre-
dictions
about
future
outcomes,
it
attracts
a
lot
of
attention
from
organizations
which
aim
to
leverage
data
to
make
informed
decisions.
It’s
use
in
research
is
also
growing
beyond
the
development
of
better
models
and
using
predictive
models
to
address
research
questions
and
hypotheses.
We
will
apply
predictive
modeling
in
the
context
of
language
data
as
a
semi-
inductive
method.
However,
it
is
also
increasingly
used
in
hypothesis
testing
scenarios,
see
Gries
&
Deshors
(2014),
Deshors
&
Gries
(2016),
and
Baayen
(2011)
for
examples.

Another
procedure
 to
 avoid
 the
perils
of
overfitting,
 is
 to
use
 resampling
methods
as
part
of
the
model
evaluation
on
the
training
set.
Resampling
is
the
process
of
repeatedly
drawing
samples
from
the
training
set
and
evaluat-
ing
the
model
on
each
sample.
The
two
most
common
resampling
methods

are
bootstrapping
(resampling
with
replacement)
and
cross-validation
(re-
sampling
without
replacement).
The
performance
of
these
multiple
models
is
summarized
and
the
error
between
them
is
assessed.
The
goal
is
to
mini-
mize
the
performance
differences
between
the
models
while
maximizing
the
overall
performance.
These
measures
go
a
long
way
to
avoiding
overfitting
and
therefore
maximizing
the
chance
that
the
training
phase
will
produce
a
model
which
is
robust
at
the
testing
phase.

The
second
difference,
not
reflected
in
the
workflow
but
inherent
in
predictive
analysis,
is
that
PDA
requires
a
fixed
outcome
variable.
This
means
that
the
outcome
variable
must
be
defined
 from
 the
outset
and
cannot
be
changed
during
 the
analysis.
Furthermore,
 the
 informational
nature
of
 the
outcome
variable
will
dictate
what
type
of
algorithm
we
choose
to
interrogate
the
data
and
how
we
will
evaluate
the
model’s
performance.

If
the
outcome
is
categorical
in
nature,
we
will
use
a
classification
algorithm

(e.g.
 logistic
 regression,
naive
Bayes,
 etc.).
Classification
evaluation
metrics
include
accuracy,
precision,
 recall,
and
F1
 scores
 (a
metric
which
balances
precision
and
recall)
which
can
be
derived
 from
and
visualized
 in
a
cross-
tabulation
of
the
predicted
and
actual
outcome
values.

If
 the
 outcome
 is
 numeric
 in
 nature,
we
will
 use
 a
 regression
 algorithm

(e.g.
linear
regression,
support
vector
regression,
etc.).
Since
the
difference
be-
tween
prediction
and
actual
values
is
numeric,
metrics
that
quantify
numer-
ical
differences,
such
as
root
mean
square
error
(RMSE)
or
𝑅2,
are
used
to

evaluate
the
model’s
performance.

The
evaluation
of
the
model
is
quantitative
on
the
one
hand,
but
it
is
also
quali-
tative
in
that
we
need
to
consider
the
implications
of
the
model’s
performance
in
light
of
the
research
question
or
hypothesis.
Furthermore,
depending
on
our
research
question
we
may
be
interested
in
exploring
the
features
that
are
most
important
to
the
model’s
performance.
This
is
called
feature
importance

216
 CHAPTER
9.
 PREDICT

and
can
be
derived
from
the
model’s
coefficients
or
weights.
Notably,
how-
ever,
some
of
the
most
powerful
models
 in
use
today,
such
as
deep
neural
networks,
are
not
easily
interpretable
and
therefore
feature
importance
is
not
easily
derived.
This
is
something
to
keep
in
mind
when
considering
the
re-
search
question
and
the
type
of
model
that
will
be
used
to
address
it.

9.2
 Analysis

In
 this
section,
we
now
 turn
 to
 the
practical
application
of
predictive
data
analysis.
The
discussion
will
be
separated
into
classification
and
regression
tasks,
as
model
selection
and
evaluation
procedures
differ
between
the
two.
For
each
task,
we
will
frame
a
research
goal
and
work
through
the
process
of
building
a
predictive
model
to
address
that
goal.
Along
the
way
we
will
cover
concepts
and
methods
that
are
common
to
both
classification
and
regression
tasks
and
specific
to
each.

To
frame
our
analyses,
we
will
posit
research
aimed
at
identifying
language
usage
patterns
in
second
language
use,
one
for
a
classification
task
and
one
for
a
regression
task.
Our
first
research
question
will
be
to
assess
whether
Spanish
language
use
can
be
used
to
predict
natives
and
L1
English
learners
(categor-
ical).
Our
second
research
question
will
be
to
gauge
the
extent
to
which
the
L1
English
learners’
Spanish
language
placement
test
scores
(numeric)
can
be
predicted
based
on
their
language
use.

Table

variable

 name
 type
 description

doc_id
 Document

ID

subcorpus
 Subcorpus

place_score

 Placement

Score

proficiency

 Proficiency

text

 Text

numeric

categorical

numeric

ordinal

character

Unique
 identifier
for
each
document

The
sub-corpus
to
which
the
document

belongs
(‘Learner’
or
 ‘Native’)

The
score
obtained
by
the
document

author
 in
a
placement
test.
Null
values

indicate
missing
data
(i.e.
the
document

author
did
not
take
the
placement
test)

The
 level
of
 language
proficiency
of
the

document
author
(‘Upper
 intermediate’,

‘Lower
advanced’,
 ‘Upper
beginner’,
or

‘Native’)

The
written
text
provided
by
the
document

author

9.2: Data dictionary for the CEDEL2 corpus

217
9.2.
 ANALYSIS

We
will
use
data
from
the
CEDEL2
corpus
(Lozano,
2022).
We
will
include
a
subset
of
the
variables
from
this
data
that
are
relevant
to
our
research
ques-
tions.
The
data
dictionary
for
this
dataset
is
seen
in
Table
9.2.

Let’s
go
ahead
and
 read
 the
 transformed
dataset
and
preview
 it
 in
Exam-
ple
9.1.

Example
9.1.

1
 #
 Read
 in
 the
 dataset

2
 cedel_tbl<-

3
 read_csv("../data/cedel2/cedel2_transformed.csv")

4

5
 #
 Preview

6
 glimpse(cedel_tbl)

Rows:
 2,957

Columns:
 5

$
 doc_id
 <dbl>
 1,
 2,
 3,
 4,
 5,
 6,
 7,
 8,
 9,
 10,
 11,
 12,
 13,
 14,
 15,
 16,
 17,~

$
 subcorpus
 <chr>
 "Learner",
 "Learner",
 "Learner",
 "Learner",
 "Learner",
 "Le~

$
 place_score
 <dbl>
 14.0,
 16.3,
 16.3,
 18.6,
 18.6,
 18.6,
 20.9,
 20.9,
 20.9,
 20.9~

$
 proficiency
 <chr>
 "Lower
 beginner",
 "Lower
 beginner",
 "Lower
 beginner",
 "Low~

$
 text
 <chr>
 "Yo
 vivo
 es
 Alanta,
 Georgia.
 Atlanta
 es
 muy
 grande
 ciudad.~

The
output
of
Example
9.1
provides
some
structural
information
about
the
dataset,
number
of
rows
and
columns
as
well
as
variable
types.

After
I
performed
some
diagnostics
and
made
some
adjustments
based
on
a
descriptive
assessment,
the
dataset
is
in
good
order
to
proceed
with
the
anal-
ysis.
I
updated
the
variables
subcorpus
and
proficiency
as
factor
variables
and

ordered
them
in
a
way
that
makes
sense
for
the
analysis.
The
place_score
vari-
able
is
distributed
well
across
the
proficiency
levels.
The
subcorpus
variable
is

less
balanced,
with
around
65%
of
the
texts
being
from
learners.
This
is
not
a
problem,
but
it
is
something
to
keep
in
mind
when
building
and
interpreting
the
predictive
models.

We
will
be
using
the
Tidymodels
framework
in
R
to
perform
these
analyses.
{tidymodels}
 is
a
meta-package,
much
 like
{tidyverse},
that
provides
a
con-
sistent
interface
for
machine
learning
modeling.
Some
key
packages
unique
to
{tidymodels}
are
{recipes},
{parsnip},
{workflows},
and
{tune}.
{recipes}
in-
cludes
functions
for
pre-processing
and
engineering
features.
{parsnip}
pro-
vides
a
consistent
 interface
for
specifying
modeling
algorithms.
{worflows}
allows
us
to
combine
recipes
and
models
into
a
single
pipeline.
Finally,
{tune}
give
us
the
ability
to
evaluate
and
adjust,
or
‘tune’,
the
parameters
of
models.

Since
we
are
using
text
data,
we
will
also
be
using
{textrecipes}
which
makes
various
functions
available
for
pre-processing
text
including
extracting
and
engineering
features.

218
 CHAPTER
9.
 PREDICT

Let’s
go
ahead
and
do
the
setup,
loading
the
necessary
packages,
seen
in
Ex-
ample
9.2.

Example
9.2.

1
 #
 Load
 packages

2
 library(tidymodels)
 #
 modeling
 metapackage

3
 library(textrecipes)
 #
 text
 pre-processing

4

5
 #
 Prefer
 tidymodels
 functions

6
 tidymodels_prefer()

9.2.1
 Text
classification

The
goal
of
text
classification
analysis
 is
to
develop
a
model
that
can
accu-
rately
label
text
samples
as
either
native
or
learner.
This
is
a
binary
classifica-
tion
problem.
We
will
approach
this
problem
from
an
exploratory
perspective,
and
therefore
our
aim
is
to
identify
features
from
the
text
that
best
distinguish
between
the
two
classes
and
explore
the
features
that
are
most
important
to
the
model’s
performance.

Let’s
modify
 the
data
frame
 to
 include
only
 the
variables
we
need
 for
 this
analysis,
assigning
it
to
cls_tbl.
In
the
process,
we
will
rename
the
subcorpus

variable
 to
outcome
 to
reflect
 that
 it
 is
 the
outcome
variable.
This
 is
seen
 in

Example
9.3.

Example
9.3.

1
 #
 Rename
 subcorpus
 to
 outcome

2
 cls_tbl
 <-

3
 cedel_tbl
 |>

4
 select(outcome
 =
 subcorpus,
 proficiency,
 text)

Let’s
begin
the
workflow
from
Table
9.1
by
identifying
the
features
that
we
will
use
to
classify
the
texts.
There
may
be
many
features
that
we
could
use.
These
could
be
features
derived
from
raw
text
(e.g.
characters,
words,
ngrams,

etc.),
feature
vectors
(e.g.
word
embeddings),
or
meta-linguistic
features
(e.g.
part-of-speech
tags,
syntactic
parses,
or
semantic
features)
that
have
been
de-
rived
from
these
through
manual
or
automatic
annotation.

If
as
part
of
our
research
question
the
types
of
features
are
included,
then
we
should
proceed
toward
deriving
those
features.
If
not,
a
simple
approach
is
to
use
words
as
the
predictor
features.
This
will
serve
as
a
baseline
for
more
complex
models,
if
necessary.

219
9.2.
 ANALYSIS

This
provides
us
the
linguistic
unit
we
will
use,
but
we
still
need
to
decide
how
to
operationalize
what
we
mean
by
‘use’
in
our
research
statement.
Do
we
use
raw
token
counts?
Do
we
use
normalized
frequencies?
Do
we
use
some
type
of
weighting
scheme?
These
are
questions
 that
we
need
 to
consider
as
we
embark
on
this
analysis.
Since
we
are
exploring,
we
can
use
trial-and-error
or
consider
the
implications
of
each
approach
and
choose
the
one
that
best
fits
our
research
question
—or
both.

Let’s
approach
this
with
a
bit
more
nuance
as
we
already
have
some
domain
knowledge
about
word
use.
First,
we
know
that
the
frequency
distribution
of
words
is
highly
skewed,
meaning
that
a
few
words
occur
very
frequently
and
most
words
occur
very
infrequently.
Second,
we
know
that
the
most
frequent
words
in
a
language
are
often
function
words
(e.g.
‘the’,
‘and’,
‘of’,
etc.)
and
that
these
words
are
not
very
informative
for
distinguishing
between
classes
of
texts.
Third,
we
know
that
comparing
raw
counts
across
texts
conflates
the
influence
text
class
lengths.

With
these
considerations
in
mind,
we
will
tokenize
by
words
and
apply
a
metric
known
as
the
term-frequency
inverse-document
frequency
(𝑡𝑓-𝑖𝑑𝑓).

The
𝑡𝑓-𝑖𝑑𝑓
measure,
as
the
name
suggests,
is
the
product
of
𝑡𝑓
and
𝑖𝑑𝑓
 for

each
term.
In
effect,
it
produces
a
weighting
scheme,
which
will
downweight
words
that
are
common
across
all
documents
and
upweight
words
that
are
unique
to
a
document.
It
also
mitigates
the
varying
lengths
of
the
documents.
This
is
a
common
approach
in
text
classification
and
is
a
good
starting
point
for
our
analysis.

With
our
features
and
engineering
approach
identified,
we
can
move
on
to
step
2
of
our
workflow
and
split
the
data
into
training
and
testing
sets.
We
make
the
splits
to
our
data
at
this
point
to
draw
a
line
in
the
sand
between
the
data
we
will
use
to
train
the
model
and
the
data
we
will
use
to
test
the
model.

A
typical
approach
in
supervised
machine
learning
is
to
allocate
around
75-
80%
of
the
data
to
the
training
set
and
the
remaining
20-25%
to
the
testing
set,
depending
on
the
number
of
observations.
We
have
2957
observations
in
our
dataset,
so
we
can
allocate
80%
of
the
data
to
the
training
set
and
20%
of
the
data
to
the
testing
set.

In
Example
9.4,
we
will
use
the
initial_split()
 function
from
{rsample}
to

split
the
data
into
training
and
testing
sets.
The
initial_split()
function
takes

a
data
frame
and
a
proportion
and
returns
a
split
object
which
contains
the

training
and
testing
sets.
We
will
use
the
strata
argument
to
stratify
the
data

by
the
outcome
variable.
This
will
ensure
that
the
training
and
testing
sets
have
the
same
proportion
of
native
and
learner
texts.

220
 CHAPTER
9.
 PREDICT

Example
9.4.

1
 set.seed(123)
 #
 for
 reproducibility

2

3
 #
 Split
 the
 data
 into
 training
 and
 testing
 sets

4
 cls_split
 <-

5
 initial_split(

6
 data
 =
 cls_tbl,

7
 prop
 =
 0.8,

8
 strata
 =
 outcome

9
)

10

11
 #
 Create
 training
 set

12
 cls_train
 <- training(cls_split)
 #
 80%
 of
 data

13

14
 #
 Create
 testing
 set

15
 cls_test
 <- testing(cls_split)
 #
 20%
 of
 data

A
confirmation
of
the
distribution
of
the
data
across
the
training
and
testing
sets
as
well
as
a
breakdown
of
 the
outcome
variable,
created
by
 {janitor}’s

tabyl()
function,
can
be
seen
in
Example
9.5.

Example
9.5.

1
 #
 View
 the
 distribution

2
 #
 Training
 set

3
 cls_train
 |>

4
 tabyl(outcome)
 |>

5
 adorn_totals("row")
 |>

6
 adorn_pct_formatting(digits
 =
 1)

7

8
 #
 Testing
 set

9
 cls_test
 |>

10
 tabyl(outcome)
 |>

11
 adorn_totals("row")
 |>

12
 adorn_pct_formatting(digits
 =
 1)

outcome
 n
 percent

Learner
 1524
 64.5%

Native
 840
 35.5%

Total
 2364
 100.0%

outcome
 n
 percent

Learner
 382
 64.4%

Native
 211
 35.6%

Total
 593
 100.0%

We
can
see
that
the
split
was
successful.
The
training
and
testing
sets
have
very
similar
proportions
of
native
and
learner
texts.

221
9.2.
 ANALYSIS

We
 are
now
 ready
 to
 create
 a
 ‘recipe’,
 step
 3
 in
 our
 analysis.
A
 recipe
 is
Tidymodels
terminology
for
a
set
of
instructions
or
blueprint
which
specifies
the
outcome
variable
and
the
predictor
variable
and
determines
how
to
pre-
process
and
engineer
the
feature
variables.

We
will
use
 the
 recipe()
 function
 from
 {recipes}
 to
 create
 the
 recipe.
The

recipe()
 function
minimally
 takes
a
 formula
and
a
data
 frame
and
returns

a
recipe
object.
R
formulas
provide
a
way
to
specify
relationships
between
variables
and
are
used
extensively
in
R
data
modeling.
Formulas
specify
the
outcome
variable
(𝑦)
and
the
predictor
variable(s)
(𝑥1..𝑥𝑛).
For
example,
y

~ x
can
be
read
as
“y
as
a
function
of
x”.
In
our
particular
case,
we
will
use
the
formula
outcome
 ~
 text
to
specify
that
the
outcome
variable
is
the
outcome

variable
and
the
predictor
variable
 is
the
text
variable.
The
code
 is
seen
 in

Example
9.6.

Example
9.6.

1
 #
 Create
 a
 recipe

2
 base_rec
 <-

3
 recipe(

4
 formula
 =
 outcome
 ~
 text,
 #
 formula

5
 data
 =
 cls_train

6
)

7

8
 #
 Preview

9
 base_rec

──
 Recipe
 ───

──
 Inputs

Number
 of
 variables
 by
 role

outcome:
 1

predictor:
 1

The
recipe
object
at
this
moment
contains
just
one
instruction,
what
the
vari-
ables
are
and
what
their
relationship
is.

á
Tip
R
formulas
are
a
powerful
way
to
specify
relationships
between
variables
and
are
used
extensively
 in
data
modeling
 including
exploratory,
predictive,
and
inferential
analysis.
The
basic
formula
syntax
is
y ~ x
where
y
 is
the
outcome

variable
and
x
 is
the
feature
variable.
The
formula
syntax
can
be
extended
to
include
multiple
feature
variables,
interactions,
and
transformations.
For
more
information
on
R
 formulas,
see
R
 for
Data
Science
 (Wickham
&
Grolemund,
2017)

222
 CHAPTER
9.
 PREDICT

{recipes}
provides
a
wide
range
of
step_*()
functions
which
can
be
applied
to
the
recipe
to
specify
how
to
engineer
the
variables
in
our
recipe
call.
These
include
functions
to
scale
(e.g
step_center(),
step_scale(),
etc.)
and
transform

(e.g.
step_log(),
step_pca(),
etc.)
numeric
variables,
and
functions
to
encode

(e.g.
step_dummy(),
step_labelencode(),
etc.)
categorical
variables.

These
step
functions
are
great
when
we
have
selected
the
variables
we
want
to
use
in
our
model
and
we
want
to
engineer
them
in
a
particular
way.
In
our
case,
however,
we
need
to
derive
features
from
the
text
in
the
text
column
of

datasets
before
we
engineer
them.

To
 ease
 this
 process,
 {textrecipes}
 provides
 a
 number
 of
 step
 functions
for
 pre-processing
 text
 data.
 These
 include
 functions
 to
 tokenize
 (e.g.

step_tokenize()),
 remove
 stop
words
 (e.g.
 step_stopwords()),
 and
 to
derive

meta-features
 (e.g.
 step_lemma(),
 step_stem(),
 etc.)1.
 Furthermore,
 there
 are
functions
to
engineer
features
 in
ways
that
are
particularly
relevant
to
text
data,
such
as
feature
frequencies
and
weights
(e.g.
step_tf(),
step_tfidf(),
etc.)
and
token
filtering
(e.g.
step_tokenfilter()).

̪
Dive
deeper
For
other
tokenization
strategies
and
feature
engineering
meth-
ods,
 see
 {textrecipes}
 documentation
 (Hvitfeldt,
 2023).
 There
 are,
 however,

packages
which
provide
integration
with
textrecipes
 for
other
languages,
for
example,
{washoku}
for
Japanese
text
processing
(Uryu,
2024).

So
let’s
build
on
our
basic
recipe
cls_rec
by
adding
steps
relevant
to
our
task.

To
extract
our
features,
we
will
use
the
step_tokenize()
 function
to
tokenize

the
text
into
words.
The
default
behavior
of
the
step_tokenize()
function
is
to

tokenize
the
text
into
words,
but
other
token
units
can
be
derived
and
vari-
ous
options
can
be
added
to
the
function
call
(as
{tokenizers}
is
used
under
the
hood).
Adding
the
step_tokenize()
function
to
our
recipe
is
seen
in
Exam-
ple
9.7.

Example
9.7.

1
 #
 Add
 step
 to
 tokenize
 the
 text

2
 cls_rec
 <-

3
 base_rec
 |>

4
 step_tokenize(text)
 #
 tokenize

5

6
 #
 Preview

7
 cls_rec

1Note
that
functions
for
meta-features
require
more
sophisticated
text
analysis
software
to
be
installed
on
the
computing
environment
(e.g.
{spacyr}
for
step_lemma(),
step_pos(),
etc.).
See

{textrecipes}
documentation
for
more
information.

223
9.2.
 ANALYSIS

──
 Recipe
 ───

──
 Inputs

Number
 of
 variables
 by
 role

outcome:
 1

predictor:
 1

──
 Operations

•
 Tokenization
 for:
 text

The
recipe
object
cls_rec
now
contains
two
instructions,
one
for
the
outcome
variable
 and
one
 for
 the
 feature
variable.
The
 feature
variable
 instruction

specifies
that
the
text
should
be
tokenized
into
words.

We
 now
 need
 to
 consider
 how
 to
 engineer
 the
word
 features.
 If
we
 add

step_tf()
we
will
get
a
matrix
of
 token
counts
by
default,
with
 the
option
to
specify
other
weights.
The
step
function
step_tfidf()
 creates
a
matrix
of

term
frequencies
weighted
by
inverse
document
frequency.

We
 decided
 in
 step
 1
 that
 we
 will
 start
 with
 𝑡𝑓-𝑖𝑑𝑓 ,
 so
 we
 will
 add

step_tfidf()
to
our
recipe.
This
is
seen
in
Example
9.8.

Example
9.8.

1
 #
 Add
 step
 to
 tokenize
 the
 text

2
 cls_rec
 <-

3
 cls_rec
 |>

4
 step_tfidf(text,
 smooth_idf
 =
 FALSE)

5

6
 #
 Preview

7
 cls_rec

──
 Recipe
 ───

Number
 of
 variables
 by
 role

outcome:
 1

predictor:
 1

──
 Operations

•
 Tokenization
 for:
 text

•
 Term
 frequency-inverse
 document
 frequency
 with:
 text

224
 CHAPTER
9.
 PREDICT

á
Tip
The
step_tfidf()
 function
by
default
adds
a
smoothing
term
to
the
inverse
doc-
ument
frequency
(𝑖𝑑𝑓)
calculation.
This
setting
has
the
effect
of
reducing
the

influence
of
the
𝑖𝑑𝑓
calculation.
Thus,
terms
that
appear
in
many
(or
all)
doc-
uments
will
not
be
downweighted
as
much
as
they
would
be
if
the
smoothing
term
was
not
added.
For
our
purposes,
we
want
to
downweight
or
eliminate
the
influence
of
the
most
frequent
terms,
so
we
will
set
smooth_idf
 =
 FALSE.

To
make
sure
things
are
 in
order
and
that
the
recipe
performs
as
expected,
we
can
use
the
functions
prep()
and
bake()
 to
inspect
the
recipe.
The
prep()

function
takes
a
recipe
object
and
a
data
frame
and
returns
a
prep
object.
The

prep
object
contains
the
recipe
and
the
data
frame
with
the
feature
variables
engineered
according
 to
 the
recipe.
The
bake()
 function
 takes
a
prep
 object
and
an
optional
new
dataset
to
apply
the
recipe
to.
If
we
only
want
to
see
the
application
to
the
training
set,
we
can
use
the
new_data
 =
 NULL
argument.

In
Example
9.9,
we
use
the
prep()
and
bake()
functions
to
create
a
data
frame

with
the
feature
variables.
We
can
then
 inspect
the
data
frame
to
see
 if
the
recipe
performs
as
expected.

Example
9.9.

1
 #
 Prep
 and
 bake

2
 cls_bake
 <-

3
 cls_rec
 |>

4
 prep()
 |>
 #
 create
 a
 prep
 object

5
 bake(new_data
 =
 NULL)
 #
 apply
 to
 training
 set

6

7
 #
 Preview

8
 dim(cls_bake)

[1]
 2364
 38115

The
 resulting
 engineered
 features
 data
 frame
 has
 2,364
 observations
 and
38,115
variables.
That
is
a
lot
of
features!
Given
the
fact
that
for
each
writing
sample,
only
a
small
subset
of
them
will
actually
appear,
most
of
our
cells
will
be
filled
with
zeros.
This
is
what
is
known
as
a
sparse
matrix.

á
Tip
When
applying
tokenization
and
feature
engineering
steps
to
text
data
the
re-
sult
is
often
contained
in
a
matrix
object.
Using
{recipes}
a
data
frame
with
a
matrix-like
structure
is
returned.
Remember,
a
matrix
is
a
data
frame
where
all

the
vector
types
are
the
same.
Furthermore,
the
features
are
prefixed
with
the
variable
name
and
transforma-
tion
step
labels.
In
Example
9.9
we
applied
𝑡𝑓
-𝑖𝑑𝑓
to
the
text
variable.
Therefore

the
features
are
prefixed
with
tfidf_text_.

225
9.2.
 ANALYSIS

But
we
should
pause.
This
is
an
unwieldy
number
of
features,
on
for
every
single
word,
for
a
model
and
it
is
likely
that
many
of
these
features
are
not
useful
 for
our
classification
 task.
Furthermore,
 the
more
 features
we
have,
the
more
chance
these
features
will
capture
the
nuances
of
these
particular
writing
samples
increasing
the
likelihood
we
overfit
the
model.
All
in
all,
we
need
to
reduce
the
number
of
features.

We
can
filter
out
features
by
stopword
list
or
by
frequency
of
occurrence.
Let’s
start
by
frequency
of
occurrence.
We
can
set
the
maximum
number
of
the
top
features
with
an
arbitrary
threshold
to
start.
The
step_tokenfilter()
function

can
filters
out
features
on
a
number
of
criteria.
Let’s
use
the
max_tokens
argu-
ment
to
set
the
maximum
number
of
features
to
100.

This
particular
step
needs
to
be
applied
before
the
step_tfidf()
 step,
so
we

will
add
 it
to
our
recipe
before
the
step_tfidf()
 step.
This
 is
seen
 in
Exam-
ple
9.10.

Example
9.10.

1
 #
 Rebuild
 recipe
 with
 tokenfilter
 step

2
 cls_rec
 <-

3
 base_rec
 |>

4
 step_tokenize(text)
 |>

5
 step_tokenfilter(text,
 max_tokens
 =
 100)
 |>

6
 step_tfidf(text,
 smooth_idf
 =
 FALSE)

7

8
 #
 Prep
 and
 bake

9
 cls_bake
 <-

10
 cls_rec
 |>

11
 prep()
 |>

12
 bake(new_data
 =
 NULL)

13

14
 #
 Preview

15
 dim(cls_bake)

16

17
 cls_bake[1:5,
 1:5]

[1]
 2364
 101

#
 A
 tibble:
 5
 x
 5

outcome
 tfidf_text_a
 tfidf_text_ahora
 tfidf_text_al
 tfidf_text_amigos

<fct>
 <dbl>
 <dbl>
 <dbl>
 <dbl>

1
 Learner
 0
 0
 0
 0

2
 Learner
 0.00399
 0
 0
 0

3
 Learner
 0.00615
 0
 0
 0

4
 Learner
 0
 0
 0
 0

5
 Learner
 0.0111
 0
 0
 0

226
 CHAPTER
9.
 PREDICT

We
now
have
a
manageable
set
of
features,
and
fewer
of
which
will
have
a
as
many
zeros.
Only
during
the
interrogation
step
will
we
know
if
they
are
useful.

á
Tip
The
prep()
and
bake()
functions
are
useful
for
inspecting
the
recipe
and
the
en-
gineered
features,
but
they
are
not
required
to
build
a
recipe.
When
a
recipe
is
added
to
a
workflow,
the
prep()
and
bake()
 functions
are
called
automatically

as
part
of
the
process.

We
are
now
ready
to
turn
our
attention
to
step
5
of
our
workflow,
interrogat-
ing
the
data.
In
this
step,
we
will
first
select
a
classification
algorithm,
then
add
this
algorithm
and
our
recipe
to
a
workflow
object.
We
will
then
use
the
workflow
object
to
train
and
assess
the
resulting
models,
adjusting
them
un-
til
we
believe
we
have
a
robust
final
model
to
apply
on
the
testing
set
for
our
final
evaluation.

There
 are
 many
 classification
 algorithms
 to
 choose
 from
 with
 their
 own
strengths
and
shortcomings.
In
Table
9.3,
we
list
some
of
the
most
common
classification
algorithms
and
their
characteristics.

Table
9.3:
Common
classification
algorithms

Tuning

Algorithm
 Strengths
 Shortcomings
 Recommendation

Logistic

regression

Naive

Bayes

Decision

trees

Random

forest

Support

vector

machines

Neural

networks

Interpretable,
fast,

high-dimensional
data

Interpretable,
fast,

high-dimensional
data,

multi-class

Nonlinear,

interpretable,

numerical/
categorical

data

Nonlinear,
numerical/

categorical
data,
 less

overfitting

Nonlinear,

high-dimensional
data,

numerical/
categorical

Nonlinear,
 large
data,

auto
feature
 learning

Linear
relationship,

not
for
complex
tasks

Assumes
feature

(naive)
 independence,

poor
with
small
data

Overfitting,
high

variance

Less
 interpretable,

poor
with

high-dimensional
data

Requires
parameter

tuning,
memory

intensive

Overfitting,
difficult

to
 interpret,
expensive

Cross-validate

regularization
strength

None

Cross-validate

maximum
tree
depth

Cross-validate
number

of
trees

Cross-validate

regularization

parameter

Cross-validate
 learning

rate

227
9.2.
 ANALYSIS

In
 the
process
of
 selecting
an
algorithm,
 simple,
computationally
efficient,
and
interpretable
models
are
preferred
over
complex,
computationally
expen-
sive,
and
uninterpretable
models,
all
things
being
equal.
Only
if
the
perfor-
mance
of
the
simple
model
is
not
good
enough
should
we
move
on
to
a
more
complex
model.

á
Tip
{parsnip}
provides
a
consistent
interface
to
many
different
models,
105
at
the
time
of
writing.
You
can
peruse
the
list
of
models
by
running
parsnip::model_db.

You
can
also
retrieve
the
list
of
potential
engines
for
a
given
model
specification
with
 the
 show_engines()
 function.
 For
 example,
 show_engines("logistic_reg")

will
return
a
data
frame
with
the
engines
available
for
the
logistic
regression
model
specification.
Note,
the
engines
represent
R
packages
that
need
to
be
in-
stalled
to
use
the
engine.

With
this
end
mind,
we
will
start
with
a
simple
logistic
regression
model
to
see
how
well
we
can
classify
 the
 texts
 in
 the
 training
set
with
 the
 features
we
have
engineered.
We
will
use
the
logistic_reg()
 function
from
{parsnip}
to
specify
the
logistic
regression
model.
We
then
select
the
implementation
engine
(glmnet
General
Linear
Model)
and
the
mode
of
the
model
(classifi-
cation).
The
implementation
engine
is
the
software
that
will
be
used
to
fit
the
model.
The
code
to
set
up
the
model
specification
is
seen
in
Example
9.11.

Example
9.11.

1
 #
 Create
 a
 model
 specification

2
 cls_spec
 <-

3
 logistic_reg()
 |>

4
 set_engine("glmnet")

5

6
 #
 Preview

7
 cls_spec

Logistic
 Regression
 Model
 Specification
 (classification)

Computational
 engine:
 glmnet

Now,
different
algorithms
will
have
different
parameters
that
can
be
adjusted
which
can
affect
the
performance
of
the
model
(see
Table
9.3).
As
not
to
con-
fuse
 these
parameters
with
 the
 features,
which
are
also
parameters
of
 the
model,
these
are
given
the
name
hyperparameters.
The
adjustment
process
is

called
hyperparameter
tuning
and
involves
fitting
the
model
to
the
training
set
with
different
hyperparameters
and
evaluating
the
model’s
performance
to
determine
the
best
hyperparameter
values
to
use
for
the
model.

228
 CHAPTER
9.
 PREDICT

á
Tip
You
 can
 find
 the
 hyperparameters
 for
 a
 model-engine
 by
 consulting
 the

parsnip::model_db
 object
 and
unnesting
 the
 parameters
 column.
 For
 example,

parsnip::model_db
 |>
 filter(model
 ==
 "logistic_reg")
 |>
 unnest(parameters)

will
return
a
data
frame
with
the
hyperparameters
for
the
 logistic
regression

model.

To
learn
more
about
the
hyperparameters
for
a
specific
model,
you
can
consult

the
documentation
for
parsnip
model
(e.g.
?logistic_reg).

For
 example,
 the
 logistic
 regression
 model
 using
 glmnet
 can
 be
 tuned
 to

prevent
overfitting.
The
regularization
 typically
applied
 is
 the
LASSO
 (L1)
penalty2.
The
logistic_reg()
 function
takes
the
arguments
penalty
and
mix-
ture.
We
set
mixture
 =
 1,
but
we
now
need
to
decide
what
value
to
use
for

the
strength
of
the
penalty
argument.
Values
can
range
from
0
to
1,
where
0
indicates
no
penalty
and
1
indicates
a
maximum
penalty.

Instead
of
guessing,
we
will
use
{tune}
to
tune
the
hyperparameters
of
the
model.
The
tune()
function
serves
as
a
placeholder
for
the
hyperparameters
we
want
to
tune.
We
can
add
the
tune()
 function
to
our
model
specification
to
specify
the
hyperparameters
we
want
to
tune.
The
code
is
seen
in
Exam-
ple
9.12.

Example
9.12.

1
 #
 Create
 a
 model
 specification
 (with
 tune)

2
 cls_spec
 <-

3
 logistic_reg(penalty
 =
 tune(),
 mixture
 =
 1)
 |>

4
 set_engine("glmnet")

5

6
 #
 Preview

7
 cls_spec

Logistic
 Regression
 Model
 Specification
 (classification)

Main
 Arguments:

penalty
 =
 tune()

mixture
 =
 1

Computational
 engine:
 glmnet

We
can
see
now
that
the
cls_spec
model
specification
now
includes
the
tune()

function
as
the
value
for
the
penalty
argument.

2The
LASSO
(least
absolute
shrinkage
and
selection
operator)
is
a
type
of
regularization
that

penalizes
the
absolute
value
of
the
coefficients.
In
essence,
it
smooths
the
coefficients
by
shrinking
them
towards
zero
to
avoid
coefficients
picking
up
on
particularities
of
the
training
data
that
will
not
generalize
to
new
data.

229
9.2.
 ANALYSIS

To
tune
our
model,
we
will
need
 to
combine
our
recipe
and
model
specifi-
cation
 into
a
workflow
object
which
 sequences
our
 feature
 selection,
engi-
neering,
and
model
selection.
We
will
use
the
workflow()
function
from
{work-
flows}
to
do
this.
The
code
is
seen
in
Example
9.13.

Example
9.13.

1
 #
 Create
 a
 workflow

2
 cls_wf
 <-

3
 workflow()
 |>

4
 add_recipe(cls_rec)
 |>

5
 add_model(cls_spec)

6

7
 #
 Preview

8
 cls_wf

══
 Workflow
 ═══════════════════════════════════════

Preprocessor:
 Recipe

Model:
 logistic_reg()

──
 Preprocessor
 ───────────────────────────────────

3
 Recipe
 Steps

•
 step_tokenize()

•
 step_tokenfilter()

•
 step_tfidf()

──
 Model
 ──

Logistic
 Regression
 Model
 Specification
 (classification)

Main
 Arguments:

penalty
 =
 tune()

mixture
 =
 1

Computational
 engine:
 glmnet

We
now
have
a
workflow
cls_wf
 that
includes
our
recipe
and
model
specifi-
cation,
including
the
tune()
 function
as
a
placeholder
for
a
range
of
values
for
the
penalty
hyperparameter.
To
tune
the
penalty
hyperparameter,
we
use
the
grid_regular()
function
from
{dials}
to
specify
a
grid
of
values
to
try.
Let’s
choose
a
random
set
of
10
values,
as
seen
in
Example
9.14.

Example
9.14.

1
 #
 Create
 a
 grid
 of
 values
 for
 the
 penalty
 hyperparameter

2
 cls_grid
 <-

3
 grid_regular(penalty(),
 levels
 =
 10)

230
 CHAPTER
9.
 PREDICT

4

5
 #
 Preview

6
 cls_grid

#
 A
 tibble:
 10
 x
 1

penalty

<dbl>

1
 0.0000000001

2
 0.00000000129

3
 0.0000000167

4
 0.000000215

5
 0.00000278

6
 0.0000359

7
 0.000464

8
 0.00599

9
 0.0774

10
 1

The
10
values
chosen
to
be
in
the
grid
range
from
nearly
0
to
1,
where
0
indi-
cates
no
penalty
and
1
indicates
a
strong
penalty.

Now
to
perform
the
tuning
and
arrive
at
an
optimal
value
for
penalty
we
need

to
create
a
tuning
workflow.
We
do
this
by
calling
the
tune_grid()
 function

using
our
tuning
model
specification
workflow,
a
resampling
object,
and
our
hyperparameter
grid
and
return
a
tune_grid
object.

Resampling
is
a
strategy
that
allows
us
to
generate
multiple
training
and
test-
ing
sets
from
a
single
dataset
—in
this
case
the
training
data
we
split
at
the
outset.
Each
generated
 training-testing
pair
 is
called
a
 fold.
Which
 is
why
this
type
of
resampling
is
called
k-fold
cross-validation.
The
vfold_cv()
func-
tion
from
{rsample}
takes
a
data
frame
and
a
number
of
folds
and
returns
a

vfold_cv
object.
We
will
apply
the
cls_wf
workflow
to
the
10
folds
of
the
train-
ing
set
with
tune_grid().
For
each
fold,
each
of
the
10
values
of
the
penalty
hyperparameter
will
be
tried
and
the
model’s
performance
will
be
evaluated.
The
code
is
seen
in
Example
9.15.

Example
9.15.

1
 set.seed(123)
 #
 for
 reproducibility

2

3
 #
 Create
 a
 resampling
 object

4
 cls_vfold
 <- vfold_cv(cls_train,
 v
 =
 10)

5

6
 #
 Tune
 the
 model

7
 cls_tune
 <-

8
 tune_grid(

9
 cls_wf,

231
9.2.
 ANALYSIS

10
 resamples
 =
 cls_vfold,

11
 grid
 =
 cls_grid

12
)

13

14
 #
 Preview

15
 cls_tune

#
 Tuning
 results

#
 10-fold
 cross-validation

#
 A
 tibble:
 10
 x
 4

splits
 id
 .metrics
 .notes

<list>
 <chr>
 <list>
 <list>

1
 <split
 [2127/237]>
 Fold01
 <tibble
 [30
 x
 5]>
 <tibble
 [0
 x
 3]>

2
 <split
 [2127/237]>
 Fold02
 <tibble
 [30
 x
 5]>
 <tibble
 [0
 x
 3]>

3
 <split
 [2127/237]>
 Fold03
 <tibble
 [30
 x
 5]>
 <tibble
 [0
 x
 3]>

4
 <split
 [2127/237]>
 Fold04
 <tibble
 [30
 x
 5]>
 <tibble
 [0
 x
 3]>

5
 <split
 [2128/236]>
 Fold05
 <tibble
 [30
 x
 5]>
 <tibble
 [0
 x
 3]>

6
 <split
 [2128/236]>
 Fold06
 <tibble
 [30
 x
 5]>
 <tibble
 [0
 x
 3]>

7
 <split
 [2128/236]>
 Fold07
 <tibble
 [30
 x
 5]>
 <tibble
 [0
 x
 3]>

8
 <split
 [2128/236]>
 Fold08
 <tibble
 [30
 x
 5]>
 <tibble
 [0
 x
 3]>

9
 <split
 [2128/236]>
 Fold09
 <tibble
 [30
 x
 5]>
 <tibble
 [0
 x
 3]>

10
 <split
 [2128/236]>
 Fold10
 <tibble
 [30
 x
 5]>
 <tibble
 [0
 x
 3]>

The
cls_tune
object
contains
the
results
of
the
tuning
for
each
fold.
We
can
see
the
results
of
the
tuning
for
each
fold
by
calling
the
collect_metrics()
function

on
the
cls_tune
object,
as
seen
in
Example
9.16.
Passing
the
cls_tune
object
to

autoplot()
produces
the
visualization
in
Figure
9.1.

Example
9.16.

1
 #
 Collect
 the
 results
 of
 the
 tuning

2
 cls_tune_metrics
 <-

3
 collect_metrics(cls_tune)

4

5
 #
 Visualize
 metrics

6
 autoplot(cls_tune)

The
most
 common
metrics
 for
model
performance
 in
 classification
 are
 ac-
curacy
and
the
area
under
the
receiver
operating
characteristic
area
under

the
curve
(ROC-AUC).
Accuracy
is
simply
the
proportion
of
correct
predic-
tions.
The
ROC-AUC
provides
a
single
score
which
summarizes
how
well
the
model
can
distinguish
between
classes.
The
closer
to
1
the
more
discrimina-
tive
power
the
model
has.

232
 CHAPTER
9.
 PREDICT

accuracy

0.9

0.8

0.7

0.6

0.5

roc_auc

0.9

0.8

0.7

0.6

0.5

Amount of regularization

Figure
9.1:
Metrics
for
each
fold
of
the
tuning
process

1e−08
 1e−05
 1e−02

In
the
plot
of
the
metrics,
Figure
9.1,
we
can
see
that
the
many
of
the
penalty
values
performed
similarly,
with
a
drop-off
in
performance
at
the
higher
val-
ues.
Conveniently,
the
show_best()
function
from
{tune}
takes
a
tune_grid
ob-
ject
and
returns
the
best
performing
hyperparameter
values.
The
code
is
seen
in
Example
9.17.

Example
9.17.

1
 #
 Show
 the
 best
 performing
 hyperparameter
 value

2
 cls_tune
 |>

3
 show_best(metric
 =
 "roc_auc")

#
 A
 tibble:
 5
 x
 7

penalty
 .metric
 .estimator
 mean
 n
 std_err
 .config

<dbl>
 <chr>
 <chr>
 <dbl>
 <int>
 <dbl>
 <chr>

1
 0.000464
 roc_auc
 binary
 0.952
 10
 0.00487
 Preprocessor1_Model07

2
 0.00599
 roc_auc
 binary
 0.952
 10
 0.00344
 Preprocessor1_Model08

3
 0.0000000001
 roc_auc
 binary
 0.951
 10
 0.00502
 Preprocessor1_Model01

4
 0.00000000129
 roc_auc
 binary
 0.951
 10
 0.00502
 Preprocessor1_Model02

5
 0.0000000167
 roc_auc
 binary
 0.951
 10
 0.00502
 Preprocessor1_Model03

We
can
make
this
selection
programmatically
by
using
the
select_best()
func-
tion.
This
function
needs
a
metric
to
select
by.
We
will
use
the
ROC-AUC
and
select
the
best
value
for
the
penalty
hyperparameter.
The
code
is
seen
in
Ex-
ample
9.18.

233
9.2.
 ANALYSIS

Example
9.18.

1
 #
 Select
 the
 best
 performing
 hyperparameter
 value

2
 cls_best
 <-

3
 select_best(cls_tune,
 metric
 =
 "roc_auc")

4

5
 #
 Preview

6
 cls_best

#
 A
 tibble:
 1
 x
 2

penalty
 .config

<dbl>
 <chr>

1
 0.000464
 Preprocessor1_Model07

All
of
that
to
tune
a
hyperparameter!
Now
we
can
update
the
model
specifi-
cation
and
workflow
with
the
best
performing
hyperparameter
value
using
the
previous
cls_wf_tune
workflow
and
the
finalize_workflow()
function.
The

finalize_workflow()
 function
takes
a
workflow
and
the
selected
parameters
and
returns
an
updated
workflow
object,
as
seen
in
Example
9.19.

Example
9.19.

1
 #
 Update
 model
 specification

2
 cls_wf_lasso
 <-

3
 cls_wf
 |>

4
 finalize_workflow(cls_best)

5

6
 #
 Preview

7
 cls_wf_lasso

══
 Workflow
 ═══════════════════════════════════════

Preprocessor:
 Recipe

Model:
 logistic_reg()

──
 Preprocessor
 ───────────────────────────────────

•
 step_tokenize()

•
 step_tokenfilter()

•
 step_tfidf()

──
 Model
 ──

Logistic
 Regression
 Model
 Specification
 (classification)

Main
 Arguments:

penalty
 =
 0.000464158883361278

mixture
 =
 1

Computational
 engine:
 glmnet

234
 CHAPTER
9.
 PREDICT

Our
model
specification
and
the
workflow
are
updated
with
the
tuned
hyper-
parameter.

As
a
reminder,
we
are
still
working
in
step
5
of
our
workflow,
interrogating
the
data.
So
far,
we
have
selected
and
engineered
the
features,
split
the
data
into
training
and
testing
sets,
and
selected
a
classification
algorithm.
We
have
also
tuned
the
hyperparameters
of
the
model
and
updated
the
model
specification
and
workflow
with
the
best
performing
hyperparameter
value.

The
next
step
is
to
assess
the
performance
of
the
model
on
the
training
set
given
the
features
we
have
engineered,
the
algorithm
we
have
selected,
and
the
hyperparameters
we
have
tuned.
Instead
of
evaluating
the
model
on
the
training
set
directly,
we
will
use
cross-validation
on
the
training
set
to
gauge
the
variability
of
the
model.

The
reason
for
this
is
that
the
model’s
performance
on
the
entire
training
set
at
once
is
not
a
reliable
indicator
of
the
model’s
performance
on
new
data
—just
imagine
 if
you
were
to
take
the
same
test
over
and
over
again,
you
would
get
better
and
better
at
 the
 test,
but
 that
doesn’t
mean
you’ve
 learned
 the
material
any
better.
Cross-validation
is
a
technique
that
allows
us
to
estimate
the
model’s
performance
on
new
data
by
simulating
the
process
of
training
and
testing
the
model
on
different
subsets
of
the
training
data.

Similar
 to
 what
 we
 did
 to
 tune
 the
 hyperparameters,
 we
 can
 use
 cross-
validation
to
gauge
the
variability
of
the
model.
The
fit_resamples()
function

takes
a
workflow
and
a
resampling
object
and
returns
metrics
for
each
fold.
The
code
is
seen
in
Example
9.20.

Example
9.20.

1
 #
 Cross-validate
 workflow

2
 cls_lasso_cv
 <-

3
 cls_wf_lasso
 |>

4
 fit_resamples(

5
 resamples
 =
 cls_vfold,

6
 #
 save
 predictions
 for
 confusion
 matrix

7
 control
 =
 control_resamples(save_pred
 =
 TRUE)

8
)

We
want
to
aggregate
the
metrics
across
the
folds
to
get
a
sense
of
the
variabil-
ity
of
the
model.
The
collect_metrics()
 function
takes
the
results
of
a
cross-
validation
and
returns
a
data
frame
with
the
metrics.

235
9.2.
 ANALYSIS

Example
9.21.

1
 #
 Collect
 metrics

2
 collect_metrics(cls_lasso_cv)

#
 A
 tibble:
 3
 x
 6

.metric
 .estimator
 mean
 n
 std_err
 .config

<chr>
 <chr>
 <dbl>
 <int>
 <dbl>
 <chr>

1
 accuracy
 binary
 0.884
 10
 0.00554
 Preprocessor1_Model1

2
 brier_class
 binary
 0.0823
 10
 0.00385
 Preprocessor1_Model1

3
 roc_auc
 binary
 0.952
 10
 0.00487
 Preprocessor1_Model1

From
the
accuracy
and
ROC-AUC
metrics
in
Example
9.21
it
appears
we
have
a
decent
candidate
model,
but
 there
 is
room
 for
potential
 improvement.
A
good
next
step
is
to
evaluate
the
model
errors
and
see
if
there
are
any
patterns
that
can
be
addressed
before
considering
what
approach
to
take
to
improve
the
model.

á
Tip
To
provide
context
in
terms
of
what
is
a
good
model
performance,
it
is
useful
to
compare
the
model’s
performance
to
a
null
model.
A
null
model
(or
baseline
model)
is
a
simple
model
that
is
easy
to
implement
and
provides
a
benchmark
for
the
model’s
performance.
For
classification
tasks,
a
common
null
model
is
to
predict
the
most
frequent
class.
In
modeling,
this
is
the
minimal
benchmark
we
want
to
beat,
if
we
are
doing
better
than
this,
we
are
doing
better
than
chance.

For
classification
tasks,
a
good
place
to
start
is
to
visualize
a
confusion
matrix.
A
confusion
matrix
is
a
cross-tabulation
of
the
predicted
and
actual
outcomes.

The
conf_mat_resampled()
 function
takes
a
fit_resamples
object
(with
predic-
tions
saved)
and
returns
a
table
(tidy
 =
 FALSE)
with
the
confusion
matrix
for

the
aggregated
folds.
We
can
pass
this
to
the
autoplot()
function
to
plot
as
in

Example
9.22.

Example
9.22.

1
 #
 Plot
 confusion
 matrix

2
 cls_lasso_cv
 |>

3
 conf_mat_resampled(tidy
 =
 FALSE)
 |>

4
 autoplot(type
 =
 "heatmap")

The
top
left
to
bottom
right
diagonal
contains
the
true
positives
and
true
neg-
atives.
These
are
the
correct
predictions.
The
top
right
to
bottom
left
diagonal
contains
the
false
positives
and
false
negatives
—our
errors.
The
convention
is
to
speak
of
one
class
being
the
positive
class
and
the
other
class
being
the
neg-
ative
class.
In
our
case,
we
will
consider
the
positive
class
to
be
the
‘learner’
class
and
the
negative
class
to
be
the
‘natives’
class.

236
 CHAPTER
9.
 PREDICT

Figure
9.2:
Confusion
matrix
for
the
aggregated
folds
of
the
cross-validation

We
can
see
that
there
are
more
learners
falsely
predicted
to
be
natives
than
the
other
way
around.
This
may
be
due
to
the
fact
that
there
are
simply
more
learners
than
natives
in
the
dataset
or
this
could
signal
that
there
are
some
learners
that
are
more
similar
to
natives
than
other
learners.
Clearly
this
can’t
be
the
entire
explanation
as
the
model
is
not
perfect,
even
some
natives
are
classified
falsely
as
learners!
But
it
may
be
an
interesting
avenue
for
further
exploration.
Perhaps
these
are
learners
that
are
more
advanced
or
have
a
par-
ticular
style
of
writing
that
is
more
similar
to
natives.

̪
Dive
deeper
Another
perspective
often
applied
to
evaluate
a
model
is
the
receiver
operat-
ing
characteristic
(ROC)
curve.
The
ROC
curve
is
a
plot
of
the
true
positive
rate
(TPR)
against
the
false
positive
rate
(FPR)
for
different
classification
thresholds.
This
metric,
and
visualization,
can
be
useful
to
gauge
the
model’s
ability
to
dis-
tinguish
between
the
two
classes.
{yardstick}
provides
the
roc_curve()
function

to
calculate
the
ROC
curve
on
an
fit_resamples
object.

To
improve
supervised
learning
models,
consider:

1.
 Engineering
the
features
differently

2.
 Selecting
different
(or
additional)
features

3.
 Changing
the
algorithm

4.
 Tuning
the
hyperparameters
differently

237
9.2.
 ANALYSIS

Of
these
options,
adjusting
the
feature
engineering
process
is
the
option
that
diverges
 least
 from
 our
 current
workflow
 cls_wf_lasso.
Recall
 that
 in
 our

recipe
specification
we
set
a
 token
filter
 to
 limit
 the
number
of
 features
 to
100.
We
can
adjust
this
number
to
see
if
it
has
an
effect
on
the
model’s
perfor-
mance.

To
help
select
 the
optimal
number
of
 tokens,
we
again
can
use
 the
 tuning
process
we
explored
for
the
hyperparameters.
This
time,
however,
the
tune()

placeholder
will
be
included
as
the
argument
to
the
max_tokens
argument
in

the
step_tokenfilter()
function.

I
repeat
the
recipe
with
the
tuning
placeholder
in
Example
9.23.

Example
9.23.

1
 #
 Create
 a
 recipe
 with
 a
 token
 filter
 step

2
 cls_rec
 <-

3
 recipe(

4
 formula
 =
 outcome
 ~
 text,

5
 data
 =
 cls_train

6
)
 |>

7
 step_tokenize(text)
 |>

8
 step_tokenfilter(text,
 max_tokens
 =
 tune())
 |>

9
 step_tfidf(text)

With
 the
 updated
 recipe,
 we
 can
 update
 the
 cls_wf_lasso
 and
 tune
 the

max_tokens
hyperparameter.
The
code
is
seen
in
Example
9.24.

Example
9.24.

1
 #
 Update
 workflow
 with
 token
 filter
 tuning

2
 cls_wf_lasso
 <-

3
 cls_wf_lasso
 |>

4
 update_recipe(cls_rec)

One
thing
to
note
is
that
we
will
want
to
consider
what
values
of
max_tokens

we
want
to
use
to
tune
the
hyperparameter.
So
instead
of
only
specifying
the
levels
 in
 the
grid_regular()
 function,
we
are
best
off
 to
provide
a
range
of
values
that
we
think
are
reasonable.
Let’s
add
a
range
of
values
between
our
current
value
100
and
2,000
to
start.
And
let’s
tell
the
grid
to
select
five
values
from
this
range.

The
code
is
seen
in
Example
9.25.

238
 CHAPTER
9.
 PREDICT

Example
9.25.

1
 #
 Create
 a
 grid
 of
 values
 for
 the
 max
 tokens
 hyperparameter

2
 cls_grid
 <-

3
 grid_regular(max_tokens(range
 =
 c(100,
 2000)),
 levels
 =
 5)

4

5
 #
 Preview

6
 cls_grid

#
 A
 tibble:
 5
 x
 1

max_tokens

<int>

1
 100

2
 575

3
 1050

4
 1525

5
 2000

From
here,
the
process
is
the
same
as
before.
We
will
use
the
tune_grid()
func-
tion
to
tune
the
max_tokens
hyperparameter,
select
the
best
value,
and
finalize
the
workflow,
as
seen
from
Example
9.15
through
Example
9.19.

After
 tuning
 the
 max_tokens
 hyperparameter,
 the
 best
performing
value
 is

1,050.
 We
 now
 used
 the
 updated
 cls_wf_lasso_tokens
 workflow
 to
 cross-
validate
the
model
and
collect
the
metrics.
The
code
is
seen
in
Example
9.26.

Example
9.26.

1
 #
 Cross-validate
 workflow

2
 cls_lasso_tokens_cv
 <-

3
 cls_wf_lasso_tokens
 |>

4
 fit_resamples(

5
 resamples
 =
 cls_vfold,

6
 #
 save
 predictions
 for
 confusion
 matrix

7
 control
 =
 control_resamples(save_pred
 =
 TRUE)

8
)

9

10
 #
 Collect
 metrics

11
 collect_metrics(cls_lasso_tokens_cv)

#
 A
 tibble:
 3
 x
 6

.metric
 .estimator
 mean
 n
 std_err
 .config

<chr>
 <chr>
 <dbl>
 <int>
 <dbl>
 <chr>

1
 accuracy
 binary
 0.918
 10
 0.00555
 Preprocessor1_Model1

2
 brier_class
 binary
 0.0680
 10
 0.00418
 Preprocessor1_Model1

3
 roc_auc
 binary
 0.968
 10
 0.00289
 Preprocessor1_Model1

239
9.2.
 ANALYSIS

The
metrics
from
Example
9.26
show
that
the
model’s
performance
has
im-
proved
for
both
the
accuracy
and
the
ROC-AUC.
The
confusion
matrix
from
Example
9.27
shows
that
the
number
of
false
positives
and
false
negatives
has
decreased.
This
is
a
good
sign
that
the
model
is
more
robust.

Example
9.27.

1
 #
 Plot
 confusion
 matrix

2
 cls_lasso_tokens_cv
 |>

3
 conf_mat_resampled(tidy
 =
 FALSE)
 |>

4
 autoplot(type
 =
 "heatmap")

Figure
9.3:
Confusion
matrix
for
the
aggregated
folds
of
the
cross-validation

From
Figure
9.3,
it
appears
that
the
model
is
more
robust
with
the
updated

max_tokens
 hyperparameter.
We
could
continue
 to
explore
other
model
 im-
provement
strategies,
but
for
now
we
will
move
on
to
the
next
step
in
our
workflow.

We
are
now
ready
to
move
on
to
step
7,
evaluating
the
model
on
the
test
set.
To
do
this
we
need
to
fit
the
tuned
workflow
to
the
training
set,
which
is
the
actual
training
phase.
We
will
use
the
last_fit()
 function
from
{workflows}

to
fit
the
workflow
to
the
training
set.

240
 CHAPTER
9.
 PREDICT

The
 last_fit()
 function
 takes
a
workflow
and
a
 split
object
and
 returns
a

last_fit
object.
The
last_fit
object
contains
 the
results
of
 the
model
fit
on
the
training
set
and
the
results
of
the
model
evaluation
on
the
test
set.
The
code
is
seen
in
Example
9.28.

We
will
use
the
last_fit()
 function
to
train
the
final
model
and
predict
the
outcome
on
 the
 test
set.
The
collect_metrics()
 function
 takes
a
data
 frame

with
the
actual
and
predicted
outcomes
and
returns
a
data
frame
with
the
metrics
for
the
model.
The
code
is
seen
in
Example
9.28.

Example
9.28.

1
 #
 Fit
 the
 model
 to
 the
 training
 set
 and
 evaluate
 on
 the
 test
 set

2
 cls_final_fit
 <-

3
 last_fit(

4
 cls_wf_lasso_tokens,

5
 split
 =
 cls_split

6
)

7

8
 #
 Evaluate
 model
 on
 testing
 set

9
 collect_metrics(cls_final_fit)

#
 A
 tibble:
 3
 x
 4

.metric
 .estimator
 .estimate
 .config

<chr>
 <chr>
 <dbl>
 <chr>

1
 accuracy
 binary
 0.909
 Preprocessor1_Model1

2
 roc_auc
 binary
 0.962
 Preprocessor1_Model1

3
 brier_class
 binary
 0.0758
 Preprocessor1_Model1

The
performance
metrics
are
very
close
to
those
we
achieved
on
the
training
set
in
Example
9.26.
This
is
a
good
sign
that
the
model
is
robust
as
it
performs
well
on
both
training
and
test
sets.
We
can
evaluate
the
confusion
matrix
on
the
test
set
as
well.
The
code
is
seen
in
Example
9.29
and
the
visualization
in
Figure
9.4.

Example
9.29.

1
 #
 Plot
 confusion
 matrix

2
 cls_final_fit
 |>

3
 collect_predictions()
 |>

4
 conf_mat(truth
 =
 outcome,
 estimate
 =
 .pred_class)
 |>

5
 autoplot(type
 =
 "heatmap")

On
the
test
set
the
false
instances
are
balanced,
which
is
a
good
sign
that
the
model
is
robust.
Ideally,
there
would
be
no
errors,
but
this
is
not
realistic.
The
model
is
not
perfect,
but
it
is
useful.

241
9.2.
 ANALYSIS

Figure
9.4:
Confusion
matrix
for
the
test
set

Now
a
model
that
can
predict
the
nativeness
of
a
writer
based
on
their
writ-
ing
sample
is
a
useful
tool
in
itself.
You
could
imagine
that
this
could
be
a
pre-processing
step
for
a
language
learning
application,
for
example.
But
for
a
study
that
is
more
interested
in
learning
about
what
features
are
most
im-
portant
for
predicting
the
native
versus
non-native
features
of
a
writer,
we
still
have
some
work
to
do.
We
can
inspect
the
errors
on
the
test
set
to
gain
some
insight
into
what
writing
samples,
and
which
proficiency
levels
of
the
writers,
are
most
difficult
to
predict.
We
can
also
inspect
the
estimates
for
the
features
in
the
model
to
gain
some
insight
into
what
features
are
most
impor-
tant
for
predicting
the
outcomes.

Let’s
first
approach
this
from
a
document-proficiency
point
of
view.
First,
we
will
want
to
integrate
the
predictions
with
the
test
set
to
inspect
the
errors.
We
can
use
the
collect_predictions()
function
to
collect
the
predictions
from

the
last_fit
object
and
attach
them
with
the
test
set
cls_test
with
bind_cols.

Note,
we
can
drop
the
outcome
variable
from
cls_test
as
we
have
this
column

in
our
fitted
model.
The
code
is
seen
in
Example
9.30.

Example
9.30.

1
 #
 Collect
 predictions
 from
 the
 model

2
 cls_lasso_fit_preds_test
 <-

3
 cls_final_fit
 |>

242
 CHAPTER
9.
 PREDICT

4
 collect_predictions()
 |>

5
 bind_cols(cls_test[,
 -1])

6

7
 #
 Preview

8
 glimpse(cls_lasso_fit_preds_test)

Rows:
 593

Columns:
 9

$
 .pred_class
 <fct>
 Learner,
 Learner,
 Learner,
 Native,
 Learner,
 Learner,
 Lea~

$
 .pred_Learner
 <dbl>
 1.0000,
 1.0000,
 1.0000,
 0.0996,
 1.0000,
 0.9928,
 1.0000,
 ~

$
 .pred_Native
 <dbl>
 9.59e-06,
 1.13e-05,
 3.16e-09,
 9.00e-01,
 2.83e-06,
 7.17e-~

$
 id
 <chr>
 "train/test
 split",
 "train/test
 split",
 "train/test
 spli~

$
 .row
 <int>
 3,
 7,
 15,
 21,
 22,
 25,
 36,
 43,
 47,
 50,
 53,
 57,
 62,
 66,
 68~

$
 outcome
 <fct>
 Learner,
 Learner,
 Learner,
 Learner,
 Learner,
 Learner,
 Le~

$
 .config
 <chr>
 "Preprocessor1_Model1",
 "Preprocessor1_Model1",
 "Preproc~

$
 proficiency
 <fct>
 Lower
 beginner,
 Lower
 beginner,
 Lower
 beginner,
 Lower
 be~

$
 text
 <chr>
 "Sanaa
 Lathan
 es
 muy
 famosa
 persona.
 Ella
 es
 en
 de
 telev~

I
will
then
select
the
columns
with
the
actual
outcome,
the
predicted
outcome,
the
proficiency
level,
and
the
text
and
separate
the
predicted
outcome
to
in-
spect
them
separately,
as
seen
in
Example
9.31.

Example
9.31.

1
 #
 Inspect
 errors

2
 cls_lasso_fit_preds_test
 |>

3
 filter(outcome
 !=
 .pred_class)
 |>

4
 select(outcome,
 .pred_class,
 proficiency,
 text)

#
 A
 tibble:
 54
 x
 4

outcome
 .pred_class
 proficiency
 text

<fct>
 <fct>
 <fct>
 <chr>

1
 Learner
 Native
 Lower
 beginner
 "Un
 día
 un
 pequeño
 nino
 fue
 dado
 una
 ~

2
 Learner
 Native
 Upper
 beginner
 "Un
 dia,
 El
 niño
 estaba
 durmiendo
 cua~

3
 Learner
 Native
 Upper
 beginner
 "Yo
 vivo
 en
 la
 ciudad
 de
 Atlanta.
 En
 ~

4
 Learner
 Native
 Upper
 beginner
 "Hola
 me
 llamo
 Jason.\n
 Mis
 amigos
 es~

5
 Learner
 Native
 Lower
 intermediate
 "Recientemente
 vi
 una
 película
 que
 es~

6
 Learner
 Native
 Upper
 intermediate
 "Vivo
 en
 la
 ciudad
 de
 Richmond
 en
 Vir~

7
 Learner
 Native
 Upper
 intermediate
 "A
 la
 semana
 pasada,
 yo
 vi
 la
 pelicul~

8
 Learner
 Native
 Upper
 intermediate
 "Un
 día
 decidí
 llevarme
 a
 casa
 una
 ra~

9
 Learner
 Native
 Lower
 advanced
 "Bueno,
 el
 año
 pasado
 mi
 novia
 y
 yo
 v~

10
 Learner
 Native
 Lower
 advanced
 "Un
 día
 Pablo,
 un
 niño
 de
 6
 años,
 enc~

#
 i
 44
 more
 rows

1
 #
 Inspect
 learners
 falsely
 predicted
 to
 be
 natives

2
 cls_lasso_fit_preds_test
 |>

243
9.2.
 ANALYSIS

3
 filter(outcome
 ==
 "Learner",
 .pred_class
 ==
 "Native")
 |>

4
 select(outcome,
 .pred_class,
 proficiency,
 text)
 |>

5
 count(proficiency,
 sort
 =
 TRUE)

#
 A
 tibble:
 6
 x
 2

proficiency
 n

<fct>
 <int>

1
 Upper
 advanced
 10

2
 Lower
 advanced
 9

3
 Upper
 beginner
 3

4
 Upper
 intermediate
 3

5
 Lower
 beginner
 1

6
 Lower
 intermediate
 1

Interestingly,
the
majority
of
misclassified
learners
are
advanced,
which
could
be
expected
as
they
are
more
similar
to
natives.
There
are
some
beginners
that
are
misclassified
as
natives,
but
this
is
not
as
common.
Yes,
it
is
still
an
open
question
as
to
why
some
natives
are
classified
as
learners.

We
can
inspect
the
estimates
for
the
features
in
the
model
to
gain
some
insight
into
what
features
are
most
important
for
predicting
the
outcomes.
The
ex-
tract_fit_parsnip()
function
takes
a
trained
model
specification
cls_final_fit

and
returns
a
data
frame
with
the
estimated
coefficients
for
each
feature.
The

code
is
seen
in
Example
9.32.

Example
9.32.

1
 #
 Extract
 estimates

2
 cls_final_fit_features
 <-

3
 cls_final_fit
 |>

4
 extract_fit_parsnip()
 |>

5
 tidy()

The
estimates
are
the
log
odds
of
the
outcome.
In
a
binary
classification
task,
the
log
odds
of
the
outcome
is
the
log
of
the
probability
of
the
outcome
di-
vided
by
the
probability
of
the
other
outcome.
In
our
case,
the
reference
out-
come
is
“Learner”,
so
negative
log-odds
indicate
that
the
feature
is
associated
with
the
“Learner”
outcome
and
positive
log-odds
indicate
that
the
feature
is
associated
with
the
“Native”
outcome.

The
estimates
are
 in
 log-odds,
so
we
need
 to
exponentiate
 them
 to
get
 the
odds.
The
odds
are
the
probability
of
the
outcome
divided
by
the
probability
of
the
other
outcome.
The
probability
of
the
outcome
is
the
odds
divided
by
the
odds
plus
one.
The
code
is
seen
in
Example
9.33.

244
 CHAPTER
9.
 PREDICT

Example
9.33.

1
 #
 Calculate
 probability

2
 cls_final_fit_features
 |>

3
 mutate(probability
 =
 exp(estimate)
 /
 (exp(estimate)
 +
 1))

#
 A
 tibble:
 1,051
 x
 4

term
 estimate
 penalty
 probability

<chr>
 <dbl>
 <dbl>
 <dbl>

1
 (Intercept)
 -13.6
 0.000464
 0.00000129

2
 tfidf_text_10
 0
 0.000464
 0.5

3
 tfidf_text_2
 0
 0.000464
 0.5

4
 tfidf_text_3
 0
 0.000464
 0.5

5
 tfidf_text_4
 0
 0.000464
 0.5

6
 tfidf_text_5
 0
 0.000464
 0.5

7
 tfidf_text_a
 64.9
 0.000464
 1

8
 tfidf_text_abandonado
 7.02
 0.000464
 0.999

9
 tfidf_text_abuela
 -8.64
 0.000464
 0.000176

10
 tfidf_text_abuelos
 2.14
 0.000464
 0.895

#
 i
 1,041
 more
 rows

So
just
looking
at
the
snippet
of
the
features
returned
from
Example
9.33,
we
can
see
that
the
features
‘a’
and
‘abandonado’
are
associated
with
the
“Na-
tive”
outcome,
‘abuela’
is
associated
with
“Learners”,
and
the
other
features
are
neutral
(probability
=
0.5).

A
quick
way
to
extract
the
most
important
features
for
predicting
each
out-
come
is
to
use
the
vi()
function
from
{vip}.
It
takes
a
trained
model
specifica-
tion
and
returns
a
data
frame
with
the
most
important
features.
The
code
is
seen
in
Example
9.34.

Example
9.34.

1
 #
 Load
 package

2
 library(vip)

3

4
 #
 Avoid
 conflicts
 for
 function
 names
 from
 other
 packages

5
 conflicted::conflicts_prefer(vip::vi)

6

7
 #
 Extract
 important
 features

8
 var_importance_tbl
 <-

9
 cls_final_fit
 |>

10
 extract_fit_parsnip()
 |>

11
 vi()

12

13
 #
 Preview

14
 var_importance_tbl

245
9.2.
 ANALYSIS

#
 A
 tibble:
 1,050
 x
 3

Variable
 Importance
 Sign

<chr>
 <dbl>
 <chr>

1
 tfidf_text_época
 354.
 POS

2
 tfidf_text_mayoría
 320.
 NEG

3
 tfidf_text_ésta
 312.
 POS

4
 tfidf_text_ante
 278.
 POS

5
 tfidf_text_proximo
 274.
 NEG

6
 tfidf_text_esperar
 245.
 NEG

7
 tfidf_text_mucha
 244.
 NEG

8
 tfidf_text_seguir
 242.
 POS

9
 tfidf_text_poder
 241.
 POS

10
 tfidf_text_ahí
 235.
 POS

#
 i
 1,040
 more
 rows

The
 Variable
 column
 contains
each
 feature
 (with
 the
 feature
 type
and
 cor-
responding
variable
tfidf_text_),
Importance
provides
the
absolute
log-odds

value,
and
the
Sign
column
indicates
whether
the
feature
is
associated
with

the
“NEG”
(“Learner”)
or
the
“POS”
(“Native”)
outcome.
We
can
recode
the

Variable
 and
Sign
 columns
 to
make
 them
more
 interpretable
and
 then
plot

them
using
ggplot(),
as
in
Example
9.35.

Example
9.35.

1
 #
 Recode
 variable
 and
 sign

2
 var_importance_tbl
 <-

3
 var_importance_tbl
 |>

4
 mutate(

5
 Feature
 =
 str_remove(Variable,
 "tfidf_text_"),

6
 Outcome
 =
 case_when(

7
 Sign
 ==
 "NEG"
 ~
 "Learner",

8
 Sign
 ==
 "POS"
 ~
 "Native"),

9
)
 |>

10
 select(Outcome,
 Feature,
 Importance)

11

12
 #
 Plot

13
 var_importance_tbl
 |>

14
 slice_max(Importance,
 n
 =
 50)
 |>

15
 ggplot(aes(x
 =
 reorder(Feature,
 Importance),
 y
 =
 Importance))
 +

16
 geom_point()
 +

17
 coord_flip()
 +

18
 facet_wrap(~
 Outcome,
 scales
 =
 "free_y")
 +

19
 labs(x
 =
 NULL,
 y
 =
 "Importance",
 fill
 =
 NULL)
 +

20
 theme_minimal(base_size
 =
 10)

We
can
inspect
Figure
9.5,
and
qualitatively
assess
what
these
features
may
be
telling
us
about
the
differences
between
the
learners
and
the
natives.

246
 CHAPTER
9.
 PREDICT

Learner
 Native

época

ésta

mayoría

proximo

ante

esperar
 seguir

mucha

 poder

ahora

 ahí

terminar
todavía
 sienta

gobierno
 sorpresa

dicho

 habitantes

leyes

 días

modo
aprendí
 mejores

ejemplo

 última

única

 social

puesnecesita

diferencia

solamente
 central

eeuu

 hermosa

habían

 general

experiencia
paz
 diferentes

nacional
 etc

todavia

 aunque

llama

 natural

mano

encuentran
 sido

llegué

 suerte

150
 200
 250
 300
 350
 150
 200
 250
 300
 350

Importance

Figure
9.5:
Most
important
features
for
predicting
the
outcome

In
this
section,
we’ve
build
a
text
classifier
using
a
regularized
logistic
regres-
sion
model.
We’ve
 tuned
 the
hyperparameters
 to
arrive
at
a
robust
model
that
performs
well
on
both
the
training
and
test
sets.
We’ve
also
evaluated
the
model
errors
and
 inspected
 the
most
 important
 features
 for
predicting
the
outcome.

9.2.2
 Text
regression

We
will
now
turn
our
attention
to
the
second
task
in
this
section,
text
regres-
sion.
In
this
task,
we
will
use
the
same
original
dataset
as
in
the
classification
task,
but
we
will
predict
 the
placement
score
based
on
 the
 learner
writing
samples.
I
will
make
reference
to
but
not
repeat
the
steps
we
took
in
the
clas-
sification
task,
as
many
of
the
steps
are
the
same.
This
is
one
of
the
benefits
of
using
Tidymodels—the
workflow
 is
by-and-large
 the
same
 for
different
tasks.

Let’s
start
by
extracting
the
observations
(only
learners)
and
the
relevant
vari-
ables
from
the
original
dataset.
The
code
is
seen
in
Example
9.36.

Example
9.36.

1
 #
 Extract
 observations
 and
 relevant
 variables

2
 reg_tbl
 <-

247
9.2.
 ANALYSIS

3
 cedel_tbl
 |>

4
 filter(subcorpus
 ==
 "Learner")
 |>

5
 select(outcome
 =
 place_score,
 proficiency,
 text)

6

7
 #
 Preview

8
 glimpse(reg_tbl)

Rows:
 1,906

Columns:
 3

$
 outcome
 <dbl>
 14.0,
 16.3,
 16.3,
 18.6,
 18.6,
 18.6,
 20.9,
 20.9,
 20.9,
 20.9~

$
 proficiency
 <fct>
 Lower
 beginner,
 Lower
 beginner,
 Lower
 beginner,
 Lower
 begi~

$
 text
 <chr>
 "Yo
 vivo
 es
 Alanta,
 Georgia.
 Atlanta
 es
 muy
 grande
 ciudad.~

In
this
task,
our
outcome
variable
is
numeric
and
our
predictor
variable
text

is
the
same
as
before.
It
might
be
useful
to
engineer
the
features
differently,
but
we
will
start
with
the
same
feature
engineering
process
as
before,
namely
the
𝑡𝑓-𝑖𝑑𝑓
method
for
the
top
1,050
words.

I
create
a
data
split,
reg_split
and
the
training
and
testing
sets,
reg_train
and

reg_test
and
create
a
reg_rec
recipe
object
which
contains
the
starting
recipe
for
 the
regression
 task.
And,
since
we
are
using
 the
same
recipe
as
before,
there
is
no
need
to
validate
the
recipe.
We
can
skip
straight
to
the
model
build-
ing.

As
before,
we
will
want
to
start
with
a
simple
model
and
then
build
up
to
more
complex
models.
The
list
in
Table
9.3,
includes
algorithms
that
are
commonly
used
in
classification
tasks.
Interestingly,
many
of
these
same
algorithms
can
be
applied
to
regression.
One
exception
is
that
instead
of
logistic
regression,
linear
regression
is
used
for
numeric
outcomes.
As
with
logistic
regression,
linear
regression
model
is
one
of
the
simpler
models.
And
just
as
with
logis-
tic
regression,
we
will
want
to
tune
the
regularization
hyperparameter
of
the
linear
regression
model.
Instead
of
detailing
these
steps
again,
let
me
summa-
rize
the
process,
in
Table
9.4,
and
then
we
will
discuss
the
results
from
the
regularized
linear
regression
model.

Table
9.4:
Steps
to
build
and
tune
a
model

Step

 Description

1

 Build
a
model
specification
with
a
placeholder
to
tune
the
model.

2

 Create
a
workflow
with
the
recipe
and
the
model
specification.

3

 Create
a
grid
of
values
for
the
regularization
hyperparameter.

4

 Tune
the
model
using
cross-validation.

5

 Select
the
best
performing
hyperparameter
value
(based
on
RMSE).

6

 Update
the
model
specification
and
workflow
with
the
best
performing

hyperparameter
value.

7

 Fit
the
model
to
the
training
set
and
evaluate
the
performance
using

cross-validation.

248
 CHAPTER
9.
 PREDICT

Applying
the
steps
1
through
7,
we
have
cross-validated
results
for
our
model
in
 the
 reg_lasso_cv
 object.
We
 can
 collect
 the
 relevant
metrics,
 root
mean
squared
error
(RMSE)
and
R-squared
(𝑅2)
values.
Let’s
aggregate
these
mea-
sures
using
the
code
is
seen
in
Example
9.37.

Example
9.37.

1
 #
 Collect
 metrics

2
 collect_metrics(reg_lasso_cv)

#
 A
 tibble:
 2
 x
 6

.metric
 .estimator
 mean
 n
 std_err
 .config

<chr>
 <chr>
 <dbl>
 <int>
 <dbl>
 <chr>

1
 rmse
 standard
 14.1
 10
 0.269
 Preprocessor1_Model1

2
 rsq
 standard
 0.621
 10
 0.0119
 Preprocessor1_Model1

Now,
the
root
mean
squared
error
(RMSE)
estimate
is
14.1.
RMSE
is
a
mea-
sure
of
the
difference
between
the
predicted
and
the
actual
values
expressed
in
the
same
units
as
the
outcome
variable.
In
this
case,
the
outcome
variable
is
the
placement
test
score
percent.
So
the
RMSE
is
14.1
percentage
points.
R-
squared
(𝑅2)
is
a
measure
of
the
proportion
of
the
variance
in
the
outcome
variable
that
is
explained
by
the
model.
The
𝑅2
estimate
is
0.621.
This
means

that
the
model
explains
62%
of
the
variance
in
the
outcome
variable.
Taken
together,
this
isn’t
the
greatest
model.

But
how
good
or
bad
is
it?
This
is
where
we
can
use
the
null
model
to
compare
the
model
to.
The
null
model
is
a
model
that
predicts
the
mean
of
the
outcome
variable
 for
each
of
 the
outcomes.
We
can
use
 the
null_model()
 function
 to

create
a
null
model
and
submit
it
to
cross-validation,
Example
9.38.

Example
9.38.

1
 #
 Create
 null
 model

2
 null_model
 <-

3
 null_model()
 |>

4
 set_engine("parsnip")
 |>

5
 set_mode("regression")

6

7
 #
 Cross-validate
 null
 model

8
 null_cv
 <-

9
 workflow()
 |>

10
 add_recipe(reg_rec)
 |>

11
 add_model(null_model)
 |>

12
 fit_resamples(

13
 resamples
 =
 vfold_cv(reg_train,
 v
 =
 10),

14
 metrics
 =
 metric_set(rmse)

15
)

249
9.2.
 ANALYSIS

16

17
 #
 Collect
 metrics

18
 collect_metrics(null_cv)

#
 A
 tibble:
 1
 x
 6

.metric
 .estimator
 mean
 n
 std_err
 .config

<chr>
 <chr>
 <dbl>
 <int>
 <dbl>
 <chr>

1
 rmse
 standard
 22.6
 10
 0.203
 Preprocessor1_Model1

Á
Warning
For
model
specifications
in
which
the
model
can
be
used
in
a
classification
or
re-
gression
task,
the
model
specification
must
be
set
to
the
correct
mode
before
fit-
ting
the
model.
We
have
not
set
the
mode
for
the
logistic_reg()
or
linear_reg()

model
specifications,
as
the
task
 is
 inferred.
However,
we
have
set
the
mode
for
 the
null_model(),
and
other
model
specifications
 that
can
be
used
 in
both
classification
and
regression
tasks.

Our
 regression
model
 performs
 better
 than
 the
 null
model
 (22.6),
which
means
that
it
is
picking
up
on
some
signal
in
the
data.

Let’s
visualize
 the
distribution
of
 the
predictions
and
 the
 errors
 from
our
model
 to
 see
 if
 there
 are
 any
 patterns
 of
 interest.
 We
 can
 use
 the
 col-
lect_predictions()
function
to
extract
the
predictions
of
the
cross-validation
and
plot
the
true
outcome
against
the
predicted
outcome
using
ggplot(),
as

in
Example
9.39.

Example
9.39.

1
 #
 Visualize
 predictions

2
 reg_lasso_cv
 |>

3
 collect_predictions()
 |>

4
 ggplot(aes(outcome,
 .pred,
 shape
 =
 id))
 +

5
 geom_point(alpha
 =
 0.5,
 position
 =
 position_jitter(width
 =
 0.5))
 +

6
 geom_smooth(method
 =
 "lm",
 se
 =
 FALSE,
 linewidth
 =
 0.5)
 +
 #
 trend
 for
 each

↪
 fold

7
 labs(

8
 x
 =
 "Truth",

9
 y
 =
 "Predicted
 score",

10
 shape
 =
 "Fold"

11
)

P
re

di
ct

ed
 s

co
re

Fold

Fold01

Fold02
90

Fold03

Fold04

Fold05

60

Fold06

Fold07

Fold08

30

Fold09

Fold10

25
 50
 75 100

Truth

Figure
9.6:
Distribution
of
the
RMSE
for
the
cross-validated
linear
regression
model

250
 CHAPTER
9.
 PREDICT

From
Figure
9.6,
we
see
data
points
for
each
predicted
and
truth
value
pair
for
each
of
the
ten
folds.
There
is
a
trend
line
for
each
fold
which
shows
the
linear

relationship
between
the
predicted
and
truth
values
for
each
fold.
The
trend
lines
are
more
similar
than
different,
which
is
a
good
sign
that
the
model
is
not
wildly
overfitting
the
training
data.
Looking
closer,
however,
we
can
see
the
errors.
Some
are
noticeably
distant
from
the
linear
trend
lines,
i.e.
outliers,

in
particular
for
test
scores
in
the
lower
ranges.

If
the
𝑅2
value
is
in
the
ballpark,
this
means
that
somewhere
around
40%
of
the
variation
is
not
explained
by
the
frequency
of
the
top
1,050
words.
This
is
not
surprising,
as
there
are
many
other
factors
that
contribute
to
the
profi-
ciency
level
of
a
text.

We
have
a
model
that
is
performing
better
than
the
null
model,
but
it
is
not
performing
well
enough
to
be
very
useful.
We
will
need
to
update
the
model
specification
and/
or
the
features
to
try
to
improve
the
model
fit.
Let’s
start
with
the
model.
There
are
many
different
model
specifications
we
could
try,
but
we
will
likely
need
to
use
a
more
complex
model
specification
to
capture
the
complexity
that
we
observe
in
the
errors
from
the
current
linear
regression
model.

Let’s
 try
a
decision
 tree
model.
Decision
 trees
are
models
 that
are
able
 to

model
nonlinear
relationships
and
interactions
between
the
features
and
the
outcome
and
 tend
 to
be
 less
 influenced
by
outliers.
Furthermore,
decision
trees
are
 interpretable,
which
 is
a
nice
 feature
 for
an
 exploratory-oriented
analysis.
These
are
all
desirable
characteristics.
Decision
trees,
however,
can
be
prone
to
overfitting.
For
this
reason,
we
will
tune
the
maximum
depth
of
the
tree
to
minimize
overfitting.

251
9.2.
 ANALYSIS

To
implement
a
new
model
in
Tidymodels,
we
need
to
create
a
new
model
specification
and
a
new
workflow.
We
will
use
the
decision_tree()
 function

from
{parsnip}
to
create
the
model
specification.
The
decision_tree()
function

takes
a
tree_depth
argument
that
we
want
to
tune.
We
create
the
new
model
specification
with
the
tuning
placeholder
in
Example
9.40.

Example
9.40.

1
 #
 Create
 model
 specification

2
 reg_spec
 <-

3
 decision_tree(tree_depth
 =
 tune())
 |>

4
 set_engine("rpart")
 |>

5
 set_mode("regression")

6

7
 #
 Preview

8
 reg_spec

Decision
 Tree
 Model
 Specification
 (regression)

Main
 Arguments:

tree_depth
 =
 tune()

Computational
 engine:
 rpart

With
 the
 model
 and
 tuning
 specification
 in
 place,
 we
 can
 now
 continue
through
the
steps
outlined
 in
Table
9.4
for
this
decision
tree
model.
To
cre-
ate
the
grid
of
values
for
the
tree
depth
hyperparameter,
we
will
include
the

grid_regular()
function
with
10
levels,
as
seen
in
Example
9.41.

Example
9.41.
 Tuning
values
for
the
tree
depth
hyperparameter

1
 reg_grid
 <-

2
 grid_regular(tree_depth(),
 levels
 =
 10)

We
can
collect
the
metrics
and
inspect
the
RMSE
and
𝑅2
values.
The
code
is

seen
in
Example
9.42.

Example
9.42.

1
 #
 Collect
 metrics

2
 collect_metrics(reg_tree_cv)

#
 A
 tibble:
 2
 x
 6

.metric
 .estimator
 mean
 n
 std_err
 .config

<chr>
 <chr>
 <dbl>
 <int>
 <dbl>
 <chr>

1
 rmse
 standard
 15.9
 10
 0.256
 Preprocessor1_Model1

2
 rsq
 standard
 0.510
 10
 0.0210
 Preprocessor1_Model1

252
 CHAPTER
9.
 PREDICT

The
performance
 for
 the
decision
 tree
 is
worse
 than
 the
regularized
 linear
regression
model.
The
RMSE
is
15.9
and
the
𝑅2
 is
0.51.
And,
if
we
compare
the
standard
error
between
the
two
models,
we
can
see
that
the
decision
tree
model
has
a
lower
standard
error.
This
means
that
the
decision
tree
model
is

likely
overfitting,
despite
our
efforts
to
tune
tree
depth.

Given
the
sensitivity
of
the
decision
tree
branching
process
and
random
ini-
tialization,
it
is
possible
that
the
decision
tree
model
is
capturing
too
much
nuance,
and
not
enough
generalities.
Re-running
the
model
with
a
different
seed
may
result
in
a
different
model.
This
is
a
limitation
with
decision
tree
models,
but
it
is
also
a
feature,
if
we
consider
combining
multiple
decision
trees
to
make
a
prediction.
This
is
the
basis
of
ensemble
models.
An
ensem-
ble
model
is
a
model
that
combines
multiple
models
with
the
goal
to
draw
out
the
strengths
of
each
model
and
minimize
the
weaknesses.

A
random
forest
is
an
ensemble
model
that
combines
multiple
decision
trees
to
make
a
prediction.
In
addition,
random
forests
also
perform
random
fea-
ture
selection.
This
helps
to
reduce
the
correlation
between
the
decision
trees
and
thus
works
to
reduce
the
overall
variance
of
the
model.

Let’s
try
a
random
forest
model
to
address
our
text
regression
task.
We
will
use
the
rand_forest()
 function
from
{parsnip}
to
create
the
model
specifica-
tion.
The
rand_forest()
function
also
takes
a
hyperparameter
for
the
number
of
trees
to
be
used
in
the
model.
We
will
select
the
ranger
engine.
Addition-
ally,
we
will
add
the
importance
argument
to
ensure
that
we
can
extract
feature
importance
if
this
model
proves
to
be
useful.
We
create
the
new
model
speci-
fication
in
Example
9.43.

Example
9.43.

1
 #
 Create
 model
 specification

2
 reg_spec
 <-

3
 rand_forest(trees
 =
 tune())
 |>

4
 set_engine("ranger",
 importance
 =
 "impurity")
 |>

5
 set_mode("regression")

6

7
 #
 Preview

8
 reg_spec

Random
 Forest
 Model
 Specification
 (regression)

Main
 Arguments:

trees
 =
 tune()

Engine-Specific
 Arguments:

importance
 =
 impurity

Computational
 engine:
 ranger

253
9.2.
 ANALYSIS

Ď
Consider
this

The
model
building
process
is
iterative
and
many
of
the
steps
are
the
same.
This

is
a
good
indication
that
creating
a
custom
function
to
build
and
tune
the
model

would
be
a
good
idea.

Consider
the
following:
What
would
you
include
in
the
function?
What
would

you
leave
out?
What
required
and/
or
optional
arguments
would
you
include?

What
would
you
hard
code?
What
would
you
return?

Again,
we
apply
the
steps
in
Table
9.4
to
build
and
tune
the
random
forest
model.
As
part
of
this
process,
I
will
limit
the
range
of
the
number
of
trees
from
100
to
500
in
five
levels
in
the
tuning
grid,
as
seen
in
Example
9.44.

Example
9.44.
 Tuning
values
for
the
number
of
trees
hyperparameter

1
 reg_grid
 <-

2
 grid_regular(trees(range
 =
 c(100,
 500)),
 levels
 =
 5)

Let’s
collect
 the
metrics
and
 inspect
 the
RMSE
and
𝑅2
 values.
The
code
 is

seen
in
Example
9.45.

Example
9.45.

1
 #
 Collect
 metrics

2
 collect_metrics(reg_rf_cv)

#
 A
 tibble:
 2
 x
 6

.metric
 .estimator
 mean
 n
 std_err
 .config

<chr>
 <chr>
 <dbl>
 <int>
 <dbl>
 <chr>

1
 rmse
 standard
 12.9
 10
 0.320
 Preprocessor1_Model1

2
 rsq
 standard
 0.697
 10
 0.0164
 Preprocessor1_Model1

The
random
forest
model
performs
better
than
the
decision
tree
model
and
the
regularized
linear
regression
model.
The
RMSE
is
12.9
and
the
𝑅2
is
0.697.

We
also
see
that
the
standard
error
falls
between
the
models
we
have
tried
so

far.

Before
we
settle
on
this
model,
let’s
try
one
more
model.
In
this
case,
we
will
introduce
a
neural
network
model.
Neural
networks
are
models
that
are
able

to
model
nonlinear
relationships
and
interactions
between
the
features
and
the
outcome.
They
are
also
able
to
model
complex
relationships
between
the
features
and
the
outcome.
We
will
use
the
mlp()
function
from
{parsnip}
to
cre-
ate
the
model
specification.
We
will
choose
the
brulee
engine
which
allows
us
to
tune
the
learning
rate.
The
learning
rate
is
a
hyperparameter
that
controls
the
size
of
the
steps
that
the
model
takes
to
update
the
weights
during
train-
ing.

254
 CHAPTER
9.
 PREDICT

Á
Warning
The
brulee
engine
requires
that
the
Torch
computing
resources
are
available
on
the
computing
environment.
To
facilitate
the
installation,
{torch}
provides
the

install_torch()
 function.
This
 is
a
one-time
operation.
From
 this
point
on,
R
packages
which
depend
on
Torch
will
be
able
 to
 take
advantage
of
 this
rich
machine
learning
framework.

We
create
the
new
model
specification
with
the
tuning
placeholder
in
Exam-
ple
9.46.

Example
9.46.

1
 #
 Create
 model
 specification

2
 reg_spec
 <-

3
 mlp(learn_rate
 =
 tune())
 |>

4
 set_engine("brulee")
 |>

5
 set_mode("regression")

6

7
 #
 Preview

8
 reg_spec

Single
 Layer
 Neural
 Network
 Model
 Specification
 (regression)

Main
 Arguments:

learn_rate
 =
 tune()

Computational
 engine:
 brulee

Model
 fit
 template:

brulee::brulee_mlp(x
 =
 missing_arg(),
 y
 =
 missing_arg(),
 learn_rate
 =
 tune())

And
include
the
code
in
Example
9.47
to
create
a
grid
of
values
for
the
learning
rate
hyperparameter,
as
part
of
the
model
building
workflow.

Example
9.47.
 Tuning
values
for
the
learning
rate
hyperparameter

1
 reg_grid
 <-

2
 grid_regular(learn_rate(),
 levels
 =
 10)

Let’s
collect
 the
metrics
and
 inspect
 the
RMSE
and
𝑅2
 values.
The
code
 is

seen
in
Example
9.48.

Example
9.48.

1
 #
 Collect
 metrics

2
 collect_metrics(reg_mlp_cv)

255
9.2.
 ANALYSIS

#
 A
 tibble:
 2
 x
 6

.metric
 .estimator
 mean
 n
 std_err
 .config

<chr>
 <chr>
 <dbl>
 <int>
 <dbl>
 <chr>

1
 rmse
 standard
 14.7
 10
 0.951
 Preprocessor1_Model1

2
 rsq
 standard
 0.627
 9
 0.0214
 Preprocessor1_Model1

So
 in
 summary,
we’ve
 tried
 four
different
model
 specifications.
The
 regu-
larized
linear
regression
model,
the
decision
tree
model,
the
random
forest
model,
and
the
neural
network
model.
The
random
forest
model
performed
the
best.
For
each
of
these
models,
however,
we
have
only
tried
word
features
measured
by
𝑡𝑓-𝑖𝑑𝑓 .
We
could
imagine
that
the
performance
of
these
models
could
be
improved
by
varying
the
features
to
include
bigrams,
for
example.
We
could
also
explore
different
measures
of
word
usage.
Furthermore,
 for
some
of
our
models,
we
could
try
different
engines
and/
or
hyperparameters
(some
have
more
than
one!).

We
could
continue
 to
 try
 to
explore
 these
possible
combinations,
and
you
likely
would
in
your
research.
But
at
this
point
we
have
a
model
that
is
per-
forming
better
than
the
null
model
and
is
performing
better
than
the
other
models
we
have
tried.
So
we
will
consider
this
model
to
be
good
enough
for

our
purposes.

Let’s
take
our
random
forest
model,
fit
it
to
our
training
data,
apply
it
to
the
testing
data,
and
collect
the
metrics
on
the
test
set.
The
code
is
seen
in
Exam-
ple
9.49.

Example
9.49.

1
 #
 Fit
 the
 model
 to
 the
 training
 set
 and

2
 #
 evaluate
 on
 the
 test
 set

3
 reg_final_fit
 <-

4
 last_fit(

5
 reg_wf_rf,

6
 split
 =
 reg_split

7
)

8

9
 #
 Evaluate
 model
 on
 testing
 set

10
 collect_metrics(reg_final_fit)

#
 A
 tibble:
 2
 x
 4

.metric
 .estimator
 .estimate
 .config

<chr>
 <chr>
 <dbl>
 <chr>

1
 rmse
 standard
 12.9
 Preprocessor1_Model1

2
 rsq
 standard
 0.689
 Preprocessor1_Model1

OK.
The
difference
between
the
cross-validated
metrics
and
the
metrics
for

the
test
set
differ
—but
only
slightly.
This
suggests
that
the
model
is
robust
and
that
we
have
not
overfit
the
data
from
the
training
set.

256
 CHAPTER
9.
 PREDICT

Now,
 our
 likely
 goal
 as
 an
 academic
 is
 to
 understand
 something
 about
the
 features
 that
 contribute
 to
 the
performance
 of
 the
model.
 So
 let’s
 ap-
proach
extracting
feature
importance
from
the
random
forest
model
we
build
with
the
ranger
engine.
Remember,
we
added
an
importance
argument
to
the

set_engine()
function
and
set
it
to
‘impurity’.
We
can
now
take
advantage
by
using
{vip}
to
extract
the
feature
importance.
The
code
is
seen
in
Example
9.50.

Example
9.50.

1
 #
 Extract
 feature
 importance

2
 reg_vip
 <-

3
 reg_final_fit
 |>

4
 extract_fit_parsnip()
 |>

5
 vi(scale
 =
 TRUE)

6

7
 #
 Preview

8
 reg_vip
 |>

9
 slice_head(n
 =
 10)

#
 A
 tibble:
 10
 x
 2

Variable
 Importance

<chr>
 <dbl>

1
 tfidf_text_que
 100

2
 tfidf_text_es
 68.8

3
 tfidf_text_una
 57.4

4
 tfidf_text_por
 57.2

5
 tfidf_text_pero
 54.0

6
 tfidf_text_del
 48.5

7
 tfidf_text_con
 46.1

8
 tfidf_text_se
 44.9

9
 tfidf_text_para
 44.1

10
 tfidf_text_muy
 43.6

We
can
now
visualize
the
feature
importance
of
the
model.
The
code
is
seen
in
Example
9.51.

Example
9.51.

1
 #
 Extract
 predictions

2
 reg_vip
 |>

3
 mutate(Variable
 =
 str_replace(Variable,
 "^tfidf_text_",
 ""))
 |>

4
 slice_max(Importance,
 n
 =
 20)
 |>

5
 #
 reorder
 variables
 by
 importance

6
 ggplot(aes(reorder(Variable,
 Importance),
 Importance))
 +

7
 geom_point()
 +

8
 coord_flip()
 +

9
 labs(

Activities
 257

10
 x
 =
 "Feature",

11
 y
 =
 "Importance"

12
)

que

es

una

por

pero

del

con

se

para
re

muy
tu
F

ea más

los

lo

como

a

la

cuando

un

eso

de

40
 60
 80
 100

Importance

Figure
9.7:
Feature
importance
of
the
random
forest
model

In
this
section,
we’ve
built
text
regression
models
focusing
on
the
ability
to
change
algorithms
and
hyperparameters.
We
have
also
seen
some
of
the
dif-
ferences
between
evaluating
model
performance
between
classification
and
regression
tasks.
There
are
many
more
combinations
of
model
specifications
and
feature
selection
and
engineering
that
can
be
applied.
In
your
research,
you
will
find
yourself
using
these
tools
to
explore
the
best
model
for
your
data.

Activities

In
the
following
activities,
we
will
apply
the
concepts
and
techniques
we
have
learned
in
this
chapter.
We
will
use
the
Tidymodels
framework
to
build
and
evaluate
supervised
machine
 learning
models
for
text
classification
and
re-
gression
tasks.

Ɗ
Recipe
What:
Building
predictive
models

How:
Read
Recipe
9,
complete
comprehension
check,
and
prepare
for
Lab
9.

Why:
To
continue
to
build
experience
building
predictive
models
with
the
Tidy-
models
framework.

258
 CHAPTER
9.
 PREDICT

ð
Lab

What:
Text
classification

How:
Clone,
fork,
and
complete
the
steps
in
Lab
9.

Why:
To
apply
your
knowledge
of
supervised
machine
learning
to
a
text
classi-
fication
task.

Summary

In
this
chapter,
we
outlined
the
workflow
for
approaching
predictive
mod-
eling
and
the
Tidymodels
framework.
We
then
applied
the
workflow
to
text
classification
and
regression
tasks.
In
the
process,
we
gained
experience
iden-
tifying,
selecting,
and
engineering
features
on
the
one
hand,
and
building
and
tuning
models
on
the
other.
To
evaluate
the
models,
we
used
cross-validation
for
performance
and
finalized
our
interpretation
with
techniques
to
extract
feature
importance.

10

Infer

|
Outcomes

•
 Identify
the
research
goals
of
inferential
data
analysis
•
 Describe
the
workflow
for
inferential
data
analysis
•
 Indicate
the
importance
of
quantifying
uncertainty
in
inferential
data
analysis

In
 this
 chapter,
 we
 consider
 approaches
 to
 deriving
 knowledge
 from

information
which
 can
 be
 generalized
 to
 the
 population
 from
which
 the
data
 is
sampled.
This
process
 is
known
as
statistical
 inference.
The
discus-
sion
here
 implements
descriptive
assessments,
statistical
 tests,
and
evalua-
tion
procedures
for
a
series
of
contexts
which
are
common
in
the
analysis
of
corpus-based
data.
During
our
treatment
of
these
contexts,
we
will
establish
a
foundational
understanding
of
statistical
inference
using
a
simulation-based
approach.

ı
Lessons

What:
Advanced
Tables

How:
In
an
R
console,
load
{swirl},
run
swirl(),
and
follow
prompts
to
select

the
lesson.

Why:
To
explore
how
to
enhance
dataset
summaries
using
{janitor}
and
present
them
effectively
with
{kableExtra}’s
advanced
formatting
options.

10.1
 Orientation

In
 contrast
 to
exploratory
and
predictive
anal
driven
endeavor.
Rather,
the
goal
of
inferential
d
theoretical
claims
about
 the
population
and
as

yses,
 inference
 is
not
a
data-
ata
analysis
(IDA)
is
to
make
sess
 the
extent
 to
which
 the

data
supports
those
claims.
This
implicates
two
key
methodological
restric-
tions
which
are
not
in
play
in
other
analysis
methods.

This
chapter
has
been
made
available
under
a
CC-BY-NC-ND
license.

259
DOI:
10.4324/9781003393764-14

260
 CHAPTER
10.
 INFER

First,
the
research
question
and
expected
findings
are
formulated
before
the

data
is
analyzed,
in
fact
strictly
speaking
this
should
take
place
even
before
data
collection.
This
helps
ensure
that
the
data
is
aligned
with
the
research
question,
that
the
data
is
representative
of
the
population,
and
that
the
analy-
sis
has
a
targeted
focus
and
does
not
run
the
risk
of
becoming
a
‘just-so’
story1

or
a
‘significance-finding’
mission2,
both
of
which
violate
the
principles
of
sig-
nificance
testing.

Second,
 the
data
used
 in
 IDA
 is
only
used
once.
That
 is
 to
 say,
 the
entire
dataset
is
used
a
single
time
to
statistically
interrogate
the
relationship(s)
of
interest.
In
both
exploratory
and
predictive
data
analysis
the
data
can
be
ap-
proached
multiple
times
in
different
ways
and
the
results
of
the
analysis
can
be
used
to
inform
the
next
steps
in
the
analysis.
In
IDA,
however,
the
data
is
used
to
test
a
specific
hypothesis
and
the
results
of
the
analysis
are
interpreted
in
the
context
of
that
hypothesis.

The
methodological
approach
to
IDA
is
the
most
straightforward
of
the
anal-
ysis
types
covered
in
this
textbook.
As
the
research
goal
is
to
test
a
claim,
the
steps
necessary
are
fewer
than
in
EDA
or
PDA,
where
the
exploratory
nature
of
 these
approaches
 includes
various
possible
 iterations.
The
workflow
 for
IDA
is
shown
in
Table
10.1.

Table
10.1:
Workflow
for
inferential
data
analysis

Step
 Name
 Description

1
 Identify
 Identify
and
map
the
hypothesis
statement
to
the
appropriate

response
and
explanatory
variables

2
 Inspect
 Assess
the
distribution
of
the
variable(s)
with
the
appropriate

descriptive
statistics
and
visualizations.

3
 Interrogate
 Apply
the
appropriate
statistical
procedure
to
the
dataset.

4
 Interpret
 Review
the
statistical
results
and
 interpret
them
 in
the
context
of

the
hypothesis.

Based
on
the
hypothesis
statement,
we
first
identify
and
operationalize
the
variables.
The
response
variable
 is
 the
variable
whose
variation
we
aim
 to
explain.
Additionally,
 in
most
 statistical
designs,
one
or
more
explanatory
variables
are
 included
 in
 the
analysis
 in
an
attempt
 to
gauge
 the
extent
 to
which
these
variables
account
for
the
variation
in
the
response
variable.
For
both
response
and
explanatory
variables,
it
is
key
to
confirm
that
your
oper-
ationalization
of
the
variables
is
well-defined
and
that
the
data
aligns.

1“Hypothesis
After
Result
is
Known”
(HARKing)
involves
selectively
analyzing
data,
trying
different
variables
or
combinations
until
a
significant
𝑝-value
is
obtained,
or
stopping
data
col-
lection
when
a
significant
result
is
found
(Kerr,
1998).

2“𝑝-hacking”
is
the
practice
of
running
multiple
tests
until
a
statistically
significant
result
is
found.
This
practice
violates
the
principles
of
significance
testing
(Head,
Holman,
Lanfear,
Kahn,
&
Jennions,
2015).

261
10.1.
 ORIENTATION

Ď
Consider
this

What
 are
 the
 explanatory
 and/or
 response
 variables
 in
 each
 of
 these
 state-
ments?
How
are
these
variables
operationalized?
What
key
sampling
features
are
necessary
for
the
data
to
test
these
hypotheses?

1.

 There
will
be
statistically
significant
differences
in
the
kinds
of
col-
locations
used
in
English
dialects
spoken
in
urban
areas
compared
to
those
spoken
in
rural
areas.

2.

 French
L2
learners
will
make
more
vocabulary
errors
in
oral
produc-
tion
than
in
written
production.

3.

 The
association
strength
between
Mandarin
words
and
their
English
translations
will
be
a
significant
predictor
of
translation
difficulty
for
novice
translators.

4.

 The
prevalence
of
gender-specific
words
in
German-speaking
com-
munities
on
distinct
online
forums
will
significantly
reflect
gender
roles.

5.

 The
frequency
of
function
words
used
by
Spanish
L2
learners
will
be
a
significant
predictor
of
their
stage
in
language
acquisition.

Next,
we
determine
the
informational
values
of
the
variables.
The
informa-
tional
value
of
each
variable
will
condition
how
we
approach
visualization,
interrogation,
and
ultimately
interpretation
of
the
results.
Note
that
some
in-
formational
types
can
be
converted
to
other
types,
specifically
higher-order
types
can
be
converted
to
lower-order
types.
For
example,
a
continuous
vari-
able
can
be
converted
to
a
categorical
variable,
but
not
vice
versa.
It
is
prefer-
able,
however,
to
use
the
highest
 informational
value
of
a
variable.
Simpli-
fying
data
 results
 in
a
 loss
of
 information
—which
will
 result
 in
a
 loss
of

information
and
hence
statistical
power
which
may
 lead
to
results
that
ob-
scure
meaningful
patterns
in
the
data
(Baayen,
2004).

With
our
design
in
place,
we
can
now
inspect
the
data.
This
involves
assess-
ing
the
distribution
of
the
variables
using
descriptive
statistics
and
visualiza-
tions.
The
goal
of
this
step
is
to
confirm
the
integrity
of
the
data
(missing
data,
anomalies,
etc.),
identify
general
patterns
in
the
data,
and
identify
potential
outliers.
As
much
as
this
is
a
verification
step,
it
also
serves
to
provide
a
sense
of
the
data
and
the
extent
to
which
the
data
aligns
with
the
hypothesis.
This
is
particularly
true
when
statistical
designs
are
complex
and
involve
multi-
ple
explanatory
variables.
An
appropriate
visualization
provides
context
for
interpreting
the
results
of
the
statistical
analysis.

Interrogating
 the
data
 involves
 applying
 the
 appropriate
 statistical
proce-
dure
 to
 the
dataset.
 In
 the
Null
Hypothesis
Significance
Testing
 (NHST)
paradigm,
this
process
includes
calculating
a
statistic
from
the
data,
compar-
ing
it
to
a
null
hypothesis
distribution,
and
measuring
the
evidence
against
the
null
hypothesis.
The
null
hypothesis
distribution
 is
 a
distribution
of

statistic
values
 that
we
would
 expect
 if
 the
null
hypothesis
were
 true,
 i.e.

that
there
is
no
difference
or
relationship
between
the
explanatory
and/or
re-

262
 CHAPTER
10.
 INFER

sponse
variables.
By
comparing
the
observed
statistic
to
the
null
hypothesis
distribution,
we
can
determine
the
likelihood
of
observing
the
observed
statis-
tic,
if
the
null
hypothesis
were
true.
The
estimate
of
this
likelihood
is
a
𝑝-value.

When
 the
𝑝-value
 is
below
a
 threshold,
 typically
0.05,
 the
 result
 is
consid-
ered
statistically
significant.
This
means
 that
 the
observed
statistic
 is
suffi-
ciently
different
from
the
null
hypothesis
distribution
that
we
can
reject
the
null
hypothesis.

Now
let’s
consider
how
to
approach
interpreting
the
results
from
a
statistical
test.
The
𝑝-value
provides
a
probability
that
the
results
of
our
statistical
test
could
be
explained
by
the
null
hypothesis.
When
this
probability
is
below
the
alpha
level
of
0.05,
the
result
is
considered
statistically
significant,
otherwise
we
have
a
‘null
result’
(i.e.
non-significant).

However,
this
sets
up
a
binary
distinction
that
can
be
problematic.
On
the
one
hand,
what
is
one
to
do
if
a
test
returns
a
𝑝-value
of
0.051?
According
to
stan-
dard
practice
these
“marginally
significant”
results
would
not
be
statistically
significant.
On
the
other
hand,
if
we
get
a
statistically
significant
result,
say

a
𝑝-value
of
0.049,
do
we
move
on
—case
closed?
To
address
both
of
these
is-
sues,
it
is
important
to
calculate
a
confidence
interval
for
the
test
statistic.
The
confidence
interval
is
the
range
of
values
for
our
test
statistic
that
we
would
expect
the
true
statistic
value
to
fall
within
some
level
of
uncertainty.
Again,
95%
is
the
most
common
level
of
uncertainty.
The
upper
and
lower
bounds
of
this
range
are
called
the
confidence
limits
for
the
test
statistic.

Used
in
conjunction
with
𝑝-values,
confidence
intervals
can
provide
a
more
nuanced
interpretation
of
the
results
of
a
statistical
test.
For
example,
if
we
get
a
𝑝-value
of
0.051,
but
the
confidence
interval
is
very
narrow,
we
can
be
more
confident
that
the
results
are
reliable.
Conversely,
if
we
get
a
𝑝-value
of

0.049,
but
the
confidence
interval
is
very
wide,
we
can
be
less
confident
that
the
results
are
reliable.
If
our
confidence
interval
contains
the
null
value,
then
even
a
significant
𝑝-value
will
require
a
more
nuanced
interpretation.

̪
Dive
deeper
Overgeneralization
and
undergeneralization
are
more
formally
known
as
Type
I
and
Type
II
error,
respectively.
Type
I
error
(false
positive)
occurs
when
we
reject
the
null
hypothesis
when
it
is
true.
That
is,
we
erroneously
detect
a
signif-
icant
result,
when
 in
 fact
 the
 tested
relationship
 is
not
borne
out
 in
 the
pop-
ulation.
Type
 II
 error
 (false
negative)
occurs
when
we
 fail
 to
 reject
 the
null
hypothesis
when
it
is
false.
This
is
a
case
of
missing
a
significant
result
due
to
the
limitations
of
the
analysis
which
can
stem
from
the
sample
size,
the
design
of
the
study,
or
the
statistical
test
used.

263
10.2.
 ANALYSIS

It
is
important
to
underscore
that
the
purpose
of
IDA
is
to
draw
conclusions
from
a
dataset
which
are
generalizable
to
the
population.
These
conclusions
require
that
there
are
rigorous
measures
to
ensure
that
the
results
of
the
anal-
ysis
do
not
overgeneralize
(suggest
there
is
a
relationship
when
there
is
not
one)
and
balance
 that
with
 the
 fact
 that
we
don’t
want
 to
undergeneralize
(miss
the
fact
that
there
is
a
relationship
in
the
population,
but
our
analysis
was
not
capable
of
detecting
it).

10.2
 Analysis

In
 this
section,
we
will
discuss
 the
practical
application
of
 inferential
data
analysis.
The
discussion
will
be
divided
into
two
sections
based
on
the
type
of
response
variable:
categorical
and
numeric.
We
will
then
explore
specific
designs
 for
univariate,
bivariate,
and
multivariate
 tests.
We
will
 learn
and
implement
NHST
using
a
simulation-based
workflow.
In
contrast
to
theory-
based
methods,
simulation-based
methods
tend
to
be
more
intuitive,
easier
to
implement,
and
provide
a
better
conceptual
understanding
of
the
statistical
designs
and
analyses
(Morris,
White,
&
Crowther,
2019;
Rossman
&
Chance,
2014).

The
steps
for
implementing
a
simulation-based
approach
to
significance
test-
ing
are
outlined
in
Table
10.2.

Table
10.2:
Simulation-based
workflow
for
significance
testing

Step
 Name
 Description

1

2

Specify

Calculate

Specify
the
variables
of
 interest
and
their
relationship

Calculate
the
observed
statistic

3

4

Hypothesize

Get
𝑝-value

Generate
the
null
hypothesis
distribution

Calculate
the
𝑝-value

5
 Get
confidence
 interval
 Calculate
the
confidence
 interval

{infer}
(Bray
et
al.,
2024)
provides
a
Tidyverse-friendly
framework
to
imple-
ment
simulation-based
methods
for
statistical
inference.
Designed
to
be
used
in
conjunction
with
 {tidyverse},
 {infer}
provides
a
set
of
 functions
 that
can
be
used
 to
specify
 the
variables
of
 interest,
calculate
 the
observed
statistic,
generate
the
null
hypothesis
distribution
and
calculate
the
𝑝-value
and
the

confidence
interval.

Let’s
load
the
necessary
packages
we
will
use
in
this
section,
as
seen
in
Exam-
ple
10.1.

264
 CHAPTER
10.
 INFER

Example
10.1.

1
 #
 Load
 packages

2
 library(infer)
 #
 for
 statistical
 inference

3
 library(skimr)
 #
 for
 descriptive
 statistics

4
 library(janitor)
 #
 for
 cross-tabulation

10.2.1
 Categorical

Here
we
demonstrate
 the
 application
of
 IDA
 to
 categorical
 response
vari-
ables.
This
will
include
various
common
statistical
designs
and
analyses.
In
Table
10.3,
we
see
common
design
scenarios,
the
variables
involved,
and
the
statistic
used
in
the
analysis.

Table
10.3:
Statistical
test
designs
for
categorical
response
variables

Scenario
 Explanatory
Variable(s)
 Statistical
Test
 infer

Univariate
 - Proportion
 prop

Bivariate
 Categorical
 Difference
 in
proportions
 diff
 in
 props

Bivariate
 Categorical
(3+
 levels)
 Chi-square
 chisq

Multivariate
 Categorical
or
Numeric
 Logistic
regression
 fit()

We
will
use
a
derived
version
of
the
dative
dataset
from
{languageR}
(Baayen
&
Shafaei-Bajestan,
2019).
It
contains
over
3k
observations
describing
the
re-
alization
of
the
recipient
clause
in
English
dative
constructions
drawn
from
Switchboard
corpus
and
 the
Treebank
Wall
Street
 Journal
collection.
To
 fa-
miliarize
ourselves
with
the
dataset,
let’s
consider
the
data
dictionary
in
Ta-
ble
10.4.

Table
10.4:
Data
dictionary
for
the
dative_tbl
dataset.

variable
 name
 type
 description

rcp_real
 Realization
of
RCP
 categorical
 The
realization
of
the
recipient
(NP/

PP)

modality
 Modality
 categorical
 The
modality
of
the
utterance
(spoken/

written)

rcp_len
 Length
of
RCP
 numeric
 The
 length
of
the
recipient
(number
of

words)

thm_len
 Length
of
THM
 numeric
 The
 length
of
the
theme
(number
of

words)

We
see
that
this
dataset
has
four
variables,
two
categorical
and
two
numeric.
In
our
demonstrations
we
are
going
to
use
the
rcp_real
as
the
response
vari-
able,
the
variable
whose
variation
we
are
investigating.

265
10.2.
 ANALYSIS

For
a
bit
more
context,
a
dative
is
the
phrase
which
reflects
the
entity
that
takes
the
recipient
role
in
a
ditransitive
clause.
In
English,
the
recipient
(dative)
can
be
realized
as
either
a
prepositional
phrase
(PP)
as
seen
in
Example
10.2
(1)
or
as
a
noun
phrase
(NP)
as
seen
in
(2).

Example
10.2.
 Dative
examples

(1)
 John
gave
the
book
[to
Mary
PP].

(2)
 John
gave
[Mary
NP]
the
book.

Together
 these
 two
 syntactic
options
are
known
as
 the
Dative
Alternation
(Bresnan,
Cueni,
Nikitina,
&
Baayen,
2007).

Let’s
go
ahead
and
load
the
dataset,
as
seen
in
Example
10.3.

Example
10.3.

1
 #
 Load
 datasets

2
 dative_tbl
 <-

3
 read_csv("../data/dative_ida.csv")

In
preparation
for
statistical
analysis,
I
performed
a
statistical
overview
and
diagnostics
of
the
dataset.
This
included
checking
for
missing
data,
outliers,
and
anomalies.
I
also
checked
the
distribution
of
the
variables
using
descrip-
tive
 statistics
 and
 visualizations,
noting
 that
 the
 rcp_len
 and
 thm_len
 vari-
ables
are
right-skewed.
This
is
something
to
keep
in
mind.
The
results
of
this
overview
and
diagnostics
are
not
shown
here,
but
they
are
important
steps
in
the
IDA
workflow.
In
this
process,
I
converted
the
character
variables
to
fac-
tors
as
most
statistical
tests
require
factors.
A
preview
of
the
dataset
is
shown
in
Example
10.4.

Example
10.4.

1
 #
 Preview

2
 glimpse(dative_tbl)

Rows:
 3,263

Columns:
 4

$
 rcp_real
 <fct>
 NP,
 NP,
 NP,
 NP,
 NP,
 NP,
 NP,
 NP,
 NP,
 NP,
 NP,
 NP,
 NP,
 NP,
 NP,
 N~

$
 modality
 <fct>
 written,
 written,
 written,
 written,
 written,
 written,
 written~

$ rcp_len
 <dbl> 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 4, 1, 2, 1, 2~

$
 thm_len
 <dbl>
 14,
 3,
 13,
 5,
 3,
 4,
 4,
 1,
 11,
 2,
 3,
 3,
 5,
 2,
 8,
 2,
 35,
 3,
 4,
 ~

We
can
see
that
the
dataset
includes
3,263
observations.
We
will
take
a
closer
look
at
the
descriptive
statistics
for
the
variables
as
we
prepare
for
each
anal-
ysis.

266
 CHAPTER
10.
 INFER

Univariate
analysis

The
univariate
analysis
 is
the
simplest
statistical
design
and
analysis.
It
 in-
cludes
only
one
variable.
The
goal
is
to
describe
the
distribution
of
the
levels
of
the
variable.
The
rcp_real
variable
has
two
levels:
NP
and
PP.
A
potential
research
question
for
a
case
like
this
may
aim
to
test
the
claim
that:

•

NP
realizations
of
the
recipient
clause
are
the
canonical
form
in
English
da-
tive
constructions,
and
therefore
will
be
the
most
frequent
realization
of
the
recipient
clause.

This
hypothesis
can
be
tested
using
a
difference
in
proportion
test.
The
null

hypothesis
is
that
there
is
no
difference
in
the
proportion
of
NP
and
PP
realiza-
tions
of
the
recipient
clause.
The
alternative
hypothesis
is
that
NP
realizations
of
the
recipient
clause
are
more
frequent
than
PP
realizations
of
the
recipient
clause.

Before
we
get
into
statistical
analysis,
it
is
always
a
good
idea
to
cross-tabulate
or
visualize
the
question,
depending
on
 the
complexity
of
the
relationship.
In
Example
10.5,
we
see
the
code
shows
the
distribution
of
the
levels
of
the

rcp_real
variable
in
a
contingency
table.

Example
10.5.

1
 #
 Contingency
 table
 of
 `rcp_real`

2
 dative_tbl
 |>

3
 tabyl(rcp_real)
 |>

4
 adorn_pct_formatting(digits
 =
 2)
 |>

5
 kable()
 |>

6
 kable_styling()

Table
10.5:
Distribution
of
the
levels
of
the
rcp_real
variable.

rcp_real

 n
 percent

NP
 2414
 73.98%

PP
 849
 26.02%

From
Table
10.5,
we
see
that
the
proportion
of
NP
realizations
of
the
recipient
clause
is
higher
than
the
proportion
of
PP
realizations
of
the
recipient
clause.
However,
we
cannot
conclude
that
there
is
a
difference
in
the
proportion
of
NP
and
PP
realizations
of
the
recipient
clause.
We
need
to
conduct
a
statistical
test
to
determine
if
the
difference
is
statistically
significant.

To
determine
if
the
distribution
of
the
levels
of
the
rcp_real
variable
is
differ-
ent
from
what
we
would
expect
if
the
null
hypothesis
were
true,
we
need
to
calculate
the
difference
observed
in
the
sample
and
compare
it
to
the
differ-
ences
observed
in
many
samples
where
the
null
hypothesis
is
true.

267
10.2.
 ANALYSIS

First,
let’s
calculate
the
proportion
of
NP
and
PP
realizations
of
the
recipient
clause
in
the
sample.
We
turn
to
the
specify()
function
from
{infer}
to
specify
the
variable
of
interest,
step
1
in
the
simulation-based
workflow
in
Table
10.2.
In
this
case,
we
only
have
the
response
variable.
Furthermore,
the
argument

success
specifies
the
level
of
the
response
variable
that
we
will
use
as
the
‘suc-
cess’.
The
term
‘success’
is
used
because
the
specify()
function
was
designed
for
binomial
variables
where
the
levels
are
‘success’
and
‘failure’,
as
seen
in
Example
10.6.

Example
10.6.

1
 #
 Specify
 the
 variable
 of
 interest

2
 dative_spec
 <-

3
 dative_tbl
 |>

4
 specify(

5
 response
 =
 rcp_real,

6
 success
 =
 "NP"

7
)

8

9
 #
 Preview

10
 dative_spec

Response:
 rcp_real
 (factor)

#
 A
 tibble:
 3,263
 x
 1

rcp_real

<fct>

1
 NP

2
 NP

3
 NP

4
 NP

5
 NP

6
 NP

7
 NP

8
 NP

9
 NP

10
 NP

#
 i
 3,253
 more
 rows

The
dative_spec
 is
a
data
frame
with
attributes
which
are
used
by
{infer}
to
maintain
information
about
the
statistical
design
for
the
analysis.
In
this
case,
we
only
have
information
about
what
the
response
variable
is.

Step
2
is
to
calculate
the
observed
statistic.
The
calculate()
function
is
used
to

calculate
the
proportion
statistic
setting
stat
 =
 "prop",
as
seen
in
Example
10.7.

268
 CHAPTER
10.
 INFER

Example
10.7.

1
 #
 Calculate
 the
 proportion
 statistic

2
 dative_obs
 <-

3
 dative_spec
 |>

4
 calculate(stat
 =
 "prop")

5

6
 #
 Preview

7
 dative_obs

Response:
 rcp_real
 (factor)

#
 A
 tibble:
 1
 x
 1

stat

<dbl>

1
 0.740

Note
 that
 the
observed
 statistic,
proportion,
 is
 the
 same
as
 the
proportion
we
calculated
in
Table
10.5.
In
such
a
simple
example,
the
summary
statistic
and
the
observed
statistic
are
the
same.
But
this
simple
example
shows
how
choosing
the
‘success’
level
of
the
response
variable
is
important.
If
we
had
chosen
the
‘PP’
level
as
the
‘success’
level,
then
the
observed
statistic
would
be
the
proportion
of
PP
realizations
of
the
recipient
clause.
There
is
nothing
wrong
with
choosing
the
‘PP’
level
as
the
‘success’
level,
but
it
would
change
the
direction
of
the
observed
statistic.

Now
 that
 we
 have
 the
 observed
 statistic,
 our
 goal
 will
 be
 to
 determine
if
 the
 observed
 statistic
 is
 different
 from
 what
 we
 would
 expect
 if
 the
null
hypothesis
were
true.
To
do
 this,
we
simulate
samples
where
 the
null
hypothesis
is
true,
step
3
in
our
workflow.

Simulation
means
 that
we
will
 randomly
sample
 from
 the
dative_tbl
data

frame
many
times.
We
need
to
determine
how
the
sampling
takes
place.
Since

rcp_real
 is
a
variable
with
only
two
levels,
the
null
hypothesis
is
that
both
levels
are
equally
likely.
In
other
words,
in
a
null
hypothesis
world,
NP
and
PP
we
would
expect
the
proportions
to
roughly
be
50/50.

To
formalize
this
hypothesis
with
infer
we
use
the
hypothesize()
function
and

set
the
null
hypothesis
to
“point”
and
the
proportion
to
0.5.
Then
we
can
gen-
erate()
a
number
of
samples,
say
1,000,
drawn
from
our
50/50
world.
Finally,

the
prop
(proportion)
statistic
is
calculated
for
each
of
the
1,000
samples
and
returned
in
a
data
frame,
as
seen
in
Example
10.8.

Example
10.8.

1
 #
 Generate
 the
 null
 hypothesis
 distribution

2
 dative_null
 <-

3
 dative_spec
 |>

269
10.2.
 ANALYSIS

4
 hypothesize(null
 =
 "point",
 p
 =
 0.5)
 |>

5
 generate(reps
 =
 1000,
 type
 =
 "draw")
 |>

6
 calculate(stat
 =
 "prop")

7

8
 #
 Preview

9
 dative_null

Response:
 rcp_real
 (factor)

Null
 Hypothesis:
 point

#
 A
 tibble:
 1,000
 x
 2

replicate
 stat

<int>
 <dbl>

1
 1
 0.486

2
 2
 0.493

3
 3
 0.497

4
 4
 0.512

5
 5
 0.492

6
 6
 0.496

7
 7
 0.498

8
 8
 0.491

9
 9
 0.499

10
 10
 0.502

#
 i
 990
 more
 rows

The
result
of
Example
10.8
 is
a
data
frame
with
as
many
rows
as
there
are
samples.
Each
row
contains
the
proportion
statistic
for
each
sample
drawn
from
the
hypothesized
distribution
that
the
proportion
of
NP
realizations
of
the
recipient
clause
is
0.5.

To
appreciate
the
null
hypothesis
distribution,
we
can
visualize
it
using
a
his-
togram.
{infer}
provides
a
convenient
visualize()
function
for
visualizing
dist-
ributions,
as
seen
in
Example
10.9.

Example
10.9.

1
 #
 Visualize
 the
 null
 hypothesis
 distribution

2
 visualize(dative_null)

In
Figure
10.1,
we
see
that
on
the
x-axis
is
the
proportion
statistic
of
NP
re-
alizations
of
the
recipient
clause
that
we
would
expect
if
the
null
hypothesis
were
true.
For
the
1,000
samples,
the
proportion
statistic
ranges
from
0.47
to
0.53.
Importantly
we
can
appreciate
that
most
of
the
proportion
statistics
are
around
0.5.
In
fact,
the
mean
is
0.5
with
a
standard
deviation
of
0.01,
which
is
what
we
would
expect
if
the
null
hypothesis
were
true.
But
there
is
variation,
as
we
would
also
expect.

270
 CHAPTER
10.
 INFER

0

50

100

150

C
ou

nt

0.47

 0.48
 0.49
 0.50
 0.51
 0.52
 0.53

Statistic

Figure
10.1:
Simulation-based
null
distribution

Why
would
we
expect
variation?
Consider
the
following
analogy.
If
we
were
to
flip
a
fair
coin
10
times,
we
would
expect
to
get
5
heads
and
5
tails.
But
this
doesn’t
always
happen.
Sometimes
we
get
6
heads
and
4
 tails.
Sometimes
we
get
7
heads
and
3
tails,
and
so
on.
As
the
number
of
flips
increases,
how-
ever,
we
would
expect
the
proportion
of
heads
to
be
closer
to
0.5,
but
there
would
still
be
variation.
The
same
is
true
for
the
null
hypothesis
distribution.
As
the
number
of
samples
increases,
we
would
expect
the
proportion
of
NP
realizations
of
the
recipient
clause
to
be
closer
to
0.5,
but
there
would
still
be
variation.
The
question
 is
whether
the
observed
statistic
we
obtained
from
our
data,
in
Example
10.7,
is
within
some
level
of
variation
that
we
would
expect
if
the
null
hypothesis
were
true.

Let’s
visualize
the
observed
statistic
on
the
null
hypothesis
distribution,
as
seen
in
Figure
10.2,
to
gauge
whether
the
observed
statistic
is
within
some
level
of
variation
that
we
would
expect
if
the
null
hypothesis
were
true.
The

shade_p_value()
 function
will
 take
 the
null
hypothesis
distribution
and
 the
observed
statistic
and
shade
the
sample
statistics
that
fall
within
the
alpha
level.

Example
10.10.

1
 dative_null
 |>

2
 visualize()
 +
 #
 note
 we
 are
 adding
 a
 visual
 layer
 `+`

3
 shade_p_value(

4
 obs_stat
 =
 dative_obs,
 #
 the
 observed
 statistic

5
 direction
 =
 "greater"
 #
 the
 direction
 of
 the
 alternative
 hypothesis

6
)

271
10.2.
 ANALYSIS

0

50

100

150

C
ou

nt

0.50

 0.55
 0.60
 0.65
 0.70
 0.75

Statistic

Figure
10.2:
Simulation-based
null
distribution
with
the
observed
statistic.

Just
from
a
visual
inspection,
it
is
obvious
that
the
observed
statistic
lies
far
away
from
the
null
distribution,
far
right
of
the
right
tail.
No
shading
appears
in
this
case
as
the
observed
statistic
is
far
from
the
expected
variation.
This
suggests
that
the
observed
statistic
is
not
within
the
level
of
variation
that
we
would
expect
if
the
null
hypothesis
were
true.

á
Tip
The
direction
of
the
alternative
hypothesis
is
important
because
it
determines
the
𝑝-value
range.
The
“two-sided”
direction
means
that
we
are
interested
in
the
proportion
being
different
from
0.5.
If
we
were
only
interested
in
the
pro-
portion
of
one
outcome
being
greater
than
0.5,
then
we
would
use
the
“greater”
direction,
or
“less”
in
the
opposite
scenario.

But
we
need
to
quantify
this.
We
need
to
calculate
the
probability
of
observing
the
observed
statistic
or
a
more
extreme
statistic
if
the
null
hypothesis
were
true,
the
𝑝-value.
Calculating
this
estimate
is
step
4
in
the
workflow.
The
𝑝-
value
is
calculated
by
counting
the
number
of
samples
in
the
null
hypothesis
distribution
that
are
more
extreme
than
expected
within
some
level
of
uncer-
tainty.
95%
is
the
most
common
level
of
uncertainty,
which
is
called
the
alpha

level.
The
remaining
5%
of
the
distribution
is
the
space
where
the
likelihood
that
 the
null
hypothesis
accounts
 for
 the
statistic
 is
below
our
given
alpha
level
of
0.05.
This
means
that
if
the
𝑝-value
is
less
than
0.05,
then
we
reject
the

null
hypothesis.
If
the
𝑝-value
is
greater
than
0.05,
then
we
fail
to
reject
the

null
hypothesis.

With
infer
we
can
calculate
the
𝑝-value
using
the
get_p_value()
function.
Let’s

calculate
the
𝑝-value
for
our
observed
statistic,
as
seen
in
Example
10.11.

272
 CHAPTER
10.
 INFER

Example
10.11.

1
 #
 Calculate
 the
 p-value
 (observed
 statistic)

2
 dative_null
 |>

3
 get_p_value(

4
 obs_stat
 =
 dative_obs,
 #
 the
 observed
 statistic

5
 direction
 =
 "greater"
 #
 the
 direction
 of
 the
 alternative
 hypothesis

6
)

#
 A
 tibble:
 1
 x
 1

p_value

<dbl>

1 0

Warning
 message:

Please
 be
 cautious
 in
 reporting
 a
 p-value\index{p-value}
 of
 0.
 This
 result

↪
 is
 an
 approximation
 based
 on
 the
 number
 of
 `reps`
 chosen
 in
 the

`generate()`
 step.

The
𝑝-value
for
our
observed
statistic
is
reported
as
0,
with
a
warning
that
the
𝑝-value
estimate
is
contingent
on
the
number
of
samples
we
generate
in
the
null
distribution.
1,000
is
a
reasonable
number
of
samples,
so
we
likely
have
a
statistically
significant
result
at
the
alpha
level
of
0.05.

The
𝑝-value
is
one,
traditionally
very
common,
estimate
of
uncertainty.
An-
other
estimate
of
uncertainty
is
the
confidence
interval,
our
5th
and
final
step.
The
confidence
 interval
 is
 the
range
of
values
 for
our
 test
statistic
 that
we
would
expect
the
true
statistic
value
to
fall
within
some
level
of
uncertainty.
Again,
95%
is
the
most
common
level
of
uncertainty.
The
upper
and
lower
bounds
of
this
range
are
called
the
confidence
limits
for
the
test
statistic.
The

confidence
interval
is
calculated
by
calculating
the
confidence
limits
for
the
test
statistic
 for
many
samples
 from
 the
observed
data.
But
 instead
of
gen-
erating
a
null
hypothesis
distribution,
we
generate
a
distribution
based
on
resampling
from
the
observed
data.
This
is
called
the
bootstrap
distribution.
The
bootstrap
distribution
 is
generated
by
 resampling
 from
 the
observed
data,
with
replacement,
many
times.
This
simulates
the
process
of
sampling
from
the
population
many
times.
Each
time
the
test
statistic
is
generated
for
each
sample.
The
confidence
limits
are
the
2.5th
and
97.5th
percentiles
of
the
bootstrap
distribution.
The
confidence
interval
is
the
range
between
the
con-
fidence
limits.

In
Example
10.12,
we
see
the
code
for
calculating
the
confidence
interval
for
our
observed
statistic.

273
10.2.
 ANALYSIS

Example
10.12.

1
 #
 Generate
 bootstrap
 distribution

2
 dative_boot
 <-

3
 dative_spec
 |>

4
 generate(reps
 =
 1000,
 type
 =
 "bootstrap")
 |>

5
 calculate(stat
 =
 "prop")

6

7
 dative_ci
 <-

8
 dative_boot
 |>

9
 get_confidence_interval(level
 =
 0.95)
 #
 95%
 confidence
 interval

10

11
 dative_ci

#
 A
 tibble:
 1
 x
 2

lower_ci
 upper_ci

<dbl>
 <dbl>

1
 0.725
 0.755

Let’s
 visualize
 the
 confidence
 interval
 using
 the
 visualize()
 and

shade_confidence_interval()
 function
in
Example
10.13
on
our
bootstrapped
samples,
as
seen
in
Figure
10.3.

Example
10.13.

1
 #
 Visualize
 the
 bootstrap
 distribution
 with
 the
 confidence
 interval

2
 dative_boot
 |>

3
 visualize()
 +

4
 shade_confidence_interval(

5
 dative_ci
 #
 the
 confidence
 interval

6
)

The
confidence
level
is
the
probability
that
the
confidence
interval
contains
the
true
value.
The
confidence
level
is
typically
set
to
0.95
in
the
social
sciences.
This
means
that
if
the
confidence
interval
contains
the
null
hypothesis
value,
then
we
fail
to
reject
the
null
hypothesis.
If
the
confidence
interval
does
not
contain
the
null
hypothesis
value,
then
we
reject
the
null
hypothesis.

Confidence
intervals
are
often
misinterpreted.
Confidence
intervals
are
not
the
probability
that
the
true
value
 is
within
the
range.
The
true
value
 is
ei-
ther
within
the
range
or
not.
The
confidence
interval
is
the
probability
that
the
range
contains
the
true
value.
This
is
a
subtle
but
important
distinction.
Interpreted
correctly,
confidence
intervals
can
enhance
our
understanding
of
the
uncertainty
of
our
test
statistic
and
reduces
the
interpretation
of
𝑝-values

274
 CHAPTER
10.
 INFER

0

50

100

150

C
ou

nt

0.72

 0.73
 0.74
 0.75
 0.76

Statistic

Figure
10.3:
Bootstrap
distribution
of
the
proportion
of
NP
realizations
of
the
recipient
clause
with
the
confidence
interval.

(which
are
based
on
a
relatively
arbitrary
alpha
level)
as
a
binary
decision,
sig-
nificant
or
not
significant.
Confidence
intervals
encourage
us
to
think
about
the
uncertainty
of
our
test
statistic,
as
we
would
expect
the
true
value
to
fall
somewhere
within
that
range,
with
varying
levels
of
uncertainty.

Our
stat
 is
0.74
and
 the
confidence
 interval
 limits
are
0.725
and
0.755.
The

confidence
interval
does
not
contain
the
null
hypothesis
value
of
0.5,
which
supports
the
evidence
from
the
𝑝-value
that
the
proportion
of
NP
realizations
of
the
recipient
clause
is
greater
than
0.5.

Bivariate
analysis

The
univariate
case
is
not
very
interesting
or
common
in
statistical
inference,
but
it
is
a
good
place
to
start
to
understand
the
simulation-based
process
and
the
logic
of
statistical
inference.
The
bivariate
case,
on
the
other
hand,
is
much
more
common
and
interesting.
The
bivariate
case
includes
two
variables.
The
goal
is
to
test
the
relationship
between
the
two
variables.

Using
the
dative_tbl
dataset,
we
can
imagine
making
the
claim
that:

•

The
proportion
of
NP
and
PP
realizations
of
the
recipient
clause
are
contin-
gent
on
the
modality.

This
hypothesis
can
be
approached
using
a
difference
in
proportions
test,
as
both
variables
are
binomial
(have
two
levels).
The
null
hypothesis
is
that
there
is
no
difference
in
the
proportion
of
NP
and
PP
realizations
of
the
recipient
clause
by
modality.
The
alternative
hypothesis
is
that
there
is
a
difference
in
the
proportion
of
NP
and
PP
realizations
of
the
recipient
clause
by
modality.

10.2.
 ANALYSIS
 275

We
can
cross-tabulate
or
visualize,
but
let’s
cross-tabulate
this
relationship
as
it
is
a
basic
2-by-2
contingency
table.
In
Example
10.14,
we
see
the
code
for
the
cross-tabulation
of
the
rcp_real
 and
modality
variables.
Note
I’ve
made

use
of
{janitor}
to
adorn
this
table
with
percentages,
totals,
and
observation
numbers.

Example
10.14.

1
 dative_tbl
 |>

2
 tabyl(rcp_real,
 modality)
 |>
 #
 cross-tabulate

3
 adorn_totals(c("row",
 "col"))
 |>
 #
 provide
 row
 and
 column
 totals

4
 adorn_percentages("col")
 |>
 #
 add
 percentages
 to
 the
 columns

5
 adorn_pct_formatting(rounding
 =
 "half
 up",
 digits
 =
 0)
 |>
 #
 round
 the
↪
 digits

6
 adorn_ns()
 |>
 #
 add
 observation
 number

7
 adorn_title("combined")
 |>
 #
 add
 a
 header
 title

8
 kable(booktabs
 =
 TRUE)
 |>
 #
 pretty
 table)

9
 kable_styling()

Table
10.6:
Contingency
table
for
rcp_real
and
modality.

rcp_real/modality
 spoken
 written
 Total

NP
 79%
(1,859)
 61%
(555)
 74%
(2,414)

PP
 21%
(501)
 39%
(348)
 26%
(849)

Total
 100%
(2,360)
 100%
(903)
 100%
(3,263)

In
Table
10.6,
we
can
appreciate
that
the
proportion
of
NP
realizations
of
the
recipient
clause
 is
higher
 in
both
modalities,
as
we
might
expect
 from
our
univariate
analysis.
However,
the
proportion
appears
to
be
different
with
the
spoken
modality
having
a
higher
proportion
of
NP
realizations
of
the
recipi-
ent
clause
than
the
written
modality.
But
we
cannot
conclude
that
there
is
a
difference
in
the
proportion
of
NP
and
PP
realizations
of
the
recipient
clause
by
modality.
We
need
to
conduct
a
statistical
test
to
determine
if
the
difference
is
statistically
significant.

To
determine
if
the
distribution
of
the
levels
of
the
rcp_real
variable
by
the

levels
of
the
modality
variable
is
different
from
what
we
would
expect
if
the
null
hypothesis
were
true,
we
need
to
calculate
the
difference
observed
in
the
sample
and
compare
it
to
the
differences
observed
in
many
samples
where
the
null
hypothesis
is
true.

276
 CHAPTER
10.
 INFER

{infer}
provides
a
pipeline,
steps
1
through
5,
which
maintains
a
consistent
workflow
for
statistical
inference.
As
such,
the
procedure
is
very
similar
to
the
univariate
analysis
we
performed,
with
some
adjustments.
Let’s
focus
on
the
adjustments.
First,
our
specify()
call
needs
to
include
the
relationship
be-
tween
two
variables:
rcp_real
and
modality.
The
response
argument
is
the
re-
sponse
variable,
which
is
rcp_real.
The
explanatory
argument
is
the
explana-
tory
variable,
which
is
modality.

There
are
two
approaches
to
specifying
the
relationship
between
the
response
and
explanatory
variables.
The
first
approach
is
to
specify
the
response
vari-
able
and
the
explanatory
variable
separately
as
values
of
the
arguments
re-
sponse
and
explanatory.
The
second
approach
is
to
specify
the
response
vari-
able
and
the
explanatory
variable
as
a
formula
using
the
~
operator.
The
for-
mula
approach
 is
more
flexible
and
allows
for
more
complex
relationships
between
the
response
and
explanatory
variables.
In
Example
10.15,
we
see
the
code
for
the
specify()
call
using
the
formula
approach.

Example
10.15.

1
 #
 Specify
 the
 relationship
 between
 the
 response
 and
 explanatory
 variables

2
 dative_spec
 <-

3
 dative_tbl
 |>

4
 specify(

5
 rcp_real
 ~
 modality,

6
 success
 =
 "NP"

7
)

8

9
 #
 Preview

10
 dative_spec

Response:
 rcp_real
 (factor)

Explanatory:
 modality
 (factor)

#
 A
 tibble:
 3,263
 x
 2

rcp_real
 modality

<fct>
 <fct>

1
 NP
 written

2
 NP
 written

3
 NP
 written

4
 NP
 written

5
 NP
 written

6
 NP
 written

7
 NP
 written

8
 NP
 written

9
 NP
 written

10
 NP
 written

#
 i
 3,253
 more
 rows

277
10.2.
 ANALYSIS

The
dative_spec
now
contains
attributes
about
the
response
and
explanatory
variables
encoded
into
the
data
frame.

We
now
calculate
 the
observed
statistic
with
calculate(),
as
seen
 in
Exam-
ple
10.16.

Example
10.16.

1
 #
 Calculate
 the
 observed
 statistic

2
 dative_obs
 <-

3
 dative_spec
 |>

4
 calculate(

5
 stat
 =
 "diff
 in
 props",

6
 order
 =
 c("spoken",
 "written")

7
)

8

9
 #
 Preview

0
 dative_obs
1

Response:
 rcp_real
 (factor)

Explanatory:
 modality
 (factor)

#
 A
 tibble:
 1
 x
 1

stat

<dbl>

1
 0.173

Two
differences
are
that
our
statistic
is
now
a
difference
in
proportions
and
that
we
are
asked
to
specify
the
order
of
the
levels
of
modality.
The
statistic
is

clear,
we
are
investigating
whether
the
proportion
of
NP
realizations
of
the
recipient
clause
is
different
between
the
spoken
and
written
modalities.
The
order
of
the
levels
of
modality
is
important
because
it
determines
the
direction
of
the
alternative
hypothesis,
specifically
how
the
statistic
is
calculated
(the
order
of
the
subtraction).

So
our
observed
statistic
0.173
is
the
proportion
of
NP
realizations
of
the
recip-
ient
clause
in
the
spoken
modality
minus
the
proportion
of
NP
realizations
of
the
recipient
clause
in
the
written
modality,
so
the
NP
realization
appears
17%
more
in
the
spoken
modality
compared
to
the
written
modality.

The
question
remains,
is
this
difference
statistically
significant?
To
answer
this
question,
we
generate
 the
null
hypothesis
distribution
and
calculate
 the
𝑝-
value,
as
seen
in
Example
10.17.

Example
10.17.

1
 #
 Generate
 the
 null
 hypothesis
 distribution

2
 dative_null
 <-

3
 dative_spec
 |>

278
 CHAPTER
10.
 INFER

4
 hypothesize(null
 =
 "independence")
 |>

5
 generate(reps
 =
 1000,
 type
 =
 "permute")
 |>

6
 calculate(stat
 =
 "diff
 in
 props",
 order
 =
 c("spoken",
 "written"))

7

8
 #
 Calculate
 the
 p-value

9
 dative_null
 |>

10
 get_p_value(

11
 obs_stat
 =
 dative_obs,
 #
 the
 observed
 statistic

12
 direction
 =
 "two-sided"
 #
 the
 direction
 of
 the
 alternative
 hypothesis

13
)

#
 A
 tibble:
 1
 x
 1

p_value

<dbl>

1 0

Note,
when
generating
the
null
hypothesis
distribution,
we
use
the
hypothe-
size()
function
with
the
null
argument
set
to
“independence”.
This
is
because
we
are
interested
in
the
relationship
between
the
response
and
explanatory
variables.
The
null
hypothesis
is
that
there
is
no
relationship
between
the
re-
sponse
and
explanatory
variables.
When
generating
the
samples,
we
use
the
permutation
approach,
which
randomly
shuffles
the
response
variable
values
for
each
sample.
This
simulates
the
null
hypothesis
that
there
is
no
relation-
ship
between
the
response
and
explanatory
variables.

The
𝑝-value
 is
 reported
as
0.
To
provide
some
context,
we
will
generate
a
confidence
interval
for
our
observed
statistic
using
the
bootstrap
method,
as
seen
in
Example
10.18.

Example
10.18.

1
 #
 Generate
 bootstrap
 distribution

2
 dative_boot
 <-

3
 dative_spec
 |>

4
 generate(reps
 =
 1000,
 type
 =
 "bootstrap")
 |>

5
 calculate(stat
 =
 "diff
 in
 props",
 order
 =
 c("spoken",
 "written"))

6

7
 #
 Calculate
 the
 confidence
 interval

8
 dative_ci
 <-

9
 dative_boot
 |>

10
 get_confidence_interval(level
 =
 0.95)

11

12
 #
 Preview

13
 dative_ci

279
10.2.
 ANALYSIS

1

#
 A
 tibble:
 1
 x
 2

lower_ci
 upper_ci

<dbl>
 <dbl>

0.137
 0.209

The
confidence
interval
does
not
contain
the
null
hypothesis
value
of
0
(no
difference),
which
provides
evidence
that
the
proportion
of
NP
realizations
of
the
recipient
clause
is
different
between
the
spoken
and
written
modalities.

Multivariate
analysis

In
many
scenarios,
it
is
common
to
have
multiple
explanatory
variables
that
need
to
be
considered.
In
such
cases,
logistic
regression
is
a
suitable
modeling
technique.
Logistic
regression
allows
for
the
inclusion
of
both
categorical
and
continuous
explanatory
variables.
The
primary
objective
of
using
logistic
re-
gression
is
to
assess
the
association
between
these
variables
and
the
response
variable.
By
analyzing
this
relationship,
we
can
determine
how
changes
 in
the
explanatory
variables
influence
the
probability
of
the
outcome
occurring.

To
explore
this
scenario,
let’s
posit
that:

•

NP
and
PP
realizations
of
the
recipient
clause
are
contingent
on
modality
and
word
length
ratio
of
the
recipient
and
theme.

The
length
ratio
gets
at
the
length
of
the
recipient
clause
relative
to
the
length
of
 the
 theme
 clause.
This
 ratio
 is
 an
 operationalization
 of
 a
phenomenon
known
 as
 ‘Heavy
NP’
 shift.
 There
 are
many
ways
 to
 operationalize
 this
phenomenon,
but
 the
 length
 ratio
 is
a
 simple
method
 to
approximate
 the
phenomenon.
It
attempts
to
capture
the
idea
that
the
longer
the
theme
clause
is
relative
to
the
recipient
clause,
the
more
likely
the
recipient
clause
will
be
realized
as
an
NP
—in
other
words,
when
the
theme
is
relatively
longer
than
the
recipient,
the
theme
is
ordered
last
in
the
sentence,
and
the
recipient
is
ordered
first
in
the
sentence
and
takes
the
form
of
an
NP
(instead
of
a
PP).

The
hypothesis,
then,
is
that
Example
10.19
(2)
would
be
less
likely
than
(1)
because
the
theme
is
relatively
longer
than
the
recipient.

Example
10.19.

(1)
 John
gave
[Mary
]
the
large
book

NP that I
showed
you
in
class

yesterday.
(2)
 John
gave
the
large
book
that
I
showed
you
in
class
yesterday
[to
Mary
PP].

Let’s
consider
this
variable
length_ratio
and
modality
together
as
explanatory

variables
for
the
realizations
of
the
recipient
clause
rcp_real.

280
 CHAPTER
10.
 INFER

Let’s
create
the
length_ratio
variable
by
dividing
the
thm_len
by
the
rcp_len.

This
will
give
us
values
larger
than
1
when
the
theme
is
longer
than
the
recipi-
ent.
And
since
we
are
working
with
a
skewed
distribution,
let’s
log-transform
the
length_ratio
variable.
In
Example
10.20,
we
see
the
code
for
creating
the

length_ratio
variable.

Example
10.20.

1
 #
 Create
 the
 `length_ratio_log`
 variable

2
 dative_tbl
 <-

3
 dative_tbl
 |>

4
 mutate(

5
 length_ratio_log
 =
 log(thm_len
 /
 rcp_len)

6
)
 |>

7
 select(-thm_len,
 -rcp_len)

8

9
 #
 Preview

10
 glimpse(dative_tbl)

Rows:
 3,263

Columns:
 3

$
 rcp_real
 <fct>
 NP,
 NP,
 NP,
 NP,
 NP,
 NP,
 NP,
 NP,
 NP,
 NP,
 NP,
 NP,
 NP,
 N~

$
 modality
 <fct>
 written,
 written,
 written,
 written,
 written,
 written,~

$
 length_ratio_log
 <dbl>
 2.639,
 0.405,
 2.565,
 1.609,
 0.405,
 0.693,
 0.693,
 0.00~

Let’s
visualize
the
relationship
between
rcp_real
and
length_ratio_log
sepa-
rately
and
then
together
with
modality,
as
seen
in
Example
10.21.

Example
10.21.

1
 #
 Visualize
 the
 proportion
 of
 `rcp_real`
 by
 `modality`

2
 dative_tbl
 |>

3
 ggplot(aes(x
 =
 rcp_real,
 fill
 =
 modality))
 +

4
 geom_bar(position
 =
 "fill")
 +

5
 labs(

6
 x
 =
 "Realization
 of
 recipient
 clause",

7
 y
 =
 "Proportion",

8
 fill
 =
 "Modality"

9
)

10

11
 #
 Visualize
 the
 relationship
 between
 `rcp_real`
 and
 `length_ratio_log`

12
 dative_tbl
 |>

13
 ggplot(aes(x
 =
 rcp_real,
 y
 =
 length_ratio_log))
 +

14
 geom_boxplot()
 +

15
 labs(

16
 x
 =
 "Realization
 of
 recipient
 clause",

17
 y
 =
 "Length
 ratio"

18
)

0.25

0.50

41.00

0.75
 2

NP
 PP

Realization of recipient clause

NP
 PP

Realization of recipient clause

P
ro

po
rt

io
n Modality

spoken

Le
ng

th
 r

at
io

0

written

−2

0.00

(a)
RCP
by
modality
 (b)
RCP
by
length
ratio

Figure
10.4:
Distribution
the
variables
modality
and
length_ratio_log
by
the

levels
of
the
rcp_real
variable.

10.2.
 ANALYSIS
 281

To
understand
visualizations
in
Figure
10.4,
remember
the
null
hypothesis
is
that
there
is
no
difference
in
the
proportion
of
NP
and
PP
realizations
of
the
recipient
clause
by
modality
or
length
ratio.
On
the
flip
side,
the
alternative
hypothesis
is
that
there
is
a
difference
in
the
proportion
of
NP
and
PP
real-
izations
of
the
recipient
clause
by
modality
and
length
ratio.
From
the
visual
inspection,
 it
appears
 that
NP
realizations
of
 the
recipient
clause
are
more
common
in
the
spoken
modality
and
that
the
NP
realizations
have
a
higher
overall
length
ratio
(larger
theme
relative
to
recipient)
than
PP
realizations
of
the
recipient
clause.
This
suggests
that
the
alternative
hypothesis
is
likely
true,
but
we
need
to
conduct
a
statistical
test
to
determine
if
the
differences
are
statistically
significant.

Let’s
 calculate
 the
 statistics
 (not
 statistic)
 for
 our
 logistic
 regression
 by
specifying
the
relationship
between
the
response
and
explanatory
variables
and
 then
using
fit()
 to
fit
 the
 logistic
 regression
model,
as
 seen
 in
Exam-
ple
10.22.

Example
10.22.

1
 #
 Specify
 the
 relationship

2
 dative_spec
 <-

3
 dative_tbl
 |>

4
 specify(

5
 rcp_real
 ~
 modality
 +
 length_ratio_log

6
)

7

8
 #
 Fit
 the
 logistic
 regression
 model

9
 dative_fit
 <-

10
 dative_spec
 |>

282
 CHAPTER
10.
 INFER

11
 fit()

12

13
 #
 Preview

14
 dative_fit

#
 A
 tibble:
 3
 x
 2

term
 estimate

<chr>
 <dbl>

1
 intercept
 -0.563

2
 modalitywritten
 1.01

3
 length_ratio_log
 -1.63

á
Tip
The
reference
level
in
R
is
assumed
to
be
the
first
level
alphabetically,
unless
otherwise
 specified.
We
can
override
 this
default
by
using
 the
fct_relevel()

function
from
{forcats}
(Wickham,
2023a).
The
reason
we
would
want
to
do
this
is
to
make
the
reference
level
more
interpretable.
In
our
case,
we
would
want
to
make
the
spoken
modality
the
reference
level.
This
allows
us
to
estimate
the
dif-
ference
of
the
proportion
of
NP
realizations
of
the
recipient
as
a
positive
value.
Remember
that
in
Figure
10.4a,
the
proportion
of
NP
realizations
of
the
recipi-
ent
clause
is
higher
in
the
spoken
modality
than
in
the
written
modality.
If
we
were
to
use
the
written
modality
as
the
reference
level,
the
difference
would
be
negative.
Not
that
we
couldn’t
interpret
this,
but
working
with
positive
integers
is
easier
to
interpret.

Note
I
pointed
out
statistics,
not
statistic.
In
logistic
regression
models,
the
number
of
statistic
reported
depends
on
the
number
of
explanatory
variables.
If
there
are
two
variables
there
will
be
at
least
three
terms,
one
for
each
vari-
able
and
the
intercept
term.
If
one
or
more
variables
are
categorical,
however,
there
will
be
additional
terms
when
the
categorical
variable
has
three
or
more
levels.

In
our
 case,
 the
 modality
 variable
has
 two
 levels,
 so
 there
are
 three
 terms.
The
first
 term
 is
 the
 intercept
 term,
which
 is
 the
 log
 odds
 of
 the
propor-
tion
of
NP
realizations
of
the
recipient
clause
in
the
written
modality
when
the
length_ratio_log
 is
1.
The
second
term
is
the
log
odds
of
the
proportion
of
NP
realizations
of
the
recipient
clause
 in
the
spoken
modality
when
the

length_ratio_log
 is
1.
The
third
term
is
the
log
odds
of
the
proportion
of
NP
realizations
of
the
recipient
clause
when
the
length_ratio_log
is
1
in
the
writ-
ten
modality.
Notably,
the
spoken
modality
does
not
explicitly
appear
but
is
implicitly
represented
by
the
modalitywritten
term
statistic.
modalityspoken
is

used
as
the
reference
level
for
the
modality
variable.
For
categorical
variables,
one
of
the
levels
is
used
as
the
point
of
reference,
or
reference
level,
for
which

every
other
level
is
compared.

10.2.
 ANALYSIS
 283

Now
let’s
generate
the
null
hypothesis
distribution
and
calculate
the
𝑝-value

for
each
of
the
terms,
as
seen
in
Example
10.23.

Example
10.23.

1
 #
 Generate
 the
 null
 hypothesis
 distribution

2
 dative_null
 <-

3
 dative_spec
 |>

4
 hypothesize(null
 =
 "independence")
 |>

5
 generate(reps
 =
 1000,
 type
 =
 "permute")
 |>

6
 fit()

7

8
 #
 Calculate
 the
 p-value

9
 dative_null
 |>

10
 get_p_value(

11
 dative_fit,
 #
 the
 observed
 statistics

12
 direction
 =
 "two-sided"
 #
 the
 direction
 of
 the
 alternative
 hypothesis

13
)

#
 A
 tibble:
 3
 x
 2

term
 p_value

<chr>
 <dbl>

1
 intercept
 0

2
 length_ratio_log
 0

3
 modalitywritten
 0

It
appears
that
our
main
effects,
modality
and
length_ratio_log,
are
statistically
significant.
Let’s
generate
the
confidence
intervals
for
each
of
the
terms,
as
seen
in
Example
10.24.

Example
10.24.

1
 #
 Generate
 boostrap
 distribution

2
 dative_boot
 <-

3
 dative_spec
 |>

4
 generate(reps
 =
 1000,
 type
 =
 "bootstrap")
 |>

5
 fit()

6

7
 #
 Calculate
 the
 confidence
 interval

8
 dative_ci
 <-

9
 dative_boot
 |>

10
 get_confidence_interval(

11
 point_estimate
 =
 dative_fit,

12
 level
 =
 0.95

13
)

14

15
 #
 Preview

16
 dative_ci

284
 CHAPTER
10.
 INFER

#
 A
 tibble:
 3
 x
 3

term
 lower_ci
 upper_ci

<chr>
 <dbl>
 <dbl>

1
 intercept
 -0.688
 -0.449

2
 length_ratio_log
 -1.79
 -1.49

3
 modalitywritten
 0.799
 1.20

The
confidence
intervals
for
the
main
effects,
modality
and
length_ratio_log,
do
not
contain
the
null
hypothesis
value
of
0,
which
provides
evidence
that
each
of
the
explanatory
variables
is
related
to
the
proportion
of
NP
realiza-
tions
of
the
recipient
clause.

̪
Dive
deeper
Significance
 tests
are
not
 the
only
way
 to
evaluate
 the
evidence
 for
 the
null
hypothesis.
We
can
also
quantify
the
effect
size
of
each
of
the
explanatory
vari-
ables
using
the
odds
ratio
to
calculate
the
𝑟
(correlation
coefficient)
and
𝑅2
(coef-
ficient
of
determination)
values.
{effectsize}
(Ben-Shachar
et
al.,
2024)
provides
a
function
logoddsratio_to_r()
 to
calculate
the
𝑟
and
𝑅2
 values
for
logistic
re-
gression
models.
It
can
be
important
to
use
these
measures
to
distinguish
between
statistically
significant
and
practically
significant
results.
A
statistically
significant
result
is
one
that
is
unlikely
to
have
occurred
by
chance.
A
practically
significant
result
is
one
that
has
a
meaningful
effect.

Our
 logistic
 regression
model
 as
 specified
 considers
 the
 explanatory
vari-
ables
modality
and
length_ratio_log
 independently,
controlling
for
the
other

explanatory
variable.
This
is
an
additive
model,
which
is
what
we
stated
in

our
hypothesis
and
represented
in
the
formula
y
 ~
 x1
 +
 x2.

Not
all
multivariate
relationships
are
additive.
We
can
also
hypothesize
an
interaction
between
the
explanatory
variables.
An
interaction
model
is
one

which
hypothesizes
that
the
effect
of
one
explanatory
variable
on
the
response
variable
 is
dependent
on
the
other
explanatory
variable(s).
In
our
case,
we
could
have
hypothesized
 that
 the
effect
of
length_ratio_log
 on
 the
propor-
tion
of
NP
realizations
of
the
recipient
clause
is
dependent
on
modality.
We

can
specify
 this
relationship
using
 the
 formula
approach,
as
seen
 in
Exam-
ple
10.25.

Example
10.25.

1
 #
 Specify
 the
 relationship
 between
 the
 response
 and
 explanatory
 variables

2
 dative_inter_spec
 <-

3
 dative_tbl
 |>

4
 specify(

5
 rcp_real
 ~
 modality
 *
 length_ratio_log

6
)

285
10.2.
 ANALYSIS

Replacing
the
+
with
a
*
 tells
the
model
to
consider
the
interaction
between

the
explanatory
variables.
A
model
with
an
interaction
changes
the
terms
and
the
estimates.
In
Example
10.26,
we
see
the
terms
for
the
logistic
regression
model
with
an
interaction.

Example
10.26.

1
 #
 Fit
 the
 logistic
 regression
 model

2
 dative_inter_fit
 <-

3
 dative_inter_spec
 |>

4
 fit()

5

6
 #
 Preview

7
 dative_inter_fit

#
 A
 tibble:
 4
 x
 2

term
 estimate

<chr>
 <dbl>

1
 intercept
 -0.549

2
 modalitywritten
 0.958

3
 length_ratio_log
 -1.69

4
 modalitywritten:length_ratio_log
 0.138

Ď
Consider
this

As
an
exercise,
consider
the
following
research
question:

•
 NP
and
PP
realizations
of
the
recipient
clause
are
contingent
on
modality
and
word
length
ratio
of
the
recipient
and
theme,
and
the
effect
of
the
length
ratio
on
the
proportion
of
NP
realizations
of
the
recipient
clause
is
dependent
on
the
modality.

Follow
 the
simulation-based
process
 to
 test
 this
hypothesis.
What
are
 the
re-
sults?
What
are
the
implications
of
the
results?

The
additional
term
modalitywritten:length_ratio_log
is
the
interaction
term.

We
also
see
the
log
odds
estimates
have
changed
for
the
previous
terms.
This
is
because
 this
 interaction
draws
some
of
 the
explanatory
power
 from
 the
other
terms.
Whether
or
not
we
run
an
interaction
model
depends
on
our
re-
search
question.
Again,
the
hypothesis
precedes
the
model.
If
we
hypothesize
an
interaction,
then
we
should
run
an
interaction
model.
If
we
do
not,
then
we
should
not.

10.2.2
 Numeric

We
now
turn
our
attention
to
the
analysis
scenarios
where
the
response
vari-
able
is
numeric.
Just
as
for
categorical
variables,
we
can
have
univariate,
bi-
variate,
and
multivariate
analysis
scenarios.
The
statistical
tests
for
numeric
variables
are
summarized
in
Table
10.7.

286
 CHAPTER
10.
 INFER

Table
10.7:
Statistical
test
design
for
numeric
response
variables

Scenario
 Explanatory
Variable(s)
 Statistical
Test
 infer

Univariate
 - Mean
 mean

Bivariate
 Numeric
 Correlation
 correlation

Bivariate

Bivariate

Multivariate

Categorical
(2
 levels)

Categorical
(3+
 levels
)

Numeric
or
Categorical

Difference
 in
means

ANOVA

Linear
regression

diff
 in

f

fit()

means

The
dataset
we
will
use
is
drawn
from
the
Switchboard
Dialog
Act
Corpus
(University
of
Colorado
Boulder,
2008).
The
data
dictionary
 is
found
 in
Ta-
ble
10.8.

Table
10.8:
Data
dictionary
for
the
transformed
SWDA
dataset

variable
 name
 type
 description

speaker_id

age

sex

education

fillers_orf

total_fillers

Speaker
 ID

Age

Sex

Education

Fillers
per
100

Total
Fillers

numeric

numeric

categorical

ordinal

numeric

numeric

Unique
 identifier
for
each
speaker

Age
of
the
speaker
 in
years

Gender
of
the
speaker

Level
of
education
attained
by
the

speaker

Number
of
filler
words
used
per
100

utterances
(observed
relative
frequency)

Total
number
of
filler
words
used

total_utts
 Total

Utterances

numeric
 Total
number
of
utterances
made
by
the

speaker

We
see
the
dataset
has
seven
variables.
The
fillers_orf
will
be
used
as
our

response
variable
and
corresponds
to
the
rate
of
filler
usage
per
speaker,
nor-
malized
by
the
number
of
utterances.
The
other
variables
we
will
consider
as
explanatory
variables
are
age,
sex,
and
education,
providing
us
a
mix
of

numeric
and
categorical
variables.

The
context
for
these
analysis
demonstrations
comes
from
the
socio-linguistic
literature
on
the
use
of
filled
pauses.
Filled
pauses
have
often
been
associated
with
a
type
of
disfluency;
speech
errors
that
occur
during
speech
production.
However,
some
authors
have
argued
that
filled
pauses
can
act
as
sociolinguis-
tic
markers
of
socio-demographic
characteristics
of
speakers,
such
as
gender,
age,
and
educational
level
(Shriberg,
1994;
Tottie,
2011).

Reading
the
dataset
and
performing
some
basic
diagnostics,
a
preview
of
the

fillers_tbl
dataset
is
seen
in
Example
10.27.

287
10.2.
 ANALYSIS

Example
10.27.

1
 #
 Preview
 the
 dataset

2
 fillers_tbl

#
 A
 tibble:
 441
 x
 4

age
 sex
 education
 fillers_orf

<dbl>
 <fct>
 <ord>
 <dbl>

1
 38
 Female
 Less
 Than
 College
 2.14

2
 52
 Male
 More
 Than
 College
 25.3

3
 29
 Female
 College
 4.13

4
 34
 Female
 College
 2.41

5
 36
 Female
 College
 3.79

6
 27
 Female
 College
 0

7
 53
 Female
 Less
 Than
 College
 8.33

8
 60
 Male
 Less
 Than
 College
 1.82

9
 28
 Female
 College
 5.22

10
 35
 Female
 College
 6.23

#
 i
 431
 more
 rows

Our
fillers_tbl
dataset
has
441
observations.
Again,
we
will
postpone
more
specific
descriptive
statistics
for
treatment
in
the
upcoming
scenarios.

Univariate
analysis

In
hypothesis
testing,
the
analysis
of
a
single
variable
is
directed
at
determin-
ing
whether
or
not
 the
distribution
or
statistic
of
 the
variable
differs
 from
some
expected
distribution
or
statistic.
In
the
case
of
a
single
categorical
vari-
able
with
 two
 levels
 (as
Section
10.2.1),
we
 sampled
 from
a
binomial
dist-
ribution
by
chance.
In
the
case
of
a
single
numeric
variable,
we
can
sample
and
compare
 the
observed
distribution
 to
a
 theoretical
distribution.
When
approaching
 hypothesis
 testing
 from
 a
 theoretical
 perspective,
 it
 is
 often
necessary
to
assess
how
well
a
numeric
variable
fits
the
normal
distribution
as
many
statistical
tests
assume
that
the
data
are
normally
distributed.
How-
ever,
we
have
adopted
the
simulation-based
approach
to
hypothesis
testing,
which
does
not
require
that
the
data
fit
the
normal
distribution,
or
any
other
distribution
for
that
matter.

The
other
 approach
 to
 analyzing
 a
 single
numeric
variable
 is
 to
 compare
an
observed
statistic
to
an
expected
statistic.
This
approach
requires
a
priori
knowledge
of
the
expected
statistic.
For
example,
imagine
we
are
interested
in
testing
the
hypothesis
that
the
length
of
words
in
a
medical
corpus
tend
to
be
longer
than
the
average
length
of
words
in
English.
We
would
then
cal-
culate
the
observed
mean
for
the
length
of
words
in
the
medical
corpus
and
then
generate
a
null
distribution
of
means
for
the
length
of
words
in
English,
as
in
Example
10.28.

288
 CHAPTER
10.
 INFER

Example
10.28.

1
 #
 Observed
 mean

2
 obs_mean
 <-

3
 medical_df
 |>

4
 specify(response
 =
 word_length)
 |>

5
 calculate(stat
 =
 "mean")

6

7
 #
 Null
 distribution
 of
 means

8
 null_mean
 <-

9
 medical_df
 |>

10
 specify(response
 =
 word_length)
 |>

11
 hypothesize(null
 =
 "point",
 mu
 =
 5)
 |>

12
 generate(reps
 =
 1000,
 type
 =
 "draw")
 |>

13
 calculate(stat
 =
 "mean")

Note
that
instead
of
a
p =
argument,
as
was
used
 in
the
hypothesize()
 step

to
generate
a
null
distribution
of
proportions,
we
use
a
mu
 =
argument
in
Ex-
ample
10.28
to
specify
the
expected
mean.
The
rest
of
the
hypothesis
testing
workflow
is
the
same
as
for
the
null
distribution
of
proportions.

̪
Dive
deeper
The
mean
mu
is
not
the
only
statistic
we
can
specify
for
a
numeric
variable.
We
can
also
specify
the
median
med,
or
the
standard
deviation
sigma.

In
our
case,
we
do
not
have
a
priori
knowledge
of
the
expected
statistic
for

the
fillers_orf
variable,
so
we
will
not
pursue
this
approach.
However,
it
is
useful
to
take
a
closer
look
at
the
distribution
of
a
numeric
variable
in
order
to

detect
extreme
skewing
and/or
outliers.
This
is
important
because
the
pres-
ence
of
skewing
and
outliers
can
affect
the
results
of
statistical
tests.
We
can
visualize
the
distribution
of
the
fillers_orf
variable
using
a
histogram
and
density
plot
as
in
Example
10.29
and
rendered
in
Figure
10.5.

Example
10.29.

1
 #
 Histogram-density
 plot

2
 fillers_tbl
 |>

3
 ggplot(aes(x
 =
 fillers_orf))
 +

4
 geom_histogram(aes(y
 =
 after_stat(density)),
 bins
 =
 50)
 +

5
 geom_density()
 +

6
 labs(x
 =
 "Fillers
 per
 100
 utterances",
 y
 =
 "Density")

The
distribution
of
fillers_orf
is
indeed
skewed
to
the
right.
We
might
have
predicted
this
given
that
we
are
working
with
ratio
based
on
count
data,
per-
haps
not.
 In
any
case,
 the
skewing
we
observe
 tends
 to
compress
 the
dist-
ribution
and
may
make
it
difficult
to
see
any
patterns.
To
mitigate
this,
we

289
10.2.
 ANALYSIS

0.000

0.025

0.050

0.075

0.100

D

en
si

ty

0
 20
 40

Fillers per 100 utterances

Figure
10.5:
Histogram
and
density
plot
of
the
fillers_orf
variable

can
log
transform
the
variable.
But
we
will
run
into
a
problem
if
we
have
any
speakers
who
do
not
use
any
fillers
at
all
as
these
speakers
will
have
a
value
of
zero,
as
we
can
see
in
Figure
10.5.
The
log
of
zero
is
undefined.
So
we
need
to
address
this.

Eliminating
the
speakers
who
do
not
use
any
fillers
at
all
is
one
option.
This
is
quite
extreme
as
we
may
lose
quite
a
few
speakers
and
it
is
not
clear
that
removing
data
in
this
way
will
not
cause
inordinate
bias
in
the
results
as
these
speakers
may
be
different
in
some
way
from
the
rest
of
the
speakers.
Looking
at
the
speakers
with
zero
fillers
in
Example
10.30,
we
can
see
that
there
is
some
potential
for
bias
as
the
speakers
with
zero
fillers
are
not
evenly
distributed
across
the
levels
of
the
education
and
sex
variables.

Example
10.30.

1
 #
 Cross-tabulation
 of
 zero
 fillers
 by
 education
 and
 sex

2
 fillers_tbl
 |>

3
 filter(fillers_orf
 ==
 0)
 |>

4
 tabyl(education,
 sex)

education
 Female
 Male

More
 Than
 College
 3
 14

College
 16
 11

Less
 Than
 College
 2
 0

Less
 Than
 High
 School
 1
 0

Unknown
 1
 0

290
 CHAPTER
10.
 INFER

Another
approach
is
to
add
a
small
value
to
the
fillers_orf
variable,
for
all
speakers.
This
will
allow
us
to
log
transform
the
variable
and
will
likely
not
have
any
(or
very
little)
impact
on
the
results.
It
also
allows
us
to
keep
these
speakers.

Adding
values
can
be
done
in
one
of
two
ways.
We
can
add
a
small
constant
value
to
all
speakers,
or
we
can
add
a
small
random
value
to
all
speakers.
The
former
is
easier
to
implement,
but
means
that
we
will
still
have
a
spike
in
the
distribution
at
the
value
of
the
constant.
Since
we
do
not
expect
that
speakers
that
did
not
use
fillers
at
all
would
never
do
so
and
that
when
they
do
we
would
not
expect
them
to
be
at
exactly
the
same
rate
as
other
speakers,
we
can
add
a
small
random
value
to
all
speakers.

In
R,
we
can
use
the
jitter()
function
to
add
a
small
amount
of
random
noise

to
the
variable.
Note,
however,
this
random
noise
can
be
positive
or
negative.
When
a
negative
value
is
added
to
a
zero
value,
we
are
still
in
trouble
when
we
go
to
log-transform.
So
we
need
to
make
sure
that
none
of
the
jitter
pro-
duces
negative
values.
We
can
do
this
by
simply
taking
the
absolute
value
of
the
 jittered
variable
with
the
abs()
 function.
Let’s
see
how
this
works
in

Example
10.31.

Example
10.31.

1
 set.seed(1234)
 #
 for
 reproducibility

2

3
 #
 Add
 jitter
 to
 fillers

4
 fillers_tbl
 <-

5
 fillers_tbl
 |>

6
 mutate(fillers_orf_jitter
 =
 abs(jitter(fillers_orf)))

7

8
 fillers_tbl

#
 A
 tibble:
 441
 x
 5

age
 sex
 education
 fillers_orf
 fillers_orf_jitter

<dbl>
 <fct>
 <ord>
 <dbl>
 <dbl>

1
 38
 Female
 Less
 Than
 College
 2.14
 2.14

2
 52
 Male
 More
 Than
 College
 25.3
 25.3

3
 29
 Female
 College
 4.13
 4.13

4
 34
 Female
 College
 2.41
 2.41

5
 36
 Female
 College
 3.79
 3.80

6
 27
 Female
 College
 0
 0.000561

7
 53
 Female
 Less
 Than
 College
 8.33
 8.33

8
 60
 Male
 Less
 Than
 College
 1.82
 1.82

9
 28
 Female
 College
 5.22
 5.22

10
 35
 Female
 College
 6.23
 6.23

#
 i
 431
 more
 rows

10.2.
 ANALYSIS
 291

The
results
from
Example
10.31
show
that
the
fillers_orf_jitter
variable
has

been
added
 to
 the
fillers_tbl
dataset
and
 that
zero
values
 for
fillers_orf

now
have
a
small
amount
of
random
noise
added
to
them.
Note
that
the
other

values
also
have
a
small
amount
of
random
noise
added
 to
 them,
but
 it
 is
so
small
 that
 rounding
 to
2
decimal
places
makes
 it
 look
 like
nothing
has
changed.

Now
let’s
return
to
log
transforming
the
fillers_orf_jitter
variable.
We
can

do
this
with
the
log()
function.
Let’s
see
how
this
works
in
Example
10.32.

Example
10.32.

1
 #
 Log
 transform
 fillers
 (with
 jitter)

2
 fillers_tbl
 <-

3
 fillers_tbl
 |>

4
 mutate(fillers_orf_log
 =
 log(fillers_orf_jitter))

5

6
 fillers_tbl

#
 A
 tibble:
 441
 x
 6

age
 sex
 education
 fillers_orf
 fillers_orf_jitter
 fillers_orf_log

<dbl>
 <fct>
 <ord>
 <dbl>
 <dbl>
 <dbl>

1
 38
 Female
 Less
 Than
 College
 2.14
 2.14
 0.762

2
 52
 Male
 More
 Than
 College
 25.3
 25.3
 3.23

3
 29
 Female
 College
 4.13
 4.13
 1.42

4
 34
 Female
 College
 2.41
 2.41
 0.880

5
 36
 Female
 College
 3.79
 3.80
 1.33

6
 27
 Female
 College
 0
 0.000561
 -7.49

7
 53
 Female
 Less
 Than
 College
 8.33
 8.33
 2.12

8
 60
 Male
 Less
 Than
 College
 1.82
 1.82
 0.597

9
 28
 Female
 College
 5.22
 5.22
 1.65

10
 35
 Female
 College
 6.23
 6.23
 1.83

#
 i
 431
 more
 rows

Let’s
now
plot
 the
 log-transformed
variable,
as
seen
 in
Example
10.33
and
visualized
in
Figure
10.6.

Example
10.33.

1
 #
 Histogram-density
 plot

2
 fillers_tbl
 |>

3
 ggplot(aes(x
 =
 fillers_orf_log))
 +

4
 geom_histogram(aes(y
 =
 after_stat(density)),
 bins
 =
 50)
 +

5
 geom_density()
 +

6
 labs(x
 =
 "Fillers
 per
 100
 utterances",
 y
 =
 "Density")

292
 CHAPTER
10.
 INFER

0.0

0.1

0.2

0.3

0.4

0.5

D

en
si

ty

−12 −8 −4
 0
 4

Fillers per 100 utterances

Figure
10.6:
Histogram
and
density
plot
of
the
fillers_orf_log
variable

The
distribution
of
the
log-transformed
variable
is
more
spread
out
now,
but
the
zero-filler
speakers
do
show
a
low-level
spike
in
the
left
tail
of
the
dist-
ribution.
Jitter
and
log
transformation,
however,
smooth
over
their
effect
to
a
large
degree.

Bivariate
analysis

When
considering
a
numeric
response
variable
and
another
variable,
it
is
key
to
consider
the
nature
of
the
other
variable.
If
it
is
a
categorical
variable
with
two
levels,
then
we
can
compare
a
statistic
between
the
two
groups
(mean
or
median).
If
it
is
categorical
with
more
than
two
levels,
Analysis
of
Variance
(ANOVA)
is
used
to
compare
the
means.
Finally,
if
it
is
a
numeric
variable,
then
we
can
use
a
correlation
test
to
see
if
there
is
an
association
between
the

two
variables.

The
fillers_tbl
contains
the
sex
variable
which
is
a
categorical
variable
with
two
levels.
According
to
the
literature,
filled
pauses
are
associated
with
dif-
ferences
between
men
and
women
(Shriberg,
1994;
Tottie,
2011,
2014)
 .
The
findings
suggest
that
men
use
fillers
at
a
higher
rate
than
women.
Let’s
test
to
see
if
this
holds
for
the
SWDA
data.

Let’s
first
explore
the
distribution
from
a
descriptive
point
of
view.
With
a
numeric
response
variable
fillers_orf_log
and
a
categorical
explanatory
vari-
able
sex,
a
boxplot
is
a
natural
fit,
as
seen
in
Example
10.34.

293
10.2.
 ANALYSIS

Example
10.34.

1
 #
 boxplot

2
 fillers_tbl
 |>

3
 ggplot(aes(x
 =
 fillers_orf_log,
 y
 =
 sex))
 +

4
 geom_boxplot(notch
 =
 TRUE)
 +

5
 labs(

6
 x
 =
 "Filler
 use
 (log)",

7
 y
 =
 "Sex"

8
)

Female

Male

S
ex

−12 −8 −4
 0
 4

Filler use (log)

Figure
10.7:
boxplot
of
the
fillers_orf_log
variable
by
sex

Looking
at
the
boxplot
in
Figure
10.7,
we
see
that
there
appears
to
be
an
over-
all
higher
rate
of
filler
use
for
men,
compared
to
women.
We
also
can
see
that
the
random
noise
added
to
zero-rate
speakers
appear
as
outliers
in
the
left
tail.
Since
I
added
a
notch
to
the
boxplots,
we
can
also
gauge
to
some
degree
the
uncertainty
of
the
median.
The
notches
do
not
overlap,
which
suggests
that
the
medians
are
different.

To
test
these
differences,
let’s
follow
the
simulation-based
hypothesis
testing
workflow
and
investigate
if
the
apparent
difference
between
men
and
women
is
statistically
significant,
or
expected
by
chance3.
The
first
steps
are
found
in

Example
10.35.

3Given
the
fact
that
we
added
 jitter
to
accommodate
the
zeros,
it
may
actually
make
more
sense
to
compare
medians,
rather
than
means.
But
to
compare
these
results
with
the
results
from
the
literature,
we
will
compare
means.

294
 CHAPTER
10.
 INFER

Example
10.35.

1
 #
 Specify
 the
 relationship

2
 fillers_spec
 <-

3
 fillers_tbl
 |>

4
 specify(fillers_orf_log
 ~
 sex)
 #
 response
 ~
 explanatory

5

6
 #
 Observed
 statistic

7
 fillers_obs
 <-

8
 fillers_spec
 |>

9
 #
 diff
 in
 means,
 Male
 - Female

10
 calculate(stat
 =
 "diff
 in
 means",
 order
 =
 c("Male",
 "Female"))

11

12
 #
 Null
 distribution

13
 fillers_null
 <-

14
 fillers_spec
 |>

15
 hypothesize(null
 =
 "independence")
 |>
 #
 independence
 =
 no
 relationship

16
 generate(reps
 =
 1000,
 type
 =
 "permute")
 |>
 #
 permute
 =
 shuffle

17
 calculate(stat
 =
 "diff
 in
 means",
 order
 =
 c("Male",
 "Female"))

18

19
 #
 Calculate
 the
 p-value

20
 fillers_null
 |>

21
 get_p_value(obs_stat
 =
 fillers_obs,
 direction
 =
 "greater")

#
 A
 tibble:
 1
 x
 1

p_value

<dbl>

1
 0.033

From
 the
 analysis
 performed
 in
 Example
 10.35,
 we
 can
 reject
 the
 null
hypothesis
that
there
is
no
difference
between
the
rate
of
filler
use
between
men
and
women,
as
the
𝑝-value
is
less
than
0.05.

To
further
assess
the
uncertainty
of
the
observed
statistic,
and
the
robustness
of
the
difference,
we
calculate
a
confidence
interval,
as
seen
in
Example
10.36.

Example
10.36.

1
 #
 Resampling
 distribution

2
 fillers_boot
 <-

3
 fillers_spec
 |>

4
 generate(reps
 =
 1000,
 type
 =
 "bootstrap")
 |>

5
 calculate(stat
 =
 "diff
 in
 means",
 order
 =
 c("Male",
 "Female"))

6

7
 #
 Calculate
 the
 confidence
 interval

8
 fillers_ci
 <-

9
 fillers_boot
 |>

10
 get_confidence_interval(level
 =
 0.95)

295
10.2.
 ANALYSIS

11

12
 fillers_ci

#
 A
 tibble:
 1
 x
 2

lower_ci
 upper_ci

<dbl>
 <dbl>

1
 -0.00378
 1.05

The
confidence
interval
includes
0,
which
suggests
that
the
observed
differ-
ence
is
questionable.
It
is
of
note,
however,
that
the
majority
of
the
interval
is
above
0,
which
provides
some
evidence
that
the
observed
difference
is
not
due
to
chance.
This
result
highlights
how
𝑝-values
and
confidence
intervals

together
can
provide
a
more
nuanced
picture
of
the
data.

The
second
bivariate
scenario
we
can
consider
is
when
the
explanatory
vari-
able
is
categorical
with
more
than
two
levels.
We
will
use
ANOVA
to
calculate
the
F
statistic
(𝑓).
The
education
variable
in
the
fillers_tbl
dataset
is
a
cate-
gorical
variable
with
five
levels.
Tottie
(2011)
suggests
that
the
more
educated
a
speaker,
the
more
fillers
they
will
use.
Let’s
test
this
hypothesis.

First,
we
visualize
the
distribution
of
the
fillers_orf_log
variable
by
educa-
tion,
as
seen
in
Example
10.37.

Example
10.37.

1
 #
 boxplot

2
 fillers_tbl
 |>

3
 ggplot(aes(y
 =
 fillers_orf_log,
 x
 =
 education))
 +

4
 geom_boxplot(notch
 =
 TRUE)
 +

5
 labs(

6
 y
 =
 "Filler
 use
 (log)",

7
 x
 =
 "Education"

8
)

The
boxplot
in
Figure
10.8
does
not
point
to
any
obvious
differences
between
the
levels
of
the
education
variable.
There
are
a
fair
number
of
outliers,
how-
ever,
in
the
two
most
educated
groups.
These
outliers
are
likely
due
to
the
random
noise
added
to
the
0-rate
speakers
and
it
is
interesting
that
they
are
concentrated
in
the
two
most
educated
groups.

Let’s
now
submit
these
variables
to
the
simulation-based
hypothesis
testing
workflow
to
quantify
the
uncertainty
of
the
observed
statistic
and
determine
if
the
observed
difference
is
statistically
significant.
Again,
the
first
steps
are
found
in
Example
10.38.

296
 CHAPTER
10.
 INFER

−12

−8

−4

0

4
F

ill
er

 u
se

 (
lo

g)

More Than College
 College
 Less Than College
 Less Than High School
 Unknown

Education

Figure
10.8:
Visualizations
of
the
fillers_orf_log
variable
by
education

Example
10.38.

1
 #
 Specify
 the
 relationship

2
 fillers_spec
 <-

3
 fillers_tbl
 |>

4
 specify(fillers_orf_log
 ~
 education)
 #
 response
 ~
 explanatory

5

6
 #
 Observed
 statistic

7
 fillers_obs
 <-

8
 fillers_spec
 |>

9
 calculate(stat
 =
 "F")
 #
 F
 =
 variance
 between
 groups
 /
 variance
 within

↪
 groups

10

11
 #
 Null
 distribution

12
 fillers_null
 <-

13
 fillers_spec
 |>

14
 hypothesize(null
 =
 "independence")
 |>
 #
 independence
 =
 no
 relationship

15
 generate(reps
 =
 1000,
 type
 =
 "permute")
 |>
 #
 permute
 =
 shuffle

16
 calculate(stat
 =
 "F")

17

18
 #
 Calculate
 the
 p-value

19
 fillers_null
 |>

20
 get_p_value(obs_stat
 =
 fillers_obs,
 direction
 =
 "two-sided")

#
 A
 tibble:
 1
 x
 1

p_value

<dbl>

1
 0.426

297
10.2.
 ANALYSIS

The
analysis
in
Example
10.38
suggests
that
the
observed
difference
between
the
means
of
the
different
levels
of
the
education
variable
are
not
significantly
different
from
what
we
would
expect
by
chance.

Á
Warning
The
𝑝-value
in
Example
10.38
was
calculated
using
a
two-sided
test,
which
is
ap-
propriate
when
the
expected
directionality
is
not
known.
In
this
case,
while
we
do
have
an
expected
directionality,
the
visualizations
strongly
suggest
that
the
observed
difference
is
not
in
line
with
our
expectations.
To
account
for
this
un-
certainty
and
to
be
conservative,
we
choose
to
use
a
two-sided
test.
This
allows
us
to
remain
open
to
the
possibility
that
the
observed
difference
may
actually
be
in
the
opposite
direction,
rather
than
solely
focusing
on
our
initial
expectation.
However,
it’s
important
to
note
that
the
decision
to
use
a
one-sided
or
two-sided
test
should
also
consider
factors
such
as
the
specific
research
question
and
the
context
of
the
analysis.

Let’s
now
calculate
a
confidence
interval
to
assess
the
uncertainty
of
the
ob-
served
statistic,
as
seen
in
Example
10.39.

Example
10.39.

1
 #
 Resampling
 distribution

2
 fillers_boot
 <-

3
 fillers_spec
 |>

4
 generate(reps
 =
 1000,
 type
 =
 "bootstrap")
 |>

5
 calculate(stat
 =
 "F")

6

7
 #
 Calculate
 the
 confidence
 interval

8
 fillers_ci
 <-

9
 fillers_boot
 |>

10
 get_confidence_interval(level
 =
 0.95)

11

12
 fillers_ci

#
 A
 tibble:
 1
 x
 2

lower_ci
 upper_ci

<dbl>
 <dbl>

1
 0.123
 4.57

In
Example
10.39,
we
see
that
we
are
in
the
opposite
situation
to
the
previous
bivariate
case
—the
𝑝-value
is
not
significant
but
the
confidence
interval
does

not
include
0.

So
how
do
we
 interpret
 this?
Remember,
 the
𝑝-value
 is
 the
probability
of
observing
a
statistic
as
extreme
or
more
extreme
than
the
observed
statistic,
given
that
the
null
hypothesis
is
true.
The
confidence
interval
is
the
range
of
values
that
we
are
95%
confident
contains
the
true
population
parameter.
We
should
 take
 into
consideration
 two
aspects:
 (1)
 the
confidence
 interval
has

298
 CHAPTER
10.
 INFER

a
 large
range
(the
 interval
 is
wide)
and
(2)
the
 lower
 limit
 is
near
0.
Taken
together
and
in
addition
to
the
𝑝-value,
we
can
conclude
that
the
observed
difference
is
not
statistically
significant,
and
if
there
is
a
difference,
it
is
likely
to
be
small
or
negligible.

Multivariate
analysis

While
bivariate
analysis
is
useful
for
exploring
the
relationship
between
two
variables,
it
is
often
the
case
that
we
want
to
consider
relationships
between
more
than
two
variables.
In
this
case,
we
can
use
multivariate
analysis.
Linear
regression
is
a
common
multivariate
analysis
technique.

In
 linear
regression,
we
are
 interested
 in
predicting
the
value
of
a
numeric
response
variable
based
on
the
values
of
the
explanatory
variablesj.
The
con-
tribution
of
the
explanatory
variables
can
be
considered
individually,
as
an
interaction,
or
as
a
combination
of
both.

Let’s
now
introduce
a
variation
of
the
SWDA
dataset
which
includes
a
vari-
able
filler_type
which
has
two
 levels,
 ‘uh’
and
 ‘um’,
corresponding
to
the
use
of
each
filler.
Here’s
a
preview
of
the
dataset
in
Example
10.40.

Example
10.40.

1
 fillers_type_df

#
 A
 tibble:
 882
 x
 6

speaker_id
 sex
 education
 age
 filler_type
 fillers_orf_log

<dbl>
 <fct>
 <ord>
 <dbl>
 <chr>
 <dbl>

1
 1000
 Female
 Less
 Than
 College
 38
 uh
 0.561

2
 1000
 Female
 Less
 Than
 College
 38
 um
 -0.941

3
 1001
 Male
 More
 Than
 College
 52
 uh
 3.22

4
 1001
 Male
 More
 Than
 College
 52
 um
 -1.64

5
 1002
 Female
 College
 29
 uh
 0.956

6
 1002
 Female
 College
 29
 um
 0.425

7
 1004
 Female
 College
 34
 uh
 0.474

8
 1004
 Female
 College
 34
 um
 -0.220

9
 1005
 Female
 College
 36
 uh
 1.17

10
 1005
 Female
 College
 36
 um
 -0.582

#
 i
 872
 more
 rows

The
fillers_type_df
dataset
has
882
observations
and
6
variables.
With
this

dataset,
we
will
explore
the
hypothesis
that
the
rate
of
filler
use
varies
by
the
type
of
filler
across
the
socio-demographic
variable
sex.

To
do
this
we
will
use
R
formula
syntax
to
specify
the
variables
we
want
to
in-
clude
in
the
model
and
their
relationships.
The
possible
relationships
appear
in
Table
10.9.

299
10.2.
 ANALYSIS

Table
10.9:
Possible
relationships
in
a
multivariate
analysis

Relationship
 Formula
 Description

Simple
effects
 response
 ~
 explanatory_1

explanatory_2

+
 The
response
variable
as
a

function
of
each
explanatory

variable

Interaction
effects
 response
 ~

explanatory_1:explanatory_2

The
response
variable
as
a

function
of
the
 interaction

between
the
two
explanatory

variables

Simple
and

interaction
effects

response
 ~
 explanatory_1

explanatory_2

*
 The
response
variable
as
a

function
of
each
explanatory

variable
and
the
 interaction

between
the
two
explanatory

variables

Our
hypothesis
is
that
men
and
women
differ
in
the
rates
that
they
use
the
filler
types.
This
describes
an
interaction,
so
we
can
use
either
the
interaction
or
the
simple
and
interaction
effects
relationships.
To
demonstrate
the
differ-
ence
between
simple
and
interaction
terms,
let’s
approach
this
using
the
third
relationship
(i.e.
fillers_orf_log
 ~
 filler_type
 *
 sex).

A
plot
will
help
us
begin
 to
understand
 the
potential
 relationships.
 In
Ex-
ample
 10.41,
 we
 use
 a
 boxplot
 to
 visualize
 the
 relationship
 between
 the

fillers_orf_log
variable
and
the
filler_type
variable,
with
a
sex
overlay.

Example
10.41.

1
 #
 boxplot
 `filler_type`

2
 fillers_type_df
 |>

3
 ggplot(aes(y
 =
 fillers_orf_log,
 x
 =
 filler_type))
 +

4
 geom_boxplot(notch
 =
 TRUE)
 +

5
 labs(

6
 x
 =
 "Filler
 type",

7
 y
 =
 "Fillers
 per
 100
 (log)"

8
)

9

10
 #
 boxplot
 `filler_type`
 and
 `sex`

11
 fillers_type_df
 |>

12
 ggplot(aes(y
 =
 fillers_orf_log,
 x
 =
 filler_type,
 fill
 =
 sex))
 +

13
 geom_boxplot(notch
 =
 TRUE)
 +

14
 labs(

15
 x
 =
 "Filler
 type",

16
 y
 =
 "Fillers
 per
 100
 (log)",

17
 fill
 =
 "Sex"

18
)

300
 CHAPTER
10.
 INFER

4
 4

0
 0

F
ill

er
s

pe
r

10
0

(lo
g)

uh
 um

Filler type

uh
 um

Filler type

F
ill

er
s

pe
r

10
0

(lo
g)

−4

Sex

Female

Male

−4

−8
 −8

−12
 −12

(a)
Boxplot
by
filler_type
 (b)
Boxplot
by
filler_type
and
sex

Figure
10.9:
Boxplot
of
the
fillers_orf_log
variable
by
filler_type
and
sex

Let’s
interpret
the
boxplots
in
Figure
10.9.
Focusing
on
Figure
10.9a
first,
we
see
that
the
filler
‘uh’
is
more
frequent
than
‘um’
as
the
median
is
distinct
and
the
confidence
intervals
do
not
overlap.
Now,
looking
at
Figure
10.9b,
we
see
the
same
distinction
between
‘uh’
and
‘um’,
but
we
also
see
that
the
difference
between
the
use
of
‘uh’
and
‘um’
is
different
for
males
and
females.
This
is
the

interaction
effect
we
hypothesized.
In
this
case
the
interaction
effect
goes
in
the
same
direction
but
the
magnitude
of
the
difference
is
different.
The
upshot,
men
and
women
both
use
‘uh’
more
than
‘um’
but
men
are
even
more
likely
to
use
‘uh’
over
‘um’
than
women.

Let’s
test
this
effect
using
the
infer
workflow.
Calculating
the
observed
statis-
tics
for
the
simple
and
interaction
effects
is
very
similar
to
other
designs,
ex-
cept
instead
of
calculate()
to
derive
our
statistics
we
will
use
the
fit()
func-
tion,
 just
as
we
did
for
logistic
regression.
Let’s
go
ahead
and
calculate
the
observed
statistics
first,
as
seen
in
Example
10.42.

Example
10.42.

1
 #
 Specify
 the
 relationship

2
 fillers_type_spec
 <-

3
 fillers_type_df
 |>

4
 specify(fillers_orf_log
 ~
 filler_type
 *
 sex)

5

6
 #
 Observed
 statistics

7
 fillers_type_obs
 <-

8
 fillers_type_spec
 |>

9
 fit()

10

11
 fillers_type_obs

301
10.2.
 ANALYSIS

1
 #
 Specify
 the
 relationship

2
 fillers_type_spec
 <-

3
 fillers_type_df
 |>

4
 specify(fillers_orf_log
 ~
 filler_type
 *
 sex)

5

6
 #
 Observed
 statistics

7
 fillers_type_obs
 <-

8
 fillers_type_spec
 |>

9
 fit()

10

11
 fillers_type_obs

#
 A
 tibble:
 4
 x
 2

term
 estimate

<chr>
 <dbl>

1
 intercept
 0.551

2
 filler_typeum
 -2.16

3
 sexMale
 0.657

4
 filler_typeum:sexMale
 -1.84

The
terms
in
the
output
from
Example
10.42
provide
information
as
to
what
the
reference
levels
are.
For
example,
filler_typeum
tells
us
that
the
‘uh’
level
is

the
reference
for
filler_type
and
by
the
same
logic,
‘Female’
is
the
reference

for
sex.
These
terms
provide
our
simple
effect
statistics.
Each
can
be
under-
stood
as
the
difference
between
the
reference
level
when
the
other
variables

are
held
constant.
Our
response
variable
 is
 log
transformed,
so
 it
 is
not
di-
rectly
interpretable
beyond
the
fact
that
smaller
units
are
lower
rates
of
filler
use
and
larger
units
are
higher
rates
of
filler
use.
So
‘um’
is
used
less
than
‘uh’
and
men
use
more
fillers
than
women.

The
interaction
term
fillertypeum:sexMale
is
the
difference
in
the
rate
of
fillers

for
this
combination
compared
to
the
reference
level
combination
(‘uh’
and
‘Female’).
In
this
case,
the
observed
rate
is
lower.

We
now
need
to
generate
a
null
distribution
to
compare
the
observed
statistics
to.
We
will
again
use
the
permutation
method,
but
since
there
is
an
interaction
effect,
we
need
to
shuffle
the
filler_type
and
sex
variables
together.
This
en-
sures
that
any
relationship
between
the
two
variables
is
removed.
Let’s
see
how
this
works
in
Example
10.43.

Example
10.43.

1
 #
 Null
 distribution

2
 fillers_type_null
 <-

3
 fillers_type_spec
 |>

4
 hypothesize(null
 =
 "independence")
 |>

302
 CHAPTER
10.
 INFER

5
 generate(reps
 =
 1000,
 type
 =
 "permute",
 variables
 =
 c("filler_type",
↪
 "sex"))
 |>

6
 fit()

7

8
 #
 Calculate
 the
 p-values

9
 fillers_type_null
 |>

10
 get_p_value(obs_stat
 =
 fillers_type_obs,
 direction
 =
 "two-sided")

#
 A
 tibble:
 4
 x
 2

term
 p_value

<chr>
 <dbl>

1
 filler_typeum
 0

2
 filler_typeum:sexMale
 0

3
 intercept
 0

4
 sexMale
 0.066

For
the
simple
effects,
we
see
that
filler_type
is
significant
but
sex
is
not.
Re-
member,
when
we
only
considered
sex
 in
isolation
in
the
bivariate
case,
we
found
it
to
be
significant.
So
why
is
it
not
significant
now?
It
is
important
to
re-
member
that
in
every
statistical
design,
there
are
other
factors
that
are
not
con-
sidered.
When
these
are
not
in
the
model,
our
effects
may
appear
to
account
for
more
of
the
variance
than
they
actually
do.
In
this
case,
the
filler_type

variable
is
accounting
for
some
of
the
variance
that
sex
was
accounting
for
in

the
bivariate
case,
enough,
it
appears,
to
make
sex
not
significant
as
a
simple

effect.

Our
interaction
effect
is
also
significant
meaning
the
observed
difference
we
visualized
in
Figure
10.9
is
likely
not
due
to
chance.
The
upshot,
both
men
and
women
use
more
‘uh’
compared
to
‘um’
but
men’s
difference
in
use
is
larger
than
women’s.

As
always,
let’s
calculate
a
confidence
interval
to
assess
the
uncertainty
of
the
observed
statistic,
as
seen
in
Example
10.44.

Example
10.44.

1
 #
 Resampling
 distribution

2
 fillers_type_boot
 <-

3
 fillers_type_spec
 |>

4
 generate(reps
 =
 1000,
 type
 =
 "bootstrap")
 |>

5
 fit()

6

7
 #
 Calculate
 the
 confidence
 intervals

8
 fillers_type_ci
 <-

9
 fillers_type_boot
 |>

10
 get_confidence_interval(level
 =
 0.95,
 point_estimate
 =
 fillers_type_obs)

11

12

Activities
 303

fillers_type_ci

#
 A
 tibble:
 4
 x
 3

term
 lower_ci
 upper_ci

<chr>
 <dbl>
 <dbl>

1
 filler_typeum
 -2.75
 -1.54

2
 filler_typeum:sexMale
 -2.68
 -0.934

3
 intercept
 0.168
 0.909

4
 sexMale
 0.0947
 1.22

From
the
confidence
intervals,
we
see
that
zero
is
not
included
in
any
of
the
intervals,
which
suggests
that
the
observed
differences
are
not
due
to
chance.
Interpreting
the
width
and
the
proximity
to
zero,
however,
suggests
that
the
observed
differences
for
filler_type
are
stronger
than
for
sex,
which
did
not
result
in
a
significant
simple
effect.
The
interaction
effect
is
also
significant,
but
the
confidence
interval
is
quite
wide
and
approximates
zero.
This
should
raise
some
questions
about
the
robustness
of
the
observed
effect.

Activities

The
following
activities
aim
to
reinforce
the
concepts
covered
in
this
chapter.
You’ll
review
working
with
key
variables,
examine
data
distributions,
and
employ
simulation-based
statistical
methods
using
{infer}
to
test
hypotheses
about
their
relationships.

Ɗ
Recipe
What:
Building
inference
models

How:
Read
Recipe
10,
complete
comprehension
check,
and
prepare
for
Lab
10.

Why:
To
review
and
extend
your
knowledge
regarding
the
simulation-based
approach
to
statistical
inference.

ð
Lab

What:
Statistical
inference

How:
Clone,
fork,
and
complete
the
steps
in
Lab
10.

Why:
To
apply
the
concepts
covered
in
this
chapter
to
a
real-world
dataset.

304
 CHAPTER
10.
 INFER

Summary

In
sum,
in
this
section
we
explored
the
process
of
null
hypothesis
testing
us-
ing
{infer},
which
is
a
simulation-based
approach
to
statistical
inference.
We
considered
statistical
designs,
such
as
univariate,
bivariate,
and
multivariate
analyses,
and
explored
the
process
of
hypothesis
testing
with
categorical
and
numeric
response
variables.
The
workflow
provided
demonstrates
that
{in-
fer}
is
a
powerful
tool
for
conducting
statistical
inference,
and
that
it
can
be
used
to
test
a
wide
range
of
hypotheses
with
a
similar
workflow.

Part
V

Communication

https://taylorandfrancis.com

307

In
this
part,
I
cover
the
what,
why,
and
how
to
communicate
research
find-
ings
both
as
research
documents
and
as
a
reproducible
research
project.
Both
research
documents
and
reproducible
projects
are
fundamental
components
of
modern
scientific
inquiry.
On
the
one
hand,
a
research
document
provides
readers
a
detailed
 summary
of
 the
main
 import
of
 the
 research
 study.
On
the
other
hand,
making
 the
research
project
available
 to
 interested
readers
ensures
that
the
scientific
community
can
gain
insight
into
the
process
imple-
mented
in
the
research
and
thus
enables
researchers
to
vet
and
extend
this

research
to
build
a
more
robust
and
verifiable
research
base.

https://taylorandfrancis.com

11

Contribute

|
Outcomes

•
 Identify
the
aims
of
public-facing
and
peer-facing
communication
•
 Understand
 the
 overlapping
 and
 distinct
 elements
 and
 goals
 of
 research
presentations
and
articles

•
 Comprehend

 the
 importance
 of
 and
 recognize
 the
 aspects
 of
 well-
documented
and
reproducible
research

We
have
discussed
the
design
and
implementation
of
research
that
is
purpo-
sive,
inquisitive,
informed,
and
methodical.
In
this
final
chapter,
we
turn
to
the
task
of
sharing
research
results
in
a
manner
that
is
communicable.
There
are
two
primary
ways
to
communicate
the
results
of
research:
public-facing
and
peer-facing.
We
will
cover
both
aspects
of
research
communication,
pro-
viding
guidelines
for
effective
research
reporting
and
strategies
to
ensure
the
reproducibility
of
your
research
project.

ı
Lessons

What:
Computing
environment

How:
In
an
R
console,
load
{swirl},
run
swirl(),
and
follow
prompts
to
select

the
lesson.

Why:
To
interact
with
the
{renv}
and
learn
how
to
manage
package
versions
in
a
research
project.

11.1
 Public-facing

Public-facing
research
communication
is
intended
for
audiences
to
become
fa-
miliar
with
the
research.
Dissemination
of
research
findings
is
a
critical
part
of
the
research
process.
Whether
it
is
through
presentations,
articles,
blog
posts,
or
social
media,
the
ability
to
effectively
communicate
the
results
of
research
is
essential
for
making
a
contribution
to
the
field.

This
chapter
has
been
made
available
under
a
CC-BY-NC-ND
license.

309
DOI:
10.4324/9781003393764-16

310
 CHAPTER
11.
 CONTRIBUTE

The
 two
most
 common
 forms
of
 research
dissemination
 in
 academics
 are

presentations
and
articles.
Both
share
a
common
goal:
to
effectively
commu-
nicate
the
research
to
an
audience.
However,
they
also
have
distinct
purposes
and
require
different
approaches
to
achieve
their
goals.
These
purposes
com-
plement
each
other,
with
presentations
often
serving
as
a
means
to
engage
and
elicit
feedback
from
an
audience,
and
articles
serving
as
a
more
compre-
hensive
and
permanent
record
of
the
research.

11.1.1
 Structure

First,
 let’s
 focus
 on
 the
 structural
 elements
 that
 appear
 in
 both
 research
presentations
and
articles.
The
components
 in
Table
11.1
reflect
 the
 typical
structure
for
presenting
research
in
the
social
sciences
(Gries,
2016;
Gries
&
Paquot,
2020;
Sternberg
&
Sternberg,
2010).
Their
 combined
purpose
 is
 to
trace
 the
research
narrative
 from
 the
rationale
and
goals
 to
connecting
 the
findings
with
the
research
questions
and
aims.

Table
11.1:
Common
components
of
research
presentations
and
articles

Component
 Purpose

Introduction
 Provide
context
and
rationale
based
on
previous
research

Methods
 Describe
the
research
design
and
procedures

Results
 Present
the
findings
 including
key
statistics
and
table
and/or
visual

summaries

Discussion
 Interpret
the
findings
and
discuss
 implications

Conclusion
 Summarize
the
research
and
suggest
future
work

When
research
 is
connected
to
a
well-designed
plan,
as
described
 in
Chap-
ter
4,
key
elements
 in
this
structure
will
have
already
begun
to
take
shape.
The
steps
taken
to
identify
an
area
and
a
problem
or
gap
in
the
literature
find
themselves
in
the
introduction.
This
section
builds
the
case
for
the
research

and
provides
the
context
for
the
research
question(s)
and
aim(s).
The
meth-
ods
section
describes
the
research
design
and
procedures,
including
the
data
collection
and
analysis
steps
that
are
key
to
contextualize
the
findings.
In
the
results
section,
the
findings
are
presented
in
the
appropriate
manner
given
the
research
aim
and
the
analysis
performed.

The
discussion
and
conclusions
sections,
however,
are
where
the
research
nar-
rative
is
brought
together.
Crafting
these
sections
can
be
seen
as
an
extension
of
 the
 research
process
 itself.
 Instead
of
elaborating
on
 the
planning
 steps
and
their
implementation,
the
discussion
focuses
on
the
interpretation
of
the
findings
in
the
light
of
the
research
questions
and
previous
literature.
At
this

311
11.1.
 PUBLIC-FACING

stage,
the
act
of
articulating
the
implications
of
the
findings
is
where
deeper
insights
are
developed
and
refined.
The
conclusion,
for
its
part,
puts
a
finer
point
on
the
research
goal
and
main
findings,
but
also
is
an
opportunity
to
extend
suggestions
to
where
subsequent
research
might
go.

11.1.2
 Purpose

Understanding
 the
 roles
 the
 structural
 elements
 play
 in
 contributing
 to
the
overall
narrative
 is
essential
 for
effective
 research
communication.
Yet,
presentations
and
articles
are
not
the
same.
They
have
distinct
goals
which
are
reflected
in
the
emphasis
that
each
communication
channel
places
on
par-
ticular
narrative
elements
and
the
level
of
detail
and
nuance
that
is
included.

It
 is
 likely
not
a
surprise
 that
articles
are
more
detailed
and
nuanced
 than
presentations.
But
what
is
sometimes
overlooked
is
that
presentations
should
emphasize
storytelling
and
 relatability.
A
 ‘less
 is
more’
approach
can
help
maintain
 connection
with
 the
 take-home
message
and
 reduce
 information
overload.
To
be
sure,
 the
research
should
be
accurate
and
reliable,
but
 the
focus
 is
on
engaging
 the
audience
and
connecting
 the
 research
 to
broader
themes.
Even
if
your
audience
is
familiar
with
the
research
area,
maintaining
a
connection
with
‘why
this
matters’
is
important.

Tabular
and
visual
summaries
are
key
to
convey
complex
findings,
regardless
of
the
mode
of
communication.
However,
in
presentations,
the
use
of
visual
aids
is
especially
effective
for
engaging
the
audience
as
the
visual
modality
does
not
compete
with
the
spoken
word
for
attention.
Along
these
lines,
lim-
iting
the
amount
of
text
on
slides
and
increasing
natural
discourse
with
the
audience
is
a
good
practice.
Your
presentation
will
be
more
engaging
leading
to
more
questions
and
feedback
that
you
can
use
to
refine
your
current
or
to
seed
future
research.

The
purpose
of
 an
 article
 is
 to
provide
 a
 comprehensive
 record
of
 the
 re-
search.
In
this
record,
the
methods
and
results
sections
are
particularly
sig-
nificant.
The
methods
section
should
provide
the
reader
with
the
necessary
information
to
understand
the
research
design
and
procedures
and
to
evalu-
ate
the
findings,
as
it
should
in
presentations,
but,
in
contrast
to
presentations,
it
should
also
speak
to
researchers,
providing
the
details
required
to
repro-
duce
 the
 research.
These
details
 summarize
and,
 ideally,
point
 to
 the
data
and
code
that
are
used
to
produce
the
findings
in
your
reproducible
research
project
(see
Section
11.2).

The
results
section,
for
its
part,
should
present
the
findings
in
a
manner
that
is
clear
and
concise,
but
also
comprehensive.
The
research
aim
and
the
analysis
performed
will
determine
 the
appropriate
measures
and/or
summaries
 to
use.
Table
11.2
outlines
the
statistical
results,
tables,
and
visualizations
that
often
figure
in
the
results
section
for
exploratory,
predictive,
and
inferential
analyses.

312
 CHAPTER
11.
 CONTRIBUTE

Table
11.2:
Key
statistical
results,
tables,
and
visualizations
for
research
results

Research
Aim
 Statistical
Results
 Summaries

Exploratory
 Descriptive
statistics
 Extensive
use
of
tables
and/or

visualizations

Predictive

Inferential

Descriptive
statistics,
model

performance
metrics

Descriptive
statistics,

hypothesis
testing

confidence
metrics

Tables
for
model
performance

comparisons
and/or
visualizations
for

feature
 importance
measures

Tables
for
hypothesis
testing
results

and/or
visualizations
to
visualize
trends

By
and
large,
the
results
section
should
be
a
descriptive
and
visual
summary
of
the
findings
as
they
are,
without
interpretation.
The
discussion
section
is
where
the
interpretation
of
the
findings
and
their
implications
are
presented.
This
general
distinction
between
the
results
and
discussion
may
be
less
pro-
nounced
in
exploratory
research,
as
the
interpretation
of
the
findings
may
be
more
intertwined
with
the
presentation
of
the
findings
given
the
nature
of
the
research.

11.1.3
 Strategies

Strong
research
write-ups
begin
with
well-framed
and
well-documented
re-
search
plans.
The
steps
outlined
in
Section
4.4.1
are
the
foundation
for
much
of
 the
 research
narrative.
Furthermore,
you
can
 further
prepare
 for
 the
 re-
search
write-up
by
leaving
yourself
a
breadcrumb
trail
during
the
research
process.
This
includes
documenting
the
literature
that
you
consulted,
the
data,
processing
steps,
and
analysis
choices
that
you
made,
and
saving
the
key
sta-
tistical
results,
tables,
and
visualizations
that
you
generated
in
your
process
script
for
the
analysis.
This
will
make
it
easier
to
connect
the
research
narra-
tive
to
the
research
process.

The
introduction
includes
the
rationale,
research
question,
and
research
aim.
These
components
are
directly
connected
to
the
primary
literature
that
you
consulted.
For
this
reason,
it
is
a
good
practice
to
keep
a
record
of
the
literature
that
you
consulted
and
the
notes
that
you
took.
This
record
will
help
you
to
trace
the
development
of
your
ideas
and
to
provide
the
necessary
context
for
your
research.
A
reference
manager,
such
as
Zotero,
Mendeley,
or
EndNote,
is
a
good
tool
for
this
purpose.
These
tools
allow
you
to
manage
your
ideas
and
keep
notes,
organize
your
references
and
resources,
and
integrate
your
references
and
resources
with
your
writing
in
Quarto
through
BibTeX
entry
citation
keys.

313
11.1.
 PUBLIC-FACING

Similarly,
if
you
are
following
best
practices,
you
will
have
documented
your
data,
processing
steps,
and
analysis
choices
while
conducting
your
research.
The
methods
section
stems
directly
from
these
resources.
Data
origin
files
pro-
vide
the
necessary
context
for
the
data
that
you
used
in
your
research.
Data
dictionary
files
clarify
variables
and
values
in
your
datasets.
Literate
program-
ming,
as
implemented
in
Quarto,
can
further
provide
process
and
analysis
documentation.

The
results
section
can
also
benefit
from
some
preparation.
The
key
statisti-
cal
results,
tables,
and
visualizations
generated
in
your
process
script
for
the
analysis
should
be
saved
as
outputs.
This
provides
a
more
convenient
way
to
include
these
results
in
your
research
document(s).

If
 you
 are
 using
 a
 project
 structure
 similar
 to
 the
 one
 outlined
 in
 Sec-
tion
4.4.2,
you
can
write
statistical
results
as
R
objects
using
saveRDS(),
and

write
tables
and
visualizations
as
files
using
kableExtra::save_kable()
and
gg-
plot2::ggsave(),
 respectively,
 to
 the
 corresponding
 outputs/
directory.
This
will
allow
you
to
easily
access
and
include
these
results
in
your
research
doc-
ument(s)
to
avoid
having
to
recreate
the
analysis
steps
from
a
dataset
or
man-
ually
copy
and
paste
results
from
the
console,
which
can
be
error-prone
and
is
not
reproducible.

á
Tip
{qtkit}
provides
 three
 functions
 for
writing
general
R
 objects,
 ggplot
 objects,

and
knitr_kable
 objects
 to
a
given
directory.
These
 functions
are
write_obj(),

write_gg(),
and
write_kbl(),
respectively.
These
functions
also
provide
function-
ality
to
automatically
name
the
output
files
based
on
the
label
of
the
code
block
in
which
they
are
called
to
make
it
easier
to
connect
the
output
to
the
code
that
generated
it.
For
more
information,
see
the
{qtkit}
documentation.

At
 this
 point
we
 have
 our
 ducks
 in
 a
 row,
 so
 to
 speak.
We
 have
 a
well-
documented
research
plan,
a
record
of
the
literature
that
we
consulted,
and
a
record
of
the
data,
processing
steps,
and
analysis
choices
that
we
made.
We
have
also
saved
the
key
statistical
results,
tables,
and
visualizations
that
we
generated
in
our
process
script
for
the
analysis.
Now,
we
can
begin
to
write
our
research
document(s).

Although
 there
are
many
 tools
and
platforms
 for
 creating
and
 sharing
 re-
search
presentations
and
articles,
I
advocate
for
using
Quarto
to
create
and
share
both.
In
Table
11.3,
I
outline
the
advantages
of
using
Quarto
for
both
presentations
and
articles.

314
 CHAPTER
11.
 CONTRIBUTE

Table
11.3:
Advantages
of
using
Quarto
for
public-facing
communication

Feature
 Advantages

1
 Consistency
 Using
Quarto
for
both
presentations
and
articles
allows
for
a

seamless
transition
between
the
two

2

3

4

Fidelity

Sharing

Publishing

Changes
 in
your
research
process
will
naturally
be
reflected
 in

your
write-ups

Quarto
provides
a
variety
of
output
formats,
 including
PDF,

HTML,
and
Word,
which
are
suitable
for
sharing
research

presentations
and
articles

Quarto
provides
styles
for
citations
and
bibliographies
and
a

variety
of
extensions
for
 journal-specific
formatting,
which
can
be

useful
for
publishing
articles
 in
specific
venues

Each
of
the
features
in
Table
11.3
are
individually
useful,
but
together
they
pro-
vide
a
powerful
system
for
conducting
and
disseminating
research.
In
addi-
tion,
Quarto
encourages
modular
and
reproducible
research
practices,
which
connect
public-facing
with
peer-facing
communication.

11.2
 Peer-facing

Peer-facing
communication
targets
other
researchers,
often
working
in
same
field,
and
aims
to
make
the
technical
aspects
of
research
available
to
other
researchers
to
reproduce
and/or
build
upon
the
research.
Whether
for
other
researchers
or
for
your
future
self,
creating
research
that
is
well-documented
and
reproducible
is
a
fundamental
part
of
conducting
modern
scientific
in-
quiry.
Reproducible
research
projects
do
not
replace
 the
need
 to
document
methods
and
results
in
write-ups,
but
they
do
provide
a
more
comprehensive
and
transparent
record
of
the
research
that
elevates
transparency,
encourages
collaboration,
and
enhances
the
visibility
and
impact
of
research.

11.2.1
 Structure

Reproducible
 research
 consists
 of
 two
main
 components:
 a
 research
 com-
pendium
and
a
computing
environment.
These
components
are
interleaved
and
when
shared,
work
together
to
ensure
that
the
research
project
is
trans-
parent,
well-documented,
and
reproducible.

315
11.2.
 PEER-FACING

Research
compendium
consists
of
a
collection
of
files
and
documentation
that
organize
and
document
a
research
project.
This
includes
the
data,
code,
and
documentation
files.
To
ensure
that
the
project
is
legible
and
easy
to
navigate,
the
research
compendium
content
and
the
project
scaffolding
should
be
pre-
dictable
and
consistent,
following
best
practices
outlined
in
Chapter
4
(4.4.2)
and
found
in
more
detail
in
Wilson
et
al.
(2017).

In
short,
there
should
be
a
separation
between
input,
output,
and
the
code
that
interacts
with
the
input
to
produce
the
output.
Furthermore,
documentation
for
data,
code,
and
the
project
as
a
whole
should
be
clear
and
comprehensive.
This
 includes
a
README
file,
a
data
origin
file,
and
a
data
dictionary
file,
among
others.
Finally,
a
main
script
should
be
used
to
execute
and
coordinate
the
processing
of
the
project
steps.

All
computational
projects
require
a
computing
environment.
This
includes
the
software
and
hardware
that
are
used
to
execute
the
code
and
process
the
data.
For
a
text
analysis
project
using
R,
this
will
include
R
and
R
packages.
Regardless
of
the
language,
however,
there
are
system-level
dependencies,
an
operating
system,
and
hardware
resources
that
the
project
relies
on.

Figure
11.1
visualizes
the
relationship
between
the
computing
environment
and
the
research
compendium
as
 layers
of
a
research
environment.
The
re-
search
compendium
is
the
top
layer,
each
of
the
subsequent
layers
represents
elements
of
the
computing
environment.

1

Figure
11.1:
Layers
and
components
of
a
computational
research
environment

The
research
compendium
is
the
most
visible
layer,
as
it
is
the
primary
means
of
interacting
with
the
research
project.
The
software
layer
includes
R,
R
pack-
ages,
and
system-level
dependencies.
System-level
dependencies
serve
 to

support
 the
 software
 layer.
Software
 itself,
 these
dependencies
 are
not
di-
rectly
interacted
with,
but
they
are
necessary
for
the
more
‘visible’
software

316
 CHAPTER
11.
 CONTRIBUTE

to
function.
Most
people
are
familiar
with
operating
systems,
such
as
Win-
dows,
macOS,
and
perhaps
Linux,
but
there
are
many
different
versions
of
these
operating
systems.
Furthermore,
hardware
resources
also
vary.
One
of
the
most
important
aspects
of
hardware
to
consider
for
reproducibility
is
the
architecture
of
the
processor
(the
central
processing
unit
(CPU)).

We
will
consider
how
to
create
a
reproducible
environment
which
addresses
each
of
these
layers
later
in
this
chapter.

11.2.2
 Purpose

The
research
compendium
is
in
large
part
a
guide
book
to
the
research
process.
Efforts
here
increase
research
transparency,
facilitate
collaboration
and
peer
review,
and
enhance
the
visibility
and
impact
of
research.
It
is
also
the
case
that
keeping
tabs
on
the
process
in
this
way
helps
to
ensure
that
the
research
is
accurate
and
reliable
by
encouraging
you
to
be
more
mindful
of
the
choices
that
you
make
and
 the
steps
 that
you
 take.
Any
research
project
 is
bound
to
have
 its
share
of
 false
starts,
dead
ends,
or
 logical
 lapses,
but
 leaving
a
breadcrumb
trail
during
the
research
process
can
help
to
make
these
more
visible
and
help
you
(and
others)
learn
from
them.

The
computing
environment
is
a
means
to
an
end.
It
is
the
infrastructure
that
is
used
to
execute
the
code.
The
purpose
of
the
computing
environment
is
to
ensure
that
the
research
can
be
executed
and
processed
in
the
same
way,
pro-
ducing
the
same
results,
regardless
of
the
time
or
place.
While
a
research
com-
pendium
has
value
on
its
own,
the
ability
to
add
a
level
of
‘future-proofing’
to
the
project
only
adds
to
that
value.
This
is
both
true
for
other
researchers
who
might
want
to
build
upon
your
research
and
for
yourself,
as
returning
to
a
project
after
some
time
away
can
highlight
how
much
computing
envi-
ronments
can
change
when
errors
litter
the
screen!

11.2.3
 Strategies

The
strategies
for
creating
a
reproducible
research
project
are
many
and
var-
ied,
although
that
gap
is
closing
as
reproducible
research
moves
from
a
nicety
to
a
necessity
in
modern
scientific
research.
In
this
section,
I
will
present
an
opinionated
set
of
strategies
to
address
each
of
the
layers
of
a
computational
research
project
seen
in
Figure
11.1,
in
a
way
that
better
positions
research
to
be
accessible
to
more
people
and
to
be
more
resilient
to
inevitable
changes
in
the
computing
environment
from
machine
to
machine
and
over
time.

project/

├──
 data/

│
 └──
 ...

├──
 process/

│
 ├──
 1_acquire.qmd

│
 ├──
 2_curate.qmd

│
 ├──
 3_transform.qmd

│
 └──
 4_analyze.qmd

├──
 reports/

│
 └──
 ...

├──
 _quarto.yml

├──
 DESCRIPTION

├──
 index.qmd

└──
 README.md

317
11.2.
 PEER-FACING

A
key
 component
 to
 research
 compendiums
which
 integrate
 into
 a
 repro-
ducible
workflow
 is
 the
use
of
a
project
structure
 that
modularizes
 the
 re-
search
project
into
predictable
and
consistent
components.
This
will
primar-
ily
consist
of
 input,
output,
and
the
code
that
executes
and
documents
the
processing
steps.
But
it
also
consists
of
a
coordinating
script,
that
is
used
to
orchestrate
each
module
in
the
project
step
sequence.

A
particularly
effective
framework
for
implementing
a
research
compendium
with
these
features
is
the
Quarto
website.
Quarto
documents,
as
literal
pro-
gramming
is
in
general,
provides
rich
support
for
integrating
source
content,
computations,
and
visualizations
in
a
single
document.
In
addition,
Quarto
documents
are
designed
to
be
modular
—each
is
run
in
a
separate
R
session
making
no
assumptions
about
 inputs
or
previous
computing
states.
When
tied
 to
 logical
processing
steps,
 this
can
help
 to
ensure
 that
each
step
says
what
it
does,
and
does
what
it
says,
enhancing
the
transparency
and
repro-
ducibility
of
the
research
project.

The
Quarto
website
treats
each
document
as
part
of
a
set
of
documents
that
are
coordinated
by
a
_quarto.yml
configuration
file.
Rendering
a
Quarto
web-
site
will
execute
and
compile
 the
Quarto
documents
as
determined
 in
 the
configuration
settings.
In
this
way,
the
goal
of
easy
execution
of
the
project
is
satisfied
in
a
way
that
is
consistent
and
predictable
and
co-opts
a
framework
with
wide
support
in
the
R
community.

Creating
 the
scaffolding
 for
a
 research
compendium
 in
Quarto
 is
a
matter
of
 creating
 a
new
Quarto
website
 through
 an
 IDE,
 the
R
Console,
 or
 the
command-line
interface
(CLI)
and
adding
the
necessary
files,
directories,
and
documentation.
In
Snippet
11.1
a
Quarto
site
structure
augmented
to
reflect
the
project
structure
is
shown.

Snippet
11.1.
 Quarto
website
structure

318
 CHAPTER
11.
 CONTRIBUTE

Snippet
11.2
shows
a
snippet
of
the
_quarto.yml
configuration
file
for
a
Quarto
project
website.
This
file
is
used
to
coordinate
the
Quarto
documents
in
the
project
and
to
specify
the
output
format
for
the
project
as
a
whole
and
for
individual
documents.

Snippet
11.2.
 Quarto
_quarto.yml
file

project:

title:
 "Project
 title"

type:
 website

render:

- index.qmd

- process/1_acquire.qmd

- process/2_curate.qmd

- process/3_transform.qmd

- process/4_analyze.qmd

- reports/

website:

sidebar:

contents:

- index.qmd

- section:
 "Process"

contents:
 process/*

- section:
 "Reports"

contents:
 reports/*

format:

html:
 default

In
Snippet
11.2
the
order
in
which
each
file
is
rendered
can
be
specified
to
or-
chestrate
the
processing
sequence.
While
the
Quarto
website
as
a
whole
will
be
rendered
 to
HTML,
 individual
documents
can
be
rendered
 to
other
for-
mats.
This
can
be
leveraged
to
create
PDF
versions
of
write-ups,
for
example,
or
use
{revealjs}
for
Quarto
to
create
presentations
that
are
rendered
and
eas-
ily
shared
on
the
web.
For
ways
to
extend
the
Quarto
website,
visit
the
Quarto
documentation
at
https://quarto.org/.

Let’s
now
turn
to
layers
of
the
computing
environment,
starting
with
the
por-
tion
of
the
software
layer
which
includes
R
and
R
packages.
R
and
R
packages
are
updated,
new
packages
are
introduced,
and
some
packages
are
removed
from
circulation.
These
changes
are
good
overall,
but
it
means
that
code
we
write
today
may
not
work
in
the
future.
It
sure
would
be
nice
if
we
could
keep
the
same
versions
of
packages
that
worked
for
a
project.

https://quarto.org/

project/

├──
 data/

│
 └──
 ...

├──
 process/

│
 ├──
 1_acquire.qmd

│
 ├──
 2_curate.qmd

│
 ├──
 3_transform.qmd

│
 └──
 4_analyze.qmd

├──
 reports/

│
 └──
 ...

├──
 renv/

│
 └──
 ...

├──
 _quarto.yml

├──
 index.qmd

├──
 README.md

└──
 renv.lock

319
11.2.
 PEER-FACING

{renv}
 is
 a
package
 that
helps
manage
R
package
 installation
 by
 versions
(Ushey
&
Wickham,
2024).
It
does
 this
by
creating
a
separate
environment
for
each
R
project
where
renv
 is
 initialized.
This
environment
allows
us
 to

keep
snapshots
of
the
state
of
the
project’s
R
environment
in
a
lockfile
—a

file
that
contains
the
list
of
packages
used
in
the
project
and
their
versions.
This
can
be
helpful
for
developing
a
project
in
a
consistent
environment
and
controlling
what
packages
and
package
versions
you
use
and
update.
More
importantly,
however,
if
the
lockfile
is
shared
with
the
project,
it
can
be
used
to
restore
the
project’s
R
environment
to
the
state
it
was
in
when
the
lockfile
was
created,
yet
on
a
different
machine
or
at
a
different
time.

Adding
a
 lockfile
to
a
project
 is
as
simple
as
 initializing
renv
 in
the
project

directory
 with
 renv::init()
 and
 running
 renv::snapshot().
 Added
 to
 the

project,
in
Snippet
11.1,
we
see
the
addition
of
the
renv.lock
file
and
the
renv/

directory,
in
Snippet
11.3.

Snippet
11.3.
 Quarto
website
structure
with
{renv}

The
renv.lock
file
serves
to
document
the
computing
environment
and
pack-
ages
used
 to
conduct
 the
analysis.
 It
 therefore
 replaces
 the
need
 for
a
DE-
SCRIPTION
 file.
 The
 renv/
 directory
 contains
 the
 R
 environment
 for
 the
project.
This
 includes
 a
 separate
 library
 for
 the
 project’s
packages,
 and
 a
cache
 for
 the
packages
 that
are
 installed.
This
directory
 is
not
shared
with
the
project,
as
we
will
see,
as
the
lockfile
is
sufficient
to
restore
the
project’s
R
environment.

320
 CHAPTER
11.
 CONTRIBUTE

As
R
packages
change
over
time,
so
too
do
other
resources
including
R,
sys-
tem
dependencies,
and
the
operating
system
—maybe
less
frequently,
how-
ever.
These
change
will
 inevitably
affect
our
ability
 to
 reliably
execute
 the
project
ourselves
over
time,
but
it
is
surely
more
pronounced
when
we
expect
our
project
to
run
on
a
different
machine!
To
address
these
elements
of
the
computing
environment,
we
need
another,
more
computing-comprehensive
tool.

A
powerful
and
popular
approach
 to
reproducible
software
and
operating
system,
as
well
as
hardware
environments,
is
to
use
Docker.
Docker
is
soft-
ware
 that
provides
a
way
 to
create
and
manage
entire
computing
environ-
ments.
These
environments
are
called
containers,
and
they
are
portable,
con-
sistent,
and
almost
entirely
isolated
from
the
host
system
they
run
on.
This
means
that
a
container
can
be
run
on
any
machine
that
has
Docker
installed,
and
it
will
run
the
same
way
regardless
of
the
host
system.
Containers
are
widely
used
as
 they
are
quick
 to
develop,
easy
 to
share,
and
allow
 for
 the
execution
of
code
safely
separate
from
the
host
system.

Each
container
is
based
on
an
image
—a
blueprint
which
includes
the
operat-
ing
system,
system
dependencies,
and
software.
An
images
is
created
using
a
Dockerfile,
which
is
a
text
file
that
contains
a
set
of
instructions
for
creating
the
image.
We
craft
our
own
Dockerfile
and
build
an
image
from
it
or
we
can
take
advantage
of
pre-built
images
that
are
available
in
image
registries
such
as
Docker
Hub
or
GitHub
Container
Registry.
Thanks
to
helpful
R
commu-
nity
members,
there
are
Docker
images
built
specifically
for
the
R
community
and
distributed
as
part
of
the
Rocker
Project.
These
images
include
a
variety
of
R
versions
and
R
environment
setups
(e.g.
R,
RStudio
Server,
Shiny
Server,

etc.).
The
Rocker
Project’s
images
are
built
on
the
open
source
and
freely
avail-
able
Ubuntu
operating
system,
which
is
based
on
Linux.
In
line
with
our
goal
to
use
open
and
freely
accessible
formats
and
software,
Ubuntu
is
a
popular
choice.
Rocker
images
are
widely
used
and
well-maintained,
and
are
a
good
choice
for
creating
a
reproducible
computing
environment
for
an
R
project.
If
you
are
just
getting
started
with
Docker,
I
recommend
the
Rocker
Project’s

rocker/rstudio
 image.
This
image
includes
R,
RStudio
Server,
which
can
be
accessed
 through
a
web
browser,
and
other
key
 software.
 It
also
provides
support
for
multiple
computing
architectures
(e.g.
AMD,
ARM,
etc.).

Once
the
research
compendium
 is
prepared
and
a
strategy
for
the
comput-
ing
environment
identified,
the
project
can
be
published.
If
you
are
using
a
version
control
system,
such
as
Git,
to
manage
your
project,
you
will
likely
want
to
publish
the
project
to
a
remote
repository.
This
makes
your
project
ac-
cessible
to
others
and
provides
a
means
to
collaborate
with
other
researchers.
GitHub
is
a
popular
platform
for
publishing
coding
projects
and
it
provides
a

321
11.2.
 PEER-FACING

number
of
services
in
addition
to
version
control
that
are
useful
for
research

projects,
 including
 issue
tracking,
website
hosting,
and
continuous
 integra-
tion
(CI).
CI
is
a
technology
which
allows
for
the
automatic
building,
testing,
and/or
deployment
of
code
changes
when
they
are
added
to
a
repository.

There
are
a
few
steps
to
take
before
publishing
a
project
to
a
remote
repository.
First,
you
will
want
to
ensure
that
the
strategies
for
reproducing
the
project
are
well-documented.
This
includes
describing
where
to
find
the
Docker
im-
age
 for
 the
project
and
how
 to
run
 the
project,
 including
how
 to
restore
R
packages
from
the
renv.lock
file.
Second,
you
will
want
to
ensure
that
you
are
publishing
only
the
files
that
are
necessary
to
reproduce
the
project
and
for
which
you
have
permissions
to
share.

I
want
to
stress
that
adding
your
project
to
a
publicly
visible
code
repository
is
a
form
of
publication.
And
when
we
work
with
data
and
datasets
we
need
to
consider
 the
ethical
 implications
of
sharing
data.
As
part
of
our
project
preparation
we
will
have
considered
the
data
sources
we
used
and
the
data
we
collected,
including
the
licensing
and
privacy
considerations.
The
steps
outlined
in
Chapter
5
to
7
will
either
gather
data
from
other
sources
or
mod-
ify
these
sources
which
we
add
to
our
data/
directory.
If
we
do
not
have
per-
missions
to
share
the
data
included
in
this
directory,
or
sub-directories,
we
should
not
share
it
on
our
remote
repository.
To
avoid
sharing
sensitive
data,

we can use
a
.gitignore
file
to
exclude
the
data
from
the
repository.
This
file
is
a
text
file
that
contains
a
list
of
paths
to
files
and
directories
that
should
be
ignored
by
Git.
This
file
can
be
added
to
the
project
directory
and
committed
to
the
repository.

Since
we
have
explicitly
built
in
mechanisms
in
our
project
structure
to
ensure
that
the
processing
code
is
modular
and
that
it
does
not
depend
on
input
or
previous
states,
a
researcher
can
easily
recreate
 this
data
by
executing
our
project.
In
this
way,
we
do
not
share
the
data,
but
rather
we
share
the
means
to
recreate
the
data.
This
is
a
good
practice
for
sharing
data
and
is
a
form
of
reproducibility.

With
your
project
published
to
a
remote
repository,
you
can
connect
it
to
other
venues
that
list
research
projects,
such
as
Open
Science
Framework,
Zenodo,
and
Figshare.
These
platforms
enhance
the
visibility
of
your
project
and
pro-
vide
a
means
to
collaborate
with
other
researchers.
A
Digital
Object
Identifier
(DOI)
will
be
assigned
to
the
project
which
can
be
used
to
cite
the
project
in
articles
and
other
research
outputs.

Website
 hosting
 can
 also
 be
 enable
 with
 GitHub
 through
 GitHub
 Pages.
GitHub
 Pages
 is
 a
 static
 site
 hosting
 service
 that
 takes
HTML,
CSS,
 and
JavaScript
files
from
a
GitHub
repository
on
a
given
branch
and
publishes
a
website.
This
can
be
useful
for
sharing
the
research
project
with
others,
as
it
provides
a
means
to
navigate
the
project
in
a
web-based
environment.

322
 CHAPTER
11.
 CONTRIBUTE

̪
Dive
deeper
There
are
a
few
ways
to
publish
a
Quarto
website
on
GitHub.
One
way
is
to
mod-
ify
the
_quarto.yml
configuration
file
to
include
an
output
directory
for
the
ren-
dered
site
and
then
modify
the
GitHub
repository
configuration
under
‘Pages’
to
publish
the
site
based
on
this
directory.
When
you
push
your
rendered
site
to
the
repository,
it
will
be
published
to
the
web.
Another
way
is
to
set
up
a
separate
branch
in
GitHub
gh-pages
to
use
to
store
and

serve
your
website.
The
quarto
command
line
interface
provides
a
command
to
render
the
site
and
publish
it
to
the
web.
quarto
 publish
 gh-pages
will
render

the
site
and
push
it
to
the
gh-pages
branch.
In
this
scenario,
you
will
not
need

to
modify
the
_quarto.yml
file
but
you
will
have
to
manually
call
quarto
 publish

gh-pages
to
render
and
publish
the
site.
Yet
another
way
is
to
use
GitHub
Actions
to
render
the
site
and
publish
it
to
the
web.
This
is
a
more
advanced
approach,
but
it
provides
a
way
to
automate
the
rendering
and
publishing
of
the
site.
For
more
information,
see
the
Quarto
documentation.

The
project
structure,
computing
environment,
and
publication
strategies
out-
lined
here
are
opinionated,
but
they
are
also
flexible
and
can
be
adapted
to
suit
 the
needs
of
your
 research
project.
The
goal,
however,
should
always
be
the
same:
to
ensure
that
the
computational
research
project
is
transparent,
well-documented,
and
reproducible,
and
that
it
is
accessible
to
others.

Now,
as
we
wrap
up
this
chapter,
and
the
book,
it
is
an
opportune
moment
to
consider
the
big
picture
of
a
reproducible
research
project.
In
Figure
11.2,
we
see
the
relationship
between
each
stage
of
the
research
process,
from
planning
to
publication,
and
 their
 interconnectivity.
These
efforts
 reflect
our
goal
 to
generate
insight
from
data
and
to
communicate
that
insight
to
others.

I
represent
the
four
main
stages
in
reproducible
research:
frame,
prepare,
ana-
lyze,
and
communicate.
Each
of
these
stages,
and
sub-stages
are
represented
as
parts
and
chapters
in
this
book.
In
Table
11.4,
I
summarize
the
stages
and
sub-stages
of
a
reproducible
research
project,
including
the
purpose
of
each
stage
and
sub-stage,
the
code
that
is
used
to
execute
the
stage
and
sub-stage,
and
the
input
and
output
of
each
stage
and
sub-stage.

323
11.2.
 PEER-FACING

Figure
11.2:
Big
picture
of
a
reproducible
research
project

Table
11.4:
Stages
and
sub-stages
of
a
reproducible
research
project

Stage
 Sub-stage
 Purpose
 Input
 Code
 Output

Frame

 Plan

Prepare

 Acquire

Prepare

 Curate

Prepare

 Transform

Analyze

 Explore,

predict,
or

infer

Communicate
Public-
and/or

Peer-facing

Develop
a

research

plan

Gather
data

Tidy
data

Augment

and
adjust

dataset

Analyze

data

Share

research

Primary

literature

-

Original

data

Curated

dataset

Transformed

dataset

Analyzed

data

artifacts

-

Collects

data

Create

rectangular

dataset

Prepare

and/or

enrich

dataset

Apply

statistical

methods

Write-up,

publish

Prospectus

Original

data,
data

origin
file

Curated

dataset,
data

dictionary

file

Research-
aligned
data,

data

dictionary

file

Key

statistical

results,

tables,

visualizations

Research

document(s),

computing

environment,

website

324
 CHAPTER
11.
 CONTRIBUTE

In
conclusion,
the
goal
of
research
is
to
develop
and
refine
ideas
and
hypothe-
ses,
sharing
them
with
others,
and
to
build
on
the
work
of
others.
The
research
process
outlined
here
aims
 to
 improve
 the
 transparency,
reliability,
and
ac-
cessibility
of
research,
and
to
enhance
the
visibility
and
impact
of
research.
These
goals
are
not
exclusive
to
text
analysis,
nor
linguistics,
nor
any
other
field
for
that
matter,
but
are
fundamental
to
conducting
modern
scientific
in-
quiry.
I
hope
that
the
strategies
and
tools
outlined
in
this
book
will
help
you
to
achieve
these
goals
in
your
research
projects.

Activities

The
following
activities
are
designed
to
dive
deeper
into
the
process
of
man-
aging
a
research
project
and
computing
environment
to
ensure
that
your
re-
search
project
is
reproducible.

Ɗ
Recipe
What:
Manage
project
and
computing
environments

How:
Read
Recipe
11,
complete
comprehension
check,
and
prepare
for
Lab
11.

Why:
To
follow
the
steps
for
managing
a
research
project
and
computing
envi-
ronment
for
effective
communication
and
reproducibility.

ð
Lab

What:
Future-proofing
research

How:
Clone,
fork,
and
complete
the
steps
in
Lab
11.

Why:
To
apply
the
strategies
for
ensuring
that
your
research
project
is
repro-
ducible.

Summary

In
this
chapter,
we
have
discussed
the
importance
of
clear
and
effective
com-
munication
 in
research
reporting,
and
the
strategies
for
ensuring
that
your
research
project
is
reproducible.
We
have
discussed
the
role
of
public-facing
research
 including
presentations
and
articles.
We
also
emphasized
 the
 im-
portance
of
well-documented
and
reproducible
research
in
modern
scientific
inquiry
and
outlined
strategies
 for
ensuring
your
research
project
 is
repro-
ducible.
As
modern
 research
practice
continues
 to
evolve,
 the
details
may
change,
but
the
principles
of
 transparency,
reliability,
and
accessibility
will
remain
fundamental
to
conducting
modern
scientific
inquiry.

References

Ackoff,
R.
L.
(1989).
From
data
to
wisdom.
Journal
of
Applied
Systems
Analysis,
16(1),
3–9.

Ädel,
A.
(2020).
Corpus
compilation.
In
M.
Paquot
&
S.
Th.
Gries
(Eds.),
A

Practical
Handbook
of
Corpus
Linguistics
(pp.
3–24).
Switzerland:
Springer.

Albert,
S.,
de
Ruiter,
L.
E.,
&
de
Ruiter,
J.
P.
(2015).
CABNC:
The
Jeffersonian
transcription
of
the
spoken
British
National
Corpus.
TalkBank.
Retrieved
from
https://saulalbert.github.io/CABNC/

Baayen,
R.
H.
(2004).
Statistics
in
psycholinguistics:
A
critique
of
some
current
gold
standards.
Mental
Lexicon
Working
Papers,
1(1),
1–47.

Baayen,
R.
H.
(2008).
Analyzing
linguistic
data:
A
practical
introduction
to
statis-
tics
using
R.
Cambridge
University
Press.

Baayen,
R.
H.
(2010).
A
real
experiment
is
a
factorial
experiment?
The
Mental

Lexicon,
5(1),
149–157.
doi:10.1075/ml.5.1.06baa

Baayen,
R.
H.
 (2011).
Corpus
 linguistics
and
naive
discriminative
 learning.
Revista
Brasileira
de
Linguística
Aplicada,
11(2),
295–328.

Baayen,
R.
H.,
Feldman,
L.,
&
Schreuder,
R.
(2006).
Morphological
influences
on
 the
 recognition
 of
monosyllabic
monomorphemic
words.
 Journal
 of

Memory
and
Language,
55,
290–313.
doi:10.1016/j.jml.2006.03.008

Baayen,
R.
H.,
&
Shafaei-Bajestan,
E.
 (2019).
 languageR:
Analyzing
 linguistic

data:
A
practical
introduction
to
statistics.
Retrieved
from
https://CRAN.R-
project.org/package=languageR

Baker,
 M.
 (2016).
 1,500
 scientists
 lift
 the
 lid
 on
 reproducibility.
 Nature,
533(7604),
452–454.
doi:10.1038/533452a

Bao,
W.,
Lianju,
N.,
&
Yue,
K.
(2019).
Integration
of
unsupervised
and
super-
vised
machine
learning
algorithms
for
credit
risk
assessment.
Expert
Sys-
tems
with
Applications,
128,
301–315.
doi:10.1016/j.eswa.2019.02.033

Bengtsson,
H.
(2024).
future:
Unified
parallel
and
distributed
processing
in
R
for

everyone.
Retrieved
from
https://future.futureverse.org

Benoit,
 K.,
 &
 Obeng,
 A.
 (2024).
 readtext:
 Import
 and
 handling
 for

plain
 and
 formatted
 text
 files.
 Retrieved
 from
 https://CRAN.R-
project.org/package=readtext

Ben-Shachar,
M.
S.,
Makowski,
D.,
Lüdecke,
D.,
Patil,
I.,
Wiernik,
B.
M.,
Théri-
ault,
R.,
&
Waggoner,
P.
(2024).
effectsize:
Indices
of
effect
size.
Retrieved
from

https://easystats.github.io/effectsize/

325

https://saulalbert.github.io/CABNC/
https://CRAN.Rproject.org/package=languageR
https://CRAN.Rproject.org/package=languageR
https://future.futureverse.org
https://easystats.github.io/effectsize/
https://CRAN.R-project.org/package=readtext
https://CRAN.R-project.org/package=readtext
https://doi.org/10.1075/ml.5.1.06baa
https://doi.org/10.1016/j.jml.2006.03.008
https://doi.org/10.1038/533452a
https://doi.org/10.1016/j.eswa.2019.02.033

326
 References

Blischak,
J.
D.,
Carbonetto,
P.,
&
Stephens,
M.
(2019).
Creating
and
sharing
reproducible
 research
 code
 the
workflowr
way.
 F1000Research,
 8(1749).

doi:10.12688/f1000research.20843.1

Braginsky,
M.
 (2024).
wordbankr:
Accessing
 the
wordbank
 database.
Retrieved

from
https://CRAN.R-project.org/package=wordbankr

Bray,
 A.,
 Ismay,
 C.,
 Chasnovski,
 E.,
 Couch,
 S.,
 Baumer,
 B.,
 &
 Cetinkaya-
Rundel,
 M.
 (2024).
 infer:
 Tidy
 statistical
 inference.
 Retrieved
 from

https://github.com/tidymodels/infer

Bresnan,
J.
(2007).
A
few
lessons
from
typology.
Linguistic
Typology,
11(1),
297–

306.

Bresnan,
J.,
Cueni,
A.,
Nikitina,
T.,
&
Baayen,
R.
H.
(2007).
Predicting
the
da-
tive
alternation.
In
G.
Bouma,
I.
Kraemer,
&
J.-W.
C.
Zwart
(Eds.),
Cognitive

Foundations
of
Interpretation
(pp.
1–33).
Amsterdam:
KNAW.

Brown,
K.
(2005).
Encyclopedia
of
language
and
linguistics
(Vol.
1).
Elsevier.
Bryan,
 J.,
 Hester,
 J.,
 Robinson,
 D.,
 Wickham,
 H.,
 &
 Dervieux,
 C.
 (2024).

reprex:
Prepare
 reproducible
 example
 code
via
 the
 clipboard.
Retrieved
 from

https://reprex.tidyverse.org

Buckheit,
J.
B.,
&
Donoho,
D.
L.
(1995).
Wavelab
and
reproducible
research.
In
Wavelets
and
statistics
(pp.
55–81).
Springer.

Bychkovska,
T.,
&
Lee,
J.
J.
(2017).
At
the
same
time:
Lexical
bundles
in
L1
and
L2
university
student
argumentative
writing.
Journal
of
English
for
Aca-
demic
Purposes,
30,
38–52.
doi:10.1016/j.jeap.2017.10.008

Campbell,
L.
(2001).
The
history
of
linguistics.
In
M.
Aronoff
&
J.
Rees-Miller
(Eds.),
The
Handbook
of
Linguistics
(pp.
81–104).
Blackwell
Publishers.

Carmi,
E.,
Yates,
S.
J.,
Lockley,
E.,
&
Pawluczuk,
A.
(2020).
Data
citizenship:
Rethinking
 data
 literacy
 in
 the
 age
 of
 disinformation,
 misinforma-
tion,
 and
 malinformation.
 Internet
 Policy
 Review,
 9(2).
 Retrieved
 from

https://policyreview.info/articles/analysis/data-citizenship-rethinking-
data-literacy-age-disinformation-misinformation-and

Chambers,
J.
M.
(2020).
S,
R,
and
data
science.
Proceedings
of
the
ACM
on
Pro-
gramming
Languages,
4(HOPL),
1–17.
doi:10.1145/3386334

Chan,
S.
(2014).
Routledge
encyclopedia
of
translation
technology.
Routledge.

Conway,
 D.
 (2010,
 September).
 The
 data
 science
 Venn
 diagram.
 drewcon-

way.com.
 Retrieved
 from
 http://drewconway.com/zia/2013/3/26/the-
data-science-venn-diagram

Conway,
L.
G.,
Gornick,
L.
J.,
Burfeind,
C.,
Mandella,
P.,
Kuenzli,
A.,
Houck,
S.
C.,
&
Fullerton,
D.
T.
(2012).
Does
complex
or
simple
rhetoric
win
elec-
tions?
An
integrative
complexity
analysis
of
U.S.
Presidential
campaigns.
Political
Psychology,
33(5),
599–618.
doi:10.1111/j.1467-9221.2012.00910.x

Cross,
N.
(2006).
Design
as
a
discipline.
Designerly
Ways
of
Knowing,
95–103.
Csárdi,
 G.,
 Nepusz,
 T.,
 Traag,
 V.,
 Horvát,
 S.,
 Zanini,
 F.,
 Noom,
 D.,
 &

Müller,
K.
(2024).
igraph:
Network
analysis
and
visualization.
Retrieved
from

https://r.igraph.org/

Data
never
 sleeps
7.0.
 (2019).
Data
Never
Sleeps
7.0.
 Infographic.
Retrieved
from
https://www.domo.com/learn/infographic/data-never-sleeps-7

https://CRAN.R-project.org/package=wordbankr
https://github.com/tidymodels/infer
https://reprex.tidyverse.org
https://policyreview.info/articles/analysis/data-citizenship-rethinking-data-literacy-age-disinformation-misinformation-and
http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram
http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram
https://r.igraph.org/
https://www.domo.com/learn/infographic/data-never-sleeps-7
https://doi.org/10.12688/f1000research.20843.1
https://doi.org/10.1016/j.jeap.2017.10.008
https://doi.org/10.1145/3386334
https://doi.org/10.1111/j.1467-9221.2012.00910.x
http://drewconway.com
http://drewconway.com

References
 327

de
 Marneffe,
 M.-C.,
 Manning,
 C.
 D.,
 Nivre,
 J.,
 &
 Zeman,
 D.
 (2021).

Universal
 dependencies.
 Computational
 Linguistics,
 47(2),
 255–308.

doi:10.1162/coli_a_00402

Deshors,
S.
C.,
&
Gries,
S.
Th.
 (2016).
Profiling
verb
complementation
con-
structions
across
new
Englishes.
International
Journal
of
Corpus
Linguistics.,
21(2),
192–218.

Desjardins,
 J.
 (2019,
April).
How
much
data
 is
generated
each
day?
Visual

Capitalist.
Retrieved
from
https://www.visualcapitalist.com/how-much-
data-is-generated-each-day/

Donoho,
D.
(2017).
50
years
of
data
science.
Journal
of
Computational
and
Graph-
ical
Statistics,
26(4),
745–766.
doi:10.1080/10618600.2017.1384734

Du
 Bois,
 J.
 W.,
 Chafe,
 W.
 L.,
 Meyer,
 C.,
 Thompson,
 S.
 A.,
 Englebretson,
R.,
&
Martey,
N.
 (2005).
Santa
Barbara
Corpus
of
Spoken
American
En-
glish,
parts
1-4.
Philadelphia:
Linguistic
Data
Consortium.
Retrieved
from
https://www.linguistics.ucsb.edu/research/santa-barbara-corpus

Dubnjakovic,
A.,
&
Tomlin,
P.
(2010).
A
practical
guide
to
electronic
resources
in

the
humanities.
Elsevier.

Duran,
P.
(2004).
Developmental
trends
in
lexical
diversity.
Applied
Linguistics,
25(2),
220–242.
doi:10.1093/applin/25.2.220

Eisenstein,
J.,
O’Connor,
B.,
Smith,
N.
A.,
&
Xing,
E.
P.
(2012).
Mapping
the
geographical
 diffusion
 of
 new
words.
 Computation
 and
 Language,
 1–13.

doi:10.1371/journal.pone.0113114

Firth,
J.
R.
(1957).
Papers
in
linguistics.
Oxford
University
Press.
Francom,
J.
(2022).
Corpus
studies
of
syntax.
In
G.
Goodall
(Ed.),
The
Cam-

bridge
Handbook
of
Experimental
Syntax
(pp.
687–713).
Cambridge
Univer-
sity
Press.

Francom,
J.
(2024).
qtkit:
Quantitative
text
kit.
Retrieved
from
https://CRAN.R-
project.org/package=qtkit

Gandrud,
C.
(2015).
Reproducible
research
with
R
and
R
studio
(second
edition.).

CRC
Press.

Garg,
 N.,
 Schiebinger,
 L.,
 Jurafsky,
 D.,
 &
 Zou,
 J.
 (2018).
 Word
 embed-
dings
 quantify
 100
 years
 of
 gender
 and
 ethnic
 stereotypes.
 Pro-
ceedings
 of
 the
 National
 Academy
 of
 Sciences,
 115(16),
 E3635–E3644.

doi:10.1073/pnas.1720347115

Gentleman,
 R.,
 &
 Temple
 Lang,
 D.
 (2007).
 Statistical
 analyses
 and
 repro-
ducible
research.
Journal
of
Computational
and
Graphical
Statistics,
16(1),
1–

23.

Gilquin,
G.,
&
Gries,
S.
Th.
 (2009).
Corpora
and
experimental
methods:
A
state-of-the-art
review.
Corpus
Linguistics
and
Linguistic
Theory,
5(1),
1–26.

doi:10.1515/CLLT.2009.001

GitHub.
(2024).
GitHub.
Let’s
build
from
here.
Code
Repository.
Retrieved
from

https://github.com

Gomez-Uribe,
C.
A.,
&
Hunt,
N.
 (2015).
The
Netflix
 recommender
system:
Algorithms,
business
value,
and
innovation.
ACM
Transactions
on
Manage-
ment
Information
Systems
(TMIS),
6(4),
1–19.

https://www.visualcapitalist.com/how-much-data-is-generated-each-day/
https://www.visualcapitalist.com/how-much-data-is-generated-each-day/
https://www.linguistics.ucsb.edu/research/santa-barbara-corpus
https://CRAN.R-project.org/package=qtkit
https://CRAN.R-project.org/package=qtkit
https://github.com
https://doi.org/10.1162/coli_a_00402
https://doi.org/10.1080/10618600.2017.1384734
https://doi.org/10.1093/applin/25.2.220
https://doi.org/10.1371/journal.pone.0113114
https://doi.org/10.1073/pnas.1720347115
https://doi.org/10.1515/CLLT.2009.001

328
 References

Gries,
S.
Th.
(2013).
Statistics
for
linguistics
with
R.
A
practical
introduction
(2nd

revise.).

Gries,
S.
Th.
(2016).
Quantitative
corpus
linguistics
with
R:
A
practical
introduc-
tion
(2nd
ed.).
New
York:
Routledge.
doi:10.4324/9781315746210

Gries,
S.
Th.
(2021).
Statistics
for
linguistics
with
R.
De
Gruyter
Mouton.
Gries,
S.
Th.
(2023).
New
technologies
and
advances
in
statistical
analysis
in

recent
decades.
In
M.
Díaz-Campos
&
S.
Balasch
(Eds.),
The
Handbook
of

Usage-Based
Linguistics
(first
edition.).
John
Wiley
&
Sons
Inc.

Gries,
S.
Th.,
&
Deshors,
S.
C.
(2014).
Using
regressions
to
explore
deviations
between
corpus
data
and
a
standard/
 target:
Two
suggestions.
Corpora,
9(1),
109–136.
doi:10.3366/cor.2014.0053

Gries,
S.
Th.,
&
Paquot,
M.
(2020).
Writing
up
a
corpus-linguistic
paper.
In
M.
Paquot
&
S.
Th.
Gries
(Eds.),
A
Practical
Handbook
of
Corpus
Linguistics
(pp.
647–659).
Springer
International
Publishing.
doi:10.1007/978-3-030-46216-
1_26

Grieve,
J.,
Nini,
A.,
&
Guo,
D.
(2018).
Mapping
lexical
innovation
on
American
social
media.
Journal
of
English
Linguistics,
46(4),
293–319.

Harris,
 Z.
 S.
 (1954).
 Distributional
 structure.
 Word,
 10(2-3),
 146–162.

doi:10.1080/00437956.1954.11659520

Hay,
J.
(2002).
From
speech
perception
to
morphology:
Affix
ordering
revis-
ited.
Language,
78(3),
527–555.

Head,
M.
L.,
Holman,
L.,
Lanfear,
R.,
Kahn,
A.
T.,
&
Jennions,
M.
D.
(2015).
The
extent
and
consequences
of
p-hacking
in
science.
PLoS
Biology,
13(3),

e1002106.
doi:10.1371/journal.pbio.1002106

Hester,
J.,
Wickham,
H.,
&
Csárdi,
G.
(2024).
fs:
Cross-platform
file
system
oper-
ations
based
on
libuv.
Retrieved
from
https://fs.r-lib.org

Hicks,
S.
C.,
&
Peng,
R.
D.
(2019).
Elements
and
principles
for
characterizing
variation
between
data
analyses.
arXiv.
doi:10.48550/arXiv.1903.07639

Hvitfeldt,
E.
(2023).
textrecipes:
Extra
recipes
for
text
processing.
Retrieved
from

https://github.com/tidymodels/textrecipes

Ide,
N.,
Baker,
C.,
Fellbaum,
C.,
Fillmore,
C.,
&
Passonneau,
R.
(2008).
MASC:
The
Manually
Annotated
Sub-Corpus
of
American
English.
In
Sixth
Inter-
national
Conference
on
Language
Resources
and
Evaluation,
LREC
2008
 (pp.

2455–2460).
European
Language
Resources
Association
(ELRA).

Ide,
N.,
&
Macleod,
C.
(2001).
The
American
National
Corpus:
A
standard-
ized
 resource
 for
American
English.
 In
Proceedings
of
Corpus
Linguistics.

Lancaster,
UK.

Ignatow,
G.,
&
Mihalcea,
R.
(2017).
An
introduction
to
text
mining:
Research
de-
sign,
data
collection,
and
analysis.
Sage
Publications.

Jaeger,
T.
F.,
&
Snider,
N.
(2007).
Implicit
learning
and
syntactic
persistence:
Surprisal
and
cumulativity.
University
of
Rochester
Working
Papers
 in
 the

Language
Sciences,
3(1).

Johnson,
K.
(2008).
Quantitative
methods
in
linguistics.
Blackwell
Pub.

Kato,
A.,
Ichinose,
S.,
&
Kudo,
T.
(2024).
gibasa:
An
alternative
Rcpp
wrapper
of

MeCab.
Retrieved
from
https://CRAN.R-project.org/package=gibasa

https://github.com/tidymodels/textrecipes
https://CRAN.R-project.org/package=gibasa
https://fs.r-lib.org
https://doi.org/10.4324/9781315746210
https://doi.org/10.3366/cor.2014.0053
https://doi.org/10.1007/978-3-030-46216-1_26
https://doi.org/10.1007/978-3-030-46216-1_26
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1371/journal.pbio.1002106
https://doi.org/10.48550/arXiv.1903.07639

References
 329

Kerr,
N.
L.
(1998).
HARKing:
Hypothesizing
after
the
results
are
known.
Per-
sonality
and
social
psychology
review,
2(3),
196–217.

Kloumann,
I.,
Danforth,
C.,
Harris,
K.,
&
Bliss,
C.
(2012).
Positivity
of
the
En-
glish
language.
PLoS
ONE.
doi:10.1371/journal.pone.0029484

Koehn,
P.
(2005).
Europarl:
A
parallel
corpus
for
statistical
machine
transla-
tion.
MT
Summit
X,
12–16.

Kostić,
A.,
Marković,
T.,
&
Baucal,
A.
 (2003).
 Inflectional
morphology
and
word
meaning:
Orthogonal
or
co-implicative
cognitive
domains?
In
R.
H.
Baayen
&
R.
Schreuder
(Eds.),
Morphological
Structure
in
Language
Process-
ing
(pp.
1–44).
De
Gruyter
Mouton.
doi:10.1515/9783110910186.1

Kowalski,
J.,
&
Cavanaugh,
R.
(2024).
TBDBr:
Easy
access
to
TalkBankDB
via
R

API.
Retrieved
from
https://github.com/TalkBank/TalkBankDB-R

Krathwohl,
D.
R.
(2002).
A
revision
of
Bloom’s
Taxonomy:
An
overview.
The-
ory
into
Practice,
41(4),
212–218.

Kross,
S.,
Carchedi,
N.,
Bauer,
B.,
&
Grdina,
G.
 (2020).
 swirl:
Learn
R,
 in
R.

Retrieved
from
https://CRAN.R-project.org/package=swirl

Kucera,
H.,
&
Francis,
W.
N.
(1967).
Computational
analysis
of
present
day
Amer-
ican
English.
Brown
University
Press
Providence.

Landau,
W.
M.
(2021).
The
targets
R
package:
A
dynamic
make-like
function-
oriented
pipeline
toolkit
for
reproducibility
and
high-performance
com-
puting.
Journal
of
Open
Source
Software,
6(57),
2959.
doi:10.21105/joss.02959

Larsson,
T.,
&
Biber,
D.
 (2024).
On
 the
perils
of
 linguistically
opaque
mea-
sures
and
methods:
Toward
 increased
transparency
and
 linguistic
 inter-
pretability.
In
P.
Crosthwaite
(Ed.),
Corpora
for
language
learning:
Bridging

the
research-practice
divide
(pp.
131–141).
Taylor
&
Francis.

Leech,
G.
(1992).
100
million
words
of
English:
The
British
National
Corpus
(BNC),
(1991),
1–13.

Lewis,
M.
(2004).
Moneyball:
The
art
of
winning
an
unfair
game.
WW
Norton
&

Company.

Liu,
K.,
&
Afzaal,
M.
 (2021).
 Syntactic
 complexity
 in
 translated
 and
 non-
translated
texts:
A
corpus-based
study
of
simplification.
PLoS
ONE,
16(6),

e0253454.
doi:10.1371/journal.pone.0253454

Lozano,
C.
(2022).
CEDEL2:
Design,
compilation
and
web
interface
of
an
on-
line
corpus
for
L2
Spanish
acquisition
research.
Second
Language
Research,
38(4),
965–983.
doi:10.1177/02676583211050522

Macwhinney,
B.
(2024).
TalkBank.
The
TalkBank
system.
Repository.
Retrieved

from
https://talkbank.org/

Manning,
C.
 (2003).
Probabilistic
 syntax.
 In
Bod,
 J.
Hay,
&
 Jannedy
 (Eds.),
Probabilistic
Linguistics
(pp.
289–341).
Cambridge,
MA:
MIT
Press.

Marwick,
B.,
Boettiger,
C.,
&
Mullen,
L.
 (2018).
Packaging
data
 analytical
work
reproducibly
using
R
(and
friends).
The
American
Statistician,
72(1),

80–88.

Microsoft.
(2024).
Visual
Studio
Code.
Code
Editing.
Redefined.
Software.
Re-
trieved
from
https://code.visualstudio.com/

https://github.com/TalkBank/TalkBankDB-R
https://CRAN.R-project.org/package=swirl
https://talkbank.org/
https://code.visualstudio.com/
https://doi.org/10.1371/journal.pone.0029484
https://doi.org/10.1515/9783110910186.1
https://doi.org/10.21105/joss.02959
https://doi.org/10.1371/journal.pone.0253454
https://doi.org/10.1177/02676583211050522

330
 References

Mikolov,
T.,
Sutskever,
I.,
Chen,
K.,
Corrado,
G.,
&
Dean,
J.
(2013).
Distributed
representations
of
words
and
phrases
and
their
compositionality.
In
Ad-
vances
in
neural
information
processing
systems
(pp.
3111–3119).

Moroz,
G.
(2017).
lingtypology:
Easy
mapping
for
linguistic
typology.
Retrieved

from
https://CRAN.R-project.org/package=lingtypology

Morris,
T.
P.,
White,
 I.
R.,
&
Crowther,
M.
 J.
 (2019).
Using
simulation
stud-
ies
to
evaluate
statistical
methods.
Statistics
in
Medicine,
38(11),
2074–2102.

doi:10.1002/sim.8086

Mosteller,
F.,
&
Wallace,
D.
L.
(1963).
Inference
in
an
authorship
problem.
Jour-
nal
of
the
American
Statistical
Association,
58(302),
275–309.
Retrieved
from

https://www.jstor.org/stable/2283270

Mullen,
L.
(2022).
tokenizers:
Fast,
consistent
tokenization
of
natural
language
text.

Retrieved
from
https://docs.ropensci.org/tokenizers/

Muñoz,
C.
(Ed.).
(2006).
Age
and
the
rate
of
foreign
language
learning
(1st
ed.,
Vol.

19).
Clevedon:
Multilingual
Matters.

Nisioi,
S.,
Rabinovich,
E.,
Dinu,
L.
P.,
&
Wintner,
S.
(2016).
A
corpus
of
native,
non-native
and
translated
texts.
In
Proceedings
of
the
tenth
international
con-
ference
on
language
resources
and
evaluation
(LREC
2016).
Portoroz̆,
Slovenia:

European
Language
Resources
Association
(ELRA).

Nivre,
 J.,
De
Marneffe,
M.-C.,
Ginter,
F.,
Hajič,
 J.,
Manning,
C.
D.,
Pyysalo,
S.,
 …
 Zeman,
 D.
 (2020).
 Universal
 dependencies
 v2:
 An
 evergrowing
multilingual
treebank
collection.
arXiv
arXiv:2004.10643.
Retrieved
from

https://arxiv.org/abs/2004.10643

Olohan,
M.
 (2008).
Leave
 it
out!
Using
a
comparable
corpus
 to
 investigate
aspects
of
explicitation
in
translation.
Cadernos
de
Tradução,
153–169.

Ooms,
 J.
 (2023).
 jsonlite:
A
simple
and
robust
 JSON
parser
and
generator
 for
R.

Retrieved
from
https://jeroen.r-universe.dev/jsonlite

Paquot,
M.,
&
Gries,
S.
Th.
(Eds.).
(2020).
A
practical
handbook
of
corpus
linguis-
tics.
Switzerland:
Springer.

Pedersen,
T.
L.
 (2024).
 ggraph:
An
 implementation
 of
 grammar
 of
 graphics
 for

graphs
and
networks.
Retrieved
from
https://ggraph.data-imaginist.com

Petrenz,
P.,
&
Webber,
B.
(2011).
Stable
classification
of
text
genres.
Computa-
tional
Linguistics,
37(2),
385–393.
doi:10.1162/COLI_a_00052

Posit.
(2024).
RStudio.
RStudio.
Software.
Retrieved
from
https://posit.co

R
 Community.
 (2024).
 The
 comprehensive
 R
 archive
 network.
 The
 Com-

prehensive
R
Archive
Network.
Repository.
Retrieved
 from
https://cran.r-
project.org/

R
Special
Interest
Group
on
Databases
(R-SIG-DB),
Wickham,
H.,
&
Müller,
K.
(2024).
DBI:
R
database
interface.
Retrieved
from
https://dbi.r-dbi.org

Riehemann,
S.
Z.
(2001).
A
constructional
approach
to
idioms
and
word
formation
(PhD
thesis).
Stanford.

Rinker,
 T.
 (2019).
 lexicon:
 Lexicons
 for
 text
 analysis.
 Retrieved
 from

https://github.com/trinker/lexicon

Robinson,
D.,
&
Silge,
J.
(2024).
tidytext:
Text
mining
using
dplyr,
ggplot2,
and

other
tidy
tools.
Retrieved
from
https://juliasilge.github.io/tidytext/

https://CRAN.R-project.org/package=lingtypology
https://www.jstor.org/stable/2283270
https://docs.ropensci.org/tokenizers/
https://arxiv.org/abs/2004.10643
https://jeroen.r-universe.dev/jsonlite
https://cran.r-project.org/
https://cran.r-project.org/
https://dbi.r-dbi.org
https://github.com/trinker/lexicon
https://juliasilge.github.io/tidytext/
https://ggraph.data-imaginist.com
https://posit.co
https://doi.org/10.1002/sim.8086
https://doi.org/10.1162/COLI_a_00052

References
 331

ROpenSci.
(2024).
The
R-Universe
System.
The
R-Universe
System.
Repository.

Retrieved
from
https://ropensci.org/r-universe/

Rossman,
A.
J.,
&
Chance,
B.
L.
(2014).
Using
simulation-based
inference
for
learning
introductory
statistics.
WIREs
Computational
Statistics,
6(4),
211–

221.
doi:10.1002/wics.1302

Rowley,
 J.
 (2007).
 The
 wisdom
 hierarchy:
 Representations
 of
 the

DIKW
 hierarchy.
 Journal
 of
 Information
 Science,
 33(2),
 163–180.

doi:10.1177/0165551506070706

Saxena,
 S.,
 &
 Gyanchandani,
 M.
 (2020).
 Machine
 learning
 methods
 for

computer-aided
breast
cancer
diagnosis
using
histopathology:
A
narra-
tive
review.
Journal
of
medical
imaging
and
radiation
sciences,
51(1),
182–193.

Sedgwick,
P.
(2015).
Units
of
sampling,
observation,
and
analysis.
BMJ
(on-
line),
351,
h5396.
doi:10.1136/bmj.h5396

Serigos,
J.
(2020).
Using
automated
methods
to
explore
the
social
stratifica-
tion
of
anglicisms
in
Spanish.
Corpus
Linguistics
and
Linguistic
Theory,
0(0),

000010151520190052.
doi:10.1515/cllt-2019-0052

Shriberg,
E.
E.
(1994).
Preliminaries
to
a
theory
of
speech
disfluencies
(PhD
thesis).

University
of
California
at
Berkeley.

Silge,
 J.
 (2022).
 janeaustenr:
 Jane
 Austen’s
 complete
 novels.
 Retrieved
 from

https://github.com/juliasilge/janeaustenr

Silveira,
N.,
Dozat,
T.,
de
Marneffe,
M.-C.,
Bowman,
S.,
Connor,
M.,
Bauer,
J.,
&
Manning,
C.
D.
(2014).
A
gold
standard
dependency
corpus
for
English.
In
Proceedings
of
the
ninth
international
conference
on
language
resources
and
evaluation
(LREC-2014).

Sternberg,
R.
J.,
&
Sternberg,
K.
(2010).
The
psychologist’s
companion:
A
guide
to
writing
scientific
papers
for
students
and
researchers
(5th
ed.).
Cambridge

University
Press.
doi:10.1017/CBO9780511762024

Szmrecsanyi,
B.
(2004).
On
operationalizing
syntactic
complexity.
In
Le
poids
des
mots.
Proceedings
of
the
seventh
international
conference
on
textual
data
sta-
tistical
analysis.
Louvain-la-Neuve
(Vol.
2,
pp.
1032–1039).

The
R
Foundation.
(2024).
The
R
project
for
statistical
computing.
R:
The
R

Project
for
Statistical
Computing.
Software.
Retrieved
from
https://www.r-
project.org/

Tottie,
G.
(2011).
Uh
and
um
as
sociolinguistic
markers
in
British
English.
In-
ternational
Journal
of
Corpus
Linguistics,
16(2),
173–197.

Tottie,
G.
(2014).
On
the
use
of
uh
and
um
in
American
English.
Functions
of

Language,
21(1),
6–29.
doi:10.1075/fol.21.1.02tot

University
 of
 Colorado
 Boulder.
 (2008).
 Switchboard
 Dialog
 Act
 Cor-
pus.
 Web
 download.
 Linguistic
 Data
 Consortium.
 Retrieved
 from

https://catalog.ldc.upenn.edu/docs/LDC97S62/

Uryu,
S.
(2024).
washoku:
Extra
’recipes’
for
Japanese
text,
date
and
address
process-
ing.
Retrieved
from
https://github.com/uribo/washoku

Ushey,
K.,
&
Wickham,
H.
(2024).
renv:
Project
environments.
Retrieved
from

https://rstudio.github.io/renv/

https://ropensci.org/r-universe/
https://github.com/juliasilge/janeaustenr
https://www.r-project.org/
https://www.r-project.org/
https://catalog.ldc.upenn.edu/docs/LDC97S62/
https://github.com/uribo/washoku
https://rstudio.github.io/renv/
https://doi.org/10.1002/wics.1302
https://doi.org/10.1177/0165551506070706
https://doi.org/10.1136/bmj.h5396
https://doi.org/10.1515/cllt-2019-0052
https://doi.org/10.1017/CBO9780511762024
https://doi.org/10.1075/fol.21.1.02tot

332
 References

Voigt,
R.,
Camp,
N.
P.,
Prabhakaran,
V.,
Hamilton,
W.
L.,
Hetey,
R.
C.,
Grif-
fiths,
C.
M.,
…
Eberhardt,
J.
L.
(2017).
Language
from
police
body
cam-
era
footage
shows
racial
disparities
in
officer
respect.
Proceedings
of
the
Na-
tional
Academy
of
Sciences,
114(25),
6521–6526.

Waring,
E.,
Quinn,
M.,
McNamara,
A.,
Arino
de
la
Rubia,
E.,
Zhu,
H.,
&
El-
lis,
S.
(2022).
skimr:
Compact
and
flexible
summaries
of
data.
Retrieved
from

https://docs.ropensci.org/skimr/

Welbers,
K.,
&
van
Atteveldt,
W.
(2022).
rsyntax:
Extract
semantic
relations
from
text
 by
 querying
 and
 reshaping
 syntax.
Retrieved
 from
 https://CRAN.R-
project.org/package=rsyntax

Wenfeng,
Q.,
&
Yanyi,
W.
(2019).
jiebaR:
Chinese
text
segmentation.
Retrieved

from
https://CRAN.R-project.org/package=jiebaR

White,
 J.
 M.
 (2023).
 ProjectTemplate:
 Automates
 the
 creation
 of
 new

statistical
 analysis
 projects.
 Retrieved
 from
 https://CRAN.R-
project.org/package=ProjectTemplate

Wickham,
H.
(2014a).
Advanced
R.
CRC
Press.

Wickham,
 H.
 (2014b).
 Tidy
 data.
 Journal
 of
 Statistical
 Software,
 59(10).

doi:10.18637/jss.v059.i10
Wickham,
H.
(2023a).
forcats:
Tools
for
working
with
categorical
variables
(factors).

Retrieved
from
https://forcats.tidyverse.org/
Wickham,
H.
(2023b).
stringr:
Simple,
consistent
wrappers
for
common
string
op-

erations.
Retrieved
from
https://stringr.tidyverse.org
Wickham,
H.
(2023c).
tidyverse:
Easily
install
and
load
the
Tidyverse.
Retrieved

from
https://tidyverse.tidyverse.org
Wickham,
H.
 (2024).
 rvest:
Easily
harvest
 (scrape)
web
pages.
Retrieved
 from

https://rvest.tidyverse.org/
Wickham,
H.,
&
Bryan,
J.
(2023).
R
packages:
Organize,
test,
document,
and
share

your
code
(second
edition.).
Beijing:
O’Reilly.
Wickham,
H.,
Chang,
W.,
Henry,
L.,
Pedersen,
T.
L.,
Takahashi,
K.,
Wilke,
C.,

…
van
den
Brand,
T.
(2024).
ggplot2:
Create
elegant
data
visualisations
using

the
grammar
of
graphics.
Retrieved
from
https://ggplot2.tidyverse.org

Wickham,
H.,
François,
R.,
Henry,
L.,
Müller,
K.,
&
Vaughan,
D.
(2023).
dplyr:
A

grammar
of
data
manipulation.
Retrieved
from
https://dplyr.tidyverse.org

Wickham,
 H.,
 Girlich,
 M.,
 &
 Ruiz,
 E.
 (2024).
 dbplyr:
 A
 dplyr
 back
 end
 for

databases.
Retrieved
from
https://dbplyr.tidyverse.org/

Wickham,
H.,
&
Grolemund,
G.
(2017).
R
for
data
science
(First
edit.).
O’Reilly

Media.
Retrieved
from
http://r4ds.had.co.nz/

Wickham,
H.,
&
Henry,
 L.
 (2023).
 purrr:
 Functional
 programming
 tools.
Re-
trieved
from
https://purrr.tidyverse.org/

Wickham,
H.,
Hester,
 J.,
&
Bryan,
 J.
 (2024).
 readr:
Read
 rectangular
 text
data.

Retrieved
from
https://readr.tidyverse.org

Wickham,
H.,
Miller,
E.,
&
Smith,
D.
 (2023).
haven:
 Import
and
 export
SPSS,

Stata
and
SAS
files.
Retrieved
from
https://haven.tidyverse.org

Wickham,
H.,
Vaughan,
D.,
&
Girlich,
M.
 (2024).
 tidyr:
Tidy
messy
data.
Re-
trieved
from
https://tidyr.tidyverse.org

https://docs.ropensci.org/skimr/
https://CRAN.R-project.org/package=rsyntax
https://CRAN.R-project.org/package=rsyntax
https://CRAN.R-project.org/package=jiebaR
https://CRAN.R-project.org/package=ProjectTemplate
https://CRAN.R-project.org/package=ProjectTemplate
https://forcats.tidyverse.org/
https://stringr.tidyverse.org
https://rvest.tidyverse.org/
https://ggplot2.tidyverse.org
https://dplyr.tidyverse.org
https://dbplyr.tidyverse.org/
http://r4ds.had.co.nz/
https://purrr.tidyverse.org/
https://haven.tidyverse.org
https://tidyr.tidyverse.org
https://tidyverse.tidyverse.org
https://readr.tidyverse.org
https://doi.org/10.18637/jss.v059.i10

References
 333

Wijffels,
 J.
 (2023).
 udpipe:
Tokenization,
 parts
 of
 speech
 tagging,
 lemmatization
and
 dependency
 parsing
 with
 the
 UDPipe
 ’NLP’
 toolkit.
 Retrieved
 from

https://bnosac.github.io/udpipe/en/index.html

Wijffels,
J.,
&
Watanabe,
K.
(2023).
word2vec:
Distributed
representations
of
words.

Retrieved
from
https://github.com/bnosac/word2vec

Wilson,
G.,
Bryan,
 J.,
Cranston,
K.,
Kitzes,
 J.,
Nederbragt,
L.,
&
Teal,
T.
K.
(2017).
Good
enough
practices
in
scientific
computing.
PLoS
Computational

Biology,
13(6),
1–20.
doi:10.1371/journal.pcbi.1005510

Wulff,
S.,
Stefanowitsch,
A.,
&
Gries,
S.
Th.
(2007).
Brutal
Brits
and
persuasive
Americans.
Aspects
of
Meaning.

Xie,
 Y.
 (2024).
 tinytex:
 Helper
 functions
 to
 install
 and
 main-
tain
 TeX
 Live,
 and
 compile
 LaTeX
 documents.
 Retrieved
 from

https://github.com/rstudio/tinytex

Zipf,
G.
K.
(1949).
Human
behavior
and
the
principle
of
least
effort.
Oxford,
Eng-
land:
Addison-Wesley
Press.

https://bnosac.github.io/udpipe/en/index.html
https://github.com/bnosac/word2vec
https://github.com/rstudio/tinytex
https://doi.org/10.1371/journal.pcbi.1005510

https://taylorandfrancis.com

Index

Operators

!,
97

-,
124

::,
118,
319

==,
145,
160

?,
xix

[],
194,
205

~,
221,
237,
276

$,
199

A

abs(),
290

absolute
path,
94

accuracy,
231,
239

acquire
data,
13,
25,
88,
260

add_model(),
229

add_recipe(),
229

additive
model,
284,
298

adorn_ns(),
275

adorn_pct_formatting(),
200,
220,

266,
275

adorn_percentages(),
200,
275

adorn_title(),
275

adorn_totals(),
200,
220,
275

aes(),
179,
249,
281,
288,
291,
293,

295,
299

alpha
level,
270,
271,
274

alternative
hypothesis,
64,
65,
74,

266

American
National
Corpus

(ANC),
24,
171

Analysis
of
Variance
(ANOVA),

292,
295

anti_join(),
157

application
programming

interface
(API),
25,
26,
99

applied
linguistics,
14

archive
file,
93

args(),
101

arrange(),
123,
125,
179,
180,
183,

185,
190

as.matrix(),
194

as_tibble(),
200,
206

autoplot(),
231,
235,
239,
240

B

Baayen,
39,
215,
261

bake(),
224,
225

bar
plot,
50,
195,
280

Barcelona
English
Language

Corpus
(BELC),
46

Bell
Labs,
7

bind_cols(),
242

bind_log_odds(),
186

bind_rows(),
163,
183

bivariate
analysis,
56

bootstrap
distribution,
272

bootstrapping,
215

boxplot,
53,
58,
280,
292,
295,
299

British
National
Corpus
(BNC),

100

Brown
Corpus,
24

C

c(),
xviii

calc_assoc_metrics(),
190

calc_type_metrics(),
179,
183

335

336
 INDEX

calculate(),
268,
269,
273,
277,
278,

288,
294–297

case_when(),
189

cast_dtm(),
194

categorical
variables,
32,
48,
50,
57,

261,
264,
292

central
tendency,
47,
53,
54,
268,

288,
292

character
strings,
28

chat
applications,
9

Child
Language
Data
Exchange

System
(CHILDES),
126

class(),
130

classification,
63

classification
algorithms,
215,
226

closest_to(),
208

clustering,
xviii,
192,
194,
196

co-occurrence
analysis,
172,
188

code
blocks,
xx

code
comment,
xxi

code
documentation,
40,
42,
66

code
sharing
repositories,
8

cognitive
linguistics,
10

collect_metrics(),
231,
235,
238,

240,
248,
249,
253,
255

collect_predictions(),
240,
242,
249

collocation,
188

comma-separated
values
(CSV),

41,
118,
119

comma-separated
values
file

(CSV),
89,
103

Comprehensive
R
Archive

Network
(CRAN),
xvi,

xviii,
80

computing
environment,
xvi,
79,

150,
204,
315,
316,
320

computing
skills,
8,
13

concatenating
datasets,
39,
155,

182

conf_mat(),
240

conf_mat_resampled(),
235,
239

confidence
interval,
66,
262,
263,

272,
273,
283,
295,
297,

302

confidence
limits,
272,
298

confusion
matrix,
235,
240

connectionism,
10

containerization,
320

content
words,
175

contingency
table,
57,
266,
275

continuous
bag
of
words
(CBOW),

202

continuous
variables,
261,
285

control
statements,
97,
105

control
variables,
65

coord_flip(),
245,
257

corpus,
23,
26

comparable,
24

parallel,
24

reference,
24,
264

specialized,
24,
48,
286

corpus
development,
26

Corpus
Escrito
del
Español
como

L2
(CEDEL),
217

Corpus
Escrito
del
Español
como

L2
(CEDEL2),
88

corpus
format,
27

Corpus
Linguistics,
14

correlation,
59,
292

count(),
173,
194,
243

create_data_dictionary(),
134

create_data_origin(),
90

cross-validation,
215

cumulative
frequency,
174

curate
data,
13,
114

curation,
33,
34

custom
functions,
104,
131

D

data,
30

data
acquisition,
41

data
curation,
30

data
dictionary,
40,
41,
46,
134,

163,
313,
315

data
documentation,
26,
66,
90,
98,

134,
313

data
frame,
28,
103,
129,
224

data
literacy,
xii

INDEX
 337

data
origin,
40,
41,
90,
98,
113,
127,
313,
315

data
science,
xi,
5,
7,
12,
13,
316
data
sharing
platform,
25,
26,
99
Data
to
Insight
Hierarchy
(DIKI),

xiv,
322
data(),
118
data-driven
research,
12,
60,
62
dataset,
30,
118

dataset
enrichment,
36,
147
dataset
keys,
120
decision
trees,
250

decision_tree(),
251
density
plot,
51,
58,
288
dependency
parsing,
37
desc(),
190
DESCRIPTION
file,
81
descriptive
assessment,
172,
217,

261,
265,
286,
292,
312

descriptive
methods,
61,
62,
172
descriptive
statistics,
45,
172,
265
difference
in
proportion
test,
266
difference
in
proportions
test,
274
dim(),
194,
205,
207,
224,
225
dimensionality
reduction,
194,
206
dir_create(),
103,
106
dir_exists(),
97,
98
dispersion,
48,
53,
58,
177,
178,
269
dispersion
analysis,
172,
181
distinct(),
161,
200
distribution,
50,
52,
55,
58,
200

distributional
hypothesis,
201
document
frequency,
177
document-term
matrix
(DTM),

193

domain
knowledge,
8,
13,
61
download.file(),
94,
98

E

effect
size,
66,
284

elbow
method,
179,
184,
196
English
as
a
second
language

(ESL),
171
ensemble
models,
252

entropy,
49,
50,
123
ethnographic
methods,
9
Europarl
corpus
of
native,

non-native
and

translated
texts

(ENNTT),
127,
147,
157

Europarl
Parallel
Corpus,
112,
138,
143

exp(),
244
experimental
approaches,
10
explanatory
variables,
65,
260,

276,
279,
295,
298

exploratory
data
analysis
(EDA),

60,
62,
74,
77,
170,
192,
214,
260

Extensible
Markup
Language
(XML),
29,
126,
128

extract_fit_parsnip(),
243,
245,
256

F

facet_wrap(),
245
feature
calculation,
38,
39,
153

feature
engineering,
61,
192,
193,

219,
222,
224,
237,
247

feature
extraction,
38,
153

feature
importance,
196,
199,
215,

241,
244,
250,
256

feature
reclassification,
38,
39,
189

feature
selection,
63,
192,
218

feature
variables,
61,
63

file_exists(),
106
filter(),
141,
142,
145,
176,
180,
185,

187,
190,
243,
247

finalize_workflow(),
233
fit(),
282–285,
301,
303
fit_resamples(),
234,
238,
249
frequency,
47,
49,
50,
55,
223,
225
frequency
analysis,
172,
173,
181
frequency
tables,
50
full_join(),
156
function
words,
174,
219

function(),
xxi,
105,
132
fviz_eig(),
195

338
 INDEX

G

Gandrud,
xii

generate(),
269,
273,
278,
283,
284,

288,
294–297,
302,
303

Generative
Grammar,
10

geom_bar(),
281
geom_boxplot(),
281,
293,
295,
299
geom_density(),
179,
288,
291
geom_histogram(),
288,
291
geom_point(),
206,
245,
249,
257
geom_smooth(),
249
geom_text_repel(),
206
get_confidence_interval(),
273,

284,
295,
297,
303

get_p_value(),
272,
278,
283,
294,

296,
302

get_talkbank_data(),
105
getUtterances(),
101,
106
ggplot(),
179,
206,
249,
257,
281,

288,
291,
293,
295,
299

Git,
xviii

GitHub,
xviii,
25,
108

glimpse(),
101,
117,
122,
124,
125,

133,
151,
162,
171,
208,
209,
217,
242,
247,
280

grammatical
diversity,
193
graphical
user
interface
(GUI),

xvii

grid_regular(),
230,
238,
251,
253,

254

Gries,
215

Gries’
deviation
of
proportions,

177

group_by(),
123,
153,
184,
186,
187,

189

H

head(),
116
hierarchical
clustering,
196
histogram,
51,
58,
269,
288
html_attr(),
131,
132
html_attrs(),
131
html_elements(),
130

hyperparameter
tuning,
227,
237,
247

hyperparameters,
227,
229,
232,
238,
250

Hypertext
Markup
Language
(HTML),
126,
128,
318

hypothesis,
10,
12,
64,
74,
260,
299
hypothesize(),
269,
278,
283,
288,

294,
296,
302

I

if(),
97,
98,
105,
106
inferential
data
analysis
(IDA),
64,

74,
78,
259,
260
inflectional
morphology,
39
information,
30,
60,
112
informational
types,
31,
39,
56,
65,

78,
261

initial_split(),
220
inner_join(),
209
install.packages(),
xviii
integrated
development

environment
(IDE),
xvii,
90

interaction
model,
284,
298,
299,
301

interquartile
range
(IQR),
49,
53
introspective
methods,
9
inverse
document
frequency,
177,

223,
224
is.na(),
142

J

JavaScript
Object
Notation

(JSON),
29,
126
jitter(),
290
join
keys,
155
joining
datasets,
40,
155,
158

anti
join,
157,
175
full
join,
156
inner
join,
209
left
join,
156,
161,
199
semi
join,
156

INDEX
 339

K

k-fold
cross-validation,
230,
234,
238,
248

k-means
clustering,
196
kable(),
266,
275
kable_styling(),
266,
275
keyword
analysis,
172
Keyword
in
Context
(KWIC),
188
kmeans(),
199
knowledge,
60

L

labs(),
179,
245,
249,
257,
269,
270,
281,
288,
291,
293,
295,
299

language
analysis,
9
Language
Data
Consortium,
25
language
models,
38,
149
language
repository,
25,
100
last_fit(),
240,
255
learn_rate(),
254
left_join(),
156,
162,
199
lemmas,
38,
172,
181,
205

lemmatization,
38

length(),
116,
130,
160
levels
of
measurement,
31

lexical
diversity,
39,
47,
187,
193
lexical
processing,
39
library(),
xxi,
100,
115,
122,
130,

131,
141,
144,
151,
194,
204,
218,
245,
264

linear
regression,
247
linguistic
annotation,
37,
38,
149
Linguistic
Data
Consortium

(LDC),
92
linguistics,
9,
10
literate
programming,
13,
41,
91,

313,
317

local
environment,
xvii

lockfile,
319

log
odds
ratio,
185
log
transformation,
56,
177,
280,

289,
291,
301

log(),
280,
291
logistic
regression,
227,
279
logistic_reg(),
227
ls(),
101

M

machine
learning,
xviii,
62,
63,
146,
214,
247

machine
translation
algorithms,
9
Makefile,
80
manual
downloads,
88

Manually
Annotated
Sub-Corpus

of
American
English
(MASC),
27,
32,
171,
192

map_dfr(),
133
matrix,
193,
207,
223,
224
mean,
47,
48,
288,
292

median,
47,
48,
288,
293
metadata,
27,
29,
30,
37,
39,
40,

112,
126,
139,
144,
222

methodological
approaches,
9
missing
data,
35,
172,
261,
265
mlp(),
254
mode,
47

model
evaluation,
64,
239
model
selection,
63

morphological
features,
37,
151,

173

multivariate
analysis,
49,
263
mutate(),
133,
141,
142,
151,
163,

182,
183,
189,
244,
245,
257,
280,
290,
291

N

n(),
153
n_distinct(),
123
Natural
Language
Processing

(NLP),
xviii,
14,
149,
181
Neovim,
xvii
nested
structure,
102

network
plot,
191
neural
networks,
253

ngrams,
36,
145,
188,
255

340
 INDEX

non-parametric
inference,
55

normal
distribution,
54

nrow(),
160

null
hypothesis,
64,
65,
74,
266,

274,
294

null
hypothesis
distribution,
261,

263,
268–270,
277,
283,

301

Null
Hypothesis
Significance

Testing
(NHST),
261,
263

null
model,
235,
248,
250

null_model(),
249

numeric
variables,
32,
33,
51,
58,

292

O

observational
approaches,
10

observations,
28,
31,
33,
139,
144,

219,
269

observed
relative
frequency,
181

one-sided
test,
270,
272,
294,
297

Open
Science
Framework
(OSF),

25

open
source,
xvii,
320

operating
system,
xvii,
316,
320

operationalize,
32,
35,
75,
142,
148,

173,
193,
260,
279

ordinal
variables,
32,
33

outcome
variable,
63,
215,
219,
247

outliers,
52–54,
58,
261,
265,
288

overfitting,
203,
214,
225,
250

P

p-value,
66,
262,
263,
271–273,
277,

295,
297

package
datasets,
118

parallel
corpus,
112

parametric
inference,
55

part
of
speech
(POS),
28,
202

part-of-speech
tagging,
37,
151,

175

paste(),
xxi

path(),
106

phonetics,
10

pivot
table,
58

plagiarism
detection
software,
9

plain
text,
112,
126

plain
text
file,
27

pluck(),
131

pointwise
mutual
information

(PMI),
188,
190

population,
22,
23,
25

portable
document
format
(PDF),

28,
112,
318

position_jitter(),
249

prcomp(),
195,
206

predictive
data
analysis
(PDA),

62,
74,
77,
213,
260

predictor
features,
218,
243

predictor
variables,
65,
221,
247

prep(),
224,
225

principal
component
analysis

(PCA),
194,
205

problem
statement,
73

programming
skills,
xii,
8,
13

proportion,
49,
266

prospectus,
78

psycholinguistics,
10

psychology,
10

pull(),
203

Q

qualitative
approaches,
9,
12

quantitative
approaches,
10,
12

quantitative
data
analysis,
7,
9,
25

quantitative
language
analysis,
10

quantitative
text
analysis,
14

R

R,
xiii,
xvii,
xviii,
13,
28,
99,
118,

318

R
community,
xix,
99,
317,
320

R
data
serialization
(RDS),
118,

119

R
data
serialization
file
(RDS),
103

R
formula,
221,
298

INDEX
 341

R
packages,
xvii,
315,
318
base,
199
brulee,
254

DBI,
119

dbplyr,
119
dials,
230,
238

dplyr,
102,
123,
133,
138,
140,

153,
156,
171,
173,
176,
179,
180,
182–187,
189,
190,
199,
203,
206,
207,
209,
242–245,
247,
256,
257,
280,
289–291

factoextra,
195

fs,
97

ggplot2,
179,
206,
231,
235,

239,
240,
245,
249,
257,
281,
288,
291,
293,
295,
299

glmnet,
227
hardhat,
243,
245,
256

haven,
119

infer,
267–270,
272,
273,

276–278,
282–285,
288,
294–297,
301–303

janeaustenr,
118
janitor,
200,
220,
266,
275,
289
jsonlite,
126
kableExtra,
266,
275

knitr,
266,
275

languageR,
118
lingtypology,
100
parsnip,
227,
249,
251,
252,

254

purrr,
130,
132
qtkit,
xviii,
90,
108,
134,
179,

183,
190

quanteda,
188
ranger,
252
readr,
112,
138,
148,
171,
203,

217,
265

readtext,
112

recipes,
221,
224,
225,
237
reprex,
xix
rpart,
251
rsample,
220,
231

rvest,
126,
129
skimr,
122

stringr,
140,
182,
187,
189,
190,

203,
207,
257
swirl,
xviii

TBDBr,
100

textrecipes,
146,
218,
222,
223,

225,
237
tibble,
117,
200

tidylo,
186
tidymodels,
218
tidyr,
102
tidytext,
144,
175,
193,
194
tidyverse,
xviii
tinytex,
xviii
tokenizers,
146,
222

tune,
231–235,
238–240,
242,

248,
249,
251,
253,
255

udpipe,
149
vip,
245,
256
word2vec,
204
wordbankr,
100

wordVectors,
208

workflows,
229,
233,
237,
240,

249

yardstick,
240

R
Universe,
xviii

R-squared,
248,
250,
251,
284
rand_forest(),
252
random
forest,
252,
255
raw
frequency,
174,
181
read.vectors(),
204
read_csv(),
121,
138,
148,
171,
217,

265

read_file(),
112
read_html(),
130
read_lines(),
112,
115,
130
read_rds(),
119
README
file,
80

readtext(),
112
receiver
operating
characteristic

(ROC)
curve,
236
receiver
operating
characteristic

area
under
the
curve

(ROC-AUC),
231,
239

342
 INDEX

recipe(),
221
reference
level,
282,
301

regression,
63
regression
algorithms,
215,
247
regular
expression
(regex),
140,

187

greedy,
140
lazy,
140,
141

relational
databases,
28,
118,
119

relative
frequency,
181
relative
path,
94
remote
environment,
xvii

reorder(),
245,
257
representativeness,
23,
25,
64,
260
reproducible
example,
xix
reproducible
research,
xviii,
8,
13,

26,
79,
316

resampling,
215,
230
research
aim,
60,
73,
74,
77,
214,

311,
312

research
area,
70

research
compendium,
67,
79,
315,

316

research
design,
11,
13,
75,
79,
311
research
interpretation,
11,
13,
78,

192,
199,
215,
216,
245,
260,
262,
312

research
problem,
71,
312
research
question,
13,
26,
30,
61,

74,
75,
77,
147,
170,
217,
218,
260,
266,
274,
279,
312

research
scaffold,
80,
91,
98,
103,
107,
113,
312,
313

research
skills,
xii

research
statement,
74

response
variable,
65,
260,
264,

267,
276,
292,
298

root
mean
squared
error
(RMSE),

248,
251

ROpenSci,
99
row_number(),
151,
163
rownames(),
205
rowSums(),
194
RStudio,
xvii,
xix

S

sample,
6,
23,
77
sampling,
260,
272
sampling
frame,
23,
24,
26,
38,
77,

210

Santa
Barbara
Corpus
of
Spoken

American
English,
25
scale(),
206
scale_x_continuous(),
179
scatterplot,
58,
250
science,
6,
79,
316

scree
plot,
195
search
engine,
9,
26
second
language
acquisition,
47
second
language
writing,
88
select(),
124,
125,
151,
154,
160,
163,

187,
243,
245,
247,
280

select_best(),
233
semi-structured
data,
28,
30,
126

semi_join(),
157
seq(),
179
set.seed(),
199,
220,
231,
290
set_engine(),
227,
249,
251,
252,

254

set_mode(),
249,
251,
252,
254
setequal(),
159
shade_confidence_interval(),
273
shade_p_value(),
270
show_best(),
232
skewed
distribution,
54,
174,
219,

265,
280,
288

skewness,
56

skim(),
122
skip-gram
model,
202
slice_head(),
125,
138,
145,
146,

159,
160,
179,
182,
183,
190,
199,
256

slice_max(),
184,
186,
187,
245,
257
slice_sample(),
141
sociolinguistics,
93,
202,
286
source(),
108
sparse
matrix,
224
specialized
corpus,
88,
92

INDEX
 343

specify(),
267,
276,
282,
284,
288,
294,
296,
301

speech
corpus,
92
spreadsheet
file,
41,
103
standard
deviation,
49,
269,
288

standardization,
49,
185,
193,
222
statistic
transformation,
54

statistic
trimming,
54
statistical
knowledge,
8,
13
stemming,
38
step_tfidf(),
223,
225,
237
step_tokenfilter(),
225,
237
step_tokenize(),
222,
225,
237
stopwords,
175,
222,
225
str_c(),
182,
189,
203,
205
str_detect(),
141,
190
str_extract_all(),
141
str_remove(),
207
str_remove_all(),
142,
207
str_replace(),
207,
257
str_replace_all(),
207
str_subset(),
205,
207
structured
data,
28,
118
sum(),
153
summarize(),
123,
153,
203
supervised
learning,
62,
213,
219,

247

Switchboard
Dialog
Act
Corpus

(SWDA),
29,
92,
100,
286,
292,
298

syntactic
complexity,
39
syntactic
constituents,
37,
151
system
dependencies,
320
system-level
dependencies,
315

T

tabyl(),
200,
220,
266,
275
TalkBank,
25,
100

tempfile(),
96,
98
term
frequency,
181
term-frequency
inverse-document

frequency
(tf-idf),
219,
223,
255

terms,
35,
172,
173

terms
of
use,
26,
88,
99,
149,
321

testing(),
220
text
analysis,
5,
12,
13,
24
text
classification,
213,
218,
235

text
editor,
xvii,
90

text
normalization,
34,
35,
138,

139,
172

text
regression,
213,
246
text
tokenization,
34–36,
138,
142,

151

theme_minimal(),
245
theoretical
frameworks,
9

theoretical
inference,
54,
55

theoretical
linguistics,
14
theory-driven
research,
12,
62,
64,

259

tibble(),
117,
131,
132,
151,
199
tidy
format,
31–33,
46,
118,
144
tidy(),
243
Tidymodels,
217,
246
tidymodels_prefer(),
218
Tidyverse,
xiii,
146,
263
tokens,
35,
222,
237

Tottie,
292

training(),
220
transform
datasets,
13,
139

transformation,
34,
77,
194

translation
studies,
112,
147

tree_depth(),
251
trees(),
253
tt(),
200
tune(),
251,
252,
254
tune_grid(),
231
two-sided
test,
278,
283,
296,
297,

302

type-token
ratio
(TTR),
47,
53,
59
typeof(),
130
types,
35

U

udpipe(),
151
underfitting,
203
ungroup(),
153,
189

344
 INDEX

uniform
resource
locator
(URL),

91,
93

unit
of
analysis,
61,
75,
77

unit
of
observation,
33,
46,
61,
77,

138,
142,
147,
188

Universal
Dependencies
(UD)

project,
37

unnest(),
102,
106

unnest_tokens(),
144–146

unstructured
data,
13,
27,
30,
112

unsupervised
learning,
62,
192

unsupervised
learning
methods,

61

untar(),
94,
98

update_recipe(),
237

V

variable
generation,
36,
37,
148

variable
integration,
36,
39,
155

variable
recoding,
36,
38,
39,
152,

172

variable
types,
28

variables,
28,
31,
37,
129,
130,
139,

261

vector
space
model
(VSM),
201,

202,
206

vector
types,
159,
224

version
control
system,
320

vfold_cv(),
231

vi(),
245,
256

violin
plot,
58

virtual
environment,
xvii

Visual
Studio
Code,
xvii

visualize(),
269,
270,
273

W

web
scraping,
25,
26

Wickham,
xiii,
107

Word
document
(DOCX),
28,
112

word
embeddings,
202

word2vec,
202,
203

word2vec(),
204

workflow(),
229

write.word2vec(),
204

write_csv(),
103,
106

write_lines(),
203

write_rds(),
119

Y

yank(),
122

Z

z-score,
49

Zenodo,
25

Zipf
distribution,
55,
174

	Cover
	Half Title
	Title Page
	Copyright Page
	Table of Contents
	Acknowledgments
	Preface
	Part I: Orientation
	Chapter 1: Text analysis
	1.1: Enter science
	1.2: Data analysis
	1.2.1: Emergence of data science
	1.2.2: Data science toolbelt
	1.2.3: Quant everywhere

	1.3: Language analysis
	1.3.1: Qualities and quantities
	1.3.2: The nature of data

	1.4: Text analysis
	1.4.1: Aims
	1.4.2: Implementation
	1.4.3: Applications

	Actitivies
	Summary

	Part II: Foundations
	Chapter 2: Data
	2.1: Data
	2.1.1: Populations and samples
	2.1.2: Corpora
	2.1.3: Other considerations
	2.1.4: Access

	2.2: Information
	2.2.1: Organization
	2.2.2: Transformation

	2.3: Documentation
	2.3.1: Data origin
	2.3.2: Data dictionaries

	Activities
	Summary

	Chapter 3: Analysis
	3.1: Describe
	3.1.1: Central tendency
	3.1.2: Dispersion
	3.1.3: Distributions
	3.1.4: Association

	3.2: Analyze
	3.2.1: Explore
	3.2.2: Predict
	3.2.3: Infer

	3.3: Communicate
	3.3.1: Report
	3.3.2: Document

	Activities
	Summary

	Chapter 4: Research
	4.1: Frame
	4.2: Connect
	4.2.1: Research area
	4.2.2: Research problem

	4.3: Define
	4.3.1: Research aim
	4.3.2: Research question

	4.4: Blueprint
	4.4.1: Plan
	4.4.2: Scaffold

	Activities
	Summary

	Part III: Preparation
	Chapter 5: Acquire
	5.1: Downloads
	5.1.1: Manual
	5.1.2: Programmatic

	5.2: APIs
	Activities
	Summary

	Chapter 6: Curate
	6.1: Unstructured
	6.1.1: Reading data
	6.1.2: Orientation
	6.1.3: Tidy the data

	6.2: Structured
	6.2.1: Reading datasets
	6.2.2: Orientation
	6.2.3: Tidy the dataset

	6.3: Semi-structured
	6.3.1: Reading data
	6.3.2: Orientation
	6.3.3: Tidy the data

	6.4: Documentation
	Activities
	Summary

	Chapter 7: Transform
	7.1: Preparation
	7.1.1: Normalization
	7.1.2: Tokenization

	7.2: Enrichment
	7.2.1: Generation
	7.2.2: Recoding
	7.2.3: Integration

	Activities
	Summary

	Part IV: Analysis
	Chapter 8: Explore
	8.1: Orientation
	8.2: Analysis
	8.2.1: Descriptive analysis
	8.2.2: Unsupervised learning

	Activities
	Summary

	Chapter 9: Predict
	9.1: Orientation
	9.2: Analysis
	9.2.1: Text classification
	9.2.2: Text regression

	Activities
	Summary

	Chapter 10: Infer
	10.1: Orientation
	10.2: Analysis
	10.2.1: Categorical
	10.2.2: Numeric

	Activities
	Summary

	Part V: Communication
	Chapter 11: Contribute
	11.1: Public-facing
	11.1.1: Structure
	11.1.2: Purpose
	11.1.3: Strategies

	11.2: Peer-facing
	11.2.1: Structure
	11.2.2: Purpose
	11.2.3: Strategies

	Activities
	Summary

	References
	Index

