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ABSTRACT

A strong, efficient, and effective biosecurity system requires the determination of which areas are 
most susceptible to threat incursion, establishment, and spread. Maps of establishment potential 
are developed to inform where surveillance resources should be focused, to assess likely spread 
scenarios, estimate likelihoods of threat absence, create risk maps for prioritising threats and opti-
mally minimise risk. This chapter outlines the three fundamental geographic barriers that influence 
establishment potential—propagule pressure, abiotic suitability, and biotic suitability. We describe 
how each barrier is commonly approximated using a range of methods such as species distribution 
models, pathway analyses, expert elicitation, border screening data, and distributional data of host 
or habitat. We provide particular emphasis on the various decisions and assumptions that must 
be made when constructing species distribution models for invasive species. Lastly, we provide a 
practical and pragmatic approach for integrating these various models and data to create maps of 
establishment potential. We illustrate this integrated approach using a hypothetical case study on 
oriental fruit fly (Bactrocera dorsalis) entering Australia.
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GLOSSARY

Pathway analysis A model that attempts to approximate the propagule pressure or contami-
nation rate of a threat entering a region or point of entry (e.g. ports or airports).

Species distribution model (SDM) A model that approximates a species’ niche and maps 
this niche to the landscape to portray the geographic distribution of suitable 
conditions.

Establishment likelihood (or establishment potential) A probability that encompasses the 
three geographic barriers to threat establishment (i.e. the likelihood of arrival or 
propagule pressure, abiotic suitability, and biotic suitability).

Propagule pressure (also termed introduction rate or contamination rate) A measure of 
the likelihood or expected number of threat-specific contamination events entering 
a region.

Abiotic suitability  The suitability of the non-living environment (e.g. climate, terrain, or 
disturbance regime) for a threat.

Biotic suitability The suitability of the living environment (e.g. habitat and interspecies rela-
tionships) for a threat. Commonly, this will be based on various habitat requirements 
(e.g. vegetation type, structure, food source) and sometimes may include inter- 
specific interactions that are facilitative, competitive, or predatory.

Leakage rate The expected number of events (or the likelihood of events) bypassing border 
screening controls.

This chapter has been made available under a CC BY NC ND license. 
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INTRODUCTION

Threat risk maps are a fundamental decision-support tool in biosecurity, and many governments and 
industries invest heavily into some form of risk mapping (Elith 2017). Threat risk maps can be used 
to inform likelihoods of threat absence, where to position finite post-border surveillance resources, 
trade interventions, and cost-sharing between jurisdictions (see Box 14.1). Threat risk maps can also 
be used to determine where to prioritise public and stakeholder awareness campaigns for the pur-
poses of early detection or delimitation (i.e. reporting from farmers; see Chapter 6. Detect).

Viability rate The likelihood that a contamination event that bypasses border screening is 
viable for establishment (e.g. based on factors such as pathway survivability or con-
tamination population size).

Model transferability The capacity for a model fit under one set of conditions to be applied 
to different conditions. In the context of SDMs, a model is said to be transferable if 
the species-environment relationships estimated under one context remains valid in 
other contexts.

BOX 14.1. USING ESTABLISHMENT LIKELIHOOD 
MAPS IN BIOSECURITY DECISION MAKING

Maps of establishment likelihoods are fundamental decision-support tools for biosecurity. 
Specifically, they can be used for:

Informing where to conduct surveillance for early detection

Surveillance for early detection should be prioritised in areas where the likelihood of estab-
lishment is highest (see Chapter 6. Detect). Such prioritisation can be done on a threat-by-
threat basis using threat-specific establishment likelihood maps. Alternatively, establishment 
likelihood maps can be combined for multiple threats to systematically identify areas of 
shared high establishment potential, and thus, inform where to prioritise surveillance for mul-
tiple threats (Camac, Baumgartner, Hester, et al. 2021). Maps of establishment likelihood 
are also useful for assessing the proportion of establishment potential captured by existing 
or proposed surveillance designs, depending on budget constraints and the spatial arrange-
ment of survey effort (Camac, Baumgartner, Hester, et al. 2021). This is especially important 
for early detection, which can be expensive to implement and maintain (Camac, Dodd, et al. 
2020; see Chapter 6. Detect).

Informing likelihoods of threat absence

To gain and maintain market access, exporting countries may be required to prove that they 
are free of invasive species and diseases known to affect economic, environmental, and soci-
etal values (see Chapter 2. Biosecurity Systems and International Regulations). Freedom of 
invasive species or disease is commonly assumed if surveillance programs do not detect the 
threat, especially when they focus on areas of high establishment likelihood or high con-
sequence. A fundamental problem with declaring freedom based solely on the absence of 
detections is that this approach assumes the surveillance program has perfect sensitivity (i.e. 
if the invasive species is present, it will always be detected). In practice, it is impossible to be 
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Depending on how they are built, threat risk maps can describe where an invasive species or 
disease may arrive, establish and spread, or cause significant economic, environmental, and societal 
harm. True risk maps describe the product of (1) the likelihood a species will successfully estab-
lish in an area and (2) the expected magnitude of harm if establishment occurs in that area. Such 
maps are particularly useful for identifying locations where both the establishment likelihood and 
potential consequences of an incursion are high, and thus, where risk mitigation controls should be 
prioritised.

In practice, however, most so-called risk maps do not incorporate both likelihoods and conse-
quences. Rather, maps tend to focus on estimating likelihoods associated with a particular stage of 
the invasion process, such as the likelihood of a threat arriving at a port via imported goods (i.e. 
pathway analysis) or the likelihood an area is environmentally suitable for establishment to occur 
(Venette et al. 2010).

While many methods exist for constructing likelihood maps, two main approaches are used in 
biosecurity. The first—pathway analysis—involves estimating the arrival rate of a threat enter-
ing a country or arriving at a point in the landscape (e.g. ports). Commonly, pathway analyses are 
informed by border interception data coupled with movement data (or models) describing vectors  

certain a species is absent. Rather, absence can only be inferred in terms of likelihoods (see 
Chapter 6. Detect). Establishment likelihood maps can be used in combination with surveil-
lance data (i.e. surveillance sensitivity and effort) to infer likelihoods of threat absence that 
explicitly account for the geographic barriers faced by threats in establishing at a location. 
Likelihoods of absence can be estimated for locations where surveillance occurs, but also for 
locations without surveillance to make inferences about absence at regional or national scales 
(see Chapter 6. Detect).

Initialising spread models

Maps of establishment likelihood can be used to add further realism to spread models for 
potential exotic threats. Spread models are initialised based on a known incursion point or 
the location of a known established population (Bradhurst et al. 2021). Initial incursions 
may be simulated at random across a region of interest, or be specified to occur at a par-
ticular location of interest perceived to be at high risk of establishment. Likelihood maps 
that account for the geographic barriers to establishment (namely, propagule pressure and 
suitability of biotic and abiotic environments) provide a coherent and transparent method for 
simulating initial establishment events that seed subsequent spread events. By simulating 
both the introduction and subsequent spread of a threat, the costs and benefits associated 
with different pre-border, border, and post-border management strategies can be assessed, 
ultimately allowing decision-makers to better anticipate and proactively manage future 
incursions (Bradhurst et al. 2021).

Developing threat risk maps

Establishment likelihood maps are not themselves measures of risk. However, when coupled 
with spatial estimates of the economic, environmental, and societal/cultural consequences 
of a threat (see Chapter 3. Anticipate), maps of establishment likelihood can be used to pro-
duce risk maps. Risk maps can inform where to conduct surveillance or control measures to 
minimise risk, for example in areas that exhibit both high likelihoods and consequences of 
establishment. Risk maps can also be used to prioritise locations for risk mitigation activities, 
especially those associated with proactive asset protection (see Chapter 7. Prepare, Respond, 
and Recover).
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of spread (e.g. imported goods, people, wind) from areas of known establishment to locations of 
interest (Camac, Baumgartner, Garms, et al. 2021; Tingley et al. 2018).

The second commonly used approach is to construct species distribution models (SDMs) that 
approximate the spatial distribution of suitable environment needed for a threat to establish and per-
sist. SDMs can be parameterised using data on a threat’s known physiological tolerances (e.g. tem-
perature tolerances; Kearney et al. 2008), occurrence records from its global or native range (Phillips, 
Anderson, and Schapire 2006), or a combination of the two (Kriticos et al. 2017). For invasive spe-
cies, SDMs commonly predict climate suitability as a function of global climatic variables under the 
assumption that climate is the primary driver limiting a threat’s potential geographic distribution.

Despite both pathway analyses and SDMs providing partial (and complementary) information 
on the barriers to establishment, there have been few attempts to integrate these two model types in 
biosecurity. Studies that have attempted to link pathway likelihoods with estimates of environmental 
suitability are often geographically restricted to points of entry (e.g. ports) and do not make infer-
ences about relative likelihoods of establishment beyond these locations (e.g. Tingley et al. 2018).

In this chapter, we outline a general framework for estimating the geographic establishment 
potential of exotic threats using data types available in most countries. We provide practical guid-
ance on how to (1) distribute pathway risk beyond points of entry using various “rules of thumb” and 
(2) estimate abiotic and biotic suitability for a threat. We illustrate this mapping framework using a 
case study of the oriental fruit fly (Bactrocera dorsalis) potentially establishing in Australia.

DEVELOPING MAPS OF ESTABLISHMENT LIKELIHOOD

Neither pathway analyses nor SDMs estimate the establishment potential (or establishment likeli-
hood) of a threat. This is because the establishment potential of an exotic threat is governed by three 
spatial constraints (Figure 14.1), where each must be met for establishment to occur:

1. Can the threat reach the location of interest (i.e. propagule pressure)?
2. Are abiotic conditions suitable (e.g. climate suitability)?
3. Are biotic conditions suitable (e.g. presence of host or food)?

While pathway models inform the likelihood of a species arriving at a location (i.e. propagule pres-
sure), they rarely account for abiotic suitability (e.g. climate) or biotic suitability (e.g. presence of hosts 

FIGURE 14.1 The three main elements governing the likelihood of establishment of exotic species in the 
introduced region. (Adapted from Catford, Jansson, and Nilsson 2009).
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or specific vegetation types). While SDMs can approximate climate suitability and to a lesser degree 
biotic suitability (if relevant predictors are available), they do not account for propagule pressure.

In the following sections, we provide overviews of each of the three barriers to threat establish-
ment (Figure 14.1) and how they can be estimated using commonly available data and methods. 
Once estimated, the product (i.e. multiplication) of these three likelihoods give the probability of 
establishment conditioned on the three barriers.

Estimating ProPagulE PrEssurE

Most contemporary introductions of exotic threats have been facilitated by the movement of people 
and goods across continents and international borders (Hulme 2021). To determine the likelihood 
of an exotic threat arriving at a location (i.e. a pathway analysis), biosecurity practitioners not only 
require an understanding of how the threat may spread across jurisdictional boundaries, but also an 
understanding of the main vectors for post-border spread within these regions.

A pathway analysis estimating the expected likelihood of a post-border arrival requires information 
on: (1) volumes of pathway carriers (e.g. passengers, cargo, or mail) from infected locations to the region 
of interest; (2) the likelihood a carrier contains a threat viable for establishment; (3) the likelihood con-
taminated carriers are not detected at the border; and (4) how contaminated carriers disperse post-border.

Pre-border regulation and border screening of people and imported goods entering a country 
provide data useful for approximating the probability of exotic threat arrival. Data obtained from 
border screening can be used to fit statistical models that estimate the rate at which a threat arrives 
at a country’s border or points of entry (see Chapter 5. Screen). If information is available regarding 
the viability of threats (e.g. estimated through transit survival likelihoods or average population size 
for detected contamination events) and the efficacy of border screening (e.g. by conducting endpoint 
surveys), statistical models can quantify the expected likelihood that viable introduction events 
bypass pre-border and border controls.

Estimates of the propagule pressure passing through various points of entry are then paired 
with information about how the carriers of the threat disperse post-border. For example, if a con-
taminated shipping container passes border screening at a port, it may be moved a considerable 
distance before being opened and unpacked, allowing the threat to escape into the wider landscape. 
Inadequate post-border monitoring of the movement of goods and people, alongside privacy con-
cerns about collecting these types of data, are currently the main barriers to conducting pathway 
analyses that incorporate post-border movements.

Despite the limited availability of post-border movement data, opportunities exist to use available 
data to approximate the post-border dispersal of threats. Entry pathways are diverse, but in most 
cases are related to either human movement or human activities. Depending on the introduction path-
way and the availability of national datasets, post-border movement of invasive species and diseases 
can be approximated in a variety of ways. For example, it can be assumed that international tourists 
entering a country will concentrate around areas of high tourist accommodation (at least initially) 
or that returning residents or international mail will distribute throughout a country as a function of 
human population density or where commerce activity is greatest. Most imported goods (e.g. food, 
nursery stock, or vehicles) can be assumed to be destined for areas of higher human population den-
sity. Post-border distribution of other goods (e.g. farm equipment and fertiliser) can be approximated 
by coupling land use type with measures of agricultural intensity (e.g. fertiliser usage statistics, farm 
numbers). There is evidence to support such assumptions, with studies commonly finding land use, 
road density, and human population density to be strongly correlated with first detections of exotic 
threats even when correcting for potential survey bias (e.g. Dodd et al. 2016).

Estimating abiotic suitability

Abiotic barriers limiting a species’ potential distribution are diverse in nature and scale and can 
include climate, disturbance regimes, and terrain attributes. At large geographic scales (e.g. global or 
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continental), the potential distribution of a species is thought to be governed by climate (Araújo and 
Rozenfeld 2014). The last several decades have seen the development of global databases of climate 
and biological data as well as a vast range of statistical and mechanistic SDMs. In invasive species 
management, SDMs are commonly parameterised using global climatic variables (the most read-
ily available global environmental data), and thus, are sometimes referred to as “climate suitability 
models”.1 These models have become a popular tool in biosecurity for quantifying the potential area 
of occupancy, which in turn can inform threat prioritization (McGeoch et al. 2016), post-border 
surveillance design (Camac, Baumgartner, Hester, et al. 2021), and estimates of expected economic 
impacts (Dodd, Baumgartner, and Kompas 2021; Dodd et al. 2020).

Many biosecurity agencies and associated research institutions actively invest in some form of 
invasive species climate suitability modelling, whether via initiatives such as the European Union’s 
Pratique risk assessment program, the development of cloud computing systems such as Biosecurity 
Commons (Biosecurity Commons 2022), the development of proprietary software (e.g. CSIRO’s 
CLIMEX; Kriticos et al. 2016), or governmental platforms such as the United States’s NAPPFAST 
(Magarey et al. 2007) or Australia’s CLIMATE/CLIMATCH (ABARES 2020; Climatch 2019).

Despite a vast number of SDM methods (and diverse opinions on how to use them), there remains 
no clear evidence of a single best approach for predicting invasive species’ potential distribution 
(Barry et al. 2015). Irrespective of the approach chosen to predict climatic suitability for a species, 
a wealth of subjective decisions and assumptions are made along the model building process, from 
data sourcing and cleaning to model development and validation. Subjective or arbitrary decisions 
can lead to a wide variety of potential suitability predictions for a single species, even when the 
modelling algorithm is held constant (Camac, Baumgartner, Hester, et al. 2021).

In the following sections, we describe the main steps required for biosecurity practitioners to 
develop and use SDMs (Figure 14.2).

Data Sourcing
Literature Review
When considering whether to build or reproduce an SDM, the first step should be to conduct a short 
review of the grey literature (national and international governmental reports) and peer-reviewed lit-
erature. The literature review should summarise details associated with physiological climate toler-
ances, existing SDMs, required hosts, and any distributional data reported in the literature. A good 
place to start a literature review is to examine the Invasive Species Compendium maintained by the 
Centre for Agriculture and Bioscience International (CABI 2023). The compendium contains data 
summarising threats’ biology, distribution, spread pathways, and associated information sources.

Occurrence Records
Ideally, SDMs should be based on occurrence datasets including both presence and absence locali-
ties (i.e. presence-absence methods) or abundance data. Since these are rarely available globally, 
the majority of SDMs are built using only presence localities (presence-only methods) or by com-
paring presence locations to a random sample from all available locations (presence-background 
methods).

In recent years, publicly available occurrence databases have been pivotal in driving the popu-
larity and accessibility of presence-only/presence-background SDM methods. At the global scale, 
the most comprehensive dataset is the Global Biodiversity Information Facility (GBIF 2023). The 
data contained within GBIF can be used in different modelling frameworks for either parameteris-
ing models or for validating them. Species-specific databases or other expert-curated datasets are 
another valuable source of occurrence information. These databases are typically compiled and 
verified by experts and are thus considered highly reliable. In many cases, these data are already 
integrated into GBIF, however, this is not always the case. As such, it is important that searches are 
made for such speciality databases.
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Physiological Data
Physiological data that may be incorporated into process-based SDMs are generally derived from 
controlled laboratory experiments published in the peer-reviewed literature and in academic theses. 
Several demographic and physiological databases have also been published to simplify parametrisa-
tion of process-based models, including:

• GlobTherm: A database that includes thermal tolerance metrics for 2,133 species of multicel-
lular algae, plants, fungi, and animals, extracted from published studies (Bennett et al. 2018).

• AmP: A database of referenced data on animal energetics and parameter values of models based 
on Dynamic Energy Budget (DEB) theory for over 1,000 animal species (Marques et al. 2018).

• COMPADRE: A database of more than 5,500 population matrix models (and ancillary 
information) for more than 600 plant species worldwide (Salguero-Gómez et al. 2015).

• COMADRE: A database of more than 1,625 population matrix models (and ancillary 
information) for more than 340 animal species worldwide (Salguero-Gómez et al. 2016).

Climatic Data
Common global climate databases include:

• WorldClim (Fick and Hijmans 2017; WorldClim 2023),
• Climate Research Unit (CRU 2023; Harris et al. 2014),
• CliMond (CliMond 2014; Kriticos et al. 2012), and
• CHELSA (CHELSA 2023; Karger et al. 2017).

Each dataset contains different suites of long-term averaged climatic variables, and estimates 
long-term climatic averages across the earth using different data sources, interpolation algo-
rithms, and temporal periods. It is therefore important for the user to carefully select the vari-
ables (and dataset) that are likely to be most relevant to the threat of interest.

Non-Climatic Abiotic Data
Non-climatic variables (e.g. land use, and disturbance patterns) also play an important role in gov-
erning a species’ potential distribution. However, such information is generally not available at 
either the spatial extent or resolution required to parametrise SDMs. Where such information does 
exist (e.g. land use layers), it is often based on image classification algorithms from global satellite 
imagery. Consequently, such data are often coarse (either in terms of spatial resolution or categori-
sation), and thus, may have limited utility in SDM. Over time, the quantity, quality and accessibility 
of these datasets will undoubtedly improve.

Alternatives for Data-Poor Threats
When there is insufficient biological or distributional data for a given threat, there are three options to 
estimate relevant physiological tolerances or responses to climatic factors: (1) collate data on a threat 
with similar phylogeny or similar biological, behavioural, or physiological traits (Morales-Castilla 
et al. 2017); (2) use a trait-based SDM (e.g. Morin and Lechowicz 2008; Pollock, Morris, and Vesk 
2012); or (3) use an expert elicitation framework (e.g. IDEA protocol; Hemming et al. 2018).

Data Cleaning
Occurrence Data
Species occurrence records derived from online databases (e.g. GBIF) are a valuable resource for 
parametrising and validating SDMs. However, issues with data quality such as errors in georefer-
encing, taxonomy, temporal periods, irrelevant records (e.g. fossil records, cultivated plant speci-
mens, and zoo animals), and incomplete metadata can introduce significant biases in model fitting 
and validation (Maldonado et al. 2015). A summary of common errors found in occurrence data-
bases can be found in Table 14.1.
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Standardised tools for cleaning large-scale biodiversity databases include the R package 
CoordinateCleaner (Zizka et al. 2019), which identifies records from cultivated sources as well as 
geographic and temporal errors commonly found in biological databases (Table 14.1). Another use-
ful tool is the R package taxize, which helps deal with taxonomic issues such as spelling mistakes, 
synonyms, or obsolete taxonomy (Boyle et al. 2022; Chamberlain and Szöcs 2013).

Once data have been cleaned, it is critical to remove records that are likely to be transient in 
nature (i.e. unlikely to be associated with a persistent population). This is because biosecurity appli-
cations typically focus on delimiting the area where a threat could establish and spread. CABI 
(https://www.cabidigitallibrary.org/product/qi) is an example of an expert- verified database that  
contains the known establishment status of threats at the country or provenance scale. Where appro-
priate resources are available, all records should be scrutinised by experts in the relevant geographic 
area to verify whether they are likely to be records of established populations, and if not, they 
should be removed prior to model development or validation.

Physiological Data
Experimental physiological data suffer from two primary concerns: whether the experimental con-
ditions are transferable to the natural world and whether the individuals used are representative of 
variability within a species (Briscoe et al. 2019). Both questions are difficult to answer, especially 
the latter, where intra-specific variability is almost never known. By documenting the experimen-
tal approach, the number of individuals used, where they were sourced, and the number of popula-
tions sampled, the modeller and consulted experts have the required information to make informed 
decisions regarding both the representativeness and transferability of experimental findings.

It is also important to record the uncertainty around any experiment-derived physiological 
responses to allow for the propagation of uncertainty throughout the modelling process. Ultimately, 
this manifests itself in a range of possible distribution maps, ranging from best to worse case sce-
narios. It is also important to document physiological processes (e.g. factors governing reproductive 

TABLE 14.1
Common Errors in Occurrence Databases.
Geo-referencing errors

• Incorrect habitat (marine or terrestrial)

• Coordinates and country mismatches

• Switched or equal latitude and longitude

• Records on country or province centroids

• Records based on rasterised collections

• Records with high spatial uncertainty or strong decimal rounding
• Coordinates entered as (0, 0)

Taxonomic errors
• Misidentifications

• Obsolete or incorrect taxonomy

• Incorrect spelling

Temporal errors
• Incorrect or missing dates

• Records not within climate temporal period

Irrelevant records
• Records from zoos, botanical gardens and museums

• Fossil records

• Migratory records

• Border interceptions

• Records from less reliable sources (e.g. iNaturalist)

• Duplicate records
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maturity or diapause) that lack empirical estimates. Documenting these knowledge gaps high-
lights areas for future research and provides greater context for the decisions made during model 
development.

Model Development
There remains no clear evidence of a single, best approach for predicting an invasive species’ 
potential distribution (Barry et al. 2015). To determine which approach performs consistently well 
requires an understanding of models’ ability to predict the potential invasive distribution of a spe-
cies, which for practical purposes is unknowable (Elith 2017). As such, modellers have mostly eval-
uated methods based on their predictive performance when predicting to current distribution data 
(Sequeira et al. 2018, Yates et al. 2018), but these performance metrics do not explicitly examine 
performance with respect to the true purpose of these models—their ability to predict the potential, 
currently unoccupied distribution of a species.

Accurate prediction in the region where the model was fitted does not guarantee accurate pre-
diction outside this range (Elith 2017; Fourcade, Besnard, and Secondi 2018). To examine a mod-
el’s transferability from one region to another, various cross-validation approaches have been used. 
One commonly used approach is to parametrise a model based on native-range occurrences and 
use it to predict to the observed invasive region (Yates et al. 2018). This approach is also fraught 
with problems because the distributional data in the native or invaded range may not be a true 
indication of a species’ ability to persist under environmental conditions not currently occupied 
(Elith 2017; Elith, Kearney, and Phillips 2010). As with all modelling, while decisions about the 
most useful method can be informed by existing knowledge, there remains ambiguity in the final 
choice of model to predict an unobserved event.

Broadly, SDMs can be classified as either process-based models or correlative models. Determining 
which model to use is ultimately dependent on data availability, tolerance to the assumptions made, 
and the decision context (Elith 2017; Guillera-Arroita et al. 2015).

Correlative Models
Correlative SDMs exploit the statistical association between spatial environmental data and occur-
rence records to implicitly capture biological processes limiting the distribution of the species. 
Irrespective of which correlative approach is used, an “equilibrium assumption” applies—that is, 
that a species is in equilibrium with their environment (i.e. the species has had the opportunity to 
establish in all suitable areas within the model-fitting region). A vast range of correlative methods 
can be used to predict the potential distribution of a species or disease. These methods fall into four 
categories:

• Presence-only models commonly estimate a species’ potential distribution in two ways: 
(1) using occurrence records to delimit the climatic range in which a species may persist 
(e.g. envelope methods such as BIOCLIM, Booth et al. 2014; and range bagging, Drake 
2015); (2) by calculating climatic similarity relative to the climate of known occurrence 
locations (CLIMATCH; ABARES 2020, CLIMEX; Kriticos et al. 2016). The primary 
appeal of presence-only models is that they use the most commonly available type of 
data (presence records) without additional assumptions and decisions associated with 
other methods (see below). However, presence-only models can be highly sensitive to 
outliers (e.g. when delimiting climatic ranges) and, like all correlative methods, to sam-
pling biases (i.e. some sites are more likely to be sampled than others; Elith 2017).

• Presence-background models derive suitability scores from the frequencies of surveyed 
occurrences (i.e. positive cases) relative to non-positive cases. The meaning of non-pos-
itive cases can vary in important ways (see Box 14.2). For some popular methods, such 
as Maxent (Phillips et al. 2006), the non-positive case is commonly referred to as the 
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background (i.e. a set of points that randomly sample the landscape or locations available, 
irrespective of whether a species is present or not).

• Presence-pseudo-absence models treat the non-positive cases as implied absences or 
pseudo-absences (e.g. Genetic Algorithm for Rule-Set Prediction; GARP). These implied 
absences are either placed (1) anywhere except where presences occur or (2) in geographic 
or environmental zones considered to be unlikely to contain the species of interest (Elith 
2017). The peer-reviewed literature contains several suggestions on how to choose loca-
tions for pseudo-absences or define reliable absences for presence-only data (e.g. Le Maitre, 
Thuiller, and Schonegevel 2008; Lobo, Jiménez-Valverde, and Hortal 2010). Relative to the 
presence-background approach, this method requires additional subjective decisions about 
both the position and number of pseudo-absences and is generally perceived as a less rigor-
ous statistical framework (Renner et al. 2015).

• Presence-absence models derive suitability scores from relative frequencies of surveyed 
occurrences and absences in different environmental conditions. Presence-absence models 
are the ideal correlative model because they can more readily account for imperfect detec-
tion and survey effort while also removing the need to arbitrarily select background points 
(Guillera-Arroita et al. 2015; Lahoz-Monfort, Guillera-Arroita, and Wintle 2014). Unlike 
other methods, they can be used to estimate true probabilities of presence as opposed 
to relative probabilities (Guillera-Arroita et al. 2015). If the required data are available, 
presence-absence models should always be preferred over other correlative approaches. In 
practice, such data are rarely available at the geographic resolution and extent required to 
estimate the potential distribution of an invasive species and their use in invasive species 
management is limited (Elith and Leathwick 2009).

BOX 14.2. CHALLENGES AND ISSUES IN USING 
CORRELATIVE MODELS FOR INVASIVE SPECIES

Correlative methods that do not utilise data on absences (i.e. presence-only, presence- 
background, and presence-pseudoabsence models) do not estimate true probabilities of 
occurrence, as this requires knowing the true prevalence of the modelled organism (Guillera-
Arroita et al. 2015). Rather, these correlative models estimate relative probabilities that are 
commonly assumed to be proportional to the true probabilities. When models are fitted for 
multiple species, direct comparisons can be made between their general patterns of predictions 
(e.g. which areas are predicted to have high vs. low suitability) but not between their predicted 
suitability scores. In other words, a suitability score of 0.9 for one species, may not be the same 
as a 0.9 for another species.

Presence-background and presence-pseudoabsence models rely on additional subjective 
decisions about the extent, distribution, and number of background locations or pseudo-ab-
sences. The impacts of these decisions are often underappreciated, despite evidence highlight-
ing how different arbitrary modelling decisions and assumptions can lead to substantial differ-
ences in model predictions and interpretation (Phillips et al. 2009; Syfert, Smith, and Coomes 
2013; Warton and Shepherd 2010).

Ideally, for presence-background models, background points should characterise the range 
of environments to which the species of interest could have dispersed and should exhibit the 
same pattern of survey bias as exists in the occurrence records. In practice, defining the extent 
of potential dispersal is challenging, especially for invasive species with actively expand-
ing ranges (VanDerWal et al. 2009). To reduce the impact of such complications associated 
with modelling species with expanding invasive ranges, presence-background models often 
restrict the species’ occurrence records to the native range. This decision also simplifies the  
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Process-Based Models
Process-based (mechanistic) SDMs are models that explicitly incorporate biological processes that 
limit distributions. These models range in complexity from simple climatic threshold mapping to 
complicated biophysical models such as NicheMapR (Kearney and Porter 2017). The commercial 
software CLIMEX (Kriticos et al. 2016) can also incorporate processes when it is parametrised 
using experimental data.

The primary advantage of process-based models is that they attempt to model the causal 
relationships between climate and various vital attributes such as survival, growth, and fecun-
dity. They are therefore assumed to be superior at predicting a species’ fundamental distribution 
(Elith 2017; Kearney and Porter 2009), though limited evidence supports this assumption (Uribe-
Rivera et al. 2022). The reliability of process-based models is strongly dependent on whether they 
account for the fundamental processes delimiting a species’ fundamental niche and whether the 
empirically derived parameters accurately reflect both the responses to climate and intra-specific 
variability in these responses (Kearney and Porter 2009). In most cases, the climatic factors gov-
erning a species’ potential distribution are unknown or unknowable, and the resources required to 

process of background sampling by limiting the choice of sample points to the extent of the 
species’ native range. Yet, discarding records beyond the species’ native range will typically 
reduce the sample size and may result in potentially unreliable extrapolation when predicting 
climatic suitability across the species’ exotic range (Broennimann and Guisan 2008). For this 
reason, modellers may be hesitant to discard occurrence records in the invaded range.

When SDMs use records from both the native and the exotic range, different approaches 
can be used to select background points. The first approach is based on constructing convex 
hulls around the occurrence records and sampling the background points from within the 
hulls. The second approach is to sample background points from within a radius from each oc-
currence record; the size of the radius being defined by the user, usually based on the species’ 
dispersal ability (VanDerWal et al. 2009). The third approach involves sampling background 
points from a pre-defined set of bioclimatic zones believed to provide suitable environmental 
conditions for the modelled species.

Occurrence data are often biased towards areas with high population and infrastructure 
density. To avoid confusion between patterns of survey effort and patterns of climatic suitabil-
ity, survey bias needs to be accounted for in the SDMs. A simple method to do this is called 
target-group sampling. This method uses occurrence records from a broad set of species for 
which sampling bias is likely to be similar to that for the species of interest, due to similar be-
haviour by those reporting occurrences (Phillips et al. 2009). The sites for all records from all 
species in the target group then make up the full set of available information on survey effort 
and can be directly used as background data within the region of interest. A second method 
extends the target-group approach, using the target-group occurrences to construct an interpo-
lated bias grid that informs the appropriate distribution and intensity of background samples. 
Alternatively, data describing factors likely to explain geographic survey bias (e.g. distance 
from roads and cities) can be used directly to calculate such bias grids (Warton, Renner, and 
Ramp 2013) or can be combined in regression models to estimate them.

While the above methods can efficiently deal with sampling bias, they are not commonly 
applied in invasive species modelling. This is due partly to lack of technical expertise, and 
partly to the broad spatial scale of modelling (across countries) that prevents the inclusion of 
relevant factors at smaller scales (e.g. distance to roads). However, sampling bias can substan-
tially challenge predictions of climatic suitability for invasive species based on presence-only 
data, and spatial variation in survey effort should be addressed in these models where feasible.
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obtain such data (i.e. lab experiments and field validation), coupled with time and in-house tech-
nical skills required to build these models, currently make them infeasible for most biosecurity 
agencies (Briscoe et al. 2019).

Model Settings and Complexity
Correlative methods used to fit SDMs allow the user to fine-tune a variety of settings to achieve the 
desired model fit and interpretation. Such settings include, among others, the selection and number 
of background points, the complexity of covariate response curves (i.e. the relationship between the 
value of an environmental variable, e.g. annual mean temperature, and suitability for the modelled 
species) and the type of model outputs that can be extracted.

Default settings for SDMs methods are not always appropriate. For example, MAXENT back-
ground points are, by default, randomly sampled across the entire extent of the climatic data sup-
plied by the user. Background points should typically be restricted to regions that the species has 
had an opportunity to reach and occupy (VanDerWal et al. 2009). Thus, when determining appro-
priate model settings, the species and the problem at hand should always be considered.

Model predictions can be affected by model complexity, which can strongly influence the trans-
ferability of the model to conditions outside the range of environmental conditions used to fit the 
model. Highly complex models (i.e. those with many predictors and interactions) are susceptible 
to over-fitting to noise and peculiarities of the model-fitting data, especially when the number of 
occurrence records is low (Breiner et al. 2015). Such models may not generalise well, limiting their 
ability to accurately predict climatic suitability in regions outside the model-fitting range. This issue 
can be minimised by optimising a model such that it more accurately predicts data not included in 
model-fitting.

This can be achieved through the process of cross-validation, whereby the occurrence dataset 
is split into model-fitting and model-testing subsets, and average performance over the replicate 
models is evaluated.2 This process can be repeated for each of a set of competing models that use 
different predictors and varying complexity, to identify models that predict well and exhibit high 
transferability. In cases when cross-validation is not feasible (e.g. due to small sample size), opting 
for simpler models is recommended—with few predictor variables, and few or no interactive terms. 
Simple models retain greater tractability and are likely to be more easily generalised to new datasets 
(Merow, Smith, and Silander Jr 2013).

Covariate Uncertainty
Accurately predicting abiotic suitability for species through correlative models requires knowledge 
of the causal predictors (covariates) that govern the species’ niche. However, selection of model pre-
dictors remains a significant challenge (Barry et al. 2015). There are no obvious “best” predictive 
variables, and users tend to rely on variables provided in readily available datasets (e.g. WorldClim). 
When the choice of predictors is unguided, we recommend that a practitioner ensemble (i.e. model 
average) a range of simple (2–3 parameter) competing models such that overfitting is less likely and 
model/covariate uncertainty is encapsulated in the final suitability output. Ensembles of such simple 
models have shown great promise in predicting distributions of rare (Breiner et al. 2015) and non-
native species (Hill et al. 2022).

Model Validation
Irrespective of whether a model is process-based or correlative, the outputs should be validated 
against independent datasets (i.e. occurrence data not used to parametrise the model). For pro-
cess-based models, validation is straightforward and involves overlaying localities of known 
establishments onto maps of predicted suitability and then examining whether patterns broadly 
match (Kearney et al. 2008; Kriticos et al. 2017). However, validation of correlative SDMs for 
invasive species faces a variety of difficulties. Validation tools for correlative models range from 
examination of the model residuals to formal statistical summaries (e.g. area under the receiver 
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operating curve AUC, kappa, explained deviance) that examine the model’s ability to accurately 
predict the fitted, or ideally independent, data (Elith 2017). Unfortunately, the application of these 
statistical evaluations to invasive species modelling is not particularly appropriate (Elith 2017). 
This is because the objective of invasive species SDMs is to predict a species’ potential (i.e. unob-
served) distribution, not just its known range, which is what these statistical measures inform.

To overcome these issues, some authors have fitted the invasive species SDMs using occurrence 
records from the native range only, and then validated the predictions by either using data in the 
same region or by using data from the known invaded range. While there is some support for the 
former validation approach (Barry et al. 2015), using the known invaded region for validation is 
dependent on: (1) whether limiting factors for the species’ distribution in the native and invaded 
ranges are comparable (i.e. whether the model is indeed transferrable), and (2) whether occurrences 
in the invaded range are representative of persistence.

Due to the difficulties in evaluating and validating correlative invasive distribution models, we 
suggest that:

• Models are first assessed for their ecological relevance through: expert knowledge; exam-
ining functional response curves; sourcing additional data including physiological infor-
mation (e.g. temperature tolerances).

• Model predictive ability in the model-fitting region is assessed (e.g. by using AUC) if the 
method involves estimating response curves (e.g. non-ensemble models).

• Regions of novel environmental space (i.e. environmental conditions not found in the 
model-fitting region) are examined, especially for suitability maps derived from a correla-
tive model that estimates response curves.

• Model outputs and associated model documentation (i.e. how the model was parametrised, 
from data sourcing through to validation) be independently assessed by both technical and 
biological experts. Doing so will ensure key aspects of the species’ biology are incorpo-
rated and that models are appropriately implemented.

Model Utility for Decision Making
To ensure the appropriate use of a model, fundamental details must be clearly articulated and sum-
marised for biosecurity decision-makers. It is critically important to summarise what data were used, 
how the model was developed, assumptions that were made, and how one should interpret and can 
use the output. In essence, the documentation should account for all decisions made in Figure 14.2.

The type of model will have important implications for how it can be used to inform biosecu-
rity decision-making. Correlative models are commonly used to inform a variety of biosecurity 
decisions. However, while these models may be appropriate in some decision contexts (e.g. spatial 
prioritisation of surveillance) they may be inappropriate in others. Guillera-Arroita et al. (2015) 
highlighted that using presence-background models such as Maxent to inform multi-threat pri-
oritisation is often inappropriate because outputs are relative probabilities that are not comparable 
across species. For a comprehensive guide as to whether relative likelihoods or ranked scores can 
be used for various biosecurity decision contexts, we recommend readers consult Guillera-Arroita 
et al. (2015).

It is also common practice to convert maps of continuous predictions (e.g. true and relative prob-
abilities) into a binary (suitable/not suitable) or categorical (high/moderate/low) heat map (Guillera-
Arroita et al. 2015). While this is a simple way to communicate to the broader public, we strongly 
advise against discretising model outputs in biosecurity decision contexts. This is because the deci-
sion of where a particular threshold should be is often highly subjective and dependent on both 
the expected consequences of an invasive species outbreak and the tolerance for incorrectly label-
ling a suitable location as unsuitable. Discretising model outputs rarely improves decision-making 
because it degrades the information supplied by the model (Guillera-Arroita et al. 2015).
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Estimating biotic suitability

Biotic barriers such as various habitat requirements (e.g. vegetation type, structure, food source) and 
inter-specific relationships (e.g. facilitative, competitive, or predatory) can have significant impacts 
on species’ persistence, and consequently, their ability to establish in new locations. While such 
information is sometimes incorporated in SDMs, it is rarely done so for invasive species. This is 
because: (1) methods best suited to modelling the potential distribution of an invasive species are 
likely those that estimate the fundamental niche; (2) biotic influences are considered to act on much 
finer spatial scales than those at which models are commonly applied; (3) biotic predictors are often 
confounded with climatic model predictors; and (4) biotic factors vary substantially across species 
and rarely are there relevant standardised global datasets that can be used to approximate such effects 
(Elith 2017). While data describing global distributions of major biomes and vegetation types are 
available, their classification systems are typically too broad to meaningfully estimate biotic effects 
for most species (Brown et al. 2022). Biotic relationships are incredibly complex, and these relation-
ships are mostly unknown in novel environments where new habitats, predators, facilitators, and food 
sources may play a significant role in species’ establishment and long-term persistence.

Despite these challenges in statistically estimating biotic impacts on species’ distributions, bios-
ecurity practitioners and governments often use a variety of datasets to inform the availability of 
suitable habitat or food sources required by potential threats in their regions of interest. These 
datasets are often derived from direct investment by government departments, and consequently, 
are country- or region-specific. As these spatial data are not standardised for international use, they 
are typically developed on finer scales and can include classification systems containing hundreds 
of classes. Frequently used datasets include highly detailed distributions of land use, vegetation 
types, known vectors or host material, or estimates of vegetation cover or greenness. For example, 
the Australian government has invested heavily in the development of a national 50m land use 
raster containing over 100 land use types that span conservation, agriculture (often identifying the 
production type), residential/urban, and water land use types (ABARES 2019), with similar datasets 
available in many other countries.

DEVELOPING A PRAGMATIC ESTABLISHMENT LIKELIHOOD 
MAP FOR ORIENTAL FRUIT FLY IN AUSTRALIA

Here we provide a pragmatic example of developing an establishment likelihood map for the orien-
tal fruit fly in Australia that explicitly encapsulates the three barriers to establishment (i.e. propa-
gule pressure, abiotic suitability, and biotic suitability).

The oriental fruit fly, Bactrocera dorsalis, is a fruit fly native to Asia that has spread and estab-
lished in over 65 countries, including parts of America, Oceania, and most of sub-Saharan Africa 
(Figure 14.3). The species poses a significant threat to many horticultural industries worldwide with 
over 300 different types of fruit and vegetables susceptible (Vargas, Piñero, and Leblanc 2015).

Where oriental fruit fly has yet to establish, countries have implemented networks of pheromone 
traps with the dual purpose of early detection of incursions and providing evidence to trading part-
ners that the threat is absent (see Chapter 6. Detect). However, the effectiveness of such surveillance 
networks at detecting new incursions is ultimately dependent on whether traps are positioned in 
locations where the likelihood of incursion and establishment is greatest, underscoring the rel-
evance and value of maps of establishment likelihood.

Estimating ProPagulE PrEssurE

The first step in developing an oriental fruit fly establishment likelihood map is to determine the 
main pathways through which the species may enter the country, and the likelihoods of it (1) evad-
ing border screening procedures and (2) remaining viable for an establishment event to occur. Many 
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approaches can be used to estimate these likelihoods, including empirical methods that utilise bor-
der interception data, expert elicitation, or a combination of the two.

Here, we use a hypothetical example. Let us assume that oriental fruit fly can enter Australia 
via four main pathways: international tourists; residents returning from overseas; imported fruit 
and vegetables; and travellers from the Torres Strait Islands (located between Australia and Papua 
New Guinea) carrying contaminated fruit or vegetables into Cairns Airport. Let us also assume that 
estimates exist for annual likelihoods of one or more viable contamination events (i.e. a surviving 
population size capable of establishing) for each pathway (see Table 14.2).

TABLE 14.2
Hypothetical Likelihoods of Viable Contamination Entering Australia 
for Four Pathways of Entry of the Oriental Fruit Fly.

Pathway
Probability (Viable contamination | passes 

border inspection)

International tourists 0.01

Returning residents 0.005

Imported fruit and vegetables 0.001

Passengers from Torres Strait Islands to Cairns 0.05

Note: Here, probability (viable contamination | passes border inspection) refers to the  
conditional probability that (1) a leakage event occurs and (2) it is viable such that a 
post-border establishment event could occur.

FIGURE 14.3 Adult female oriental fruit fly, Bactrocera dorsalis (Hendel), laying eggs by inserting her 
ovipositor in a papaya. (Photograph by Scott Bauer, USDA.)
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People travelling from the Torres Strait Islands to mainland Australia via Cairns is the pathway 
with the highest probability (0.05), translating to a 5% chance of a viable contamination event 
bypassing border screening each year. This pathway has the highest likelihood, due to parts of the 
Torres Strait regularly experiencing incursions of oriental fruit fly that likely originate from Papua 
New Guinea, where the species has a persistent established population (Camac, Baumgartner, et al. 
2020). The second highest pathway likelihood is associated with international tourists, who may be 
less aware of Australia’s quarantine rules and are therefore more likely to bring in contaminated 
fruit relative to returning residents (0.01 vs. 0.005, respectively). Imported fruit and vegetables have 
a low likelihood of a viable contamination (0.001), because they are cold treated prior to export. 
Assuming pathways are independent, these likelihoods translate to a combined annual probability 
of approximately 6.5%3 that one or more viable leakage events occur in a year.

The next step is to determine how pathway contaminations are likely to disperse beyond points 
of entry into the wider landscape. Ideally, these post-border movements would be informed by 
empirical data; however, such data are rarely available at the required scale and resolution. It is 
often necessary to make informed assumptions about how pathway contaminations will disperse 
through geographic space using pre-existing data and probabilistic functions. Mathematically, this 
can be depicted as:

 Arrival Viable contamination| passes border inspection f i ki k k
( )( ) ( )= ×Pr Pr ,,  Eq. (14.1)

Here, i kArrivalPr( ) ,  is the expected probability a contaminant from pathway k arrives at location i. 
It is estimated as a function of the likelihood a contaminant passes border inspection multiplied by 

( ),f i k , a weighting function that describes the proportion of pathway units (e.g. people, containers, 
etc.) expected to arrive at location i. In the following sections we briefly describe some simple ways 
for formulating ( ),f i k , for the four pathways used in this hypothetical example.

Torres Strait Pathway
We assume that most passengers entering Cairns from the Torres Strait Islands are likely to be dis-
tributed as a function of population density within the city. We assume that 50% of passengers will 
remain within 10 km of the airport, which is positioned in close proximity to the city. We account 
for this by using a negative exponential distance-decay function, where the likelihood of a passenger 
dispersing to a location decreases with distance from airport, such that 50% of incoming passengers 
will be distributed within 10 km of the airport. As these individuals are likely to be staying with 
friends and relatives, we also weight this by the resident human population in each location based on 
national census data.

The weight (i.e. ( ),f i k  in Eq. 14.1) for this pathway can be specified as:

 Torres Strait arrival e Proportion of populationi

log
Distance

i
i( ) = ×

( )− ×



Pr

0.5
10  Eq. (14.2)

where the 0.5 within the log specifies the proportion of passengers dispersed within a particular dis-
tance from the airport, specified as the denominator. When mapped onto a raster grid, this weighted 
function results in the heat map shown in Figure 14.4.

Returning Residents and Imported Fruit and Vegetables
We assume that Australian citizens returning from overseas and imported fruit and vegetables will 
both be dispersed as a function of human population density derived from Australian census data. 
This acknowledges that (1) most returning residents will quickly return to their place of residence 
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irrespective of the distance from airport, and (2) imported goods will go where demand is greatest. 
As such we specify the weight, ( ), ,f i k  for this pathway as:

Returning resident arrival Imported food arrival Proportion of population
i i i( ) ( ) =Pr , Pr  Eq. (14.3)

When mapped onto a raster grid, this weighted function results in the heat map shown in Figure 14.5.

International Tourists
International tourists are not expected to travel significant distances in the days immediately fol-
lowing arrival (i.e. when the risk of a passenger carrying contaminated fruit or other goods is likely 
greatest). We will assume that 50% of passengers will disperse within 250 km from an international 
airport, and we assume they will congregate in areas with high densities of tourist accommodation. 
Here, we will use a similar approach as for the Torres Strait Islands pathway, whereby we assume a 
negative exponential decline with distance from international airports, weighted by the proportion 
of tourist rooms in a location (data derived from Camac, Dodd, et al. 2020):

 Tourist arrival e Proportion of tourist bedsi

log
Airport distance

i
i( ) = ×

( )− ×



Pr

0.5
250  Eq. (14.4)

Estimating Likelihoods of Arrival Across Pathways
Once the pathway-specific likelihoods have been distributed across the region of interest, we can 
then determine the probability of one or more viable contaminations (i.e. propagule pressure) arriv-
ing at location i across k pathways of interest:

 i

k

n

i k∏( )( ) ( )= − −
=

Arrival ArrivalPr 1 1 Pr
1

,  Eq. (14.5)

Where, i k( )ArrivalPr ,  is the likelihood a viable contamination from pathway k arrives at loca-
tion i (Figure 14.6).

FIGURE 14.4 Weights defining the post-entry distribution of contamination likelihood around Cairns (red point), 
on the hypothetical Torres Strait Island pathway. Shown are (a) the impact of distance on relative likelihood of 
oriental fruit fly arrival; and (b) the relative likelihood of arrival after accounting for human population density. 
Warmer colours signify higher arrival likelihoods/distance weights. Raster data were projected to the Australian 
Albers (EPSG: 3577) coordinate system and then aggregated from a 1 km to 5 km raster grid to aid visualisation.
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Estimating abiotic suitability

The potential distribution of the oriental fruit fly has been approximated using a variety of techniques, 
including CLIMEX (Stephens, Kriticos, and Leriche 2007), Maxent, and GARP (De Meyer et al. 
2010). While some broad similarities exist (e.g., Central Africa and northern parts of South America 
are highly suitable) substantial differences also exist among model predictions. Acknowledging the 
inherent uncertainty in both model and covariate selection, we opted to approximate the geographic 
distribution of suitable climate for the oriental fruit fly using a method known as range bagging 
(Drake 2015). Range bagging estimates the environmental limits of a species’ habitat by calculating 
convex hulls in environmental space, around environmental conditions at known occurrence loca-
tions. This process is then repeated using random subsets, of user-defined size, of both occurrence 
records as well as available environmental covariates (e.g. mean annual rainfall, mean annual tem-
perature, etc.). Suitability is then defined for each raster cell as the proportion of replicates for which  

FIGURE 14.5 Human population count (log10 scale). (Map derived from 2016 Australian Census data 
(Australian Bureau of Statistics 2017)). Warmer colours signify higher human population counts. Raster data 
were projected to the Australian Albers (EPSG: 3577) coordinate system and aggregated from a 1 km to 5 km 
raster grid to aid visualisation.
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the location is labelled as suitable (i.e. falls within the hull). For example, a suitability score of 0.1 would 
indicate that 10% of the estimated convex hulls deemed that particular location climatically suitable.

The approach has seen recent application to invasion biology and appears promising in the con-
text of biosecurity because no absences or background data are required (Camac, Baumgartner, 
Garms, et al. 2021, Camac, Baumgartner, Hester, et al. 2021, Camac, Baumgartner, et al. 2020, 
Camac, Dodd, et al. 2020). This in turn removes several subjective decisions required in the model-
ling process. The method may also reduce inaccuracies that can arise from projecting to novel envi-
ronmental conditions (i.e. environmental conditions outside the model-fitting data). This is because, 
unlike some other methods (e.g. Maxent, GLM, GAM), the method does not attempt to estimate 
response curves, but rather defines convex hull boundaries in environmental space based on known 
occurrences. Another major advantage of range bagging is that climatic suitability scores are com-
parable among species. Finally, range bagging also allows one to explicitly account for uncertainty 
in covariate selection by specifying low dimensionality (e.g. two dimensions) and allowing the 
algorithm to randomly select from among a suite of possible covariates—effectively resulting in an 
ensemble of potentially hundreds or thousands of competing models’ parameterisations.

FIGURE 14.6 The (log10) likelihood that one or more viable oriental fruit fly contaminations arrive across 
the four hypothetical pathways. Warmer colours signify higher arrival likelihoods. Raster data were projected 
to the Australian Albers (EPSG: 3577) coordinate system and aggregated from a 1 km to a 5 km raster grid 
to aid visualisation.
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Here, we used the range bagging algorithm with dimensionality set to two covariates used in each 
replicate, the number of bootstrapped models set to 100, and the proportion of occurrence records 
used per model set at 0.5. We used ensembles of “simple” two-dimensional models to minimise 
biases associated with model over-fitting and collinearity, and thus, maximise the model’s transfer-
ability into novel environments (Camac, Baumgartner, Hester, et al. 2021, Camac, Baumgartner, 
et al. 2020). Ensembles of small models, each with only two variables, have been shown to fre-
quently outperform standard SDM methods (Breiner et al. 2018). We allowed the algorithm to sam-
ple from all 19 WorldClim 2 (Fick and Hijmans 2017) bioclimatic parameters (i.e. BIO01 to BIO19) 
derived from the published 10 arc-minute (approximately 15 km resolution) raster layers.

To parameterise the range bagging models, we obtained global occurrence records for oriental 
fruit fly from the Global Biodiversity Information Facility (GBIF 2023) and supplemented these 
data with those collated by Hill, Gallardo, and Terblanche (2017). Acknowledging that such bio-
logical databases are susceptible to data quality issues (see Table 14.1), we cleaned these data using 
routines in the recently published CoordinateCleaner R package (Zizka et al. 2019).

We also removed duplicate records and thinned occurrence records to one point per 15 km (the 
resolution of the WorldClim version 2 climate data). Following this, we removed all records that 
occurred in countries lacking known established and persistent populations, based on CABI expert-
curated country-level distributional data.

Once all cleaning and cross-referencing was complete, the data were used with the range bagging 
method to approximate the geographic distribution of suitable average climate (Figures 14.7 and 14.8).

Estimating biotic suitability

To approximate the geographic distribution of suitable biotic environment within Australia, we 
used the Australian Land Use and Management Classification raster (ALUM version 8; ABARES 
2019) to define the presence and absence of fruit fly host material. Specifically, we created a 
binary raster whereby any 50 m2 grid cell containing commodities vulnerable to fruit fly (e.g. 
tree fruits, vine fruits, olives, citrus, vegetables, herbs, and shrub berries), as well as urban  

FIGURE 14.7 Estimated global climate suitability for the oriental fruit fly at the 10 arc-minute (approx. 
15 km) scale. Suitability is the proportion of ensembled convex hulls derived from range bagging that identify 
a location as climatically suitable across bootstrapped combinations of environmental variables. Blue dots 
signify occurrence records used in range bagging parameterisation. Warmer colours signify higher likeli-
hoods of climatic suitability.
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areas, was assumed to contain host material and assigned a value of 1. All grid cells lacking such 
land uses assumed to contain no fruit fly host material and were classified as 0. This binary raster 
was converted to a 1 km grid resolution by determining whether any of the aggregated grid cells 
contained host material.

The Normalised Difference Vegetation Index (NDVI) describes the amount of live green vegeta-
tion and therefore can be a good indicator of the amount of suitable habitat or food source. We com-
bined our binary host presence layer with normalised NDVI (scaled to the 0–1 range) by calculating 
the product of the two layers, thereby scaling host presence according to cell vegetation greenness 
(Figure 14.9). In effect, this means locations with no host material have a biotic suitability score of 
zero, and those with host material have a score conditioned on the amount of greenness at that loca-
tion (our crude measure of host abundance).

DEriving maPs of EstablishmEnt PotEntial

Now that we have produced three maps that encompass our belief about the probabilities of viable 
post-border arrivals and the suitability of the biotic and abiotic environments, we can estimate 

FIGURE 14.8 Estimated climate suitability in Australia for the oriental fruit fly. Suitability is the proportion 
of ensembled convex hulls derived from range bagging that identify a location as climatically suitable across 
bootstrapped combinations of environmental variables. Warmer colours signify higher climatic suitability. 
Raster data were projected to the Australian Albers (EPSG: 3577) coordinate system and resampled to a 5 km 
raster grid to aid visualisation.
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establishment potential (see Figure 14.1) by taking the product of the three maps, as shown in 
Figure 14.10.

The result of this product (of the three geographic barriers) is our pragmatic estimate of the like-
lihood one or more establishment events could occur at a given location in Australia (Figure 14.10). 
This map can then be used to inform biosecurity decision making.

FIGURE 14.9 Biotic suitability was calculated as the product of binary host presence (present vs. absent; 
blue indicates presence) and NDVI (an indicator of vegetation greenness; warm colours denote higher NDVI).

FIGURE 14.10 The product of the three geographic barriers to oriental fruit fly establishment can be used 
to approximate establishment potential (likelihood of establishment).
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IN A NUTSHELL

• Invasive species’ establishment potential is a function of three fundamental factors: (1) 
how likely it is to arrive at a location; (2) whether the climatic environment is suitable; and 
(3) whether suitable habitat or hosts exist. If there is no chance of arrival at a location, or if 
condition 2 and/or 3 are unmet, establishment cannot occur.

• Estimating establishment potential is critical for informing post-border surveillance, esti-
mating likelihoods of threat absence, simulating incursion, and spread scenarios, and 
threat prioritisation.

• Pathway analyses estimate likelihoods of arrival at different points of entry (e.g. ports) and 
SDMs are often used to predict an invasive species’ potential distribution.

• Practical and pragmatic approaches can be used to integrate outputs of SDMs and pathway 
models by linking them with commonly available spatial datasets and assumptions about 
post-border movements.

• Despite the limited availability of post-border movement data, opportunities exist to use 
existing data to approximate the post-border dispersal of threats.

NOTES

 1 SDMs are also commonly known as habitat suitability models, bioclimatic envelope models, and eco-
logical niche models, among other names.

 2 It is important to note that how well a model predicts the known distribution of a species may not be 
representative of the model’s ability to predict a species’ potential (i.e. unobserved) distribution.

 3 The conditional probability that one or more viable leakage events occur across pathways is esti-
mated as 1 minus the product of the probability that no viable contaminations occur in each pathway. 
Mathematically this is written as: 1 – ((1 – 0.01) × (1 – 0.005) × (1 – 0.001) × (1 – 0.05)) = 0.0651.
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