
André Platzer
Kristin Yvonne Rozier
Matteo Pradella
Matteo Rossi (Eds.)

26th International Symposium, FM 2024
Milan, Italy, September 9–13, 2024
Proceedings, Part I

Formal MethodsLN
CS

 1
49

33
Fo

rm
al

 M
et

ho
ds

Lecture Notes in Computer Science 14933

Formal Methods
Subline of Lecture Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK

Marie-Claude Gaudel, Université de Paris-Sud, France

Subline Advisory Board

Manfred Broy, TU Munich, Germany

Annabelle McIver, Macquarie University, Sydney, NSW, Australia

Peter Müller, ETH Zurich, Switzerland

Erik de Vink, Eindhoven University of Technology, The Netherlands

Pamela Zave, AT&T Laboratories Research, Bedminster, NJ, USA

Founding Editors

Gerhard Goos
Juris Hartmanis

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China

Bernhard Steffen , Germany
Moti Yung , USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://link.springer.com/bookseries/558

André Platzer • Kristin Yvonne Rozier •

Matteo Pradella • Matteo Rossi
Editors

Formal Methods
26th International Symposium, FM 2024
Milan, Italy, September 9–13, 2024
Proceedings, Part I

123

Editors
André Platzer
Karlsruhe Institute of Technology
Karlsruhe, Germany

Kristin Yvonne Rozier
Iowa State University
Ames, IA, USA

Matteo Pradella
Politecnico di Milano
Milan, Italy

Matteo Rossi
Politecnico di Milano
Milan, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-71161-9 ISBN 978-3-031-71162-6 (eBook)
https://doi.org/10.1007/978-3-031-71162-6

© The Editor(s) (if applicable) and The Author(s) 2025. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0001-7238-5710
https://orcid.org/0000-0002-6718-2828
https://orcid.org/0000-0003-3039-1084
https://orcid.org/0000-0002-9193-9560
https://doi.org/10.1007/978-3-031-71162-6
http://creativecommons.org/licenses/by/4.0/

Preface

These volumes contain the papers presented for publication at the 26th International
Symposium on Formal Methods (FM 2024), held in Milano, Italy, during September
9–13, 2024.

FM 2024 is the 26th event in the series of symposia organized by Formal Methods
Europe (FME), an independent association whose aim is to stimulate the use of, and
research on, formal methods for software development. The FM symposia have been
successful in bringing together participants from academia, industry, and governments
around a program of original papers on research and industrial experience, workshops,
tutorials, reports on tools, projects, and ongoing doctoral research. FM 2024 is both an
occasion to celebrate and a platform for enthusiastic researchers and practitioners from
a diversity of backgrounds to exchange their ideas and share their experiences.

In addition to the main research track, FM 2024 included an Embedded Systems
track, an Industry Day (I-Day) track, a Tutorial Paper track, a Journal First track, and a
Doctoral Symposium. Also, 5 conferences and 6 workshops were co-located with FM
2024.

FM 2024 featured keynotes by David Basin (ETH Zürich), Hadas Kress-Gazit
(Cornell University) and Marta Kwiatkowska (University of Oxford) with Byron Cook
(University College London and AWS) as joint speaker for I-Day and the co-located
conference on Formal Methods for Industrial Critical Systems (FMICS).

One main innovation of FM 2024 is the addition of a tutorial paper category.
Tutorial papers present ideas with a focus on pedagogy over technical advances. By
being written in a broadly-accessible way, tutorials clarify important ideas, bring new
researchers into the community, and serve as a bridge to practitioners.

With 219 submissions, FM 2024 received a record-breaking number of paper
submissions, which made it possible to select a particularly strong program. The main
FM 2024 track received 178 submissions (143 regular research submissions, 8 case
study submissions, 21 long tool paper submissions, 6 short tool demonstration sub-
missions). The special embedded systems track of FM 2024 received 17 embedded
submissions, the new tutorial paper track received 14 tutorial submissions, and the I-
Day track received 10 industry report submissions. All paper submissions complying
with the submission guidelines were reviewed by at least 3 reviewers, with a short
author feedback period for a subset of the submissions selected for clarification and
feedback by the 48 PC members. The main FM track accepted 44 papers (31 regular
research papers, 1 case study paper, 8 long tool papers, 4 short tool demonstration
papers) giving a 25% acceptance rate. The embedded systems track accepted 6 papers,
the tutorial paper track accepted 10 papers, and the I-day track accepted 6 papers (3
regular papers, 2 case study papers, 1 extended abstract). Finally, 5 papers were
selected for the Journal First track, and the Doctoral Symposium received 15 sub-
missions (neither the journal first track papers nor the doctoral symposium ones appear
in these proceedings).

FM 2024 invited the authors of all accepted papers to optionally submit an artifact
—i.e., any additional material such as software, data sets, log files, machine-checkable
proofs, etc., that substantiates the claims made in the paper—to the FM 2024 Artifact
Evaluation Committee (AEC). After a short quick-check phase three AEC members
reviewed each artifact in terms of consistency with and reproducibility of results
presented in the paper, completeness, documentation and ease of (re-)use, and avail-
ability in an online repository with a DOI. Based on these reviews, and strictly fol-
lowing the EAPLS guidelines for artifact badging,1 every artifact was awarded up to
two badges:

Available. Artifacts that are publicly archived in a permanent way with a DOI that
are in some way “relevant to” and “add value beyond the text in the article” are
awarded the available badge.
Functional. Artifacts that are documented (containing at least an inventory and
“sufficient description to enable the artifacts to be exercised”), consistent (i.e.,
“relevant to the associated paper, and significantly contribute to the generation of its
main results”), complete (“as far as possible”), and exercisable, receive the func-
tional badge.
Reusable. Functional and available artifacts that are “very carefully documented
and well-structured to the extent that reuse and repurposing is facilitated” receive
the reusable badge instead of the functional one.

Of the 45 submitted artifacts, 42 received the available badge, 18 were functional,
and 14 were awarded the (functional and) reusable badge.

We are exceedingly grateful to everyone involved in making FM 2024 a success.
We appreciate, in particular, the support by the FME board in all difficult decisions and
are grateful to all PC members, Artifact Evaluation Commitee members, and subre-
viewers for volunteering their time in reviewing the submissions to FM, which was
particularly challenging in light of the record high number of submissions, and for
discussing papers thoroughly toward reaching consensus decisions. We also thank the
other committees responsible for the Tutorial Paper track, Embedded Systems track, I-
Day track, Journal First track, Doctoral Symposium, and workshops.

Finally we thank Springer for publishing these proceedings in the FM subline of
LNCS and appreciate EasyChair in managing the paper submissions, reviewing, and
proceedings compilation process.

July 2024 André Platzer
Kristin Yvonne Rozier

Matteo Pradella
Matteo Rossi

1 https://eapls.org/pages/artifact_badges/eapls.org/pages/artifact_badges.

vi Preface

https://eapls.org/pages/artifact_badges/eapls.org/pages/artifact_badges

Organization

Program Committees

Research Track

André Platzer (Co-chair) Karlsruhe Institute of Technology, Germany
Kristin Yvonne Rozier

(Co-chair)
Iowa State University, USA

Erika Abraham RWTH Aachen University, Germany
Wolfgang Ahrendt Chalmers University of Technology, Sweden
Dalal Alrajeh Imperial College London, UK
Luís Soares Barbosa University of Minho, Portugal
Gilles Barthe MPI-SP/IMDEA Software Institute, Spain
Dirk Beyer LMU Munich, Germany
Pablo Castro Universidad Nacional de Rio Cuarto, Argentina
Ana Cavalcanti University of York, UK
Milan Ceska Brno University of Technology, Czech Republic
Marsha Chechik University of Toronto, Canada
Alessandro Cimatti Fondazione Bruno Kessler, Italy
Alexandre Duret-Lutz EPITA Research Laboratory (LRE), France
Marie Farrell University of Manchester, UK
Orna Grumberg Technion - Israel Institute of Technology, Israel
Arie Gurfinkel University of Waterloo, Canada
Anne E. Haxthausen Technical University of Denmark, Denmark
Marieke Huisman University of Twente, The Netherlands
Reiner Hähnle TU Darmstadt, Germany
Peter Höfner Australian National University, Australia
Einar Broch Johnsen University of Oslo, Norway
Joost-Pieter Katoen RWTH Aachen University, Germany
Nikolai Kosmatov Thales Research & Technology, France
Orna Kupferman Hebrew University, Israel
Peter Lammich University of Twente, The Netherlands
Martin Leucker University of Lübeck, Germany
Jianwen Li East China Normal University, China
Ravi Mangal Colorado State University, USA
Mieke Massink CNR, Italy
Anastasia Mavridou KBR/NASA, USA
Annabelle McIver Macquarie University, Australia
Claudio Menghi University of Bergamo, Italy
Stefan Mitsch DePaul University, USA
Cesar Munoz NASA, USA
Aniello Murano University of Naples Federico II, Italy

Violet Ka I Pun Western Norway University of Applied Sciences,
Norway

Zvonimir Rakamaric Amazon Web Services, USA
Philipp Rümmer University of Regensburg, Germany
Cristina Seceleanu Mälardalen University, Sweden
Natasha Sharygina Università della Svizzera italiana, Switzerland
Jun Sun Singapore Management University, Singapore
Lucas Martinelli Tabajara Rice University, USA
Yong Kiam Tan A*STAR, Singapore
Stefano Tonetta Fondazione Bruno Kessler, Italy
Georg Weissenbacher TU Wien, Austria
Virginie Wiels ONERA/DTIS, France
Huan Xu University of Maryland, USA
Naijun Zhan Chinese Academy of Sciences, China
Shufang Zhu University of Oxford, UK

Embedded Systems Track

Alessandro Cimatti (Chair) Fondazione Bruno Kessler, Italy
Frédéric Boulanger CentraleSupélec, France
Lei Bu Nanjing University, China
Qinxiang Cao Shanghai Jiao Tong University, China
Liqian Chen National University of Defense Technology, China
Martin Fränzle Carl von Ossietzky Universität Oldenburg, Germany
Paula Herber University of Münster, Germany
Inigo Incer California Institute of Technology, USA
Ahmed Irfan SRI International, USA
Eunsuk Kang Carnegie Mellon University, USA
Sergio Mover École Polytechnique, France
Dejan Nickovic AIT Austrian Institute of Technology, Austria
Pierluigi Nuzzo University of Southern California, USA
Roberto Passerone University of Trento, Italy
Heyuan Shi Central South University, China
Fu Song Chinese Academy of Sciences, China
Cong Tian Xidian University, China
Stavros Tripakis Northeastern University, USA

Tutorial Papers Track

Shriram Krishnamurthi
(Co-chair)

Brown University, USA

Luigia Petre (Co-chair) Åbo Akademi University, Finland
Anindya Banerjee IMDEA Software Institute, Spain
Nikolaj Bjørner Microsoft, USA
Marcello Bonsangue Leiden University, The Netherlands
David Thrane Christiansen Lean FRO, LLC, Denmark
Brijesh Dongol University of Surrey, UK

viii Organization

Jan Friso Groote TU Eindhoven, The Netherlands
Stefan Hallerstede Aarhus University, Denmark
Daniel Jackson Massachusetts Institute of Technology, USA
Jeroen Keiren TU Eindhoven, The Netherlands
Markus Alexander Kuppe Microsoft, USA
Thierry Lecomte CLEARSY, France
Jannis Limperg LMU Munich, Germany
Rosemary Monahan Maynooth University, Ireland
Tim Nelson Brown University, USA
Maurice ter Beek CNR, Italy

Industry Day Track

Oksana Tkachuk (Co-chair) Amazon Web Services, USA
Tim Willemse (Co-chair) TU Eindhoven, The Netherlands
Nikolaj Bjørner Microsoft, USA
Jennifer Davis Collins Aerospace, USA
Leo Freitas Newcastle University, UK
Dimitra Giannakopoulou Amazon Web Services, USA
Mario Gleirscher University of Bremen, Germany
Cláudio Gomes Aarhus University, Denmark
Klaus Havelund California Institute of Technology, USA
Nikolai Kosmatov Thales Research & Technology, France

Artifact Evaluation

Carlos E. Budde (Co-chair) Università di Trento, Italy
Arnd Hartmanns (Co-chair) University of Twente, The Netherlands
Jie An Chinese Academy of Sciences (ISCAS), China
Alberto Bombardelli Fondazione Bruno Kessler, Italy
Konstantin Britikov Università della Svizzera italiana, Switzerland
Laura Bussi CNR, Italy
Julie Cailler LIRMM, France
Emily Clement Université Paris Cité, CNRS, IRIF, France
César Cornejo Universidad Nacional de Rio Cuarto, Argentina
Yanni Dong University of Twente, The Netherlands
Daniel Drodt TU Darmstadt, Germany
Federico Formica McMaster University, Canada
Fabrizio Fornari University of Camerino, Italy
Laura P. Gamboa Guzman Iowa State University, USA
Rong Gu Mälardalen University, Sweden
Long H. Pham Singapore Management University, Singapore
Tobias John University of Oslo, Norway
Aditi Kabra Carnegie Mellon University, USA
Mehrdad Karrabi Institute of Science and Technology Austria, Austria
Paul Kobialka University of Oslo, Norway
Marian Lingsch-Rosenfeld LMU Munich, Germany

Organization ix

Alexander Mackay Australian National University, Australia
Andrea Manini Politecnico di Milano, Italy
Antoine Martin EPITA Research Laboratory (LRE), France
Lucas Martinelli Tabajara Rice University, USA
Tobias Nießen TU Wien, Austria
Tommaso Oss University of Trento, Italy
Quentin Peyras ONERA, France
Andrea Pferscher University of Oslo, Norway
Roberto Pizziol IMT School for Advanced Studies Lucca, Italy
Francesco Pontiggia TU Wien, Austria
Edoardo Putti University of Twente, The Netherlands
Florian Renkin Université Paris Cité, IRIF, France
Guillermo Román-Díez Universidad Politécnica de Madrid, Spain
Alec Rosentrater Iowa State University, USA
Lorenzo Rossi University of Camerino, Italy
Ömer Sayilir University of Twente, The Netherlands
Philipp Schlehuber-Caissier EPITA Research Laboratory (LRE), France
Riccardo Sieve University of Oslo, Norway
Reza Soltani University of Twente, The Netherlands
Alexander Stekelenburg University of Twente, The Netherlands
Jack Stodart Australian National University, Australia
Emily Yu Institute of Science and Technology Austria, Austria

Journal First Track

Michael Butler (Chair) University of Southampton, UK
Dines Bjørner Technical University of Denmark, Denmark
Eerke Boiten De Montfort University, UK
Maurice ter Beek CNR, Italy

Doctoral Symposium

Carlo A. Furia (Co-chair) Università della Svizzera italiana, Switzerland
Laura Kovács (Co-chair) TU Wien, Austria
Wolfgang Ahrendt Chalmers University of Technology, Sweden
Marcello M. Bersani Politecnico di Milano, Italy
Nikolaj Bjørner Microsoft, USA
Paula Herber University of Münster, Germany
Marieke Huisman University of Twente, The Netherlands
Alexandra Mendes University of Porto, Portugal
Rosemary Monahan Maynooth University, Ireland
Raúl Pardo IT University of Copenhagen, Denmark
Simon Robillard Université de Montpellier, France
Silvia Lizeth Tapia Tarifa University of Oslo, Norway
Stefano Tonetta Fondazione Bruno Kessler, Italy
Mattias Ulbrich Karlsruhe Institute of Technology, Germany

x Organization

FME Board

Ana Cavalcanti University of York, UK
Maurice ter Beek CNR, Italy
Nico Plat Thanos, The Netherlands
Lars-Henrik Eriksson Uppsala University, Sweden
Einar Broch Johnsen University of Oslo, Norway

Organization Committee

General Chairs

Matteo Pradella Politecnico di Milano, Italy
Matteo Rossi Politecnico di Milano, Italy

Sponsorship and Exhibition Chairs

Marcello M. Bersani Politecnico di Milano, Italy
Michele Chiari TU Wien, Austria

Social Media Chair

Livia Lestingi Politecnico di Milano, Italy

Workshop Chairs

Stefania Gnesi CNR, Italy
Marieke Huisman University of Twente, The Netherlands

Additional Reviewers

Yehia Abd Alrahman
Emma Ahrens
Aliyu Tanko Ali
Shaull Almagor
José Bacelar Almeida
Roman Andriushchenko
Santiago Arranz-Olmos
Anagha Athavale
Ziggy Attala
Giorgio Audrito
Peter Backeman
Daniel Baier
Jialu Bao
Chinmayi Prabhu Baramashetru
Davide Basile
Ludovico Battista
Kevin Batz
Anna Becchi

Valeria Bengolea
Raphaël Berthon
Lionel Blatter
Martin Blicha
Alberto Bombardelli
Frédéric Boniol
Alexander Bork
Konstantin Britikov
Christopher Brix
Julien Brunel
Richard Bubel
Julie Cailler
Georgiana Caltais
Mishel Carelli
Valentin Cassano
Valentina Castiglioni
Davide Catta
Claudia Cauli

Organization xi

David Chemouil
Mingshuai Chen
Xin Chen
Felix Cherubini
Po-Chun Chien
Vincenzo Ciancia
Davide Davoli
André De Matos Pedro
Erik De Vink
Ramiro Demasi
Daniel Drodt
Manuel Eberl
Zafer Esen
Grigory Fedyukovich
Marco A. Feliu
Nick Feng
Shenghua Feng
Anthony Fernandes Pires
Angelo Ferrando
Carla Ferreira
Joao F. Ferreira
Ira Fesefeldt
Paul Fiterau-Brostean
Simon Foster
Luis Garcia
Christina Gehnen
Tiberiu A. Georgescu
Marcus Gerhold
Roland Glück
Michał Tomasz Godziszewski
R. Govind
Srajan Goyal
Lukas Graussam
Alberto Griggio
Lukas Grätz
Rong Gu
Vojtěch Havlena
Holly Hendry
Paula Herber
Roland Herrmann
Hans-Dieter Hiep
Raik Hipler
Sebastian Holler
Lukáš Holík
Jacob Howe
Aditi Kabra

Hannes Kallwies
Eduard Kamburjan
Emin Karayel
Jeroen J. A. Keiren
Ata Keskin
Matthias Kettl
Karam Kharraz
Bram Kohlen
Tomáš Kolárik
Katherine Kosaian
József Kovács
Gereon Kremer
Harald König
Faezeh Labbaf
Martin Lange
Jonathan Laurent
Tristan Le Gall
Nham Le
Thomas Lemberger
Ondrej Lengal
Yong Li
Chencheng Liang
Marian Lingsch-Rosenfeld
Debasmita Lohar
Delphine Longuet
Michele Loreti
Andreas Lööw
Filip Macák
Alexandre Madeira
Vadim Malvone
Lina Marsso
Manuel A. Martins
Alexandra Mendes
Robert Mensing
Hannah Mertens
Munyque Mittelmann
Alvaro Miyazawa
Mariano Moscato
Mohammadreza Mousavi
Sergio Mover
Logan Murphy
Muhammad Naeem
Jasper Nalbach
Renato Neves
Kim Nguyen
Thomas Noll

xii Organization

Jose Oliveira
Rodrigo Otoni
Gianmarco Parretti
Mário Pereira
Quentin Peyras
Adrien Pommellet
Siddharth Priya
José Proença
Valentin Promies
Edoardo Putti
Tim Quatmann
Willard Rafnsson
Itsaka Rakotonirina
Omer Rappoport
António Ravara
Gianluca Redondi
Germán Regis
Andrew Reynolds
Pedro Ribeiro
Martin Sachenbacher
Augusto Sampaio
Abhiroop Sarkar
Jonas Schiffl
Philipp Schlehuber-Caissier
Philipp Schröer
Roberto Sebastiani
Filipo Sharevski
Xujie Si
Teofil Sidoruk
Julien Signoles
Joseph Slagel
Jorge Sousa Pinto
Francesco Spegni
Daniel Stan
Martin Steffen
Alexander Stekelenburg
Volker Stolz

Han Su
Roger Su
Yusen Su
Silvia Lizeth Tapia Tarifa
Philip Tasche
Samuel Teuber
Daniel Thoma
Chun Tian
Gan Ting
Laura Titolo
Noriko Tomuro
Dmitriy Traytel
Mattias Ulbrich
Tom van Dijk
Andrea Vandin
Mahsa Varshosaz
Hari Govind Vediramana Krishnan
Franck Vedrine
Adele Veschetti
Henrik Wachowitz
Philipp Wendler
Hao Wu
Yechuan Xia
Shengping Xiao
Norihiro Yamada
Fang Yan
Tengshun Yang
Kangfeng Ye
Lina Ye
Bohua Zhan
Zhi Zhang
Hengjun Zhao
Xingyu Zhao
Ghiles Ziat
Martin Zimmermann
Paolo Zuliani

Organization xiii

Contents – Part I

Invited Papers

Adversarial Robustness Certification for Bayesian Neural Networks 3
Matthew Wicker, Andrea Patane, Luca Laurenti,
and Marta Kwiatkowska

Getting Chip Card Payments Right . 29
David Basin, Xenia Hofmeier, Ralf Sasse, and Jorge Toro-Pozo

Fundamentals of Formal Verification

A Local Search Algorithm for MaxSMT(LIA) . 55
Xiang He, Bohan Li, Mengyu Zhao, and Shaowei Cai

Integrating Loop Acceleration Into Bounded Model Checking 73
Florian Frohn and Jürgen Giesl

Nonlinear Craig Interpolant Generation Over Unbounded Domains
by Separating Semialgebraic Sets . 92

Hao Wu, Jie Wang, Bican Xia, Xiakun Li, Naijun Zhan, and Ting Gan

Practical Approximate Quantifier Elimination for Non-linear Real
Arithmetic . 111

S. Akshay, Supratik Chakraborty, Amir Kafshdar Goharshady, R.
Govind, Harshit Jitendra Motwani, and Sai Teja Varanasi

A Divide-and-Conquer Approach to Variable Elimination in Linear Real
Arithmetic . 131

Valentin Promies and Erika Ábrahám

Foundations

Free Facts: An Alternative to Inefficient Axioms in Dafny 151
Tabea Bordis and K. Rustan M. Leino

Understanding Synthesized Reactive Systems Through Invariants 170
Rüdiger Ehlers

Combining Classical and Probabilistic Independence Reasoning to Verify
the Security of Oblivious Algorithms. 188

Pengbo Yan, Toby Murray, Olga Ohrimenko, Van-Thuan Pham,
and Robert Sison

Efficient Formally Verified Maximal End Component Decomposition
for MDPs. 206

Arnd Hartmanns, Bram Kohlen, and Peter Lammich

Introducing SWIRL: An Intermediate Representation Language
for Scientific Workflows . 226

Iacopo Colonnelli, Doriana Medić, Alberto Mulone, Viviana Bono,
Luca Padovani, and Marco Aldinucci

Fast Attack Graph Defense Localization via Bisimulation. 245
Nimrod Busany, Rafi Shalom, Dan Klein, and Shahar Maoz

Learn and Repair

State Matching and Multiple References in Adaptive Active Automata
Learning . 267

Loes Kruger, Sebastian Junges, and Jurriaan Rot

Automated Repair of Information Flow Security in Android Implicit
Inter-App Communication . 285

Abhishek Tiwari, Jyoti Prakash, Zhen Dong, and Carlo A. Furia

Learning Branching-Time Properties in CTL and ATL via Constraint
Solving . 304

Benjamin Bordais, Daniel Neider, and Rajarshi Roy

A Zonotopic Dempster-Shafer Approach to the Quantitative Verification
of Neural Networks . 324

Eric Goubault and Sylvie Putot

Certified Quantization Strategy Synthesis for Neural Networks 343
Yedi Zhang, Guangke Chen, Fu Song, Jun Sun, and Jin Song Dong

Partially Observable Stochastic Games with Neural Perception Mechanisms . . . 363
Rui Yan, Gabriel Santos, Gethin Norman, David Parker,
and Marta Kwiatkowska

xvi Contents – Part I

Bridging Dimensions: Confident Reachability for High-Dimensional
Controllers . 381

Yuang Geng, Jake Brandon Baldauf, Souradeep Dutta, Chao Huang,
and Ivan Ruchkin

VeriQR: A Robustness Verification Tool for Quantum Machine Learning
Models . 403

Yanling Lin, Ji Guan, Wang Fang, Mingsheng Ying, and Zhaofeng Su

Programming Languages

Formal Semantics and Analysis of Multitask PLC ST Programs
with Preemption . 425

Jaeseo Lee and Kyungmin Bae

Accurate Static Data Race Detection for C . 443
Emerson Sales, Omar Inverso, and Emilio Tuosto

CFAULTS: Model-Based Diagnosis for Fault Localization in C with Multiple
Test Cases . 463

Pedro Orvalho, Mikoláš Janota, and Vasco Manquinho

Detecting Speculative Execution Vulnerabilities on Weak Memory Models . . . 482
Nicholas Coughlin, Kait Lam, Graeme Smith, and Kirsten Winter

Staged Specification Logic for Verifying Higher-Order Imperative
Programs . 501

Darius Foo, Yahui Song, and Wei-Ngan Chin

Unifying Weak Memory Verification Using Potentials 519
Lara Bargmann, Brijesh Dongol, and Heike Wehrheim

Proving Functional Program Equivalence via Directed Lemma Synthesis 538
Yican Sun, Ruyi Ji, Jian Fang, Xuanlin Jiang, Mingshuai Chen,
and Yingfei Xiong

Reachability Analysis for Multiloop Programs Using Transition Power
Abstraction. 558

Konstantin Britikov, Martin Blicha, Natasha Sharygina,
and Grigory Fedyukovich

Contents – Part I xvii

Logic and Automata

Misconceptions in Finite-Trace and Infinite-Trace Linear Temporal Logic 579
Ben Greenman, Siddhartha Prasad, Antonio Di Stasio, Shufang Zhu,
Giuseppe De Giacomo, Shriram Krishnamurthi, Marco Montali,
Tim Nelson, and Milda Zizyte

Sound and Complete Witnesses for Template-Based Verification of LTL
Properties on Polynomial Programs . 600

Krishnendu Chatterjee, Amir Goharshady, Ehsan Goharshady,
Mehrdad Karrabi, and Đorđe Žikelić

The Opacity of Timed Automata. 620
Jie An, Qiang Gao, Lingtai Wang, Naijun Zhan, and Ichiro Hasuo

Parameterized Verification of Round-Based Distributed Algorithms
via Extended Threshold Automata . 638

Tom Baumeister, Paul Eichler, Swen Jacobs, Mouhammad Sakr,
and Marcus Völp

The Nonexistence of Unicorns and Many-Sorted Löwenheim–Skolem
Theorems . 658

Benjamin Przybocki, Guilherme Toledo, Yoni Zohar, and Clark Barrett

Author Index . 677

xviii Contents – Part I

Contents – Part II

Tools and Case Studies

Extending Isabelle/HOL’s Code Generator with Support for the Go
Programming Language . 3

Terru Stübinger and Lars Hupel

Rigorous Floating-Point Round-Off Error Analysis in PRECiSA 4.0 20
Laura Titolo, Mariano Moscato, Marco A. Feliu, Paolo Masci,
and César A. Muñoz

FM-Weck: Containerized Execution of Formal-Methods Tools 39
Dirk Beyer and Henrik Wachowitz

DFAMiner: Mining Minimal Separating DFAs from Labelled Samples 48
Daniele Dell’Erba, Yong Li, and Sven Schewe

Visualizing Game-Based Certificates for Hyperproperty Verification 67
Raven Beutner, Bernd Finkbeiner, and Angelina Göbl

Chamelon : A Delta-Debugger for OCaml . 76
Milla Valnet, Nathanaëlle Courant, Guillaume Bury, Pierre Chambart,
and Vincent Laviron

Automated Static Analysis of Quality of Service Properties
of Communicating Systems . 84

Carlos G. Lopez Pombo, Agustín Eloy Martinez Suñé, and Emilio Tuosto

Alloy Repair Hint Generation Based on Historical Data 104
Ana Barros, Henrique Neto, Alcino Cunha, Nuno Macedo,
and Ana C. R. Paiva

B2SAT: A Bare-Metal Reduction of B to SAT . 122
Michael Leuschel

PyBDR: Set-Boundary Based Reachability Analysis Toolkit in Python 140
Jianqiang Ding, Taoran Wu, Zhen Liang, and Bai Xue

Discourje: Run-Time Verification of Communication Protocols in Clojure
— Live at Last . 158

Sung-Shik Jongmans

Stochastic Games for User Journeys . 167
Paul Kobialka, Andrea Pferscher, Gunnar R. Bergersen,
Einar Broch Johnsen, and S. Lizeth Tapia Tarifa

Embedded Systems Track

Compositional Verification of Cryptographic Circuits Against Fault
Injection Attacks . 189

Huiyu Tan, Xi Yang, Fu Song, Taolue Chen, and Zhilin Wu

Reusable Specification Patterns for Verification of Resilience
in Autonomous Hybrid Systems . 208

Julius Adelt, Robert Mensing, and Paula Herber

Switching Controller Synthesis for Hybrid Systems Against STL Formulas . . . 229
Han Su, Shenghua Feng, Sinong Zhan, and Naijun Zhan

On Completeness of SDP-Based Barrier Certificate Synthesis
over Unbounded Domains . 248

Hao Wu, Shenghua Feng, Ting Gan, Jie Wang, Bican Xia,
and Naijun Zhan

Tolerance of Reinforcement Learning Controllers Against Deviations
in Cyber Physical Systems . 267

Changjian Zhang, Parv Kapoor, Rômulo Meira-Góes, David Garlan,
Eunsuk Kang, Akila Ganlath, Shatadal Mishra, and Nejib Ammar

CauMon: An Informative Online Monitor for Signal Temporal Logic 286
Zhenya Zhang, Jie An, Paolo Arcaini, and Ichiro Hasuo

Industry Day Track

UnsafeCop: Towards Memory Safety for Real-World Unsafe Rust Code
with Practical Bounded Model Checking . 307

Minghua Wang, Jingling Xue, Lin Huang, Yuan Zi, and Tao Wei

Beyond the Bottleneck: Enhancing High-Concurrency Systems with Lock
Tuning. 325

Juntao Ji, Yinyou Gu, Yubao Fu, and Qingshan Lin

AGVTS: Automated Generation and Verification of Temporal
Specifications for Aeronautics SCADE Models . 338

Hanfeng Wang, Zhibin Yang, Yong Zhou, Xilong Wang, Weilin Deng,
and Wei Li

xx Contents – Part II

Code-Level Safety Verification for Automated Driving: A Case Study. 356
Vladislav Nenchev, Calum Imrie, Simos Gerasimou, and Radu Calinescu

A Case Study on Formal Equivalence Verification Between a C/C++
Model and Its RTL Design. 373

Gaetano Raia, Gianluca Rigano, David Vincenzoni,
and Maurizio Martina

Tutorial Papers

A Pyramid Of (Formal) Software Verification. 393
Martin Brain and Elizabeth Polgreen

Advancing Quantum Computing with Formal Methods 420
Arend-Jan Quist, Jingyi Mei, Tim Coopmans, and Alfons Laarman

No Risk, No Fun: A Tutorial on Risk Management. 447
Mariëlle Stoelinga

Runtime Verification in Real-Time with the Copilot Language: A Tutorial 469
Ivan Perez, Alwyn E. Goodloe, and Frank Dedden

ASMETA Tool Set for Rigorous System Design. 492
Andrea Bombarda, Silvia Bonfanti, Angelo Gargantini,
Elvinia Riccobene, and Patrizia Scandurra

Practical Deductive Verification of OCaml Programs 518
Mário Pereira

Software Verification with CPACHECKER 3.0: Tutorial and User Guide 543
Daniel Baier, Dirk Beyer, Po-Chun Chien, Marie-Christine Jakobs,
Marek Jankola, Matthias Kettl, Nian-Ze Lee, Thomas Lemberger,
Marian Lingsch-Rosenfeld, Henrik Wachowitz, and Philipp Wendler

Satisfiability Modulo Theories: A Beginner’s Tutorial 573
Clark Barrett, Cesare Tinelli, Haniel Barbosa, Aina Niemetz,
Mathias Preiner, Andrew Reynolds, and Yoni Zohar

The Java Verification Tool KeY:A Tutorial . 599
Bernhard Beckert, Richard Bubel, Daniel Drodt, Reiner Hähnle,
Florian Lanzinger, Wolfram Pfeifer, Mattias Ulbrich,
and Alexander Weigl

Contents – Part II xxi

A Tutorial on Stream-Based Monitoring. 626
Jan Baumeister, Bernd Finkbeiner, Florian Kohn, and Frederik
Scheerer

Author Index . 651

xxii Contents – Part II

Invited Papers

Adversarial Robustness Certification
for Bayesian Neural Networks

Matthew Wicker1 , Andrea Patane2 , Luca Laurenti3 ,
and Marta Kwiatkowska4(B)

1 Imperial College, London, UK
m.wicker@imperial.ac.uk

2 School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland
apatane@tcd.ie

3 Delft Center for Systems and Control (DCSC), TU Delft, Delft, The Netherlands
l.laurenti@tudelft.nl

4 Department of Computer Science, University of Oxford, Oxford, UK

marta.kwiatkowska@cs.ox.ac.uk

Abstract. We study the problem of certifying the robustness of
Bayesian neural networks (BNNs) to adversarial input perturbations.
Specifically, we define two notions of robustness for BNNs in an adversar-
ial setting: probabilistic robustness and decision robustness. The former
deals with the probabilistic behaviour of the network, that is, it ensures
robustness across different stochastic realisations of the network, while
the latter provides guarantees for the overall (output) decision of the
BNN. Although these robustness properties cannot be computed ana-
lytically, we present a unified computational framework for efficiently
and formally bounding them. Our approach is based on weight inter-
val sampling, integration and bound propagation techniques, and can be
applied to BNNs with a large number of parameters independently of the
(approximate) inference method employed to train the BNN. We evalu-
ate the effectiveness of our method on tasks including airborne collision
avoidance, medical imaging and autonomous driving, demonstrating that
it can compute non-trivial guarantees on medium size images (i.e., over
16 thousand input parameters).

Keywords: Certification · Bayesian Neural Networks · Adversarial
Robustness · Classification · Regression · Uncertainty

1 Introduction

While neural networks (NNs) regularly obtain state-of-the-art performance in
many supervised machine learning problems [2,15], they are vulnerable to adver-
sarial attacks, i.e., imperceptible modifications of their inputs that result in an
incorrect prediction [42]. Along with several other vulnerabilities [8], the dis-
covery of adversarial examples has made the deployment of NNs in real-world,
safety-critical applications increasingly challenging. The design and analysis of
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 3–28, 2025.
https://doi.org/10.1007/978-3-031-71162-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_1&domain=pdf
http://orcid.org/0000-0003-0779-3114
http://orcid.org/0000-0003-0492-4860
http://orcid.org/0000-0003-1190-6097
http://orcid.org/0000-0001-9022-7599
https://doi.org/10.1007/978-3-031-71162-6_1

4 M. Wicker et al.

methods that can mitigate such vulnerabilities, or compute provable guarantees
on their worst-case behaviour in adversarial conditions, is therefore of utmost
importance [44].

While retaining the advantages intrinsic to deep learning, Bayesian neural
networks (BNNs), i.e., NNs with a probability distribution placed over their
weights and biases [33], enable probabilistically principled evaluation of model
uncertainty. Because of their ability to model uncertainty [27], the application
of BNNs is particularly appealing in safety-critical scenarios, where uncertainty
could be taken into account at prediction time to enable safe decision-making
[4,11,32,57]. To this end, various techniques have been proposed for the eval-
uation of BNNs’ robustness, including generalisation of gradient-based adver-
sarial attacks [31], statistical verification techniques [12], and formal verification
approaches aimed at verifying that the decisions made by a BNN are safe [1,7]
or checking the robustness of the neural networks sampled from the BNN pos-
terior [7,12,29]. The increasingly diverse techniques for analysing robustness of
Bayesian neural networks have resulted in divergent robustness properties, some
directly analysing the stochasticity of the system [12] and others directly adapt-
ing robustness specifications from deterministic systems [7]. To the best of our
knowledge, there is a lack of systematic, unified approaches for computing for-
mal (i.e., with certified bounds) guarantees on the range of emergent quantitative
robustness properties against adversarial input perturbations for BNNs.

In this work, we develop a probabilistic verification framework to quantify the
adversarial robustness of BNNs. In particular, we model adversarial robustness
as an input-output specification defined by a given compact set of input points,
T ⊆ R

m, and a given convex polytope output set, S ⊆ R
n (called a safe set).

A neural network satisfies this specification if all points in T are mapped into
S. For a particular specification, we focus on two main properties of a BNN of
interest for adversarial prediction settings: probabilistic robustness [12,50] and
decision robustness [7,23]. The former is defined as the probability that a network
sampled from the posterior distribution is robust, which thus provides a general
measure of the robustness of a BNN. In contrast, decision robustness focuses
on the decision step, and evaluates the robustness of the optimal decision of a
BNN. That is, a BNN satisfies decision robustness if, for all points in T , the
expectation of the output of the BNN in the case of regression, or the argmax
of the expectation of the softmax for classification, are contained in S.

Unfortunately, evaluating probabilistic and decision robustness for a BNN
is not trivial, as it involves computing distributions and expectations of high-
dimensional random variables passed through a non-convex function. Neverthe-
less, we derive a unified algorithmic framework based on computations over the
BNN weight space that yields certified lower and upper bounds for both prop-
erties. Specifically, we show that probabilistic robustness is equivalent to the
measure, w.r.t. the BNN posterior, of the set of weights for which the resulting
deterministic NN is robust. Computing upper and lower bounds for the prob-
ability involves sampling compact sets of weights according to the BNN poste-
rior, and propagating each of these weight sets, H, through the neural network

Adversarial Robustness Certification for Bayesian Neural Networks 5

architecture, jointly with the input region T , to check whether all the networks
instantiated by weights in H are safe. To do so, we generalise bound propagation
techniques developed for deterministic neural networks to the Bayesian setting
and instantiate explicit schemes for Interval Bound Propagation (IBP) and Lin-
ear Bound Propagation (LBP) [20]. Similarly, in the case of decision robustness,
we show that formal bounds can be obtained by partitioning the weight space
into different weight sets, and for each weight set J we employ bound propa-
gation techniques to compute the maximum and minimum of the decision of
the NN for any input point in T and any weight in the set J . The resulting
extrema are then averaged w.r.t. posterior measure to obtain sound lower and
upper bounds on decision robustness.

We empirically validate our framework using case studies from airborne col-
lision avoidance [25], medical image recognition [56], and autonomous driving
[40]. We demonstrate that our framework is able to compute sound upper and
lower bounds for both notions of robustness for Bayesian neural networks. More-
over, we study the effect of approximate inference, as well as depth and width
of the neural network classifier, on our guarantees. We find that our approach,
even when using simple interval bound propagation, is able to provide non-
trivial certificates of adversarial robustness and predictive uncertainty proper-
ties for Bayesian neural networks with four hidden layers and more than 16,000
input dimensions. We additionally use our approach to show how approximate
Bayesian posteriors may provide provably robust uncertainty estimation for ran-
dom noise inputs while failing to provide the same guarantees for more structured
classes of out-of-distribution inputs1.

In summary, this paper makes the following contributions2

– We present an algorithmic framework based on convex relaxation techniques
for the robustness analysis of BNNs in adversarial settings.

– We derive explicit lower- and upper-bounding procedures based on IBP and
LBP for the propagation of input and weight intervals through the BNN
posterior function.

– We empirically show that our method can be used to certify BNNs consisting
of multiple hidden layers and with hundreds of neurons per layer.

Probabilistic robustness was introduced in [50]. This work extends [50] in several
aspects. In contrast to [50], which focused only on probabilistic robustness, here
we also tackle decision robustness and embed the calculations for the two prop-
erties in a common computational framework. Furthermore, while the method in
[50] only computes lower bounds, in this paper we also develop a technique for
upper bound computation. Finally, we extend the empirical analysis to include
additional datasets, evaluation of convolutional architectures, scalability analy-
sis, as well as certification of out-of-distribution (OOD) uncertainty.

1 An implementation to reproduce all the experiments can be found at: https://github.
com/matthewwicker/AdversarialRobustnessCertificationForBNNs.

2 In view of space constraints, additional details are available in Appendix at https://
arxiv.org/abs/2306.13614.

https://github.com/matthewwicker/AdversarialRobustnessCertificationForBNNs
https://github.com/matthewwicker/AdversarialRobustnessCertificationForBNNs
https://arxiv.org/abs/2306.13614
https://arxiv.org/abs/2306.13614

6 M. Wicker et al.

Related Works. The vast majority of existing NN verification methods have
been developed specifically for deterministic NNs, with approaches including
abstract interpretation [20], mixed integer linear programming [19,36,43,54,60],
Monte Carlo search-based frameworks [24,48,55], convex relaxation [23,45,59]
and SAT/SMT [25,26]. However, these methods cannot be directly applied to
BNNs because they all assume that the weights of the network are determin-
istic, i.e., fixed to a given value, while in the Bayesian setting weights are not
fixed, but distributed according to the BNN posterior. Statistical approaches to
quantify the robustness of BNNs that are ε approximately correct up to a confi-
dence/probability of error bounded by 1 − δ, for δ > 0, have been developed in
[12,32]. In contrast, the methods in this paper do not rely on confidence intervals
and return guaranteed upper and lower bounds on the true probability that a
BNN satisfies a specific property.

Since the publication of our preliminary work [50], other papers have stud-
ied the problem of verifying BNN robustness [1,3,7,29,51,52]. However, [7] only
considers verification of BNNs with weight distributions of bounded support,
and consequently does not include Gaussian posterior distributions, which are
commonly employed in practice. [1] develops an approach based on dynamic
programming to certify decision robustness for BNNs, which improves the pre-
cision of BNN verification by performing bound propagation in the latent space
of BNNs, rather than working on the space of weights. However, this approach
is restricted to decision robustness. Further, [3] develops an approach based on
mixed integer linear programming (MILP), which is specific for probabilistic
robustness. It is unclear how these approaches could be extended to encom-
pass both probabilistic and decision robustness. In contrast, in this paper we
propose a simple and general framework that encompasses both decision and
probabilistic robustness, and can be applied to both fully-connected and con-
volutional neural network architectures. Another related method is [29], which
takes a distribution-free approach and considers a dynamical system whose one-
step dynamics includes a neural network, and computes the set of weights that
satisfy an infinite-horizon safety property. Note that, as the support of a Gaus-
sian distribution is unbounded, similarly to [7], this approach does not support
Gaussian posterior distributions over the weights. We also mention [52], which
builds on the results of [51] to develop certification for reach-avoid properties of
dynamical systems described by BNNs. Finally, [49] considers certifiable robust
training and introduces the concept of robust likelihood that we employ in our
experimental evaluation.

In the context of Bayesian learning, methods to compute adversarial robust-
ness measures have been explored for Gaussian processes (GPs), both for regres-
sion [13] and classification tasks [35,38]. However, because of the non-linearity in
NN architectures, GP-based approaches cannot be directly employed for BNNs.
Furthermore, the vast majority of approximate Bayesian inference methods for
BNNs do not utilise Gaussian approximations over the latent space [10]. In con-
trast, our method is specifically tailored to take into account the non-linear

Adversarial Robustness Certification for Bayesian Neural Networks 7

nature of BNNs and can be directly applied to a range of approximate Bayesian
inference techniques used in the literature.

2 Background on Bayesian Deep Learning

We consider a dataset of nD independent pairs of inputs and labels, D =
{(xi, yi)}nD

i=1, with xi ∈ R
m, where each output y ∈ R

n is either a one-hot
class vector for classification or a real-valued vector for regression. The aim of
Bayesian learning is to learn the function generating D via a feed forward-neural
network fw : R

m → R
n, parameterised by a vector w ∈ R

nw containing all
its weights and biases. We denote with fw,1, ..., fw,K the K layers of fw and
take the activation function of the ith layer to be σ(i), abbreviated to just σ in
the case of the output activation.3 Throughout this paper, we will use fw(x) to
represent pre-activation of the last layer.

Bayesian deep learning starts with a prior distribution, p(w), over the vector
w of random variables associated to the weights. Placing a distribution over the
weights defines a stochastic process indexed by the input space, which we denote
as fw. Note that we use bold to distinguish the stochastic process parameterised
by a random variable, fw, and the deterministic function that results from sam-
pling a single parameter value, fw. To obtain the posterior distribution, the
BNN prior is updated according to the likelihood, p(D|w), via the Bayes rule,
i.e., p(w|D) ∝ p(D|w)p(w) [9]. The cumulative distribution of p(w|D), which we
denote as P (·), is such that for R ⊆ R

nw we have:

P (R) :=
∫

R

p(w|D)dw. (1)

The posterior p(w|D) is in turn used to calculate the output of a BNN on an
unseen point, x∗. The distribution over outputs is called the posterior predictive
distribution and is defined as:

p(y∗|x∗,D) =
∫

p(y∗|x∗, w)p(w|D)dw. (2)

When employing a Bayesian model, the overall final prediction is taken to be
a single value, ŷ, that minimizes the Bayesian risk of an incorrect prediction
according to the posterior predictive distribution and a loss function L. Formally,
the final decision of a BNN is computed as

ŷ = arg min
y∗

∫
Rn

L(y, y∗)p(y∗|x∗,D)dy∗. (3)

This minimization is the subject of Bayesian decision theory [6], and the final
form of ŷ depends on the specific loss function L employed in practice. In this
3 We assume, for the purposes of linear bound propagation in Appendix D.4, that

the activation functions have a finite number of inflection points, which holds for
activation functions commonly used in practice [21].

8 M. Wicker et al.

paper, we focus on two standard loss functions widely employed for classification
and regression problems4, described in more detail below.

Classification. For classification problems, the 0–1 loss, denoted �0−1, is com-
monly employed. �0−1 assigns a penalty of 0 to the correct prediction, and 1
otherwise. It can be shown that the optimal decision in this case is given by the
class for which the predictive distribution obtains its maximum, i.e.:

ŷ = arg max
i=1,...,n

pi(y∗|x∗,D) = arg max
i=1,...,n

Ew∼p(w|D) [σi(fw(x))] ,

where σi represents the ith output component of the softmax function.

Regression. For regression problems, the �2 loss is generally employed. �2
assigns a penalty to a prediction according to its �2 distance from the ground
truth. It can be shown that the optimal decision in this case is given by
the expected value of the BNN output over the posterior distribution, i.e.,
ŷ = Ew∼p(w|D) [fw(x)] . Unfortunately, because of the non-linearity of neu-
ral network architectures, the computation of the posterior distribution over
the weights, p(w|D), is generally intractable [33]. Hence, various approxima-
tion methods have been studied to perform inference with BNNs in practice.
Among these, we will consider Hamiltonian Monte Carlo (HMC) [33] and Vari-
ational Inference (VI) [10]. While HMC is a sample-based method that involves
defining a Markov chain whose invariant distribution is pw(w|D) [33], VI pro-
ceeds by finding a Gaussian approximating distribution over the weight space
q(w) ∼ pw(w|D) in a trade-off between approximation accuracy and scalability.
For simplicity of notation, in the rest of the paper we will indicate with p(w|D)
the posterior distribution estimated by either of the two methods, and clarify
the methodological differences when they arise.

3 Problem Statement

We focus on local specifications defined over an input compact set T ⊆ R
m,

which we assume to be a box (axis-aligned linear constraints), and output set
S ⊆ R

n in the form of a convex polytope:

S = {y ∈ R
n |CSy + dS ≥ 0}, (4)

where CS ∈ R
nS×n and dS ∈ R

nS are the matrix and vector encoding the poly-
tope constraints, with nS being the number of output constraints. Throughout
the paper we will refer to an input-output set pair, T and S, as defined above,
as a robustness specification. We note that our formulation of robustness specifi-
cation captures various important properties used in practice, such as classifier
4 In Appendix B we discuss how our method can be generalised to other losses com-

monly employed in practice.

Adversarial Robustness Certification for Bayesian Neural Networks 9

monotonicity [41], adversarial robustness [22,24], and individual fairness [5]. For
instance, targeted adversarial robustness for classification, which aims to find an
adversarial example belonging to a specified class, can be captured by setting CS

to an nS × n matrix of all zeros with a −1 in the diagonal entry corresponding
to the true class and a 1 on the diagonal entry corresponding to the target class.
Similarly, for regression, one uses CS to encode the absolute deviation from the
target value and dS to encode the maximum tolerable deviation.

Probabilistic robustness accounts for the probabilistic behaviour of a BNN
with respect to a robustness specification.

Definition 1 (Probabilistic robustness). Given a Bayesian neural network
fw, an input set T ⊆ R

m and an output set S ⊆ R
n, also called safe set of

outputs, define probabilistic robustness as

Psafe(T, S) := Probw∼p(w|D)(∀x ∈ T, fw(x) ∈ S). (5)

Given η ∈ [0, 1], we then say that fw is probabilistically robust, or safe, for
robustness specifications (T, S) with probability at least η iff Psafe(T, S) ≥ η.

Probabilistic robustness considers the adversarial behaviour of the model while
accounting for the uncertainty arising from the posterior distribution. In par-
ticular, Psafe(T, S) quantifies the proportion of networks sampled from fw that
satisfy a given input-output specification, and can be used directly as a mea-
sure of compliance for Bayesian neural networks [7,16,32]. Exact computation of
Psafe(T, S) is hindered by the size and non-linearity of neural networks. There-
fore, in this work, we aim to compute provable bounds on probabilistic robust-
ness.

Problem 1 (Bounding probabilistic robustness). Given a Bayesian neural network
fw, an input set T ⊆ R

m and a set S ⊆ R
n of safe outputs, compute (non-trivial)

lower and upper bounds PL
safe and PU

safe such that

PL
safe ≤ Psafe(T, S) ≤ PU

safe. (6)

3.1 Decision Robustness

While Psafe attempts to measure the probability of robustness of neural networks
sampled from the BNN posterior, we are often interested in evaluating robustness
w.r.t. a specific decision. In order to do so, we consider decision robustness, which
is computed over the final decision of the BNN. In particular, given a loss function
and a decision ŷ we have the following.

Definition 2 (Decision robustness). Consider a Bayesian neural network
fw, an input set T ⊆ R

m and an output set S ⊆ R
n. Assume that the decision

for a loss L for x ∈ R
m is given by ŷ(x) (Eq. 3). Then, the Bayesian decision is

considered to be robust if ∀x ∈ T, ŷ(x) ∈ S.

10 M. Wicker et al.

Fig. 1. A diagram illustrating a single iteration of the computational flow for the certi-
fication process of a BNN w.r.t. decision robustness (green) and probabilistic robustness
(purple). This process is summarised in Algorithm 1 (Color figure online).

As discussed in Sect. 2, since the specific form of the decision depends on the loss
function, the definition of decision robustness takes different form depending on
whether the BNN is used for classification or for regression. We thus arrive at
the following problem.

Problem 2 (Bounding decision robustness). Let fw be a BNN with posterior
distribution p(w|D). Consider a robustness specification (T , S) and assume L =
�0−1 for classification or L = �2 for regression. We aim at computing (non-trivial)
lower and upper bounds DL

safe and DU
safe such that:

DL
safe ≤ E[s(fw(x))] ≤ DU

safe ∀x ∈ T,

where s corresponds to the likelihood function σ in the case of classification (e.g.,
the softmax) and simply denotes the identity function in the case of regression.

Problem 2 suggests that, while for regression we can simply bound the
expected output of the BNN, for classification we need to bound the predictive
posterior to compute bounds on the final decision, i.e., we need to propagate
these inside the softmax. This is similar to what is done for deterministic neural
networks, where, in the case of classification, the bounds are often computed
over the logits, and then used to provide guarantees for the final decision [23].

3.2 Approach Outline

We design an algorithmic framework for computing worst- and best-case bounds
(lower and upper bounds, respectively) on local robustness properties for
Bayesian neural networks, taking account of both the posterior distribution (PL

safe

and PU
safe) and the overall model decision (DL

safe and DU
safe). First, we show how

the two robustness properties of Definitions 1 and 2 can be reformulated in terms
of computation over weight intervals. This allows us to derive a unified approach,

Adversarial Robustness Certification for Bayesian Neural Networks 11

which enables bounding of the robustness of the BNN posterior (i.e., probabilis-
tic robustness) and that of the overall model decision (i.e., decision robustness)
by means of bound propagation and posterior integral computation over hyper-
rectangles. For a discussion of when each bound may be useful see Appendix
A.

A visual outline for our framework is presented in Fig. 1. The presentation
of the framework is organised as follows. We first introduce a general theoretical
schema for bounding the robustness quantities of interest (Sect. 4). We then show
how the required integral computations can be achieved for practical Bayesian
posterior inference techniques (Sect. 5.1). This allows us to extend bound prop-
agation techniques to deal with both input variable intervals and intervals over
the weight space, which we rely on to instantiate approaches respectively based
on Interval Bound Propagation (Sect. 5.2) and Linear Bound Propagation tech-
niques (Appendix C.). Finally, in Sect. 6, we present an overall algorithm that
produces the desired bounds.

4 BNN Adversarial Robustness via Weight Sets

We show how a single computational framework can be leveraged to compute
bounds on both definitions of BNN robustness. We start by converting the com-
putation of robustness into the weight space and then define a family of weight
intervals that we utilise to bound the integrations required by both definitions.
Proofs for the main results in this section are presented in Appendix D.

4.1 Bounding Probabilistic Robustness

We first show that the computation of Psafe(T, S) is equivalent to computing a
maximal set of safe weights H such that each network associated to weights in
H is safe w.r.t. the robustness specification at hand.

Definition 3 (Maximal safe and unsafe sets). We say that H ⊆ R
nw is

the maximal safe set of weights from T to S, or simply the maximal safe set of
weights, iff H = {w ∈ R

nw | ∀x ∈ T, fw(x) ∈ S}. Similarly, we say that K ⊆ R
nw

is the maximal unsafe set of weights from T to S, or simply the maximal unsafe
set of weights, iff K = {w ∈ R

nw | ∃x ∈ T, fw(x) �∈ S}.

Intuitively, H and K simply encode the input-output specifications S and T in
the BNN weight space. The following lemma, which follows from Eq. 5, allows
us to relate the maximal sets of weights to probabilistic robustness.

Lemma 1. Let H and K be the maximal safe and unsafe sets of weights from
T to S. Assume that w ∼ p(w|D). Then, it holds that

P (H) =
∫

H

p(w|D)dw = Psafe(T, S) = 1 −
∫

K

p(w|D)dw = 1 − P (K). (7)

12 M. Wicker et al.

Unfortunately, an exact computation of sets H and K is infeasible in general
and may not be possible to capture using any finite number of sets. However,
we can compute subsets of H and K. Such subsets can then be used to compute
upper and lower bounds on the value of Psafe(T, S) by considering subsets of the
maximal safe and unsafe weights.

Definition 4 (Safe and unsafe sets). Given a maximal safe set H or a max-
imal unsafe set K of weights, we say that Ĥ and K̂ are a safe and unsafe set of
weights from T to S iff Ĥ ⊆ H and K̂ ⊆ K, respectively.

Without maximality, we no longer have strict equality in Lemma1, but we can
use Ĥ and K̂ to arrive at bounds on the value of probabilistic robustness. Specif-
ically, we proceed by defining Ĥ and K̂ as the union of a family of disjoint
weight intervals, as these can provide flexible approximations of H and K. That
is, we consider H = {Hi}nH

i=1, with Hi = [wL,H
i , wU,H

i] and K = {Ki}nK
i=1, with

Ki = [wL,K
i , wU,K

i], such that Hi ⊂ H and Ki ⊂ K, Ĥ =
⋃nH

i=1 Hi, K̂ =
⋃nK

i=1 Ki,
and Hi ∩ Hj = ∅ and Ki ∩ Kj = ∅, for any i �= j. Hence, as a consequence of
Lemma 1, and by the fact that Ĥ ⊆ H and K̂ ⊆ K, we obtain the following.

Proposition 1 (Bounds on probabilistic robustness). Let H and K be
the maximal safe and unsafe sets of weights from T to S. Consider two families
of pairwise disjoint weight intervals H = {Hi}nH

i=1, K = {Ki}nK
i=1 , where for all

i it holds that Hi ⊆ H and Ki ⊆ K. Let Ĥ ⊆ H and K̂ ⊆ K be non-maximal
safe and unsafe sets of weights, with Ĥ =

⋃nH

i=1 Hi and K̂ =
⋃nK

i=1 Ki. Assume
that w ∼ p(w|D). Then, it holds that

PL
safe :=

nH∑
i=1

P (Hi) ≤ Psafe(T, S) ≤ 1 −
nK∑
i=1

P (Ki) =: PU
safe, (8)

that is, PL
safe and PU

safe are lower and upper bounds on probabilistic robustness.

Through the use of Proposition 1, we can thus bound probabilistic robustness by
performing computation over sets of safe and unsafe intervals.5 Before explaining
in detail how such bounds can be explicitly computed, we first show, in the next
section, how a similar derivation leads us to analogous bounds and computations
for decision robustness.

4.2 Bounding Decision Robustness

The key difference between our formulation of probabilistic robustness and that
of decision robustness is that, for the former, we are only interested in the
behaviour of neural networks extracted from the BNN posterior that satisfy
the robustness requirements (hence the distinction between H- and K-weight
intervals), whereas to compute sound bounds on decision robustness we need to

5 In Appendix E.4. we extend the results to general hyper-rectangles by using the
Bonferroni bound.

Adversarial Robustness Certification for Bayesian Neural Networks 13

take into account the overall worst-case behaviour of an expected value com-
puted for the BNN predictive distribution. As such, rather than computing safe
and unsafe sets, we only need a family of weight sets, J = {Ji}nJ

i=1, which we
can rely on for bounding Dsafe(T, S). In the following, we explicitly show how
to do this for classification with likelihood σ. The bound for regression follows
similarly by using the identity function as σ.

Proposition 2 (Bounding decision robustness). Let J = {Ji}nJ
i=1, with

Ji ⊂ R
nw , be a family of disjoint weight intervals. Let σL and σU be vectors

that lower- and upper-bound the co-domain of the final activation function, and
c ∈ {1, . . . , m} an index spanning the BNN output dimension. Define:

DL
safe,c :=

nJ∑
i=1

P (Ji) min
x∈T
w∈Ji

σc(fw(x)) + σL

(
1 −

nJ∑
i=1

P (Ji)

)
(9)

DU
safe,c :=

nJ∑
i=1

P (Ji) max
x∈T
w∈Ji

σc(fw(x)) + σU

(
1 −

nJ∑
i=1

P (Ji)

)
. (10)

Consider DL
safe = [DL

safe,1, . . . , D
L
safe,m] and DU

safe = [DU
safe,1, . . . , D

U
safe,m], then:

DL
safe ≤ Ep(w|D)[σ(fw(x))] ≤ DU

safe ∀x ∈ T,

that is, DL
safe and DU

safe bound the predictive posterior in T .

Intuitively, the first term in the bounds of Eqs. (9) (and similarly (10)) con-
siders the worst-case output for the input set T and each interval Ji, while the
second term accounts for the worst-case value of the posterior mass not captured
by the family of intervals J . The bound is valid for any family of intervals J .
Ideally, however, the partition should be finer around regions of high probability
mass of the posterior distribution, as these make up the dominant term in the
computation of the posterior predictive. We discuss in Sect. 5 how we select these
intervals in practice so as to empirically obtain non-vacuous bounds.

4.3 Computation of the Lower and Upper Bounds

We now propose a unified approach to computing the lower and upper bounds.
We observe that Eqs. (8), (9) and (10) require the integration of the posterior
distribution over weight intervals. While this is in general intractable, we have
built the bounds so that Hi, Ki and Ji are axis-aligned hyper-rectangles, and so
the computation can be done exactly for commonly used approximate Bayesian
inference methods (discussed in detail in Sect. 5.1).

For the explicit computation of decision robustness, the only missing ingre-
dient is then the computation of the minimum and maximum of σ(fw(x)) for
x ∈ T and w ∈ Ji. We do this by bounding the BNN output for any given rect-
angle, R, in the weight space. That is, we will compute upper and lower bounds

14 M. Wicker et al.

yL and yU such that:

yL ≤ min
x∈T
w∈R

fw(x) yU ≥ max
x∈T
w∈R

fw(x), (11)

which can then be used to bound σ(fw(x)) by simple propagation over the
softmax. The derivation of such bounds will be the subject of Sect. 5.2.

Finally, observe that, whereas for decision robustness we can simply select any
weight interval Ji, for probabilistic robustness one needs to make a distinction
between safe sets (Hi) and unsafe sets (Ki). It turns out that this can be done by
bounding the output of the BNN in each of these intervals. For example, in the
case of the safe sets, by definition we have that ∀w ∈ Hi,∀x′ ∈ T it follows that
fw(x′) ∈ S. By defining yL and yU as in Eq. (11), we can see that it suffices to
check whether [yL, yU] ⊆ S. Hence, the computation of probabilistic robustness
also depends on the computation of such bounds.

Therefore, once we have shown how to compute P (R) for any weight interval
and yL and yU , the bounds in Proposition 1 and Proposition 2 can be computed
explicitly, and we can thus bound probabilistic and decision robustness.

5 Explicit Bound Computation

In this section, we provide details of the computational schema needed to calcu-
late the theoretical bounds presented in Sect. 4.

5.1 Integral Computation over Weight Intervals

Key to the bound computation is the ability to compute the integral of the pos-
terior distribution over a combined set of weight intervals. Crucially, the shape
of the weight sets H = {Hi}nH

i=1, K = {Ki}nK
i=1 and J = {Ji}nJ

i=1 is a parameter of
the method, which can be leveraged to simplify the integral computation depend-
ing on the particular form of the approximate posterior distribution. We build
each weight interval as an axis-aligned hyper-rectangle of the form R = [wL, wU]
for wL and wU ∈ R

nw .

Weight Intervals for Decision Robustness. In the case of decision robust-
ness, it suffices to sample any weight interval Ji to compute the bounds we
derived in Proposition 2. Clearly, the bound is tighter if the J family is finer
around the area of high probability mass for p(w|D). In order to obtain such
a family we proceed as follows. First, we define a weight margin γ > 0,
whose role is to parameterise the radius of the weight intervals. We then iter-
atively sample weight vectors wi from p(w|D), for i = 1, . . . , nJ , and define
Ji = [wL

i , wU
i] = [wi − γ,wi + γ]. Thus defined weight intervals naturally con-

centrate around the area of greater density for p(w|D), while asymptotically
covering the whole support of the distribution.

Adversarial Robustness Certification for Bayesian Neural Networks 15

Weight Intervals for Probabilistic Robustness. On the other hand, for the
computation of probabilistic robustness one has to make a distinction between
safe and unsafe weight intervals, Hi and Ki. As explained in Sect. 4.3, this can
be done by bounding the output of the BNN in each of these intervals. For
example, in the case of the safe sets, by definition, Hi is safe if and only if
∀w ∈ Hi,∀x′ ∈ T we have that fw(x′) ∈ S. Thus, in order to build a family of
safe (respectively unsafe) weight intervals Hi (resp. Ki), we proceed as follows. As
for decision robustness, we iteratively sample weights wi from the posterior used
to build hyper-rectangles of the form Ri = [wi − γ,wi + γ]. We then propagate
Ri through the BNN and check whether the output is (resp. is not) a subset of
S. The derivation of such bounds on propagation will be the subject of Sect. 5.2.

Once the family of weights is computed, it remains to compute the cumulative
distribution over such sets. The specific computations depend on the particular
form of Bayesian approximate inference that is employed. We discuss explic-
itly the case of Gaussian variational approaches, and of sample-based posterior
approximation (e.g., HMC).

Variational Inference. For variational approximations, p(w|D) takes the form
of a multi-variate Gaussian distribution over the weight space. The resulting
computations reduce to the integral of a multi-variate Gaussian distribution
over a finite-sized axis-aligned rectangle, which can be computed using stan-
dard methods from statistics [14]. In particular, under the common assumption
of variational inference with a Gaussian distribution with diagonal covariance
matrix [28], i.e., p(w|D) = N (μ,Σ), with Σ = diag(Σ1, . . . , Σnw

), we obtain the
following result for the posterior integration:

P (R) =
∫

R

p(w|D)dw =
nw∏
j=1

1
2

(
erf

(
μj − wL

i√
2Σj

)
− erf

(
μj − wu

i√
2Σj

))
. (12)

By plugging this into the bound equations for probabilistic robustness and for
decision robustness, one obtains a closed-form formula for the bounds given
weight set interval families H, K and J .

Sample-Based Approximations. In the case of sample-based posterior
approximation (e.g., HMC), we have that p(w|D) defines a distribution over
a finite set of weights. In this case we can simplify the computations by selecting
the weight margin γ = 0, so that each sampled interval is of the form R = [wi, wi]
and its probability under the discrete posterior will trivially be:

P (Ri) = p(wi|D). (13)

5.2 Bounding Bayesian Neural Network Output

Given an input set, T , and a weight interval, R = [wL, wU], the second key step in
computing probabilistic and decision robustness is the bounding of the output

16 M. Wicker et al.

of the BNN over R given T . That is, we need to derive methods to compute
[yL, yU] such that ∀w ∈ [wL, wU],∀x′ ∈ T it follows that fw(x′) ∈ [yL, yU].

In this section, we consider Interval Bound Propagation (IBP) as a method for
computing the desired output set over-approximations, and defer the discussion
of Linear Bound Propagation (LBP) to Appendix C. Before discussing IBP in
more detail, we first introduce common notation for the rest of the section. We
consider feed-forward neural networks of the form:

z(0) = x, ζ
(k+1)
i =

nk∑
j=1

W
(k)
ij z

(k)
j + b

(k)
i , z

(k)
i = σ(ζ(k)i) (14)

for k = 1, . . . ,K and i = 0, . . . , nk, where K is the number of hidden layers,
σ(·) is a pointwise activation function, W (k) ∈ R

nk×nk−1 and b(k) ∈ R
nk are the

matrix of weights and vector of biases that correspond to the kth layer of the
network, and nk is the number of neurons in the kth hidden layer. Note that,
while Eq. (14) is written explicitly for fully-connected layers, convolutional layers
can be accounted for by embedding them in fully-connected form [59].

We write W
(k)
i: for the vector comprising the elements from the ith row of

W (k), and similarly W
(k)
:j for that comprising the elements from the jth column.

ζ(K+1) represents the final output of the network (or the logit in the case of
classification networks), that is, ζ(K+1) = fw(x). We write W (k),L and W (k),U

for the lower and upper bound induced by R for W (k), and b(k),L and b(k),U

for the bounds of b(k), for k = 0, . . . , K. Observe that z(0), ζ
(k+1)
i and z

(k)
i

are all functions of the input point x and of the combined vector of weights
w = [W (0), b(0), . . . ,W (K), b(K)]. We omit the explicit dependency for simplicity
of notation. Finally, we remark that, as both the weights and the input vary in
a given set, the middle expression of Eq. (14) defines a quadratic form.

Interval Bound Propagation (IBP). IBP has already been employed for fast
certification of deterministic neural networks [23]. The only adjustment needed
in our setting is that, at each layer, we also need to propagate the interval of
the weight matrix [W (k),L,W (k),U] and that of the bias vector [b(k),L, b(k),U].
This can be done by noticing that the minimum and maximum of each term
of the bi-linear form of Eq. (14), that is, of each monomial W

(k)
ij z

(k)
j , lies in

one of the four corners of the interval [W (k),L
ij ,W

(k),U
ij] × [z(k),Lj , z

(k),U
j], and by

adding the minimum and maximum values respectively attained by b
(k)
i . As in the

deterministic case, interval propagation through the activation function proceeds
by observing that generally employed activation functions are monotonic. This
is summarised in the following proposition.

Proposition 3. Let fw(x) be the network defined by Eq. (14), let for k =
0, . . . ,K:

t
(k),L
ij = min{W

(k),L
ij z

(k),L
j ,W

(k),U
ij z

(k),L
j ,W

(k),L
ij z

(k),U
j ,W

(k),U
ij z

(k),U
j } (15)

t
(k),U
ij = max{W

(k),L
ij z

(k),L
j ,W

(k),U
ij z

(k),L
j ,W

(k),L
ij z

(k),U
j ,W

(k),U
ij z

(k),U
j } (16)

Adversarial Robustness Certification for Bayesian Neural Networks 17

where i = 1, . . . , nk+1, j = 1, . . . , nk, z(k),L = σ(ζ(k),L), z(k),U = σ(ζ(k),U) and

ζ(k+1),L =
∑

j

t
(k),L
:j + b(k),L, ζ(k+1),U =

∑
j

t
(k),U
:j + b(k),U . (17)

Then we have that ∀x ∈ T and ∀w ∈ R: fw(x) = ζ(K+1) ∈ [
ζ(K+1),L, ζ(K+1),U

]
.

The minima and maxima in Proposition 3 are the tightest possible bounds
one can compute on matrix multiplication. A more efficient scheme for this
propagation is detailed in [46], which can be seen as an adaptation of [37] to
NN operations. Additionally, our approach can be linked to abstract interpre-
tation with simultaneous abstract sets (in our case from the orthotope domain)
over inputs and weights [20]. Regardless, [34] shows that both have an over-
approximation factor of 1.5. Similar bound formulations have been employed
across the deterministic NN certification literature [18,39,47,53]. In Appendix
C, we employ linear bounds on Eq. 17, which can tighten the bounds computed
by our method as shown initially in [50]. In [1] dynamic programming is used
to tighten these bounds further, and in [39], outside the context of BNNs, an
extension of CROWN is developed for the same problem. We emphasise that,
regardless of the propagation or tightening employed, each of these approaches
can be seen as an instantiation of the framework provided in this work.

Algorithm 1. Lower Bounds for BNN Probabilistic Robustness
Input: T – Input Region, fw – Bayesian Neural Network, p(w|D) – Posterior Distri-
bution with variance Σ, N – Number of Samples, γ – Weight margin.
Output: A sound lower bound on Psafe(T, S).

1: H ← ∅ # H is a set of known safe weight intervals
2: v ← γ · I · Σ # Elementwise product to obtain width of weight margin
3: for i ← 0 to N do
4: w(i) ∼ p(w|D)
5: # Assume weight intervals are built to be disjoint
6: [w(i),L, w(i),U] ← [wi − v, wi + v]
7: # Interval/Linear Bound Propagation, Section 5.2
8: yL, yU ← Propagate(f, T, [w(i),L, w(i),U])
9: if [yL, yU] ⊂ S then

10: H ← H ⋃{[w(i),L, w(i),U]}
11: end if
12: end for
13: PL

safe ← 0.0
14: for [w(i),L, w(i),U] ∈ H do
15: PL

safe = PL
safe + P ([w(i),L, w(i),U]) # Compute safe weight probs, Section 5.1

16: end for
17: return PL

safe

18 M. Wicker et al.

6 Complete Bounding Algorithm

In this section, we assemble complete algorithms for the computation of bounds
on Psafe(T, S) and Dsafe(T, S) based on the results discussed so far, leaving the
detailed algorithms to Appendix D. Appendix A discusses further use cases
for the bounds. The computational complexity of the algorithm is discussed
in Appendix F.

6.1 Lower-Bounding Algorithm

We provide a step-by-step outline for how to compute lower bounds on Psafe(T, S)
in Algorithm 1. We start (line 1) by initialising the family of safe weight sets H
to be the empty set and by scaling the weight margin with the posterior weight
scale (line 2). We then iteratively (line 3) proceed by sampling weights from
the posterior distribution (line 4), building candidate weight boxes (line 6), and
propagating the input and weight box through the BNN (line 8). We next check
whether the propagated output set is inside the safe output region S, and, if
so, update the family of weights H to include the weight box currently under
consideration (lines 9 and 10). Finally, we rely on the results in Sect. 5.1 to
compute the overall probabilities over all the weight sets in H, yielding a valid
lower bound for Psafe(T, S). For clarity of presentation, we assume that all the
weight boxes that we sample in lines 4–6 are pairwise disjoint, as this simplifies
the probability computation. The general case with overlapping weight boxes
relies on the Bonferroni bound and is given in Appendix E.4.

The algorithm for the computation of a lower bound on Dsafe(T, S) (listed
in the Appendix E as Algorithm 2) proceeds in an analogous way, but without
the need to perform the check in line 9, and by adjusting line 15 to the formula
from Proposition 2.

6.2 Upper-Bounding Algorithm

Upper-bounding Psafe(T, S) and Dsafe(T, S) follows the same computational flow
as Algorithm 1. The algorithms for the computation of upper bounds on prob-
abilistic and decision robustness are listed respectively as Algorithm 3 and 4
in Appendix E. We again proceed by sampling a rectangle around the weights,
propagate bounds through the NN, and compute the probabilities of weight
intervals. The key change to the algorithm to allow upper bound computation
involves computing the best case, rather than the worst case, for y for deci-
sion robustness (line 12 in Algorithm 3) and ensuring that the entire interval
[yL, yU] /∈ S (line 18) for probabilistic robustness.

7 Experiments

In this section we experimentally validate our framework on a variety of tasks,
including airborne collision avoidance, medical imaging, and autonomous driv-
ing applications. We mainly focus on verifying the adversarial robustness and

Adversarial Robustness Certification for Bayesian Neural Networks 19

Fig. 2. Top Row: Lower bounds on Psafe. Bottom Row: Lower bounds on Dsafe.
Left Two Columns: Bound values for VI-inferred BNN averaged over 1000 test-
set examples using various likelihoods, number of samples, and weight-margin values.
Right Two Columns: Bound values for HMC-inferred BNN averaged over 1000 test-
set examples using various likelihoods, number of samples, and values of ε.

uncertainty of classification problems that use the 0–1 loss. For a discussion of
how our framework applies to a wider class of specifications see Appendix A,
and Appendix B for an extension to other decision rules. In each case study,
we take the input set to be the interval Tε(x) := [x − ε, x + ε], where ε ≥ 0 is
a parameter that we vary in our experiments. For all experiments, S is the set
of all vectors where the true class is returned. Experiments are run on a server
equipped with 2x AMD EPYC 9334 CPUs and 2x NVIDIA L40 GPUs. Details
on training hyper-parameters can be found in Appendix G.

7.1 Airborne Collision Avoidance

We start with the airborne collision avoidance benchmark, which is commonly
used to evaluate the robustness of neural network controllers in a safety-critical
scenario [25,26]. In particular, we consider the horizontal collision avoidance
scenario (HCAS) from [25], and work with a single hidden layer neural network
with 125 hidden neurons trained both using Variational Online Gauss Newton
(VOGN) [28] and Hamiltonian Monte Carlo (HMC) [33]. We infer posteriors
using both the standard likelihood and the robust likelihood proposed in [49].
In Fig. 2 we study the guarantees that our method is able to provide for each
combination of the inference method and likelihood. We plot the lower bound on
Psafe and Dsafe resulting from Algorithm1 averaged over 1000 test-set samples. In

20 M. Wicker et al.

each plot we show the effect of varying the critical parameters of our algorithm,
including the number of samples and, for VOGN, the width of the weight margin
γ, as defined in Sect. 5. As expected, in all cases, we find that taking more
samples and using a higher weight margin consistently yields a higher lower
bound. HMC requires significantly more samples to cover the probability mass
as there is no margin parameter when certifying probability mass functions, i.e.,
probability distributions with discrete support. Thus, each sample covers a fixed,
small amount of mass, while even one sample from the VOGN posterior, with
a suitable weight margin, is able to give non-trivial lower bounds, e.g., 0.8 in
the case of a Psafe lower bound for the robust likelihood BNN in Fig. 2. The fact
that higher ε values lead to smaller values of the lower bound is also expected,
as larger ε implies a greater radius for the initial set T.

Fig. 3. Top Row: Computed lower bound values on Psafe for robust-likelihood VOGN
posterior (right) and standard VOGN posterior (left). Bottom Row: Computed lower
bound Psafe values for the VOGN posterior while varying depth and width parameters
of the BNN architecture.

Adversarial Robustness Certification for Bayesian Neural Networks 21

7.2 Image Classification

We now turn our attention to image classification, considering first the widely
used MNIST benchmark with 28 by 28 pixel grey-scale images [30] and then two
safety-critical tasks from medical image classification and autonomous driving.

Fig. 4. Left: Different training image resolutions on a training image sample from
PneumoniaMNIST. Right: Our computed lower bounds on Dsafe, which correspond
to adversarial robustness certificates as we vary the resolution fed into a VOGN-inferred
BNN.

MNIST Digit Recognition. In Fig. 3, we present two plots certifying (via
lower bounds on Psafe) a single hidden layer neural network with 100 hidden
neurons with parameters inferred using VOGN [28], BayesByBackprop [10] and
NoisyAdam [58], using both robust and standard likelihoods as for the airborne
collision avoidance case study. In the top row of Fig. 3, we plot the computed
lower bounds as we increase the value of ε. For the posterior inferred by each
inference method using the standard likelihood, we observe that our method is
only able to certify low values of Psafe, even for small values of ε, e.g., 0.001.
However, for the robust likelihood posteriors, we are able to certify non-trivial
robustness guarantees even at ε = 0.1. Additionally, we observe that Bayes-
ByBackprop [10] has consistently lower certified values of Psafe. We hypothesis
that this is due to BayesByBackprop having a higher variance posterior, which
in turn results in the propagation of wider weight intervals that can introduce
significant approximation.

In the bottom half of Fig. 3, we study how our lower bounds on Psafe change
as we increase the depth and width of the neural network architecture. For
this study we exclusively employ VOGN, but, as previously, still utilise the
standard (left) and robust (right) likelihoods. We find that, for the standard
likelihood, we are able to obtain high lower bounds (greater than 0.7) for all one-
layer networks regardless of width, but struggle with increasing depths. For the

22 M. Wicker et al.

posteriors inferred using the robust likelihood, we observe that the lower bounds
produced by our approach only begin to decrease when the depth reaches three
layers with significant width. We additionally highlight that, for the posteriors
inferred using the robust likelihood, we use a much larger ε (=0.03) compared to
what is used to get non-trivial bounds in the standard training case (ε = 0.001).

Fig. 5. Computing upper bounds on Dsafe to certify robust uncertainty estimates from
posteriors inferred on PneumoniaMNIST. Left: Uncertainty certificates for Pneumo-
niaMNIST posterior on MNIST dataset. Right: Uncertainty certificates for Pneumo-
niaMNIST posterior on FashionMNIST dataset.

Medical Image Classification. We now turn our attention to a more realis-
tic safety-critical application from the medical image classification domain. In
particular, we study the PneumoniaMNIST dataset from the MedMNIST suite
of benchmarks [56]. PneumoniaMNIST is a dataset of greyscale images of chest
X-rays that pose a binary classification problem, with one class representing
normal chest X-rays and the other class presenting with pneumonia. In the most
recent iteration of the MedMNIST benchmark, an option for different resolu-
tions is provided ranging from 28 by 28, the same resolution as MNIST, up to
224 by 224, the same resolution as the popular, large-scale ImageNet dataset
[17]. In the left-hand-side plot of Fig. 4, we visualize the significant differences
between these input dimensionalities. We use these datasets to study how well
our certification approaches scale with increasing input dimensionality. We work
with a four-layer convolutional architecture with two 2D convolution layers, an
average pooling layer, and a final fully-connected layer consisting of 50 neurons.
For each network studied in this section, we use the robust likelihood of [49] in
order to obtain non-trivial certifications. Additionally, we turn our attention to
bounding decision robustness, Dsafe, rather than probabilistic robustness, Psafe,
employed for MNIST evaluation. Decision robustness is more appropriate here
due to the safety-critical nature of pneumonia classification, compared to hand-
written digit classification. In particular, we begin by computing lower bounds

Adversarial Robustness Certification for Bayesian Neural Networks 23

on Dsafe, which in turn allows us to compute adversarial robustness certificates
commensurate with those computed for deterministic neural networks. We find
(see the right-hand-side plot of Fig. 4) that an increase in resolution corresponds
to a significant decrease in the lower bounds computed by our approach, which is
a result of greater approximation introduced by bound propagation techniques.
Nevertheless, on images with 128 by 128 resolution, our guarantees continue to
provide non-trivial bounds.

In addition to computing lower bounds on Dsafe to certify the adversarial
robustness of our trained posteriors, we also compute upper bounds on Dsafe to
provide certificates that our posterior is provably, robustly uncertain on given
out-of-distribution inputs. To study this, we use the MNIST dataset as well as
the FashionMNIST dataset (consisting of greyscale, 28 by 28, images of cloth-
ing items) as out-of-distribution examples for pneumonia classification. We then
consider an example uncertain if the maximum value of the posterior predictive
distribution is less than 0.8 (an arbitrary, user-definable threshold, which may
require calibration to the specific setting). In Fig. 5 we plot the proportion of
test-set inputs for which the inferred posterior is robustly uncertain on MNIST
(left plot) and FashionMNIST (right plot). For very small values of ε, we notice
that the network is much more robustly uncertain on MNIST examples then on
FashionMNIST examples. Further, we find that, similarly to robustness certifi-
cation, we are unable to certify any non-trivial uncertainty properties for images
with 224 by 224 resolution.

Fig. 6. Analysis of BNN inferred on GTSRB dataset. Left: Example in-distribution
image (top left) and out-of-distribution images. Right: Adversarial robustness certifi-
cates (red) and uncertainty certificates (shades of green) using lower and upper bounds
on Dsafe respectively for different levels of ε. (Color figure online)

Traffic Sign Recognition Classification. Our final safety-critical case study
comes from autonomous navigation using the German Traffic Sign Recognition
Benchmark (GTSRB) [40]. In particular, we study a three-class subset of the

24 M. Wicker et al.

GTSRB dataset with a three-layer CNN model with parameters inferred using
the robust likelihood and VOGN. In Fig. 6 we plot an example of the 50 km/h
sign (an in-distribution image) and different examples from three different out-
of-distribution datasets: United States Traffic Signs, Nonsense Traffic Signs, and
random noise. The first two are small sets of images curated from royalty free
image databases online and the third is sampled from a unit normal distribution.
Using each of these datasets, we study both adversarial robustness (ensuring a
sufficiently high Dsafe lower bound) and uncertainty properties (ensuring suffi-
ciently low Dsafe upper bound) of the trained network that achieves 96% test-set
accuracy. In the right-hand-side plot of Fig. 6 (in red), we show that our method
is able to compute non-trivial adversarial robustness guarantees up to ε = 0.001.
In various shades of green, we show that the uncertainty guarantees we compute
are also non-trivial for similar values of ε.

8 Conclusion

In this work, we introduced a computational framework for evaluating robustness
properties of BNNs operating under adversarial settings. In particular, we have
discussed how probabilistic robustness and decision robustness can be upper-
and lower-bounded via a combination of posterior sampling, integral computa-
tion over boxes and bound propagation techniques. We have detailed how to
compute these properties for the case of HMC and VI posterior approximation,
and how to instantiate the bounds for interval and linear bound propagation
techniques. We emphasise that the framework presented is general and can be
adapted to different inference techniques, and to most of the verification tech-
niques employed for deterministic neural networks. The main limitation of the
approach presented here arises directly from the Bayesian nature of the under-
lying model, i.e., the need to bound and partition at the weight space level
(which is not needed for deterministic neural networks, with the weight fixed
to a specific value). Nevertheless, the methods presented here provide the first
general-purpose, formal technique for the verification of probabilistic and deci-
sion robustness, as well as uncertainty quantification, in Bayesian neural net-
works, systematically evaluated on a range of tasks and network architectures.
We hope this can serve as a sound basis for future practical applications in
safety-critical scenarios.

Acknowledgments. This project received funding from the ERC under the European
Union’s Horizon 2020 research and innovation programme (FUN2MODEL, grant agree-
ment No. 834115). MK further acknowledges funding from ELSA: European Lighthouse
on Secure and Safe AI project (grant agreement No. 101070617 under UK guarantee).
Preliminary work on this paper was done while Matthew Wicker, Andrea Patane and
Luca Laurenti were at the University of Oxford funded by FUN2MODEL.

Disclosure of Interests. The authors have no competing interests to declare that are

relevant to the content of this article.

Adversarial Robustness Certification for Bayesian Neural Networks 25

References

1. Adams, S., Patane, A., Lahijanian, M., Laurenti, L.: BNN-DP: robustness certi-
fication of Bayesian neural networks via dynamic programming. In: ICML, pp.
133–151. PMLR (2023)

2. Aggarwal, R., et al.: Diagnostic accuracy of deep learning in medical imaging: a
systematic review and meta-analysis. NPJ Digit. Med. 4(1), 1–23 (2021)

3. Batten, B., Hosseini, M., Lomuscio, A.: Tight verification of probabilistic robust-
ness in Bayesian neural networks. In: AISTATS (2024)

4. Bekasov, A., Murray, I.: Bayesian adversarial spheres: Bayesian inference and
adversarial examples in a noiseless setting. arXiv preprint arXiv:1811.12335 (2018)

5. Benussi, E., Patane, A., Wicker, M., Laurenti, L., Kwiatkowska, M.: Individual
fairness guarantees for neural networks. In: IJCAI (2022)

6. Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-1-4757-4286-2

7. Berrada, L., et al.: Make sure you’re unsure: a framework for verifying probabilistic
specifications. In: NeurIPS, vol. 34 (2021)

8. Biggio, B., Roli, F.: Wild patterns: ten years after the rise of adversarial machine
learning. Pattern Recogn. 84, 317–331 (2018)

9. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press,
Oxford (1995)

10. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in
neural networks. In: ICML (2015)

11. Carbone, G., Wicker, M., Laurenti, L., Patane, A., Bortolussi, L., Sanguinetti, G.:
Robustness of Bayesian neural networks to gradient-based attacks. In: NeurIPS,
vol. 33, pp. 15602–15613 (2020)

12. Cardelli, L., Kwiatkowska, M., Laurenti, L., Paoletti, N., Patane, A., Wicker, M.:
Statistical guarantees for the robustness of Bayesian neural networks. In: IJCAI
(2019)

13. Cardelli, L., Kwiatkowska, M., Laurenti, L., Patane, A.: Robustness guarantees for
Bayesian inference with Gaussian processes. In: AAAI (2018)

14. Chang, S.H., Cosman, P.C., Milstein, L.B.: Chernoff-type bounds for the Gaussian
error function. IEEE Trans. Commun. 59(11), 2939–2944 (2011)

15. Chen, L., et al.: Deep neural network based vehicle and pedestrian detection for
autonomous driving: a survey. IEEE Trans. Intell. Transp. Syst. 22(6), 3234–3246
(2021)

16. De Palma, G., Kiani, B., Lloyd, S.: Adversarial robustness guarantees for random
deep neural networks. In: ICML, pp. 2522–2534. PMLR (2021)

17. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale
hierarchical image database. In: CVPR, pp. 248–255 (2009)

18. Doherty, A., Wicker, M., Laurenti, L., Patane, A.: Individual fairness in Bayesian
neural networks. arXiv preprint arXiv:2304.10828 (2023)

19. Dvijotham, K., Garnelo, M., Fawzi, A., Kohli, P.: Verification of deep probabilistic
models. arXiv preprint arXiv:1812.02795 (2018)

20. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: Ai2: safety and robustness certification of neural networks with abstract inter-
pretation. In: 2018 IEEE S&P, pp. 3–18. IEEE (2018)

21. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

http://arxiv.org/abs/1811.12335
https://doi.org/10.1007/978-1-4757-4286-2
http://arxiv.org/abs/2304.10828
http://arxiv.org/abs/1812.02795

26 M. Wicker et al.

22. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

23. Gowal, S., et al.: On the effectiveness of interval bound propagation for training
verifiably robust models. In: SecML 2018 (2018)

24. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

25. Julian, K.D., Kochenderfer, M.J.: Guaranteeing safety for neural network-based
aircraft collision avoidance systems. In: DASC (2019)

26. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

27. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for
computer vision? In: NeurIPS (2017)

28. Khan, M., Nielsen, D., Tangkaratt, V., Lin, W., Gal, Y., Srivastava, A.: Fast and
scalable Bayesian deep learning by weight-perturbation in Adam. In: ICML, pp.
2611–2620. PMLR (2018)

29. Lechner, M., Žikelić, D., Chatterjee, K., Henzinger, T.: Infinite time horizon safety
of Bayesian neural networks. In: NeurIPS, vol. 34, pp. 10171–10185 (2021)

30. LeCun, Y.: The MNIST database of handwritten digits (1998)
31. Liu, X., Li, Y., Wu, C., Hsieh, C.J.: Adv-BNN: improved adversarial defense

through robust Bayesian neural network. In: ICLR (2019)
32. Michelmore, R., Wicker, M., Laurenti, L., Cardelli, L., Gal, Y., Kwiatkowska, M.:

Uncertainty quantification with statistical guarantees in end-to-end autonomous
driving control. In: ICRA (2019)

33. Neal, R.M.: Bayesian Learning for Neural Networks. Springer, New York (2012).
https://doi.org/10.1007/978-1-4612-0745-0

34. Diep, N.H.: Efficient implementation of interval matrix multiplication. In:
Jónasson, K. (ed.) PARA 2010. LNCS, vol. 7134, pp. 179–188. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28145-7 18

35. Patane, A., Blaas, A., Laurenti, L., Cardelli, L., Roberts, S., Kwiatkowska, M.:
Adversarial robustness guarantees for Gaussian processes. J. Mach. Learn. Res. 23
(2022)

36. Raghunathan, A., Steinhardt, J., Liang, P.S.: Semidefinite relaxations for certifying
robustness to adversarial examples. In: NeurIPS, vol. 31 (2018)

37. Rump, S.M.: Fast and parallel interval arithmetic. BIT Numer. Math. 39, 534–554
(1999)

38. Smith, M.T., Grosse, K., Backes, M., Alvarez, M.A.: Adversarial vulnerability
bounds for Gaussian process classification. arXiv preprint arXiv:1909.08864 (2019)

39. Sosnin, P., Müller, M., Baader, M., Tsay, C., Wicker, M.: Certified robustness to
data poisoning in gradient-based training. arXiv preprint arXiv:2406.05670 (2024)

40. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: Man vs. computer: benchmarking
machine learning algorithms for traffic sign recognition. Neural Netw. 32, 323–332
(2012)

41. Stanforth, R., Gowal, S., Mann, T., Kohli, P., et al.: A dual approach to scalable
verification of deep networks. arXiv preprint arXiv:1803.06567 (2018)

42. Szegedy, C., et al.: Intriguing properties of neural networks. In: ICLR (2014)
43. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with

mixed integer programming. arXiv preprint arXiv:1711.07356 (2017)

http://arxiv.org/abs/1412.6572
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-1-4612-0745-0
https://doi.org/10.1007/978-3-642-28145-7_18
http://arxiv.org/abs/1909.08864
http://arxiv.org/abs/2406.05670
http://arxiv.org/abs/1803.06567
http://arxiv.org/abs/1711.07356

Adversarial Robustness Certification for Bayesian Neural Networks 27

44. Wei, T., Liu, C.: Safe control with neural network dynamic models. In: Learning
for Dynamics and Control Conference, pp. 739–750. PMLR (2022)

45. Weng, T.W., et al.: Towards fast computation of certified robustness for ReLU
networks. In: ICML (2018)

46. Wicker, M.: Adversarial robustness of Bayesian neural networks. Ph.D. thesis, Uni-
versity of Oxford (2021)

47. Wicker, M., Heo, J., Costabello, L., Weller, A.: Robust explanation constraints for
neural networks. arXiv preprint arXiv:2212.08507 (2022)

48. Wicker, M., Huang, X., Kwiatkowska, M.: Feature-guided black-box safety testing
of deep neural networks. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS,
vol. 10805, pp. 408–426. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89960-2 22

49. Wicker, M., Laurenti, L., Patane, A., Chen, Z., Zhang, Z., Kwiatkowska, M.:
Bayesian inference with certifiable adversarial robustness. In: AISTATS, pp. 2431–
2439. PMLR (2021)

50. Wicker, M., Laurenti, L., Patane, A., Kwiatkowska, M.: Probabilistic safety for
Bayesian neural networks. In: UAI, pp. 1198–1207. PMLR (2020)

51. Wicker, M., Laurenti, L., Patane, A., Paoletti, N., Abate, A., Kwiatkowska, M.:
Certification of iterative predictions in Bayesian neural networks. In: UAI, pp.
1713–1723. PMLR (2021)

52. Wicker, M., Laurenti, L., Patane, A., Paoletti, N., Abate, A., Kwiatkowska, M.:
Probabilistic reach-avoid for Bayesian neural networks. Artif. Intell. (2024)

53. Wicker, M., et al.: Certificates of differential privacy and unlearning for gradient-
based training. arXiv preprint arXiv:2406.13433 (2024)

54. Wong, E., Kolter, Z.: Provable defenses against adversarial examples via the convex
outer adversarial polytope. In: ICML, pp. 5286–5295. PMLR (2018)

55. Wu, M., Wicker, M., Ruan, W., Huang, X., Kwiatkowska, M.: A game-based
approximate verification of deep neural networks with provable guarantees. Theo-
ret. Comput. Sci. 807, 298–329 (2020)

56. Yang, J., et al.: MedMNIST v2-a large-scale lightweight benchmark for 2D and 3D
biomedical image classification. Sci. Data 10(1), 41 (2023)

57. Yuan, M., Wicker, M., Laurenti, L.: Gradient-free adversarial attacks for Bayesian
neural networks. In: AABI (2020)

58. Zhang, G., Sun, S., Duvenaud, D., Grosse, R.: Noisy natural gradient as variational
inference. In: ICML, pp. 5852–5861. PMLR (2018)

59. Zhang, H., Weng, T.W., Chen, P.Y., Hsieh, C.J., Daniel, L.: Efficient neural net-
work robustness certification with general activation functions. In: NeurIPS, pp.
4939–4948 (2018)

60. Zhang, X., Wang, B., Kwiatkowska, M.: Provable preimage under-approximation
for neural networks. In: Finkbeiner, B., Kovács, L. (eds.) TACAS 2024. LNCS,
vol. 14572, pp. 3–23. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-
57256-2 1

http://arxiv.org/abs/2212.08507
https://doi.org/10.1007/978-3-319-89960-2_22
https://doi.org/10.1007/978-3-319-89960-2_22
http://arxiv.org/abs/2406.13433
https://doi.org/10.1007/978-3-031-57256-2_1
https://doi.org/10.1007/978-3-031-57256-2_1

28 M. Wicker et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Getting Chip Card Payments Right

David Basin1(B) , Xenia Hofmeier1 , Ralf Sasse1 , and Jorge Toro-Pozo2

1 Department of Computer Science, ETH Zurich, Zurich, Switzerland
{basin,xenia.hofmeier,ralf.sasse}@inf.ethz.ch

2 SIX Digital Exchange, Zurich, Switzerland
jorge.toro@sdx.com

Abstract. EMV is the international protocol standard for smart card
payments and is used in billions of payment cards worldwide. Despite
the standard’s advertised security, various issues have been previously
uncovered, deriving from logical flaws that are hard to spot in EMV’s
lengthy and complex specification. We have formalized various models of
EMV in Tamarin, a symbolic model checker for cryptographic protocols.
Tamarin was extremely effective in finding critical flaws, both known
and new, and in many cases exploitable on actual cards. We report on
these past problems as well as followup work where we verified the latest,
improved version of the protocol, the EMV kernel C8. This work puts
C8’s correctness on a firm, formal basis, and clarifies which guarantees
hold for C8 and under which assumptions. Overall our work supports
the thesis that cryptographic protocol model checkers like Tamarin have
an essential role to play in improving the security of real-world payment
protocols and that they are up to this challenge.

Keywords: Formal Methods · Security · Model Checking · EMV

1 Introduction

EMV is the de facto standard for smart card payments. It is named after Euro-
pay, Mastercard, and Visa, the three founding companies that initiated this
standard, which is now managed by EMVCo. With 12.9 billion EMV cards in
circulation and over 90% of card payments using EMV, the EMV protocol is by
far the most prominent in-person payment protocol used worldwide [11].

EMVCo provides specifications for the different technologies used for card,
mobile, and online payment. The card payment standards include specifications
for contact transactions, where the payment card must be inserted into the pay-
ment terminal, and contactless transactions, where the card and terminal com-
municate wirelessly over NFC. The contactless protocol has numerous variants
called kernels, associated with the different EMVCo members.

We thank Mastercard for their past support. All opinions and conclusions expressed in
this paper are those of the authors.
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 29–51, 2025.
https://doi.org/10.1007/978-3-031-71162-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_2&domain=pdf
http://orcid.org/0000-0003-2952-939X
http://orcid.org/0009-0002-6909-8010
http://orcid.org/0000-0002-5632-6099
https://doi.org/10.1007/978-3-031-71162-6_2

30 D. Basin et al.

1.1 Attacks on EMV

Security is central to the proper functioning and acceptance of electronic pay-
ments. Unfortunately, there has been a long history of attacks on EMV cards and
protocols. These range from cloning attacks [17], where a functioning card clone
is produced, to PIN-bypass attacks where transactions that should require a
PIN are performed without it. Early PIN-bypass attacks targeted contact trans-
actions. For example, the attack of Murdoch et al. [15] uses a wired machinein-
the-middle (MITM) infrastructure between the card and the terminal. While
effective, such attacks are not practically relevant as the MITM infrastructure
is difficult to conceal. In contrast, MITM attacks on the NFC channel are a
serious threat as the attack infrastructure is inconspicuous. Such attacks can
be carried out, for example, using two smart phones that forward and modify
the communication between the card and the terminal. Examples of this are the
recent PIN-bypass attacks on EMV contactless [5–7,16].

Given EMV’s lengthy and complex specification, running over 2,000 pages, it
is not surprising that many weaknesses went undiscovered for quite some time,
even long after the protocol became widely used. The weaknesses exploited were
manifold and included issues in EMV’s legacy modes, like the magstripe mode
exploited by the cloning attack of Roland and Langer [17], the interoperability of
the different kernels, as exploited by our previous card brand mixup attack [5],
and most importantly weaknesses in EMV’s options for different authentication
methods that authenticate different data, as highlighted by our previous analysis
of the EMV protocol [6].

To address weaknesses like those above, and to improve overall payment
security, EMVCo recently developed its new, eighth, contactless kernel called
C8. This new kernel reduces the protocol’s complexity, introduces new security
features, and removes known insecure features such as magstripe mode. Its new
security features include modern cryptographic algorithms, privacy protection
mechanisms, relay protection, and new authentication methods.

1.2 Applying Formal Methods

In this paper, we focus on the use of the Tamarin prover [3,14,18], a robust
verification tool for cryptographic protocols, to uncover weaknesses in EMV and
validate recently deployed countermeasures and other protocol improvements.
We will explain Tamarin in Sect. 2.2 and we provide a brief survey here on how
it has been used in the past to analyze EMV.

As mentioned above, we analyzed the EMV contact and contactless protocol
in our previous work [6] using Tamarin. Our analysis revealed known attacks,
such as the PIN-bypass attack on contact transactions by Murdoch et al. [15], as
well as new attacks on EMV contactless. These new attacks include a PIN-bypass
attack on the Visa kernel that was demonstrated on live systems and a separate
attack that targets merchants. In the latter attack, the adversary pays for some
goods, the terminal accepts the transaction, the adversary walks out of the store
with the goods, and the bank later declines the transaction. This attack leaves the

Getting Chip Card Payments Right 31

merchant “holding the bag” in that the adversary gets the goods but the merchant
is cheated out of payment. These attacks target EMV transactions with weak
authentication methods. By evaluating the security properties of transactions
with different authentication methods, we could not only identify such attacks
but also identify secure methods and prove that the security properties hold for
our model of transactions with these methods. In this way, we could prove the
security of the most common contactless Mastercard transactions.

Subsequent work of ours extended our EMV model to also specify the rout-
ing of transaction information between the terminal and bank [5]. As this
communication is not described by the public specification of EMV, our ini-
tial models made assumptions about this communication. These assumptions
included that transactions between a Mastercard card and a terminal running
the Visa kernel would not be accepted by the bank. However, our experiments
showed that this was not the case. After adapting our model to account for such
transactions, Tamarin found an attack that we named the “card brand mixup
attack.” The attack is quite surprising: the terminal is tricked into running the
Visa kernel with a Mastercard card, which in turn allows the adversary to per-
form the PIN-bypass attack targeting the Visa kernel. This attack was also
successfully tested on live systems. Mastercard implemented countermeasures
against this attacks, which we verified by attempting, and failing, to reproduce
the attacks after their countermeasures were in place.

Over time, we found many different kinds of attacks using Tamarin. This
reflects the multiple models we made, at increasing levels of precision, which
allowed us to produce stronger verification results or, alternatively, find increas-
ingly subtle problems in the design of the different EMV kernels. This was the
case for our initial models, which were unable to capture the card brand mixup
attack as routing aspects were initially omitted. Another example of this was that
our initial models of EMV employed certain abstractions to aid Tamarin’s termi-
nation. In particular, we abstracted away from certain failure modes that were
part of the complex decision tree used to determine when the terminal rejects
or accepts transactions. As a result, our original models were too abstract to
capture our latest attack on the Mastercard kernel, which exploits failure modes
associated with certificate lookup failures [7].

Tamarin however is a verification tool, not just a tool for attack finding. In all
our previous work, after discovering attacks, we used Tamarin to verify proposed
countermeasures. In addition to our own work, Tamarin has also been used by
other researchers to verify EMV protocol extensions for relay protection, as done
by Radu et al. [16] and Coppola et al. [8].

1.3 Contributions

In this work, we analyze the security of the new C8 kernel using Tamarin. In
contrast to past work on formally modeling EMV, which occurred after the
kernels analyzed were implemented and released, we report here on the analysis

32 D. Basin et al.

of C8 during its standardization. This provides confidence in the protocol’s design
before its deployment and provides an alternative to the many iterations of
penetrate-and-patch, caused by the design errors discovered and exploited in
the past.1

Our model of C8 includes its new security features, including its new authen-
tication methods, its relay resistance protocol, and its new privacy features. As
C8 is based on the other EMV protocols, we could reuse parts of the Tamarin
models from our previous verification efforts [5,6], which sped up the modeling
process significantly. After modeling, we analyzed C8’s different configurations
individually, each configuration consisting of different supported authentication
methods for the card and cardholder.

Our analysis shows that C8 is a well-designed protocol that can be used
securely, although not with all configurations. Specifically, we use Tamarin to
identify both secure and insecure configurations, prove the security properties
of the transactions with secure configurations, and find potential attacks on
transactions with insecure configurations. We find, for example, that at least
one of the available authentication methods must be used in each transaction to
prevent attacks. Moreover, offline accepted transactions specifically require the
terminal to verify the card’s certificate. Overall, our analysis puts the security of
this new EMV kernel on a firm, formal basis by highlighting assumptions on its
configuration and implementation that are necessary and sufficient for its secure
usage.

Outline. In Sect. 2 we provide background on C8 and Tamarin. In Sect. 3 we
describe our Tamarin model of C8, including its desired security properties. In
Sect. 4, we present our results and in Sect. 5 we draw conclusions.

2 Background

2.1 The C8 Protocol

The EMV specification describes the communication between a payment card
and a payment terminal consisting of the terminal’s commands followed by the
card’s responses. At the end of such a transaction, the terminal sends the trans-
action data to the bank that issued the card.

As observed in the introduction, EMV offers two protocol variants: contact
and contactless. Moreover, there are variants of the contactless protocol called
kernels and further complexity is introduced by the kernels’ different configu-
ration options. We first provide a general overview of EMV transactions that
apply to all protocol variants and configurations.

1 Note that our work is unlikely to be the final word on C8’s security as it focuses
on an abstract model of the design and we cannot rule out other weaknesses that
adversaries may exploit, such as errors in the implementation. Moreover, adversaries
may have capabilities not captured by our models, such as the ability to carry out
side-channel attacks on the cryptography used.

Getting Chip Card Payments Right 33

To prevent fraud, the payment card authenticates transaction data to two
different parties and in two different ways: once to the bank and once to the ter-
minal. The card authenticates to the bank using a message authentication code
(MAC) that is calculated using a session key derived from a symmetric long-term
key shared between the card and the bank. The authentication to the terminal is
signature based, and the asymmetric public key associated to the card’s private
signing key is authenticated using a certificate chain. The authenticated trans-
action data may differ for the two authentication methods and it also depends
on the protocol variant and the configuration. It generally contains static data
such as the card number (also called Primary Account Number (PAN)), pay-
ment details such as the amount and currency, and transaction specific data, for
example, identifying the configuration.

In addition to the card authenticating the transaction data, the cardholder’s
presence is ensured using a Cardholder Verification Method (CVM). The CVMs
include providing a PIN to the terminal, providing a paper signature, and Con-
sumer Device CVM (CDCVM) where the card authenticates the cardholder,
usually using a mobile device such as a smart phone. The PIN can either be
verified offline by the terminal or online by the bank. Offline PIN is only offered
by contact transactions, whereas contactless transactions require online PIN.
Transactions with a value above the CVM Required Limit require some CVM,
whereas transactions below this limit allow for no CVM.

At the end of a transaction, the terminal chooses to either decline the transac-
tion offline, authorize the transaction offline, or send the transaction to the bank
for online authorization. Note that transactions with online PIN also require
online authorization.

The new C8 kernel is described in Book C8 [9] and Book E [10]. It offers many
improved security features over past kernels. These include new methods to
authenticate the transaction to the terminal and bank, modern cryptographic
algorithms, privacy protection mechanisms, and a relay resistance protocol.
Known insecure features such as the contactless magstripe mode were removed
from the specification. The CVM performed is now chosen by the card and cards
support Elliptic Curve Cryptography (ECC), AES, and RSA. Figure 1 shows a
simplified C8 transaction. In what follows, we describe the abstraction of C8
that we modeled in Tamarin.

In C8, the card authenticates the transaction to the bank as with other EMV
kernels using an Application Cryptogram (AC). The AC is a MAC com-
puted over transaction data using a session key derived from the symmetric
long-term key mk shared between the card and the bank and the Application
Transaction Counter (ATC), which is increased for each transaction.

The signature-based authentication to the terminal used in prior EMV
kernels is replaced by a MAC-based authentication. The card constructs the
Enhanced Data Authentication (EDA)-MAC using a session key. The EDA-
MAC authenticates the AC and the new Issuer Application Data (IAD)-MAC.
The IAD-MAC is calculated over transaction data including the transaction
amount, a terminal-sourced nonce, and a card-sourced nonce.

34 D. Basin et al.

For the card to create these two MACs, the card and terminal establish sym-
metric session keys using a blinded Diffie-Hellman key exchange. The card has
a static private-public key pair (dC, QC) while the terminal generates a fresh
ephemeral key pair (dT, QT) for each transaction. The key exchange starts
with the terminal sending its ephemeral public key QT to the card. The card
generates a random blinding factor r and calculates a blinded public key R from
its secret key dC and r. The card also calculates a shared secret z = QT

r×dC

from its secret key dC, the blinding factor r, and the terminal’s ephemeral pub-
lic key QT. From this shared secret z, it derives two symmetric session keys,
one for confidentiality skc and one for integrity ski, using two Key Derivation
Functions (KDFc and KDFi). The card then encrypts r with the session key for
confidentiality skc and sends it together with the blinded public key R to the
terminal. The terminal can derive the shared secret z from the blinded public
key R and its ephemeral secret key dT and recover r.

To protect this key exchange from a machine-in-the-middle (MITM) attack,
there are two options: local authentication or copying the IAD-MAC into IAD.
During local authentication, the terminal authenticates the card’s public key QC

by validating the card’s certificates and the blinding factor r. This verification is
only performed if the terminal and card support local authentication. The second
option of copying the IAD-MAC to the IAD lets the bank detect a MITM
attack through the IAD-MAC. Namely, the card authenticates the IAD-MAC
to the bank by including it in the AC and the terminal recalculates the IAD-
MAC with its view of the session key and sends it to the bank as part of the
IAD. The bank then verifies that the IAD-MAC received from the card in
the AC is the same as the IAD-MAC received from the terminal in the IAD.
Including the IAD-MAC in the AC is optional for the card. If the card performs
this action, it indicates to the terminal that it must include the IAD-MAC in
the IAD. We thus call this authentication method copy IAD-MAC into IAD.

The use of blinding provides privacy protection against eavesdroppers by
protecting sensitive data. Namely, data that identifies the card, like the card
number (PAN), is encrypted with the session key for confidentiality skc.

C8 also supports the Relay Resistance Protocol (RRP), which protects
against relay attacks. In a relay attack, messages between a terminal and a
remote card are forwarded and potentially modified. The RRP prevents
such attacks by requiring the card to be close to the terminal. The RRP
includes the exchange of two nonces, the terminal-sourced Terminal Relay
Resistance Entropy (TRRE) and the card-sourced Device Relay Resistance
Entropy (DRRE). The terminal’s TRRE is included in the AC and IAD-
MAC and the card’s DRRE is included in the IAD-MAC. The terminal
times this exchange to determine the distance between the card and terminal.
If the estimated distance exceeds a given limit, the terminal may decline the
transaction.

Getting Chip Card Payments Right 35

2.2 The Tamarin Prover

Tamarin is an automated tool for modeling and analyzing cryptographic pro-
tocols. Given a protocol model, security properties, and adversary capabilities,
Tamarin can prove that the property holds for the protocol and adversary model,
or provide an attack violating the property. Due to the undecidable nature of
the underlying verification problem, Tamarin may sometimes fail to terminate.

Tamarin analyzes designs, not code, and cryptographic functionality is han-
dled not by considering its implementation, but rather its abstract properties.
In particular, Tamarin works with a symbolic model of protocols where bit-
string messages are represented as terms, cryptographic operators are mod-

Fig. 1. Message sequence chart of our C8 protocol model abstraction.

36 D. Basin et al.

eled as function symbols, and their properties are expressed with equational
theories. For example, symmetric encryption is modeled by a function senc of
arity two and the symmetric decryption is modeled using the function sdec also
of arity two. The properties of these functions are modeled by the equation
sdec(senc(m, k), k) = m, expressing that the decryption of a ciphertext with the
correct key results in the original plaintext.

In Tamarin, facts are used to represent agents’ local states and messages
on the network. A fact has the form F(t1, ..., tn), consisting of the fact’s name
F applied to terms ti. The protocol’s state consists of the agents’ local states
and the messages on the network and thus is represented by a multiset of facts.

The protocol’s state makes a transition to a new state by the application of
a labeled multiset-rewrite rule. A rule consists of three multisets of facts: the
premises, the labels (also called action facts), and the conclusions. A rule can
be applied if an instantiation of the premises is a subset of the current protocol
state. In that case, the instantiations of the premises are removed from the pro-
tocol state and replaced by instantiations of the conclusion under the matching
substitution. An exception is made for so-called persistent facts, which are facts
that stay in the protocol state and are not removed by rule application.

Tamarin’s built-in adversary is a Dolev-Yao adversary who controls the net-
work. This means the adversary learns every message sent over the network and
can send messages that it knows. Moreover, the adversary can derive messages
from those messages it knows. However, cryptography is assumed to work per-
fectly, meaning, for example, that the adversary requires a matching decryption
key to derive the plaintext from a ciphertext. This is an abstraction of the real
world where, for example, side-channel attacks are possible or cryptography may
leak partial information about the plaintext.

A protocol P is modeled by a set of multiset rewrite rules. An execution of P
is represented by a sequence of applications of rules from this set. The trace α of
such an execution consists of the associated sequence of labels (α1, ..., αn) of the
rules applied, where αi is a multiset of action facts. We denote the set of all of P ’s
traces by traces(P). Security properties are defined as trace properties, which
are expressed as first-order formulas on traces, called lemmas (as they must be
proven), and Tamarin analyzes whether they hold for all (or, in special cases,
some) of the protocol’s traces.

3 Tamarin Model of C8

In this section, we present our Tamarin model of C8, the formalized security
properties, and our methodology. Our model is available at [4].

3.1 Protocol Model

We model the actions of three parties: the card, the terminal, and the bank. The
channel between the terminal and the bank is modeled as a secure channel, which
provides confidentiality and authenticity. The NFC channel between the card

Getting Chip Card Payments Right 37

and the terminal is modeled as being controlled by a Dolev-Yao adversary since
the adversary can tamper with the NFC channel as it is not cryptographically
protected. That protection is what the C8 protocol should achieve.

All EMV kernels rely on a public key infrastructure so that the terminal can
authenticate the card’s public key QC. We abstractly model this as the CA’s self-
signed certificate, which can be accessed by the terminal, the bank’s certificate
signed by the CA, and the card’s public key certificate signed by the bank,
which the card stores and sends to the terminal. The CA’s certificate and the
card’s records are modeled as persistent facts, accessed by the bank and card
respectively. The symmetric long-term key mk shared between the card and the
bank is also modeled as a persistent fact that the card and bank can access.

EMV requires cardholder verification for high value transactions. In practice,
terminals should reject high value transactions with a card that apparently does
not support cardholder verification and instruct the cardholder to use the contact
interface. Thus, our model does not allow a terminal to complete high value
transactions without cardholder verification.

As previously mentioned, the C8 protocol is quite complex. In addition to
those abstractions that are standard in symbolic models, we incorporated further
abstractions and simplifications where required to aid proof termination. This
includes omitting some configuration options, such as only modeling Version 2,
which we described in Sect. 2.1, requiring the optional RRP, omitting some fea-
tures such as Data Storage or the Select phase, and omitting some data objects,
such as the PDOL.

As the C8 kernel is based on the other EMV kernels, we were able to reuse
substantial parts of our previous EMV models [5,6] for our new model of C8.
While a public specification of C8 was available for our work, this specification
only covers the communication between the card and the terminal and not the
actions of the bank. In addition, some proprietary data such as the CDOL1
Related Data is not part of the specification. In our previous works, we clarified
underspecified protocol aspects by inspecting actual transaction transcripts that
were collected using our MITM infrastructure. However, this was not possible
for C8, as it is not yet implemented on publicly available cards. Fortunately, we
were able to discuss the protocol with one of the EMVCo partners to resolve
ambiguities or missing information.

3.2 Security Properties

The EMV protocol should provide guarantees to the cardholder, the merchant,
and the bank. We express these guarantees as security properties that hold
from the perspective of these three parties. We formulate the same properties as
in our previous work [6] plus additional ones, which we explain next.

Authentication. After a successful transaction, the card’s bank transfers funds
from the cardholder’s account to the merchant’s account. The C8 protocol should
provide the bank the information needed for this transfer. This includes the

38 D. Basin et al.

card’s PAN, which identifies the cardholder’s account, the terminal’s identity,
which identifies the merchant’s account, the amount, and the currency. Pro-
viding the correct information means that the card, the terminal, and the bank
should agree on this data. Situations (which likely are attacks) should be avoided
where the card sees some low value while the terminal and bank agree on a dif-
ferent high value, or where a card sees its own PAN whereas the terminal sees
a different card’s PAN that was not involved in the transaction.

We formalize such agreement as authentication properties. Namely, we for-
malize two injective agreement properties [12], one for the authentication of the
card and bank to the terminal and one for the card and terminal to the bank.
Injective agreement states that whenever agent A in role rA finished the proto-
col apparently with agent B in role rB , then B was running the protocol with
A and both agree on the data t. In addition, injective agreement rules out replay
attacks by enforcing unique protocol runs with the data t.

The views of the protocol participants are expressed with the action facts
Commit and Running, where Commit(A,B, 〈rB , rA, t〉) states that agent A in
role rA finished the protocol apparently with agent B in role rB with data t and
Running(B,A, 〈rB , rA, t〉) states that agent B in role rB is running the protocol
with agent A in role rA and data t. Note that the order of the arguments A
and B, which are the agents in Commit and Running, is intentionally swapped
as the first argument represents the agent doing that action. Additionally, we
mark agents as being expected to be non-compromised, also called honest, with
Honest. We also track when agents have been compromised with Compromised.
When an agent that should not be compromised has been compromised, then the
property holds vacuously, which we explain in more detail shortly. Using these
action facts, we formalize injective agreement to the terminal in the following
lemma, which we subsequently check with Tamarin.

Lemma 1 (Authentication to the Terminal). A protocol P satisfies
authentication to the terminal if for every trace α ∈ traces(P):

∀T, P, r, t , i.Commit(T, P, 〈r, ′Terminal′, t〉) ∈ αi =⇒
(∃j. Running(P, T, 〈r, ′Terminal′, t〉) ∈ αj ∧

�i2, T2, P2. Commit(P2, T2, 〈r, ′Terminal′, t〉) ∈ αi2 ∧ i2 	= i
) ∨

∃A, k. Honest(A) ∈ αi ∧ Compromise(A) ∈ αk.

The first two lines of this lemma express that whenever the terminal T
finished the protocol with the apparent communication partner P in role
r ∈ {′Card′, ′Bank′}, then P was running the protocol with T and both agree on
the transaction data t. The third line specifies unique protocol runs with trans-
action data t by forbidding any terminals to finish the protocol with t apart from
the above terminal that committed at time point i. In other words, should such
a replay be possible in the protocol, it would violate this property.

In our model, we consider the security of the protocol in the presence of
compromised agents. Compromise means that an agent’s key material has been

Getting Chip Card Payments Right 39

revealed and the adversary can thereby impersonate that agent. The compro-
misable key material includes the private keys of the CA, bank, and card, as well
as the symmetric long-term key mk shared between the card and the terminal,
and the terminal’s ephemeral secret key dT. While a protocol cannot provide
authentication guarantees when run with compromised agents, it should for ses-
sions involving non-compromised agents, even when other agents (not involved
in the session) are compromised. This is expressed in the last line of the above
lemma. Agents involved in the session are named with the action fact Honest.
The property does not have to hold if these agents were compromised, indicated
by Compromise.

In addition to agreeing on the PAN, terminal identity, amount, and currency,
the parties should agree on control data to ensure the correct transaction flow.
This ensures that the parties have the same view of the performed transaction.
This guarantees, for example, that if the card expects the terminal to perform
online PIN, then the terminal did so. Thus, we consider the following transaction
data to be agreed upon (i.e., the term t in Lemma 1): the PAN, the AIP, the
CVM, the ATC, the CDOL1, the AC, the IAD, and the AID.

The authentication to the bank is expressed in a lemma very similar to the
one above. The only differences is that the ground term ′Terminal′ is replaced by
′bank′. Moreover, we formulated additional security properties, which we discuss
next and formalize in Appendix A.

Bank Accepts. The merchant not only requires that the correct information
for the fund transfer is provided, but also that the merchant receives their funds
after a successful transaction. In other words, the bank should not decline trans-
actions that were previously accepted by the terminal. This prevents the scenario
described in the introduction where the adversary pays with a card for goods, the
terminal accepts, the adversary walks out with the goods, and afterwards, the
bank declines the transaction. Thus the merchant does not receive the funds for
the purchase. This is especially relevant for offline-capable terminals that do not
request online authorization.

Secrecy. The third property concerns the secrecy of critical data, i.e., the adver-
sary cannot learn this data. This data includes the card’s PIN and key material,
consisting of the symmetric long-term key mk and the asymmetric secret key
dC. The PIN should stay secret as criminals could otherwise steal the card and
use the PIN and the card to pay for high amounts or withdraw money. The key
material should stay secret as the adversary could misuse it to forge transactions.

Privacy. The C8 kernel introduces the blinded Diffie-Hellman key exchange to
encrypt sensitive card-sourced data. This sensitive data includes the blinding
factor r and any data returned by the READ RECORD response that uniquely
identifies the card, for example, the card’s PAN, certificate, and public key QC.
The encryption of this data protects the cardholder’s privacy as, without it,

40 D. Basin et al.

an adversary observing data such as the PAN could track the cardholder’s
movement. We used Tamarin to prove the secrecy of the card’s PAN.

Relay Resistance. For the C8 kernel, we verify properties of C8’s Relay Resis-
tance Protocol (RRP). We specify relay resistance using the formalism defined
by Mauw et al. [13]. They reduce the correctness of distance-bounding proto-
cols, such as RRP, to the order of messages being sent and received and they
abstract away time. For C8’s RRP, this means that the following actions must
be performed sequentially in the following order: first, the terminal sends the
EXCHANGE RELAY RESISTANCE DATA command with its nonce TRRE, then
the card receives this message and responds with the DRRE, and finally the ter-
minal receives this message. If these actions were not performed in this order, an
adversarial card could send the response before the card sent the command. This
would reduce the terminal’s time measurements and thus reduce the estimated
distance.

Note that our symbolic abstraction of relay resistance does not cover timing
and physical layer attacks on RRP. Thus, our model does not capture relay
attacks exploiting inaccurate timings, or exploiting properties of the physical
layer. As a result, attacks like Radu et al.’s. [16] that exploit inaccurate timings
and the Early-Detect and Late-Commit attacks targeting the NFC layer pointed
out by Coppola et al. [8] fall outside of our analysis.

Executability. As a sanity check, we prove executability lemmas. These lem-
mas describe an expected protocol execution without adversary interference and
provide a sanity check that the protocol is not inoperable due to modeling errors.

3.3 Analysis Approach

As mentioned, C8 offers multiple configuration options. As depicted in Table 1,
we model the options to perform local authentication, copying the IAD-MAC
into the IAD, performing online PIN or no CVM, and high or low value trans-
actions. Each transaction has a fixed combination of configuration options, cor-
responding to instances of these four parameters, which we call a configuration.
In our analysis of C8, we follow the approach taken in [5,6]: we model transac-
tions arising from all configurations running and interacting in parallel. In our
formalization of the security properties though, we consider each configuration
separately. To do this, for each configuration we generate a so-called target model
that we analyze with Tamarin. This allows us to determine which configurations
are secure or insecure. Details on this approach can be found in [6].

Our previous models considered offline and online authorized transactions in
the same model. An attack discovered for this model might only be possible for
offline authorized transactions, but not for online authorized transactions, and
this would not be apparent from the verification results. The C8 specification
has the option for online and offline authorized transactions. However, since
there is an industry push for online transactions, we additionally analyze online

Getting Chip Card Payments Right 41

Table 1. The four parameters comprising a configuration

Parameter Instances Determines

LocalAuth - Yes Whether local authentication is performed, i.e. whether the terminal verified the
certificates and the blinding factor (note that the EDA-MAC is always validated).

- No
CopyIAD -Yes Whether the IAD-MAC is copied into the IAD itself and whether the IAD-MAC

is included in the AC.
- No

CVM - NoCVM The CVM used in the transaction.
- OnlinePIN

Value - Low Whether the transaction amount is below (low) or above (high) the
CVM Required Limit.

- High

authorized transactions separately. Thus, we analyze the 16 configurations twice:
first we consider just online authorized transactions and second we allow for
both offline and online authorization. Note that the second model includes all
the online traces from the first model and also traces from offline transactions.

4 Results

In this section, we present the results of our analysis of the C8 protocol. In
Table 2 we summarize the results for transactions requiring online authoriza-
tion and in Table 3 we show the results for transactions supporting both offline
and online authorization. The tables show for each configuration which lemmas
were verified (�) or falsified (×), the lines of code of the target model, and
the time Tamarin required for analyzing the model. For our analysis, we used
Tamarin version 1.9.0 [1] on a compute server running Ubuntu 20.04.3 with two
Intel(R) Xeon(R) E5-2650 v4 @ 2.20GHz CPUs, with 12 cores each. We used
14 threads and at most 32GB of RAM per configuration.

The analysis of some of the models required hours due to their size and
complexity. Moreover, to achieve termination, we needed to write so-called ora-
cles, which are Python scripts that guide Tamarin’s proof search. Also note that
some of the models supporting offline (and as always online) authorization have
longer proof times than the models requiring strictly online authorization. This
is because the models supporting offline and online authorization have a larger
search space than the models with only online authorization. Additionally, the
proofs for the relay resistance lemma did not terminate within a few days for
some of the configurations supporting offline authorization, namely Models 3.11
and 3.15 in Table 3, marked with . Hence, in these cases, we cannot draw
conclusions with Tamarin about whether the respective statement holds.

As our model does not allow for high value transactions without CVM, the
models with NoCVM and High are not executable. Thus, we did not analyze
these configurations. Since security properties for non-executable protocols hold
trivially, these lemmas are marked with NA.

42 D. Basin et al.

Table 2. Results for lemmas for configurations requiring online authorization.

No. Configuration Exec. Bank Auth. to Auth. to Relay Lines Analysis
LocalAuth CopyIAD CVM Value Acc. Term. Bank Resist. of code time

2.1 No No OnlinePIN Low � � × × × 610 3h29m45s
2.2 No No OnlinePIN High � � × × × 610 3h26m37s
2.3 No No NoCVM Low � � × × × 603 2h42m23s
2.4 No No NoCVM High × NA NA NA NA 561 4m08s
2.5 No Yes OnlinePIN Low � � � � � 628 6m35s
2.6 No Yes OnlinePIN High � � � � � 628 6m02s
2.7 No Yes NoCVM Low � � � � � 621 7m13s
2.8 No Yes NoCVM High × NA NA NA NA 561 4m05s
2.9 Yes No OnlinePIN Low � � � � � 628 1h18m33s
2.10 Yes No OnlinePIN High � � � � � 628 1h16m38s
2.11 Yes No NoCVM Low � � � � � 621 3h31m35s
2.12 Yes No NoCVM High × NA NA NA NA 561 4m03s
2.13 Yes Yes OnlinePIN Low � � � � � 628 7m30s
2.14 Yes Yes OnlinePIN High � � � � � 628 8m12s
2.15 Yes Yes NoCVM Low � � � � � 621 8m01s
2.16 Yes Yes NoCVM High × NA NA NA NA 561 4m19s

4.1 Secure Configurations

To begin with, the secrecy of the PIN, the symmetric long-term key mk, and the
card’s secret key dC, not included in Tables 2 and 3, hold for all configurations.
We cover the secrecy of the PAN in Sect. 4.3. Note that the lemma bank accepts
is verified for all the configurations that require online authorization, shown
in Table 2, as the bank can only reject offline authorized transactions but not
online authorized transactions (as the bank was already involved in an online
transaction and has agreed).

Tamarin verified that most configurations requiring online authorization are
secure, namely, the configurations with one or both of the authentication meth-
ods local authentication and copy IAD-MAC into IAD (Configurations 2.5–
2.16 in Table 2). For the configurations supporting offline and online authoriza-
tion, Tamarin verified the same secure configurations with two exceptions. First,
Tamarin found attacks for the configuration without local authentication, with
copying the IAD-MAC into the IAD, with no CVM, and a low value, i.e.,
Configuration 3.7 in Table 3. These attacks violate the lemmas bank accepts,
authentication to the terminal, and relay resistance. We present these attacks
in Sect. 4.2. The second exception was already mentioned above: Tamarin did
not terminate for the relay resistance lemma for two configurations support-
ing offline authorization. However, Tamarin verified the other lemmas for these
configurations.

Getting Chip Card Payments Right 43

Table 3. Results for lemmas for configurations supporting offline and online autho-
rization.

No. Configuration Exec. Bank Auth. to Auth. to Relay Lines Analysis
LocalAuth CopyIAD CVM Value Acc. Term. Bank Resist. of code time

3.1 No No OnlinePIN Low � � × × × 641 3h01m30s
3.2 No No OnlinePIN High � � × × × 641 3h00m31s
3.3 No No NoCVM Low � × × × × 633 4h37m23s
3.4 No No NoCVM High × NA NA NA NA 591 7m49s
3.5 No Yes OnlinePIN Low � � � � � 659 11m41s
3.6 No Yes OnlinePIN High � � � � � 659 11m29s
3.7 No Yes NoCVM Low � × × � × 651 4h29m14s
3.8 No Yes NoCVM High × NA NA NA NA 591 9m45s
3.9 Yes No OnlinePIN Low � � � � � 659 1h18m46s
3.10 Yes No OnlinePIN High � � � � � 659 1h14m59s
3.11 Yes No NoCVM Low � � � � 640 4h14m22s
3.12 Yes No NoCVM High × NA NA NA NA 591 10m47s
3.13 Yes Yes OnlinePIN Low � � � � � 659 13m42s
3.14 Yes Yes OnlinePIN High � � � � � 659 12m25s
3.15 Yes Yes NoCVM Low � � � � 640 1h16m21s
3.16 Yes Yes NoCVM High × NA NA NA NA 591 12m31s

4.2 Insecure Configurations

Tamarin found attacks on two sets of configurations: a MITM attack on blinded
Diffie-Hellman that targets configurations without local authentication and with-
out copying the IAD-MAC into the IAD (Configurations 2.1–2.3 and 3.1–3.3)
and an attack targeting configurations with offline authorization and without
local authentication and without Online PIN (Configuration 3.7). We describe
these attacks next.

MITM Attack on Blinded Diffie-Hellman. The Blinded Diffie-Hellman key
exchange is vulnerable to the same MITM attack as the naive Diffie-Hellman
key exchange without authentication. The C8 protocol prevents this attack by
the two authentication methods of local authentication and copying the IAD-
MAC into the IAD. Moreover, this should not be a problem in practice as C8 is
designed to be used with these authentication methods. Nevertheless, our formal
analysis highlights why these authentication methods are essential and that the
protocol must be used as intended: Configurations with neither of these authen-
tication methods, namely Configurations 2.1–2.3 and 3.1–3.3, are vulnerable to
this MITM attack. Variations of this attack violate the lemmas bank accepts,
authentication to the terminal, authentication to the bank, and relay resistance.

We present the MITM attack on the authentication to the terminal in
Fig. 2. The adversary injects their own public keys QTadv. = gdTadv. , Radv. =
gradv.×dCadv. and thus shares the secret zT = gradv.×dCadv.×dT with the termi-

44 D. Basin et al.

Fig. 2. MITM attack on blinded Diffie-Hellman violating the authenticity property for
transactions with configurations without local authentication and without copying the
IAD-MAC into the IAD. The keys injected by the adversary are highlighted in red
and the terms that the terminal and the card disagree on are highlighted in blue. (Color
figure online)

nal and the secret zC = gr×dC×dTadv. with the card. The adversary can then
modify messages that are authenticated using the malicious Diffie-Hellman keys.
Our analysis showed that this attack results in a disagreement on the IAD, the
card’s nonce DRRE, and the CID, which encodes if and how the transaction is
authorized. The rest of the (dynamic) transaction data objects are agreed upon
by the parties. The disagreement on the DRRE leads to the attack on the relay
resistance property that we present in Sect. 4.4. Disagreement on the IAD and
CID means that these data objects are vulnerable to adversarial modification;
however we have not identified a real-world exploit that is possible using such a
modification.

This attack is only possible if local authentication is not performed and
the IAD-MAC is not included in the IAD. Both local authentication and
copying the IAD-MAC into the IAD are in principle optional. However, clearly
transactions with neither authentication method should be prevented. We now

Getting Chip Card Payments Right 45

describe the mechanisms with which the terminal and card decide if they perform
these authentication methods, starting with copying the IAD-MAC into the
IAD.

According to Book E [10], each payment system may choose how to generate
the AC and thus including the IAD-MAC in the AC input is optional, however
it is recommended. If the AC authenticates the IAD-MAC, the card indicates
in the Application Interchange Profile (AIP) to the terminal that it must include
the IAD-MAC in the IAD. The terminal follows the instructions to include or
not include the IAD-MAC inside the IAD, but does not perform additional
checks regarding this authentication method. Thus, the decision to include or
not include the IAD-MAC inside the IAD lies with the card’s payment system.

In contrast, local authentication is only performed if the card and terminal
support it. This is indicated by the AIP and kernel qualifier. In addition, the
terminal may choose to decline or request online authorization for transactions
where local authentication is not performed or failed. This is configured for
each terminal in the Terminal Action Code-Denial (TAC-Denial) and Terminal
Action Code-Online (TAC-Online).

From the discussion above, it follows that terminals could generally require
local authentication and cards could generally require including the IAD-MAC
in the IAD. Thus, both the card and the terminal could require an authentica-
tion method that prevents this attack. However, we could not verify that this
holds in practice as cards and terminals supporting C8 are not yet publicly
available.

Exploiting Offline Authorization. In offline authorized transactions, the
terminal accepts the transaction and later sends the transaction data to the bank
for processing. Tamarin found an attack for offline authorized transactions for the
configurations without local authentication, with copying the IAD-MAC into
the IAD, and without CVM (Configuration 3.7). Note that the configurations
with online PIN (Configurations 3.5 and 3.6) are not vulnerable to this attack,
as this attack targets offline authorized transactions and online PIN requires
the transaction to be authorized online. The attack also does not violate the
lemma authentication to the bank, as this lemma only considers online authorized
transactions. The attack is similar to the above MITM attack. However, it also
targets the configurations with copying the IAD-MAC into the IAD that are
secure for transactions without offline authorization. Copying the IAD-MAC
into the IAD does not prevent the attack because the transaction is authorized
offline and the terminal cannot verify the IAD-MAC inside the AC. However,
the bank will decline the transaction after the terminal accepted offline, which
violates the bank accepts lemma and represents a merchant holding the bag attack
as presented in our previous work [6] and explained in the introduction.

The above discussion shows that offline authorized transactions must perform
local authentication. This is also stated by the specification regarding the RRP:
the RRP requires local authentication for offline transactions. As stated above,

46 D. Basin et al.

the terminal can be configured to decline transactions without local authentica-
tion or request online authorization for such transactions.

4.3 Privacy

The blinded Diffie-Hellman key exchange was incorporated into C8 to provide
privacy protection against a passive adversary by encrypting the PAN with the
session key skc to ensure its confidentiality. In our analysis, we consider an active
adversary on the NFC channel between the card and the terminal. Tamarin
finds a trivial MITM attack on the secrecy of the PAN: since the terminal
is not authenticated to the card, an active adversary can start a protocol run
with a card, establish a session key, and learn the PAN since the card sends it
encrypted with the established, adversary-known session key. Thus, C8’s privacy
protection mechanisms are not effective against an active MITM adversary.

This attack is not, however, unexpected. The specification explicitly states
that the blinded Diffie-Hellman key exchange only provides privacy protection for
a passive adversary, not an active one. An active adversary can send, receive, and
modify messages on the NFC channel and thus communicate with both the card
and the terminal. In contrast, a passive adversary can only listen in on the
communication between a legitimate card and terminal.

We observe that in situations where a malicious device listens in on such
communication, the adversary could just as easily install an active device. For
example, an adversary could cooperate with a merchant that presents the card-
holder with a terminal emulator that reads card data, including the PAN. To
avoid raising the cardholder’s suspicion, this emulator could first perform the
attack, abort the transaction, and afterwards start a new, legitimate transac-
tion and relay this transaction to a legitimate terminal. Due to the large number
of different terminal providers and soon also phone-based terminals [2], such
a terminal emulator would not raise any suspicions. Moreover, as the terminal
emulator is not connected to a bank, such an attack would not be detected by
the bank.

4.4 Relay Resistance

Our analysis shows that relay resistance holds for the secure configurations,
namely Configurations 2.5–2.16, 3.5–3.6, and 3.9–3.16. For the insecure config-
urations, namely Configurations 2.1–2.3, 3.1–3.3, and 3.7, Tamarin identified
an attack. Thus, for the RRP to be effective, offline authorized transactions
require local authentication and online authorized transactions require either
local authentication or copying the IAD-MAC into the IAD. This attack
should not be possible for specification-conform implementations, as the speci-
fication also states these requirements. Namely, it states that the RRP requires
local authentication for offline transactions and for online transactions the RRP
relies on “IAD-MAC combined with online card authentication” ([9], page 49),
which we understand as a requirement to include the IAD-MAC in the IAD.

Getting Chip Card Payments Right 47

The attack targeting these insecure configurations is a variant of the MITM
attack described in Sect. 4.2, targeting the relay resistance property. After this
attack, the adversary and terminal share a session key for integrity skiT =
KDFc(zT) with which the adversary can forge the IAD-MAC. And as the
card’s DRRE is only authenticated by the IAD-MAC, the adversary can send
the terminal its own DRRE, authenticating it with its forged IAD-MAC.
Thus, the adversary can send the DRRE before the card received the terminal’s
TRRE, thereby violating the relay resistance property.

5 Conclusion

EMV has been wildly successful as a payment standard, but unfortunately it has
also witnessed years of penetrate-and-patch as weaknesses have been discovered.
This experience is not unique to electronic payments: testing, code review, and
other forms of scrutiny, while helpful for quality assurance, ultimately fall short
given a highly complex protocol whose failures can have enormous consequences.
Over the past years, our experience analyzing EMV has shown that building
formal models and constructing proofs is essential both in finding attacks and
sharpening the assumptions needed (on the adversary or the security properties)
for security proofs.

Concretely, in past work we found numerous weaknesses that lead to direct
attacks on Visa and Mastercard cards that we could demonstrate in the wild.
EMVCo has developed a new kernel, C8, that incorporates many of our suggested
improvements. In the work reported here, we were able to construct correctness
proofs for most of C8’s configurations. For those configurations where we had
counterexamples (i.e., attacks), we were unable to validate them in reality as
cards supporting C8 have not yet been released. Overall our results here show
that EMV’s security has indeed been improved. They also highlight the impor-
tance of EMVCo’s requirements on which configurations may be safely used,
which must be carefully followed through into the implementation.

A Lemmas

In this section, we state the lemmas formalizing the security properties presented
in Sect. 3.2.

The lemma bank accepts states that if the terminal accepts a transaction t at
some time point i, there cannot be a time point j at which the bank declines the
transaction or an agent claimed to be honest at time point i is compromised.

Lemma 2 (Bank Accepts). A protocol P satisfies the property that the bank
accepts terminal-accepted transactions if for every α ∈ traces(P):

∀t ,i. TerminalAccepts(t) ∈ αi =⇒
�j. BankDeclines(t) ∈ αj ∨
∃A, k. Honest(A) ∈ αi ∧ Compromise(A) ∈ αk.

48 D. Basin et al.

Secrecy states that a term x claimed to be secret at time point i is not
known by the adversary at any time point j or an agent claimed to be honest
at time point i is compromised. The adversary’s knowledge of x is expressed
by the action fact KU(x), which is part of Tamarin’s built-in adversary rules.2
By proving the lemma with Tamarin we establish there is no scenario whatso-
ever in which the adversary can learn x, which was claimed secret, unless the
compromise has happened.

Lemma 3 (Secrecy). A protocol P satisfies secrecy if for every α ∈
traces(P):

∀x, i. Secret(x) ∈ αi =⇒
�j. KU(x) ∈ αj ∨
∃A, k. Honest(A) ∈ αi ∧ Compromise(A) ∈ αk.

The relay resistance property, adapted from [13], states that if the terminal
reaches the end of a transaction with a card C, the terminal’s nonce x, and the
card’s nonce y, at time point i, indicated by CheckRelayResistance(C, x, y) ∈ αi,
then the following actions were performed in the given order: first, the terminal
started the RRP by sending the EXCHANGE RELAY RESISTANCE DATA with
its nonce x; second, the card C received this command and responds; and third,
the terminal receives the card’s nonce y or an agent claimed to be honest at time
point i is compromised.

Lemma 4 (Relay Resistance). A protocol P satisfies relay resistance if for
every α ∈ traces(P):

∀C, x, y, i.

CheckRelayResistance(C, x, y) ∈ αi =⇒
(∃s, a, e. s < a ∧ a < e ∧ FastPhaseStarts(x) ∈ αs ∧

FastPhaseAction(C) ∈ αa ∧ FastPhaseEnds(y) ∈ αe

) ∨
∃A, k. Honest(A) ∈ αi ∧ Compromise(A) ∈ αk.

The executability lemma requires a trace, where both the card and terminal
and the card and bank have matching Running and Commit facts and where no
agent was compromised. The Running and Commit facts are also used to express
the authentication property, see Sect. 3.2.

2 Note that there are different ways to represent the adversary’s knowledge in Tamarin.
K(x) means that the adversary has sent the value as input to the protocol, whereas
KU(x) states that the adversary has the ability to construct the value. Thus, we use
KU(x) here to formalize that the adversary cannot construct the value x.

Getting Chip Card Payments Right 49

Lemma 5 (Executability). A protocol P is executable if α ∈ traces(P)
exists such that:

∃t , C,B, nc, i, j, k, l.

Running(C, nc, 〈′Card′, ′Terminal′, t〉) ∈ αi ∧
Commit(nc,C, 〈′Card′, ′Terminal′, t〉) ∈ αj ∧
Running(C,B, 〈′Card′, ′Bank′, t〉) ∈ αk ∧
Commit(B,C, 〈′Card′, ′Bank′, t〉) ∈ αl ∧
�A, a. Compromise(A) ∈ αa.

B Acronyms

AC Application Cryptogram The MAC authenticating the card to the
terminal

AFL Application File Locator Used by the terminal to request the card’s static
data

AID Application Identifier Identifies the supported kernels
AIP Application Interchange Profile Informs the terminal of the card’s capabilities
ATC Application Transaction Counter Counter used to derive the session key for the AC
CA Certificate Authority Issues certificates
CDCVM Consumer Device CVM The card (usually a smart phone) authenticates

the cardholder
CDOL1 Card Risk Management Data Object List List of data that the terminal must provide to

the card
CID Cryptogram Information Data Encodes if and how the transaction is authorized
CVM Cardholder Verification Method Method of cardholder authentication
DRRE Device Relay Resistance Entropy Card-sourced nonce exchanged during the RRP
ECC Elliptic Curve Cryptography Asymmetric cryptographic technique
EDA-MAC Enhanced Data Authentication-MAC MAC authenticating the card to the terminal
IAD Issuer Application Data Contains proprietary application data
IAD-MAC Issuer Application Data-MAC MAC authenticating the card to the terminal
KDF Key Derivation Function Used to establish a key from some input
MAC Message Authentication Code Symmetric authentication technique
MITM machine-in-the-middle Also known as man-in-the-middle
NFC Near Field Communication Standard for wireless communication
PAN Primary Account Number Card number
PDOL Processing Data Object List List of data that the terminal must provide to

the card
PIN Personal Identification Number Short number authenticating the card holder
RRP Relay Resistance Protocol Protocol protecting against relay attacks
TAC Terminal Action Code Configures under which conditions the terminal

should take certain actions
TRRE Terminal Relay Resistance Entropy Terminal-sourced nonce exchanged during the

RRP

50 D. Basin et al.

References

1. Tamarin Version 1.9.0, Git Revision: 57e619fef32033293e4a83c0be67cc6e296bf166,
branch: develop

2. Apple Inc.: Tap to Pay on iPhone. https://developer.apple.com/tap-to-pay/
3. Basin, D., Cremers, C., Jannik, D., Sasse, R.: Modeling and analyzing security pro-

tocols with Tamarin: a comprehensive guide. In: Information Security and Cryp-
tography. Springer (2024). To appear

4. Basin, D., Hofmeier, X., Sasse, R., Toro-Pozo, J.: Tamarin models of
C8. https://github.com/tamarin-prover/tamarin-prover/tree/develop/examples/
fm24-cardpayments

5. Basin, D., Sasse, R., Toro-Pozo, J.: Card brand mixup attack: bypassing the PIN
in non-visa cards by using them for visa transactions. In: 30th USENIX Security
Symposium (USENIX Security 21), pp. 179–194. USENIX Association (2021)

6. Basin, D., Sasse, R., Toro-Pozo, J.: The EMV standard: break, fix, verify. In:
2021 IEEE Symposium on Security and Privacy (SP), pp. 1766–1781. IEEE, San
Francisco (2021)

7. Basin, D., Schaller, P., Toro-Pozo, J.: Inducing authentication failures to bypass
credit card PINs. In: 32nd USENIX Security Symposium, p. 15. USENIX Associ-
ation (2023)

8. Coppola, D., et al.: PURE: payments with UWB RElay-protection. In: 33rd
USENIX Security Symposium (USENIX Security 2024) (2024)

9. EMVCo. EMV Contactless Specifications for Payment Systems, Book C-8, Kernel
8 Specification, Version 1.1 (2023). https://www.emvco.com/specifications

10. EMVCo. EMV Contactless Specifications for Payment Systems, Book E, Security
and Key Management, Version 1.0 (2023). https://www.emvco.com/specifications/

11. Ferro, C.: Annual Report 2023: Enhancing EMV Technologies to Support-
ing Emerging Payments. https://www.emvco.com/knowledge-hub/annual-report-
2023-enhancing-emv-technologies-to-supporting-emerging-payments/

12. Lowe, G.: A hierarchy of authentication specifications. In: Proceedings 10th Com-
puter Security Foundations Workshop, pp. 31–43 (1997)

13. Mauw, S., Smith, Z., Toro-Pozo, J., Trujillo-Rasua, R.: Distance-bounding proto-
cols: verification without time and location. In: 2018 IEEE Symposium on Security
and Privacy (SP), pp. 549–566 (2018)

14. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8_48

15. Murdoch, S.J., Drimer, S., Anderson, R., Bond, M.: Chip and PIN is broken.
In: 2010 IEEE Symposium on Security and Privacy, pp. 433–446. IEEE, Oakland
(2010)

16. Radu, A.I., Chothia, T., Newton, C.J., Boureanu, I., Chen, L.: Practical EMV
relay protection. In: 2022 IEEE Symposium on Security and Privacy (SP), pp.
1737–1756. IEEE, San Francisco (2022)

17. Roland, M., Langer, J.: Cloning credit cards: a combined pre-play and downgrade
attack on EMV contactless. In: 7th USENIX Workshop on Offensive Technologies
(WOOT 13) (2013)

18. Schmidt, B., Meier, S., Cremers, C., Basin, D.: Automated analysis of Diffie-
Hellman protocols and advanced security properties. In: 2012 IEEE 25th Computer
Security Foundations Symposium, pp. 78–94. IEEE, Cambridge (2012)

https://developer.apple.com/tap-to-pay/
https://github.com/tamarin-prover/tamarin-prover/tree/develop/examples/fm24-cardpayments
https://github.com/tamarin-prover/tamarin-prover/tree/develop/examples/fm24-cardpayments
https://www.emvco.com/specifications
https://www.emvco.com/specifications/
https://www.emvco.com/knowledge-hub/annual-report-2023-enhancing-emv-technologies-to-supporting-emerging-payments/
https://www.emvco.com/knowledge-hub/annual-report-2023-enhancing-emv-technologies-to-supporting-emerging-payments/
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48

Getting Chip Card Payments Right 51

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Fundamentals of Formal Verification

A Local Search Algorithm
for MaxSMT(LIA)

Xiang He1,2 , Bohan Li1,2 , Mengyu Zhao1,2 , and Shaowei Cai1,2(B)

1 Key Laboratory of System Software (Chinese Academy of Sciences) and State Key
Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,

Beijing, China
{hexiang,libh,zhaomy,caisw}@ios.ac.cn

2 School of Computer Science and Technology University of Chinese Academy of
Sciences, Beijing, China

Abstract. MaxSAT modulo theories (MaxSMT) is an important gen-
eralization of Satisfiability modulo theories (SMT) with various applica-
tions. In this paper, we focus on MaxSMT with the background theory
of Linear Integer Arithmetic, denoted as MaxSMT(LIA). We design the
first local search algorithm for MaxSMT(LIA) called PairLS, based on
the following novel ideas. A novel operator called pairwise operator is pro-
posed for integer variables. It extends the original local search operator
by simultaneously operating on two variables, enriching the search space.
Moreover, a compensation-based picking heuristic is proposed to deter-
mine and distinguish the pairwise operations. Experiments are conducted
to evaluate our algorithm on massive benchmarks. The results show that
our solver is competitive with state-of-the-art MaxSMT solvers. Further-
more, we also apply the pairwise operation to enhance the local search
algorithm of SMT, which shows its extensibility.

Keywords: MaxSMT · Linear Integer Arithmetics · Local Search

1 Introduction

The maximum satisfiability problem (MaxSAT) is an optimization version of the
satisfiability problem (SAT), aiming to minimize the number of falsified clauses,
and it has various applications [23]. A generalization of MaxSAT is the weighted
Partial MaxSAT problem, where clauses are divided into hard and soft clauses
with weights (positive numbers). The goal is to find an assignment that satisfies
all hard clauses and minimizes the total weight of falsified soft clauses. MaxSAT
solvers have made substantial progress in recent years [2,18,20,24,26].

However, MaxSAT has limited expressiveness, and it can be generalized from
the Boolean case to Satisfiability Modulo Theories (SMT), deciding the satisfia-
bility of a first-order logic formula with respect to certain background theories,

X. He and B. Li—These two authors are co-first authors, as they contribute equally.

c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 55–72, 2025.
https://doi.org/10.1007/978-3-031-71162-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_3&domain=pdf
http://orcid.org/0009-0005-0730-1388
http://orcid.org/0000-0003-1356-6057
http://orcid.org/0009-0001-8436-3532
http://orcid.org/0000-0003-1730-6922
https://doi.org/10.1007/978-3-031-71162-6_3

56 X. He et al.

leading to a generalization called MaxSAT Modulo Theories (MaxSMT) [30].
With its enhanced expressive power, MaxSMT has various practical applica-
tions, such as safety verification [6], concurrency debugging [34], non-termination
analysis [19] and superoptimization [1].

Compared to MaxSAT and SMT solving, the research on MaxSMT solving is
still in its preliminary stage. Cimatti et al. [13] introduced the concept of “The-
ory of Costs” and developed a method to manage SMT with Pseudo-Boolean
(PB) constraints and minimize PB cost functions. Sebastiani et al. [31,32] pro-
posed an approach to solve MaxSMT problem by encoding it into SMT with
PB functions. A modular approach for MaxSMT called Lemma-Lifting was pro-
posed by Cimatti et al. [14], which involves the iterative exchange of informa-
tion between a lazy SMT solver and a purely propositional MaxSAT solver. The
implicit hitting set approach was lifted from the propositional level to SMT [15].
Two well-known MaxSMT solvers are OptiMathSAT [33] and νZ [5], which are
currently the state-of-the-art MaxSMT solvers. In this paper, we focus on the
MaxSMT problem with the background theory of Linear Integer Arithmetic
(LIA), denoted as MaxSMT(LIA), which consists of arithmetic atomic formulas
in the form of linear equalities or inequalities over integer variables.

We apply the local search method to solve MaxSMT(LIA). Although local
search has been successfully used to solve SAT [3,4,11,12,22] and recently to
SMT on the theory of bit-vector theory [16,27–29], integer arithmetic [9,10] and
real arithmetic [21,25], this is the first time that it is applied to MaxSMT.

First, we propose a novel operator for integer variables, named pairwise oper-
ator, to enrich the search space by simultaneously operating on two variables.
When the algorithm falls into a local optimum w.r.t. operations on a single vari-
able, further exploring the neighborhood structure of the pairwise operator can
help it escape from the local optimum.

Moreover, a novel method based on the concept of compensation is proposed
to determine the pairwise operation. Specifically, the pairwise operation is deter-
mined as a pair of simultaneous modifications, one to satisfy a falsified clause,
and the other to minimize the disruptions the first operation might wreak on
the already satisfied clauses. Then, a two-level picking heuristic is proposed to
distinguish these pairwise operations, by considering the potential of a literal
becoming falsified.

Based on the above novel ideas, we design the first local search solver for
MaxSMT(LIA) called PairLS, prioritizing hard clauses over soft clauses. Experi-
ments are conducted on massive benchmarks. New instances based on SMT-LIB
are generated to enrich the benchmarks for MaxSMT(LIA). We compare our
solver with 2 state-of-the-art MaxSMT(LIA) solvers, OptiMathSAT and νZ.
Experimental results show that our solver is competitive with these state-of-the-
art solvers. We also present the evolution of solution quality over time, showing
that PairLS can efficiently find a promising solution within a short cutoff time.
Ablation experiments are also conducted to confirm the effectiveness of proposed
strategies. Moreover, we apply the pairwise operator to enhance the local search
algorithm of Satisfiability Modulo Theories, demonstrating its extensibility.

A Local Search Algorithm for MaxSMT(LIA) 57

2 Preliminary

2.1 MaxSMT on Linear Integer Arithmetics

The Satisfiability modulo theories (SMT) problem determines the satisfiability
of a given quantifier-free first-order formula with respect to certain background
theories. Here we consider the theory of Linear Integer Arithmetic (LIA), con-
sisting of arithmetic formulae in the form of linear equalities or inequalities over
integer variables (

∑n
i=0 aixi ≤ k or

∑n
i=0 aixi = k)1. An atomic formula can be a

propositional variable or an arithmetic formula. A literal is an atomic formula,
or the negation of an atomic formula. A clause is the disjunction of a set of
literals, and a formula in conjunctive normal form (CNF) is the conjunction of
a set of clauses. Given the sets of propositional variables and integer variables,
denoted as P and X respectively, an assignment α is a mapping X → Z and
P → {false, true}, and α(x) denotes the value of a variable x under α.

The (weighted partial) MaxSAT Modulo Theories problem (MaxSMT for
short) is generated from SMT. The clauses are divided into hard clauses and
soft clauses with positive weight.

Definition 1. For a MaxSMT instance F , given the current assignment α, if it
satisfies all hard clauses, then α is a feasible solution, and the cost is defined as
the total weight of all falsified soft clauses, denoted as cost(α).

MaxSMT aims to find a feasible solution with minimal cost, that is, to find
an assignment satisfying all hard clauses and minimizing the sum of the weights
of the falsified soft clauses. The MaxSMT problem with the background theory
of LIA is denoted as MaxSMT(LIA).

Example 1. Given a MaxSMT(LIA) formula F = c1 ∧ c2 ∧ c3 ∧ c4 = (a − b ≤
1 ∨ a − c ≤ 0) ∧ (b − c ≤ −1) ∧ (a − d ≤ 1) ∧ (A), let c1 and c4 be hard clauses,
c2 and c3 be soft clauses with weight 1 and 2. Given the current assignment
α = {a = 0, b = 0, c = 0, d = 0, A = true}, cost(α) = 1, since only c2 is falsified.

2.2 Local Search Components

The clause weighting scheme is a popular local search method that associates
an additional property (which is an integer number) called penalty weight to
clauses and dynamically adjusts them to prevent the search from getting stuck
in a local optimum. We adopt the weighting scheme called Weighting-PMS [20]
to instruct the search. Weighting-PMS has been applied in state-of-the-art local
search solvers for MaxSAT, such as SATLIKE [20] and SATLIKE3.0 [8]. When
the algorithm falls into a local optimum, the Weighting-PMS dynamically adjusts
the penalty weights of hard and soft clauses to guide the search direction.

Note that the penalty weight and the original weight of soft clauses are differ-
ent. The goal of MaxSMT is to minimize the total original weight of unsatisfied
1 strict linear equalities in the form of (

∑n
i=0 aixi < k) can be transformed to

(
∑n

i=0 aixi ≤ k − 1).

58 X. He et al.

soft clauses, while the penalty weight is updated during the search process, guid-
ing the search in a promising direction.

Another key component of a local search algorithm is the operator, defining
how to modify the current solution. When an operator is instantiated by speci-
fying the variable to operate and the value to assign, an operation is obtained.

Definition 2. The score of an operation op, denoted by score(op), is the
decrease of the total penalty weight of falsified clauses caused by applying op.

An operation is decreasing if its score is greater than 0. Note that given a set
of clauses, denoted as C, the score of operation op on the subformula composed
of C is denoted as scoreC(op).

3 Review of LS-LIA

As our algorithm adopts the two-mode framework of LS-LIA, which is the first
local search algorithm for SMT(LIA) [9], we briefly review it in this section.

After the initialization, the algorithm switches between Integer mode and
Boolean mode. In each mode, an operation on a variable of the corresponding
data type is selected to modify the current assignment. The two modes switch to
each other when the number of non-improving steps of the current mode reaches
a threshold. The threshold is set to L × Pb for the Boolean mode and L × Pi for
the Integer mode, where Pb and Pi denote the proportion of Boolean and integer
literals to all literals in falsified clauses, and L is a parameter.

In the Boolean mode, the flip operator is adopted to modify a Boolean vari-
able to the opposite of its current value. In the Integer mode as in Algorithm 1,
a novel operator called critical move (cm for short) is proposed by considering
the literal-level information.

Definition 3. The critical move operator, denoted as cm(x, �), assigns an inte-
ger variable x to the threshold value making literal � true, where � is a falsified
literal containing x.

Specifically, the threshold value refers to the minimum modification to x that
can make � true. Example 2 is given to help readers understand the definition.

Example 2. Given two falsified literals �1 : (2a − b ≤ −3) and �2 : (5c − d = 5),
and the current assignment is α = {a = 0, b = 0, c = 0, d = 0}. Then cm(a, �1),
cm(b, �1), cm(c, �2), and cm(d, �2) refers to assigning a to -2, assigning b to 3,
assigning c to 1 and assigning d to −5 respectively.

An important property of the critical move operator is that after the exe-
cution, the corresponding literal must be true. Therefore, by picking a falsified
literal and performing a cm operation on it, we can make the literal true.

In our algorithm for MaxSMT(LIA), the critical move operator is also
adopted to make a falsified literal become true.

A Local Search Algorithm for MaxSMT(LIA) 59

Algorithm 1: Integer Mode of LS-LIA
1 while non-improving steps ≤ L × Pi do
2 if all clauses are satisfied then return if ∃ decreasing cm operation then
3 op := such an operation with the greatest score

4 else
5 update penalty weights;
6 c := a random falsified clause with integer variables;
7 op := a cm operation in c with score;

8 perform op ;

4 Pairwise Operator

In this section, we introduce a novel operator for integer variables, denoted as
pairwise operator. It extends the original critical move operator to enrich the
search space, serving as an extended neighborhood structure. We first introduce
the motivation for the pairwise operator. Then, based on pairwise operator, the
framework of our algorithm in Integer mode is proposed.

4.1 Motivation

The original critical move operator only considers one single variable each time.
However, it may miss potential decreasing operations. Specifically, when there
exists no decreasing critical move operation, operations that simultaneously
modify two variables may be decreasing, which are not considered by critical
move.

Example 3. Given a formula F = c1 ∧ c2 ∧ c3 = (a − b ≤ −2) ∧ (b − c ≤
1) ∧ (c − a ≤ 1) where the penalty weight of each clause is 1. and the current
assignment is α = {a = 0, b = 0, c = 0}. There exist two critical move operations:
cm(a, a− b ≤ −2) and cm(b, a− b ≤ −2), referring to assigning a to −2 and b to
2, respectively. Both operations are not decreasing, since these two operations
will respectively falsify c3 and c2. However, simultaneously assigning b to 2 and
c to 1 can be decreasing, since after the operation, all clauses become satisfied.

Thus, the pairwise operator simultaneously modifying two variables is pro-
posed to find a decreasing operation when there is no decreasing cm operation.

Definition 4. Pairwise operator, denoted as p(v1, v2, val1, val2), will simultane-
ously modify v1 to val1 and v2 to val2 respectively, where v1 and v2 are integer
variables, and val1 and val2 are integer parameters.

The pairwise operator can be regarded as an extended neighborhood. When
there exists no decreasing critical move operation, indicating that the local
optimum of modifying individual variables is found, the search space can be

60 X. He et al.

expanded by simultaneously modifying two variables, and the solution may be
further improved, thanks to the following property:

Proposition 1. Given a pairwise operation op1 = p(v1, v2, val1, val2), and two
operations individually assigning v1 to val1 and v2 to val2, denoted as op2 and
op3 respectively. op1 is decreasing while neither op2 nor op3 is decreasing, only if
there exists a clause c containing both v1 and v2, and on clause c, score{c}(op1) >
score{c}(op2) + score{c}(op3).

The proof can be found in Appendix A in [17]. Recall the Example 3, the
pairwise operation that simultaneously assigns b to 2 and c to 1, denoted as op1,
is decreasing, while none of the operations that individually assign b to 2 and c
to 1, denoted as op2 and op3, is decreasing. The reason lies in that b and c both
appear in the clause c2, and score{c2}(op1) > score{c2}(op2) + score{c2}(op3).

5 Compensation-Based Picking Heuristic

To find a decreasing pairwise operation when there is no decreasing cm operation,
we first introduce a method based on the concept of compensation to determine
pairwise operations, which can satisfy the necessary condition in Proposition 1
(Details can be found in Lemma 1 of Appendix B in [17]). Then, among these
pairwise operations, we propose a two-level heuristic to distinguish them, by
considering the potential of the compensated literals becoming falsified.

5.1 Pairwise Operation Candidates for Compensation

Motivation for compensation: Since one variable may exist in multiple lit-
erals, changing a variable will affect all literals containing the variable, and may
make some originally true literals become false. Moreover, if the literal is the rea-
son for some clauses being satisfied, i.e., it is the only true literal in the clause,
then falsifying the literal also falsifies the clause.

Formally, for an operation op, we define a special set of literals CL(op) = {�|�
is true and is the only true literal for some clauses, but � would become false
after individually performing op}. After performing an operation op, the literals
in the set CL(op) are of special interest since some clauses containing such a
literal would become falsified.

Concept of compensation: Let op1 and op2 denote two operations modifying
individual variables. To minimize the disruptions that op1 might wreak on the
already satisfied clauses, another operation op2 is simultaneously executed to
make a literal � ∈ CL(op1) remain true under the assignment after operating
op1. op2 is denoted as compensation for �, and literals in the set CL are denoted
as Compensated Literals.

Compensation-based pairwise operation: A pairwise operation p(v1,v2,
val1,val2) can be regarded as simultaneously performing a pair of operations

A Local Search Algorithm for MaxSMT(LIA) 61

modifying individual variables, op1 assigning v1 to val1 and op2 assigning v2 to
val2. The procedure to determine op1 and op2 is described as follows.

First, a candidate op1 is chosen to satisfy a falsified clause. To this end, we
pick a variable v1 from a false literal �1 in a random falsified clause, and op1 is the
corresponding cm operation, cm(v1, �1). It prioritizes literals from hard clauses
and soft clauses are considered only when all hard clauses are satisfied. To obtain
sufficient candidates of op1, K (a parameter) literals are randomly selected from
overall falsified clauses, and all variables in these literals are considered. The set
of all candidate op1 found in this stage is denoted as CandOp.

Second, given a literal �2 ∈ CL(op1), the op2 w.r.t op1 ∈ CandOp is deter-
mined to guarantee that �2 remains true after simultaneously performing op1 and
op2, meaning that op2 is selected to compensate for �2. Specifically, to determine
op2, we pick a variable v2 appearing in a literal �2 ∈ CL(op1), and calculate the
value val2 according to cm(v2, �2) assuming op1 performed.

Example 4. Let us consider the formula presented in Example 3: F = c1 ∧ c2 ∧
c3 = (a − b ≤ −2) ∧ (b − c ≤ 1) ∧ (c − a ≤ 1) where the penalty weight of
each clause is 1, and the current assignment is α = {a = 0, b = 0, c = 0}.
There is no decreasing critical move operation. As shown in Fig. 1, performing
op1 = cm(b, a−b ≤ −2) that assigns b to 2 would falsify the literal � = (b−c ≤ 1),
the only true literal in c2. To compensate for �, the operation op2 that assigns c
to 1 is determined according to cm(c, �), assuming that op1 has been performed.
All clauses become satisfied after simultaneously performing op1 and op2, and
thus a decreasing pairwise operation p(b, c, 2, 1) is found.

Fig. 1. Given the literal � = (b − c ≤ 1), the axis refers to the value of (b − c).
Individually performing op1 will falsify �, while op2 can compensate for �.

Note that there may exist multiple variables in the literal �2 ∈ CL(op1), and
thus given the operation op1, and the literal �2 selected in the second step, a set
of pairwise operations is determined by considering all variables in �2 except the
variable in op1, denoted as pair set(�2,op1).

5.2 Two-Level Heuristic

Among the literals selected in the second step of determining a pairwise opera-
tion, we consider that some literals are more likely to become false, and should
be given higher priority. Thus, we distinguish such literals from others. They are
formally defined as follows.

62 X. He et al.

Definition 5. Given an assignment α, and a literal in the form of∑n
i=0 aixi ≤ k, we denote Δ =

∑n
i=0 aiα(xi) − k. The literal is a fragile lit-

eral if Δ = 0 holds. Any true literal with Δ < 0 is safe.

A fragile literal with Δ = 0 is true as the inequality Δ ≤ 0 holds, but it
can be falsified by any little disturbance that enlarges Δ of the corresponding
fragile literal. Comparatively, a literal is safe means that even if the value of a
variable in the literal changes comparatively larger (as long as Δ ≤ 0 after the
modification), it remains true.

Example 5. Consider the formula: F = l1 ∧ l2 ∧ l3 = (b − a ≤ −1) ∧ (a − c ≤
0)∧(a−d ≤ 3), where the current assignment is α = {a = 0, b = 0, c = 0, d = 0}.
l2 and l3 are two true literals. l2 is a fragile literal since its Δ = 0, while l3 is a
safe literal since its Δ < 0. We consider that l2 is more fragile than l3, since a
small disturbance, cm(a, l1) that assigns a to 1, can falsify l2 but not l3.

In the second step of determining a pairwise operation, among those compen-
sated literals, we prefer fragile literals and prioritize the corresponding pairwise
operations. Based on the intuition above, a two-level picking heuristic is defined:

– We first choose the decreasing pairwise operation involving a fragile compen-
sated literal.

– If there exists no such decreasing pairwise operation, we further select the
pairwise operation involving safe compensated literals.

5.3 Algorithm for Picking a Pairwise Operation

Based on the picking heuristic, the algorithm for picking a pairwise operation is
described in Algorithm 2. In the beginning, we initialize the set of pairwise oper-
ations involving fragile and safe compensated literals, denoted as FragilePairs
and SafePairs (line 1). Firstly, K (a parameter) false literals are picked from
overall falsified clauses, and all critical move operations in these literals are added
into CandOp (lines 2–7). Note that it prioritizes hard clauses over soft clauses.

Then, for each operation op1 ∈ CandOp, we go through each compensated
literal �2 ∈ CL(op1). If �2 is fragile (resp. safe), the set of corresponding pairwise
operations determined by pair set(�2, op1) are added to the FragilePairs (resp.
SafePairs) (line 8–13).

According to the two-level picking heuristic, if there exist decreasing oper-
ations in FragilePairs, we pick the one with the greatest score (lines 14–15).
Otherwise, we pick a decreasing operation in SafePairs if it exists (lines 16–
17). An operation with the greatest score is selected via the BMS heuristic [7].
Specifically, the BMS heuristic samples t pairwise operations (a parameter), and
selects the decreasing one with the greatest score.

A Local Search Algorithm for MaxSMT(LIA) 63

6 Local Search Algorithm

Based on the above novel components, we propose our algorithm for MaxSMT(L
IA) called PairLS, prioritizing hard clauses over soft clauses. PairLS initializes
the complete current solution α by assigning all Integer variables to 0 and all
Boolean variables to false. Then, PairLS switches between Integer mode and
Boolean mode. When the time limit is reached, the best solution α∗ and the
corresponding best cost cost∗ are reported if a feasible solution can be found.
Otherwise, “No solution found” is reported.

The Integer mode of PairLS is described in Algorithm 3. The current solution
α is iteratively modified until the number of non-improving steps non impr step
exceeds the threshold bounds (line 1). If a feasible solution with a smaller cost
is found, then the best solution α∗ and the best cost cost∗ are updated (lines
2–3). In each iteration, the algorithm first tries to find a decreasing critical move
operation with the greatest score via BMS heuristic [7] (line 4–7). Note that it
prefers to pick operations from falsified hard clauses, and falsified soft clauses
are picked only if all hard clauses are satisfied. If it fails to find any decreas-
ing critical move operation, indicating that it falls into the local optimum of
modifying individual variables, then it continues to search the neighborhood of
pairwise operation (line 8). If there exists no decreasing operation in both neigh-
borhoods, the algorithm further escapes from the local optimum by updating the

Algorithm 2: pick pairwise op
Output: a decreasing pairwise operation if found

1 FragilePairs := ∅,SafePairs := ∅, CandOp := ∅ BestPair := null ;
2 for i = 1 to K do
3 if ∃ hard falsified clauses then
4 �1 := a random literal in a falsified hard clause ;

5 else if ∃ soft falsified clauses then
6 �1 := a random literal in a falsified soft clause ;

7 CandOp := CandOp
⋃{cm(x, �1)|x appears in �1};

8 foreach op1 in CandOp do
9 foreach literal �2 ∈ CL(op1) do

10 if �2 is fragile then
11 FragilePairs := FragilePairs ∪ pair set(�2, op1);

12 else if �2 is safe then
13 SafePairs := SafePairs ∪ pair set(�2, op1);

14 if ∃ decreasing operation in FragilePairs then
15 BestPair :=the operation with the greatest score picked by BMS;

16 else if ∃ decreasing operation in SafePairs then
17 BestPair :=the operation with the greatest score picked by BMS;

18 return BestPair;

64 X. He et al.

Algorithm 3: Integer Mode of PairLS
1 while non imp steps < MaxSteps do
2 if � ∃ falsified hard clauses AND cost(α) < cost∗ then
3 α∗ := α, cost∗ := cost(α);

4 if ∃ decreasing critical move in hard falsified clauses then
5 op := a decreasing critical move with the greatest score picked by BMS;

6 else if ∃ decreasing critical move in soft falsified clauses then
7 op := a decreasing critical move with the greatest score picked by BMS;

8 else op := pick pairwise op() if op == null then
9 update penalty weights by Weighting-PMS;

10 if ∃ falsified hard clauses then c := a random falsified hard clause
else c := a random falsified soft clause op := the critical move with the
greatest score in c;

11 perform op to modify α;

penalty weight (line 10), and satisfying a random clause by performing a critical
move operation in it, preferring the one with the greatest score (lines 11–13).
Specifically, it also prioritizes hard clauses over soft clauses.

In the Boolean mode, the formula is reduced to a subformula that purely
contains Boolean variables, which is indeed a MaxSAT instance. Thus, our algo-
rithm performs in the same way as SATLike3.02, a state-of-the-art local search
algorithm for MaxSAT [20].

7 Experiments

Experiments are conducted on 3 benchmarks to evaluate PairLS, comparing it
with state-of-the-art MaxSMT solvers. The promising experimental result indi-
cates that our algorithm is efficient and effective in most instances. We also
present the evolution of solution quality over time, showing that PairLS can effi-
ciently find promising solutions within a short time limit. Moreover, the ablation
experiment is carried out to confirm the effectiveness of our proposed strategies.

7.1 Experiment Preliminaries

Implementation: PairLS is implemented in C++ and compiled by g++ with
the ‘-O3’ option enabled. There are 3 parameters in the solver: L for switching
modes; t (the number of samples) for the BMS heuristic; K denotes the size of
CandOp. The parameters are tuned according to our preliminary experiments
and suggestions from the previous literature. They are set as follows: L = 20,
t = 100, K = 10.

2 https://lcs.ios.ac.cn/∼caisw/Code/maxsat/SATLike3.0.zip.

https://lcs.ios.ac.cn/~caisw/Code/maxsat/SATLike3.0.zip

A Local Search Algorithm for MaxSMT(LIA) 65

Competitors: We compare PairLS with 2 state-of-the-art MaxSMT solvers,
namely OptiMathSAT(version 1.7.3) and νZ(version 4.11.2). OptiMathSAT
applies MaxRes as the MaxSAT engine, denoted as Opt res, while the default
configuration encodes the MaxSMT problem as an optimization problem,
denoted as Opt omt. νZ also has 2 configurations based on the MaxSAT engines
MaxRes and WMax, denoted as νZ res and νZ wmax, respectively. The binary
code of OptiMathSAT and νZ is downloaded from their websites.

Benchmarks: Our experiments are conducted on 3 benchmarks. Those
instances where the hard constraints are unsatisfiable are excluded, as they do
not have feasible solutions.

Benchmark MaxSMT-LIA: This benchmark consists of 5520 instances gen-
erated based on SMT(LIA) instances from SMT-LIB3. The original SMT(LIA)
benchmark consists of 690 instances from 3 families, namely bofill, convert, and
wisa4. We adopt the same method to generate instances as in previous liter-
ature [15]: adding randomly chosen arithmetic atoms in the original problem
with a certain proportion as unit soft assertions. 4 proportions of soft clauses
(denoted as SR) are applied, namely 10%, 25%, 50% and 100%. 2 MaxSMT
instances can be generated from each original SMT instance, based on differ-
ent ways to associate soft clauses with weights: one associates each soft clause
with a unit weight of 1, and the other associates each soft clause with a random
weight between 1 and the total number of atoms. Instances with unit weights and
random weights are not distinguished as in [15]. The total number of instances
is 690 × 2 × 4 = 5520, where 690 denotes the number of original SMT(LIA)
instances, 2 denotes 2 kinds of weights associated with soft clauses, and 4 denotes
the 4 proportions of soft clauses. Note that the “bofill” family was adopted in [15],
while the family of “convert” and “wisa” are new instances.

Benchmark MaxSMT-IDL: This benchmark contains 12888 new MaxSM-T
instances generated by the above method, based on 1611 SMT(IDL) instances
including all families from SMT-LIB5 (similar to MaxSMT-LIA benchmark, the
total number of instances is 1611 × 2 × 4 = 12888). Instances with unit weights
and random weights are also not distinguished when reporting results.

Benchmark LL: The benchmark was proposed in [14]. Unsatisfiable instances
and instances over linear real arithmetic are excluded, resulting in 114 instances
in total. 56 instances contain soft clauses with unit weights of 1, and 58 instances
contain soft clauses with random weights ranging from 1 to 100. Instances with
Unit weights and Random weights are distinguished as in [14].

Experiment Setup: All experiments are conducted on a server with Intel Xeon
Platinum 8153 2.00GHz and 2048G RAM under the system CentOS 7.7.1908.

3 https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF LIA.
4 SMT(LIA) instances from other families are excluded because most of them are in

the form of a conjunction of unit clauses, and thus the generation method is not
applicable, since each produced soft assertion is also a hard assertion.

5 https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF IDL.

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_LIA
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_IDL

66 X. He et al.

Each solver executes one run for each instance in these benchmarks, as they
contain sufficient instances. The cutoff time is set to 300 s for the MaxSMT-LIA
and MaxSMT-IDL benchmarks as previous work [15], and 1200 s for the LL
benchmark as previous work [14]. The source code and generated benchmarks
can be found in the repository6.

For each family of instances, we report the number of instances where the
corresponding solver can find the best solution with the smallest cost among
all solvers, denoted by #win, and the average running time to yield those best
solutions, denoted as time. Note that when multiple solvers find the best solution
with the same cost within the cutoff time, they are all considered to be winners.
The solvers with the most #win in the table are emphasized with bold value.

The solution found by solvers and the corresponding time are defined as
follows: As for complete solvers, νZ and OptiMathSAT, we take the best upper
bound found within the cutoff time as their solution, and the time to find such
upper bound is recorded by referring to the log file. Note that the proving time
for complete solvers is excluded. As for PairLS, the best solution found so far
within the cutoff time and the time to find such a solution are recorded.

7.2 Comparison to Other MaxSMT Solvers

Results on benchmark MaxSMT-LIA: As presented in Table 1, PairLS
shows competitive and complementary performance on this benchmark. Except
for the 25% category, PairLS always leads in the total number of winning
instances regardless of the proportion of soft clauses SR. On the “bofill” family,
PairLS performs better on instances with larger SR, confirming that PairLS is
good at solving hard instances. On the “convert” family, PairLS outperforms all
competitors regardless of SR. On the “wisa” family, PairLS cannot rival its com-
petitors. In Fig. 3 of Appendix C in [17], we also present the run time comparison
between PairLS and the best configuration of competitors, namely νZ res and
Opt res. The run time comparison indicates that PairLS is more efficient than
Opt res and is complementary to νZ res.

Results on benchmark MaxSMT-IDL: As presented in Table 2, PairLS
can significantly outperform all competitors regardless of the proportion of soft
clauses. In the overall benchmark, PairLS can find a better solution than all
competitors on 53.5% of total instances, and it can lead the best competitor by
1224 “winning” instances, confirming its dominating performance. In Fig. 4 of
Appendix C in [17], we also present the run time comparison between PairLS and
the best configuration of competitors, namely νZ res and Opt omt, indicating
that PairLS is more efficient than competitors in instances with small SR.

Results on LL benchmark: The results are shown in Table 3. PairLS shows
comparable but overall poor performance compared to its competitors on this
benchmark. One possible reason is that the front-end encoding for these bench-
marks would generate many auxiliary Boolean variables, while PairLS cannot

6 https://github.com/PairLS/PairLS/releases/download/PairLS/PairLS.rar.

https://github.com/PairLS/PairLS/releases/download/PairLS/PairLS.rar

A Local Search Algorithm for MaxSMT(LIA) 67

effectively explore the Boolean structure as LS-LIA [9]. Specifically, the average
number of auxiliary variables in this benchmark is 1220, while the counterparts
in MaxSMT-LIA and MaxSMT-IDL are 327 and 528.

Table 1. Results on benchmark MaxSMT-LIA. The results are classified according to
the proportion of soft clauses, SR. Sum presents the overall performance.

SR family #inst Opt omt Opt res νZ res νZ wmax PairLS

#win(time) #win(time) #win(time) #win(time) #win(time)

10% bofill 814 773(17.1) 777(7.1) 758(7.9) 797(7.6) 762(10.9)

convert 560 445(21.1) 495(1.2) 228(18.4) 8(103.1) 558(1.1)

wisa 6 4(27.4) 3 (33.3) 6 (11.3) 0(0) 0(0)

Total 1380 1222(18.6) 1275(4.9) 992(10.3) 805(8.5) 1320(6.7)

25% bofill 814 736(59.2) 720 (17.1) 677(21.9) 776(21.8) 641(35.4)

convert 560 415(16.3) 493(12.7) 205(13.3) 5(125.6) 558(1.4)

wisa 6 4(14.5) 1(11.3) 4(73.2) 0(0) 0(0)

Total 1380 1155(43.6) 1214(16.1) 886(20.1) 781(22.5) 1199(19.6)

50% bofill 814 82(231.0) 489(12.1) 515(33.1) 217(35.8) 542(66.7)

convert 560 405(22.3) 508(9.1) 177(19.8) 0(0) 558(1.2)

wisa 6 3(36.6) 1(11.3) 5(39.2) 0(0) 0(0)

Total 1380 490(57.3) 998(10.8) 697(29.8) 217(39.7) 1100(33.4)

100% bofill 814 0(0) 0(0) 402(75.6) 15(20.7) 601(128.8)

convert 560 399(27.3) 503(14.7) 185(19.3) 19(55.0) 558(1.2)

wisa 6 1(162.2) 1(193.3) 6(38.3) 0(0) 0(0)

Total 1380 400(27.7) 504(15.0) 593(57.6) 34(39.9) 1159(67.3)

Sum 5520 3267(34.3) 3937(10.9) 3168(26.1) 1837(18.7) 4778(30.7)

7.3 Evolution of Solution Quality

To be more informative in understanding how the solvers compare in practice, the
evolution of the solution quality over time is presented. Specifically, we evaluate
the overall performance on the MaxSMT-LIA and MaxSMT-IDL benchmark
with 4 cutoff times, denoted as cutoff: 50, 100, 200, 300 s. Given an instance, the
proportion of the cost to the sum of soft clause weights is denoted as costP

7.
The average costP over time is presented in Fig. 2, showing that PairLS can
efficiently find high-quality solutions within a short time. Moreover, we also
report the “winning” instances over time. As shown in Appendix D in [17], on

7 If no feasible solution is found, then costP is set as 1. Note that we present the
average costP rather than the average cost, since the cost of certain instances can
be quite large, dominating the average cost.

68 X. He et al.

Table 2. Results on MaxSMT-IDL benchmark. The results are classified according to
the proportion of soft clauses, SR. Sum presents the overall performance.

SR #inst Opt omt Opt res νZ res νZ wmax PairLS

#win(time) #win(time) #win(time) #win(time) #win(time)

10% 3222 1086(248.1) 873(201.6) 1151(238.4) 839(221.5) 1542(159.9)

25% 3222 1171(195.2) 934(178.6) 1502(192.7) 722(292.1) 1744(148.0)

50% 3222 1094(195.8) 890(183.2) 1461(198.2) 758(290.9) 1829(149.3)

100% 3222 1061(204.1) 880(198.3) 1559(201.6) 934(260.4) 1782(157.1)

Sum 12888 4412(210.5) 3577(190.2) 5673(205.8) 3253(264.5) 6897(153.3)

Table 3. Results on LL benchmark. Instances with Unit weights and Random weights
are distinguished. Sum presents the overall performance.

Category #inst Opt omt Opt res νZ res νZ wmax PairLS

#win(time) #win(time) #win(time) #win(time) #win(time)

Unit 56 41(117.3) 32(130.3) 49(183.2) 15(40.0) 23(0.4)

Random 58 45(117.9) 37(120.3) 53(100.1) 17(39.0) 22(0.4)

Sum 114 86(117.6) 69(124.9) 102(140.0) 32(39.5) 45(0.4)

each benchmark, PairLS leads the best competitor by at least 645 “winning”
instances regardless of the cutoff time, confirming its dominating performance.

7.4 Effectiveness of Proposed Strategies

To analyze the effectiveness of our proposed strategies, two modified versions of
PairLS are proposed as follows.

– To analyze the effectiveness of pairwise operation, we modify PairLS by only
using the critical move operator, leading to the version vno pair.

– To analyze the effectiveness of two-level heuristic in compensation-based pick-
ing heuristic for picking a pairwise operation, PairLS is modified by selecting
pairwise operation without distinguishing the fragile and safe compensated
literals, leading to the version vone level.

We compare PairLS with these modified versions on 3 benchmarks. The results
of this ablation experiment are presented in Table 4, confirming the effectiveness
of the proposed strategies.

Moreover, we also analyze the extension for simultaneously operating on
more variables. PairLS is modified by simultaneously modifying three variables,
where the third variable is modified to compensate for the second one, leading
to the version vtuple. We conduct our experiments on MaxSMT-LIA. The results
are in Appendix E in [17]. When N = 3, the number of possible operations
increases from O(k2) to O(k3), where k is the number of variables in unsatisfied

A Local Search Algorithm for MaxSMT(LIA) 69

clauses. This might significantly slow down the searching process, indicating that
modifying 2 variables simultaneously is the best choice of trade-off between cost
and effectiveness.

Fig. 2. Evolution of average costP

Table 4. Comparing PairLS with its modified versions. The number of instances where
PairLS performs better and worse are presented, denoted as #better and #worse
respectively. An algorithm is better than its competitor on a certain instance if it
can find a solution with a lower cost.

#inst vno pair vone level

#better #worse #better #worse

MaxSMT-LIA 5520 1834 65 705 457

MaxSMT-IDL 128883242 1962 3005 1826

LL 114 27 0 5 0

8 Discussion on the Extension of Pairwise Operation

Since pairwise operator can be adapted to SMT(LIA) instances without addi-
tional modifications, a potential extension is incorporating it into the local search
algorithm for SMT(LIA). When there is no decreasing cm operation in the inte-
ger mode of LS-LIA (Algorithm 1 in Page 5), we apply the pairwise opera-
tor to LS-LIA to enrich the search space as in PairLS, resulting in the corre-
sponding version called LS-LIA-Pair. We compare LS-LIA-Pair with LS-LIA and
other complete SMT solvers on SMT(LIA) instances, reporting the number of
unsolved instances for each solver (Details are in Appendix F in [17]). Without
any specific customization tailored for SMT, in both categories, LS-LIA-Pair
can solve 20 more instances compared to LS-LIA, which demonstrates that pair-
wise operator is an extensible method and could be further explored to enhance
the local search algorithm for SMT.

70 X. He et al.

9 Conclusion and Future Work

In this paper, we propose the first local search algorithm for MaxSMT(LIA),
called PairLS, based on the following components. A novel pairwise operator is
proposed to enrich the search space. A compensation-based picking heuristic is
proposed to determine and distinguish pairwise operations. Experiments show
that PairLS is competitive with state-of-the-art MaxSMT solvers, and pairwise
operator is a general method. Moreover, we also would like to develop a local
search algorithm for MaxSMT on non-linear integer arithmetic and Optimization
Modulo Theory problems. Lastly, we hope to combine PairLS with complete
solvers, since PairLS can efficiently find a solution with promising cost, serving
as an upper bound for complete solvers to prune the search space.

Acknowledgements. This research is supported by NSFC Grant 62122078 and CAS
Project for Young Scientists in Basic Research (Grant No. YSBR-040).

References

1. Albert, E., Gordillo, P., Rubio, A., Schett, M.A.: Synthesis of super-optimized
smart contracts using Max-SMT. In: Lahiri, S.K., Wang, C. (eds.) Computer Aided
Verification: 32nd International Conference, CAV 2020, Los Angeles, CA, USA,
July 21–24, 2020, Proceedings, Part I, pp. 177–200. Springer International Pub-
lishing, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8 10

2. Ansótegui, C., Bonet, M.L., Levy, J.: Sat-based MaxSAT algorithms. Artif. Intell.
196, 77–105 (2013)

3. Balint, A., Schöning, U.: Choosing probability distributions for stochastic local
search and the role of make versus break. In: Proceedings of SAT 2012, pp. 16–29
(2012)

4. Biere, A., Splatz, L., Plingeling, T.: YalSAT entering the SAT competition 2016.
In: Proceedings of SAT Competition 2016, pp. 44–45 (2016)

5. Bjørner, N.S., Phan, A.D.: νz-maximal satisfaction with z3. Scss 30, 1–9 (2014)
6. Brockschmidt, M., Larra, D., Oliveras, A., Rodrıguez-Carbonell, E., Rubio, A.:

Compositional safety verification with Max-SMT. In: 2015 Formal Methods in
Computer-Aided Design (FMCAD), pp. 33–40. IEEE (2015)

7. Cai, S.: Balance between complexity and quality: Local search for minimum ver-
tex cover in massive graphs. In: Twenty-Fourth International Joint Conference on
Artificial Intelligence, pp. 747–753 (2015)

8. Cai, S., Lei, Z.: Old techniques in new ways: clause weighting, unit propagation
and hybridization for maximum satisfiability. Artif. Intell. 287, 103354 (2020)

9. Cai, S., Li, B., Zhang, X.: Local search for SMT on linear integer arithmetic.
In: Shoham, S., Vizel, Y. (eds.) Computer Aided Verification: 34th International
Conference, CAV 2022, Haifa, Israel, August 7–10, 2022, Proceedings, Part II,
pp. 227–248. Springer International Publishing, Cham (2022). https://doi.org/10.
1007/978-3-031-13188-2 12

10. Cai, S., Li, B., Zhang, X.: Local search for satisfiability modulo integer arithmetic
theories. ACM Trans. Comput. Log. 24(4), 1–26 (2023)

https://doi.org/10.1007/978-3-030-53288-8_10
https://doi.org/10.1007/978-3-031-13188-2_12
https://doi.org/10.1007/978-3-031-13188-2_12

A Local Search Algorithm for MaxSMT(LIA) 71

11. Cai, S., Luo, C., Su, K.: CCAnr: a configuration checking based local search solver
for non-random satisfiability. In: Heule, M., Weaver, S. (eds.) Theory and Appli-
cations of Satisfiability Testing – SAT 2015, pp. 1–8. Springer International Pub-
lishing, Cham (2015). https://doi.org/10.1007/978-3-319-24318-4 1

12. Cai, S., Su, K.: Local search for Boolean satisfiability with configuration checking
and subscore. Artif. Intell. 204, 75–98 (2013)

13. Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R., Stenico, C.: Satisfiability
modulo the theory of costs: foundations and applications. In: International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems,
pp. 99–113. Springer (2010)

14. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: A modular approach to
MaxSAT modulo theories. In: Järvisalo, M., Van Gelder, A. (eds.) Theory and
Applications of Satisfiability Testing – SAT 2013, pp. 150–165. Springer, Berlin,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-5 12

15. Fazekas, K., Bacchus, F., Biere, A.: Implicit hitting set algorithms for maximum
satisfiability modulo theories. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.)
Automated Reasoning, pp. 134–151. Springer International Publishing, Cham
(2018). https://doi.org/10.1007/978-3-319-94205-6 10

16. Fröhlich, A., Biere, A., Wintersteiger, C., Hamadi, Y.: Stochastic local search for
satisfiability modulo theories. In: Proceedings of AAAI 2015, vol. 29 (2015)

17. He, X., Li, B., Zhao, M., Cai, S.: A local search algorithm for MaxSMT(LIA)
(2024). https://arxiv.org/abs/2406.15782

18. Ignatiev, A., Morgado, A., Marques-Silva, J.: RC2: an efficient MaxSAT solver. J.
Satisfiability, Boolean Model. Comput. 11(1), 53–64 (2019)

19. Larraz, D., Nimkar, K., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: Proving
non-termination using Max-SMT. In: Computer Aided Verification: 26th Interna-
tional Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 18–22, 2014. Proceedings 26, pp. 779–796. Springer
(2014). https://doi.org/10.1007/978-3-319-08867-9 52

20. Lei, Z., Cai, S.: Solving (weighted) partial MaxSAT by dynamic local search for
sat. In: IJCAI, vol. 7, pp. 1346–52 (2018)

21. Li, B., Cai, S.: Local search for SMT on linear and multilinear real arithmetic.
arXiv preprint arXiv:2303.06676 (2023)

22. Li, C.M., Li, Y.: Satisfying versus falsifying in local search for satisfiability. In:
Proceedings of SAT 2012, pp. 477–478 (2012)

23. Li, C.M., Manya, F.: MaxSAT, hard and soft constraints. In: Handbook of satisfi-
ability, pp. 903–927. IOS Press (2021)

24. Li, C.M., Xu, Z., Coll, J., Manyà, F., Habet, D., He, K.: Combining clause learn-
ing and branch and bound for MaxSAT. In: 27th International Conference on
Principles and Practice of Constraint Programming (CP 2021). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik (2021)

25. Li, H., Xia, B., Zhao, T.: Local search for solving satisfiability of polynomial for-
mulas. arXiv preprint arXiv:2303.09072 (2023)

26. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular MaxSAT solver,.
In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-09284-3 33

27. Niemetz, A., Preiner, M.: Ternary propagation-based local search for more bit-
precise reasoning. In: 2020 Formal Methods in Computer Aided Design (FMCAD),
pp. 214–224 (2020)

https://doi.org/10.1007/978-3-319-24318-4_1
https://doi.org/10.1007/978-3-642-39071-5_12
https://doi.org/10.1007/978-3-319-94205-6_10
https://arxiv.org/abs/2406.15782
https://doi.org/10.1007/978-3-319-08867-9_52
http://arxiv.org/abs/2303.06676
http://arxiv.org/abs/2303.09072
https://doi.org/10.1007/978-3-319-09284-3_33

72 X. He et al.

28. Niemetz, A., Preiner, M., Biere, A.: Precise and complete propagation based local
search for satisfiability modulo theories. In: Chaudhuri, S., Farzan, A. (eds.) Com-
puter Aided Verification: 28th International Conference, CAV 2016, Toronto, ON,
Canada, July 17-23, 2016, Proceedings, Part I, pp. 199–217. Springer International
Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 11

29. Niemetz, A., Preiner, M., Biere, A.: Propagation based local search for bit-precise
reasoning. Formal Methods Syst. Design 51(3), 608–636 (2017)

30. Nieuwenhuis, R., Oliveras, A.: On sat modulo theories and optimization problems.
In: Theory and Applications of Satisfiability Testing-SAT 2006: 9th International
Conference, Seattle, WA, USA, August 12-15, 2006. Proceedings 9, pp. 156–169.
Springer (2006). https://doi.org/10.1007/11814948 18

31. Sebastiani, R., Tomasi, S.: Optimization in SMT with (Q) cost functions. In: Inter-
national Joint Conference on Automated Reasoning, pp. 484–498. Springer (2012).
https://doi.org/10.1007/978-3-642-31365-3 38

32. Sebastiani, R., Tomasi, S.: Optimization modulo theories with linear rational costs.
ACM Trans. Comput. Logic (TOCL) 16(2), 1–43 (2015)

33. Sebastiani, R., Trentin, P.: OptiMathSAT: a tool for optimization modulo theories.
J. Autom. Reason. 64(3), 423–460 (2020)

34. Terra-Neves, M., Machado, N., Lynce, I., Manquinho, V.: Concurrency debugging
with MaxSMT. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, pp. 1608–1616 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-41528-4_11
https://doi.org/10.1007/11814948_18
https://doi.org/10.1007/978-3-642-31365-3_38
http://creativecommons.org/licenses/by/4.0/

Integrating Loop Acceleration Into
Bounded Model Checking

Florian Frohn(B) and Jürgen Giesl(B)

RWTH Aachen University, Aachen, Germany
{florian.frohn,giesl}@informatik.rwth-aachen.de

Abstract. Bounded Model Checking (BMC) is a powerful technique for
proving unsafety. However, finding deep counterexamples that require a
large bound is challenging for BMC. On the other hand, acceleration tech-
niques compute “shortcuts” that “compress” many execution steps into
a single one. In this paper, we tightly integrate acceleration techniques
into SMT-based bounded model checking. By adding suitable “short-
cuts” on the fly, our approach can quickly detect deep counterexamples.
Moreover, using so-called blocking clauses, our approach can prove safety
of examples where BMC diverges. An empirical comparison with other
state-of-the-art techniques shows that our approach is highly competitive
for proving unsafety, and orthogonal to existing techniques for proving
safety.

1 Introduction

Bounded Model Checking (BMC) is a powerful technique for disproving safety
properties of, e.g., software or hardware systems. However, as it uses breadth-
first search to find counterexamples, the search space grows exponentially w.r.t.
the bound, i.e., the limit on the length of potential counterexamples. Thus, find-
ing deep counterexamples that require large bounds is challenging for BMC. On
the other hand, acceleration techniques can compute a first-order formula that
characterizes the transitive closure of the transition relation induced by a loop.
Intuitively, such a formula corresponds to a “shortcut” that “compresses” many
execution steps into a single one. In this paper, we consider relations defined by
quantifier-free first-order formulas over some background theory like non-linear
integer arithmetic and two disjoint vectors of variables �x and �x′, called the pre-
and post-variables. Such transition formulas can easily represent, e.g., transi-
tion systems (TSs), linear Constrained Horn Clauses (CHCs), and control-flow
automata (CFAs).1 Thus, they subsume many popular intermediate representa-
tions used for verification of systems specified in more expressive languages.

funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
- 235950644 (Project GI 274/6-2).
1 To this end, it suffices to introduce one additional variable that represents the

control-flow location (for TSs and CFAs) or the predicate (for linear CHCs).

c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 73–91, 2025.
https://doi.org/10.1007/978-3-031-71162-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_4&domain=pdf
http://orcid.org/0000-0003-0902-1994
http://orcid.org/0000-0003-0283-8520
https://doi.org/10.1007/978-3-031-71162-6_4

74 F. Frohn and J. Giesl

In contrast to, e.g., source code, transition formulas are completely unstruc-
tured. However, source code may be unstructured, too (e.g., due to gotos), i.e.,
one cannot rely on the input being well structured. So the fact that our approach
is independent from the structure of the input makes it broadly applicable.

Example 1. Consider the transition formula τ := τx<100 ∨ τx=100 where

τx<100 := x < 100 ∧ x′ = x + 1 ∧ y′ = y and
τx=100 := x = 100 ∧ x′ = 0 ∧ y′ = y + 1.

It defines a relation →τ on Z × Z by relat-
ing the pre-variables x and y with the post-
variables x′ and y′. So for all cx, cy, c′

x, c′
y ∈ Z,

while (x <= 100) {
while (x < 100) x++;
x = 0 , y++;

}

Listing 1. Implementation of τ

we have (cx, cy) →τ (c′
x, c′

y) iff [x/cx, y/cy, x′/c′
x, y′/c′

y] is a model of τ , i.e.,
iff there is a step from a state with x = cx∧y = cy to a state with x = c′

x∧y = c′
y

in Listing 1. To prove that an error state satisfying ψerr := y ≥ 100 is reachable
from an initial state which satisfies ψinit := x ≤ 0 ∧ y ≤ 0, BMC has to unroll τ
10100 times.

Our new technique Accelerated BMC (ABMC) uses the following accelera-
tion

n > 0 ∧ x + n ≤ 100 ∧ x′ = x + n ∧ y′ = y (τ+
i)

of τx<100: As we have (cx, cy) →+
τx<100

(c′
x, c′

y) iff τ+
i [x/cx, y/cy, x′/c′

x, y′/c′
y] is

satisfiable, τ+
i is a “shortcut” for many →τx<100-steps.

To compute such a shortcut τ+
i from the formula τx<100, we use existing

acceleration techniques [18]. In the example above, n serves as loop counter.
Then the literal x′ = x + 1 of τx<100 gives rise to the recurrence equations
x(0) = x and x(n) = x(n−1) + 1, which yield the closed form x(n) = x + n,
resulting in the literal x′ = x + n of τ+

i . Thus, the literal x + n ≤ 100 of τ+
i is

equivalent to x(n−1) < 100. As x is monotonically increasing (i.e., τx<100 implies
x < x′), x(n−1) < 100 implies x(n−2) < 100, x(n−3) < 100, . . . , x(0) < 100, i.e.,
the loop τx<100 can indeed be executed n times.

So τ+
i can simulate arbitrarily many steps with τ in a single step, as long as x

does not exceed 100. Here, acceleration was applied to τx<100, i.e., the projection
of τ to the case x < 100, which corresponds to the inner loop of Listing 1. We
also call such projections transitions. Later, ABMC also accelerates the outer
loop (consisting of τx=100, τx<100, and τ+

i), resulting in

n > 0 ∧ x = 100 ∧ 1 < x′ ≤ 100 ∧ y′ = y + n. (τ+
o)

For technical reasons, our algorithm accelerates [τx=100, τx<100, τ
+
i] instead of

just [τx=100, τ
+
i], so that τ+

o requires 1 < x′, i.e., it only covers cases where
τx<100 is applied at least twice after τx=100. Details will be clarified in Sect. 3.2,
see in particular Fig. 1. Using these shortcuts, ABMC can prove unsafety with
bound 7.

Integrating Loop Acceleration Into Bounded Model Checking 75

While our main goal is to improve BMC’s capability to find deep counterex-
amples, the following straightforward observations can be used to block certain
parts of the transition relation in ABMC:

1. After accelerating a sequence of transitions, the resulting accelerated transi-
tion should be preferred over that sequence of transitions.

2. If an accelerated transition has been used, then the corresponding sequence
of transitions should not be used immediately afterwards.

Both observations exploit that an accelerated transition describes the transitive
closure of the relation induced by the corresponding sequence of transitions. Due
to its ability to block parts of the transition relation, ABMC is able to prove
safety in cases where BMC would unroll the transition relation indefinitely.

Outline. After introducing preliminaries in Sect. 2, we show how to use accel-
eration in order to improve the BMC algorithm to ABMC in Sect. 3. To increase
ABMCs capabilities for proving safety, Sect. 4 refines ABMC by integrating
blocking clauses. In Sect. 5, we discuss related work, and in Sect. 6, we evalu-
ate our implementation of ABMC in our tool LoAT.

2 Preliminaries

We assume familiarity with basics from many-sorted first-order logic [15]. With-
out loss of generality, we assume that all formulas are in negation normal form
(NNF). V is a countably infinite set of variables and A is a first-order theory
over a k-sorted signature Σ with carrier C = (C1, . . . , Ck). For each entity e, V(e)
is the set of variables that occur in e. QF(Σ) denotes the set of all quantifier-free
first-order formulas over Σ, and QF∧(Σ) only contains conjunctions of Σ-literals.
We let � and ⊥ stand for “true” and “false”, respectively.

Given ψ ∈ QF(Σ) with V(ψ) = �y, we say that ψ is A-valid (written |=A ψ) if
every model of A satisfies the universal closure ∀�y. ψ of ψ. Moreover, σ : V(ψ) →
C is an A-model of ψ (written σ |=A ψ) if |=A σ(ψ), where σ(ψ) results from
ψ by instantiating all variables according to σ. If ψ has an A-model, then ψ
is A-satisfiable. We write ψ |=A ψ′ for |=A (ψ =⇒ ψ′), and ψ ≡A ψ′ means
|=A (ψ ⇐⇒ ψ′). In the sequel, we omit the subscript A, and we just say “valid”,
“model”, and “satisfiable”. We assume that A is complete, i.e., we either have
|= ψ or |= ¬ψ for every closed formula over Σ.

We write �x for sequences and xi is the ith element of �x. We use “::” for
concatenation of sequences, where we identify sequences of length 1 with their
elements, so we may write, e.g., x :: xs instead of [x] :: xs.

Let d ∈ N be fixed, and let �x, �x′ ∈ Vd be disjoint vectors of pairwise different
variables, called the pre- and post-variables. Each τ ∈ QF(Σ) induces a transition
relation →τ on Cd where �s →τ �t iff τ [�x/�s, �x′/�t] is satisfiable. Here, [�x/�s, �x′/�t]
denotes the substitution θ with θ(xi) = si and θ(x′

i) = ti for all 1 ≤ i ≤ d. We
refer to elements of QF(Σ) as transition formulas whenever we are interested in

76 F. Frohn and J. Giesl

Algorithm 1: BMC – Input: a safety problem T = (ψinit, τ, ψerr)

1 b ← 0; add(μb(ψinit))
2 while � do
3 push(); add(μb(ψerr))
4 if check sat() do return unsafe else pop(); add(μb(τ))
5 if ¬check sat() do return safe else b ← b + 1

their induced transition relation. Moreover, we also refer to conjunctive transi-
tion formulas (i.e., elements of QF∧(Σ)) as transitions. A safety problem T is a
triple (ψinit, τ, ψerr) ∈ QF(Σ) × QF(Σ) × QF(Σ) where V(ψinit) ∪ V(ψerr) ⊆ �x. It
is unsafe if there are �s,�t ∈ Cd such that [�x/�s] |= ψinit, �s →∗

τ
�t, and [�x/�t] |= ψerr.

The composition of τ and τ ′ is �(τ, τ ′) := τ [�x′/�x′′] ∧ τ ′[�x/�x′′] where �x′′ ∈ Vd

is fresh. Here, we assume V(τ) ∩ V(τ ′) ⊆ �x ∪ �x′ (which can be ensured by
renaming other variables correspondingly). So →�(τ,τ ′) = →τ ◦ →τ ′ (where ◦
denotes relational composition). For finite sequences of transition formulas we
define �([]) := (�x = �x′) (i.e., →�([]) is the identity relation) and �(τ :: �τ) :=
�(τ,�(�τ)). We abbreviate →�(�τ) by →�τ .

Acceleration techniques compute the transitive closure of relations. In the
following definition, we only consider conjunctive transition formulas, since many
existing acceleration techniques do not support disjunctions [8], or approximate
in the presence of disjunctions [18]. So the restriction to conjunctive formulas
ensures that our approach works with arbitrary existing acceleration techniques.

Definition 2 (Acceleration). An acceleration technique is a function accel :
QF∧(Σ) → QF∧(Σ′) such that →accel(τ) ⊆ →+

τ , where Σ′ is the signature of a
first-order theory A′.

We abbreviate accel(�(�τ)) by accel(�τ). So as we aim at finding counterexamples,
we allow under-approximating acceleration techniques, i.e., we do not require
→accel(τ) = →+

τ . Definition 2 allows A′ �= A, as most theories are not “closed
under acceleration”. For example, accelerating the following Presburger formula
on the left may yield the non-linear formula on the right:

x′ = x + y ∧ y′ = y n > 0 ∧ x′ = x + n · y ∧ y′ = y.

3 From BMC to ABMC

In this section, we introduce accelerated bounded model checking. To this end, we
first recapitulate bounded model checking in Sect. 3.1. Then we present ABMC in
Sect. 3.2. To implement ABMC efficiently, heuristics to decide when to perform
acceleration are needed. Thus, we present such a heuristic in Sect. 3.3.

3.1 Bounded Model Checking

Algorithm 1 shows how to implement BMC on top of an incremental SMT solver.
In Line 1, the description of the initial states is added to the SMT problem.

Integrating Loop Acceleration Into Bounded Model Checking 77

Here and in the following, for all i ∈ N we define μi(x) := x(i) if x ∈ V \ �x′, and
μi(x′) = x(i+1) if x′ ∈ �x′. So in particular, we have μi(�x) = �x(i) and μi(�x′) =
�x(i+1), where we assume that �x(0), �x(1), . . . ∈ Vd are disjoint vectors of pairwise
different variables. In the loop, we set a backtracking point with the “push()”
command and add a suitably variable-renamed version of the description of the
error states to the SMT problem in Line 3. Then we check for satisfiability to see
if an error state is reachable with the current bound in Line 4. If this is not the
case, the description of the error states is removed with the “pop()” command
that deletes all formulas from the SMT problem that have been added since
the last backtracking point. Then a variable-renamed version of the transition
formula τ is added to the SMT problem. If this results in an unsatisfiable problem
in Line 5, then the whole search space has been exhausted, i.e., then T is safe.
Otherwise, we enter the next iteration.

Example 3 (BMC). For the first 100 iterations of Algorithm 1 on Example 1,
all models found in Line 5 satisfy the 1st disjunct μb(τx<100) of μb(τ). Then we
may have x(100) = 100, so that the 2nd disjunct μb(τx=100) of μb(τ) applies once
and we get y(101) = y(100) + 1. After another 100 iterations, the 2nd disjunct
μb(τx=100) may apply again, etc. After 100 applications of the 2nd disjunct (and
thus a total of 10100 steps), there is a model with y(10100) = 100, so that unsafety
is proven.

3.2 Accelerated Bounded Model Checking

To incorporate acceleration into BMC, we have to bridge the gap between (dis-
junctive) transition formulas and acceleration techniques, which require conjunc-
tive transition formulas. To this end, we use syntactic implicants.

Definition 4 (Syntactic Implicant Projection [22]). Let τ ∈ QF(Σ) be in
NNF and assume σ |= τ . We define the syntactic implicants sip(τ) of τ as
follows:

sip(τ, σ) :=
∧

{λ | λ is a literal of τ, σ |= λ} sip(τ) := {sip(τ, σ) | σ |= τ}

Since τ is in NNF, sip(τ, σ) implies τ , and it is easy to see that τ ≡
∨
sip(τ).

Whenever the call to the SMT solver in Line 5 of Algorithm 1 yields sat, the
resulting model gives rise to a sequence of syntactic implicants, called the trace.
To define the trace formally, note that when we integrate acceleration into BMC,
we may not only add τ to the SMT formula as in Line 4, but also learned
transitions that result from acceleration. Thus, the following definition allows
for changing the transition formula. In the sequel, ◦ also denotes composition of
substitutions, i.e., θ′ ◦ θ := [x/θ′(θ(x)) | x ∈ dom(θ′) ∪ dom(θ)].

78 F. Frohn and J. Giesl

Algorithm 2: ABMC – Input: a safety problem T = (ψinit, τ, ψerr)

1 b ← 0; V ← ∅; E ← ∅; add(μb(ψinit))
2 if ¬check sat() do return safe else σ ← get model()
3 while � do
4 push(); add(μb(ψerr))
5 if check sat() do return unsafe else pop()
6 �τ ← traceb(σ); V ← V ∪ �τ ; E ← E ∪ {(τ1, τ2) | [τ1, τ2] is an infix of �τ}
7 if �τ = �π :: �π� ∧ �π� is cyclic ∧ should accel(�π�) do add(μb(τ ∨ accel(�π�)))
8 else add(μb(τ))
9 if ¬check sat() do return safe else σ ← get model(); b ← b + 1

Definition 5 (Trace). Let [τi]b−1
i=0 be a sequence of transition formulas and let

σ be a model of
∧b−1

i=0 μi(τi). Then the trace induced by σ is

traceb(σ, [τi]b−1
i=0) := [sip(τi, σ ◦ μi)]b−1

i=0 .

We write traceb(σ) instead of traceb(σ, [τi]b−1
i=0) if [τi]b−1

i=0 is clear from the context.

So each model σ of
∧b−1

i=0 μi(τi) corresponds to a sequence of steps with the
relations →τ0 ,→τ1 , . . . ,→τb−1 , and the trace induced by σ contains the syntactic
implicants of the formulas τi that were used in this sequence.

Example 6 (Trace). Reconsider Example 3. After two iterations of the loop of
Algorithm 1, the SMT problem consists of the following formulas:

x(0) ≤ 0 ∧ y(0) ≤ 0 (ψinit)

(x(0) < 100 ∧ x(1) = x(0) + 1 ∧ y(1) = y(0)) ∨ (x(0) = 100 ∧ x(1) = 0 ∧ y(1) = y(0) + 1) (τ)

(x(1) < 100 ∧ x(2) = x(1) + 1 ∧ y(2) = y(1)) ∨ (x(1) = 100 ∧ x(2) = 0 ∧ y(2) = y(1) + 1) (τ)

With σ = [x(i)/i, y(i)/0 | 0 ≤ i ≤ 2], we get trace2(σ) = [τx<100, τx<100], as:

sip(τ, σ ◦ μ0) = sip(τ, [x/0, y/0, x′/1, y′/0]) = τx<100

sip(τ, σ ◦ μ1) = sip(τ, [x/1, y/0, x′/2, y′/0]) = τx<100

To detect situations where applying acceleration techniques pays off, we need
to distinguish traces that contain loops from non-looping ones. Since transition
formulas are unstructured, the usual techniques for detecting loops (based on,
e.g., program syntax or control flow graphs) do not apply in our setting. Instead,
we rely on the dependency graph of the transition formula.

Definition 7 (Dependency Graph). Let τ be a transition formula. Its depen-
dency graph DG = (V,E) is a directed graph whose vertices V := sip(τ) are τ ’s
syntactic implicants, and τ1 → τ2 ∈ E if �(τ1, τ2) is satisfiable. We say that
�τ ∈ sip(τ)c is DG-cyclic if c > 0 and (τ1 → τ2), . . . , (τc−1 → τc), (τc → τ1) ∈ E.

Integrating Loop Acceleration Into Bounded Model Checking 79

τx<100 τx=100
So intuitively, the syntactic implicants corre-
spond to the different cases of →τ , and τ ’s
dependency graph corresponds to the control
flow graph of →τ . The dependency graph for Example 1 is on the side.

However, as the size of sip(τ) is worst-case exponential in the number of
disjunctions in τ , we do not compute τ ’s dependency graph eagerly. Instead,
ABMC maintains an under-approximation, i.e., a subgraph G of the dependency
graph, which is extended whenever two transitions that are not yet connected
by an edge occur consecutively on the trace. As soon as a G-cyclic suffix �τ� is
detected on the trace, we may accelerate it. Therefore, the trace may also contain
the learned transition accel(�τ�) in subsequent iterations. Hence, to detect cyclic
suffixes that contain learned transitions, they have to be represented in G as
well. Thus, G is in fact a subgraph of the dependency graph of τ ∨

∨
L, where

L is the set of all transitions that have been learned so far.
This gives rise to the ABMC algorithm, which is shown in Algorithm 2. Here,

we just write “cyclic” instead of (V,E)-cyclic. The difference to Algorithm 1 can
be seen in Lines 6 and 7. In Line 6, the trace is constructed from the current
model. Then, the approximation of the dependency graph is refined such that it
contains vertices for all elements of the trace, and edges for consecutive elements
of the trace. In Line 7, a cyclic suffix of the trace may get accelerated, provided
that the call to should accel (which will be discussed in detail in Sect. 3.3) returns
�. In this way, in the next iteration the SMT solver can choose a model that
satisfies accel(�π�) and thus simulates several instead of just one →τ -step. Note,
however, that we do not update τ with τ ∨ accel(�π�). So in every iteration,
at most one learned transition is added to the SMT problem. In this way, we
avoid blowing up τ unnecessarily. Note that we only accelerate “real” cycles
�π� where �(�π�) is satisfiable, since �π� is a suffix of the trace, whose satisfiability
is witnessed by σ.

As we rely on syntactic implicants and dependency graphs to detect cycles,
ABMC is decoupled from the specific encoding of the input. So for example,
transition formulas may be represented in CNF, DNF, or any other structure.

Figure 1 shows a run of Algorithm 2 on Example 1, where the formulas that
are added to the SMT problem are highlighted in gray , and x(i) �→ c abbreviates
σ(x(i)) = c. For simplicity, we assume that should accel always returns �, and the
model σ is only extended in each step, i.e., σ(x(i)) and σ(y(i)) remain unchanged
for all 0 ≤ i < b. In general, the SMT solver can choose different values for
σ(x(i)) and σ(y(i)) in every iteration. On the right, we show the current bound
b, and the formulas that give rise to the formulas on the left when renaming
their variables suitably with μb. Initially, the approximation G = (V,E) of the
dependency graph is empty. When b = 2, the trace is [τx<100, τx<100], and the
corresponding edge is added to G. Thus, the trace has the cyclic suffix τx<100

and we accelerate it, resulting in τ+
i , which is added to the SMT problem. Then

we obtain the trace [τx<100, τx<100, τ
+
i], and the edge τx<100 → τ+

i is added to
G. Note that Algorithm 2 does not enforce the use of τ+

i , so τ might still be

80 F. Frohn and J. Giesl

unrolled instead, depending on the models found by the SMT solver. We will
address this issue in Sect. 4.

Fig. 1. Running ABMC on Example 1

Next, τx=100 already applies with b = 4 (whereas it only applied
with b = 100 in Example 3). So the trace is [τx<100, τx<100, τ

+
i , τx=100],

and the edge τ+
i → τx=100 is added to G. Then we obtain the trace

[τx<100, τx<100, τ
+
i , τx=100, τx<100], and add τx=100 → τx<100 to G. Since the suf-

fix τx<100 is again cyclic, we accelerate it and add τ+
i to the SMT problem. After

one more step, the trace [τx<100, τx<100, τ
+
i , τx=100, τx<100, τ

+
i] has the cyclic suffix

[τx=100, τx<100, τ
+
i]. Accelerating it yields τ+

o , which is added to the SMT problem.
Afterwards, unsafety can be proven with b = 7.

Since using acceleration is just a heuristic to speed up BMC, all basic prop-
erties of BMC immediately carry over to ABMC.

Integrating Loop Acceleration Into Bounded Model Checking 81

Theorem 8 (Properties of ABMC). ABMC is

Sound: If ABMC(T) returns (un)safe, then T is (un)safe.
Refutationally Complete: If T is unsafe, then ABMC(T) returns unsafe.
Non-Terminating: If T is safe, then ABMC(T) may not terminate.

3.3 Fine Tuning Acceleration

We now discuss should accel, our heuristic for applying acceleration. To explain
the intuition of our heuristic, we assume that acceleration does not approximate
and thus →accel(�τ) = →+

�τ , but in our implementation, we also use it if →accel(�τ) ⊂
→+

�τ . This is uncritical for correctness, as using acceleration in Algorithm 2 is
always sound.

First, acceleration should be applied to cyclic suffixes consisting of a single
original (i.e., non-learned) transition. However, applying acceleration to a single
learned transition is pointless, as

→accel(accel(τ)) = →+
accel(τ) = (→+

τ)+ = →+
τ = →accel(τ).

Requirement 1. should accel([π]) = � iff π ∈ sip(τ).

Next, for every cyclic sequence �π, we have

→accel(�π::accel(�π)) = →+
�π::accel(�π) = (→�π ◦ →+

�π)+ = →�π ◦ →+
�π = →�π::accel(�π),

and thus accelerating �π :: accel(�π) is pointless, too. More generally, we want to
prevent acceleration of sequences �π2 :: accel(�π) :: �π1 where �π = �π1 :: �π2 as

→2
�π2::accel(�π)::�π1

= →�π2::accel(�π)::�π::accel(�π)::�π1 ⊆ →�π2::accel(�π)::�π1

and thus →accel(�π2::accel(�π)::�π1) = →+
�π2::accel(�π)::�π1

= →�π2::accel(�π)::�π1 . So in general,
the cyclic suffix of such a trace consists of a cycle �π and accel(�π), but it does
not necessarily start with either of them. To take this into account, we rely on
the notion of conjugates.

Definition 9 (Conjugate). We say that two vectors �v, �w are conjugates
(denoted �v ≡◦ �w) if �v = �v1 :: �v2 and �w = �v2 :: �v1.

So a conjugate of a cycle corresponds to the same cycle with another entry point.

Requirement 2. should accel(�π′) = ⊥ if �π′ ≡◦ �π :: accel(�π) for some �π.

In general, however, we also want to accelerate cyclic suffixes that contain learned
transitions to deal with nested loops, as in the last acceleration step of Fig. 1.

Requirement 3. should accel(�π′) = � if �π′ �≡◦ �π :: accel(�π) for all �π.

82 F. Frohn and J. Giesl

Requirements 1 to 3 give rise to a complete specification for should accel: If
the cyclic suffix is a singleton, the decision is made based on Requirement
1, and otherwise the decision is made based on Requirements 2 and 3. How-
ever, this specification misses one important case: Recall that the trace was
[τx<100, τx<100] before acceleration was applied for the first time in Fig. 1. While
both [τx<100] and [τx<100, τx<100] are cyclic, the latter should not be accelerated,
since accel([τx<100, τx<100]) is a special case of τ+

i that only represents an even
number of steps with τx<100. Here, the problem is that the cyclic suffix contains
a square, i.e., two adjacent repetitions of the same non-empty sub-sequence.

Requirement 4. should accel(�π) = ⊥ if �π contains a square.

Thus, should accel(�π′) yields � iff the following holds:

(|�π′| = 1 ∧ �π′ ∈ sip(τ)) ∨ (|�π′| > 1 ∧ �π′ is square-free ∧ ∀�π. (�π′ �≡◦ �π :: accel(�π)))

All properties that are required to implement should accel can easily be checked
automatically. To check �π′ �≡◦ �π :: accel(�π), our implementation maintains a map
from learned transitions to the corresponding cycles that have been accelerated.

However, to implement Algorithm 2, there is one more missing piece: As the
choice of the cyclic suffix in Line 7 is non-deterministic, a heuristic for choosing it
is required. In our implementation, we choose the shortest cyclic suffix such that
should accel returns �. The reason is that, as observed in [22], accelerating short
cyclic suffixes before longer ones allows for learning more general transitions.

4 Guiding ABMC with Blocking Clauses

As mentioned in Sect. 3.2, Algorithm 2 does not enforce the use of learned tran-
sitions. Thus, depending on the models found by the SMT solver, ABMC may
behave just like BMC. We now improve ABMC by integrating blocking clauses
that prevent it from unrolling loops instead of using learned transitions. Here,
we again assume →accel(�τ) = →+

�τ , i.e., that acceleration does not approximate.
Otherwise, blocking clauses are only sound for proving unsafety, but not for
proving safety.

Blocking clauses exploit the following straightforward observation: If the
learned transition τ� = accel(�π�) has been added to the SMT problem with
bound b and an error state can be reached via a trace with prefix

�π = [τ0, . . . , τb−1] :: �π� or �π′ = [τ0, . . . , τb−1, τ�] :: �π�,

then an error state can also be reached via a trace with the prefix
[τ0, . . . , τb−1, τ�], which is not continued with �π�. Thus, we may remove traces
of the form �π and �π′ from the search space by modifying the SMT problem
accordingly.

To do so, we assign a unique identifier to each learned transition, and we
introduce a fresh integer-valued variable
 which is set to the corresponding
identifier whenever a learned transition is used, and to 0, otherwise.

Integrating Loop Acceleration Into Bounded Model Checking 83

Algorithm 3: ABMCb – Input: a safety problem T = (ψinit, τ, ψerr)

1 b ← 0; V ← ∅; E ← ∅; id ← 0; τ ← τ ∧ � = 0; cache ← ∅; add(μb(ψinit))
2 if ¬check sat() do return safe else σ ← get model()
3 while � do
4 push(); add(μb(ψerr))
5 if check sat() do return unsafe else pop()
6 �τ ← traceb(σ); V ← V ∪ �τ ; E ← E ∪ {(τ1, τ2) | [τ1, τ2] is an infix of �τ}
7 if �τ = �π :: �π� ∧ �π� is (V, E)-cyclic ∧ should accel(�π�) do
8 if ∃τc. (�π�, τc) ∈ cache do
9 τ� ← τc // the result of accelerating �π� was cached

10 else
11 id ← id + 1; τ� ← accel(�π�) ∧ � = id // generate new ID and accelerate

12 cache ← cache ∪ {(�π�, τ�)} // update cache

13 β1 ← ¬
(∧|�π�|−1

i=0 μb+i(π
�
i)

)
// neither unroll �τ� right now...

14 β2 ← �(b) 	= id ∨ ¬
(∧|�π�|−1

i=0 μb+i+1(π
�
i)

)
// ...nor after using the

15 add(μb(τ ∨ τ�) ∧ β1 ∧ β2) // accelerated transition

16 else add(μb(τ))
17 if ¬check sat() do return safe else σ ← get model(); b ← b + 1

Example 10 (Blocking Clauses). Reconsider Fig. 1 and assume that we modify
τ by conjoining
 = 0, and τ+

i by conjoining
 = 1. Thus, we now have

τx<100 ≡ x < 100 ∧ x′ = x + 1 ∧ y′ = y ∧
 = 0 and

τ+
i ≡ n > 0 ∧ x + n ≤ 100 ∧ x′ = x + n ∧ y′ = y ∧
 = 1.

When b = 2, the trace is [τx<100, τx<100], and in the next iteration, it may
be extended to either �π = [τx<100, τx<100, τx<100] or �τ = [τx<100, τx<100, τ

+
i].

However, as →τ+
i

= →+
τx<100

, we have →�π ⊆ →�τ , so the entire search space can
be covered without considering the trace �π. Thus, we add the blocking clause

¬μ2(τx<100) (β1)

to the SMT problem to prevent ABMC from finding a model that gives rise to
the trace �π. Note that we have μ2(τ+

i) |= β1, as τx<100 |=
 = 0 and τ+
i |=
 �= 0.

Thus, β1 blocks τx<100 for the third step, but τ+
i can still be used without

restrictions. Therefore, adding β1 to the SMT problem does not prevent us from
covering the entire search space.

Similarly, we have →�π′ ⊆ →�τ for �π′ = [τx<100, τx<100, τ
+
i , τx<100]. Thus, we

also add the following blocking clause to the SMT problem:

(2) �= 1 ∨ ¬μ3(τx<100) (β2)

ABMC with blocking clauses can be seen in Algorithm 3. The counter id is
used to obtain unique identifiers for learned transitions. Thus, it is initialized
with 0 (Line 1) and incremented whenever a new transition is learned (Line 11).

84 F. Frohn and J. Giesl

Moreover, as explained above,
 = 0 is conjoined to τ (Line 1), and
 = id is
conjoined to each learned transition (Line 11).

In Lines 13 and 14, the blocking clauses β1 and β2 which correspond to the
superfluous traces �π and �π′ above are created, and they are added to the SMT
problem in Line 15. Here, π�

i denotes the ith transition in the sequence �π�.
Importantly, Algorithm 3 caches (Line 12) and reuses (Line 9) learned transi-

tions. In this way, the learned transitions that are conjoined to the SMT problem
have the same id if they stem from the same cycle, and thus the blocking clauses
β1 and β2 can also block sequences �π� that contain learned transitions, as shown
in the following example.

Example 11 (Caching). Let τ have the dependency graph given below. As Alg. 3

τ1 τ2 τ3

conjoins
 = 0 to τ , assume τi |=
 = 0 for all i ∈
{1, 2, 3}. Moreover, assume that accelerating τ2
yields τ+

2 with τ+
2 |=
 = 1. If we obtain the

trace [τ1, τ+
2 , τ3], it can be accelerated. Thus, Alg. 3 would add

β1 ≡ ¬
(
μ3(τ1) ∧ μ4(τ+

2) ∧ μ5(τ3)
)

to the SMT problem. If the next step yields the trace [τ1, τ+
2 , τ3, τ2], then τ2

is accelerated again. Without caching, acceleration may yield a new transition
τ+
2′ with τ+

2′ |=
 = 2. As the SMT solver may choose a different model in
every iteration, the trace may also change in every iteration. So after two more
steps, we could get the trace [τ1, τ+

2 , τ3, τ1, τ
+
2′ , τ3]. At this point, the “outer” loop

consisting of τ1, arbitrarily many repetitions of τ2, and τ3, has been unrolled
a second time, which should have been prevented by β1. The reason is that
τ+
2 |=
 = 1, whereas τ+

2′ |=
 = 2, and thus τ+
2′ |= ¬τ+

2 . With caching, we again
obtain τ+

2 when τ2 is accelerated for the second time, such that this problem is
avoided.

Remarkably, blocking clauses allow us to prove safety in cases where BMC
fails.

Example 12 (Proving Safety with Blocking Clauses). Consider the safety prob-
lem (x ≤ 0, τ, x > 100) with τ ≡ x < 100∧x′ = x+1. Algorithm 1 cannot prove
its safety, as τ can be unrolled arbitrarily often (by choosing smaller and smaller
initial values for x). With Algorithm 3, we obtain the following SMT problem
with b = 3.

μ0(x ≤ 0) (initial states)
μ0(τ ∧
 = 0) (τ)
μ1(τ ∧
 = 0) (τ)

¬μ2(τ ∧
 = 0) (β1)

(2) �= 1 ∨ ¬μ3(τ ∧
 = 0) (β2)
μ2((τ ∧
 = 0) ∨ (n > 0 ∧ x + n ≤ 100 ∧ x′ = x + n ∧
 = 1)) (τ ∨ accel(τ))
μ3(τ ∧
 = 0) (τ)

Integrating Loop Acceleration Into Bounded Model Checking 85

From the last formula and β2, we get
(2) �= 1, but the formula labeled with
(τ ∨ accel(τ)) and β1 imply μ2(
 = 1) ≡
(2) = 1, resulting in a contradiction.
Thus, due to the blocking clauses, ABMCb can prove safety with the bound b = 3.

Like ABMC, ABMCb preserves BMC’s main properties (see [23] for a proof).

Theorem 13. ABMCb is sound and refutationally complete, but non-
terminating.

5 Related Work

There is a large body of literature on bounded model checking that is concerned
with encoding temporal logic specifications into propositional logic, see [5,6] as
starting points. This line of work is clearly orthogonal to ours.

Moreover, numerous techniques focus on proving safety or satisfiability of
transition systems or CHCs, respectively (e.g., [13,17,25,27,29,36]). A compre-
hensive overview is beyond the scope of this paper. Instead, we focus on tech-
niques that, like ABMC, aim to prove unsafety by finding long counterexamples.

The most closely related approach is Acceleration Driven Clause Learning
[21,22], a calculus that uses depth-first search and acceleration to find coun-
terexamples. So one major difference between ABMC and ADCL is that ABMC
performs breadth-first search, whereas ADCL performs depth-first search. Thus,
ADCL requires a mechanism for backtracking to avoid getting stuck. To this
end, it relies on a notion of redundancy, which is difficult to automate. Thus, in
practice, approximations are used [22, Sect. 4]. However, even with a complete
redundancy check, ADCL might get stuck in a safe part of the search space [22,
Thm. 18]. ABMC does not suffer from such deficits.

Like ADCL, ABMC also tries to avoid redundant work (see Sects. 3.3 and 4).
However, doing so is crucial for ADCL due to its depth-first strategy, whereas it
is a mere optimization for ABMC.

On the other hand, ADCL applies acceleration in a very systematic way,
whereas ABMC decides whether to apply acceleration or not based on the model
that is found by the underlying SMT solver. Therefore, ADCL is advantageous
for examples with deeply nested loops, where ABMC may require many steps
until the SMT solver yields models that allow for accelerating the nested loops
one after the other. Furthermore, ADCL has successfully been adapted for prov-
ing non-termination [21], and it is unclear whether a corresponding adaption of
ABMC would be competitive. Thus, both techniques are orthogonal. See Sect. 6
for an experimental comparison of ADCL with ABMC.

Other acceleration-based approaches [4,9,19] can be seen as generalizations
of the classical state elimination method for finite automata: Instead of trans-
forming finite automata to regular expressions, they transform transition sys-
tems to formulas that represent the runs of the transition system. During this
transformation, acceleration is the counterpart to the Kleene star in the state
elimination method. Clearly, these approaches differ fundamentally from ours.

86 F. Frohn and J. Giesl

In [30], under-approximating acceleration techniques are used to enrich the
control-flow graph of C programs. Then an external model checker is used to find
counterexamples. In contrast, ABMC tightly integrates acceleration into BMC,
and thus enables an interplay of both techniques: Acceleration changes the state
of the bounded model checker by adding learned transitions to the SMT problem.
Vice versa, the state of the bounded model checker triggers acceleration. Doing
so is impossible if the bounded model checker is used as an external black box.

In [31], the approach from [30] is extended by a program transformation that,
like our blocking clauses, rules out superfluous traces. For structured programs,
program transformations are quite natural. However, as we analyze unstructured
transition formulas, such a transformation would be very expensive in our set-
ting. More precisely, [31] represents programs as CFAs. To transform them, the
edges of the CFA are inspected. In our setting, the syntactic implicants corre-
spond to these edges. An important goal of ABMC is to avoid computing them
explicitly. Hence, it is unclear how to apply the approach from [31] in our setting.

Another related approach is described in [26], where acceleration is integrated
into a CEGAR loop in two ways: (1) as preprocessing and (2) to generalize inter-
polants. In contrast to (1), we use acceleration “on the fly”. In contrast to (2),
we do not use abstractions, so our learned transitions can directly be used in
counterexamples. Moreover, [26] only applies acceleration to conjunctive transi-
tion formulas, whereas we accelerate conjunctive variants of arbitrary transition
formulas. So in our approach, acceleration techniques are applicable more often,
which is particularly useful for finding long counterexamples.

Finally, transition power abstraction (TPA) [7] computes a sequence of over-
approximations for transition systems where the nth element captures 2n instead
of just n steps of the transition relation. So like ABMC, TPA can help to
find long refutations quickly, but in contrast to ABMC, TPA relies on over-
approximations.

6 Experiments and Conclusion

We presented ABMC, which integrates acceleration techniques into bounded
model checking. By enabling BMC to find deep counterexamples, it targets a
major limitation of BMC. However, whether ABMC makes use of transitions that
result from acceleration depends on the models found by the underlying SMT
solver. Hence, we introduced blocking clauses to enforce the use of accelerated
transitions, which also enable ABMC to prove safety in cases where BMC fails.

We implemented ABMC in our tool LoAT [20]. It uses the SMT solvers Z3 [33]
and Yices [14]. Currently, our implementation is restricted to integer arithmetic.
It uses the acceleration technique from [18] which, in our experience, is precise
in most cases where the values of the variables after executing the loop can be
expressed by polynomials of degree ≤ 2 (i.e., here we have →accel(τ) = →+

τ).
If acceleration yields a non-polynomial formula, then this formula is discarded
by our implementation, since Z3 and Yices only support polynomials. We eval-
uate our approach on the examples from the category LIA-Lin (linear CHCs

Integrating Loop Acceleration Into Bounded Model Checking 87

with linear integer arithmetic)2 from the CHC competition ’23 [11], which con-
tain problems from numerous applications like verification of C, Rust, Java, and
higher-order programs, and regression verification of LLVM programs, see [12]
for details. By using CHCs as input format, our approach can be used by any
CHC-based tool like Korn [16] and SeaHorn [24] for C and C++ programs, JayHorn
for Java programs [28], HornDroid for Android [10], RustHorn for Rust programs
[32], and SmartACE [35] and SolCMC [3] for Solidity.

We compared several configurations of LoAT with the techniques of other
leading CHC solvers. More precisely, we evaluated the following configurations:

LoAT We used LoAT’s implementations of Algorithm 1 (LoAT BMC), Algo-
rithm 2 (LoAT ABMC), Algorithm 3 (LoAT ABMCb), and ADCL (LoAT
ADCL).

Z3 [33] We used Z3 4.13.0, where we evaluated its implementations of the Spacer
algorithm (Spacer [29]) and BMC (Z3 BMC).

Golem [7] We used Golem 0.5.0, where we evaluated its implementations of tran-
sition power abstraction (Golem TPA [7]) and BMC (Golem BMC).

Eldarica [27] We used Eldarica 2.1.0. We tested all five configurations that are
used in parallel in its portfolio mode (-portfolio), and included the two that
found the most counterexamples: CEGAR with acceleration as preprocessing
(Eldarica CEGAR, eld -splitClauses:1 -abstract:off -stac) and sym-
bolic execution (Eldarica SYM, eld -splitClauses:1 -sym).

Note that all configurations except Spacer and Eldarica CEGAR are specifically
designed for finding counterexamples. We did not include further techniques for
proving safety in our evaluation, as our focus is on disproving safety. We ran our
experiments on StarExec [34] with a wallclock timeout of 300s, a cpu timeout of
1200s, and a memory limit of 128 GB per example.

2023
unsafe safe

� ! � !

LoAT ABMC 73 – 31 –

LoAT ABMCb 72 0 75 11

Golem TPA 64 0 83 5

LoAT BMC 60 0 36 0

Z3 BMC 57 – 21 –

LoAT ADCL 56 1 0 –

Golem BMC 55 – 20 –

Spacer 51 4 151 53

Eldarica CEGAR 46 1 107 13

Eldarica SYM 46 1 68 15

2 The restriction of our approach to linear clauses (with at most one negative lit-
eral) is “inherited” from BMC. In contrast, our approach also supports non-linear
arithmetic, but we are not aware of corresponding benchmark collections.

https://github.com/chc-comp/hcai-bench
https://github.com/chc-comp/rust-horn
https://github.com/chc-comp/jayhorn-benchmarks
https://github.com/chc-comp/hopv
https://github.com/mattulbrich/llreve

88 F. Frohn and J. Giesl

The results can be seen in the table above. The columns with ! show the
number of unique proofs, i.e., the number of examples that could only be solved
by the corresponding configuration. Such a comparison only makes sense if just
one implementation of each algorithm is considered. For instance, LoAT’s, Z3’s,
and Golem’s implementations of the BMC algorithm work well on the same class
of examples, so that none of them finds unique proofs if all of them are taken
into account. Thus, for ! we disregarded LoAT ABMC, Z3 BMC, and Golem BMC.

The table shows that our implementation of ABMC is very powerful for
proving unsafety. In particular, it shows a significant improvement over LoAT
BMC, which is implemented very similarly, but does not make use of acceleration.

Note that all unsafe instances that can be solved by ABMC can also be solved
by other configurations. This is not surprising, as LoAT ADCL is also based on
acceleration techniques. Hence, ABMC combines the strengths of ADCL and
BMC, and conversely, unsafe examples that can be solved with ABMC can usu-
ally also be solved by one of these techniques. So for unsafe instances, the main
contribution of ABMC is to have one technique that performs well both on
instances with shallow counterexamples (which can be solved by BMC) as well
as instances with deep counterexamples only (which can often be solved by
ADCL).

On the instance that can only be solved by ADCL, our (A)BMC imple-
mentation spends most of the time with applying substitutions, which clearly
shows potential for further optimizations. Due to ADCL’s depth-first strategy,
it produces smaller formulas, so that applying substitutions is cheaper.

Regarding safe examples, the table shows that our implementation of ABMC
is not competitive with state-of-the-art techniques.3 However, it finds several
unique proofs. This is remarkable, as LoAT is not at all fine-tuned for proving
safety. For example, we expect that LoAT’s results on safe instances can easily
be improved by integrating over-approximating acceleration techniques. While
such a variant of ABMC could not prove unsafety, it would presumably be much
more powerful for proving safety. We leave that to future work.

The plot on the previous page shows
how many unsafety proofs were found within
300 s, where we only include the six best
configurations for readability. It shows that
ABMC is highly competitive on unsafe
instances, not only in terms of solved exam-
ples, but also in terms of runtime. The plot
on the right compares the length of the
counterexamples found by LoAT ABMCb and
BMC to show the impact of acceleration.
Here, only examples where both techniques
disprove safety are considered, and the coun-
terexamples found by ABMCb may contain accelerated transitions. There are no

3 LoAT ABMC finds fewer safety proofs than LoAT BMC since acceleration sometimes
yields transitions with non-linear arithmetic that make the SMT problem harder.

Integrating Loop Acceleration Into Bounded Model Checking 89

points below the diagonal, i.e., the counterexamples found by ABMCb are at
most as long as those found by BMC. The points above the diagonal indicate
that the counterexamples found by ABMCb are sometimes shorter by orders of
magnitude (note that the axes are log-scaled).

Our results also show that blocking clauses have no significant impact
on ABMC’s performance on unsafe instances, neither regarding the number
of solved examples, nor regarding the runtime. In fact, ABMCb solved one
instance less than ABMC (which can, however, also be solved by ABMCb with
a larger timeout). On the other hand, blocking clauses are clearly useful for
proving safety, where they even allow LoAT to find several unique proofs.

In future work, we plan to support other theories like reals, bitvectors, and
arrays, and we will investigate an extension to non-linear CHCs. Our implemen-
tation is open-source and available on Github. For the sources, a pre-compiled
binary, and more information on our evaluation, we refer to [2].

Data Availability Statement. An artifact containing LoAT which allows to replicate
our experiments is available at [1].

References

1. Artifact for “Integrating Loop Acceleration into Bounded Model Checking” (2024).
https://doi.org/10.5281/zenodo.11954015

2. Evaluation of “Integrating Loop Acceleration into Bounded Model Checking”
(2024). https://loat-developers.github.io/abmc-eval/

3. Alt, L., Blicha, M., Hyvärinen, A.E.J., Sharygina, N.: SolCMC: Solidity compiler’s
model checker. In: CAV 2022. LNCS, vol. 13371, pp. 325–338. Springer, Heidelberg
(2022). https://doi.org/10.1007/978-3-031-13185-1 16

4. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: FAST: acceleration from theory to
practice. Int. J. Softw. Tools Technol. Transf. 10(5), 401–424 (2008). https://doi.
org/10.1007/s10009-008-0064-3

5. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Adv. Comput. 58, 117–148 (2003). https://doi.org/10.1016/S0065-
2458(03)58003-2

6. Biere, A.: Bounded model checking. In: Handbook of Satisfiability - Second Edition.
Frontiers in Artificial Intelligence and Applications, vol. 336, pp. 739–764. IOS
Press (2021). https://doi.org/10.3233/FAIA201002

7. Blicha, M., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: Transition power
abstractions for deep counterexample detection. In: TACAS 2022. LNCS, vol.
13243, pp. 524–542. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-
030-99524-9 29

8. Bozga, M., Gı̂rlea, C., Iosif, R.: Iterating octagons. In: TACAS 2009. LNCS, vol.
5505, pp. 337–351. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00768-2 29

9. Bozga, M., Iosif, R., Konečný, F.: Relational analysis of integer programs. Tech-
nical Report TR-2012-10, VERIMAG (2012). https://www-verimag.imag.fr/TR/
TR-2012-10.pdf

10. Calzavara, S., Grishchenko, I., Maffei, M.: HornDroid: practical and sound static
analysis of Android applications by SMT solving. In: EuroS&P 2016, pp. 47–62.
IEEE (2016). https://doi.org/10.1109/EuroSP.2016.16

https://doi.org/10.5281/zenodo.11954015
https://loat-developers.github.io/abmc-eval/
https://doi.org/10.1007/978-3-031-13185-1_16
https://doi.org/10.1007/s10009-008-0064-3
https://doi.org/10.1007/s10009-008-0064-3
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.3233/FAIA201002
https://doi.org/10.1007/978-3-030-99524-9_29
https://doi.org/10.1007/978-3-030-99524-9_29
https://doi.org/10.1007/978-3-642-00768-2_29
https://doi.org/10.1007/978-3-642-00768-2_29
https://www-verimag.imag.fr/TR/TR-2012-10.pdf
https://www-verimag.imag.fr/TR/TR-2012-10.pdf
https://doi.org/10.1109/EuroSP.2016.16

90 F. Frohn and J. Giesl

11. CHC Competition. https://chc-comp.github.io
12. De Angelis, E., Govind V. K., H.: CHC-COMP 2023: Competition report (2023).

https://chc-comp.github.io/2023/CHC COMP 2023 Competition Report.pdf
13. Dietsch, D., Heizmann, M., Hoenicke, J., Nutz, A., Podelski, A.: Ultimate TreeAu-

tomizer (CHC-COMP tool description). In: HCVS/PERR@ETAPS 2019. EPTCS,
vol. 296, pp. 42–47 (2019). https://doi.org/10.4204/EPTCS.296.7

14. Dutertre, B.: Yices 2.2. In: CAV 2014. LNCS, vol. 8559, pp. 737–744. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-319-08867-9 49

15. Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press, New York
(1972)

16. Ernst, G.: Loop verification with invariants and contracts. In: VMCAI 2022 [2],
pp. 69–92 (2022). https://doi.org/10.1007/978-3-030-94583-1 4

17. Fedyukovich, G., Prabhu, S., Madhukar, K., Gupta, A.: Solving constrained Horn
clauses using syntax and data. In: FMCAD 2018 [1], pp. 1–9 (2018). https://doi.
org/10.23919/FMCAD.2018.8603011

18. Frohn, F.: A calculus for modular loop acceleration. In: TACAS 2020. LNCS, vol.
12078, pp. 58–76. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-
45190-5 4

19. Frohn, F., Naaf, M., Brockschmidt, M., Giesl, J.: Inferring lower runtime bounds
for integer programs. ACM Trans. Program. Lang. Syst. 42(3), 13:1–13:50 (2020).
https://doi.org/10.1145/3410331

20. Frohn, F., Giesl, J.: Proving non-termination and lower runtime bounds with LoAT
(system description). In: IJCAR 2022. LNCS, vol. 13385, pp. 712–722. Springer,
Heidelberg (2022). https://doi.org/10.1007/978-3-031-10769-6 41

21. Frohn, F., Giesl, J.: Proving non-termination by acceleration driven clause learn-
ing. In: CADE 2023. LNCS, vol. 14132, pp. 220–233. Springer, Heidelberg (2023).
https://doi.org/10.1007/978-3-031-38499-8 13

22. Frohn, F., Giesl, J.: ADCL: Acceleration driven clause learning for constrained
Horn clauses. In: SAS 2023. LNCS, vol. 14284, pp. 259–285. Springer, Heidelberg
(2023). https://doi.org/10.1007/978-3-031-44245-2 13

23. Frohn, F., Giesl, J.: Integrating loop acceleration into bounded model checking.
CoRR abs/2401.09973 (2024). https://doi.org/10.48550/arXiv.2401.09973

24. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: CAV 2015. LNCS, vol. 9206, pp. 343–361. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-319-21690-4 20

25. Hoder, K., Bjørner, N.S.: Generalized property directed reachability. In: SAT 2012.
LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31612-8 13

26. Hojjat, H., Iosif, R., Konečný, F., Kuncak, V., Rümmer, P.: Accelerating inter-
polants. In: ATVA 2012. LNCS, vol. 7561, pp. 187–202. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33386-6 16

27. Hojjat, H., Rümmer, P.: The Eldarica Horn solver. In: FMCAD 2018 [1], pp. 1–7.
https://doi.org/10.23919/FMCAD.2018.8603013

28. Kahsai, T., Rümmer, P., Sanchez, H., Schäf, M.: JayHorn: a framework for verifying
Java programs. In: CAV 2016. LNCS, vol. 9779, pp. 352–358. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-319-41528-4 19

29. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. Formal Methods Syst. Des. 48(3), 175–205 (2016). https://doi.org/10.
1007/s10703-016-0249-4

https://chc-comp.github.io
https://chc-comp.github.io/2023/CHC_COMP_2023_Competition_Report.pdf
https://doi.org/10.4204/EPTCS.296.7
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-030-94583-1_4
https://doi.org/10.23919/FMCAD.2018.8603011
https://doi.org/10.23919/FMCAD.2018.8603011
https://doi.org/10.1007/978-3-030-45190-5_4
https://doi.org/10.1007/978-3-030-45190-5_4
https://doi.org/10.1145/3410331
https://doi.org/10.1007/978-3-031-10769-6_41
https://doi.org/10.1007/978-3-031-38499-8_13
https://doi.org/10.1007/978-3-031-44245-2_13
https://doi.org/10.48550/arXiv.2401.09973
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-642-31612-8_13
https://doi.org/10.1007/978-3-642-31612-8_13
https://doi.org/10.1007/978-3-642-33386-6_16
https://doi.org/10.23919/FMCAD.2018.8603013
https://doi.org/10.1007/978-3-319-41528-4_19
https://doi.org/10.1007/s10703-016-0249-4
https://doi.org/10.1007/s10703-016-0249-4

Integrating Loop Acceleration Into Bounded Model Checking 91

30. Kroening, D., Lewis, M., Weissenbacher, G.: Under-approximating loops in C pro-
grams for fast counterexample detection. Formal Methods Syst. Des. 47(1), 75–92
(2015). https://doi.org/10.1007/s10703-015-0228-1

31. Kroening, D., Lewis, M., Weissenbacher, G.: Proving safety with trace automata
and bounded model checking. In: FM 2015. LNCS, vol. 9109, pp. 325–341. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-319-19249-9 21

32. Matsushita, Y., Tsukada, T., Kobayashi, N.: RustHorn: CHC-based verification
for Rust programs. ACM Trans. Program. Lang. Syst. 43(4), 15:1–15:54 (2021).
https://doi.org/10.1145/3462205

33. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS 2008. LNCS,
vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78800-3 24

34. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastructure for
logic solving. In: IJCAR 2014. LNCS, vol. 8562, pp. 367–373. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-319-08587-6 28

35. Wesley, S., Christakis, M., Navas, J.A., Trefler, R.J., Wüstholz, V., Gurfinkel, A.:
Verifying Solidity smart contracts via communication abstraction in SmartACE. In:
VMCAI 2022 [2], pp. 425–449. https://doi.org/10.1007/978-3-030-94583-1 21

36. Zhu, H., Magill, S., Jagannathan, S.: A data-driven CHC solver. In: PLDI 2018,
pp. 707–721 (2018). https://doi.org/10.1145/3192366.3192416

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/s10703-015-0228-1
https://doi.org/10.1007/978-3-319-19249-9_21
https://doi.org/10.1145/3462205
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1007/978-3-030-94583-1_21
https://doi.org/10.1145/3192366.3192416
http://creativecommons.org/licenses/by/4.0/

Nonlinear Craig Interpolant Generation
Over Unbounded Domains by Separating

Semialgebraic Sets

Hao Wu1 , Jie Wang2 , Bican Xia3 , Xiakun Li3 , Naijun Zhan1,4 ,
and Ting Gan5(B)

1 SKLCS, Institute of Software, University of CAS,
Beijing, China

{znj,wuhao}@ios.ac.cn
2 Academy of Mathematics and Systems Science, CAS,

Beijing, China
wangjie212@amss.ac.cn

3 School of Mathematical Sciences, Peking University, Beijing, China
xbc@math.pku.edu.cn, 2301110072@stu.pku.edu.cn

4 School of Computer Science, Peking University, Beijing, China
5 School of Computer Science, Wuhan University, Wuhan, China

ganting@whu.edu.cn

Abstract. Interpolation-based techniques become popular in recent
years, as they can improve the scalability of existing verification tech-
niques due to their inherent modularity and local reasoning capabilities.
Synthesizing Craig interpolants is the cornerstone of these techniques.
In this paper, we investigate nonlinear Craig interpolant synthesis for
two polynomial formulas of the general form, essentially corresponding
to the underlying mathematical problem to separate two disjoint semi-
algebraic sets. By combining the homogenization approach with existing
techniques, we prove the existence of a novel class of non-polynomial
interpolants called semialgebraic interpolants. These semialgebraic inter-
polants subsume polynomial interpolants as a special case. To the best of
our knowledge, this is the first existence result of this kind. Furthermore,
we provide complete sum-of-squares characterizations for both polyno-
mial and semialgebraic interpolants, which can be efficiently solved as
semidefinite programs. Examples are provided to demonstrate the effec-
tiveness and efficiency of our approach.

Keywords: Craig interpolation · Separating semialgebraic sets ·
Homogenization · Sum-of-squares · Semidefinite programming

H. Wu and J. Wang—The first two authors contributed equally to this work and should
be considered co-first authors. This work has been partially funded by the National
Key R&D Program of China under grant No. 2022YFA1005101 and 2022YFA1005102,
by the NSFC under grant No. 62192732, 62032024, and 12201618, by the CAS Project
for Young Scientists in Basic Research under grant No. YSBR-040, by the Key R&D
Program of Hubei Province (2023BAB170), and by the Fundamental Research Funds
for the Central Universities.

c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 92–110, 2025.
https://doi.org/10.1007/978-3-031-71162-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_5&domain=pdf
http://orcid.org/0000-0001-9368-4744
http://orcid.org/0000-0002-9681-1451
http://orcid.org/0000-0002-2570-2338
http://orcid.org/0009-0007-1663-1287
http://orcid.org/0000-0003-3298-3817
http://orcid.org/0000-0002-4880-5129
https://doi.org/10.1007/978-3-031-71162-6_5

Nonlinear Craig Interpolant Generation Over Unbounded Domains 93

1 Introduction

Background. Craig interpolant is a fundamental concept in formal verification
and automated theorem proving. It was introduced by William Craig in the
1950 s as a tool for reasoning about logical formulas and their satisfiability.
Craig interpolation techniques possess excellent modularity and local reasoning
capabilities, making them effective tools for enhancing the scalability of formal
verification methods, like theorem proving [23,35], model-checking [31], abstract
interpretation [14,32], program verification [19,26] and so on.

Efficient generation of Craig interpolants is crucial in interpolation-based
techniques, and therefore has garnered increasing attention. Formally, a formula
I is called a Craig interpolant for two mutually exclusive formulae φ and ψ in a
background theory T , if it is defined on the common symbols of φ and ψ, implied
by φ in the theory T , and inconsistent with ψ in the theory T . Due to the diver-
sity of background theories and their integration, researchers have been dedicated
to developing efficient interpolation synthesis algorithms. Currently, numerous
effective algorithms for automatic synthesis of interpolants have been proposed
for various fragments of first-order logic, e.g., linear arithmetic [14], logic with
arrays [15,33], logic with sets [20], equality logic with uninterpreted functions
(EUF) [5,32], etc., and their combinations [22,38,43]. Moreover, D’Silva et al.
[9] explored how to compare the strength of various interpolants.

However, interpolant generation for nonlinear arithmetic and its combination
with the aforementioned theories is still in infancy, although nonlinear polyno-
mial inequalities are quite common in software involving number theoretic func-
tions as well as hybrid systems [44,45]. In addition, when the formulas φ and ψ
are defined by polynomial inequalities, generating an interpolant is essentially
equivalent to the mathematical problem of separating two disjoint semialgebraic
sets, which has a long history and is a challenging mathematical problem [1].

In [7], Dai et al. attempted to generate interpolants for conjunctions of mutu-
ally contradictory nonlinear polynomial inequalities without unshared variables.
They proposed an algorithm based on Stengle’s Positivstellensatz [41], which
guarantees the existence of a witness and can be computed using semidefinite
programming (SDP). While their algorithm is generally incomplete, it becomes
complete when all variables are bounded, known as the Archimedean condition
(see in Sect. 2.1).

In [10], Gan et al. introduced an algorithm for generating interpolants specifi-
cally for quadratic polynomial inequalities. Their approach is based on the insight
that analyzing the solution space of concave quadratic polynomial inequalities
can be achieved by linearizing them, using a generalization of Motzkin’s transpo-
sition theorem. Additionally, they discussed generating interpolants for a com-
bination of the theory of quadratic concave polynomial inequalities and EUF
using a hierarchical calculus proposed in [39] and employed in [38].

In [11], Gan et al. further extended the problem from the case of quadratic
concave inequalities to the more general Archimedean case. To accomplish this,
they utilized Putinar’s Positivstellensatz and proposed a Craig interpolation gen-
eration method based on SDP. This method allows to generate interpolants in

94 H. Wu et al.

a broader class of situations involving nonlinear polynomial inequalities. How-
ever, the Archimedean condition still imposes a limitation on the method, as it
requires bounded domains.

In [4], Chen et al. proposed a counterexample-guided framework based on
support vector machines for synthesizing nonlinear interpolants. Later in [27],
Lin et al. combined this framework and deep learning for synthesizing neural
interpolants. In [18], Jovanović and Dutertre also designed a counterexample-
guided framework based on cylindrical algebraic decomposition (CAD) for syn-
thesizing interpolants as boolean combinations of constraints. However, these
approaches rely on quantifier elimination to ensure completeness and conver-
gence, which terribly affects their efficiency due to its doubly exponential time
complexity [8].

For theories including non-polynomial expressions, the general idea is to
abstract non-polynomial expressions into polynomial or linear expressions. In
[13], Gao and Zufferey presented an approach for extracting interpolants for non-
linear formulas that may contain transcendental functions and differential equa-
tions. They accomplished this by transforming proof traces from a δ-decision
procedure [12] based on interval constraint propagation (ICP) [3]. Like the
Archimedean condition, δ-decidability also imposes the restriction that variables
are bounded (in a hyper-rectangle). A similar idea was also reported in [24]. In
[6,40], Srikanth et al. and Cimatti et al. proposed approaches to abstract non-
linear formulas into the theory of linear arithmetic with uninterpreted functions.

Contributions. In this paper, we consider how to synthesize an interpolant func-
tion h(x) for two polynomial formulas φ(x,y) and ψ(x, z) such that φ(x,y) |=
h(x) > 0 and ψ(x, z) |= h(x) < 0 without assuming the Archimedean condition,
i.e., the variables in φ and ψ can have an unbounded range of values. Here,
uncommon variables of φ and ψ are allowed, and the description of formulas
may involve any polynomial of any degree. Hence the problem is more general
than the ones discussed in [7,10,11], and is also more difficult as polynomial
interpolants may not exist [1]. To address this problem, we first utilize homog-
enization techniques to elevate the descriptions of φ and ψ to the homogeneous
space. In this homogeneous space, we can impose the constraint that the variables
lie on a unit sphere, thus reviving the Archimedean condition. Combining this
idea with the work in [11], we can prove the existence of a semialgebraic function
h(x) = h1(x) + h2(x)

√
‖x‖2 + 1 such that h(x) > 0 serves as an interpolant,

where h1, h2 are polynomials (h becomes a polynomial when h2 = 0). Fur-
thermore, we provide sum-of-squares (SOS) programming procedures for finding
such semialgebraic interpolants as well as polynomial interpolants. Under certain
assumptions, we prove that the SOS procedures are sound and complete.

Organization. The rest of the paper is organized as follows. Preliminaries are
introduced in Sect. 2. Section 3 proves the existence of an interpolant for two
mutually contradictory polynomial formulas. Section 4 derives an SOS charac-
terization for the interpolant. Section 5 presents an SDP-based method for com-
putation and provides examples. Finally, Sect. 6, we conclude this paper and

Nonlinear Craig Interpolant Generation Over Unbounded Domains 95

discuss some future works. Omitted proofs and portraits for examples can be
found in the extended version [42].

2 Preliminaries

We first fix some basic notations. Let N and R be the sets of integers and
real numbers, respectively. By convention, we use boldface letters to denote
vectors. Fixing a vector of indeterminates x := (x1, . . . , xr), let R[x] denote the
polynomial ring in variables x over real numbers. We use Σ[x] := {

∑m
i=1 p2i |

pi ∈ R[x],m ∈ N} to denote the set of SOS polynomials in variables x. A basic
semialgebraic set S ⊆ R

r is of the form {x ∈ R
r | p1(x)�0, . . . , pm(x)�0}, where

pi(x) ∈ R[x] and � ∈ {≥, >} (each of the inequalities can be either strict or non-
strict). A basic semialgebraic set is said to be closed if it is defined by non-strict
inequalities. Semialgebraic sets are formed as unions of basic semialgebraic sets.
i.e., T =

⋃n
i=1 Si is a semialgebraic set, where each Si is a basic semialgebraic set.

For any (semialgebraic) set S ⊆ R
r, let cl(S) denote the closure of S. Let ⊥ and �

stand for false and true, respectively. For a vector x ∈ R
r, let ‖x‖ :=

√∑r
i=1 x2

i

denote the standard Euclidean norm.
In the following, we give a brief introduction on important notions used

throughout the rest of this paper and then describe the problem of interest.

2.1 Quadratic Module

Definition 1 (Quadratic Module [30]). A subset M of R[x] is called a
quadratic module if it contains 1 and is closed under addition and multiplication
with squares, i.e.,

1 ∈ M,M + M ⊆ M, and p2M ⊆ M for all p ∈ R[x].

Definition 2. Let p := {p1, . . . , pm} be a finite subset of R[x]. The quadratic
module Mx(p), or simply M(p), generated by p is the smallest quadratic module
containing all pi, i.e.,

Mx(p) := {σ0 +
m∑

i=1

σipi | σ0, σi ∈ Σ[x]}.

Let S be a closed basic semialgebraic set described by p ≥ 0, i.e.,

S := {x ∈ R
r | p1(x) ≥ 0, . . . , pm(x) ≥ 0}. (1)

Since SOS polynomials are non-negative, it is easy to verify that the quadratic
module M(p) is a subset of polynomials that are nonnegative on S. In fact, under
the so-called the Archimedean condition, the quadratic module M(p) contains
all polynomials that are strictly positive over S. Both the condition and the
statement are formalized as follows.

96 H. Wu et al.

Definition 3 (Archimedean [30]). Let M be a quadratic module of R[x]. M
is said to be Archimedean if there exists some a > 0 such that a − ‖x‖2 ∈ M.
Furthermore, if M(p) is Archimedean, we say that the semialgebraic set S as
defined in Eq. (1) is of the Archimedean form.

Theorem 1 (Putinar’s Positivstellensatz [36]). Let p := {p1, . . . , pm} and
S be defined in Eq. (1). Assume that the quadratic module M(p) is Archimedean.
If f(x) > 0 over S, then f ∈ M(p).

The above theorem serves as a key result in real algebraic geometry, as it
provides a simple characterization of polynomials that are locally positive on
closed basic semialgebraic sets. Because of this, Theorem 1 is widely used in the
field of polynomial optimization, referring to [25,30] for an in-depth treatment
of this topic.

Though powerful, Theorem 1 relies on the Archimedean condition. Note that
the inclusion a − ‖x‖2 ∈ M implies that a − ‖x‖2 ≥ 0 over S, deducing that
S is contained in a ball with radius

√
a. As a result, in case that the set S is

unbounded, Theorem 1 is not directly applicable.

2.2 Homogenization

Let x = (x1, . . . , xr) ∈ R
r be an r-tuple of variables and x0 a fresh variable.

Suppose that f(x) ∈ R[x] is a polynomial of degree df . We denote by f̃(x0,x) ∈
R[x0,x] the homogenization of f(x) which is obtained by substituting x1

x0
for x1,

..., xr

x0
for xr in f(x) and then multiplying with x

df

0 , that is,

f̃(x0,x) := x
df

0 f(
x1

x0
, . . . ,

xr

x0
). (2)

For example, if f(x) = x3
1 + 2x1x2 + 3x2 + 4, then f̃(x0,x) = x3

1 + 2x0x1x2 +
3x2

0x2 +4x3
0. In what follows, we always use the variable x0 as the homogenizing

variable.
Let S be defined as in Eq. (1). We define the following set related to S by

homogenizing polynomials in the description of S:

S̃h := {(x0,x) ∈ R
r+1 | p̃1(x0,x) ≥ 0, . . . , p̃m(x0,x) ≥ 0, x0 > 0, x2

0 + ‖x‖2 = 1}.
(3)

Obviously, the following property holds.

Property 1. Let S be as in Eq. (1) and S̃h be defined as above. Then, x ∈ S if
and only if

(
1

√
1 + ‖x‖2

,
x1√

1 + ‖x‖2
, . . . ,

xr√
1 + ‖x‖2

)

∈ S̃h.

Moreover, (x0,x) ∈ S̃h if and only if (x1√
1−‖x‖2

, . . . , xr√
1−‖x‖2

) ∈ S.

Nonlinear Craig Interpolant Generation Over Unbounded Domains 97

Property 1 shows that there exists a one-to-one correspondence between
points in S ∈ R

n and those in S̃h ∈ R
n+1.

We also define the set S̃ by replacing x0 > 0 in Eq. (3) with x0 ≥ 0:

S̃ := {(x0,x) ∈ R
r+1 | p̃1(x0,x) ≥ 0, . . . , p̃m(x0,x) ≥ 0, x0 ≥ 0, x2

0 + ‖x‖2 = 1}.
(4)

To capture the relation between S̃h and S̃, we introduce the following definition
and a related useful lemma.

Definition 4. A closed basic semialgebraic set S is closed at ∞ if cl(S̃h) = S̃.

Lemma 1 ([17]). Let f ∈ R[x] and S be a closed basic semialgebraic set. Then
f ≥ 0 on S if and only if f̃ ≥ 0 on cl(S̃h). Moreover, assuming that S is closed
at ∞, then f ≥ 0 on S if and only if f̃ ≥ 0 on S̃.

Let us define

S(∞) := {x ∈ R
r | p

(∞)
1 (x) ≥ 0, . . . , p(∞)

m (x) ≥ 0, ‖x‖2 = 1}, (5)

where p(∞)(x) denotes the highest degree homogeneous part of a polynomial
p(x) ∈ R[x], e.g., if p = x2

1+2x1x2+3x2
2+4x1+5x2, then p(∞) = x2

1+2x1x2+3x2
2.

Property 2. Let S̃h, S̃ and S(∞) be defined as above. If S(∞) is empty, then
S̃h = S̃.

2.3 Problem Description

Given two formulas φ and ψ in a first-order theory T s.t. φ |= ψ, Craig showed
that there always exists an interpolant I over the common symbols of φ and
ψ s.t. φ |= I and I |= ψ. In the context of verification, we slightly abuse the
terminology following [32]: A reverse interpolant (as coined in [22]) I over the
common symbols of φ and ψ is defined as follows.

Definition 5 (Interpolant). Given two formulas φ and ψ in a theory T s.t.
φ ∧ ψ |=T ⊥, a formula I is an interpolant of φ and ψ if (1) φ |=T I; (2)
I ∧ ψ |=T ⊥; and (3) I only contains common symbols and free variables shared
by φ and ψ.

The interpolant synthesis problem of interest in this paper is formulated as
follows.

Problem 1. Let φ(x,y) and ψ(x, z) be two polynomial formulas of the form

φ(x,y) :=
Kφ∨

k=1

mk∧

i=1

fk,i(x,y) ≥ 0, (6)

ψ(x, z) :=
Kψ∨

k′=1

nk′∧

j=1

gk′,j(x, z) ≥ 0, (7)

98 H. Wu et al.

where x ∈ R
r1 , y ∈ R

r2 , z ∈ R
r3 are variable vectors, r1, r2, r3 ∈ N, and fk,i, gk′,j

are polynomials in the corresponding variables. We aim to find a function h(x)
such that h(x) > 0 is an interpolant for φ and ψ, i.e.,

φ(x,y) |= h(x) > 0 and ψ(x, z) |= h(x) < 0.

Here h(x) is called an interpolant function. Specifically, we are interested in two
scenarios where

1. Polynomial interpolants: the function h(x) is a polynomial in R[x];
2. Semialgebraic interpolants1: the function h(x) can be expressed as

h(x) = h1(x) +
√

‖x‖2 + 1 · h2(x), (8)

with h1(x), h2(x) ∈ R[x].

Obviously, the second case degenerates to the first case when h2(x) = 0.

Remark 1. Like in [11,12], we require φ and ψ to be defined by non-strict poly-
nomial inequalities, mainly for two reasons: (1) Theoretically, our approach relies
on Theorem 1, which necessitates a closed underlying basic semialgebraic set.
(2) Numerically, we employ numerical solvers incapable of distinguishing ≥ from
>. In the coming sections, we will see the significance of both closedness and
closedness at ∞ for the existence of interpolants.

3 Existence of Interpolant

In this section, we prove the existence of a semialgebraic interpolant function
h(x) of the form Eq. (8), under certain conditions on φ and ψ. In Sect. 3.1, we
begin by focusing on the scenario where both φ and ψ exclusively involve the
variable x. Subsequently, in Sect. 3.2, we expand our scope to the case where
unshared variables, y and z, emerge.

3.1 Interpolant Between φ(x) and ψ(x)

In this part, we prove the existence of a semialgebraic interpolant function of
the form in Eq. (8) that separates the two closed semialgebraic sets in R

r corre-
sponding to φ(x) and ψ(x). The basic idea goes as follows: First, we consider the
problem of finding a semialgebraic function h(x) such that h(x) = 0 separates
two closed basic semialgebraic sets S1 and S2 in R

r. Using the homogenization
technique, we prove that there exists a polynomial g ∈ R[x0,x] with g(x0,x) = 0
separating S̃1 and S̃2, and the existence of h(x) is directly induced by that of
g (see Proposition 2). After that, we extend the result to the case where S1

becomes a closed semialgebraic set (see Lemma 3) and when both S1 and S2 are
closed semialgebraic sets (see Theorem 2).

We begin by recapping an existing result from [11].
1 A function f(x) is called semialgebraic if its graph {(x, f(x)) | x ∈ R

r} is a semi-
algebraic set. The graph of h(x) is {x ∈ R

r | ∃w. h(x) = h1(x) + w · h2(x) ∧ w2 =
1 + ‖x‖2 ∧ w ≥ 0}.

Nonlinear Craig Interpolant Generation Over Unbounded Domains 99

Proposition 1 ([11, Lemma 2]). Let S1 = {x ∈ R
r | p1(x) ≥ 0, . . . , pm(x) ≥

0}, S2 = {x ∈ R
r | q1(x) ≥ 0, . . . , qn(x) ≥ 0} be two closed basic semialgebraic

sets of the Archimedean form. Assuming that S1 ∩ S2 = ∅, then there exists a
polynomial h(x) ∈ R[x] such that

∀x ∈ S1. h(x) > 0 and ∀x ∈ S2. − h(x) > 0. (9)

It is important to emphasize that the proof of Proposition 1 relies on Theorem
1 and hence is limited to the case where the sets S1 and S2 are of the Archimedean
form. In the following Proposition 2, we show how to remove this restriction.

Proposition 2. Let S1 = {x ∈ R
r | p1(x) ≥ 0, . . . , pm(x) ≥ 0}, S2 = {x ∈

R
r | q1(x) ≥ 0, . . . , qn(x) ≥ 0} be closed basic semialgebraic sets. Assuming that

S̃1 ∩ S̃2 = ∅, then there exists a semialgebraic function h(x) of the form in Eq.
(8) such that

∀x ∈ S1. h(x) > 0 and ∀x ∈ S2. − h(x) > 0. (10)

Proof. By the definition of S̃ in Eq. (4), we know that S̃1 and S̃2 are two basic
semialgebraic sets of the Archimedean form (as 1 − x2

0 − ‖x‖2 belongs to the
corresponding quadratic modules). Since S̃1 ∩ S̃2 = ∅, by invoking Proposition
1, there exists a polynomial g ∈ R[x0,x] such that

∀(x0,x) ∈ S̃1. g(x0,x) > 0 and ∀(x0,x) ∈ S̃2. − g(x0,x) > 0. (11)

Note that for any x ∈ S1 (resp. S2), by Property 1 we have (1√
‖x‖2+1

, x√
‖x‖2+1

) ∈

S̃1 (resp. S̃2). Let

h(x) := (
√

‖x‖2 + 1)deg(g)g(
1

√
‖x‖2 + 1

,
x

√
‖x‖2 + 1

). (12)

Since (
√

‖x‖2 + 1)deg(g) ≥ 1, combining with Eq. (11), we have that h(x) satisfies
Eq. (10).

To see that h(x) admits the form in Eq. (8), we expand the right-hand side of
Eq. (12) and simplify the terms with power of

√
‖x‖2 + 1 greater than or equal

to 2. After simplification, we collect the terms with and without
√

‖x‖2 + 1
into two groups so that h(x) can be expressed as h1(x) +

√
‖x‖2 + 1 · h2(x) for

h1(x), h2(x) ∈ R[x]. ��

In order to check whether the condition S̃1 ∩ S̃2 = ∅ in Proposition 2 holds,
one can use the following lemma.

Lemma 2. Given two closed basic semialgebraic set S1 and S2, if S1 ∩ S2 = ∅
and S

(∞)
1 ∩ S

(∞)
2 = ∅, then S̃1 ∩ S̃2 = ∅.

Now, we extend the result in Proposition 2 to the case when S1 and S2 are
two closed semialgebraic sets. A closed semialgebraic set, say T , is a union of
some closed basic semialgebraic sets, i.e., T = ∪a

i=1Si with

Si = {x ∈ R
r | pi1(x) ≥ 0, . . . , pimi

(x) ≥ 0}, i = 1, . . . , a,

100 H. Wu et al.

where pik(x) ∈ R[x], mi ∈ N, k = 1, ...,mi, i = 1, . . . , a. Mirroring the definition
of S(∞) and S̃, we define T (∞) :=

⋃a
i=1 S

(∞)
i and T̃ :=

⋃a
i=1 S̃i. In the following

lemma, we deal with the case when S1 in Proposition 2 becomes a union of closed
basic semialgebraic sets.

Lemma 3. Let T1 = ∪a
i=1Si be a closed semialgebraic set with Si = {x ∈ R

r |
pi1(x) ≥ 0, . . . , pimi

(x) ≥ 0}, and let T2 = {x ∈ R
r | q1(x) ≥ 0, . . . , qn(x) ≥ 0}

be a closed basic semialgebraic set. Assume that T̃1 ∩ T̃2 = ∅. Then there exists
a polynomial g ∈ R[x0,x] such that

∀(x0,x) ∈ T̃1. g(x0,x) > 0 and ∀(x0,x) ∈ T̃2. − g(x0,x) > 0. (13)

Then, we use Lemma 3 to prove the case where both sets are unions of closed
basic semialgebraic sets.

Theorem 2. Let T1 = ∪a
i=1Si and T2 = ∪b

j=1S
′
j be closed semialgebraic sets,

where Si and S′
j are closed basic semialgebraic sets for i = 1, . . . , a, j = 1, . . . , b.

Assume T̃1 ∩ T̃2 = ∅. Then there exists a semialgebraic function h(x) of the form
in Eq. (8) such that

∀x ∈ T1. h(x) > 0 and ∀x ∈ T2. − h(x) > 0. (14)

Similarly to Lemma 2, the condition T̃1 ∩ T̃2 = ∅ can be verified by checking
whether T1 ∩ T2 = ∅ and T

(∞)
1 ∩ T

(∞)
2 = ∅. As a direct inference of Theorem 2,

we know that there exists a semialgebraic function h(x) of the form in Eq. (8)
such that h(x) > 0 is an interpolant of φ(x) and ψ(x).

3.2 Interpolant Between φ(x, y) and ψ(x, z)

Let φ(x,y) and ψ(x, z) be given in Problem 1. We denote by Tφ ⊆ R
r1+r2 and

Tψ ⊆ R
r1+r3 the semialgebraic sets corresponding to φ and ψ, i.e.,

Tφ :=
Kφ⋃

k=1

Sk, with Sk := {(x,y) ∈ R
r1+r2 |

mk∧

i=1

fk,i(x,y) ≥ 0}, (15)

Tψ :=
Kψ⋃

k′=1

S′
k′ , with S′

k′ := {(x, z) ∈ R
r1+r3 |

nk′∧

j=1

gk′,j(x, z) ≥ 0}. (16)

Since an interpolant contains only common symbols of φ and ψ, Problem
1 can be reduced to finding a function h(x) such that h(x) = 0 separates the
two projection sets Px(Tφ) := {x ∈ R

r1 | ∃y. (x,y) ∈ Tφ} and Px(Tψ) := {x ∈
R

r1 | ∃z. (x, z) ∈ Tψ}. We have the following theorem as a direct consequence
of Theorem 2.

Nonlinear Craig Interpolant Generation Over Unbounded Domains 101

Theorem 3. Let φ(x,y) and ψ(x, z) be defined in Problem 1, and let Px(Tφ)
and Px(Tψ) be defined above. Let T1 = cl(Px(Tφ)) and T2 = cl(Px(Tψ)). Assume
T̃1 ∩ T̃2 = ∅. Then there exists a semialgebraic function h(x) of the form in Eq.
(8) such that

∀x ∈ Px(Tφ). h(x) > 0 and ∀x ∈ Px(Tψ). − h(x) > 0. (17)

As a consequence, h(x) > 0 is a semialgebraic interpolant of φ(x,y) and ψ(x, z).

Remark 2. Note that in Theorem 3, we need to consider the closures cl(Px(Tφ))
and cl(Px(Tψ)) rather than Px(Tφ) and Px(Tψ) themselves. The reason lies in
that the projections of closed semialgebraic sets are not necessarily closed. For
example, consider φ(x,y) := x1x2 − 1 ≥ 0 ∧ x2 ≥ 0 with x = x1 and y = x2.
Then Px(Tφ) = {x1 | x1 > 0} is an open set.

4 Sum-of-Squares Formulation

In this section, we provide SOS characterizations for polynomial and semialge-
braic interpolants. For simplicity, we will focus on the case where φ and ψ are
conjunctions of polynomial inequalities given by

φ(x,y) :=
m∧

i=1

fi(x,y) ≥ 0 and ψ(x, z) :=
n∧

j=1

gj(x, z) ≥ 0, (18)

where x ∈ R
r1 , y ∈ R

r2 , and z ∈ R
r3 . Extending to the general case is straight-

forward.

4.1 SOS Characterization for Polynomial Interpolants

In this part, we provide an SOS characterization for polynomial interpolants
based on homogenization. We prove that the characterization is sound and
weakly complete. Furthermore, we provide a concrete example to show that
our new characterization is strictly more expressive than the one in [11].

Theorem 4 (Weak Completeness). Let φ, ψ be defined as in Eq. (18) and
let Sφ, and Sψ be the basic semialgebraic sets corresponding to φ and ψ. Let
f̃m+1 = x0, g̃n+1 = x0, f̃m+2 = x2

0 + ‖x‖2 + ‖y‖2 − 1, and g̃n+2 = x2
0 + ‖x‖2 +

‖z‖2 − 1. If h(x) ∈ R[x] is a polynomial interpolant function of φ and ψ, then
the homogenized polynomial h̃(x0,x) satisfies, for arbitrarily small ε > 0,

h̃(x0,x) + ε = σ0 +
m+2∑

i=1

σif̃i(x0,x,y),

−h̃(x0,x) + ε = τ0 +
n+2∑

j=1

τj g̃j(x0,x, z),

(19)

for some σi ∈ Σ[x0,x,y], i = 0, . . . ,m + 1, σm+2 ∈ R[x0,x,y], τi ∈ Σ[x0,x, z],
i = 0, . . . , n + 1, τn+2 ∈ R[x0,x, z].

102 H. Wu et al.

Remark 3. In Eq. (19), we add a small quantity ε > 0 to the left-hand sides in
order to invoke Theorem 1. The ideal case is ε = 0. Fortunately, in most practice
circumstances, we can safely set ε = 0 when the finite convergence property [34,
Theorem 1.1] holds. Indeed, the finite convergence property is generically true
and is violated only when h and Sφ (or Sψ) are of certain singular forms.

Theorem 5 (Soundness). Let φ and ψ be defined as in Eq. (18). Suppose that
h(x) is a polynomial such that its homogenization h̃(x0,x) satisfies Eq. (19)
with ε = 0. Assume φ ∧ h(x) = 0 |= ⊥ and ψ ∧ h(x) = 0 |= ⊥. Then h(x) is an
interpolant function of φ and ψ.

Now we compare our characterization Eq. (19) with [11, Theorem 5] which
states that if Sφ and Sψ are of the Archimedean form, then a polynomial inter-
polant function h(x) can be expressed as

h(x) − 1 = σ0 +
m∑

i=0

σifi(x,y),

−h(x) − 1 = τ0 +
n∑

j=0

τjgj(x, z),

(20)

for some σi ∈ Σ[x,y], i = 0, . . . , m and τj ∈ Σ[x, z], j = 0, . . . , n. Clearly, since
Theorem 4 removes the restriction of the Archimedean condition, our character-
ization is strictly more expressive.

Let M(x1, x2) := x4
1x

2
2 + x2

1x
4
2 − 3x2

1x
2
2 + 1 be the Motzkin polynomial. It is

well known that M(x1, x2) is nonnegative but is not an SOS.

Proposition 3. The polynomial M(x1, x2) + 1 is positive but is not an SOS.

Example 1. Let φ := 1 ≥ 0(= �) and ψ := −1 ≥ 0(= ⊥). By Proposition 3, the
polynomial M(x1, x2) + 1 is an interpolant function of φ and ψ but does not
admit a representation as in Eq. (20), i.e., the program

find σ0 ∈ Σ[x1, x2]

s.t. x4
1x

2
2 + x2

1x
4
2 − 3x2

1x
2
2 + 2 = σ0

is not feasible. However, a numerical solution to the following program:

find σ0, σ1 ∈ Σ[x0, x1, x2], σ2 ∈ R[x0, x1, x2]

s.t. x4
1x

2
2 + x2

1x
4
2 − 3x2

1x
2
2x

2
0 + 2x6

0 = σ0 + σ1x0 + σ2(1 − x2
0 − x2

1 − x2
2).

can be obtained by employing the Julia package TSSOS [28] and the SDP solver
Mosek [2]. Therefore, the polynomial M(x1, x2) + 1 admits a representation as
in Eq. (19) with ε = 0.

Nonlinear Craig Interpolant Generation Over Unbounded Domains 103

4.2 SOS Characterization for Semialgebraic Interpolants

Let h(x) be a semialgebraic interpolant function of the form in Eq. (8) and let
w be a fresh variable. Though h(x) is not a polynomial, it can be equivalently
represented by a polynomial l(x, w) = h1(x)+w ·h2(x) ∈ R[x, w] with additional
polynomial constraints w2 = 1 + ‖x‖2 and w ≥ 0. Adopting this idea, we have
the following completeness theorem. The soundness result for the semialgebraic
case is omitted, as it is essentially the same as Theorem 5.

Theorem 6 (Completeness). Let φ, ψ be defined as in Eq. (18) and let Sφ,
and Sψ be the basic semialgebraic sets corresponding to φ and ψ. Let S1 =
cl(Px(Sφ)), S2 = cl(Px(Sψ)), f̃m+1 = g̃n+1 = x0, f̃m+2 = g̃m+2 = w, f̃m+3 =
x2
0+‖x‖2+w2+‖y‖2−1, and g̃n+3 = x2

0+‖x‖2+w2+‖z‖2−1, f̃m+4 = g̃n+4 =
x2
0+‖x‖2−w2. Assume that the following two conditions hold: (1) S̃1∩S̃2 = ∅; (2)

Sφ and Sψ are closed at ∞. Then there exists a semialgebraic interpolant function
h(x) of the form in Eq. (8) such that the polynomial l(x, w) = h1(x)+w ·h2(x) ∈
R[x, w] satisfies, for arbitrarily small ε > 0,

l̃(x0,x, w) + ε = σ0 +
m+4∑

i=1

σif̃i(x0,x,y),

−l̃(x0,x, w) + ε = τ0 +
n+4∑

j=1

τj g̃j(x0,x, z),

(21)

for some σi ∈ Σ[x0,x,y, w], i = 0, . . . ,m + 2, σm+3, σm+4 ∈ R[x0,x,y, w],
τi ∈ Σ[x0,x, z, w], i = 0, . . . , n + 2, τn+3, τn+4 ∈ R[x0,x, z, w].

We want to emphasize that Theorem 6 is a stronger result than Theorem 4, in
the sense that Theorem 6 guarantees the existence of a semialgebraic interpolant
(as per Theorem 3), which is not the case for polynomial interpolants in Theorem
4.

5 Synthesizing Interpolant via SOS Programming

In this section, we propose an SOS programming procedure to synthesize polyno-
mial and semialgebraic interpolants. Concrete examples are provided to demon-
strate the effectiveness and efficiency of our method. For all examples, existing
approaches [7,10,12] are not applicable due to their restrictions on formulas, and
the method in [11] also fails to produce interpolants of specified degrees.

Synthesizing Polynomial Interpolants: Let Tφ, Tψ, Sk, and Sk′ be defined
as in Eq. (15) and Eq. (16). By treating Sk and S′

k respectively as Sφ and Sψ in
Theorem 4, the problem of synthesizing a polynomial interpolant for φ and ψ is
reduced to solving the following SOS program:

104 H. Wu et al.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

find h(x)

s.t. h̃(x0,x) = σk,0 +
mk+2∑

i=1

σk,if̃k,i for k = 1, . . . , Kφ,

− h̃(x0,x) = τk′,0 +
nk′+2∑

j=1

τk′,j g̃k′,j for k′ = 1, . . . ,Kψ,

σk,0, ..., σk,m+1 ∈ Σ[x0,x,y], σk,m+2 ∈ R[x0,x,y],
for k = 1, . . . ,Kφ,

τk′,0, ..., τk′,n+1 ∈ Σ[x0,x, z], τk′,n+2 ∈ R[x0,x,y],
for k = 1, . . . ,Kψ,

(22)

where f̃k,m+1 = g̃k′,n+1 = x0, f̃k,m+2 = x2
0 + ‖x‖2 + ‖y‖2 − 1, g̃k′,n+2 = x2

0 +
‖x‖2 + ‖z‖2 − 1 for k = 1, . . . , Kφ and k′ = 1, . . . ,Kψ.

As Theorem 5 suggests, a solution h(x) to the above program only ensures
that φ |= h(x) ≥ 0 and ψ |= −h(x) ≤ 0. Nevertheless, since numerical solvers
are unable to distinguish ≥ from >, the equalities are usually not attainable for
a numerical solution2. Therefore, we can view the SOS program Eq. (22) as a
sound approach for computing h(x), while completeness follows from verifying
the conditions discussed in Remark 3.

In practice, we solve the program Eq. (22) by solving a sequence of SDP
relaxations which are obtained by restricting the highest degree of involved
polynomials. Concretely speaking, suppose that we would like to find a poly-
nomial interpolant function h(x) of degree d, we set the template of h(x) to be
h(x) =

∑
|α |≤d cαxα , where α = (α1, ..., αr1) ∈ N

r1 , |α| = α1 + · · · αr1 , and
cα ∈ R are coefficients to be determined. Then, the homogenization of h(x) is
h̃(x0,x) =

∑
|α |≤d cαx

d−|α |
0 xα .

Given a relaxation order s ∈ N with 2s ≥ d, we set the degrees of the
remaining unknown polynomials σi, τj appropriately to ensure that the max-
imum degree of polynomials involved in Eq. (22) equals 2s. We refer to the
resulting program as the s-th relaxation of Eq. (22), which can be translated
into an SDP and can be numerically solved in polynomial time. If the s-th relax-
ation is solvable, it yields a solution h(x) that serves as a polynomial interpolant
function of φ and ψ. If it is not solvable, we then increase the relaxation order
s to obtain a tighter relaxation, or alternatively, we can increase the degree d of
h(x) to search for interpolants of higher degree.

In the following, all experiments were conducted on a Mac lap-top with Apple
M2 chip and 8GB memory. We use the Julia package TSSOS [28] to formulate
SOS programs and rely on the SDP solver Mosek [2] to solve them. All numerical
results are symbolically verified using Mathematica to be real interpolants.

2 For example, SDP solvers based on interior-point methods typically return strictly
feasible solutions.

Nonlinear Craig Interpolant Generation Over Unbounded Domains 105

Example 2 (adapted from [4]). Let x = (x, y) and y = z = ∅, i.e., there is no
uncommon variables. We define the following polynomials:

f1 = 11 − x4 + 0.1y4, f2 = y3,

f3 = 0.9025 − (x − 1)4 − y4, f4 = (x − 1)4 + y4 − 0.09,

f5 = (x + 1)4 + y4 − 1.1025, f6 = 0.04 − (x + 1)4 − y4,

g1 = 11 − x4 + 0.1y4, g2 = −y3,

g3 = 0.9025 − (x + 1)4 − y4, g4 = (x + 1)4 + y4 − 0.09,

g5 = (x − 1)4 + y4 − 1.1025, g6 = 0.04 − (x − 1)4 − y4.

Let φ and ψ be defined by

φ := (f1 ≥ 0 ∧ f2 ≥ 0 ∧ f4 ≥ 0 ∧ f5 ≥ 0) ∨ (f3 ≥ 0 ∧ f4 ≥ 0 ∧ f5 ≥ 0) ∨ (f6 ≥ 0),
ψ := (g1 ≥ 0 ∧ g2 ≥ 0 ∧ g4 ≥ 0 ∧ g5 ≥ 0) ∨ (g3 ≥ 0 ∧ g4 ≥ 0 ∧ g5 ≥ 0) ∨ (g6 ≥ 0).

Set the degree of the polynomial interpolation function h(x, y) to 7. It takes
0.16 s to solve the 4-th relaxation Eq. (22), yielding the solution

h(x, y) = −0.00153942y + 0.03053692x + · · · + 0.06109453x6y + 0.01643640x7,

where the coefficients have been scaled so that the largest absolute value is 1.

Synthesizing Semialgebraic Interpolants: Similarly, the synthesis of a semi-
algebraic interpolant is reduced to solving the following SOS program:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

find h1(x), h2(x)
s.t. l(x, w) = h1(x) + w · h2(x),

l̃(x0,x, w) = σk,0 +
mk+4∑

i=1

σk,if̃k,i for k = 1, . . . , Kφ,

− l̃(x0,x, w) = τk′,0 +
nk′+4∑

j=1

τk′,j g̃k′,j for k′ = 1, . . . ,Kψ,

σk,0, ..., σk,m+2 ∈ Σ[x0,x,y], σk,m+3, σk,m+4 ∈ R[x0,x,y],
for k = 1, . . . , Kφ,

τk′,0, ..., τk′,n+2 ∈ Σ[x0,x, z], τk′,n+3, τk′,n+4 ∈ R[x0,x,y],
for k = 1, . . . , Kψ,

(23)

where f̃k,m+1 = g̃k′,n+1 = x0, f̃k,m+2 = g̃k′,n+2 = w, f̃k,m+3 = x2
0 + ‖x‖2 + w2 +

‖y‖2−1, g̃k′,n+3 = x2
0+‖x‖2+w2+‖z‖2−1, f̃k,m+4 = g̃k′,n+4 = x2

0+‖x‖2−w2,
for k = 1, . . . ,Kφ and k′ = 1, . . . , Kψ.

By Theorem 6, if a feasible solution (h1, h2) of Eq. (23) is found, then h(x) =
h1(x) +

√
‖x‖2 + 1 · h2(x) is a semialgebraic interpolant function for φ and ψ.

In practice, w.l.o.g., we can assume that h1 and h2 are of the same degree d and
solve SDP relaxations of Eq. (23). The soundness result is similar to that of Eq.
(22), requiring that h(x) = 0 is not attainable over Tφ and Tψ.

106 H. Wu et al.

Example 3. Let x = (x, y), y = z = ∅. We define

φ(x, y) = 8xy − (x2 − y3)2 ≥ 0 ∧ x2 + y2 − 1 ≥ 0,

ψ(x, y) = −12.5xy − (x2 + y2)2 ≥ 0 ∧ x2 + y2 − 1 ≥ 0.

Let the degree of h1(x) and h2(x) to be 3, a solution to the 2-th relaxation of
Eq. (23) is found in 0.02 s:

h1 = −0.04402209 − 0.00093184y + 0.01446436x + · · · − 0.03703461x3,

h2 = 0.05644318 − 0.01305178y + 0.02407258x + · · · + 0.23199837x2.

As a comparison, solving Eq. (22) fails to produce a polynomial interpolant
function of degree 3, but succeeds at degree 4.

Example 4. Let x = (x, y, z), y = ∅, and z = (r,R). We define

φ(x, y, z) := 1 + 0.1z4 − x4 − y4 ≥ 0 ∧ 10z4 − x4 − y4 ≥ 0,

ψ(x, y, z, r, R) := 4R2(x2 + y2) − (x2 + y2 + z2 + R2 − r2)2 ≥ 0
∧ 6 ≥ R ≥ 4 ∧ 1 ≥ r ≥ 0.5,

where ∃r,∃R. ψ(x, y, z, r, R) describes the set of interior points of a 3-dimensional
torus with unknown minor radius r ∈ [0.5, 1] and major radius R ∈ [4, 6]. By
solving Eq. (22) and Eq. (23), we obtain a polynomial interpolant

hp(x, y, z) = 1.0 − 0.35507338x2 − 0.35507338y2 + 0.45264895z2,

and a semialgebraic interpolant function with

h1(x, y, z) = 0.98004189 − 0.26291972x2 − 0.26291978y2 + 0.417581644z2,

h2(x, y, z) = 1.0 − 0.51670759x2 − 0.51670759y2 + 0.60569150z2.

As a comparison, [11] fails to produce an interpolant of degree less than 4.

6 Conclusions and Future Work

In this paper, we have addressed the problem of synthesizing Craig interpolants
for two general polynomial formulas. By combining the polynomial homogeniza-
tion techniques with the approach from [11], we have presented a complete SOS
characterization of semialgebraic (and polynomial) interpolants. Compared with
existing works, our approach removes the restrictions on the form of formulas
and is applicable to any polynomial formulas, especially when variables have
unbound domains. Moreover, sparsity of polynomial formulas can be exploited
to improve the scalability of our approach [16,29].

Our Craig interpolation synthesis technique offers broad applicability in vari-
ous verification tasks. It can be used as a sub-procedure, for example, in CEGAR-
based model checking for identifying counterexamples [32], in bounded model

Nonlinear Craig Interpolant Generation Over Unbounded Domains 107

checking for generating proofs [21], in program verification for squeezing invari-
ants [26], and in SMT for reasoning about nonlinear arithmetic [18]. Compared
with existing algorithms, our SDP-based algorithm is efficient and provides a
relative completeness guarantee. However, the practical implementation is not a
trivial undertaking, as it requires suitable strategies for storing numerical inter-
polants and taming numerical errors [37]. This remains an ongoing work of our
research.

Data Availability Statement. The experimental results of this paper may be repro-
duced using the artifact on Figshare https://doi.org/10.6084/m9.figshare.26131378, or
via GitHub link https://github.com/EcstasyH/Interpolation.

References

1. Acquistapace, F., Andradas, C., Broglia, F.: Separation of semialgebraic sets. J.
Am. Math. Soc. 12(3), 703–728 (1999). https://doi.org/10.1090/S0894-0347-99-
00302-1

2. Andersen, E.D., Andersen, K.D.: The Mosek interior point optimizer for linear
programming: an implementation of the homogeneous algorithm. In: Frenk, H.,
Roos, K., Terlaky, T., Zhang, S. (eds.) High Performance Optimization, pp. 197–
232. Springer US, Boston, MA (2000). https://doi.org/10.1007/978-1-4757-3216-
0 8

3. Benhamou, F., Granvilliers, L.: Continuous and interval constraints. In: Handbook
of Constraint Programming, Foundations of Artificial Intelligence, vol. 2, pp. 571–
603 (2006). https://doi.org/10.1016/S1574-6526(06)80020-9

4. Chen, M., Wang, J., An, J., Zhan, B., Kapur, D., Zhan, N.: NIL: learning non-
linear interpolants. In: Fontaine, P. (ed.) Automated Deduction – CADE 27: 27th
International Conference on Automated Deduction, Natal, Brazil, August 27–30,
2019, Proceedings, pp. 178–196. Springer International Publishing, Cham (2019).
https://doi.org/10.1007/978-3-030-29436-6 11

5. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient interpolation generation in sat-
isfiability modulo theories. In: Tools and Algorithms for the Construction and
Analysis of Systems, TACAS 2008. Lecture Notes in Computer Science, vol. 4963,
pp. 397–412 (2008). https://doi.org/10.1007/978-3-540-78800-3 30

6. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Incremental lin-
earization for satisfiability and verification modulo nonlinear arithmetic and tran-
scendental functions. ACM Trans. Comput. Log. 19(3), 19:1–19:52 (2018). https://
doi.org/10.1145/3230639

7. Dai, L., Xia, B., Zhan, N.: Generating non-linear interpolants by semidefinite pro-
gramming. In: Sharygina, N., Veith, H. (eds.) Computer Aided Verification - 25th
International Conference, CAV 2013. Lecture Notes in Computer Science, vol. 8044,
pp. 364–380. Springer (2013). https://doi.org/10.1007/978-3-642-39799-8 25

8. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponen-
tial. J. Symb. Comput. 5(1–2), 29–35 (1988). https://doi.org/10.1016/S0747-
7171(88)80004-X

9. D’Silva, V.V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant
strength. In: Verification, Model Checking, and Abstract Interpretation, 11th Inter-
national Conference, VMCAI 2010. Lecture Notes in Computer Science, vol. 5944,
pp. 129–145. Springer (2010). https://doi.org/10.1007/978-3-642-11319-2 12

https://doi.org/10.6084/m9.figshare.26131378
https://github.com/EcstasyH/Interpolation
https://doi.org/10.1090/S0894-0347-99-00302-1
https://doi.org/10.1090/S0894-0347-99-00302-1
https://doi.org/10.1007/978-1-4757-3216-0_8
https://doi.org/10.1007/978-1-4757-3216-0_8
https://doi.org/10.1016/S1574-6526(06)80020-9
https://doi.org/10.1007/978-3-030-29436-6_11
https://doi.org/10.1007/978-3-540-78800-3_30
https://doi.org/10.1145/3230639
https://doi.org/10.1145/3230639
https://doi.org/10.1007/978-3-642-39799-8_25
https://doi.org/10.1016/S0747-7171(88)80004-X
https://doi.org/10.1016/S0747-7171(88)80004-X
https://doi.org/10.1007/978-3-642-11319-2_12

108 H. Wu et al.

10. Gan, T., Dai, L., Xia, B., Zhan, N., Kapur, D., Chen, M.: Interpolant synthesis
for quadratic polynomial inequalities and combination with EUF. In: Automated
Reasoning: 8th International Joint Conference, IJCAR 2016, pp. 195–212. Springer
(2016). https://doi.org/10.1007/978-3-319-40229-1 14

11. Gan, T., Xia, B., Xue, B., Zhan, N., Dai, L.: Nonlinear Craig interpolant gen-
eration. In: Computer Aided Verification - 32nd International Conference, CAV
2020. Lecture Notes in Computer Science, vol. 12224, pp. 415–438. Springer (2020).
https://doi.org/10.1007/978-3-030-53288-8 20

12. Gao, S., Kong, S., Clarke, E.M.: Proof generation from delta-decisions. In: 16th
International Symposium on Symbolic and Numeric Algorithms for Scientific Com-
puting, SYNASC 2014, pp. 156–163. IEEE Computer Society (2014). https://doi.
org/10.1109/SYNASC.2014.29

13. Gao, S., Zufferey, D.: Interpolants in nonlinear theories over the reals. In: Tools
and Algorithms for the Construction and Analysis of Systems - 22nd International
Conference, TACAS 2016. Lecture Notes in Computer Science, vol. 9636, pp. 625–
641. Springer (2016). https://doi.org/10.1007/978-3-662-49674-9 41

14. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2004, pp. 232–244. ACM (2004). https://
doi.org/10.1145/964001.964021

15. Hoenicke, J., Schindler, T.: Efficient interpolation for the theory of arrays. In:
Automated Reasoning - 9th International Joint Conference, IJCAR 2018. Lecture
Notes in Computer Science, vol. 10900, pp. 549–565. Springer (2018). https://doi.
org/10.1007/978-3-319-94205-6 36

16. Huang, L., Kang, S., Wang, J., Yang, H.: Sparse polynomial optimization with
unbounded sets (2024). https://arxiv.org/abs/2401.15837

17. Huang, L., Nie, J., Yuan, Y.: Homogenization for polynomial optimization with
unbounded sets. Math. Program. 200(1), 105–145 (2023). https://doi.org/10.1007/
S10107-022-01878-5

18. Jovanovic, D., Dutertre, B.: Interpolation and model checking for nonlinear arith-
metic. In: Computer Aided Verification - 33rd International Conference, CAV 2021.
Lecture Notes in Computer Science, vol. 12760, pp. 266–288. Springer (2021).
https://doi.org/10.1007/978-3-030-81688-9 13

19. Jung, Y., Lee, W., Wang, B., Yi, K.: Predicate generation for learning-based
quantifier-free loop invariant inference. In: Tools and Algorithms for the Construc-
tion and Analysis of Systems - 17th International Conference, TACAS 2011. Lec-
ture Notes in Computer Science, vol. 6605, pp. 205–219. Springer (2011). https://
doi.org/10.1007/978-3-642-19835-9 17

20. Kapur, D., Majumdar, R., Zarba, C.G.: Interpolation for data structures. In: Pro-
ceedings of the 14th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2006, pp. 105–116. ACM (2006). https://doi.org/10.
1145/1181775.1181789

21. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. In: Computer Aided Verification - 26th International Conference, CAV
2014. Lecture Notes in Computer Science, vol. 8559, pp. 17–34. Springer (2014).
https://doi.org/10.1007/978-3-319-08867-9 2

22. Kovács, L., Voronkov, A.: Interpolation and symbol elimination. In: 22nd Inter-
national Conference on Automated Deduction, CADE’22. Lecture Notes in Com-
puter Science, vol. 5663, pp. 199–213. Springer (2009). https://doi.org/10.1007/
978-3-642-02959-2 17

https://doi.org/10.1007/978-3-319-40229-1_14
https://doi.org/10.1007/978-3-030-53288-8_20
https://doi.org/10.1109/SYNASC.2014.29
https://doi.org/10.1109/SYNASC.2014.29
https://doi.org/10.1007/978-3-662-49674-9_41
https://doi.org/10.1145/964001.964021
https://doi.org/10.1145/964001.964021
https://doi.org/10.1007/978-3-319-94205-6_36
https://doi.org/10.1007/978-3-319-94205-6_36
https://arxiv.org/abs/2401.15837
https://doi.org/10.1007/S10107-022-01878-5
https://doi.org/10.1007/S10107-022-01878-5
https://doi.org/10.1007/978-3-030-81688-9_13
https://doi.org/10.1007/978-3-642-19835-9_17
https://doi.org/10.1007/978-3-642-19835-9_17
https://doi.org/10.1145/1181775.1181789
https://doi.org/10.1145/1181775.1181789
https://doi.org/10.1007/978-3-319-08867-9_2
https://doi.org/10.1007/978-3-642-02959-2_17
https://doi.org/10.1007/978-3-642-02959-2_17

Nonlinear Craig Interpolant Generation Over Unbounded Domains 109

23. Kraj́ıcek, J.: Interpolation theorems, lower bounds for proof systems, and inde-
pendence results for bounded arithmetic. J. Symb. Log. 62(2), 457–486 (1997).
https://doi.org/10.2307/2275541

24. Kupferschmid, S., Becker, B.: Craig interpolation in the presence of non-linear
constraints. In: Fahrenberg, U., Tripakis, S. (eds.) Formal Modeling and Analysis
of Timed Systems - 9th International Conference, FORMATS 2011. Lecture Notes
in Computer Science, vol. 6919, pp. 240–255. Springer (2011). https://doi.org/10.
1007/978-3-642-24310-3 17

25. Lasserre, J.B.: Moments, positive polynomials and their applications, vol. 1. World
Scientific (2009). https://doi.org/10.1142/p665

26. Lin, S., Sun, J., Xiao, H., Sanán, D., Hansen, H.: Fib: Squeezing loop invariants by
interpolation between forward/backward predicate transformers. In: Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software Engi-
neering, ASE 2017, pp. 793–803. IEEE Computer Society (2017). https://doi.org/
10.1109/ASE.2017.8115690

27. Lin, W., Ding, M., Lin, K., Mei, G., Ding, Z.: Formal synthesis of neural Craig
interpolant via counterexample guided deep learning. In: 9th International Con-
ference on Dependable Systems and Their Applications, DSA 2022, pp. 116–125.
IEEE (2022). https://doi.org/10.1109/DSA56465.2022.00023

28. Magron, V., Wang, J.: TSSOS: a Julia library to exploit sparsity for large-scale
polynomial optimization. CoRR abs/2103.00915 (2021). https://arxiv.org/abs/
2103.00915

29. Magron, V., Wang, J.: Sparse Polynomial Optimization - Theory and Practice,
Series on Optimization and its Applications, vol. 5. WorldScientific (2023). https://
doi.org/10.1142/Q0382

30. Marshall, M.: Positive polynomials and sums of squares. Am. Math. Soc., 146
(2008)

31. McMillan, K.L.: Interpolation and sat-based model checking. In: Computer Aided
Verification, 15th International Conference, CAV 2003. Lecture Notes in Computer
Science, vol. 2725, pp. 1–13. Springer (2003). https://doi.org/10.1007/978-3-540-
45069-6 1

32. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1),
101–121 (2005). https://doi.org/10.1016/J.TCS.2005.07.003

33. McMillan, K.L.: Quantified invariant generation using an interpolating saturation
prover. In: Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008. Lecture Notes in Computer Science,
vol. 4963, pp. 413–427. Springer (2008). https://doi.org/10.1007/978-3-540-78800-
3 31

34. Nie, J.: Optimality conditions and finite convergence of Lasserre’s hierarchy. Math.
Program. 146(1–2), 97–121 (2014). https://doi.org/10.1007/S10107-013-0680-X

35. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and mono-
tone computations. J. Symb. Log. 62(3), 981–998 (1997). https://doi.org/10.2307/
2275583

36. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ.
Math. J. 42(3), 969–984 (1993). https://www.jstor.org/stable/24897130

37. Roux, P., Voronin, Y., Sankaranarayanan, S.: Validating numerical semidefinite
programming solvers for polynomial invariants. Formal Methods Syst. Design
53(2), 286–312 (2018). https://doi.org/10.1007/s10703-017-0302-y

38. Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation.
J. Symb. Comput. 45(11), 1212–1233 (2010). https://doi.org/10.1016/J.JSC.2010.
06.005

https://doi.org/10.2307/2275541
https://doi.org/10.1007/978-3-642-24310-3_17
https://doi.org/10.1007/978-3-642-24310-3_17
https://doi.org/10.1142/p665
https://doi.org/10.1109/ASE.2017.8115690
https://doi.org/10.1109/ASE.2017.8115690
https://doi.org/10.1109/DSA56465.2022.00023
https://arxiv.org/abs/2103.00915
https://arxiv.org/abs/2103.00915
https://doi.org/10.1142/Q0382
https://doi.org/10.1142/Q0382
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1016/J.TCS.2005.07.003
https://doi.org/10.1007/978-3-540-78800-3_31
https://doi.org/10.1007/978-3-540-78800-3_31
https://doi.org/10.1007/S10107-013-0680-X
https://doi.org/10.2307/2275583
https://doi.org/10.2307/2275583
https://www.jstor.org/stable/24897130
https://doi.org/10.1007/s10703-017-0302-y
https://doi.org/10.1016/J.JSC.2010.06.005
https://doi.org/10.1016/J.JSC.2010.06.005

110 H. Wu et al.

39. Sofronie-Stokkermans, V.: Interpolation in local theory extensions. Log. Methods
Comput. Sci. 4(4) (2008). https://doi.org/10.2168/LMCS-4(4:1)2008

40. Srikanth, A., Sahin, B., Harris, W.R.: Complexity verification using guided theorem
enumeration, pp. 639–652 (2017). https://doi.org/10.1145/3009837.3009864

41. Stengle, G.: A nullstellensatz and a positivstellensatz in semialgebraic geometry.
Ann. Math. 207, 87–97 (1974). https://doi.org/10.1007/BF01362149

42. Wu, H., Wang, J., Xia, B., Li, X., Zhan, N., Gan, T.: Nonlinear Craig inter-
polant generation over unbounded domains by separating semialgebraic sets (2024).
https://arxiv.org/abs/2407.00625

43. Yorsh, G., Musuvathi, M.: A combination method for generating interpolants. In:
20th International Conference on Automated Deduction, CADE’20. Lecture Notes
in Computer Science, vol. 3632, pp. 353–368. Springer (2005). https://doi.org/10.
1007/11532231 26

44. Zhan, N., Wang, S., Zhao, H.: Formal Verification of Simulink/Stateflow Dia-
grams. A Deductive Approach. Springer (2017). https://doi.org/10.1007/978-3-
319-47016-0

45. Zhao, H., Zhan, N., Kapur, D., Larsen, K.G.: A “hybrid” approach for synthesizing
optimal controllers of hybrid systems: a case study of the oil pump industrial
example. In: Formal Methods - 18th International Symposium, FM 2012, Lecture
Notes in Computer Science, vol. 7436, pp. 471–485. Springer (2012). https://doi.
org/10.1007/978-3-642-32759-9 38

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.2168/LMCS-4(4:1)2008
https://doi.org/10.1145/3009837.3009864
https://doi.org/10.1007/BF01362149
https://arxiv.org/abs/2407.00625
https://doi.org/10.1007/11532231_26
https://doi.org/10.1007/11532231_26
https://doi.org/10.1007/978-3-319-47016-0
https://doi.org/10.1007/978-3-319-47016-0
https://doi.org/10.1007/978-3-642-32759-9_38
https://doi.org/10.1007/978-3-642-32759-9_38
http://creativecommons.org/licenses/by/4.0/

Practical Approximate Quantifier
Elimination for Non-linear Real

Arithmetic

S. Akshay1, Supratik Chakraborty1, Amir Kafshdar Goharshady2(B),
R. Govind3, Harshit Jitendra Motwani2, and Sai Teja Varanasi1

1 IIT Bombay, Mumbai, India
{akshayss,supratik,200050152}@cse.iitb.ac.in

2 HKUST, Hong Kong, China
{goharshady,csemotwani}@ust.hk

3 Uppsala University, Uppsala, Sweden
govind.rajanbabu@it.uu.se

Abstract. Quantifier Elimination (QE) concerns finding a quantifier-
free formula that is semantically equivalent to a quantified formula in
a given logic. For the theory of non-linear arithmetic over reals (NRA),
QE is known to be computationally challenging. In this paper, we show
how QE over NRA can be solved approximately and efficiently in prac-
tice using a Boolean combination of constraints in the linear arithmetic
over reals (LRA). Our approach works by approximating the solution
space of a set of NRA constraints when all real variables are bounded.
It combines adaptive dynamic gridding with application of Handelman’s
Theorem to obtain the approximation efficiently via a sequence of lin-
ear programs (LP). We provide rigorous approximation guarantees, and
also proofs of soundness and completeness (under mild assumptions) of
our algorithm. Interestingly, our work allows us to bootstrap on earlier
work (viz. [38]) and solve quantified SMT problems over a combination
of NRA and other theories, that are beyond the reach of state-of-the-
art solvers. We have implemented our approach in a preprocessor for
Z3 called POQER. Our experiments show that POQER+Z3EG outper-
forms state-of-the-art SMT solvers on non-trivial problems, adapted from
a suite of benchmarks.

1 Introduction

Given a first-order logic formula with quantifiers, quantifier elimination (or QE)
requires us to find a quantifier-free formula that is semantically equivalent to
the given quantified formula. Not every first-order theory admits QE; however,
several important ones do, and QE for several such theories are implemented
in modern Satisfiability Modulo Theories (SMT) solvers (viz. [1,9,27,31,36]).
QE in combinations of first-order theories is particularly challenging, and algo-
rithms that achieve this for some theories used in practical applications have
been reported in earlier works (e.g. [11,38,51]). However, QE (even approximate
versions) in combinations of theories including non-linear real arithmetic (NRA)
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 111–130, 2025.
https://doi.org/10.1007/978-3-031-71162-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_6&domain=pdf
https://doi.org/10.1007/978-3-031-71162-6_6

112 S. Akshay et al.

has proved more difficult. This is not surprising since QE over NRA is compu-
tationally challenging by itself [29]. In this paper, we add to the repertoire of
practically efficient techniques for reasoning about NRA constraints by showing
how NRA constraints over bounded variables can be approximated efficiently
using a Boolean combination of real interval constraints. This yields a practical
algorithm for approximately solving QE over NRA, and also allows us to boot-
strap on existing QE techniques that work well for combinations of LRA and
other theories (viz. [38]) to solve QE in combinations of theories including NRA.

At the heart of our approach lies a practically efficient technique for approx-
imating a Boolean combination of polynomial inequalities over bounded reals
with a Boolean combination of real interval constraints. This immediately yields
a practically efficient approximate QE algorithm for NRA. This problem is
also popularly called QE over reals (henceforth called QER). QER is a central
problem in computer algebra and real algebraic geometry, with many practi-
cal applications, including control system design [35,42,46], program verifica-
tion [14,50,62,64,66], analysis of hybrid systems [7,79] and robot motion plan-
ning [53,56,77]. The study of QER has a long and storied history. Tarski first
showed the decidability of QER in [71]. By the Tarski-Seidenberg theorem, the
projection of a semi-algebraic set (i.e. solutions of a Boolean combination of
polynomial inequalities) is always semi-algebraic [67,71]. Hence, it suffices to
eliminate existentially quantified variables from a conjunction of polynomial
inequalities. A landmark result in this area was the development of the cylin-
drical algebraic decomposition (CAD) algorithm by Collins [28] in 1975. Over
the past half century, CAD has remained one of the most important algorithms
for QER, although several improvements have been proposed over the years.
An excellent, albeit dated, survey of these algorithms can be found in [16,29],
while more recent works have been reported in [3,12,26,49,52,57,58,65,68].
The book by Basu, Pollack and Roy [10] is a definitive treatise on exact algo-
rithms for QER and related problems. Over the years, practical scalability con-
cerns have also motivated researchers to investigate versions of QER for special
cases [32,47,48,54,59,63,75,76]. Advances resulting from these efforts have been
implemented in state-of-the-art tools, including open-source academic tools such
as QEPCAD [13,30], REDLOG [34], SMT-RAT [31] and SageMath [72], as well
as commercial tools such as Mathematica [44,68,69] and Maple [25,45].

The verification community has long been interested in QER, thanks to
its many applications in problems related to automated reasoning. For exam-
ple, QER for polynomial equalities and disequalities has been used to com-
pute strongest post- and weakest pre-conditions of programs [14,62], to compute
abstract transformers for program statements [60], and for inductive assertion
and program invariant generation [50,66]. In hybrid systems verification, reach
set computation has been shown to reduce to QER [7,79]. In [78], QER has
been used to find parametric optimal strategies for Markov decision processes.
Quantifier elimination in mixed theories including the theory of linear real arith-
metic (LRA) has been reported in several earlier works (see e.g. [11,38,51]). For
example, [11] gives model based projection techniques for several combinations

Quantifier Elimination for NRA 113

of theories and [38] gives e-graph based techniques for similar combinations.
However, quantifier elimination (even approximate versions) in combinations of
theories including NRA has remained elusive in practice, primarily because of
the high-degree polynomials that result in general from QER.

Our algorithm provides strong guarantees of approximation and allows the
user to trade off precision for performance. It builds upon the well-known theo-
rem of Handelman [41] which characterizes positive polynomials over polytopes.
This theorem has previously been used in developing static analysis methods for
termination and runtime analysis [17–19,43], cost analysis [15,21,23,24,70,74],
invariant generation [20], reachability [8,73] and LTL verification [22], as well
as program synthesis [4,39]. See [6] for a comparison between the current work
and [4]. Most of these approaches are template-based and use Handelman’s theo-
rem to solve for unknown variables in their templates. In contrast, our approach
is gridding-based and uses techniques similar to PROPhESY [33] but combines
them with Handelman-based reasoning. The primary workhorse we use at the
backend is a linear-programming (LP) solver, with occasional invocations of an
SMT solver. This allows our method to scale well on many non-trivial examples.
Our primary contributions are as follows:

1. We formalize two notions of approximation for QER, called ε-approximation
and (ε, δ)-approximation, that are motivated by practical applications and
introduce union of (adaptively sized) hyperrectangles as a knowledge rep-
resentation form for approximate QER. This allows us to compute ε- and
(ε, δ)-approximations of QER, for every ε, δ > 0, efficiently in practice.

2. We present an approach to over- and under-approximate NRA constraints
with a Boolean combination of LRA constraints, where each dimension is
bounded. Specifically, we use Handelman’s Theorem in combination with
dynamic adaptive gridding to reduce the approximation problem to multiple
linear programming (LP) instances, that are then discharged by a state-of-
the-art LP solver.

3. We prove the soundness of our algorithm, and its completeness under two
different settings. Assuming access to a sound and complete satisfiability ora-
cle for polynomial inequalities (in practice, an SMT solver), we show that
our algorithm produces an ε-approximation of QER. Without access to the
above oracle, and relying only on linear programming, we can obtain (ε, δ)-
approximations of QER. Our notions of approximation for the original semi-
algebraic set are closely related to those of [37]. Due to the special format of
our approximation as a union of hyperrectangles, we obtain approximations
of the projection set easily. Our approach extends the results of [55] which
directly approximate the projection.

114 S. Akshay et al.

4. We apply this new algorithm to show how QE over theories involving Non-
linear Real Arithmetic (NRA) can be reduced to QE over LRA and other
theories, thereby making it possible to solve problems beyond the reach of
state-of-the-art solvers.

5. We show the practical effectiveness of our algorithm through two sets of
experiments with POQER – a tool that implements our algorithm. First, a
comparison with state-of-the-art tools shows that POQER significantly out-
performs available open-source tools that perform exact QER, even with small
values of ε and δ. Comparison with Mathematica, a commercial tool, shows
that our tool almost always generates solutions (unions of hyperrectangles)
that are easier to process subsequently than solutions generated by Mathe-
matica. Second, we demonstrate how POQER can find approximate solutions
for NRA+ADT benchmarks well beyond the reach of state-of-the-art SMT-
solvers like Z3 and Z3EG.

2 Algorithm

In this section, we start by formalizing our quantifier elimination problem as
computing a projection π(S) of a semialgebraic set S. We then present the
concept of ε-inflations to overapproximate semialgebraic sets, in our case the
projection π(S), to a desired level ε of precision. This is followed by our algorithm
which computes an ε-approximation of π(S).

2.1 Problem Definition

Input Format. We are given a positive real number ε and a finite set V =
{v1, v2, . . . , vn} of real-valued variables partitioned into two sets V1 and V2.
Throughout this paper, we use the standard vector notation for valuations to
variables and assume that V1 comes before V2 lexicographically. Our input also
contains a formula ϕ from the grammar below:

ϕ := � | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ formulas
� := f ≥ 0 | f > 0 literals

f ∈ R[V] polynomials

The input formula ϕ naturally defines the semialgebraic set

S := SAT(ϕ) := {x ∈ R
n | x |= ϕ}.

We assume the set S is bounded, i.e. there is a positive real number B given in
the input such that for all x ∈ S, we have ||x|| < B.

Projection. Given a set S ⊆ R
n, its projection π(S) onto V1 is defined as

π(S) := {x1 ∈ R
|V1| | ∃x2 ∈ R

|V2| (x1,x2) ∈ S}.

Our goal is to approximate π(S). We now formalize this.

Quantifier Elimination for NRA 115

ε-inflations and ε-approximations. Given ε > 0 and a set T ⊆ R
n, we define

the ε-inflation of T as

Iε(T) := {x ∈ R
n | ∃x′ ∈ T ||x − x′|| < ε}.

In other words, Iε(T) consists of all the points in T as well as points that are
within a distance ε to T. We say O ⊆ R

n is an ε-approximation of T iff T ⊆
O ⊆ Iε(T). Intuitively, an ε-approximation includes everything in the original
set T and may also include some extra points, but these points are guaranteed
to be within ε distance to the boundary of T. In this work, we use the Euclidean
norm, but our results are independent of the distance metric used and can be
straightforwardly extended to other norms.
Output. Our algorithm outputs an ε-approximation of π(S).

Fig. 1. A semi-algebraic set S
(black) and its ε-inflation (red)
(Color figure online)

Example. Figure 1 shows a semi-algebraic set
in black and its ε-inflation in red.
Hyperrectangles. A hyperrectangle H ⊆ R

n

is the set of points that satisfy the inequalities

ψH :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α1 ≤ v1 ≤ β1

α2 ≤ v2 ≤ β2

...
αn ≤ vn ≤ βn

where the αi and βi’s are real constants and we have βi > αi for every 1 ≤ i ≤ n.

Literal Complements. Let � be a literal. We define its complement � as follows:

� :=
{−f > 0 � = (f ≥ 0)

−f ≥ 0 � = (f > 0)

It is easy to see that � ≡ ¬�.

Ternary Evaluation. Let ϕ be a Boolean formula and L the set of literals
appearing in ϕ. Consider a function θ : L → {0, 1, ?} that assigns a truth value
to each literal. Here, ? models uncertainty. Based on the function θ, we define
the evaluation of ϕ recursively as follows:

[|�|]θ = θ(�) [|ϕ1 ∨ ϕ2|]θ =

⎧
⎨

⎩

1 [|ϕ1|]θ = 1 ∨ [|ϕ2|]θ = 1
0 [|ϕ1|]θ = 0 ∧ [|ϕ2|]θ = 0
? otherwise

[|¬ϕ|]θ =
{

? [|ϕ|]θ =?
¬[|ϕ|]θ otherwise [|ϕ1 ∧ ϕ2|]θ =

⎧
⎨

⎩

1 [|ϕ1|]θ = 1 ∧ [|ϕ2|]θ = 1
0 [|ϕ1|]θ = 0 ∨ [|ϕ2|]θ = 0
? otherwise

Informally, we are going to use this kind of evaluation when we want to check
whether a given ϕ holds over all points in a set (1), none of the points in the
set (0) or potentially some of them (?). We say we are uncertain about ϕ when
[|ϕ|]θ =?.

116 S. Akshay et al.

2.2 Our Overapproximation Algorithm

Oracles. Our algorithm is modular and relies on two oracles:

– Implication Oracle: Given a hyperrectangle H ⊆ R
n and a literal �, this oracle

checks whether � holds at every point in H. Equivalently, as ψH is the formula
defining H, it checks whether ∀x ∈ R

n ψH ⇒ �.
– Satisfiability Oracle: This oracle decides whether a given semialgebraic set is

non-empty, i.e., it checks the satisfiability of a given formula ϕ.

We say that an oracle is sound if whenever it returns true, the implication
(resp. satisfiability) holds. Conversely, an oracle is complete if whenever the
implication (resp. satisfiability) holds, it returns true.

In this section, we provide the main procedure of our algorithm, assuming
that the two oracles above are available. In Sect. 2.3, we will provide an LP-based
implication oracle. Thus, calls to the implication oracle are relatively cheap in
practice. In contrast, we rely on SMT solvers as satisfiability oracles. Thus,
for practical scalability, our approach calls this oracle as late as possible and
only in ε-diameter subsets of R

n. Finally, in Sect. 2.4 we show that our over-
approximation remains sound even in the absence of a satisfiability oracle but
can only provide a weaker guarantee of approximation quality.

Fig. 2. An example of our gridding algo-
rithm with memoization

Our Algorithm. We are now ready
to present our algorithm that finds an
ε-approximation of π(S). See [6] for a
discussion of the intuition. Our algo-
rithm consists of three steps and is
provided in Algorithm 1.
Step 1. Literal Extraction. In the
first step, our algorithm generates a
set L consisting of all literals � that
appear in the formula ϕ. This is done
by a standard parsing of ϕ.

Step 2. Dynamic Gridding. In this
step, our initial goal is to produce an
ε-approximation O of S itself, rather
than its projection. Given that S is
bounded, we can apply the idea of
gridding. However, we do this in a
dynamic and recursive manner, creat-
ing smaller grid cells only when neces-
sary. We keep a set A of hyperrectangles whose union forms our answer. Initially
A = ∅. We start with a hyperrectangle H0 which covers all of S as the initial
grid cell. For example, we can set H0 = {(x1, x2, . . . , xn) | − B ≤ xi ≤ B}.
When processing each grid cell H, our algorithm does the following:

(a) For every literal � ∈ L, use the implication oracle to decide whether � holds
at every point in H, i.e. check ∀x ∈ R

n ψH ⇒ �.

Quantifier Elimination for NRA 117

(b) For every literal � ∈ L, use implication oracle to decide whether its comple-
ment � holds at every point in H, i.e. query the oracle for ∀x ∈ R

n ψH ⇒ �.
(c) Create a ternary valuation θ : L → {0, 1, ?} in which θ(�) = 1 if the check in

(a) passes, θ(�) = 0 if the check in (b) passes and otherwise θ(�) =?. Use this
valuation to evaluate [|ϕ|]θ, thus deciding whether ϕ holds at every point in
H.

(d) If [|ϕ|]θ = 1, then add the grid cell H to the answer A. Conversely, if
[|ϕ|]θ = 0, exclude H from A. The only remaining case is if we are uncertain
about ϕ. We break this down into two further cases:

(i) If the diameter of H is more than ε, cut H into two halves H ′ and H ′′ by
bisecting its longest edge. Apply the algorithm recursively on both.

(ii) If the diameter of H is at most ε, then use the satisfiability oracle on
ψH ∧ϕ. This will tell us whether there exists at least one point in H that
satisfies ϕ. If such a point exists, include H in A. Else, exclude H.

Memoization. If one of the checks in (a) or (b) above succeed, then the corre-
sponding (complement) literal holds at every point in H. Thus, if the algorithm
later divides H in (d), we do not need to check the same literals again in H ′ and
H ′′. Hence, our algorithm memoizes the set of literals that are known to hold or
not hold at every point in H. This is shown as L1 and L0 in the pseudocode.
Example. Figure 2 shows a simple example of our dynamic gridding. Our goal is
to approximate the intersection ϕ = �1 ∧ �2 of the two red circles, i.e. each circle
corresponds to a literal �i. A grid cell is shown in blue in part (i). Initially, our
algorithm finds out that �1 holds at every point in the cell, but �2 is uncertain.
Thus, in part (ii), we divide our cell in two. At this point we already know that �1
holds in both halves. This is memoized (shown in green) and not recomputed. In
the left half, �2 does not hold at any point. Thus, we have θ(�2) = 0 and exclude
this half from the solution. In part (iii), we cut the right half in two. The bottom
part is excluded from the solution since no point in it satisfies �2. In the top right
part, �1 is known to hold everywhere (memoized) and �2 is uncertain. However,
at this point the diameter of the cell is less than ε. Thus, our approach makes an
SMT call in part (iv) and realizes that there is a point in this cell that satisfies
ϕ. Hence, the top right cell is included in the answer.
Step 3. Projection. Let O =

⋃
H∈A H. We will prove further below that O is

an ε-approximation of S. However, we would like an ε-approximation of π(S).
In this step, the algorithm computes π(O) =

⋃
H∈A π(H) and outputs it as the

answer. We note that projecting each hyperrectangle H ∈ A is a simple matter
of dropping some constraints. Specifically, we have:

ψH =

⎧
⎪⎨

⎪⎩

α1 ≤ v1 ≤ β1

...
αn ≤ vn ≤ βn

⇒ ψπ(H) =

⎧
⎪⎨

⎪⎩

α1 ≤ v1 ≤ β1

...
α|V1| ≤ v|V1| ≤ β|V1|

.

Theorem 1 (Correctness, Proof in [6]). Assume that we have a sound
implication oracle and a sound and complete satisfiability oracle. Given

118 S. Akshay et al.

Algorithm 1. POQER
1: A ← ∅
2: L ← ∅
3: procedure Main(ϕ, ε, n, V, V1, V2, B)
4: L ← literals in ϕ � Step 1
5: ψH0 ← ∧n

i=1 −B ≤ vi ≤ B
6: Grid(H0, ∅, ∅, ϕ, ε, n, V) � Step 2
7: X ← ∅
8: for all H ∈ A do � Step 3
9: X ← X ∪ Project(H, V1)

10: return X
11: procedure Grid(H, L0, L1, ϕ, ε, n, V)
12: θ ← ∅
13: for all � ∈ L do
14: if � ∈ L1 ∨ ImplicationOracle(H, �, n, V) then � Step 2 (a)
15: θ[�] ← 1
16: L1 = L1 ∪ {�} � Memoization

17: else if � ∈ L0 ∨ ImplicationOracle(H, �, n, V) then � Step 2 (b)
18: θ[�] ← 0
19: L0 = L0 ∪ {�} � Memoization
20: else
21: θ[�] ←?

22: if [|ϕ|]θ = 1 then � Step 2 (d), Ternary Evaluation
23: A ← A ∪ {H} � Adding H to the overapproximation
24: else if [|ϕ|]θ =? then
25: if Diameter(H) ≥ ε then
26: H′, H′′ ← CutInHalves(H)
27: Grid(H′, L0, L1, ϕ, ε, n, V) � Recursive Calls on Halves of H
28: Grid(H′′, L0, L1, ϕ, ε, n, V)
29: else if SatisfiabilityOracle(ψH ∧ ϕ, n, V) then
30: A ← A ∪ {H} � Adding H to the overapproximation

ϕ, ε, n,V,V1,V2, and B as input, let S := {x ∈ R
n x |= ϕ} be bounded by

a ball of radius B around the origin. Then, Algorithm 1 (POQER), outputs an
ε-approximation of π(S), i.e. the projection of S onto V1, as desired.

2.3 Our Implication Oracle

As mentioned in the previous section, our algorithm depends on a sound oracle to
check whether a given polynomial inequality (literal) � of the form f ≥ 0 or f > 0
holds over the entirety of a hyperrectangle H. In this section, we provide such
an oracle. Specifically, given the inequalities ψH that define the hyperrectangle
H, our goal is to check whether ∀x ∈ R

n ψH ⇒ � holds. Our algorithm is sound
and can also provide semi-completeness guarantees for strict literals, i.e. literals
of the form f > 0.

Semi-group generated by Φ. Consider the set V = {v1, . . . vn} of real-valued
variables and the following system of linear inequalities over V:

Φ :=

⎧
⎪⎪⎨

⎪⎪⎩

a1,0 + a1,1 · v1 + . . . + a1,n · vn �1 0
...

am,0 + am,1 · v1 + . . . + am,n · vn �m 0

where �i∈ {>,≥} for all 1 ≤ i ≤ m. Let gi be the left hand side of the i-th
inequality, i.e. gi(v1, . . . , vn) := ai,0+ai,1 ·v1+ . . . ai,n ·vn. The semi-group of Φ is

Quantifier Elimination for NRA 119

defined as: SG(Φ) :=
{∏m

i=1 gki
i | m ∈ N ∧ ∀i ki ∈ N ∪ {0}

}
. In other words,

this semi-group contains all polynomials that can be obtained as a multiplication
of the gi’s. Note that 1 ∈ SG(Φ). We define SGd(Φ) as the subset of polynomials
in SG(Φ) of degree at most d.

Theorem 2 (Handelman’s Theorem [41]). Consider the following system of
equations over V:

Φ :=

⎧
⎪⎪⎨

⎪⎪⎩

a1,0 + a1,1 · v1 + . . . + a1,n · vn ≥ 0
...

am,0 + am,1 · v1 + . . . + am,n · vn ≥ 0

.

If Φ is satisfiable, its solution set is compact, f ∈ R[V] and we have ∀x ∈ R
n Φ ⇒

f > 0, then there exist non-negative real numbers λ0, . . . λk and semigroup ele-
ments h1, . . . , hk ∈ SG(Φ) such that f = λ0 + λ1 · h1 + · · · + λk · hk.

Basic Idea of Our Implication Oracle. Consider the hyperrectangle H and
its defining inequalities ψH which can be rewritten in the following form:

ψH =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g1 := v1 − α1 ≥ 0
g2 := β1 − v1 ≥ 0

...
g2·n−1 := vn − αn ≥ 0
g2·n := βn − vn ≥ 0

It is clear by definition that every gi is non-negative at every point in H. Thus,
any multiplication h ∈ SGd(ψH) of the gi’s will also be non-negative throughout
H. Finally, we can take any linear combination of such polynomials with non-
negative coefficients, i.e.

f = λ0 + λ1 · h1 + · · · + λk · hk (1)

hi ∈ SGd(ψH) λi ≥ 0, and such an f will be non-negative at every point in H.
Moreover, if λ0 > 0, then f will be strictly positive at every point in H.

Fig. 3. The hyper-
rectangle H defined
by ψH lying inside
the region f > 0.

The Oracle. Our implication oracle is provided in Algo-
rithm 2. Given a fixed degree d ∈ N, it first generates
SGd(ψH). It then symbolically computes a linear combi-
nation of the polynomials in SGd(ψH) by creating fresh
variables for each λi as in the RHS of Eq. (1). This allows
us to write Eq. (1) symbolically. Note that both sides of
this equation are polynomials in R[V], thus they are equal
if and only if each monomial has the same coefficient on
both sides. The algorithm computes the coefficient of each
monomial on both sides and equates them. This leads to
a linear programming instance over the λi’s, which is in
turn handled by an external solver.

120 S. Akshay et al.

Example. Consider the literal � = (f > 0) where f = 4 − x2 − y2. Let H be
the hyperrectangle defined by the inequalities −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1. We
have ψH = {x + 1 ≥ 0,−x + 1 ≥ 0, y + 1 ≥ 0,−y + 1 ≥ 0}. Let d = 2. Then,
SGd(ψH) contains all polynomials of degree at most 2 that can be obtained as
a multiplication of the gi’s. This includes g2

1 , g1 · g2, g1 · g3, g1 · g4, g
2
2 , g2 · g3, g2 ·

g4, g
2
3 , g3 ·g4, g

2
4 , g1, g2, g3, g4, 1. Since � holds at every point in the hyperrectangle

H, we can write f as a linear combination of these polynomials as follows: 4 −
x2 − y2 = 1 · (1 − x2) + 1 · (1 − y2) + 2 · 1 = 1 · g1 · g2 + 1 · g3 · g4 + 2 · 1 (Fig. 3).

Algorithm 2. Our Implication Oracle
1: procedure ImplicationOracle(H, �, n, V, d)
2: LP ← ∅
3: SG ← {1} � SG will become SGd(ψH)
4: M ← {1} � M will become the set of all monomials of degree ≤ d
5: for 1 ≤ i ≤ d do
6: SG ← SG ∪ {g · h | g ∈ ψH ∧ h ∈ SG}
7: M ← M ∪ {vi · h | vi ∈ V ∧ h ∈ M}
8: k ← |SG|
9: Create k + 1 fresh variables λ0, λ1, . . . , λk in LP

10: if � = (f > 0) then
11: Add the constraint λ0 > 0 to LP
12: else if � = (f ≥ 0) then
13: Add the constraint λ0 ≥ 0 to LP

14: for 1 ≤ i ≤ k do
15: Add the constraint λi ≥ 0 to LP

16: LHS ← f where � = (f > 0) or � = (f ≥ 0)

17: RHS ← ∑k
i=0 λi · SG[i]

18: for all m ∈ M do
19: l = coefficient of m in LHS
20: r = coefficient of m in RHS
21: Add the constraint l = r to LP
22: if LP has a solution then
23: return true
24: else
25: return false

Theorem 3 (Soundness and Semi-completeness, Proof in [6]). Given a
hyperrectangle H and a literal � in the input, and a degree bound d, Algorithm 2
is sound in deciding whether ∀x ∈ R

n ψH ⇒ �. Moreover, if � is of the form
f > 0, then there exists a degree bound d, depending on both H and �, for which
the algorithm is complete in deciding ∀x ∈ R

n ψH ⇒ �.

Runtime Analysis. In Algorithm 2, let d be the degree, n the number of vari-
ables, and m the number of linear inequalities in our hypothesis hyperrectangle
H. Then, the size of |M | =

(
n+d

d

)
and |SG| =

(
m+d

d

)
. For each element of SG, we

add a λi to our linear programming instance. Similarly, for each monomial in M ,
we add a constraint equating its coefficients on the two sides. Thus, we have an
LP instance with O

((
m+d

d

))
variables and O

((
n+d

d

))
constraints. We note that

current state-of-the-art LP-solving algorithms work in polynomial-time O(Nω)
where N is their input size and ω is the matrix multiplication constant.

Quantifier Elimination for NRA 121

2.4 Removing the Satisfiability Oracle

Our approximate quantifier elimination algorithm in Sect. 2.2 requires two ora-
cles: one for implication and another for satisfiability. As mentioned above, we
use SMT calls for the satisfiability oracle, but the implication oracle (Sect. 2.3)
is much more practical and relies only on linear programming. Moreover, it pro-
vides a semi-completeness guarantee (Theorem 3) which is not used in the main
algorithm (Theorem 1). So, a natural question is whether we can remove the
satisfiability oracle altogether. We first argue that this is unlikely to lead to an
efficient algorithm with our notion of ε-approximation, since it is an ETR-hard
problem. However, we can provide a weaker guarantee for positive formulas.
ETR-Hardness. Let ψ := (∃v1, v2, . . . , vn ϕ) be a formula in the existential
theory of the reals. ψ holds if and only if SAT(ϕ) �= ∅, but we have

SAT(ϕ) �= ∅ ⇔ π(SAT(ϕ)) �= ∅ ⇔ Iε(π(SAT(ϕ))) �= ∅.

Thus, to decide ψ, we can simply find an ε-approximation of π(SAT(ϕ)) and
check its non-emptiness.
Positive Formulas. A formula ϕ is called positive if it is generated from the
grammar below:

ϕ := � | ϕ ∧ ϕ | ϕ ∨ ϕ positive formulas
� := f ≥ 0 | f > 0 literals

f ∈ R[V] polynomials

The only difference between this grammar and that of Sect. 2.1 is the absence of
the negation operator. We note that any formula can be written as an equivalent
positive formula since the complement of each literal is itself a literal. Thus, in
the remainder of this section, we assume that the formula ϕ is positive.
(ε, δ)-perturbation. Let ε, δ > 0 and ϕ be a positive formula. We define the
(ε, δ)-perturbation SATε,δ(ϕ) of SAT(ϕ) recursively as follows:

– For every literal � = (f > 0) or � = (f ≥ 0) we have

SATε,δ(�) = Iε(SAT(f + δ ≥ 0)).

Intuitively, we are overapproximating SAT(�) in two ways: (i) we are allowing
the value of f to decrease to −δ instead of just 0, and (ii) we are taking an
ε-inflation of the resulting solutions. In other words, we are considering that
our evaluation of f might have a numerical error of up to δ and that our
approximation of the solution set might contain some extra points which are
within ε distance to the original set.

– If ϕ = ϕ1 ∧ ϕ2, then SATε,δ(ϕ) := SATε,δ(ϕ1) ∩ SATε,δ(ϕ2).
– If ϕ = ϕ1 ∨ ϕ2, then SATε,δ(ϕ) := SATε,δ(ϕ1) ∪ SATε,δ(ϕ2).

We remark that we always have SAT(ϕ) ⊆ Iε(SAT(ϕ)) ⊆ SATε,δ(ϕ). We say
that a set O is an (ε, δ)-approximation of SAT(ϕ) if SAT(ϕ) ⊆ O ⊆ SATε,δ(ϕ).

122 S. Akshay et al.

We note that there are subtle yet important differences in the definitions of ε-
approximation and (ε, δ)-approximation, thus an (ε, 0)-approximation is not the
same as an ε-approximation as defined in Sect. 2.1.
Modified Algorithm. We take the exact same algorithm as in Sect. 2.2 (Algo-
rithm 1), but only change Step 2 (d)(ii) as follows:

– If the diameter of H is at most ε, for every literal � ∈ L of the form f > 0 or
f ≥ 0, use the implication oracle to decide the following formula:

• ∀x ∈ R
n ψH ⇒ −f − δ > 0

If the check passes, update θ(�) to 0. Otherwise, update it to 1. Finally,
compute [|ϕ|]θ and if it is 1 then include H in the answer A.

Algorithm 3 in [6] provides a psuedocode of this variant. See [6] for a discussion
of the intuition behind this approach.

Theorem 4 (Proof in [6]). Assume that we have a sound and complete impli-
cation oracle. Given ϕ, ε, δ, n,V,V1,V2 and B as input, let SAT(ϕ) be bounded
by a ball of radius B around the origin. Then, Algorithm 3 of [6] (Modified
POQER), outputs a set X such that π(SAT(ϕ)) ⊆ X ⊆ π(SATε,δ(ϕ)). In other
words, it outputs an (ε, δ)-approximation of SAT(ϕ).

3 Experimental Results

We implemented our approach in a tool called POQER (Practical Overapprox-
imate Quantifier Elimination for Reals) and performed two experiments:

– Our first experiment considers QER over formulas in Non-linear Real Arith-
metic (NRA). To the best of our knowledge, we are providing the first approx-
imate solution for quantifier elimination over NRA. Thus, we had to compare
our scalability with previous exact solutions. Note that under-approximating
the result of applying QER to a polynomial constraint ϕ is equivalent to com-
plementing the over-approximation of QER applied to ¬ϕ. Hence, we focus
only on over-approximating QER in this experiment. Moreover, since every
Boolean combination of polynomial constraints can be equivalently expressed
in disjunctive normal form, and since existential quantification distributes
over disjunction, we focus only on conjunctions of polynomial constraints.

– In our second experiment, we considered the problem of satisfiability checking
for mixed formulas in NRA+ADT, i.e. theories of Non-linear Real Arithmetic
and Algebraic Data Types. We first used POQER to eliminate quantifiers in
the NRA part of the formula, obtaining both over- and under-approximations,
and writing it as a union of hyperrectangles. We then combined this approx-
imation with the ADT part and passed it to a state-of-the-art tool for
LRA+ADT, namely Z3EG. As baselines, we compared our performance with
state-of-the-art SMT solvers Z3 and Z3EG.

Quantifier Elimination for NRA 123

Implementation and Environment Details. We implemented POQER
(Algorithm 1) in C++, with Z3 as the satisfiability oracle (see Sect. 2). We used
Gurobi [40] as our LP-solver. The results were obtained on a 3.5GHz Intel Core
i5 1030NG7 Machine with 8 GB of RAM running MacOS. We will submit our
tool (POQER) for artifact evaluation and make it publicly available as free and
open-source software.
First Experiment (QER). Due to the lack of publicly-available tools perform-
ing approximate quantifier elimination in NRA (non-linear real arithmetic), we
are unable to present an apples-to-apples comparison. However, we report com-
parisons with several tools that perform exact QER. There are several (academic
and commercial) tools implementing CAD and its variants, but we observe that
the result of QER given by them is often as high-degree polynomials or their
radicals. This makes it practically impossible to use these results in downstream
processing using modern SMT solvers. Hence, we study not only whether these
tools are able to solve a QER problem within a time budget, but also the format
in which they provide the answer. Although our algorithm is parallel, we only
compare using a sequential variant to be as fair as possible.

CAD (and variant algorithms for QER) are reported to be implemented in
publicly available SMT solvers such as SMT-RAT [31], Yices2 [36], Z3 [61] and
cvc5 [9]. However, SMT solvers are decision procedures for checking satisfaction
of (possibly quantified) formulas in a combination of theories. Hence, they do
not provide the result of quantifying a subset of variables in a formula. While
this suffices in applications where the goal is to check if a formula is satisfiable,
it falls short of the requirements in other applications, viz. weakest pre-condition
computation, where we genuinely require the result of quantifying a subset of
variables from NRA constraints. SMT-RAT [31] appears to have had a soundness
issue in the quantifier elimination for QER (as noted in [2]) which we were unable
to circumvent. Therefore, we compare our approach to two state-of-the-art meth-
ods: (a) SageMath [72], a versatile open-source computer algebra system, that
includes an implementation of QEPCAD [13,30], and (b) Mathematica [44], a
widely-used and highly-optimized commercial computer algebra system, that
employs a portfolio of powerful algorithms and heuristics for QER. We aim to
answer the following research questions through our first experiment:

RQ1: Given a time of 30 min, how many QER tasks from our benchmark suite
are solved by SageMath, Mathematica and POQER? We use the Reduce
function in Mathematica and qepcad in SageMath.

RQ2: For each of the above three tools, is the output of a QER problem free of
further NRA constraints?

RQ3: Does using Handelman’s Theorem and linear programming in POQER
help achieve better performance compared to the use of a state-of-the-art
SMT solver (Z3)? To answer this, we performed an ablation study by remov-
ing our Handelman-based implication oracle and instead directly applying Z3
as both implication and satisfiability oracles.

Benchmarks. Given the lack of standard benchmarks for QER, we designed a
suite of benchmarks, each of which is a conjunction of polynomial inequalities,

124 S. Akshay et al.

with range constraints on each dimension. Our benchmarks (see [6] for details)
have 2–8 variables, degrees 2–6, and between 2 to 10 polynomials each.
Results. Our results are summarized in Table 1. We computed ε-approximations
using POQER for three different values of ε to understand how POQER’s per-
formance scales with decreasing values of ε. We observe that SageMath failed
to complete the QER task within the timeout in all but four cases, where it
provided a solution in NRA, as indicated by the asterisks. Mathematica per-
formed significantly better, generating solutions in NRA in most instances. In 4
instances, the solutions are generated in a form that would require NRA with
quantifiers, if we were to encode them in SMT. We show these solutions in [6].
Clearly, these solutions are intractably complicated and pose serious challenges
for downstream automated reasoning tasks. Since SageMath and Mathemat-
ica implement exact QER, it is not possible to circumvent these complicated
solution forms in general. POQER with ε = 0.1 successfully solved all bench-
marks within the 30-minute timeframe, showcasing the effectiveness of our tool.
POQER with ε = 0.05 and 0.01, fell short only in two and three instances respec-
tively. Thus, our experiments answer research question RQ1 in favor of POQER
for all three values of ε considered, when compared to SageMath or Mathemat-
ica. RQ2 is answered in the positive for POQER in all cases, while it is mostly in
the negative for SageMath and Mathematica, since they compute exact solutions
which are often non-linear (in NRA) and sometimes even quantified. Finally, for
RQ3, from columns Z3dir.05 and PQ.05 of Table 1, we can conclude that using
Handelman’s Theorem and LP-solving significantly improves the performance of
POQER vis-a-vis using a state-of-the-art SMT solver (Z3) in all but one exam-
ple. On Benchmark Ex11, the Z3 approach is unusually fast, which is presumably
due to its internal heuristics. We also report the number of hyperrectangles that
we generate as well as number of hyperrectangles after the projection of variables
(shown in last two columns of Table 1). Finally, more details are reported in [6].
Looking deeper into the results, we observe that Mathematica tends to solve
most benchmarks efficiently, but has difficulty in solving problems with a larger
number of eliminations, as each quantifier elimination results in increasingly
complex solutions. In contrast, our approach benefits from the simpler structure
of our solutions, enabling us to deliver faster results even when multiple quan-
tifiers must be eliminated. Furthermore, Mathematica produces solutions in a
complicated format, i.e. as degree polynomial inequalities in multiple variables.
See [6] for more details.
Second Experiment: NRA+ADT. The last observation above enables the
use of approximate quantifier elimination in a combination of NRA and other
theories, such as ADT (theory of algebraic data types), by reducing it to
LRA+ADT. NRA+ADT formulas are often highly intractable and beyond the
reach of modern SMT solvers. To the best of our knowledge, there are no approx-
imate solutions for NRA+ADT in the literature, either. In contrast, an effective
tool for LRA+ADT, called Z3EG, has recently been developed in [38].
Benchmarks. We took the Z3EG benchmarks which are in LRA+ADT and
added a single NRA constraint to each of them, thus obtaining NRA+ADT

Quantifier Elimination for NRA 125

Table 1. Results of our First Experiment. SM refers to Sagemath, MA refers to Math-
ematica, PQ.1, PQ.05, PQ.01 refer respectively to POQER with ε = 0.1, 0.05, 0.01. ✓

indicates that the method terminates within 30 min, ✗ indicates a timeout. ◆ indicates
that the solution is in QF-NRA. ▲ indicates NRA (with quantifiers). The columns
PQ.05 and Z3dir.05 respectively refer to time taken in seconds by POQER and
POQER where the Implication Oracle is replaced by Z3. #H is the number of hyper-
rectangles computed by POQER while #PH is the number of hyperrectangles after
the projection.

#B SMMAPQ.1PQ.05PQ.01 Z3dir.05PQ.05#H#PH

Ex1 ✗ ◆ ✓ ✗ ✗ 1100 233 526 103

Ex2 ✗ ✗ ✓ ✗ ✗ TO TO – –

Ex3 ✗ ▲ ✓ ✓ ✓ 370 199 1144 256

Ex4 ✗ ✗ ✓ ✓ ✓ TO 31 334 76

Ex5 ◆ ✓ ✓ ✓ ✓ 5 3 35 6

Ex6 ✗ ◆ ✓ ✓ ✓ 71 14 151 33

Ex7 ◆ ◆ ✓ ✓ ✓ 8 3 20 5

Ex8 ◆ ◆ ✓ ✓ ✓ 97 19 426 148

Ex9 ✗ ▲ ✓ ✓ ✓ 321 223 1144 256

Ex10 ◆ ✓ ✓ ✓ ✓ 17 7 46 6

Ex11 ✗ ▲ ✓ ✓ ✓ 191 340 695 140

Ex12 ✗ ✗ ✓ ✓ ✓ 212 46 16 8

Ex13 ✗ ✗ ✓ ✓ ✗ 409 91 89 26

Ex14 ✗ ✗ ✓ ✓ ✓ 204 40 16 8

Ex15 ✗ ▲ ✓ ✓ ✓ 231 97 687 140

formulas. The added NRA constraint is ∀x x ∈ [−10, 10] ⇒ ∃y ∈ [−10, 10] x3 +
x ≥ y3 + 3 · y + 4, in which x is a variable already present in the original ADT
formula and y is a fresh variable. Thus, our formulas combine NRA and ADT
and are particularly challenging for modern SMT solvers. To each NRA+ADT
benchmark, we first applied POQER to obtain over- and under-approximations
in LRA+ADT. We then passed the resulting approximate formulas to Z3EG. As
baseline comparisons, we also passed the same NRA+ADT benchmarks to Z3
and Z3EG. We observed that POQER significantly outperforms other tools on
these SMT benchmarks. The results are summarized in Table 2.

Table 2. Results of our Second Experiment. TO stands for timeout > 2 mins.

Z3EG Z3 POQER

SAT UNSAT TO SAT UNSAT TO SAT UNSAT TO

1833 1489 1518 2096 836 1908 3262 1550 28

126 S. Akshay et al.

4 Conclusion

We presented an algorithm that computes ε- and (ε, δ)-approximations of QER,
for every ε, δ > 0. Our approach combines adaptive dynamic gridding with
application of Handelman’s Theorem to solve the approximation problem via
a sequence of linear programs (LP). We provide formal guarantees of soundness,
and guarantee completeness under mild assumptions. Our approach also allows
us to solve quantified SMT problems over mixed theories including NRA, such
as NRA+ADT.

Acknowledgments. A longer version of this work, including appendices and proofs,
is available at [6]. The research was supported by the SERB MATRICS grant
MTR/2023/001167 of the Government of India, the Asian Universities Alliance Schol-
ars Award Program (AUASAP), which financed a visit by S. Akshay to HKUST and
another visit by A.K. Goharshady to IIT Bombay, as well as the Hong Kong Research
Grants Council (RGC) ECS Project Number 26208122. The authors are grateful to the
Schloss Dagstuhl – Leibniz Center for Informatics. This collaboration started at the
Dagstuhl Seminar 23241: “Scalable Analysis of Probabilistic Models and Programs”.
Author names are ordered alphabetically.

Data Availability Statement. The artifact used to generate the experimental

results, as well as its source code, are publicly available at GitHub. The artifact is

also archived on Zenodo [5].

References

1. Z3. https://github.com/z3prover/z3
2. Github issue for QF NRA formula (mcsat) (2020). https://github.com/ths-rwth/

smtrat/issues/91
3. Ábrahám, E., Davenport, J.H., England, M., Kremer, G.: Deciding the consis-

tency of non-linear real arithmetic constraints with a conflict driven search using
cylindrical algebraic coverings. J. Log. Algebraic Methods Program. 119 (2021)

4. Akshay, S., Chakraborty, S., Goharshady, A.K., Govind, R., Motwani, H.J.,
Varanasi, S.T.: Automated synthesis of decision lists for polynomial specifications
over integers. In: LPAR, vol. 100, pp. 484–502 (2024)

5. Akshay, S., Chakraborty, S., Goharshady, A.K., Govind, R., Motwani, H.J.,
Varanasi, S.T.: Practical approximate quantifier elimination for non-linear real
arithmetic (artifact) (2024). https://doi.org/10.5281/zenodo.12600106

6. Akshay, S., Chakraborty, S., Goharshady, A.K., Govind, R., Motwani, H.J.,
Varanasi, S.T.: Practical approximate quantifier elimination for non-linear real
arithmetic (long version). https://hal.science/hal-04629011 (2024)

7. Anai, H., Weispfenning, V.: Reach set computations using real quantifier elimina-
tion. In: HSCC, pp. 63–76 (2001)

8. Asadi, A., Chatterjee, K., Fu, H., Goharshady, A.K., Mahdavi, M.: Polynomial
reachability witnesses via stellensätze. In: PLDI, pp. 772–787 (2021)

9. Barbosa, H., et al.: cvc5: A versatile and industrial-strength SMT solver. In:
TACAS, pp. 415–442 (2022)

https://github.com/tejavaranasi2/FM_2024
https://github.com/z3prover/z3
https://github.com/ths-rwth/smtrat/issues/91
https://github.com/ths-rwth/smtrat/issues/91
https://doi.org/10.5281/zenodo.12600106
https://hal.science/hal-04629011

Quantifier Elimination for NRA 127

10. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Springer,
Berlin, Heidelberg (2006). https://doi.org/10.1007/3-540-33099-2

11. Bjørner, N.S., Janota, M.: Playing with quantified satisfaction. In: LPAR (short
papers), vol. 35, pp. 15–27 (2015)

12. Brown, C.W.: Improved projection for cylindrical algebraic decomposition. J.
Symb. Comput. 32(5), 447–465 (2001)

13. Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using
cads. SIGSAM Bull. 37(4), 97–108 (2003)

14. Cachera, D., Jensen, T.P., Jobin, A., Kirchner, F.: Inference of polynomial invari-
ants for imperative programs: a farewell to Gröbner bases. Sci. Comput. Program.
93, 89–109 (2014)

15. Cai, Z., Farokhnia, S., Goharshady, A.K., Hitarth, S.: Asparagus: automated syn-
thesis of parametric gas upper-bounds for smart contracts. Proc. ACM Program.
Lang. 7(OOPSLA2), 882–911 (2023)

16. Caviness, B.F., Johnson, J.R.: Quantifier elimination and cylindrical algebraic
decomposition. Texts and Monographs in Symbolic Computation (1998)

17. Chatterjee, K., Fu, H., Goharshady, A.K.: Termination analysis of probabilistic
programs through Positivstellensatz’s. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9779, pp. 3–22. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41528-4 1

18. Chatterjee, K., Fu, H., Goharshady, A.K.: Non-polynomial worst-case analysis of
recursive programs. In: CAV, vol. 10427, pp. 41–63 (2017)

19. Chatterjee, K., Fu, H., Goharshady, A.K.: Non-polynomial worst-case analysis of
recursive programs. ACM Trans. Program. Lang. Syst. 41(4), 20:1–20:52 (2019)

20. Chatterjee, K., Fu, H., Goharshady, A.K., Goharshady, E.K.: Polynomial invariant
generation for non-deterministic recursive programs. In: PLDI, pp. 672–687 (2020)

21. Chatterjee, K., Fu, H., Goharshady, A.K., Okati, N.: Computational approaches
for stochastic shortest path on succinct MDPs. In: IJCAI, pp. 4700–4707. ijcai.org
(2018)

22. Chatterjee, K., Goharshady, A.K., Goharshady, E.K., Karrabi, M., Zikelic, D.:
Sound and complete witnesses for template-based verification of LTL properties
on polynomial programs. In: FM (2024)

23. Chatterjee, K., Goharshady, A.K., Meggendorfer, T., Zikelic, D.: Quantitative
bounds on resource usage of probabilistic programs. In: OOPSLA (2024)

24. Chatterjee, K., Goharshady, A.K., Meggendorfer, T., Zikelic, D.: Sound and com-
plete certificates for quantitative termination analysis of probabilistic programs.
In: CAV, vol. 13371, pp. 55–78 (2022)

25. Chen, C., Maza, M.M.: Quantifier elimination by cylindrical algebraic decomposi-
tion based on regular chains. In: ISSAC, pp. 91–98. ACM (2014)

26. Chen, C., Maza, M.M.: Quantifier elimination by cylindrical algebraic decomposi-
tion based on regular chains. J. Symb. Comput. 75, 74–93 (2016)

27. Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: The MathSAT5 SMT
solver. In: Proceedings of TACAS (2013)

28. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decompostion. In: Automata Theory and Formal Languages (1975)

29. Collins, G.E.: Quantifier elimination by cylindrical algebraic decomposition -
twenty years of progress. In: Quantifier Elimination and Cylindrical Algebraic
Decomposition, pp. 8–23 (1998)

30. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier
elimination. J. Symb. Comput. 12(3), 299–328 (1991)

https://doi.org/10.1007/3-540-33099-2
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-319-41528-4_1

128 S. Akshay et al.

31. Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E.: SMT-RAT: an
open source C++ toolbox for strategic and parallel SMT solving. In: SAT, pp.
360–368 (2015)

32. Dantzig, G.B., Eaves, B.C.: Fourier-Motzkin elimination and its dual. J. Comb.
Theory, Ser. A 14(3), 288–297 (1973)

33. Dehnert, C., et al.: PROPhESY: a probabilistic parameter synthesis tool. In: CAV,
vol. 9206, pp. 214–231 (2015)

34. Dolzmann, A., Sturm, T.: REDLOG: computer algebra meets computer logic.
SIGSAM Bull. 31(2), 2–9 (1997)

35. Dorato, P., Yang, W., Abdallah, C.T.: Robust multi-objective feedback design by
quantifier elimination. J. Symb. Comput. 24(2), 153–159 (1997)

36. Dutertre, B.: Yices 2.2. In: Computer Aided Verification, pp. 737–744 (2014)
37. Gao, S., Avigad, J., Clarke, E.M.: Delta-decidability over the reals. In: LICS, pp.

305–314 (2012)
38. Garcia-Contreras, I., K., H.G.V., Shoham, S., Gurfinkel, A.: Fast approximations

of quantifier elimination. In: CAV, pp. 64–86 (2023)
39. Goharshady, A.K., Hitarth, S., Mohammadi, F., Motwani, H.J.: Algebro-geometric

algorithms for template-based synthesis of polynomial programs. Proc. ACM Pro-
gram. Lang. 7(OOPSLA1), 727–756 (2023)

40. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023). https://
www.gurobi.com

41. Handelman, D.: Representing polynomials by positive linear functions on compact
convex polyhedra. Pac. J. Math. 132(1), 35–62 (1988)

42. Hong, H., Liska, R., Steinberg, S.L.: Testing stability by quantifier elimination. J.
Symb. Comput. 24(2), 161–187 (1997)

43. Huang, M., Fu, H., Chatterjee, K., Goharshady, A.K.: Modular verification for
almost-sure termination of probabilistic programs. Proc. ACM Program. Lang.
3(OOPSLA), 129:1–129:29 (2019)

44. Inc., W.R.: Mathematica, Version 14.0. https://www.wolfram.com/mathematica,
Champaign, IL (2024)

45. Iwane, H., Yanami, H., Anai, H.: SyNRAC: a toolbox for solving real algebraic
constraints. In: Hong, H., Yap, C. (eds.) Mathematical Software – ICMS 2014, pp.
518–522. Springer, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44199-2 78

46. Jirstrand, M.: Nonlinear control system design by quantifier elimination. J. Symb.
Comput. 24(2), 137–152 (1997)

47. John, A.K., Chakraborty, S.: A quantifier elimination algorithm for linear modular
equations and disequations. In: CAV, vol. 6806, pp. 486–503 (2011)

48. John, A.K., Chakraborty, S.: A layered algorithm for quantifier elimination from
linear modular constraints. Formal Methods Syst. Des. 49(3), 272–323 (2016)

49. Jovanovic, D., de Moura, L.M.: Solving non-linear arithmetic. In: IJCAR, pp. 339–
354 (2012)

50. Kapur, D.: A quantifier-elimination based heuristic for automatically generating
inductive assertions for programs. J. Syst. Sci. Complex. 19(3), 307–330 (2006)

51. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. Formal Methods Syst. Des. 48(3), 175–205 (2016). https://doi.org/10.
1007/S10703-016-0249-4

52. Kremer, G., Ábrahám, E.: Fully incremental cylindrical algebraic decomposition.
J. Symb. Comput. 100, 11–37 (2020)

53. Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computation for
families of linear vector fields. J. Symb. Comput. 32(3), 231–253 (2001)

https://www.gurobi.com
https://www.gurobi.com
https://www.wolfram.com/mathematica
https://doi.org/10.1007/978-3-662-44199-2_78
https://doi.org/10.1007/978-3-662-44199-2_78
https://doi.org/10.1007/S10703-016-0249-4
https://doi.org/10.1007/S10703-016-0249-4

Quantifier Elimination for NRA 129

54. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Comput. J.
36(5), 450–462 (1993)

55. Magron, V., Henrion, D., Lasserre, J.: Semidefinite approximations of projections
and polynomial images of semialgebraic sets. SIAM J. Optim. 25(4), 2143–2164
(2015)

56. McCallum, S.: Partial solution of a path finding problem using the cad method.
Electron. Proc. IMACS ACA (1995)

57. McCallum, S.: On projection in cad-based quantifier elimination with equational
constraint. In: ISSAC, pp. 145–149. ACM (1999)

58. McCallum, S.: On propagation of equational constraints in cad-based quantifier
elimination. In: ISSAC, pp. 223–231. ACM (2001)

59. Monniaux, D.: A quantifier elimination algorithm for linear real arithmetic. In:
LPAR, pp. 243–257 (2008)

60. Monniaux, D.: Automatic modular abstractions for linear constraints. In: POPL,
pp. 140–151. ACM (2009)

61. de Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver. In: TACAS, pp. 337–
340 (2008)

62. Müller-Olm, M., Seidl, H.: Computing polynomial program invariants. Inf. Process.
Lett. 91(5), 233–244 (2004)

63. Pugh, W.W.: The omega test: a fast and practical integer programming algorithm
for dependence analysis. In: SC, pp. 4–13. ACM (1991)

64. Rodŕıguez-Carbonell, E., Kapur, D.: Automatic generation of polynomial loop. In:
ISSAC, pp. 266–273. ACM (2004)

65. Sadeghimanesh, A., England, M.: An SMT solver for non-linear real arithmetic
inside maple. ACM Commun. Comput. Algebra 56(2), 76–79 (2022)

66. Sankaranarayanan, S., Sipma, H., Manna, Z.: Non-linear loop invariant generation
using Gröbner bases. In: POPL, pp. 318–329. ACM (2004)

67. Seidenberg, A.: A new decision method for elementary algebra. Ann. Math. 60(2),
365–374 (1954)

68. Strzebonski, A.W.: Solving systems of strict polynomial inequalities. J. Symb.
Comput. 29(3), 471–480 (2000)

69. Strzebonski, A.W.: Cylindrical algebraic decomposition using validated numerics.
J. Symb. Comput. 41(9), 1021–1038 (2006)

70. Sun, Y., Fu, H., Chatterjee, K., Goharshady, A.K.: Automated tail bound analysis
for probabilistic recurrence relations. In: CAV, vol. 13966, pp. 16–39 (2023)

71. Tarski, A.: A Decision Method for Elementary Algebra and Geometry: Prepared
for Publication with the Assistance of J.C.C. McKinsey. RAND Corporation, Santa
Monica, CA (1951)

72. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
10.2) (2023). https://www.sagemath.org

73. Wang, J., Sun, Y., Fu, H., Chatterjee, K., Goharshady, A.K.: Quantitative analysis
of assertion violations in probabilistic programs. In: PLDI, pp. 1171–1186. ACM
(2021)

74. Wang, P., Fu, H., Goharshady, A.K., Chatterjee, K., Qin, X., Shi, W.: Cost analysis
of nondeterministic probabilistic programs. In: PLDI, pp. 204–220 (2019)

75. Weispfenning, V.: Quantifier elimination for real algebra - the cubic case. In:
ISSAC, pp. 258–263. ACM (1994)

76. Weispfenning, V.: Quantifier elimination for real algebra - the quadratic case and
beyond. Appl. Algebra Eng. Commun. Comput. 8(2), 85–101 (1997)

77. Weispfenning, V.: Semilinear motion planning in REDLOG. Appl. Algebra Eng.
Commun. Comput. 12(6), 455–475 (2001)

https://www.sagemath.org

130 S. Akshay et al.

78. Winkler, T., Junges, S., Pérez, G.A., Katoen, J.: On the complexity of reachability
in parametric Markov decision processes. In: CONCUR, pp. 14:1–14:17 (2019)

79. Xue, B., Fränzle, M., Zhan, N.: Under-approximating reach sets for polynomial
continuous systems. In: HSCC, pp. 51–60. ACM (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

A Divide-and-Conquer Approach
to Variable Elimination in Linear Real

Arithmetic

Valentin Promies(B) and Erika Ábrahám

RWTH Aachen University, Aachen, Germany
{promies,abraham}@cs.rwth-aachen.de

Abstract. We introduce a novel variable elimination method for con-
junctions of linear real arithmetic constraints. In prior work, we derived
a variant of the Fourier-Motzkin elimination, which uses case splitting
to reduce the procedure’s complexity from doubly to singly exponential.
This variant, which we call FMplex, was originally developed for satis-
fiability checking, and it essentially performs a depth-first search in a
tree of sub-problems. It can be adapted straightforwardly for the task of
quantifier elimination, but it returns disjunctions of conjunctions, even
though the solution space can always be defined by a single conjunction.
Our main contribution is to show how to efficiently extract an equivalent
conjunction from the search tree. Besides the theoretical foundations, we
explain how the procedure relates to other methods for quantifier elim-
ination and polyhedron projection. An experimental evaluation demon-
strates that our implementation is competitive with established tools.

Keywords: Variable Elimination · Linear Arithmetic · Projection

1 Introduction

The first-order theory of linear real arithmetic (LRA) allows reasoning about
numerical variables by means of formulas, built from potentially quantified
Boolean combinations of linear constraints, which compare linear combinations
of variables to constants. Even though multiplication between variables is not
supported, LRA is expressive enough to be widely applicable, for example in
static program analysis [12], scheduling [26] or neural network verification [13].

These applications sometimes require determining the truth or, when free
variables are involved, the satisfiability of LRA formulas. Other times, a rep-
resentation of all solutions for a set of free variables is needed. Both problems
can be solved by quantifier elimination, or variable elimination in the case of
quantifier-free or purely existentially quantified formulas.

We focus on variable elimination for conjunctions of LRA constraints. That
is, given a finite set of linear constraints in the variables x1, . . . , xn, we want to
compute a set of linear constraints in the variables xq+1, . . . , xn, whose solutions
coincide with the solutions of the original set, when the x1, . . . , xq-dimensions are
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 131–148, 2025.
https://doi.org/10.1007/978-3-031-71162-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_7&domain=pdf
http://orcid.org/0000-0002-3086-9976
http://orcid.org/0000-0002-5647-6134
https://doi.org/10.1007/978-3-031-71162-6_7

132 V. Promies and E. Ábrahám

removed. From a geometrical perspective, LRA constraint sets define by their
solution sets convex polyhedra. Variable elimination corresponds to projecting
a convex polyhedron onto a subspace, resulting in another (lower-dimensional)
convex polyhedron which can be represented by LRA constraints without the
eliminated variables. Therefore, this problem is also called polyhedron projection.

Related Work. One of the first methods for variable elimination in LRA was
discovered independently by Fourier [10] and Motzkin [24]. It is still often used in
practice, but quickly suffers from a doubly exponential worst case behavior (w.r.t.
the number of eliminated variables) when the inputs become more complex.
Different optimizations have been suggested to reduce the computational effort,
most notably by avoiding redundant constraints in intermediate steps, e.g. [6,14]
and, more recently, [16].

An alternative approach is the Double-Description (DD) method [23], which
was further developed and implemented by Fukuda and Prodon [11] in the CDD
library [5], but also by others [2,15]. A more recent development uses a reduction
to parametric linear programming [17,31]. These approaches stem from research
focusing on the geometric, polyhedra-based view.

On the other hand, the algebraic view considers the more general problem of
quantifier elimination for formulas with quantifier alternation and an arbitrary
Boolean structure. As these methods are not optimized for our particular prob-
lem, we only highlight the virtual term substitution method proposed by Loos
and Weispfenning [21] and thoroughly studied by others [19,20], as well as the
work by Monniaux [22], in which the authors reduce quantifier elimination for
the general case to repeated polyhedron projections and satisfiability checking.

Most relevant for this work is the FMplex method [27], which was derived
from the method of Fourier and Motzkin and aimed at satisfiability checking,
but which can also be used for variable elimination from conjunctions of linear
constraints. While a tree-shaped search allows FMplex to reduce the worst-case
complexity from doubly to singly exponential, it has the consequence that the
variable elimination result is provided only as a disjunction of conjunctions and
not as a single conjunction, like provided by Fourier-Motzkin. These disjunctions
are harder to interpret for the users, and they are larger than necessary.

Contributions. We overcome this limitation with the following contributions:

– We propose a new variable elimination approach for sets of LRA constraints,
derived from the FMplex method presented in [27], but returning the result
as a set (or conjunction) of LRA constraints.

– We show the correctness of this approach, give complexity estimates, and
explain which of the improvements from [27] can be transferred to the new
variable elimination algorithm.

– We discuss interesting relations between our method and the virtual term
substitution method [21].

– We provide an implementation in the SMT-solving toolbox SMT-RAT.

A Divide-and-Conquer Approach to Variable Elimination in LRA 133

– We present an experimental evaluation, which shows that our implementation
outperforms other established tools on three different benchmark sets.

Outline. The rest of the paper is organized as follows: After a formal problem
description in Sect. 2, we present the FMplex method and derive our new variable
elimination method in Sect. 3. We compare it to other methods and evaluate its
performance in Sects. 4 and 5. Finally, in Sect. 6, we conclude the paper and give
an outlook on future work.

2 Preliminaries

Let R, Q and N denote the real, rational, and natural numbers, respectively.
We use upper case letters (e.g. A) to denote matrices, bold lower case letters

for vectors (e.g. b,f), and bi to denote the i-th entry in b. The i-th row and the
j-th column vectors of a matrix A are denoted by ai,− and a−,j , respectively.
We assume R

n = R
n×1, i.e. f ∈ R

n is a column vector. The transpose of f
is fᵀ, and by f ≥ 0 we denote the component-wise comparison to zero, i.e.
f1 ≥ 0∧ . . .∧fn ≥ 0. We write ei for the i-th unit vector and 0 for zero-matrices
or zero-vectors; their dimensions will be clear from the context.

Linear Real Arithmetic: Syntax. We fix n ∈ N and a vector x = (x1, . . . ,
xn)ᵀ of R-valued variables. When convenient, we view variable vectors as ordered
sets, writing e.g. xi ∈ x, or y ⊆ x to denote that y = (xi1 , . . . , xik)

ᵀ for some
0 ≤ k ≤ n and 1 ≤ i1 < . . . < ik ≤ n, and we write |y| = k for the length of y.

Our main objects of interest are linear constraints (from here on simply
constraints), which are inequations of the form

a1x1 + a2x2 + . . . + anxn ≤ b, or equivalently aᵀx ≤ b

for some rational constants a = (a1, . . . , an)ᵀ ∈ Q
n and b ∈ Q. Expressions of

the form aᵀx+ b are called (linear) terms. We sometimes write s ≤ t with linear
terms s, t and implicitly assume a conversion to the above normal form.

Note that we do not consider strict inequations aᵀx < b; we will discuss
their integration in Sect. 3.3. Note furthermore that aᵀx ≥ b is equivalent to
−aᵀx ≤ −b, and aᵀx = b is equivalent to aᵀx ≤ b ∧ aᵀx ≥ b.

A variable xi occurs in aᵀx ≤ b if ai �= 0. Let vars(c) be the set of all variables
that occur in the constraint c, and vars(C) := ∪c∈Cvars(c) for any constraint
set C. For a given y ⊆ x, we sometimes write C(y) to indicate vars(C) ⊆ y.
Note that in this paper, we always have vars(C) ⊆ x.

LRA formulas are built from constraints using Boolean connectives (∧,∨,¬)
and quantifiers (∃,∀), according to the syntax of first-order logic. For an LRA
formula ϕ, a variable xi ∈ x, and a term t, we write ϕ[t/xi] to denote the
substitution of t for each free occurrence of xi in ϕ.

Throughout the paper, we sometimes interpret sets of constraints as con-
junctions, and sometimes as systems Ax ≤ b, with A ∈ Q

m×n and b ∈ Q
m,

134 V. Promies and E. Ábrahám

representing the set {ai,−x ≤ bi | i ∈ {1, . . . m}}. Note that every finite set
of constraints can be represented this way for a suitable A and b. We use the
representations as set, conjunction or system interchangeably.

Linear Real Arithmetic: Semantics. An assignment for y ⊆ x with |y| =
i ∈ N is a vector α ∈ R

i. We define ϕ[α/y] := ϕ[α1/y1] . . . [αi/yi], and say that
α is a solution for ϕ, written α |= ϕ, if ϕ[α/y] evaluates to true under the
standard semantics.

If every solution of ϕ is also a solution of the formula ψ, then we say that ϕ
implies ψ and write ϕ |= ψ. If both ϕ |= ψ and ψ |= ϕ hold, then the solution sets
are equal and the formulas are equivalent, denoted by ϕ ≡ ψ. Note that, when
interpreting a set C of constraints as their conjunction, the statement α |= C is
to be interpreted as α |= ∧

c∈C c.
A well-known result for such constraint systems is Farkas’ Lemma, which we

will use in the following formulation.

Theorem 1 (Farkas’ Lemma [9]). Let A ∈ Q
m×n and b ∈ Q

m. A constraint
c is implied by Ax ≤ b if and only if there are f ∈ R

m and f0 ∈ R with f ≥ 0,
f0 ≥ 0 and c = (fᵀAx ≤ fᵀb + f0).

Variable Elimination. Consider a finite set C of linear constraints, and let
xQ ⊆ x. W.l.o.g. we assume xQ = (x1, . . . , xq)ᵀ for some 1 ≤ q ≤ n, and we set
xP := (xq+1, . . . , xn)ᵀ and p := |xP | = n − q. Our goal is to find a - preferably
small - constraint set D(xP) with D ≡ ∃x1. . . . ∃xq.C. That is, αP ∈ R

p is a
solution for D if and only if it can be extended to a solution α ∈ R

n for C.
We refer to the variables in xQ as quantified and to those in xP as parameters,

and formulate constraint sets also as AQxQ + AP xP ≤ b. We fix xQ, xP , q and
p as given above for the rest of this paper.

Example 1. A possible solution to the variable elimination of x1 and x2 from

C := {−x1 + x2 − x3 ≤ −3, −x1 + x2 + x3 ≤ 4, x1 ≤ 3, −x2 ≤ −1}
is the set {−x3 ≤ −1, x3 ≤ 6}.

It is important to note that the ordering of the existential quantifiers does
not change the task, as is illustrated in Fig. 1. Thus, it is possible and indeed
helpful to change this order dynamically.

Polyhedron Projection. The above variable elimination problem is also
known as polyhedron projection. This name comes from the fact that the solutions
of a constraint set Ax ≤ b describe a convex polyhedron in the n-dimensional
space and eliminating the variables xQ corresponds to a projection onto the
dimensions from xP . That is, (DxP ≤ f) ≡ (∃xQ.AQxQ + AP xP ≤ b) if and
only if

{αP ∈ R
p | DαP ≤ f} = {αP ∈ R

p | ∃αQ ∈ R
q : AQαQ + AP αP ≤ b}.

A Divide-and-Conquer Approach to Variable Elimination in LRA 135

Fig. 1. The constraint set from Example 1 in matrix representation (left) and its solu-
tion set, as well as the projections of that set onto the x1-x3-plane (blue), the x2-x3-
plane (red) and the x3-axis (violet). (Color figure online)

3 A Divide-and-Conquer Approach

3.1 Divide: The FMplex Method

We now summarize the idea of the FMplex method introduced in [27] and then
refine it to make it better suited for the task of polyhedron projection.

Originally, this method was developed as a branching version of the Fourier-
Motzkin (FM) variable elimination method. However, [27] does not further study
the general task of variable elimination, but focuses on using FMplex for checking
the satisfiability of a constraint set.1

To eliminate a variable xi ∈ x from a constraint set C, FMplex partitions
the constraints into three sets as follows.

Definition 1. For each constraint set C and variable xi ∈ x, we define

– C−(xi) := {(aᵀx ≤ b) ∈ C | ai < 0}, called the lower bounds of C on xi,
– C+(xi) := {(aᵀx ≤ b) ∈ C | ai > 0}, called the upper bounds of C on xi,
– C0(xi) := {(aᵀx ≤ b) ∈ C | ai = 0}, called the non-bounds of C on xi,

Moreover, for each c = (aᵀx ≤ b) ∈ C−(xi) ∪ C+(xi), we define the term

bnd(xi, c) := 1/ai · (b − (a1x1 + . . . + ai−1xi−1 + ai+1xi+1 + . . . + anxn)).

Each constraint c ∈ C−(xi) is equivalent to bnd(xi, c) ≤ xi, and it bounds
from below the xi-value of solutions for C w.r.t. the other variables. Similarly,
c ∈ C+(xi) is equivalent to xi ≤ bnd(xi, c). For c ∈ C0(xi) we have xi �∈ vars(c).

The method then uses the insight that at each point in the projection onto
vars(C)\(xi), one of the lower bounds is a greatest and one of the upper bounds is
a lowest. Thus, the projection can be divided into a disjunction of sub-problems,
each stating that a particular lower bound is a greatest and that no upper bound
is below it. Symmetrically, one can express that a particular upper bound is a
lowest and that no lower bound is above it. Theorem 2 formalizes the division
into sub-problems by which FMplex eliminates the variable xi.

1 In that context, FMplex exhibits similarities to the simplex method, hence the name.

136 V. Promies and E. Ábrahám

Definition 2 (Partial Projection). Let C be a constraint set, xi ∈ x and
c ∈ C−(xi) ∪ C+(xi). Further, let t := bnd(xi, c), then the partial projection of
xi from C with c is

C[c//xi] := {c′[t/xi] | c′ ∈ C \ {c}}.
Using L := {bnd(xi, c

′) | c′ ∈ C−(xi)} and U := {bnd(xi, c
′) | c′ ∈ C+(xi)}, this

is equivalent to {l ≤ t | l ∈ L \ {c}} ∪ {t ≤ u | u ∈ U \ {c}} ∪ C0(xi).

Theorem 2 ([27]). If C+(xi) = ∅ or C−(xi) = ∅, then ∃xi.C ≡ C0(xi).

Otherwise, ∃xi.C ≡
∨

c∈C−(xi)

C[c//xi] ≡
∨

c∈C+(xi)

C[c//xi] .

To eliminate multiple variables, the disjuncts can be handled independently.
That is, in each of the disjuncts, one can eliminate any of the remaining vari-
ables to again receive a disjunction. Essentially, the method constructs a tree
of constraint sets where the root is the initial input C, and the children of any
node are the disjuncts that result from eliminating a variable from that node
using Theorem 2. At the leafs of the tree, all desired variables are eliminated, but
different paths from the root to a leaf may eliminate the variables in different
orders and may alternate between using lower or upper bounds for branching.

Example 2. We revisit Example 1 and start by eliminating x1 using greatest
lower bounds. With C−(x1) = {−x1 + x2 − x3 ≤ −3,−x1 + x2 + x3 ≤ 4},
C+(x1) = {x1 ≤ 3} and C0(x1) = {−x2 ≤ −1}, we get

∃x1.C ≡ C[(−x1 + x2 − x3 ≤ −3)//x1] ∨ C[(−x1 + x2 + x3 ≤ 4)//x1]
≡ {2x3 ≤ 7, x2 − x3 ≤ 0, −x2 ≤ −1} ∨

{−2x3 ≤ −7, x2 + x3 ≤ 7, −x2 ≤ −1}
We eliminate x2 from the two sets independently, using their only lower bound:

∃x1, x2.C ≡ {2x3 ≤ 7, −x3 ≤ −1} ∨ {−2x3 ≤ −7, x3 ≤ 6}.

3.2 Conquer: Obtaining a Conjunctive Result

When using FMplex for satisfiability checking (like in [27]), one eliminates all
variables of the given constraint set and if any leaf is satisfiable, then the input
is satisfiable as well. But for quantifier elimination, we need to consider all leafs.
The problem here is that the final result is going to be a potentially large dis-
junction of conjunctions or, geometrically, a union of convex polyhedra. We know
from Fourier-Motzkin that this union is again a single convex polyhedron and
thus can be represented as a single conjunction. However, naively computing
the union of the polyhedra would be too much effort, and we will show a more
efficient way to extract a conjunction from the computations.

Our first step is to observe that all constraints constructed by the above
method can be understood as linear combinations of the original constraints.

A Divide-and-Conquer Approach to Variable Elimination in LRA 137

Lemma 1. Let A ∈ Q
m×n and b ∈ Q

m. For every constraint vᵀx ≤ w con-
structed by FMplex (repeated application of Theorem 2) on the input Ax ≤ b,
there is f ∈ Q

m with fᵀA = vᵀ and fᵀb = w ∈ Q.

Proof. For any ak,−x ≤ bk, we can simply choose f = ek. Let c = (aᵀx ≤ d)
with ai �= 0, t := bnd(xi, c), and c′ = (a′ᵀx ≤ d′). Assume that we already have
f ,f ′ ∈ Q

m with c = (fᵀAx ≤ fᵀb) and c′ = (f ′ᵀAx ≤ f ′ᵀb). Then

c′[t/xi] ≡ ((a′ − a′
i

ai
a)ᵀx ≤ d′ − a′

i

ai
d) = ((f ′ − a′

i

ai
f)ᵀAx ≤ (f ′ − a′

i

ai
f)ᵀb).

Note that new constraints are only constructed by this kind of substitution. ��
It can happen that the same constraint is derived in multiple ways, and from

now on, we want to distinguish constraints also by the way they are generated.

Definition 3 (Annotated Constraints). An annotated constraint has the
form c :f with some constraint c and an f ∈ Q

m, also called the construction
vector. Constraints with different annotations are considered as different.

Instead of constraint sets, we now consider sets of annotated constraints.
Most notions can be adapted straightforwardly, in particular the definitions for
C−(xi), C+(xi), C0(xi) and vars(C). For the restricted projection C[c : f//xi],
the construction vector of a new constraint can easily be computed from the
construction vectors of its parents, according to the proof of Lemma 1.

Our main result, which we will show in Theorem 3, is that the final disjunction
computed by FMplex is equivalent to the conjunction of those constraints whose
construction vectors have no negative entries. This is fairly easy to see for the
elimination of a single variable, since the non-negative combinations are exactly
the constraints the Fourier-Motzkin method would compute. The constraints
whose construction vectors do have negative entries stem from the assumptions
that some lower (upper) bound is larger or equal to another lower (upper) bound.
This means that these constraints do not define the boundary of the solution
space, but they only cut it into multiple parts, causing the disjunction. This
intuition can be generalized for the elimination of multiple variables.

Example 3. When going through Example 2 with annotations, we get the result

∃x1, x2.C ≡ {2x3 ≤ 7:(−1,1,0,0)ᵀ, −x3 ≤ −1:(1,0,1,1)ᵀ} ∨
{−2x3 ≤ −7:(1,−1,0,0)ᵀ, x3 ≤ 6:(0,1,1,1)ᵀ}.

Collecting the constraints with non-negative construction vectors gives the equiv-
alent set {−x3 ≤ −1, x3 ≤ 6}, as in Example 1. Note how the other two con-
straints partition the solution space, but they do not change it.

Theorem 3. Let C be a constraint set and ∃xQ.C ≡ D1 ∨ . . . ∨ Dk, such that
the disjunction on the right-hand side was constructed using the FMplex method,
i.e. by repeated application of Theorem 2 with constraint annotation. Let further
Dpos := {c | c:f ∈ ⋃k

i=1 Di, f ≥ 0}. Then ∃xQ.C ≡ Dpos.

138 V. Promies and E. Ábrahám

Proof. We show that for every αP ∈ R
p holds (αP |= ∃xQ.C) ⇔ (αP |= Dpos).

Farkas’ Lemma (Theorem 1) immediately yields (αP |= ∃xQ.C) ⇒ (αP |= Dpos).
So, it remains to show αP �|= ∃xQ.C ⇒ αP �|= Dpos. Assume that C has the form
AQxQ+AP xP ≤ b and consider the following system, with b′ := b−AP αP ∈ R

m:

C ′ := C[αP /xP] = (AQxQ + AP αP ≤ b) ≡ AQxQ ≤ b′.

Since αP �|= ∃xQ.C, this system is unsatisfiable and there is a minimal unsatis-
fiable subset K ′ ⊆ C ′. We know that there is K ⊆ C with K[αP /xP] = K ′. We
will show that there is c ∈ Dpos, constructed only from K and so that α �|= c.

For this purpose, we will construct a sequence (C1, C2, . . . , Cq+1), starting
with C1 := C, corresponding to a path in the elimination tree of FMplex from
the initial system to a leaf (where all variables in xQ have been eliminated).
Starting with K1 := K, we will construct a second sequence (K1,K2, . . . ,Kq+1)
so that for all 1 ≤ i ≤ q+1 holds Ki ⊆ Ci, the set Ki[αP /xP] is unsatisfiable and
Ki is minimal in the sense that for all L � Ki, the set L[αP /xP] is satisfiable.

W.l.o.g. let xi be the variable eliminated next from Ci. It holds K−
i (xi) �= ∅

if and only if K+
i (xi) �= ∅, because otherwise K0

i (xi) would be a strict subset of
Ki and K0

i (xi)[αP /xP] would be unsatisfiable, contradicting the minimality of
Ki. Therefore, either xi �∈ vars(Ki) or K−

i (xi) �= ∅ �= K+
i (xi) holds.

– If xi �∈ vars(Ki), then Ki ⊆ C0
i (xi), therefore Ki is included in all children of

Ci. We choose one of them as Ci+1 and use Ki+1 := Ki.
– In the other case, there is a constraint c:f ∈ Ki so that one of the constructed

children is Ci+1 := Ci[c:f//xi].
Note that Ki[c :f//xi] ⊆ Ci[c :f//xi] holds and Ki[c :f//xi][αP /xP] is unsat-
isfiable (since otherwise K ′ would be satisfiable). Thus, there is a minimal
subset Ki+1 ⊆ Ki[c:f//xi] so that Ki+1[αP /xP] is unsatisfiable.

In the end, Kq+1 �= ∅, vars(Kq+1) ∩ xQ = ∅ and Kq+1[αP /xP] is unsatisfiable.
Thus, there is c:f ∈ Kq+1 with αP �|= c. We now show f ≥ 0 and thus c ∈ Dpos.

For i ∈ {1, . . . , m}, let ci := ((aQ)i,−xQ + (aP)i,−xP ≤ bi). For all i with
ci ∈ C \K holds fi = 0, by construction. Towards a contradiction, assume there
was 1 ≤ j ≤ m with cj ∈ K and fj < 0. By Farkas’ Lemma and the minimality
of K, there exists f ′ ∈ R

m so that f ′
i > 0 for all ci ∈ K, f ′

i = 0 for all ci ∈ C \K,
and (f ′ᵀAQxQ + f ′ᵀAP xP ≤ f ′ᵀb) = c.

Using λ := max{−fj
f ′
j

| 1 ≤ j ≤ m, fj < 0} and g := f + λf ′, we observe
gᵀAQ = 0 and αP �|= (gᵀAP xP ≤ gᵀb), but {ci | 1 ≤ i ≤ m, gi �= 0} � K,
contradicting the minimality of K. Therefore, c ∈ Dpos and α �|= Dpos. ��

Our method is formulated in Algorithm 1. It maintains a stack node_stack
of annotated constraint sets, which correspond to the nodes of the elimination
tree traversed by FMplex. The function push inserts the given set at the top of
the stack, and pop removes its top element and returns that set.

Since a node’s children are smaller than that node, i.e. |N [c :f//xi]| < |N |,
and the tree branching is bounded by m, i.e. |N−(xi)| ≤ |N |, |N+(xi)| ≤ |N |,

A Divide-and-Conquer Approach to Variable Elimination in LRA 139

the algorithm has an exponential complexity (O(mq+1)) in space and time, with
respect to |xQ|. In fact, the stack never contains more than m2 · (q + 1) total
constraints at the same time and only the output needs exponentially large space.
Interestingly, we only insert new constraints into the output set and never read
or remove something from it during the procedure.

Algorithm 1: project(C,xQ)

Input : A constraint set C = {c1, . . . cm} and xQ = {x1, . . . xq} ⊆ x.
Output: A constraint set D with vars(D) ∩ xQ = ∅ and D ≡ ∃x1 . . . xq.C

1 Initialize result = {}, node_stack= []
2 node_stack.push({ci :ei | ci ∈ C})
3 while not node_stack.empty() do
4 N = node_stack.pop()
5 result = result ∪ {c | c:f ∈ N ∧ f ≥ 0 ∧ xQ ∩ vars(c) = ∅}
6 if vars(N) ∩ xQ �= ∅ then
7 Choose xi ∈ vars(N) ∩ xQ

8 if N−(xi) = ∅ or N+(xi) = ∅ then
9 node_stack.push(N0(xi))

10 else
11 Choose ∗ ∈ {−,+}
12 foreach c:f ∈ N∗(xi) do node_stack.push(N [c:f//xi])
13 return result

3.3 Further Improvements

Thanks to its disjunctive structure, our approach admits many optimizations.
The original paper for FMplex [27] describes several improvements for the version
developed for satisfiability checking. We will now show, which of these improve-
ments can be transferred to the new setting of variable elimination.

Variable and Branch Choice. In each of the processed nodes, we can choose
the eliminated variable and whether to branch on lower or upper bounds. This
choice is independent of the other nodes and can have a massive impact on the
runtime of the algorithm. To minimize the number of children for each node N ,
we choose an xi for which min(|N−(xi)|, |N+(xi)|) is minimal and, if necessary,
choose the branching ∗ ∈ {−,+} accordingly.

Equations and Strict Constraints. In the presence of equations aᵀx = b,
we employ Gauss-elimination before the actual call to our procedure, in order
to eliminate some of the desired variables using the equations.

To handle strict constraints aᵀx < b, we introduce a new variable δ as a
placeholder for some infinitesimal value and instead consider aᵀx + δ ≤ b. We

140 V. Promies and E. Ábrahám

eliminate δ from the final result using the additional constraint δ > 0. That is,
for a resulting constraint aᵀxP +dδ ≤ b, if d �= 0, then d > 0 and we can deduce
aᵀxP < b. This is a fairly standard way of dealing with strict constraints.

Pruning Equivalent Nodes. An interesting result in [27] is that for each node
N in the elimination tree, one can partition the original input C into two sets
N ,B, so that each constraint c ∈ N was constructed from the constraints in N
and exactly one of the constraints in B. The intuition is that we start with N := ∅
and B := C and when constructing N [c//xi], the constraint corresponding to c
moves from B to N . In that sense, N contains the assumed strictest bounds.

Multiple nodes can have the same corresponding sets N ,B, with the intuition
that the same bounds are chosen in a different order. Then, the nodes are equiv-
alent, and [27] avoids visiting more than one of them using some bookkeeping.

This optimization can be transferred straightforwardly, as the relevant results
are about equivalence and not just satisfiability.

Pruning Unsatisfiable Nodes. In the case of satisfiability checking, the goal
is to find any satisfiable node in the elimination tree. Therefore, it is helpful to
identify and prune unsatisfiable parts of the tree. A node is easily recognized
as unsatisfiable if it contains a trivially false constraint, e.g. 0 ≤ −1. Then, the
children of that node can be ignored, since they will also contain that constraint.

This can also be used in our version for variable elimination, though we omit
the proof here for brevity. Essentially, one can show that the construction in the
proof for Theorem 3 still works when leaving out the pruned nodes.

This idea is taken even further in [27], by analyzing how the trivially false
constraints are constructed. If an unsatisfiable node is encountered, one may find
an ancestor of that node in the elimination tree which already implies the trivially
false constraint. Therefore, the remaining children of that ancestor can also be
pruned. However, this can not be used for variable elimination, as illustrated by
the following example, which was already considered in [27]:

Example 4. We eliminate all variables with the static order x3, x2, x1 from

{−x3 ≤ 0, x1 − x2 − x3 ≤ 0, x1 ≤ −1, −x1 + x2 ≤ −1, −x2 + x3 ≤ 0},

always branching on lower bounds and first considering greatest lower bounds
whose construction vectors have negative entries. When pruning nodes according
to which ancestor implied the unsatisfiability, our algorithm would incorrectly
return the (satisfiable) empty constraint set, while the input is unsatisfiable.

There is one exception, though. If a trivially false constraint is annotated
with an f ≥ 0, then it is implied by the input system. Thus, it is added to
the result, which is then unsatisfiable and we can stop immediately. However, in
usual applications of polyhedron projection, the input is rarely unsatisfiable.

A Divide-and-Conquer Approach to Variable Elimination in LRA 141

Splitting Into Unrelated Systems. It can happen that the input system
consists of several parts that are unrelated with regard to the eliminated vari-
ables. That is, we can find a decomposition C = C1 ∪ . . . ∪ Ck so that for all
i �= j holds vars(Ci)∩vars(Cj)∩xQ = ∅. In that case, xQ can be eliminated from
each single Ci independently. To avoid eliminating the variables in vars(C1)∩xQ

and then performing the elimination for C2 in every resulting subtree, we can
split the node C into nodes C1, C2, . . . and put them on the stack. Such a par-
tition can easily be found by computing the connected components in a graph
that has the constraints of C as vertices and has an edge between c and c′ if
vars(c) ∩ vars(c′) ∩ xQ �= ∅. Note that this can be applied to the initial input
to help any projection method. However, our method can apply it to all the
intermediate nodes, potentially leading to more savings. This improvement is
not relevant for satisfiability checking, and it is a novel contribution.

4 Relation to Virtual Term Substitution

Although the original approach was derived from the Fourier-Motzkin method,
it exhibits striking similarities to virtual term substitution (VTS) introduced by
Loos and Weispfenning [21]. The VTS method also eliminates variables from
LRA formulas in a tree-like manner. In each step, it collects terms from the
individual constraints and substitutes them for the eliminated variable, obtaining
a disjunction similar to the result of Theorem 2. In fact, these terms can be chosen
to be exactly like in our approach, i.e. so that they correspond to the lower
bounds or the upper bounds. However, the special case that there are no lower
bounds or no upper bounds is handled by an additional disjunct C[−∞//xi] or
C[∞//xi], performing a virtual substitution of an infinite value for the variable.

It was observed in [19] that the constraints derived by the VTS are linear
combinations of the original input, in the same sense as described in Sect. 3.2.
Thus, we are certain that our main result, Theorem 3, can be transferred to the
VTS method. To our knowledge, this has not been shown before. In particular,
[19] is only about satisfiability checking and does not construct an equivalent
conjunction. Interestingly though, it introduces a pruning mechanism which is
similar to the ones described in the previous section.

All this only applies to the case where existential quantifiers are eliminated
from a conjunction of weak linear constraints. In general, VTS can be applied
to formulas with quantifier alternation and arbitrary Boolean structure, and
non-linear constraints with quadratic polynomials.2 Our results cannot be easily
generalized to that setting (and, in that general case, the result of quantifier
elimination is not necessarily defining a convex polyhedron).

5 Experimental Evaluation

We implemented our algorithm in the Satisfiability Modulo Theories Real Arith-
metic Toolbox (SMT-RAT, [7]) and compared the following tools.
2 In fact, it can be adapted to handle polynomials of a fixed higher degree.

142 V. Promies and E. Ábrahám

SMT-RAT The implementation of the algorithm presented in this paper,
including the optimizations described in Sect. 3.3. For source code see [29].

FM A basic implementation of the Fourier-Motzkin method in SMT-RAT, with-
out any further optimizations. This is merely a baseline, and it should be
noted that there exist substantial improvements.

CDD The projection method of the library CDDlib which uses the double
description method. For source version, see [5].

Redlog An optimized VTS implementation provided by the Redlog package of
the computer algebra system Reduce [8]. For source version, see [28].

Z3 The z3 prover [25], which offers quantifier elimination based on quantifier
instantiation and model based projections [4]. For source version, see [32].

The methods provided by Redlog and Z3 are directed at much more general
quantifier elimination tasks than polyhedron projection. As a consequence, they
generally return disjunctions, which are harder to interpret and to use. The com-
parisons are still interesting, since firstly, VTS is closely related to our method
and secondly, Z3 is state of the art for most SMT related tasks.

All tools use exact arithmetic. We tested the tools on three benchmark sets.

Random. We randomly generated a set of satisfiable conjunctions and varied
certain parameters to ensure diversity. More precisely, for each combination
of n ∈ {3, 6, . . . , 30}, m ∈ {3, 6, . . . , 60} and d ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, we
generated 10 conjunctions of m constraints with n variables and so that the
density of the coefficients is around d (i.e., the probability that an entry is
non-zero is set to d). The coefficients are random integers between −100 and
100, though the right-hand sides are non-negative to ensure satisfiability. For
each of the conjunctions, half of the variables are chosen at random as the
quantified variables. This amounted to 10000 test cases.

SMT-LIB. The standard SMT-LIB [3] quantifier elimination benchmarks are
not suitable as they contain universal quantifiers and more complex Boolean
structures. Instead, we executed a DPLL(T)-style SMT-solver on the quan-
tifier free linear real arithmetic benchmarks (QF_LRA) and collected all
maximal conjunctions that were passed to the theory solver during the exe-
cution, leaving out disequalities (�=) and replacing < by ≤, as CDD does not
natively handle strict constraints. For each conjunction, half of the variables
are chosen randomly to be eliminated. This produced 4798 test cases.

NN-Verif. Neural network verification approaches like [1,30] use convex poly-
hedra to over-approximate the set of all possible outputs of a neural network
for a given input set. This approximation uses auxiliary variables, whose elim-
ination might simplify the representation and speed up computations.
ACAS Xu is a standard data set with 45 neural networks belonging to an
airborne collision avoidance system [18]. For each network, we over-approx-
imated its output for two different input sets, using the method from [1].
The resulting constraint matrices have an almost triangular structure, with
decreasing column density from left to right. Therefore, we derived three test
cases from each polyhedron: one eliminating the first five variables, one elimi-

A Divide-and-Conquer Approach to Variable Elimination in LRA 143

nating the last five and one for five randomly chosen variables. This amounted
to 270 instances.

We executed each tool on each test instance with a time limit of 5min and a
memory limit of 4 GB. The experiments were conducted on identical machines
with two Intel Xeon Platinum 8160 CPUs (2.1GHz, 24 cores). Consult the Data
Availability Statement for more details on the collected data.

Table 1. Number of solved instances for each tool and benchmark set.

Set #instances SMT-RAT CDD Redlog FM Z3

Random 10000 7482 7347 6712 4632 3688
SMT-LIB 4798 4740 1306 4545 4731 4456
NN-Verif 270 124 116 105 75 76

Table 1 summarizes the results. In each of the benchmark suites, our imple-
mentation in SMT-RAT solves more instances than any of the other tools. As
was to be expected, the simple implementation of FM does not perform well
and quickly uses too much memory as the number of constructed constraints
explodes. In fact, all failures of FM were due to exceeding the memory limit.
The weakness of FM becomes apparent especially for the random benchmarks.

Surprisingly, Z3 did not perform better than FM, though it never exceeded
the memory limit. As mentioned before, the method implemented by Z3 is not
specialized for our task and, while it solves more general and complex problems
efficiently, it cannot compete with the specialized methods.3

Redlog is not far behind our method: for each benchmark set, the difference
in solved instances does not exceed 8% of the total number of instances. It is not
surprising to see some similarities between the two, considering that they are
closely related, as discussed in Sect. 4. However, note that the outputs of Redlog
or Z3 are not always suitable for the respective application, as they can contain
disjunctions. This is the case for 3352 (resp. 2069 for Z3) random instances, 1934
(2646) of the SMT-LIB set and 39 (76) of the NN-Verif set.

On the random and neural network verification benchmarks, CDD is the
strongest contender after SMT-RAT. Compared to Redlog and FM, it is a more
specialized implementation for the task at hand. However, its performance dra-
matically drops for the set derived from SMT-LIB, and we will see why this
happens when we further inspect that benchmark set below.

Random Instances. With respect to the running time, our implementation
clearly outperforms FM, Z3 and Redlog. FM solves 2648 instances faster than
SMT-RAT, and Z3 does so on 430 instances. However, SMT-RAT solves most

3 Z3 offers some flexibility and control over the solver’s behavior and it is possible that
specific settings improve the results; but this is out of scope for our evaluation.

144 V. Promies and E. Ábrahám

of them within 0.5 s and all within 10 s. Only in 154 cases is Redlog faster than
SMT-RAT, in contrast to 7329 cases where SMT-RAT is faster.

The comparison to CDD, however, is more ambiguous. CDD is faster in
“only” 1657 cases, but SMT-RAT significantly struggles with these cases and
times out on 148 of them. On the other hand, many of the instances where
SMT-RAT is faster are solved by both tools within one second. In such small
time, implementation details, e.g. how the input is processed, can have a big
impact, making it harder to interpret the results. Nevertheless, there are 1060
instances for which SMT-RAT is faster and CDD takes more than a second.

Fig. 2. Running times in seconds of CDD compared to SMT-RAT, colored by the
number of input constraints (left) and the number of input variables (right). Each dot
represents one instance of the random benchmark set. Timeouts are clamped to 5 min
(lines on the very right/top).

To further investigate the strengths and weaknesses of the two tools, we con-
sider Fig. 2, which shows the running times of SMT-RAT compared to CDD on
each individual random instance. On the left, the instances are colored accord-
ing to the number of input constraints; on the right, the same image is colored
according to the number of input variables. We can see that SMT-RAT usually
performs better if the number of constraints is high, but there are not more than
15 variables. On the other hand, CDD seems to have an advantage for problems
with a medium number (20 to 40) of constraints and many variables.

A similar analysis with regard to the sparsity of the input showed no clear
pattern. However, we will see next that extreme sparsity can make a difference.

SMT-LIB. The problems derived from the SMT-LIB satisfiability checking
benchmarks are structurally quite different from the other two sets. They contain

A Divide-and-Conquer Approach to Variable Elimination in LRA 145

many variables and constraints, but are extremely sparse. In numbers: over 88%
of the instances contain 50 or more variables and over 90% contain 100 or more
constraints. On the other hand, over 87% of the instances have a density of 0.05
or lower, which is much lower than in any of the random benchmarks.

This sparsity makes it very likely that the flexibility and the structural sav-
ings of our approach have a big impact. It also favors FM, since memory and the
combinatorial blow-up inherent to FM are less of an issue. CDD on the other
hand cannot exploit the sparsity that well. It is based on the double description
method which is generally more expensive for larger numbers of constraints.

Neural Network Verification. All instances in the NN-Verif set have a den-
sity between 0.25 and 0.4, which nicely complements the set derived from SMT-
LIB. The instances are still sizable, containing 20–102 variables and 55–301
constraints.

As described before, the NN-Verif set has three categories of 90 instances
each, depending on which variables are eliminated. SMT-RAT, Redlog and CDD
were able to solve all 90 problems where the last five variables were eliminated.
FM and Z3 only solved 75 (76) of those and none in the other categories. Of
the instances where five randomly chosen variables were eliminated, SMT-RAT
solved 31, CDD 25 and Redlog 15. When eliminating the first five variables,
SMT-RAT solved 3 and CDD 1. The structure of these benchmarks has a big
impact, and they are generally more challenging than the other sets we tried.

Output Size. When variable elimination is used by an external algorithm,
a concise representation of the projection helps to reduce the effort of further
computations by that algorithm. Thus, we are also interested in the output size,
i.e. the number of constraints in the result.

On all three benchmark sets, FM and CDD never give a smaller output than
SMT-RAT, and the same holds for Redlog and Z3 on most of the instances. In
fact, their output can be bigger than SMT-RAT’s by up to four orders of magni-
tude (FM, Redlog), three orders of magnitude (Z3) or two orders of magnitude
(CDD), respectively. For roughly 3600 instances in the random and SMT-LIB-
derived benchmarks, Redlog yields significantly fewer (by up to four orders of
magnitude) constraints than SMT-RAT. These instances contain very few vari-
ables, and the difference is likely due to some redundancy removal used by Red-
log, which could also be implemented in the other tools. Z3 yields fewer (by up
to one order of magnitude) constraints than SMT-RAT for 53 random instances,
and there are 64 instances of the SMT-LIB-derived set where Z3 recognizes
that the input is unsatisfiable and returns a single unsatisfiable constraint, while
SMT-RAT returns up to several hundred constraints. This difference could be
elided by having SMT-RAT perform a satisfiability check first. Note that only
68 total instances are unsatisfiable, and all of them are derived from SMT-LIB.

146 V. Promies and E. Ábrahám

6 Conclusion

We adapted the FMplex method from [27] to eliminate (existentially quantified)
variables from conjunctions of linear inequations. While a straightforward adap-
tion of the original method yields a disjunction as output, we showed that it is
possible to find an equivalent conjunction with little additional effort.

Our new approach admits many improvements and structural savings, as the
processing of the individual steps is quite flexible. We revealed strong similarities
to the VTS method and are certain that our results can be easily transferred to it,
in the case of a conjunctive linear input. First experiments show that our imple-
mentation outperforms other tools, though a comparison to more alternatives,
like the ones in [2,15,16], would be interesting. Depending on the application,
our method, just like other established tools, can hit its limitations even for few
eliminated variables, as observed on our neural network verification benchmarks.

Accordingly, there is potential for further improvements. For example, one
could try to find and remove redundant constraints during the computation, or
prune more nodes of the elimination tree. The difficulty there is to ensure that the
final result still contains all necessary constraints. Finally, our procedure is easily
parallelizable, as the nodes in the search tree can be processed independently.

Acknowledgments. Valentin Promies was supported by the Deutsche Forschungsge-
meinschaft (DFG) as part of AB 461/9-1 SMT-ART.

Data Availability Statement. The considered benchmark sets are available at
https://doi.org/10.5281/zenodo.10605373. An artifact containing the compared tools
and the collected results is available at https://zenodo.org/doi/10.5281/zenodo.
12080344.

References

1. Antal, L., Masara, H., Ábrahám, E.: Extending neural network verification
to a larger family of piece-wise linear activation functions. In: Proceedings of
the 5th International Workshop on Formal Methods for Autonomous Systems
(FMAS@iFM’23). EPTCS, vol. 395, pp. 30–68 (2023). https://doi.org/10.4204/
EPTCS.395.4

2. Bagnara, R., Hill, P.M., Zaffanella, E.: The parma polyhedra library: toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008). https://doi.
org/10.1016/J.SCICO.2007.08.001

3. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2016). www.SMT-LIB.org

4. Bjørner, N.S., Janota, M.: Playing with quantified satisfaction. In: Proceedings
of the 20th International Conference on Logic for Programming, Artificial Intelli-
gence and Reasoning, (LPAR 2015). EPiC Series in Computing, vol. 35, pp. 15–27.
EasyChair (2015). https://doi.org/10.29007/VV21

5. CDDlib. Commit aff2477. https://github.com/cddlib/cddlib/tree/aff2477f8ab25e8
26da93c6650731dd1717d6b4a

https://doi.org/10.5281/zenodo.10605373
https://zenodo.org/doi/10.5281/zenodo.12080344
https://zenodo.org/doi/10.5281/zenodo.12080344
https://doi.org/10.4204/EPTCS.395.4
https://doi.org/10.4204/EPTCS.395.4
https://doi.org/10.1016/J.SCICO.2007.08.001
https://doi.org/10.1016/J.SCICO.2007.08.001
www.SMT-LIB.org
https://doi.org/10.29007/VV21
https://github.com/cddlib/cddlib/tree/aff2477f8ab25e826da93c6650731dd1717d6b4a
https://github.com/cddlib/cddlib/tree/aff2477f8ab25e826da93c6650731dd1717d6b4a

A Divide-and-Conquer Approach to Variable Elimination in LRA 147

6. Chernikov, S.N.: Contraction of systems of linear inequalities. Dokl. Akad. Nauk
SSSR 152(5), 1075–1078 (1963)

7. Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E.: SMT-RAT: an
open source C++ toolbox for strategic and parallel SMT solving. In: Heule, M.,
Weaver, S. (eds.) SAT 2015, pp. 360–368. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-24318-4_26

8. Dolzmann, A., Sturm, T.: REDLOG: computer algebra meets computer logic. ACM
SIGSAM Bull. 31(2), 2–9 (1997). https://doi.org/10.1145/261320.261324

9. Farkas, J.: Theorie der einfachen Ungleichungen. J. für die reine und angewandte
Mathematik (Crelles J.) 1902(124), 1–27 (1902). https://doi.org/10.1515/crll.
1902.124.1

10. Fourier, J.B.J.: Analyse des travaux de l’Académie Royale des Sciences pendant
l’année 1824. Partie Mathématique (1827)

11. Fukuda, K., Prodon, A.: Double description method revisited. In: Deza, M., Euler,
R., Manoussakis, I. (eds.) CCS 1995. LNCS, vol. 1120, pp. 91–111. Springer, Hei-
delberg (1996). https://doi.org/10.1007/3-540-61576-8_77

12. Giesl, J., et al.: Analyzing program termination and complexity automatically with
approve. J. Autom. Reason. 58(1), 3–31 (2017). https://doi.org/10.1007/S10817-
016-9388-Y

13. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kuncak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-63387-9_1

14. Imbert, J.: Fourier’s elimination: which to choose? In: Proceedings of the 2nd
Workshop on Principles and Practice of Constraint Programming (PPCP 1993),
pp. 117–129 (1993)

15. Jeannet, B., Miné, A.: APRON: a library of numerical abstract domains for static
analysis. In: CAV 2009. LNCS, vol. 5643, pp. 661–667. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02658-4_52

16. Jing, R., Maza, M.M., Talaashrafi, D.: Complexity estimates for Fourier-Motzkin
elimination. In: CASC 2020. LNCS, vol. 12291, pp. 282–306. Springer, Heidelberg
(2020). https://doi.org/10.1007/978-3-030-60026-6_16

17. Jones, C., Kerrigan, E., Maciejowski, J.M.: On polyhedral projection and para-
metric programming. J. Optimiz. Theory Appl. 138, 207–220 (2008). https://doi.
org/10.1007/s10957-008-9384-4

18. Julian, K.D., Kochenderfer, M.J., Owen, M.P.: Deep neural network compression
for aircraft collision avoidance systems. J. Guid. Control. Dyn. 42(3), 598–608
(2019). https://doi.org/10.2514/1.G003724

19. Korovin, K., Kosta, M., Sturm, T.: Towards conflict-driven learning for virtual
substitution. In: CASC 2014. LNCS, vol. 8660, pp. 256–270. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-319-10515-4_19

20. Kos̆ta, M.: New Concepts for Real Quantifier Elimination by Virtual Substitution.
Ph.D. thesis, Universität des Saarlandes, Germany (2016). http://dx.doi.org/10.
22028/D291-26679

21. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Comput. J.
36(5), 450–462 (1993). https://doi.org/10.1093/COMJNL/36.5.450

22. Monniaux, D.: A quantifier elimination algorithm for linear real arithmetic. In:
Proceedings of the 15th International Conference on Logic for Programming, Arti-
ficial Intelligence, and Reasoning (LPAR 2008). LNCS, vol. 5330, pp. 243–257.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89439-1_18

https://doi.org/10.1007/978-3-319-24318-4_26
https://doi.org/10.1007/978-3-319-24318-4_26
https://doi.org/10.1145/261320.261324
https://doi.org/10.1515/crll.1902.124.1
https://doi.org/10.1515/crll.1902.124.1
https://doi.org/10.1007/3-540-61576-8_77
https://doi.org/10.1007/S10817-016-9388-Y
https://doi.org/10.1007/S10817-016-9388-Y
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-030-60026-6_16
https://doi.org/10.1007/s10957-008-9384-4
https://doi.org/10.1007/s10957-008-9384-4
https://doi.org/10.2514/1.G003724
https://doi.org/10.1007/978-3-319-10515-4_19
http://dx.doi.org/10.22028/D291-26679
http://dx.doi.org/10.22028/D291-26679
https://doi.org/10.1093/COMJNL/36.5.450
https://doi.org/10.1007/978-3-540-89439-1_18

148 V. Promies and E. Ábrahám

23. Motzkin, T.S., Raiffa, H., Thompson, G.L., Thrall, R.M.: The Double Description
Method, pp. 51–74. Princeton University Press, Princeton (1953). https://doi.org/
10.1515/9781400881970-004

24. Motzkin, T.S.: Beiträge zur Theorie der linearen Ungleichungen (Dissertation).
Buchdrückeri Azriel, Jerusalem (1936)

25. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

26. de Moura, L.M., Bjørner, N.S.: Satisfiability modulo theories: introduction
and applications. Commun. ACM 54(9), 69–77 (2011). https://doi.org/10.1145/
1995376.1995394

27. Nalbach, J., Promies, V., Ábrahám, E., Kobialka, P.: FMplex: a novel method
for solving linear real arithmetic problems. In: Proceedings of the 14th Interna-
tional Symposium on Games, Automata, Logics, and Formal Verification (Gan-
dALF 2023). EPTCS, vol. 390, pp. 16–32 (2023). https://doi.org/10.4204/EPTCS.
390.2

28. Reduce, Snapshot 2023-03-08. https://sourceforge.net/projects/reduce-algebra/
files/snapshot_2023-03-08/linux64/reduce-complete_6547_amd64.deb

29. SMT-RAT, a toolbox for strategic and parallel Satisfiability Modulo Theories solv-
ing. https://github.com/ths-rwth/smtrat/tree/pub/fmplex-qe-3

30. Tran, H.-D., et al.: Star-based reachability analysis of deep neural networks. In:
ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp.
670–686. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30942-8_39

31. Yu, H., Monniaux, D.: An efficient parametric linear programming solver and appli-
cation to polyhedral projection. In: Chang, B.-Y.E. (ed.) SAS 2019. LNCS, vol.
11822, pp. 203–224. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
32304-2_11

32. z3 theorem prover, commit 520e692. https://github.com/Z3Prover/z3/tree/
520e692a43c41e8981eb091494bef0297ecbe3c6

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1515/9781400881970-004
https://doi.org/10.1515/9781400881970-004
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.4204/EPTCS.390.2
https://doi.org/10.4204/EPTCS.390.2
https://sourceforge.net/projects/reduce-algebra/files/snapshot_2023-03-08/linux64/reduce-complete_6547_amd64.deb
https://sourceforge.net/projects/reduce-algebra/files/snapshot_2023-03-08/linux64/reduce-complete_6547_amd64.deb
https://github.com/ths-rwth/smtrat/tree/pub/fmplex-qe-3
https://doi.org/10.1007/978-3-030-30942-8_39
https://doi.org/10.1007/978-3-030-32304-2_11
https://doi.org/10.1007/978-3-030-32304-2_11
https://github.com/Z3Prover/z3/tree/520e692a43c41e8981eb091494bef0297ecbe3c6
https://github.com/Z3Prover/z3/tree/520e692a43c41e8981eb091494bef0297ecbe3c6
http://creativecommons.org/licenses/by/4.0/

Foundations

Free Facts: An Alternative to Inefficient
Axioms in Dafny

Tabea Bordis1(B) and K. Rustan M. Leino2

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
tabea.bordis@kit.edu

2 Amazon Web Services, Seattle, WA, USA
leino@amazon.com

Abstract. Formal software verification relies on properties of functions
and built-in operators. Unless these properties are handled directly by
decision procedures, an automated verifier includes them in verification
conditions by supplying them as universally quantified axioms or theo-
rems. The use of quantifiers sometimes leads to bad performance, espe-
cially if automation causes the quantifiers to be instantiated many times.

This paper proposes free facts as an alternative to some axioms. A
free fact is a pre-instantiated axiom that is generated alongside the for-
mulas in a verification condition that can benefit from the facts. Replac-
ing an axiom with free facts thus reduces the number of quantifiers in
verification conditions. Free facts are statically triggered by syntactic
occurrences of certain patterns in the proof terms. This is less powerful
than the dynamically triggered patterns used during proof construction.
However, the paper shows that free facts perform well in practice.

Keywords: SMT-based reasoning · proof brittleness · Dafny · formal
verification

1 Introduction

Complex software is used in almost every domain, including safety-critical or
security-critical domains that require strong guarantees of correctness. Formal
methods have successfully been applied to guarantee correctness of large-scale,
complex software (e.g., [12,13,21,22,26,31,36,37]). Especially successful are Sat-
isfiability Modulo Theories (SMT) solvers [5,9,33] and SMT-based, automated
program verifiers, such as Dafny [29], Frama-C [25], AutoProof [19], VeriFast [24],
and F* [39]. In Dafny, for example, the developer writes specifications and code,
which are then translated into proof obligations that are automatically checked
by an SMT solver. The verification result is displayed in the IDE, including
descriptive error messages in case of a negative result.

The underlying idea of automated verifiers is to transfer most of the verifica-
tion effort from the developer to the SMT solver, i.e., to automate the verification
task as much as possible. For instance, axioms for properties that are known to be
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 151–169, 2025.
https://doi.org/10.1007/978-3-031-71162-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_8&domain=pdf
http://orcid.org/0009-0003-2886-0862
http://orcid.org/0000-0003-2872-8039
https://doi.org/10.1007/978-3-031-71162-6_8

152 T. Bordis and K. R. M. Leino

true are automatically generated such that the developer does not have to spec-
ify and prove said properties themselves. As a result, automation has increased
user-friendliness, leading to more users and the application to larger and more
complex systems, including their application in industry. However, with increas-
ing complexity, a certain proof brittleness1 has been observed among SMT-based
verifiers [22,30]. Proof brittleness describes a problem where seemingly irrelevant
changes, such as renaming a variable or using a newer version of the tool, can
lead to a variation in the verification time and even result. The impact of this
is severe, as it drastically increases debugging time and may even require refac-
toring of the code and specification. Additionally, confidence in the tool and the
user experience decreases, as the focus shifts from developing correct software
to refactoring the code to make the proof complexity manageable for the solver.

In Dafny, many axioms, for example, describing properties for collection
types, are automatically defined in the background whenever a proof is trig-
gered. The solver can then use this information provided by the axiom to prove
the correctness of the program. There are some problems with axioms that affect
proof brittleness, and which we found during our experiments to remove certain
axioms from Dafny. (1) Axioms increase the complexity of the proof obligations.
The more information there is for the solver, the more options there are to
discharge a proof. (2) Universally quantified axioms provide properties and the
solver decides where to instantiate the property. Therefore, the developer cannot
control this. (3) Not every property is easily expressible in an axiom, because
the solver can quickly run into matching loops, where the SMT solver keeps
instantiating quantified axioms for new terms.

In this paper, we propose free facts as an alternative automatic mechanism
for giving properties similar to those defined in axioms, but on concrete instances
of the program code. For example, when we detect a set union of sets A and B,
we generate a property describing how to retain the original sets from the union;
the property specifically mentions the instances A and B, rather than using an
axiom that quantifies over any two sets. The advantage is that the property is
already instantiated without giving the solver the option to use it elsewhere.
Furthermore, the developer does not have to change their behavior because the
behavior is fully automated.

In this paper, we make the following contributions:

– We introduce free facts as an alternative to universally quantified axioms.
– We define free facts for properties of different collection types in Dafny.
– We provide an implementation of free facts in Dafny as a proof of concept.
– We evaluate the impact of free facts with regard to proof brittleness in Dafny

and compare them to universally quantified axioms.

2 Dafny and Its Verifier

Our work is in the context of the Dafny programming language. Dafny supports
formal reasoning about programs and for that purpose features an automated
1 Also referred to as proof instability.

Free Facts: An Alternative to Inefficient Axioms in Dafny 153

program verifier. The verifier operates in two phases: it first prescribes proof obli-
gations (using the intermediate verification language Boogie) and then attempts
to discharge these proof obligations using automatic decision procedures (which
are provided in an SMT solver). In this section, we describe the general structure
of how the proof obligations are prescribed. The full details of how (an early ver-
sion of) Dafny is translated into the intermediate verification language Boogie
are recorded in Marktoberdorf Summer School lecture notes [28].

2.1 Proof Obligations

To prescribe proof obligations, Dafny uses the Boogie intermediate verification
language [6]. Boogie features first-order declarations of types, functions, and
axioms, as well as imperative procedures. Procedure bodies consist of statements
from a simple while language. The Boogie tool generates a verification condition
for each procedure. More precisely, given axioms A, and with a procedure whose
pre- and postconditions are Pre and Post, respectively, and whose body is a
statement S, Boogie generates the logical verification condition

A ∧ Pre =⇒ wp[[S, Post]]

where wp[[S, Post]] is first expanded to be the weakest precondition of S with
respect to Post [18].

For the purposes of this paper, it suffices to understand three kinds of state-
ments in Boogie:

– Assignment statement x := E evaluates expression E and then assigns its
value to variable x.

– Assertion statement assert P adds condition P as a verification debit.
– Assumption statement assume Q adds condition Q as a verification credit.

Expressions in Boogie are total ; that is, it is legal to apply operators and
functions to any arguments. If the source language (Dafny, in our case) wants
to prescribe a proof obligation for one of its expressions, then it must introduce
an assertion in Boogie. For example, the translation of the Dafny statement
x := y/z into Boogie is

assert z �= 0; x := Div(y, z)

This instructs the Boogie tool to check the condition z �= 0, reporting an error
if the condition cannot be proved, and then assign the variable x.

An assumption is used to state a condition that the verifier is allowed to use.
Sound verification requires that every assumption be justified in some way, but
such justification lies outside the use of Boogie; Boogie allows verification-tool
authors to introduce such assumptions. Sometimes, an assumption is justified by
some property of the programming language or by a limitation of the program
verifier. For example, a program verifier for a C-like language may choose to
verify only those runs of a program that do not exceed the available memory.
For an allocation statement x := malloc(1024), such a verifier would introduce
an assumption along the lines of

154 T. Bordis and K. R. M. Leino

x := . . .; assume x �= 0 ∧ size(x) = 1024

Procedure pre- and postconditions (introduced, respectively, with requires
and ensures clauses) provide a convenient way to introduce verification debits
and credits at procedure boundaries. In particular, a precondition turns into
an implicit assert statement at a call site and a matching implicit assume
statement at the beginning of the procedure body. Conversely, a postcondition
turns into an implicit assert statement at the end of the procedure body and a
matching implicit assume statement on return from each call.

Here is a small Boogie example that illustrates these features:

axiom A
procedure M(x: X) returns (y: Y)

requires Pre(x) ensures Post(x, y)
{

assert P(x);
assume Q(x);
y := E(x)

}

Procedure M declares one in-parameter (x) and one out-parameter (y). For this
example, Boogie generates the verification condition

A ∧ Pre(x) =⇒ P (x) ∧ (Q(x) =⇒ Post(x,E(x)))

and passes it to the decision procedures in Boogie’s underlying SMT solver.

2.2 Axioms Versus Assumptions

In the example above, the proof goal Post(x,E(x)) has three antecedents:
the axioms A, the precondition Pre(x), and the assumption Q(x). Further
antecedents in other examples include guard conditions from control flow like
if and the postconditions of any calls. Logically, there is no difference between
these kinds of antecedents. Instead, they are all assumptions, but stated in dif-
ferent contexts and different scopes.

Stylistically, assume statements are used to introduce assumptions about
local variables (like the result of a procedure call), whereas axioms are used to
describe properties of global functions or operators of the language (like Div
from a previous example above).

2.3 Expression Translation

As further background for our paper, let us describe the general translation of
expressions from the source language (Dafny) into the intermediate verification
language (Boogie). The expression translation is part of the translation of any
statement, so we will use a Dafny assignment statement x := E as a running
example; other statements are similar (see [28]). There are three parts to the
translation of expressions from Dafny to Boogie.

Free Facts: An Alternative to Inefficient Axioms in Dafny 155

Translation Mapping. The translation of x := E will map the Dafny variables
into corresponding variables in Boogie. For our purposes, we will assume the
Boogie variables have the same names. Thus, the left-hand side x in Dafny
simply maps into a Boogie variable x.

The right-hand side of the assignment is more interesting. Its translation
also needs to map Dafny operators and functions into Boogie counterparts. For
example, we can imagine that Dafny’s integer-division operator / is translated
into a Boogie function Div, as we saw in an example above. For this purpose,
we introduce a translation function Tr:

x := Tr[[E]]

where, for example, Tr[[E0/E1]] = Div(Tr[[E0]],Tr[[E1]]). (In many of our exam-
ples that follow, we will use the same operator symbol in Boogie as in Dafny.)

Checking Well-Formedness. As we mentioned above, expressions in Boogie
are total. In contrast, operators and functions in Dafny can be partial. The
translation from Dafny to Boogie therefore prescribes well-formedness checks,
as we will indicate with the translation function Wf. With these in mind, the
translation of an assignment statement x := E becomes

assert Wf[[E]]; x :=Tr[[E]]

For example, we have

Wf[[E0/E1]] = Wf[[E0]] ∧ Wf[[E1]] ∧ Tr[[E0]] �= 0

Introducing Assumptions. Translation functions like Tr and Wf have been
described before (e.g., [27,28]). What Dafny also uses, but which has not been
described, is a template for introducing assumptions. Previously, this part of
the translation has been limited in focus, mostly to try to speed up verifier
performance of function calls. We will not describe the details of these previous
assumptions, since they are not the subject of this paper. Relevant to this paper
is just that the translation process includes not only the translation mapping
Tr and the well-formedness checks Wf, but also an assumption generator Ag.
The assumption generator is used as follows, as we can now show the complete
translation of expressions from Dafny to Boogie:

assert Wf[[E]]; assume Ag[[E]]; x :=Tr[[E]]

As we mentioned, assumption generators have had limited use in Dafny.
Indeed, for most expressions E, we have Ag[[E]] = true. It is into these assump-
tion generators that we will incorporate our free facts, as we will describe next.

3 Free Facts

In this section, we present and discuss our concept for free facts. First, as motiva-
tion, we show a common pattern that currently needs manual proof effort. Then,
we define its automated mechanism and provide free facts for Dafny’s collection
types. Finally, we discuss free facts in terms of use cases and limitations.

156 T. Bordis and K. R. M. Leino

3.1 Motivating Example

Axioms for Operations of Built-in Types. The general strategy for axiom-
atizing the operators of built-in types in Dafny is to define them in terms of
primitive operators. For example, set operations are defined in terms of set mem-
bership as follows:

∀x, S, T · x ∈ S ∪ T ⇐⇒ x ∈ S ∨ x ∈ T

This strategy gives rise to a kind of rewriting that moves toward smaller terms,
and hence (by itself) terminates. However, this strategy alone does not give
equality between terms, a property that logic gives the name extensionality.
Extensionality becomes important when terms are used as arguments to other
functions. Dafny thus also uses an extensionality axiom. For example, the one
for sets looks like

∀S, T · S =set T =⇒ S = T

where =set is the set-equality operator in Dafny and = is the verifier’s equality.

How Axioms Get Used. Universal quantifiers in Dafny’s verifier are used
through instantiation. To control this process, each quantifier has a matching
pattern [17]. The verifier instantiates an axiom if, during proof construction,
some of the prover’s ground terms look like the matching pattern.

For example, the matching pattern for each of the quantifiers in the examples
above are the left-hand side of the main connective in the quantifier body. So,
if the prover’s ground terms happen to contain y ∈ A ∪ B for some expressions
y,A,B, then the first quantifier above is instantiated with x, S, T := y,A,B.
But note that the quantifier is not instantiated if the ground terms only contain
y ∈ A and y ∈ B. In the same way, the quantifier in the extensionality axiom is
instantiated only if there already is a ground term that mentions =set .

Derived Properties. Using the defining axioms and the axiom of extensional-
ity, it is possible to prove additional properties as theorems, such as

∀x, S · x �∈ S =⇒ (S ∪ {x})\{x} = S

This property is often used in proofs of Dafny programs. A sketch of a prototyp-
ical example thereof is a loop that wants to maintain P (S) as a loop invariant,
where P is some predicate on the set S, and the loop body contains an assign-
ment S := S ∪ {x}.

Since the theorem above is useful, it is tempting, as developers of the Dafny
verifier, to include the theorem among the verifier’s axioms. Unfortunately, it
far too often instead has a negative effect on prover performance, because the
quantifiers end up being instantiated too often. So, the theorem above is not
included in Dafny. Instead, programs that need the property tend to include a
user-defined assertion of the property, which the Dafny verifier proves and then
uses. For example, it is typical to see Dafny code snippets like

S’ := S ∪ {x};
assert S’ \ {x} =set S

Free Facts: An Alternative to Inefficient Axioms in Dafny 157

Similar code snippets are frequently used for other types and operators as well.
For instance, here is an example that uses sequences:

x := A[0];
A’ := A[1..];
assert [x] · A’ =seq A

3.2 Free Facts

Our aim is to obtain the desired automation in cases like our motivating example,
but without risk of causing the verifier to instantiate the derived-property theo-
rems too many times. We do this by instantiating such theorems before sending
verification conditions to the verifier. We call the result of such an instantiation
a free fact, and we include free facts among the generated assumptions (transla-
tion function Ag in Sect. 2.3). For example, as motivated by the example in the
previous subsection, the free facts we generate

Ag[[S ∪ T]] =
Ag[[S]] ∧ Ag[[T]] ∧
Tr[[S]] = (Tr[[S]] \ Tr[[T]]) ∪ (Tr[[S]] ∩ Tr[[T]])

Note that this generalized property works for any set T , not just a singleton set
{x} as we showed in our motivating example above.

To support free facts Dafny, we first decide on some candidate theorems (more
about that in Sect. 3.3). The mechanism we then use to control instantiations is
similar to what the verifier does with matching patterns, but with an important
difference: While the verifier’s set of ground terms grows as the verifier performs
inferences, the terms available to free-fact generation are those that occur syn-
tactically in the program. To understand this syntactic-terms limitation, suppose
we tried to encode the associativity of set union as a free fact:

Ag[[S ∪ (T ∪ U)]] =
Ag[[S]] ∧ Ag[[T]] ∧ Ag[[U]] ∧
Tr[[S]] ∪ (Tr[[T]] ∪ Tr[[U]]) = (Tr[[S]] ∪ Tr[[T]]) ∪ Tr[[U]]

This would generate the free fact only if the Dafny program contained an expres-
sion of the form S ∪ (T ∪U). However, it would not generate the free fact if the
syntax was slightly different. For example, the free fact would not be generated
for a code snippet like

a := T ∪ U;
b := S ∪ a

since no single expression contains two union operators. Because of this syntactic
limitation, free facts are most effective when the matching pattern has just one
operator.

158 T. Bordis and K. R. M. Leino

3.3 Free Facts for Collection Types

Collections are nontrivial data types, yet are widely used in software systems.
In Sect. 2, we explained how axioms are used to describe properties of built-in
types in Dafny. In Sect. 3.1, we gave an example of a property that performs
poorly as an axiom and therefore has to be provided as a user-defined assertion.
Hence, we looked for assertions on collection types in different systems that
are implemented in Dafny and defined our free fact properties based on our
findings. In Table 1, we show a complete list of all free facts that we defined for
this paper. Only the last two properties are defined as axioms in the current
version of Dafny. The other properties have to be defined by the developer in an
assertion if needed and are therefore new properties in the automatic encoding.

Table 1. Free Fact Properties for Collection Types in Dafny.

Collection Type Operation in Code Free Fact Property

Set S ∪ T , S\T S = (S\T) ∪ (S ∩ T)

T = (T\S) ∪ (S ∩ T)

Multiset (allows S ∪ T , S\T S = (S\T) ∪ (S ∩ T)

duplicates) T = (T\S) ∪ (S ∩ T)

Map M +N M.keys ∩ N.keys = ∅ =⇒ M = M +N − N.keys

M.keys ∩ N.keys = ∅ =⇒ N = M +N − M.keys

Sequence X · Y X = (X · Y)[0..|X|]
Y = (X · Y)[|X|..|(X · Y)|]

X[i..|X|], X[0..i] X = X[0..i] · X[i..|X|]
X[i..j] X[0..j] = X[0..i] · X[i..j]

X[i..|X|] = X[i..j] · X[j..|X|]
Operations: Map merge: +, Map difference: −, Seq. concatenation: ·, Seq. length: |X|, Subsequence: X[i..j]

See Dafny reference manual for further explanations of the operations [3].

Sets and Multisets. In contrast to ordinary sets, multisets allow duplicate entries.
Apart from that, we define the same free fact properties for sets and multisets.
Whenever we detect a (multi-)set union or (multi-)set difference in the Dafny
code, we generate the two free fact properties in the very right column that
describe a relationship between the (multi-)set operations \, ∪, and ∩.

Maps. We define similar free fact properties as the ones for sets for finite maps,
as well. The merge of two maps is not commutative, because values are overriden
if the key already exists in the left-hand side map; hence, the key sets of the two
maps need to be disjoint.

Sequences. For sequences, we define free fact properties for the concatenation
of two sequences and the subsequence operation X[i..j] (from index i inclusive
to index j exclusive). For the concatenation of two sequences X · Y , we get
the original set X by taking the subsequence of the concatenation from 0 to
the length of X (|X|). Respectively, set Y is equal to the subsequence of the
concatenation from |X| to |(X · Y)|. For the subsequence operation, we define a
free fact for the special case where one of the indices is 0 or the length of the

Free Facts: An Alternative to Inefficient Axioms in Dafny 159

sequence, i.e., dropping the start or the end of the sequence, and a general one
for arbitrary indices. The latter is generated only if the special case is not true.

3.4 Discussion

Applicability Limitations. Free facts rely on syntactically detectable operations
in the Dafny code. Collections are particularly well suited, because (1) they often
require additional properties in the form of assertions and (2) their operations
are easy to detect since they are not scattered over multiple statements.

During our experiments, we encountered proof brittleness when using the
non-linear arithmetic setting of the SMT solver. As an alternative, we tried to
define free facts for non-linear arithmetic properties. Unfortunately, the distribu-
tion properties of + and ∗ are not possible under our syntactic-terms limitation.

Free Facts as Replacement for Axioms. Our aim is not to replace axioms alto-
gether. Axioms are an effective way of globally providing certain properties that
do not require a proof. SMT solvers use the given information dynamically
and quickly and decide about their instantiation. However, the instantiation
of axioms must always be regulated by matching patterns. Otherwise, the solver
will quickly run into matching loops. For some properties, it is difficult to define
the matching pattern in a way that is not too restrictive, such that the axiom is
never really instantiated or that it is instantiated too often, resulting in perfor-
mance issues. For example, if we would define the first free fact property from
Table 1 as a quantified axiom with S ∪ T as trigger, this leads to an endless
instantiation of this property as the trigger matches part of the term. For these
properties, we propose free facts as an alternative because they are defined on
concrete instances of the code and the solver cannot instantiate them arbitrarily,
i.e., even if a free fact that we generate is not used, it does not keep generat-
ing additional facts, like universally quantified axioms can. The overall goal is
to replace only inefficient axioms and to add properties for further automation
where it fits the conditions of free facts.

Increasing the Level of Automation. The high degree of automation in verifica-
tion tools has led to complex queries for the SMT solver in the backend which
increases proof brittleness. Therefore, it may seem unintuitive to propose another
automatic mechanism to be added on top of Dafny to counter proof brittleness.
With free facts, we propose a change in the automatic encoding of the proof
obligations to avoid universally quantified axioms. Other parts of the automatic
encoding could possibly also be improved. In other places, however, it may be
better to reduce automation, giving control back to the developer. Overall, a
composition of multiple solutions, not only for automatic encoding from Dafny
to Boogie, but also for the way programs and proofs are defined and how the
solver is used in the backend, will bring progress regarding the overall problem.

4 Evaluation

Proof brittleness is a problem that can occur when the proof obligations and
information for the program verifier are too complex. In this section, we eval-

160 T. Bordis and K. R. M. Leino

uate free facts in terms of their usefulness with regard to proof brittleness and
compare them to axioms in Dafny.

4.1 Research Questions

In particular, we define the following research questions:

RQ1: Is it possible to define free facts in Dafny?
RQ2: To what extent can free facts reduce the proof brittleness in Dafny?
RQ3: Are free facts superior to axioms in terms of their verification time and

resource count?

With RQ1, we want to assess the feasibility of free facts. By answering RQ2, we
gain insights into how well suited free facts are to reduce the proof brittleness
problem. With RQ3, we may estimate how free facts compare to axioms by
comparing both approaches using the collection type properties (see Sect. 3.3).

4.2 Methodology

To answer our research questions, we created three different branches of Dafny
that we used to compare the verification results. All branches can be used like
the regular Dafny version.

Master: The master branch2 is the original version of Dafny, and we use this
branch as the baseline for our evaluation.

Free Facts: The free facts branch3 implements all properties of Sect. 3.3 as free
facts and none as axioms.

Axioms: The axioms branch4 implements most properties from Sect. 3.3 as
axioms and none as free facts. The differences between the axioms and the
free facts in Table 1 are: The free facts for (multi-)set union and (multi-)set
difference are implemented with only set difference as trigger. The free fact
for sequence concatenation has a more restrictive trigger. Without adaptions,
the SMT solver ran into matching loops.

To answer RQ1, we implement free facts for collection type properties as
described in Sect. 3 in the free facts branch. Afterwards, we run the Dafny test
suite to check whether the free fact branch of Dafny is working as intended. To
reason about RQ2 and RQ3, we perform a mutation-based analysis using an
internal tool on three subject systems that are implemented in Dafny and com-
pare the performance of our different Dafny branches. The idea of the mutation-
based analysis is to syntactically mutate the subject systems to mimic the devel-
oper that observes proof brittleness when they make slight changes to their pro-
gram. Furthermore, we collect metrics that indicate proof brittleness. For RQ2,

2 https://github.com/dafny-lang/dafny, commit 2e7de95.
3 https://github.com/dafny-lang/dafny/tree/tb-experiment-freefacts, 62b2a90.
4 https://github.com/dafny-lang/dafny/tree/tb-experiment-freefactaxioms, e9a1bd2.

https://github.com/dafny-lang/dafny
https://github.com/dafny-lang/dafny/tree/tb-experiment-freefacts
https://github.com/dafny-lang/dafny/tree/tb-experiment-freefactaxioms

Free Facts: An Alternative to Inefficient Axioms in Dafny 161

Table 2. Subject Systems and their Characteristics.

Subject Systems #
Procedures

LOC # Specifica-
tions

CTs

Cedara 1,454 19,695 5,974 589
Dafny Librariesb 6,398 15,729 4,668 638
Internal System 14,504 17,858 4,003 371
Procedures include methods, functions, and lemmas.
LOC — Non-whitespace lines of Code. # CTs — Explicit mentions of collection types.

a https://github.com/cedar-policy/cedar
b https://github.com/dafny-lang/libraries

we compare the free facts branch with the master branch, and for RQ3, we
compare the free facts branch with the axiom branch. We describe the tool, the
metrics, and the subject systems in the following.

Mutation-Based Analysis of Two Dafny Versions. For the evaluation, we
use an internal tool that syntactically mutates our subject systems and collects
different metrics for two different branches of Dafny. It mutates every procedure
of the subject systems five times, randomly changing the names of all identifiers
and the order of declarations, and runs each mutant with a random seed that
the SMT solver uses when making decisions that can be arbitrary. The tool
collects the following metrics for each procedure on the two different branches:
The number of failed runs, the verification time, and the resource count (a Z3-
specific metric for the proof complexity).

The number of failed runs can be used as an indicator for proof brittleness
if some runs fail and some do not. We sum up the number of failed runs of the
single procedures in one subject system to a total number of failed runs for each
branch. If the number for branch A is higher than the number for branch B,
this gives the indication that branch A is more brittle than branch B. To obtain
a holistic evaluation, we combine the number of failed runs with two further
metrics that indicate proof brittleness, namely, the average verification time and
the average resource count. It has been observed that both metrics correlate with
the proof brittleness problem [41].

Subject Systems. We evaluate free facts on three large-scale subject systems
that are implemented in Dafny. One of the subjects is an internal policy-checking
system. The other two systems, Cedar5 and the Dafny Libraries6, are openly
accessible on GitHub. We selected the internal subject system because it has a
high usage of sequence collections and it lets us discuss the results with domain
experts to verify our results and prevent potential errors. In Table 2, we give an
overview on the subject systems and provide metrics that show their size and
complexity. All subject systems contain assertions in the code that are similar
to our free fact properties (cf. Sect. 3.1).

5 https://github.com/cedar-policy/cedar.
6 https://github.com/dafny-lang/libraries.

https://github.com/cedar-policy/cedar
https://github.com/dafny-lang/libraries
https://github.com/cedar-policy/cedar
https://github.com/dafny-lang/libraries

162 T. Bordis and K. R. M. Leino

4.3 Results and Discussion

RQ1: Is it possible to define free facts in Dafny?
We implemented free facts as described in Sect. 3. In the Dafny integration test
suite, we found seven test cases with assertions that can be removed because of
free facts. In some cases, such removal led to a higher resource count, but at the
other end of the spectrum, one case had a resource count that was 12 times lower
than the failing verification without free facts. We can therefore answer RQ1
positively for collection type properties. In Sect. 3.4, we have already discussed
the applicability of our concept in terms of its limitations due to the syntactical
detection.
RQ2: To what extent can free facts reduce the proof brittleness in Dafny?
In Table 3, we show the results of the mutation-based analysis of the master
and the free facts branch for our three subject systems. We give the average
improvement for the runtime and resource count in percent, and the difference
between the total number of failed runs between the master and the free facts
branch. For runtime and resource count, a positive percentage (+x%) means that
the free facts branch performed on average x percent faster/with less resources
than the master branch. For the difference in failed runs, a negative number
(−y) means that the free facts branch failed y fewer times than the master.

The largest effect of free facts was seen in the Dafny Libraries, where we mea-
sure an average improvement in the runtime of 41%. In contrast, the resource
count worsened by 4% on average. The difference in the number of failed runs is
only minor with 25 additional failed runs. For the internal system, we observe an
improvement in runtime by 9% and resource count by 8%. However, the differ-
ence in the number of failed runs increased by 367 failed runs. Compared to the
total number of runs (72,520) this is still just a change of 0.5%. Besides the aver-
age of the whole system, we also looked at the maximum average improvement
of the procedures in Cedar and the Dafny libraries, which was +748% runtime
and +160% resource count for Cedar and +19597% runtime and +277% for
the Dafny libraries. The procedure in the Dafny libraries that had the extreme
improvement in runtime actually went from being brittle with only 2/5 suc-
ceeding runs on the master to being stable with 5/5 succeeding runs with free
facts.

Overall, we can answer RQ2 neither positively nor negatively. The average
resource count suggests a slight deterioration compared to the master branch
for Cedar and the Dafny Libraries. With free facts, we generate certain proper-
ties automatically that previously had to be defined manually. As long as those
assertions are not removed from the code, the assertions still provide a veri-
fication debit for the solver and therefore obfuscate the benefit of free facts.
We discuss this in detail in Sect. 4.4. In contrast, the runtime improved for all
subject systems. We conclude from this that, even though the proofs seem to
be slightly more complex (potentially because the subject systems still contain

Free Facts: An Alternative to Inefficient Axioms in Dafny 163

Table 3. Results: Master vs. Free Facts

Subject Systems Runtime Resource Count # Failed Runs

total
Avg. ImprovementAvg. Improvement

master free facts
Diff.

Cedara +1% -6% 38 66 +28
Dafny Librariesb +41% -4% 392 417 +25
Internal System +9% +8% 51 418 +367
The total number of all runs (5 ∗ #procedures): Cedar - 7,270. Libraries - 31,990. Internal - 72,520.

a https://github.com/cedar-policy/cedar
b https://github.com/dafny-lang/libraries

Table 4. Results: Axioms vs. Free Facts

Subject Systems Runtime Resource Count # Failed Runs

total
Avg. ImprovementAvg. Improvement

axioms free facts
Diff.

Cedara +7% -1% 40 69 +29
Dafny Librariesb +23% +9% 557 511 -46
Internal System +9% +6% 386 391 +5
The total number of all runs (5 ∗ #procedures): Cedar - 7,270. Libraries - 31,990. Internal - 72,520.

a https://github.com/cedar-policy/cedar
b https://github.com/dafny-lang/libraries

assertions that could be removed), but easier and therefore faster to close given
the additional information. Additionally, we observed strong improvements for
individual procedures, such as in the case of the maximum values, which shows
the great potential of free facts as a concept. We expect an alignment of the
resource count to the positive trend of the runtime once free facts are deployed,
and developers adapt their behavior to the free fact generation of Dafny.
RQ3: Are free facts superior to axioms in terms of their verification time and
resource count?
In Table 4, we summarize the results for the mutation-based analysis between
the free facts and the axiom branch. While the difference in the number of failed
runs between the two branches is rather small (+29 failed runs for Cedar, −46
failed runs for the Dafny libraries, and +5 failed runs for the internal system),
there is an improvement in favor of the free facts branch in both the average
runtime and resource count. The average improvement of free facts for the Dafny
libraries and the internal system is higher (+23% runtime and +9% resources
for the libraries and +9% runtime and +6% resources) than the one for Cedar
(+7% runtime and −1% resources), which we explain again by the fact that
Cedar uses fewer collections.

https://github.com/cedar-policy/cedar
https://github.com/dafny-lang/libraries
https://github.com/cedar-policy/cedar
https://github.com/dafny-lang/libraries

164 T. Bordis and K. R. M. Leino

Overall, we can answer RQ3 positively, since the free facts branch took less
time and resources on average than the axiom branch. Note that we were not
able to implement all free fact properties as axioms, as some led to matching
loops, which would quickly lead to a timeout for a majority of the procedures.
In fact, this supports our argument that free facts are an alternative automatic
mechanism that is superior in certain cases where axioms are inefficient.

4.4 Threats to Validity

Removal of Assertions in the subject systems. As explained in Sect. 3.1, we are
automating the generation of certain properties in Dafny that previously had to
be defined as assertions by the developer. Therefore, the full potential of free
facts can only be observed if these assertions are removed from the code as they
are translated into a proof debit for the SMT solver. Leaving the assertions
in the code does not affect the correctness, but it does affect the runtime and
resource count. In our evaluation, we did not remove these assertions from the
subject systems, as the manual effort would be too high since we used large-
scale systems. As a result, this benefit is not measurable in our experiments,
and the values for newly built systems using free facts might be better as we
expect developers to adapt their proofs accordingly. It is conceivable that such
a change in behavior would make free facts better overall.

Reproducibility. Parts of our experiments are not reproducible for externals
because we used (1) an internal tool to perform the variability analysis and
(2) an internal subject system. However, the implementation of all branches is
publicly available, as well as the other two subject systems. With that, a similar
report can be generated, also including mutations. Detailed instructions can be
found in the Dafny documentation in Section Measuring proof brittleness [3].

Since both the mutation-based analysis and the decision process of the SMT
solver involve randomness, and the subject systems are productively used sys-
tems that are regularly modified, the exact results will still vary from run to run.
However, the overall trend is reproducible.

Transferability. We have only performed our evaluation on Dafny with Z3 as
SMT solver. We cannot claim that our results are fully representative for other
automated verifiers or SMT solvers. Nevertheless, the concept is transferable to
other verifiers as well. We believe that our results provide valuable insight into
the proof brittleness problem and may influence future work.

5 Related Work

Resolving Proof Brittleness. Few approaches have addressed proof brittle-
ness, mainly because: (1) it is a rather new challenge stemming from the recent
verification of complex systems, and (2) the complexity of the SMT-solvers deci-
sion process using heuristics and randomness to a certain degree. We categorize
the papers into the Dafny pipeline, writing program, specification, and proof

Free Facts: An Alternative to Inefficient Axioms in Dafny 165

(proof engineering); automatic encoding of Dafny to SMT; the SMT solver itself.
Five of the papers have been presented at this year’s Dafny workshop [1].

Proof Engineering. McLaughlin et al. [32] introduce Dafny64, a mode of using
Dafny that significantly reduces verification resources by stripping back automa-
tion for proofs. Cutler et al. [15] improved the stability of type safety proofs
in Dafny by making functions opaque (i.e., making the body of the function
unavailable) and specifying them manually such that the solver does not have to
reason about multiple large definitions simultaneously. Ho and Pit-Claudel [23]
improved the debugging of brittle lemmas by using Dafny’s abstract modules
to achieve an induction principle similar to that in the theorem prover Coq [7].
These papers highlight the necessity to reduce automation, such that the devel-
oper gains more control over the verification task. Although we agree with this
suggestion, with free facts we aim to improve the automatic encoding in the next
step of the pipeline. We reduce the options for the solver while maintaining the
usability of Dafny as an automatic verifier. The proposed approaches and free
facts can be applied in parallel to maximize results.

Automatic Encoding. Srinivasan et al. [38] identify the boundaries where infor-
mation from other modules should be made opaque to leverage the automation
of Dafny in the best possible way. In particular, they concentrate on quantifier
instantiations. With free facts, we also propose a technique that improves the
automatic encoding; however, we focus on code-based detection of the need and
instantiate properties to avoid universally quantified axioms.

SMT Solver. Mugnier et al. [34] propose a portfolio of SMT solvers meaning that
different SMT solvers and different versions of SMT solvers are used to get more
performant proofs. This work is orthogonal to free facts and can be applied later
to further increase the performance.

Detection of Proof Brittleness. The detection of proof brittleness is indi-
rectly related to our work, because detecting proof brittleness does not directly
reduce brittleness. However, detection can be used to evaluate approaches to
resolve proof brittleness and may lead to a better understanding of the problem
and more targeted solutions in the future.

As a first measure, for early detection, Dafny and F* provide a command-
line flag to execute multiple randomized verification runs [2,3]. Mariposa [41]
is a tool that performs a mutation-based analysis to detect and quantify SMT-
based proof brittleness. In their paper, they performed an evaluation on six
different verification projects, provide a benchmark, and describe their findings.
The Axiom Profiler [10] is a tool that analyzes instantiation problems, e.g.,
matching loops caused by axioms, by logging information of SMT runs.

166 T. Bordis and K. R. M. Leino

Quantifier Instantiation. Since the Simplify prover introduced E-match-
ing [17], it has been adapted and improved in a number of SMT solvers [4,8,16],
as well as the pattern selection in many SMT-based automated verifiers (includ-
ing Dafny) [14,30,35]. However, there are also a few approaches that focus on
avoiding quantifier instantiation altogether. The tool Leon [11] (a predecessor
of Stainless [20]) is an SMT-based verifier for programs written in Scala. It
avoids quantifiers by unfolding recursive definitions as needed. Liquid Haskell
adds refinement types to Haskell and implements a recursive technique similar
to Leon called refinement reflection [40]. The idea of both approaches is com-
parable to free facts, but they are applied to functions and the detection of the
need to unfold is more dynamic than our syntactic detection.

6 Conclusion

Proof brittleness is a persistent issue in automated verification, particularly with
complex and large-scale software. Research is still in its early stages of under-
standing and improving the sources of proof brittleness. The complexity stems
from the high degree of automation. We believe that the entire process, from
proof engineering to the automation of the verifier and the SMT solver itself,
requires revision. We aim to improve the automatic encoding in Dafny by gener-
ating pre-instantiated free facts. This approach reduces the number of quantifiers
in the verification conditions compared to quantified axioms without increasing
manual effort for the developer. With collections, we found a good use case for
free facts, and we plan to experiment with further use cases in the future.

References

1. Dafny 2024 - POPL 2024. https://popl24.sigplan.org/home/dafny-2024#event-
overview. Accessed 15 Mar 2024

2. Understanding how F* uses Z3 - Proof-Oriented Programming in F* docu-
mentation. https://fstar-lang.org/tutorial/book/under_the_hood/uth_smt.
html. Accessed 01 July 2024

3. Dafny Documentation (2024). https://dafny.org/dafny/DafnyRef/DafnyRef.html.
Accessed 18 Mar 2024

4. Bansal, K., Reynolds, A., King, T., Barrett, C., Wies, T.: Deciding local theory
extensions via e-matching. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015.
LNCS, vol. 9207, pp. 87–105. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-21668-3_6

5. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: TACAS
2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99524-9_24

6. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192_17

https://popl24.sigplan.org/home/dafny-2024#event-overview
https://popl24.sigplan.org/home/dafny-2024#event-overview
https://fstar-lang.org/tutorial/book/under_the_hood/uth_smt.html
https://fstar-lang.org/tutorial/book/under_the_hood/uth_smt.html
https://dafny.org/dafny/DafnyRef/DafnyRef.html
https://doi.org/10.1007/978-3-319-21668-3_6
https://doi.org/10.1007/978-3-319-21668-3_6
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/11804192_17

Free Facts: An Alternative to Inefficient Axioms in Dafny 167

7. Barras, B., et al.: The Coq Proof Assistant Reference ManualâĂŕ: Version. vol. 6,
p. 1 (2006)

8. Barrett, C., et al.: Cvc4. In: Computer Aided Verification: 23rd International Con-
ference, CAV 2011, Snowbird, pp. 171–177. Springer, Heidelberg (2011)

9. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Model
Checking, pp. 305–343. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-10575-8_11

10. Becker, N., Müller, P., Summers, A.J.: The axiom profiler: inderstanding and
debugging SMT quantifier instantiations. In: Vojnar, T., Zhang, L. (eds.) TACAS
2019. LNCS, vol. 11427, pp. 99–116. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17462-0_6

11. Blanc, R., Kuncak, V., Kneuss, E., Suter, P.: An overview of the Leon verifica-
tion system: verification by translation to recursive functions. In: Proceedings of
the 4th Workshop on Scala (SCALA 2013), pp. 1–10. Association for Computing
Machinery (2013)

12. Bornholt, J., et al.: Using lightweight formal methods to validate a key-value stor-
age node in Amazon S3. In: Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles (SOSP 2021), pp. 836–850. Association for Com-
puting Machinery (2021)

13. Chudnov, A., et al.: Continuous formal verification of Amazon s2n. In: Chockler,
H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 430–446. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96142-2_26

14. Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Theorem
Proving in Higher Order Logics: 22nd International Conference, TPHOLs 2009,
Munich, 17–20 August 2009, pp. 23–42. Springer, Heidelberg (2009)

15. Cutler, J.W., Hicks, M., Torlak, E.: Improving the Stability of Type Safety
Proofs in Dafny (2024). https://popl24.sigplan.org/details/dafny-2024-papers/3/
Improving-the-Stability-of-Type-Safety-Proofs-in-Dafny. in [1]

16. De Moura, L., Bjørner, N.: Efficient E-matching for SMT solvers. In: Automated
Deduction–CADE-21: 21st International Conference on Automated Deduction Bre-
men, 17–20 July 2007, pp. 183–198. Springer, Heidelberg (2007)

17. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3), 365–473 (2005)

18. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall (1976)
19. Furia, C.A., Nordio, Martín and Polikarpova, N., Tschannen, J.: AutoProof: auto-

active functional verification of object-oriented programs. Int. J. Softw. Tools Tech-
nol. Transf

20. Hamza, J., Voirol, N., Kunčak, V.: System FR: formalized foundations for the
stainless verifier. Proc. ACM Program. Lang. 3, 1–30 (2019)

21. Hance, T., Lattuada, A., Hawblitzel, C., Howell, J., Johnson, R., Parno, B.: Storage
Systems are Distributed Systems (So Verify Them That Way!), pp. 99–115 (2020)

22. Hawblitzel, C., et al.: IronFleet: proving practical distributed systems correct. In:
Proceedings of the 25th Symposium on Operating Systems Principles (SOSP 2015),
pp. 1–17. Association for Computing Machinery (2015)

23. Ho, S., Pit-Claudel, C.: Incremental Proof Development in Dafny with Module-
Based Induction (2024). in [1]

24. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. NASA Formal
Methods 6617, 41–55 (2011)

25. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Aspects Comput. 27(3), 573–609 (2015)

https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-030-17462-0_6
https://doi.org/10.1007/978-3-030-17462-0_6
https://doi.org/10.1007/978-3-319-96142-2_26
https://popl24.sigplan.org/details/dafny-2024-papers/3/Improving-the-Stability-of-Type-Safety-Proofs-in-Dafny
https://popl24.sigplan.org/details/dafny-2024-papers/3/Improving-the-Stability-of-Type-Safety-Proofs-in-Dafny

168 T. Bordis and K. R. M. Leino

26. Klein, G., et al.: seL4: formal verification of an operating-system kernel. Commun.
ACM 53(6), 107–115 (2010)

27. Leino, K.R.M.: Ecstatic: an object-oriented programming language with an
axiomatic semantics. In: The Fourth International Workshop on Foundations of
Object-Oriented Languages (1997)

28. Leino, K.R.M.: Specification and verification of object-oriented software. In: Broy,
M., Sitou, W., Hoare, T. (eds.) Engineering Methods and Tools for Software Safety
and Security, NATO Science for Peace and Security Series D: Information and
Communication Security, vol. 22, pp. 231–266. IOS Press (2009)

29. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4_20

30. Leino, K.R.M., Pit-Claudel, C.: Trigger selection strategies to stabilize program
verifiers. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
361–381. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_20

31. Liu, J., et al.: P4v: practical verification for programmable data planes. In: Proceed-
ings of the 2018 Conference of the ACM Special Interest Group on Data Commu-
nication (SIGCOMM 2018), pp. 490–503. Association for Computing Machinery
(2018)

32. McLaughlin, S., Jaloyan, G.A., Xiang, T., Rabe, F.: Enhancing Proof Stabil-
ity (2024). https://popl24.sigplan.org/details/dafny-2024-papers/14/Enhancing-
Proof-Stability, in [1]

33. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

34. Mugnier, E., McLaughlin, S., Tomb, A.: Portfolio Solving for Dafny (2024).
https://popl24.sigplan.org/details/dafny-2024-papers/8/Portfolio-Solving-for-
Dafny, in [1]

35. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5_2

36. Nelson, L., Bornholt, J., Gu, R., Baumann, A., Torlak, E., Wang, X.: Scaling
symbolic evaluation for automated verification of systems sode with serval. In:
Proceedings of the 27th ACM Symposium on Operating Systems Principles (SOSP
2019), pp. 225–242. Association for Computing Machinery (2019)

37. Protzenko, J., et al.: EverCrypt: a fast, verified, cross-platform cryptographic
provider. In: 2020 IEEE Symposium on Security and Privacy (SP), pp. 983–1002
(2020)

38. Srinivasan, P., Padon, O., Howell, J., Lattuada, A.: Domesticating Automation
(2024). https://popl24.sigplan.org/details/dafny-2024-papers/2/Domesticating-
Automation. in [1]

39. Swamy, N., et al.: Dependent types and multi-monadic effects in F*. In: Proceed-
ings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2016), pp. 256–270. Association for Computing
Machinery (2016)

https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-319-41528-4_20
https://popl24.sigplan.org/details/dafny-2024-papers/14/Enhancing-Proof-Stability
https://popl24.sigplan.org/details/dafny-2024-papers/14/Enhancing-Proof-Stability
https://doi.org/10.1007/978-3-540-78800-3_24
https://popl24.sigplan.org/details/dafny-2024-papers/8/Portfolio-Solving-for-Dafny
https://popl24.sigplan.org/details/dafny-2024-papers/8/Portfolio-Solving-for-Dafny
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://popl24.sigplan.org/details/dafny-2024-papers/2/Domesticating-Automation
https://popl24.sigplan.org/details/dafny-2024-papers/2/Domesticating-Automation

Free Facts: An Alternative to Inefficient Axioms in Dafny 169

40. Vazou, N., et al.: Refinement reflection: complete verification with SMT. Proc.
ACM Program. Lang. 2(POPL), 1–31 (2017)

41. Zhou, Y., Bosamiya, J., Takashima, Y., Li, J., Heule, M., Parno, B.: Mariposa:
measuring SMT instability in automated program verification. In: Proceedings of
the 23rd Conference on Formal Methods in Computer-Aided Design (FMCAD
2023), pp. 178–188 (2023)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Understanding Synthesized Reactive
Systems Through Invariants

Rüdiger Ehlers(B)

Clausthal University of Technology, Clausthal-Zellerfeld, Germany

ruediger.ehlers@tu-clausthal.de

Abstract. In many applications for which reactive synthesis is attrac-
tive, computed implementations need to have understandable behavior.
While some existing synthesis approaches compute finite-state machines
with a structure that supports their understandability, such approaches
do not scale to specifications that can only be realized with a large num-
ber of states. Furthermore, asking the engineer to understand the internal
structure of the implementation is unnecessary when only the behavior
of the implementation is to be understood.

In this paper, we present an approach to computing understandable
safety invariants that every implementation satisfying a generalized reac-
tivity(1) specification needs to fulfill. Together with the safety part of the
specification, the invariants completely define which transitions between
input and output proposition valuations any correct implementation can
take. We apply the approach in two case studies and demonstrate that
the computed invariants highlight the strategic decisions that implemen-
tations for the given specification need to make, which not only helps
the system designer with understanding what the specification entails,
but also supports specification debugging.

1 Introduction

In reactive synthesis, a reactive system implementation is automatically com-
puted from its specification. Such systems continuously interact with their envi-
ronment (as usual in embedded systems) and synthesis promises to drastically
increase developer productivity by freeing her/him from having to write the
implementation along with the specification. As a consequence, a developer can
then focus on getting the specification correct and complete, which is needed in
development processes for safety- or business-critical systems anyway.

There are however two major obstacles that currently prevent the widespread
use of reactive synthesis in the field. The first one is scalability : for instance,
reactive synthesis from linear temporal logic (LTL) specifications has a doubly-
exponential time complexity [33]. This problem is partially mitigated by work
on practical reactive synthesis, which spurred substantial performance increases
over the last two decades [16]. Furthermore, by focusing on specification for-
malisms with a lower synthesis complexity that pair well with symbolic reason-
ing, such as generalized reactivity(1) specifications [8] in combination with binary
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 170–187, 2025.
https://doi.org/10.1007/978-3-031-71162-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_9&domain=pdf
http://orcid.org/0000-0002-8315-1431
https://doi.org/10.1007/978-3-031-71162-6_9

Understanding Synthesized Reactive Systems Through Invariants 171

decision diagrams, the scalability of reactive synthesis can be further improved,
which led to the successful execution of the first practical case studies [6,7,12,26].
The corresponding synthesis approach is also commonly called GR(1) synthe-
sis, in which the specifications consist of safety properties (which restrict the
transitions allowed by the environment and the system) and liveness properties.

The second obstacle to the widespread use of reactive synthesis in the field
is, somewhat unintuitively, a lack of trust in the correctness of the synthesized
implementations. While the computed implementations are guaranteed to be
correct-by-construction, they are only correct with respect to the specification
written by the system’s engineer and not the implicit expectations that the engi-
neer or the later user of the system have [23]. Indeed it has been noticed that
the high degree of specification engineering needed for reactive synthesis is a
substantial challenge [3,13,31]. Ensuring system correctness in reactive synthe-
sis however goes beyond getting the specification right, as a synthesized system
typically needs to also convey trust in its correct functioning. Synthesized sys-
tems often behave in unexpected ways, for instance by working against their
environments [5,30], which causes several problems. Firstly, if the system is to
interact with a human, the human may lose trust in the system if the system
behaves in unexpected ways [24]. Similarly, to allow engineers to rely on the
correct functioning of a synthesized component when using it in the context of
a bigger system, they need to understand why a synthesized system behaves the
way it does (also called predictable behavior [36]). Finally, when servicing bigger
systems with synthesized components, unexpected system behavior can misin-
form the error diagnosis of a deployed system. In all three cases, we see that a
system’s behavior needs to be understandable for the system to be useful.

This understandability question could be addressed by accompanying the
synthesized implementation with a human-readable explanation of how it oper-
ates. While the specification sets the boundaries of a synthesized system’s behav-
ior, the synthesis process concretizes them by the strategic choices that a system
needs to make to avoid the eventual violation of its specification. These neces-
sary strategic choices, in a sense, represent how the system needs to plan ahead
to be able to satisfy the specification regardless of the future input. For instance,
a robot controller operating in a shared workspace with humans needs to avoid
situations in which it can be trapped by humans, and an explanation of what
the robot needs to avoid as a consequence could be a side-output of a synthesis
process to document that the system’s behavior is reasonable. This explana-
tion would also help with system integration activities in which the synthesized
implementation is used as a component.

But how can an explanation look like? It has to be readable in order to be
useful, but readability is a soft target. For systems with a low number of states,
the implementation itself (or the set of changes made during the development
process to accommodate all specification parts) could be used as an explana-
tion, but especially when synthesizing from generalized reactivity(1) specifica-
tions, the generated implementations often need to be large, and the approach
is unattractive in such cases. Furthermore, it normally suffices to explain the

172 R. Ehlers

behavior of the synthesized system, rather than its internal structure. For gen-
eralized reactivit(1) specifications, we can however observe that since the safety
part of a specification provides boundaries on the transitions that a system can
make, the specification itself already provides a large part of the explanation of
how a system behaves by defining which transitions are allowed by the system.
As the safety specification part is manually written, it needs to be understand-
able, as otherwise the specifier cannot know if it is correct. What is still left to
explain are however the strategic choices that a correct implementation needs to
make in order to accommodate all possible future input. In other words, we could
explain the system’s behavior by identifying the invariants that a synthesized
implementation needs to maintain in addition to satisfying the safety specifica-
tion. If these are in human-readable form, then we obtain an explanation of the
system behavior.

In this paper, we present an approach to identifying invariants that all syn-
thesized implementations need to maintain. We target GR(1) synthesis, which
can be reduced to finding a winning strategy in a synthesis game in which the
states are exactly the valuations to the input and output variables. We show that
in this context, both the strongest and weakest possible invariants are Boolean
functions that characterize which input/output combinations must never occur
during the execution of a correct system implementation, and these functions
are called local input/output invariants in this paper. Since neither the strongest
nor weakest local input/output invariants are necessarily easy to interpret, we
present an approach to pick and decompose some invariant in between them so
that we obtain a minimal number of mixed monotone/antitone invariants. In
this class, every invariant consists of a single worst-case variable valuation and
a couple of cases that are “also bad”. Every variable valuation that is some mix-
ture of the worst case and a bad case is then also a state to avoid. Our invariant
class is quite general and for instance contains all linear inequalities over state
variables, including when variables together binary-encode a number.

Our algorithm is intended to be used in the scope of an iterative specification
development process, where after each addition to the specification, the engineer
checks which invariants the specification entails. These invariants can then be
added to the specification as documentation and to restrict the set of reachable
states in the game, which also ensures that the invariants are not found again
after subsequent specification refinements. As the invariants are added step-
by-step and are mixed monotone/antitone, they tend to be comparably simple
and understandable, as we demonstrate in two case studies, which concern the
synthesis of graphical user interface glue code and a generalized buffer controller
[7]. We also demonstrate in the case studies that identifying invariants is a useful
specification debugging step: by examining the invariants, an engineer can get
some insight into whether the specification is correct and complete.

1.1 Related Work

While invariant identification is a classical task in many sub-fields of formal
methods, such as software verification [32], in reactive synthesis, this problem

Understanding Synthesized Reactive Systems Through Invariants 173

is less explored. Work on inferring (safety) assumptions on the environment
that make a specification realizable can however be seen as related [1,11,27].
Such assumptions represent a kind of invariant: if the environment fulfills the
assumptions all of the time, the system under design also fulfills its specification.
The focus in this context is however not on fostering the understandability of a
synthesized implementation, but making a specification realizable.

In order to improve the understandability of synthesized systems, one can
enforce a certain structure of the solutions. For instance, Lustig and Vardi [28]
show how to compute an implementation consisting only of components from a
library. Aminof et al. [2] on the other hand show how to generate an implementa-
tion consisting of a hierarchy of components, hence enforcing a certain structure.
Finally, Khalimov and Jacobs [21] gave an approach to compute parameterized
arbitrarily scalable systems. All these approaches however do not come with a
guarantee that their results are indeed easy to understand. On a smaller scale,
there are also works that aim at making a synthesized finite-state machine easier
to understand. For instance, Finkbeiner and Klein [17] presented an approach
for synthesizing controllers that are as small as possible while bounding the size
of cycles, which allows engineers to understand a controller by looking at small
implementation parts in isolation. Baumeister et al. [3] proposed to explain a
controller by looking at its evolution when successively adding new specification
parts. After each addition, a small repair is generated that explains how the con-
troller had to be changed to accommodate the additional specification part. An
implementation can also be made more understandable by making use of typical
program structures rather than representing the implementation as a finite-state
machine. For instance, a synthesis approach based on two-way automata [18,29]
generates small programs in a simple programming language. However, the scal-
ability of the approach is currently also limited to very small programs. Further
related work on synthesizing understandable implementations is given in the
survey paper on challenges in reactive synthesis by Torfah and Kress-Gazit [25].
In contrast to all aforementioned work on synthesizing understandable imple-
mentations, we focus on synthesizing understandable invariants that augment
the specification parts that the system engineer already understands. As such,
the approach scales to specifications that require large numbers of states in an
implementation, which is commonly the case for generalized reactivity(1) speci-
fications.

The survey paper by Torfah and Kress-Gazit [25] also discusses a wide variety
of existing methods for helping with specification debugging in reactive synthesis.
The difficulty of writing correct temporal specifications has been acknowledged in
multiple application domains, including software [20], hardware design [15] and
autonomous system verification [19]. In reactive synthesis, specification debug-
ging is particular important [13], as all relevant properties of a system under
design need to be specified in order to guarantee them. Our invariant genera-
tion approach augments existing specification debugging techniques because it
allows to check for surprising invariants (which indicate problems with the spec-
ification) and the absence of expected implied invariants (which indicates that

174 R. Ehlers

satisfying the new specification part in the intended way can be side-stepped by
the implementation).

2 Preliminaries

Sets and Variables: For a finite alphabet Σ, we denote the set of finite
sequences of Σ as Σ∗ and the set of infinite such sequences as Σω. We will
typically use the Boolean valuations 2V to some variable set V as alphabet. For
notational conciseness, we treat assignments x : V → B and subsets of V repre-
senting the variables with true values interchangeably. We use 0 and 1 as shorter
representatives for the Boolean values false and true, respectively.

Boolean Formulas: A Boolean formula over some set of variables V is in con-
junctive normal form if it is a conjunction of clauses, which are disjunctions of
literals, which are in turn variables or their negation. Boolean formulas represent
Boolean functions, which map variable valuations to false and true. In the latter
case, we call the valuation satisfying. We will sometimes treat a Boolean function
as a set of assignments satisfying it. Satisfiability (SAT) solving is the process
of checking if a Boolean formula has a satisfying assignment (and computing
such a valuation). We say that among a set of Boolean functions f1, . . . , fn, a
Boolean function fi (for 1 ≤ i ≤ n) is the strongest if every model (satisfying
assignment) of fi is a model of fj for all 1 ≤ j ≤ n. Boolean functions can
also be represented as reduced ordered binary decision diagrams (BDDs, [10]).
These are acyclic directed graphs with a root node and 0 and 1 as sink nodes.
Each non-sink-node n is labeled with a variable var(n) and has a then-successor
then(n) and an else-successor else(n). The BDD maps those valuations to true
that include a path from the root node along which the 1 node is eventually
reached, where we take the then-successor of a node whenever the variable by
which the node is labeled has a true value in the valuation, and we take the
else-successor otherwise. We do not consider the extension of complemented else-
edges [9], which some BDD libraries offer, in the presentation of this paper, and
on a technical level translate these on-the-fly to BDDs without complemented
else-edges for the implementation of the presented approach.

Generalized Reactivity(1) Synthesis: The GR(1) synthesis approach [8]
targets a specific class of specifications. Given as input to the synthesis process
are disjoint finite sets of input and output variables (also called propositions)
API and APO and a specification ϕ of the following form:

ϕ =
(
ϕA

I ∧ ϕA
S ∧ ϕA

L

) →s

(
ϕG

I ∧ ϕG
S ∧ ϕG

L

)

The left-hand side of this equation contains the assumptions that, intuitively,
encode what environment behavior the implementation to synthesize can assume.
The right-hand side of the equation contains the guarantees, which the imple-
mentation needs to satisfy. Both assumptions and guarantees are split into:

– initialization properties, which define the allowed initial values of the propo-
sitions API and APO,

Understanding Synthesized Reactive Systems Through Invariants 175

– safety properties, which restrict the possible changes between the valuations
of V = API ∪ APO when the system makes a transition, and

– liveness properties, which define valuations of V that should occur infinitely
often along a trace of the system.

Traces of synthesized systems are, as usual, finite or infinite sequences of val-
uations of V. The →s symbol in the above GR(1) specification shape denotes
strict implication (explained in detail in [22] without naming it), which intu-
itively means that the implementation must not violate the guarantees before
the environment violates its assumptions. More formally, the strict implication
holds if along all possible traces w = ρ0ρ1 . . . ∈ (2V)ω of the system, we have:

(a) if ρ0 |= ϕA
I , then ρ0 |= ϕG

I ,
(b) if ρ0 |= ϕA

I ∧ϕG
I , then for the smallest index i ∈ N∪{∞} such that (ρi, ρi+1) �|=

ϕG
S or i = ∞, we have that for some i′ ≤ i, we have (ρi′ , ρi′+1) �|= ϕA

S , or
(c) if the previous two cases not already define whether a trace satisfies ϕ, then

the trace satisfies ϕ if and only if the trace satisfies ϕA
L → ϕG

L .

We say that a specification is realizable if there exists an implementation such
that along all of its traces the specification is satisfied. Such an implementation
can be represented as a Mealy machine, which induces the system’s executions
as its set of traces, where we consider both finite and infinite traces (and their
prefixes). For the simplicity of presentation, we assume that a synthesized Mealy
machine for a specification ϕ does not induce traces along which the environment
assumptions of ϕ are violated. As a consequence, there may exist finite traces
for the Mealy machine that cannot be extended to an infinite trace of it.

Details on GR(1) synthesis and all further constraints on the specification
shape can be found in the paper by Bloem et al. [7], who also presented a syn-
thesis algorithm based on reducing the synthesis problem to solving a game
between an input and an output player. The states in this game are the pos-
sible valuations to V, and each state v ⊆ V is either losing or winning for the
system player, where the latter means that the system player can enforce that a
trace starting with v satisfies ϕ\I =

(
ϕA

S ∧ ϕA
L

) →s

(
ϕG

S ∧ ϕG
L

)
. Determining the

winning states W for the system player can be done using Boolean operations
over BDDs, and checking realizability then amounts to checking if for all input
proposition valuations x ⊆ API with x |= ϕA

I , there exists some y ⊆ APO such
that (x, y) |= ϕG

I and (x, y) ∈ W .
We denote the set of traces that does not violate ϕ after a finite number of

steps by the rules above as Lϕ. We say that some subset of finite traces L ⊆ (2V)∗

is a safety property if it is prefix-closed, i.e., for every word ρ0 . . . ρn ∈ L for some
n ∈ N, we also have ρ0 . . . ρn−1 ∈ L.

3 Computing Mixed Monotone/Antitone Invariants

In this paper, we present an approach to computing invariants that are satisfied
by any implementation of a given realizable GR(1) specification. In this con-
text, we only need to consider invariants that restrict the set of input/output
combinations that can occur along a system’s trace, as we show next.

176 R. Ehlers

Definition 1. Let V = API ∪ APO be a set of atomic propositions and M be a
Mealy machine. Let us furthermore for some Boolean formula B over V define
the language LB = {ρ0ρ1 . . . ρn−1 ∈ (2V)∗ | ∀0 ≤ i ≤ n − 1. ρi |= B}, i.e., the
language over finite words for which each letter in each word in the language
satisfies B. We say that B is a local input/output invariant of M if every finite
trace of M is in LB.

The following lemma proves that for GR(1) specifications, the restriction to local
input/output invariants does not restrict the generality of our approach.

Lemma 1. Let V = API ∪APO and ϕ = (ϕA
I ∧ϕA

S ∧ϕA
L) →s (ϕG

I ∧ϕG
S ∧ϕG

L) be
a GR(1) specification. There exists a unique strongest Boolean formula B over V
with the following property: Let L ⊆ (2V)∗ be a safety property that is satisfied by
every trace of every Mealy machine over (API ,APO) that implements a GR(1)
specification ϕ. Then, we have L ⊇ Lϕ ∩ LB, i.e., L is not a stronger invariant
than LB when considering Lϕ as already set.

Proof. Let W ⊆ 2V be the set of positions that are winning in the GR(1) game
for ϕ. We show that B =

∨
i∈N

Bi for B0 = {v ∈ W | v |= ϕA
I ∧ ϕG

I } and Bi+1 =
{v′ ∈ W | ∃v ∈ Bi. (v, v′) |= ϕA

S ∧ ϕG
S } for every i ∈ N has this property. Note

that B characterizes the set of winning positions in the synthesis game reachable
from some initial winning position while taking only transitions through winning
positions. If for some j ∈ N, we have B0 ∨ . . . ∨ Bj = B0 ∨ . . . ∨ Bj−1, then we
know that B = B0 ∨ . . . ∨ Bj−1, hence B can be computed in a finite number of
steps as there are only finitely many variables in V.

Let us first show that B is a local input/output invariant. To see this, consider
the converse, i.e., there exists a correct implementation having a finite trace
ρ = ρ0 . . . ρn−1 such that ρn−1 �|= B. Let ρ be a shortest such trace, so for all
0 ≤ i < n − 1, we have ρi |= B. If now ρn−1 is not in B, then either (a) n > 1
and ρn−1 is not reachable from ρn−2 via a transition satisfying ϕA

S and ϕG
S , (b)

ρn−1 is not in W , or (c) n = 1 and ρn−1 �|= ϕA
I ∧ ϕG

I . In case (a), the transition
from ρn−2 to ρn−1 is not an allowed part of a correct implementation, which is
a contradiction. In case (b), we have that by the construction of the synthesis
game, since ρn−1 /∈ W , there exists a strategy for the environment to make ϕ\I

violated when starting with ρn−1, so the implementation needs to have some
trace violating ϕ\I and which starts with an initial state (satisfying ϕA

I ∧ ϕG
I),

which overall contradicts the satisfaction of ϕ by the implementation. In case
(c), either the assumption from page 6 that along no trace of the Mealy machine,
assumptions are violated, does not hold, or ϕG

I is violated, which means that the
specification is violated along the trace.

Finally, let us now prove that L ⊇ Lϕ ∩ LB holds. Assume that the converse
holds, i.e., we have some ρ = ρ0 . . . ρn−1 ∈ (2V)∗ such that ρ /∈ L but ρ ∈ Lϕ∩LB .
An implementation can have ρ as a (prefix) trace by for the first n steps of
its execution choosing arbitrary output allowed by ϕ while staying in the set
of winning positions and after n steps following some winning strategy, which
exists from a winning state. As ρ is in Lϕ and has ρn−1 ∈ W , indeed ρ can be

Understanding Synthesized Reactive Systems Through Invariants 177

a prefix trace of a satisfying implementation. But then, L is not an invariant of
all implementations, yielding a contradiction. ��

This lemma essentially states that for every safety property that every imple-
mentation of a specification satisfies along every trace in addition to the speci-
fication, we can provide a local input/output invariant achieving the same, and
hence if our interest is in computing safety properties that every implementation
satisfies in addition to the specification, we only need to compute a strongest
possible local input/output invariant. The proof of the lemma above provides a
procedure for doing so, which can also be executed with BDDs.

While the computed strongest local input/output invariant B can be rep-
resented as a conjunctive or disjunctive normal form Boolean formula or as a
BDD to explain what the specification entails, this is often not useful. The set
B contains only reachable and winning states, and hence specifications implying
a set of reachable positions that is complex to represent often cause B to have
a complex representation, too. For invariants that augment the specification, we
however have some flexibility regarding which local input/output invariant we
choose, which can be exploited.

Definition 2. Let B be the unique strongest local input/output invariant for a
given specification ϕ. We say that another Boolean function B′ over V satisfies
the B-boundary condition if for every v, v′ ∈ 2V , if v |= B, then v |= B′, and if
furthermore v′ �|= B and (v, v′) |= ϕA

S ∧ ϕG
S hold, we have v′ �|= B′.

Lemma 2. Let B′ be a Boolean function satisfying the B-boundary condition
for the strongest local input/output invariant B for a specification ϕ. We have
that B′ is also a local input/output invariant satisfied by all implementations of
ϕ.

Proof. For a proof by contradiction, assume that there exists an implementation
satisfying ϕ with a trace ρ = ρ0 . . . ρn−1 such that ρn−1 �|= B, but ρn−1 |= B′.
Without loss of generality, let ρ be a shortest such trace. If n = 1, then as
ρ0 |= ϕA

I ∧ ϕG
I , this means that ρ0 is not a winning position, which contradicts

that the implementation satisfies the specification. Otherwise, if n > 1, then
ρn−2 |= B, but ρn−1 �|= B. By the definition of B, there are two reasons for
why ρn−1 is not included in B then. If ρn−1 is not reachable from ρn−2 while
satisfying ϕA

S ∧ ϕG
S , then this contradicts that the implementation satisfies ϕ.

The other possible reason is that ρn−1 is not a winning position in the game,
which also contradicts that the implementation under concern satisfies ϕ. ��

Note that the Boolean functions B′ satisfying the B-boundary condition are
not unique in general, which we can exploit in order to choose one that is easier
to represent and to explain. However, there is a weakest such invariant.

Lemma 3. Let {B′
1, . . . , B

′
m} be all possible local input/output invariants sat-

isfying the B-boundary condition for the strongest local input/output invariant
B for some specification ϕ. Then we have that B̃ =

∨
1≤i≤m B′

i is also a local
input/output invariant for every implementation of ϕ, and the invariant satisfies
the B-boundary condition.

178 R. Ehlers

Proof. We prove that for a pair of Boolean local input/output invariants B′
i and

B′
i+1, we have that B′

i ∨ B′
i+1 is also a local input/output invariant. The claim

then follows by applying this argument m − 1 times.
Note that B′

i ∨ B′
i+1 is indeed a local input/output invariant, as if along any

trace of any system satisfying ϕ, we only have letters that are models of B′
i and

we only have letters that are models of B′
i+1, then this holds for B′

i ∨ B′
i+1 by

definition.
Now let both B′

i and B′
i+1 satisfy the B-boundary condition. If v |= B,

then we know v |= B′
i and v |= B′

i+1, and hence v |= B′
i ∨ B′

i+1 as well. If
furthermore v′ �|= B and (v, v′) |= ϕA

S ∧ ϕG
S hold, then since B′

i and B′
i+1 satisfy

the B-boundary condition, we know that v′ �|= B′
i and v′ �|= B′

i+1, and hence
v′ �|= B′

i ∨ B′
i+1. ��

Note that B̃ can be obtained by computing the set of positions v′ that B̃ must
not map to true according to Definition 2 and choosing its complement as B̃.

In this paper, we propose a process that computes a local input/output invari-
ant between B and B̃ (i.e., an invariant B′ such that both B → B′ and B′ → B̃
are Boolean functions that are equivalent to true) along with its decomposition
into mixed monotone/antitone invariants, which are defined as follows.

Definition 3. Let V be a set of variables. We say that a subset of valuations
I ⊆ 2V is a mixed monotone/antitone invariant if there exists a worst case
valuation w and a set of bad cases bw

0 , . . . , bw
m−1, all in 2V such that the following

holds: A valuation v ⊆ V has that v �|= I if and only if there exists some bad case
bw
i such that for some selection of variables V ⊆ V, we have v = (w∩V)∪(bw

i \V).

The last condition in the definition essentially states that every variable valua-
tion that does not satisfy a mixed monotone/antitone invariant is a mixture of
the variable values in the worst case valuation and a corresponding bad case.
Note that in the special case of an empty set of bad cases, the mixed mono-
tone/antitone invariant accepts all variable valuations.

Many invariants are mixed monotone/antitone. For instance, the linear
inequality 3·x1+6·x2−4·x3−8·x4 ≥ 1 over the variables {x1, x2, x3, x4} is mixed
monotone/antitone. The worst case is the valuation for which the sum on the
left-hand side is as small as possible, i.e., {x3, x4}, and the possible bad cases are
the other valuations violating the inequality. In this context, only the valuations
∅, {x1, x3}, {x1, x4}, {x2, x4}, {x1, x2, x3, x4} are actually needed as bad cases,
because all other valuations violating the equality can be obtained by mixing
one of them with the worst case. In general, every inequality f(x1, . . . , xn) ≤ c
for some constant c is a mixed monotone/antitone invariant if the function f
is either monotone or antitone in every argument. This includes all polynomial
inequalities in which the monotone and antitone elements are never mixed.

Not all local input/output invariants B′ are mixed monotone/antitone (such
as the exclusive or function between two variables). However, every local
input/output invariant B′ can be represented as the conjunction of mixed mono-
tone/antitone invariants. From an algorithmic point of view, we solve the fol-
lowing core problem in this paper:

Understanding Synthesized Reactive Systems Through Invariants 179

Algorithm 1. Algorithm for computing n mixed monotone/antitone invariants
1: function ComputeInvariants(V,ϕ,W ,m)
2: B ← ϕI

A ∧ ϕI
G ∧ W

3: while fixed point of B not reached do
4: B ← B ∨ {v′ ∈ 2V | ∃v ∈ B.(v, v′) |= ϕA

S ∧ ϕG
S , v′ |= W}

5: B̃ = {v′ ∈ 2V | ∀v ∈ 2V .v ∈ B ∧ (v, v′) |= ϕA
S ∧ ϕG

S → v′ ∈ W}
6: ψ ← true, BAD 	→ ∅
7: while ψ is satisfiable do
8: a ← satisfying assignment of ψ
9: wi = {xj 	→ a(bi,j) | 1 ≤ j ≤ |V|} for 1 ≤ i ≤ m

10: Ii = 2V \ {f ∈ V 	→ B | ∃θ ∈ BAD : a(ci,θ) = true, ∀1 ≤ j ≤ |V|.f(xj) =
wi(j) ∨ f(xj) = θ(j)} for all 1 ≤ i ≤ m

11: if I1 ∧ . . . ∧ Im ∧ ¬B̃ ≡ false then
12: return w1, . . . , wm, I1, . . . , Im as solution

13: Sample a random assignment θ from I1 ∧ . . . ∧ Im ∧ ¬B̃ and add θ to BAD
14: ψ ← ψ ∧ ∨

1≤i≤m ci,θ

15: ψ ← ψ ∧ ∧
1≤i≤m,1≤j≤|V|(ci,θ → (bi,j ↔ di,θ))

16: for all BDD nodes ξ in the BDD for B do
17: if xj ← var(y) ∈ V then
18: ψ ← ψ ∧ {(eξ,θ ∧ (dj,θ ∨ ¬θ(xj)) → ethen(ξ),θ}
19: ψ ← ψ ∧ {(eξ,θ ∧ (¬dj,θ ∨ θ(xj)) → eelse(ξ),θ}
20: ψ ← ψ ∧ eB,θ ∧ ¬e1,θ

21: return no solution found

Definition 4. Let B and B̃ be Boolean functions over a set of variables V
and m ∈ N. We want to compute a set of mixed monotone/antitone invariants
I1, . . . , Im (along with their worst and bad cases) such that B′ = I1 ∧ . . . ∧ Im

for some Boolean function B′ such that B → B′ and B′ → B̃ each are Boolean
formulas that are equivalent to true.

By computing B and B̃ according to Lemma 1 and Lemma 3, we can use a
solution to the problem from Definition 4 to compute a set of m mixed mono-
tone/antitone invariants that together induce a local input/output invariant in
between B and B̃. By first trying to solve this problem for m = 0, and increasing
m one by one until a solution is found, we can find a smallest possible set of
mixed monotone/antitone invariants. Note that for every realizable specification,
such a set of invariants can be found – in the worst case, we use a separate mixed
monotone/antitone invariant for each valuation not in B̃.

3.1 Computing a Set of Mixed Monotone/antitone Invariants

Algorithm 1 describes an approach to computing a minimally sized set of mixed
monotone/antitone invariants in pseudocode, where for notational simplicity, we
assume that the variable set in the specification is V = {x1, . . . , xn}. Lines 1-5 are
concerned with computing the state sets B and B̃ defined above. The remaining
lines of the algorithm then solve the problem from Definition 4. For this purpose,

180 R. Ehlers

we employ counter-example guided inductive synthesis [34] (CEGIS) using an
incremental satisfiability (SAT) solver. An empty SAT instance is allocated in
line 6 together with the initially empty set of bad cases. The rest of the algorithm
consists of the main CEGIS loop. It starts by the SAT solver finding a list of
worst cases and an assignment of the bad cases to the worst cases such that no
induced mixed monotone/antitone invariant rules out a variable valuation that
is a model of B. We employ the following set of SAT variables:

– The variables {bi,j}1≤i≤m,1≤j≤|V| are used for the value of variable xj in worst
case number i.

– The variables {ci,θ}1≤i≤m,θ∈BAD are used for encoding that bad case θ is
assigned to the worst case number i.

– The variables {dj,θ}1≤j≤|V|,θ∈BAD are used for encoding the worst case valu-
ation that will be used for the bad case θ.

For the simplicity of presentation, we assume in Algorithm 1 that variables are
allocated in the SAT solver on-the-fly. Furthermore, for readability, we use some
non-clausal constraints. Since every of them has a fixed number of elements,
we can translate them easily without helper SAT variables to clauses in an
implementation of Algorithm 1.

Initially, the solver’s SAT instance is empty, so that an arbitrary list of worst
cases is computed in line 9. In the following line, the corresponding invariants are
computed based on the assignment of bad cases to invariants. If the invariants
together cover all states not in B̃, this is detected in line 11 and the found
invariants are returned along with their worst cases.

Whenever it is instead found that some state not in B̃ still needs to be covered
by some invariant, in line 13, a random new bad case is computed. Randomness
is used to get a diverse set of bad cases in order to heuristically improve the
coverage of 2V \ B̃ by the mixed monotone/antitone invariants regardless of
which worst cases are chosen by the SAT solver.

For the new bad case θ, in lines 14 and 15, clauses are added that require
the SAT solver to assign the bad case to one of the worst cases and to copy the
values of the chosen worst case to the variables {di,θ}1≤i≤|V|. Finally, in lines 16
to 19, we encode the check if in a BDD for B, any Boolean valuation between
the worst case and the bad case leads to the 1 sink, which would indicate that
safe reachable states are ruled out by the mixed monotone/antitone invariant
(which is disallowed as we compute invariants that every implementation must
fulfill). For this purpose, we use the following set of additional variables:

– The variables {eξ,θ}ξ is a node in the BDD of B,θ∈BAD are used to encode that for
some variable valuation between bad case θ and its assigned worst case, the
BDD node ξ in the BDD for B is reachable from the root.

When iterating over the BDD nodes of B, the then/else successor of a reachable
node is reachable if the respective variable value in the worst case valuation is
true/false, respectively. In case the value of the bad case and the worst case
differ, the respective other BDD successor node is also reachable.

Understanding Synthesized Reactive Systems Through Invariants 181

If at some point, the SAT solver finds no satisfying assignment, we know
that the bad cases cannot be allocated to any set of m worst cases, and then the
algorithm terminates without a solution in line 21.

We can also employ a couple of optimizations in addition to the core com-
ponents of our approach shown in Algorithm 1. First of all, symmetry breaking
on the SAT instance can be applied to require the worst case variable valuations
to be in lexicographical order. The respective clauses are added once before
the main CEGIS loop. Furthermore, whenever for some value of m, no set of
invariants is found, in the algorithm run for m + 1 invariants, the SAT instance
can be bootstrapped by executing lines 14 to 19 for bad examples found pre-
viously. Also, input/output variables of the synthesis problem instance that do
not appear in the BDD for B can be removed from consideration in the whole
algorithm.

We also apply some BDD optimizations to the computed mixed monotone/
antitone invariants to reduce their representation as BDDs (which we give to
the user) while keeping their values on all positions in B ∨ ¬B̃, which are the
relevant positions for the correctness of an invariant. This includes trying to
existentially or universally quantify variables from the invariant as well as using
a BddRestrict optimization on B ∨ ¬B̃, which heuristically merges some BDD
nodes.

4 Experiments and Case Studies

We implemented the approach from this paper as a plugin for the reac-
tive synthesis tool slugs [14], available in a branch with experimental plu-
gins at https://github.com/VerifiableRobotics/slugs/tree/unstable-linuxonly-
extensions. The SAT solver CaDiCaL [4] is used for incremental SAT solving
and compiled into the slugs executable. We also use the CUDD binary decision
diagram library [35]. Computation times (single-threaded) were taken on a com-
puter with an i9-12900H CPU and 32 Gigabyte of RAM.

We demonstrate our invariant computation approach on two case studies.
The first case study concerns GUI glue code synthesis [12], while the second one
concerns the classical generalized buffer GR(1) synthesis benchmark (from [7]).

4.1 GUI Glue Code Synthesis

When developing programs with a graphical user interface, its developer needs
to write event handlers that define how the program reacts in response to events
such as button clicks and background computation threads terminating. We con-
sider here a GR(1) specification for the GUI↔backend interaction for a white-
board photo postprocessing application, which we modeled after an existing
such application that can be downloaded from https://github.com/progirep/
BBPhoto. The application has a wizard -like user interface with four views that
can be switched between using forward and backward buttons. The overall invari-
ant computation time for this case study is 7.5 s. For the final specification with

https://github.com/VerifiableRobotics/slugs/tree/unstable-linuxonly-extensions
https://github.com/VerifiableRobotics/slugs/tree/unstable-linuxonly-extensions
https://github.com/progirep/BBPhoto
https://github.com/progirep/BBPhoto

182 R. Ehlers

the invariants, the slugs tool computes an implementation with 172 (explicit)
states.

Step 1: We start by specifying GUI behavior on the first view of the wizard,
where the user clicks four times to define the boundaries of the screen part
showing the whiteboard. The GUI glue code also has to trigger redrawing the
view after every click. We also declare the forward and backward buttons to
switch between the views. The specification is realizable, and a single invariant
BDD over four propositions (shown in Fig. 1a) is computed that states that at
every time, only one proposition for the currently selected boundary may have
a true value.

Step 2: In this step, the first parts of the specification for the second view of
the wizard are added. The tool computes that no additional invariant is needed.

Step 3: Now, the remaining specification parts for a second wizard view with a
preview of the processed whiteboard photo is added. A computation thread for
updating the preview is defined, and there are sliders for changing some image
processing setting. Whenever a slider moves, the preview update thread needs
to eventually run.

Two invariants are generated, shown in Fig. 1b and Fig. 1c. The minimized
first invariant is just a 4-literal clause stating that if the second view is shown
while the computation thread is running and a state variable tracking if the
thread still has to be started has a false value, the forward button of the wizard
has to be enabled. The second invariant encodes that if the computation thread is
running or is marked as that it still needs to run, the forward button must not be
enabled. The invariants together show an error in the specification, which already
has a constraint defining when exactly the forward button is to be enabled—this
constraint however erroneously talks about the state before a transition rather
than after a transition, and the found invariants identify this oversight.

Step 4: In this step, the third “please wait” view is added that is used when
computing the full-resolution image after clicking “next” on the previous view.
An additional computation thread is executed while this view is active. As upon
completion of the thread, the view of the wizard changes to the next final one,
propositions defining the existence of the final view are also added in this step.

A single invariant is computed, with 13 BDD nodes (not counting sinks).
During some manual variable reordering, one can find that the BDD tends to
get smaller when moving some variables of the one-hot encoding of the current
view to the top. We move all of them to the top (as exactly one should have
a true value at every point in time), and we obtain the BDD in Fig. 1d from
which we can make observations. The BDD has paths corresponding to the first
two views being visible at the same time as well as no view being visible, which
indicates that there is no specification part enforcing that this cannot happen.
Other than that, the BDD paths leading to the 0 node represent the condition
that if the please wait view is shown, the forward button should not be enabled,
and if the resolution selection page is shown, the computation thread of the

Understanding Synthesized Reactive Systems Through Invariants 183

previous view must not be running. Together, these constraints implement the
invariant.

Step 5: Additional specification parts are added in this step that represent that
on the final view, a thread for computing final images in different resolutions run
in the background, and since the threads access the same data, they must not
run concurrently. Some other specification parts encode when the new thread
need to start. The specification becomes unrealizable, and an analysis reveals
that by the user going quickly forward and backwards through the views, she
can enforce to start multiple threads at the same time, which is disallowed.

Fig. 1. Some mixed monotone/antitone invariants represented as BDDs. Then-Edges
are drawn solid, Else-edges are dashed. Paths to the 0 sink are drawn with gray color
(Color figure online).

Step 6: The possibility for the system to deactivate the “back” button is added
to address unrealizability. A new invariant is computed whose BDD has 15 nodes.
It can be decomposed manually step-by-step by looking at BDD paths to the 0
node, adding specification parts ruling out this path, and recomputing an invari-
ant with a smaller BDD representation to read off the next specification part
after each addition. The first constraint states that if the preview computation
thread still needs to start after the forward button has been pressed, the back-
ward button needs to be disabled (to avoid the user going back-and-forth). The
second invariant part states that if any thread apart from the preview thread
is running and the second view is shown, no variable indicating an outstanding
thread starting may have a true value. The third invariant part is more complex
and lists cases in which the backward button must not be enabled. All of them
have in common that the third view is shown. We realize at this point that a

184 R. Ehlers

specification part for ensuring that the button is always disabled on the third
view is missing and add it as a strengthened invariant.

Finally, we can identify an invariant part that states that whenever the final
view is shown, the computation thread of the “please wait” page runs, and the
preview thread still needs to be run, then the backward button should not be
enabled. This invariant shows that it is possible for an implementation to have
background threads of other views running in the final view, which is undesired
and indicates that the specification should be changed.

4.2 Generalized Buffer

As a second example, we consider a generalized buffer benchmark with three
receivers and two senders, as described by Bloem et al. [7]. Its synthesized
implementation has 1098 states. Applying our approach directly on the final
specification yields that three mixed monotone/antitone invariants suffice (after
9 min and 20 s of computation time), and 1349 negative examples are enumer-
ated before these invariants are found. The invariant BDDs are however relatively
large and have between 58 and 195 nodes. We hence split the specification engi-
neering process into steps again while adding the computed invariants after each
step, with an overall computation time of 3.5 s. In three out of the seven steps,
invariants are computed and in two of them, the BDDs have four nodes each.
The invariants encode that no two acknowledgements to different senders may
be given by the buffer controller at the same time as well as being in one of
two states of a specification automaton encoded into the specification for certain
requests of the buffer’s data receiver. In the remaining step with invariants com-
puted, however, two large invariants BDDs are found. We identified that this is
caused by B containing few positions, so that it is possible for the algorithm to
spuriously squeeze the reachable but non-winning positions into two invariants.
When using W instead of B in line 16 of Algorithm 1 and removing the conjunc-
tion with W in line 2, three invariants become necessary (which are found after
1.8 s of computation time), which are at least partially readable (with 10, 38, and
106 nodes). After adding the invariants for the first two BDDs and rerunning
the tool, the change in reachable states results in a BDD with 17 nodes for the
final invariant, which is then easier to encode.

5 Conclusion

In this paper, we presented an approach to computing a minimal set of mixed
monotone/antitone invariants implied by a specification in generalized reactiv-
ity(1) synthesis. We provided two case studies that show that the approach is
indeed suitable for computing readable invariants in all cases except for the final
invariants in the second case study, where we had to compute stronger invari-
ants to improve their representation. The first case study also demonstrates
the use of computing invariants for specification debugging. We leave exploiting
such invariants to speed up synthesis and utilizing them in order to compute

Understanding Synthesized Reactive Systems Through Invariants 185

smaller implementations to future work. Furthermore, we note that computing
invariants for synthesized implementations that can be used to structure their
representation (e.g., as a circuit or as program code) is also still to be explored.

Most of the invariants in the case studies were already readable because our
approach performs a decomposition into multiple Boolean functions, hence mak-
ing each of them more readable. Also, it uses the fact that any invariant between
two specific Boolean functions is suitable. Yet, we plan to replace BDDs as invari-
ant representation in future work and to develop solver-based techniques for
computing smaller Boolean formula representations for the decomposed invari-
ants.

Acknowledgements. This work was supported by the DFG through Grant No.
322591867. The author thanks Ayrat Khalimov for feedback on the work.

References

1. Alur, R., Moarref, S., Topcu, U.: Pattern-based refinement of assume-guarantee
specifications in reactive synthesis. In: 21st International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), pp. 501–516
(2015)

2. Aminof, B., Mogavero, F., Murano, A.: Synthesis of hierarchical systems. In: Arbab,
F., Ölveczky, P.C. (eds.) FACS 2011. LNCS, vol. 7253, pp. 42–60. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-35743-5 4

3. Baumeister, T., Finkbeiner, B., Torfah, H.: Explainable reactive synthesis. In: 18th
International Symposium on Automated Technology for Verification and Analysis
(ATVA), pp. 413–428 (2020)

4. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T., Fro-
leyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) SAT Competition 2020
– Solver and Benchmark Descriptions. Department of Computer Science Report
Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

5. Bloem, R., Ehlers, R., Könighofer, R.: Cooperative reactive synthesis. In:
Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364, pp. 394–410.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24953-7 29

6. Bloem, R., Galler, S.J., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Interactive presentation: automatic hardware synthesis from specifications: a case
study. In: 2007 Design, Automation and Test in Europe Conference and Exposition
(DATE), pp. 1188–1193 (2007)

7. Bloem, R., Galler, S.J., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Specify, compile, run: hardware from PSL. In: Proceedings of the Workshop on
Compiler Optimization meets Compiler Verification (COCV@ETAPS 2007), pp.
3–16 (2007)

8. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)

9. Brace, K.S., Rudell, R.L., Bryant, R.E.: Efficient implementation of a BDD pack-
age. In: 27th ACM/IEEE Design Automation Conference (DAC), pp. 40–45 (1990).
https://doi.org/10.1145/123186.123222

https://doi.org/10.1007/978-3-642-35743-5_4
https://doi.org/10.1007/978-3-319-24953-7_29
https://doi.org/10.1145/123186.123222

186 R. Ehlers

10. Bryant, R.E.: Symbolic manipulation of Boolean functions using a graphical rep-
resentation. In: 22nd ACM/IEEE Conference on Design automation (DAC), pp.
688–694 (1985)

11. Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Environment assumptions for syn-
thesis. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp.
147–161. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-
9 14

12. Ehlers, R., Adabala, K.: Reactive synthesis of graphical user interface glue code.
In: 17th International Symposium on Automated Technology for Verification and
Analysis (ATVA), pp. 387–403 (2019)

13. Ehlers, R., Raman, V.: Low-effort specification debugging and analysis. In: Pro-
ceedings 3rd Workshop on Synthesis, SYNT 2014, Vienna, July 23–24, 2014, pp.
117–133 (2014)

14. Ehlers, R., Raman, V.: Slugs: extensible GR(1) synthesis. In: Chaudhuri, S.,
Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 333–339. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-41540-6 18

15. Fey, G., Ghasempouri, T., Jacobs, S., Martino, G., Raik, J., Riener, H.: Design
understanding: from logic to specification. In: IFIP/IEEE International Conference
on Very Large Scale Integration (VLSI-SoC), pp. 172–175 (2018)

16. Finkbeiner, B.: Synthesis of reactive systems. In: Dependable Software Systems
Engineering, NATO Science for Peace and Security Series - D: Information and
Communication Security, vol. 45, pp. 72–98. IOS Press (2016)

17. Finkbeiner, B., Klein, F.: Bounded cycle synthesis. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9779, pp. 118–135. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41528-4 7

18. Gerstacker, C., Klein, F., Finkbeiner, B.: Bounded synthesis of reactive programs.
In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 441–457.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4 26

19. Gladisch, C., Heinz, T., Heinzemann, C., Oehlerking, J., von Vietinghoff, A.,
Pfitzer, T.: Experience paper: search-based testing in automated driving control
applications. In: 34th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), pp. 26–37 (2019)

20. Holzmann, G.J.: The logic of bugs. ACM SIGSOFT Softw. Eng. Notes 27(6), 81–87
(2002)

21. Khalimov, A., Jacobs, S., Bloem, R.: Towards efficient parameterized synthesis. In:
Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp.
108–127. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35873-
9 9

22. Klein, U., Pnueli, A.: Revisiting synthesis of GR(1) specifications. In: Barner, S.,
Harris, I., Kroening, D., Raz, O. (eds.) HVC 2010. LNCS, vol. 6504, pp. 161–181.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19583-9 16

23. Könighofer, R., Hofferek, G., Bloem, R.: Debugging formal specifications: a prac-
tical approach using model-based diagnosis and counterstrategies. Int. J. Softw.
Tools Technol. Transf. 15(5–6), 563–583 (2013)

24. Kress-Gazit, H., et al.: Formalizing and guaranteeing human-robot interaction.
Commun. ACM 64(9), 78–84 (2021)

25. Kress-Gazit, H., Torfah, H.: The challenges in specifying and explaining synthe-
sized implementations of reactive systems. In: 3rd Workshop on formal reason-
ing about Causation, Responsibility, and Explanations in Science and Technology
(CREST@ETAPS), pp. 50–64 (2018)

https://doi.org/10.1007/978-3-540-85361-9_14
https://doi.org/10.1007/978-3-540-85361-9_14
https://doi.org/10.1007/978-3-319-41540-6_18
https://doi.org/10.1007/978-3-319-41528-4_7
https://doi.org/10.1007/978-3-319-41528-4_7
https://doi.org/10.1007/978-3-030-01090-4_26
https://doi.org/10.1007/978-3-642-35873-9_9
https://doi.org/10.1007/978-3-642-35873-9_9
https://doi.org/10.1007/978-3-642-19583-9_16

Understanding Synthesized Reactive Systems Through Invariants 187

26. Kress-Gazit, H., Wongpiromsarn, T., Topcu, U.: Correct, reactive, high-level robot
control. IEEE Robot. Autom. Mag. 18(3), 65–74 (2011)

27. Li, W., Dworkin, L., Seshia, S.A.: Mining assumptions for synthesis. In: 9th
IEEE/ACM International Conference on Formal Methods and Models for Code-
sign, MEMOCODE 2011, Cambridge, 11–13 July 2011, pp. 43–50 (2011)

28. Lustig, Y., Vardi, M.Y.: Synthesis from component libraries. Int. J. Softw. Tools
Technol. Transf. 15(5–6), 603–618 (2013)

29. Madhusudan, P.: Synthesizing reactive programs. In: Bezem, M. (ed.) 20th Annual
Conference of the EACSL (CSL). LIPIcs, vol. 12, pp. 428–442. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2011). http://drops.dagstuhl.de/opus/portals/
extern/index.php?semnr=11007

30. Majumdar, R., Piterman, N., Schmuck, A.-K.: Environmentally-friendly GR(1)
synthesis. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp.
229–246. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1 13

31. Maoz, S., Ringert, J.O.: Spectra: a specification language for reactive systems.
Softw. Syst. Model. 20(5), 1553–1586 (2021)

32. Neider, D., Madhusudan, P., Saha, S., Garg, P., Park, D.: A learning-based app-
roach to synthesizing invariants for incomplete verification engines. J. Autom. Rea-
son. 64(7), 1523–1552 (2020)

33. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive mod-
ule. In: Automata, Languages and Programming, 16th International Colloquium,
ICALP89, Stresa, 11–15 July 1989, pp. 652–671 (1989)

34. Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S.A., Saraswat, V.A.: Combina-
torial sketching for finite programs. In: 12th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS),
pp. 404–415. ACM (2006). https://doi.org/10.1145/1168857.1168907

35. Somenzi, F.: CUDD: CU decision diagram package, release 3.0.0 (2015)
36. Sztipanovits, J., et al.: Toward a science of cyber-physical system integration. Proc.

IEEE 100(1), 29–44 (2012)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://drops.dagstuhl.de/opus/portals/extern/index.php?semnr=11007
http://drops.dagstuhl.de/opus/portals/extern/index.php?semnr=11007
https://doi.org/10.1007/978-3-030-17465-1_13
https://doi.org/10.1145/1168857.1168907
http://creativecommons.org/licenses/by/4.0/

Combining Classical and Probabilistic
Independence Reasoning to Verify

the Security of Oblivious Algorithms

Pengbo Yan1(B) , Toby Murray1 , Olga Ohrimenko1 ,
Van-Thuan Pham1 , and Robert Sison2

1 The University of Melbourne, Melbourne, Australia
pengboy@student.unimelb.edu.au,

{toby.murray,oohrimenko,thuan.pham}@unimelb.edu.au
2 UNSW Sydney, Sydney, Australia

r.sison@unsw.edu.au

Abstract. We consider the problem of how to verify the security of
probabilistic oblivious algorithms formally and systematically. Unfortu-
nately, prior program logics fail to support a number of complexities that
feature in the semantics and invariants needed to verify the security of
many practical probabilistic oblivious algorithms. We propose an app-
roach based on reasoning over perfectly oblivious approximations, using
a program logic that combines both classical Hoare logic reasoning and
probabilistic independence reasoning to support all the needed features.
We formalise and prove our new logic sound in Isabelle/HOL and apply
our approach to formally verify the security of several challenging case
studies beyond the reach of prior methods for proving obliviousness.

1 Introduction

Side-channel attacks allow attackers to infer sensitive information by eavesdrop-
ping on a program’s execution, when the sensitive data are not directly observ-
able (e.g. because they are encrypted). For example, sensitive documents or
secret images can be reconstructed by only observing a program’s memory access
pattern [15,20,24]. Many algorithms are charged with the protection of secrets
in application contexts where such attacks are realistic, for example, cloud com-
puting [28,35], secure processors [8,21] and multiparty computation [19].

The goal of an oblivious algorithm (e.g. path ORAM [32], Melbourne shuffle
[25]) is to hide its secrets from an attacker that can observe memory accesses.
Probabilistic oblivious algorithms aim to do so while achieving better perfor-
mance than deterministic oblivious algorithms. The various programming dis-
ciplines to defend against such attacks for deterministic algorithms [1,22] often
lead to poor performance: e.g. to hide the fact that an array is accessed at a

This work has been supported in part by the joint CATCH MURI-AUSMURI and the
Melbourne Graduate Research Scholarship.

c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 188–205, 2025.
https://doi.org/10.1007/978-3-031-71162-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_10&domain=pdf
http://orcid.org/0000-0003-0396-8343
http://orcid.org/0000-0002-8271-0289
http://orcid.org/0000-0002-9735-0538
http://orcid.org/0000-0002-9871-3695
http://orcid.org/0000-0003-0313-9764
https://doi.org/10.1007/978-3-031-71162-6_10

Combining Classical and Probabilistic Independence Reasoning 189

certain position, one may have to iterate over the entire array [5]. Probabilis-
tic oblivious algorithms avoid this inefficiency by performing random choices
at runtime to hide their secrets from attackers more efficiently. Unfortunately,
probabilistic methods for achieving obliviousness are error prone and some have
been shown insecure, as a result requiring non-trivial fixes [10,13].

In this paper we develop a program logic to verify the security of probabilistic
oblivious algorithms formally and systematically. We adopt the standard threat
model for such programs, in which the attacker is assumed to be able to infer
the memory access pattern (e.g. either by explicitly observing memory requests
in case of untrusted/compromised operating system or by measuring the time
its own memory accesses take due to shared resources like caches) [4,9,11,32].

Although some previous works [3,7,31,34] exist, many oblivious algorithms
have complex semantics and invariants that are beyond the reach of those prior
methods to reason about. For example, path ORAM [32] maintains an invariant
stating that virtual addresses are independent of each other and of the program’s
memory access patterns; whereas the oblivious sampling algorithm [28] contains
secret- or random-variable-dependent random choices, conditional branches and
loops, whose details we introduce in Sect. 2 and Sect. 5.

Also, to achieve efficiency, some oblivious algorithms [25,30,32] forgo per-
fection and have a very small probability of failure, which means that they do
not perfectly hide their secrets. Fortunately, they are intentionally designed so
that the failure probability is bounded by some negligible factor (e.g. of the
size of the secret data), meaning that they are secure in practice. Following
prior work [25,32], this means that we can prove them secure by reasoning over
perfectly oblivious approximations, the theoretical and perfect version of the
practical algorithms that are free of failure by construction (Appendix A.1 of
the extended version of this paper [33] justifies this claim). Proving negligible
error probability bounds on oblivious algorithms is an important goal, but is out
of scope of this present work.

Reasoning over the perfectly oblivious approximations requires an app-
roach that supports for all of the following:

– Assertions that describe probability distributions and independence;
– Reasoning about dynamic random choices over secrets and random variables

– e.g. a random choice of integers from 1 to random secret variable s;
– Reasoning about branches that depend on secret random variables;
– Reasoning over loops that have a random number of iterations.

Our approach addresses these challenges simultaneously.
Following preliminaries (Sect. 3), in Sect. 4 we build a program logic that

combines classical and probabilistic reasoning to address the aforementioned
challenges, which we prove sound in Isabelle/HOL. Our logic is situated atop
the Probabilistic Separation Logic (PSL) [3]; proving the soundness of our logic
revealed several oversights in PSL [3], which we fixed (see Sect. 4.4).

To our knowledge, the reasoning our logic supports is beyond all prior meth-
ods for verifying obliviousness, including PSL [3], ObliCheck [31], λOADT [34],
and λobliv [7]. The combination of classical and probabilistic reasoning also makes

190 P. Yan et al.

our logic more expressive than previous probabilistic Hoare logics (e.g., [12],
VPHL [26] and pRHL [2]) which, because they lack assertions for describing
distributions and independence, are ill-suited to direct proofs of obliviousness.

Finally, we demonstrate the power of our logic by applying it on pen-and-
paper to verify, for the first time, the obliviousness of several non-trivial case
studies (Sect. 5). Their verification is a significant achievement in that they con-
stitute the fundamental building blocks for secure oblivious systems.

2 Overview

2.1 Challenges for Verification

Many probabilistic oblivious algorithms use probabilistic independence as a core
intermediate condition to prove their obliviousness informally on pen and paper
[25,28,30,32], which is intuitive and simple. However, such algorithms present a
range of challenges for formally verifying their obliviousness systematically.

We have constructed the example algorithm in Fig. 1 to illustrate in a sim-
plified form the kinds of complexities that will feature in the semantics and
invariants needed to prove our case studies (Sect. 5). The teal-coloured parts
show the verification and will be introduced in the next subsection. Our syn-
thetic algorithm takes an input array S with size n containing secret elements:
each either 0 or 1. The list O is empty initially but will be filled with some data
later. We want to prove O will not leak any information about S. The synthetic
algorithm first initialises array A with two random values sampled from the
integers between 0 and 7. Its nested loop illustrates the following challenges:

1. The outer loop iterates n times where the ith iteration will append A[S[i]]
to O (line 4). It simulates a simplified version of path ORAM [32], which
maintains an invariant that virtual addresses are independent of each other
and of the program’s memory access patterns. The secret S can be seen as a
sequence of secret virtual addresses and the output O represents the memory
access pattern. We need to prove an invariant that the elements in O are
independent of each other and independent of each element A[S[i]] appended
to O by the outer loop. Note: the assignment on line 4 breaks the independence
between O and A[S[i]], so lines 4–11 update A[S[i]] with a fresh random value
to re-establish the independence for the next loop iteration. This ensures O
is independent of S and will not leak secret information.

2. After initialising m with 8 on line 5, we have the inner loop containing a
probabilistic and secret-dependent if-conditional. Its secret dependence makes
the control flow different over different values of the secret. The iteration count
for the inner loop is truly random, depending on A[S[i]] (where each iteration
doubles m and increases j by 1 or 2 depending on whether j + S[i]%3 = 0).
These kinds of loops and conditionals are common in real-world oblivious
algorithms (Sect. 5), yet necessarily complicate reasoning.

Combining Classical and Probabilistic Independence Reasoning 191

Fig. 1. Verification of the motivating algorithm.

3. On line 10, the algorithm makes what we call a dynamic random choice,
which is one over a truly random set (here, from 1 to the random variable m),
assigning the chosen value to t. Then, (line 11) A[S[i]] is assigned t % 8. This
requires reasoning that t % 8 satisfies the uniform distribution on {0 · · · 7},
because m is certainly a multiple of 8. Dynamic random choices are also
common in real-world oblivious algorithms, as Sect. 5 demonstrates.

Lines 5 − 11 are derived from the oblivious sampling algorithm [28] (see
Appendix C.2 of the extended version [33]) to demonstrate challenges 2 and
3.

2.2 Mixing Probabilistic and Classical Reasoning

We show how to construct a program logic that combines classical and prob-
abilistic (and independence) reasoning over different parts of the program so
that it can verify our running example, as shown in Fig. 1. Namely, certain parts

192 P. Yan et al.

of the algorithm (lines 1, 2, 4, 10) require careful probabilistic reasoning, while
others do not, but that each style of reasoning can benefit the other.

Our program logic is constructed by situating these ideas in the context of
the Probabilistic Separation Logic (PSL) [3]. PSL is an existing program logic for
reasoning about probabilistic programs. PSL employs the separating conjunction
(here written �) familiar from separation logic [23] to capture when two proba-
bility distributions are independent. In situating our work atop PSL we extend
its assertion forms with the new Ct(·) assertion, to capture classical information.
More importantly, however, we significantly extend the resulting logic with a
range of novel reasoning principles for mixing classical and probabilistic reason-
ing embodied in a suite of new rules (Fig. 3), which we will present more fully in
Sect. 4. These new rules show how classical reasoning (captured by Ct(·) asser-
tions) can be effectively harnessed, and allow reasoning about dynamic random
choices, secret-dependent if-statements, and random loops, making our logic sig-
nificantly more applicable than PSL; while leveraging PSL’s support for intuitive
reasoning about probability distributions makes our logic also more expressive
than prior probabilistic program logics [2,12,26]. We also harness the close inter-
action between classical and probabilistic reasoning to allow new ways to prove
security (e.g., the Unif-Idp rule and the final proposition of Proposition 1, which
will be introduced in Fig. 3 and Sect. 4.1), and new ways to reason about random
sampling (embodied in the RSample rule, Fig. 3). Each represents a non-trivial
insight, and all are necessary for reasoning about real-world oblivious algorithms
(Sect. 5). The increase in expressiveness, beyond prior probabilistic program log-
ics [2,3,12,26], within a principled and clean extension of PSL attests to the
careful design of our logic.

The combination of classical and probabilistic reasoning means that our logic
tracks two kinds of atomic assertions, as follows.
Certain Assertions. Classical reasoning is supported by certain assertions
Ct(er) that state that some property er (which may mention random variables)
is true with absolute certainty, i.e. is true in all memories supported by the
current probabilistic state of the program. With certain assertions and classical
reasoning, our logic can reason about loops with random iteration numbers
and randomly secret-dependent if statements. Doing so requires distin-
guishing classical from distribution (independence) assertions, because the latter
are ill-suited for reasoning about random loops and conditionals.

For example, from line 5 to 9, although the random loop and the probabilistic-
and secret-dependent if statement complicate the algorithm, we only need clas-
sical reasoning to conclude that after the loop m is certainly a multiple of 8
(using the RLoop and RCond rules in Fig. 3, which have the classic form).
This information is sufficient to verify the remainder of the algorithm.
Distribution Assertions. On the other hand, reasoning about probability dis-
tributions is supported by distribution assertions, which we adopt and extend
from PSL: for a set expression ed (which is allowed to mention non-random pro-
gram variables), Ued

[er] states that expression er is uniformly distributed over
the set denoted by ed in the sense that when er is evaluated in the current

Combining Classical and Probabilistic Independence Reasoning 193

probabilistic state of the program it yields a uniform distribution over the evalu-
ation of ed. We define these concepts formally later in Sect. 4.1 (see Definition 2).
With this reasoning style, we support dynamic random choice (e.g. line 10,
the value is sampled from a truly probabilistic set), which is not supported by
previous works [2,3,7,12,26,31,34]. Note that we require ed to be deterministic
here because if ed can be probabilistic, then it means a probabilistic expression
satisfies a uniform distribution on a probabilistic set—a clear contradiction.

For example, at line 10, even if we do not specify the detailed distribution of
m, we can conclude t % 8 satisfies the uniform distribution on the set {0 · · · 7},
as m is certainly a multiple of 8, by an argument based on our concept of an
even partition (Definition 4). This reasoning is supported by our novel RSample
rule (Fig. 3). Here, it requires that all the possible sets (in this case, {1 · · · 8} or
{1 · · · 16} or ...) over which t was sampled, can each be evenly mapped to (and
thus partitioned by) the target set (here {0 · · · 7}) by the applied function (here
%8). Thus t % 8 must satisfy the uniform distribution on {0 · · · 7}.

Unifying Classical and Probabilistic Independence Reasoning. Another impor-
tant feature of our logic is that it allows independence to be derived by leveraging
classical reasoning. For example, considering line 10, 11, if a variable (A[S[i]])
always satisfies the same distribution (uniform distribution on {0 · · · 7}) over any
possible values of some other variables (O and A[1 − S[i]]), then the former is
independent of the latter (because O and A[1−S[i]] will not influence the values
of A[S[i]]). The new rule Unif-Idp (Fig. 3) embodies this reasoning (where �
denotes independence and D() stands for an arbitrary distribution).1

Our logic also includes a set of useful propositions (Proposition 1) that aid
deriving independence information from classical reasoning.

Returning to the example, with the conclusion that A[S[i]] is independent
of other variables, we can construct the loop invariant of the outer loop (inv(i))
stating that the output array O always satisfies a uniform distribution following
the ith iteration, which is captured by eight(i). We use the final proposition of
Proposition 1 here. Intuitively, this proposition says given a reversible function
(whose inputs can be decided by looking at its outputs, e.g. array appending),
if its two inputs satisfy uniform distribution and are independent of each other,
then the result of the function should satisfy the uniform distribution on the
product (by the function) of the two inputs’ distribution.

By the invariant, we can conclude finally the output array always satisfies
the uniform distribution on eight(n), regardless of secret S, which means the
output will not leak any secret information.

1 In this case we cannot use PSL’s frame rule because m is not independent of A.

194 P. Yan et al.

3 Preliminaries

3.1 Programming Language and Semantics

In this paper we define a probability distribution over a countable set A is a
function μ : A → [0, 1] where Σa∈Aμ(a) = 1. We write μ(B) for Σb∈Bμ(b) where
B can be any subset of A and D(A) for the set of all distributions over A.

The support of a distribution μ, supp(μ), is the set of all elements whose
probability is greater than zero, {a ∈ A | μ(a) > 0}.

A unit distribution over a single element, unit(a), is (λx. If a = x then 1 else 0).
A uniform distribution over a set, UnifS , is (λx. If x ∈ S then 1/|S| else 0).

Given a distribution μ over A and a function f from elements of A to a
distribution, f : A → D(B), we define bind(μ, f) = λb. Σa∈Aμ(a) · f(a)(b), used
to give semantics to random selections and assignments to random variables.

Given two distributions μA and μB over the sets A and B, we define μA ⊗
μB = λa, b. μA(a) · μB(b). Given a distribution μ over A × B, we define π1(μ) =
λa. Σb∈Bμ(a, b) and π2(μ) = λb. Σa∈Aμ(a, b). We say these two distributions
are independent if and only if μ = π1(μ) ⊗ π2(μ).

Given a distribution μ over some set A, and S ⊆ A where μ(S) > 0, let
E ⊆ A, we define (μ|S) = λE. μ(E∩S)

μ(S) , used to give semantics to conditional
statements, as is the following. Given two distribution μ1, μ2, and a number
p ∈ [0, 1], we define μ1 ⊕p μ2 = λx. p · μ1(x) + (1 − p) · μ2(x). When p is 1 or 0,
we unconditionally define the result to be μ1 or μ2 respectively.

Same as PSL’s memory model, we also distinguish deterministic from random
variables: only the latter can be influenced by random selections (i.e. by proba-
bilistic choices). We define DV as a countable set of deterministic variables and
RV as a countable set of random variables, disjoint from DV.

Let Val be the countable set of values, which we assume contains at least
the values true and false. When applying our logic, we will freely assume it
contains integers, lists, sets, and any other standard data types as required.
Let op be a set of operations on values, including binary functions on values of
type (Val × Val) → Val. In practice, we will assume it includes the standard
arithmetic, list and set operations, and others as required. Finally, let vset() be
a function of type Val → P(Val), taking one value and returning a non-empty,
finite set of values, for giving semantics to dynamic random choice.

Then let DetM = DV → Val be the set of deterministic memories, and
RanM = RV → Val the set of random variable memories. A semantic config-
uration is a pair (σ, μ), where σ ∈ DetM and μ ∈ D(RanM) (a probability
distribution over RanM). Configurations represent program states.

As with program variables, we define sets of deterministic and random expres-
sions, denoted DE and RE respectively. DE cannot mention random variables.

Definition 1 (Expressions). Expressions are either deterministic or random,
defined as follows:

Deterministic expressions : DE � ed ::=Val | DV | op DE DE

Random expressions : RE � er ::=Val | DV | RV | op RE RE

Combining Classical and Probabilistic Independence Reasoning 195

Note that DE is a subset of RE. Given a deterministic memory σ and a
random variable memory m, we write [[er]] (σ,m) as the evaluation of expres-
sion er. Expression evaluation is entirely standard and its definition is omitted
for brevity. The evaluation of deterministic expressions ed depends only on the
deterministic memory σ and so we often abbreviate it [[ed]]σ.

Following the distinction between deterministic and random variables, the
programming language also distinguishes deterministic and random conditionals
and loops. We define two sets of program commands for our language, where C
is the complete set of commands and RC is a subset of C containing so-called
“random” commands that cannot assign to deterministic variables. We write
ifD b then c to abbreviate ifD b then c else skip and likewise for ifR b then c.
As with PSL, our logic is defined for programs that always terminate.

RC � c ::= skip | RV ← RE
| RV ←$ URE | RC;RC
| ifD DE then RC else RC
| ifR RE then RC else RC
| whileD DE do RC
| whileR RE do RC

C � c ::= skip | DV ← DE
| RV ← RE | RV ←$ URE | C;C
| ifD DE then C else C
| ifR RE then RC else RC
| whileD DE do C
| whileR RE do RC

In practical verification, given an algorithm, we try to set all the variables as
deterministic variables at the beginning. Then, all the variables sampled from the
uniform distribution or assigned by an expression containing random variables
must be random variables. All the loop and if-conditions containing random
variables must be random loops/conditionals. All the variables assigned in a
random loop/conditional must be random variables. We repeat the above process
until no variable and loop/conditional will change their type.

The semantics (Fig. 2) of a command c ∈ C is denoted [[c]], which is a config-
uration transformer of type (DetM×D(RanM)) → (DetM×D(RanM)). Our
programming language extends that of PSL by allowing dynamic random choice,
in which a value is chosen from a set denoted by an random expression er ∈ RE
rather than a constant set. We also add random loops, whose condition can
depend on random expressions (rather than only deterministic expressions as in
PSL). These improvements increase the expressivity of the language, necessary
to capture the kinds of practical oblivious algorithms that we target in Sect. 5.
Unlike PSL, which defines its loop semantics somewhat informally, ours enables
direct mechanisation (in Isabelle/HOL).

4 Logic

4.1 Assertions

The assertions of our logic include those of PSL, which we extend with the
certainty assertion Ct(er) while extending the uniform distribution assertion
Ued

[er] by allowing the set to be specified by an expression ed (rather than
a constant as in PSL). The free variables of an expression e are denoted FV(e).

196 P. Yan et al.

Fig. 2. Programming Language Semantics

The domain of distribution μ over memories, written dom(μ), is the set of ran-
dom variables in the memories in the support of μ. AP denotes the set of atomic
assertions.

For a random variable expression er, Ct(er) asserts that er evaluates to true
in every memory consistent with the current configuration, i.e. it holds with abso-
lute certainty. Note that the set of random variable expressions er can accom-
modate all standard assertions from classical Hoare logic.

Definition 2 (Atomic Assertion Semantics).

[[Ct(er)]] = {(σ, μ) | ∀m ∈ supp(μ). [[er]] (σ,m) = true}
[[Ued

[er]]] = {(σ, μ) | FV(er) ∪ FV(ed) ⊆ dom(σ) ∪ dom(μ)
and Unifvset([[ed]]σ) = [[er]] (σ, μ)}

The assertion Ued
[er] asserts that the evaluation of random variable expres-

sion er yields the uniform distribution over the set denoted by the deterministic
expression ed when evaluated in the current deterministic memory, where the
vset() function is used to retrieve that denotation after evaluating ed (Sect. 3.1).
We require the expression ed to be deterministic as otherwise this assertion can
introduce contradictions (e.g. if the set expression instead denoted a truly ran-
dom set including possible sets {1, 2} and {0}, then er will not be uniformly
distributed on any set).

From PSL our logic inherits its other assertions and Kripke resource monoid
semantics. The assertions � (which holds always), ⊥ (which never holds), and
connectives ∧, ∨, → have their standard meaning. The separation logic [23] con-
nectives are ∗, which is separating conjunction and is used to assert probabilistic
independence; and →∗ is separating implication. See extended Appendix A.2 [33].

Note that Ct(P)∧Ct(Q) is equivalent to Ct(P ∧ Q), but Ct(a = 1) ∨Ct(a = 2)
is different to Ct(a = 1 ∨ a = 2): the former asserts that either a is always 1 or a
is always 2 (stronger); the latter asserts that always a is either 1 or 2 (weaker).

Combining Classical and Probabilistic Independence Reasoning 197

We also write D(x) to abbreviate Ct(x = x), which asserts that the variable
x is in the domain of the partial configuration. Any distribution of x satisfies
this assertion.

Finally, we introduce several useful propositions about assertions implication.
They are very useful in the verification and reflect the interplay between classical
and probabilistic independence reasoning, especially the last one.

Proposition 1.

|= (φ ∗ ψ) ∧ η → (φ ∧ η) ∗ ψ ,where |= φ → D(FV(η) ∩ RV) (1)
|= (φ ∗ ψ) → (φ ∧ ψ) (2)
|= US [e] ∧ Ct(f is a bijection from S to S′) → US′ [f(e)] (3)
|= (Ct(φ ∧ ψ)) → (Ct(φ) ∧ Ct(ψ)) (4)
|= (Ct(φ) ∧ Ct(ψ)) → (Ct(φ ∧ ψ)) (5)
|= US [e] → Ct(e ∈ S) (6)
|= US [e] ∧ Ct(e = e′) → US [e′] (7)
|= Ct(x = e ∧ x /∈ FV(e′)) ∧ D(e) ∗ D(e′) =⇒ D(x) ∗ D(e′) (8)

|= Ct(∀a, b ∈ S, c, d ∈ S′.f(a, c) = f(b, d) → a = b ∧ c = d) ∧ US [x] ∗ US′ [e′]
→ US×fS′ [f(x, e′)], where S ×f S′ = {f(a, b) | a ∈ S ∧ b ∈ S′}

(9)

The first two are inherited from PSL. The third one generalises a similar
proposition of PSL [3] over possibly different sets S and S′. The fourth and fifth
show the equivalence of ∧ whether inside or outside the certain assertions. The
sixth shows the straightforward consequence that if e is uniformly distributed
over set S, then the value of e must be in S. The seventh shows two expressions
satisfy the same distribution if they are certainly equal. The eighth shows if we
know that e is independent of e′ and we know another variable x = e additionally,
we can conclude that x is also independent of e′ if x is not a free variable in e′.

The last one also generalises a proposition of PSL [3] by leveraging Ct(·)
conditions: it restricts binary function f by requiring it to produce different
outputs when given two different pairs of inputs. In practice, we will use this
lemma letting f be the concatenation function on two arrays where S is a set
of possible arrays with the same length. We conclude the concatenated array
satisfies the uniform distribution on S times S′ if those premises hold.

4.2 Judgements and Rules

The judgements � {φ} c {ψ} of our program logic are simple Hoare logic correct-
ness statements, in which c is a program command and φ and ψ are preconditions
and postconditions respectively.

Definition 3 (Judgement Validity). Given two assertions φ, ψ and a pro-
gram command c, a judgement {φ}c{ψ} is valid if for all configuration (σ, μ)
satisfying (σ, μ) |= φ, we have [[c]] (σ, μ) |= ψ, denoted � {φ} c {ψ}.

198 P. Yan et al.

Fig. 3. Rules capturing the interplay of classical and probabilistic reasoning.

Our logic inherits all of PSL’s original rules [3] (see extended Appendix
A.3 [33] for details); many of them use the Ct(·) assertion to encode equality
tests, which were encoded instead in PSL primitively.

Figure 3 depicts the rules of our logic that embody its new reasoning princi-
ples, and support the requirements listed at Sect. 2.1. The random assignment
rule RAssign has the classical Hoare logic form. It requires the postcondition φ is
atomic to avoid unsound derivations, e.g. {0 = 0 ∗ 0 = 0} x = 0 {x = x ∗ x = x}.

As mentioned in Sect. 2.2, the RSample rule is another embodiment of the
general principle underlying the design of our logic, of classical and probabilistic
reasoning enhancing each other. Specifically, it allows us to deduce when a ran-
domly sampled quantity f(xr) (a function f applied to a random variable xr)
is uniformly distributed over set S′ when the random variable xr was uniformly
sampled over set S. It is especially useful when S is itself random. It relies on
the function f evenly partitioning the input set S into S′, as defined below.

Definition 4 (Even Partition). Given two sets S, S′ and a function f , we
say that f evenly partitions S into S′ if and only if S′ = {f(s)|s ∈ S} and there
exists an integer k such that ∀s′ ∈ S′. |{s ∈ S|f(s) = s′}| = k. In this case we
write EI(f, S, S′).

RSample allows reasoning over random choices beyond original PSL [3], and
in particular dynamic random sampling from truly random sets. For example,
at line 10 of Fig. 1, we have Ct(EI(f, S, S′)) where f = % 8, S = {0 · · · m}, S′ =
{0 · · · 7}. Letting k = m/8 with the above definition, we can prove the pre-
condition implies Ct(EI(f, S, S′)). Note that if m = 9 then Ct(EI(f, S, S′)) will
not hold because we cannot find k. The existence of k makes sure that S can be
evenly partitioned to S′ by f . Also, from our new random sample rule RSample,
one can obtain PSL’s original rule by letting S′ = S and f = (λx. x).

Besides PSL’s random conditional rule, we also include the RCond rule for
random conditions that operate over certainty assertions Ct(·). It is in many

Combining Classical and Probabilistic Independence Reasoning 199

cases more applicable because it does not require the branching condition to be
independent of the precondition and, while it reasons only over certainty asser-
tions, other conditions can be added by applying the Const rule [3]. The new
random loop rule RLoop is straightforward, requiring proof of the invariant φ
over a random conditional.

The final new rule Unif-Idp unifies two methods to prove the independence
of an algorithm’s output b from its input a: it says that if given any arbitrary
distribution of a we can always prove that the result b is uniformly distributed,
then a and b are independent because the distribution of a does not influence
b, where MV(c) is the variables c may write to (same as PSL’s definition). It
is useful for programs that consume their secrets by random choice at runtime
(e.g. Fig. 1 we verified in Sect. 2.2 and the Oblivious Sampling algorithm [28] we
verify in extended Appendix C.2 [33]).

As an example, we used this rule between line 10 and line 11 in Fig. 1 by
letting a = (O, A[1 − S[i]]) and P,Q be the other information in the assertion
before line 10. The first premise of the rule is true because these two lines of
code never modify O and A[1 − S[i]]. The second premise is also trivially true.
The third premise is proved by the RSample and RAssign rules. This yields
the conclusion that O and A[1 − S[i]] are independent of A[S[i]].

Note that the pre-condition Ct(a ∈ A) ∗ Q ∧ Ct(P) appears in both premise
and conclusion of the rule. Considering the Weak rule [3] (aka the classical con-
sequence rule), when the precondition is in the premise, we want it be as strong
as it can so that the premise is easier to be proved. When it is in conclusion, we
want it be as weak as it can so that the conclusion is more useful. These two
requirements guide us to design the rule with two free assertions connected by
∧ and ∗ respectively so that it is very flexible. If we change the pre-condition to
D(a) (deleting A,P,Q), this rule is still sound (which can be proved by letting
A be the universe set and P,Q be true) but much less applicable.

4.3 Soundness

Theorem 1. All the rules in Fig. 3, plus the other original PSL rules [3], are
sound, i.e. are valid according to Definition 3.

We formalised our logic and proved it sound in Isabelle/HOL (see the accom-
panying artifact). It constitute 7K lines of Isabelle and required approx. 8 person-
months to complete. Some of our Isabelle proofs follow PSL’s pen-and-paper
proofs but we also found several problems in PSL’s definitions and proofs. We
briefly discuss those now, to highlight the value and importance of machine-
checked proofs for establishing the soundness of program logics.

4.4 Oversights in Original PSL

Our machine-checked proofs identified various oversights in the pen-and-paper
formalisation of original PSL [3]. We fixed them either by modifying specific defi-
nitions or by finding an alternative—often much more complicated, but sound—
proof strategy.

200 P. Yan et al.

PSL [3] defines the notion of when a formula φ is supported (SP), requir-
ing that for any deterministic memory σ, there exists a distribution over random
variable memories μ such that if (σ, μ′) |= φ, then μ � μ′ (meaning that μ is a
marginal distribution of μ′ where dom(μ) ⊆ dom(μ′)) [3, Definition 6].

This definition aims to restrict the assertions used in PSL’s original rule
for random conditionals [3, rule RCond of Fig. 3], but it is not strong enough.
All the assertions satisfy it because μ can always be instantiated with the unit
distribution over the empty memory unit(∅ → Val), � all others. This means
the second example in their paper [3, Example 2] is a counterexample to their
rule for random conditionals because there is not any non-supported assertion.

We fixed this by altering their definition of SP. Note that simply excluding
the empty memory case is not enough to fix this problem. Instead, we have
Definition 5 and our Isabelle proofs ensure its soundness. It does not have a big
impact on adjusting the proofs strategy of relevant rules.

Definition 5 (Supported). An assertion φ is Supported (SP) if for any deter-
ministic memory σ, there exists a randomised memory μ such that if (σ, μ′) |= φ,
then μ � μ′ and (σ, μ) |= φ.

Additionally, key lemmas that underpin PSL’s soundness argument turned
out to be true, but not for the reasons stated in their proofs [3, Lemmas 1 and
2, Appendix B]. PSL’s Lemma 1 proof has mistakes in the implication case. The
second sentence of the implication case said, “there exists a distribution μ” such
that . . .”. However μ” may not exist because μ and μ′ may disagree on some
variables in FV(φ1, φ2). PSL’s Lemma 2 proof also has mistakes. They said “we
have (σ1, μ1) |= η” on the third line of proof but this is not true because σ1 may
not equal σ (the domain of σ1 could be smaller than σ). The actual proof of
these needs a different strategy which we found and formalized in Isabelle.

Without mechanising the soundness of our program logic, it is unlikely we
would have uncovered these issues. This shows the vital importance of mecha-
nised soundness proofs.

5 Case Studies

We applied our program logic to verify the obliviousness of four non-trivial
oblivious algorithms: the Melbourne Shuffle [25], Oblivious Sampling [28], Path
ORAM [32] and Path Oblivious Heap [30]. The details are in Appendix C of the
extended version of this paper [33].

While these proofs are manual, each took less than a person-day to complete,
except for Path Oblivious Heap, which took approx. 2 days of proof effort.

To our knowledge, the Melbourne Shuffle, Oblivious Sampling, and Path
Oblivious Heap have never been formally verified as each requires the combina-
tion of features that our approach uniquely supports. Path ORAM has received
some formal verification [16,27] (see later in Sect. 6) and also comes with an
informal but rigorous proof of security [32]. We verified it to show that our logic
can indeed encode existing rigorous security arguments.

Combining Classical and Probabilistic Independence Reasoning 201

In practice we need to distinguish the public memory locations and private
locations, where we assume any access to public memory locations is visible to
attackers. We add ghost code to record all public accesses in an array “Trace”
and finally we aim to prove that array is independent of secrets.

The Melbourne Shuffle [25] (see extended Appendix C.1 [33]) is an effective
oblivious shuffling algorithm used in cloud storage and also a basic building block
for other higher-level algorithms (e.g. oblivious sampling [28]). Its operation is
non-trivial, including rearranging array elements with dummy values and other
complexities. Its verification employs much classical reasoning because, while it
is probabilistic, its memory access pattern is deterministic (absent failure).

Oblivious sampling [28] (see extended Appendix C.2 [33]) is another impor-
tant building block having applications in differential privacy, oblivious data
analysis and machine learning. The algorithm obliviously samples from a data
set, by producing a uniformly-distributed memory access pattern, and includes
random and secret-dependent looping and if-statements, plus dynamic random
choices (shuffling on a truly probabilistic array). Thus our logic’s interplay
between classical and probabilistic reasoning is essential to verifying its secu-
rity.

Path ORAM [32] (see extended Appendix C.3 [33]) is a seminal oblivious
RAM algorithm with practical efficiency, providing general-purpose oblivious
storage. Path oblivious heap (extended Appendix C.4 [33]) is inspired by Path
ORAM and the two share the same idea: using a binary tree with a random and
virtual location table to store secret data, where the mappings between each
physical and virtual location are always independent of each other and of the
memory access pattern. Thus probabilistic independence is crucial to express and
prove these algorithms’ key invariants.

6 Related Work

Our program logic naturally extends PSL [3] non-trivially, including support
for classical reasoning, dynamic random choice, improved support for random
conditionals, random loops, and random assignments. Our mechanisation of PSL
identified and fixed a number of oversights (see Sect. 4.4).

Its unique synergy of classical and probabilistic independence reasoning
means our program logic is more expressive not only than PSL but also prior
probabilistic Hoare logics, such as [12], VPHL [26] and Easycrypt’s pRHL [2].

Probabilistic coupling (supported by pRHL and Easycrypt [2]) is another
popular way for proving the security of probabilistic algorithms. It does so by
proving the output distribution is equal between any pair of different secret
inputs, witnessed by a bijection probabilistic coupling for each probabilistic
choice. However, for dynamic random choice, the bijection probabilistic coupling
may not exist or may even be undefined (e.g. Fig. 1 and [28]). Sometimes, find-
ing the correct coupling can be far more challenging than proving the conclusion
directly via probabilistic independence. Indeed, the original informal security
proofs of our case studies [25,28,30,32] all use probabilistic independence to
argue their obliviousness, instead of coupling.

202 P. Yan et al.

Other program logics or type systems for verifying obliviousness also exist.
For example, ObliCheck [31] and λOADT [34] can check or prove obliviousness but
only for deterministic algorithms. λobliv [7] is a type system for a functional lan-
guage for proving obliviousness of probabilistic algorithms but it forbids branch-
ing on secrets, which is prevalent in many oblivious algorithms including those
in Sect. 5. It also forbids outputting a probabilistic value (and all other values
influenced by it) more than once. Our approach suffers no such restriction.

Path ORAM has received some verification attention [16,27]. [27] reason
about this algorithm but in a non-probabilistic model, instead representing it as
a nondeterministic transition system, and apply model counting to prove a secu-
rity property about it. Their property says that for any observable output, there
is a sufficient number of inputs to hide which particular input would have pro-
duced that output. This specification seems about the best that can be achieved
for a nondeterministic model of the algorithm, but would also hold for an imple-
mentation that used biased choices (which would necessarily reveal too much
of the input). Ours instead says that for each input the output is identically
distributed, and would not be satisfied for such a hypothetical implementation.
Nonetheless, it would be interesting to compare the strengths and weaknesses
of their complementary approach to ours. Hannah Leung et al. [16] recently pro-
posed to verify this algorithm in Coq, but as far as we are aware ours is the first
verification of Path ORAM via a probabilistic program logic.

Other recent work extends PSL in different ways. Ugo Dal Lago et al. [14]
extended PSL to computational security, but it cannot deal with loops (neither
deterministic nor probabilistic) so their target algorithms are very different to
ours. Lilac [17] also uses separating conjunction to model probabilistic inde-
pendence. Crucially, it supports reasoning about conditional probability and
conditional independence; John M. Li et al. [18] validated the design decisions
of Lilac. However, Lilac’s programming language is functional whereas ours is
imperative. Lilac does not support random loops or dynamic random choice,
which are essential for our aim.

IVL [29] reasons about probabilistic programs with nondeterminism. In doing
so it supports classical reasoning (e.g. for the nondeterministic parts) and proba-
bilistic reasoning for the probabilistic parts. Our logic reasons only about proba-
bilistic programs (with no nondeterminism) but allows using classical reasoning
to reason about parts of the probabilistic program, and for the classical and
probabilistic reasoning styles to interact and enhance each other.

Some oblivious algorithms and their security definition (e.g. Differentially
Oblivious Algorithms [6]) are not based on independence and they are beyond
the reach of our approach.

7 Conclusion and Future Work

We presented the first program logic that, to our knowledge, is able to verify
the obliviousness of real-world foundational probabilistic oblivious algorithms
whose implementations combine challenging features like dynamic random choice

Combining Classical and Probabilistic Independence Reasoning 203

and secret- and random-variable-dependent control flow. Our logic harnesses the
interplay between classical and probabilistic reasoning, is situated atop PSL [3],
and proved sound in Isabelle/HOL. We applied it to several challenging case
studies, beyond the reach of prior approaches.

Artifact Availability Statement

We published our Isabelle/HOL formalisation on
https://doi.org/10.5281/zenodo.12518321.

References

1. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F., Emmi, M.: Verifying
constant-time implementations. In: USENIX Security Symposium, vol. 16, pp. 53–
70 (2016)

2. Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt, B., Strub, P.-Y.:
EasyCrypt: a tutorial. In: Aldini, A., Lopez, J., Martinelli, F. (eds.) FOSAD 2012-
2013. LNCS, vol. 8604, pp. 146–166. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10082-1 6

3. Barthe, G., Hsu, J., Liao, K.: A probabilistic separation logic. Proc. ACM Program.
Lang. 4(POPL), 1–30 (2019). https://doi.org/10.1145/3371123

4. Bittau, A., et al.: Prochlo: strong privacy for analytics in the crowd. In: Proceedings
of the 26th Symposium on Operating Systems Principles (SOSP 2017), pp. 441–
459. Association for Computing Machinery, New York (2017). https://doi.org/10.
1145/3132747.3132769

5. Cauligi, S., et al.: Fact: a DSL for timing-sensitive computation. In: Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 174–189 (2019)

6. Chan, T.H.H., Chung, K.M., Maggs, B., Shi, E.: Foundations of differentially obliv-
ious algorithms. J. ACM 69(4), 1–49 (2022). https://doi.org/10.1145/3555984

7. Darais, D., Sweet, I., Liu, C., Hicks, M.: A language for probabilistically oblivious
computation. Proc. ACM Program. Lang. 4(POPL), 1–31 (2019). https://doi.org/
10.1145/3371118

8. Fletcher, C.W., Ren, L., Kwon, A., van Dijk, M., Stefanov, E., Devadas, S.: RAW
path ORAM: a low-latency, low-area hardware ORAM controller with integrity
verification. IACR Cryptol. ePrint Arch. 431 (2014). http://eprint.iacr.org/2014/
431

9. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM 43(3), 431–473 (1996). https://doi.org/10.1145/233551.233553

10. Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data
via oblivious RAM simulation. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011. LNCS, vol. 6756, pp. 576–587. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22012-8 46

11. Gruss, D., Spreitzer, R., Mangard, S.: Cache template attacks: automat-
ing attacks on inclusive last-level caches. In: 24th USENIX Security Sym-
posium (USENIX Security 15), pp. 897–912. USENIX Association, Washing-
ton, D.C. (2015). https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/gruss

https://doi.org/10.5281/zenodo.12518321
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1145/3371123
https://doi.org/10.1145/3132747.3132769
https://doi.org/10.1145/3132747.3132769
https://doi.org/10.1145/3555984
https://doi.org/10.1145/3371118
https://doi.org/10.1145/3371118
http://eprint.iacr.org/2014/431
http://eprint.iacr.org/2014/431
https://doi.org/10.1145/233551.233553
https://doi.org/10.1007/978-3-642-22012-8_46
https://doi.org/10.1007/978-3-642-22012-8_46
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss

204 P. Yan et al.

12. Hartog, J.I.: Verifying probabilistic programs using a hoare like logic. In: Thia-
garajan, P.S., Yap, R. (eds.) ASIAN 1999. LNCS, vol. 1742, pp. 113–125. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-46674-6 11

13. Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in)security of hash-based oblivious
ram and a new balancing scheme. In: Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2012), pp. 143–156. Soci-
ety for Industrial and Applied Mathematics (2012)

14. Lago, U.D., Davoli, D., Kapron, B.M.: On separation logic, computational inde-
pendence, and pseudorandomness (extended version) (2024). https://arxiv.org/
abs/2405.11987

15. Lee, S., Shih, M.W., Gera, P., Kim, T., Kim, H., Peinado, M.: Inferring fine-
grained control flow inside SGX enclaves with branch shadowing. In: 26th
USENIX Security Symposium (USENIX Security 17), pp. 557–574. USENIX Asso-
ciation, Vancouver (2017). https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/lee-sangho

16. Leung, H., Ringer, T., Fletcher, C.W.: Towards formally verified path Oram in
COQ (2023). https://dependenttyp.es/pdf/oramproposal.pdf

17. Li, J.M., Ahmed, A., Holtzen, S.: Lilac: a modal separation logic for conditional
probability. Proc. ACM Program. Lang. 7(PLDI), 148–171 (2023). https://doi.
org/10.1145/3591226

18. Li, J.M., Aytac, J., Johnson-Freyd, P., Ahmed, A., Holtzen, S.: A nominal approach
to probabilistic separation logic. In: Proceedings of the 39th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS 2024). Association for Computing
Machinery, New York (2024). https://doi.org/10.1145/3661814.3662135

19. Liu, C., Wang, X.S., Nayak, K., Huang, Y., Shi, E.: Oblivm: a programming frame-
work for secure computation. In: 2015 IEEE Symposium on Security and Privacy,
pp. 359–376 (2015). https://doi.org/10.1109/SP.2015.29

20. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: 2015 IEEE Symposium on Security and Privacy, pp. 605–
622 (2015). https://doi.org/10.1109/SP.2015.43

21. Maas, M., et al.: Phantom: practical oblivious computation in a secure processor.
In: Proceedings of the 2013 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS 2013), pp. 311–324. Association for Computing Machinery,
New York (2013). https://doi.org/10.1145/2508859.2516692

22. Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.: The program counter security
model: automatic detection and removal of control-flow side channel attacks. In:
Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 156–168. Springer,
Heidelberg (2006). https://doi.org/10.1007/11734727 14

23. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0 1

24. Ohrimenko, O., Costa, M., Fournet, C., Gkantsidis, C., Kohlweiss, M., Sharma, D.:
Observing and preventing leakage in mapreduce. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security (CCS 2015), pp.
1570–1581. Association for Computing Machinery, New York (2015). https://doi.
org/10.1145/2810103.2813695

25. Ohrimenko, O., Goodrich, M.T., Tamassia, R., Upfal, E.: The Melbourne shuffle:
improving oblivious storage in the cloud. In: Esparza, J., Fraigniaud, P., Husfeldt,
T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 556–567. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-7 47

https://doi.org/10.1007/3-540-46674-6_11
https://arxiv.org/abs/2405.11987
https://arxiv.org/abs/2405.11987
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-sangho
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-sangho
https://dependenttyp.es/pdf/oramproposal.pdf
https://doi.org/10.1145/3591226
https://doi.org/10.1145/3591226
https://doi.org/10.1145/3661814.3662135
https://doi.org/10.1109/SP.2015.29
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1145/2508859.2516692
https://doi.org/10.1007/11734727_14
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1145/2810103.2813695
https://doi.org/10.1145/2810103.2813695
https://doi.org/10.1007/978-3-662-43951-7_47

Combining Classical and Probabilistic Independence Reasoning 205

26. Rand, R., Zdancewic, S.: VPHL: a verified partial-correctness logic for probabilistic
programs. Electron. Notes Theor. Comput. Sci. 319, 351–367 (2015). https://doi.
org/10.1016/j.entcs.2015.12.021

27. Sahai, S., Subramanyan, P., Sinha, R.: Verification of quantitative hyperproperties
using trace enumeration relations. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020.
LNCS, vol. 12224, pp. 201–224. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-53288-8 11

28. Sasy, S., Ohrimenko, O.: Oblivious sampling algorithms for private data analy-
sis. In: Proceedings of the 33rd International Conference on Neural Information
Processing Systems. Curran Associates Inc., Red Hook (2019)

29. Schröer, P., Batz, K., Kaminski, B.L., Katoen, J.P., Matheja, C.: A deductive
verification infrastructure for probabilistic programs. Proc. ACM Program. Lang.
7(OOPSLA2), 2052–2082 (2023). https://doi.org/10.1145/3622870

30. Shi, E.: Path oblivious heap: optimal and practical oblivious priority queue. Cryp-
tology ePrint Archive, Paper 2019/274 (2019). https://eprint.iacr.org/2019/274

31. Son, J., Prechter, G., Poddar, R., Popa, R.A., Sen, K.: ObliCheck: efficient verifi-
cation of oblivious algorithms with unobservable state. In: 30th USENIX Security
Symposium (USENIX Security 21), pp. 2219–2236. USENIX Association (2021).
https://www.usenix.org/conference/usenixsecurity21/presentation/son

32. Stefanov, E., et al.: Path Oram: an extremely simple oblivious ram protocol. J.
ACM 65(4), 1–26 (2018). https://doi.org/10.1145/3177872

33. Yan, P., Murray, T., Ohrimenko, O., Pham, V.T., Sison, R.: Combining classical
and probabilistic independence reasoning to verify the security of oblivious algo-
rithms (extended version). arXiv preprint arXiv:2407.00514 (2024)

34. Ye, Q., Delaware, B.: Oblivious algebraic data types. Proc. ACM Program. Lang.
6(POPL), 1–29 (2022). https://doi.org/10.1145/3498713

35. Zheng, W., Dave, A., Beekman, J.G., Popa, R.A., Gonzalez, J.E., Stoica, I.:
Opaque: an oblivious and encrypted distributed analytics platform. In: 14th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
17), pp. 283–298. USENIX Association, Boston (2017). https://www.usenix.org/
conference/nsdi17/technical-sessions/presentation/zheng

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1016/j.entcs.2015.12.021
https://doi.org/10.1016/j.entcs.2015.12.021
https://doi.org/10.1007/978-3-030-53288-8_11
https://doi.org/10.1007/978-3-030-53288-8_11
https://doi.org/10.1145/3622870
https://eprint.iacr.org/2019/274
https://www.usenix.org/conference/usenixsecurity21/presentation/son
https://doi.org/10.1145/3177872
http://arxiv.org/abs/2407.00514
https://doi.org/10.1145/3498713
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zheng
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zheng
http://creativecommons.org/licenses/by/4.0/

Efficient Formally Verified Maximal End
Component Decomposition for MDPs

Arnd Hartmanns , Bram Kohlen(B) , and Peter Lammich

University of Twente, Enschede, The Netherlands
b.kohlen@utwente.nl

Abstract. Identifying a Markov decision process’s maximal end compo-
nents is a prerequisite for applying sound probabilistic model checking
algorithms. In this paper, we present the first mechanized correctness
proof of a maximal end component decomposition algorithm, which is
an important algorithm in model checking, using the Isabelle/HOL the-
orem prover. We iteratively refine the high-level algorithm and proof into
an imperative LLVM bytecode implementation that we integrate into the
Modest Toolset’s existing mcsta model checker. We bring the benefits
of interactive theorem proving into practice by reducing the trusted code
base of a popular probabilistic model checker and we experimentally show
that our new verified maximal end component decomposition in mcsta
performs on par with the tool’s previous unverified implementation.

1 Introduction

Model checking [12] is a verification technique that determines the validity of
properties specified as temporal logics formulae on formal models of systems
ranging from hardware circuits [6,13] and concurrent programs [21] to cyber-
physical systems [15,45]. The model’s semantics is traditionally some form of
transition system [3]. Extended model checking approaches deal with, for exam-
ple, real-time systems using a timed automata semantics [1,7], or probabilistic
systems [2] using Markov chains or Markov decision processes (MDP) [5,47].
Given the often safety- or mission-critical nature of the systems being model-
checked, the correctness of the model checker is of utmost importance.

As of today, however, few model checkers themselves are formally verified,
and none of those is widely used. The Cava LTL model checker [8,18], for exam-
ple, is fully verified, from algorithmic correctness all the way down to a cor-
rect implementation. Yet, for the same purpose, Spin [31] remains the tool of
choice for practitioners despite being unverified. This is because Cava supports
only a fragment of the Promela input language [44], and is much slower due

Authors are listed in alphabetical order. This work was supported by the European
Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-
Curie grant agreement 101008233 (MISSION), the Interreg North Sea project
STORM SAFE, NWO grant OCENW.KLEIN.311, NWO VIDI grant VI.Vidi.223.110
(TruSTy) and NWO grant OCENW.M.21.291 (VESPA).
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 206–225, 2025.
https://doi.org/10.1007/978-3-031-71162-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_11&domain=pdf
http://orcid.org/0000-0003-3268-8674
http://orcid.org/0000-0003-2908-8838
http://orcid.org/0000-0003-3576-0504
https://doi.org/10.1007/978-3-031-71162-6_11

Efficient Verified Maximal End Components 207

to its purely functional-programming implementation, while Spin’s algorithms
and code have been highly optimised. Similarly, the fully verified Munta model
checker for timed automata [55] is significantly slower than the de-facto standard
tool UPPAAL [4], despite Munta’s refinement resulting in Standard ML code
that uses imperative elements such as arrays to obtain better performance.

While initiatives like Cava and Munta constitute major achievements in
interactive theorem proving (ITP) research, they have not managed to bring the
benefits of ITP into verification practice. Their approach towards the goal of a
fully-verified model checker is top-down: Create a new tool from scratch, nec-
essarily starting (and ultimately remaining) with a limited scope that prevents
practical adoption. In addition, they are limited by the technology available in
their time for refining abstract algorithms into executable code.

We instead propose a bottom-up approach: Starting from an existing model
checker that is competitive and has an established user base, replace its unver-
ified code by provably correct implementations component-by-component. In
this way, the tool is not immediately fully verified, but the trusted code base is
reduced step-by-step. Crucially, by exploiting recent advances in refinement tech-
nology [39,41] that deliver highly-efficient LLVM bytecode, our verified replace-
ment components perform similarly to the unverified originals implemented in
e.g. C or C#. The incremental approach is thus “invisible” to the users, leading
to an immediate adoption of the benefits of ITP in verification practice.

Our contributions are to formalise an algorithm for maximum end component
(MEC) decomposition in MDPs with Isabelle/HOL, prove its correctness, and
iteratively refine the abstract algorithm to imperative code and data structures
in LLVM bytecode. We integrate the resulting verified implementation into an
existing probabilistic model checker and experimentally show that it performs
on par with the previous unverified implementation.

A MEC is a subset of the states of an MDP for which a strategy exists that
remains within the MEC with probability 1. In an MDP with nontrivial MECs,
the Bellman operator used in sound numeric algorithms for probabilistic model
checking (PMC) for indefinite-horizon properties [22,26,48] has multiple fixed
points, leading to divergence [22] and/or breaking the algorithm’s correctness
proof [26]. Eliminating or later deflating [17] the MECs of an MDP is thus a nec-
essary step in PMC. To the best of our knowledge, ours is the first mechanical
formalisation and correctness proof of MEC decomposition. We use the
Isabelle Refinement Framework [42] to refine our algorithm down to LLVM code
which we integrate into an existing model checker. We target mcsta of the Mod-
est Toolset [25]. Its performance is competitive [9], and it has been used for
various case studies by different teams of researchers [24,50,53]. Our verification
and refinement of MEC decomposition constitutes a critical step on the long-
term bottom-up path towards a fully-verified probabilistic model checker, laying
the foundation for verifying the actual numeric algorithm as the next step. MEC
decomposition is also used in probabilistic planning [57] as part of the FRET1

1 Here, end components are called “traps”; FRET is “find, revise, eliminate traps” [33].

208 A. Hartmanns et al.

approach [33,51], and can be generalised from MDP to stochastic games where it
is equally necessary for sound algorithms [17]. Our work can thus be transferred
to tools in these areas.

Our MEC decomposition algorithm, or MEC algorithm for short, follows
the standard approach [3, Algorithm 47]: (i) find all strongly connected com-
ponents (SCCs) of the MDP’s graph, (ii) identify all bottom SCCs as MECs
and remove them, (iii) delete all transitions with nonzero probability to leave
an SCC, and (iv) repeat until no more states remain. After defining MDPs and
MECs in Sect. 2, we present the algorithm, our formalisation in Isabelle/HOL,
and our correctness proof in Sect. 3. We introduce the efficient data structures
for the implementation in Sect. 4. We had earlier verified Gabow’s SCC-finding
algorithm and refined it into efficient LLVM code for mcsta [28]. We were able
to integrate the SCC algorithm’s high-level correctness proof into our MEC
algorithm formalisation with minor technical adaptations. However, the SCC
algorithm could assume the graph to be static, whereas the MEC algorithm
iteratively changes the MDP graph. We thus need a new data structure that
allows deleting states and transitions, which we describe together with the cor-
responding refinement proofs in Sect. 4. In this part, we also extended proofs
and refinement relations for the SCC-finding aspect due to an extended data
structure. In Sect. 5, we describe the LLVM code generation and integration into
mcsta. By adopting mcsta’s existing MDP representation, we minimise costly
glue code and transformations or copies of the data. This is important for the
scalability and performance of our end result, which we experimentally show in
Sect. 6.

Related Work. Certification is an alternative to verification: A formally verified
certifier checks the results of an unverified tool. This requires a practical certi-
fication mechanism and the support of the unverified model checker. Formally
verified certification tools that work on significant problem sizes exist for e.g.
timed automata model checking [54,56] and SAT solving [29,40].

Probabilistic models have been the subject of ITP work before. Notably,
there are some formalisations of MDPs and the value iteration algorithm in
Isabelle/HOL [30] and Coq [52], but executable code does not appear to have
been extracted from these proofs. Additionally, there is a formalisation of value
iteration for discounted expected rewards [43] which extracts Standard ML code
from the proof. We note that MEC decomposition is not necessary in the dis-
counted case, thus [43] and the many current works in machine learning/artificial
intelligence based on reinforcement learning typically avoid the problem.

The standard MEC decomposition approach computes SCCs. SCC-finding
algorithms have been formalised with various tools, including Isabelle/HOL [38],
Coq [46], and Why3 [11]. Of these, only [38] extracted executable code, which
however performed poorly. Our earlier verification and high-performance refine-
ment of Gabow’s SCC-finding algorithm [28] built upon ideas from [38]. An
asymptotically faster MEC algorithm has been proposed [10]. It combines SCC-
finding with a lock-step depth-first search. The algorithm has not been adopted
by PMC tools so far, likely due to its implementation complexity.

Efficient Verified Maximal End Components 209

2 Background

We introduce MDPs and MECs in the context of probabilistic model checking,
then explain the refinement-based approach to program verification that we use.

Probabilistic Model Checking. Let [0, 1] ⊆ R be the interval of real numbers
from 0 to 1 and 2X the power set of X. A (discrete) probability distribution over
X is a function μ : X → [0, 1] where

∑
x∈X μ(x) = 1 that has countable support

Sp(μ) = { v | μ(v) > 0 }. Dist(X) is the set of probability distributions over X.

Definition 1. A Markov decision process (MDP) is a pair (S,K) where S is a
finite set of states and K is the kernel of type S → 2Dist(S).

An MDP models the interaction of an agent with a random environment: In
current state u, the agent makes a decision, i.e. non-deterministically chooses
a distribution μ ∈ K(u). The environment then updates the current state by
sampling μ. By repeating this process, we trace a path with a certain probability.
A strategy represents an agent’s decisions of which distribution to pick next based
on the path traced so far. Combining an MDP and a strategy removes all non-
determinism, resulting in a Markov chain on which a probability measure over
paths can be defined in the standard way [3]. We characterise interesting sets of
paths via properties; for this work, we are particularly interested in reachability :

Definition 2. Given sets A, T ⊆ S, a reachability property is an LTL formula
¬A U T (characterising the set of paths that do not visit avoid states (A) before
a target state (T) which is visited eventually). Under a given strategy, the prob-
ability of satisfying a property is the probability mass of the (measurable) set of
paths satisfying that property.

Fig. 1. MDP (S, K)

There is a strategy that minimises and one that max-
imises the probability of satisfying ¬AUT [3], which
induce the minimum/maximum reachability proba-
bilities.

Example 1. Figure 1 shows an MDP with S =
{ 0, 1, 2, 3 }. The edges represent K where α, β and
γ label the non-deterministic choices followed by the
probability mass of each state. The minimum probability to satisfy ¬{ 1 }U { 3 }
is 0 for the strategy that always chooses β and γ. The maximum probability is
0.5 by choosing α twice. After this, we are either in target state 3 or in avoid
state 1.

The edges of an MDP kernel are Edges(K) = { (u, v) | ∃μ ∈ K(u) : μ(v) > 0 }.
A sub-MDP of (S,K) is a pair (C,D) where C ⊆ S and D(u) ⊆ K(u).

Definition 3. Given an MDP (S,K), an end component (EC) [14] is a sub-
MDP (C,D) such that C×C ⊆ Edges(D)∗ (it is strongly connected) and (u, v) ∈
Edges(K) ∧ u ∈ C ⇒ v ∈ C (it is closed). A maximal end component (MEC) is
an EC that is not a sub-MDP of another EC.

210 A. Hartmanns et al.

SCCs are weaker than MECs: They are maximal strongly connected subsets of
states rather than closed sub-MDPs. In other words, for every state, there exists
a strategy such that the next state is in the SCC with probability > 0, while for
a MEC the probability is 1. MECs play an essential role in sound algorithms for
evaluating reachability probabilities: Collapsing the MECs (i.e. replacing every
MEC by a single state that collects all edges out of the MEC) guarantees a single
fixed point for these algorithms. We find MECs through a graph analysis that
requires the computation of SCCs. Graph analysis means that we only need to
know whether probabilities are non-zero, i.e. we work with the MDP structure
that maps state u to its set of supports {Sp(μ) | μ ∈ K(u) } ⊆ 2S . We call
elements of the outer set transitions and elements of the inner sets branches.

Example 2. In the MDP structure for Fig. 1, state 0 is mapped to { { 0, 1 }, { 2 } }.
The MDP has two SCCs: { 0, 1, 2 } and { 3 }. Set { 0, 1 } is not an SCC as it is
not maximal. There are three MECs: { 0, 1 }, { 2 }, and { 3 }. While state 2 has
an edge to 1, it is not in the same MEC as it cannot go back with probability 1.

We also use models that are Markov automata (MA) [16] and probabilistic
timed automata (PTA) [37]. Untimed reachability on a MA can be checked on
its embedded MDP, while PTA can be converted to MDP using e.g. digital
clocks [36].

Verification by Refinement. We aim for efficient verified executable code.
This requires reasoning about the high-level behaviour of algorithms as well as
about lower-level concepts like efficient data structures. To keep these indepen-
dent concerns separate, we use an iterative refinement approach:

We represent the algorithm with the nondeterministic result (nres) monad
of the Isabelle Refinement Framework (IRF) [42]. It has two possible states:
result and fail. The former captures the set of outputs of all non-deterministic
behaviours (e.g. picking an element of a set) of a program while the latter occurs
if any behaviour of the program fails (e.g. non-termination). For abstract pro-
gram A and concrete program C, the refinement relation C ≤⇓ R A holds iff each
result of C relates to a result of A via relation R. If A fails, then C always refines
it. We use predefined relations like Rsize and Rbool to relate natural numbers and
booleans to 64 and 1 bit words, respectively, or br α I = {(c,a). a=α c ∧ I c}
to build a relation from abstraction function α which converts concrete data to
abstract data and invariant I that holds if the data is in valid form. We use
notation (C,A) ∈ [λ a1...an. P a1...an] R1 → . . . → Rn → R for
P a1...an=⇒(c1, a1)∈R1. . .=⇒(cn, an)∈Rn=⇒(C c1...cn) ≤ ⇓ R (Aa1...an)

where P is a precondition over the abstract program. To refine e.g. addition of
natural numbers (a + b) to addition of 64-bit words, we need the precondition
a + b ≤ 263 − 1; the maximal value of 64-bit signed words.

As they are transitive, we can compose refinements. The final step is an
automatic refinement to a model of LLVM using the sepref tool [39]. It uses
assertions of separation logic [49] to map data structures to concrete memory
contents; e.g. A′

size and A′
bool map 64 and 1 bit words to memory, respectively,

Efficient Verified Maximal End Components 211

Fig. 2. An execution of the MEC algorithm using 3 iterations.

and Alist maps a list to memory using a heap. We combine relations and asser-
tions through composition; e.g. Asize = Rsize O A′

size maps natural numbers to
memory.

Example 3. We show an example of a bitset, abstractly represented as a nat set.
We implement operation sget, which tests whether a value is in a bitset.

(∗1∗) sget bs i = i ∈ bs bs get bs i ≡ (bi ! (i div 64) !! (i mod 64))
(∗2∗) bs α bs = Collect (λ i. bitset get i bs ∧ i < 64 ∗ length bs)
bs inv n bs = (n ≤ 64 ∗ length bs) Rbs = br bs α bs inv
(∗3∗) (bs get, sget) ∈ Rbs n → (Rnbn n) → Rbool

(∗4∗) (bs geti, bs get) ∈ [λ(i,l). i<length l ∗ 64] Asize → Alist → Abool

(∗5∗) Abs = Rbs O Alist (bs geti, sget) ∈ (Anbn n) → Abs → Abool

Here, we (1) define an abstract function sget, which is a membership test,
and an implementation bs get over bs::64 word list (i.e. a list of 64-bit binary
words) and an index i::nat . This function obtains the i-th bit in the sequence:
bs ! j obtains the j-th word and x !! k the k-th bit in word x. We then (2) relate
64 word list to a nat set using Rbs ; we provide bs α as abstraction function to
convert 64 word lists to nat sets, and bs inv as invariant that makes sure that n
values fit in our bitset. Next, (3) we prove refinement of sget to bs get. Rnbn n
maps all values up to n to themselves. (4) Function bs geti is an LLVM program
automatically generated by sepref and refines bs get. The precondition guarantees
that the index is in bounds. Finally (5) through composition we obtain Abs that
maps a nat set to a bitset on the heap. This allows sepref to generate LLVM code
for every occurence of sget. Note that we simplified the notation e.g. to match the
relation refinement and we omitted notation for (non-)destructive heap access.

3 Correctness of the MEC Algorithm

The standard MEC algorithm iteratively culls the MDP as follows: (1) Calculate
the SCC decomposition of the current MDP, (2) find the SCCs that are MECs,
and (3) remove the found MECs, and remove all transitions with branches to
a different SCC. Figure 2 shows 3 iterations of this algorithm on the MDP of
Fig. 1. SCCs are marked by dotted lines, states of SCCs that are MECs are
coloured, and culled branches in the current/previous iteration are red/gray.
This algorithm is loosely based on those of [3,10] where [10] uses an attractor

212 A. Hartmanns et al.

computation to remove more states per iteration for which we were unable to
find an efficient implementation while [3] excludes step 2, not identifying MECs
early, which means computations may be repeated on them. Our approach is
based on the existing code in mcsta, which includes step 2 and omits the attrac-
tor computation.

3.1 Abstract MDP Structure

We represent the MDP structure as mapping each state to a list of lists of states,
i.e. it is of type ′a mdp K = ′a ⇒ ′a list list . We chose a list-based representa-
tion over a set-based one for straightforward compatibility with our earlier SCC
implementation [28] while still being abstract enough for our purposes. The MEC
algorithm takes the states (S0 :: ′v set) and the MDP kernel (K0 :: ′v mdp K)
as parameters. We use Isabelle/HOL’s locale mechanism for general constructs.
A locale creates a block in which user-specified assumptions hold. We define an
MDP locale with some natural well-formedness assumptions:

definition closed mdp S K ≡ ∀u ∈ S. ∀ a ∈ set (K u). set a ⊆ S
locale mdp = fixes S :: ′v set and K :: ′v mdp K +
assumes 1: u ∈ S =⇒ [] /∈ set (K u) and 2: finite S and 3: closed mdp S K

This locale states that transitions have at least one branch, the state space is
finite, and the MDP is closed, i.e. all transitions starting in S end in S.

3.2 Specification

Let sc S K denote that the MDP is strongly connected. Given mdp S K:

sub mdp S1 K1 S2 K2 ≡ S1 ⊆ S2 ∧ (∀u ∈ S1. set (K1 u) ⊆ set (K2 u))
is ec S′ K′ ≡ S′ = {} ∧ sub mdp S′ K′ S K ∧ closed mdp S′ K′ ∧ sc S′ K′

is mec S′ K′ ≡ is ec S′ K′ ∧ (�S′′ K′′. is ec S′′ K′′ ∧ psub mdp S′ K′ S′′ K′′)

where psub mdp is the proper sub mdp. Here, sub mdp S1 K1 S2 K2 holds if
(S1,K1) is a sub-MDP of (S2,K2). We allow reorderings and (de)duplications of
the transitions as they do not alter the MDP structure. An EC is a strongly
connected, closed sub-MDP with at least one state. A MEC is an EC that is
not a proper sub-MDP of another EC. With these definitions, we specify MEC
algorithms as those that return a list with the MECs of the input MDP structure:

definition compute MEC spec ≡ spec (λ r. set r = {S′ |S′ K′. is mec S′ K′ })

3.3 Abstract Algorithm

We now define the MEC algorithm, focusing on its abstract, high-level behaviour;
we refine this to concrete data structures in Sect. 4. The definition in Isabelle is:

Efficient Verified Maximal End Components 213

1 compute MEC ≡ do {
2 let (M,S,K) = op init mdp (S0,K0);
3 (M,S,K) ← while (compute MEC invar S0 K0) op states non empty
4 (λ(M,S,K). do {
5 C ← compute sccs (M,S,K);
6 (C,V) ← identify mecs C (M,S,K);
7 (M,S,K) ← cull graph (C,V) (M,S,K);
8 return (M,S,K)
9 }) (M,S,K);

10 return (op get mecs (M,S,K))

We initialise the loop state in line 2 as an empty list M to store the MECs and
S = S0 and K = K0. We bundle this data into one tuple so that we can refine
them through a single assertion in Sect. 4.2. We iterate as long as there are states
for which we have not found a MEC in line 3. We then perform the three-step
process described earlier: We (1) compute C in line 5 such that scc list C S K
holds (i.e. C is a distinct list of all SCCs of the graph structure of S and K).
We then (2) obtain list V which contains all SCCs of C that are also MECs in
line 6. We finally (3) remove MECs and transitions between different SCCs in
line 7. At the end of the program, we extract M which contains the MECs.

These operations are defined by high-level behaviour; e.g. for cull graph:

cull graph (C,V) (M,S,K) ≡ spec
(λ (M′,S′,K′). M′ = M@V ∧ S′ = S−⋃

(set V) ∧ culled edges C V K K′))

We elided the definition of predicate culled edges which holds if K′ only contains
the transitions in K whose branches all remain within the same SCC as their
source. Also, cull graph adds the identified MECs to M and removes them from S.

These definitions are still far from an efficient implementation. We first refine
each operation to a control flow (definitions elided). The operations of that
control flow are implemented in the respective data structures in Sect. 4. The
SCC algorithm has been refined separately in [28].

Invariant. We define the following invariant for the main loop of the algorithm:

locale compute MEC invar = mdp S0 K0 for S0 K0 (M,S,K) +
assumes 1: S ∩ ⋃

(set M) = {} and 2: S0 =
⋃
(set M) ∪ S

and 3: pairwise disjnt (set M) and 4: distinct M and 5: sub mdp of S K S0 K0

and 6: mdp S K and 7: is mec S′ K′ =⇒ S′ ∈ set M ∨ sub mdp of S′ K′ S K
and 8: S 	= {} =⇒ mdp def.is mec S K S′ K′ =⇒ is mec S′ K′

and 9: S′ ∈ set M =⇒ ∃K′. is mec S′ K′ and 10: scc list C S K =⇒ a ∈ set (K0 u)
=⇒ S′ ∈ set C =⇒ u ∈ S′ =⇒ ∀v∈set a. v ∈ S′ =⇒ a ∈ set (K u)

It states that (1) the states (S) and MECs (M) are disjoint and (2) cover the
original statespace. Also, (3,4) M is pairwise disjoint and contains no duplicates.
The current graph structure is (5) a sub-MDP of the input and (6) an MDP
itself. Further, (7) all MECs are either in M or in the current graph structure,
(8) a MEC of the current graph structure is a MEC of the original one, (9) each
element of M is a MEC, and (10) transitions in the original graph structure within

214 A. Hartmanns et al.

one SCC are preserved in the current one. We have proven that the invariant is
preserved throughout the while-loop and if S is empty the specification holds.

Termination is guaranteed as every non-empty graph has at least one bottom-
SCC (BSCC), i.e. an SCC with no outgoing edges. Our algorithms finds MECs
by identifying BSCCs; we find at least one MEC per iteration and remove it
from the state space. Since the state space is finite, we necessarily terminate.

4 Data Structures and Refinement

The next step is to define the data structures to efficiently implement the abstract
operations specified in Sect. 3.3. For input and output, we formalize the data
structures that mcsta uses, so that we can integrate our implementation without
costly conversions. Using the IRF, the refinement is done modularly, and in
multiple steps to structure the correctness proof and keep it manageable.

4.1 Supplementary Data Structures

We introduce auxiliary data structures that are part of mcsta’s data structure:

Intervals. In mcsta, intervals of natural numbers {l..<h} are represented as
a single 64 bit word, where the 20 most significant bits encode the length,
and the 44 remaining bits encode the starting point l. Like in [28], we express
this refinement in two levels: the relation Asn relates a 64 bit word to a pair
(n, i) of type sn = nat × nat , and the functions sn intv (n,i) = {i..<i+n} and
ls intv (n,i) = [i..<i+n] represent these as set and list, respectively.

Disjoint Nat Set List. Our implementation requires a map from states to indices
of MECs or SCCs. Low-valued indices are MECs while high-valued ones are
SCCs. Abstractly, we represent this as two lists of sets of states such that each
state occurs at most once. We highlight some operations here:

type synonym dslt = nat set list × nat set list
d empty :: dslt where d empty = ([],[])
d count1 :: dslt ⇒ nat where d count1(xs,ys) = length xs
d move1 :: dslt ⇒ nat ⇒ nat ⇒ dslt where d move1 (xs,ys) v i =
((map (λ x. x − {v}) xs)[i:=(xs ! i) ∪ {v}], (map (λ y. y − {v}) ys))

Operation d empty constructs a tuple of empty lists, d count1 returns the length
of the first list, and d move1 ds v i moves state v into index i of the first list
(removing it from anywhere else if necessary). Every operation on the first list
(with suffix 1) has a corresponding operation on the second one (with suffix 2).
We omit some further operations for this data structure.

We implement the data structure as an array map that maps values to the
index of the set that they are in. This means that we flatten the two lists into
one map. We introduce a bound L which is the maximal size of the first list.

Efficient Verified Maximal End Components 215

Indices i < L represent indices to sets in the first list; indices i ≥ L represent
index i − L in the second list. Values that are not in any set get a −1 entry. We
capture this mapping in assertion Adslt .

Example 4. Let L = 3 and N = 5. Then Adslt maps the abstract nat dslt
([{1}, {}, {2}], [{0, 4}]) to array a = [3, 0, 2,−1, 3]: We have a[1] < L so value 1
must be in the first list; since a[1] = 0, we find value 1 in the set at index 0. We
also have a[4] ≥ L so value 4 is in the second list. Since a[4] = 3, we find it at
index 3 − L = 0. Lastly, we have a[3] = −1, which means that value 3 is not in
any of the sets.

4.2 The mcsta Data Structure

The mcsta data structure is a tuple SS = (St, Tr, Br, Av, Ta). St, Tr and Br
represent the states, transitions, and branches of the MDP structure, respec-
tively. Additionally, Av and Ta are sets representing the avoid and target states
of the reachability property being verified (corresponding to sets A and T of Def.
2). We define a relation RMdi that relates our model of the mcsta data structure
to an MDP structure:

S0 α N = {0..<N} K0 α N SS :: nat mdp K (∗ elided ∗)
MG0 α N SS = (S0 α N, K0 α N SS)

locale Md input inv = mdp S0::nat set K0 fixes N (St,Tr,Br,Av,Ta) +
assumes 1: N = length St and 2: Av ⊆ {0..<N} and 3: Ta ⊆ {0..<N}
and 4: i < length St =⇒ uid (St!i) ≤ length Tr and 5: i < length Tr =⇒

uid (Tr!i) ≤ length Br and 6: i < length Br =⇒ Br!i < length St
and 7: i < length St =⇒ cnt (St!i)>0 and 8: i < length Tr =⇒ cnt (Tr!i)>0
and 9: i < length Tr =⇒ j < i =⇒ sn intv (Tr ! i) ∩ sn intv (Tr ! j) = {}
and 10: S0 = S0 α N and 11: K0 = K0 α N (St,Tr,Br,Av,Ta)

RMdi S0 K0 N = br (MG0 α N) (Md input inv S0 K0 N)

The states of an MDP in mcsta are numbered from 0 to N −1. K0 α derives the
kernel from the data structure as follows: St and Tr are lists of intervals (repre-
sented as tuples, see Sect. 4.1) and Br is a list of state indices. If St ! v = (n,i),
the next n transitions starting at index i in Tr belong to state v. This means
that a transition is an index i ≤ t < n + i. Similarly, Tr ! t is a tuple pointing to
an interval of indices on Br. A branch is thus an index i ≤ b < n + i and Br ! b
is the target state of the branch. Furthermore, if v ∈ Av ∨ v ∈ Ta , we ignore
all outgoing edges. The invariant states the following: (1) it fixes the number of
states to N for the bounds calculations in sepref. It states that (2,3) our target
and avoid states are a subset of S0. It also states that (4,5,6) St points to valid
indices on Tr, Tr points to valid indices on Br and Br points to a valid indices
on St, (7,8) St and Tr do not contain empty intervals, (9) transitions cannot
overlap, and (10,11) the input MDP structure remains constant. The relation
RMdi relates the input MDP structure to the concrete data structure. Using

216 A. Hartmanns et al.

sepref and composition, we obtain the according assertion AMdi . We refine the
concrete data structure to LLVM using the IRF standard library and the sup-
plementary data structures from Sect. 4.1: We implement St and Tr as lists of
bit-packed intervals, Br as a list of 64-bit values, and Av and Tr as bitsets.

Example 5. One possibility to represent Fig. 1 is St = [(2, 0), (1, 2), (1, 3), (1, 3)],
Tr = [(1, 0), (2, 1), (1, 3), (2, 4), (1, 6)], Br = [2, 0, 1, 0, 3, 1, 3]. For state 0 we have
St !0 = (2, 0), i.e. it has 2 successors (α and β) starting at index 0. Similarly,
for transition 1 (corresponding to β in this case) we have Tr !1 = (2, 1), which
means that this transition has 2 branches starting at index 1 in Br (i.e. state
Br !1 = 0 and Br !2 = 1). Note that we have not defined Av and Ta yet as
these are dependent on the property. If we assume the property of Example
1 then Av = {1} and Ta = {3}. These translate to the bitsets ...0010 and
...1000 respectively, which removes the outgoing transitions from those states
(not visualized).

mcsta directly passes this data to our implementation. However, as we have
seen in Sect. 3.3, our algorithm needs to be able to efficiently remove states and
transitions. The data structure that we have presented so far cannot implement
this functionality efficiently.

Cullable MDP Structure. The implementation of op init mdp from Sect. 3.3 sup-
plements the input data structure with the dslt data structure from Sect. 4.1,
which is a tuple of lists of sets of states. States in the first list of the tuple are
removed while states in the second one are not. Furthermore, a transition start-
ing in some state v is “activated” if all branches of that transition are within
the same set. If any branch connects different sets, the transition is deactivated.
With this approach, we place states of the same SCC into the same set, dis-
abling transitions between SCCs in the process. Additionally, we use the tuple
structure to distinguish between MECs in the first list and SCCs in the second,
which means that it eventually stores the MEC decomposition.

is act u t = t∈sn intv (St!u) ∧ (∀b∈sn intv (Tr!t) b −→ d eqset Mm u (Br!b))
S α N Mm = {v. v < N ∧ (∀ i < length (fst Mm). v /∈ (fst Mm) ! i)}
K α N (SS,Mm) :: nat mdp K (∗ elided ∗)
MSK α N (SS,Mm) = (fst Mm,S α N Mm,K α N (SS,Mm))

locale Md mdp cullable inv = Md mdp input inv S0 K0 N (St,Tr,Br,Av,Ta)
+ mdp S0 K0 for S0::nat set and K0 N (St,Tr,Br,Av,Ta,Mm,Nr) + . . .

With is act we test if a transition is activated by checking that all branches
are in the same set (d eqset which is a dslt operation) as the source state. We
use this to derive the culled kernel K α which contains exactly the activated
transitions of K0 α. S α omits the states that have been identified as a MEC.
The MECs are stored in the first list of Mm directly. Variable Nr is the number
of remaining states, i.e. for which no MEC has been identified. We use this for
implementing the termination criterion. We omit the definition of the invariant
which mainly concerns well-formedness of Mm. This data structure allows us to

Efficient Verified Maximal End Components 217

efficiently implement cull graph from Sect. 3.3 by putting states from the same
SCC into the same set. This update is straightforward to implement as it merely
involves updating the value of unfinished states in the map to the corresponding
index of the SCC, which is also stored in a map for the SCC algorithm.

Example 6. Assuming the middle situation in Fig. 2, consider the input data
from Example 5 and additionally Mm = ([{3}, {2}], [{0, 1}]). For state 0, β is
activated since its branches (to 0 and 1) are in the same set as the source (0).
However, α branches to 2 which is in another set, so the transition was deleted.

4.3 Filter List

Given the number of states N and the number of MECs M , we have M ≤ N .
This is essential for our bounds calculation: Since the ID of a MEC is represented
as a 64-bit value, we need to bound M . We require a “dense” indexing for the
MECs, i.e. they must be numbered from 0 to M − 1 efficiently. This way, we
can do our bounds calculation solely using N , which we know a priori. We do so
by iterating over all states, and if we find any transitions leaving the SCC, the
SCC is not a MEC and we filter it. We implemented a filter set and filter list to
implement this memory- and time-efficiently.

The filter list is an extension of any data structure representing a list. On
the abstract layer, it is of type ′a list × ′a list where the first list of the pair is
the original list that we want to filter and the second one is the filtered variant.
Concretely, it is of type ′v list × nat option list × nat . The first list (xs) is the
original list, the second list (ids) is a map containing indices, and the natural
number is a counter representing the length of the filtered list c. The list ids is
the core of this data structure. It maps an index i of the unfiltered list to None
if xs ! i is filtered or to Some j if xs ! i is at index j in the filtered list. The filter
set is similar to the filter list but ids either maps to None (entry is filtered) or
Some 0 (entry is unfiltered). We then convert the filter set to a list by assigning
a unique index to each unfiltered entry.

Example 7. Assume unfiltered list [a,b,c,d] out of which we want to filter a and
c. Abstractly, we have ([a,b,c,d],[b,d]). Its concrete implementation is the triple
([a,b,c,d],[None,Some 0,None,Some 1],2). Since a (index 0) and c (index 2) are
filtered, we have ids ! 0 = ids ! 2 = None. Similarly, we find b (index 1) at index
0 in the filtered list. Therefore ids ! 1 = Some 0.

5 Code Generation and Integration

Using the algorithm of Sect. 3 and the data structures of Sect. 4, we derive
an LLVM program Md compute MEC using sepref. Through transitivity of the
refinement relation, we can show that this program refines the specification from
Sect. 3.2. The IRF provides the setup to extract a separation logic Hoare triple
from our correctness proof. Let � be the separation conjunction. Then we obtain:

218 A. Hartmanns et al.

theorem Md compute MEC htriple: llvm htriple (
(∗1∗) Asize N ni � AMdi N S0 K0 (S0, K0) mdpi
(∗2∗) � ll pto mdpi p mdpi � ll pto anything resp
(∗3∗) � (mdp S0 K0 ∧ N < 262 ∧ S0={0..<N}))
(∗4∗) (Md compute MEC ni p mdpi resp)
(∗5∗) (λ . EXS M resi.
(∗6∗) Asize N ni � AMdi N S0 K0 (S0, K0) mdpi � AMdo N N M resi
(∗7∗) � ll pto resi resp � ll pto mdpi p mdpi
(∗8∗) � (set M = {S′ |S′ K′. mdp.is mec S0 K0 S′ K′ }))

where AMdo is derived from Adslt mapping only its first list to memory given
that the second list is empty. The precondition consists of several parts: (1) The
input consists of a value N representing the number of states with its 64 bit
representation ni and an input MDP structure (S0,K0) which is represented in
memory by mdpi . (2) We are provided a pointer to the MDP structure (p mdpi)
and one to an address where we can store our output. (3) (S0,K0) is an MDP
structure that has fewer than 262 states and a dense numbering S. Given these
preconditions we (4) run our program Md compute MEC with the specified input
parameters. We then get (5) a MEC decomposition M and its representation in
memory resi such that (6) the input parameters are preserved and we addition-
ally obtain the MEC decomposition, (7) the provided pointer (resp) points to
that decomposition and (8) M is the set of MECs.

The IRF has built-in functionality to translate Md compute MEC to LLVM
code with a header file, which can be called as an external function from mcsta.
Note that we use indirection through pointers to avoid problems with different
ABIs when passing structures as parameters or return values. It is invoked as:

export llvm Md compute MEC is
void compute MEC(modest size t, modest input mdp t ∗, mec output t ∗)

5.1 Compatibility with mcsta

We refer to the verified LLVM code as the verified implementation and to the pre-
existing C# implementation in mcsta as the integrated implementation. While
the data format of the verified implementation is compatible with mcsta, there
were some important differences that we fix using glue code for post-processing:

First, collapsing the MECs for interval iteration, which is currently not ver-
ified, requires the MECs to be sorted in exploration order. The algorithm we
formalised does not do that out of the box and we are not aware of an algorithm
that does preserve this order. That is why we decided to reorder the MEC indices
as a post-processing step.

Second, the integrated algorithm groups all target states into one collapsed
target state and does the same for avoid states. The verified algorithm puts each
target and avoid state in its own MEC. Both approaches are correct, but the
verified algorithm therefore calculates at least as many MECs as the integrated
one. We considered formalising this collapsing of states in our proofs, but we

Efficient Verified Maximal End Components 219

decided against it as it would complicate them. Since we decided for the post-
processing approach for reordering, we included the latter as well.

Fig. 3. Comparison of runtime to complete the MEC decomposition routine

6 Experimental Evaluation

We have embedded the verified implementation into the mcsta tool of the Mod-
est Toolset. Since it uses mcsta’s regular input and output data structures,
we do not need any expensive conversions and minimal glue code with negligible
runtime. Furthermore, we implemented a reference implementation in C++ that
we manually optimised. We now compare the performance of these two and the
integrated implementation.

6.1 Experimental Setup

We use all applicable benchmarks (i.e. all MDP models, PTA models trans-
formed into their digital clocks MDP, and MA transformed into the embedded
MDP for untimed properties) from the Quantitative Verification Benchmark Set
(QVBS) [27], which however rarely contain any nontrivial MECs. MEC decom-
position is still necessary since we do not know a priori whether nontrivial MECs
exist in a model and the algorithm may still require multiple iterations to obtain
this result. To study the performance when nontrivial MECs exist, we adapt
a benchmark set for long-run average rewards (LRA) from [20]. We test one
reachability property per model to trigger the MEC algorithm and inflated the
parameters to challenge the implementations. This benchmark set contains the
mer Mars rover case study from [19], the sensors case study from [34], and other
models from the PRISM benchmarks. We added parameters where sensible to
allow scaling the model. We also created MDP adaptations of the stochastic

220 A. Hartmanns et al.

games originally hand-crafted to contain interesting MEC structures for the eval-
uation of [35]. This gave us 61 benchmark instances to test our implementation
on. We aimed to benchmark models between 500,000 and 100 million states.
Smaller models terminate too quickly to benchmark while larger models run
out of memory. We ran all benchmarks on an Intel Core i7-12700H system with
32GB of RAM running Linux Mint 21.3.

6.2 Results

We ran each benchmark three times and report the averages of those runs.
Figure 3 compares the wall clock runtime, with the left scatter plot comparing
the verified to the integrated implementation and the right comparing the ver-
ified to the reference implementation. Each dot is a pair of runtime values for
one benchmark instance. We distinguish benchmarks for PTA, MA and MDP
from the QVBS (Q) or the LRA benchmarks (L). With our setup, we found that
our verified implementation performs on par with the reference and integrated
implementations, with a slight edge for the integrated implementation, but with
little optimisation potential. We observe that this pattern also seems to hold
independently of the type of model. One noteworthy outcome is the fact that
the integrated implementation crashes for one instance whereas the reference and
verified implementations do not. This is caused by the integrated implementation
requiring more memory. We compared peak memory usage (working set) of the
verified and integrated implementations. While this approach may be influenced
by external factors like garbage collection, it can still provide a useful indication
of relative memory consumption. Peak memory was higher for the integrated
implementation in 42 out of the 61 instances. On average, the integrated imple-
mentation used about 8.2% more memory than the verified implementation.
In isolated instances it reached up to 36.4% more. In comparison, the verified
implementation used at most 28.4% more than the integrated implementation
for isolated instances. The instance that crashed (tireworld with n = 45) lies
on the verge of what a laptop with 32 GB of RAM can process: Peak memory
reached almost 31GB for this instance using the verified algorithm.

7 Conclusion

We have formally verified a MEC decomposition algorithm in Isabelle/HOL. As
far as we know, this is the first such formalization. We have refined this algorithm
down to LLVM and generated efficient executable code which we embedded into
the mcsta probabilistic model checker of the Modest Toolset. This is a step
towards a fully verified model checking toolchain. We aim to replace algorithms
in the toolchain piece by piece, monitoring the performance impact in each step.
Where previous attempts at formally verified model checkers have not been com-
petitive in terms of performance and functionality, our approach yields compara-
ble performance to manual implementations. Additionally, if desired, cross-usage
with other (unverified) functionality is possible. While the performance of our

Efficient Verified Maximal End Components 221

verified implementation is comparable to the integrated implementation, it is
a clear improvement over the integrated implementation in terms of memory
usage.

Future Work. Comparisons with the manual implementations suggest that the
verified implementation does not have a lot of optimization potential. We con-
sider it more useful to focus on other algorithms at this point. One candidate
is the improved MEC algorithm by Chatterjee et al. [10], which has a better
theoretical complexity than our implementation; deriving a competitive imple-
mentation from this would be highly relevant. Another candidate is the interval
iteration algorithm [22] which uses the MEC algorithm as a pre-processing step.
An efficient implementation of interval iteration requires a representation of real
or rational numbers with low overhead. Unverified implementations rely on IEEE
floating-point values (floats) which are suitable for high-performance computa-
tions but come with rounding errors [23]. This requires an extension of the IRF
in order to refine real numbers to floats and reason about rounding.

Data availability. The proofs and benchmarks presented in this paper are
archived and available at https://doi.org/10.4121/3f2a4539-e69b-4d16-b665-
530c1abddfbc [32].

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

2. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilistic
systems. In: Handbook of Model Checking, pp. 963–999. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-10575-8_28

3. Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press
(2008)

4. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9_7

5. Bellman, R.: A Markovian decision process. J. Math. Mech. 6(5), 679–684 (1957)
6. Biere, A., Van Dijk, T., Heljanko, K.: Hardware model checking competition 2017.

In: Stewart, D., Weissenbacher, G., (eds.) 2017 International Conference on Formal
Methods in Computer Aided Design FMCAD, p. 9. IEEE (2017). https://doi.org/
10.23919/FMCAD.2017.8102233

7. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Ouaknine, J., Worrell, J.:
Model checking real-time systems. In: Handbook of Model Checking, pp. 1001–
1046. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_29

8. Brunner, J., Lammich, P.: Formal verification of an executable LTL model checker
with partial order reduction. J. Autom. Reasoning 60(1), 3–21 (2018). https://doi.
org/10.1007/s10817-017-9418-4

9. Budde, C.E., et al.: On correctness, precision, and performance in quantitative
verification. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12479, pp.
216–241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-83723-5_15

https://doi.org/10.4121/3f2a4539-e69b-4d16-b665-530c1abddfbc
https://doi.org/10.4121/3f2a4539-e69b-4d16-b665-530c1abddfbc
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.23919/FMCAD.2017.8102233
https://doi.org/10.23919/FMCAD.2017.8102233
https://doi.org/10.1007/978-3-319-10575-8_29
https://doi.org/10.1007/s10817-017-9418-4
https://doi.org/10.1007/s10817-017-9418-4
https://doi.org/10.1007/978-3-030-83723-5_15

222 A. Hartmanns et al.

10. Chatterjee, K., Henzinger, M.: Faster and dynamic algorithms for maximal end-
component decomposition and related graph problems in probabilistic verification.
In: Randall, D. (ed.) 22nd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 1318–1336. SIAM (2011). https://doi.org/10.1137/1.9781611973082.
101

11. Chen, R., Lévy, J.-J.: A semi-automatic proof of strong connectivity. In: Paskevich,
A., Wies, T. (eds.) VSTTE 2017. LNCS, vol. 10712, pp. 49–65. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-72308-2_4

12. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model
Checking. Springer (2018). https://doi.org/10.1007/978-3-319-10575-8

13. Clarke, E., Mishra, B.: Automatic verification of asynchronous circuits. In: Clarke,
E., Kozen, D. (eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 101–115. Springer,
Heidelberg (1984). https://doi.org/10.1007/3-540-12896-4_358

14. Alfaro,L.: Formal verification of probabilistic systems. PhD thesis, Stanford Uni-
versity, USA (1997). https://searchworks.stanford.edu/view/3910936

15. Doyen, L., Frehse, G., Pappas, G.J., Platzer, A.: Verification of hybrid systems.
In: Handbook of Model Checking, pp. 1047–1110. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-10575-8_30

16. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: Proceedings of the 25th Annual IEEE Symposium on Logic in Computer
Science, LICS 2010, 11-14 July 2010, Edinburgh, United Kingdom, pp. 342–351.
IEEE Computer Society (2010). https://doi.org/10.1109/LICS.2010.41

17. Eisentraut, J., Kelmendi, E., Křetínský, J., Weininger, M.: Value iteration for
simple stochastic games: Stopping criterion and learning algorithm. Inf. Comput.
285(Part), 104886 (2022). https://doi.org/10.1016/J.IC.2022.104886

18. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.-G.:
A fully verified executable LTL model checker. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 463–478. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39799-8_31

19. Feng, L., Kwiatkowska, M., Parker, D.: Automated learning of probabilistic
assumptions for compositional reasoning. In: Giannakopoulou, D., Orejas, F. (eds.)
FASE 2011. LNCS, vol. 6603, pp. 2–17. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-19811-3_2

20. Grover, K., Weininger, M., Kretinsky, J.: QComp LRA results. Zenodo (2023).
https://doi.org/10.5281/zenodo.8219191

21. Gupta, A., Kahlon, V., Qadeer, S., Touili, T.: Model checking concurrent programs.
In: Handbook of Model Checking, pp. 573–611. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-10575-8_18

22. Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and IMDPs.
Theor. Comput. Sci. 735, 111–131 (2018). https://doi.org/10.1016/J.TCS.2016.
12.003

23. Hartmanns, A.: Correct probabilistic model checking with floating-point arith-
metic. In: TACAS 2022. LNCS, vol. 13244, pp. 41–59. Springer, Cham (2022).
https://doi.org/10.1007/978-3-030-99527-0_3

24. Hartmanns, A.: An overview of Modest models and tools for real stochastic timed
systems. In: Dubslaff, C., Luttik, B. (eds.) 5th Workshop on Models for Formal
Analysis of Real Systems (MARS), vol. 355 EPTCS, pp. 1–12 (2022). https://doi.
org/10.4204/EPTCS.355.1

https://doi.org/10.1137/1.9781611973082.101
https://doi.org/10.1137/1.9781611973082.101
https://doi.org/10.1007/978-3-319-72308-2_4
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/3-540-12896-4_358
https://searchworks.stanford.edu/view/3910936
https://doi.org/10.1007/978-3-319-10575-8_30
https://doi.org/10.1007/978-3-319-10575-8_30
https://doi.org/10.1109/LICS.2010.41
https://doi.org/10.1016/J.IC.2022.104886
https://doi.org/10.1007/978-3-642-39799-8_31
https://doi.org/10.1007/978-3-642-39799-8_31
https://doi.org/10.1007/978-3-642-19811-3_2
https://doi.org/10.1007/978-3-642-19811-3_2
https://doi.org/10.5281/zenodo.8219191
https://doi.org/10.1007/978-3-319-10575-8_18
https://doi.org/10.1007/978-3-319-10575-8_18
https://doi.org/10.1016/J.TCS.2016.12.003
https://doi.org/10.1016/J.TCS.2016.12.003
https://doi.org/10.1007/978-3-030-99527-0_3
https://doi.org/10.4204/EPTCS.355.1
https://doi.org/10.4204/EPTCS.355.1

Efficient Verified Maximal End Components 223

25. Hartmanns, A., Hermanns, H.: The Modest Toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8_51

26. Hartmanns, A., Kaminski, B.L.: Optimistic value iteration. In: Lahiri, S.K., Wang,
C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 488–511. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-53291-8_26

27. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quanti-
tative verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019.
LNCS, vol. 11427, pp. 344–350. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17462-0_20

28. Hartmanns, A., Kohlen, B., Lammich, P.: Fast verified SCCs for probabilistic model
checking. In: André, É., Sun, J. (eds.) 21st International Symposium on Automated
Technology for Verification and Analysis (ATVA). LNCS, vol. 14215, pp. 181–202.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-45329-8_9

29. Heule, M., Hunt, W., Kaufmann, M., Wetzler, N.: Efficient, verified checking of
propositional proofs. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP 2017. LNCS,
vol. 10499, pp. 269–284. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66107-0_18

30. Hölzl, J.: Markov chains and Markov decision processes in Isabelle/HOL. J. Autom.
Reason. 59(3), 345–387 (2017). https://doi.org/10.1007/s10817-016-9401-5

31. Holzmann, G.J.: Software model checking with SPIN. Adv. Comput. 65, 78–109
(2005). https://doi.org/10.1016/S0065-2458(05)65002-4

32. Kohlen, B., Hartmanns, A., Lammich, P.: Artifact for the paper “Efficient formally
verified maximal end component decomposition for MDPs”. 4TU.ResearchData
(2024). https://doi.org/10.4121/3f2a4539-e69b-4d16-b665-530c1abddfbc

33. Kolobov, A., Mausam, M., Weld, D., Geffner, H.: Heuristic search for general-
ized stochastic shortest path MDPs. In: Bacchus, F., Domshlak, C., Edelkamp,
S., Helmert, M. (eds.) 21st International Conference on Automated Planning
and Scheduling (ICAPS). AAAI, (2011). http://aaai.org/ocs/index.php/ICAPS/
ICAPS11/paper/view/2682

34. Komuravelli, A., Păsăreanu, C.S., Clarke, E.M.: Assume-guarantee abstraction
refinement for probabilistic systems. In: Madhusudan, P., Seshia, S.A. (eds.) CAV
2012. LNCS, vol. 7358, pp. 310–326. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31424-7_25

35. Křetínský, J., Ramneantu, E., Slivinskiy, A., Weininger, M.: Comparison of algo-
rithms for simple stochastic games. Inf. Comput., 289(Part), 104885 (2022).
https://doi.org/10.1016/J.IC.2022.104885

36. Kwiatkowska, M., Norman, G., Parker, D. et al.: Performance analysis of prob-
abilistic timed automata using digital clocks. Formal Methods Syst. Des., 29(1),
33–78, (2006). https://doi.org/10.1007/s10703-006-0005-2

37. Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification
of real-time systems with discrete probability distributions. Theor. Comput. Sci.
282(1), 101–150 (2002). https://doi.org/10.1016/S0304-3975(01)00046-9

38. Lammich, P.: Verified efficient implementation of Gabow’s strongly connected com-
ponent algorithm. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp.
325–340. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08970-6_21

39. Lammich, P.: Generating verified LLVM from Isabelle/HOL. In: Harrison,J., Leary,
J., Tolmach, A. (eds.) 10th International Conference on Interactive Theorem Prov-
ing (ITP). LIPIcs, vol. 141, pp. 22:1–22:19. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik (2019). https://doi.org/10.4230/LIPIcs.ITP.2019.22

https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-031-45329-8_9
https://doi.org/10.1007/978-3-319-66107-0_18
https://doi.org/10.1007/978-3-319-66107-0_18
https://doi.org/10.1007/s10817-016-9401-5
https://doi.org/10.1016/S0065-2458(05)65002-4
https://doi.org/10.4121/3f2a4539-e69b-4d16-b665-530c1abddfbc
http://aaai.org/ocs/index.php/ICAPS/ICAPS11/paper/view/2682
http://aaai.org/ocs/index.php/ICAPS/ICAPS11/paper/view/2682
https://doi.org/10.1007/978-3-642-31424-7_25
https://doi.org/10.1007/978-3-642-31424-7_25
https://doi.org/10.1016/J.IC.2022.104885
https://doi.org/10.1007/s10703-006-0005-2
https://doi.org/10.1016/S0304-3975(01)00046-9
https://doi.org/10.1007/978-3-319-08970-6_21
https://doi.org/10.4230/LIPIcs.ITP.2019.22

224 A. Hartmanns et al.

40. Lammich, P.: Efficient verified (UN)SAT certificate checking. J. Autom. Reason.
64(3), 513–532 (2020). https://doi.org/10.1007/s10817-019-09525-z

41. Lammich, P.: Refinement of parallel algorithms down to LLVM. In: Andronick,
J., Moura, L. (eds.) 13th International Conference on Interactive Theorem Proving
(ITP). LIPIcs, vol. 237, pages 24:1–24:18. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik (2022). https://doi.org/10.4230/LIPIcs.ITP.2022.24

42. Lammich, P., Tuerk, T.: Applying data refinement for monadic programs to
Hopcroft’s algorithm. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol.
7406, pp. 166–182. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32347-8_12

43. Schäffeler, M., Abdulaziz, M.: Formally verified solution methods for Markov deci-
sion processes. In: 37th AAAI Conference on Artificial Intelligence, pp. 15073–
15081 (2022). https://doi.org/10.1609/aaai.v37i12.26759

44. Neumann, R.: Using Promela in a fully verified executable LTL model checker.
In: Giannakopoulou, D., Kroening, D. (eds.) VSTTE 2014. LNCS, vol. 8471, pp.
105–114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12154-3_7

45. Platzer, A.: Logical Foundations of Cyber-Physical Systems. (2018). https://doi.
org/10.1007/978-3-319-63588-0

46. Pottier, F.: Depth-first search and strong connectivity in Coq. In: Vingt-sixièmes
journées francophones des langages applicatifs (JFLA) (2015)

47. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Statistics. Wiley (1994). https://doi.
org/10.1002/9780470316887

48. Quatmann, T., Katoen, J.-P.: Sound value iteration. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 643–661. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3_37

49. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
17th IEEE Symposium on Logic in Computer Science (LICS 2002), 22-25 July
2002, Copenhagen, Denmark, Proceedings, pp. 55–74. IEEE Computer Society
(2002). https://doi.org/10.1109/LICS.2002.1029817

50. Roberts, R., et al.: Probabilistic verification for reliability of a two-by-two network-
on-chip system. In: Lluch Lafuente, A., Mavridou, A. (eds.) FMICS 2021. LNCS,
vol. 12863, pp. 232–248. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-85248-1_16

51. Steinmetz, M., Hoffmann, J., Buffet, O.: Goal probability analysis in probabilistic
planning: exploring and enhancing the state of the art. J. Artif. Intell. Res. 57,
229–271 (2016). https://doi.org/10.1613/JAIR.5153

52. Vajjha, K., Shinnar, A., Trager, B., Pestun, V., Fulton, N.: CertRL: formalizing
convergence proofs for value and policy iteration in Coq. In: Hritcu, C., Popescu, A.
(eds.) 10th ACM SIGPLAN International Conference on Certified Programs and
Proofs (CPP), pp. 18–31. ACM, (2021). https://doi.org/10.1145/3437992.3439927

53. van den Berg, F., Remke, A., Haverkort, B.R.: iDSL: automated performance pre-
diction and analysis of medical imaging systems. In: Beltrán, M., Knottenbelt, W.,
Bradley, J. (eds.) EPEW 2015. LNCS, vol. 9272, pp. 227–242. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23267-6_15

54. Wimmer, S., Herbreteau, F., van de Pol, J.: Certifying emptiness of timed Büchi
automata. In: Bertrand, N., Jansen, N. (eds.) FORMATS 2020. LNCS, vol. 12288,
pp. 58–75. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57628-8_4

55. Wimmer, S., Lammich, P.: Verified model checking of timed automata. In: Beyer,
D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 61–78. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89960-2_4

https://doi.org/10.1007/s10817-019-09525-z
https://doi.org/10.4230/LIPIcs.ITP.2022.24
https://doi.org/10.1007/978-3-642-32347-8_12
https://doi.org/10.1007/978-3-642-32347-8_12
https://doi.org/10.1609/aaai.v37i12.26759
https://doi.org/10.1007/978-3-319-12154-3_7
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1002/9780470316887
https://doi.org/10.1002/9780470316887
https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/978-3-030-85248-1_16
https://doi.org/10.1007/978-3-030-85248-1_16
https://doi.org/10.1613/JAIR.5153
https://doi.org/10.1145/3437992.3439927
https://doi.org/10.1007/978-3-319-23267-6_15
https://doi.org/10.1007/978-3-030-57628-8_4
https://doi.org/10.1007/978-3-319-89960-2_4

Efficient Verified Maximal End Components 225

56. Wimmer, S., Mutius, J.: Verified certification of reachability checking for timed
automata. In: TACAS 2020. LNCS, vol. 12078, pp. 425–443. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45190-5_24

57. Younes, H.L., Littman, M.L., Weissman, D., Asmuth, J.: The first probabilistic
track of the international planning competition. J. Artif. Intell. Res. 24, 851–887
(2005). https://doi.org/10.1613/JAIR.1880

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-45190-5_24
https://doi.org/10.1613/JAIR.1880
http://creativecommons.org/licenses/by/4.0/

Introducing SWIRL: An Intermediate
Representation Language for Scientific

Workflows

Iacopo Colonnelli1 , Doriana Medić1(B) , Alberto Mulone1 ,
Viviana Bono1 , Luca Padovani2 , and Marco Aldinucci1

1 University of Turin, Turin, Italy
{iacopo.colonnelli,doriana.medic,alberto.mulone,

viviana.bono,marco.aldinucci}@unito.it
2 University of Camerino, Camerino, Italy

luca.padovani@unicam.it

Abstract. In the ever-evolving landscape of scientific computing, prop-
erly supporting the modularity and complexity of modern scientific
applications requires new approaches to workflow execution, like seam-
less interoperability between different workflow systems, distributed-
by-design workflow models, and automatic optimisation of data move-
ments. In order to address this need, this article introduces SWIRL,
an intermediate representation language for scientific workflows. In con-
trast with other product-agnostic workflow languages, SWIRL is not
designed for human interaction but to serve as a low-level compilation
target for distributed workflow execution plans. The main advantages
of SWIRL semantics are low-level primitives based on the send/receive
programming model and a formal framework ensuring the consistency
of the semantics and the specification of translating workflow models
represented by Directed Acyclic Graphs (DAGs) into SWIRL workflow
descriptions. Additionally, SWIRL offers rewriting rules designed to opti-
mise execution traces, accompanied by corresponding equivalence. An
open-source SWIRL compiler toolchain has been developed using the
ANTLR Python3 bindings.

Keywords: Hybrid workflow · Interoperability · Formal methods

1 Introduction

Workflows have been widely used to model large-scale scientific workloads. The
explicit definition of true dependencies between subsequent steps allows infer-
ring concurrent execution strategies automatically, improving performances, and
transferring input and output data wherever needed, fostering large-scale dis-
tributed executions. However, current Workflow Management Systems (WMSs)
struggle to keep up with the ever-more demanding requirements of modern scien-
tific applications, such as interoperability between different systems, distributed-
by-design workflow models, and automatic optimisation of data movements.
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 226–244, 2025.
https://doi.org/10.1007/978-3-031-71162-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_12&domain=pdf
http://orcid.org/0000-0001-9290-2017
http://orcid.org/0000-0002-7163-5375
http://orcid.org/0009-0009-2600-613X
http://orcid.org/0000-0002-2533-0511
http://orcid.org/0000-0001-9097-1297
http://orcid.org/0000-0001-8788-0829
https://doi.org/10.1007/978-3-031-71162-6_12

An Intermediate Representation Language for Scientific Workflows 227

With the advent of BigData, adopting a proper data management strat-
egy has become a crucial aspect of large-scale workflow orchestration. Avoiding
unnecessary data movements and coalescing data transfers are two established
techniques for performance optimisation in distributed executions. Moving com-
putation near data to remove the need for data transfers is the underlying prin-
ciple of several modern approaches to large-scale executions, like Resilient Dis-
tributed Datasets [42] and in-situ workflows [4].

WMSs’ interoperability is an open problem in scientific workflows, which hin-
ders reusability and composability. Despite several attempts to model product-
agnostic workflow languages [11] and representations [28] present in the litera-
ture, these solutions capture only a subset of features, forcing WMSs to reduce
their expressive power in the name of portability. The main issue in unifying
workflow representations resides in the heterogeneity of different WMSs’ APIs
and programming models tailored to the needs of a domain experts. Conversely,
moving the interoperability efforts to the lower level of the workflow execution
plan representation is a promising but still relatively unexplored alternative.

The heterogeneity in contemporary hardware resources and their features,
further exacerbated by the end-to-end co-design approach [30], requires WMSs
to support a large ecosystem of execution environments (from HPC to cloud,
to the Edge), optimisation policies (performance vs. energy efficiency) and com-
putational models (from classical to quantum). However, maintaining optimised
executors for such diverse execution targets is an overarching effort. In this set-
ting, a just-in-time compilation of target-specific execution bundles, optimised
for a single workflow running in a single execution environment, would be a game-
changing approach. Indeed, this approach allows for the efficient use of resources,
as the compilation is done at the time of execution, taking into account the spe-
cific characteristics of the execution environment. It also ensures the effectiveness
of the execution, as the compiled bundle is optimised for the specific workflow,
leading to improved performance.

This work presents SWIRL, a “Scientific Workflow Intermediate Representa-
tion Language”. Unlike other product-agnostic workflow languages, SWIRL is not
intended for human interaction but serves as a low-level compilation target for
distributed workflow execution plans. It models the execution plan of a location-
aware workflow graph as a distributed system with send/receive communication
primitives. This work provides a formal method to encode a workflow instance
into a distributed execution plan using these primitives, promoting interoper-
ability and composability of different workflow models. It also includes a set
of rewriting rules for automatic optimisation of data communications with cor-
rectness and consistency guarantees. The optimised SWIRL representation can
then be compiled into one or more self-contained executable bundles, making it
adaptable to specific execution environments and embracing heterogeneity.

The SWIRL implementation follows the same line as the theoretical app-
roach, separating scientific workflows’ design and runtime phases. A SWIRL-
based compiler translates a workflow system W to a high-performance, self-
contained workflow execution bundle based on send/receive communication pro-

228 I. Colonnelli et al.

tocols and runtime libraries, which can easily be included in a Research Object
[5], significantly improving reproducibility.

In detail, Sect. 2 introduces a generic formalism for representing distributed
scientific workflow models, while the related work and the comparison with the
SWIRL language is given in Sect. 2.1. Section 3 introduces the SWIRL semantics,
and Sect. 4 derives the rewriting rules used for optimisation. Section 5 describes
the implementation of the SWIRL compiler toolchain while Sect. 6 shows how
to model the 1000 Genomes workflow [35], a Bioinformatics pipeline aiming at
fetching, parsing and analysing data from the 1000 Genomes Project [39] into
SWIRL system. Finally, Sect. 7 concludes the article. Full proofs and additional
material can be found in [10] while the experiment is in [9].

2 Background and Related Work

This section gathers the related work (Sect. 2.1) and introduces a formal repre-
sentation of scientific workflows (Sect. 2.2) and their mapping onto distributed
and heterogeneous execution environments (Sect. 2.3).

2.1 Related Work

Location-Aware WMSs. Grid-native WMSs typically support distributed work-
flows out of the box, providing automatic scheduling and data transfer manage-
ment across multiple execution locations. However, all the orchestration aspects
are delegated to external, grid-specific technologies, limiting the spectrum of
supported execution environments. For instance, Triana [36], Askalon [14] and
Pegasus [12] delegate tasks offloading and data transfers to the GAP interface
[37], the GLARE library [34], and HTCondor [38], respectively.

Recently, a new class of location-aware WMSs is bringing advantages in per-
formance and costs of workflow executions on top of heterogeneous distributed
environments. StreamFlow [8] allows users to explicitly map each step onto one
or more locations in charge of its execution. It relies on a set of connectors to
support several execution environments, from HPC queue managers to microser-
vices orchestrators. Jupyter Workflow [7] transforms a sequential computational
notebook into a distributed workflow by mapping each cell into one or more exe-
cution locations, semi-automatically extracting inter-cell data dependencies from
the code, and delegating the runtime orchestration to StreamFlow. Mashup [32]
automatically maps each workflow step onto the best-suited location, choosing
between traditional Cloud VMs and serverless platforms.

Each tool has its own strategy to derive an execution plan from a workflow
graph without relying on an explicit and consolidated intermediate representa-
tion. Moreover, none of them formalise this derivation process, hiding its details
inside the WMS’s codebase. Instead, relying on a common intermediate language
like SWIRL would allow interoperability between different tools and formal cor-
rectness guarantees on the adopted optimisation strategies.

An Intermediate Representation Language for Scientific Workflows 229

Formal Models for Distributed Workflows. In the literature, the number of
different WMSs is notable [3], however, up to our knowledge, there are only a
few WMS for which formal models have been developed: Taverna [41], employ-
ing the lambda calculus [25] to define the workflow language in functional terms;
Kepler [21] adopting Process Networks [18] and BPEL [26], where the workflow
language is formalised with Petri Nets. YAWL [1] is another workflow language
based on Petri Nets extended with constructs to address the multiple instances,
advanced synchronisation, and cancellation patterns. It provides a detailed rep-
resentation of workflow patterns [2] supported by an open-source environment.

Process algebra, in particular, different versions of π-calculus [33] are suited
to model the workflow system due to the ability of processes to change their
structure dynamically. A class of workflow patterns has been precisely defined
using the execution semantics of π-calculus, in [29], while the basic control flow
constructs modelled by π-calculus are given in [13]. A distributed extension of
π-calculus [15] is examined as a formalisation for distributed workflow systems
in [23], providing a discussion on the flexibility of the proposed representation.
Aside from π-calculus, CCS (Calculus of Communication Systems) [24] models
Web Service Choreography Interface descriptions.

2.2 Scientific Workflow Models

A generic workflow can be represented as a directed bipartite graph, where the
nodes refer to either the computational steps of a modular application or the
ports through which they communicate, and the edges encode dependency rela-
tions between steps.

Definition 1. A workflow is a directed bipartite graph W = (S, P,D) where S
is the set of steps, P is the set of ports, and D ⊆ (S × P)∪ (P × S) is the set of
dependency links.

In the considered graph, one port can have multiple output edges meaning
that more steps are dependent on it. The sets of input/output ports (steps) of
a step (port) are defined with the following definition.

Definition 2. Given a workflow W = (S, P,D),a step s ∈ S and a port p ∈
P , the sets of input and output ports of s are denoted with In(s) and Out(s),
respectively, and defined as:

In(s) = {p′ | (p′, s) ∈ D} Out(s) = {p′ | (s, p′) ∈ D}
while the sets of input and output steps of p are denoted with In(p) and Out(p),
respectively, and defined as:

In(p) = {s′ | (s′, p) ∈ D} Out(p) = {s′ | (p, s′) ∈ D}

Traditionally, scientific workflows are modelled using a dataflow approach,
i.e., following token-pushing semantics in which tokens carry data values. The
step executions are enabled by the presence of tokens in their input ports and

230 I. Colonnelli et al.

produce new tokens in their output ports. In general, a single workflow model
can generate infinite workflow instances. Different instances preserve the same
graph structure but differ in the values carried by each token.

Definition 3. A workflow instance is a tuple (W,D, I) where W = (S, P,D) is
a workflow, D is a set of data elements, and I ⊆ (D × P) is a mapping relation
connecting each data element d ∈ D to the port p ∈ P that contains it.

Definition 4. Given a workflow instance (W,D, I), where W = (S, P,D), and
a step s ∈ S, the sets of input and output data elements of s are denoted with
InD(s) and OutD(s), respectively, and defined as:

InD(s) = {d | (d, p) ∈ I ∧ p ∈ In(s)} OutD(s) = {d | (d, p) ∈ I ∧ p ∈ Out(s)}
Introducing more precise evaluation semantics, triggering strategies, or lim-

itations on the dependencies structure can specialise this general definition to
an actual workflow model (e.g., a Petri Net [31] or Coloured Petri Nets [16], a
Kahn Processing Network [17], or a Synchronous Dataflow Graph [20]).

2.3 Distributed Workflow Models

A distributed workflow is a workflow whose steps can target different deployment
locations in charge of executing them. To compute the step, the corresponding
location must have access to or store all the input data elements, additionally,
it will store all the output data elements on its local scope. Locations can be
heterogeneous, exposing different hardware devices, software libraries, and secu-
rity levels. Consequently, the steps are explicitly mapped onto execution loca-
tions depending on their computing requests. Given that, a distributed workflow
model must contain a specification of the workflow structure, the set of available
locations, and a mapping relation between steps and locations.

Definition 5. A distributed workflow is a tuple (W,L,M), where W = (S, P,D)
is a workflow, L is the set of available locations, and M ⊆ (S ×L) is a mapping
relation stating which locations are in charge of executing each workflow step.

Each location can execute multiple steps on it, and a single step can be
mapped onto multiple locations. Multiple steps related to a single location intro-
duce a temporal constraint : all the involved steps compete to acquire the loca-
tion’s resources. They can be serialised if the location does not have enough
resources to execute all of them concurrently. Conversely, multiple locations
related to a single step express a spatial constraint : all involved locations must
collaborate to execute the step. This work does not impose any particular strat-
egy for scheduling different step executions on a single location when temporal
constraints arise. However, it is helpful to know the work queue of a given loca-
tion l, i.e., the set of steps mapped onto it.

Definition 6. Given a distributed workflow (W,L,M), where W = (S, P,D),
and a location l ∈ L, the set of steps mapped onto l is called the work queue of
l, denoted as Q(l) and defined as: Q(l) = {s | l ∈ M(s)}.

An Intermediate Representation Language for Scientific Workflows 231

Similarly to what was discussed in Sect. 2.2, a single distributed workflow
model can generate potentially infinite distributed workflow instances with dif-
ferent data elements and condition evaluations.

Definition 7. A distributed workflow instance is a tuple I = (W,L,M,D, I)
where (W,L,M) is a distributed workflow, D is a set of data elements, and
I ⊆ (D × P) is a mapping relation connecting each data element d ∈ D to the
port p ∈ P that contains it.

Example 1. Fig. 1 shows an example of a distributed workflow model. A step
s1 produces two different output data elements d1 and d2, which are mapped
to ports p1 and p2. The second and the third step, s2 and s3 depend on the
data elements on the ports p1 and p2, respectively. None of them produces other
outputs. This workflow is mapped onto four locations. Step s1 is executed on
location ld, while s2 is offloaded to l1 and step s3 is mapped to two locations l2
and l3. Using definitions above, Fig. 1 can be written as follows:

W = ({s1, s2, s3}, {p1, p2}, {(s1, p1), (s1, p2), (p1, s2), (p2, s3)})
L = {ld, l1, l2, l3} M = {(s1, ld), (s2, l1), (s3, l2), (s3, l3)}
D = {d1, d2} I = {(d1, p1), (d2, p2)}

Fig. 1. Example of a distributed workflow model. Steps are represented as squares and
ports as circles. Dependency links between steps and ports are depicted as arrows with
black-filled heads. Locations are represented as squashed rectangles. Mapping relations
are expressed as dotted arrows. A potential instance of this model can be derived by
adding data elements, denoted as sets of values, near their related port.

3 The SWIRL Representation

This section introduces SWIRL, a “Scientific Workflow Intermediate Represen-
tation Language”. Given a distributed workflow instance (Sect. 2.3), SWIRL
can model a decentralised execution plan, called workflow system, by infer-
ring and projecting execution traces on each involved location and specifying

232 I. Colonnelli et al.

Fig. 2. SWIRL structural congruence rules.

Fig. 3. SWIRL reduction semantics rules.

inter-location communications using send/receive primitives. The following sec-
tions introduce SWIRL syntax and semantics and derive a procedure to formally
encode a workflow instance I into a SWIRL workflow system W.

SWIRL models a distributed execution plan as a workflow system W, which
can be seen as a parallel composition of location configurations, tuples 〈l,D, e〉,
containing the location name l, the set D of data elements laying on l at a given
time, and the execution trace e representing the actions to be executed on l.

Definition 8. The syntax of a workflow system W is defined by the following
grammar:

W ::= 〈l, D, e〉 ‖ (W1 | W2)
e ::= μ ‖ e1.e2 ‖ (e1 | e2) ‖ 0

μ ::= exec(s, F (s), M(s)) ‖ send(d � p, l, l′) ‖ recv(p, l, l′)

F (s) ::= InD(s) �→ OutD(s)

Each execution trace e is constructed from the predicates μ, which can be com-
posed using two operators: the sequential execution e1.e2 and the parallel com-
position e1 | e2. The 0 symbol represents the empty trace.

A predicate μ represents an action to be performed during workflow execu-
tion. Predicates send(d � p, l, l′) and recv(p, l, l′) allow transferring the data
element d over port p from location l to location l′. Modelling ports and data
separately seams redundant, but we prefer to keep them divided for the future
extensions of the framework, as adding the loops. The exec(s, F (s),M(s)) action
represents the execution of step s. Besides the name of the step, this predicate
contains the set M(s) of locations onto which s is mapped and the dataflow

An Intermediate Representation Language for Scientific Workflows 233

F (s), i.e., the set InD(s) of input data needed by s and the set OutD(s) of
output data produced on each l ∈ M(s) after the execution of s.

3.1 Semantics

The SWIRL semantics is defined in terms of a reduction semantics.

Definition 9. The SWIRL semantics is defined by the reduction relation −→
defined as a smallest relation closed under the rules of Figs. 2 and 3.

The structural congruence properties are reported in Fig. 2. The commutativ-
ity of the parallel composition in location and the execution trace level is defined
with rule (Comtu). For both operators, parallel composition and sequential exe-
cution, the identity element is 0 (rules (Id |) and (Id.)).

The rules of a SWIRL semantics are depicted in Fig. 3. The step execution is
performed by the (Exec) rule. It collects all the locations M(s) onto which step
s is mapped and synchronises the execution action. The data OutD(s) produced
by the step execution are added to the set Di in all executing locations. Rule
(L-Comm) describes local communication, while rule (Comm) represents a data
transfer between two locations. In the latter case, the involved data element is
copied to the targeted (receiving) location. Note that communications do not
consume the data element on the sending location.

Assuming that configuration 〈l,D, e1〉 can be computed, rules (L-Par) and
(Seq) allow for the execution of the parallel and the sequential composition
inside the same location, respectively. The execution of the workflow sub-system
as a part of a larger system is allowed by the rule (Par). The (Congr) rule
allows the application of structural congruence.

When a step s is mapped onto multiple locations, each of them must contain
an exec predicate with the set of involved locations. Such predicates introduce
synchronisation points among different locations, as all involved execution traces
must step forward in a single pass. Additionally, each location must have a copy
of the input data InD(s), requiring multiple send operations for each element
d ∈ InD(s), and will own a copy of OutD(s).

Example 2. The behaviour of the distributed workflow instance given in Fig. 1
can be modelled as a workflow system W with the following syntax:

W = 〈ld, ∅, ed〉 |
3∏

i=1

〈li, ∅, ei〉

ed = exec(s1, ∅ �→ {d1, d2}, {ld}).
(
send(d1 � p1, ld, l1) |

send(d2 � p2, ld, l2) | send(d2 � p2, ld, l3)
)

e1 = recv(p1, ld, l1).exec(s2, {d1} �→ ∅, {l1})
e2 = recv(p2, ld, l2).exec(s3, {d2} �→ ∅, {l2, l3})
e3 = recv(p2, ld, l3).exec(s3, {d2} �→ ∅, {l2, l3})

In the execution trace ed, step s1 is sending output data d2 to both locations
l2, l3 ∈ M(s3) through the same port p2.

234 I. Colonnelli et al.

3.2 Workflow Model Encoding

Example 2 describes the encoding of a distributed workflow instance I into a
workflow system W. This section introduces a formal methodology to perform
this encoding automatically for any distributed workflow instance.

In SWIRL, the execution trace el of a location l ∈ L models the actions
required to execute all the steps in its work queue Q(l). In this respect, el can be
seen as the parallel composition of building blocks Bl(s), one for each s ∈ Q(l).
Each building block Bl(s) contains the same sequence of actions: (i) receives all
the necessary data elements for the step execution in which case it is necessary to
determine all input data elements (InD(s)) and for each element to identify the
step producing it (In(I(di))) and the locations on which the steps are mapped to
(M(In(I(di)))) (ii) executes the step s; (iii) sends the produced data elements
(OutD(s)) to the locations onto which the receiving steps are mapped (one data
element can be sent, over the same port, to the different steps/locations, therefore
it is necessary to identify the steps data di is sent to with Out(I(di)) and the
locations lj on which each step is deployed).

Definition 10. Given a distributed workflow instance I = (W,L,M,D, I), a
deployment location l ∈ L and a step s ∈ S s.t. l ∈ M(s), the building block
representing s in el is denoted by Bl(s) and defined as:

Bl(s) =

⎛

⎝
∀di∈InD(s)∏ ∀lj∈M(In(I(di)))∏

recv(I(di), lj , l)

⎞

⎠ .

exec(s, InD(s) �→ OutD(s), M(s)).
⎛

⎝
∀di∈OutD(s)∏ ∀sk∈Out(I(di))∏ ∀lj∈M(sk)∏

send(di � I(di), l, lj)

⎞

⎠

Definition 10 introduces the general form of Bl(s), which holds for steps
connected to both input and output ports. If a step does not consume input data,
as in the case of step s1 from Example 2, the receiving part of Bl(s) is modelled
with 0, resulting in Bld(s1) = 0.exec(s, ∅ 	→ {d1}, {ld}).send(d1 � p1, ld, l1).
The same applies to steps that do not produce output data.

The concept of building blocks Bl(s) allows for the modular construction of
execution traces by processing one pair (s, l) at a time. Intuitively, for each map-
ping pair step-location (s, l), corresponding building blocks Bl(s) are made and
added to the execution trace of the location l. Another important information is
the instance data distribution on the locations, denoted by G(l) = {d|d ∈ Dl}.

Definition 11. The encoding function [[·]] : WI −→ WW, where WI and WW are
the sets of distributed workflow instances and workflow systems represented in
SWIRL, respectively, is inductively defined as follows:

An Intermediate Representation Language for Scientific Workflows 235

[[I]] = [[I, M, G; W]] where W =
∏

∀li∈L

〈li, ∅, el〉

[[I, M ∪ (s, l), G; W | 〈l, ∅, el〉]] = [[I, M, G; W | 〈l, ∅, el | Bl(s)〉]]
[[I, M, G ∪ G(l); W | 〈l, ∅, el〉]] = [[I, M, G; W | 〈l, G(l), el〉]]
[[I, ∅, ∅; W]] = W

Formally, the encoding operator can be defined as a function with four input
parameters: (i) a workflow instance I to be translated; (ii) the set of pairs (s, l)
containing all mappings in M; (iii) the set G representing the distribution of
the data over locations; (iv) placeholder to build the workflow system W. The
translation starts by adding the auxiliary parameters into the encoding process
and inside a SWIRL placeholder, creating a workflow containing locations con-
figurations for each location in the workflow instance I (for all l ∈ L). The
iteration process is divided in two phases, first at each iteration, the encoding
function takes the pair (s, l), identify the location l and add the building block
Bl(s) into the execution trace to be executed on the location l. When all pairs
are encoded, in the second phase, the iteration is on the distribution of the data
over locations. Each set G(l) ⊆ G is encoded to the corresponding locations. In
that way, the trace el is the parallel composition of building blocks Bl(s) for
each s ∈ Q(l). The encoding finishes when both sets M and G are empty.

3.3 Consistency of SWIRL Semantics

This section defines a concurrency relation on the derivations of a workflow
system W, which is then used to show the consistency of different execution
diagrams through the semantics. As commonly done in the literature, this section
only considers reachable workflow systems defined below.

Definition 12. Given a distributed workflow instance I = (W,L,M,D, I) and
the function [[·]] : WI −→ WW, the initial state of a distributed workflow system is

WInit = [[I, L, ∗]] =
∏

lj∈L

〈
lj , ∅,

∏

s∈Q(lj)

B(s)

〉

Definition 13. A state of a workflow system W is reachable if it can be derived
from the initial state (WInit) by applying the rules in Figs. 2 and 3.

Having a transition t : W −→ W′, the workflow states W and W′ are called source
and target of the transition t, respectively. The concurrency relation is defined
on the transitions having the same source. Formally:

Definition 14 (Concurrency relation). Two different transitions t1 : W −→ W1
and t2 : W −→ W2 having the same source, are always concurrent, written t1 � t2.

Following the standard notation, let t2/t1 represent a transition t2 executed
after the transition t1. The concurrency relation is used to prove the Church-
Rosser property, which states that when two concurrent transitions execute at
the same time, the ordering of the executions does not impact the eventual result.
This finding shows that the concurrent semantics is confluent. Formally:

236 I. Colonnelli et al.

Lemma 1 (Church-Rosser property). Given two concurrent transitions t1 :
W −→ W1 and t2 : W −→ W2, there exist two transitions t2/t1 : W1 −→ W3 and
t1/t2 : W2 −→ W3 having the same target.

4 Optimisation

This section introduces an optimisation function that scans the entire work-
flow system to remove redundant communications, improving performance. In
particular, there are two cases in which execution traces can be optimised: (i)
communications between steps deployed on the same location, which are always
redundant; (ii) multiple communications of the same data element between a
pair of locations, when different steps mapped onto the destination location
require the same input data from the same ports.

The encoding function adds a communication to the workflow system W every
time a data element is required for the execution of a step, no matter if it is
already present at the destination location, creating unnecessary communica-
tions. For instance, consider a location 〈l,D, e〉 where D = ∅ and

e = recv(p, l1, l).exec(s, {d} �→ {d1}, {l}).send(d1 � p1, l, l) |
recv(p1, l, l).exec(s1, {d1} �→ ∅, {l})

After the execution of the step s, the data element d1 is saved on the location
l (D ∪ {d1}), therefore the send/recv pair does not affect the state of W. By
removing the unnecessary communication, the trace e can be rewritten as:

e′ = recv(p, l1, l).exec(s, {d} �→ {d1}, {l}) | exec(s1, {d1} �→ ∅, {l})

The rule (Exec) in Fig. 3, preserves dependency between steps s and s1 by
ensuring that step s1 will not execute until the required data d1 is produced.

The second optimisation step is to remove redundant communications
between different pairs of locations when the same data element is sent mul-
tiple times through the same port. For instance, consider two locations 〈l,D, e〉
and 〈l′,D′, e′〉 where D = D′ = ∅ and

e = recv(p, l1, l).exec(s, {d} �→ {d1}, {l}).(
3∏

i=1

send(d1 � p1, l, l
′))

e′ =
3∏

i=1

recv(p1, l, l
′).exec(si, {d1} �→ ∅, {l′})

The first location l sends the data element d1 to three steps mapped onto
location l′. Transferring the data element only once is enough, as the subsequent
communications will not affect the state of W, hence, there is:

e = recv(p, l1, l).exec(s, {d} �→ {d1}, {l}).send(d1 � p1, l, l
′)

e′ = recv(p1, l, l
′).exec(sk, {d1} �→ ∅, {l′}) |

3∏

i=1,i�=k

exec(si, {d1} �→ ∅, {l′})

An Intermediate Representation Language for Scientific Workflows 237

The optimisation of a workflow system W is defined in terms of three functions:
the first and the second1 ones start the optimisation process and controls it till
the end, by taking the additional parameter A (the set of all prefixes/actions) and
calling the third function that actually rewrite the execution trace of a location.
It goes through the execution traces of the workflow W and breaks them into
single action (prefix) blocks. Analysing the blocks one by one, it performs the
following actions: (i) if the predicate is a part of the communication on the same
location, it is removed; (ii) if the predicate is already in the set A, it is removed
as well (meaning the same data element was already sent to the same location
through the same port, just to different step); (iii) otherwise, the predicate is
added to the set A and the drilling function moves to the next element.

Definition 15. Given the workflow system W and sets of workflow and optimised
systems WW and WO, respectively, the optimisation function W, �·� : WW −→ WO is
defined in terms of the auxiliary functions, �·� : WW × A −→ WO and �·� : WW −→
WO (where o ∈ {|, .} and Al,l = {send(d � p, l, l), recv(p, l, l)}) as follows:

�W� = ��W�, ∅�

��〈l, D, e〉�, A� = 〈l, D, ��e�, A�〉
��W1 | W2�, A� = ��W1�, A� | ��W2�, A�

�e o e1� = �e � o � e1�

�e o � μ � o � e1�, A� =

{
�e o 0 o � e1�, A� if μ ∈ A ∨ μ ∈ Al,l

�e o μ o � e1�, A ∪ μ� otherwise

�e, A� = e

The two workflow systems W and O = �W� are modelling the same behaviour of
the distributed workflow system, i.e. the computations of the workflow steps are
executed in the same order in both systems with the difference in the number of
communications. Therefore, the weak barbed bisimulation [33] is used to define
the relation between the distributed workflow system and its optimised version.

To highlight that the executing action is a communication, it is labelled by
τ . Therefore, W τ−→ W′ indicates that workflow system W can evolve into W′ by
performing the communication (transfer) action. The reflexive and transitive
closure of τ−→ is denoted with τ=⇒ and the transition W

τ=⇒ W′ express the ability
of the system W to evolve into W′ by executing some number, possibly zero, of
τ actions (communications). Given the transition W −→ W′ (any type of action,
including the communication), if the same action can be executed after a certain
number of communication actions, it is denoted as W

τ=⇒−→ W′.
The observable elements in this setting are the executions of the steps and

it is denoted by W ↓ν (resp. O ↓ν) where ν = exec(s, F (s),M(s)) where the
1 The two functions have the same notation to simplify the notation, they can be

easily distinguished because of the different number of arguments.

238 I. Colonnelli et al.

Fig. 4. The SWIRL compiler toolchain.

weak barb is denoted by W ⇓ν (resp. O ⇓ν), and it is defined as W
τ=⇒↓ν (resp.

O
τ=⇒↓ν). Hence, the barbed bisimulation will check that all the step executions

in a workflow system can be matched by the executions in the optimised one.

Definition 16. A relation R ⊆ W × O is a weak barbed simulation if WR�W�:

– W ↓ν implies �W� ⇓ν

– W −→ W′ implies �W� ⇒ �W′� with W′R�W′�

A relation R ⊆ W × O is a weak barbed bisimulation if R and R−1 are weak
barbed simulations. Weak bisimilarity, ≈, is the largest weak barbed bisimulation.

The next theorem shows the operational correspondence between a dis-
tributed workflow system and its optimised term.

Theorem 1. For any distributed workflow system W, W ≈ �W�.

5 Implementation

The SWIRL compiler reference implementation2, called swirlc, follows the same
line as the theoretical approach, separating scientific workflows’ design and run-
time phases. On the one hand, it allows the translation of high-level, product-
specific workflow languages designed for direct human interaction to chains of
low-level primitives easily understood by distributed runtime systems. A com-
mon representation fosters composability and interoperability among different
workflow models, which can be easily combined into a single workflow system.
Moreover, the translation process is performed with the formal consistency guar-
antees discussed in Sect. 3.2.

Finally, a SWIRL-based compiler can translate a workflow system W to a high-
performance, self-contained workflow execution bundle based on send/receive
communication protocols and runtime libraries, which can easily be included
in a Research Object [5], improving reproducibility. An advanced compiler can
also generate multiple execution bundles from the same workflow system, each
optimised for a different execution environment (e.g., Cloud, HPC, or Edge),
2 https://github.com/alpha-unito/swirlc.

https://github.com/alpha-unito/swirlc

An Intermediate Representation Language for Scientific Workflows 239

improving performance. As a bonus feature, the intrinsically distributed nature
of SWIRL execution traces promotes decentralised runtime architectures, avoid-
ing the single point of failure introduced by a centralised control plane.

Figure 4 sketches the SWIRL compiler toolchain. We implemented the
SWIRL grammar using ANTLR [27], and we automatically generated Python3
parser classes to process the SWIRL syntax. All the components of the
SWIRL toolchain rely on these parsers to process ∗.swirl files. An abstract
SWIRLTranslator class implements the encoding function, producing a SWIRL
file from a workflow instance I. A concrete implementation specialises the
SWIRLTranslator logic to the semantics of a given workflow language, e.g., CWL

Fig. 5. Graphical representation of the 1000 Genomes workflow contains five classes of
steps mapped to diverse locations: (i) individuals (blue), number of steps n, mapped
to locations lIj , j ∈ [1, a]; (ii) individuals_merge (violet), a single step mapped
to location lIM ; (iii) sifting (yellow), a single step mapped to location lIM ; (iv)
mutations_overlap (red), number of steps m, mapped to locations lMO

t , t ∈ [1, b], and
(v) frequency (green) number of steps m, mapped to locations lFk , k ∈ [1, c]. The ini-
tial step s0, mapped to driver location ld is a step that sends each input data element
to the correct location for processing. The mapping between data elements and ports,

where i ∈ [1, n] and h ∈ [1, m], is: I =

{
(d0

i , p
0
i), (d

P
h , pP

h), (d
0
SF , p0

SF),

(dI
i , p

I
i), (d

IM , pIM), (dSF , pSF)

}
(Color

figure online)

240 I. Colonnelli et al.

[11], DAX (for Pegasus [12]), or the Galaxy Workflow Format (GWF) [40]3. A
SWIRLOptimizer5 class implements the optimisation function �·� : WW −→ WO,
generating an optimised ∗.swirl file. Finally, an abstract SWIRLCompiler class
produces an executable bundle from a ∗.swirl file and a declarative metadata
file, which contains additional information not currently modelled in the SWIRL
semantics, e.g., step commands, data types and location IP addresses. We have
implemented a simple compiler class that generates a multithreaded Python pro-
gram for each location, relying on TCP sockets for send/receive communications.

6 Evaluation

This section tests the flexibility of the SWIRL representation on the 1000
Genomes workflow [35], a Bioinformatics pipeline aiming at fetching, parsing
and analysing data from the 1000 Genomes Project [39] to identify mutational
overlaps and provide a null distribution for rigorous statistical evaluation of
potential disease-related mutations. However, we used the 1000 Genomes appli-
cations written in C++ [22]. Figure 5 shows a slightly simplified version of the
1000 Genomes workflow model. We removed some ports to simplify the nota-
tion, but their absence does not affect the reasoning reported in the rest of this
Section. Note that the number of locations could be smaller than the number of
steps. Hence, there could be a case when more steps are mapped to the same
location.

The corresponding workflow system W can be constructed using the encoding
function [[·]] : WI −→ WW (Sect. 3.2). It can be written as follows:

W =
∏

i∈{d,SF,IM}

〈
li, ∅, ei

〉
|

a∏

j=1

〈
lIj , ∅, eIj

〉
|

b∏

t=1

〈
lMO
t , ∅, eMO

t

〉
|

c∏

k=1

〈
lFk , ∅, eFk

〉

where each execution trace e∗
∗ defines the actions (steps and data transfers)

depicted in Fig. 5 to be executed on the corresponding location. For instance, if
the driver location is taken, the execution trace ed is defines as:

ed =
n∏

i=1

send(d0
i � p0

i , l
d, lIj) | send(d0

SF � p0
SF , ld, lSF) |

m∏

h=1

(send(dP
h � pP

h , ld, lMO
t) | send(dP

h � pP
h , ld, lFk))

The full representation of W is discussed in [10]. The 1000 Genomes workflow
modelled above can be reproduced using the SWIRL implementation (Sect. 5).
To keep the experiment small and ease reproducibility, the ten homogeneous
execution locations and a single chromosome, i.e., a single workflow instance,
are considered. The necessary installing package and instructions on how to run
the experiment can be find in [9].

3 The implementation of the CWL and GWF translators and the SWIRLOptimizer are
ongoing works.

An Intermediate Representation Language for Scientific Workflows 241

7 Conclusion

This work introduced SWIRL, a “Scientific Workflow Intermediate Representa-
tion Language” based on send/receive communication primitives. An encoding
function maps any workflow instance onto a distributed execution plan W, fos-
tering interoperability and composability of different workflow models. A set
of rewriting rules allows for automatic optimisation of data communications,
improving performance with correctness and consistency guarantees. The opti-
mised SWIRL representation can be compiled into one or more self-contained
executable bundles addressing specific execution environments, ensuring repro-
ducibility and embracing heterogeneity. SWIRL already proved itself to be flex-
ible enough to model a real large-scale scientific workflow (even if still not sup-
porting all features of modern WMSs).

The foundational contribution of SWIRL is to propose a novel direction to
solve well-known problems in the field of scientific workflows. Indeed, SWIRL
shifts the focus from high-level workflow languages, designed either for direct
human interaction or to encode complex, product-specific features, to a low-
level minimalistic representation of a workflow execution plan, which is far more
manageable from both formalisation methods and compiler toolchains. In this
context, we hope that SWIRL can pave the way to a novel, more formal approach
to distributed workflow orchestration research.

The formal SWIRL representation gives the possibility to build the formally
correct extensions, for instance, adding a type system where the multiparty
sessions are enriched with security levels for messages (data in our case) [6] or
deriving the causal-consistent reversible framework by applying the approach
[19], that later can be used as a base to build fault-tolerance mechanism.

Acknowledgments. This work was supported by: the Spoke 1 “FutureHPC & Big-
Data” of ICSC - Centro Nazionale di Ricerca in High-Performance Computing, Big
Data and Quantum Computing, funded by European Union - NextGenerationEU; the
EUPEX EU’s Horizon 2020 JTI-EuroHPC research and innovation programme project
under grant agreement No 101033975.

Data Availability Statement.. The artifact presented in this article is openly avail-
able at https://doi.org/10.5281/zenodo.12523000

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: yet another workflow lan-
guage. Inf. Syst. 30(4), 245–275 (2005). https://doi.org/10.1016/j.is.2004.02.002

2. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed Parallel Databases 14(1), 5–51 (2003). https://
doi.org/10.1023/A:1022883727209

3. Amstutz, P., Mikheev, M., Crusoe, M.R., Tijanic, N., Lampa, S., et al.: Existing
workflow systems. common workflow language wiki (2022). https://s.apache.org/
existing-workflow-systems. Accessed 05 Oct 2023

https://doi.org/10.5281/zenodo.12523000
https://doi.org/10.1016/j.is.2004.02.002
https://doi.org/10.1023/A:1022883727209
https://doi.org/10.1023/A:1022883727209
https://s.apache.org/existing-workflow-systems
https://s.apache.org/existing-workflow-systems

242 I. Colonnelli et al.

4. Ayachit, U., Bauer, A.C., Duque, E.P.N., Eisenhauer, G., Ferrier, N.J., et al.: Per-
formance analysis, design considerations, and applications of extreme-scale in situ
infrastructures. In: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC 2016, Salt Lake City,
UT, USA, November 13-18, 2016, pp. 921–932. IEEE Computer Society (2016).
https://doi.org/10.1109/SC.2016.78

5. Bechhofer, S., Buchan, I.E., Roure, D.D., Missier, P., Ainsworth, J.D., et al.: Why
linked data is not enough for scientists. Futur. Gener. Comput. Syst. 29(2), 599–
611 (2013). https://doi.org/10.1016/j.future.2011.08.004

6. Capecchi, S., Castellani, I., Dezani-Ciancaglini, M.: Information flow safety in mul-
tiparty sessions. Math. Struct. Comput. Sci. 26(8), 1352–1394 (2016). https://doi.
org/10.1017/S0960129514000619

7. Colonnelli, I., Aldinucci, M., Cantalupo, B., Padovani, L., Rabellino, S., et al.:
Distributed workflows with Jupyter. Futur. Gener. Comput. Syst. 128, 282–298
(2022). https://doi.org/10.1016/j.future.2021.10.007

8. Colonnelli, I., Cantalupo, B., Merelli, I., Aldinucci, M.: StreamFlow: cross-breeding
cloud with HPC. IEEE Trans. Emerg. Top. Comput. 9(4), 1723–1737 (2021).
https://doi.org/10.1109/TETC.2020.3019202

9. Colonnelli, I., Medic, D., Mulone, A., Bono, V., Padovani, L., Aldinucci, M.: Arti-
fact for paper “Introducing SWIRL: An Intermediate Representation Language for
Scientific Workflows”. https://doi.org/10.5281/zenodo.12523000 (2024). Accessed
26 June 2024

10. Colonnelli, I., Medić, D., Mulone, A., Bono, V., Padovani, L., Aldinucci, M.:
Introducing swirl: an intermediate representation language for scientific workflows
(2024). https://iris.unito.it/handle/2318/1989870

11. Crusoe, M.R., Abeln, S., Iosup, A., Amstutz, P., Chilton, J., et al.: Methods
included: standardizing computational reuse and portability with the common
workflow language. Commun. ACM (2022). https://doi.org/10.1145/3486897

12. Deelman, E., et al.: The evolution of the Pegasus workflow management soft-
ware. Comput. Sci. Eng. 21(4), 22–36 (2019). https://doi.org/10.1109/MCSE.
2019.2919690

13. Dong Yang, S.S.Z.: Approach for workflow modeling using π-calculus. J. Zhejiang
Univ. Sci. 2003 4(6), 643–650 (2003). https://doi.org/10.1631/jzus.2003.0643

14. Fahringer, T., Prodan, R., Duan, R., Hofer, J., Nadeem, F., et al.: ASKALON: A
development and grid computing environment for scientific workflows. In: Work-
flows for e-Science, Scientific Workflows for Grids, pp. 450–471. Springer (2007).
https://doi.org/10.1007/978-1-84628-757-2_27

15. Hennessy, M.: A distributed Pi-calculus. Cambridge University Press (2007)
16. Jensen, K.: Coloured petri nets: A high level language for system design and analy-

sis. In: Advances in Petri Nets 1990 [10th International Conference on Applications
and Theory of Petri Nets, Bonn, Germany, June 1989, Proceedings], pp. 342–416
(1989). https://doi.org/10.1007/3-540-53863-1_31

17. Kahn, G.: The semantics of a simple language for parallel programming. In: Rosen-
feld, J.L. (ed.) Information processing, pp. 471–475. North Holland, Amsterdam,
Stockholm, Sweden (1974)

18. Kahn, G., MacQueen, D.B.: Coroutines and networks of parallel processes. In:
Information Processing. In: Proceedings of the 7th IFIP Congress 1977, Toronto,
Canada, August 8-12, 1977, pp. 993–998. North-Holland (1977)

19. Lanese, I., Medic, D.: A general approach to derive uncontrolled reversible seman-
tics. In: 31st International Conference on Concurrency Theory, CONCUR 2020,

https://doi.org/10.1109/SC.2016.78
https://doi.org/10.1016/j.future.2011.08.004
https://doi.org/10.1017/S0960129514000619
https://doi.org/10.1017/S0960129514000619
https://doi.org/10.1016/j.future.2021.10.007
https://doi.org/10.1109/TETC.2020.3019202
https://doi.org/10.5281/zenodo.12523000
https://iris.unito.it/handle/2318/1989870
https://doi.org/10.1145/3486897
https://doi.org/10.1109/MCSE.2019.2919690
https://doi.org/10.1109/MCSE.2019.2919690
https://doi.org/10.1631/jzus.2003.0643
https://doi.org/10.1007/978-1-84628-757-2_27
https://doi.org/10.1007/3-540-53863-1_31

An Intermediate Representation Language for Scientific Workflows 243

September 1-4, 2020, Vienna, Austria (Virtual Conference). LIPIcs, vol. 171, pp.
33:1–33:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.
org/10.4230/LIPICS.CONCUR.2020.33

20. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75(9), 1235–
1245 (1987). https://doi.org/10.1109/PROC.1987.13876

21. Ludäscher, B., et al.: Scientific workflow management and the Kepler system. Con-
currency and Computation: Practice and Experience 18(10), 1039–1065 (2006).
https://doi.org/10.1002/cpe.994

22. Martinelli, A.R., Torquati, M., Aldinucci, M., Colonnelli, I., Cantalupo, B.: Capio:
a middleware for transparent i/o streaming in data-intensive workflows. In: 2023
IEEE 30th International Conference on High Performance Computing, Data, and
Analytics (HiPC). IEEE, Goa, India (2023). https://doi.org/10.1109/HiPC58850.
2023.00031

23. Medic, D., Aldinucci, M.: Towards formal model for location aware workflows. In:
47th IEEE Annual Computers, Software, and Applications Conference, COMPSAC
2023, Torino, Italy, June 26-30, 2023, pp. 1864–1869. IEEE (2023). https://doi.org/
10.1109/COMPSAC57700.2023.00289

24. Milner, R.: Communication and concurrency. PHI Series in computer science, Pren-
tice Hall (1989)

25. Moggi, E.: Computational lambda-calculus and monads. In: Proceedings of the
Fourth Annual Symposium on Logic in Computer Science (LICS 89), Pacific
Grove, California, USA, 5–8 June, 1989, pp. 14–23. IEEE Computer Society (1989).
https://doi.org/10.1109/LICS.1989.39155

26. Ouyang, C., Verbeek, E., van der Aalst, W.M.P., Breutel, S., Dumas, M., ter
Hofstede, A.H.M.: Formal semantics and analysis of control flow in WS-BPEL.
Sci. Comput. Program. 67(2–3), 162–198 (2007). https://doi.org/10.1016/j.scico.
2007.03.002

27. Parr, T.J., Quong, R.W.: ANTLR: a predicated- LL(k) parser generator. Softw.
Pract. Exp. 25(7), 789–810 (1995). https://doi.org/10.1002/spe.4380250705

28. Plankensteiner, K., Montagnat, J., Prodan, R.: IWIR: a language enabling porta-
bility across grid workflow systems. In: WORKS’11, Proceedings of the 6th Work-
shop on Workflows in Support of Large-Scale Science, pp. 97–106. ACM (2011).
https://doi.org/10.1145/2110497.2110509

29. Puhlmann, F., Weske, M.: Using the pi-calculus for formalizing workflow pat-
terns. In: Business Process Management, 3rd International Conference, BPM 2005,
Nancy, France, September 5-8, 2005, Proceedings, vol. 3649, pp. 153–168 (2005).
https://doi.org/10.1007/11538394_11

30. Reed, D.A., Gannon, D., Dongarra, J.J.: Reinventing high performance computing:
Challenges and opportunities. CoRR abs/2203.02544 (2022). https://doi.org/10.
48550/arXiv.2203.02544

31. Reisig, W., Rozenberg, G. (eds.): ACPN 1996. LNCS, vol. 1491. Springer, Heidel-
berg (1998). https://doi.org/10.1007/3-540-65306-6

32. Roy, R.B., Patel, T., Gadepally, V., Tiwari, D.: Mashup: making serverless com-
puting useful for HPC workflows via hybrid execution. In: PPoPP ’22: 27th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp.
46–60. ACM (2022). https://doi.org/10.1145/3503221.3508407

33. Sangiorgi, D., Walker, D.: The Pi-Calculus - a theory of mobile processes. Cam-
bridge University Press (2001)

34. Siddiqui, M., Villazón, A., Hofer, J., Fahringer, T.: GLARE: a grid activity registra-
tion, deployment and provisioning framework. In: Proceedings of the ACM/IEEE

https://doi.org/10.4230/LIPICS.CONCUR.2020.33
https://doi.org/10.4230/LIPICS.CONCUR.2020.33
https://doi.org/10.1109/PROC.1987.13876
https://doi.org/10.1002/cpe.994
https://doi.org/10.1109/HiPC58850.2023.00031
https://doi.org/10.1109/HiPC58850.2023.00031
https://doi.org/10.1109/COMPSAC57700.2023.00289
https://doi.org/10.1109/COMPSAC57700.2023.00289
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1016/j.scico.2007.03.002
https://doi.org/10.1016/j.scico.2007.03.002
https://doi.org/10.1002/spe.4380250705
https://doi.org/10.1145/2110497.2110509
https://doi.org/10.1007/11538394_11
https://doi.org/10.48550/arXiv.2203.02544
https://doi.org/10.48550/arXiv.2203.02544
https://doi.org/10.1007/3-540-65306-6
https://doi.org/10.1145/3503221.3508407

244 I. Colonnelli et al.

SC2005 Conference on High Performance Networking and Computing, p. 52 (2005).
https://doi.org/10.1109/SC.2005.30

35. da Silva, R.F., Filgueira, R., Deelman, E., Pairo-Castineira, E., Overton, I.M.,
Atkinson, M.P.: Using simple pid-inspired controllers for online resilient resource
management of distributed scientific workflows. Futur. Gener. Comput. Syst. 95,
615–628 (2019). https://doi.org/10.1016/j.future.2019.01.015

36. Taylor, I.J., Shields, M.S., Wang, I., Harrison, A.: The Triana workflow envi-
ronment: architecture and applications. In: Workflows for e-Science, Scientific
Workflows for Grids, pp. 320–339. Springer (2007). https://doi.org/10.1007/978-
1-84628-757-2_20

37. Taylor, I.J., Shields, M.S., Wang, I., Rana, O.F.: Triana applications within grid
computing and peer to peer environments. J. Grid Comput. 1(2), 199–217 (2003).
https://doi.org/10.1023/B:GRID.0000024074.63139.ce

38. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the
Condor experience. Concurrency and Computation: Practice and Experience 17(2–
4), 323–356 (2005). https://doi.org/10.1002/cpe.938

39. The 1000 Genomes Project Consortium: A global reference for human genetic
variation. Nature 526(7571), 68–74 (2015). https://doi.org/10.1038/nature15393

40. The Galaxy Community: The Galaxy platform for accessible, reproducible and
collaborative biomedical analyses: 2022 update. Nucleic Acids Res. 50(W1), W345–
W351 (2022). https://doi.org/10.1093/nar/gkac247

41. Turi, D., Missier, P., Goble, C.A., Roure, D.D., Oinn, T.: Taverna workflows: Syn-
tax and semantics. In: Third International Conference on e-Science and Grid Com-
puting, e-Science 2007, 10-13 December 2007, Bangalore, India, pp. 441–448. IEEE
Computer Society (2007). https://doi.org/10.1109/E-SCIENCE.2007.71

42. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., et al.: Resilient dis-
tributed datasets: a fault-tolerant abstraction for in-memory cluster computing.
In: Proceedings of the 9th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2012, pp. 15–28. USENIX Association (2012)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/SC.2005.30
https://doi.org/10.1016/j.future.2019.01.015
https://doi.org/10.1007/978-1-84628-757-2_20
https://doi.org/10.1007/978-1-84628-757-2_20
https://doi.org/10.1023/B:GRID.0000024074.63139.ce
https://doi.org/10.1002/cpe.938
https://doi.org/10.1038/nature15393
https://doi.org/10.1093/nar/gkac247
https://doi.org/10.1109/E-SCIENCE.2007.71
http://creativecommons.org/licenses/by/4.0/

Fast Attack Graph Defense Localization
via Bisimulation

Nimrod Busany1 , Rafi Shalom1,2 , Dan Klein1 , and Shahar Maoz2(B)

1 Accenture Labs, Herzliya, Israel
{nimrod.busany,rafi.shalom,dan.klein}@accenture.com

2 Tel Aviv University, Tel Aviv, Israel
maoz@cs.tau.ac.il

Abstract. System administrators, network engineers, and IT managers
can learn much about the vulnerabilities of an organization’s cyber sys-
tem by constructing and analyzing analytical attack graphs (AAGs). An
AAG consists of logical rule nodes, fact nodes, and derived fact nodes. It
provides a graph-based representation that describes ways by which an
attacker can achieve progress towards a desired goal, a.k.a. a crown jewel.
Given an AAG, different types of analyses can be performed to identify
attacks on a target goal, measure the vulnerability of the network, and
gain insights on how to make it more secure. However, as the size of the
AAGs representing real-world systems may be very large, existing anal-
yses are slow or practically impossible. In this paper, we introduce and
show how to compute an AAG’s defense core: a locally minimal subset
of the AAG’s rules whose removal will prevent an attacker from reaching
a crown jewel. Most importantly, in order to scale-up the performance
of the detection of a defense core, we introduce a novel application of
the well-known notion of bisimulation to AAGs. Our experiments show
that the use of bisimulation results in significantly smaller graphs and in
faster detection of defense cores, making them practical.

1 Introduction

System administrators, network engineers, and IT managers can learn
much about the vulnerabilities of a cyber system by investigating and analysing
analytical attack graphs (AAGs) [35]. An AAG provides a graph-based represen-
tation that describes ways by which an attacker can achieve progress towards
a desired goal, a.k.a. a crown jewel, in a digital environment given an entry
point, e.g., using social engineering. An AAG consists of logical rule nodes, fact
nodes, and derived fact nodes. Given an AAG, different types of analyses can
be performed to identify paths to reach a target goal, measure the vulnerabil-
ity of the network, and gain insights on how to optimize the efforts to secure
it. Several tools allow users to extract AAGs from their network, analyze the
AAGs, and provide relevant reports for system administrators and IT managers,
e.g., [11,22,30,34,44].

Yet, as the size of the AAGs representing real-world organizational networks
may be very large, existing analyses are incomplete or very slow, to the extent
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 245–263, 2025.
https://doi.org/10.1007/978-3-031-71162-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_13&domain=pdf
http://orcid.org/0009-0000-2843-9515
http://orcid.org/0009-0002-6305-5714
http://orcid.org/0000-0002-8881-1902
http://orcid.org/0000-0002-4022-5349
https://doi.org/10.1007/978-3-031-71162-6_13

246 N. Busany et al.

that make them impractical and hinder the wide-spread adoption of the technol-
ogy. One such analysis is the detection of the AAG’s rules that one should change
in order to protect the crown jewels [11].

In this paper, we introduce and show how to compute an AAG’s defense core: a
locally minimal subset of the AAG’s rules whose removal will prevent an attacker
from reaching a crown jewel. Most importantly, in order to scale-up the perfor-
mance of the detection of a defense core, we introduce a novel application of the
well-known notion of bisimulation to AAGs.

Bisimulation is a binary relation between the nodes of two graphs that applies
when the nodes have similar topological properties. Specifically, the result of
computing a maximum bisimulation between a graph and itself, allows one to
find a smaller representation of the graph that preserves important topological
properties. Bisimulation is well-studied in theoretical computer science and has
important applications in formal verification [3,7]. Multiple algorithms exist to
compute a bisimulation relation [8,9,36]. To the best of our knowledge, we are
the first to apply bisimulation to AAGs. The result of computing a maximum
bisimulation of an AAG is a compact representation we call an AAG-fold.

Given an AAG, a defense core is a minimal subset of the AAG’s rules whose
removal will make the system safe, i.e., prevent an attacker from reaching a
crown jewel. However, computing a defense core is computationally expensive
and (as we show in our experiments) can become very slow or practically impos-
sible on large AAGs. Thus, rather than computing it on the original AAG directly,
we compute it on its AAG-fold. The correctness of our work relies on the fact
that AAG-folds preserve attacks, which we formalize and prove in Sect. 5. The
scalability of our work relies on (1) the ability to compute the AAG-fold effi-
ciently and (2) that in practice, as we show in our experiments, the AAG-fold is
typically much smaller than the original AAG.

Finally, note that defense minimality is important because system changes
corresponding to logical rule change or removal may be expensive or technically
difficult to apply. Typically, many different defense cores may exist and comput-
ing the minimal one is too expensive. As a pragmatic solution, we compute a
locally minimal subset, one which may be larger than other possible cores but
in itself, does not include any redundant rules. To compute it, we use a variant
of the well-known minimization algorithm QuickXplain [18].

We implemented our ideas as an extension to AgiSC, developed by Accen-
ture Labs and used by Accenture Security as part of its IT and consulting ser-
vices to clients. The tool uses Datalog to represent facts and derivation rules
about the system. Our experiments show that a direct approach to computing a
defense core does not scale. They also show that the use of bisimulation results in
significantly smaller graphs and in faster and scalable defense-core computations.

2 Illustrative Example

We use an example to semi-formally illustrate and motivate the use of AAGs and
the problem of computing AAG defense cores. See Sect. 3.3 for a formal definition

Fast Attack Graph Defense Localization via Bisimulation 247

Fig. 1. An AAG (L), an excerpt of it (TR), and a folding of “hasAccount” (BR).

of an AAG based on Datalog specifications, and for an example of Datalog facts,
rules, and a fact derivation. We consider a network with n domain users, each
with a personal workstation and a server. All users belong to a special domain
group with remote desktop protocol (RDP) access to all servers. All servers can
use a network file sharing protocol (SMB) to share files and request services
from the domain controller. One of the servers, namely server1, contains a local
privilege escalation vulnerability, and the domain admin admin@example.domain
is logged into the server.

Consider the following attack scenario. An attacker compromises a personal
workstation using a social engineering technique that steals the user credentials.
The attacker then connects to server1 by logging into it via RDP with the
stolen user credentials. The attacker escalates her privileges on server1 using
a local privilege escalation vulnerability. Then, the attacker uses a hacking tool
to find the credentials of the logged domain admin. Finally, the attacker uses a
Windows OS procedure with the stolen domain admin credentials to log on to
domain controller via the SMB protocol with administrative privileges. From the
domain controller the attacker effectively gains complete control over network,
and so the domain is compromised.

Figure 1 shows an example of an AAG of a small network. Graph nodes shaped
as circles, triangles, and rectangles represent facts, implication rules, and derived
facts respectively. Rules are numbered and facts have only predicate names to
avoid clutter. The blue dashed rectangles depict two nodes with the same label,
namely hasAccount. The red rectangle highlights the excerpt that appears on
the top right figure. The red circles highlight a fact and a rule that are relevant
to the discussion below.

Figure 1 (left) shows a visualization of the AAG that captures the scenario
described above when the network has one domain user, i.e., n = 1. This AAG is

248 N. Busany et al.

automatically generated by a solver that takes a set of facts capturing the initial
configuration of the system; a Datalog specification that specifies predicates and
logical implication rules; and a target goal. The solver produces an AAG that
shows every possible derivation of the goal, i.e., every possible attack.

Consider the fact isDC(‘domain controller’,‘example.domain’) in
Fig. 1 (left) at the bottom circle, represented by its predicate name
isDC, which is included in the initial configuration. It encodes that
domain controller is the domain controller for example.domain. Consider
the following implication rule that encodes that if an attacker gains ele-
vated code execution privileges on a domain controller, then the domain is
compromised: domainCompromised(Domain) :- execCodeElevated(, DC),
isDC(DC, Domain)

This rule is applied as the last step to derive the attack goal. The rule and
the goal are represented in Fig. 1 (left) by triangle 56 and the blue rectangle
respectively.

One common use of AAGs is to mitigate potential cyber threats. Different
mitigation strategies exist, some focus on rectifying specific facts [1,10,15,41],
while others on blocking potential lateral moves, represented by Datalog rules, by
installing security controls [11,12]. In this work, we focus on the latter and search
for a set of rules whose removal prevents all attacks towards the goal.

Consider the rule labeled 45 in our example. It encodes that if two hosts
are connected via an SMB protocol and an attacker has elevated privileges on
one, then the attacker can gain elevated privileges of the other. Removing this
Datalog rule means that we prevent its applications, i.e., all rule nodes labeled
45 in the graph. As a result, the goal is no longer reachable, and thus the graph
ceases to show possible attacks.

A major obstacle when searching for a defense core relates to the size of the
AAG, which dramatically increases with the size of the network. Consider our
example, scaling up the network by increasing the number of users n = 1, 5, 50
yields AAGs with 135, 2565, and ≈ 1.3M nodes and edges respectively. Thus, as
the network grows, finding a defense becomes a computationally expensive and
long if not an impractical task. We observe that while the number of possible
attacks increases with the network size, many of the attacks share the same
structure. Thus, we use bisimulation, and fold graph nodes with similar labels
and graph topology. The motivation to use bisimulations relies on the fact that
an AAG typically depicts many different attacks that differ only in agents and
machines that share similar properties.

Figure 1 (bottom right) shows a visualization of a portion of the folded attack
graph. Although the folded graph is smaller, the original graph and the folded
one exhibit the same set of labeled paths. For example, the two nodes labelled
hasAccount in the AAG that appear in Fig. 1 (top right), have same label and
graph topology, e.g., the same outgoing edges to the equally labeled nodes. Both
are folded into one node in the bottom right figure. The 135 nodes and edges of
the AAG, are represented by 112 nodes and edges in the folded representation.

Fast Attack Graph Defense Localization via Bisimulation 249

By folding the graphs of our example for n = 1, 5, 50, the original graphs of
135, 2565, and ≈ 1.3M nodes and edges are reduced to graphs with 112, 252,
and 252 nodes and edges resp. Interestingly, the folded representation does not
change when increasing n from 5 to 50, as in this case the newly added nodes are
folded into existing folded nodes. The difference between a graph of size 1.3M
and a graph of size 252 makes our work scalable. In this paper we leverage folding
to achieve faster defense analysis time for large AAGs.

3 Preliminaries

3.1 Monotonic Criteria and Cores

Given a set T , and a monotonic criterion on subsets of T , a core is a local
minimum that satisfies the criterion. Formally:

Definition 1 (Monotonic criterion). A Boolean criterion over subsets of T
is monotonic iff for any two sets A,B such that A ⊆ B ⊆ T , if A satisfies the
criterion then B satisfies the criterion.

Definition 2 (Core). Given a set T and a monotonic criterion over its subsets,
a set C ⊆ T is a core of T iff C satisfies the criterion, and all its proper subsets
C ′ ⊂ C do not satisfy the criterion.

Note that multiple cores may exist, not all of them minimal in size. There
are several well-known domain-agnostic algorithms that compute a core, given
a method that computes a monotonic criterion. We chose QuickXplain as our
core computation algorithm. It has a worst-case complexity of O(k+ klog(|T |

k)),
where T is the minimized set, and k is the size of the largest core. See Sect. 7
for a discussion of core computation algorithms.

3.2 Bisimulation Relations

Bisimulation relations are equivalence relations on nodes that share topological
properties. They can be extended by labels on nodes and edges that distinguish
between different types of nodes and edges. Here we use strong bisimulation
with labeled nodes [28]. This allows more succinct representations of graphs
while keeping certain properties.

Two nodes v1 and v2 of a directed graph may be equivalent in terms of the
paths starting from them. The equivalence of the paths means that for each path
starting from v1 there is a path starting from v2 composed of equivalent nodes
by the same relation, and vice versa. For example, every two leaves (i.e., nodes
with no outgoing edges), may be considered equivalent.

Such an equivalence relation is called a bisimulation. The most fine grained
bisimulation is the identity relation, and the most coarse is called a maximum
bisimulation. We borrow the formal definitions and propositions from [8].

250 N. Busany et al.

Definition 3 (Bisimulation relation). Given graphs G1 = 〈V1, E1〉 and
G2 = 〈V2, E2〉, a bisimulation between G1 and G2 is a relation b ⊆ V1 × V2

such that

1. (u1 b u2 ∧ 〈u1, v1〉 ∈ E1) ⇒ ∃v2 ∈ V2(v1 b v2 ∧ 〈u2, v2〉 ∈ E2)
2. (u1 b u2 ∧ 〈u2, v2〉 ∈ E2) ⇒ ∃v1 ∈ V1(v1 b v2 ∧ 〈u1, v1〉 ∈ E1).

Definition 4 (Maximum bisimulation and minimum representation).
Given a graph G = 〈V,E〉, a maximum bisimulation ≡ on G is the union of all
bisimulation relations between G and itself. The minimum representation of G
has nodes V/ ≡ and edges 〈[u], [v]〉, s.t. ∃u1 ∈ [u], v1 ∈ [v](〈u1, v1〉 ∈ E).

Proposition 1 (Uniqueness and bisim. of minimum representations).
A maximum bisimulation ≡ on G always exists. It is a unique equivalence

relation over the nodes of G. A graph G and its minimum representation are
bisimilar, i.e., there is a bisimulation relation between them.

The definition of a bisimulation relation may be refined to consider labels on
nodes. In this case, for example, nodes without outgoing edges are equivalent iff
they have the same label.

Definition 5 (Labeled graph bisimulation). Let L be a finite set of labels.
Given a labeled graph G = 〈V,E, l〉 with l : V → L, a labeled bisimulation on G
is a bisimulation relation b ⊆ V × V on G such that u b v implies l(u) = l(v).

Definition 4 and Proposition 1 apply as they are to maximum labeled bisim-
ulations and to minimum representations of labeled graphs respectively.

Several algorithms for computing a maximum bisimulation exist. PT is an
efficient algorithm suggested by Paige and Tarjan [36], with a complexity of
O(|E|log|V |) for a graph G(V,E). We discuss other algorithms in Sect. 7. We
used BisPy [2], an open-source project that includes an efficient implementation
of PT for maximum bisimulation computation.

3.3 Analytical Attack Graphs

An analytical attack graph (AAG) provides a graph-based representation that
describes ways by which an attacker can achieve progress towards a specified
goal. An influential work by Ou et al. [34] presented MulVal, a framework for
generating AAGs based on facts and vulnerabilities that are collected from the
organizational network. Facts describe logical and physical entities of the net-
work. They are formally modeled by Datalog predicates. Each predicate is an
n-ary relation between such entities. The Datalog statement P (arg1, arg2, . . .).
states that the literals arg1, arg2, . . . satisfy the predicate P . Literals are con-
stant strings of characters.

For example, Listing 1 contains two facts. The predicate names of the facts
are entryPoint and hasSession.

Derivation rules allow the deduction of new facts from given facts. Essen-
tially, derivation rules derive a fact when a conjunction of facts is detected. The

Fast Attack Graph Defense Localization via Bisimulation 251

derivation may be a general one, as some of the arguments may be represented
by variables. Thus, a single rule is usually applied to many different sets of facts.

The syntax of a Datalog rule is

P (a1, a2, . . .) : −P1(a11, . . .), P2(a21, . . .), . . . , Pn(an1, . . .)

where P is the derived predicate name. If predicates P1, P2, . . . Pn hold, it is
possible that several instances of P with some literals are derived, depending
on the parameters of P1, P2, . . . Pn. The parameters of predicates in rules are
variables (that begin with a capital letter or underscore for variables not essential
for the derivation) and literals.

Listing 1. Two Facts

1 entryPoint(‘SERVER_USER_1_PC.DOM1 ’).
2 hasSession(‘SERVER_USER_1_PC.DOM1 ’, ‘SERVER_USER_1@DOM1 ’).

Listing 2. A Derivation Rule

1 interaction_rule(
2 (execCode(User , Host) :-
3 hasSession(Host , User),
4 entryPoint(Host)
5),
6 rule_desc(‘Starting position of an attacker ’, 1.0)).

Listing 3. A Derived Fact

1 execCode(‘SERVER_USER_1@DOM1 ’, ‘SERVER_USER_1_PC.DOM1 ’)

For example, Listing 2 shows a rule from one of our Datalog files stating that if
the literal of entryPoint and the first literal of hasSession are the same, the
predicate execCode with the same parameters as hasSession in reverse order is
derivable. In our case, Listing 1 and Listing 2 together indicate the derived fact
that appears in Listing 3. Note that Listing 1 and Listing 2 show real Datalog
code while Listing 3 is a textual representation of the derived fact.

Given a Datalog representation of the network, one can use a reasoning
engine, e.g., XSB [37], to check whether there exists an attack from the input
facts to the target goal. Given primitive facts and rules, which describe the sys-
tem, the reasoning engine deduces derived facts. Derived facts have the same
syntax as primitive facts, i.e., predicates over literals. Given a goal, the reason-
ing provides two outputs, namely, deciding whether the goal is achievable, and
if so, producing information about all possible attacks in the form of an AAG.

An AAG exists iff the goal is achievable. We borrow the definition of an AAG
and its semantics from [10]

Definition 6 (Analytical attack graph (AAG)). An analytical attack graph
is a structure A = 〈Nr, Nf , Nd, E, L, g〉 where Nr, Nf , Nd are mutually exclusive
sets of nodes denoting derivation rules, facts, and derived facts respectively. E is
a set of edges that connects facts, either primitive or derived, to derivation rules,
and derivation rules to derived facts. Formally, E ⊆ ((Nf∪Nd)×Nr)∪(Nr×Nd).
L is a mapping from a node to its label, i.e., fact nodes Nf ∪Nd, and rule nodes
Nr are mapped to the facts and rules they represent respectively. Finally, g ∈ Nd

is the target node. We denote by V = Nr ∪ Nf ∪ Nd the set of all the nodes.

252 N. Busany et al.

For example, an AAG that represents the facts and rules in Listings 1–3, has
nodes v1, v2, v3, v4 and edges (v1, v3), (v2, v3), (v3, v4). The two facts in Listing 1
are the labels L(v1), L(v2) of two nodes, v1, v2 ∈ Nf . Listing 2 lines 2-4 is the
label L(v3) of a rule node v3 ∈ Nr. Listing 3 is the label L(v4) of a derived
node v4 ∈ Nd. The AAG will include three edges. (v1, v3), (v2, v3) ∈ Nf ×Nr and
(v3, v4) ∈ Nr × Nd.

We defined an AAG to have a single goal. It is always possible to reduce an
AAG that represents a set of goals, where either all or at least one of them must
be achieved, to the AAG as defined in Definition 6, with additional rules.

An AAG is a special case of an And/Or graph [27], where each rule node
instantiates only one (derived) fact. The semantics of an AAG is that derived
facts are supported by a rule and facts that imply the derived fact in accordance
with the rule. Formally:

Definition 7 (AAG semantics). For every vr ∈ Nr and vd ∈ Nd s.t. 〈vr, vd〉 ∈
E, it holds that ∧〈v,vr〉∈EL(v) → L(vd) is an instance of the rule L(vr).

An AAG indicates that the goal can be achieved. Since the reasoning engine
deduces all possible derivable facts, an AAG represents all possible attacks, possi-
bly including circular ones, which occur when two facts contribute to the deduc-
tion of each other. An attack or attack plan is intuitively a single attack sce-
nario. Explicitly, it is a subgraphs of the AAG that contains the goal node, each
derived fact node has an incoming degree 1, and each rule node is satisfied by
its preconditions. For a formal definition of attack plans see [10].

4 The Defense Problem and a Naive Defense Algorithm

We now describe the defense problem, i.e., finding a subset of the rules whose
removal prevents all possible attacks on the goal. We call the remaining set of
rules safe, and define safe sets first. We then show a naive defense algorithm,
i.e., one that uses an AAG directly.

Definition 8 (Safe sets of rules). Given an AAG A = 〈Nr, Nf , Nd, E, L, g〉,
we denote its set of rules by R = {r ∈ L(vr)|vr ∈ Nr}. A subset R′ ⊆ R is safe
if any subgraph of A with a set of rules restricted to R′ and the same goal g is
not an AAG. A subset R′ ⊆ R is maximally safe if it is safe and every R′′ such
that R′ ⊂ R′′ ⊆ R is not safe.

Note that there may exist more than one maximally safe set of rules.
A defense-set is the complement of a safe set of rules. Formally,

Definition 9 (Defense-sets). Given the notation of Definition 8, a subset
R′ ⊆ R is a defense-set iff R \ R′ is safe.

We define a defense problem: Given an AAG as input, output a defense-set.
The duality of locally maximal sets satisfying a property, and their comple-

ments being locally minimal sets the removal of which satisfies the property is
trivial and well-known [21].

Fast Attack Graph Defense Localization via Bisimulation 253

The direct way to compute a defense-set is to apply a domain-agnostic core
computation algorithm to a set of rules of the AAG. This requires a method
that computes the defense-set criterion, i.e., given a set of rules, decide if it
a defense-set. We implemented a naive defense-set check algorithm. We call
the application of QuickXplain to a set of rules with check as the monotonic
criterion computation AAG-Defense. Since the criterion is evidently monotonic,
the correctness of the algorithm follows. Moreover, since QuickXplain ensures
a core the complement of the obtained defense-set is maximally safe.

5 Applying Bisimulation to Attack Graphs, and a Fast
Defense Algorithm

An AAG may be folded using a bisimulation, which generates a succinct repre-
sentation of it. The succinct representation may be helpful for various purposes,
such as comprehension and computational efficiency of analyses.

We now present our contribution. In Sect. 5.1 we introduce the notion and
the semantics of an AAG-fold which represents an AAG that has been folded
using a bisimulation. We then prove that the AAG-fold semantics must hold. In
Sect. 5.2 we introduce a faster defense algorithm, namely, AF-Defense.

5.1 Folding an AAG

To fold an AAG, we define a labeled bisimulation based on the predicate names,
and ignore the arguments of primitive and derived facts. We first define an
abstraction function for predicates and rules.

Definition 10 (Abstraction function). The function abs ignores arguments
in fact and rule labels. For a fact label l1 := “P (a1, a2, . . .)” let abs(l1) = “P”.
For rule label l2 := “P (a1, a2, . . .) : −P1(a11, . . .), P2(a21, . . .)), . . . , Pn(an1, . . .))”
we define abs(l2) = “P : −P1, P2, . . . , Pn”.

For example, the abstractions of the two facts in Listing 1 are the names
of the predicates, namely entryPoint and hasSession. The abstraction of the
rule in Listing 2 lines 2–4 is execCode :- hasSession, entryPoint.

Next, we define an AAG-fold to be the minimum representation of an AAG. We
collapse the facts but not the rules according to a maximum labeled bisimulation.
That is, apart from considering the topology of the graph, nodes can become
equivalent only if they keep the exact rule for rule nodes, and can become equiv-
alent if they have the same predicate name (regardless of the arguments) for fact
nodes. Formally:

Definition 11 (AAG-fold). Let A = 〈Nr, Nf , Nd, E, L, g〉 be an AAG. We define
a label function l over nodes Nr ∪ Nf ∪ Nd as follows. ∀v ∈ Nr l(v) = L(v),
and ∀v ∈ Nf ∪ Nd l(v) = abs(L(v)). We apply the unique maximum labeled
bisimulation relation ≡ to obtain an AAG-fold AF = 〈Nr/ ≡, Nf/ ≡, Nd/ ≡
, E≡, L≡, [g]〉 where E≡ is defined in accordance with the edges of the minimum
representation in Definition 4, and L≡ abstracts both rule nodes and fact nodes,
namely, ∀v ∈ Nr ∪ Nf ∪ Nd L≡([v]) = abs(L(v)).

254 N. Busany et al.

The maximum labeled bisimulation relation ≡ exists and is unique according
to Proposition 1. Note that this equivalence relation ranges over the whole set
of nodes V . It is possible that two nodes, one from Nf and one from Nd, are
equivalent. The quotient set Nd/ ≡ uses the restriction of the relation to the
set Nd (and similarly for Nf). Note that the label function L≡ is well defined.
First, rule nodes use the syntax of the original rule as their label for the pur-
pose of bisimulation. This means that only rules with the exact syntax may
become equivalent. Thus, they must have the same abstraction. Second, fact
nodes that become equivalent must have the same predicate name, which is also
their abstraction. Thus the definition of L≡ for equivalent fact nodes must agree.

The semantics of the AAG-fold is slightly different than that of an AAG:

Definition 12 (AAG-fold semantics). Let AF = 〈Nr, Nf , Nd, E, L, g〉 be an
AAG-fold. For every vr ∈ Nr and vd ∈ Nd s.t. 〈vr, vd〉 ∈ E, then ∧〈v,vr〉∈EL(v)
implies L(vd) according to rule L(vr).

Note that the implication involves only predicate names rather than pred-
icates with literals, which is more relaxed. For example, P1 ∧ P1 ∧ P2 and
P1 ∧ P2 ∧ P2 are equivalent, although they are not the same formula. The dif-
ference is that the number of instances of the same predicate name may vary in
the AAG-fold, and we only require that one of each predicate name of the rule
appears as a support. We discuss the effect of this in detail below.

We now prove our main claim, namely, that the AAG-fold of any AAG must
adhere to AAG-fold semantics.

Theorem 1 (An AAG-fold adheres to AAG-fold semantics). Given an AAG

A = 〈Nr, Nf , Nd, E, L, g〉, AF as defined in Definition 11 has AAG-fold seman-
tics as defined in Definition 12.

Proof. Let v′
r ∈ Nr/ ≡ and v′

d ∈ Nd/ ≡ be nodes satisfying 〈v′
r, v

′
d〉 ∈ E≡. By

Definition 4 there are vr ∈ v′
r and vd ∈ v′

d s.t. 〈vr, vd〉 ∈ E. By Definition 5,
all elements of v′

r have the same bisimulation label r = l(vr). Bisimulation
labels of rule nodes are not abstracted (Definition 11), thus r = L(vr) is an
AAG rule. According to AAG semantics, ∧〈v,vr〉∈EL(v) → L(vd) is an instance of
r (see Definition 7). By Proposition 1 A and AF are bisimilar, and according
to Definition 3, for each v s.t. 〈v, vr〉 ∈ E there is a (not necessarily unique) v′

s.t. 〈v′, v′
r〉 ∈ E≡, and s.t. v and v′ satisfy the bisimilarity between A and AF .

By Definition 11, the L≡(v′) are abstractions of the facts of their corresponding
L(v), which, in turn, satisfy r. Thus, ∧〈v′,v′

r〉∈E≡L≡(v′) implies L≡(v′
d) according

to the abstracted rule L≡(v′
r). This satisfies the semantics of AAG≡ according

to Definition 12.

The rationale of Theorem 1 implies that every attack plan of the AAG has a
corresponding attack scenario in the AAG-fold, obtained by translating nodes
and edges of the attack plan to their counterparts in the AAG-fold. Essentially
this means that an AAG-fold maintains all possible attacks on the goal node.

The preconditions supporting a derived fact in the AAG match the list of
predicates appearing in the rule, including multiple appearances of the same

Fast Attack Graph Defense Localization via Bisimulation 255

predicate. In the AAG-fold, however, we only need one node of each predicate
name (in the rule’s preconditions) to deduce the node. This may have the fol-
lowing consequences. First, a rule node may have more incoming edges than
the preconditions in its declaration. This can occur if not all incoming predi-
cate nodes that share a label were folded, due to topological differences. Second,
if an AAG rule for deriving predicate P1 requires two different instances of P2

(i.e., P1(. . .) : −P2(. . .), P2(. . .), . . .), two different instances of P2 must appear
in the AAG. However, as nodes may get folded in the AAG-fold, the two incoming
instances may merge in the AAG-fold. This still complies with the semantics of
the folded rule. The idempotency of the conjunction ensures that one instance of
P2 is enough for both instances of P2 as they are indistinguishable without their
arguments.

Note that the converse of Theorem 1 does not hold. For example, if we need
predicates P1 and P2 in order to derive P , the AAG-fold may contain many
instances of P1 and P2 nodes leading to the rule node. However, not all pairs of P1

and P2 represent AAG nodes that match the rule, so not any such pair necessarily
supports the derived node. Thus, an AAG-fold which depicts an attack on the
goal node does not necessarily indicate that the AAG it was produced from has a
corresponding attack plan.

5.2 The AF-Defense Algorithm

Algorithm AF-Defense improves the naive approach of AAG-Defense. It first
computes an AAG-fold of the AAG by applying the PT Algorithm (see Sect. 3.2
and Definition 11). Next, it applies QuickXplain on the AAG-fold to find a core,
which it returns as a defense-set. The same check operation (described in the
appendix available in the extended version of the paper), which is required for
the QuickXplain algorithm, is applied to the AAG-fold, and uses the semantics
of the AAG-fold instead of the semantics of AAGs.

From Theorem 1 follows the correctness of AF-Defense.

Theorem 2 (Correctness of AAG-Defense). Algorithm AF-Defense com-
putes a defense-set.

Proof. Assume by contradiction that the computed set of rules R′ is not a
defense-set, thus the complementary set w.r.t. all the rules R is an unsafe set of
rules R \ R′. According to Definition 8 there is a subgraph of the AAG which is
an AAG with rules R \ R′ and the same goal node. According to Theorem 1 its
induced AAG-fold maintains AAG-fold semantics, which implies that the goal
of the AAG-fold is achievable with rules R \ R′ in the AAG-fold.

However, The criterion check directly checks that the goal of the AAG-fold
is not achievable for a removed set of rules. The computed criterion is monotonic
also for AAG-folds similar to the check for AAGs. By correctness of QuickXplain
the produced set R′ is a core, which satisfies the checked criterion (Definition 2).
Thus R′ is a set of rules, the removal of which makes the goal of the AAG-fold
unachievable, a contradiction. Thus, the computed set of rules R′ is a defense-set.

256 N. Busany et al.

In Sect. 5.1 we explained why the converse of Theorem 1 does not hold. Thus,
in theory, AAG-Defense has the advantage of ensuring that the complement of
the defense-set is a maximally safe set of rules, while AF-Defense does not ensure
maximality. That said, in the appendix in the extended version of the paper we
show that in practice, the actual difference in defense-set size is small, if any.

6 Evaluation

We provide an overview of our evaluation. Details appear in the appendix avail-
able in the extended version of the paper.

We implemented AAG folding and defense-set algorithms in Python. We used
BisPy [2], an open-source project that includes an efficient implementation of
PT for computing bisimulation over directed graphs. For minimization we imple-
mented a variant of QuickXplain [18]. The end-to-end implementation allows
the user to choose an AAG, a set of rules that can be removed (all the rules by
default), and a flag to control whether the defense-set should be done directly
or using the AAG-fold. The tool runs our algorithm and outputs a defense-set,
i.e., a set of rules to be removed such that the remaining rules are safe (do not
allow an attack).

In our experiments, we compared the performance of algorithms
AAG-Defense and AF-Defense. Note that we were unable to compare to pre-
vious works directly as none of them computed defense-sets.

We considered the following research questions: RQA Can we compute an
AAG-fold efficiently and how do the sizes of the original and folded graphs
compare? RQB How do defense-set computation times compare between the
original and the folded graphs? RQC How do sizes of defense-sets of AAG-Defense
and AF-Defense compare?

We ran experiments over several datasets that include real-world examples of
AAGs that were generated to detect potential vulnerabilities in different systems of
two large manufacturing facilities in the automotive and retail industry, versions
of an IT system created for the purpose of assessing segments of a managed
organization network, examples taken from Hadar et al. [12], as well as synthetic
examples that simulates a network with the vulnerability described in Sect. 2.

Tables and graphs summarizing the characteristics of these datasets and the
experiment results appear in the extended version of the paper. We summarize
the answers to the research questions as follows:
RQA: Computing the AAG-fold for graphs with thousands of nodes and
edges requires a few milliseconds. For AAGs with millions of nodes and edges,
computing the AAG-fold does not come for free. Yet, it is very effective in
producing much smaller representations.

RQB: We can efficiently compute defense-sets for AAGs with thousands of
nodes and edges. However, the running time increases considerably with
the size of the AAG. For larger AAGs, AAG-Defense does not scale well, while
AF-Defense never exceeds a few milliseconds.

Fast Attack Graph Defense Localization via Bisimulation 257

RQC: AF-Defense is effective and produces similar or only slightly larger
defense-sets compared to those produced by AAG-Defense. It achieved mini-
mal cores in a large majority of experiments.

7 Related Work

Analytical Attack Graphs Analysis. Inference of analytical attack graphs
(AAGs) [34,38] over real-world systems often produces large models that are hard
to comprehend and analyze using existing techniques [13,16,20,23,26,33,47].

Yousefi et al. [47] present an algorithm that refines the attack graph and
generates a simplified transition graph. The algorithm produced a smaller graph
but provides no guarantees about soundness. Noel and Jajodia [31] describe a
framework for managing attack graph complexity through interactive visualiza-
tion, which includes hierarchical aggregation of graph elements. The aggregation
collapses non-overlapping subgraphs to single vertices but is applied to a differ-
ent model of attack graph and therefore cannot be directly compared to our
work. Homer et al. [14] present two simplifying methods for AAGs. The first
is a data filtering approach, which identifies portions of an attack graph that
do not help users understand the security problems and trims them. The sec-
ond is an abstraction approach, which groups similar attack steps as virtual
nodes in a model of the network topology. These two methods can be viewed
as complementary to our approach. Others [17,32] have suggested methods
to simplify the attack graph by grouping similar hosts together and represent-
ing grouped hosts by single nodes, and by using hierarchical displays. These
approaches still result in complex attack graphs that are difficult for system
administrators to relate to the underlying analysed network [32]. Williams et
al. [46] present an interactive tool with a cascade display that produces a compact
representation, highlights critical attack steps that lead into new network areas,
and displays both attack graph and reachability information over a multiple-
prerequisite (MP) graph. They use treemaps to present hosts in subnets in close
proximity. Hosts in each treemap are automatically grouped based on level of
compromise, how the hosts are treated by firewalls, trust relationships the hosts
participate in, and prerequisites required to compromise hosts. These group-
ings provide visual indications of the network security and greatly simplify the
display. Recently, Sabur et al. [40] suggested a divide-and-conquer approach to
divide a large attack graph into smaller segments based on similarity between ser-
vices. A distributed firewall prevent the attacker from compromising separated
segments. They optimize their approach by removing cycles from the graph, and
computing the optimal number of segments, based on the implementation cost of
the segmentation. Mjihil et al. [29] present the use of well-known efficient decom-
position algorithms of graphs into strongly connected components, which in turn
allows the use of parallel computation for faster analysis of the subgraphs. They
acknowledge that their approach works better on sparse graphs.

In contrast to the aforementioned works, our work is unique in that it uses the
well-known bisimulation relation, a topology preserving equivalence relation for

258 N. Busany et al.

graph abstraction. This allows us to create a sound abstraction of the attack
graph that respects its topology and labeling; it eliminates redundancies while
preserving all possible attacks. As opposed to works that attempt to decom-
pose the attack graph, our approach is resilient to topological aspects that
impede decomposition. To the best of our knowledge, no earlier work has made
such guarantees. As we show, it can be computed efficiently and results in smaller
graphs that allow faster analyses. Finally, several ways to speed up attack graph
computation based on parallel and/or distributed computing have been pro-
posed [5,19]. These methods do not reduce the size of the attack graph.

Symbolic Attack Detection. Several authors employed symbolic approaches
such as model checking to detect attacks and compute attack graphs, e.g., [39].
More recently [43] modeled AWS IAM attacks using Boolean formulas. Solving
those with SAT solvers allows proving no attacks are possible, and detecting
attacks with the possibility of grouping similar attacks. Contrary to this app-
roach, we exploit a representation of all possible attacks in a structure that tries
to avoid repetitions of similar attacks. A recent work [6] presented a formal ver-
ification approach to handle attack graphs. The work models attack graphs as
Kripke structures and proposes to use model-checking in order to verify whether
an attacker can gain access to certain resources.

Bisimulation. Bisimulation is well-studied in theoretical computer science and
has important applications in formal verification [3]. Multiple algorithms exist to
compute a bisimulation relation [8,9,36]. To the best of our knowledge, we are the
first to apply bisimulation to AAGs. For the bisimulation computation required
to obtain an AAG-fold, we use the PT algorithm [36], which has an O(|E|log|V |)
complexity for a graph G(V,E). Dovier et al. [8], propose algorithms for acyclic
graphs, and labled graphs. They suggest some further improvements such as
computing sets of ranks instead of ranks, which is finer. They also suggest sym-
bolic computation using BDDs.

Cores. Core computations are applied in many domains, usually for fault-
localization. For example, cores of unsatisfiable CNF formulas, a.k.a. MUS,
minimal unsatisfiable subsets of clauses [21], are computed for Alloy [45] and
for component and connector specifications [24]. Many different core computa-
tion algorithms exist, either single core domain-agnostic, e.g., DDMin [48] and
QuickXplain [18], domain-specific [25] and all cores computations [4,21,25].
Cores have also been applied to the removal of redundant elements in valid
specifications [42]. We chose QuickXplain for core computations thanks to its
complexity and prioritization parameter (see below). We are the first to apply
cores to attack graph defense.

Reducing Risk Based on Analytical Attack Graphs. Some works sug-
gested means to select nodes whose removal from the AAG will reduce the risk
of attack, based on different criteria such as centrality measures [1,10,15,41].
Hadar et al. [11,12] enumerate risk-reducing security requirements and suggest
means to prioritize security controls to reduce risk. They do not aim to prevent
attacks but focus on prioritizing between given security controls.

Fast Attack Graph Defense Localization via Bisimulation 259

In contrast, given an AAG, we automatically compute a safe subset of the
AAG’s rules for which no attack is possible. In the future, it may be interesting
to consider prioritization in our work too. The QuickXplain algorithm allows
prioritization as a parameter. See the last paragraph in Sect. 8.

8 Conclusion and Future Work

We presented fast means to compute an attack graph defense core, identifying
a minimal set of changes to a cyber system that will prevent an attacker from
reaching a crown jewel. To scale-up attack graph defense performance, we intro-
duced a novel application of the well-known notion of bisimulation to attack
graphs and showed how to compute a defense-set over the resulting graphs. Our
experiments showed that the use of bisimulation results in significantly smaller
graphs and in defense-set computations that are significantly faster than a direct
solution, making them practical.

We consider the following future work. First, it is possible to improve the com-
putation of the bisimulation with ideas from [8]. One example is the replacement
of the notion of a rank of a node as a number, by the set of ranks the node points
to. This may improve the running times of the computation. Another direction
is the use of symbolic representations of sets of nodes, for example using BDDs.
Symbolic computation of bisimulations were considered, e.g., in [9].

Second, we consider additional applications for AAG-fold, beyond defense-
set computations. For example, faster detection of possible attacks, faster risk
assessments of the vulnerability of the network, and possibly more user-friendly
and scalable UIs for viewing and exploring AAGs.

Third, it may be possible to accelerate checks of the safety of subsets of
rules. A simple case is when the goal node is disconnected from the primitive
facts, which can be detected easily by finding connected components of an AAG
limited to a set of rules. This is equivalently useful for an AAG-fold. Another
possible approach is to find all locally minimal subsets of rules required for the
validation of each derived node, using dynamic programming. By doing this once
over an AAG or an AAG-fold, the validation detection for a given set of rules may
become very efficient.

Finally, QuickXplain allows different ways to order the importance of rules.
In our present work we ranked rules by their frequency in the graph. Other ways
to rank rules exist, e.g., by employing centrality measures [11]. Moreover, not all
rules are equally difficult or expensive to remove, and so users may be interested
in using domain-knowledge for rule ranking. Different rule rankings will induce
different notions of defense-set minimality, e.g., rather than computing a defense-
set that includes a minimal number of rules, compute one whose set of rules is
the least expensive to change. That is, investigating the quality of defense-sets
while considering different notions of quality. We leave all these for future work.

Data Availability Statement. The experimental data and scripts, as well as a ver-
sion of this paper that includes appendices, are available in Zenodo with the identifier:
https://doi.org/10.5281/zenodo.12515137.

https://doi.org/10.5281/zenodo.12515137

260 N. Busany et al.

References

1. Albanese, M., Jajodia, S., Noel, S.: Time-efficient and cost-effective network hard-
ening using attack graphs. In: Swarz, R.S., Koopman, P., Cukier, M. (eds.) IEEE/I-
FIP International Conference on Dependable Systems and Networks, DSN 2012,
Boston, MA, USA, June 25–28, 2012, pp. 1–12. IEEE Computer Society (2012).
https://doi.org/10.1109/DSN.2012.6263942

2. Andreuzzi, F.: BisPy: Bisimulation in Python (2021). https://doi.org/10.21105/
joss.03519

3. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
4. Bend́ık, J., Černá, I.: MUST: minimal unsatisfiable subsets enumeration tool. In:

TACAS 2020. LNCS, vol. 12078, pp. 135–152. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45190-5 8

5. Cao, N., Lv, K., Hu, C.: An attack graph generation method based on parallel
computing. In: Liu, F., Xu, S., Yung, M. (eds.) SciSec 2018. LNCS, vol. 11287, pp.
34–48. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03026-1 3

6. Catta, D., Leneutre, J., Mijatovic, A., Ulin, J., Malvone, V.: A formal verification
approach to handle attack graphs. In: Rocha, A.P., Steels, L., van den Herik, H.J.
(eds.) Proceedings of the 16th International Conference on Agents and Artificial
Intelligence, ICAART 2024, vol. 3, Rome, Italy, February 24-26, 2024, pp. 125–132.
SCITEPRESS (2024). https://doi.org/10.5220/0012310000003636

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press (2001)
8. Dovier, A., Piazza, C., Policriti, A.: An efficient algorithm for computing bisim-

ulation equivalence. Theor. Comput. Sci. 311(1–3), 221–256 (2004). https://doi.
org/10.1016/S0304-3975(03)00361-X

9. Fisler, K., Vardi, M.Y.: Bisimulation and model checking. In: Pierre, L., Kropf, T.
(eds.) CHARME 1999. LNCS, vol. 1703, pp. 338–342. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48153-2 29

10. Gonda, T., Pascal, T., Puzis, R., Shani, G., Shapira, B.: Analysis of attack graph
representations for ranking vulnerability fixes. In: Lee, D.D., Steen, A., Walsh, T.
(eds.) GCAI-2018, 4th Global Conference on Artificial Intelligence, Luxembourg,
September 18-21, 2018. EPiC Series in Computing, vol. 55, pp. 215–228. EasyChair
(2018). https://doi.org/10.29007/2c1q

11. Hadar, E., Hassanzadeh, A.: Big data analytics on cyber attack graphs for priori-
tizing agile security requirements. In: Damian, D.E., Perini, A., Lee, S. (eds.) 27th
IEEE International Requirements Engineering Conference, RE 2019, Jeju Island,
Korea (South), September 23-27, 2019, pp. 330–339. IEEE (2019). https://doi.org/
10.1109/RE.2019.00042

12. Hadar, E., Kravchenko, D., Basovskiy, A.: Cyber digital twin simulator for auto-
matic gathering and prioritization of security controls’ requirements. In: Breaux,
T.D., Zisman, A., Fricker, S., Glinz, M. (eds.) 28th IEEE International Require-
ments Engineering Conference, RE 2020, Zurich, Switzerland, August 31 - Septem-
ber 4, 2020, pp. 250–259. IEEE (2020). https://doi.org/10.1109/RE48521.2020.
00035

13. Höfner, P., Möller, B.: Dijkstra, Floyd and Warshall meet Kleene. Formal Aspects
Comput. 24(4–6), 459–476 (2012). https://doi.org/10.1007/s00165-012-0245-4

14. Homer, J., Varikuti, A., Ou, X., McQueen, M.A.: Improving attack graph visual-
ization through data reduction and attack grouping. In: Goodall, J.R., Conti, G.,
Ma, K.-L. (eds.) VizSec 2008. LNCS, vol. 5210, pp. 68–79. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85933-8 7

https://doi.org/10.1109/DSN.2012.6263942
https://doi.org/10.21105/joss.03519
https://doi.org/10.21105/joss.03519
https://doi.org/10.1007/978-3-030-45190-5_8
https://doi.org/10.1007/978-3-030-45190-5_8
https://doi.org/10.1007/978-3-030-03026-1_3
https://doi.org/10.5220/0012310000003636
https://doi.org/10.1016/S0304-3975(03)00361-X
https://doi.org/10.1016/S0304-3975(03)00361-X
https://doi.org/10.1007/3-540-48153-2_29
https://doi.org/10.29007/2c1q
https://doi.org/10.1109/RE.2019.00042
https://doi.org/10.1109/RE.2019.00042
https://doi.org/10.1109/RE48521.2020.00035
https://doi.org/10.1109/RE48521.2020.00035
https://doi.org/10.1007/s00165-012-0245-4
https://doi.org/10.1007/978-3-540-85933-8_7

Fast Attack Graph Defense Localization via Bisimulation 261

15. Hong, J.B., Kim, D.S.: Scalable security analysis in hierarchical attack representa-
tion model using centrality measures. In: 43rd Annual IEEE/IFIP Conference on
Dependable Systems and Networks Workshop, DSN Workshops 2013, Budapest,
Hungary, June 24-27, 2013, pp. 1–8. IEEE Computer Society (2013). https://doi.
org/10.1109/DSNW.2013.6615507

16. Idika, N.C., Bhargava, B.K.: Extending attack graph-based security metrics and
aggregating their application. IEEE Trans. Dependable Secur. Comput. 9(1), 75–
85 (2012). https://doi.org/10.1109/TDSC.2010.61

17. Ingols, K., Lippmann, R., Piwowarski, K.: Practical attack graph generation for
network defense. In: 22nd Annual Computer Security Applications Conference
(ACSAC 2006), 11-15 December 2006, Miami Beach, Florida, USA, pp. 121–130.
IEEE Computer Society (2006). https://doi.org/10.1109/ACSAC.2006.39

18. Junker, U.: QUICKXPLAIN: preferred explanations and relaxations for over-
constrained problems. In: McGuinness, D.L., Ferguson, G. (eds.) Proceedings of
the Nineteenth National Conference on Artificial Intelligence, Sixteenth Confer-
ence on Innovative Applications of Artificial Intelligence, July 25-29, 2004, San
Jose, California, USA, pp. 167–172. AAAI Press/The MIT Press (2004). http://
www.aaai.org/Library/AAAI/2004/aaai04-027.php

19. Kaynar, K., Sivrikaya, F.: Distributed attack graph generation. IEEE Trans.
Dependable Secur. Comput. 13(5), 519–532 (2016). https://doi.org/10.1109/
TDSC.2015.2423682

20. Li, W., Vaughn, R.B.: Cluster security research involving the modeling of network
exploitations using exploitation graphs. In: Sixth IEEE International Symposium
on Cluster Computing and the Grid (CCGrid 2006), 16-19 May 2006, Singapore,
p. 26. IEEE Computer Society (2006). https://doi.org/10.1109/CCGRID.2006.128

21. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Autom. Reason. 40(1), 1–33 (2008). https://doi.org/10.
1007/s10817-007-9084-z

22. Lippmann, R., et al.: Validating and restoring defense in depth using attack graphs.
In: MILCOM 2006 - 2006 IEEE Military Communications Conference, pp. 1–10
(2006). https://doi.org/10.1109/MILCOM.2006.302434

23. Lu, L., Safavi-Naini, R., Hagenbuchner, M., Susilo, W., Horton, J., Yong, S.L.,
Tsoi, A.C.: Ranking attack graphs with graph neural networks. In: Bao, F., Li, H.,
Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 345–359. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00843-6 30

24. Maoz, S., Pomerantz, N., Ringert, J.O., Shalom, R.: Why is my component and con-
nector views specification unsatisfiable? In: 20th ACM/IEEE International Con-
ference on Model Driven Engineering Languages and Systems, MODELS 2017,
Austin, TX, USA, September 17-22, 2017, pp. 134–144. IEEE Computer Society
(2017). https://doi.org/10.1109/MODELS.2017.26

25. Maoz, S., Shalom, R.: Unrealizable cores for reactive systems specifications. In:
43rd IEEE/ACM International Conference on Software Engineering, ICSE 2021,
Madrid, Spain, 22-30 May 2021, pp. 25–36. IEEE (2021). https://doi.org/10.1109/
ICSE43902.2021.00016

26. Mehta, V., Bartzis, C., Zhu, H., Clarke, E., Wing, J.: Ranking attack graphs.
In: Zamboni, D., Kruegel, C. (eds.) RAID 2006. LNCS, vol. 4219, pp. 127–144.
Springer, Heidelberg (2006). https://doi.org/10.1007/11856214 7

27. de Mello, L.H., Sanderson, A.C.: AND/OR graph representation of assembly plans.
IEEE Trans. Robotics Autom. 6(2), 188–199 (1990). https://doi.org/10.1109/70.
54734

https://doi.org/10.1109/DSNW.2013.6615507
https://doi.org/10.1109/DSNW.2013.6615507
https://doi.org/10.1109/TDSC.2010.61
https://doi.org/10.1109/ACSAC.2006.39
http://www.aaai.org/Library/AAAI/2004/aaai04-027.php
http://www.aaai.org/Library/AAAI/2004/aaai04-027.php
https://doi.org/10.1109/TDSC.2015.2423682
https://doi.org/10.1109/TDSC.2015.2423682
https://doi.org/10.1109/CCGRID.2006.128
https://doi.org/10.1007/s10817-007-9084-z
https://doi.org/10.1007/s10817-007-9084-z
https://doi.org/10.1109/MILCOM.2006.302434
https://doi.org/10.1007/978-3-642-00843-6_30
https://doi.org/10.1109/MODELS.2017.26
https://doi.org/10.1109/ICSE43902.2021.00016
https://doi.org/10.1109/ICSE43902.2021.00016
https://doi.org/10.1007/11856214_7
https://doi.org/10.1109/70.54734
https://doi.org/10.1109/70.54734

262 N. Busany et al.

28. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

29. Mjihil, O., Huang, D., Haqiq, A.: Improving attack graph scalability for the cloud
through SDN-based decomposition and parallel processing. In: Ubiquitous Net-
working - Third International Symposium. Lecture Notes in Computer Science, vol.
10542, pp. 193–205. Springer (2017). https://doi.org/10.1007/978-3-319-68179-
5 17

30. Noel, S., Elder, M., Jajodia, S., Kalapa, P., O’Hare, S., Prole, K.: Advances in
topological vulnerability analysis. In: 2009 Cybersecurity Applications and Tech-
nology Conference for Homeland Security, pp. 124–129 (2009). https://doi.org/10.
1109/CATCH.2009.19

31. Noel, S., Jajodia, S.: Managing attack graph complexity through visual hierarchical
aggregation. In: Brodley, C.E., Chan, P., Lippmann, R., Yurcik, W. (eds.) 1st ACM
Workshop on Visualization and Data Mining for Computer Security, VizSEC/DM-
SEC 2004, Washington, DC, USA, October 29, 2004, pp. 109–118. ACM (2004).
https://doi.org/10.1145/1029208.1029225

32. Noel, S., Jajodia, S.: Understanding complex network attack graphs through clus-
tered adjacency matrices. In: 21st Annual Computer Security Applications Con-
ference (ACSAC 2005), 5–9 December 2005, Tucson, AZ, USA, pp. 160–169. IEEE
Computer Society (2005). https://doi.org/10.1109/CSAC.2005.58

33. Ortalo, R., Deswarte, Y., Kaâniche, M.: Experimenting with quantitative evalua-
tion tools for monitoring operational security. IEEE Trans. Software Eng. 25(5),
633–650 (1999). https://doi.org/10.1109/32.815323

34. Ou, X., Boyer, W.F., McQueen, M.A.: A scalable approach to attack graph gen-
eration. In: Juels, A., Wright, R.N., di Vimercati, S.D.C. (eds.) Proceedings of
the 13th ACM Conference on Computer and Communications Security, CCS 2006,
Alexandria, VA, USA, October 30 - November 3, 2006, pp. 336–345. ACM (2006).
https://doi.org/10.1145/1180405.1180446

35. Ou, X., Govindavajhala, S., Appel, A.W.: Mulval: A logic-based network secu-
rity analyzer. In: McDaniel, P.D. (ed.) Proceedings of the 14th USENIX
Security Symposium, Baltimore, MD, USA, July 31 - August 5, 2005.
USENIX Association (2005). https://www.usenix.org/conference/14th-usenix-
security-symposium/mulval-logic-based-network-security-analyzer

36. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987). https://doi.org/10.1137/0216062

37. Pemmasani, G., Guo, H.-F., Dong, Y., Ramakrishnan, C.R., Ramakrishnan, I.V.:
Online justification for tabled logic programs. In: Kameyama, Y., Stuckey, P.J.
(eds.) FLOPS 2004. LNCS, vol. 2998, pp. 24–38. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24754-8 4

38. Phillips, C.A., Swiler, L.P.: A graph-based system for network-vulnerability anal-
ysis. In: Blakley, B., Kienzle, D.M., Zurko, M.E., Greenwald, S.J. (eds.) Proceed-
ings of the 1998 Workshop on New Security Paradigms, Charlottsville, VA, USA,
September 22-25, 1998, pp. 71–79. ACM (1998). https://doi.org/10.1145/310889.
310919

39. Ritchey, R.W., Ammann, P.: Using model checking to analyze network vulnera-
bilities. In: 2000 IEEE Symposium on Security and Privacy, Berkeley, California,
USA, May 14-17, 2000. pp. 156–165. IEEE Computer Society (2000). https://doi.
org/10.1109/SECPRI.2000.848453

40. Sabur, A., Chowdhary, A., Huang, D., Alshamrani, A.: Toward scalable graph-
based security analysis for cloud networks. Comput. Networks 206 (2022). https://
doi.org/10.1016/j.comnet.2022.108795

https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/978-3-319-68179-5_17
https://doi.org/10.1007/978-3-319-68179-5_17
https://doi.org/10.1109/CATCH.2009.19
https://doi.org/10.1109/CATCH.2009.19
https://doi.org/10.1145/1029208.1029225
https://doi.org/10.1109/CSAC.2005.58
https://doi.org/10.1109/32.815323
https://doi.org/10.1145/1180405.1180446
https://www.usenix.org/conference/14th-usenix-security-symposium/mulval-logic-based-network-security-analyzer
https://www.usenix.org/conference/14th-usenix-security-symposium/mulval-logic-based-network-security-analyzer
https://doi.org/10.1137/0216062
https://doi.org/10.1007/978-3-540-24754-8_4
https://doi.org/10.1145/310889.310919
https://doi.org/10.1145/310889.310919
https://doi.org/10.1109/SECPRI.2000.848453
https://doi.org/10.1109/SECPRI.2000.848453
https://doi.org/10.1016/j.comnet.2022.108795
https://doi.org/10.1016/j.comnet.2022.108795

Fast Attack Graph Defense Localization via Bisimulation 263

41. Sawilla, R.E., Ou, X.: Identifying critical attack assets in dependency attack
graphs. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp.
18–34. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88313-5 2

42. Shalom, R., Maoz, S.: Which of my assumptions are unnecessary for realizability
and why should I care? In: 45th IEEE/ACM International Conference on Software
Engineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023, pp. 221–232.
IEEE (2023). https://doi.org/10.1109/ICSE48619.2023.00030

43. Shevrin, I., Margalit, O.: Detecting multi-step IAM attacks in AWS environments
via model checking. In: Calandrino, J.A., Troncoso, C. (eds.) 32nd USENIX Secu-
rity Symposium, USENIX Security 2023, Anaheim, CA, USA, August 9–11, 2023,
pp. 6025–6042. USENIX Association (2023). https://www.usenix.org/conference/
usenixsecurity23/presentation/shevrin

44. Sheyner, O., Haines, J.W., Jha, S., Lippmann, R., Wing, J.M.: Automated gen-
eration and analysis of attack graphs. In: 2002 IEEE Symposium on Security and
Privacy, Berkeley, California, USA, May 12-15, 2002, pp. 273–284. IEEE Computer
Society (2002). https://doi.org/10.1109/SECPRI.2002.1004377

45. Torlak, E., Chang, F.S.-H., Jackson, D.: Finding minimal unsatisfiable cores of
declarative specifications. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008.
LNCS, vol. 5014, pp. 326–341. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-68237-0 23

46. Williams, L., Lippmann, R., Ingols, K.: An interactive attack graph cascade and
reachability display. In: Goodall, J.R., Conti, G.J., Ma, K. (eds.) 4th International
Workshop on Visualization for Computer Security, VizSEC 2007, Sacramento, CA,
USA, October 29, 2007. pp. 221–236. Mathematics and Visualization. Springer
(2007). https://doi.org/10.1007/978-3-540-78243-8 15

47. Yousefi, M., Mtetwa, N., Zhang, Y., Tianfield, H.: A novel approach for analysis of
attack graph. In: 2017 IEEE International Conference on Intelligence and Security
Informatics, ISI 2017, Beijing, China, July 22-24, 2017, pp. 7–12. IEEE (2017).
https://doi.org/10.1109/ISI.2017.8004866

48. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
Trans. Software Eng. 28(2), 183–200 (2002). https://doi.org/10.1109/32.988498

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-88313-5_2
https://doi.org/10.1109/ICSE48619.2023.00030
https://www.usenix.org/conference/usenixsecurity23/presentation/shevrin
https://www.usenix.org/conference/usenixsecurity23/presentation/shevrin
https://doi.org/10.1109/SECPRI.2002.1004377
https://doi.org/10.1007/978-3-540-68237-0_23
https://doi.org/10.1007/978-3-540-68237-0_23
https://doi.org/10.1007/978-3-540-78243-8_15
https://doi.org/10.1109/ISI.2017.8004866
https://doi.org/10.1109/32.988498
http://creativecommons.org/licenses/by/4.0/

Learn and Repair

State Matching and Multiple References
in Adaptive Active Automata Learning

Loes Kruger(B) , Sebastian Junges , and Jurriaan Rot

Radboud University, Nijmegen, The Netherlands
{loes.kruger,sebastian.junges,jurriaan.rot}@ru.nl

Abstract. Active automata learning (AAL) is a method to infer state
machines by interacting with black-box systems. Adaptive AAL aims
to reduce the sample complexity of AAL by incorporating domain spe-
cific knowledge in the form of (similar) reference models. Such reference
models appear naturally when learning multiple versions or variants of a
software system. In this paper, we present state matching, which allows
flexible use of the structure of these reference models by the learner. State
matching is the main ingredient of adaptive L#, a novel framework for
adaptive learning, built on top of L#. Our empirical evaluation shows
that adaptive L# improves the state of the art by up to two orders of
magnitude.

1 Introduction

Automata learning aims to extract state machines from observed input-output
sequences of some system-under-learning (SUL). Active automata learning
(AAL) assumes that one has black-box access to this SUL, allowing the learner
to incrementally choose inputs and observe the outputs. The models learned by
AAL can be used as a documentation effort, but are more typically used as basis
for testing, verification, conformance checking, fingerprinting—see [9,23] for an
overview of applications. The classical algorithm for AAL is L∗, introduced by
Angluin [2]; state-of-the-art algorithms are, e.g., L# [24] and TTT [11], which
are available in toolboxes such as LearnLib [12] and AALpy [16].

The primary challenge in AAL is to reduce the number of inputs sent to
the SUL, referred to as the sample complexity. To learn a 31-state machine
with 22 inputs, state-of-the-art learners may send several million inputs to the
SUL [24]. This is not necessarily unexpected: the underlying space of 31-state
state machines is huge and it is nontrivial how to maximise information gain.
The literature has investigated several approaches to accelerate learners, see the
overview of [23]. Nevertheless, scalability remains a core challenge for AAL.

We study adaptive AAL [8], which aims to improve the sample efficiency
by utilizing expert knowledge already given to the learner. In (regular) AAL,
a learner commonly starts learning from scratch. In adaptive AAL, however,

This research is partially supported by the NWO grant No. VI.Vidi.223.096.

c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 267–284, 2025.
https://doi.org/10.1007/978-3-031-71162-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_14&domain=pdf
http://orcid.org/0009-0003-3275-6806
http://orcid.org/0000-0003-0978-8466
http://orcid.org/0000-0002-1404-6232
https://doi.org/10.1007/978-3-031-71162-6_14

268 L. Kruger et al.

the learner is given a reference model, which ought to be similar to the SUL.
Reference models occur naturally in many applications of AAL. For instance:
(1) Systems evolve over time due to, e.g., bug fixes or new functionalities—and
we may have learned the previous system; (2) Standard protocols may be imple-
mented by a variety of tools; (3) The SUL may be a variant of other systems, e.g.,
being the same system executing in another environment, or a system configured
differently.

Several algorithms for adaptive AAL have been proposed [5–8,25]. Intuitively,
the idea is that these methods try to rebuild the part of the SUL which is similar
to the reference model. This is achieved by deriving suitable queries from the
reference model, using so-called access sequences to reach states, and so-called
separating sequences to distinguish these from other states. These algorithms rely
on a rather strict notion of similarity that depends on the way we reach these
states. In particular, existing rebuilding algorithms cannot effectively learn an
SUL from a reference model that has a different initial state, see Sect. 2.

We propose an approach to adaptive AAL based on state matching, which
allows flexibly identifying parts of the unknown SUL where the reference model
may be an informative guide. More specifically, in this approach, we match states
in the model that we have learned so far (captured as a tree-shaped automaton)
with states in the reference model such that the outputs agree on all enabled
input sequences. This matching allows for targeted re-use of separating sequences
from the reference model and is independent of the access sequences. We refine
the approach by using approximate state matching, where we match a current
state with one from the reference model that agrees on most inputs.

Approximate state matching is the essential ingredient for the novel AL#

algorithm. This algorithm is a conservative extension of the recent L# [24]. Along
with approximate state matching, AL# includes rebuilding steps, which are sim-
ilar to existing methods, but tightly integrated in L#. Finally, AL# is the first
approach with dedicated support to use more than one reference model.

Contributions. We make the following contributions to the state-of-the-art in
adaptive AAL. First, we present state matching and its generalization to approx-
imate state matching which allows flexible re-use of separating sequences from
the reference model. Second, we include state matching and rebuilding in an
unifying approach, called AL#, which generalizes the L# algorithm for non-
adaptive automata learning. We analyse the resulting framework in terms of
termination and complexity. This framework naturally supports using multiple
reference models as well as removing and adding inputs to the alphabet. Our
empirical results show the efficacy of AL#. In particular, AL# may reduce the
number of inputs to the SUL by two orders of magnitude.

Related work. Adaptive AAL goes back to [8]. That paper, and many of the follow-
up approaches [4–7] re-use access sequences and separating sequences from the
reference model (or from the data structures constructed when learning that
model). The recent approach in [6] removes redundant access sequences during
rebuilding and continues learning with informative separating sequences. In [25],
an L∗-based adaptive AAL approach is proposed where the algorithm starts

State Matching and Multiple References in adaptive AAL 269

Fig. 1. An SUL S and three reference models R1, R2 and R3.

by including all separating sequences that arise when learning the reference
model with L∗, ignoring access sequences. This algorithm is used in [10] for a
general study of the usefulness of adaptive AAL: Among others, the authors
suggest using more advanced data structures than the observation tables in L∗.
Indeed, in [4] the internal data structure of the TTT algorithm is used [11] in the
context of lifelong learning; the precise rebuilding approach is not described. The
recent [7] proposes an adaptive AAL method based on discrimination trees as
used in the Kearns-Vazirani algorithm [13]. We consider the algorithms proposed
in [6,7] the state-of-the-art and have experimentally compared AL# in Sect. 8.

2 Overview

We illustrate (1) how adaptive AAL uses a reference model to help learn a system
and (2) how this may reduce the sample complexity of the learner.

MAT Framework. We recall the standard setting for AAL: Angluin’s MAT frame-
work, cf. [9,23]. Here, the learner has no direct access to the SUL, but may ask
output queries (OQs): these return, for a given input sequence, the sequence
of outputs from the SUL; and equivalence queries (EQs): these take a Mealy
machine H as input, and return whether or not H is equivalent to the SUL. In
case it is not, a counterexample is provided in the form of a sequence of inputs for
which H and the SUL return different outputs. EQs are expensive [3,19,22,26],
therefore, we aim to learn the SUL using primarily OQs.

Apartness. Learning algorithms in the MAT framework typically assume that two
states are equivalent as long as their known residual languages are equivalent.
To discover a new state, we must therefore (1) access it by an input sequence
and (2) prove this state distinct (apart) from the other states that we already
know. Consider the SUL S in Fig. 1a. The access sequences c, ca access q4 and q5,
respectively, from the initial state. These states are different because the response
to executing c from q4 and q5 is distinct: We say c is a separating sequence for q4
and q5. This difference can be observed by posing OQs for cc and cac, consisting
of the access sequences for q4 and q5 followed by their separating sequence c.

Aim. The aim of adaptive AAL is to learn SULs with fewer inputs, using knowl-
edge in the form of a reference model, known to the learner and preferrably sim-
ilar to the SUL. The discovery of states is accelerated by extracting candidates

270 L. Kruger et al.

for both (1) access sequences and (2) separating sequences from the reference
model.

Rebuilding. The state-of-the-art in adaptive AAL uses access sequences and sep-
arating sequences from the reference model [6,7] in an initial phase. Consider
the Mealy machine R1 in Fig. 1b as a reference model for the SUL S in Fig. 1a.
The sequences ε, c, ca can be used to access all orange states in both S and
R1. The separating sequences c and ac for these states in R1 also separate the
orange states in S. By asking OQs combining the access sequences and separat-
ing sequences, we discover all orange states for S.

Limits of Rebuilding. However, these rebuilding approaches have limitations.
Consider R2 in Fig. 1c. The sequences ε, b, bb and bbb can be used to access
all states in R2. Concatenating these with any separating sequences from R2

will not be helpful to learn SUL S, because in S these sequences all access q0.
However, the separating sequences from R2 are useful if executed in the right
state of S. For instance, the sequence bb separates all states in R2, and the blue
states in S. Thus, rebuilding does not realise the potential of reusing the sepa-
rating sequences from R2, since the access sequences for the relevant states are
different.

State Matching. We extend adaptive AAL with state matching. State matching
overcomes the strong dependency on the access sequences and allows the efficient
usage of reference models where the residual languages of the individual states
are similar. Suppose that while learning, we have not yet separated q0 and q1
in S, but we do know the output of the b-transition from q0. We may use that
output to match q0 with p3 in R2: these two states agree on input sequences
where both are defined. Subsequently, we can use the separating sequence bb
between p3 and p0 to separate q0 and q1, through OQs bb and abb.

Approximate State Matching. It rarely happens that states in the SUL exactly
match states in the reference model: Consider the scenario where we want to learn
S with reference model R3 from Fig. 1d. States q0 and s3 do not match because
they have different outputs for input b but are still similar. This motivates an
approximate version of matching, where a state is matched to the reference state
which maximises the number of inputs with the same output.

Outline. After the preliminaries (Sect. 3), we recall the L# algorithm and extend
it with rebuilding (Sect. 4). We then introduce adaptive AAL with state matching
and its approximate variant (Sect. 5). Together with rebuilding, this results in
the AL# algorithm (Sect. 6). We proceed to define a variant that allows the use
of multiple reference models (Sect. 7). This is helpful already in the example
discussed in this section: given both R1 and R2, AL# with multiple reference
models allows to discover all states in S without any EQs, see App. F of [14].

3 Preliminaries

For a partial map f : X ⇀ Y , we write f(x)↓ if f(x) is defined and f(x)↑
otherwise.

State Matching and Multiple References in adaptive AAL 271

Definition 3.1. A partial Mealy machine is a tuple M = (Q, I,O, q0, δ, λ),
where Q, I and O are finite sets of states, inputs and outputs respectively; q0 ∈ Q
an initial state, δ : Q×I ⇀ Q a transition function, and λ : Q×I ⇀ O an output
function such that δ and λ have the same domain. A (complete) Mealy machine
is a partial Mealy machine where δ and λ are total. If not specified otherwise, a
Mealy machine is assumed to be complete.

We write M|I to denote M restricted to alphabet I. We use the superscript M
to indicate to which Mealy machine we refer, e.g. QM and δM. The transition
and output functions are naturally extended to input sequences of length n ∈ N

as functions δ : Q × In ⇀ Q and λ : Q × In ⇀ On. We abbreviate δ(q0, w) by
δ(w).

Definition 3.2. Let M1, M2 be partial Mealy machines. States p ∈ QM1 and
q ∈ QM2 match, written p

√
= q, if λ(p, σ) = λ(q, σ) for all σ ∈ (IM1 ∩ IM2)∗ with

δ(p, σ)↓ and δ(q, σ)↓. If p and q do not match, they are apart, written p # q.

If p # q, then there is a separating sequence, i.e., a sequence σ such that λ(p, σ) �=
λ(q, σ); this situation is denoted by σ � p # q. The definition of matching allows
the input (and output) alphabets of the underlying Mealy machines to differ; it
requires that they agree on all commonly defined input sequences. If M1 and
M2 are complete and have the same alphabet, then the matching of states is
referred to as language equivalence. Two complete Mealy machines are equivalent
if their initial states are language equivalent.

Let M be a partial Mealy machine. A state q ∈ QM is reachable if there exists
σ ∈ I∗ such that δM(q0, σ) = q. The reachable part of M contains all reachable
states in QM. A sequence σ is an access sequence for q ∈ QM if δM(σ) = q. A
set P ⊆ I∗ is a state cover for M if P contains an access sequence for every
reachable state in M. In this paper, a tree T is a partial Mealy machine where
every state q has a unique access sequence, denoted by access(q).

Definition 3.3. Let M be a complete Mealy machine. A set Wq ⊆ (IM)∗ is a
state identifier for q ∈ QM if for all p ∈ QM with p # q there exists σ ∈ Wq such
that σ � p # q. A separating family is a collection of state identifiers {Wp}p∈QM

such that for all p, q ∈ QM with p # q there exists σ ∈ Wp ∩ Wq with σ � p # q.

We use PM and {Wq}M to refer to a minimal state cover and a separating family
for M respectively. State covers and separating families can be constructed for
every Mealy machine, but are not necessarily unique.

4 L# with Rebuilding

We first recall the L# algorithm for (standard) AAL [24]. Then, we consider
adaptive learning by presenting an L#-compatible variant of rebuilding.

272 L. Kruger et al.

4.1 Observation Trees

L# uses an observation tree as data structure to store the observed traces of M.

Definition 4.1. A tree T is an observation tree if there exists a mapping

f : QT → QM such that f(qT
0) = qM

0 and q
i/o−−→ q′ implies f(q)

i/o−−→ f(q′).

In an observation tree, a basis is a subtree that describes unique behaviour
present in the SUL. Initially, a basis B ⊆ QT contains the root state. All states
in the basis are pairwise apart, i.e., for all q �= q′ ∈ B it holds that q # q′.
For a fixed basis, its frontier is the set of states F ⊆ QT which are immediate
successors of basis states but which are not in the basis themselves.

Fig. 2. Observation trees and hypotheses generated while learning R1 with L#. Basis
states are displayed in pink and frontier states in yellow. (Color figure online)

Example 4.2. Figure 2c shows an observation tree T ′ for the Mealy machine H′

from Fig. 2d. The separating sequences c and ac show that the states in basis
B = {t0, t2, t3} are all pairwise apart. The frontier F is {t1, t4, t5, t6}.

We say that a frontier state is isolated if it is apart from all basis states. A frontier
state is identified with a basis state q if it is apart from all basis states except
q. We say the observation tree is adequate if all frontier states are identified, no
frontier states are isolated and each basis state has a transition with every input.
If every frontier state is identified and each basis state has a transition for every
input, the observation tree can be folded to create a complete Mealy machine .
The Mealy machine has the same states as the basis. The transitions between
basis states are the same as in the observation tree. Transitions from basis states
to frontier states are folded back to the basis state the frontier state is identified
with. We call the resulting complete Mealy machine a hypothesis whenever this
canonical transformation is used.

Example 4.3. In T ′ (Fig. 2c) the frontier states are identified as follows: t1
→
t2, t4
→ t3, t5
→ t0 and t6
→ t2. Hypothesis H′ (Fig. 2d) can be folded back from
T ′. The dashed transitions in Fig. 2d represent the folded transitions.

State Matching and Multiple References in adaptive AAL 273

4.2 The L# Algorithm

The L# algorithm maintains an observation tree T and a basis B. Initially, T
consists of just a root node q0 and B = {q0}. We denote the frontier of B by F .
The L# algorithm then repeatedly applies the following four rules.

– The promotion rule (P) extends B by r ∈ F when r is isolated.
– The extension rule (Ex) poses OQ access(q)i for q ∈ B, i ∈ I with δ(q, i)↑.
– The separation rule (S) takes a state r ∈ F that is not apart from q, q′ ∈ B

and poses OQ access(r)σ with σ � q # q′ that shows r is apart from q or q′.
– The equivalence rule (Eq) folds T into hypothesis H, checks whether H and

T agree on all sequences in T and poses an EQ. If H and the SUL are not
equivalent, counterexample processing isolates a frontier state.

The pre- and postconditions of the rules are summarized in (the top rows of)
Table 1. A detailed account is given in the paper introducing L# [24].

Table 1. Extended L# rules with parameters, preconditions and postconditions.

Rule Parameters Precondition Postcondition

S
ec

.
4
.2

promotion r ∈ F ∀q ∈ B, q # r r ∈ B

extension q ∈ B, i ∈ I δT (q, i)↑ δT (q, i)↓

separation
r ∈ F, ¬(r # q), ¬(r # q′), q �= q′ r # q ∨ r # q′

q, q′ ∈ B

equivalence

- ∀q ∈ B. ∀i ∈ I. δT (q, i)↓, ∃r ∈ F s.t.

∀r ∈ F. ∃q ∈ B. ∀q ∈ B. r # q

(¬(r # q) ∧ ∀q′ ∈ B \ {q}. r # q′)

S
ec

4
.3 rebuilding

q, q′ ∈ B, δT (q, i) /∈ B, ¬(q′ # δT (q, i)), δT (q, iσ)↓,

i ∈ I accessT(q)i, accessT(q′) ∈ P R, δT (q′, σ)↓
σ = sep(δR(accessT(q)i), δR(accessT(q′))),

(δT (q, iσ)↑ ∨ δT (q′, σ)↑)

prioritized
promotion

r ∈ F accessT(r) ∈ P R, ∀q ∈ B. q # r r ∈ B

S
ec

.
5
.1

,
5
.2

match
separation

q, q′ ∈ B, δT (q, i) = r ∈ F, ¬(r # q′), δR(p, i) = p′ r # q′ ∨
p ∈ QR, i ∈ I ¬(∃q′′ ∈ B s.t. p′ √

= q′′), p
√
= q (p

√

�= q∧r # p′)

match
refinement

q ∈ B, p
√
= q, p′ √

= q, p
√

�= q ∨ p′
√

�= q

p, p′ ∈ QR σ = sep(p, p′)

prioritized
separation

r ∈ F, ¬(r # q′), ¬(r # q′′), ∃i ∈ I s.t. δT (q, i) = r, r # q′′ ∨
q′, q′′ ∈ B σ
 q′ # q′′, σ ∈ ∪

p
√
= q

WδR(p,i) r # q′

Example 4.4. Suppose we learn R1 from Fig. 1. L# applies the extension rule
twice, resulting in T as in Fig. 2a. States t1 and t2 are identified with t0 because

274 L. Kruger et al.

there is only one basis state. Next, L# applies the equivalence rule using hypoth-
esis H (Fig. 2b). Counterexample aac distinguishes H from R1. This sequence
is added to T and processed further by posing OQ ac in the equivalence rule.
Observations ac and aac show that the states accessed with ε, a and aa are
pairwise apart. States t2 and t3 are added to the basis using the promotion rule.
Next, L# poses OQ aaa during the extension rule. To identify all frontier states,
L# may use ac � t2 # t3, ac � t0 # t2 and c � t0 # t3. Figure 2c shows one
possible observation tree T ′ after applying the separation rule multiple times.
Next, the equivalence rule constructs hypothesis H′ (Fig. 2d) from T ′ and L#

terminates because H′ and R1 are equivalent.

4.3 Rebuilding in L#

In this subsection, we combine rebuilding from [6,7] with L# and implement
this using two rules: rebuilding and prioritized promotion, see also Table 1. Both
rules depend on a reference model R, which is a complete Mealy machine, with
a possibly different alphabet than the SUL S. More precisely, these rules depend
on a prefix-closed and minimal state cover PR and a separating family {Wq}R

computed on R|IS for maximal overlap with S. The separating family can be
computed with partition refinement [21]. We fix sep(p, p′) with p, p′ ∈ QR to be
a unique sequence from Wp ∩ Wp′ such that sep(p, p′) � p # p′. Below, we use q
for states in B, r for states in F and p for states in QR. In App. A of [14], we
depict the scenarios in the observation tree and reference model required for the
new rules to be applicable.

Rule (R): Rebuilding. Let q ∈ B, i ∈ I and suppose δT (q, i) /∈ B. The aim
of the rebuilding rule is to show apartness between δT (q, i) and a basis state
q′, using the state cover and separating family from R. The rebuilding rule is
applicable when accessT(q) and accessT(q)i are in PR. If accessT(q′) ∈ PR then
there exists a sequence σ such that σ = sep(δR(accessT(q)i), δR(accessT(q′))).
We pose OQs accessT(q)iσ and accessT(q′)σ.

Lemma 4.5. Suppose accessT(q′) ∈ PR for all q′ ∈ B. Consider q ∈ B, i ∈ I
such that δT (q, i) /∈ B and accessT(q)i ∈ PR. If for all q′ ∈ B it holds that
sep(δR(accessT(q)i), δR(accessT(q′))) � δS(accessT(q)i) # δS(accessT(q′)), then
after applying the rebuilding rule for q, i and all q′ ∈ B with ¬(q′ # δT (q, i)),
state δT (q, i) is isolated.

If a state is isolated, it can be added to the basis using the promotion rule.

Rule (PP): Prioritized Promotion. Like (regular) promotion, prioritized
promotion extends the basis. However, prioritized promotion only applies to
states r with accessT(r) ∈ PR. This enforces that the access sequences for basis
states are in PR as often as possible, enabling the use of the rebuilding rule.

Example 4.6. Consider reference R1 and SUL S from Fig. 1. We learn the
orange states similarly as described in Sect. 2: We apply the rebuilding rule with
accessT(q) = ε, accessT(q′) = ε, i = c which results in OQs cac and ac. Next, we

State Matching and Multiple References in adaptive AAL 275

promote δT (c) with the prioritized promotion rule. We apply the rebuilding rule
with accessT(q) = c, accessT(q′) = c and i = a which results in OQs cac (already
present in T) and cc. Lastly, we promote δT (ca) with prioritized promotion.

The overlap between S and PR and {Wq}R determines how many states of S
can be discovered via rebuilding. The statement follows from Lemma 4.5 above.

Theorem 4.7. If qR
0 matches qS

0 and T only contains a root qT
0 , then after

applying only the rebuilding and prioritized promotion rules until they are no
longer applicable, the basis consists of n states where n is the number of equiva-
lence classes (w.r.t. language equivalence) in the reachable part of S|IR .

Corollary 4.8. Suppose we learn SUL S with reference S. Using the rebuilding
and prioritized promotion rules, we can add all reachable states in S to the basis.

5 L# Using State Matching

In this section, we describe another way to reuse information from references,
called state matching, which is independent of the state cover. First, we present
a version of state matching using the matching relation (

√
=) from Def. 3.2 and

then we weaken this notion to approximate state matching.

Fig. 3. Observation trees generated while learning S with R2.

5.1 State Matching

With state matching, the learner maintains the matching relation
√
= between

basis states and reference model states during learning. In the implementation,
before applying a matching rule, the matching is updated based on the OQs
asked since the previous match computation. We present two key rules here and
an optimisation in the next subsection.

Rule (MS): Match separation. This rule aims to show apartness between
the frontier and a basis state using separating sequences from the reference
separating family. Let q, q′ ∈ B, r ∈ F with δT (q, i) = r for some i ∈ I, and

276 L. Kruger et al.

p, p′ ∈ QR. Suppose that δR(p, i) = p′, ¬(r # q′), p
√
= q and p′ does not match

any basis state. In particular, there exists some separating sequence σ for p′ # q′.
The match separation rule poses OQ access(q)iσ to either show r # q′ or q

√

�= p
and r # p′.

Example 5.1. Suppose we learn S using R2 from Fig. 1. After applying the exten-
sion rule three times, we get T0 (Fig. 3a). State t0 matches p3 as their outputs
coincide on sequences from alphabet IS ∩IR2 = {a, b}. State p3 transitions to the
unmatched state p0 with input a. The match separation rule conjectures t1 may
match p0 which implies t1 # t0. We use OQ access(t1)a to test this conjecture
and indeed find that t1 can be added to the basis using promotion.

Lemma 5.2. We fix p ∈ QR, q ∈ B, i ∈ I and δT (q, i) = r ∈ F . Suppose
δS(accessT(q))

√
= p. If δR(p, i)

√

�= q′ for all q′ ∈ B, then after applying the match
separation rule with q, p, i for all q′ ∈ B with ¬(q′ # r), state r is isolated.

Rule (MR): Match Refinement. Let q ∈ B and p, p′ ∈ QR. Suppose q
matches both p and p′ and let σ = sep(p, p′). The match refinement rule poses
OQ access(q)σ resulting in q no longer being matched to p or p′.

Example 5.3. Suppose we continue learning S using R2 from observation tree T1

(Fig. 3a). State t1 matches both p0 and p1. After posing OQ access(t1)bb where
bb � p0 # p1, t1 no longer matches p1.

If the initial state of SUL S is language equivalent to some state in the
reference model, then we can discover all reachable states in S via state matching
and L# rules. The statement uses Lemma 5.2 above.

Theorem 5.4. Suppose we have reference R and SUL S equivalent to R but
with a possibly different initial state. Using only the match refinement, match
separation, promotion and extension rules, we can add n states to the basis
where n is the number of equivalence classes (w.r.t. language equivalence) in the
reachable part of S.

5.2 Optimised Separation Using State Matching

In this subsection, we add an optimisation rule prioritized separation that uses
the matching to guide the identification of frontier states. First, we highlight
the differences between prioritized separation and the previous separation rules.
Both match separation and prioritized separation require that r

√
= p for r ∈ F

and p ∈ QR. The aim of match separation is to isolate r and requires that p
does not match any basis state. Instead, the aim of prioritized separation is to
guide the identification of r using the state identifier for a p matched with a
basis state. The prioritized separation rule is also different from the separation
rule (Sect. 4.2) which randomly selects q, q′ ∈ B to separate r from q or q′.

Rule (PS): Prioritized Separation. The prioritized separation rule uses the
matching to find a separating sequence from the reference model that is expected

State Matching and Multiple References in adaptive AAL 277

to separate a frontier state from a basis state. Let q′, q′′ ∈ B and r ∈ F . Suppose
r is not apart from q′ and q′′ and σ � q′ # q′′. If σ is in {Wp}R of a reference
model state p that matches r, the prioritized separation rule poses OQ access(r)σ
resulting in r being apart from q′ or q′′1.

Example 5.5. Suppose we learn S using R1 from Fig. 1. Assume we have discov-
ered all states in S and want to identify δT (ca, c) ∈ F , which is currently not
apart from any basis state. The prioritized separation rule can only be applied
with basis states q′, q′′ ∈ B such that c � q′ # q′′, as c is the only sequence
in the state identifier of r2 which is the state that matches δT (ca, c). From the
sequences {bb, ac, c} possibly used by L#, only c immediately identifies δT (ca, c).

5.3 Approximate State Matching

In this subsection, we introduce an approximate version of matching, by quanti-
fying matching via a matching degree. Let T be a tree and R be a (partial) Mealy
machine. Let I = IT ∩ IR. We define WI(q) = {(w, i) ∈ I∗ × I | δT (q, wi)↓} as
prefix-suffix pairs that are defined from q ∈ QT onwards. Then, we define the
matching degree mdeg : QT × QR → R as

mdeg(q, p) =

∣
∣
∣
∣
{(w, i) ∈ WI(q) | λT

(

δT (q, w), i
)

= λR
(

δR(p,w), i
)

}
∣
∣
∣
∣

|WI(q)| .

Example 5.6. Consider t1 from T2 (Fig. 3c) and p0, p1 from R2 (Fig. 1). We derive
WI(t1) = {(ε, a), (ε, b), (b, a), (b, b), (bb, b)} from T2 where I = IT2 ∩ IR2 = {a, b}.
On these pairs, all the suffix outputs for p0 and t1 are equivalent, mdeg(t1, p0) =
5/5 = 1. The matching degree between t1 and p1 is only 3/5 because λR2(p1, bbb) =
120 �= 112 = λT (t1, bbb) which impacts pairs (b, b) and (bb, b).

A state q in an observation tree T approximately matches a state p ∈ QR,
written q

√
� p, if there does not exist a p′ ∈ QR such that mdeg(q, p′) > mdeg(q, p).

Lemma 5.7. For any q ∈ QT , p ∈ QR: mdeg(q, p) = 1 implies q
√
= p.

We define rules approximate match separation (AMS), approximate match
refinement (AMR) and approximate prioritized separation (APS) that repre-
sent the approximate matching variations of match separation, match refinement
and prioritized separation respectively. These rules have weaker preconditions
and postconditions, see Table 3 in App A of [14].

1 The precise specification is more involved, as the learner only keeps track of the
match relation on B × QR.

278 L. Kruger et al.

6 Adaptive L#

The rebuilding, state matching and L# rules described in Table 1 are ordered
and combined into one adaptive learning algorithm called adaptive L# (writ-
ten AL#). A non-ordered listing of the rules can be found in Algorithm 1 in
App. A of [14]. We use the abbreviations for the rules defined in previous sec-
tions.

Definition 6.1. The AL# algorithm repeatedly applies the rules from Table 1
(see Algorithm 1), with the following ordering: Ex, APS, (S if APS was not
applicable), P, if the observation tree is adequate we try AMR, AMS, Eq. The
algorithm starts by applying R and PP until they are no longer applicable; these
rules are not applied anymore afterwards.

Similar to L#, the correctness of AL# amounts to showing termination
because the algorithm can only terminate when the teacher indicates that the
SUL and hypothesis are equivalent. We prove termination of AL# by proving
that each rule application lowers a ranking function. The necessary ingredients
for the ranking function are derived from the post-conditions of Table 1.

Theorem 6.2. AL# learns the correct Mealy machine within O(kn2 + kno +
no2+n log m) output queries and at most n−1 equivalence queries where n is the
number of equivalence classes for S, o is the number of equivalence classes for R,
k is the number of input symbols and m the length of the longest counterexample.

7 Adaptive Learning with Multiple References

Let X be a finite set of complete reference models with possibly different alpha-
bets. Assume each reference model R ∈ X has a state cover PR and separating
family {Wq}R. We adapt the arguments for the AL# algorithm to represent the
state cover and separating family for the set of reference models.

State Cover. We initialize the AL# algorithm with the union of the state cover
of each reference model, i.e., ∪R∈X PR. To reduce the size of PX , the state cover
for each reference model is computed using a fixed ordering on inputs.

Separating Family. We combine the separating families for multiple reference
models using a stronger notion of apartness, called total apartness, which also
separates states based on whether inputs are defined. When changing the alpha-
bet of a reference model to the alphabet of the SUL, as is done when computing
the separating family, the reference model may become partial. If states from
different reference models behave the same on their common alphabet but their
alphabets contain different inputs from the SUL, we still want to distinguish the
reference models based on which inputs they enable.

Definition 7.1. Let M1,M2 be partial Mealy machines and p ∈ QM1 , q ∈
QM2 . We say p and q are total apart, written p #↑ q, if p # q or there exists
σ ∈ (IM1 ∩ IM2)∗ such that either δM1(p,w)↑ or δM2(q, w)↑ but not both.

State Matching and Multiple References in adaptive AAL 279

We use total apartness to define a total state identifier and a total separating
family. This definition is similar to Definition 3.3 but # is be replaced by #↑.
We combine the multiple reference models into a single one with an arbitrary
initial state, compute the total separating family and use this to initialize AL#.

Example 7.2. A total separating family for X = {R1,R2} and alphabet IS is
Wp0 = Wp1 = {c, b, bb},Wp2 = Wp3 = {c, b},Wr0 = Wr1 = {c, ac},Wr2 = {c}.

We add an optimisation to AL# that only chooses p and p′ from the same
reference model during rebuilding. Theorem 6.2 can be generalized to this setting
where o represents the number of equivalence classes across the reference models.

8 Experimental Evaluation

In this section, we empirically investigate the performance of our implementation
of AL#. The source code and all benchmarks are available online2 [15]. We
present four experiments to answer the following research questions:

R1 What is the performance of adaptive AAL algorithms, when . . .
Exp 1 . . . learning models from a similar reference model?
Exp 2 . . . applied to benchmarks from the literature?

R2 Can multiple references help AL#, when learning . . .
Exp 3 . . . a model from similar reference models?
Exp 4 . . . a protocol implementation from reference implementations?

Setup. We implement AL# on top of the L# LearnLib implementation3. We
invoke conformance testing for the EQs, using the random Wp method from
LearnLib with minimal size=3 and random length= 34. We run all exper-
iments with 30 seeds. We measure the performance of the algorithms based on
the number of inputs sent to the SUL during both OQs and EQs: Fewer is better.

Table 2. Summed inputs in millions for learning the mutated models with the original
models.

Algorithm mut1 mut2 mut3 mut4 mut5 mut6 mut7 mut8 mut9 mut10 mut11 mut12 mut13 mut14

L∗ 115.2 24.2 49.4 69.7 78.7 60.5 50.7 132.9 294.2 36.8 52.5 38.0 18.3 301.9

KV 123.5 17.8 49.6 60.1 68.9 58.7 44.9 103.7 244.3 25.5 28.7 28.0 7.5 253.6

L# 101.7 14.3 50.0 49.2 73.0 58.7 39.9 100.1 313.9 25.4 38.9 28.0 8.0 234.9

∂L∗
M [6] 132.7 19.8 22.5 25.0 32.7 26.0 - 178.0 375.0 24.7 25.4 44.1 8.9 256.3

IKV [7] 114.8 18.6 1.6 2.4 0.9 0.8 - 56.6 373.9 11.0 2.1 1.1 5.8 7.0

AL# (new!)1.2 0.5 1.5 0.8 0.8 0.8 0.6 68.1 141.1 1.4 1.3 0.8 1.9 7.2

L#
R (new!) 101.7 12.3 1.7 9.4 1.1 7.9 0.7 68.2 306.1 12.6 2.8 1.7 6.4 7.9

L#
√
=

(new!) 1.2 0.5 3.5 5.2 9.1 7.2 0.7 63.0 36.8 8.7 9.8 10.8 5.7 7.1

L#
√

�
(new!) 1.2 0.5 1.7 2.7 2.0 2.1 0.7 70.6 186.5 6.0 6.1 1.7 4.8 7.4

L#

R,
√
=

(new!) 1.2 0.5 1.5 0.8 1.0 0.8 0.6 69.3 38.7 3.1 2.0 1.0 4.5 7.3

2 https://gitlab.science.ru.nl/lkruger/adaptive-lsharp-learnlib/.
3 Obtained from https://github.com/UCL-PPLV/learnlib.git [7].
4 These hyperparameters are discussed in the LearnLib documentation, learnlib.de.

https://gitlab.science.ru.nl/lkruger/adaptive-lsharp-learnlib/
https://github.com/UCL-PPLV/learnlib.git

280 L. Kruger et al.

Experiment 1. We evaluate the performance of AL# against non-adaptive
and adaptive algorithms from the literature, in particular L∗ [2], KV [13], and
L# [24] as well as ∂L∗

M [6] and (a Mealy machine adaptation of) IKV [7]. As
part of an ablation study, we compare AL# with simpler variations which we
refer to as L#

R , L#
√
=
, L#

√
�
, L#

R,
√
=
. The subscripts indicate which rules are added:

R: R + PP,
√
= : MS + MR + PS,

√
� : AMS + AMR + APS.

We learn six models from the AutomataWiki benchmarks [17] also used
in [24]. We limit ourselves to six models because we mutate every model in
14 different ways (and for 30 seeds). The chosen models represent different types
of protocols with varying number of states. We learn the mutated models using
the original models, referred to as S, as a reference. The mutations may add
states, divert transitions, remove inputs, perform multiple mutations, or com-
pose the model with a mutated version of the model. We provide details on the
used models and mutations in App. E of [14].

Results. Table 2 shows for an algorithm (rows) and a mutation (columns) the
total number of inputs (·106) necessary to learn all models, summed over all
seeds5. The highlighted values indicate the best performing algorithm. We pro-
vide detailed pairwise comparisons between algorithms in App. E of [14].

Discussion. First, we observe that AL# always outperforms non-adaptive learn-
ing algorithms, as is expected. By combining state matching and rebuilding,
AL# mostly outperforms algorithms from the literature, with IKV being com-
petitive on some types of mutations. In mut9(S) we append S to mut13(S), L#

√
=

outperforms L#
√
�

because L#
√
�

incorrectly matches mut13(S) states with states in
S, making it harder to learn the S fragment.

Experiment 2. We evaluate L#, ∂L∗
M , IKV and AL# on benchmarks that

contain reference models. Adaptive-OpenSSL [18], used in [6], contains mod-
els learned from different git development branches for the OpenSSL server
side. Adaptive-Philips [20] contains models representing some legacy code which
evolved over time due to bug fixes and allowing more inputs.

Results. Figure 4a shows the mean total number of inputs required for learning
a model from the associated reference model, depicting the 5th − 95th percentile
(line) and average (mark) over the seeds.

Discussion. We observe that L# and ∂L∗
M perform worse than AL#. AL# often

outperforms IKV by a factor 2–4, despite that these models are relatively small
and thus easy to learn.

Experiment 3. We evaluate AL# with one or multiple references on the models
used in Experiment 1. We either (1) learn S using several mutations of S or (2)
learn a mutation that represents a combination of the S and mut13(S).

5 ∂L∗
M and IKV do not support removing input inputs, relevant for mutation M7.

State Matching and Multiple References in adaptive AAL 281

Fig. 4. Results Experiments 2 and 3.

Results. Figure 4b, 4c show for every type of SUL (rows) and every set of refer-
ences (columns) the total number of inputs (·106) necessary to learn all models,
summed over all seeds. Highlighted values indicate the best performing set of
references. Column {S} in Fig. 4c corresponds to values in row AL# of Table 2;
they are added in Fig. 4c for clarity.

Fig. 5. Averaged inputs for learning S with multiple references.

Discussion. We observe that using multiple references outperforms using one
reference, as is expected. We hypothesize that learning with reference mut13(S)
instead of S often leads to an increase in total inputs because mut13(S) is less
complex due to the random transitions. Therefore, discovering states belonging
to the S fragment in mut8(S), mut9(S) and mut14(S) becomes more difficult.

Experiment 4. We evaluate the performance of AL# with one or multiple ref-
erences on learning DTLS and TCP models from AutomataWiki6. We consider
seven DTLS implementations selected to have the same key exchange algorithm
and certification requirement. We consider three TCP client implementations.

Results. Figure 5 shows the required inputs for learning S (x-axis) with only the
reference model indicated by the colored data point, averaged over the seeds.
6 References represent related models instead of previous models as in Experiment 2.

282 L. Kruger et al.

For each DTLS model, we included learning S with the S as a reference model.
The ∗ mark indicates using all models except the S as references, the × mark
indicates using no references, e.g., non-adaptive L#.

Discussion. We observe that using all references except S usually performs as
well as the best performing reference model that is distinct from S. In scand-lat,
using a set of references outperforms single reference models, almost matching
the performance of learning S with S as a reference.

9 Conclusion

We introduced the adaptive L# algorithm (AL#), a new algorithm for adaptive
active automata learning that allows to flexibly use domain knowledge in the
form of (preferably similar) reference models and thereby aims to reduce the
sample complexity for learning new models. Experiments show that the algo-
rithm can lead to significant improvements over the state-of-the-art (Sect. 8).

Future Work. Approximate state matching is sometimes too eager and may
mislead the learner, as happens for mut9 in Experiment 1 (Sect. 8). This may be
addressed by only applying matching rules when the matching degree is above
some threshold. It is currently unclear how to determine an appropriate thresh-
old.

Further, adaptive methods typically perform well when the reference model
and SUL are similar [10]. We would like to dynamically determine which (parts
of) reference models are similar, and incorporate this in the rebuilding rule.

Adaptive AAL allows the re-use of information in the form of a Mealy
machine. Other sources of information that can be re-used in AAL are, for
instance, system logs, realised by combining active and passive learning [1,26].
An interesting direction of research is the development of a more general method-
ology that allows the re-use of various forms of previous knowledge.

Data Availability Statement. The datasets generated and analysed in this study
and code to regenerate them are available in the accompanying artifact [15].

References

1. Aichernig, B.K., Muskardin, E., Pferscher, A.: Active vs. passive: a comparison of
automata learning paradigms for network protocols. In: FMAS/ASYDE@SEFM.
EPTCS, vol. 371, pp. 1–19 (2022)

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

3. Aslam, K., Cleophas, L., Schiffelers, R.R.H., van den Brand, M.: Interface protocol
inference to aid understanding legacy software components. Softw. Syst. Model.
19(6), 1519–1540 (2020)

State Matching and Multiple References in adaptive AAL 283

4. Bainczyk, A., Steffen, B., Howar, F.: Lifelong learning of reactive systems in prac-
tice. In: Ahrendt, W., Beckert, B., Bubel, R., Johnsen, E.B. (eds.) The Logic
of Software. A Tasting Menu of Formal Methods. LNCS, vol. 13360, pp. 38–53.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08166-8 3

5. Chaki, S., Clarke, E.M., Sharygina, N., Sinha, N.: Verification of evolving software
via component substitutability analysis. Formal Methods Syst. Des. 32(3), 235–266
(2008)

6. Damasceno, C.D.N., Mousavi, M.R., da Silva Simao, A.: Learning to reuse: adap-
tive model learning for evolving systems. In: Ahrendt, W., Tapia Tarifa, S.L. (eds.)
IFM 2019. LNCS, vol. 11918, pp. 138–156. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-34968-4 8

7. Ferreira, T., van Heerdt, G., Silva, A.: Tree-based adaptive model learning. In:
Jansen, N., Stoelinga, M., van den Bos, P. (eds.) A Journey from Process Algebra
via Timed Automata to Model Learning. LNCS, vol. 13560, pp. 164–179. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-15629-8 10

8. Groce, A., Peled, D.A., Yannakakis, M.: Adaptive model checking. Log. J. IGPL
14(5), 729–744 (2006)

9. Howar, F., Steffen, B.: Active automata learning in practice. In: Bennaceur, A.,
Hähnle, R., Meinke, K. (eds.) Machine Learning for Dynamic Software Analysis:
Potentials and Limits. LNCS, vol. 11026, pp. 123–148. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96562-8 5

10. Huistra, D., Meijer, J., van de Pol, J.: Adaptive learning for learn-based regression
testing. In: Howar, F., Barnat, J. (eds.) FMICS 2018. LNCS, vol. 11119, pp. 162–
177. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00244-2 11

11. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

12. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib – a framework
for active automata learning. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015.
LNCS, vol. 9206, pp. 487–495. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-21690-4 32

13. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory.
MIT Press (1994). https://mitpress.mit.edu/books/introduction-computational-
learning-theory

14. Kruger, L., Junges, S., Rot, J.: State matching and multiple references in adaptive
active automata learning (2024). https://arxiv.org/abs/2406.19714

15. Kruger, L., Junges, S., Rot, J.: State matching and multiple references in adaptive
active automata learning: supplementary material (2024). https://doi.org/10.5281/
zenodo.12517574

16. Muškardin, E., Aichernig, B.K., Pill, I., Pferscher, A., Tappler, M.: AALpy: an
active automata learning library. In: Hou, Z., Ganesh, V. (eds.) ATVA 2021. LNCS,
vol. 12971, pp. 67–73. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
88885-5 5

17. Neider, D., Smetsers, R., Vaandrager, F., Kuppens, H.: Benchmarks for automata
learning and conformance testing. In: Margaria, T., Graf, S., Larsen, K.G. (eds.)
Models, Mindsets, Meta: The What, the How, and the Why Not? LNCS, vol.
11200, pp. 390–416. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
22348-9 23

https://doi.org/10.1007/978-3-031-08166-8_3
https://doi.org/10.1007/978-3-030-34968-4_8
https://doi.org/10.1007/978-3-030-34968-4_8
https://doi.org/10.1007/978-3-031-15629-8_10
https://doi.org/10.1007/978-3-319-96562-8_5
https://doi.org/10.1007/978-3-030-00244-2_11
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-319-21690-4_32
https://mitpress.mit.edu/books/introduction-computational-learning-theory
https://mitpress.mit.edu/books/introduction-computational-learning-theory
https://arxiv.org/abs/2406.19714
https://doi.org/10.5281/zenodo.12517574
https://doi.org/10.5281/zenodo.12517574
https://doi.org/10.1007/978-3-030-88885-5_5
https://doi.org/10.1007/978-3-030-88885-5_5
https://doi.org/10.1007/978-3-030-22348-9_23
https://doi.org/10.1007/978-3-030-22348-9_23

284 L. Kruger et al.

18. Ruiter, J.: A tale of the OpenSSL state machine: a large-scale black-box analysis.
In: Brumley, B.B., Röning, J. (eds.) NordSec 2016. LNCS, vol. 10014, pp. 169–184.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47560-8 11

19. de Ruiter, J., Poll, E.: Protocol state fuzzing of TLS implementations. In: USENIX
Security Symposium, pp. 193–206. USENIX Association (2015)

20. Schuts, M., Hooman, J., Vaandrager, F.: Refactoring of legacy software using model
learning and equivalence checking: an industrial experience report. In: Ábrahám,
E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 311–325. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-33693-0 20

21. Smetsers, R., Moerman, J., Jansen, D.N.: Minimal separating sequences for all
pairs of states. In: Dediu, A.-H., Janoušek, J., Mart́ın-Vide, C., Truthe, B. (eds.)
LATA 2016. LNCS, vol. 9618, pp. 181–193. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-30000-9 14

22. Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing IoT communication
via active automata learning. CoRR abs/1904.07075 (2019)

23. Vaandrager, F.W.: Model learning. Commun. ACM 60(2), 86–95 (2017)
24. Vaandrager, F., Garhewal, B., Rot, J., Wißmann, T.: A new approach for active

automata learning based on apartness. In: TACAS 2022. LNCS, vol. 13243, pp.
223–243. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99524-9 12

25. Windmüller, S., Neubauer, J., Steffen, B., Howar, F., Bauer, O.: Active continuous
quality control. In: CBSE, pp. 111–120. ACM (2013)

26. Yang, N., et al.: Improving model inference in industry by combining active and
passive learning. In: SANER, pp. 253–263. IEEE (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-47560-8_11
https://doi.org/10.1007/978-3-319-33693-0_20
https://doi.org/10.1007/978-3-319-30000-9_14
https://doi.org/10.1007/978-3-319-30000-9_14
https://doi.org/10.1007/978-3-030-99524-9_12
http://creativecommons.org/licenses/by/4.0/

Automated Repair of Information Flow Security
in Android Implicit Inter-App Communication

Abhishek Tiwari1(B), Jyoti Prakash2, Zhen Dong3, and Carlo A. Furia1

1 Software Institute, USI Università della Svizzera italiana, Lugano, Switzerland
abhishek.tiwari@usi.ch

2 University of Passau, Passau, Germany
jyotiprakash1@acm.org

3 Fudan University, Shanghai, China
zhendong@fudan.edu.cn

https://bugcounting.net/

Abstract. Android’s intents provide a form of inter-app communication with
implicit, capability-based matching of senders and receivers. Such kind of
implicit addressing provides some much-needed flexibility but also increases the
risk of introducing information flow security bugs and vulnerabilities—as there
is no standard way to specify what permissions are required to access the data
sent through intents, so that it is handled properly.

To mitigate such risks of intent-based communication, this paper introduces
INTENTREPAIR, an automated technique to detect such information flow secu-
rity leaks and to automatically repair them. INTENTREPAIR first finds sender and
receiver modules that may communicate via intents, and such that the sender
sends sensitive information that the receiver forwards to a public channel. To
prevent this flow, INTENTREPAIR patches the sender so that it also includes infor-
mation about the permissions needed to access the data; and the receiver so that
it will only disclose the sensitive information if it possesses the required permis-
sions.

We evaluated a prototype implementation of INTENTREPAIR on 869 Android
open-source apps, showing that it is effective in automatically detecting and
repairing information flow security bugs that originate in implicit intent-based
communication, introducing only a modest overhead in terms of patch size.

1 Introduction

Mobile applications (“apps”) are often designed as a collection of specialized compo-
nents that rely on each other to implement functionality for the end user. Thus, inter-
app communication features prominently in their implementations, and mobile operat-
ing systems offer a variety of communication primitives that are sufficiently flexible to
work in an open ecosystem of apps. Unfortunately, ease of communication also brings
risks of introducing information flow security bugs and vulnerabilities that are hard to
prevent, detect, and fix.

First and last author’s work partially supported by SNF grant 200021-207919 (LastMile).

c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 285–303, 2025.
https://doi.org/10.1007/978-3-031-71162-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_15&domain=pdf
https://doi.org/10.1007/978-3-031-71162-6_15

286 A. Tiwari et al.

A concrete instance of this problem occurs in the popular Android mobile operating
system, which provides intents for flexible, asynchronous inter-app coordination. An
app that wants to delegate an operation (for example, opening a web page) to another
app instantiates an intent object specifying the operation and the data needed to execute
it (for example, the web page’s URL), and registers the object with the Android oper-
ating system. Any other app that is capable of executing the operation (for example,
a web browser) can receive that intent object from the system and handle its request.
This kind of implicit communication between apps is suitable for programming in an
open ecosystem, where the app that makes a request (instantiating the intent object)
does not need to know which apps can handle it (receiving the intent object). However,
it may also introduce unintended leaks of sensitive information [14,17,18,22,24,26]:
the sender has no way of specifying the sensitivity of the data packed within an intent,
nor can it know in advance which apps will receive and how they will handle the intent.
Conversely, the receivers do not know whether they are handling sensitive data, nor
which privacy policies the sender app would like to enforce.

In this paper, we propose INTENTREPAIR: an automated technique to detect informa-
tion leaks that originate in inter-app intent-based communication, and to automatically
repair them by enforcing a preferred security policy. As we better discuss in Sect. 5,
INTENTREPAIR’s focus is quite novel: plenty of existing work [5,6,12,17,18,24,26]
deals with detecting information-flow security violations in intent communication, but
most of it focuses on intra-app communication. Furthermore, to our knowledge, no
other work features the automated repair of such security flaws.

To detect leaks, INTENTREPAIR creates a summary of any app’s usage of intents—
whether the app sends or receives intent objects, for which operations, and the infor-
mation flow of the intents’ data. Then, it matches senders and receivers for the same
operation to identify possible information leaks—when a sender’s sensitive data is sent
to a sink in the receiver. Unlike most existing approaches, INTENTREPAIR does not just
detect information leaks but can also automatically repair them. The key idea is to
repair both the senders—adding a sensitivity declaration to any data they add to intent
objects—and the receivers—checking that the received data is handled according to
the sender’s preferred policy. To achieve high precision, INTENTREPAIR combines static
analysis of Android bytecode with dynamic taint analysis, which validates whether cer-
tain information flow are actually possible at runtime.

We implemented the INTENTREPAIR technique in a tool with the same name. We
evaluated it on 14 Android open-source apps from the DroidBench [1] and Repo-
Droid [21] curated collections, as well as on 855 larger open-source apps from
the FDroid repository. The experimental evaluation demonstrates that INTENTREPAIR

can analyze apps of realistic size, successfully detect scenarios of insecure intent-
based inter-app communication, and automatically generates patches that avoid the
information-flow security bugs.

In summary, this paper makes the following contributions:

– INTENTREPAIR: an automated technique to detect and repair information flow privacy
leaks in Android apps.

– A prototype implementation of INTENTREPAIR [25].
– An experimental evaluation of INTENTREPAIR on 869 Android apps.

Automated Repair of Information Flow Security 287

2 Preliminaries

This section provides an overview of inter-app communication and its challenges in
Android apps. First, Sects. 2.1 and 2.2 introduce the basics of Android apps and intent
communication; then, Sect. 2.3 details the challenges in detecting and repairing the
information flows via intents.

2.1 Android Basics

Android applications are usually written in Java or Kotlin, and consist of a collec-
tion of components of four kinds: activities, broadcast receivers, services, and con-
tent providers [4]. Activities usually implement user interfaces, such as a login screen.
System and application events, such as boot-up notifications, are broadcasted to com-
ponents registered as broadcast receivers. Services are active in the background and
designed for lengthy or computationally intensive tasks, such as downloading a file
in the background. Content providers shuffle data from one app to another by various
means.

Each app contains a manifest file AndroidManifest.xml, which includes essential
information, such as the app’s name, its components, and any libraries it depends on.
The manifest also specifies an app’s permissions, that is the features of the Android
operating system (and of the device that runs it) that the app may access.

2.2 How Intent Communication Works

Android provides intents as a flexible communication means between components. In
a nutshell, intents implement a form of message-passing communication based on the
component’s capabilities (called “actions” in Android parlance).

Precisely, Android intents support two ways of addressing, that is of identifying
the recipients of a message. With explicit intents, the sender explicitly specifies the
component(s) that may receive the message; no other components are allowed to receive
it. With implicit intents, the sender does not specify any explicit recipients, but rather
an action (for example, opening a web page);1 the Android system will dispatch the
message to any components that support the action specified by the sender. In other
words, implicit intents support a kind of implicit, capability-based addressing.

Explicit and implicit intents provide different trade offs between ease of commu-
nication and control over the recipients. Sending sensitive data via explicit intents is
generally safe, in that the sender generally knows exactly who will receive that data
(and how they will use it). In contrast, sending sensitive2 data via implicit intents may
be risky, since the sender of an implicit intent generally does not know exactly who will
receive the data until when the app actually runs. Thus, enforcing privacy rules during

1 Android offers a number of predefined actions, but apps may also define new custom actions.
2 As defined more rigorously in Sect. 3.2.6, one can associate a permission level to any piece

of data; sending high-permission data to a low-permission channel violates information flow
security—whereas one is always allowed to send low-permission data to a high-permission
channel.

288 A. Tiwari et al.

app development is a challenge when using implicit intents; tackling this challenge is
the main focus of the present work.

Fig. 1. Android code of sender and receiver apps communicating through implicit intents.

2.3 An Example of the Challenges of Implicit Intent Communication

Figure 1 illustrates the risks of implicit intent communication through a simple exam-
ple. Two sender apps each create an intent object for custom action "action_test":
app S in Fig. 1a includes some sensitive data in the object—the host mobile device’s
unique identifier (also known as IMEI number). App N in Fig. 1b, instead, only includes
information that is not sensitive.

Figure 1c shows the code of another app R, which is capable of handling action
"action_test".3 In a system where all three apps S, N , and R operate, Android would
dispatch the intent messages sent by S and N to R, which would then retrieve the data
and re-send it through a public channel (i.e., in a text message—Line 24 in Fig. 1c).

Such a scenario has two potential problems in terms of information-flow security.
First, S is not aware that R sends its sensitive data to a public channel. Second, R may
not even have the necessary permissions to receive that sensitive data. Both problems
originate in the flexible nature of implicit intent-based communication: the sender of an
implicit intent cannot specify the sensitive nature of the data it sends; and the receivers
of an implicit intent may access its data even if it contains information that is beyond
their permissions.

Addressing these problems when implementing apps S, N , and R would be infea-
sible or too expensive, and fundamentally at odds with the flexibility introduced by
implicit intents. The receiver app R cannot know, in general, the sensitivity of the data

3 An app’s manifest file specifies the actions it can handle.

Automated Repair of Information Flow Security 289

received through intents. Considering a priori all potential sender apps is also practically
impossible in an open ecosystem of apps like Android. To address these issues, we pro-
pose a novel automated repair approach that works at app deployment time, which we
describe in Sect. 3.2.

3 Methodology

This section presents our approach to automatically detect and repair information flow
security leaks that originate with implicit intent communication. First, Sect. 3.1 intro-
duces an abstract model of implicit intent-based communication; then, Sect. 3.2 gives
an overview of our intent repair framework, followed by a detailed presentation of how
its components work.

3.1 An Abstract Model of Implicit Intents

Before delving into the details of our framework, we present an abstract model of
implicit intents. As is, Android offers a rich API for intent communication [3]. For
example, there are 25 operations to initialize an intent object, 30 operations to add data
to it, and 42 operations to extract data from it.

Fig. 2. Tentative: An abstract model of intent programming.

Fig. 3. An example of intent communication in Tentative.

In this paper, we only consider implicit intents, where the sender does not know
precisely which components will receive an intent message, but only what actions
the receivers can handle. Figure 2 shows the syntax of Tentative: an abstract, minimal
model of implicit intent communication, which we’ll use in the paper to simplify the
presentation of the core technical concepts. Tentative provides statements to create an
intent object for a certain action a (createIntent(a)), to add a key-value pair k, d to
an intent object i (put(i, k, d)), to retrieve the data stored under k from an intent object

290 A. Tiwari et al.

i (get(i, k)), to send send(i) and receive receive(a) an intent object associated with
action a, and to “sink” some information into a channel (sink(d, p))—public, or with
some other security level p. In an Android app, the action associated with a receiver is
declared in the receiver app’s manifest; in Tentative, it is explicit in the call to receive.
Figure 3 shows two snippets of Tentative code modeling a basic sender and receiver:
the sender in Fig. 3a captures the same behavior as Fig. 1a’s Android code; the receiver
in Fig. 3b captures the same behavior as Fig. 1c’s Android code, where sink(data,⊤)
denotes that the data is sent to a public sink.

3.2 How Intent Repair Works

Figure 4 pictures the overall workflow of our intent repair framework; Algorithm 1
presents its corresponding high-level algorithm. The input to the intent repair pro-
cess is a set of Android apps—given as APK files—whose intent-based information
flow communication will be analyzed. The first step is the receiver analysis (described
in Sect. 3.2.1): for each app that receives implicit intent objects, we determine which
actions it supports, and what it does with the data extracted from the intent objects—in
particular, whether it leaks any of it to a sink. Assuming that at least one “potentially
insecure” receiver exists, the next step is the sender analysis (described in Sect. 3.2.2),
which summarizes the behavior of apps that send implicit intent objects—in particu-
lar, whether they include any sensitive data in the intents. The next step (described in
Sect. 3.2.3) matches senders and receivers, identifying pairs (s, r) such that s sends
sensitive information through implicit intents, r may receive such information and send
it to a non-secure sink. For each such pair, the last step performs the actual repair: it
patches the sender s so that it includes information about the permissions required to
use the data it sends via implicit intents (as described in Sect. 3.2.4); and it patches
the receiver r so that it retrieves this information and uses it to check that it has the
necessary permissions to use the intent data (as described in Sect. 3.2.5).4

Fig. 4. An overview of how INTENTREPAIR works.

4 In general, both the sender and receiver need repairing, as whether information flow security is
enforced depends on how the receiver uses the data send by the sender. For example, a photo
gallery app (sender) sends a private picture to a photo editing app (receiver); as long as the
receiver does not make the private picture public, there is no privacy violation.

Automated Repair of Information Flow Security 291

Algorithm 1: INTENTREPAIR’s overall algorithm.
Input: a set of apps A
Output: a set of patches P

1 R ← ∅ // Receivers’ summaries

2 S ← ∅ // Senders’ summaries

3 foreach a ∈ A do
4 R ← R ∪ ReceiverAnalysis(a)
5 if R ≠ ∅ then
6 foreach a ∈ A do
7 S ← S ∪ SenderAnalysis(a)
8 P ← ∅ // Patched apps

9 foreach (s, r) ∈ Match(S,R) do
10 s

′ ← InjectPermissions(s)
11 r

′ ← CheckPermissions(r)
12 P ← P ∪ {s

′
, r

′
}

13 return P

Algorithm 2: Analysis of receivers: ReceiverAnalysis.
Input: an app A
Output: a set of receivers’ summaries R

1 R ← ∅ // Receivers’ summaries

2 foreach intent ∶= receive(action) ∈ A do
3 foreach value ∶= get(intent , key) ∈ Taint(intent) do
4 if sink(value) ∈ Taint(value) then
5 R ← R ∪ {⟨A, action, key⟩}

6 return R

3.2.1 Receiver Analysis
Algorithm 2 outlines INTENTREPAIR’s receiver analysis. A receiver component is one
that includes calls to the receive primitive (line 2).5 INTENTREPAIR taints the intent
object for each such call to receive, in order to find program locations that extract data
from the object (primitive get, line 3). Then, it also taints the data objects to determine
if they flow into an insecure sink (line 4). If this is the case, all the collected information
about the receiver is stored as the receiver summary (line 5).

3.2.2 Sender Analysis
Algorithm 3 outlines INTENTREPAIR’s sender analysis. A sender component is one that
includes calls to the send primitive (line 2), which represents all variants of Android’s
sendIntent methods. For each such call to send, INTENTREPAIR computes the inter-
procedural backward slice using the sent intent object as slicing criterion; thus, the
slice will include all calls to the createIntent and put primitives that involve the

5 As explained in Sect. 3.1, receive corresponds to any of the numerous Android API primi-
tives to receive an implicit intent object, such as getIntent() in Fig. 1c.

292 A. Tiwari et al.

Algorithm 3: Analysis of senders: SenderAnalysis.
Input: an app A
Output: a set of senders’ summaries S

1 S ← ∅ // Senders’ summaries

2 foreach send(intent) ∈ class do
3 foreach intent ∶= createIntent(action) ∈ Slice(intent) do
4 foreach put(intent , key , value) ∈ Slice(intent) do
5 if Permission(value) ≠ ⊤ then
6 S ← S ∪ {⟨A, action, key ,Permission(value)⟩}

7 return S

sent intent object. INTENTREPAIR considers all pairs of createIntent (line 3) and put
(line 4) in the slice that target the same action. By analyzing the data that is stored by
each put, INTENTREPAIR determines whether handling that data requires any non-trivial
permission (line 5). If this is the case, all the collected information about the sender is
stored as the sender summary (line 6).

3.2.3 Sender-Receiver Matching
Given a sender S’s summary ⟨s, as, ks, p⟩ and a receiver R’s summary ⟨r, ar, kr⟩,
matching them is straightforward: it amounts to determining if they send and receive
intent objects associated with the same action (as = ar), and exchange data using some
shared key (ks = kr).

Fig. 5. Abstract Repairs for the Senders and Receivers

3.2.4 Sender Repair
If at least one matching pair of sender and receiver exists, it means there is sensitive
information that may flow to a sink; in this case, the repair process begins. The first step
is “repairing” the sender, which means providing means of communicating its security
policies to the receiver site Android provides no built-in mechanism to allow this kind
of identification with intent objects—not even at runtime. To address this, we explicitly

Automated Repair of Information Flow Security 293

inject the intent object in the sender with additional data. The main idea is storing in the
intent object pairs (k, p), where k is the key of a piece of data stored in the same object
and p is the permission required to access that data.

Figure 5a illustrates this idea on the running example. Figure 1a’s sender includes
in intent object i sensitive data (an IMEI number) under key "data". Android permis-
sion READ_PHONE_STATE is required to access this sensitive data; thus, INTENTREPAIR

injects the pair ("data", READ_PHONE_STATE) in the sender’s intent object, using a fresh,
unique key "perm:data".

3.2.5 Receiver Repair
As described in the previous section, INTENTREPAIR injects intent objects on the
sender’s side, so that the receivers know the required permissions. Correspondingly,
INTENTREPAIR modifies all receiver apps so that they retrieve this information about
permissions and use it appropriately.

First, the receiver should have the required permissions to handle the intent object.
If this is not the case, INTENTREPAIR patches the receiver so that it asks the app user to
upgrade its permissions. If the user denies the request, the app is not allowed to continue
and can only abort its operations.

Once the receiver has acquired the necessary permissions—either statically or
dynamically—INTENTREPAIR still has to sanitize the sensitive data it received through
the intent object before dumping it into a public sink, so as not to violate any informa-
tion flow security rules. To this end, INTENTREPAIR provides a simple anonymization
of the data (which could also be used, in a pinch, in the scenario where the client lacks
the necessary permissions). Within the same general repair scheme, one could imple-
ment custom declassification policies for the nature of the sensitive data; for instance,
if the sensitive data is location information, the receiver could replace the precise loca-
tion with an approximation. INTENTREPAIR supports customizing how receiver apps are
repaired, so as to enforce the app developers’ preferred policies and practices.

Figure 5b illustrates this idea on the running example. INTENTREPAIR modifies
Fig. 1b’s receiver so that it checks what permission perm is required to handle the data
stored under key "data" in intent object i. If the receiver does not have nor cannot
acquire permission perm, it simply terminates, so as to avoid any mishandling of sen-
sitive information. Conversely, once it has acquired permission perm, it sanitizes the
intent data before sending it to a public sink.

3.2.6 Repair Correctness
To make the presentation of INTENTREPAIR’s repairs rigorous, let’s extend Tentative
with the set of fix ingredients shown in Fig. 6: INTENTREPAIR can avoid an information-
flow security flaw in a receiver by terminating its execution (exit), sanitizing sensitive
data (sanitize), or requesting a permission (request). As for the rest of Tentative,
these operations generalize different Android library calls that can be used to change the
permissions and a program’s information-flow security—as demonstrated in Fig. 5b’s
example.

Figure 7 shows the main rules that formalize what it means for a Tentative pro-
gram to be information-flow secure. To this end, a permission state P keeps track of

294 A. Tiwari et al.

Fig. 6. Repair operations for Tentative intent programs.

Fig. 7. Rules to check whether a Tentative program is information-flow secure.

the permission as a program executes; P is a pair (A,R), where A is the set of per-
missions the running app currently has, whereas R maps each variable v to the permis-
sion R(v) required to access that variable’s content.6 Each rule in Fig. 7 has the form
⟨s, P ⟩ → P

′, which denotes that executing statement s when the permission state is P
is successful and leads to permission state P ′ (or to termination if P ′ = �). A program
is information-flow safe if we can successfully apply these rules to all its statements.

Rule GET models how the information about which permissions are needed to
access which variables is retrieved by INTENTREPAIR, which, in turn, relies on the
sender repair algorithm described above. Rule USE indicates that, whenever a state-
ment stmt[v] accessing some variable v executes, the app must possess the necessary
permission R(v). Rule SINK deals with primitive sink, which is secure only if the out-
put channel’s security level q is not more restrictive than the permission R(w) required
to access the sinked data w. The program can always safely terminate, without requiring
any special permission (rule EXIT). Sanitizing a variable’s content may change (usually,
reduce) the permission required to access it (rule SANITIZE). Conversely, successfully
acquiring a permission extends the set of current permissions (rules NO-/UPGRADE).

With this formalization, we can support our claim that INTENTREPAIR patches such
as Fig. 5b’s are information-flow safe by construction: Line 4 retrieves the required
permission; Line 6 tries to acquire it, and terminates if this is not possible; Line 8
sanitizes the data, so that Line 9 is allowed to sink it.

3.2.7 Sanitize Operations
INTENTREPAIR can be customized and extended by providing different kinds of imple-
mentation of the sanitize primitive that achieve a desired trade off between security
preservation and app functionality. We distinguish between declassify operations, which
reduce the precision of the data, and pure sanitize operations, which completely replace

6 Without loss of generality, we assume that all permissions form a complete lattice, with ⊤
being the least restrictive permission (i.e., public data).

Automated Repair of Information Flow Security 295

sensitive data with dummy values. The latter are straightforward to implement using
default values or encryption. In contrast, declassify operations depend on the nature of
the data that should be declassified. For example, location data can be declassified by
replacing a precise location with an approximate one. Table 1 lists several declassify
and sanitize operations implemented in INTENTREPAIR.

Table 1. INTENTREPAIR’s declassification (top) and sanitization (bottom) operations on several
kinds and types of sensitive data d.

DATA d TRANSFORMATION DESCRIPTION

location coarse(d) approximate location d

device id substring(d,n) keep only first n characters of device id d

event d.location = coarse(d.location) approximate event d’s location

step count d + random(−10000,10000) add random noise to number d of walked steps
person height d ∗ random(0.5,1.5) scale person height d by random factor
contacts filter(d, name = person) keep single person’s contact data (instead of all contacts d)

String "" sanitize string data
int/Integer 0 sanitize integer data

T[] {t, t, . . . , t} sanitize array of Ts, where t is T ’s sanitized default value

3.3 Implementation

We implemented our intent repair technique in a prototype tool also called INTENT-
REPAIR. INTENTREPAIR takes APK files or Java source code as input, which it ana-
lyzes as described above, and directly injects patches into the input files. INTENT-
REPAIR is implemented in Java and comprises around three thousand lines of code.
INTENTREPAIR’s static analysis uses the Wala framework [13] and APKTool [2] and
works on the .dex and Smali intermediate representations. INTENTREPAIR also uses
Axplorer [7,8] to detect sensitive sources based on an app’s permissions. INTENT-
REPAIR’s implementation includes a few workarounds to handle unsupported operations
of the Android framework. For example, whether the user grants the extra permissions
needed by a repair is stored dynamically as a Boolean flag. If the patch were to be
deployed officially, the extra permissions could be added to an app’s manifest file.

4 Evaluation

We empirically evaluated the capabilities of INTENTREPAIR in repairing information
flow security bugs in Android apps. Our experiments answer the research questions:

RQ1 How effective is INTENTREPAIR? (“Effectiveness” refers to how many information
flow security bugs INTENTREPAIR can detect and repair.)

RQ2 Is INTENTREPAIR scalable? (“Scalability” refers to whether INTENTREPAIR can be
applied to realistic-size apps.)

All experiments described in this section ran on a MacBook with a 2.6 GHz 6-Core
Intel Core i7 processor and 16 GB of RAM. For lack of space, we only present the main
results and refer to the artifact package for details.

296 A. Tiwari et al.

4.1 RQ1: Effectiveness of IntentRepair

4.1.1 Subjects
To assess INTENTREPAIR’s effectiveness, we selected apps from two widely used curated
collections of open-source Android apps: DroidBench [1] and RepoDroid [21]. Droid-
Bench was originally introduced to specifically benchmark taint analyses, whereas
RepoDroid encompasses a broader selection of apps; both include a ground truth about
which apps incur information-flow security leaks.

Starting from 45 apps (21 in DroidBench and 24 in RepoDroid), we selected all
those that i) send sensitive information via implicit intents; or ii) receive information via
implicit intents (regardless of whether they sink it or not). According to DroidBench’s
and RepoDroid’s ground truths, only 14 apps (3 in DroidBench and 11 in RepoDroid)
satisfy one or both these criteria; the selected apps are generally small, as each of them
consists of only 50–100 lines of code over 2–3 classes. This is arguably due to the focus
of DroidBench and RepoDroid, which were curated to mainly include apps that use
(inter-app) communication mechanisms other than implicit intents. (RQ2 will demon-
strate INTENTREPAIR on a larger number of apps of realistic size.) Nevertheless, the 14
apps that we selected as experimental subjects do exhibit—in the small—significant
patterns of information-flow exchanges. Figure 8 shows examples of code from some
of these apps: Fig. 8a is a sender that sends out the IMEI device identifier to receivers
that support action testaction; Figs. 8b and 8c are receivers supporting such action;
Fig. 8b sinks this sensitive data, whereas Fig. 8c does not.

4.1.2 Sender/Receiver Analysis
Table 2 summarizes the outcome of INTENTREPAIR’s sender and receiver analysis on
RQ1’s 14 experimental subjects.

INTENTREPAIR found 23 activities that can receive intent objects with 5 differ-
ent actions; and 11 activities that can send intent objects with 4 different actions.
This determines 36 potential instances of sender-receiver communication between
activities. For example, app icc_implicit_src_sink’s MainActivity sends an intent
object that stores Android device ids under key "data"; this data can be received by
the FooActivity of the same app, as well as of the homonymous activity of apps
icc_implicit_nosrc_sink, icc_implicit_nosrc_nosink, icc_implicit_action,
and icc_implicit_src_nosink. We also confirmed that INTENTREPAIR detected all
information-flow security leaks in DroidBench’s and RepoDroid’s ground truth.

4.1.3 Repair
Out of the 36 sender-receiver communication pairs, INTENTREPAIR reported 17
instances where the receiver may inappropriately send the intent information to
a public sink. In the previous example, this happens when the receiver is app
icc_implicit_nosrc_sink’s FooActivity. In all these cases, INTENTREPAIR patched
the sender-receiver pairs so as to avoid any information-flow security leaks. We manu-
ally validated these patches by running the communicating apps while monitoring the
information sent to the sink, confirming that the leak occurs in the original app version
(before applying the patch) and no longer occurs with INTENTREPAIR’s patch.

Automated Repair of Information Flow Security 297

Table 2. INTENTREPAIR’s sender and receiver summaries of the 14 apps analyzed for RQ1.
For each APP and ACTIVITY, the table reports the actions it RECEIVES and/or SENDS;
the KEY used to store the data in the intent object; the VALUE stored, and any PER-
MISSION needed to access the data. (Action main is android.intent.action.MAIN; action test is

amandroid.impliciticctest_action.testaction; action send is android.intent.action.SEND; permission

phone is READ_PHONE_STATE; location is ACCESS_FINE_LOCATION, SMS is SEND_SMS.)

APP ACTIVITY RECEIVES SENDS KEY VALUE PERMISSION

Echoer MainActivity send

icc_implicit_action
MainActivity main test "data" device id phone

FooActivity test

icc_implicit_category
MainActivity main test "data" device id phone

FooActivity test

icc_implicit_data1
MainActivity main "data" device id phone

FooActivity test

icc_implicit_data2
MainActivity main test/type "data" device id phone

FooActivity test

icc_implicit_mix1
MainActivity main test_action "data" device id phone

HookActivity test_action2

icc_implicit_mix2
MainActivity main test_action "data" device id phone

FooActivity test_action

icc_implicit_nosrc_nosink
MainActivity main test "data" "noSrc"

FooActivity test

icc_implicit_nosrc_sink
MainActivity main test "data" "noSrc"

FooActivity test

icc_implicit_src_sink
MainActivity main test "data" device id phone

FooActivity test

SendSms
MainActivity main phone, SMS

Button1Listener send "secret" device id phone, SMS

WriteFile
MainActivity main location

Button1Listener send "secret" location location

org.arguslab.icc_implicit_src_nosink
MainActivity main test "data" device id phone

FooActivity test

4.2 RQ2: Scalability of IntentRepair

4.2.1 Subjects
To assess INTENTREPAIR’s scalability, we selected apps from the well-known app host-
ing platform FDroid [19]. To only consider realistic-size apps, we first selected all apps
greater than 5 MB in size (1301 apps); out of them, we further selected all those that use
implicit intents (855 apps) as our experimental subjects. Table 3’s left-hand half lists the
five largest apps in this dataset, ranked by their size.

Although the intent communication API is very rich, Fig. 9a shows that a small
fraction of them dominate usage in our subjects. Two out of 25 methods to broad-
cast an intent object (abstracted by primitive send in Tentative) are used 80% of

298 A. Tiwari et al.

Fig. 8. Snippets of code from Android apps that send sensitive information via implicit intents.

Fig. 9. Statistics about which intent API methods are used more frequently in RQ2’s subjects.

the time; startActivity(Intent) alone covers 65% of usages. Similarly, method
putExtra(String, String) (out of all 30 methods to store data in an intent object)
covers 40% of usages; integer values are stored in another 26% of usages.

4.2.2 Analysis and Repair
INTENTREPAIR found 98 app modules (in 83 apps) that send sensitive data (location, file
system, . . .) through implicit intents; for 70 of them (in 59 apps), INTENTREPAIR could
also determine the 10 different intents’ actions:7

android.intent.action.SEND ch.blinkenlights.android.vanilla.action.LAUNCH_PLUGIN
android.intent.action.SENDTO android.speech.action.RECOGNIZE_SPEECH
android.intent.action.RINGTONE_PICKER android.intent.action.VIEW-URI
android.media.action.IMAGE_CAPTURE de.azapps.mirakel.SHOW_TASK_FROM_WIDGET
android.app.action.ADD_DEVICE_ADMIN android.intent.action.CREATE_DOCUMENT

Table 3’s right-hand half lists the five largest apps among these 59 apps, ranked
by their size. INTENTREPAIR also found 98 app modules that match some of these 70
senders; and 23 sender-receiver pairs where information-flow security leaks may hap-
pen. It successfully produced patches for all of these (validated as in RQ1).

7 In the other 28 instances, the action was set dynamically and/or through complex string oper-
ations, which could not be resolved statically by INTENTREPAIR.

Automated Repair of Information Flow Security 299

Table 3. The five largest apps among all RQ2’s 855 experimental subjects (left) and among the
59 of them that send sensitive data through implicit intents (right).

AMONG 855 IMPLICIT INTENT APPS RANK AMONG 59 SENDER APPS

APP SIZE (MB) APP SIZE (MB)

org.openttd.fdroid 227 1 com.github.linwoodcloud.dev_doctor 78

org.olpc_france.sugarizer 186 2 org.dslul.openboard.inputmethod.latin 53

com.fr.laboussole.track 174 3 com.celzero.bravedns 47

network.mysterium.vpn 153 4 io.pslab 40

com.zhenxiang.superimage 152 5 org.kiwix.kiwixmobile 40

4.2.3 Scalability
In our experiments, INTENTREPAIR ran for 10.5 s per app on average: this includes
sender and receiver analysis (3.5 s), followed by sender-receiver matching and repair
(7 s). This performance is reasonable for a prototype implementation, and shows that
INTENTREPAIR is also applicable to large apps.

4.3 Discussion

INTENTREPAIR repairs information-flow leaks by simultaneously patching senders and
receivers that may communicate; thus, applying the patches only to the receiving apps
does not suffice in general. In an ideal scenario, one may equip a receiver with the
information obtained by sender analysis, and use that information at runtime to identify
the sender’s sensitive information (thus avoiding the need for patching the senders).
Clearly, this would incur in all sorts of practical hurdles, as it is generally impossible to
identify the sender apps with implicit intent communication.

Section 4’s empirical evaluation of INTENTREPAIR demonstrated that it is applicable
to realistic apps, and that it generates repairs that are effective at removing the source of
information-flow leaks. While we informally inspected the patched apps, and tried them
out by running them, to gain some confidence that they remain usable and their overall
behavior consistent, we did not perform a rigorous analysis of usability. INTENTREPAIR

repairs senders by simply injecting permission information in their intent objects; since
the size of this information is negligible, we are fairly confident that these changes do
not have any meaningful impact on the sender app’s usability.

INTENTREPAIR’s repairs of receivers are potentially more invasive, as they may: i)
request new permissions to the app user, and ii) terminate an activity to avoid an secu-
rity leak. These actions are necessary, in general, to enforce information-flow security,
but they may worsen the user experience. As we discussed elsewhere, INTENTREPAIR’s
repair policies are customizable; thus, one may change it to achieve a different trade-off
between usability and security (for example, by declassifying data instead of forcing
app termination) depending on the practical application scenario.

5 Related Work

Previous work on automated repair of Android apps focused on bugs such as crashes,
leaks, and configuration and compatibility issues. Tan et al. [23] describe how to repair

300 A. Tiwari et al.

null-pointer dereference crashes. Huang et al.’s technique [16] repairs inconsistent XML
configuration files across Android versions. Zhao et al. [28] show how to generate fix
templates for system- and device-compatibility issues. Guo et al. [15] detect and repair
data losses that may occur when the user navigates from one UI component to another.
Banerjee et al. [10] present a combined static and dynamic analysis technique to detect,
validate, and repair energy bugs in Android apps. Xu et al. [27] tackle the problem of
UI testing scripts becoming obsolete when an app’s design changes; to this end, they
propose a technique that can identify and remove obsolete testing scripts. Bhatt and
Furia [11] present a static analysis tool that can detect and repair Android resource
leaks. Unlike all these works, the present paper targets information-flow leaks in apps
in accordance with the Android permission model; it combines static and dynamic anal-
yses to automatically detect and repair such leaks.

To our knowledge, this paper is the first that can automatically repair
information-flow security issues that occur in intent communication. In contrast, many
approaches [5,6,9,12,17,18,24,26] have been proposed to detect information-flow vio-
lations; however, most of them focus on intra-app intent communication [5,17,18],
whereas our INTENTREPAIR fully supports inter-app detection (as we demonstrated in
Sect. 4’s evaluation). The few previous approaches that can deal with inter-app commu-
nication have limitations—such as they only work on older Android versions [12,26],
or rely on third-party slicers [24]—that restrict their effectiveness on realistic apps. Fol-
lowing a general-purpose approach, Mesecan [20] is a repair tool for information-flow
bugs that is language- and system-agnostic, as it is based on genetic algorithms. In con-
trast to their work, our INTENTREPAIR is more specialized (on the Android permission
model, and its intent-communication capabilities) and customizable, and is also capable
of detecting information-flow bugs without requiring tests as input.

6 Conclusions and Future Work

In this paper, we presented INTENTREPAIR: the first automated framework to detect and
repair information flow leaks that may occur in Android when apps communicate using
implicit intents. To address the key issue that senders and receivers communicating
via implicit intents do not have a standard way of identifying the sensitivity of the
data they are sharing, INTENTREPAIR performs repair by injecting this information in
the senders and processing it in the receivers, ensuring that their handling abides by
the necessary permissions. We implemented INTENTREPAIR in a prototype tool with the
same name. In a preliminary evaluation involving 14 apps from the popular DroidBench
and RepoDroid benchmarks, and 855 larger apps from the FDroid repository, INTENT-
REPAIR showed promise, as it was able to precisely identify all known information flow
security flaws in these apps, and to automatically fix them.

INTENTREPAIR is flexible, in that users can decide how to balance enforcing secu-
rity and preserving app functionality when they deploy automatically generated repairs.
INTENTREPAIR’s analysis is also fine-grained, as it can identify different permissions for
different pieces of data sent through intents. As future work, we’ll systematically eval-
uate how to implement common declassification patterns that are found in mature apps.
Note that Android does offer an API to send intent objects only to receivers with certain

Automated Repair of Information Flow Security 301

permissions; however, this mechanism is coarse-grained and thus inapplicable to many
scenarios of implicit intent communication—as we have seen in our experiments, where
we found several apps that send data associated with different actions and permissions.
In the future, our approach to enable privacy-compliant intent communication could be
the basis for an official Android API, or perhaps be provided as an extension of the
Android framework—for example, providing the capability of annotating any piece of
data with the required permissions. Finally, a rigorous evaluation of INTENTREPAIR’s
practical usability would also benefit from a user study.

Data Availability. Our prototype implementation of INTENTREPAIR, as well as the detailed
experimental results, are available at https://doi.org/10.5281/zenodo.11957919

References

1. Droidbench: A micro-benchmark suite to assess the stability of taint-analysis tools for
android. Github. https://github.com/secure-software-engineering/DroidBench/tree/develop

2. Apktool: A tool for reverse engineering android apk files (2024). https://apktool.org
3. Intent communication in android (2024). https://developer.android.com/reference/android/

content/Intent
4. Android platform architecture. https://developer.android.com/guide/platform/. Accessed 15

Jan 2024
5. Arzt, S., et al.: Flowdroid: precise context, flow, field, object-sensitive and lifecycle-aware

taint analysis for android apps. In: Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI ’14, pp. 259–269. Association
for Computing Machinery, New York, NY, USA (2014). https://doi.org/10.1145/2594291.
2594299

6. Arzt, S., et al.: Flowdroid: precise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for android apps. SIGPLAN Not. 49(6), 259–269 (2014). https://doi.org/10.
1145/2666356.2594299

7. Backes, M., Bugiel, S., Derr, E., McDaniel, P., Octeau, D., Weisgerber, S.: On demystifying
the android application framework: re-visiting android permission specification analysis. In:
Proceedings of the 25th USENIX Conference on Security Symposium. SEC’16, pp. 1101–
1118. USENIX Association, USA (2016)

8. Backes, M., Bugiel, S., Derr, E., McDaniel, P., Octeau, D., Weisgerber, S.: Github: Axplorer–
android permission mappings. GitHub (2024). https://github.com/reddr/axplorer/tree/master

9. Bai, G., et al.: Towards model checking android applications. IEEE Trans. Softw. Eng. 44(6),
595–612 (2018). https://doi.org/10.1109/TSE.2017.2697848

10. Banerjee, A., Chong, L.K., Ballabriga, C., Roychoudhury, A.: Energypatch: repairing
resource leaks to improve energy-efficiency of android apps. IEEE Trans. Softw. Eng. 44(5),
470–490 (2018). https://doi.org/10.1109/TSE.2017.2689012

11. Bhatt, B.N., Furia, C.A.: Automated repair of resource leaks in android applications. J.
Syst. Softw. 192, 111417 (2022). https://doi.org/10.1016/j.jss.2022.111417, https://www.
sciencedirect.com/science/article/pii/S0164121222001273

12. Bosu, A., Liu, F., Yao, D.D., Wang, G.: Collusive data leak and more: large-scale threat anal-
ysis of inter-app communications. In: Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security. ASIA CCS ’17, pp. 71–85. Association for Com-
puting Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3052973.3053004

13. Center, I.T.W.R.: Wala T. J. Watson libraries for analysis (2024). https://github.com/wala/
WALA

https://doi.org/10.5281/zenodo.11957919
https://github.com/secure-software-engineering/DroidBench/tree/develop
https://apktool.org
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/guide/platform/
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1145/2666356.2594299
https://github.com/reddr/axplorer/tree/master
https://doi.org/10.1109/TSE.2017.2697848
https://doi.org/10.1109/TSE.2017.2689012
https://doi.org/10.1016/j.jss.2022.111417
https://www.sciencedirect.com/science/article/pii/S0164121222001273
https://www.sciencedirect.com/science/article/pii/S0164121222001273
https://doi.org/10.1145/3052973.3053004
https://github.com/wala/WALA
https://github.com/wala/WALA

302 A. Tiwari et al.

14. Groß, S., Tiwari, A., Hammer, C.: PIAnalyzer: a precise approach for pendingintent vulnera-
bility analysis. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS, vol. 11099,
pp. 41–59. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98989-1_3

15. Guo, W., Dong, Z., Shen, L., Tian, W., Su, T., Peng, X.: Detecting and fixing data loss
issues in android apps. In: Proceedings of the 31st ACM SIGSOFT International Symposium
on Software Testing and Analysis. ISSTA 2022, pp. 605–616. Association for Computing
Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3533767.3534402

16. Huang, H., Xu, C., Wen, M., Liu, Y., Cheung, S.: Conffix: repairing configuration compati-
bility issues in android apps. ACM (2023). https://doi.org/10.1145/3597926

17. Klieber, W., Flynn, L., Bhosale, A., Jia, L., Bauer, L.: Android taint flow analysis for app
sets. In: Proceedings of the 3rd ACM SIGPLAN International Workshop on the State of the
Art in Java Program Analysis. SOAP ’14, pp. 1–6. Association for Computing Machinery,
New York, NY, USA (2014). https://doi.org/10.1145/2614628.2614633

18. Li, L., et al.: ICCTA: detecting inter-component privacy leaks in android apps. In: Proceed-
ings of the 37th International Conference on Software Engineering - Volume 1. ICSE ’15,
pp. 280–291. IEEE Press (2015)

19. Limited, F.D., Contributors: F-droid (2023). https://f-droid.org
20. Mesecan, I., Blackwell, D., Clark, D., Cohen, M.B., Petke, J.: Hypergi: automated detection

and repair of information flow leakage. In: 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pp. 1358–1362 (2021). https://doi.org/10.1109/
ASE51524.2021.9678758

21. Pauck, F.: Repodroid: android benchmark reproduction framework. Github (2024). https://
foellix.github.io/ReproDroid/

22. Romdhana, A., Merlo, A., Ceccato, M., Tonella, P.: Assessing the security of inter-app com-
munications in android through reinforcement learning. Comput. Secur. 131, 103311 (2023)

23. Tan, S.H., Dong, Z., Gao, X., Roychoudhury, A.: Repairing crashes in android apps. In: 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE), pp. 187–198.
ACM (2018). https://doi.org/10.1145/3180155

24. Tiwari, A., Groß, S., Hammer, C.: IIFA: modular inter-app intent information flow analysis
of android applications. In: Chen, S., Choo, K.-K.R., Fu, X., Lou, W., Mohaisen, A. (eds.)
SecureComm 2019. LNICST, vol. 305, pp. 335–349. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-37231-6_19

25. Tiwari, A., Prakash, J., Dong, Z., Furia, C.A.: Artifacts for automated repair of information
flow security in android implicit inter-app communication. Zenodo (2024). https://doi.org/
10.5281/zenodo.11957919

26. Wei, F., Roy, S., Ou, X., Robby: amandroid: a precise and general inter-component data
flow analysis framework for security vetting of android apps. ACM Trans. Priv. Secur. 21(3)
(2018). https://doi.org/10.1145/3183575

27. Xu, T., et al.: Guider: GUI structure and vision co-guided test script repair for android apps.
In: Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis. ISSTA 2021, pp. 191–203. Association for Computing Machinery, New York,
NY, USA (2021). https://doi.org/10.1145/3460319.3464830

28. Zhao, Y., Li, L., Liu, K., Grundy, J.: Towards automatically repairing compatibility issues in
published android apps. In: Proceedings of the 44th International Conference on Software
Engineering. ICSE ’22, pp. 2142–2153. Association for Computing Machinery, New York,
NY, USA (2022). https://doi.org/10.1145/3510003.3510128

https://doi.org/10.1007/978-3-319-98989-1_3
https://doi.org/10.1145/3533767.3534402
https://doi.org/10.1145/3597926
https://doi.org/10.1145/2614628.2614633
https://f-droid.org
https://doi.org/10.1109/ASE51524.2021.9678758
https://doi.org/10.1109/ASE51524.2021.9678758
https://foellix.github.io/ReproDroid/
https://foellix.github.io/ReproDroid/
https://doi.org/10.1145/3180155
https://doi.org/10.1007/978-3-030-37231-6_19
https://doi.org/10.1007/978-3-030-37231-6_19
https://doi.org/10.5281/zenodo.11957919
https://doi.org/10.5281/zenodo.11957919
https://doi.org/10.1145/3183575
https://doi.org/10.1145/3460319.3464830
https://doi.org/10.1145/3510003.3510128

Automated Repair of Information Flow Security 303

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Learning Branching-Time Properties
in CTL and ATL via Constraint Solving

Benjamin Bordais1,2(B), Daniel Neider1,2, and Rajarshi Roy3

1 TU Dortmund University, Dortmund, Germany
benjamin.bordais@tu-dortmund.de

2 Center for Trustworthy Data Science and Security,
University Alliance Ruhr, Dortmund, Germany

3 Max Planck Institute for Software Systems, Kaiserslautern, Germany

Abstract. We address the problem of learning temporal properties from
the branching-time behavior of systems. Existing research in this field
has mostly focused on learning linear temporal properties specified using
popular logics, such as Linear Temporal Logic (LTL) and Signal Tempo-
ral Logic (STL). Branching-time logics such as Computation Tree Logic
(CTL) and Alternating-time Temporal Logic (ATL), despite being exten-
sively used in specifying and verifying distributed and multi-agent sys-
tems, have not received adequate attention. Thus, in this paper, we inves-
tigate the problem of learning CTL and ATL formulas from examples
of system behavior. As input to the learning problems, we rely on the
typical representations of branching behavior as Kripke structures and
concurrent game structures, respectively. Given a sample of structures,
we learn concise formulas by encoding the learning problem into a satis-
fiability problem, most notably by symbolically encoding both the search
for prospective formulas and their fixed-point based model checking algo-
rithms. We also study the decision problem of checking the existence of
prospective ATL formulas for a given sample. We implement our algo-
rithms in a Python prototype and have evaluated them to extract several
common CTL and ATL formulas used in practical applications.

1 Introduction

Formal verification relies on the fact that formal specifications, which are pre-
cise descriptions of the design requirements, are either readily available or can be
constructed easily. This assumption, however, often proves to be unrealistic as
constructing specifications manually is not only tedious but also prone to errors.
As a result, for years, the availability of precise, functional, and usable specifi-
cations has been one of the biggest bottlenecks of formal methods [3,14,50].

To tackle this serious limitation, recent research has concentrated on auto-
matically generating specifications, especially in temporal logics. There is a large
body of works targeted towards learning specifications in linear-time logics such
as Linear Temporal Logic (LTL) [19,41], Metric Temporal Logic (MTL) [45],
Signal Temporal Logic (STL) [15,39], etc. These approaches not only generate
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 304–323, 2025.
https://doi.org/10.1007/978-3-031-71162-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_16&domain=pdf
https://doi.org/10.1007/978-3-031-71162-6_16

Learning Branching-Time Properties in CTL and ATL 305

reliable specifications but can also be used to infer interpretable descriptions for
complex temporal behaviors.

Along with linear-time logics, branching-time logics have had a significant
impact on formal verification. Computation Tree Logic (CTL) [24], which com-
bines temporal operators such as X (next), F (finally), G (globally) with the
branching quantifiers E (exists) and A (all), is a specification language of choice
for numerous verification tools [11,22,30]. Alternating-time Temporal Logic
(ATL) [1], which augments CTL with a “cooperation” quantifier 〈〈·〉〉 to rea-
son about interaction of multiple agents, is popular in specifying properties for
distributed and multi-agent systems [2,36] and has several applications in AI
domains [29,38].

Despite the significance of branching-time logics, learning such specifications
has received considerably less attention. The few existing works handle the prob-
lem of completing user-defined queries [20], i.e., specifications with missing parts,
or searching for specifications based on few restricted templates [54] such as AF?,
AG(?1 → F?2), etc. These works are limited in their generality and require one
to handcraft queries/templates suitable for learning.

Towards learning arbitrary branching-time properties, we consider the passive
learning problem for both CTL and ATL. This problem requires, given a sample
S of positive (or desirable) and negative (or undesirable) structures, to infer a
minimal CTL/ATL formula that is consistent with S. Passive learning is widely
studied in the literature [13,27,41] and forms a significant part of many learning
frameworks [19,48] (see Sect. 3 for elaboration). In our learning problem, we
consider, as input, structures typical for describing branching behavior: Kripke
structures (KSs) and concurrent game structures (CGSs), which model single
and multi-agent systems, respectively.

To address the passive learning problem, we design algorithms for CTL and
ATL that employ constraint-solving techniques to learn prospective formulas.
Following Neider and Gavran [41], our algorithms search for prospective formulas
of size n for a given sample S, by encoding the problem into the satisfiability
of a propositional formula ΩS

n . This formula is then solved using an off-the-shelf
SAT solver to obtain a CTL/ATL formula of size n if one exists. The crux of the
SAT encoding lies in symbolically encoding both the structure of the formula
and the standard fixed-point based model-checking for the symbolic formula.

To present the technical details of the encoding, we focus on passive learning of
ATL formulas from CGSs, as ATL and CGSs generalize CTL and KSs for multi-
agent settings, respectively. In particular, restricting the number of agents to one
simply reduces ATL to CTL and CGSs to KSs. Nonetheless, we highlight aspects
of the learning algorithm that improve in the case of CTL passive learning.

We also initiate the theoretical study of the ATL passive learning problem .
We study the decision problem of whether there is an ATL formula consistent
with S. We extend already existing results for CTL to the case of ATL: we show
that the decision problem for full ATL can be solved in polynomial time (The-
orem 1, extending [17, Thm. 3.2, 3.9]). We also show that, for any fragment of
ATL, the same decision problem can be decided in exponential time (Theorem 2,
extending [34, Thm. 3]). In the same theorem, we exhibit an exponential bound

306 B. Bordais et al.

on the size of the formulae that need to be considered to find a consistent one,
regardless of the fragment considered (parallelizing [43, Coro. 1]).

We have implemented our learning algorithms in an open-source prototype
that can access an array of SAT solvers. We evaluate the prototype on syn-
thetic benchmarks consisting of samples of KSs and CGSs that reflect typical
branching-time properties. We observed that our algorithms display the abil-
ity to learn formulas from samples of varying sizes. Further, we demonstrated
improvements to the SAT encoding for enhanced runtime performance.

We include all missing proofs and experiments in an extended version [16].

Related Works. As alluded to above, most of the works in inferring tem-
poral logics focus on linear-time logics. For LTL, many works consider learn-
ing based on handcrafted templates or queries, which are incomplete formu-
las [31,35,51]. Few others learn formulas of arbitrary syntactic structure in LTL
(or its important fragments) either by exploiting constraint solving [19,41,46] or
efficient enumerative search [44,52]. Some recent works rely on neuro-symbolic
approaches to learn LTL formulas from noisy data [37,53]. For STL, most works
focus on learning formulas of particular syntactic structure [15,15] or search-
ing time intervals for STL formulas of known structure [6,32,33]. A handful of
works consider learning STL formulas of arbitrary structure [39,42]. There are
also works on learning several other logics such as Metric Temporal Logic [45],
Past LTL [5], Property Specification Language [47], etc. In contrast, research on
learning branching-time properties remains relatively sparse. Chan [20] considers
the problem of completing CTL queries—incomplete CTL formulas with missing
(Boolean combinations of) atomic propositions. A related work by Wasylkowski
and Zeller [54] considers inferring operational preconditions for Java methods
in CTL. Both of these works are limited in their ability to search through large
number of CTL formulas of arbitrary syntactic structure. As a result, they resort
to user-defined queries or handcrafted templates to reduce the search space of
specifications.

A recent paper by Pommellet et al. [43] addresses the problem of learning
CTL formulas from a sample of Kripke structures (KSs). Their learning algo-
rithm follows a SAT-based paradigm and uses an encoding similar to ours. Our
encoding for CTL was developed independently [49]. In this paper, we study the
more general problem of learning ATL formulas from CGSs, which conceptually
subsumes the problem of learning CTL formulas from KSs.

Another work that devises a similar encoding is the one by Bertrand et
al. [12]. Their SMT encoding, albeit similar, is tailored towards solving a different
problem of synthesizing small models for probabilistic CTL (PCTL) formulas.

2 Preliminaries

We refer to the set of positive integers by N1. For n ∈ N1, we let �1, n� ⊆ N1

denote the set {1, . . . , n}. For a non-empty set Q, we let Q∗, Q+, Qω denote the
set of finite, non-empty finite, and infinite sequences of elements in Q, respec-
tively. For all • ∈ {∗,+, ω}, ρ ∈ Q•, and i ∈ N, if ρ has at least i + 1 elements,

Learning Branching-Time Properties in CTL and ATL 307

we let ρ[i] ∈ Q denote the (i + 1)-th element in ρ, ρ[: i] ∈ Q+ denote the finite
sequence ρ0 · · · ρi ∈ Q+, and ρ[i :] ∈ Q• denote the sequence ρi · · · ∈ Q•.

2.1 Concurrent Game Structure (CGS) and Kripke Structure

We model multi-agent systems with concurrent game structures defined below.

Definition 1. A concurrent game structure (CGS for short) is a tuple C =
〈Q, I, k,P, π, d, δ〉 where Q is the finite set of states, I ⊆ Q is the set of ini-
tial states, k ∈ N1 is the number of agents, we denote by Ag := �1, k� the set
of k agents. Furthermore, P is the finite set of propositions (or observations)
, π : Q �→ 2P maps each state q ∈ Q to the set of propositions π(q) ⊆ P that
hold in q. Finally, d : Q × Ag → N1 maps each state and agent to the number
of actions available to that agent at that state, and δ : QAct → Q is the func-
tion mapping every state and tuple of one action per agent to the next state,
where QAct := ∪q∈QQAct(q) with QAct(q) := {(q, α1, . . . , αk) | ∀a ∈ Ag, αa ∈
�1, d(q, a)�} representing the set of tuples of actions available to the players at
state q.

For all q ∈ Q and A ⊆ Ag, we let ActA(q) := {α = (αa)a∈A ∈ ∏
a∈A{a} ×

�1, d(q, a)�}. Then, for all tuple α ∈ ActA(q) of one action per agent in A, we
let:

Succ(q, α) := {q′ ∈ Q | ∃α′ ∈ ActAg\A(q), δ(q, (α, α′)) = q′}
When k = 1, the CGS C is called a Kripke structure. In that case, for all

states q ∈ Q, we have the set Succ(q) ⊆ Q of the successor states of Q.
Finally, we define the size |C| of the structure C by |C| = |QAct|+ |P|+ |Ag|.

Unless otherwise stated, a CGS C refers to the tuple C = 〈Q, I, k,P, π, d, δ〉.
In a CGS, a strategy for an agent is a function that prescribes to the agent

what to do as a function of the history of the game, i.e., the finite sequence
of states seen so far. Moreover, given a coalition of agents and a tuple of one
strategy per agent in the coalition, we define the set of infinite sequences of states
that can occur with this tuple of strategies. Formally, we define this as follows.

Definition 2. Consider a CGS C and an agent a ∈ Ag. A strategy for Agent
a is a function sa : Q+ → N1 such that, for all ρ = ρ0 . . . ρn ∈ Q+, we have
sa(ρ) ≤ d(ρn, a). We let Sa denote the set of strategies available to Agent a.

Given a coalition (or subset) of agents A ⊆ Ag, a strategy profile for the
coalition A is a tuple s = (sa)a∈A of one strategy per agent in A. We denote by
SA the set of strategy profiles for the coalition A. For all s ∈ SA and q ∈ Q, we
let OutQ(q, s) ⊆ Qω denote the set of infinite paths ρ compatible with s from q:

OutQ(q, s) := {ρ ∈ Qω | ρ[0] = q, ∀i ∈ N, ρ[i + 1] ∈ Succ(ρ[i], (sa(ρ[: i]))a∈A)}

2.2 Alternating-Time Temporal Logic

Alternating-time Temporal Logic (ATL) is a temporal logic that takes into
accounts strategic behavior of the agents. It can be seen as a generalization

308 B. Bordais et al.

of Computation Tree Logic (CTL) with more than one agent. There are two
different kinds of ATL formulas: state formulas—where propositions and strate-
gic operators occur—and path formulas – where temporal operators occur. To
avoid confusion, we denote state formulas and path formulas with Greek capital
letters and Greek lowercase letters, respectively. ATL state formulas over a set
of propositions P and a set of agents Ag are given by the grammar:

Φ ::= p | ¬Φ | Φ ∧ Φ | 〈〈A〉〉ϕ,

where p ∈ P is a proposition, A ⊆ Ag is a coalition of agents and ϕ is a path
formula. We include the Boolean constants true and false and other operators
such as Φ∨Φ2 and Φ1 ⇒ Φ2. Next, ATL path formulas are given by the grammar:

ϕ ::= XΦ | ΦUΦ | GΦ

where X is the neXt operator, U is the Until operator, and G is the Glob-
ally operator. As syntactic sugar, we allow standard temporal operators F, the
Finally operator, which is defined in the usual manner: for any coalition of agents
A ⊆ Ag: 〈〈A〉〉FΦ := 〈〈A〉〉(trueUΦ).

A CTL formula is an ATL formula on a single agent Ag = {1}. In particular,
the path quantifiers of CTL can be obtained as follows: E ≡ 〈〈1〉〉 and A ≡ 〈〈〉〉.

The size |Φ| of an ATL formula Φ is then defined as size of the set of sub-
formulas: |Φ| := |SubF(Φ)|, which is defined inductively as follows:

– SubF(p) := {p} for all p ∈ P;
– SubF(¬Φ) := {¬Φ} ∪ SubF(Φ);
– SubF(Φ1 ∧ Φ2) := {Φ1 ∧ Φ2} ∪ SubF(Φ1) ∪ SubF(Φ2);
– SubF(〈〈A〉〉• Φ) := {〈〈A〉〉• Φ} ∪ SubF(Φ) for • ∈ {X,G} and A ⊆ Ag;
– SubF(〈〈A〉〉(Φ1 UΦ2)) := {〈〈A〉〉(Φ1 UΦ2)} ∪ SubF(Φ1) ∪ SubF(Φ2) for A ⊆ Ag.

We interpret ATL formulas over CGSs C using the standard definitions [1].
Given a state q ∈ Q, we define when a state formula Φ holds in state q—denoted
by q |= Φ—inductively as follows:

q |= p iif p ∈ π(q),
q |= ¬Φ iif q �|= Φ,

q |= Φ1 ∧ Φ2 iif q |= Φ1 and q |= Φ2,

q |= 〈〈A〉〉ϕ iif ∃s ∈ SA, ∀ρ ∈ OutQ(q, s), ρ |= ϕ

Similarly, given a path ρ ∈ Qω and a path formula ϕ, we define when ϕ holds
on path ρ, denoted ρ |= ϕ as above, inductively as follows:

ρ |= XΦ iif ρ[1 :] |= Φ

ρ |= Φ1 UΦ2 iif ∃j ∈ N, ρ[j] |= Φ2, and ∀k < j, ρ[k :] |= Φ1

ρ |= GΦ iif ∀j ∈ N, ρ[j :] |= Φ

Learning Branching-Time Properties in CTL and ATL 309

We say that an ATL formula Φ accepts (resp. rejects) a state q if q |= Φ (resp.
q �|= Φ). We say that it distinguishes two states q, q′ if it accepts one and rejects
the other. Finally, we then say that the ATL formula Φ accepts a CGS C, denoted
by C |= Φ, if Φ accepts all initial states of C.

Remark 1. When evaluated on turn-based game structures (i.e., where, at each
state, at most one player has more than one action available), the formulas
〈〈A〉〉ϕ and ¬〈〈Ag \ A〉〉¬ϕ are equivalent (However, it is not the case when they
are evaluated on arbitrary CGSs.)

3 Passive Learning for ATL

In this problem, we are given a sample S = (P,N) consisting of a set P of
positive structures and a set N of negative structures. The goal is to find a
minimal formula Φ that is consistent with S, i.e., Φ must hold on all positive
structures and must not hold on any negative structure. We are specifically
searching for a minimal formula and the reason for this is two-fold: (1) the
prospective formula will be more interpretable, and (2) it will not overfit the
sample [41,47]. Formally:

Problem 1 (Passive learning of ATL). Given a sample S = (P,N) consisting of
two finite sets P and N of concurrent game structures (CGSs) with the same set
Ag of agents, find a minimal size ATL formula Φ on Ag that is consistent with S.

The passive learning problem of CTL can be obtained by simplifying Prob-
lem 1 by use of a single agent Ag = {1}, which reduces CGSs to KSs and ATL
to CTL.

Before describing our solution to Problem 1, we briefly discuss the source
of the positive and negative structures. Passive learning, among several appli-
cations, constitutes a critical subroutine of certain learning frameworks. Active
learning [4], which involves learning black-box systems by interacting with a
teacher, often involves repeated passive learning on the counter-example models,
i.e., the feedback, received from the teacher [19]. Furthermore, one-class classi-
fication, or learning from positive examples, leverages passive learning to derive
candidate formulas [8,48]. These formulas facilitate the generation of negative
examples, which help refine the search for more concise and descriptive formulas.

A concrete application of Problem 1 would be to provide contrastive explana-
tions [31] in a multi-agent setting. Consider a multi-agent system that is deemed
to have some “good” positions and some “bad” positions. This system would
yield positive and negative CGSs corresponding to the good and bad positions.
To explain the dichotomy between these good and bad positions, one can learn
an ATL formula that accepts the positive CGSs and rejects the negative ones.

3.1 SAT-Based Learning Algorithm

Our approach to solving Problem 1 is by reducing it to satisfiability problems in
propositional logic. We thus provide a brief introduction to propositional logic.

310 B. Bordais et al.

Propositional Logic. Let Var be a set of propositional variables that can be set
to Boolean values from B = {0, 1} (0 representing false and 1 representing true).
Formulas in Propositional Logic are inductively constructed as follows:

Ω ::= true | false | x ∈ Var | ¬Ω | Ω ∨ Ω | Ω ∧ Ω | Ω ⇒ Ω | Ω ⇔ Ω

To avoid confusion with ATL formulas, we will be exclusively using the letter
Ω (along with its variants) to denote propositional formulas.

To assign values to propositional variables, we rely on a valuation function
v : Var → B. We exploit the valuation function v to define the satisfaction v |= Ω
of a propositional formula Ω; we use standard definitions for this. When v |= Ω,
we say that v satisfies Ω and call it a satisfying valuation of Ω. A formula Ω is
satisfiable if there exists a satisfying valuation v of Φ. The satisfiability (SAT)
problem for propositional logic is a well-known NP-complete problem, which asks
if a propositional formula given as input is satisfiable. To handle SAT, numerous
optimized decision procedures have been designed in recent years [7,10,40].

We now describe a reduction of Problem 1 to SAT , inspired by [19,41].
Following their work, we design a propositional formula ΩS

n that enables the
search for an ATL formula of size at most n that is consistent with a sample S.
The formula ΩS

n has the following properties:

1. ΩS
n is satisfiable if and only if there exists an ATL formula of size at most n

that is consistent with S; and
2. from a satisfying valuation of ΩS

n , one can easily extract a suitable ATL
formula of size at most n.

One can then iteratively search for a minimal, consistent formula: increment
n by 1, check satisfiability of ΩS

n and extract a formula if satisfiable; else repeat.
The formula ΩS

n is defined as a conjunction of subformulas with distinct
roles: ΩS

n := Ωstr
n ∧ Ωsem

n ∧ Ωcon
n . The subformula Ωstr encodes the structure of

the prospective ATL formula Φ. The subformula Ωsem encodes that the correct
semantics of ATL is used to interpret the prospective ATL formula on the given
CGSs. Finally, the subformula Ωcon ensures that the prospective ATL formula
holds on the models in P and not in the models in N . The formula used for CTL
learning has an identical high-level structure, with similar subformulas.

We now describe the subformulas of ΩS
n in detail.

Encoding the Structure of ATL Formulas. The structure of an ATL formula is
symbolically encoded as a syntax DAG. A syntax DAG of an ATL formula is
simply a syntax tree in which the common nodes are merged. Figure 1 depicts
an example of a syntax tree and DAG of an ATL formula.

Learning Branching-Time Properties in CTL and ATL 311

Fig. 1. Syntax DAG with identifiers
(indicated above nodes) of 〈〈2〉〉X p∨
〈〈1〉〉(pU〈〈1,3〉〉G q).

To conveniently encode the syntax DAG
of an ATL formula, we first fix a naming con-
vention for its nodes. For a formula of size
at most n, we assign to each of its nodes an
identifier in �1, n� such that the identifier of
each node is larger than those of its children,
if applicable. Note that such a naming con-
vention may not be unique. We then denote
the sub-formula of Φ rooted at Node i as Φ[i].
Thus, Φ[n] denotes the entire formula Φ.

Next, to encode a syntax DAG sym-
bolically, we introduce the following propo-
sitional variables: (i) xi,λ for i ∈ �1, n� and λ ∈ P ∪ Λ with Λ :=
{¬,∧, 〈〈·〉〉X, 〈〈·〉〉G, 〈〈·〉〉U}; (ii) Ai,a for i ∈ �1, n� and a ∈ Ag; and (iii) li,j and
ri,j for i ∈ �1, n� and j ∈ �1, i − 1�. The variable xi,λ tracks the operator labeled
in Node i, meaning, xi,λ is set to true if and only if Node i is labeled with λ. The
variable Ai,a is relevant only if xi,〈〈·〉〉• is set to true for some temporal operator
• ∈ {X,G,U}. In such a case, the variables (Ai,a)a∈Ag track which agents are
in the coalition 〈〈·〉〉 at Node i. The variable li,j (resp., ri,j) tracks the left (resp.,
right) child of Node i, meaning, li,j (resp., ri,j) is set to true if and only if the
left (resp., right) child of Node i is Node j.

To ensure that these variables encode a valid syntax DAG, we impose struc-
tural constraints similar to the ones proposed by Neider and Gavran [41]. For
instance, the constraint below ensures that each node is labeled with a unique
operator: [∧

i∈�1,n�

∨

λ∈Λ

xi,λ

]
∧

[∧

i∈�1,n�

∧

λ�=λ′∈Λ

¬xi,λ ∨ ¬xi,λ′
]

We impose similar constraints to ensure that each node has a unique left and
right child. The formula Ωstr

n is simply the conjunction of all such structural
constraints.

Based on a satisfying valuation v of Ωstr
n , one can construct a unique ATL

formula: label each Node i with the operator λ for which v(xi,λ) = 1, include
players in a coalition for which v(Ai,a) = 1, and mark the left (resp., right) child
with Nodes j (resp., j′) for which v(li,j) = 1 (resp., v(ri,j′) = 1).

For encoding the structure of CTL, the only difference from that of ATL is
that we rely on CTL operators, e.g., Λ := {¬,∧,EX,EG,EU}.

Encoding the Semantics of ATL Formulas. To symbolically encode the semantics
of the prospective ATL formula Φ for a given CGS C, we rely on encoding
the ATL model-checking procedure developed in [1, Section 4]. The procedure
involves calculating, for each sub-formula Φ′ of Φ, the set SATC(Φ′) = {q ∈ Q |
q |= Φ′} of the states of C where Φ′ holds. Since we consider ATL formulas, we
need to handle the strategic operators 〈〈A〉〉 for A ⊆ Ag. To do so, given a coalition
of agents A ⊆ Ag and some subset of states S ⊆ Q, we let PreA(S) ⊆ Q denote

312 B. Bordais et al.

the set of states from which the coalition A has a strategy to enforce reaching the
set S in one step. That is: PreA(S) := {q ∈ Q | ∃α ∈ ActA(q), Succ(q, α) ⊆ S}.

We can now describe how to compute the set SATC(Φ). It is done inductively
on the structure of the ATL formula Φ as follows:

SATC(p) = {q ∈ Q | p ∈ π(q)}, for any p ∈ P, (1)
SATC(Φ ∧ Ψ) = SATC(Φ) ∩ SATC(Ψ), (2)
SATC(¬Φ) = Q \ SATC(Φ), (3)
SATC(〈〈A〉〉XΦ) = PreA(SATC(Φ)), (4)
SATC(〈〈A〉〉(Φ1 UΦ2)) is the smallest T ⊆ Q, such that

(1) SATC(Φ2) ⊆ T and (2) SATC(Φ1) ∩ PreA(T) ⊆ T, (5)
SATC(〈〈A〉〉GΦ) is the largest T ⊆ Q, such that

(1) T ⊆ SATC(Φ) and (2) T ⊆ PreA(T) (6)

Our goal is to symbolically encode the above-described computation. To do
so, we introduce the propositional variables yC

i,q for each i ∈ �1, n�, q ∈ Q that
track whether a state q ∈ Q belongs to SATC(Φ[i]) for a sub-formula Φ[i] of Φ .
That is, yC

i,q is set to true if and only if Φ[i] holds in state q, i.e. q ∈ SATC(Φ[i]).
Before defining the propositional formulas that ensure the desired meaning of

the variables yC
i,q, we introduce formulas to keep track of whether a state belongs

to the set PreA(S). Formally, for all q ∈ Q and i ∈ �1, n�, given any predicate
yS : Q ⇒ B (encoding a set S = (yS)−1[true] ⊆ Q), we define the formula
ΩPre

q,i (yS) that encodes the fact that q ∈ PreAi
(S), where Ai is the coalition of

agents defined by the variables (Ai,a)a∈Ag . This formula is defined as follows:

ΩPre,C
q,i (yS) :=

∨

α∈ActAg(q)

∧

α′∈ActAg(q)

[
(

∧

a∈Ag

Ai,a ⇒ (αa = α′
a)) ⇒ yS(δ(q, α′))

]

This formula can be informally read as follows: there exists an action tuple for
the coalition A (the disjunction), such that for all action tuples for the opposing
coalition (the conjunction), the corresponding state is in the set S (indicated
by yS(δ(q, α′))). Since we do not know, a priori, what the coalition Ai is, we
quantify over action tuples for all the agents both in the disjunction and the
conjunction. However, the rightmost implication of the formula ensures that the
only relevant tuples of actions α′ ∈ ActAg(q) are those for which the action for
the agents in the coalition Ai are given by the tuple of actions α ∈ ActAg(q).

Learning Branching-Time Properties in CTL and ATL 313

We define the formulas ensuring the intended meaning of the variables yi,q.

Ωsem
P,C :=

∧

p∈P

∧

i∈�1,n�

[
xi,p ⇒

∧

q∈Q, p∈π(q)

yC
i,q ∧

∧

q∈Q, p/∈π(q)

¬yC
i,q

]

Ωsem
∧,C :=

∧

i∈�1,n�
j,j′∈�1,i−1�

[
[xi,∧ ∧ li,j ∧ ri,j′] ⇒

∧

q∈Q

[
yC

i,q ⇔ [yC
j,q ∧ yC

j′,q]
]]

Ωsem
¬,C :=

∧

i∈�1,n�
j∈�1,i−1�

[
[xi,¬ ∧ li,j] ⇒

∧

q∈Q

[
yC

i,q ⇔ ¬yC
j,q

]]

Ωsem
X,C :=

∧

i∈�1,n�
j∈�1,i−1�

[
[xi,〈〈·〉〉X ∧ li,j] ⇒

∧

q∈Q

[
yC

i,q ⇔ ΩPre,C
q,i (yC

j,·)
]]

The above formulas encode, via a straightforward translation, the SATC compu-
tation for the propositions, Boolean operators and the 〈〈·〉〉X operator.

The case of the 〈〈·〉〉U and 〈〈·〉〉G operators require some innovation. Indeed,
as can be seen in Eqs. (5) and (6), the SATC involves a least and greatest fixed-
point, respectively . To circumvent this difficulty, we mimic the steps of the
fixed-point computation algorithm [1, Fig. 3] in propositional logic. Let us recall
how they are computed. Given an ATL formula Φ = 〈〈A〉〉Φ1 UΦ2, the way
SATC(Φ) is computed from SATC(Φ1) and SATC(Φ2) is described in Algorithm 1.
Similarly, given an ATL formula Φ = 〈〈A〉〉GΦ′, the way SATC(Φ) is computed
from SATC(Φ′) is described in Algorithm 2. Note that, instead of using while
loops, as in [1, Fig. 3], that are necessarily exited after at most |Q| steps, we use
for loops.

Algorithm 1. Compute SATC(Φ) for Φ = 〈〈A〉〉Φ1 UΦ2

Input: CGS C, coalition A, SATC(Φ1) and SATC(Φ2)

1: S := SATC(Φ2)
2: for 1 ≤ k ≤ |Q| do
3: S ← S ∪ {q ∈ SATC(Φ1) ∩ PreA(S)}
4: return S

Algorithm 2. Compute SATC(Φ) for Φ = 〈〈A〉〉 GΦ′

Input: CGS C, coalition A and SATC(Φ
′)

1: S := SATC(Φ
′)

2: for 1 ≤ k ≤ |Q| do
3: S ← S ∩ PreA(S)
4: return S

314 B. Bordais et al.

As can be seen in both algorithms, the fixed-point computation algorithm
internally maintains an estimate of the SATC set and updates it iteratively. Thus,
to encode the fixed-point computation, we introduce propositional variables that
encode whether a state q of a CGS C belongs to a particular estimate of SATC .
Formally, we introduce propositional variables yC

i,q,k for each i ∈ �1, n�, q ∈ A,
and k ∈ �0, |Q|�, where the parameter k ∈ �0, |Q|� tracks which iterative step of
the fixed-point computation the variable yC

i,q,k encodes. We define the formulas
below to ensure the intended meaning of these introduced variables:

Ωsem
U,C :=

∧

i∈�1,n�

j,j′∈�1,n�

[xi,〈〈·〉〉U ∧ li,j ∧ ri,j′] ⇒
∧

q∈Q

[[
yC
i,q,0 ⇔ yC

j′,q
]∧

∧

0≤k≤|Q|−1

[
yC
i,q,k+1 ⇔ [yC

i,q,k ∨ [yC
j,q ∧ ΩPre

q,i (y
C
i,·,k)]]

] ∧ [yC
i,q ⇔ yC

i,q,|Q|]
]

Ωsem
G,C :=

∧

i∈�1,n�
j∈�1,i−1�

[xi,〈〈·〉〉G ∧ li,j] ⇒
∧

q∈Q

[[
yC
i,q,0 ⇔ yC

j,q

]∧

∧

0≤k≤|Q|−1

[
yC
i,q,k+1 ⇔ [yC

i,q,k ∧ ΩPre
q,i (y

C
i,·,k)]

] ∧ [yC
i,q ⇔ yC

i,q,|Q|]
]

The formula Ωsem
n is simply defined as the conjunction of all the formulas above.

For the semantics of CTL, the main difference is that the formula ΩPre
q,i (yS)

encoding the fact that q ∈ Pre(S) can be greatly simplified (for the quantifier E):

Ω̂Pre
q,i (yS) :=

∨

q′∈Succ(q)

yS(q′)

Encoding the Consistency with the Models. Finally, to encode that the prospec-
tive formula is consistent with S, we have the following formula:

Ωcon
n :=

[∧

C∈P

∧

s∈I

yC
n,s

] ∧ [∧

C∈N

∨

s∈I

¬yC
n,s

]

The size of the formula ΩS
n , and the number of variables involved in it, is

polynomial in n and the size of S, |S| :=
∑

C∈P∪N |C|. Furthermore, we have
the lemma below establishing the correctness of the encoding.

Proposition 1. Let S = (P,N) be a sample and n ∈ N \ {0} . Then:

1. If an ATL formula of size at most n consistent with S exists, then the propo-
sitional formula ΩS

n is satisfiable.
2. If a valuation v is such that v |= ΩS

n , then there is an ATL formula Φv of
size at most n that is consistent with S.

Learning Branching-Time Properties in CTL and ATL 315

3.2 Deciding the Separability

Given a sample S, by iteratively checking if ΩS
0 is satisfiable, if ΩS

1 is satisfiable,
etc., we can find a minimal size formula consistent with S if one exists. However, if
there is no such formula, the above iteration would not terminate. To circumvent
that issue, there are two possibilities. We may first decide the separability of the
sample, i.e., if there exists an ATL formula consistent with it; or we may exhibit a
bound B, expressed as a function of S, such that if there is a separating formula,
there is one of size at most B. In this subsection, we tackle both of these issues.

It was shown in [17, Section 3, Thm. 3.2, 3.9] that the separability can be
decided in polynomial time for full CTL (i.e., all operators can be used) with
Kripke structures. Furthermore, in [43, Coro. 1], the results of [17] are used to
exhibit an exponential bound on the size of the CTL formulas to be considered.

For fragments of CTL (i.e. CTL formulas that can use only some operators),
it was shown in [34, Thm. 3], as a corollary of a “meta theorem” with applications
to various logic, that the separability can be decided in exponential time.

Here, we extend these results to ATL formulas. We consider two settings: full
ATL and any fragment of ATL. In the first setting, we show that separability
can also be decided in polynomial time. In the second setting, we show that
separability can be decided in exponential time. We deduce an exponential bound
on the size of the formulas that need to be considered, which hold regardless of
the fragment considered (including full ATL).

Separability for full ATL. For full ATL, our goal is to show the theorem below.

Theorem 1. Given a sample S = (P,N) of CGS, we can decide in time poly-
nomial in |S| if the sample S is separable with (arbitrary) ATL formulas.

Due to space constraint, we only provide an informal explanation here. The
first step is to prove that it is sufficient to consider only ATL-X formulas, i.e.,
ATL formulas whose only used temporal operator is X. This may seem counter-
intuitive since given an ATL formula Φ using the operator G (or the operator
U), there does not exist ATL-X formula equivalent to Φ because the number of
states of the CGS on which Φ may be evaluated is arbitrarily large. However,
given a sample S of finitely many CGS, there is a bound on the number of states
used in all the CGS of S. Hence, there is an ATL-X formula equivalent to Φ on
all the CGS of S.

Lemma 1. Consider a sample S = (P,N) of CGS. If there exists an ATL
formula consistent with S, then there is one that is an ATL-X formula.

Let us now consider the set Distinguish(S) ⊆ Q2 of pairs of states that we
can distinguish with an ATL-X formula.

Definition 3. Consider a sample S of CGS. We let Q denote the set of all the
states occurring in all CGS of S. We let:

Distinguish(S) := {(q, q′) ∈ Q2 | there is ATL-X formula Φ s.t. q |= Φ ⇔ q′ |= Φ}

316 B. Bordais et al.

Given a sample S, we claim the following: 1) it is possible to compute in time
polynomial in |S| the set Distinguish(S), and 2) given Distinguish(S) ⊆ Q2, we
can decide in polynomial time if there is an ATL-X formula consistent with S.

We start with the second claim. The reason why it holds is the following:
there is an ATL-X formula consistent with S iff, for all negative structures CN

of S, there is a starting state qN ∈ ICN
such that, for all starting states qP of all

positive structures of S, we have (qP , qN) ∈ Distinguish(S), which can be checked
in polynomial time. The “only if” implication comes directly from the definition
of a formula consistent with a sample. The “if” implication is a consequence of
the fact that ATL-X formulas can use conjunctions, disjunctions, and negations.

Let us now consider the first claim. We say that two sets of states T, T ′ ⊆ Q
are ATL-X distinguishable if there is an ATL-X formula Φ and a state t′ ∈ T ′

such that for all t ∈ T , t |= Φ and t′ �|= Φ. Now, given a set R of pairs of states
, let us define the set DistX(R) ⊆ Q2 of pairs of states that we know can be
distinguished by ATL-X formulas whose first operator used is X, assuming all
pairs of states in R can be distinguished by ATL-X formulas.

Definition 4. Given a sample S of CGS and some R ⊆ Q2, we let:

DistX(R) := {(q, q′), (q′, q) ∈ Q2 | ∃A ⊆ Ag, ∃α ∈ ActA(q), ∀α′ ∈ ActA(q′),
Succ(q, α) and Succ(q′, α′) are ATL-X distinguishable }

Given a set R, we can compute in polynomial time the set DistX(R). This
may be counterintuitive since checking all coalitions of agents A ⊆ Ag would take
time exponential in |S|. However, to compute the set DistX(R), it is sufficient
to consider coalitions of agents A ⊆ RelAg(q, q′), where RelAg(q, q′) := {a ∈
Ag | d(q, a) · d(q′, a) ≥ 2}. Indeed, the agents not in RelAg(q, q′) have only
one action available at both states q and q′. They are, therefore, irrelevant in
those states to determine the set of states reachable by a coalition. Looking
over all such coalitions now takes time polynomial in |S| because |2RelAg(q,q′)| ≤
|QAct(q)| × |QAct(q′)|.

Interestingly, we have the following characterization of the set Distinguish(S).

Lemma 2. Consider a sample S of CGS. The set Distinguish(S) is the small-
est set of Q2 such that: {(q, q′) ∈ Q2 | π(q) �= π(q′)} ⊆ Distinguish(S), and
DistX(Distinguish(S)) ⊆ Distinguish(S).

With the help of this lemma, given a sample S of CGS, it follows that we
can compute in polynomial time the set Distinguish(S). Indeed, this can be done
with a computation similar to that of the set SATC(〈〈A〉〉Φ1 UΦ2) in Algorithm 1,
where SATC(〈〈A〉〉Φ1 UΦ2) is defined as a smallest set satisfying a specific prop-
erty in Eq. (5). Overall, from both our claims 1) and 2), we do obtain that the
separability of a sample of CGS can be decided in polynomial time.

Separability for any Fragment of ATL. Let us now consider the case of an arbi-
trary fragment of ATL. Now, the above-described algorithm a priori does not

Learning Branching-Time Properties in CTL and ATL 317

work. Among other things, one of the issues is that, possibly, we may not be able
to use the operator X . Therefore, given a sample S, instead of iteratively con-
structing a subset of Distinguish(S) ⊆ Q2 of distinguishable pairs of states, we
iteratively compute a subset Acc(S) ⊆ 2Q of sets of states that can be accepted
with a formula in the fragment considered, while the complement set is rejected.
We can then prove a lemma similar to Lemma 2 except that we additionally
have to be able to handle the operators G and U, which is done by using Algo-
rithms 1, 2.

Since we manipulate subsets of 2Q, we obtain an exponential time algorithm.
Interestingly, the correctness proof of this algorithm gives information on the size
of consistent ATL formulas. Indeed, we can show that when there is a consistent
formula, there is one for which each of its sub-formulas corresponds to a different
set in Acc(S) ⊆ 2Q. Therefore, the size of this formula is at most |2Q| = 2|Q|.

Theorem 2. Consider a sample S and a fragment ATL’ of ATL. We can decide
in time exponential in |S| if the sample S is separable with ATL’ formulas. If it
is, then there exists an ATL’ formula consistent with S of size at most 2|Q|.

4 Experimental Evaluation

To test the ability of our learning algorithms (from Sect. 3.1), we implement
them in an open-source prototype1. The prototype is developed in Python3 and
utilizes the PySMT library [26], providing us access to an array of SAT solvers.
Moreover, it offers configurable parameters for learning, including options to
specify the model type (KS or CGS) and the formula type (CTL or ATL).

To test various aspects of our algorithms, we rely on synthetic benchmarks
generated from a set of chosen formulas as is common in the literature [19,41].
We first identified some common CTL and ATL formulas from standard sources:
the book on model-checking by Baier and Katoen [9, Example 6.3] for CTL and
the seminal work by Alur et al. [1, Examples 3.1,3.2] for ATL. Figure 2 displays
a selection of formulas (with the rest in the extended version [16]); we used
abstract propositions and players in the formulas to maintain uniformity. The
CTL formulas reflect properties occurring in distributed systems, such as mutual
exclusion, request-response progress, etc. The ATL formulas describe various
properties of a train-controller (multi-agent) system.

We generated samples following a random generation technique. To construct
a structure C for a sample, we iteratively added states to C ensuring its con-
nectedness; assigned random propositions to each state of C; and added random
edges, labeled with action tuples if generating a CGS. For CGSs, we focussed
on generating turn-based games, i.e., games where only one player has actions
in each state, due to their prevalence in verification and synthesis. We split the
randomly generated structures into P and N based on the selected formula.

Overall, from six CTL formulas and six ATL formulas, we generated two
benchmark suites, the first one consisting of 144 samples of KSs and the second

1 https://github.com/rajarshi008/learning-branching-time.

https://github.com/rajarshi008/learning-branching-time

318 B. Bordais et al.

Fig. 2. Runtime of CTL and ATL learning algorithms on samples with varying number
of examples (considering structures of size ≤ 20).

one consisting of 144 samples of CGSs, respectively. The number of examples in
the suites ranges from 20 to 120 and 10 to 60, respectively. Moreover, the sizes
of the KSs range from 1 to 40, while the size of the CGSs range from 1 to 20.

All tests were run on Intel Xeon Gold 6142 CPU (at 2.6GHz) using up to
10 GB of RAM using MathSAT solver [23]2, with a timeout of 2400 s.

How effective are the algorithms in learning CTL/ATL formulas? To answer
this, we ran the CTL and ATL learning algorithms on the first and second
benchmark suites, respectively. Figure 2 depicts runtimes of both algorithms for
samples generated from a selection of formulas. Both algorithms exhibit reason-
able runtime performance for small samples. As the samples size increases, the
runtime also increases, more prominently for the larger formulas in our selec-
tion. For the smaller formulas, however, the runtime of the algorithms remains
reasonable even when the samples size increases.

Which parts of the SAT encoding contribute significantly towards the run-
time? To understand this, we profiled both algorithms to identify the constraints
responsible for significant runtime increases. Notably, generating constraints for
the U operators (i.e., EU, AU for CTL and 〈〈·〉〉U for ATL) turned out to be the
most time-consuming among all operators. Consequently, we compared runtime
performance with and without these operators. (Note that we included F and
G operators in both cases.) Learning without the U operator is often justified,
since several properties do not require the U operator [44]. Figure 3a depicts this
comparison for CTL learning; the average runtime improvement is 46%.

Moreover, computing the constraints for ΩPre
q,i (y) happens to be expensive

due to the nesting of conjunction and disjunction of propositional formulas.
As a result, we noticed an improvement when we used the following optimized
encoding designed specifically for turn-based games:

Ω̄Pre
q,i (yS) := [Ai,σ(q) ⇒

∨

α∈ActAg(q)

yS(δ(q, α)] ∧ [¬Ai,σ(q) ⇒
∧

α∈ActAg(q)

yS(δ(q, α)],

2 MathSAT [23] performed better than Z3 [40] and Boolector [18] in our experiments.

Learning Branching-Time Properties in CTL and ATL 319

Fig. 3. Runtime improvement with optimized encodings for CTL and ATL learning on
first and second benchmark suites, respectively. The runtimes are in seconds and ‘TO’
represents timeout.

where σ(q) denotes the Agent owning the state q. Figure 3b illustrates this
improvement; the average runtime improvement is 52%.

Overall, we demonstrated that our learning algorithms can successfully infer
several CTL and ATL formulas from samples of varying sizes.

5 Conclusion

In this work, we address the passive learning problem for CTL and ATL, propos-
ing a constraint-solving technique that encodes search and model-checking of for-
mulas in propositional logic. We additionally investigate the separability of ATL
formulas and develop decision procedures for it. Our experimental evaluations
validate the efficacy of our algorithms in inferring useful CTL/ATL formulas.

As future work, we like to explore the computational hardness of the passive
learning problems for CTL/ATL, similar to [25]. We also plan to improve our
prototype by adding heuristics, such as the ones discussed in [43]. Finally, we like
to lift our techniques to probabilistic logics such as PCTL [28] and PATL [21].

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002). https://doi.org/10.1145/585265.585270

2. Alur, R., Henzinger, T.A., Mang, F.Y.C., Qadeer, S., Rajamani, S.K., Tasiran,
S.: MOCHA: modularity in model checking. In: CAV. Lecture Notes in Computer
Science, vol. 1427, pp. 521–525. Springer (1998)

https://doi.org/10.1145/585265.585270

320 B. Bordais et al.

3. Ammons, G., Bodík, R., Larus, J.R.: Mining specifications. In: Launchbury, J.,
Mitchell, J.C. (eds.) Conference Record of POPL 2002: The 29th SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Portland, OR,
USA, January 16-18, 2002, pp. 4–16. ACM (2002). https://doi.org/10.1145/503272.
503275

4. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

5. Arif, M.F., Larraz, D., Echeverria, M., Reynolds, A., Chowdhury, O., Tinelli,
C.: SYSLITE: syntax-guided synthesis of PLTL formulas from finite traces. In:
FMCAD, pp. 93–103. IEEE (2020)

6. Asarin, E., Donzé, A., Maler, O., Nickovic, D.: Parametric identification of tem-
poral properties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp.
147–160. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-
8_12

7. Audemard, G., Simon, L.: On the glucose SAT solver. Int. J. Artif. Intell. Tools
27(1), 1840001:1–1840001:25 (2018)

8. Avellaneda, F., Petrenko, A.: Inferring DFA without negative examples. In: Unold,
O., Dyrka, W., Wieczorek, W. (eds.) Proceedings of the 14th International Con-
ference on Grammatical Inference, ICGI 2018, Wrocław, Poland, September 5-7,
2018. Proceedings of Machine Learning Research, vol. 93, pp. 17–29. PMLR (2018).
http://proceedings.mlr.press/v93/avellaneda19a.html

9. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
10. Barbosa, H., Barrett, C., Brain, M., Kremer, G., Lachnitt, H., Mann, M.,

Mohamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M.,
Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvc5: a versatile and industrial-
strength SMT solver. In: TACAS 2022. LNCS, vol. 13243, pp. 415–442. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-99524-9_24

11. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL — a tool
suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A.,
Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg
(1996). https://doi.org/10.1007/BFb0020949

12. Bertrand, N., Fearnley, J., Schewe, S.: Bounded satisfiability for PCTL. In: Cégiel-
ski, P., Durand, A. (eds.) Computer Science Logic (CSL’12) - 26th International
Workshop/21st Annual Conference of the EACSL, CSL 2012, September 3-6, 2012,
Fontainebleau, France. LIPIcs, vol. 16, pp. 92–106. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2012). https://doi.org/10.4230/LIPIcs.CSL.2012.92

13. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from
samples of their behavior. IEEE Trans. Comput. 21(6), 592–597 (1972)

14. Bjørner, D., Havelund, K.: 40 years of formal methods. In: Jones, C., Pihlajasaari,
P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 42–61. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-06410-9_4

15. Bombara, G., Vasile, C.I., Penedo, F., Yasuoka, H., Belta, C.: A decision tree app-
roach to data classification using signal temporal logic. In: Proceedings of the 19th
International Conference on Hybrid Systems: Computation and Control, HSCC
2016, pp. 1–10. Association for Computing Machinery, New York (2016). https://
doi.org/10.1145/2883817.2883843

16. Bordais, B., Neider, D., Roy, R.: Learning branching-time properties in ctl and atl
via constraint solving. CoRR abs/2406.19890 (2024). https://arxiv.org/abs/2406.
19890

https://doi.org/10.1145/503272.503275
https://doi.org/10.1145/503272.503275
https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/10.1007/978-3-642-29860-8_12
http://proceedings.mlr.press/v93/avellaneda19a.html
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/BFb0020949
https://doi.org/10.4230/LIPIcs.CSL.2012.92
https://doi.org/10.1007/978-3-319-06410-9_4
https://doi.org/10.1145/2883817.2883843
https://doi.org/10.1145/2883817.2883843
https://arxiv.org/abs/2406.19890
https://arxiv.org/abs/2406.19890

Learning Branching-Time Properties in CTL and ATL 321

17. Browne, M.C., Clarke, E.M., Grumberg, O.: Characterizing finite kripke structures
in propositional temporal logic. Theor. Comput. Sci. 59, 115–131 (1988). https://
doi.org/10.1016/0304-3975(88)90098-9

18. Brummayer, R., Biere, A.: Boolector: an efficient SMT solver for bit-vectors and
arrays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp.
174–177. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00768-
2_16

19. Camacho, A., McIlraith, S.A.: Learning interpretable models expressed in linear
temporal logic. In: ICAPS, pp. 621–630. AAAI Press (2019)

20. Chan, W.: Temporal-logic queries. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 450–463. Springer, Heidelberg (2000). https://doi.org/10.
1007/10722167_34

21. Chen, T., Lu, J.: Probabilistic alternating-time temporal logic and model checking
algorithm. In: FSKD (2), pp. 35–39. IEEE Computer Society (2007)

22. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic model
verifier. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 495–
499. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6_44

23. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–
107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_7

24. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Logic of Programs. Lecture Notes in Com-
puter Science, vol. 131, pp. 52–71. Springer (1981)

25. Fijalkow, N., Lagarde, G.: The complexity of learning linear temporal formulas
from examples. In: ICGI. Proceedings of Machine Learning Research, vol. 153, pp.
237–250. PMLR (2021)

26. Gario, M., Micheli, A.: Pysmt: a solver-agnostic library for fast prototyping of
smt-based algorithms. In: SMT Workshop 2015 (2015)

27. Gold, E.M.: Complexity of automaton identification from given data. Inf. Control
37(3), 302–320 (1978)

28. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994)

29. van der Hoek, W., Wooldridge, M.J.: Cooperation, knowledge, and time:
alternating-time temporal epistemic logic and its applications. Stud. Logica. 75(1),
125–157 (2003)

30. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Software Eng. 23(5), 279–
295 (1997)

31. Kim, J., Muise, C., Shah, A., Agarwal, S., Shah, J.: Bayesian inference of linear
temporal logic specifications for contrastive explanations. In: IJCAI, pp. 5591–
5598. ijcai.org (2019)

32. Kong, Z., Jones, A., Belta, C.: Temporal logics for learning and detection of anoma-
lous behavior. IEEE Trans. Autom. Control 62(3), 1210–1222 (2017). https://doi.
org/10.1109/TAC.2016.2585083

33. Kong, Z., Jones, A., Medina Ayala, A., Aydin Gol, E., Belta, C.: Temporal logic
inference for classification and prediction from data. In: Proceedings of the 17th
International Conference on Hybrid Systems: Computation and Control, HSCC
2014, pp. 273–282. Association for Computing Machinery, New York (2014).
https://doi.org/10.1145/2562059.2562146

34. Krogmeier, P., Madhusudan, P.: Languages with decidable learning: a meta-
theorem. Proc. ACM Program. Lang. 7(OOPSLA1), 143–171 (2023). https://doi.
org/10.1145/3586032

https://doi.org/10.1016/0304-3975(88)90098-9
https://doi.org/10.1016/0304-3975(88)90098-9
https://doi.org/10.1007/978-3-642-00768-2_16
https://doi.org/10.1007/978-3-642-00768-2_16
https://doi.org/10.1007/10722167_34
https://doi.org/10.1007/10722167_34
https://doi.org/10.1007/3-540-48683-6_44
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1109/TAC.2016.2585083
https://doi.org/10.1109/TAC.2016.2585083
https://doi.org/10.1145/2562059.2562146
https://doi.org/10.1145/3586032
https://doi.org/10.1145/3586032

322 B. Bordais et al.

35. Li, W., Dworkin, L., Seshia, S.A.: Mining assumptions for synthesis. In: MEM-
OCODE, pp. 43–50. IEEE (2011)

36. Lomuscio, A., Raimondi, F.: mcmas: a model checker for multi-agent systems. In:
Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 450–454.
Springer, Heidelberg (2006). https://doi.org/10.1007/11691372_31

37. Luo, W., Liang, P., Du, J., Wan, H., Peng, B., Zhang, D.: Bridging ltlf inference
to GNN inference for learning ltlf formulae. In: AAAI, pp. 9849–9857. AAAI Press
(2022)

38. Mogavero, F., Murano, A., Perelli, G., Vardi, M.Y.: Reasoning about strategies: on
the model-checking problem. ACM Trans. Comput. Log. 15(4), 34:1–34:47 (2014).
https://doi.org/10.1145/2631917

39. Mohammadinejad, S., Deshmukh, J.V., Puranic, A.G., Vazquez-Chanlatte, M.,
Donzé, A.: Interpretable classification of time-series data using efficient enumer-
ative techniques. In: HSCC ’20: 23rd ACM International Conference on Hybrid
Systems: Computation and Control, Sydney, New South Wales, Australia, April
21-24, 2020, pp. 9:1–9:10. ACM (2020). https://doi.org/10.1145/3365365.3382218

40. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

41. Neider, D., Gavran, I.: Learning linear temporal properties. In: Bjørner, N.S.,
Gurfinkel, A. (eds.) 2018 Formal Methods in Computer Aided Design, FMCAD
2018, Austin, TX, USA, October 30 - November 2, 2018, pp. 1–10. IEEE (2018).
https://doi.org/10.23919/FMCAD.2018.8603016

42. Nenzi, L., Silvetti, S., Bartocci, E., Bortolussi, L.: A robust genetic algorithm
for learning temporal specifications from data. In: McIver, A., Horvath, A. (eds.)
QEST 2018. LNCS, vol. 11024, pp. 323–338. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99154-2_20

43. Pommellet, A., Stan, D., Scatton, S.: Sat-based learning of computation tree logic.
CoRR abs/2402.06366 (2024). https://doi.org/10.48550/ARXIV.2402.06366

44. Raha, R., Roy, R., Fijalkow, N., Neider, D.: Scalable anytime algorithms for learn-
ing fragments of linear temporal logic. In: TACAS 2022. LNCS, vol. 13243, pp.
263–280. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99524-9_14

45. Raha, R., Roy, R., Fijalkow, N., Neider, D., Pérez, G.A.: Synthesizing efficiently
monitorable formulas in metric temporal logic. In: VMCAI (2). Lecture Notes in
Computer Science, vol. 14500, pp. 264–288. Springer (2024)

46. Riener, H.: Exact synthesis of LTL properties from traces. In: FDL, pp. 1–6. IEEE
(2019)

47. Roy, R., Fisman, D., Neider, D.: Learning interpretable models in the property
specification language. In: IJCAI, pp. 2213–2219. ijcai.org (2020)

48. Roy, R., Gaglione, J., Baharisangari, N., Neider, D., Xu, Z., Topcu, U.:
Learning interpretable temporal properties from positive examples only. CoRR
abs/2209.02650 (2022)

49. Roy, R., Neider, D.: Inferring properties in computation tree logic. CoRR
abs/2310.13778 (2023)

50. Rozier, K.Y.: Specification: the biggest bottleneck in formal methods and auton-
omy. In: Blazy, S., Chechik, M. (eds.) VSTTE 2016. LNCS, vol. 9971, pp. 8–26.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48869-1_2

51. Shah, A., Kamath, P., Shah, J.A., Li, S.: Bayesian inference of temporal task
specifications from demonstrations. In: NeurIPS, pp. 3808–3817 (2018)

52. Valizadeh, M., Fijalkow, N., Berger, M.: LTL learning on gpus. CoRR
abs/2402.12373 (2024). https://doi.org/10.48550/ARXIV.2402.12373

https://doi.org/10.1007/11691372_31
https://doi.org/10.1145/2631917
https://doi.org/10.1145/3365365.3382218
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.23919/FMCAD.2018.8603016
https://doi.org/10.1007/978-3-319-99154-2_20
https://doi.org/10.1007/978-3-319-99154-2_20
https://doi.org/10.48550/ARXIV.2402.06366
https://doi.org/10.1007/978-3-030-99524-9_14
https://doi.org/10.1007/978-3-319-48869-1_2
https://doi.org/10.48550/ARXIV.2402.12373

Learning Branching-Time Properties in CTL and ATL 323

53. Wan, H., Liang, P., Du, J., Luo, W., Ye, R., Peng, B.: End-to-end learning of ltlf
formulae by faithful ltlf encoding. In: AAAI, pp. 9071–9079. AAAI Press (2024)

54. Wasylkowski, A., Zeller, A.: Mining temporal specifications from object usage.
Autom. Softw. Eng. 18(3–4), 263–292 (2011)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

A Zonotopic Dempster-Shafer Approach
to the Quantitative Verification of Neural

Networks

Eric Goubault and Sylvie Putot(B)

LIX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris,
91120 Palaiseau, France

{goubault,putot}@lix.polytechnique.fr

Abstract. The reliability and usefulness of verification depend on the
ability to represent appropriately the uncertainty. Most existing work on
neural network verification relies on the hypothesis of either set-based
or probabilistic information on the inputs. In this work, we rely on the
framework of imprecise probabilities, specifically p-boxes, to propose a
quantitative verification of ReLU neural networks, which can account for
both probabilistic information and epistemic uncertainty on inputs. On
classical benchmarks, including the ACAS Xu examples, we demonstrate
that our approach improves the tradeoff between tightness and efficiency
compared to related work on probabilistic network verification, while
handling much more general classes of uncertainties on the inputs and
providing fully guaranteed results.

Keywords: neural networks · probability bounds · p-boxes ·
Dempster-Shafer structures · zonotopes

1 Introduction

Verifying that neural networks satisfy desirable properties has become crucial
for ensuring the safety of learning-enabled autonomous systems. However, most
existing approaches that provide guarantees on the satisfaction of a specification
are designed for adversarial input uncertainties, and offer only qualitative assess-
ments. Complete methods return whether or not the property is satisfied but are
often not scalable, while sound methods return either that a property is satisfied
or that the answer is unknown, due to over-approximation errors. For instance,
the analyzers DeepZ [27], DeepPoly [28] and Verinet [13] propagate respectively
zonotopes, polyhedra, and symbolic intervals through the layers of a neural net-
work, to ensure that certain specifications are met. In addition, many analyzers
have considered producing also robustness bounds of networks, as specifically
done by CROWN [35], FCROWN [16] and CNN-Cert [5].

In contrast, quantitative verification has been little explored for neural net-
works, despite providing a better understanding of the system by refining infor-
mation about property satisfaction. This is especially true for probabilistic veri-
fication. Some authors have considered estimating the statistics of the output of
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 324–342, 2025.
https://doi.org/10.1007/978-3-031-71162-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_17&domain=pdf
http://orcid.org/0000-0002-3198-1863
http://orcid.org/0000-0001-5624-3755
https://doi.org/10.1007/978-3-031-71162-6_17

A Zonotopic Dempster-Shafer Approach to Quantitative NN Verification 325

neural networks, given a multivariate probabilistic law for its inputs. This app-
roach has been used in particular for assessing the robustness of neural networks
[31,36] and for probabilistically certifying their correctness under adversarial
attacks [2,3,14,20,34]. But these estimates, using improved sampling methods,
do not give guaranteed bounds. Even fewer articles have considered guaranteed
probabilistic bounds. In [32], the authors describe the analyzer PROVEN, which
provides probability certificates of neural network robustness when the input
perturbation is given by a probabilistic distribution, based on abstractions. For
networks with ReLU activation function, methods have been developed in [21,22]
to find the probability of the output or of the input-output relationships. In [8],
the authors consider an ellipsoid input space with Gaussian random variables
and compute confidence ellipsoids for the outputs of ReLU networks, using semi-
definite programming. In [29], the authors consider truncated multivariate Gaus-
sian distribution inputs and abstract them by probabilistic stars (ProbStars), a
variation of the star set abstraction [1] recently introduced in the context of
reachability analysis. They propagate them in a guaranteed manner in a net-
work, and estimate the probability of violating a safety property on the output
by computing each probstar’s probability. In a way, ProbStar is a hybrid method,
relying on guaranteed set-based computations, but estimating the probabilities
in a non guaranteed manner.

The works mentioned above rely on the hypothesis of either set-based or
probabilistic information on the inputs. However, in real-world systems, precise
models representative of the data are not always available. For instance, several
probabilistic models may be plausible for describing of a problem, or a prob-
abilistic model may be known but with uncertain parameters. Therefore, we
need to consider both aleatory information and epistemic uncertainty. Imprecise
probabilities [4,30] offer a framework that unifies probabilistic and set-based
information. This framework includes a wide variety of mathematical models,
among which probability boxes (p-boxes in short) [9], which characterize an
uncertain random variable by all probability distributions consistent with lower
and upper bounds on its cumulative distribution function (CDF in short). A
p-box can be seen as interval bounds on a probability distribution. An Interval-
based discrete over-approximation of p-boxes, Interval Dempster-Shafer struc-
ture [25] (DSI in short) has been proposed. Algorithms for arithmetic operations
on DSI can be derived [9,33], which can be seen as a unification of standard
interval analysis with traditional probability theory, allowing probability bound
analysis on arithmetic expressions. It gives the same answer as interval analy-
sis does when only range information is available. And it gives sound bounds
on the distribution function, as a sound counterpart of a Monte Carlo simu-
lation, when information is precise enough to fully specify input distributions
and their dependencies. However, DSI arithmetic is expensive and suffers from
the conservativeness of interval arithmetic, on which it relies. Probabilistic affine
forms have been proposed as an alternative [6,7], improving both precision and
efficiency by combining affine forms or zonotopes and DSI structures.

326 E. Goubault and S. Putot

In this work, we first extend for the analysis of ReLU neural networks, the
Interval Dempster Shafer arithmetic in Sect. 3 and probabilistic affine arith-
metic in Sect. 4. We then introduce in Sect. 5 a new abstraction, Zonotopic
Dempster Shafer structures, which exhibits much better computational prop-
erties (complexity and tightness of the approximations). This new abstraction
is directly related to the general notion of random sets [24] which generalize
one-dimensional Dempster-Shafer structures such as the DSI. Finally, in Sect. 6
we demonstrate on benchmarks from the state of the art that our approach
improves in terms of tradeoff between tightness and efficiency compared to the
most closely related work [29], while being able to handle much more general
classes of uncertainties on the inputs and providing fully guaranteed results.

2 Problem Statement

We consider an L-layer feedforward ReLU network with input x0 ∈ R
h0 and

output y = f(x0) = xL ∈ R
hL , with f being the composition of L layers, f =

fL−1◦. . .◦f0. The k-th layer of the ReLU network is defined by fk : Rhk → R
hk+1

of the form xk+1 = fk(xk) = σ(Akxk + bk), where Ak ∈ R
hk+1×hk is the weight

matrix, bk ∈ R
hk+1 is the bias, and σ(xk

j) := max(0, xk
j) is the component-wise

ReLU function, where xk
j is the jth component of xk ∈ R

hk .
For a multi-dimensional distribution X ∈ R

n, we note P (X ≤ x) := P(X1 ≤
x1 ∧ X2 ≤ x2 . . . ∧ Xn ≤ xn), and in what follows, we systematically use ≤
as the componentwise order. We are interested in the following two problems,
extending, in particular to a larger class of inputs, the quantitative verification
properties of [29]:

Problem 1 (Probability Bounds Analysis). Given a ReLU network f and a con-
strained probabilistic input set X = {X ∈ R

h0 | CX ≤ d ∧ F (x) ≤ P(X ≤ x) ≤
F (x),∀x} where F and F are two cumulative distribution functions, compute a
constrained probabilistic output set Y guaranteed to contain {f(X),X ∈ X}.

Problem 2 (Quantitative Property Verification). Given a ReLU network f , a
constrained probabilistic input set X and a linear safety property Hy ≤ w,
bound the probability of the network output vector y satisfying this property.

We illustrate throughout the paper the approach on the toy example below.
The details on the analyzes of this example, which results are stated in further
sections, are provided in the Appendix of preprint [10].

Example 1. We consider the ReLU network defined by the matrices of weights

and biases: A1 =
[
1 −1
1 1.

]
, b1 =

[
0.0
0.0

]
, A2 =

[
1 −1
1 1

]
, b2 =

[
0.0
0.0

]
. We take only

one ReLU layer and an affine output layer. After the ReLU layer, we note x1 =
σ(A1x

0 + b1) = σ(x0
1 − x0

2, x
0
1 + x0

2), and after the output layer x2 = A2x
1 + b2.

The problem is to verify the network against the unsafe output set x2
1 ≤

−2 ∧ x2
2 ≥ 2 for an input x0 = (x0

1, x
0
2) ∈ [−2, 2] × [−1, 1]. This writes Hx2 ≤ w

with H =
[
1 0
0 −1

]
, w =

[−2 −2
]
.

A Zonotopic Dempster-Shafer Approach to Quantitative NN Verification 327

3 Analysis with Interval Dempster-Shafer Structures

Probability-Boxes and Interval Dempster-Shafer Arithmetic. We char-
acterize a real-valued random variable X by its cumulative probability distribu-
tion function (CDF in short) F : R → [0, 1] defined by F (x) = P(X ≤ x). A
p-box [9] is defined by a pair of CDF:

Definition 1 (P-box). Given two CDF F , F , the p-box [F , F] represents the
set of distribution functions F such that F (x) ≤ F (x) ≤ F (x) for all x ∈ R.

P-boxes can be combined in mathematical calculations, but analytical solu-
tions are usually not available. Interval Dempster-Shafer structures [25] provide
a simple way to soundly over-approximate the set of cdfs using a discrete repre-
sentation, for which the arithmetic operations can be converted into a series of
elementary interval calculations.

Definition 2
(Interval Dempster-Shafer Structure). An interval Dempster-Shafer struc-
ture (DSI in short) is a finite set of intervals, named focal elements, associated
with a probability, written d =

{〈x1, w1〉, 〈x2, w2〉, . . . , 〈xn , wn〉}, where xi is an
interval and wi ∈ (0, 1] is its probability, with

∑n
k=1 wk = 1.

Proposition 1 (CDF of an Interval Dempster-Shafer Structure). A
DSI d =

{〈x1, w1〉, 〈x2, w2〉, . . . , 〈xn , wn〉} defines the discrete p-box
[
Fd, Fd

]
representing the sets of distributions such that Fd(u) ≤ P(X ≤ u) ≤ Fd(u) with
Fd(u) =

∑
xi <u wi and Fd(u) =

∑
xi ≤u wi, noting xi (resp. xi) the greatest

lower bound (resp. least upper bound) of set xi .

Conversely, discrete upper and lower approximations of distribution func-
tions can be constructed, for instance using the inverse CDF as in [33]. Given a
discretization size N , they define a DSI with N focal elements where all weights
are equal to 1/N . The focal elements xi are defined evaluating the quantiles or
inverse cdfs for uniformly spaced probability levels pi = i−1

N for i = 1, . . . , N +1,
by xi = [F

−1

d (pi), F−1
d (pi+1)] where F−1

d (p) = inf{x | Fd(x) ≥ p}.

The arithmetic operators on DSI structures [9,33] compute guaranteed enclo-
sures of all possible distributions of an output variable if the input p-boxes
enclose the input distributions. Let two random variables X and Y represented
by DSI structures dX = {〈xi , wi〉, i ∈ [1, n]} and dY = {〈yj , w

′
j〉, j ∈ [1,m]},

and Z be the random variable such that Z = X + Y (the algorithms for other
arithmetic operations are similar). In particular, they define algorithms for the
extreme cases of unknown dependence and independence between X and Y .

Definition 3 (Probabilistic Dependence and Dependence Graph). Two
random variables X1 and X2 are independent if and only if their CDF can be
decomposed as F (x1, x2) = F1(x1)F2(x2). Otherwise, the random variables are
called correlated. The probabilistic dependence graph G over a set of n variables
X1, . . . , Xn is an undirected graph where the Xi are the vertices and there exists
an edge (Xi,Xj) in the graph iff variables Xi and Xj are correlated.

328 E. Goubault and S. Putot

The addition of DSI independent variables is obtained as a discrete convolution
of the two input distributions [9,33]:

Definition 4 (Addition of Independent DSIs). If X and Y are indepen-
dent random variables, then the DSI for Z = X ⊕ Y is dZ = {〈zi,j , ri,j〉, i ∈
[1, n], j ∈ [1,m]} such that: ∀i ∈ [1, n], j ∈ [1,m], zi,j = xi + yj and ri,j =
wi × w′

j .

The number of focal elements grows exponentially with the number of such
operations. In order to keep the computation tractable, the number of focal
elements is usually bounded, at the cost of some over-approximations.

Different algorithms have been proposed for the addition of DSIs with
unknown dependence, relying on the Fréchet-Hoeffding copula bounds or on
linear programming, most of them produce the same result [9,23,33].

DSI Analysis of Neural Networks. We now define a sound probability
bounds analysis of ReLU neural networks.

Modelling the Network Inputs. Consider an h0-dimensional uncertain input vec-
tor x0 = (x0

1, . . . , x
0
h0
), which can be represented as a vector d0 = (d01, . . . , d

0
h0
)

of h0 DSI, each with the same number n of focal elements for simplicity of
presentation: d0i =

{〈x0
i,1, w

0
i,1〉, 〈x0

i,2, w0
i,2〉, . . . , 〈x0

i,n , w0
i,n〉} for i ∈ 1, . . . , h0,

where x0
i,j ∈ IR is an interval and w0

i,j ∈ [0, 1] is the associated probability, with∑n
j=1 w0

i,j = 1, for all i ∈ 1, . . . , h0. A dependence graph is assumed to be known
between the components of the input vector.

Affine Transform of a Vector of DSI Structures. Given a vector of random
variables X = (X1, . . . , Xk) represented as a vector d = (d1, . . . , dk) of DSI
structures, and a dependence graph G, we define a DSI dy =

∑k
j=1 ajdj + b

which includes the result of Y =
∑k

j=1 ajXj + b on the DSI d by:

– we note ajdj where aj ∈ R and dj is a DSI {〈xj,i , wj,i〉 | i = 1, . . . , n},
the result of the multiplication of a constant by a DSI:
{〈ajxj,i , wj,i〉 | i = 1, . . . , n},

– we arbitrarily choose to compute the sum
∑k

j=1 ajdj as ((a1d1 + a2d2) +
a3d3) + . . . akdk), applying for the j-th sum the right operators depending of
the dependence between Xj+1 and X1 to Xj ,

– we note d + b where d is a DSI {〈xi , wi〉 | i = 1, . . . , n} and b ∈ R the result
of the addition of a constant to a DSI: {〈b + xi , wi〉 | i = 1, . . . , n},

– the dependence graph is updated by adding an edge between Y and all Xj

such that aj is non zero

Interpreting the action of the ReLU function Y = max(0,X) means enforcing
the constraints Y ≥ X and Y ≥ 0. This means that Y is obtained by intersecting
the focal elements of the representation of X with [0,∞):

A Zonotopic Dempster-Shafer Approach to Quantitative NN Verification 329

Lemma 1 (ReLU of a DSI). Given a random variable X represented by the
DSI d = {〈xi , wi〉, i ∈ [1, n]}, then the CDF of Y = σ(X) = max(0,X) is
included in the DSI {〈yi , wi〉, i ∈ [1, n]} with yi = [max(0, xi),max(0, xi)].

This leads to Algorithm 1 for the analysis of an L-layer ReLU network with
the notations of Sect. 2.

Algorithm 1. ReLU feedforward neural network analysis by DSI arithmetic
Input: d0 a h0-dimensional vector of DSI
1: for k = 0 to L − 1 do
2: for l = 1 to hk+1 do
3: dk+1

l ← σ(
∑hk

j=1 ak
ljd

k
j + bk

l) � Affine transform and Lemma 1
4: end for
5: end for
6: return (dL,cdf(HdL, w))

Output The output after propagation in the network consists in:

– the vector of DSI dL characterizing the network output (solving Problem 1)
– interval bounds noted cdf(HdL, w) on the probability P(HxL ≤ w) (solving

Problem 2). Let [Pm, Pm], with m ranging over the rows of H and w, be the
interval for the probability P(

∑hL

i=1 hmix
L
i ≤ wm). It is obtained applying

Proposition 1 to compute the CDF at w on each component of the vector
HdL. We define cdf(HdL, w) = [minm Pm,minm Pm].

The DSI computation encodes the marginal distribution of each component of
a vector xi as a DSI. The probability of a conjunction HxL is thus computed
considering each inequality independently and expressing that the probability of
the conjunction is lower or equal than the probability of each term.

Analysis of the Toy Example. Consider Example 1. A classical interval
analysis of the network from the input set x0 = (x0

1, x
0
2) ∈ [−2, 2] × [−1, 1]

yields the output ranges x2
1 ∈ [−3, 3] and x2

2 ∈ [0, 6]. As these have non empty
intersection with the property x2

1 ≤ −2∧ x2
2 ≥ 2, this analysis does not allow to

conclude.

Uniform Distribution on Inputs Abstracted by DSI with 2 Focal Elements.
Let us now suppose that we additionally know that the 2 components of
the input follow a uniform distribution. We first choose a discretization of
the inputs by DSI with 2 focal elements, d01 = {〈[−2, 0], 0.5〉, 〈[0, 2], 0.5〉}
and d02 = {〈[−1, 0], 0.5〉, 〈[0, 1], 0.5〉}. Let us suppose the inputs independent,
the first output after the first affine layer, dy1 = d01 − d02, computed follow-
ing Definition 4, is {〈[−2, 1], 0.25〉, 〈[−3, 0], 0.25〉, 〈[0, 3], 0.25〉, 〈[−1, 2], 0.25〉}. In

330 E. Goubault and S. Putot

order to limit the complexity of computation, the result of each operation on
DSI can be reduced by a sound overapproximation with a fixed number of
focal elements. This can be done by joining some focal elements and adding
the corresponding weights. For instance here, when reducing to 2 focal ele-
ments by joining the first 2 and the last 2 focal elements, this results in
dy1 = {〈[−3, 1], 0.5〉; 〈[−1, 3], 0.5〉}. Then, applying to dy1 the ReLU function
by Lemma 1 produces d11 = {〈[0, 1], 0.5〉, 〈[0, 3], 0.5〉}. The other output x1

2 of
the first layer has the same DSI representation. After the output layer, the first
output is d21 = d11 − d12 = {〈[−3, 1], 0.5〉, 〈[−1, 3], 0.5〉}. Here x1

1 and x1
2 can no

longer be considered as independent as they both are correlated to x0
1 and x0

2,
the subtraction of their DSI representation is computed accordingly. The second
output is d22 = d11 + d12 = {〈[0, 4], 0.5〉, 〈[0, 6], 0.5〉}.

Take now the property x2
1 ≤ −2 ∧ x2

2 ≥ 2. Using Proposition 1, we deduce
from d21 and d22 that P(x2

1 ≤ −2) ∈ [0, 0.5] and P(x2
2 ≥ 2) ∈ [0.0, 1.0], from which

P(x2
1 ≤ −2 ∧ x2

2 ≥ 2) ∈ [0, 0.5]. Consider P(x2
1 ≤ −2) evaluated using d21 =

{〈[−3, 1], 0.5〉, 〈[−1, 3], 0.5〉}. Its lower bound is obtained using Proposition 1 by
P (−2) =

∑
xi <−2 wi = 0, as the upper bounds of the 2 focal elements [−3, 1] and

[−1, 3] are both greater than -2. The upper bound is P (−2) =
∑

xi ≤u wi = 0.5,
as the lower bound of [−3, 1] is lower than -2, which is not the case for [−1, 3].

Increasing the Number of Focal Elements. refines the over-approximation of the
input distributions and the sets of CDF obtained for the outputs. For instance
for 100 focal elements, in the case inputs can be considered as independent,
we obtain P(x2

1 ≤ −2) ∈ [0, 0.07] and P(x2
2 ≥ 2) ∈ [0.05, 0.52]. In the case of

inputs with unknown correlation, P(x2
1 ≤ −2) ∈ [0, 0.26] and P(x2

2 ≥ 2) ∈ [0, 1].
However, the supports of the sets of distribution remain unchanged and are
equal to the ranges obtained through interval analysis. Indeed, the affine layers
introduce some conservatism due to the wrapping effect of the intervals used as
focal elements. Additionally, joint distribution are not naturally represented in
the DSI framework, making it difficult to accuractely verify general properties.

4 Analysis with Probabilistic Zonotopes

Probabilistic affine forms [6,7] are affine forms where the symbolic variables or
noise symbols are constrained by DSI structures instead of being simply bounded
in [−1,1]. This can be seen as a simple way to encode affine correlations between
uncertain variables abstracted by p-boxes, or a quantitative version of affine
forms. We first introduce the probabilistic affine forms, presented as probabilistic
zonotopes, which represent vectors of probabilistic affine forms. Then we propose
an analysis of neural networks relying on these probabilistic zonotopes.

Affine Forms, Zonotopes and Probabilistic Zonotopes. An affine form
is a linear expression α0 +

∑p
j=1 αjεj with real coefficients αj and symbolic

A Zonotopic Dempster-Shafer Approach to Quantitative NN Verification 331

variables εj called noise symbols which values range in [−1,1]. A zonotope is the
geometric concretization of a vector of affine forms:

Definition 5 (Zonotope). An n-dimensional zonotope Z with center c ∈ Rn

and a vector Γ =
[
g1 . . . gp

] ∈ R
n,p of p generators gj ∈ R

n for j = 1, . . . , p is
defined as Z = 〈c, Γ 〉 = {c + Γε | ‖ε‖∞ ≤ 1}.

We note γi(Z) = ci +
∑p

j=1 gij [−1, 1] the range of its i-th component.

Zonotopes are closed under affine transformations:

Proposition 2 (Affine Transforms of a Zonotope). For A ∈ R
m,n and

b ∈ R
m we define AZ+b = 〈Ac+b, AΓ 〉 as the m-dimensional resulting zonotope.

Definition 6 (Probabilistic Zonotope). For ε a vector of random variables
of Rp, a zonotope Z = 〈c, Γ 〉 with c ∈ R

n and Γ ∈ R
n,p can be interpreted as

a probabilistic zonotope noted pZ(ε) = 〈c, Γ, ε〉 representing the n−dimensional
random variable Z = c+Γε. Let dε be a p−dimensional vector of DSI structures
with support in [−1, 1]p and G a dependence graph on the components ε1, . . . , .εp.
The marginal of each component of pZ(dε) is the affine transform on DSI struc-
tures: ci +

∑p
j=1 gijdεj

, i = 1, . . . , n computed as in Sect. 3.

Zonotopes represent affine relations that hold between uncertain quantities.
In the case of probabilistic zonotopes, imprecise affine relations hold:

Example 2. Let x1 = 1+ε1−ε2, x2 = − 1
2ε1+ 1

4ε2, dε1 = {〈[−1, 0], 1
2 〉, 〈[0, 1], 1

2 〉},
dε2 = {〈[− 1

10 , 0], 1
2 〉, 〈[0, 1

10],
1
2 〉}, Then x1 + 2x2 = 1 − 1

2ε2, represented by the
DSI d = 1 − 1

2dε2 = {〈[1920 , 1], 1
2 〉, 〈[1, 21

20],
1
2 〉}, by (a simple version of) the Affine

Transform of a Vector of DSI Structures. Thus the lower probability that x1 +
2x2 ≤ 21

20 is 1; and the upper probability that x1+2x2 < 19
20 is 0. But x1+2x2 ≤ 1

has upper probability 1
2 and lower probability 0 and is thus an imprecise relation.

Probabilistic Zonotopes for the Analysis of Neural Networks. We detail
hereafter Algorithm 2 using probabilistic zonotopes.

Algorithm 2. Neural network analysis by Probabilistic Zonotopes
Input: d0 a h0-dimensional vector of DSI
1: pZ0(ε) = 〈c0, Γ 0, dε〉 ← dsi-to-pzono(d0)
2: for k = 0 to L − 1 do
3: Zk+1 ← σ(AkZk + bk) � Proposition 2 and Proposition 3
4: end for
5: dL ← pzono-to-dsi(ZL, dε) � Definition 6
6: return (dL,cdf(pzono-to-dsi(HZL, dε), w))

332 E. Goubault and S. Putot

Input and Initialization. The input of the algorithm is the same as in Sect. 3,
the uncertain input is modelled as a vector d0 = (d01, . . . , d

0
h0
) of h0 DSI. We can

then define x0 ∈ IR
h0 the h0-dimensional box obtained as the support of d0,

computed for each DSI as the union of its focal elements with non-zero weight.
Finally, we define pZ0(ε) = 〈c0, Γ 0, dε〉 in Line 1 of Algorithm 2 by:

– Z0 = 〈c0, Γ 0〉, is built from the box x0,
– dε is the vector of DSI obtained by rescaling d0 between -1 and 1.

Propagation in the Layers. The propagation in the affine layers can be expressed
directly as affine transform on the zonotope by Proposition 2, and later inter-
preted as a probabilistic zonotope. Proposition 3 introduces the ReLU trans-
former proposed in [26], encoded in zonotope matrix form. The ReLU transform
is applied componentwise (on each row) and a new noise symbol (and thus a
new column in the generator matrix) is added whenever an over-approximation
is needed, that is when the input is not either always positive or negative.

Proposition 3 (ReLU Transform of a Zonotope). Let Z = 〈c, Γ 〉 with
Γ = (gij)i,j ∈ R

n,p be a zonotope, we note [li, ui] = γi(Z) the range of its i-th
component. The result of applying componentwise the ReLU activation function
is a zonotope Z ′ = 〈c′, Γ ′〉 where c′ ∈ R

n and Γ ′ ∈ R
n,p+n, with c′

i = λici + μi

and

Γ ′ =

⎡
⎢⎢⎣

λ1g11 . . . λ1g1p μ1 0 . . . 0
λ2g21 . . . λ2g2p 0 μ2 . . . 0
. . .

λngn1 . . . λngnp 0 0 . . . μn

⎤
⎥⎥⎦ , (λi, μi) =

⎧⎨
⎩

(1, 0) if li ≥ 0,
(0, 0) if ui ≤ 0,
(ui

ui−li
,− uili

2(ui−li)
) otherwise.

Output. The output zonotope after the L layers is ZL = 〈cL, ΓL〉 with cL ∈ R
hL

and ΓL ∈ R
hL,

∑L
k=0 hk . At line 5 of Algorithm 2, the probabilistic zonotope

pZL(dε) is converted into a vector of DSI, following Definition 6. In this interpre-
tation as a probabilistic zonotope, we must define the DSI structures correspond-
ing to the

∑L
k=1 hk new noise symbols introduced by the ReLU transformers. A

sound although conservative interpretation is to take the interval [−1, 1] as DSI
for them. This corresponds to considering that there is no available information
about the distribution of the variable represented by these new noise symbols.

At line 6, the transform HZL, interpreted as a probabilistic zonotope, is
converted in a vector of DSI and used to bound the probability P(Hy ≤ w).

A Zonotopic Dempster-Shafer Approach to Quantitative NN Verification 333

Analysis of the Toy Example. We consider again Example 1.

Deterministic Zonotopes Analysis. From the input sets x0 ∈ [−2, 2] × [−1, 1],
the zonotopic interpretation is initialized with the affine forms x0

1 = 2ε1, x0
2 = ε2

with ε1, ε2 ∈ [−1, 1], encoded: Z0 = 〈c0, Γ 0〉 with c0 =
[
0
0

]
, Γ 0 =

[
2 0
0 1

]
. Using

the affine transforms on zonotopes and Proposition 3 for the ReLU layer with
(λ, μ) = (0.5, 0.75) for both neurons, we obtain after the second affine layer:

Z2 = A2Z1 + b2 = 〈
[
0
1.5

]
,

[
0 −1 0.75 −0.75
2 0 0.75 0.75

]
〉 ⊆

[
[−2.5, 2.5]
[−2, 5]

]

The first output x2
1 is bounded in a tighter interval than with interval propagation

([-3,3]), the second ouput x2
2 is incomparable to the interval computation ([0,6]).

Probabilistic Zonotopes Analysis. Let us now suppose that the inputs x0
1 and x0

2

follow a uniform law, which can be abstracted as in Sect. 3 with DSI struc-
tures d01 and d02. Algorithm 2 produces the same input zonotope and prop-
agation through the network as above. Let us discretize the inputs with 2
focal elements. The rescaling of the DSI d01 and d02 between -1 and 1 yields
dε1 = {〈[−1, 0], 0.5〉, 〈[0, 1], 0.5〉} and dε2 = {〈[−1, 0], 0.5〉, 〈[0, 1], 0.5〉}.

The concretization of the final probabilistic zonotope pZ2(dε) to a vector of
DSI writes: d21 = −dε2 +0.75dε3 −0.75dε4 and d22 = 1.5+2dε1 +0.75dε3 +0.75dε4 ,
where dε3 and dε4 are the DSI corresponding to the noise symbols introduced in
the analysis by the ReLU function, with unknown distribution in [−1, 1]. We get
d21 = {〈[−2.5, 1.5], 0.5〉, 〈[−1.5, 2.5], 0.5〉} and d22 = {〈[−2., 3.], 0.5〉, 〈[0., 5.], 0.5〉}
and deduce P(x2

1 ≤ −2) ∈ [0, 0.5] and P(x2
2 ≥ 2) ∈ [0, 1].

The supports of the DSI are equal to the range obtained by the classical
zonotopic analysis, thus incomparable to the support of the DSI obtained by
Algorithm 1. The results are more generally not strictly comparable to those of
DSI computation. For instance here with 100 focal elements, we have P(x2

1 ≤
−2) ∈ [0, 0.26] and P(x2

2 ≥ 2) ∈ [0, 0.76] both in the case of independent inputs
x0
1 and x0

2 and unknown correlation, which is better than DSI in the case of
unknown correlation, while DSI are better for independent inputs. The reason
why the results do not depend here on the correlation between inputs is that dε1

does not appear in the expression of d21 and dε2 in the expression of d22, so that
the information of correlation between inputs is not used.

5 Analysis with Zonotopic Dempster-Shafer Structures

In Sect. 4, a unique initial zonotope is built and propagated in the network.
This propagation is exact through affine layers, but can be highly conservative
for nonlinear operations such as the activation functions. In Algorithm 3, we
suppose that the inputs are independent and perform the zonotopic propagation

334 E. Goubault and S. Putot

at a finer grain, on each tuple of focal elements of the inputs. This can be seen as
using zonotopic focal elements to represent the input vector of a layer, instead
of interval focal elements to represent each component of the input vector.

Algorithm 3. Neural network analysis by Dempster-Shafer zonotopic layers
Input: d0 a h0-dimensional vector of DSI
1: d0

Z =
{〈Z0

i1...ih0
, w0

1,i1 . . . w0
h0,ih0

〉, (i1, . . . , ih0) ∈ [1, n]h0
} ← dsi-to-dsz(d0)

2: for k = 0 to L − 1 do
3: for (i1, i2, . . . , ih0) ∈ [1, n]h0 do
4: Zk+1

i1...ih0
← σ(AkZk

i1...ih0
+ bk) � Proposition 2 and Proposition 3

5: end for
6: end for
7: dL

Z =
{〈ZL

i1...ih0
, w0

1,i1 . . . w0
h0,ih0

〉, (i1, . . . , ih0) ∈ [1, n]h0
}

8: dL ← dsz-to-dsi(dL
Z)

9: return (dL,cdf((HdL
Z , w))

Input and Initialization. The input is the same as in Sects. 3 and 4: the uncertain
input is modelled as a vector d0 = (d01, . . . , d

0
h0
) of h0 DSI. Assuming the input

components as independent, we perform the convolution of the distributions of
the input components to build a DSZ abstraction of the input vector: we con-
struct one zonotope per possible h0-tuple of focal elements representing the input
vector of DSI d0, with weight the product of the weights of each interval focal
elements: we define for each (i1, i2, . . . , ih0) ∈ [1, n]h0 the zonotope Z0

i1...ih0
=

〈c0i1...ih0
, Γ 0

i1...ih0
〉, built from the box x0

1i1
× x0

2i2
× . . . × x0

h0ih0
and define the

input d0Z as a Dempster Shafer structure with zonotopic focal elements (DSZ in
short): d0Z =

{〈Z0
i1...ih0

, w0
1,i1

w0
2,i2

. . . w0
h0,ih0

〉, (i1, i2, . . . , ih0) ∈ [1, n]h0
}
.

The number of focal elements does not have to be identical for each compo-
nent of the input vector d0, this choice was made here for simplicity of notation.

The propagation in the layers then consists in propagating each zonotope
focal elements. Note that the number of focal elements remains constant through
the propagation in the layers because all convolutions were computed at initial-
ization, only the zonotopes size evolves with the layer dimensions.

Output. The DSZ dL
Z is projected on the output vector, defined for each i ∈

[1, hL] by the DSI dL
i =

{〈γi(Z0
i1...ih0

), w0
1,i1

w0
2,i2

. . . w0
h0,ih0

, (i1, i2, . . . , ih0) ∈
[1, n]h0〉}.

The property can be assessed by evaluating the set of joint cumulative dis-
tributions represented by the DSZ HdL

Z , by generalizing the definition of Propo-
sition 1 from interval to zonotopic focal elements:

A Zonotopic Dempster-Shafer Approach to Quantitative NN Verification 335

Proposition 4 (CDF of a Zonotopic Dempster-Shafer Structure). Let
X be a random variable in R

n and dZ =
{〈Z1, w1〉, 〈Z2, w2〉, . . . , 〈Zu, wu〉} be

a DSZ with Zk = 〈ck, Γk〉 with ck ∈ R
n and Γk ∈ Rn,p and wk ∈]0, 1] and∑u

k=1 wu = 1. The DSZ dZ defines a discrete p-box representing the sets of joint
cumulative distribution functions such that for v ∈ R

n,
∑

k∈[1,u], Zk⊂↓v

wk = P v ≤ P(X ≤ v) ≤ P v =
∑

k∈[1,u],Zk∩↓v
=∅
wk

where ↓ v is the set of points in R
n less or equal than v in the componentwise

ordering. Practically, we can use the ranges or projections of each component of
Zk to get a conservative over-approximation of the p-box:

P v ≥
∑

k∈[1,u],
∧

i∈[1,n] γi(Zk)<vi

wk ∧ P v ≤
∑

k∈[1,u],
∧

i∈[1,n] γi(Zk)≤vi

wk

This proposition can be derived from the notion of cdf of a random set of
[24]. The bounds obtained by Proposition 4 are always at least as good than by
first converting the DSZ as a vector and then applying Proposition 1.

DSZ Analysis of the Toy Example. We consider again Example 1. with 2
focal elements for each input, we have d01 = {〈[−2, 0], 0.5〉, 〈[0, 2], 0.5〉} and d02 =
{〈[−1, 0], 0.5〉, 〈[0, 1], 0.5〉}. At Line 1 of Algorithm 3, d0Z is a DSZ structure with 4

zonotopic focal elements, each with weight 0.25: Z0
11 = 〈

[−1
−0.5

]
,

[
1 0
0 0.5

]
〉, Z0

12 =

〈
[−1
0.5

]
,

[
1 0
0 0.5

]
〉, Z0

21 = 〈
[

1
−0.5

]
,

[
1 0
0 0.5

]
〉, Z0

22 = 〈
[
1
0.5

]
,

[
1 0
0 0.5

]
〉. After the

output layer, the 4 zonotopic elements, each with weight 0.25, are: Z2
11 =

〈
[
1
6
1
6

]
,

[
1
3 − 1

6
1
3

1
3 − 1

6
1
3

]
〉, Z2

12 = 〈
[− 1

6
1
6

]
,

[− 1
3 − 1

6 − 1
3

1
3

1
6

1
3

]
〉, Z2

21 = 〈
[

5
6
13
6

]
,

[
1
3 − 5

6 − 1
3

10
6 − 1

6
1
3

]
〉,

Z2
22 = 〈

[− 5
6

13
6

]
,

[− 1
3 − 5

6
1
3

10
6

1
6

1
3

]
〉. From these and their projected ranges for x2

1 and x2
2,

we deduce (see Appendix of preprint [10]) using Proposition 4 that P(x2
1 ≤ −2) ∈

[0, 0.25] and P(x2
2 ≥ 2) ∈ [0, 0.5] and the conjunction P(Hy ≤ w) ∈ [0.0, 0.25].

6 Evaluation

Implementation. We implemented our approach1 using the Julia library Prob-
abilityBoundsAnalysis.jl [11] for Interval Dempster Shafer abstraction and arith-
metic. In this library, the focal elements of a DSI structure all have same weight.
The result is reduced after each arithmetic operation to keep a constant number
of focal elements. We rely on this DSI implementation, but our DSZ implementa-
tion does not present the same restrictions. The focal elements are bounded, but

1 available from https://doi.org/10.5281/zenodo.12519084.

https://doi.org/10.5281/zenodo.12519084

336 E. Goubault and S. Putot

a flag allows the user to specify that a distribution may have unbounded support,
and this knowledge is used to produce a sound CDF estimation for unbounded
distributions. In our current implementation, we do not use this possibility, but
we believe that the work presented here can be extended to unbounded support.
Timings for our analysis are on a MacBook Pro 2.3GHz Intel Core i9 with 8
cores (the implementation is not parallel, although obviously parallelizable).

Comparing DSI, Probabilistic Zonotopes and DSZ on the Toy Exam-
ple. We compare in Table 1 our 3 abstractions in the case of independent inputs,
varying the number of focal elements and the input distributions: U(n) denotes
a uniform distribution represented with n focal elements, and N(n) a truncated
normal law in the same range with n focal elements.

On this example, the DSZ analysis is by far more precise, followed by the
DSI and finally the probabilistic zonotopes. Refining the input discretization
with more focal elements tightens the output of all analyzes, but only the DSZ
converges to actually tight bounds. In particular, for DSI and probabilistic zono-
topes, the support of the output distribution is unchanged when the input is
refined. The computation times are, on this example, of the same order of mag-
nitude for all three analyzes, slightly higher for DSZ, and lower for probabilis-
tic zonotopes. The reason for the probabilistic zonotopes to have lower cost is
that affine transforms are computed on the zonotopes, and the costly operations
between DSI are delayed until the final representation as a DSI. It is not surpris-
ing that the DSZ have slightly higher cost, because of the exponential number of
zonotopic focal elements. However, the computation is obviously parallelizable.

Table 1. Probability bounds for the toy example, independent inputs.

Law DSI Prob. Zono. DSZ
(#FE) P(x2

1 ≤ −2)P(x2
2 ≥ 2) time P(x2

1 ≤ −2) P(x2
2 ≥ 2) time P(x2

1 ≤ −2) P(x2
2 ≥ 2) time

U(2) [0, 0.5] [0, 1] < e−3 [0, 0.5] [0, 1] < e−3 [0, 0.25] [0, 0.5] < e−3

U(10) [0, 0.2] [0, 0.7] e−3 [0, 0.3] [0, 0.8] e−3 [0, 0.03] [0.2, 0.3] < e−3

U(102) [0, 0.07] [0.05, 0.52] 0.022 [0, 0.26] [0, 0.76] 0.013 [0, 0.0014] [0.25, 0.26] 0.026
U(103) [0, 0.063] [0.062, 0.502] 2.4 [0, 0.251] [0, 0.751] 1.2 [0, 3.e−6] [0.25, 0.251] 3
N(10) [0, 0.017] [0, 0.277] e−3 [0, 0.1] [0, 1] e−3 [0, 0.01] [0, 0.1] < e−3

N(102) [0, 0.004] [0, 0.186] 0.022 [0, 0.07] [0, 0.94] 0.013 [0, 4.e−4] [0.06, 0.07] 0.026

N(103) [0, 0.004] [0.003, 0.182] 2.4 [0, 0.067] [0, 0.934] 1.2 [6e−5, 1.1e−4] [0.066, 0.067] 3

We can also note the strong impact of the input hypotheses on the results,
advocating the need of such an approach which can account in a same framework
and computation for large classes of inputs. For instance, changing the input dis-
tribution from a uniform to a Gaussian truncated to same support produces very
different probability bounds. In Table 1, we supposed the inputs independent. For
instance, the DSI analysis for 100 focal elements and a uniform law, produces for
independent inputs P(x2

1 ≤ −2) ∈ [0, 0.07] and P(x2
2 ≥ 2) ∈ [0.05, 0.52], while for

inputs with unknown dependence, P(x2
1 ≤ −2) ∈ [0, 0.26] and P(x2

2 ≥ 2) ∈ [0, 1].

A Zonotopic Dempster-Shafer Approach to Quantitative NN Verification 337

For independent inputs, the DSZ is the best choice among our approaches. In
the case of correlated inputs, it is hard to conclude from such a simple example
between DSI and probabilistic zonotopes. In the context of discrete dynamical
systems where probabilistic zonotopes were proposed [6,7], they were much bet-
ter than DSI both in terms of efficiency and accuracy. The context of neural
networks is less favorable, but it is probable that probabilistic zonotopes can be
more interesting than DSI for larger networks. However, our focus is to explore
in the future the encoding of multivariate probabilistic distributions as input
distributions, and lift this current restriction on the DSZ analysis.

Comparing DSZ to Probstar [29]. We now compare our approach to the
results of the closely related approach [29] on their two benchmark examples.
Similarly to [29], we consider the inputs as independent.

ACAS Xu We consider the ACAS Xu networks benchmark, where the networks
have 5 inputs and 5 outputs, with the same input configurations and properties
(P2 : y1 > y2 ∧ y1 > y3 ∧ y1 > y4 ∧ y1 > y5, P3/P4 : y1 < y2 ∧ y1 < y3 ∧ y1 <
y4 ∧ y1 < y5) as in [29]. The lower and upper bounds on the inputs, lb and ub,
depend on the property, and are used in [29] to define probabilistic input sets
by Gaussian distributions with mean m = (ub + lb)/2 and standard deviation
(ub − m)/a, where a = 3, truncated between lb and ub. In our work, after
creation of the input DSI from the above Gaussian distribution, we truncate all
focal elements so that the support of the DSI is restricted to the input range
[lb, ub]. In [29], an argument is used to deduce bounds for the probability for
non truncated distributions. We could use a similar argument here but we focus
on the results for the truncated distributions, and compare our results to the
interval [US − Prob − LB,US − Prob − UB] with the notations of [29].

We choose for our approach an over-approximation of the input distributions
using a different number of focal elements for each component of the vector input,
based on the relative widths of the input intervals. We represent these as vectors
of number of focal elements, taking [5, 80, 50, 6, 5] for Property 2, [5, 20, 1, 6,
5] for Properties 3 and 4. In Table 2, we compare our results with the Probstar
approach with two parametrizations: pf = 0 corresponds to an exact set-based
propagation, while pf = e−5 corresponds to the level of over-approximation in
propagation most widely used in [29].

The running times for Probstar in Table 2 are those of [29], hence not com-
puted on the same computer. We reproduced Property 2 on Net 1–6 with Prob-
stars on our MacBook: for p = 0, it takes 3614 s on 8 cores, 5045 s on 4 cores,
12542 on 1 core, to be compared to the 1424 s in Table 2; for p = e−5, it takes
425 s on 8 cores, 489 on 4 cores, 1489 on 1 core, to be compared to the 206 s in
Table 2) and to the 46 s with DSZ.

The tightness of the enclosures of the DSZ is comparable to Probstars with
p = e−5, for an analysis being generally an order of magnitude faster. The
results look consistent between the 2 analyzes for Property 2. Properties 3 and 4
(originally from [15]) are true on the whole input range, which can be proven by
classical set-based analysis, and our approach accordingly produces a probability

338 E. Goubault and S. Putot

Table 2. Probability bounds for the ACAS Xu example.

PropNet DSZ Probstar pf = e−5 Probstar pf = 0

P time P time P time

2 1–6 [0, 0.01999] 46.4 [2.8e-06,0.05283] 206.7 1.87224e-05 1424
2 2–2 [0.00423 0.0809] 47.9 [0.0195,0.094] 299.0 0.0353886 2102.5
2 2–9 [0, 0.0774684] 51.0 [0.000255,0.107] 504.5 0.000997678 4561.2
2 3–1 [0.0165, 0.08787] 43.8 [0.0305, 0.07263] 202.7 0.044535 1086.4
2 3–6 [0.0167, 0.1111] 52.4 [0.02078,0.1069] 452.0 0.0335763 5224.4
2 3–7 [6e-05, 0.1361] 43.7 [0.002319,0.075] 331.1 0.00404731 2598
2 4–1 [1e-05, 0.05353] 40.9 [0.00104,0.07162] 305.3 0.00231247 1870.7
2 4–7 [0.0129, 0.1056] 44.4 [0.02078,0.1081] 418.9 0.04095 3407.8
2 5–3 [0, 0.03939] 40.0 [1.59e-09,0.0326] 139.7 1.81747e-09 418.8
3 1–7 [1, 1] 0.25 [0.9801,0.9804] 4.7 0.976871 3.6
4 1–9 [1, 1] 0.2 [0.9796,0.98] 3.6 0.989244 3.6

equal to 1. The approach of [29] produces more precise, ’exact’ results, when
p = 0, than our approach. However, only the set-based propagation is exact,
there is also a part of probabilistic estimation. For instance, when reproducing
Property 2 on Net 1–6 with Probstars, we obtained for p = 0, the probabilities
1.56119e-05 with 8 cores, 6.76052e-06 with 4 cores, 7.22045e-06 with 1 core, to
be compared to the ’exact’ 1.87224e-05 in the table. In contrast, our approach
produces fully guaranteed bounds while allowing a much richer classes of inputs.

In Table 2, we manually chose the number of focal element per input com-
ponent. Although we refrained from optimizing too much, choosing for instance
the same discretization for different networks, this impairs the practicality of
the approach. As a first answer, we implemented a simple loop to automatically
refine the discretization starting from a very rough one, by some basic sensi-
tivity analysis. For instance, for Property 2 and net-1-6, the total refinement
process with as stopping criterion the width of the probability interval lower
than 0.05 takes 112 s and leads to the number of focal elements [5, 81, 38, 5, 5]
and a probability in [0, 0.0276], with bounds twice tighter than Probstars with
p = e−5.

Rocket Lander. Let us now consider the rocket lander example of [29], with the
same inputs and properties. The networks have here 9 inputs. Taking the vector
of focal elements [7, 12, 10, 17, 9, 7, 1, 1, 2, 1, 1] produces the results of Table 3

Again, the timings for Probstars are those of [29]; we executed for instance on
our MacBook the analysis of Property 1 on network 0 with 4 cores, the running
times were 1351.2 s for pf = 1e−5 and 12127 s for pf = 0.

A Zonotopic Dempster-Shafer Approach to Quantitative NN Verification 339

Table 3. Comparing probability bounds for the rocket lander example.

Prop Net DSZ Probstar pf = 1e − 5 Probstar pf = 0

P timeP time P time

1 0 [0, 0.03387] 77.8 [4.15e-09, 0.06748] 1158.6 7.978e-08 5903.7
2 0 [0, 0.01352] 83.7 [0,0.1053] 2216 0 13132.7
1 1 [0, 0.01985] 80.5 [0,0.0536] 1229.7 8.68e-08 5163.9
2 1 [0, 0.00055] 69.1 [0, 0.0161751] 448.5 0 1495.6

7 Conclusion

A central notion for dealing with multivariate probabilistic distributions is that of
a copula [18], and in particular Sklar’s theorem which links multivariate cdf with
the cdf of its marginals. Multiple authors have considered generalizing Sklar’s
theorem to imprecise probabilities, [17,19], with e.g. applications in [12] to the
analysis of non-linear dynamical systems. In this work, we developed the case of
multidimensional imprecise probabilites described by the independence copula.
Future work includes the tractable treatment of other copulas in our framework.
Finally, we focused here on ReLU-based networks, but the approach is by no
means restricted to this activation function.

Acknowledgement. This work was partially supported by the SAIF project, funded
by the France 2030 government investment plan managed by the French National
Research Agency, under the reference ANR-23-PEIA-0006, and by the 2021 project
FARO, funded by Agence de l’Innovation de Défense AID through the Centre Inter-
disciplinaire d’Etudes pour la Défense et la Sécurité CIEDS.

Data Availability Statement. The Julia implementation of our approach and the
examples to reproduce results of this paper are available from https://doi.org/10.5281/
zenodo.12519084.

References

1. Bak, S., Duggirala, P.S.: Simulation-equivalent reachability of large linear systems
with inputs. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
401–420. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_20

2. Baluta, T., Chua, Z.L., Meel, K.S., Saxena, P.: Scalable quantitative verification
for deep neural networks (2021)

3. Baluta, T., Shen, S., S., S., Meel, K.S., Saxena, P.: Quantitative verification of
neural networks and its security applications. In: Computer and Communications
Security (2019)

4. Beer, M., S.F., Kreinovich, V.: Imprecise probabilities in engineering analyses.
Mech. Syst. Signal Process. 37(1), 4–29 (2013)

5. Boopathy, A., Weng, T.W., Chen, P.Y., Liu, S., Daniel, L.: CNN-cert: an efficient
framework for certifying robustness of convolutional neural networks. In: AAAI
(2019)

https://doi.org/10.5281/zenodo.12519084
https://doi.org/10.5281/zenodo.12519084
https://doi.org/10.1007/978-3-319-63387-9_20

340 E. Goubault and S. Putot

6. Bouissou, O., Goubault, E., Goubault-Larrecq, J., Putot, S.: A generalization of
p-boxes to affine arithmetic. Computing 94(2–4), 189–201 (2012)

7. Bouissou, O., Goubault, E., Putot, S., Chakarov, A., Sankaranarayanan, S.: Uncer-
tainty propagation using probabilistic affine forms and concentration of mea-
sure inequalities. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol.
9636, pp. 225–243. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49674-9_13

8. Fazlyab, M., Morari, M., Pappas, G.J.: Probabilistic verification and reachability
analysis of neural networks via semidefinite programming. In: 2019 IEEE 58th
Conference on Decision and Control (CDC), pp. 2726–2731 (2019). https://doi.
org/10.1109/CDC40024.2019.9029310

9. Ferson, S., Kreinovich, V., Ginzburg, L., Myers, D.: Constructing probability
boxes and dempster-shafer structures. Tech. rep., Sandia National Laboratories,
SAND2002-4015, Albuquerque, New Mexico (2003)

10. Goubault, E., Putot, S.: A Zonotopic Dempster-Shafer Approach to the Quanti-
tative Verification of Neural Networks (2024). https://hal.science/hal-04546350.
Working paper or preprint

11. Gray, A., Ferson, S., Patelli, E.: ProbabilityBoundsAnalysis.jl: arithmetic with
sets of distributions. In: Proceedings of JuliaCon (2021)

12. Gray, A., Forets, M., Schilling, C., Ferson, S., Benet, L.: Verified propagation of
imprecise probabilities in non-linear ODEs. Int. J. Approx. Reason. 164, 109044
(2024). https://doi.org/10.1016/j.ijar.2023.109044

13. Henriksen, P., Lomuscio, A.R.: Efficient neural network verification via adaptive
refinement and adversarial search. In: Giacomo, G.D., et al. (eds.) ECAI 2020 -
24th European Conference on Artificial Intelligence, 2020 - Including 10th Confer-
ence on Prestigious Applications of Artificial Intelligence (PAIS 2020). Frontiers in
Artificial Intelligence and Applications, vol. 325, pp. 2513–2520. IOS Press (2020)

14. Huang, C., Hu, Z., Huang, X., Pei, K.: Statistical certification of acceptable robust-
ness for neural networks. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds.)
ICANN 2021. LNCS, vol. 12891, pp. 79–90. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-86362-3_7

15. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9_5

16. Lyu, Z., Ko, C.Y., Kong, Z., Wong, N., Lin, D., Daniel, L.: Fastened crown: tight-
ened neural network robustness certificates. Proc. AAAI Conf. Artif. Intell. 34(04),
5037–5044 (2020)

17. Montes, I., Miranda, E., Pelessoni, R., Vicig, P.: Sklar’s theorem in an
imprecise setting. Fuzzy Sets and Systems 278, 48–66 (2015). https://doi.
org/10.1016/j.fss.2014.10.007, https://www.sciencedirect.com/science/article/pii/
S0165011414004539, special Issue on uncertainty and imprecision modelling in deci-
sion making (EUROFUSE 2013)

18. Nelsen, R.B.: An Introduction to Copulas, 2nd edn. Springer, New York (2006)
19. Omladič, M., Stopar, N.: A full scale sklar’s theorem in the imprecise setting. Fuzzy

Sets and Systems 393, 113–125 (2020). https://doi.org/10.1016/j.fss.2020.02.
001, https://www.sciencedirect.com/science/article/pii/S0165011420300348, cop-
ulas and Related Topics

20. Pautov, M., Tursynbek, N., Munkhoeva, M., Muravev, N., Petiushko, A., Oseledets,
I.: Cc-cert: A probabilistic approach to certify general robustness of neural net-

https://doi.org/10.1007/978-3-662-49674-9_13
https://doi.org/10.1007/978-3-662-49674-9_13
https://doi.org/10.1109/CDC40024.2019.9029310
https://doi.org/10.1109/CDC40024.2019.9029310
https://hal.science/hal-04546350
https://doi.org/10.1016/j.ijar.2023.109044
https://doi.org/10.1007/978-3-030-86362-3_7
https://doi.org/10.1007/978-3-030-86362-3_7
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1016/j.fss.2014.10.007
https://doi.org/10.1016/j.fss.2014.10.007
https://www.sciencedirect.com/science/article/pii/S0165011414004539
https://www.sciencedirect.com/science/article/pii/S0165011414004539
https://doi.org/10.1016/j.fss.2020.02.001
https://doi.org/10.1016/j.fss.2020.02.001
https://www.sciencedirect.com/science/article/pii/S0165011420300348

A Zonotopic Dempster-Shafer Approach to Quantitative NN Verification 341

works. Proceedings of the AAAI Conference on Artificial Intelligence 36, 7975–7983
(06 2022). https://doi.org/10.1609/aaai.v36i7.20768

21. Pilipovsky, J., Sivaramakrishnan, V., Oishi, M., Tsiotras, P.: Probabilistic verifi-
cation of Relu neural networks via characteristic functions. In: Matni, N., Morari,
M., Pappas, G.J. (eds.) Proceedings of The 5th Annual Learning for Dynamics
and Control Conference. Proceedings of Machine Learning Research, vol. 211, pp.
966–979. PMLR (2023)

22. Păsăreanu, C., Converse, H., Filieri, A., Gopinath, D.: On the probabilistic anal-
ysis of neural networks. In: 2020 IEEE/ACM 15th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 5–8
(2020). https://doi.org/10.1145/3387939.3391594

23. Regan, H., Ferson, S., Berleant, D.: Equivalence of methods for uncertainty prop-
agation of real-valued random variables. Int. J. Approx. Reason. 36, 1–30 (2004).
https://doi.org/10.1016/j.ijar.2003.07.013

24. Schmelzer, B.: Random sets, copulas and related sets of probability measures. Int.
J. Approx. Reason. 160, 108952 (2023). https://doi.org/10.1016/j.ijar.2023.108952

25. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)
26. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.: Fast and effective

robustness certification. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing
Systems. vol. 31. Curran Associates, Inc. (2018). https://proceedings.neurips.cc/
paper_files/paper/2018/file/f2f446980d8e971ef3da97af089481c3-Paper.pdf

27. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.T.: Fast and effective
robustness certification. In: Advances in Neural Information Processing Systems,
NeurIPS, pp. 10825–10836 (2018)

28. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proc. ACM Program. Lang. (POPL) (2019)

29. Tran, H.D., Choi, S., Okamoto, H., Hoxha, B., Fainekos, G., Prokhorov, D.: Quan-
titative verification for neural networks using probstars. In: Proceedings of the
26th ACM International Conference on Hybrid Systems: Computation and Control
(HSCC 2023). Association for Computing Machinery, New York (2023). https://
doi.org/10.1145/3575870.3587112

30. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman & Hall
(1991)

31. Webb, S., Rainforth, T., Teh, Y.W., Kumar, M.P.: A statistical approach to assess-
ing neural network robustness. ICLR. arXiv preprint arXiv:1811.07209 (2019)

32. Weng, L., et al.: PROVEN: Verifying robustness of neural networks with a prob-
abilistic approach. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of
the 36th International Conference on Machine Learning. Proceedings of Machine
Learning Research, vol. 97, pp. 6727–6736. PMLR (2019). https://proceedings.mlr.
press/v97/weng19a.html

33. Williamson, R.C., Downs, T.: Probabilistic arithmetic: numerical methods for cal-
culating convolutions and dependency bounds. Journ. Approx. Reas. (1990)

34. Zhang, D., Ye, M., Gong, C., Zhu, Z., Liu, Q.: Black-box certification with ran-
domized smoothing: a functional optimization based framework. In: Proceedings
of the 34th International Conference on Neural Information Processing Systems
(NIPS 2020). Curran Associates Inc., Red Hook (2020)

35. Zhang, H., Weng, T.W., Chen, P.Y., Hsieh, C.J., Daniel, L.: Efficient neural net-
work robustness certification with general activation functions. In: Bengio, S.,
Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.)

https://doi.org/10.1609/aaai.v36i7.20768
https://doi.org/10.1145/3387939.3391594
https://doi.org/10.1016/j.ijar.2003.07.013
https://doi.org/10.1016/j.ijar.2023.108952
https://proceedings.neurips.cc/paper_files/paper/2018/file/f2f446980d8e971ef3da97af089481c3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/f2f446980d8e971ef3da97af089481c3-Paper.pdf
https://doi.org/10.1145/3575870.3587112
https://doi.org/10.1145/3575870.3587112
http://arxiv.org/abs/1811.07209
https://proceedings.mlr.press/v97/weng19a.html
https://proceedings.mlr.press/v97/weng19a.html

342 E. Goubault and S. Putot

Advances in Neural Information Processing Systems, vol. 31, pp. 4939–4948.
Curran Associates, Inc. (2018). https://proceedings.neurips.cc/paper/2018/file/
d04863f100d59b3eb688a11f95b0ae60-Paper.pdf

36. Zhang, T., Ruan, W., Fieldsend, J.E.: Proa: a probabilistic robustness assessment
against functional perturbations. In: ECML PKDD 2022, Part III. LNCS, pp. 154–
170. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-26409-2_10

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://proceedings.neurips.cc/paper/2018/file/d04863f100d59b3eb688a11f95b0ae60-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d04863f100d59b3eb688a11f95b0ae60-Paper.pdf
https://doi.org/10.1007/978-3-031-26409-2_10
http://creativecommons.org/licenses/by/4.0/

Certified Quantization Strategy Synthesis
for Neural Networks

Yedi Zhang1, Guangke Chen2, Fu Song3,4, Jun Sun5(B), and Jin Song Dong1

1 National University of Singapore, Singapore 117417, Singapore
2 ShanghaiTech University, Shanghai 201210, China

3 Key Laboratory of System Software (Chinese Academy of Sciences) and State Key
Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,

Beijing 100190, China
4 Nanjing Institute of Software Technology, Nanjing 211135, China
5 Singapore Management University, Singapore 178902, Singapore

junsun@smu.edu.sg

Abstract. Quantization plays an important role in deploying neural
networks on embedded, real-time systems with limited computing and
storage resources (e.g., edge devices). It significantly reduces the model
storage cost and improves inference efficiency by using fewer bits to repre-
sent the parameters. However, it was recently shown that critical proper-
ties may be broken after quantization, such as robustness and backdoor-
freeness. In this work, we introduce the first method for synthesizing
quantization strategies that verifiably maintain desired properties after
quantization, leveraging a key insight that quantization leads to a data
distribution shift in each layer. We propose to compute the preimage for
each layer based on which the preceding layer is quantized, ensuring that
the quantized reachable region of the preceding layer remains within the
preimage. To tackle the challenge of computing the exact preimage, we
propose an MILP-based method to compute its under-approximation.
We implement our method into a tool Quadapter and demonstrate its
effectiveness and efficiency by providing certified quantization that suc-
cessfully preserves model robustness and backdoor-freeness.

1 Introduction

While deep neural networks (DNNs) have achieved notable success in var-
ious application domains [5,31], their deployment on resource-constrained,

This study was funded by the National Natural Science Foundation of China
(62072309), CAS Project for Young Scientists in Basic Research (YSBR-040), ISCAS
New Cultivation Project (ISCAS-PYFX-202201), ISCAS Fundamental Research
Project (ISCAS-JCZD-202302), the Ministry of Education, Singapore under its Aca-
demic Research Fund Tier 3 (Award ID: MOET32020-0004), and the Ministry of
Education, Singapore under its Academic Research Fund Tier 3 (Award ID: MOE-
MOET32020-0003). Any opinions, findings, conclusions, or recommendations expressed
in this material are those of the author(s) and do not reflect the views of the Ministry
of Education, Singapore.
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 343–362, 2025.
https://doi.org/10.1007/978-3-031-71162-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_18&domain=pdf
https://doi.org/10.1007/978-3-031-71162-6_18

344 Y. Zhang et al.

Fig. 1. Visualized data distribution shift using 400 random samples centered around an
input image. These inputs are processed through both a DNN (trained on MNIST [20])
and its counterparts quantized with bit-width Q ∈ {4, 6, 8, 10}. The resulting high-
dimensional convex shapes are visualized in 2D. The blue and brown scatters demon-
strate the distribution of output values of each affine layer of the DNN and QNNs.
(Color figure online)

embedded, real-time systems is currently impeded by their substantial demand
for computing and storage resources [27]. Quantization is one of the most pop-
ular and promising techniques to address this issue [8,39]. By storing the full-
precision values in a DNN (such as parameters and/or activation values) into
low bit-width fixed-point numbers, quantization facilitates the compression of a
DNN and leads to a quantized neural network (QNN), making the network more
efficient.

While a lot of techniques have been proposed to minimize the loss of accuracy
induced by quantization [8,15,21,22,32,33,42,44,48], an important side-effect of
quantization is overlooked, that is the risk of breaking desired critical proper-
ties, e.g., robustness [24,41] and backdoor-freeness [13,26,34,55], thereby raising
great concerns, especially when they are deployed in safety-critical applications.
While quantization-aware training techniques have been proposed to improve the
robustness for a given fixed quantization strategy [23,24,41,43], they fail to pro-
vide robustness guarantees. Therefore, it becomes imperative to devise a quan-
tization strategy synthesis technique, ensuring that the resulting QNNs retain
specific desired properties. Noting that although various verification methods
for QNNs have been proposed [3,9,12,52–54], they exclusively focus on post-hoc
analyses rather than synthesis, namely, these methods merely verify or falsify
the properties but offer no solutions for those that are falsified.
Contributions. In this work, we propose the first quantization strategy syn-
thesis method, named Quadapter, such that the desired properties are verifiably
maintained by the quantization. Given a DNN N and a property 〈I,O〉 where I
and O are the pre- and post-condition for the input and output, our general idea
is first to compute the preimage of each layer w.r.t. the output region formed by
O. Then, considering the typical data distribution shift caused by quantization
in each layer (cf. Fig. 1), we identify the minimal bit-width for each layer such
that the shifted quantized reachable region w.r.t. I always remains within the

Certified Quantization Strategy Synthesis for Neural Networks 345

corresponding preimage. This method allows us to derive a quantization strategy
for the entire network, preserving the desired property 〈I,O〉 after quantization.

A key technical question is how to represent and compute the preimage for
each layer effectively and efficiently. In this work, we propose to compute an
under-approximation of the preimage for each layer and represent it by adapting
the abstract domain of DeepPoly [40]. Specifically, we devise a novel Mixed Inte-
ger Linear Programming (MILP) based method to propagate the (approximate)
preimage layer-by-layer in a backward fashion, where we encode the affine trans-
formation and activation function precisely as linear constraints and compute
under-approximate preimage via MILP solving.

We implement our methods as an end-to-end tool Quadapter and extensively
evaluate our tool on a large set of synthesis tasks for DNNs trained using two
widely used datasets MNIST [20] and Fashion-MNIST [46], where the number
of hidden layers varies from 2 to 6 and the number of neurons in each hid-
den layer varies from 100 to 512. The experimental results demonstrate the
effectiveness and efficiency of Quadapter in synthesizing certified quantization
strategies to preserve robustness and backdoor-freeness. The quantization strat-
egy synthesized by Quadapter generally preserves the accuracy of the original
DNNs (with only minor degradation). We also show that by slightly relaxing
the under-approximate preimages of the hidden layers (without sacrificing the
overall soundness), Quadapter can synthesize quantization strategies with much
smaller bit-widths while preserving the desired properties and accuracy.

The remainder of this paper is organized as follows. Section 2 gives the pre-
liminaries and formulates the problem. Section 3 presents the details of our app-
roach and Sect. 4 demonstrates its applications. Section 5 reports our experimen-
tal results. We discuss related work in Sect. 6 and finally, Sect. 7 concludes. The
source code for our tool, along with the benchmarks, is available in [50], which
also includes a long version of the paper containing all missing proofs, design
choices, implementation details, and additional experimental results.

2 Preliminaries

We denote by R the set of real numbers. Given an integer n, let [n] := {1, . . . , n}
and R

n be the set of the n-tuples of real numbers. We use bold lowercase
letters (e.g., x) and BOLD UPPERCASE (e.g., W) to denote vectors and
matrices. We denote by Wi,: (resp. W:,i) the i-th row (resp. column) vector of
the matrix W, and by xj (resp. Wi,j) the j-th entry of the vector x (resp. Wi,:).
M denotes an extremely large number.

A Deep Neural Network (DNN) with 2d layers is a function N : Rn0 → R
n2d

such that N = f2d ◦ · · · ◦ f1, where f1 : Rn0 → R
n1 is the input layer, f2d :

R
n2d−1 → R

n2d is the output layer, and the others are hidden layers. The hidden
layers alternate between affine layers f2i : Rn2i−1 → R

n2i and activation layers
f2i+1 : Rn2i → R

n2i+1 for i ∈ [d − 1]. The semantics of each layer is defined as
follows: x1 = f1(x) = x, x2i = f2i(x2i−1) = W2ix2i−1 + b2i for i ∈ [d] and
x2i+1 = f2i+1(x2i) = ReLU(x2i) for i ∈ [d − 1], where W2i and b2i are the

346 Y. Zhang et al.

weight matrix and the bias vector of the 2i-th layer, n0 = n1 and n2i = n2i+1 for
i ∈ [d−1]. Note that for the sake of presentation, we regard affine and activation
layers separately as hidden layers, some prior work regards the composition of
an affine layer and an activation layer as one hidden layer, e.g., [4,25,38]. Given
a DNN N with 2d layers, we use N[i:j] : Rni−1 → R

nj to denote the composed
function fj ◦ · · · ◦ fi. By N (I) (resp. N (I)g), we refer to the output region of
the network N (resp. neuron x2d

g) w.r.t. the input region I.
A Quantized Neural Network (QNN) is structurally identical to a DNN but

uses fixed-point values for its parameters and/or layer outputs. In this work, we
focus on QNNs where only parameters are quantized using the most hardware-
efficient quantization scheme, i.e., signed power-of-two quantization [33].

A quantization configuration ξ is a pair 〈Q,F 〉, where Q denotes the total
bit-width and F denotes the bit-width for the fractional part of the value. Given
a quantization configuration ξ and a real-valued number u, its fixed-point coun-
terpart û is defined as û = min(max(�u·2F �

2F ,−2Q−1), 2Q−1 − 1), where �·� is the
round-to-nearest operator. Given a DNN N : Rn0 → R

n2d with 2d layers and a
set of quantization configurations for affine and output layers Ξ = {ξ1, . . . , ξd},
its quantized version ̂N : Rn0 → R

n2d is a composed function as ̂N = f̂2d◦· · ·◦f̂1,
where each layer is defined the same as that in the DNN N except that the
parameters W2i and b2i for i ∈ [d] from the DNN N are quantized into fixed-
point values ̂W2i and ̂b2i in the QNN ̂N according to the quantization con-
figuration ξi. In this work, we call the set Ξ a quantization strategy of the
DNN N .

Definition 1. Given a DNN N : Rn0 → R
n2d , a property of N is a pair 〈φ, ψ〉

where φ is a pre-condition over the input x ∈ R
n0 and ψ is a post-condition

over the output y = N (x) ∈ R
n2d . N satisfies the property 〈φ, ψ〉, denoted by

N |= 〈φ, ψ〉, if φ(x) ⇒ ψ(N (x)) holds for any input x ∈ R
n0 .

Following prior work [49], we assume that the pre-condition φ and post-
condition ψ are expressible by polyhedra, namely, I and O, respectively. It is
reasonable since, for typical properties such as robustness, both conditions can
be effectively represented by a set of linear constraints. For simplicity, we will use
〈I,O〉 to denote the property directly. We are now ready to define our problem.

Definition 2. Given a DNN N and a property 〈I,O〉 such that N |= 〈I,O〉,
the problem of certified quantization strategy synthesis is to find a quantization
strategy Ξ such that ̂N |= 〈I,O〉, where ̂N is the QNN obtained from N under
the quantization strategy Ξ.

Review of DeepPoly. The core idea of DeepPoly is to (approximately) represent
the transformation of each layer using an abstract transformer, and compute
lower/upper bounds for the output of each neuron. Fix a neuron xi

j , its abstract
element Ai,�

j is given by a tuple 〈ai,≤
j ,ai,≥

j , lij , u
i
j〉, where ai,≤

j (resp. ai,≥
j) is a

symbolic lower (resp. upper) bound in the form of a linear combination of vari-
ables from its preceding layers, lij (resp. ui

j) is the concrete lower (resp. upper)
bound of xi

j . We denote by ai,≤ (resp. ai,≥) the vector of symbolic bounds ai,≤
j

Certified Quantization Strategy Synthesis for Neural Networks 347

(resp. ai,≥
j) of the neurons xi

j ’s in the i-th layer. The concretization of Ai,�
j is

defined as γ(Ai,�
j) = {xi

j ∈ R | ai,≤
j ≤ xi

j ≤ ai,≥
j }. By repeatedly substituting

each variable xi′
j′ in ai,≤

j (resp. ai,≥
j) using ai′,≤

j′ or ai′,≥
j′ according to the coef-

ficient of xi′
j′ , until no further substitution is possible, ai,≤

j (resp. ai,≥
j) will be

a linear combination over the input variables of the DNN. We denote by f i,≤
j

and f i,≥
j the resulting linear combinations of ai,≤

j and ai,≥
j . Then, the concrete

lower bound lij (resp. concrete upper bound ui
j) of the neuron xi

j can be derived
using the input region I and f i,≤

j (resp. f i,≥
j). All the abstract elements Ai,�

j

are required to satisfy the domain invariant: γ(Ai,�
j) ⊆ [lij , u

i
j]. We denote by Ai

j

the abstract element 〈f i,≤
j , f i,≥

j , lij , u
i
j〉. For an affine function xi = Wixi−1+bi,

the abstract affine transformer sets ai,≤ = ai,≥ = Wixi−1 + bi. Given the
abstract element Ai,�

j = 〈ai,≤
j ,ai,≥

j , lij , u
i
j〉 of the neuron xi

j , Ai+1,�
j of the neu-

ron xi+1
j = ReLU(xi

j) have three cases as follows, where λi
j = ui

j

ui
j−lij

: i) if

lij ≥ 0, then ai+1,≤
j = ai+1,≥

j = xi
j , li+1

j = lij , ui+1
j = ui

j ; ii) if ui
j ≤ 0, then

ai+1,≤
j = ai+1,≥

j = li+1
j = ui+1

j = 0; iii) if liju
i
j < 0, then ai+1,≥

j = λi
j(x

i
j − lij),

ai+1,≤
j = κ · xi

j where κ ∈ {0, 1} such that the area of resulting shape by ai+1,≤
j

and ai+1,≥
j is minimal, li+1

j = κ · lij and ui+1
j = ui

j .

3 Our Approach

In the following, we fix a DNN N with 2d layers and a property 〈I,O〉.

3.1 Foundation of Quadapter

Consider a function f and an output set Y , the preimage f−1(Y) of the output
set Y for f is the set {x | f(x) ∈ Y }. An under-approximation of f−1(Y) is a
set P such that P ⊆ f−1(Y).

Definition 3. A set P = {P2i | i ∈ [d−1]} is an under-approximate preimage of
the output region O for the DNN N if for every i ∈ [d− 1], P2i ⊆ N −1

[2i+1:2d](O).

Intuitively, P2i (resp. P2i
j) is the preimage of the activation layer f2i+1 (resp.

neuron x2i+1
j) w.r.t. the output region O. Since it suffices to consider preimages

of the activation layers in the set P for computing bit-widths of affine layers,
the preimages of the affine layers are excluded.

Proposition 1. Let ̂N 2i be a network obtained from N by quantizing the first
2i layers. If P = {P2i | i ∈ [d − 1]} is an under-approximate preimage of the
output region O for the DNN N , then ̂N 2i

[1:2i](I) ⊆ P2i ⇒ ̂N 2i |= 〈I,O〉. �

Intuitively, Proposition 1 states that regardless of the quantization configura-
tions of the first 2i layers, the property 〈I,O〉 is always preserved in the resulting
QNN, as long as the reachable region of the quantized layer f̂2i w.r.t. the input

348 Y. Zhang et al.

Fig. 2. An overview of our method.

region I remains within the preimage P2i. This proposition allows us to repeat-
edly compute a quantization configuration ξi for each layer f2i (i ∈ [d]), from
the first affine layer to the output layer, that guarantees the reachable region of
each quantized layer f̂2i remains within its respective preimage P2i. Putting all
the quantization configurations of the affine layers and the output layer together
yields a quantization strategy Ξ that preserves the desired property 〈I,O〉.

However, it is non-trivial to compute the preimages N −1
[2i+1:2d](O) from the

functions N −1
[2i+1:2d] for i ∈ [d−1]. To resolve this issue, we propose to repeatedly

compute a preimage P2i of each activation layer f2i+1 starting from the output
layer to the first activation layer by analyzing the function N −1

[2i+1:2i+2] instead
of the function N −1

[2i+1:2d], according to the following proposition.

Proposition 2. Let P = {P2i | i ∈ [d−1]} be a set such that for every i ∈ [d−1],
i) if i = d − 1, P2i ⊆ N −1

[2i+1:2i+2](O); ii) if i ≤ d − 2, P2i ⊆ N −1
[2i+1:2i+2](P2i+2).

P is an under-approximate preimage of the output region O for the DNN N . �

3.2 Overview of Quadapter

Let P2d = O. The overall workflow of Quadapter is depicted in Fig. 2 which
consists of the following two steps:

– Step 1: Preimage Computation. We first compute an under-approximate
preimage P2d−2 for the output layer s.t. P2d−2 ⊆ N −1

[2d−1:2d](O), and then
propagate it through the network until reaching the first affine layer. Finally,
we obtain the under-approximate preimage P = {P2i | i ∈ [d − 1]} for the
DNN N (the yellow part);

– Step 2: Forward Quantization. We then conduct a forward quantization
procedure layer-by-layer to find a quantization configuration ξi = 〈Qi, Fi〉
with minimal bit-width Qi for each layer f2i, ensuring that the reachable
region characterized by the quantized abstract element ̂A2i (the blue part) is
included in the preimage P2i, i.e., γ(̂A2i) ⊆ P2i for 1 ≤ i ≤ d.

The overall algorithm is given in Algorithm 1. Given a DNN N , a property
〈I,O〉, and the minimum (resp. maximum) fractional bit-width Bl (resp. Bu) for
each layer, we first apply DeepPoly on the DNN N w.r.t. input region I to obtain
the abstract elements A2i for i ∈ [d]. Then, the first for-loop computes the preim-
age by invoking the function UnderPreImage(N ,A2i,P2i+2) which propagates

Certified Quantization Strategy Synthesis for Neural Networks 349

Algorithm 1: Certified_Quantization(N , I,O,Bl,Bu)
1 Apply DeepPoly on the DNN N w.r.t. I to obtain abstract elements {A2i | 1 ≤ i ≤ d};
2 Let P2d = O and ̂N = N ;
3 for i = d − 1 to 1 do
4 P2i = UnderPreImage(N , A2i, P2i+2); //get P2i s.t. P2i ⊆ N −1

[2i+1:2i+2](P
2i+2)

5 for i = 1 to d do
6 ξi = ⊥;
7 I = the minimal bit-width to encode integer parts of W2i and b2i without overflow;
8 for F = Bl to Bu do
9 Quantize W2i, b2i w.r.t. ξ̌i = 〈F + I, F 〉 on ̂N to obtain ̂N 2i;

10 Apply DeepPoly on ̂N 2i
[1:2i] w.r.t. I to obtain ̂A2i;

11 if γ(̂A2i) ⊆ P2i then
12 ξi = ξ̌i; ̂N = ̂N 2i; //accept ξ̌i and update quantized parameters
13 break

14 if ξi == ⊥ then return UNKNOWN

15 return Ξ = {ξ1, . . . , ξd};

P2i+2 to the preceding activation layer and returns the approximate preimage
P2i with P2i ⊆ N −1

[2i+1:2i+2](P2i+2). The second for-loop performs a forward
quantization procedure, where the i-th iteration is used to compute the quan-
tization configuration ξi for layer f2i. First, we obtain the minimal bit-width I
for the integer part of weights and biases to prevent overflow. Then, we iterate
through all the possible configurations ξ̌i = 〈F + I, F 〉 by varying the frac-
tional bit-width F from the smallest one Bl to the largest one Bu. For each
F ∈ [Bl,Bu], we compute a partially quantized DNN ̂N 2i, where only the first
i affine layers (and the output layer) are quantized using ξ1, · · · , ξi−1, ξ̌i. Next,
we apply DeepPoly on ̂N 2i

[1:2i] w.r.t. the input region I to obtain the abstract
element ̂A2i of the quantized layer f̂2i, resulting in reachable region as the blue
part in Fig. 2. We then check whether this reachable region is strictly contained
in the preimage P2i, i.e., γ(̂A2i) ⊆ P2i. If this is the case, we update ξi as ξ̌i,
stop the iteration, and proceed to find the quantization configuration ξi+1 for
the next layer f2i+2. If there is no such quantization configuration, we return
UNKNOWN.

Below, we present the details of function UnderPreImage(N ,A2i,P2i+2) and
the method of checking the condition γ(̂A2i) ⊆ P2i. We first introduce the
template of preimage P2i utilized in this work.

3.3 Template T 2i of Preimage P2i

Given the abstract elements A2i = {A2i
j | j ∈ [n2i]} of the neurons in the

layer f2i, where A2i
j = 〈f2i,≤

j , f2i,≥
j , l2i

j , u2i
j 〉, we define the template T 2i of the

preimage P2i as
∧

j∈[n2i]
T 2i

j , where T 2i
j = {x2i

j ∈ R | f2i,≤
j − α2i

j ≤ x2i
j ≤

f2i,≥
j + β2i

j }, α2i
j = β2i

j = (u2i
j −l2i

j

2)χ2i, and χ2i is an additional variable over
the domain R. Intuitively, T 2i

j is a scaling of A2i
j using the scaling variable χ2i

and step u2i
j −l2i

j

2 . Thus, T 2i
j is A2i

j when χ2i = 0, and is super-region (resp.
sub-region) of A2i

j when χ2i > 0 (resp. χ2i < 0).

350 Y. Zhang et al.

3.4 Details of Function UnderPreImage

We present an MILP-based method to implement UnderPreImage(N ,A2i,
P2i+2). Given the abstract element A2i and preimage P2i+2, we construct a
maximization problem with objective function χ2i subject to the constraints
T 2i ⊆ N −1

[2i+1:2i+2](P2i+2), where T 2i is the template of P2i with the scaling vari-
able χ2i. The solution, i.e., the value of χ2i, yields the tightest under-approximate
preimage P2i such that P2i ⊆ N −1

[2i+1:2i+2](P2i+2). Hence, the key is addressing
T 2i ⊆ N −1

[2i+1:2i+2](P2i+2), for which we present an MILP-based method. We
first express T 2i ⊆ N −1

[2i+1:2i+2](P2i+2) as the following maximization problem:

maximize χ2i s.t. N[2i+1:2i+2](T 2i) ⊆ P2i+2. (1)

However, Problem (1) is not an MILP, due to the “forall”-type of constraints.
To address this issue, we construct the following minimization problem:

minimize χ2i s.t. x2i+2 ∈ N[2i+1:2i+2](T 2i) ∧ x2i+2 /∈ P2i+2. (2)

Intuitively, given the solution to Problem (2), e.g., χ2i,∗
min, we can always get a

value for χ2i by subtracting an extremely small value from χ2i,∗
min. The resulting

value of χ2i is close to the optimal solution of Problem (1), within a negligible
margin of error. Such a transformation to an “existential” constraint provides an
alternative way for handling T 2i ⊆ N −1

[2i+1:2i+2](P2i+2), allowing the problem to
be effectively tackled within the MILP framework.

Suppose T 2i
j = {x2i

j ∈ R | f2i,≤
j − α2i

j ≤ x2i
j ≤ f2i,≥

j + β2i
j } for j ∈ [n2i] and

P2i+2
k = {x2i+2

k ∈ R | f2i+2,≤
k − a2i+2

k ≤ x2i+2
k ≤ f2i+2,≥

k + b2i+2
k } for k ∈ [n2i+2]

and i ≤ d − 2. We reformulate Problem (2) as the following MILP problem:

minimize χ2i s.t. Ψ∈I ∪ ΨT 2i ∪ ΨT 2i+1 ∪ ΨT 2i+2 ∪ Ψ/∈P2i+2 , (3)

where Ψ∈I and Ψ/∈P2d will be given in Sect. 4 which entail x ∈ I and x2d /∈ P2d

respectively, as they depend on the property 〈I,O〉. ΨT 2i , ΨT 2i+1 , ΨT 2i+2 , and
Ψ/∈P2i+2 are defined as follows ({η2i+1

j , η2i+2
j , ζ2i+2

j } are Boolean variables):

– ΨT 2i = {f2i,≤
j − α2i

j ≤ x2i
j ≤ f2i,≥

j + β2i
j | j ∈ [n2i]} expressing template T 2i;

– ΨT 2i+1 = {x2i+1 ≥ 0,x2i+1 ≥ x2i,x2i+1 ≤ M · η2i+1
j ,x2i+1 ≤ x2i +M · (1 −

η2i+1
j) | j ∈ [n2i+1]} encoding the activation layer f2i+1 (cf. [54]);

– ΨT 2i+2 = {x2i+2
j = W2i+2

j,: x2i+1 + b2i+2
j | j ∈ [n2i+2]} encoding the affine

layer f2i+2 (cf. [54]). Note that ΨT 2i , ΨT 2i+1 and ΨT 2i+2 together express the
condition x2i+2 ∈ N[2i+1:2i+2](T 2i).

– Ψ/∈P2i+2 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

x2i+2
j > f2i+2,≥

j + b2i+2
j +M · (η2i+2

j − 1),
x2i+2

j ≤ f2i+2,≥
j + b2i+2

j +M · η2i+2
j ,

x2i+2
j ≥ f2i+2,≤

j − a2i+2
j − M · ζ2i+2

j ,

x2i+2
j < f2i+2,≤

j − a2i+2
j − M · (ζ2i+2

j − 1),
j ∈ [n2i+2] ∧

∑n2i+2
k=1

(

η2i+2
k + ζ2i+2

k

)

≥ 1

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

expressing the

condition x2i+2 /∈ P2i+2.

Theorem 1. Problems (2) and (3) are equivalent. �

Certified Quantization Strategy Synthesis for Neural Networks 351

3.5 Checking γ(̂A2i) ⊆ P2i

Fix the abstract elements ̂A2i = { ̂A2i
j | j ∈ [n2i]} for the quantized layer f̂2i with

̂A2i
j = 〈f̂2i,≤

j , f̂2i,≥
j , l̂2i

j , û2i
j 〉, we have γ(̂A2i

j) = {x2i
j ∈ R | f̂2i,≤

j ≤ x2i
j ≤ f̂2i,≥

j }.
Let P2i

j = {x2i
j ∈ R | f2i,≤

j − a2i
j ≤ x2i

j ≤ f2i,≥
j + b2i

j } for j ∈ [n2i] be the
preimage obtained by the function UnderPreImage for i ≤ d − 1, where a2i

j and
b2i
j are real-valued numbers.

Since reformulating the problem of checking γ(̂A2i) ⊆ P2i into an MILP
problem directly is infeasible due to its inherent nature of “forall”-type constraint,
we instead check the negation of this statement.

Let Φ/∈P2i be the following set of the linear constraints:

Φ/∈P2i = Ψ∈I ∪

⎧

⎨

⎩

f2i,≥
j + b2i

j +M · (η2i
j − 1) < f̂2i,≥

j ≤ f2i,≥ + b2i
j +M · η2i

j ,

f2i,≤ − a2i
j − M · ζ2i

j ≤ f̂2i,≤
j < f2i,≤ − a2i

j − M · (ζ2i
j − 1),

j ∈ [n2i],
∑n2i

k=1

(

η2i
k + ζ2i

k

)

≥ 1

⎫

⎬

⎭

where η2i
j and ζ2i

j are two additional Boolean variables, and Ψ∈I and Φ/∈P2d will
be given in Sect. 4 such that Ψ∈I entails x ∈ I and ¬Φ/∈P2d entails γ(̂A2d) ⊆ P2d

respectively, as they depend on the property 〈I,O〉.

Theorem 2. If Φ/∈P2i does not hold, then γ(̂A2i) ⊆ P2i. �

4 Applications: Robustness and Backdoor-Freeness

4.1 Certified Quantization for Robustness

We use Algorithm 1 to synthesize quantization strategies for preserving robust-
ness.

Definition 4. Let N : Rn0 → R
n2d be a DNN, Ir

u = {x ∈ R
n0 | ||x−u||∞ ≤ r}

be a perturbation region around an input u ∈ R
n0 , and Og = {x2d ∈ R

n2d |
argmax(x2d) = g} be the output region corresponding to a specific class g. Then,
〈Ir

u,Og〉 is a (local) robustness property of the DNN N .

We now give the encoding details that are not covered in Sect. 3, i.e., Ψ∈I
and Ψ/∈P2d in Problem (3), and Φ/∈P2d in Sect. 3.5 for the property 〈Ir

u,Og〉1:

– Ψ∈I = {max(uj −r, 0) ≤ xj ≤ min(uj+r, 1) | j ∈ [n0]} specifying the feasible
input range Ir

u;

– Ψ/∈P2d =
{

x2d
g +M · (η2d

j − 1) ≤ x2d
j ≤ x2d

g +M · η2d
j ,

j ∈ [n2d] \ g,
∑

k∈[n2d]\g η2d
k ≥ 1

}

stating x2d /∈ Og,

i.e., argmax(x2d) �= g, where η2d
j is a Boolean variable;

1 For simplicity, we assume that the output layer of N has a unique maximum value
for any given input. This assumption can be avoided by adapting Ψ/∈P2d and Φ/∈P2d .

352 Y. Zhang et al.

– Φ/∈P2d =

{

f̂2d,≤
g +M · (η2d

j − 1) ≤ f̂2d,≥
j ≤ f̂2d,≤

g +M · η2d
j ,

j ∈ [n2d]\g,
∑

k∈[n2d]\g η2d
k ≥ 1

}

whose unsat-

isfiability ensuring γ(̂A2d) ⊆ Og, where η2d
j is a Boolean variable.

The soundness of the algorithm is captured by the theorem below.

Theorem 3. Ψ∈I ⇔ x ∈ Ir
u, Ψ/∈P2d ⇔ x2d /∈ Og, ¬Φ/∈P2d ⇒ γ(̂A2d) ⊆ Og. �

4.2 Certified Quantization for Backdoor-Freeness

Given a DNN N : Rn0 → R
n2d and an input u ∈ R

n0 , assume that the 2D-
shape of u is a rectangle (hu, wu) (i.e., n0 = hu × wu). A backdoor trigger is
any 2D input s ∈ R

hs×ws with a shape of rectangle (hs, ws) such that hs ≤ hu

and ws ≤ wu. We use u[x, y] to denote the element located in the x-th row and
y-th column within the 2D-input u. Let (hp, wp) denote the position of (i.e., the
top-left corner of) the trigger s such that hp + hs ≤ hu and wp + ws ≤ wu.
Then, us is the stamped input where us[x, y] = s[x − hp, y − wp] if hp ≤ x ≤
hp + hs ∧ wp ≤ y ≤ wp + ws, and us[x, y] = u[x, y] otherwise.

Definition 5. Let N : Rn0 → R
n2d be a DNN, (hs, ws), (hp, wp), t, and θ be

the shape, position, target class, and attack success rate of potential triggers.
Then, the DNN N satisfies the backdoor-freeness property if there does not exist
a backdoor trigger s which has an attack success rate of at least θ, i.e., the
probability of N (us) = t for any u ∈ R

n0 is at least θ [37].

Given an input u ∈ R
n0 , let 〈IB

u ,OB
t 〉 be a property such that IB

u = {us ∈
R

n0 | s ∈ R
hs×ws is any trigger at position (hp, wp)} and OB

t = {x2d ∈ R
n2d |

argmax(x2d) �= t}. Intuitively, 〈IB
u ,OB

t 〉 entails that no trigger exists whereby
the input u, once stamped, would be classified as class t.

The overall algorithm is given in Algorithm 2 by applying a hypothesis testing
(a type I/II error σ/� and a half-width of the indifference region δ), i.e., the
SPRT algorithm [1]. The while loop first keeps randomly selecting a set of K
properties and collects the preimage with the highest value of the scaling variable
of the first affine layer, along with the property, until one of the hypotheses is
accepted. When the null hypothesis H0 is accepted (line 9), we try to find a
shared quantization strategy for all the properties collected before, following
Algorithm 1, with the innermost for-loop to traverse all properties. Due to space
limitations, details of the hypothesis testing and input parameters are explained
in [50].

Table 1. Benchmarks of DNNs on MNIST and Fashion-MNIST.

Accuracy P1: 2 × 100P2: 4 × 100P3: 6 × 100P4: 4 × 512

MNIST 97.79% 97.63% 97.39% 98.17%
Fashion-MNIST 87.86% 88.45% 87.22% 88.7%

Certified Quantization Strategy Synthesis for Neural Networks 353

Algorithm 2: CQ_Backdoor(N ,Bl,Bu, (hs, ws), (hp, wp), t, θ,K, ε, σ, �, δ)
1 Let P2d = OB

t , ̂N = N , AllI = ∅, AllP = ∅, n = z = 0;
2 Let p0 = 1 − θK + δ, p1 = 1 − θK − δ;
3 while true do
4 n = n + 1;
5 Randomly select a set of K properties X = {〈N B

u1
, OB

t 〉, . . . , 〈N B
uK

, OB
t 〉};

6 Compute under-approximate preimage for each property in X (cf. Alg. 1), and let
〈IB

u∗ , OB
t 〉 be the property with the highest value of the scaling variable χ2∗ for layer f2

and P∗ be the corresponding under-approximate preimage;
7 if χ2∗ ≥ ε then
8 z = z + 1; AllI .append(IB

u∗); AllP.append(P∗);

9 if pz
1

pz
0

× (1−p1)n−z

(1−p0)n−z ≤ �
1−σ then

10 for i = 1 to d do
11 ξi = ⊥;
12 Let I be the minimal bit-width to encode integer parts of W2i and b2i

without overflow;
13 for F = Bl to Bu do
14 Quantize W2i, b2i w.r.t. ξ̌i = (F + I, F) on ̂N and obtain ̂N 2i;
15 for k = 1 to z do
16 Apply DeepPoly on ̂N 2i

[1:2i] w.r.t. AllI [k] and obtain ̂A2i,k;

17 if γ(̂A2i,k) ⊆ AllP[k][i] is UNSAT then
18 break //jump to line 13 for next iteration of F

19 ξi = ξ̌i; ̂N = ̂N 2i; //accept ξ̌i and update quantized parameters
20 break //jump to line 10 to quantize next layer f2i+2

21 if ξi == ⊥ then return UNKNOWN

22 return Ξ = {ξ1, . . . , ξd}
23 else if pz

1
pz
0

× (1−p1)n−z

(1−p0)n−z ≤ 1−�
σ then

24 return UNKNOWN;

We now give the encoding details that are not covered in Sect. 3, i.e., Ψ∈I
and Ψ/∈P2d in Problem (3), and Φ/∈P2d in Sect. 3.5 for the property 〈IB

u ,OB
t 〉:

– Ψ∈I =
{

0 ≤ x[a, b] ≤ 1 if hp ≤ a ≤ hp + hs ∧ wp ≤ b ≤ wp + ws,
x[a, b] = u[a, b] otherwise

}

;

– Ψ/∈P2d = {x2d
t ≥ x2d

j | j ∈ [n2d]};
– Φ/∈P2d = {f̂2d,≤

j ≤ f̂2d,≥
t | j ∈ [n2d] \ t}.

Theorem 4. (1) Ψ∈I ⇔ x ∈ IB
u , Ψ/∈P2d ⇔ x2d /∈ OB

t , ¬Φ/∈P2d ⇒ γ(̂A2d) ⊆
OB

t , and (2) there is sufficient evidence (subject to type 1 error σ and type 2
error �) that there are no backdoor attacks with the featured triggers within the
QNN obtained by Algorithm 2. �

5 Evaluation

We have implemented our methods as a tool Quadapter with Gurobi [11] as
the back-end MILP solver. To address the numerical stability problem using
big-M, we use alternative formulations for the ReLU activation function and
tighter bounds for other big-M. Details refer to [50]. All experiments are run
on a machine with Intel(R) Xeon(R) Platinum 8375C CPU@2.90GHz, using 30
threads in total. The time limit for each task is 2 h.

354 Y. Zhang et al.

Benchmarks. We train 8 DNNs using the MNIST [20] and Fashion-MNIST [46]
datasets based on their popularity in previous verification studies with compara-
ble size [9,12,19,36,37]. To evaluate the performance of Quadapter, these DNNs
vary in architectures, whose details are given in Table 1, where x× y means that
the network has x hidden layers and y neurons per each hidden layer. Here-
after, we use MPx (resp. FPx) with x ∈ {1, 2, 3, 4} to denote the network of
architecture Px trained using MNIST (resp. Fashion-MNIST).

5.1 Performance of UnderPreImage Function

We evaluate the effectiveness and efficiency of the MILP-based method intro-
duced in Sect. 3.4 for computing the under-approximate preimage of DNNs MPx
with x ∈ {1, 2, 3, 4} for robustness properties. Specifically, we randomly select 50
inputs from the test set of MNIST and set the perturbation radius as r ∈ {2, 4},
resulting in a total of 400 robustness properties, each of which can be certi-
fied using DeepPoly. The time limit for each computation task is 2 h. We also
implement an abstraction-based method (ABS) to compute the preimages for
comparative analysis. Details refer to [50].

Fig. 3. Results of preimage computation.

The results are depicted
in Fig. 3. The boxplot shows
the distribution of the val-
ues of the scaling variables
obtained by the two methods
for each layer, where Ax and
Mx denote the results of layer
fx obtained by the ABS and
MILP methods, respectively.
(Note that some Ax and
Mx may be missing because
the DNN has no fx layer.)
The table reports the average
computation time in seconds,
where (i) indicates the num-
ber of tasks that run out of
time in 2 h. We find that com-
pared to the MILP method,
the ABS method tends to obtain significantly smaller values for scaling variables
in earlier layers, albeit requiring less time. It is mainly attributed to the inherent
over-approximation in the abstract transformers. Note that the scaling variable
for the last affine layer returned by the ABS method is typically larger than that
obtained via the MILP method. However, we argue that the scaling variables of
preceding layers are more significant, with larger values being preferable for a
successful forward quantization process subsequently. Therefore, we opt for the
MILP method to implement UnderPreImage, despite its longer execution time.
Integrating both methods is an interesting direction for future work.

Certified Quantization Strategy Synthesis for Neural Networks 355

Table 2. Certified quantization strategy synthesis results for robustness.

Quadapter with (Bl,Bl) = (1, 16) Quadapter∗ with (Bl,Bl) = (2, 16)
Network

#S #F Bit-width Acc. PTime(s) QTime(s) #S #F Bit-width Acc. PTime(s) QTime(s)

MP1 250 0 (6,3) 95.57% 8.17 10.80 250 0 (4,4) 96.59% 8.75 3.96
MP2 248 2 (8,6,3) 94.11% 30.49 29.18 249 1 (5,4,4) 96.35% 31.60 13.38
MP3 175 75 (11,9,6,3) 95.47% 39.55 58.63 208 32 (8,5,4,4) 96.08% 42.37 78.22
MP4 228 0 (8,6,3) 94.48% 1,066 160.2 227 0 (4,4,4) 96.97% 1,066 32.99

FP1 250 0 (6,4) 78.54% 6.93 10.48 250 0 (4,4) 83.89% 7.80 3.63
FP2 249 1 (8,6,3) 79.43% 29.82 28.86 248 2 (5,4,4) 84.56% 33.13 11.39
FP3 180 70 (11,9,6,3) 74.23% 36.90 59.45 222 26 (7,5,4,4) 85.74% 39.71 39.44
FP4 221 2 (8,7,3) 75.98% 564.0 160.7 220 2 (4,4,4) 83.07% 565.3 64.23

Unsurprisingly, we also observe the decrease of scaling variables as r increases
or the layer index decreases. The former is attributed to the enlargement of the
reachable region of each neuron with an increasing r, leading to a diminution in
the theoretical range of the amplification. The latter is because we propagate the
preimage towards the input layer and the preimage returned by UnderPreImage
increasingly under-approximates the ground truth. Additionally, we find a more
pronounced impact of the number of layers in a DNN on the scaling, as opposed
to the impact of the number of neurons per each layer. For example, when r = 4,
while the scaling of the last affine layer is similar across MP2, MP3, and MP4,
a notable divergence is observed as the preimage computation progresses to the
preceding layer, i.e., the scaling of f4 in MP3 largely diminishes compared to that
of f2 in MP2 and MP4, and even approaches zero in some tasks. We conjecture
that as the DNN gets deeper and r gets larger, DeepPoly shows enhanced efficacy
in its symbolic propagation such that the region delineated by A2i+2 becomes sig-
nificantly tighter compared to the region confined by N[2i+1:2i+2](A2i). Finally,
we find that the preimage computation time is predominantly impacted by the
number of neurons per each layer (e.g., MP2 vs MP4).

5.2 Certified Quantization for Robustness

We evaluate Quadapter in terms of robustness properties on all the networks
listed in Table 1 with the fractional bit-width range [Bl,Bu] = [1, 16]. For each
network, we randomly select 50 inputs from the test set of the respective dataset
and set the perturbation radius as r ∈ {1, 2, 3, 4, 5}. It results in a total of 250
synthesis tasks for each network, each of which can be certified by DeepPoly.

The results are reported in Columns 2 to 7 in Table 2. Columns (#S) and
(#F) list the number of quantization successes and quantization failures due
to small values of scaling variables. Column (Bit-width) lists the average bit-
width for each layer within the quantization strategies synthesized by Quadapter
and Column (Acc.) lists the average accuracy of the resulting QNNs. Columns
(PTime) and (QTime) show the average execution time in seconds for the preim-
age computation and forward quantization procedures, respectively. Overall,
Quadapter solves almost all the tasks of MPx and FPx for x ∈ {1, 2}, and

356 Y. Zhang et al.

most tasks of MP4 and FP4, where all timeout cases occur in the preimage
computation process. For MP3 and FP3, all quantization failures are due to the
excessively small preimage returned by UnderPreImage, posing a great challenge
in finding a feasible quantization strategy, which requires that the quantized
region must be strictly included within the preimage. Given the distribution
shift phenomenon shown in Fig. 1, we hypothesize that it may be alleviated by
relaxing such “strict-inclusion” requirement on the early layer quantization while
not compromising soundness. Thus, we next relax the restriction by permitting
the quantized regions of some portion of neurons, e.g., 25%, in each affine layer
(except the output layer to guarantee the soundness of the approach) to devi-
ate from the preimage returned by UnderPreImage. Note that, when using the
relaxed version of our tool, named Quadapter∗, we set Bl = 2 to circumvent situ-
ations where the use of the smallest bit-width (specifically, 1-bit), while theoreti-
cally yielding a viable solution for the current layer, may lead to a lack of feasible
quantization for subsequent layers. Experimental results are shown in Columns
8 to 13 in Table 2. We observe that Quadapter∗ usually synthesizes quantiza-
tion strategies with smaller bit-widths for earlier layers, larger bit-widths for the
last later, better accuracy, and solves more tasks on average. While the accuracy
drops slightly, it also slightly drops using the same but non-certified quantization
scheme and our certified quantization achieved comparable accuracy [50].

Fig. 4. Certified quantization strategies synthesis results for backdoor-freeness.

5.3 Certified Quantization for Backdoor-Freeness

We evaluate Quadapter in terms of backdoor-freeness on MP1, MP2, FP1 and
FP2. For each network, we randomly select 5 trigger positions and consider all
the 10 output classes as target labels of the backdoor attacks with two shapes
of triggers, i.e., hs = ws = 3 and hs = ws = 5, resulting in 5 × 10 × 2 =

Certified Quantization Strategy Synthesis for Neural Networks 357

100 backdoor-freeness properties. Following [37], we set the input parameters of
Algorithm 2 as (Bl,Bu) = (2, 16), θ = 0.9, K = 5, ε = 0.01, and σ = � = δ =
0.05. Note that these parameters do not affect the soundness of Algorithm 2.

The results are given in Fig. 4. We observe that for (hs, ws) = (3, 3),
Quadapter solves almost all the tasks of MP1 and FP1, and most tasks on MP2
and FP2. For (hs, ws) = (5, 5), over half of the tasks are solved by Quadapter.
All the quantization failures (due to small values of scaling variables) may be
solvable with the relaxed version of Quadapter which is left as future work. The
histogram shows the distribution of target classes in the solved tasks on MP1
and FP1, where the x-axis gives the synthesis success rate. We also observe
that Quadapter is more likely to successfully find certified quantization strategies
w.r.t. target classes {0, 1, 4, 6, 9} on MP1 and target classes {1, 2, 4, 5, 7, 8, 9} on
FP1, compared to its efficacy w.r.t. other classes. Due to the black-box nature, we
currently cannot explain the discrepancy in performance between target classes.

6 Related Work

Numerous methods have been proposed to verify (local) robustness of
DNNs (e.g., [7,10,17,40,45,47]) and QNNs (e.g., [9,12,14,19,52–54]). Recently,
backdoor-freeness verification for DNNs has been explored leveraging a sim-
ilar hypothesis testing method [37]. Methods for verifying quantization error
bound [30,35,36,51] and Top-1 equivalence [16] between DNNs and QNNs have
also been proposed. Except for [16], these works only verify properties with-
out adjusting quantization strategies for falsified properties. The concurrent
work [16] iteratively searches for a quantization strategy and verifies Top-1 equiv-
alence after quantization, refining strategies if equivalence is violated. However,
it does not support general properties (e.g., backdoor freeness or robustness of
multi-label classification [6]). Additionally, [16] requires frequent equivalence ver-
ification, which is computationally expensive and inefficient (e.g., networks with
100 neurons in 20min). Comparison experiments are given in [50].

The primary contribution of this work is the first certified quantization strat-
egy synthesis approach utilizing preimage computation as a crucial step. Hence,
any (under-approximate) preimage computation methods can be integrated. [28]
introduced an exact preimage computation method that, while precise, is imprac-
tical due to its exponential time complexity. The inverse abstraction approach [4]
circumvents the intractability of exact preimage computation by using symbolic
interpolants [2] for compact symbolic abstractions of preimages. However, it still
faces scalability issues due to the complexity of the interpolation process. [18,49]
considered over-approximate preimages, which are unsuitable for our purpose.

Quantization-aware training has been studied to improve robustness for a
given fixed quantization strategy [19,23,24,41,43], but only [19] provides robust-
ness guarantees by lifting abstract interpretation-based training [29] from DNNs
to QNNs. In contrast, our work aims to obtain a better quantification strategy
for preserving given properties. Thus, our work is orthogonal to and could be
combined with them. We leave this as interesting future work.

358 Y. Zhang et al.

7 Conclusion

In this work, we have presented a pioneering method Quadapter to synthesize a
fine-grained quantization strategy such that the desired properties are preserved
within the resulting quantized network. We have implemented our methods as
an end-to-end tool and conducted extensive experiments to demonstrate the
effectiveness and efficiency of Quadapter in preserving robustness and backdoor-
freeness properties. For future work, it would be interesting to explore the adap-
tation of Quadapter to other activation functions and network architectures,
towards which this work makes a significant step.
Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.
Comput. Simul. 28(1), 1–39 (2018)

2. Albarghouthi, A., McMillan, K.L.: Beautiful interpolants. In: Sharygina, N., Veith,
H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 313–329. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39799-8_22

3. Amir, G., Wu, H., Barrett, C.W., Katz, G.: An SMT-based approach for verifying
binarized neural networks. In: Proceedings of the 27th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
vol. 12652, pp. 203–222 (2021). https://doi.org/10.1007/978-3-030-72013-1_11

4. Dathathri, S., Gao, S., Murray, R.M.: Inverse abstraction of neural networks using
symbolic interpolation. In: Proceedings of the 33rd AAAI Conference on Arti-
ficial Intelligence (AAAI), pp. 3437–3444 (2019). https://doi.org/10.1609/AAAI.
V33I01.33013437

5. Dong, S., Wang, P., Abbas, K.: A survey on deep learning and its applications.
Comput. Sci. Rev. 40, 100379 (2021). https://doi.org/10.1016/J.COSREV.2021.
100379

6. Eleftheriadis, C., Kekatos, N., Katsaros, P., Tripakis, S.: On neural network equiva-
lence checking using SMT solvers. In: Proceedings of the 20th International Confer-
ence on Formal Modeling and Analysis of Timed Systems, vol. 13465, pp. 237–257
(2022). https://doi.org/10.1007/978-3-031-15839-1_14

7. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: Proceedings of the 2018 IEEE Symposium on Security and Pri-
vacy, pp. 3–18 (2018)

8. Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M.W., Keutzer, K.: A sur-
vey of quantization methods for efficient neural network inference. In: Low-Power
Computer Vision, pp. 291–326. Chapman and Hall/CRC (2022)

9. Giacobbe, M., Henzinger, T.A., Lechner, M.: How many bits does it take to quan-
tize your neural network? In: TACAS 2020. LNCS, vol. 12079, pp. 79–97. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45237-7_5

10. Guo, X., Wan, W., Zhang, Z., Zhang, M., Song, F., Wen, X.: Eager falsification
for accelerating robustness verification of deep neural networks. In: Proceedings of
the 32nd IEEE International Symposium on Software Reliability Engineering, pp.
345–356 (2021)

https://doi.org/10.1007/978-3-642-39799-8_22
https://doi.org/10.1007/978-3-030-72013-1_11
https://doi.org/10.1609/AAAI.V33I01.33013437
https://doi.org/10.1609/AAAI.V33I01.33013437
https://doi.org/10.1016/J.COSREV.2021.100379
https://doi.org/10.1016/J.COSREV.2021.100379
https://doi.org/10.1007/978-3-031-15839-1_14
https://doi.org/10.1007/978-3-030-45237-7_5

Certified Quantization Strategy Synthesis for Neural Networks 359

11. Gurobi. A most powerful mathematical optimization solver (2018). https://www.
gurobi.com/

12. Henzinger, T.A., Lechner, M., Zikelic, D.: Scalable verification of quantized neural
networks. In: Proceedings of the 35th AAAI Conference on Artificial Intelligence
(AAAI), pp. 3787–3795 (2021). https://doi.org/10.1609/AAAI.V35I5.16496

13. Hong, S., Panaitescu-Liess, M., Kaya, Y., Dumitras, T.: Qu-anti-zation: exploit-
ing quantization artifacts for achieving adversarial outcomes. In: Proceedings of
the Annual Conference on Neural Information Processing Systems (NeurIPS), pp.
9303–9316 (2021)

14. Huang, P., et al.: Towards efficient verification of quantized neural networks. In:
Proceedings of the 38th AAAI Conference on Artificial Intelligence, pp. 21152–
21160 (2024). https://doi.org/10.1609/AAAI.V38I19.30108

15. Jacob, B., et al.: Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2704–2713 (2018)

16. Jr., J.B.P.M., de Lima Filho, E.B., Bessa, I., Manino, E., Song, X., Cordeiro,
L.C.: Counterexample guided neural network quantization refinement. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 43(4), 1121–1134 (2024). https://doi.
org/10.1109/TCAD.2023.3335313

17. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Proceedings of the 29th
International Conference on Computer Aided Verification, pp. 97–117 (2017)

18. Kotha, S., Brix, C., Kolter, J.Z., Dvijotham, K., Zhang, H.: Provably bounding
neural network preimages. Adv. Neural Inf. Process. Syst. 36 (2024)

19. Lechner, M., Žikelić, -D., Chatterjee, K., Henzinger, T.A., Rus, D.: Quantization-
aware interval bound propagation for training certifiably robust quantized neu-
ral networks. In: Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), pp. 14964–14973 (2023). https://doi.org/10.1609/AAAI.V37I12.26747

20. LeCun, Y., Cortes, C.: Mnist handwritten digit database (2010)
21. Li, Z., Ni, B., Zhang, W., Yang, X., Gao, W.: Performance guaranteed network

acceleration via high-order residual quantization. In: IEEE International Confer-
ence on Computer Vision (ICCV), pp. 2603–2611 (2017). https://doi.org/10.1109/
ICCV.2017.282

22. Lin, D.D., Talathi, S.S., Annapureddy, V.S.: Fixed point quantization of deep
convolutional networks. In: Proceedings of the 33nd International Conference on
Machine Learning (ICML). pp. 2849–2858 (2016)

23. Lin, H., Lou, J., Xiong, L., Shahabi, C.: Integer-arithmetic-only certified robustness
for quantized neural networks. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (CVPR), pp. 7808–7817. IEEE (2021). https://
doi.org/10.1109/ICCV48922.2021.00773

24. Lin, J., Gan, C., Han, S.: Defensive quantization: when efficiency meets robustness.
In: International Conference on Learning Representations (2018)

25. Liu, J., Xing, Y., Shi, X., Song, F., Xu, Z., Ming, Z.: Abstraction and refine-
ment: towards scalable and exact verification of neural networks. arXiv preprint
arXiv:2207.00759 (2022)

26. Ma, H., et al.: Quantization backdoors to deep learning commercial frameworks.
IEEE Trans. Depend Secure Comput. (2023). https://doi.org/10.1109/TDSC.2023.
3271956

27. Marco, V.S., Taylor, B., Wang, Z., Elkhatib, Y.: Optimizing deep learning infer-
ence on embedded systems through adaptive model selection. ACM Trans. Embed.
Comput. Syst. 19(1), 2:1–2:28 (2020). https://doi.org/10.1145/3371154

https://www.gurobi.com/
https://www.gurobi.com/
https://doi.org/10.1609/AAAI.V35I5.16496
https://doi.org/10.1609/AAAI.V38I19.30108
https://doi.org/10.1109/TCAD.2023.3335313
https://doi.org/10.1109/TCAD.2023.3335313
https://doi.org/10.1609/AAAI.V37I12.26747
https://doi.org/10.1109/ICCV.2017.282
https://doi.org/10.1109/ICCV.2017.282
https://doi.org/10.1109/ICCV48922.2021.00773
https://doi.org/10.1109/ICCV48922.2021.00773
http://arxiv.org/abs/2207.00759
https://doi.org/10.1109/TDSC.2023.3271956
https://doi.org/10.1109/TDSC.2023.3271956
https://doi.org/10.1145/3371154

360 Y. Zhang et al.

28. Matoba, K., Fleuret, F.: Exact preimages of neural network aircraft collision avoid-
ance systems. In: Proceedings of the Workshop on Machine Learning for Engineer-
ing Modeling, Simulation, and Design, pp. 1–9 (2020)

29. Mirman, M., Gehr, T., Vechev, M.T.: Differentiable abstract interpretation for
provably robust neural networks. In: Proceedings of the 35th International Con-
ference on Machine Learning, vol. 80, pp. 3575–3583 (2018)

30. Mohammadinejad, S., Paulsen, B., Deshmukh, J.V., Wang, C.: DiffRNN: differen-
tial verification of recurrent neural networks. In: Dima, C., Shirmohammadi, M.
(eds.) FORMATS 2021. LNCS, vol. 12860, pp. 117–134. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-85037-1_8

31. Musa, A.A., Hussaini, A., Liao, W., Liang, F., Yu, W.: Deep neural networks
for spatial-temporal cyber-physical systems: a survey. Future Internet 15(6), 199
(2023). https://doi.org/10.3390/FI15060199

32. Nagel, M., Amjad, R.A., Van Baalen, M., Louizos, C., Blankevoort, T.: Up or
down? Adaptive rounding for post-training quantization. In: Proceedings of the
37th International Conference on Machine Learning (ICML), vol. 119, pp. 7197–
7206 (2020)

33. Nagel, M., Fournarakis, M., Amjad, R.A., Bondarenko, Y., van Baalen, M.,
Blankevoort, T.: A white paper on neural network quantization. arXiv preprint
arXiv:2106.08295 (2021)

34. Pan, X., Zhang, M., Yan, Y., Yang, M.: Understanding the threats of tro-
janed quantized neural network in model supply chains. In: Proceedings of the
Annual Computer Security Applications Conference (ACSAC), pp. 634–645 (2021).
https://doi.org/10.1145/3485832.3485881

35. Paulsen, B., Wang, J., Wang, C.: Reludiff: differential verification of deep neural
networks. In: 2020 IEEE/ACM 42nd International Conference on Software Engi-
neering (ICSE), pp. 714–726. IEEE (2020)

36. Paulsen, B., Wang, J., Wang, J., Wang, C.: NeuroDiff: scalable differential verifi-
cation of neural networks using fine-grained approximation. In: Proceedings of the
35th IEEE/ACM International Conference on Automated Software Engineering,
pp. 784–796 (2020)

37. Pham, L.H., Sun, J.: Verifying neural networks against backdoor attacks. In: Pro-
ceedings of the 34th International Conference on Computer Aided Verification
(CAV), pp. 171–192 (2022). https://doi.org/10.1007/978-3-031-13185-1_9

38. Prabhakar, P., Afzal, Z.R.: Abstraction based output range analysis for neural net-
works. In: Proceedings of the Annual Conference on Neural Information Processing
Systems, pp. 15762–15772 (2019)

39. Rokh, B., Azarpeyvand, A., Khanteymoori, A.: A comprehensive survey on model
quantization for deep neural networks in image classification. ACM Trans. Intell.
Syst. Technol. 14(6), 97:1–97:50 (2023). https://doi.org/10.1145/3623402

40. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certify-
ing neural networks. Proc. ACM Program. Lang. (POPL) 3, 41:1–41:30 (2019).
https://doi.org/10.1145/3290354

41. Song, C., Fallon, E., Li, H.: Improving adversarial robustness in weight-quantized
neural networks. arXiv preprint arXiv:2012.14965 (2020)

42. Song, X., Sun, Y., Mustafa, M.A., Cordeiro, L.C.: QNNRepair: qneural network
repair. In: Proceedings of the 21st International Conference on Software Engineer-
ing and Formal Methods, vol. 14323, pp. 320–339 (2023)

43. Tang, Z., Dong, Y., Su, H.: Error-silenced quantization: bridging robustness and
compactness. In: Proceedings of the Workshop on Artificial Intelligence Safety
(AISafety@IJCAI) (2020)

https://doi.org/10.1007/978-3-030-85037-1_8
https://doi.org/10.3390/FI15060199
http://arxiv.org/abs/2106.08295
https://doi.org/10.1145/3485832.3485881
https://doi.org/10.1007/978-3-031-13185-1_9
https://doi.org/10.1145/3623402
https://doi.org/10.1145/3290354
http://arxiv.org/abs/2012.14965

Certified Quantization Strategy Synthesis for Neural Networks 361

44. Wang, P., Hu, Q., Zhang, Y., Zhang, C., Liu, Y., Cheng, J.: Two-step quantization
for low-bit neural networks. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 4376–4384 (2018). https://doi.
org/10.1109/CVPR.2018.00460

45. Wang, S., et al.: Beta-crown: efficient bound propagation with per-neuron split con-
straints for neural network robustness verification. In: Proceedings of the Annual
Conference on Neural Information Processing Systems, pp. 29909–29921 (2021)

46. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

47. Yang, P., et al.: Improving neural network verification through spurious region
guided refinement. In: TACAS 2021. LNCS, vol. 12651, pp. 389–408. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-72016-2_21

48. Zhang, D., Yang, J., Ye, D., Hua, G.: LQ-Nets: learned quantization for highly
accurate and compact deep neural networks. In: Ferrari, V., Hebert, M., Sminchis-
escu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 373–390. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_23

49. Zhang, X., Wang, B., Kwiatkowska, M.: On preimage approximation for neural
networks. arXiv preprint arXiv:2305.03686 (2023)

50. Zhang, Y., Chen, G., Song, F., Sun, J., Dong, J.S.: Certified quantization strategy
synthesis for neural networks. https://github.com/zhangyedi/Quadapter (2024)

51. Zhang, Y., Song, F., Sun, J.: Qebverif: quantization error bound verification of
neural networks. In: Proceedings of the 35th International Conference on Computer
Aided Verification, vol. 13965, pp. 413–437 (2023). https://doi.org/10.1007/978-3-
031-37703-7_20

52. Zhang, Y., Zhao, Z., Chen, G., Song, F., Chen, T.: BDD4BNN: a BDD-based
quantitative analysis framework for binarized neural networks. In: Silva, A., Leino,
K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 175–200. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-81685-8_8

53. Zhang, Y., Zhao, Z., Chen, G., Song, F., Chen, T.: Precise quantitative analysis
of binarized neural networks: a BDD-based approach. ACM Trans. Softw. Eng.
Methodol. 32(3), 62:1–62:51 (2023). https://doi.org/10.1145/3563212

54. Zhang, Y., Zhao, Z., Chen, G., Song, F., Zhang, M., Chen, T., Sun, J.: Qvip: an ilp-
based formal verification approach for quantized neural networks. In: Proceedings
of the 37th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), pp. 82:1–82:13 (2022). https://doi.org/10.1145/3551349.3556916

55. Zhu, Y., et al.: Towards robustness evaluation of backdoor defense on quantized
deep learning model. SSRN: https://ssrn.com/abstract=4578346

https://doi.org/10.1109/CVPR.2018.00460
https://doi.org/10.1109/CVPR.2018.00460
http://arxiv.org/abs/1708.07747
https://doi.org/10.1007/978-3-030-72016-2_21
https://doi.org/10.1007/978-3-030-01237-3_23
http://arxiv.org/abs/2305.03686
https://github.com/zhangyedi/Quadapter
https://doi.org/10.1007/978-3-031-37703-7_20
https://doi.org/10.1007/978-3-031-37703-7_20
https://doi.org/10.1007/978-3-030-81685-8_8
https://doi.org/10.1145/3563212
https://doi.org/10.1145/3551349.3556916
https://ssrn.com/abstract=4578346

362 Y. Zhang et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Partially Observable Stochastic Games
with Neural Perception Mechanisms

Rui Yan1(B) , Gabriel Santos1 , Gethin Norman1,2 , David Parker1 ,
and Marta Kwiatkowska1

1 University of Oxford, Oxford OX1 2JD, UK
{rui.yan,gabriel.santos,david.parker,marta.kwiatkowska}@cs.ox.ac.uk,

gethin.norman@glasgow.ac.uk
2 University of Glasgow, Glasgow G12 8QQ, UK

Abstract. Stochastic games are a well established model for multi-agent
sequential decision making under uncertainty. In practical applications,
though, agents often have only partial observability of their environment.
Furthermore, agents increasingly perceive their environment using data-
driven approaches such as neural networks trained on continuous data.
We propose the model of neuro-symbolic partially-observable stochastic
games (NS-POSGs), a variant of continuous-space concurrent stochastic
games that explicitly incorporates neural perception mechanisms. We
focus on a one-sided setting with a partially-informed agent using dis-
crete, data-driven observations and another, fully-informed agent. We
present a new method, called one-sided NS-HSVI, for approximate solu-
tion of one-sided NS-POSGs, which exploits the piecewise constant struc-
ture of the model. Using neural network pre-image analysis to construct
finite polyhedral representations and particle-based representations for
beliefs, we implement our approach and illustrate its practical applica-
bility to the analysis of pedestrian-vehicle and pursuit-evasion scenarios.

1 Introduction

Strategic reasoning is essential to ensure stable multi-agent coordination in com-
plex environments, e.g., autonomous driving or multi-robot planning. Partially-
observable stochastic games (POSGs) are a natural model for settings involving
multiple agents, uncertainty and partial information. They allow the synthesis
of optimal (or near-optimal) strategies and equilibria that guarantee expected
outcomes, even in adversarial scenarios. But POSGs also present significant
challenges: key problems are undecidable, already for the single-agent case of
partially observable Markov decision processes (POMDPs) [24], and practical
algorithms for finding optimal values and strategies are lacking.

Computational tractability can be improved using one-sided POSGs, a sub-
class of two-agent, zero-sum POSGs where only one agent has partial information
while the other agent is assumed to have full knowledge of the state [40,41]. This
can be useful when making worst-case assumptions about one agent, such as in

c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 363–380, 2025.
https://doi.org/10.1007/978-3-031-71162-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_19&domain=pdf
http://orcid.org/0000-0002-8685-5055
http://orcid.org/0000-0002-6570-9737
http://orcid.org/0000-0001-9326-4344
http://orcid.org/0000-0003-4137-8862
http://orcid.org/0000-0001-9022-7599
https://doi.org/10.1007/978-3-031-71162-6_19

364 R. Yan et al.

an adversarial setting (e.g., an attacker-defender scenario) or a safety-critical
domain (e.g., a pedestrian in an autonomous driving application).

From a computational perspective, one-sided POSGs avoid the need for
nested beliefs [39], i.e., reasoning about beliefs not only over states but also
over opponents’ beliefs. This is because the fully-informed agent can reconstruct
beliefs from observation histories. Recent advances [19] have led to the first
practical variant of heuristic search value iteration (HSVI) [31] for computing
approximately optimal values and strategies in (finite) one-sided POSGs.

However, in many realistic autonomous coordination scenarios, agents per-
ceive continuous environments using data-driven observation functions, typically
implemented as neural networks (NNs). Examples include autonomous vehicles
using NNs to perform object recognition or to estimate pedestrian intention, and
NN-enabled vision in an airborne pursuit-evasion scenario.

In this paper, we introduce one-sided neuro-symbolic POSGs (NS-POSGs),
a variant of continuous-space POSGs that explicitly incorporates neural percep-
tion mechanisms. We assume one partially-informed agent with a (finite-valued)
observation function synthesised in a data-driven fashion, and a second agent
with full observation of the (continuous) state. Continuous-space models with
neural perception mechanisms have already been developed, but are limited to
the simpler cases of POMDPs [36] and (fully-observable) stochastic games [33].
Our model provides the ability to reason about an agent with a realistic percep-
tion mechanism and operating in an adversarial or worst-case setting.

Solving continuous-space models, even approximately, is computationally
challenging. One approach is to discretise and then use techniques for finite-
state models (e.g., [19] in our case). But this can yield exponential growth of the
state space, depending on the granularity and time-horizon used. Furthermore,
decision boundaries for data-driven perception are typically irregular and can be
misaligned with gridding schemes for discretisation, limiting precision.

An alternative is to exploit structure in the underlying model and work
directly with the continuous-state model. For example, classic dynamic program-
ming approaches to solving MDPs can be lifted to continuous-state variants [12]:
a piecewise constant representation of the value function is computed, based on
a partition of the state space created dynamically during solution. It is demon-
strated that this approach can outperform discretisation and that it can also be
generalised to solving POMDPs. We can adapt this approach to models with
neural perception mechanisms [36], exploiting the fact that ReLU NN classifiers
induce a finite decomposition of the continuous environment into polyhedra.

Contributions. The contributions of this paper are as follows. We first define
the model of one-sided NS-POSGs and motivate it via an autonomous driving
scenario based on a ReLU NN classifier for pedestrian intention learnt from
public datasets [28]. We then prove that the (discounted reward) value function
for NS-POSGs is continuous and convex, and is a fixed point of a minimax
operator. Based on mild assumptions about the model, we give a piecewise linear
and convex representation of the value function, which admits a finite polyhedral
representation and which is closed with respect to the minimax operator.

Partially Observable Stochastic Games with Neural Perception Mechanisms 365

In order to provide a feasible approach to approximating values of NS-
POSGs, we present a variant of HSVI, which is a popular anytime algorithm
for POMDPs that iteratively computes lower and upper bounds on values. We
build on ideas from HSVI for finite one-sided POSGs [19] (but there are multiple
challenges when moving to a continuous state space and NNs) and for POMDPs
with neural perception mechanisms [36] (but, for us, the move to games brings
a number of complications); see Sect. 6 for a detailed discussion.

We implement our one-sided NS-HSVI algorithm using the popular particle-
based representation for beliefs and employing NN pre-image computation [25] to
construct an initial finite polyhedral representation of perception functions. We
apply this to the pedestrian-vehicle interaction scenario and a pursuit-evasion
game inspired by mobile robotics applications, demonstrating the ability to syn-
thesise agent strategies for models with complex perception functions, and to
explore trade-offs when using perception mechanisms of varying precision.

Related Work. Solving POSGs is largely intractable. Methods based on exact
dynamic programming [17] and approximations [11,23] exist but have high com-
putational cost. Further approaches exist for zero-sum POSGs, including conver-
sion to extensive-form games [3], counterfactual regret minimisation [21,22,42]
and methods based on reinforcement learning and search [5,26]. In [9], an HSVI-
like finite-horizon solver that provably converges to an ε-optimal solution is pro-
posed; [32] provides convexity and concavity results but no algorithmic solution.

Methods exist for one-sided POSGs: a space partition approach when actions
are public [40], a point-based approximate algorithm when observations are con-
tinuous [41] and projection to POMDPs based on factored representations [7].
But these are all restricted to finite-state games. Closer to our work, but still
for finite models, is [19], which proposes an HSVI method for POSGs.

For the continuous-state but single-agent (POMDP) setting, point-based
value iteration [6,27,38] and discrete space approximation [4] can be used; the
former also uses α-functions but works with (approximate) Gaussian mixtures
or beta-densities, whereas we exploit structure, similarly to [12]. As discussed
above, in earlier work, we proposed models and techniques for extending sev-
eral simpler probabilistic models with neural perception mechanisms [33,34,36].
Recent work [37] builds on the one-sided NS-POSG model proposed in this paper,
but focuses instead on online methods for strategy synthesis.

2 Background

POSGs. The semantics of our models are continuous-state partially observable
concurrent stochastic games (POSGs) [5,18,21]. Letting P(X) denote the space
of probability measures on a Borel space X, POSGs are defined as follows.

A two-player POSG is a tuple G = (N,S,A, δ,O, Z), where: N = {1, 2} is a
set of two agents; S a Borel measurable set of states; A � A1×A2 a finite set of
joint actions where Ai are actions of agent i; δ : (S×A) → P(S) a probabilistic
transition function; O � O1×O2 a finite set of joint observations where Oi are
observations of agent i; and Z : (S×A×S) → O an observation function.

366 R. Yan et al.

In a state s of a POSG G, each agent i selects an action ai from Ai. The prob-
ability to move to a state s′ is δ(s, (a1, a2))(s′), and the subsequent observation
is Z(s, (a1, a2), s′) = (o1, o2), where agent i can only observe oi. A history of G
is a sequence of states and joint actions π = (s0, a0, s1, . . . , at−1, st) such that
δ(sk, ak)(sk+1) > 0 for each k. For a history π, we denote by π(k) the (k+1)th
state, and π[k] the (k+1)th action. A (local) action-observation history (AOH) is
the view of a history π from agent i’s perspective: πi = (o0i , a

0
i , o

1
i , . . . , a

t−1
i , ot

i).
If an agent has full information about the state, then we assume the agent is
also informed of the history of joint actions. Let FPathsG and FPathsG,i denote
the sets of finite histories of G and AOHs of agent i, respectively.

A (behaviour) strategy of agent i is a mapping σi : FPathsG,i → P(Ai). We
denote by Σi the set of strategies of agent i. A profile σ = (σ1, σ2) is a pair of
strategies for each agent and we denote by Σ = Σ1 × Σ2 the set of profiles.

Objectives. Agents 1 and 2 maximise and minimise, respectively, the expected
value of the discounted reward Y (π) =

∑∞
k=0 βkr(π(k), π[k]), where π is an

infinite history, r : (S×A) → R a reward structure and β ∈ (0, 1). The expected
value of Y starting from state distribution b under profile σ is denoted E

σ
b [Y].

Values and Minimax Strategies. If V �(b) � supσ1∈Σ1
infσ2∈Σ2 E

σ1,σ2
b [Y] =

infσ2∈Σ2 supσ1∈Σ1
E

σ1,σ2
b [Y] for all b ∈ P(S), then V � is called the value of G.

A profile σ� = (σ�
1 , σ

�
2) is a minimax strategy profile if, for any b ∈ P(S),

E
σ�
1 ,σ2

b [Y] ≥ E
σ�
1 ,σ�

2
b [Y] ≥ E

σ1,σ�
2

b [Y] for all σ1 ∈ Σ1 and σ2 ∈ Σ2.

3 One-Sided Neuro-Symbolic POSGs

We now introduce our model, aimed at commonly deployed multi-agent scenarios
with data-driven perception, necessitating the use of continuous environments.

One-Sided NS-POSGs. A one-sided neuro-symbolic POSG (NS-POSG) com-
prises a partially informed, neuro-symbolic agent and a fully informed agent in a
continuous-state environment. The first agent has a finite set of local states, and
is endowed with a data-driven perception mechanism, through which (and only
through which) it makes finite-valued observations of the environment’s state,
stored locally as percepts. The second agent can directly observe both the local
state and percept of the first agent, and the state of the environment.

Definition 1 (NS-POSG). A one-sided NS-POSG C comprises agents Ag1 =
(S1, A1, obs1, δ1) and Ag2=(A2), and environment E=(SE , δE), where:

– S1 = Loc1×Per1 is a set of states for Ag1, where Loc1 and Per1 are finite
sets of local states and percepts, respectively;

– SE ⊆ R
e is a closed set of continuous environment states;

– Ai is a finite set of actions for Agi and A � A1×A2 is a set of joint actions;
– obs1 : (Loc1×SE) → Per1 is Ag1’s perception function;
– δ1 : (S1×A) → P(Loc1) is Ag1’s local probabilistic transition function;
– δE : (Loc1×SE×A) → P(SE) is a finitely-branching probabilistic transition

function for the environment.

Partially Observable Stochastic Games with Neural Perception Mechanisms 367

Fig. 1. Pedestrian-vehicle example. Left: Positions of two agents. Middle: Sample
images from the PIE dataset [28]. Right: Slices of learnt perception function, where
(x1, y1), (x2, y2) are two successive (relative) positions of the pedestrian.

One-sided NS-POSGs are a subclass of two-agent, hybrid-state POSGs with
discrete observations (S1) and actions for Ag1, and continuous observations
(S1×SE) and discrete actions for Ag2. Additionally, Ag1 is informed of its own
actions and Ag2 of joint actions. Thus, Ag1 is partially informed, without access
to environment states and actions of Ag2, and Ag2 is fully informed. Since Ag2
needs no percepts, its local state and transition function are omitted.

The game executes as follows. A global state of C comprises a state s1 =
(loc1, per1) for Ag1 and an environment state sE . In state s = (s1, sE), the
two agents concurrently choose one of their actions, resulting in a joint action
a = (a1, a2) ∈ A. Next, the local state of Ag1 is updated to some loc′

1 ∈ Loc1,
according to δ1(s1, a). At the same time, the environment state is updated to
some s′

E ∈ SE according to δE(loc1, sE , a). Finally, the first agent Ag1, based
on loc′

1, generates a percept per ′
1 = obs1(loc′

1, s
′
E) by observing the environment

state s′
E and C reaches the global state s′ = ((loc′

1, per
′
1), s

′
E).

We focus on neural perception functions, i.e., for each local state loc1, we
associate an NN classifier floc1 : SE → P(Per1) that returns a distribution over
percepts for each environment state sE ∈ SE . Then obs1(loc1, sE) = fmax

loc1
(sE),

where fmax
loc1

(sE) is the percept with the largest probability in floc1(sE) (a tie-
breaking rule is applied if multiple percepts have the largest probability).

Motivating Example: Pedestrian-Vehicle Interaction. A key challenge for
autonomous driving in urban environments is predicting pedestrians’ intentions
or actions. One solution is NN classifiers, e.g., trained on video datasets [28,
29]. To illustrate our NS-POSG model, we consider decision making for an
autonomous vehicle using an NN-based intention estimation model for a pedes-
trian at a crossing [28]. We use their simpler “vanilla” model, which takes two
successive (relative) locations of the pedestrian (the top-left coordinates (x1, y1)
and (x2, y2) of two fixed size bounding boxes around the pedestrian) and classi-
fies its intention as: unlikely, likely or very likely to cross. We train a feed-forward
NN classifier with ReLU activation functions over the PIE dataset [28].

368 R. Yan et al.

We build this perception mechanism into an NS-POSG model of a vehicle
yielding at a pedestrian crossing, based on [13], illustrated in Fig. 1. A pedestrian
further ahead at the side of the road may decide to cross and the vehicle must
decide how to adapt its speed. The first, partially-informed agent represents
the vehicle. It observes the environment (comprising the successive pedestrian
locations) using the NN-based perception mechanism to predict the pedestrian’s
intention. This is stored as a percept and its speed as its local state. The vehicle
chooses between selected (positive or negative) acceleration actions. The second
agent, the pedestrian, is fully informed, providing a worst-case analysis of the
vehicle decisions, and can decide to cross or return to the roadside. The goal of
the vehicle is to minimise the likelihood of a collision with the pedestrian, which
is achieved by associating a negative reward with this event.

Figure 1 also shows selected slices of the state space decomposition obtained
by computing the pre-image [25] of the learnt NN classifier, for each of the
three predicted intentions. The decision boundaries are non-trivial, justifying
our goal of performing a formal analysis, but some intuitive characteristics can
be seen. When x2 ≥ x1, meaning that the pedestrian is stationary or moving
away from the road, it will generally be classified as unlikely to cross. We also
see the prediction model is cautious when trying to make an estimation if its
first observation is made from greater distance. More details are in [35].

One-Sided NS-POSG Semantics. A one-sided NS-POSG C induces a POSG
�C�, where we restrict to states that are percept compatible, i.e., where per1 =
obs1(loc1, sE) for s = ((loc1, per1), sE). The semantics of a one-sided NS-POSG
is closed with respect to percept compatible states.

Definition 2 (Semantics). Given a one-sided NS-POSG C, as in Definition 1,
its semantics is the POSG �C� = (N,S,A, δ,O, Z) where:

– N = {1, 2} is a set of two agents and A = A1 × A2;
– S ⊆ S1 × SE is the set of percept compatible states;
– for s = (s1, sE), s′ = (s′

1, s
′
E) ∈ S and a ∈ A where s1 = (loc1, per1) and

s′
1 = (loc′

1, per
′
1), we have δ(s, a)(s′) = δ1(s1, a)(loc′

1)δE(loc1, sE , a)(s′
E);

– O = O1 × O2, where O1 = S1 and O2 = S;
– Z(s, a, s′) = (s′

1, s
′) for s ∈ S, a ∈ A and s′ = (s′

1, s
′
E) ∈ S.

Strategies. As �C� is a POSG, we consider (behaviour) strategies for the two
agents. Since Ag2 is fully informed, it can recover the beliefs of Ag1, thus remov-
ing nested beliefs. Hence, the AOHs of Ag2 are equal to the histories of �C�,
i.e., FPaths�C�,2 = FPaths�C�. We also consider the stage strategies at a history
of �C�, which will later be required for solving the induced zero-sum normal-
form games in the minimax operator. For a history π of �C�, a stage strategy
for Ag1 is a distribution u1 ∈ P(A1) and a stage strategy for Ag2 is a function
u2 : S → P(A2), i.e., u2 ∈ P(A2 | S).

Beliefs. Since Ag1 is partially informed, it may need to infer the current state
from its AOH. For an Ag1 state s1 = (loc1, per1), we let Ss1

E be the set of
environment states compatible with s1, i.e., Ss1

E = {sE ∈ SE | obs1(loc1, sE) =

Partially Observable Stochastic Games with Neural Perception Mechanisms 369

per1}. Since the states of Ag1 are also the observations of Ag1 and states of �C�
are percept compatible, a belief for Ag1, which can also be reconstructed by
Ag2, can be represented as a pair b = (s1, b1), where s1 ∈ S1, b1 ∈ P(SE) and
b1(sE) = 0 for all sE ∈ SE \ Ss1

E . We denote by SB the set of beliefs of Ag1.
Given a belief (s1, b1), if action a1 is selected by Ag1, Ag2 is assumed to take

stage strategy u2 ∈ P(A2 | S) and s′
1 is observed, then the updated belief of Ag1

via Bayesian inference is denoted (s′
1, b

s1,a1,u2,s′
1

1); see [35] for details.

4 Values of One-Sided NS-POSGs

We establish the value function of a one-sided NS-POSG C with semantics �C�,
which gives the minimax expected reward from an initial belief, and show its
convexity and continuity. Next, to compute it, we introduce minimax and max-
sup operators specialised for one-sided NS-POSGs, and prove their equivalence.
Finally, we provide a fixed-point characterisation of the value function.

Value Function. We assume a fixed reward structure r and discount factor β.
The value function of C represents the minimax expected reward in each possible
initial belief of the game, given by V � : SB → R, where V �(s1, b1) = E

σ�

(s1,b1)
[Y]

for all (s1, b1) ∈ SB and σ� is a minimax strategy profile of �C�.
The value function for zero-sum POSGs may not exist when the state space

is uncountable [2,14,30] as in our case. In this paper, we only consider one-sided
NS-POSGs that are determined, i.e., for which the value function exists.

Convexity and Continuity. Since r is bounded, the value function V �

has lower and upper bounds L = mins∈S,a∈A r(s, a)/(1 − β) and U =
maxs∈S,a∈A r(s, a)/(1 − β). The proof of the following and all other results can
be found in [35].

Theorem 1 (Convexity and continuity). For s1 ∈ S1, V �(s1, ·) : P(SE) →
R is convex and continuous, and for b1, b

′
1 ∈ P(SE) : |V �(s1, b1) − V �(s1, b′

1)| ≤
K(b1, b′

1) where K(b1, b′
1) = 1

2 (U − L)
∫

sE∈S
s1
E

∣
∣b1(sE) − b′

1(sE)
∣
∣dsE.

Minimax and maxsup operators. We give a fixed-point characterisation of
the value function V �, first introducing a minimax operator and then simplifying
to an equivalent maxsup variant. The latter will be used in Sect. 5 to prove closure
of our representation for value functions and in Sect. 6 to formulate HSVI. For
f : S → R and belief (s1, b1), let 〈f, (s1, b1)〉 =

∫
sE∈SE

f(s1, sE)b1(sE)dsE and
F(SB) denote the space of functions mapping the beliefs SB to reals R.

Definition 3 (Minimax). The minimax operator T : F(SB)→F(SB) is
given by:

[TV](s1, b1) = maxu1∈P(A1) minu2∈P(A2|S) E(s1,b1),u1,u2 [r(s, a)]

+ β
∑

(a1,s′
1)∈A1×S1

P (a1, s
′
1 | (s1, b1), u1, u2)V (s′

1, b
s1,a1,u2,s′

1
1) (1)

for V ∈ F(SB) and (s1, b1) ∈ SB, where E(s1,b1),u1,u2 [r(s, a)] =
∫

sE∈SE
b1(sE)

∑
(a1,a2)∈A u1(a1)u2(a2 | s1, sE)r((s1, sE), (a1, a2))dsE.

370 R. Yan et al.

Motivated by [19], which proposed an equivalent operator for the discrete case,
we instead prove that the minimax operator has an equivalent simplified form
over convex continuous functions of F(SB).

For Γ ⊆ F(S), we let ΓA1×S1 denote the set of vectors of elements of
the convex hull of Γ indexed by A1×S1. Furthermore, for u1 ∈ P(A1), α =
(αa1,s′

1)(a1,s′
1)∈A1×S1 ∈ ΓA1×S1 and a2 ∈ A2, we define fu1,α,a2 : S → R to be

the function such that, for s ∈ S:

fu1,α,a2(s) =
∑

a1∈A1

u1(a1)r(s, (a1, a2)

+ β
∑

(a1,s′
1)∈A1×S1

u1(a1)
∑

s′
E∈SE

δ(s, (a1, a2))(s′
1, s

′
E)αa1,s′

1(s′
1, s

′
E) (2)

where the sum over s′
E is due to the finite branching of δ(s, (a1, a2)).

Definition 4 (Maxsup). For ∅ 	= Γ ⊆ F(S), if V (s1, b1) = supα∈Γ 〈α, (s1, b1)〉
for (s1, b1) ∈ SB, then the maxsup operator TΓ : F(SB) → F(SB) is defined as
[TΓ V](s1, b1) = maxu1∈P(A1)supα∈Γ A1×S1 〈fu1,α, (s1, b1)〉 for (s1, b1) ∈ SB where
fu1,α(s) = mina2∈A2 fu1,α,a2(s) for s ∈ S.

In the maxsup operator, u1 and α are aligned with Ag1’s goal of maximising the
objective, where u1 is over action distributions and α is over convex combinations
of elements of Γ . The minimisation by Ag2 is simplified to an optimisation over
its finite action set in the function fu1,α. Note that each state may require a
different minimiser a2, as Ag2 knows the current state before taking an action.

The maxsup operator avoids the minimisation over Markov kernels with con-
tinuous states in the original minimax operator. Given u1 and α, the minimisa-
tion can induce a pure best-response stage strategy u2 ∈ P(A2 | S) such that,
for any s ∈ S, u2(a′

2 | s) = 1 for some a′
2 ∈ arg mina2∈A2 fu1,α,a2(s). Using

Theorem 1, the operator equivalence and fixed-point result are as follows.

Theorem 2 (Operator equivalence and fixed point). For ∅ 	= Γ ⊆ F(S),
if V (s1, b1) = supα∈Γ 〈α, (s1, b1)〉 for (s1, b1) ∈ SB, then the minimax operator
T and maxsup operator TΓ are equivalent and their unique fixed point is V �.

5 P-PWLC Value Iteration

We next discuss a representation for value functions using piecewise constant
(PWC) α-functions, called P-PWLC (piecewise linear and convex under PWC),
originally introduced in [36]. This representation extends the α-functions of
[6,27,38] for continuous-state POMDPs, but a key difference is that we work with
polyhedral representations (induced precisely from NNs) rather than approxima-
tions based on Gaussian mixtures [27] or beta densities [15].

We show that, given PWC representations for an NS-POSG’s perception,
reward and transition functions, and under mild assumptions on model structure,
P-PWLC value functions are closed with respect to the minimax operator. This

Partially Observable Stochastic Games with Neural Perception Mechanisms 371

yields a (non-scalable) value iteration algorithm and, subsequently, the basis for
a more practical point-based HSVI algorithm in Sect. 6.

PWC Representations. A finite connected partition (FCP) of S, denoted Φ,
is a finite collection of disjoint connected regions (subsets) of S that cover it.

Definition 5 (PWC function). A function f : S → R is piecewise constant
(PWC) if there exists an FCP Φ of S such that f : φ → R is constant for φ ∈ Φ.
Let FC(S) be the set of PWC functions in F(S).

Since we focus on NNs for Ag1’s perception function obs1, it is PWC (as for
the one-agent case [36]) and the state space S of a one-sided NS-POSG can be
decomposed into a finite set of regions, each with the same observation. Formally,
there exists a perception FCP ΦP , the smallest FCP of S such that all states
in any φ ∈ ΦP are observationally equivalent, i.e., if (s1, sE), (s′

1, s
′
E) ∈ φ, then

s1 = s′
1. We can use ΦP to find the set Ss1

E for any agent state s1 ∈ S1. Given
an NN representation of obs1, the corresponding FCP ΦP can be extracted (or
approximated) offline by analysing its pre-image [25].

We also need to make some assumptions about the transitions and rewards
of one-sided NS-POSGs (in a similar style to [36]). Informally, we require that,
for any decomposition Φ′ of the state-space into regions (i.e., an FCP), there is a
second decomposition Φ, the pre-image FCP, such that states in regions of Φ have
the same rewards and transition probabilities into regions of Φ′. The transitions
of the (continuous) environment must also be decomposable into regions.

Assumption 1 (Transitions and rewards). Given any FCP Φ′ of S, there
exists an FCP Φ of S, called the pre-image FCP of Φ′, where for φ ∈ Φ, a ∈ A
and φ′ ∈ Φ′ there exists δΦ : (Φ×A) → P(Φ′) and rΦ : (Φ×A) → R such
that δ(s, a)(s′) = δΦ(φ, a)(φ′) and r(s, a) = rΦ(φ, a) for s ∈ φ and s′ ∈ φ′. In
addition, δE can be expressed in the form

∑n
i=1 μiδ

i
E, where n ∈ N, μi ∈ [0, 1],∑n

i=1 μi = 1 and δi
E : (Loc1×SE×A) → SE are piecewise continuous functions.

The need for this assumption also becomes clear in our later algorithms, which
compute a representation for an NS-POSG’s value function over a (polyhedral)
partition of the state space. This partition is created dynamically over the iter-
ations of the solution, using a pre-image based splitting operation.

We now show, using results for continuous-state POMDPs [27,36], that V � is
the limit of a sequence of α-functions, called piecewise linear and convex under
PWC α-functions, first introduced in [36] for neuro-symbolic POMDPs.

Definition 6 (P-PWLC Function). A function V : SB → R is piecewise
linear and convex under PWC α-functions (P-PWLC) if there exists a finite set
Γ ⊆ FC(S) such that V (s1, b1) = maxα∈Γ 〈α, (s1, b1)〉 for (s1, b1) ∈ SB, where
the functions in Γ are called PWC α-functions.

If V ∈ F(SB) is P-PWLC, then it can be represented by a set of PWC func-
tions over S, i.e., as a finite set of FCP regions and a value vector. Recall that
〈α, (s1, b1)〉 =

∫
sE∈SE

α(s1, sE)b1(sE)dsE , and therefore computing the value for

372 R. Yan et al.

a belief involves integration. For one-sided NS-POSGs, we demonstrate, under
Assumption 1, closure of the P-PWLC representation for value functions under
the minimax operator and the convergence of value iteration.

LP, Closure Property and Convergence. By showing that fu1,α,a2 in (2) is
PWC in S (see [35]), we use Theorem 2 to demonstrate that, if V is P-PWLC,
the minimax operation can be computed by solving an LP.

Lemma 1 (LP for Minimax and P-PWLC). If V ∈ F(SB) is P-PWLC,
then [TV](s1, b1) is given by an LP for (s1, b1) ∈ SB.

Using Lemma 1, we show that the P-PWLC representation is closed under the
minimax operator. This closure property enables iterative computation of a
sequence of such functions to approximate V � to within a convergence guar-
antee.
Theorem 3 (P-PWLC closure and convergence). If V ∈ F(SB) is P-
PWLC, then so is [TV]. If V 0 ∈ F(SB) is P-PWLC, then the sequence (V t)∞

t=0,
such that V t+1 = [TV t], is P-PWLC and converges to V �.

An implementation of value iteration for one-sided NS-POSGs is therefore fea-
sible, since each α-function involved is PWC and thus allows for a finite rep-
resentation. However, as the number of α-functions grows exponentially in the
number of iterations, it is not scalable in practice.

6 Heuristic Search Value Iteration for NS-POSGs

To provide a more practical approach to solving one-sided NS-POSGs, we now
present a variant of HSVI (heuristic search value iteration) [31], an anytime
algorithm that approximates the value function V � via lower and upper bound
functions, updated through heuristically generated beliefs.

Our approach broadly follows the structure of HSVI for finite POSGs [19],
but every step presents challenges when extending to continuous states and NN-
based observations. In particular, we must work with integrals over beliefs and
deal with uncountability, using P-PWLC (rather than PWLC) functions for
lower bounds, and therefore different ingredients to prove convergence. Value
computations are also much more complex because NN perception function
induce FCPs, which are used to compute images, pre-images and intersections.

We also build on ideas from HVSI for (single-agent) neuro-symbolic POMDPs
in [36]. The presence of two opposing agents brings three main challenges. First,
value backups at belief points require solving normal-form games instead of max-
imising over one agent’s actions. Second, since the first agent is not informed of
the joint action, in the value backups and belief updates of the maxsup operator
uncountably many stage strategies of the second agent have to be considered,
whereas, in the single-agent variant, the agent can decide the transition proba-
bilistically on its own. Third, the forward exploration heuristic is more complex
as it depends on the stage strategies of the agents in two-stage games.

Partially Observable Stochastic Games with Neural Perception Mechanisms 373

6.1 Lower and Upper Bound Representations

We first discuss representing and updating the lower and upper bound functions.

Lower Bound Function. Selecting an appropriate representation for α-
functions requires closure properties with respect to the maxsup operator. Moti-
vated by [36], we represent the lower bound V Γ

lb ∈ F(SB) as the P-PWLC func-
tion for a finite set Γ ⊆ FC(S) of PWC α-functions (see Definition 6), for which
the closure is guaranteed by Theorem 3. The lower bound V Γ

lb has a finite rep-
resentation as each α-function is PWC, and is initialised as in [19].

Upper Bound Function. The upper bound V Υ
ub ∈ F(SB) is represented by a

finite set of belief-value points Υ = {((si
1, b

i
1), yi) ∈ SB × R | i ∈ I}, where yi is

an upper bound of V �(si
1, b

i
1). Similarly to [36], for any (s1, b1) ∈ SB, the upper

bound V Υ
ub(s1, b1) is the lower envelope of the lower convex hull of the points in

Υ satisfying the following LP problem: minimise
∑

i∈Is1

λiyi + Kub(b1,
∑

i∈Is1

λib
i
1) subject to λi ≥ 0 and

∑

i∈Is1

λi = 1 (3)

for i ∈ Is1 where Is1 = {i ∈ I | si
1 = s1} and Kub : P(SE) × P(SE) → R

measures the difference between two beliefs such that, if K is the function from
Theorem 1, then for any b1, b

′
1, b

′′
1 ∈ P(SE): Kub(b1, b1) = 0,

Kub(b1, b′
1) ≥ K(b1, b′

1) and |Kub(b1, b′
1) − Kub(b1, b′′

1)| ≤ Kub(b′
1, b

′′
1) . (4)

Note that (3) is close to the upper bound in regular HSVI for finite-state spaces,
except for the function Kub that measures the difference between two beliefs
(two continuous-state functions). With respect to the upper bound used in [36],
Kub here needs to satisfy an additional triangle property in (4) to ensure the
continuity of V Υ

ub , for the convergence of the point-based algorithm below. The
properties of Kub imply that (3) is an upper bound after a value backup, as
stated in Lemma 3 below. The upper bound V Υ

ub is initialised as in [19].

Lower Bound Updates. For the lower bound V Γ
lb , in each iteration we add a

new PWC α-function α� to Γ at a belief (s1, b1) ∈ SB such that:

〈α�, (s1, b1)〉 = [TV Γ
lb](s1, b1) = 〈fp�

1 ,α� , (s1, b1)〉 (5)

where the second equality follows from Lemma 1 and (p�
1, α

�) is computed via
the optimal solution to the LP in Lemma 1 at (s1, b1).

Using p�
1, α� and the perception FCP ΦP , Algorithm 1 computes a new α-

function α� at belief (s1, b1). To guarantee (5) and improve efficiency, we only
compute the backup values for regions φ ∈ ΦP over which (s1, b1) has positive
probabilities, i.e., sφ

1 = s1 (where sφ
1 is the unique agent state appearing in φ)

and
∫
(s1,sE)∈φ

b1(sE)dsE > 0, and assign the trivial lower bound L otherwise.
For each region φ either α�(ŝ1, ŝE) = fp�

1 ,α�(ŝ1, ŝE) or α�(ŝ1, ŝE) = L for
all (ŝ1, ŝE) ∈ φ. Computing the backup values in line 4 of Algorithm 1 state by
state is computationally intractable, as φ contains an infinite number of states.

374 R. Yan et al.

Algorithm 1 . Point-based Update(s1, b1) of (V Γ
lb , V Υ

ub)
1: (p�

1, α
�) ← [TV Γ

lb](s1, b1) via an LP in Lemma 1
2: for φ ∈ ΦP do
3: if sφ

1 = s1 and
∫
(s1,sE)∈φ

b1(sE)dsE > 0 then

4: α�(ŝ1, ŝE) ← fp�
1 ,α�(ŝ1, ŝE) for (ŝ1, ŝE) ∈ φ � ISPP backup

5: else α�(ŝ1, ŝE) ← L for (ŝ1, ŝE) ∈ φ

6: Γ ← Γ ∪ {α�}
7: y� ← [TV Υ

ub](s1, b1) via (1) and (3)
8: Υ ← Υ ∪ {((s1, b1), y

�)}

However, the following lemma shows that α� is PWC, allowing a tractable region-
by-region backup, called Image-Split-Preimage-Product (ISPP) backup, which
is adapted from the single-agent variant in [36]. The details of the ISPP backup
for one-sided NS-POSGs are in [35]. The lemma also shows that the lower bound
function increases and is valid after each update.

Lemma 2 (Lower bound). The function α� generated by Algorithm 1 is a
PWC α-function satisfying (5), and if Γ ′ = Γ ∪ {α�}, then V Γ

lb ≤ V Γ ′
lb ≤ V �.

Upper Bound Updates. For the upper bound V Υ
ub , due to representation (3),

at a belief (s1, b1) ∈ SB in each iteration, we add a new belief-value point
((s1, b1), y�) to Υ such that y� = [TV Υ

ub](s1, b1). Computing [TV Υ
ub](s1, b1) via

(1) and (3) requires the concrete formula for Kub and the belief representations.
Thus, we will show how to compute [TV Υ

ub](s1, b1) when introducing belief rep-
resentations below. The following lemma shows that y� ≥ V �(s1, b1) required by
(3), and the upper bound function is decreasing and is valid after each update.

Lemma 3 (Upper bound). Given a belief (s1, b1) ∈ SB, if y� = [TV Υ
ub](s1, b1),

then y� is an upper bound of V � at (s1, b1), i.e., y� ≥ V �(s1, b1), and if Υ ′ =
Υ ∪ {((s1, b1), y�)}, then V Υ

ub ≥ V Υ ′
ub ≥ V �.

6.2 One-Sided NS-HSVI

Algorithm 2 presents our NS-HSVI algorithm for one-sided NS-POSGs.

Forward Exploration Heuristic. The algorithm uses a heuristic approach to
select which belief will be considered next. Similarly to finite-state one-sided
POSGs [19], we focus on a belief that has the highest weighted excess gap. The
excess gap at a belief (s1, b1) with depth t from the initial belief is defined by
excesst(s1, b1) = V Υ

ub(s1, b1) − V Γ
lb (s1, b1) − ρ(t), where ρ(0) = ε and ρ(t+1) =

(ρ(t) − 2(U − L)ε̄)/β, and ε̄ ∈ (0, (1 − β)ε/(2U − 2L)). Using this excess gap,
the next action-observation pair (â1, ŝ1) for exploration is selected from:

argmax(a1,s′
1)∈A1×S1

P (a1, s
′
1 | (s1, b1), uub

1 , ulb
2)excesst+1(s′

1, b
s1,a1,ulb

2 ,s′
1

1) . (6)

Partially Observable Stochastic Games with Neural Perception Mechanisms 375

Algorithm 2 . One-sided NS-HSVI for one-sided NS-POSGs
1: while V Υ

ub(s
init
1 , binit1) − V Γ

lb (sinit1 , binit1) > ε do Explore((sinit1 , binit1), 0)

2: return V Γ
lb and V Υ

ub via sets Γ and Υ
3: function Explore((s1, b1), t)
4: (ulb

1 , ulb
2) ← minimax strategy profile in [TV Γ

lb](s1, b1)
5: (uub

1 , uub
2) ← minimax strategy profile in [TV Υ

ub](s1, b1)
6: Update(s1, b1) � Algorithm 1
7: (â1, ŝ1) ← select according to forward exploration heuristic

8: if P (â1, ŝ1 | (s1, b1), u
ub
1 , ulb

2)excesst+1(ŝ1, b
s1,â1,ulb

2 ,ŝ1
1) > 0 then

9: Explore((ŝ1, b
s1,â1,ulb

2 ,ŝ1
1), t + 1)

10: Update(s1, b1) � Algorithm 1

To compute the next belief via lines 8 and 9 of Algorithm 2, the minimax strat-
egy profiles in stage games [TV Γ

lb](s1, b1) and [TV Υ
ub](s1, b1), i.e., (uub

1 , ulb
2), are

required. Since V Γ
lb is P-PWLC, using Lemma 1, the strategy ulb

2 is obtained
by solving an LP. However, the computation of the strategy uub

1 depends on
the representation of (s1, b1) and the measure function Kub , and thus will be
discussed later. One-sided NS-HSVI has the following convergence guarantees.

Theorem 4 (One-sided NS-HSVI). For any (sinit1 , binit1) ∈ SB and
ε > 0, Algorithm 2 will terminate and upon termination: V Υ

ub(s
init
1 , binit1) −

V Γ
lb (sinit1 , binit1) ≤ ε and V Γ

lb (sinit1 , binit1) ≤ V �(sinit1 , binit1) ≤ V Υ
ub(s

init
1 , binit1).

6.3 Belief Representation and Computations

Implementing one-sided NS-HSVI depends on belief representations, as closed
forms are needed. We use the popular particle-based representation [10,27], which
can approximate arbitrary beliefs and handle non-Gaussian systems. However,
compared to region-based representations [36], it is more vulnerable to distur-
bances and can require many particles for a good approximation.

Particle-Based Beliefs. A particle-based belief (s1, b1) ∈ SB is represented by
a weighted particle set {(si

E , κi)}ns
i=1 with a normalised weight κi for each particle

si
E ∈ SE , where b1(sE) =

∑nb

i=1κiD(sE − si
E) for sE ∈ SE and D(sE − si

E) is a
Dirac delta function centred at 0.

To implement one-sided NS-HSVI using particle-based beliefs, we prove that
V Γ
lb and V Υ

ub are eligible representations, as the belief update b
s1,a1,u2,s′

1
1 , expected

values 〈α, (s1, b1)〉, 〈r, (s1, b1)〉 and probability P (a1, s
′
1 | (s1, b1), u1, u2) are com-

puted as simple summations for a particle-based belief (s1, b1) ([35]).

Lower Bound. Since V Γ
lb is P-PWLC with PWC α-functions Γ , for a particle-

based belief (s1, b1) represented by {(si
E , κi)}nb

i=1, using Definition 6, V Γ
lb (s1, b1) =

maxα∈Γ

∑nb

i=1 κiα(s1, si
E). The stage game [TV Γ

lb](s1, b1) and minimax strategy
profile (ulb

1 , ulb
2) follow from solving the LP in Lemma 1.

Upper Bound. To compute V Υ
ub in (3), we need a function Kub to measure

belief differences that satisfies (4). We take Kub = K, which does so by defini-

376 R. Yan et al.

tion. Given Υ = {((si
1, b

i
1), yi) | i ∈ I}, the upper bound and stage game can

be computed by solving an LP, respectively, as demonstrated by the following
theorem, and then the minimax strategy profile (uub

1 , uub
2) is synthesised (see

[35]).

Theorem 5 (LPs for upper bound). For a particle-based belief (s1, b1) ∈ SB,
V Υ
ub(s1, b1) and [TV Υ

ub](s1, b1) are the optimal value of an LP, respectively.

7 Experimental Evaluation

We have built a prototype implementation in Python, using Gurobi [16] to solve
the LPs needed for computing lower and upper bound values, and the minimax
values and strategies of one-shot games. We use the Parma Polyhedra Library [1]
to operate over polyhedral pre-images of NNs, α-functions and reward structures.

Fig. 2. Simulations of strategies for the pursuer, showing actual location (red), per-
ceived location (blue), belief of evader location (green) and strategy (pink) for two
different NN perception functions: (a) more precise; (b) coarser. (Color figure online)

Our evaluation uses two one-sided NS-POSG examples: a pursuit-evasion
game and the pedestrian-vehicle scenario from Sect. 3. Below, we discuss the
applicability and usefulness of our techniques on these examples. Due to limited
space, we refer to [35] for more details of the models, including the training of
the ReLU NN classifiers, and empirical results on performance.
Pursuit-Evasion. A pursuit-evasion game models a pursuer trying to catch
an evader aiming to avoid capture. We build a continuous-space variant of the
model from [19] inspired by mobile robotics applications [8,20]. The environment
includes the exact position of both agents. The (partially informed) pursuer uses
an NN classifier to perceive its own location, which maps to one of 3×3 grid cells.

Partially Observable Stochastic Games with Neural Perception Mechanisms 377

To showcase the ability of our methodology to assess the performance of realistic
NN perception functions, we train two NNs, the second with a coarser accuracy.

Figure 2 shows simulations of strategies synthesised for the pursuer, using the
two different NNs. Its actual location is a red dot, and the pink arrows denote the
strategy. Blue squares show the cell that is output by the pursuer’s perception
function, and black lines mark the underlying polyhedral decomposition. The
pursuer’s belief over the evader’s location is shown by the green shading and
annotated probabilities; it initially (correctly) believes that the evader is in cell
C and the belief evolves based on the optimal counter-strategy of the evader.

The plots show we can synthesise non-trivial strategies for agents using NN-
based perception in a partially observable setting. We can also study the impact
of a poorly trained perception function. Figure 2(b), for the coarser NN, shows
the pursuer repeatedly mis-detecting its location because the grid cells shapes
are poorly approximated, and subsequently taking incorrect actions. This is
exploited by the evader, leading to considerably worse performance for the pur-
suer.

Pedestrian-Vehicle Interaction. Figure 3 shows several simulations from
strategies synthesised for the pedestrian-vehicle example described in Sect. 3
(Fig. 1), plotting the position (x2, y2) of the pedestrian, relative to the vehi-
cle. We fix the pedestrian’s strategy, to simulate a crossing scenario: it moves
from right to left, i.e., decreasing x2. The (partially informed) vehicle’s per-
ception function predicts the intention of the pedestrian (green/yellow/red =
unlikely/likely/very likely to cross), shown as coloured dots. Above and below
each circle, we indicate the acceleration actions taken (black) and current speeds
(orange), respectively, which determine the distance y2 to the pedestrian cross-
ing.

Fig. 3. Simulations of strategies for the vehicle, plotted as the pedestrian’s current posi-
tion (x2, y2) relative to it. Also shown: perceived pedestrian intention (green/yellow/red
= unlikely/likely/very likely to cross), current speed (orange), acceleration (black) and
crash region (shaded purple region). (Color figure online)

Again, we investigate the feasibility of generating strategies for agents with
realistic NN-based perception. Here, the goal is to avoid a crash scenario, denoted
by the shaded region at the bottom left of the plots. We find that, in many cases,
safe strategies can be synthesised. Figure 3(a) shows an example; notice that the

378 R. Yan et al.

pedestrian intention is detected early. This is not true in (b) and (c), which show
two simulations from a strategy and starting point where the perception function
results in much later detection; (c) shows we were then unable to synthesise a
strategy for the vehicle that is always safe.

8 Conclusions

We have proposed one-sided neuro-symbolic POSGs, designed to reason formally
about partially observable agents equipped with neural perception mechanisms.
We characterised the value function for discounted infinite-horizon rewards, and
designed, implemented and evaluated a HSVI algorithm for approximate solu-
tion. Computational complexity is high due to expensive polyhedral operations.
Nevertheless, our method provides an important baseline that can reason about
true decision boundaries for game models with NN-based perception, against
which efficiency improvements can later be benchmarked. We plan to investigate
ways to improve performance, e.g., merging of adjacent polyhedra or Monte-
Carlo planning methods, and to study restricted cases of two-sided NS-POSGs,
e.g., those with public observations [18].

Acknowledgements. This project was funded by the ERC under the European
Union’s Horizon 2020 research and innovation programme (FUN2MODEL, grant agree-
ment No.834115).

References

1. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Programm. 72(1), 3–21 (2008). https://www.
bugseng.com/ppl

2. Bhabak, A., Saha, S.: Partially observable discrete-time discounted Markov games
with general utility. arXiv:2211.07888 (2022)

3. Bosansky, B., Kiekintveld, C., Lisy, V., Pechoucek, M.: An exact double-oracle
algorithm for zero-sum extensive-form games with imperfect information. J. Artif.
Intell. Res. 51, 829–866 (2014)

4. Brechtel, S., Gindele, T., Dillmann, R.: Solving Continuous POMDPs: value itera-
tion with incremental learning of an efficient space representation. In: Proceedings
of ICML’13, pp. 370–378. PMLR (2013)

5. Brown, N., Bakhtin, A., Lerer, A., Gong, Q.: Combining deep reinforcement learn-
ing and search for imperfect-information games. In: Proceedings of NeurIPS’20,
pp. 17057–17069. Curran Associates, Inc. (2020)

6. Burks, L., Loefgren, I., Ahmed, N.R.: Optimal continuous state POMDP planning
with semantic observations: a variational approach. IEEE Trans. Rob. 35(6), 1488–
1507 (2019)

7. Carr, S., Jansen, N., Bharadwaj, S., Spaan, M.T., Topcu, U.: Safe policies for
factored partially observable stochastic games. In: Robotics: Science and System
XVII (2021)

8. Chung, T.H., Hollinger, G.A., Isler, V.: Search and pursuit-evasion in mobile
robotics. Auton. Robot. 31(4), 299–316 (2011)

https://www.bugseng.com/ppl
https://www.bugseng.com/ppl
http://arxiv.org/abs/2211.07888

Partially Observable Stochastic Games with Neural Perception Mechanisms 379

9. Delage, A., Buffet, O., Dibangoye, J.S., Saffidine, A.: HSVI can solve zero-sum
partially observable stochastic games. Dyn. Games Appl., 1–55 (2023)

10. Doucet, A., Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo Methods in
Practice. Springer, New York, NY (2001). https://doi.org/10.1007/978-1-4757-
3437-9

11. Emery-Montemerlo, R., Gordon, G., Schneider, J., Thrun, S.: Approximate solu-
tions for partially observable stochastic games with common payoffs. In: Proceed-
ings of AAMAS’04, pp. 136–143. IEEE (2004)

12. Feng, Z., Dearden, R., Meuleau, N., Washington, R.: Dynamic programming for
structured continuous Markov decision problems. In: Proceedings of UAI’04, pp.
154–161 (2004)

13. Fu, T., Miranda-Moreno, L., Saunier, N.: A novel framework to evaluate pedestrian
safety at non-signalized locations. Accid. Anal. Prev. 111, 23–33 (2018)

14. Ghosh, M.K., McDonald, D., Sinha, S.: Zero-sum stochastic games with partial
information. J. Optim. Theory Appl. 121, 99–118 (2004)

15. Guestrin, C., Hauskrecht, M., Kveton, B.: Solving factored MDPs with continuous
and discrete variables. In: Proceedings of UAI’04, pp. 235–242 (2004)

16. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2021). https://
www.gurobi.com

17. Hansen, E.A., Bernstein, D.S., Zilberstein, S.: Dynamic programming for partially
observable stochastic games. In: Proceedings of AAAI’04, vol. 4, pp. 709–715 (2004)

18. Horák, K., Bošanskỳ, B.: Solving partially observable stochastic games with public
observations. In: Proceedings of AAAI’19, vol. 33, pp. 2029–2036 (2019)

19. Horák, K., Bošanskỳ, B., Kovař́ık, V., Kiekintveld, C.: Solving zero-sum one-sided
partially observable stochastic games. Artif. Intell. 316, 103838 (2023)

20. Isler, V., Nikhil, K.: The role of information in the cop-robber game. Theoret.
Comput. Sci. 399(3), 179–190 (2008)

21. Kovař́ık, V., Schmid, M., Burch, N., Bowling, M., Lisỳ, V.: Rethinking formal mod-
els of partially observable multiagent decision making. Artif. Intell. 303, 103645
(2022)

22. Kovař́ık, V., Seitz, D., Lisỳ, V., Rudolf, J., Sun, S., Ha, K.: Value functions for
depth-limited solving in zero-sum imperfect-information games. Artif. Intell. 314,
103805 (2023)

23. Kumar, A., Zilberstein, S.: Dynamic programming approximations for partially
observable stochastic games. In: Proceedings of FLAIRS’09, pp. 547–552 (2009)

24. Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning
and related stochastic optimization problems. Artif. Intell. 147(1–2), 5–34 (2003)

25. Matoba, K., Fleuret, F.: Computing preimages of deep neural networks with appli-
cations to safety (2020). https://openreview.net/forum?id=FN7 BUOG78e

26. Moravč́ık, M., et al.: DeepStack: expert-level artificial intelligence in heads-up no-
limit poker. Science 356(6337), 508–513 (2017)

27. Porta, J.M., Vlassis, N., Spaan, M.T., Poupart, P.: Point-based value iteration for
continuous POMDPs. J. Mach. Learn. Res. 7, 2329–2367 (2006)

28. Rasouli, A., Kotseruba, I., Kunic, T., Tsotsos, J.K.: PIE: a large-scale dataset and
models for pedestrian intention estimation and trajectory prediction. In: Proceed-
ings of ICCV’19, pp. 6262–6271 (2019)

29. Rasouli, A., Kotseruba, I., Tsotsos, J.K.: Are they going to cross? A benchmark
dataset and baseline for pedestrian crosswalk behavior. In: Proceedings of ICCV’17,
pp. 206–213 (2017)

30. Saha, S.: Zero-sum stochastic games with partial information and average payoff.
J. Optim. Theory Appl. 160(1), 344–354 (2014)

https://doi.org/10.1007/978-1-4757-3437-9
https://doi.org/10.1007/978-1-4757-3437-9
https://www.gurobi.com
https://www.gurobi.com
https://openreview.net/forum?id=FN7_BUOG78e

380 R. Yan et al.

31. Smith, T., Simmons, R.: Heuristic search value iteration for POMDPs. In: Pro-
ceedings of UAI’04, pp. 520–527. AUAI (2004)

32. Wiggers, A.J., Oliehoek, F.A., Roijers, D.M.: Structure in the value function of
two-player zero-sum games of incomplete information. Front. Artif. Intell. Appl.
285, 1628–1629 (2016)

33. Yan, R., Santos, G., Norman, G., Parker, D., Kwiatkowska, M.: Strategy synthesis
for zero-sum neuro-symbolic concurrent stochastic games. arXiv 2202.06255 (2022)

34. Yan, R., Santos, G., Duan, X., Parker, D., Kwiatkowska, M.: Finite-horizon equi-
libria for neuro-symbolic concurrent stochastic games. In: Proceedings of UAI’22,
pp. 2170–2180. AUAI Press (2022)

35. Yan, R., Santos, G., Norman, G., Parker, D., Kwiatkowska, M.: Partially observable
stochastic games with neural perception mechanisms. arXiv:2310.11566 (2023)

36. Yan, R., Santos, G., Norman, G., Parker, D., Kwiatkowska, M.: Point-based
value iteration for POMDPs with neural perception mechanisms. arXiv 2306.17639
(2023)

37. Yan, R., Santos, G., Norman, G., Parker, D., Kwiatkowska, M.: HSVI-based online
minimax strategies for partially observable stochastic games with neural perception
mechanisms. In: Proceedings of L4DC’24 (2024)

38. Zamani, Z., Sanner, S., Poupart, P., Kersting, K.: Symbolic dynamic programming
for continuous state and observation POMDPs. In: Advances in Neural Information
Processing Systems, vol. 25 (2012)

39. Zettlemoyer, L., Milch, B., Kaelbling, L.: Multi-agent filtering with infinitely nested
beliefs. In: Advances in Neural Information Processing Systems, vol. 21 (2008)

40. Zheng, W., Jung, T., Lin, H.: The Stackelberg equilibrium for one-sided zero-sum
partially observable stochastic games. Automatica 140, 110231 (2022)

41. Zheng, W., Jung, T., Lin, H.: Continuous-observation one-sided two-player zero-
sum partially observable stochastic game with public actions. IEEE Trans. Autom.
Control, 1–15 (2023)

42. Zinkevich, M., Johanson, M., Bowling, M., Piccione, C.: Regret minimization in
games with incomplete information. In: Advances in Neural Information Processing
Systems, vol. 20 (2007)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/2310.11566
http://creativecommons.org/licenses/by/4.0/

Bridging Dimensions: Confident
Reachability for High-Dimensional

Controllers

Yuang Geng1(B) , Jake Brandon Baldauf1 , Souradeep Dutta2 ,
Chao Huang3 , and Ivan Ruchkin1

1 University of Florida, Gainesville, FL, USA
{yuang.geng,jakebaldauf}@ufl.edu, iruchkin@ece.ufl.edu

2 University of Pennsylvania, Philadelphia, PA, USA
duttaso@seas.upenn.edu

3 University of Southampton, Southampton, UK
chao.huang@soton.ac.uk

Abstract. Autonomous systems are increasingly implemented using
end-to-end learning-based controllers. Such controllers make decisions
that are executed on the real system, with images as one of the primary
sensing modalities. Deep neural networks form a fundamental building
block of such controllers. Unfortunately, the existing neural-network ver-
ification tools do not scale to inputs with thousands of dimensions—
especially when the individual inputs (such as pixels) are devoid of clear
physical meaning. This paper takes a step towards connecting exhaus-
tive closed-loop verification with high-dimensional controllers. Our key
insight is that the behavior of a high-dimensional vision-based controller
can be approximated with several low-dimensional controllers. To bal-
ance the approximation accuracy and verifiability of our low-dimensional
controllers, we leverage the latest verification-aware knowledge distilla-
tion. Then, we inflate low-dimensional reachability results with statis-
tical approximation errors, yielding a high-confidence reachability guar-
antee for the high-dimensional controller. We investigate two inflation
techniques—based on trajectories and control actions—both of which
show convincing performance in three OpenAI gym benchmarks.

Keywords: reachability · neural-network control · conformal
prediction

1 Introduction

End-to-end deep neural network controllers have been extensively used in exe-
cuting complex and safety-critical autonomous systems in recent years [13,40,
51,52]. In particular, high-dimensional controllers (HDCs) based on images and
other high-dimensional inputs have been applied in areas such as autonomous car
navigation [49,61] and aircraft landing guidance [47]. For example, recent work

c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 381–402, 2025.
https://doi.org/10.1007/978-3-031-71162-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_20&domain=pdf
http://orcid.org/0000-0002-2265-7586
http://orcid.org/0009-0004-2739-2881
http://orcid.org/0000-0003-2706-2095
http://orcid.org/0000-0002-9300-1787
http://orcid.org/0000-0003-3546-414X
https://doi.org/10.1007/978-3-031-71162-6_20

382 Y. Geng et al.

has shown the high performance of controlling aircraft to land on the runway
with a vision-based controller [65]. For such critical applications, it is important
to develop techniques with strong safety guarantees for HDC-controlled systems.

However, due to the high-dimensional nature of the input space, modern
verification cannot be applied directly to systems controlled by HDCs [2,43].
Current closed-loop verification tools, such as NNV [54], Verisig [30], Sherlock
[18], and ReachNN* [28], are capable of combining a dynamical system and a low-
dimensional controller (LDC) to verify a safety property starting from an initial
region of the low-dimensional input space, such as position-velocity states of a
car. DeepReach [5] has pushed the boundary of applying Hamilton-Jacobi (HJ)
reachability to systems with tens of state dimensions. However, such verification
tools fail to scale for an input with thousands of dimensions (e.g., an image).
One issue is that the dynamics of these dimensions are impractical to describe.
Furthermore, the structure of an HDC is usually more complicated than that
of an LDC, with convolution and pooling layers. For example, an image-based
HDC may have hundreds of layers with thousands of neurons, whereas an LDC
usually contains several layers with dozens of neurons, making HDC verification
difficult.

Fig. 1. Our verification approach for systems with high-dimensional controllers.

To deal with these challenges, researchers have built perception abstractions
into the verification process. One work [31] verified a generative adversarial net-
work (GAN) that creates images from states. Such methods cannot guarantee
the GAN’s accuracy or relation to reality, which becomes a major falsifiable
assumption of their verification outcomes. Another work [47] built a precise
mathematical model capturing the exact relationship between states and image
pixels to verify the image-based controller, which is effortful and needs to be
redone for each system. Inspired by previous work on decreasing the dimensions,
we skillfully create verifiable low-dimensional controllers from high-dimensional
ones.

Bridging Dimensions: Confident Reachability for HD Controllers 383

This paper proposes an end-to-end methodology to verify systems with
HDCs by employing the steps displayed in Fig. 1. Instead of verifying an HDC’s
safety directly over a complicated input space, our key idea is to approximate
it with several LDCs so that we can reduce the HDC reachability problem to
several LDC reachability problems. A crucial step is to upper-bound the differ-
ence between LDC and HDC, which we do statistically. Finally, we extend the
reachable sets with the statistical bounds to obtain a safety guarantee for the
HDC.

Since the input space and structure of the HDC are too complex to verify, we
leverage knowledge distillation [25]—a model compression method—to train sim-
plified “student models” (LDC) based on the information from the sophisticated
“teacher model” (HDC). This training produces an LDC that is lightweight and
amenable to closed-loop verification because it operates on dynamical states,
not images. Moreover, due to the importance of the Lipschitz to minimizing the
overapproximation error [28,29], our methodology adopts two-objective gradient
descent [21], decreasing both the approximation error and Lipschitz constant.

After training the LDCs, we calculate the statistical upper bound of the
discrepancy between the two controllers, since obtaining the true discrepancy
is impractical. To this end, we rely on conformal prediction [22,45,48], one of
the cutting-edge statistical methods to provide a lower bound of the confidence
interval for prediction residuals without distributional assumptions or explicit
dependency on the sample count. We propose two conformal techniques to quan-
tify the difference between HDC- and LDC-controlled systems, by bounding: (i)
the distance between their trajectories, and (ii) the difference between the actions
produced by the HDC and LDC. We inflate reachable sets of the LDC system
based on both bounds to obtain safety guarantees on the HDC system.

We evaluate our approach on three popular case studies in OpenAI Gym [7]:
inverted pendulum, mountain car, and cartpole. Our contributions are three-fold:

1. Two verification approaches for high-dimensional controllers that combine
reachability analysis and statistical inference to provide a safety guarantee
for systems controlled by neural networks with thousands of inputs.

2. A novel neural-network approximation technique for training multiple LDCs
that collectively mimic an HDC and reduce overapproximation error.

3. An implementation and evaluation of our verification approaches on three
case studies: inverted pendulum, mountain car, and cartpole.

Section 2 provides the background and our problem. Section 3 describes our ver-
ification approach, which is evaluated in Sect. 4. Finally, we review the related
work in Sect. 5 and conclude in Sect. 6. More details are in the extended online
version [67].

2 Background and Problem Setting

High- and Low-Dimensional Systems. The original high-dimensional closed-
loop system is a tuple Mhd = (S,Z, U, s0, f, chd, g). Here, the S is the state space,

384 Y. Geng et al.

Z is the high-dimensional sensor space of so-called “images” (e.g., camera images
or LIDAR scans), and the U is the control action space, s0 is the initial state,
f : S × U → S is the dynamics, and chd : Z × S → U is the HDC. Note that
chd only uses a subset of state dimensions as input (e.g., a convolutional neural
network with image and velocity inputs, but not position), getting the rest of
the information from the image.

For mathematical convenience, we also define an (unknown) deterministic
state-to-image generator as g : S → Z and the role and assumptions of generator
g are stated below. As a verifiable approximation of Mhd, our low-dimensional
closed-loop system is defined as Mld = (S,U, s0, f, cld). Both Mhd and Mld have
the same state space and action space. The only difference is that the Mld has
a low-dimensional controller cld : S → U , which operates on the exact states.
System Execution. The execution of Mhd starts from the initial state s0. Next,
an image z can be generated by image generator g from that state. Then it is
fed into chd to obtain a corresponding control action u = chd(z), which is used
to update the state via dynamics f . For Mld, the execution proceeds similarly,
except that the current state s directly results in a control action u = cld(s).
Thus, we denote the state at time t starting from s0 executed by Mhd or Mld as
ϕhd(s0, t) and ϕld(s0, t) respectively. The trajectory of Mhd is defined as a state
sequence: τhd(s0, T) = [s0, ϕhd(s0, 1), . . . , ϕhd(s0, T)], and similarly for τhd.

Based on previous background, we define reachable sets and tubes:

Definition 1 (Reachable set). Given an initial set S0 and an integer time
t, a reachable set rsM (S0, t) for (either) system M contains all the states that
can be reached from S0 in t steps: rsM (S0, t) = {ϕM (s0, t) | ∀s0 ∈ S0}.
Definition 2 (Reachable tube). Given an initial set S0 and time horizon
T , a reachable tube rtM (S0, T) for (either) system M is a sequence of all the
reachable sets from S0 until time T : rtM (S0, T) = [S0, rsM (S0, 1), ..., rsM (S0, T)].

Assumptions on Image-State Mapping g. Our key challenge is establishing
a mapping between the high-dimensional image space Z and the low-dimensional
state space S. Our verification methodology is based on the existence of a deter-
ministic image generator g that is part of Mhd. This generator is the true and
unknown mechanism that creates images from states (e.g., a camera system).
We do not assume or use an analyzable closed-form description of g. We also do
not assume or verify any perception model (which obtains states from images).

We only use g in the training process for a limited state-image dataset, anal-
ogously to a “lab study” of an instrumented system Mhd (e.g., with positioning
sensors or human annotators) to label each image z with a corresponding low-
dimensional state s. Further, to check our robustness to this assumption, we
will perform a sensitivity analysis by adding zero-mean Gaussian noise to the
state-image mapping. The results of this evaluation will be discussed in Sect. 4.
Verification Problem. Our problem is to guarantee that the high-dimensional
system Mhd reaches the goal set G from an initial set S0 within time T . To
this end, we aim to compute reachable sets of the high-dimensional system Mhd

and intersect them with the goal set to obtain the verification verdict. Set G

Bridging Dimensions: Confident Reachability for HD Controllers 385

is specified in low dimensions (i.e., using physical variables); however, the Mhd

behavior is determined by the images from generator g and the HDC’s response
to them.

Thus, given an initial set S0, goal set G, system Mhd, and time horizon T ,
our goal is to verify this assertion:

∀s0 ∈ S0 · rsMhd
(S0, T) ⊆ G (1)

This problem can be divided into two parts: (a) approximating Mhd with
low-dimensional systems M1

ld, . . . ,M
n
ld and verifying them; (b) combining these

reachability results based on the approximation error bounds into a reachability
verdict to solve the above Mhd problem with statistical confidence.

3 Verification of High-Dimensional Systems

Considering the challenges of complex structure and dynamics of high-
dimensional systems, and the difficulties of defining safety in high dimensions,
our end-to-end approach is structured in five steps: (1) train low-dimensional
controller(s), (2) perform reachability analysis on them, (3) compute statistical
discrepancy bounds between high- and low-dimensional controllers, (4) inflate
the reachable tubes from low-dimensional verification with these bounds, and (5)
combine the verification results and repeat the process as if needed on different
states/LDCs.

Step 1: Training Low-Dimensional Controllers

Given the aforementioned challenges of directly verifying Mhd, we plan to first
verify the behavior in the low dimensions according to Mld. Hence, we train a cld

to imitate the performance of chd starting from a given state region, which serves
as an input to Step 1 (our first iteration uses the full initial state region S0 to train
one cld). As a start, we collect the training data for cld: given the chd, access to
image generator g, and the initial state space region S0, we construct a supervised
training dataset Dtr =

{(
τhd(si, T), (u1, ..., uT)i

)}m

i=1
by sampling the initial

states si ∼ D0 from some given distribution D0 (in practice, D0 = Uniform(S0)).
Training a verifiable LDC has two conflicting objectives. On the one hand,

we want to approximate the given chd with minimal Mean Squared Error (MSE)
on Dtr. On the other hand, neural networks with smaller Lipschitz constants are
more predictable and verifiable [15,23,50].

We balance the ability of the cld to mimic the chd and the verifiability of cld

by using a recent verification-aware knowledge distillation technique [21]. Origi-
nally, this method was developed to compress low-dimensional neural networks
for better verifiability—and we extend it to approximate an HDC with LDCs
using the supervised dataset Dtr. Specifically, we implement knowledge distilla-
tion with two-objective gradient descent, which aims to optimize the MSE loss

386 Y. Geng et al.

function Lmse and Lipschitz constant loss function Llip. First, it computes the
directions of two gradients with respect to the cld parameters θ:

dLmse
=

∂Lmse

∂θ
, dLlip

=
∂Llip

∂θ
(2)

The two-objective descent operates case-by-case to optimize at least one
objective as long as possible. If dLmse

· dLlip
> 0, the objectives can be opti-

mized simultaneously by following the direction of the angular bisector of the
two gradients. If dLmse

· dLlip
< 0, then it is impossible to improve both objec-

tives. Then, weights are updated along the vector of dLmse
(the higher priority)

projected onto the hyperplane perpendicular to dLlip
. The thresholds for MSE

and Lipschitz constants in our system Mld are denoted as ε and λ respectively.
The stopping condition is met when both loss functions are below their thresh-
olds or the training time exceeds the limit. Later on, Step 1 will be referred to
with function TrainLDC, and our way of tuning ε and λ will be described later
in Step 5.

Step 2: Reachability Analysis In Low Dimensions

After training LDCs {c1ld, ..., c
m
ld}, we construct overapproximate reachable

tubes for each. We perform reachability analysis for systems M1
ld, . . . ,M

m
ld

with the respective controllers and the initial set S0 specified in the orig-
inal verification problem. This will result in a set of reachable tubes
rtM1

ld
(S0, T), . . . , rtMm

ld
(S0, T).

To implement reachability analysis, we use the POLAR toolbox (https://
github.com/ChaoHuang2018/POLAR Tool), version of December 2022 [27,62],
which computes univariate Bernstein polynomials to overapproximate activation
functions in cld, and then tightly and selectively overapproximates cld with Tay-
lor/Bernstein polynomials. For dynamics reachability, alternating with neural-
network overapproximation, POLAR relies on the mature Flow* tool with Taylor
model approximations [9]. The latest experimental results [62] show that POLAR
outperforms other neural-network verification tools in both computational effi-
ciency and tightness. The verification details are formalized in Algorithm 2 in
Step 5.

Step 3a: Defining Discrepancy Bounds

The LDC reachable tubes from Step 2 cannot be used directly to obtain HDC
guarantees because of the discrepancy between LDC and HDC behaviors, which
inevitably arises when compressing a higher-parameter neural network [24].
Therefore, we will quantify the difference between LDCs and HDCs using discrep-
ancy functions, inspired by the prior work on testing hybrid systems [19,20,44].
We introduce and investigate two types of discrepancy functions in our setting:

1. Trajectory-based discrepancy β considers the difference between the HDC
and LDC trajectories starting from a matched state-image pair (s, z), i.e., z =

https://github.com/ChaoHuang2018/POLAR_Tool
https://github.com/ChaoHuang2018/POLAR_Tool

Bridging Dimensions: Confident Reachability for HD Controllers 387

g(s). It is defined as the least upper bound on the maximum L1 distance between
two trajectories, i.e., ‖τhd(s0, T)−τld(s0, T)‖1, over time T for all initial states s0
within the initial set S0. Therefore, each initial set S0 gives rise to its trajectory-
based discrepancy β(S0).

2. Action-based discrepancy γ considers the difference between LDC and
HDC actions on a matched state-image pair (s, z), i.e., z = g(s). Similarly to
the above, it is defined as the least upper bound on the difference between control
actions over time horizon T starting from any initial state s0 within the initial
set S0. Note that the control difference, ‖chd(g(st

hd)) − cld(st
ld)‖1, is considered

at each time step, where the s is each state in the two trajectories.

Step 3b: Computing Statistical Discrepancy Bounds

Unfortunately, obtaining the true discrepancies is impractical: it would require
solving optimization/feasibility problems in high-dimensional image spaces.
Instead, we calculate the statistical upper bounds for these discrepancies via
conformal prediction, which is a distribution-free statistical technique to pro-
vide probabilistically valid uncertainty regions for complex prediction models—
without strong assumptions about these models or their error distributions [55].

Below we briefly summarize basic conformal prediction. Consider k +1 inde-
pendent and identically distributed random variables Δ,Δ1, ...,Δk, also known
as non-conformity scores. Conformal prediction computes an uncertainty region
for Δ via a function Δ̄ : Rk → R from the other k values. Given a failure proba-
bility α ∈ (0, 1), conformal prediction provides an uncertainty bound on Δ̄ such
that Pr(Δ ≤ Δ̄) ≥ 1 − α. This is performed with a surprisingly simple quan-
tile argument, where the uncertainty bound Δ̄ is calculated as the (1 − α)-th
quantile of the empirical distribution over the values of Δ1,Δ2, ...,Δk, and ∞.
The guarantee is formalized in the lemma below, and for details see a popular
tutorial [48].

Lemma 1. (Lemma 1 in [22]) Let Δ,Δ1,Δ2, ...,Δk be k+1 independent iden-
tically distributed real-valued random variables. Without loss of generality, let
Δ,Δ1,Δ2, ...,Δk be stored in non-decreasing order and define Δk+1 := ∞. For
α ∈ (0, 1), it holds that Pr(Δ ≤ Δ̄) ≥ 1 − α where Δ̄ := Δ(r), which is the
r-ranked variable with r = �(k + 1)(1 − α)�, and �.� is the ceiling function.

Leveraging conformal prediction, we define the statistical versions of our dis-
crepancy functions. For the trajectory-based one, we define the non-conformity
as the maximum L1 distance between states at the same time in two matched
trajectories τld(s0, T) and τhd(s0, T) starting from a random state s0 ∼ D0 sam-
pled independently and identically distributed (i.i.d.) from a given distribution
D0 over the initial region S0, similar to recent works [11,44]. This leads to a
trajectory dataset Dtb, from which k non-conformity scores are calculated.

Definition 3 (Statistical trajectory-based discrepancy). Given distribu-
tion D0 over S0, confidence α ∈ (0, 1), and state functions ϕhd(s, t) and ϕld(s, t)

388 Y. Geng et al.

for systems Mhd and Mld, a statistical trajectory-based discrepancy β̄(D0) is an
α-confident upper bound on the max trajectory distance starting from s0 ∼ D0:

Prs0∼D0

[
max
t=0..T

‖ϕhd(s0, t) − ϕld(s0, t)‖1 ≤ β̄(D0)
]

≥ 1 − α

To obtain this bound β̄(D0), we leverage conformal prediction as follows.
Dataset Dtb contains i.i.d. samples s1, s2, ..., sk from our chosen distribution D0.
In practice, we choose the uniform distribution, namely s ∼ Uniform(S), because
we value the safety of each state equally. We compute the corresponding non-
conformity scores δ1, δ2, ..., δk, δk+1 as the maximum L1 distances between the
same-time states in the two trajectories over all times t ∈ [0..T]:

δi = max
t=0..T

‖ϕhd(si, t) − ϕld(si, t)‖1 for i = 1 . . . k; and δk+1 = ∞

We sort the scores in the increasing order and set β̄(S0) to the r-th quantile:

β̄(D0) := δ(r) with r = �(k + 1)(1 − α)� (3)

We follow a similar procedure for the statistical action-based discrepancy,
except that now the non-conformity scores are defined as the maximum differ-
ences between actions at the same time in two paired trajectories.

Definition 4 (Statistical action-based discrepancy). Given confidence α ∈
(0, 1), distribution D0 over S0, and systems Mld and Mhd, a statistical action-
based discrepancy γ̄(D0) is an α-confident upper bound on maximum action
discrepancy in two trajectories starting from s0 ∼ D0:

PrD(S0)

[
max

t=0..T
‖chd

(
g(ϕhd(s0, t))

) − cld

(
ϕld(s0, t)

)‖1 ≤ γ̄(D0)
]

≥ 1 − α

To implement this statistical action-based discrepancy function, we sample
initial states s1, s2, ..., sk from a given set S0 following the distribution D0 (in
practice, uniform) and obtain the corresponding low-dimensional trajectories.
Then we generate with g the corresponding images matched to each state in each
trajectory—and these pairs form our action-based dataset Dab. The correspond-
ing nonconformity scores δ1, δ2, ..., δk, δk+1 are maximum action differences:

δi = max
t=0..T

‖chd(g(ϕhd(s0, t))) − cld(ϕld(s0, t))‖1 for i = 1 . . . k; δk+1 = ∞.

Then we sort these non-conformity scores in the non-decreasing order and
determine the statistical bound for the action-based discrepancy as:

γ̄(D0) := δ(r) with r = �(k + 1)(1 − α)� (4)

Step 4: Inflating Reachability With Discrepancies

This step combines low-dimensional reachable tubes (Step 2) with statistical
discrepancies (Step 3b) to provide a safety guarantee on the high-dimensional

Bridging Dimensions: Confident Reachability for HD Controllers 389

system. Thus, we inflate the original LDC reach tubes with either trajectory or
action discrepancy to contain the (unknown) true HDC tube with chance 1− α.
Trajectory-Based Inflation. The trajectory-based approach inflates the LDC
reachable set starting in region S0 with the statistical trajectory-based discrep-
ancy β̄(D0). Since the final reachable tube for a given initial set of cld is repre-
sented as a sequence of discrete state polytopes calculated by concretizing the
Taylor model with interval arithmetic on the initial set [27], we inflate these
polygons by adding β̄(D0) to their boundaries.

Definition 5 (Trajectory-inflated reachable set). Given a distribution D0

over initial set S0 that is controlled by LDC cld, reachable set rs(S0, t), and its
trajectory discrepancy β̄(D0), a trajectory-inflated reachable set is defined as:

irs(S0, t, β̄(D0)) =
{
s ∈ S | ∃s′ ∈ rs(S0, t) · ‖s − s′‖1 ≤ β̄(D0)

}

Definition 6 (Trajectory-inflated reachable tube). Given a distribution
D0 over initial set S0 that is controlled by LDC cld, a reachable tube rt(S0, t) =[
S0, rs(S0, 1), . . . , rs(S0, T)

]
over time horizon T , and its trajectory discrepancy

β̄(D0) over the initial set S0, a trajectory-inflated reachable tube irt(S0, β̄(D0))
is defined as:

irt(S0, β̄(D0)) =
[
irs(S0, 0, β̄(D0)), irs(S0, 1, β̄(D0)), . . . , irs(S0, T, β̄(D0))

]
.

Based on Definitions 5 and 6, we establish Theorem 1 that the trajectory-inflated
LDC reachable tube contains the HDC reachable tube with at least 1 − α prob-
ability.

Theorem 1 (Confident trajectory-based overapproximation). Consider
distribution D0 over initial set S0, confidence α, a high-dimensional system Mhd,
approximated with a low-dimensional system controlled by cld with an α-confident
statistical trajectory-based discrepancy function β̄(S0). Then the trajectory-
inflated low-dimensional tube irtMld

(S0, β̄(D0)) contains the high-dimensional
reachable tube rtMhd

(S0) with probability 1 − α:

PrD0

[
rtMhd

(S0) ⊆ irtMld
(S0, β̄(S0))

]
≥ 1 − α

Proof. All the proofs are found in the extended online version [67].

Definitions 5 and 6 and Theorem 1 describe inflation and guarantees with
a single LDC. However, one LDC usually cannot mimic the behavior of the
HDC accurately. Therefore, we train several LDCs {c1ld, c

2
ld, . . . , c

m
ld}, one for

each subregion of initial set {S1, S2, . . . , Sm} with respective distributions
D0 = {D1,D2, . . . , Dm}. Subsequently, the trajectory-inflated tube with multi-
ple LDCs can be represented as a union of all the single trajectory-inflated tube
irt(S0, β̄(D0)) :=

⋃m
i=1 irt(Si, β̄(Di)).

Action-Based Inflation. Action-based inflation is less direct than with trajec-
tories: we inflate the neural network’s output set that is represented by a Taylor

390 Y. Geng et al.

model TM(p(S0), I) [27], where p(S0) is a polynomial representing order-k Taylor
series expansion of the cld activation functions in region S0, and the remainder
interval I ensures that Taylor model overapproximates the neural network’s out-
put. In this context, we widen the bounds of the remainder interval I in the last
layer of the cld by our statistical action-based discrepancy γ̄(D0), ensuring that
the potential outputs of chd are contained in the resulting Taylor model.

Definition 7 (Action-inflated reachable set). Given distribution D0 over
set S0 that is controlled by LDC cld, statistical action-based discrepancy γ̄(D0),
and low-dimensional control bounds [umin(t), umax(t)] ⊇ cld

(
S0

)
, the action-

inflated reachable set contains states reachable by inflating the action bounds:

irs(S0, γ̄(D0)) =
{
f(s, u) | s ∈ S0, u ∈ [

umin(t) − γ̄(D0), umax(t) + γ̄(D0)
]}

Definition 8 (Action-inflated reachable tube). Given an distribution D0

over initial set S0 that is controlled by LDC cld, dynamics f , time horizon T ,
and action-based discrepancy functions γ̄(D0), the action-inflated reachable tube
is a recursive sequence of inflated action-based reachable sets:

irt(S0, γ̄(D0)) =
[
S0, irs1(S0, γ̄(D0)), irs2(irs1, γ̄(D0)), . . . , irsT (irsT−1, γ̄(D0))

]
.

Based on Definitions 7 and 8, we put forward Theorem 2 below for the lower
probability bound of the action-inflated LDC tube containing the true HDC
tube.

Theorem 2 (Confident action-based overapproximation). Consider dis-
tribution D0 over initial set S0, high-dimensional system Mhd with controller chd,
approximated by low-dimensional system Mld controlled by cld with α-confident
statistical action-based discrepancies γ̄(S0). Then the action-inflated low-dimen-
sional tube irtMld

(S0, γ̄(S0)) contains the high-dimensional tube rtMhd
(S0) with

probability 1 − α:

PrD0

[
rtMhd

(S0) ⊆ irtMld
(S0, γ̄(S0))

]
≥ 1 − α

Definitions 7 and 8 describe inflation with a single LDC, which we extend
to multiple LDCs by taking the union of all the LDCs’ inflated tubes. Given a
partitioned initial set S0 = {S1, ..., Sm} with respective controllers {c1ld, . . . , c

m
ld}

and distributions D0 = {D1, ...,Dm}, the multiple LDCs action-inflated reach-
able tube is irt(S0, γ̄(D0)) :=

⋃m
i=1 irt(Si, γ̄(Di)). As it turns out, this reachable

tube also contains the HDC tube with at least 1 − α chance.

Step 5: Iterative Retraining and Re-gridding

Once the inflated reachable tubes are obtained in Step 4, we focus on the regions
of the initial set where HDC simulations succeed—yet safety verification fails.
This can happen for two reasons: (i) overly high overapproximation error in the
LDC reachability, or (ii) overly high conformal discrepancy bounds from β̄ or γ̄.

Bridging Dimensions: Confident Reachability for HD Controllers 391

Algorithm 1. Iterative LDC training for the action-based approach
function IterativeTrainingAB(HDC chd, image generator g, sample count N ,
initial state space S0, confidence α, discrepancy thresh. ξ, time steps T , goal set G)

λ, ε ← initial values
S ← initial gridding of S0 : S1, S2, . . .
while Computing resources last do

for i = 1 to |S| do
cild ← TrainLDC(chd, g, Si, λ, ε)
δi ← ComputeActionDiscr(cild, chd, g, Si, α, N)
if δi > ξ then

ε ← ε/2
 Reduce MSE threshold
end if

end for
if δ̂ > ξ in some sub-region Ŝ ⊆ S then
 Too much discrepancy

S′ ← S with refined re-gridding of Ŝ
end if
if δ̂ ≤ ξ ∧ rsMld(Ŝ, T) 	⊆ G in some sub-region Ŝ ⊆ S then

λ ← λ/2 and keep the same ε in Ŝ
 Reduce Lipschitz threshold
end if
S ← S′
 Use the updated grid

end while
γ̄ ← δ1, δ2, . . .
return c1ld, c

2
ld, . . . , γ̄

end function

Reducing Reachability Overapproximation Error. We lower the thresh-
old for the Lipschitz constant λ to retrain the respective LDCs in Step 1. In
our experience, this almost always reduces the overapproximation in the LDC
analysis and makes low-dimensional reachable tubes tighter—but may result in
higher statistical discrepancy bounds, which we address below.

Reducing Conformal Discrepancy Bounds. When these bounds are loose,
our LDC imitates the HDC poorly in some state-space region. Here, we take
inspiration from refinement techniques in testing [45,66]. When a desired dis-
crepancy bound ξ is exceeded in a state-space region, we split it into subregions
by taking its midpoints in each dimension, leading to an updated state-space grid
S′. Then in each sub-region, we retrain an LDC as per Step 1 with a reduced
MSE threshold ε and re-compute its bounds as per Step 3b. leading to tighter
statistical overapproximations of HDC reachable tubes.

To summarize, Algorithm 1 shows our iterative training procedure for the
action-based approach (its trajectory-based counterpart proceeds analogously,
except for computing the discrepancies over trajectories).

Combining all the five steps together, we present Algorithm 2 that displays
our end-to-end verification of a given HDC with either trajectory-based or action-
based discrepancies. The LDCs and their discrepancies are input into the reach-
ability analysis, implemented with the function Reach, to calculate the inflated

392 Y. Geng et al.

Algorithm 2. End-to-end reachability verification of an HDC
function EndToEndVerification(HDC chd, generator g, sample count N , state
space S, initial set S0, confidence α, discrepancy threshold ξ, time horizon T , goal
set G, approach selection J ∈ { trajectory-based, action-based })

if J = trajectory-based then
c1ld . . . cnld, β̄ ←IterativeTrainingTB(chd, g, N , S0, α, ξ, T)
X ← β̄
 Store the trajectory discrepancies

else
c1ld . . . cnld, γ̄ ← IterativeTrainingAB(chd, g, N, S, α, ξ, T, G)
X ← γ̄
 Store the action discrepancies

end if
Sver ← split S0 into regions: S1

0 , S2
0 , . . .
 Gridding for parallel verification

Ssafe, Sunsafe ← ∅
 Initialize safe and unsafe regions
for j = 1 to |Sver| do

irs(Sj
0, X, T) ← Reach(c1ld, . . . , c

n
ld, S

j
0, X, T)

if irs(Sj
0, X, T) ⊆ G then

Ssafe ← Ssafe ∪ Sj
0

else
Sunsafe ← Sunsafe ∪ Sj

0

end if
end for
return Ssafe, Sunsafe

end function

reachable tubes (using the POLAR toolbox in practice). Note that the verifica-
tion regions of Sver in Algorithm 2 are much smaller partitions of larger gridding
regions S defined in Algorithm 1 for training. Each gridding region, which for
instance is a 0.5 × 0.5 square, corresponds to one LDC. Inside each gridding
region, the verification region Sver is a 0.01×0.01 square. Our end-to-end algo-
rithm guarantees that an affirmative answer to our verification problem is correct
with at least 1 − α probability, as per Theorem 3.

Theorem 3 (Confident guarantee of HDC safety). Consider a parti-
tioned initial set grid S0 = {S1, . . . , Sm}, a set of corresponding distributions
{D1, ...Dm}, a high-dimensional system Mhd with controller chd, and a set of
low-dimensional systems M1

ld, . . . ,M
m
ld with respective controllers c1ld, . . . , c

n
ld that

approximate chd with either an α-confident trajectory discrepancy or action dis-
crepancy, the probability that HDC safe set Ssafe calculated by Algorithm 2 with
either discrepancy belongs to ground truth safe set S∗

safe is at least (1 − α):

PrD1...Dm

[
Ssafe ⊆ S∗

safe

]
≥ (1 − α)

4 Experimental Evaluation

Benchmark Systems and Controllers. We evaluate our approach on three
benchmarks from OpenAI Gym [7]: two two-dimensional case studies—an

Bridging Dimensions: Confident Reachability for HD Controllers 393

inverted pendulum (IP) with angle θ and angular velocity θ̇; a mountain car
(MC) with position x and velocity v, and a four-dimensional case study—a cart
pole (CP) with cart position x, cart velocity v, angle θ, and angular velocity
θ̇. Our selection of case studies is limited because of the engineering challenge
of setting up both vision-based control and low-dimensional verification for the
same system. Our continuous-action, convolutional HDCs chd for these systems
were trained with deep deterministic policy gradient (DDPG) [36]. To imitate
the performance of chd, we train simpler feedforward neural networks cld with
only low-dimensional state inputs. See the Appendix for their architecture and
dynamics, and our code can be accessed from GitHub1

Experimental Procedure. Our verification’s goal is to check whether the sys-
tem will stay inside the specified goal set G after T time steps (e.g., the mountain
car’s position must stay within the target set [0.45,∞] after 60 steps). The ver-
ification returns “safe” if the inflated reachable set for t = T lies entirely in
G—and “unsafe” otherwise. The details are found in the Appendix.

For both approaches, we calculate the discrepancies in 0.25-sized state
squares within the initial set in IP, hence creating 8 × 8 = 64 regions (MC
has 8 × 9 = 72 regions; CP has 5 × 5 × 5 × 5 = 625). In each, we sample 60
trajectories to compute both trajectory-based discrepancies β̄ and action-based
discrepancies γ̄ because it is a relatively small sample count that avoids the
highest non-conformity score or the infinity as the conformal bound. We also
implement a pure conformal prediction baseline and, for a fair comparison, give
it the same data/regions. This results in 3840 sampled trajectories in IP, 4320
in MC, and 76800 for CP.

We use closed-loop simulation to obtain the (approximate) ground truth
(GT) of safety. For IP and CP, we grid the initial set into squares with an
interval of 0.01. For MC, we grid the initial set with the position step 0.01 and
velocity step 0.001. Within each grid cell, we uniformly sample 10 initial states
and simulate a trajectory from each. If all 10 trajectories end in the goal set
G, we mark this cell as “truly safe”, otherwise “truly unsafe”. In IP, the truly
safe-to-unsafe cell ratio is 0.56, 0.78 in MC, and 0.58 in CP. The verification
process uses the same grid cells as its initial state regions, leading to 40k low-
dimensional verification runs for IP, 14k for MC, and 50k for CP. The trajectory-
based verification time for IP, MC, and CP are 6.2, 5.8, and 6.4 h respectively;
the action-based verification takes 6.3, 6.1, and 6.6 h respectively.
Success Metrics. We evaluate verification as a binary classifier of the GT
safety, with “safe” being the positive class and “unsafe” being the negative.
Our evaluation metrics are the (i) true positive rate (TPR, a.k.a. sensitivity and
recall), indicating the fraction of truly safe regions that were successfully verified;
(ii) true negative rate (TNR, a.k.a. specificity), indicating the fraction of truly
unsafe regions that failed verification; (iii) precision, indicating the fraction of
safe verification verdicts that are truly safe (which is essential for safety-critical
systems and controlled by rate α as per Theorem 3); and (iv) F1 score, which is

1
https://github.com/Trustworthy-Engineered-Autonomy-Lab/Bridging-dimensions.

https://github.com/Trustworthy-Engineered-Autonomy-Lab/Bridging-dimensions

394 Y. Geng et al.

a harmonic mean of precision and recall to provide a class-balanced assessment
of predictions.

Table 1. Verification performance (M = 4 for IP and CP, M = 10 for MC).

Benchmark Metrics Pure conformal prediction Trajectory-based approach Action-based approach

HDC 1 LDC M LDCs 1 LDC M LDCs

Inverted
Pendulum
(IP)

True positive rate 0.6564 0.4662 0.7938 0.0603 0.4050

True negative rate 0.9999 0.9976 0.9995 1.0000 0.9999

Precision 0.9998 0.9880 0.9985 1.0000 0.9997

F1-score 0.7925 0.6335 0.8844 0.1137 0.5765

Mountain
Car
(MC)

True positive rate 0.4686 0.7220 0.7207 0.1050 0.2659

True negative rate 0.9967 0.9693 0.9872 0.9964 1.0000

Precision 0.9916 0.9621 0.9793 0.9999 1.0000

F1-score 0.6364 0.8249 0.8303 0.1900 0.4201

Cartpole
(CP)

True positive rate 0.6697 0.7225 0.7450 0.6554 0.7238

True negative rate 1.0000 0.9998 1.0000 1.0000 1.0000

Precision 1.0000 0.9999 1.0000 1.0000 1.0000

F1-score 0.8022 0.8389 0.8539 0.7918 0.8398

Table 2. Verification performance for multiple LDCs with zero-mean Gaussian noise
added to true state before image generator g.

Benchmark Metrics Trajectory-based method Action-based method

Inverted
Pendulum

(IP)

STD of θ, θ̇ noise 0.01 0.1 0.01 0.1

True positive rate 0.6732 0.5272 0.3675 0.1924

True negative rate 1.0000 1.0000 0.9999 1.0000

Precision 1.0000 1.0000 0.9997 0.9997

F1-score 0.8046 0.6904 0.5374 0.3228

Mountain
Car
(MC)

STD of x noise 0.01 0.1 0.01 0.1

STD of v noise 0.0001 0.003 0.0001 0.003

True positive rate 0.6797 0.4189 0.1558 0.0658

True negative rate 0.9878 0.9889 1.0000 1.0000

Precision 0.9790 0.9753 1.0000 1.0000

F1-score 0.8023 0.5861 0.2696 0.1235

Cartpole

(CP)

STD of x,v,θ,θ̇ noise 0.03 0.1 0.03 0.1

True positive rate 0.7108 0.6253 0.6724 0.6040

True negative rate 0.9998 0.9998 0.9996 0.9996

Precision 0.9995 0.9995 0.9990 0.9989

F1-score 0.8308 0.7692 0.8038 0.7528

Bridging Dimensions: Confident Reachability for HD Controllers 395

Verification Results. The quantitative results of the three case studies are
summarized in Table 1. Confidence α is set to 0.05 for all methods, which sets the
minimum precision to 0.95, satisfied by all the approaches. The pure conformal
prediction baseline shows high precision and TNR, but loses in TPR to our
approaches—thus being able to correctly verify a significantly smaller region of
the state space. When it comes to well-balanced safety prediction in practice,
F1 score shows that our trajectory-based approach outperforms the other two.

Across all case studies, the baseline is significantly more conservative than the
requested 95% precision. While this can be an advantage in safety-critical set-
tings, excessive conservatism can also hamper adoption, so the approach should
be sensitive to the desired confidence—which our trajectory-based approach
demonstrates in the mountain car case study (see Precision in Table 1).

Across all case studies, the multi-LDC approaches always match or outper-
form the one-LDC approaches. This result demonstrates the utility of modu-
larizing the HDC approximation problem. Also, our single-LDC action-based
approach successfully verifies relatively few regions, leading to its low TPR.
That is because unlike in the case of trajectory discrepancies, only one LDC
cannot provide tight statistical upper bounds for control actions, causing large
overapproximation in the inflated reachable sets, resulting in false negatives.

Sensitivity to Noisy Images. Despite adding Gaussian noise to generator g,
our approaches perform similarly to noise-free g when under low noise variance
as per Table 2, thus showing some robustness. However, we saw a significant
decline in the verification coverage (TPR, but not the TNR and α-guaranteed
precision) under substantial noise variance (up to 0.5, not shown in Table 2).

Limitations. Our approach relies on statistical inference based on i.i.d. sampling
from a fixed distribution, which downgrades the exhaustive guarantees of formal
verification. However, it may be possible to exhaustively bridge this gap with
neural-network conformance analysis based on satisfiability solving [41]. We also
envision relaxing the i.i.d. assumption with time-series conformal prediction [3,
58], as well as uncertainty-guided gridding [37] to reduce our discrepancy bounds.

5 Related Work

Low-Dimensional Verification of Closed-Loop Systems. Neural-network
controlled systems have been used widely [42,46,52], which has highlighted the
challenges of verifying their correctness within closed-loop systems. Since it’s
impossible to calculate all the exact states, especially in non-linear systems, cur-
rent approaches primarily focus on how to make tight overapproximate reachable
sets [2,9,10]. For sigmoid-based NNCS, Verisig [30] toolbox can transform the
neural-network controlled system into a hybrid system, which can be verified by
other tools like flow*. NNV [54] performs overapproximation analysis by com-
bining star sets [38,53] for feed-forward neural networks with zonotopes for non-
linear plant dynamics in CORA [2]. POLAR [27] overcame the challenges of non-
differentiable activation functions by combining the Bernstein-Bézier Form [28]

396 Y. Geng et al.

and the symbolic remainder. This method achieves state-of-the-art performance
in both the tightness of reachable tubes and computation times. Another type
of verification called Hamilton-Jacobi (HJ) reachability [4], is inspired by opti-
mal control. The DeepReach [5] technique can solve the verification problem
with tens of dimensions by leveraging a deep neural network to represent the
value function in the HJ reachability analysis. Nonetheless, such methods remain
ill-suited for handling inputs with hundreds or thousands of dimensions.

These verification tools cannot deal with complicated neural network con-
trollers. Therefore, an alternative approach is to simplify complex controllers
into smaller, verifiable controllers by model reduction techniques [16,33], such as
parameter pruning, compact convolution filters, and knowledge distillation [25].
Abstractions of Perception Models. Given the challenge of verifying the
image-based closed-loop systems directly, many methods construct abstractions
of the perception model to map the relationship between the image and the
states for verification [43]. One abstraction approach [31] employs the generative
model, especially Generative Adversarial Network (GAN), mapping states to
images. The generated images will be put into the controller in the verification
phase. Hence, the accuracy of the verification results depends on the quality of
the image produced by the generative model. Other researchers [26] construct the
exact mathematical formula mapping the real state into the simplified image [47],
which can be verified in another neural network checker [32]. One limitation of
exact modeling is the effort to generalize for other systems or scenarios. For
instance, their implementation may be specific to a proportional controller in
the aircraft landing or lane-keeping scenarios, which may not be suitable for the
more complicated image-based systems in other cases.
Statistical Verification. Statistical verification draws samples to determine
the property satisfaction from a finite number of trajectories [1,11,34,35]. One
advantage of such algorithms is that they provide assurance for arbitrarily com-
plex black-box systems, merely requiring the ability to simulate them [59,60].
Conformal prediction [55], which has been a popular choice for distribution-free
uncertainty quantification, has recently been used to provide probabilistic guar-
antees on the satisfaction of a given STL property [37,45]. Purely statistical
methods come at the price of drawing sufficient samples—and only obtaining
the guarantees at some level of statistical confidence, which can be difficult to
interpret in the context of a dynamical system. Our work restricts the use of sam-
pling only to the most challenging aspects and leverages exhaustive verification
for the rest of the system, thus reducing our reliance on statistical assurance.

6 Conclusion

This paper takes a significant step towards addressing the major challenge of
verifying end-to-end controllers implemented with high-dimensional neural net-
works. Our insight is that the behavior of such neural networks can be effec-
tively approximated by several low-dimensional neural networks operating over
physically meaningful space. To balance approximation error and verifiability in

Bridging Dimensions: Confident Reachability for HD Controllers 397

our low-dimensional controllers, we harness the state-of-the-art knowledge dis-
tillation. To close the gap between low- and high-dimensional controllers, we
apply conformal prediction and provide a statistical upper bound on their dif-
ference either in trajectories or actions. Finally, by inflating the reachable tubes
with two discrepancy types, we establish a high-confidence reachability guaran-
tee for high-dimensional controllers. Future work may further reduce the role of
sampling.

Acknowledgments. The authors thank Kang Gao, Zhenjiang Mao, Priyanshu
Mathur, and Sukanth Sundaran for helping implement the verification and case studies
as well as providing valuable feedback on this manuscript.

This work was supported in part by the NSF Grant CCF-2403616, ARO MURI
W911NF-20-1-0080, and grant EP/Y002644/1 under the EPSRC ECR International
Collaboration Grants program, funded by the International Science Partnerships Fund
(ISPF) and the UK Research and Innovation. Any opinions, findings, conclusions, or
recommendations expressed in this material are those of the authors and do not nec-
essarily reflect the views of the National Science Foundation (NSF), Army Research
Office (ARO), the Department of Defense, or the United States Government.

References

1. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Mod-
eling Comput. Simul. 28 (2018,1), Publisher Copyright: 2018 ACM

2. Althoff, M.: An introduction to CORA 2015. In: Proc. of the Workshop on Applied
Verification for Continuous And Hybrid Systems, pp. 120-151 (2015)

3. Auer, A., Gauch, M., Klotz, D., Hochreiter, S.: Conformal prediction for time
series with modern hopfield networks. In: Proceedings Of The 37th International
Conference On Neural Information Processing Systems (2024)

4. Bansal, S., Chen, M., Herbert, S.L., Tomlin, C.J.: Hamilton-jacobi reachability: a
brief overview and recent advances. 2017 IEEE 56th Annual Conference on Deci-
sion and Control (CDC), pp. 2242–2253 (2017). https://api.semanticscholar.org/
CorpusID:35768454

5. Bansal, S., Tomlin, C.J.: Deepreach: a deep learning approach to high-dimensional
reachability. In: 2021 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1817–1824. IEEE (2021)

6. Bassan, S., Katz, G.: Towards formal xai: formally approximate minimal explana-
tions of neural networks. In: International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pp. 187–207. Springer (2023)

7. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang,
J., Zaremba, W.: OpenAI Gym (Jun 2016). http://arxiv.org/abs/1606.01540,
arXiv:1606.01540 [cs]

8. Chakraborty, K., Bansal, S.: Discovering closed-loop failures of vision-based con-
trollers via reachability analysis. IEEE Robot. Automation Lett. 8(5), 2692–2699
(2023)

9. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear
hybrid systems. In: International Conference on Computer Aided Verification
(2013)

https://api.semanticscholar.org/CorpusID:35768454
https://api.semanticscholar.org/CorpusID:35768454
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540

398 Y. Geng et al.

10. Chen, X., Sankaranarayanan, S.: Reachability analysis for cyber-physical systems:
Are we there yet? In: NASA Formal Methods Symposium, pp. 109-130 (2022)

11. Cleaveland, M., Lee, I., Pappas, G., Lindemann, L.: Conformal prediction regions
for time series using linear complementarity programming. In: Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 38, pp. 20984–20992 (2024)

12. Cleaveland, M., Sokolsky, O., Lee, I., Ruchkin, I.: Conservative safety monitors of
stochastic dynamical systems. In: Proc. of the NASA Formal Methods Conference,
May 2023

13. Codevilla, F., Müller, M., López, A., Koltun, V., Dosovitskiy, A.: End-to-end driv-
ing via conditional imitation learning. In: 2018 IEEE International Conference On
Robotics And Automation (ICRA), pp. 4693-4700 (2018)

14. Cofer, D., et al.: Run-time assurance for learning-based aircraft taxiing. In: 2020
AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), pp. 1–9 (2020)

15. Combettes, P.L., Pesquet, J.C.: Lipschitz Certificates for Layered Network Struc-
tures Driven by Averaged Activation Operators. SIAM Journal on Mathematics
of Data Science 2(2), 529–557 (Jan 2020). https://doi.org/10.1137/19M1272780,
publisher: Society for Industrial and Applied Mathematics

16. Deng, L., Li, G., Han, S., Shi, L., Xie, Y.: Model compression and hardware accel-
eration for neural networks: a comprehensive survey. Proc. IEEE 108(4), 485–532
(2020)

17. Dutta, S., et al.: Distributionally robust statistical verification with impre-
cise neural networks (Aug 2023). https://doi.org/10.48550/arXiv.2308.14815,
arXiv:2308.14815 [cs]

18. Dutta, S., Chen, X., Jha, S., Sankaranarayanan, S., Tiwari, A.: Sherlock-a tool for
verification of neural network feedback systems: demo abstract. In: Proceedings of
the 22nd ACM International Conference On Hybrid Systems: Computation And
Control, pp. 262–263 (2019)

19. Fan, C., Mitra, S.: Bounded verification with on-the-fly discrepancy computation.
In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364, pp.
446–463. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24953-7 32

20. Fan, C., Qi, B., Mitra, S., Viswanathan, M.: DryVR: data-driven verification and
compositional reasoning for automotive systems. In: Majumdar, R., Kunčak, V.
(eds.) CAV 2017. LNCS, vol. 10426, pp. 441–461. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 22

21. Fan, J., Huang, C., Li, W., Chen, X., Zhu, Q.: Towards verification-aware knowl-
edge distillation for neural-network controlled systems: Invited paper. In: 2019
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1–
8 (2019). https://api.semanticscholar.org/CorpusID:209497572

22. Fannjiang, C., Bates, S., Angelopoulos, A., Listgarten, J., Jordan, M.: Conformal
prediction under feedback covariate shift for biomolecular design. Proc. Natl. Acad.
Sci. 119, e2204569119 (2022)

23. Fazlyab, M., Robey, A., Hassani, H., Morari, M., Pappas, G.: Efficient
and accurate estimation of lipschitz constants for deep neural networks. In:
Advances in Neural Information Processing Systems, vol. 32. Curran Asso-
ciates, Inc. (2019). https://proceedings.neurips.cc/paper files/paper/2019/hash/
95e1533eb1b20a97777749fb94fdb944-Abstract.html

24. Gou, J., Yu, B., Maybank, S.J., Tao, D.: Knowledge distillation: a survey. Int. J.
Comput. Vision 129, 1789–1819 (2021)

25. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

https://doi.org/10.1137/19M1272780
https://doi.org/10.48550/arXiv.2308.14815
http://arxiv.org/abs/2308.14815
https://doi.org/10.1007/978-3-319-24953-7_32
https://doi.org/10.1007/978-3-319-63387-9_22
https://doi.org/10.1007/978-3-319-63387-9_22
https://api.semanticscholar.org/CorpusID:209497572
https://proceedings.neurips.cc/paper_files/paper/2019/hash/95e1533eb1b20a97777749fb94fdb944-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/95e1533eb1b20a97777749fb94fdb944-Abstract.html
http://arxiv.org/abs/1503.02531

Bridging Dimensions: Confident Reachability for HD Controllers 399

26. Hsieh, C., Li, Y., Sun, D., Joshi, K., Misailovic, S., Mitra, S.: Verifying controllers
with vision-based perception using safe approximate abstractions. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 41(11), 4205–4216 (2022). https://doi.
org/10.1109/TCAD.2022.3197508

27. Huang, C., Fan, J., Chen, X., Li, W., Zhu, Q.: Polar: A polynomial arithmetic
framework for verifying neural-network controlled systems. In: International Sym-
posium on Automated Technology for Verification and Analysis, pp. 414–430.
Springer (2022)

28. Huang, C., Fan, J., Li, W., Chen, X., Zhu, Q.: Reachnn: reachability analysis of
neural-network controlled systems. ACM Trans. Embedded Comput. Syst. (TECS)
18(5s), 1–22 (2019)

29. Fazlyab, M., Robey, A., Hassani, H., Morari, M., Pappas, G.: Efficient and accurate
estimation of lipschitz constants for deep neural networks. In: Advances In Neural
Information Processing Systems. 32 (2019)

30. Ivanov, R., Weimer, J., Alur, R., Pappas, G., Lee, I.: Verisig: verifying safety
properties of hybrid systems with neural network controllers. In: Proceedings of
the 22nd ACM International Conference on Hybrid Systems: Computation And
Control, pp. 169-178 (2019)

31. Katz, S.M., Corso, A.L., Strong, C.A., Kochenderfer, M.J.: Verification of image-
based neural network controllers using generative models. J. Aerospace Inf. Syst.
19(9), 574–584 (2022)

32. Khedr, H., Ferlez, J., Shoukry, Y.: Peregrinn: Penalized-relaxation greedy neural
network verifier. In: Computer Aided Verification: 33rd International Conference,
CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part I, pp. 287-300 (2021).
https://doi.org/10.1007/978-3-030-81685-8 13

33. Ladner, T., Althoff, M.: Specification-driven neural network reduction for scalable
formal verification. arXiv preprint arXiv:2305.01932 (2023)

34. Larsen, K.G., Legay, A.: Statistical model checking: past, present, and future. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 3–15. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47166-2 1

35. Lew, T., Janson, L., Bonalli, R., Pavone, M.: A Simple and Efficient Sampling-
based Algorithm for General Reachability Analysis. In: Proceedings of the 4th
Annual Learning for Dynamics and Control Conference. 168, pp. 1086–1099
(2022,6,23). https://proceedings.mlr.press/v168/lew22a.html

36. Lillicrap, T., Hunt, J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver,
D., Wierstra, D.: Continuous control with deep reinforcement learning. CoRR.
abs/1509.02971 (2015). https://api.semanticscholar.org/CorpusID:16326763

37. Lindemann, L., Qin, X., Deshmukh, J.V., Pappas, G.J.: Conformal prediction
for stl runtime verification. In: Proceedings of the ACM/IEEE 14th International
Conference on Cyber-Physical Systems (with CPS-IoT Week 2023), pp. 142–153.
ICCPS ’23, Association for Computing Machinery, New York (2023). https://doi.
org/10.1145/3576841.3585927

38. Lopez, D.M., Musau, P., Tran, H.D., Johnson, T.T.: Verification of closed-loop
systems with neural network controllers. EPiC Series in Computing 61, 201–210
(2019)

39. Luo, R., Zhao, S., Kuck, J., Ivanovic, B., Savarese, S., Schmerling, E., Pavone,
M.: Sample-efficient safety assurances using conformal prediction. In: International
Workshop on the Algorithmic Foundations of Robotics, pp. 149–169. Springer
(2022)

https://doi.org/10.1109/TCAD.2022.3197508
https://doi.org/10.1109/TCAD.2022.3197508
https://doi.org/10.1007/978-3-030-81685-8_13
http://arxiv.org/abs/2305.01932
https://doi.org/10.1007/978-3-319-47166-2_1
https://proceedings.mlr.press/v168/lew22a.html
https://api.semanticscholar.org/CorpusID:16326763
https://doi.org/10.1145/3576841.3585927
https://doi.org/10.1145/3576841.3585927

400 Y. Geng et al.

40. Matsumoto, E., Saito, M., Kume, A., Tan, J.: End-to-end learning of object grasp
poses in the amazon robotics challenge. In: Causo, A., Durham, J., Hauser, K.,
Okada, K., Rodriguez, A. (eds.) Advances on Robotic Item Picking, pp. 63–72.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-35679-8 6

41. Mohammadinejad, S., Paulsen, B., Deshmukh, J.V., Wang, C.: DiffRNN: differen-
tial verification of recurrent neural networks. In: Dima, C., Shirmohammadi, M.
(eds.) FORMATS 2021. LNCS, vol. 12860, pp. 117–134. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-85037-1 8

42. Pan, Y., Cheng, C., Saigol, K., Lee, K., Yan, X., Theodorou, E., Boots, B.:
Agile Autonomous Driving using End-to-End Deep Imitation Learning. Robotics:
Science And Systems XIV (2017). https://api.semanticscholar.org/CorpusID:
53873353

43. Păsăreanu, C.S., Mangal, R., Gopinath, D., Getir Yaman, S., Imrie, C., Cali-
nescu, R., Yu, H.: Closed-loop analysis of vision-based autonomous systems: A
case study. In: International Conference on Computer Aided Verification, pp. 289–
303. Springer (2023)

44. Qin, X., Hashemi, N., Lindemann, L., Deshmukh, J.V.: Conformance testing for
stochastic cyber-physical systems. In: Conference on Formal Methods in Computer-
Aided Design–FMCAD 2023, p. 294 (2023)

45. Qin, X., Xia, Y., Zutshi, A., Fan, C., Deshmukh, J.V.: Statistical verification of
cyber-physical systems using surrogate models and conformal inference. In: 2022
ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS),
pp. 116–126 (2022). https://doi.org/10.1109/ICCPS54341.2022.00017

46. Ruchkin, I., Cleaveland, M., Ivanov, R., Lu, P., Carpenter, T., Sokolsky, O., Lee, I.:
Confidence composition for monitors of verification assumptions. In: ACM/IEEE
13th Intl. Conf. on Cyber-Physical Systems (ICCPS), pp. 1–12, May 2022. https://
doi.org/10.1109/ICCPS54341.2022.00007

47. Santa Cruz, U., Shoukry, Y.: Nnlander-verif: a neural network formal verifica-
tion framework for vision-based autonomous aircraft landing. Springer, Heidelberg
(2022). https://doi.org/10.1007/978-3-031-06773-0 11

48. Shafer, G., Vovk, V.: A Tutorial on Conformal Prediction. J. Mach. Learn. Res. 9,
371–421 (2008). http://dl.acm.org/citation.cfm?id=1390681.1390693

49. Stocco, A., Nunes, P.J., D’Amorim, M., Tonella, P.: Thirdeye: Attention maps for
safe autonomous driving systems. In: Proceedings of the 37th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 2022. Association
for Computing Machinery, New York (2023). https://doi.org/10.1145/3551349.
3556968

50. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.,
Fergus, R.: Intriguing properties of neural networks. In: International Conference
on Learning Representations (2014)

51. Teeti, I., Khan, S., Shahbaz, A., Bradley, A., Cuzzolin, F.: Vision-based Intention
and Trajectory Prediction in Autonomous Vehicles: A Survey, vol. 6, pp. 5630–5637
(Jul 2022). https://www.ijcai.org/proceedings/2022/785, iSSN: 1045-0823

52. Topcu, U., Bliss, N., Cooke, N., Cummings, M., Llorens, A., Shrobe, H., Zuck,
L.: Assured Autonomy: Path Toward Living With Autonomous Systems We Can
Trust, October 2020. http://arxiv.org/abs/2010.14443, arXiv:2010.14443 [cs]

53. Tran, H.D., Manzanas Lopez, D., Musau, P., Yang, X., Nguyen, L.V., Xiang, W.,
Johnson, T.T.: Star-based reachability analysis of deep neural networks. In: Formal
Methods–The Next 30 Years: Third World Congress, FM 2019, Porto, Portugal,
October 7–11, 2019, Proceedings 3, pp. 670–686. Springer (2019)

https://doi.org/10.1007/978-3-030-35679-8_6
https://doi.org/10.1007/978-3-030-85037-1_8
https://api.semanticscholar.org/CorpusID:53873353
https://api.semanticscholar.org/CorpusID:53873353
https://doi.org/10.1109/ICCPS54341.2022.00017
https://doi.org/10.1109/ICCPS54341.2022.00007
https://doi.org/10.1109/ICCPS54341.2022.00007
https://doi.org/10.1007/978-3-031-06773-0_11
http://dl.acm.org/citation.cfm?id=1390681.1390693
https://doi.org/10.1145/3551349.3556968
https://doi.org/10.1145/3551349.3556968
https://www.ijcai.org/proceedings/2022/785
http://arxiv.org/abs/2010.14443
http://arxiv.org/abs/2010.14443

Bridging Dimensions: Confident Reachability for HD Controllers 401

54. Tran, H., et al.: NNV: the neural network verification tool for deep neural net-
works and learning-enabled cyber-physical systems. In: International Conference
on Computer Aided Verification, pp. 3-17 (2020)

55. Vovk, V., Gammerman, A., Shafer, G.: Algorithmic Learning in a Random World.
Springer, New York, 2005 edition edn. (2005)

56. Xiang, W., Shao, Z.: Approximate bisimulation relations for neural networks and
application to assured neural network compression. In: 2022 American Control
Conference (ACC), pp. 3248–3253. IEEE (2022)

57. Xiang, W., Shao, Z.: Safety verification of neural network control systems using
guaranteed neural network model reduction. In: 2022 IEEE 61st Conference on
Decision and Control (CDC), pp. 1521–1526. IEEE (2022)

58. Xu, C., Xie, Y.: Conformal prediction interval for dynamic time-series. In: Pro-
ceedings of the 38th International Conference on Machine Learning, pp. 11559–
11569. PMLR, July 2021. https://proceedings.mlr.press/v139/xu21h.html, iSSN:
2640-3498

59. Xue, B., Zhang, M., Easwaran, A., Li, Q.: Pac model checking of black-box
continuous-time dynamical systems. IEEE Trans. Comput.-Aided Des. Integrated
Circuits Syst. 39 (07 2020). https://doi.org/10.1109/TCAD.2020.3012251

60. Zarei, M., Wang, Y., Pajic, M.: Statistical verification of learning-based cyber-
physical systems. In: Proceedings of the 23rd International Conference on Hybrid
Systems: Computation and Control, HSCC 2020. Association for Computing
Machinery, New York (2020). https://doi.org/10.1145/3365365.3382209

61. Zhang, M., Zhang, Y., Zhang, L., Liu, C., Khurshid, S.: Deeproad: Gan-based meta-
morphic testing and input validation framework for autonomous driving systems.
In: Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, pp. 132-142. ASE 2018. Association for Computing Machin-
ery, New York, NY, USA (2018). https://doi.org/10.1145/3238147.3238187

62. Wang, Y., Zhou, W., Fan, J., Wang, Z., Li, J., Chen, X., Huang, C., Li, W. and
Zhu, Q.: Polar-express: Efficient and precise formal reachability analysis of neural-
network controlled systems. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems. (2023)

63. Xin, L., Tang, Z., Gai, W., Liu, H.: Vision-based autonomous landing for the UAV:
A review. Aerospace 9, 634 (2022)

64. Tang, C., Lai, Y.: Deep reinforcement learning automatic landing control of fixed-
wing aircraft using deep deterministic policy gradient. In: 2020 International Con-
ference On Unmanned Aircraft Systems (ICUAS), pp. 1-9 (2020)

65. Oszust, M., et al.: A vision-based method for supporting autonomous aircraft land-
ing. Aircraft Eng. Aerospace Technol. 90, 973–982 (2018)

66. Menghi, C., Nejati, S., Briand, L., Parache, Y.: Approximation-refinement testing
of compute-intensive cyber-physical models: an approach based on system identi-
fication. In: 2020 IEEE/ACM 42nd International Conference On Software Engi-
neering (ICSE), pp. 372–384 (2020)

67. Geng, Y., Baldauf, J. B., Dutta, S., Huang, C., Ruchkin, I.: Bridging Dimensions:
Confident Reachability for High-Dimensional Controllers. 2024. arXiv preprint
arXiv:2311.04843. https://arxiv.org/abs/2311.04843

https://proceedings.mlr.press/v139/xu21h.html
https://doi.org/10.1109/TCAD.2020.3012251
https://doi.org/10.1145/3365365.3382209
https://doi.org/10.1145/3238147.3238187
http://arxiv.org/abs/2311.04843
https://arxiv.org/abs/2311.04843

402 Y. Geng et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

VeriQR: A Robustness Verification Tool
for Quantum Machine Learning Models

Yanling Lin1,2 , Ji Guan2(B) , Wang Fang2 , Mingsheng Ying3 ,
and Zhaofeng Su1(B)

1 University of Science and Technology of China,
Hefei 230026, China
zfsu@ustc.edu.cn

2 Key Laboratory of System Software (Chinese Academy
of Sciences) and State Key Laboratory of Computer Science,

Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
guanj@ios.ac.cn

3 Centre for Quantum Software and Information, University of Technology Sydney,
NSW 2007, Australia

Abstract. Adversarial noise attacks present a significant threat to
quantum machine learning (QML) models, similar to their classical
counterparts. This is especially true in the current Noisy Intermediate-
Scale Quantum era, where noise is unavoidable. Therefore, it is essen-
tial to ensure the robustness of QML models before their deployment.
To address this challenge, we introduce VeriQR, the first tool designed
specifically for formally verifying and improving the robustness of QML
models, to the best of our knowledge. This tool mimics real-world quan-
tum hardware’s noisy impacts by incorporating random noise to for-
mally validate a QML model’s robustness. VeriQR supports exact (sound
and complete) algorithms for both local and global robustness verifica-
tion. For enhanced efficiency, it implements an under-approximate (com-
plete) algorithm and a tensor network-based algorithm to verify local and
global robustness, respectively. As a formal verification tool, VeriQR can
detect adversarial examples and utilize them for further analysis and to
enhance the local robustness through adversarial training, as demon-
strated by experiments on real-world quantum machine learning models.
Moreover, it permits users to incorporate customized noise. Based on this
feature, we assess VeriQR using various real-world examples, and exper-
imental outcomes confirm that the addition of specific quantum noise
can enhance the global robustness of QML models. These processes are
made accessible through a user-friendly graphical interface provided by
VeriQR, catering to general users without requiring a deep understand-
ing of the counter-intuitive probabilistic nature of quantum computing.

Keywords: Robustness Verification · Quantum Machine Learning ·
Formal Verification · Quantum Classifiers · Quantum Noise

c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 403–421, 2025.
https://doi.org/10.1007/978-3-031-71162-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_21&domain=pdf
http://orcid.org/0009-0009-5492-3752
http://orcid.org/0000-0002-3490-0029
http://orcid.org/0000-0001-7628-1185
http://orcid.org/0000-0003-4847-702X
http://orcid.org/0000-0003-0021-225X
https://doi.org/10.1007/978-3-031-71162-6_21

404 Y. Lin et al.

1 Introduction

Over the last decade, machine learning (ML) has driven technological advance-
ments in various fields. The combination of machine learning with quantum
computing has given rise to a new field of research known as quantum machine
learning (QML). In classical ML, classification models are vulnerable in adver-
sarial scenarios [5,8]. Specifically, the addition of intentionally crafted noises to
the original data can cause classifiers to make incorrect predictions with high
confidence. An illustrative example is the misclassification of a panda image as
a gibbon with a confidence level exceeding 99% after adding imperceptible noise
[37]. Although studies have shown the potential superiority of quantum comput-
ers over classical counterparts in certain well-known ML tasks [4], the presence
of noise in quantum computation is inevitable due to the limitations of quan-
tum hardware devices in the current Noisy Intermediate-Scale Quantum (NISQ)
era [34], which may cause quantum learning systems to suffer from adversarial
perturbations from environmental noises. Research on the vulnerability of QML
models has garnered widespread attention [15,19,20,23,30,31,41]. In particular,
formal methods have been employed to verify the robustness of QML models
against noises. Various algorithms have been developed to verify both local and
global robustness, which have established a formal framework for verifying the
robustness of QML models, allowing for detecting non-robust quantum states
(also known as quantum adversarial examples) during the verification process.

Numerous tools have been developed to verify the robustness of classical ML
models and improve robustness through adversarial training. Notable examples
include NNV [39], Reluplex [27], DeepG [2], PRODeep [28], VerifAI [14] and
AI2 [18]. These tools have simplified the process for users to verify the robust-
ness of their ML models. However, understanding the counter-intuitive principles
of quantum mechanics, which serve as the inherent probabilistic foundation of
quantum systems, poses a distinctive challenge for the average user. Therefore,
there is a requirement for automated tools in the analysis of quantum systems.

In recent years, formal methods-based tools have emerged to verify the cor-
rectness of quantum systems. For instance, the development of a specification
language and an automated tool called AUTOQ enables symbolic verification of
quantum circuits [10]. Similarly, CoqQ, integrated into the Coq proof assistant,
provides a means to reason about quantum programs [45]. A measurement-based
linear-time temporal logic (MLTL) has been proposed to formally check the
quantitative properties of quantum algorithms [21]. Furthermore, model check-
ers like QMC [33] and QPMC [16] have been proposed for verifying quantum
programs and communication protocols. However, to the best of our knowledge,
there are currently no dedicated tools available for verifying the robustness of
QML models and then improving robustness.

Contributions. To fill the gap mentioned above, we introduce a tool named
VeriQR. VeriQR is built upon the aforementioned theoretical formal verification
techniques [19,20] for automatically quick robustness verification of QML models

VeriQR 405

and the improvement strategies for enhancing robustness. The architecture of
VeriQR is shown in Fig. 1 and its main advantages are listed in the following.

1. For universality, VeriQR supports the verification of two distinct robustness
properties. These are referred to as local robustness for QML classification
models and global robustness for all existing QML models.

2. For usability, VeriQR offers support for QML models that are represented in
the OpenQASM 2.0 format of IBM [11]. This format is widely utilized as a
programming language for describing quantum circuits and algorithms.

3. For reality, VeriQR formally verifies the robustness of a QML model by adding
random noise to the model. This functionality enables simulations of the
noisy effects of real-world quantum hardware on the robustness verification
of various QML models.

4. For efficiency, in addition to basic verification methods, VeriQR incorporates
various optimization techniques. These include approximation techniques for
local robustness and tensor network contractions for global robustness, which
enhance the performance of the verification process.

5. For local robustness enhancement, VeriQR can utilize the identified adver-
sarial examples from the verification process for adversarial training, akin to
traditional methods. Additionally, users have the option to introduce cus-
tomized noise for improving global robustness, as discussed in [15,20,25]. This
customized noise extends beyond standard quantum noise to include user-
defined quantum noise models.

In Sect. 4, we present experimental results demonstrating the versatility and
practicality of VeriQR in verifying and improving the robustness of different
QML models in real-world scenarios. The experiments cover a range of noise
types and levels, showcasing the efficacy and reliability of VeriQR.

Fig. 1. An overview of the architecture of VeriQR.

406 Y. Lin et al.

2 Robustness for Quantum Machine Learning Models

For the convenience of the reader, we briefly introduce the concepts of quantum
computing used in this paper and QML models (algorithms). We then review
the local and global robustness verification problems for QML models in their
most basic form, which can be handled by our tool VeriQR. For more details,
please refer to [19,20,32].

2.1 Quantum Machine Learning Model

A QML model A is composed of input quantum states, a quantum circuit, and
a quantum measurement.

Quantum state. The input quantum state ρ refers to the data that is processed
by the quantum model. Mathematically, ρ is a positive semi-definite matrix with
a size of 2n-by-2n, where n represents the number of quantum bits (qubits). It
is important to note that the quantum state ρ can not only represent quantum
information, such as the state of a physical Hamiltonian system, for physical
computational tasks but also encode classical information, such as image data
or financial data, for classical computational tasks.

Quantum circuit. The noisy quantum circuit E is used to describe the com-
putational aspect of the QML model. A quantum circuit consists of a sequence
of quantum logic gates and quantum noises (represented by yellow and brown
boxes in Fig. 2, respectively).

Quantum logic gates are the building blocks of quantum circuits and can
transform a quantum state into a new quantum state, like classical logic gates
are for conventional digital circuits. They are described as unitary matrices rel-
ative to some orthogonal basis. Mathematically, a gate that acts on an n-qubit
quantum state ρ is represented by a 2n × 2n unitary matrix U , and its output is
a evolved quantum state ρ′ = UρU†, where U† is the conjugate transpose of U .

Quantum noise in quantum systems can be broadly characterized as either
coherent or incoherent. Coherent noise generally originates from the noisiness of
the parameters in gate operations, so it is unitary evolution (represented by a
unitary matrix) and easy to simulate; incoherent noise arises from the interac-
tion between the system and the environment and thus is usually a non-unitary
evolution, which transforms the state of the quantum system from a pure state
ρ to a mixed state E(ρ) with E(ρ) = ∑

k EkρE†
k, where the matrices {Ek} with

a size of 2n-by-2n are called Kraus operators, satisfying the completeness con-
ditions

∑
k E†

kEk = I, where I is the identity operator. This transformation
is also known as a quantum channel, it is a quantum operation characterized
by a 2n-by-2n matrix. Mathematical representations of common 1-qubit quan-
tum channels, including bit flip channel (BFC), phase flip channel (PFC), and
depolarizing channel (DC), are described as follows:

VeriQR 407

EBFC(ρ) = (1 − p)IρI + pXρX

EPFC(ρ) = (1 − p)IρI + pZρZ

EDC(ρ) = (1 − p)IρI +
p

3
(XρX + Y ρY + ZρZ)

and
X =

[
0 1
1 0

]

, Y =
[
0 −i
i 0

]

, Z =
[
1 0
0 −1

]

.

Here p represents the likelihood of the state ρ undergoing further manipulation
by a quantum gate. For instance, in a bit flip channel, p signifies the chance of
a bit flip operation affecting the quantum state. These three categories of quan-
tum channels are frequently encountered noise in real-world quantum hardware.
In this context, p serves as a measure of the noise level. A higher value of p
corresponds to a more pronounced alteration in the initial state ρ. Therefore,
the state of the quantum system after a noisy quantum circuit E represented by
a set of matrices {Ek} is E(ρ) = ∑

k EkρE†
k.

Quantum Measurement. At the end of each quantum circuit, a quantum
measurement (represented by red boxes in Fig. 2) is performed to extract the
computational outcome, which contains classical information, from E(ρ). This
information is a probability distribution over the possible outcomes of the mea-
surement. Mathematically, a quantum measurement is modeled by a set {Mc}c∈C
of positive semi-definite matrices with a size of 2n-by-2n. Here, C represents a
finite set of measurement outcomes or class labels. The observation process is
probabilistic: for the current state E(ρ), the measurement outcome c ∈ C is
obtained with probability pc = tr(McE(ρ)), which is the summation of diagonal
entries of McE(ρ).

Fig. 2. GUI: the main tabs for verification task and (8-qubit) quantum circuit diagrams
corresponding to the QML model to be verified. In this diagram representation, yellow
boxes represent 1-qubit gates, blue ones represent controlled gates (not shown in this
example), brown ones represent quantum noises, and red ones represent measurements.

408 Y. Lin et al.

In summary, a QML model, denoted as A = (E , {Mc}c∈C), can be viewed
as a randomized mapping. For any input quantum state ρ, the model outputs a
probability distribution A(ρ) = {tr(McE(ρ))}c∈C .

Pure Versus Mixed Quantum States. It is essential to note that quantum
states fall into two main categories: pure and mixed states. A quantum system
with a known exact state |ψ〉 containing n qubits is considered to be in a pure
state, which can be represented by a column vector of size 2n in a complex vector
space. In this scenario, the density matrix (operator) representing the system is
ρ = |ψ〉〈ψ|, characterized by positive semidefinite matrices with a trace of 1. On
the other hand, if the state of the quantum system is not precisely known, it is
classified as a mixed state, which comprises an ensemble of pure states (p1, |ψ1〉),
(p2, |ψ2〉), ..., (pn, |ψn〉), denoted as ρ =

∑
i pi|ψi〉〈ψi|. This indicates that the

system is in state |ψj〉 with a probability of pj . A pure state |ψ〉 can be considered
a special instance of the mixed state ρ = |ψ〉〈ψ|, implying that the collection
of pure quantum states is a subset of mixed quantum states. Pure states are
mainly employed to safeguard against deliberate classical attacks (by humans)
embedded in input quantum states, while mixed states are utilized in a broader
array of situations, including defense against quantum noise. To accommodate
different application contexts, our tool VeriQR empowers users to choose the
specific type of quantum states they wish to work with.

2.2 Robustness Verification of QML Models

Similar to their classical counterparts, QML models can be delineated into two
primary categories: regression models and classification models. Consequently,
two distinct forms of robustness verification are requisite.

Global Robustness for Regression Models. A regression model A uses the
output distribution A(ρ) directly to determine the predicted value for the regres-
sion variable ρ. Naturally, a regression model that is robust to adversarial noise
attacks should have the ability to maintain stable predictions with a certain
degree of tolerance for small changes, which could induce incorrect predictions,
in the initial data. In other words, it is necessary to treat all similar input states
with minor differences similarly to ensure robustness for regression models, which
is called global robustness.

Problem 1 (Global Robustness Formal Verification). Let A = (E , {Mc}c∈C) be a
QML model, and check whether A is (ε, δ)-globally robust, i.e., for any pair of
quantum state ρ and σ with D(ρ, σ) ≤ ε, we have d(A(ρ),A(σ)) ≤ δ. If not,
provide such a pair of quantum states violating the robustness.

Here D(·, ·) and d(·, ·) represent the trace distance of two density matrices and the
total variance distance of the measurement outcome probability distributions on
quantum states, respectively. These distances are used to quantify the similarities
in input and output states, respectively. To solve the formal verification problem
(Problem 1), the Lipschitz constant K∗ of A is introduced with the fact that A

VeriQR 409

is (ε, δ)-globally robust, if and only if δ ≥ ε [20]. Here the Lipschitz constant K∗

is the smallest K such that d(A(ρ),A(σ)) ≤ KD(ρ, σ) for all quantum states ρ
and σ. So the key is to compute K∗ which is done by our tool VeriQR.

Local Robustness for Classification Models. A classification model (clas-
sifier) A utilizes the probability distribution A(ρ) to assign a class label c ∈ C
to the input state ρ. The most commonly used approach is to assign the
label with the highest corresponding probability in the output distribution
{tr(McE(ρ))}c∈C . Naturally, a robust classifier should be able to classify all sim-
ilar input states in the same class to ensure robustness, which is referred to as
local robustness.

Problem 2 (Local Robustness Formal Verification). Let A = (E , {Mc}c∈C) be a
QML model. Given an input state ρ with label c ∈ C, check whether A is ε-
locally robust, i.e., A(σ) = c for all σ ∈ Nε(ρ), the ε-neighbourhood of ρ. If not,
provide an adversarial example (counter-example) σ ∈ Nε(ρ) with label l �= c.

Here, the ε-neighbourhood of ρ is defined as Nε(ρ) = {σ : F̄ (ρ, σ) ≤ ε},
and F̄ (ρ, σ) quantifies the similarity between states ρ and σ using fidelity [32].
To evaluate the ε-robustness of a given finite set of labeled quantum states, we
assess each input example individually. Subsequently, we generate a collection of
concrete adversarial examples and determine the proportion of ε-robust states in
the dataset. This measure, referred to as the ε-robust accuracy of the quantum
classifier A, provides insight into its local robustness on the dataset.

2.3 Challenges of Implementation

When it comes to implementing a verification tool for QML models, we encounter
distinct challenges compared to dealing with classical ML models.

Continuous State Space. Quantum systems that operate within a linear space
of finite dimensions possess a continuous state space. This implies that QML
models must account for an infinite number of quantum states when conducting
global robustness verification. In contrast, classical models mainly work with dis-
crete input datasets that have a finite number of data. This distinction renders
classical robustness verification techniques [1] unsuitable for quantum systems,
such as the reachability method [38] and abstract interpretation [18]. Conse-
quently, we develop VeriQR as an independent tool that does not rely on any
existing classical robustness tools. Instead, we implement the algorithms pro-
posed in [19,20] to verify the robustness of QML models.

State Explosion. The size of QML models, which is given by the dimension 2n,
grows exponentially as the number of qubits n increases. This poses challenges
in terms of memory usage and runtime when performing robustness verifica-
tion on large-scale systems. To address this, we employ tensor networks as an
efficient data structure for storing quantum circuits, effectively optimizing mem-
ory usage. Furthermore, we utilize Google’s tensor network calculator [36] with
heuristic methods as a subroutine to enhance the efficiency of verifying global
robustness (Problem 1). Furthermore, we have implemented the approximate

410 Y. Lin et al.

verification algorithm [19] for local robustness verification (Problem 2). These
optimization techniques allow VeriQR to handle robustness verification of noisy
QML models with up to 20 qubits on a small service for general users (refer to
Sect. 4 for experimental results). Without these optimizations, VeriQR is only
able to handle models with up to 8 qubits.

QML Benchmarks. Currently, there are only a few benchmarks available
for quantum circuits (e.g., [9]), and there is a lack of benchmarks specifically
designed for QML models. To broaden the range of applicable scenarios, we
have incorporated the use of OpenQASM 2.0 files as inputs. Moreover, to further
enhance this capability, we have developed built-in scripts for translating QML
models on several platforms (such as Huawei’s MindSpore Quantum [43] and
Google’s Cirq [13]) into the OpenQASM 2.0 format. This enables the establish-
ment of a unified verification benchmark framework for QML models deployed on
various popular quantum platforms, including IBM’s Qiskit [26], Google’s Ten-
sorFlow Quantum [7], and others. In addition, we have visualized the framework
by providing a graphical user interface (GUI) that converts inputted OpenQASM
2.0 code, used for describing quantum circuits, into visual representations (see
the right side of Fig. 2).

3 Overview and Features of VeriQR

VeriQR is a graphical user interface (GUI) tool developed using C++. The
decision to use C++ was influenced by the widespread use of Qt [6] in GUI
programming. As shown in Fig. 1, VeriQR consists of two main parts: Local
robustness verification and Global robustness verification.

Inputs. To utilize VeriQR, the user is required to import a relevant example,
specifically a QML model and a dataset that contains quantum states and their
corresponding ground truth labels and can be sourced from either a training or
testing dataset. VeriQR accepts a model in the following formats, each of which
represents a quantum circuit with a measurement at the end of the circuit.

1. A NumPy data file (.npz format) is utilized to package a quantum circuit,
quantum measurement, and training dataset. This format is particularly ben-
eficial for individuals who are not experts in quantum computing but have
proficiency in classical formal methods and machine learning. By incorpo-
rating NumPy, VeriQR becomes more accessible to average users without
requiring extensive learning. Moreover, VeriQR provides four popular testing
examples (see the upper left corner of Fig. 2) of quantum classifiers in .npz,
catering to beginners.

2. An OpenQASM 2.0 file (.qasm format) expresses the quantum circuit cor-
responding to the QML model to be checked. OpenQASM 2.0 is an IBM-
introduced format widely adopted in the quantum computing community for
constructing quantum circuits [11]. QML models trained on different quan-
tum platforms can be converted into this format. This allows for unified and
reliable verification of robustness, addressing the challenge of “QML Bench-
marks” discussed in Sect. 2.3.

VeriQR 411

It is important to mention that the verification of global robustness does not
require the use of the original dataset as input. Therefore, users only need to
import a QML model in a .qasm file for the circuit and the measurement, with-
out the need for additional training data. Once this step is completed, users can
proceed to configure parameters for the specific case of interest. These parame-
ters consist of the following: (i) the types and levels (probabilities ranging from
0 to 1) of noise: VeriQR inherently provides users with the option to select
three standard types of noise, namely depolarizing, phase flip, bit flip [32]. Fur-
thermore, users can also customize a new noise themselves, or even choose a
combination of all types of noise; (ii) the type of quantum state, which can be
either mixed or pure in the local component and is set as mixed by default in
the global component. The choice for the global component is predetermined as
global robustness verification for mixed states can be reduced to that for pure
states; and (iii) perturbation parameters, specifically two thresholds for robust-
ness (ε, δ in Problem 1) for the verification of global robustness and a threshold
for robustness (ε in Problem 2) for the verification of local robustness.

3.1 Verifying Robustness

Verification of Local Robustness. This part is comprised of five modules:
1) Parser: This module handles a quantum classifiers file to obtain the corre-

sponding quantum circuit object.
2) Noise Generator: The input for this module is a quantum circuit object.

First, it generates a noisy quantum circuit by adding a random noise to
each qubit at random points in the circuit with a randomly determined noise
probability. The purpose of this is to simulate the effect of noise to verify the
robustness of the QML model on real-world quantum hardware. In addition,
users can also use VeriQR to actively add noises of specific types, including
commonly used standard quantum noise models and user-defined quantum
noise models (using Kraus representation) with specific noise probabilities,
to the noisy model. Here, user-specified noises are added at the end of the
circuit, which is a common assumption. This functionality enables robustness
improvements, illustrated by our experimental results in Sect. 4.

3) Constraint Generator: This module generates constraints based on the
(noisy) quantum model and the input dataset, which are then submitted to
the core verifier.

4) Core Verifier: This module receives the constraints, a perturbation param-
eter ε, and the quantum state type as inputs. Based on the state type, it
chooses the appropriate constraint solver: a Semidefinite Programming solver
for mixed states, and a Quadratically Constrained Quadratic Program solver
for pure states [19]. It then utilizes both the under-approximation and exact
algorithms to initiate the verification analysis procedure for ε-robustness.
These algorithms and solvers are specifically designed to tackle the challenge
of “Continuous State Space” discussed in Sect. 2.3 when verifying the robust-
ness of QML models. In particular, the under-approximation algorithm is
implemented to address the “State Explosion” issue.

412 Y. Lin et al.

5) Statistics and Visualization: This module is responsible for visualizing and
displaying the results in the GUI of VeriQR. The computed robust accuracy
of the quantum classifier, which indicates the validity of the robustness prop-
erty, is outputted by VeriQR. Additionally, the detected adversarial examples
(quantum states) are stored in a NumPy data file for further analysis and to
improve robustness through adversarial training. The GUI also presents the
original and noisy quantum circuit diagrams for the classifier (see Fig. 2), pro-
viding users with an intuitive way to analyze the model construction. More-
over, for the MNIST handwritten digit classification task, VeriQR displays
pictures of the detected adversarial examples based on the digits specified by
the user in the GUI. These adversarial examples are obtained by adding noisy
perturbations to a set of legitimate input examples, as illustrated in Fig. 3.

Verification of Global Robustness. This part also includes five modules
similar to validating local robustness. However, instead of being verified directly
by the verifier, the noisy model generated by the noise generator is first passed
to the data structure converter and is transformed into the corresponding ten-
sor networks model to improve efficiency and overcome the challenge of “State
Explosion” discussed in Sect. 2.3. The core verifier then takes the tensor network
model as input and calculates the required constant K∗ for model validation,
following the procedure outlined in Algorithm 1 of [20]. In addition to this, the
core verifier receives perturbation parameters ε and δ in Problem 1 for validation
and finally determines whether the global robustness property holds by checking
if δ ≥ K∗ε. If not, it will provide an adversarial kernel (ψ, φ), which is capable
of generating infinitely many pairs of quantum states that violate the global
robustness of the QML model.

Fig. 3. The adversarial examples and the corresponding adversarial perturbations
found by VeriQR in MINIST handwritten digit classification.

VeriQR 413

3.2 Improving Robustness

VeriQR offers adversarial training and adding specific noise to enhance the local
and global robustness of QML models, respectively. The effectiveness of these
strategies is validated through experiments on various QML models in Sect. 4.

Adversarial training. VeriQR empowers users with adversarial training capa-
bilities, an extension of traditional machine learning. When the ε-local robustness
of ρ with label l is compromised, our robustness verification algorithms embedded
in VeriQR automatically generate an adversarial example σ. By incorporating
(σ, l) into the training dataset, users can then retrain the QML model to enhance
its local robustness against the adversarial examples.

Specific noise. Previous research [15,20,25] suggests that introducing specific
quantum noise at strategic points in the circuits of QML models can improve
global robustness. The VeriQR tool empowers users to apply standard or person-
alized noise at various locations in quantum circuits for robustness enhancement.

4 Evaluation

In this section, we evaluate the effectiveness of VeriQR in verifying and enhanc-
ing both the local and global robustness of various QML models. These mod-
els utilize popular parameterized quantum circuits like Quantum Neural Net-
works (QNN), Quantum Convolutional Neural Networks (QCNN), Quantum
Approximate Optimization Algorithms (QAOA), Variational Quantum Eigen-
solver Algorithms (VQE) and Quantum Supremacy Algorithms. All these net-
works have previously demonstrated successful implementation on practical
quantum hardware [44]. All the experiments are performed on a workstation
with a Intel(R) Xeon(R) Gold 6254 CPU @ 3.10GHz × 72 Cores Processor and
314 GB RAM.

4.1 Local Robustness

We conducted several experiments to test the local robustness of various quan-
tum classifiers with different numbers of qubits. These classifiers were trained
on labeled datasets that were encoded using different quantum encoders in plat-
forms such as Mindspore Quantum [43] and Tensorflow Quantum [7]. The clas-
sifiers examined in our study include the qubit classifier, which determines the
qubit’s position in the X-Z plane of a Bloch sphere [7]; the iris classifier, which
categorizes irises from various subgenera [17]; the mnist classifier, which identifies
handwritten digits, specifically 1 & 3 [12]; the fashion classifier, which classifies
images of T-shirts and ankle boots [42]; and the tfi classifier, which recognizes
wavefunctions at different phases in a quantum many-body system [7].

414 Y. Lin et al.

Table 1. Experimental results of the local robustness verification of different QML
models.

Model #Qubits ε Circuit
Noise Setting
(noise_p)

Rough Verif Accurate Verif

RA (%) VT (s) RA (%) VT (s)

qubit 1 0.001 c0 noiseless 88.12 0.0038 90 2.4226
c1 random 88.12 0.0039 90 2.4623
c2 depolarizing_0.001 88.00 0.0038 90 2.4873
c2 depolarizing_0.005 87.62 0.0053 90 2.7140

iris 4 0.005 c0 noiseless 98.75 0.0013 100 0.4924
c1 random 97.50 0.0009 100 0.8876
c2 mixed_0.01 97.50 0.0019 100 0.8808
c2 mixed_0.05 96.25 0.0021 100 3.1675

tfi 4 0.005 c0 noiseless 86.41 0.0039 100 6.5220
c1 random 85.94 0.0038 100 6.6438
c2 mixed_0.01 85.78 0.0061 100 6.7117
c2 mixed_0.05 85.16 0.0063 100 7.0374

tfi 8 0.005 c0 noiseless 98.44 0.0372 100 2.3004
c1 random 96.56 0.1061 100 3.9492
c2 bit-flip_0.01 96.56 37.0965 100 42.1246
c2 bit-flip_0.05 95.94 32.7195 100 38.8139

fashion 8 0.001 c0 noiseless 90.60 0.0420 97.40 25.3777
c1 random 90.30 0.0934 97.30 27.4964
c2 bit-flip_0.01 89.90 15.6579 97.20 42.1063
c2 bit-flip_0.05 87.60 14.0342 96.70 48.5805

mnist (1&3) 8 0.003 c0 noiseless 93.80 0.0543 96.00 18.5063
c1 random 92.60 0.0785 95.70 23.2905
c2 phase-flip_0.001 92.60 12.9728 95.70 36.2348
c2 phase-flip_0.01 92.60 11.6704 95.70 33.7894

Experiment Setting for Verification: To investigate the impact of random
and specific noise on local robustness verification, we conducted experiments on
four different circuits for each model as outlined in Table 1: the noiseless ideal
QML model with quantum circuit c0; circuit c1 created by introducing random
noise at various random points in circuit c0 to simulate noise effects on NISQ
devices; and circuit c2 modified by adding specific noise with a noise level p
(referred to as “noisename_p” below c2) of four types: depolarizing, phase flip,
bit flip, and mixed (a combination of the three) noise, introduced in Sect. 2.1,
applied to each qubit after the random noise manipulation on circuit c1.

Experiment Setting for Approximate Versus Exact Verification: In
each robustness verification scenario, we employed two verification techniques:

VeriQR 415

a coarse method labeled "Rough Verif" and a precise method labeled "Accurate
Verif". We must emphasize here the difference between accurate and rough veri-
fication methods for local robustness verification. The rough verification method
detects non-robust states only by applying the robust bound condition from the
work in [19]. However, quantum states that do not satisfy this condition may
also be robust, leading to an underestimation of the robust accuracy. Therefore,
the accurate verification method first filters out possible non-robust states using
the condition, and then uses a Semidefinite Programming solver to obtain the
optimal robust bound for these states, thus verifying the local robustness of each
state precisely.

Fig. 4. Experimental results of the trade-off between the Lipschitz constant K∗ (mea-
suring global robustness) and noise level p in different QML models.

Table 1 presents a summary of the outcomes obtained from our experiments
on local robustness verification. In this table, the robust accuracy of the classifiers
is represented as "RA", while the verification time (in seconds) is indicated as
"VT". The experimental results reveal two key aspects:

1. By examining the RA values in rows c0, c1, and c2 for each QML experiment in
Table 1, it becomes evident that both random noise and specific noise cannot
enhance robustness, particularly in the fashion and mnist experiments.

416 Y. Lin et al.

2. When comparing the RA (VT) values between the "Rough Verif" and "Accu-
rate Verif" columns, it is observed that the under-approximation of robust
accuracy scales well in almost all cases with faster verification time, support-
ing the conclusions drawn in [19].

Remark 1. Our tool, VeriQR, serves as a formal instrument capable of identify-
ing all non-robust quantum states (adversarial examples) during the verification
process of all quantum classifiers. Analogous to classical methodologies, adver-
sarial training can be utilized to fortify non-robust states within the retrained
models. In our study, we have incorporated the adversarial training technique
as outlined in Sect. 2.2 for all QML models listed in Table 1. Despite being a
conventional classical practice, we have documented the outcomes on our code
repository.

4.2 Global Robustness

For global robustness, we also incorporate various types of noise and their cor-
responding noise levels into the quantum models to be tested. We conducted
multiple experiments on different QML models using the VeriQR tool. These
experiments encompass a wide range of applications, including the aci model
for adult census income prediction [3], the fct model for detecting fraudulent
credit card transactions [40], the cr model for classifying individuals as good or
bad credit risks based on a set of attributes [24], the ehc model for calculating
the binding energy of hydrogen chains [35], the qaoa model for solving hardware
grid problems [22].

Table 2. Experimental comparison of tensor network-based verification with a baseline
implementation lacking tensors for assessing global robustness.

Model #Qubits
Noise p (ε, δ) Baseline TN Robust

K∗ time (s)K∗ time (s)

ehc 8 bit flip 0.0001 (0.0003, 0.0075) 0.99980 0.26 0.99976 26.17 YES
depolarizing 0.05 (0.001, 0.0075) 0.93333 0.26 0.93304 27.87 YES
phase flip 0.025 (0.075, 0.0003) 1 0.26 0.99968 28.46 NO
mixed 0.0005 (0.005, 0.005) 0.99938 0.24 0.99905 25.75 YES

aci 8 bit flip 0.0001 (0.003, 0.0001) 0.99985 0.18 0.99985 6.44 NO
depolarizing 0.025 (0.03, 0.0005) 0.92640 0.25 0.92440 7.70 NO
phase flip 0.05 (0.05, 0.001) 0.88450 0.19 0.85990 8.58 NO
mixed 0.005 (0.005, 0.005) 0.98384 0.22 0.98326 6.06 YES

fct 9 bit flip 0.05 (0.075, 0.003) 0.99024 0.98 0.97683 13.89 NO
depolarizing 0.05 (0.0003, 0.0001) 0.92638 0.76 0.92486 40.73 NO
phase flip 0.01 (0.01, 0.0075) 0.98730 0.87 0.98290 10.45 NO
mixed 0.05 (0.075, 0.0075) 0.94531 0.89 0.92949 9.06 NO

continued

VeriQR 417

Table 2. continued

Model #Qubits
Noise p (ε, δ) Baseline TN Robust

K∗ time (s)K∗ time (s)

cr 9 bit flip 0.025 (0.01, 0.0005) 0.93964 0.65 0.93819 14.44 NO
depolarizing 0.005 (0.075, 0.005) 0.98637 1.21 0.98515 6.49 NO
phase flip 0.025 (0.0003, 0.0001) 0.94753 0.97 0.93772 9.63 NO
mixed 0.025 (0.0001, 0.0001) 0.95579 0.93 0.94980 12.15 YES

qaoa 10 bit flip 0.005 (0.05, 0.0005) 0.99843 5.23 0.98507 16.98 NO
depolarizing 0.0001 (0.01, 0.003) 0.99983 6.15 0.99965 16.10 NO
phase flip 0.005 (0.075, 0.0075) 0.99224 5.14 0.98516 17.95 NO
mixed 0.001 (0.03, 0.0075) 0.99923 4.98 0.99657 16.16 NO

ehc 10 bit flip 0.075 (0.05, 0.0003) 0.85409 3.37 0.85262 82.25 NO
depolarizing 0.0005 (0.03, 0.001) 0.99933 5.69 0.99924 40.33 NO
phase flip 0.01 (0.0003, 0.0075) 1 4.36 0.99857 66.67 YES
mixed 0.0001 (0.005, 0.001) 0.99981 5.26 0.99977 38.13 NO

ehc 12 bit flip 0.005 (0.0005, 0.0003) 0.99001 169.42 0.98965 76.77 NO
depolarizing 0.0005 (0.0001, 0.005) 0.99933 253.11 0.99926 189.35 YES
phase flip 0.075 (0.001, 0.0075) 1 163.61 0.99880 675.50 YES
mixed 0.001 (0.01, 0.0001) 0.99997 195.48 0.99984 64.50 NO

inst 16 bit flip 0.005 (0.0005, 0.0003) - TO 0.98009 1052.73 NO
depolarizing 0.0005 (0.0003, 0.005) - TO 0.99833 33.99 YES
phase flip 0.05 (0.001, 0.0075) - TO 0.95131 381.15 YES
mixed 0.001 (0.005, 0.0003) - TO 0.99899 123.25 NO

qaoa 20 bit flip 0.05 (0.005, 0.001) - TO 0.91194 2402.32 NO
depolarizing 0.075 (0.005, 0.003) - TO 0.83488 433.05 NO
phase flip 0.0005 (0.0001, 0.0001) - TO 0.99868 70.00 YES
mixed 0.05 (0.075, 0.0003) - TO 0.89682 4635.55 NO

Noise improving global robustness. Fig. 4 depicts the scaling of the Lips-
chitz constant K∗ (which quantifies global robustness as discussed in Sect. 2.2)
across various models at different noise levels p for four distinct noise types. The
figure also showcases the experimental outcomes of the original model alongside
a model derived from the original version with random noise. These results indi-
cate that the global robustness of all models improves due to quantum noise, as
evidenced by the reduced K∗ value in the models. This outcome validates ear-
lier theoretical findings suggesting that specific quantum noise can boost global
robustness [15,20,25]. The presence of “_n” in each model name in the figure
signifies the model’s utilization of n qubits.

High efficiency of tensor network. Importantly, VeriQR transformed quan-
tum models into tensor network models and applied a tensor network-driven
algorithm (referred to as “TN” in Table 2) for global robustness assessment.
Table 2 provides an experimental comparison with a baseline implementation

418 Y. Lin et al.

(labeled as “Baseline”) that does not incorporate tensors in global robustness
evaluation. In this evaluation, a timeout threshold (“TO” entries) of 7,200 s was
imposed. The results demonstrate that the tensor network approach significantly
enhances verification speed for a large number of qubits (more than 12), thereby
improving the scalability compared to the precise local robustness verification
outlined in Table 1.

Remark 2. To further verify the robustness of VeriQR both locally and globally,
we have conducted additional experiments. These experiments involved test-
ing the QML models presented in Tables 1 and 2 but with varying numbers of
qubits and different types and levels of noise. Furthermore, the experimental
QML models encompass 45 MNIST classifiers that have been designed to clas-
sify all possible combinations of handwritten digits {0, 1, 2, . . . , 9}. All of these
experiment results, along with the corresponding artifact for this paper, can be
accessed in our code repository.

5 Conclusion

This paper presented VeriQR, a graphical user interface (GUI) tool developed
to verify the robustness of QML models in the current NISQ era, where noise is
unavoidable. VeriQR offers exact, under-approximate, and tensor network-based
algorithms for local and global robustness verification of real-world QML models
in the presence of quantum noise. Throughout the verification process, VeriQR
can identify quantum adversarial examples (states) and utilize them for adver-
sarial training to improve the local robustness as the same as classical machine
learning. Additionally, VeriQR applies specific quantum noise to enhance the
global robustness. Furthermore, VeriQR is capable of accommodating any quan-
tum model in the OpenQASM 2.0 format and can convert QML models into this
format to establish a unified benchmark framework for robustness verification.

Acknowledgments. We would like to thank Runhong He for his valuable discus-
sion. This work was partly supported by the Youth Innovation Promotion Association,
Chinese Academy of Sciences (Grant No. 2023116), the Australian Research Coun-
cil (Grant No. DP220102059), National Natural Science Foundation of China (Grants
No. 62002333) and Innovation Program for Quantum Science and Technology (Grants
No. 2021ZD0302901). This work was done when Yanling Lin was a remote research
intern supervised by A/Prof. Ji Guan at the Institute of Software, Chinese Academy
of Sciences.

Data Availability Statement. The raw (classical) data underlying this article are
available in the article, and the corresponding quantum version data can be found in
the online supplement material - the github code repository https://github.com/Veri-
Q/VeriQR or the artifacts at [29].

https://github.com/Veri-Q/VeriQR
https://github.com/Veri-Q/VeriQR

VeriQR 419

References

1. Albarghouthi, A., et al.: Introduction to neural network verification. Found.
Trends R© Programm. Lang. 7(1–2), 1–157 (2021)

2. Balunovic, M., Baader, M., Singh, G., Gehr, T., Vechev, M.: Certifying geomet-
ric robustness of neural networks. In: Advances in Neural Information Processing
Systems, vol. 32 (2019)

3. Becker, B., Kohavi, R.: Adult. UCI Machine Learning Repository (1996)
4. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quan-

tum machine learning. Nature 549(7671), 195–202 (2017)
5. Biggio, B., Roli, F.: Wild Patterns: ten years after the rise of adversarial machine

learning. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pp. 2154–2156 (2018)

6. Blanchette, J., Summerfield, M.: C++ GUI programming with Qt 4. Prentice Hall
Professional (2006)

7. Broughton, M., et al.: TensorFlow Quantum: a software framework for quantum
machine learning. arXiv preprint arXiv:2003.02989 (2020)

8. Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., Mukhopadhyay, D.: A
survey on adversarial attacks and defences. CAAI Trans. Intell. Technol. 6(1),
25–45 (2021)

9. Chen, K., et al.: VeriQBench: a benchmark for multiple types of quantum circuits.
arXiv preprint arXiv:2206.10880 (2022)

10. Chen, Y.-F., Chung, K.-M., Lengál, O., Lin, J.-A., Tsai, W.-L.: AutoQ: An
Automata-Based Quantum Circuit Verifier. In: Enea, C., Lal, A. (eds.) Com-
puter Aided Verification: 35th International Conference, CAV 2023, Paris, France,
July 17–22, 2023, Proceedings, Part III, pp. 139–153. Springer Nature Switzerland,
Cham (2023). https://doi.org/10.1007/978-3-031-37709-9_7

11. Cross, A.W., Bishop, L.S., Smolin, J.A., Gambetta, J.M.: Open quantum assembly
language. arXiv preprint arXiv:1707.03429 (2017)

12. Deng, L.: The mnist database of handwritten digit images for machine learning
research. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

13. Developers, C.: Cirq. https://quantumai.google/cirq
14. Dreossi, T., et al.: VERIFAI: a toolkit for the formal design and analysis of artificial

intelligence-based systems. In: International Conference on Computer Aided Ver-
ification, pp. 432–442. Springer (2019). https://doi.org/10.1007/978-3-030-25540-
4_25

15. Du, Y., Hsieh, M.H., Liu, T., Tao, D., Liu, N.: Quantum noise protects quantum
classifiers against adversaries. Phys. Rev. Res. 3(2), 023153 (2021)

16. Feng, Y., Hahn, E.M., Turrini, A., Zhang, L.: QPMC: a model checker for quantum
programs and protocols. In: BjOrner, N., de Boer, F. (eds.) FM 2015. LNCS,
vol. 9109, pp. 265–272. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19249-9_17

17. Fisher, R.A.: Iris. UCI Machine Learning Repository (1988)
18. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,

M.: AI2: safety and robustness certification of neural networks with abstract inter-
pretation. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE
(2018)

19. Guan, J., Fang, W., Ying, M.: Robustness verification of quantum classifiers. In:
Silva, A., Leino, K.R.M. (eds.) Computer Aided Verification: 33rd International
Conference, CAV 2021, Virtual Event, July 20–23, 2021, Proceedings, Part I,

http://arxiv.org/abs/2003.02989
http://arxiv.org/abs/2206.10880
https://doi.org/10.1007/978-3-031-37709-9_7
http://arxiv.org/abs/1707.03429
https://quantumai.google/cirq
https://doi.org/10.1007/978-3-030-25540-4_25
https://doi.org/10.1007/978-3-030-25540-4_25
https://doi.org/10.1007/978-3-319-19249-9_17
https://doi.org/10.1007/978-3-319-19249-9_17

420 Y. Lin et al.

pp. 151–174. Springer International Publishing, Cham (2021). https://doi.org/10.
1007/978-3-030-81685-8_7

20. Guan, J., Fang, W., Ying, M.: Verifying fairness in quantum machine learning.
In: Shoham, S., Vizel, Y. (eds.) Computer Aided Verification: 34th International
Conference, CAV 2022, Haifa, Israel, August 7–10, 2022, Proceedings, Part II,
pp. 408–429. Springer International Publishing, Cham (2022). https://doi.org/10.
1007/978-3-031-13188-2_20

21. Guan, J., Feng, Y., Turrini, A., Ying, M.: Measurement-based verification of quan-
tum Markov chains. In: Gurfinkel, A., Ganesh, V. (eds.) Computer Aided Verifica-
tion: 36th International Conference, CAV 2024, Montreal, QC, Canada, July 24–
27, 2024, Proceedings, Part III, pp. 533–554. Springer Nature Switzerland, Cham
(2024). https://doi.org/10.1007/978-3-031-65633-0_24

22. Harrigan, M.P., et al.: Quantum approximate optimization of non-planar graph
problems on a planar superconducting processor. Nat. Phys. 17(3), 332–336 (2021).
https://doi.org/10.1038/s41567-020-01105-y

23. Helstrom, C.W.: Detection theory and quantum mechanics. Inf. Control 10(3),
254–291 (1967)

24. Hofmann, H.: Statlog (German Credit Data). UCI Machine Learning Repository
(1994)

25. Huang, J.C., et al.: Certified robustness of quantum classifiers against adversar-
ial examples through quantum noise. In: ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE
(2023)

26. IBM: Learn quantum computation using Qiskit. https://qiskit.org/textbook/
preface.html (Accessed 2021)

27. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9_5

28. Li, R., et al.: PRODeep: a platform for robustness verification of deep neural net-
works. In: Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing, pp. 1630–1634 (2020)

29. Lin, Y., Guan, J., Fang, W., Ying, M., Su, Z.: Artifact for veriQR (2024). https://
doi.org/10.5281/zenodo.12526235

30. Liu, N., Wittek, P.: Vulnerability of quantum classification to adversarial pertur-
bations. Phys. Rev. A 101(6), 062331 (2020)

31. Lu, S., Duan, L.M., Deng, D.L.: Quantum adversarial machine learning. Phys. Rev.
Res. 2(3), 033212 (2020)

32. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information.
Phys. Today 54(2), 60 (2001)

33. Gay, S.J., Nagarajan, R., Papanikolaou, N.: QMC: a model checker for quantum
systems. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 543–547.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1_51

34. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79
(2018)

35. Quantum, G.A., et al.: Hartree-Fock on a superconducting qubit quantum com-
puter. Science 369(6507), 1084–1089 (2020)

36. Roberts, C., et al.: TensorNetwork: a library for physics and machine learning
(2019). https://tensornetwork.readthedocs.io/en/latest/index.html

https://doi.org/10.1007/978-3-030-81685-8_7
https://doi.org/10.1007/978-3-030-81685-8_7
https://doi.org/10.1007/978-3-031-13188-2_20
https://doi.org/10.1007/978-3-031-13188-2_20
https://doi.org/10.1007/978-3-031-65633-0_24
https://doi.org/10.1038/s41567-020-01105-y
https://qiskit.org/textbook/preface.html
https://qiskit.org/textbook/preface.html
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.5281/zenodo.12526235
https://doi.org/10.5281/zenodo.12526235
https://doi.org/10.1007/978-3-540-70545-1_51
https://tensornetwork.readthedocs.io/en/latest/index.html

VeriQR 421

37. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

38. Tran, H.-D., et al.: Robustness verification of semantic segmentation neural net-
works using relaxed reachability. In: Silva, A., Leino, K.R.M. (eds.) Computer
Aided Verification: 33rd International Conference, CAV 2021, Virtual Event, July
20–23, 2021, Proceedings, Part I, pp. 263–286. Springer International Publishing,
Cham (2021). https://doi.org/10.1007/978-3-030-81685-8_12

39. Tran, H.-D., et al.: NNV: the neural network verification tool for deep neural
networks and learning-enabled cyber-physical systems. In: Lahiri, S.K., Wang, C.
(eds.) Computer Aided Verification: 32nd International Conference, CAV 2020,
Los Angeles, CA, USA, July 21–24, 2020, Proceedings, Part I, pp. 3–17. Springer
International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-53288-
8_1

40. ULB, M.L.G.: Credit card fraud detection. https://www.kaggle.com/datasets/mlg-
ulb/creditcardfraud

41. Weber, M., Liu, N., Li, B., Zhang, C., Zhao, Z.: Optimal provable robustness of
quantum classification via quantum hypothesis testing. NPJ Quant. Inf. 7(1), 76
(2021)

42. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

43. Xu, X., et al.: MindSpore Quantum: a user-friendly, high-performance, and
AI-compatible quantum computing framework. arXiv preprint arXiv:2406.17248
(2024)

44. Zeguendry, A., Jarir, Z., Quafafou, M.: Quantum machine learning: a review and
case studies. Entropy 25(2), 287 (2023)

45. Zhou, L., Barthe, G., Strub, P.Y., Liu, J., Ying, M.: CoqQ: foundational verification
of quantum programs. In: Proceedings of the ACM on Programming Languages,
vol. 7(POPL), pp. 833–865 (2023)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/1412.6572
https://doi.org/10.1007/978-3-030-81685-8_12
https://doi.org/10.1007/978-3-030-53288-8_1
https://doi.org/10.1007/978-3-030-53288-8_1
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/2406.17248
http://creativecommons.org/licenses/by/4.0/

Programming Languages

Formal Semantics and Analysis
of Multitask PLC ST Programs

with Preemption

Jaeseo Lee and Kyungmin Bae(B)

Pohang University of Science and Technology,
Pohang, South Korea

{sean96,kmbae}@postech.ac.kr

Abstract. Programmable logic controllers (PLCs) are widely used in
industrial applications. Ensuring the correctness of PLC programs is
important due to their safety-critical nature. Structured text (ST) is
an imperative programming language for PLC. Despite recent advances
in executable semantics of PLC ST, existing methods neglect complex
multitasking and preemption features. This paper presents an executable
semantics of PLC ST with preemptive multitasking. Formal analysis of
multitasking programs experiences the state explosion problem. To mit-
igate this problem, this paper also proposes state space reduction tech-
niques for model checking multitask PLC ST programs.

Keywords: Programmable logic controller · Structured Text · Formal
semantics · Preemptive multitasking · Partial order reduction

1 Introduction

Programmable logic controllers (PLCs) are industrial computer systems designed
to manage tasks in diverse applications, from assembly lines to robotic devices.
The IEC 61131-3 international standard [9] defines the programming languages
tailored for developing PLC programs, such as Structured Text (ST), a high-level
imperative language. The critical role of PLCs lies in their ability to improve
the flexibility, efficiency, and reliability of complex industrial control systems.

Ensuring the correctness of PLC programs is of paramount importance due
to their safety-critical nature in industrial applications. Over the years, formal
analysis of PLC programs has received significant attention from both academia
and industry. In response to this demand, many techniques and tools have been
developed for formally analyzing PLC programs, including [2,4,10,13,19,25,34],
written in various PLC programming languages. In particular, ST is the most
expressive of all PLC languages and is widely used for formal analysis [11].

Recent advances introduce a complete executable semantics of PLC ST
[18,38]. Traditional “translation-based” methods (e.g., [4,10,13]) convert PLC
ST programs into the input language of another analysis tool. They are inher-
ently limited to a particular syntactic subset of the language, determined by the
capabilities of the target input language. In contrast, the complete semantics
[18,38] can directly deal with the full syntactic subset of the language.
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 425–442, 2025.
https://doi.org/10.1007/978-3-031-71162-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_22&domain=pdf
http://orcid.org/0000-0001-5979-726X
http://orcid.org/0000-0002-6430-5175
https://doi.org/10.1007/978-3-031-71162-6_22

426 J. Lee and K. Bae

While the existing complete semantics [18,24,38] detail the language con-
structs of PLC ST, they overlook complex multitasking aspects. PLC programs
run in iterative rounds, called scan cycles, interacting with their controlled entities
at each iteration. They manage multiple tasks with different periods, deadlines,
and priorities, allowing high-priority tasks to preempt low-priority tasks. Captur-
ing this complex nondeterministic behavior remains an unresolved problem.

Our goal is to extend the PLC ST semantics [24,38] for preemptive multitask
programs. There are two central challenges to achieve this goal:

– Although PLC ST programs operate within fixed time intervals, they can
be executed or preempted at any moment within a dense time domain. It is
essential to completely capture all possible behaviors.

– Task execution and preemption, despite their arbitrariness, often lead to indis-
tinguishable outcomes. It is crucial to identify and focus on the minimal inter-
actions without compromising completeness.

To address these issues, we first define a “time-complete” semantics that nat-
urally captures all possible behaviors over time points. We then introduce an
abstraction to identify equivalent behaviors over time intervals.

Our time-complete semantics of PLC ST, based on the K framework [35],
explicitly considers each time point within a dense time domain, and faithfully
models task execution and preemption at arbitrary times. In particular, a state
in our semantics contains a global time, and the tick rule can advance the
global time by any amount before the deadline caused by intervals of tasks.
Since this semantics involves an infinite number of behaviors within a finite time
period, it is not executable and is unsuitable for automated analysis.

To deal with the non-executability problem, we define an abstraction of the
time-complete semantics, resulting in a time-abstract semantics of PLC ST. In
contrast to the time-complete semantics, it restricts the focus to a finite number
of interleaving scenarios within a finite time period. Each global time in a state
is abstracted into the time interval spanning from the earliest start time to the
earliest deadline of the tasks involved. Importantly, our semantics is equivalent
to the time-complete semantics in terms of bisimulation.

The nondeterministic nature of preemptive multitasking can still lead to the
state explosion problem. To illustrate, consider two tasks T1 and T2, where T2

has a higher priority. If T1 runs a sequence of code s1; s2; · · · ; sn, then T2 can pre-
empt T1 after executing any of si, resulting in n potential preemption scenarios.
However, only statements that interact with global variables can produce differ-
ent results. To avoid such redundant behavior, we propose state space reduction
methods for our semantics, based on partial order reduction [33].

This paper is organized as follows. Section 2 gives some background on the
basic K semantics of PLC ST and partial order reduction. Section 3 explains
details of multitask PLC with preemption and introduces a running example.
Section 4 presents the time-complete semantics of PLC ST, and Sect. 5 presents
the time-abstract semantics. Section 6 presents the state space reduction methods
for our semantics, and Sect. 7 shows the experimental results. Section 8 discusses
related work. Finally, Sect. 9 presents some concluding remarks.

Formal Semantics and Analysis of Multitask PLC ST Programs 427

2 Preliminaries

K Framework. K [35] is a semantic framework for programming languages,
based on rewriting logic [27]. It has been widely used to formalize a variety of
languages, including C [12], Java [3], JavaScript [31], PLC ST [38], AADL [21,22],
and so on. There are several tools that can be used to execute and analyze
programming languages using K, including the K tool [20] and Maude [8,37].

In K, program states are represented as multisets of nested cells, called con-
figurations. Each cell represents a component of a program state, such as compu-
tations and stores. Transitions between configurations are specified as (labeled)
K rules, written in a notation that specifies only the relevant parts.

A computation in K is defined as a �-separated sequence of computational
tasks. For example, t1 � t2 � . . . � tn represents the computation consisting of
t1 followed by t2 followed by t3, and so on. A task can be decomposed into simpler
tasks, and the result of a task is forwarded to the subsequent tasks. E.g., (5+x)∗2
is decomposed into x � 5 + � � � ∗ 2, where � is a placeholder for the result
of a previous task. If x evaluates to some value, say 4, then 4 � 5 + � � � ∗ 2
becomes 5 + 4 � � ∗ 2, which eventually becomes 18.

The following shows a typical example of K rules for variable lookup, where
lookup is a label, the k cell contains a computation, env contains a map from
variables to locations, and store contains a map from locations to values:

lookup:
〈x � ...〉k 〈... x �→ l ...〉env 〈... l �→ v ...〉store
v

A horizontal line represents a state change, and “...” indicates irrelevant parts. A
cell without horizontal lines is not changed by the rule. By the lookup rule, if the
first item in k is x, then x is replaced by the value v of x in its location l.

PLC ST and its K Semantics. Structured text (ST) is a textual programming
language defined in the IEC 61131-3 standard [9]. ST supports common features
of imperative programming language, such as (local and global) variable assign-
ments, conditionals, loops, and functions. ST also has unique constructs, such
as function blocks, which are callable “objects” with state variables. Functions,
function blocks, and programs are called program organization units (POUs).

We briefly summarize the syntax of PLC ST. A program is declared with
the syntax PROGRAM Name ... END PROGRAM. A program consists of variable
declarations and code. A variable declaration section is declared with the syntax
VAR SectionType ... END VAR, where SectionType is one of GLOBAL, INPUT, and
OUTPUT, or omitted (local in this case). A global variable section can be written
outside of a program. A body of code begins after variable sections.

We give an overview of the K semantics of PLC ST [18,24,38]. Figure 1
shows part of the structure of K configurations. The k, env, and store cells are
explained above. The stack cell contains a call stack, which stores the caller’s
environment and computation when a function block is called. The pouDef cell is
a map from POU identifiers to POU declarations, each of which contains variable
declarations and code. The pList cell contains a list of programs to run.

428 J. Lee and K. Bae

Fig. 1. Examples of K cells for PLC ST.

Fig. 2. Examples of K rules for PLC ST.

Figure 2 shows some of the K rules in the PLC ST semantics. Thanks to
the modularity of the K technique [35,36], the K rules for common imperative
language constructs, such as assign for variable assignment, and if-true and
if-false for conditional statements, are (almost) identical to those for other
imperative languages, except for slight syntactic differences.

When a function block is called (fbCall), the POU instance [fb, η] is obtained,
where η is a local environment, and tasks of binding the arguments and executing
the code S are loaded in k. When the code S is executed (fbExec), the current
environment ρ and the remaining computation κ are pushed to stack, and η
becomes a new environment in env. When there are no more tasks in k (fbQuit),
the previous environment ρ and the computation κ are restored from stack.

Transition Systems. A transition system S is a tuple (S, s0, T,AP, L) [1,33],
where S is a set of states, s0 ∈ S is an initial state, T is a set of transitions such
that α ∈ T is a partial function α : S → S, AP is a set of atomic propositions,
and L : S → 2AP is a state labeling function. A transition α ∈ T is enabled in
a state s ∈ S if α(s) is defined. We denote by enabled(s) the set of transitions
enabled in s. We often write s

α−→ s′ to denote α(s) = s′ for s, s′ ∈ S.
For two transition systems Si = (Si, s

i
0, Ti,AP, Li), i = 1, 2, a binary relation

R ∈ S1 × S2 is a simulation [7] from S1 to S2 iff: (i) (s10, s
2
0) ∈ R; and (ii)

for any (s1, s2) ∈ R, L(s1) = L(s2) holds, and if s1
α−→ s′

1, there exists s′
2 ∈ S

such that s2
α−→ s′

2 and (s′
1, s

′
2) ∈ R. A simulation R from S1 to S2 is called a

bisimulation iff R−1 is also a simulation from S2 to S1.
The K semantics of PLC ST naturally defines a transition system, provided

that AP and L are given. States are given by K configurations. Each transition
αl is identified by a rule label l such that s

αl−→ s′ iff s is reduced to s′ by a K rule
with label l. For the “single-task” case, αl is well defined as a partial function
because single-task PLC programs are deterministic. For the “multitask” case,
we also need task identifiers as well as rule labels (see Sect. 4.2).

Formal Semantics and Analysis of Multitask PLC ST Programs 429

Partial Order Reduction. Consider a transition system S = (S, s0, T,AP, L).
A transition α ∈ T is invisible iff s

α−→ s′ implies L(s) = L(s′). An independence
relation I ⊆ T × T is a symmetric and anti-reflexive relation such that for
any pair of transitions (α, β) ∈ I and state s ∈ S, where α, β ∈ enabled(s),
(i) α ∈ enabled(β(s)) and β ∈ enabled(α(s)), and (ii) α(β(s)) = β(α(s)). Its
complement D = (T × T) \ I is called a dependency relation.

We consider partial order reduction using ample sets [33]. An ample set of
a state s ∈ S is a subset of the enabled transitions ample(s) ⊆ enabled(s). A
state s ∈ S is called fully expanded when ample(s) = enabled(s). When exploring
the state space, only the transitions in ample(s) are explored instead of all the
transitions in enabled(s). This results in a reduced transition system Ŝ that is
behaviorally equivalent when ample sets are chosen appropriately.

The following conditions guarantee that a transition system S and its reduced
version Ŝ are behaviorally equivalent [33]: (i) ample(s) 	= ∅ iff enabled(s) 	= ∅; (ii)
a transition that is dependent on a transition in ample(s) cannot occur before a
transition in ample(s) occurs first.1; (iii) if s is not fully expanded, all transitions
in ample(s) are invisible; and (iv) any cycle in the reduced state space Ŝ contains
at least one fully expanded state.

3 Multitask PLC and a Running Example

In multitask PLC, each program is assigned an interval and a priority. A program
is scheduled to run periodically, where the interval determines the duration of
each period. Priorities are given as natural numbers, where a lower number
indicates a higher priority. A program with a higher priority can preempt the
execution of a program with a lower priority. The execution of each program
must be completed before the beginning of its next round.

Multitask PLC programs are difficult to analyze because of their complex
interleaving possibilities. Due to the nondeterministic nature of preemption, the
number of different interleavings can grow exponentially with the number of pro-
grams. E.g., if a program with k statements is preempted, preemption can occur
after the i-th statement for any 1 ≤ i ≤ k, Therefore, for n programs with
different priorities, there are O(kn−1) interleaving possibilities by preemption.

Our running example is inspired by the two-wheeled self-balancing robot [6].
The robot moves on flat ground while maintaining its balance. It is equipped
with a sonar sensor that detects nearby obstacles. The current state information
is displayed on the attached panel. It takes control input from a remote controller
to move forward, backward, and turn.

The system consists of three programs: balanceControl, sonar, and
display, with intervals of 3ms, 4ms, and 12ms, and priorities of 1, 2, and
3, respectively. Figure 3 shows a code snippet of balanceControl and sonar,
where the intervals and priorities are declared in CONFIGURATION. The global
variables mode and obstacle flag are used for communication between differ-
ent programs.

1 For s
β1−→ · · · βn−−→ sn

α−→ t, if α depends on ample(s), βi ∈ ample(s) for some i ≤ n.

430 J. Lee and K. Bae

Fig. 3. Two-wheeled self-balancing robot code.

The balanceControl program takes control inputs (such as cmd forward
and cmd turn) and balancing inputs (such as gyro sensor). The robot has two
modes CAL and CONTROL, where the global variable mode indicates the current
mode. When balanceControl is executed for the first time, it calibrates and
sets the appropriate initial settings for the robot and sets mode to CONTROL. The
program starts controlling the robot from the second round.

The sonar program takes sonar sensor inputs (such as sonar). When mode
is CONTROL, the program measures the distances to nearby objects to detect
an imminent collision hazard. If so, it sets the global variable obstacle flag to
TRUE. At this point, balanceControl ignores its control input and attempts to
stop the robot by setting cmd forward to −100.

Figure 4 shows two interleaving scenarios that reach different outcomes. Each
rectangle denotes the range from the earliest possible start time to the deadline
for a task. The heads and tails of horizontal arrows denote the start and end
of program execution. The curved vertical arrows denote preemption and its
return. In Scenario 1, there is no preemption.

4 Formal Semantics of Multitask PLC

This section presents an executable semantics of PLC ST with preemptive mul-
titasking, which extends the existing K semantics of PLC ST [18,24,38]. Our
semantics specifies all possible interleavings by nondeterministic preemption over
a dense time domain. We take into account a global time that can be advanced
by any amount up to the deadline, determined by the intervals of tasks.

Formal Semantics and Analysis of Multitask PLC ST Programs 431

Fig. 4. Two interleaving scenarios of the robot example.

Fig. 5. K configurations for multitask PLC.

4.1 K Configuration for Multitask PLC

Figure 5 depicts the K cells for specifying preemptive multitasking behaviors,
in addition to the existing cells in the original semantics [18,24,38]: (1) time
denotes the current time; (2) active denotes the identifier of the currently running
program; (3) interval has a map from program identifiers to their intervals; (4)
pQueue contains a priority queue of tasks that are ready to run according to
time and interval; and (5) futureTS contains tasks that are not ready.

Tasks are represented as a tuple (id, pr, es, dl), where id is the identifier of
the program, pr is the program’s priority, es is the earliest start time, and dl is
the deadline. Each program can start after its earliest start time and must end
before its deadline. When the current time is 0, es is 0 and dl is the interval.

The Program cell encompasses the program’s identifier, a computation, and
an environment and a call stack. Unlike the single-task semantics in Sect. 2, in
our multi-task semantics, each program maintains its own computation, envi-
ronment, and stack. That is, a full K configuration has the nested structure of
the form (where other K cells not used in this paper are omitted):

〈...〉time 〈...〉active 〈...〉interval 〈...〉pQueue 〈...〉futureTS 〈...〉store 〈...〉pouDef ...

〈〈...〉id 〈...〉k 〈...〉env 〈...〉stack ...〉program ... 〈〈...〉id 〈...〉k 〈...〉env 〈...〉stack ...〉program

4.2 K Rules for Multitask PLC

Figure 6 shows the K rules to specify preemptive multitasking behaviors. The
tick rule (nondeterministically) increments the current time up to the minimum
deadline of the tasks, where minDL(pq, ft) = min(deadlines(pq) ∪ deadlines(ft)),
with deadlines(A) denoting the set of deadlines in A. The side condition of tick
maintains the following validity constraint: the value of the time cell should not
exceed any of the deadlines of the tasks in pQueue and futureTS.

432 J. Lee and K. Bae

Fig. 6. K rules for preemptive multitasking.

Lemma 1. For a K configuration that satisfies the validity constraint, any next
configuration obtained by applying a rule also satisfies the constraint.

The execute rule executes the top task in pQueue if no task is currently run-
ning. Before the rule is applied, the active cell is empty, and the execution of each
program is “blocked” by � at the top of its k cell. Suppose P is the program for
the top task in pQueue. When execute is applied, the active cell is updated with
the program’s identifier P , and � is removed from the top of P ’s k cell.

The placeT rule moves a task in futureTS into pQueue, when the task is
ready to run according to time and interval. The function insert(pq, T) inserts
task T into the priority queue pq. The side condition states that the current time
is between its earliest start time and the deadline. It also sets the third item of
the task to the current time t to record when this happens.

The endProgram rule is applied when the execution of the active program is
finished. Suppose P is the active program and the k cell of P is empty. When
endProgram is applied, the active cell becomes empty and the corresponding
task is removed from pQueue. The subsequent task for P is added to futureTS,
where the earliest start time and deadline are increased by P ’s interval ι. Finally,
the code of P , where the execution is blocked by �, is loaded into the k cell of
P . The side condition asserts that the execution of P takes non-zero time.

The preempt rule preempts a lower-priority task, and executes a higher-
priority task in pQueue. In the rule, P has a higher priority than P ′ because it
is the top element in pQueue. The active becomes P , and � moves to P ′ from P .

It is worth noting that the rules in Fig. 6 are all nondeterministic. The time
can be increased by any value up to the deadline, and different tasks can have the
same priority and interval. For this reason, transitions with tick are identified
by time differences (e.g., tick(1) increases the time by 1), and transitions with
the other four rules are identified by rule labels and program identifiers (e.g.,
placeT(P) moves a task (P, . . .) from futureTS to pQueue).

Formal Semantics and Analysis of Multitask PLC ST Programs 433

Fig. 7. An example of execution sequences, where Pb = balanceControl and Ps = sonar.

4.3 Example of K Rule Applications

Figure 7 shows a sequence of states simulating an execution path for Scenario 2
in Fig. 4. Applying execute to state s1 to execute balanceControl gives s2.
After 1 s, balanceControl executes its code (using other K rules) and then
endProgram is applied, resulting in s3. The following shows the transitions:

s1
execute(Pb)−−−−−−−→ s2

tick(1)−−−−→ · · · endProgram(Pb)−−−−−−−−−→ s3
execute(Ps)−−−−−−−→ · · · tick(2)−−−−→ · · · placeT(Pb)−−−−−−−→ s4

preempt(Pb)−−−−−−−→ s5 −→ · · ·

Likewise, Scenario 1 can be simulated by the following sequence of transitions.
It is the same as the above up to s3, and has different states after that.

s1
execute(Pb)−−−−−−−→ s2

tick(1)−−−−→ · · · endProgram(Pb)−−−−−−−−−→ s3
execute(Ps)−−−−−−−→ · · · tick(2)−−−−→ · · · endProgram(Ps)−−−−−−−−−→ s′

4

placeT(Pb)−−−−−−−→ s′
5

execute(Pb)−−−−−−−→ · · ·

5 Time Abstraction

A single program execution can produce an infinite number of cases, due to
nondeterministic time advances. In Scenario 2 of Fig. 4, the first execution of
balanceControl can end in 1ms, 0.5ms, 0.25ms, and so on. However, there are
only a finite number of critical times that may change the possible behaviors.

This section presents a time abstraction for our multitask PLC ST semantics.
The main idea is to express time abstractly with a time interval that represents
an infinite number of time points. We define an abstract function that maps
a concrete K configuration to its abstract version and apply it globally to the
K rules defined in Sect. 4.2. We show that the resulting abstract semantics is
equivalent to the concrete PLC semantics in terms of bisimulation.

434 J. Lee and K. Bae

Fig. 8. K rules for multitask interleaving with abstract time

5.1 Abstraction Function

The abstraction function takes a K configuration with a time value and returns
the K configuration with a time interval that (i) contains the original time, and
(ii) encompasses all other times that have equivalent behaviors. Now the time
cell contains a pair of times | t1, t2 |, and represents the set of all the times that
are contained in the left-closed right-open interval [t1, t2).

Definition 1. Given a K configuration s = 〈t〉time 〈pq〉pQueue 〈ft〉futureTS · · · , its
time abstraction is defined as follows, where maxES(pq) = min(startTimes(pq)),
with startTimes(pq) denoting the set of earliest start times in pq:

λ(s) = 〈| max(maxES(pq), t),minDL(pq, ft) |〉time 〈pq〉pQueue 〈ft〉futureTS · · ·
Figure 8 shows the interleaving rules with the abstract time. Except tick,

endProgram, and placeT, all other K rules, including execute and preempt,
are the same before and after the abstraction. The tick rule is now identity.
The endProgram and placeT rules move the possible time range of the system.
It moves the minimum time value (left) to maximum earliest start times of
the tasks in pQueue or remains unchanged if the priority queue is empty. The
maximum time value (right) is moved to the minimum deadlines of the tasks in
pQueue and futureTS altogether.

5.2 Equivalence Before and After Abstraction

The concrete semantics and the abstract semantics are equivalent in terms of
bisimulation. Let R be a binary relation between concrete configurations and
abstract configurations such that (s, λ(s)) ∈ R for each configuration s. Then,
R is a bisimulation with respect to atomic propositions not depending on time.

By construction, for a concrete transition s
α−→ s′, there exists an abstract

transition λ(s) α−→ λ(s′). For an abstract transition ŝ
α−→ ŝ′, there also exists a

corresponding concrete transition s
α−→ s′, where the time values t and t′ of s

and s′, respectively, can be any values in the corresponding intervals such that:
(i) t ≤ t′ if α = tick, and (ii) t = t′ if α 	= tick. The complete proof of the
following theorem can be found in [23].

Formal Semantics and Analysis of Multitask PLC ST Programs 435

Theorem 1. Given an initial K configuration s0 satisfying the validity con-
straint, R is a bisimulation between the concrete transition system S from s0
and the abstract transition system Ŝ from λ(s0).

6 State Space Reduction

In this section, we introduce two state space reduction methods that reduce
the state space. Since the K rules we introduced involve many nondeterministic
choices, it results in a large state space that makes it hard to analyze.

The first technique is the application of the ample set approach. Based on the
observation that interleaving of placeT with other rules spawns many different
but essentially the same execution paths, we include placeT in the ample set,
if not fully expanded. It is not simple because not all enabled placeT can be
prioritized without consequences. The second technique is to put rules that do
not change the local memory first. This is possible because the atomic properties
of interest in this paper only depend on the local memory.

6.1 Our Ample Set Approach

Consider state 〈·〉active 〈(P1, 1, 0, 20)〉pQueue 〈(P2, 2, 5, 25)〉futureTS From this
state, both execute and placeT are applicable. In either order, it converges to
〈P 〉active 〈(P1, 1, 0, 20) 〈(P2, 2, 5, 25)〉pQueue 〈·〉futureTS ..., and all states in this
procedure including the intermediate states share the same set of atomic prop-
erties held. Thus, we only need to explore one of these paths. This phenomenon
stems from the independence of these two rules. Just like this case, when placeT
does not change the top element of pQueue, it is only dependent on tick.

Definition 2. For a state s, if placeT(P) ∈ enabled(s) and placeT(P) does not
change the top element of pQueue, ample(s) = {placeT(P), tick(τ)}; otherwise,
ample(s) = enabled(s).

To prove that Definition 2 satisfies the ample set conditions, we first show the
following lemma for Condition (ii). Lemma 2 shows that placeT is independent
of any other rule except tick if it does not change the top element of pQueue,
since only the top element of pQueue decides what to execute or preempt. Lemma
2 also shows that tick is independent of any other rule except placeT, since the
other rules do not restrain the side condition of tick.

Lemma 2. (1) placeT(P) is independent of all other transitions except
tick(τ), if it does not change the top element of the pQueue cell. (2) tick(τ)
is independent of all other transitions except placeT(·).

The following theorem states that ample in Definition 2 satisfies the ample
set conditions regarding atomic propositions that do not modify time, pQueue,
and futureTS. (See [23] for the full proof.)

436 J. Lee and K. Bae

Theorem 2. For any execution path without continuous infinite application of
tick, ample satisfies the four conditions for partial order reduction.

Proof (Sketch). (i) It immediately follows from Definition 2. (ii) It holds since
transitions in ample(s) are only dependent on other transitions in ample and
no other enabled transitions. When placeT(P) does not change the top ele-
ment of pQueue, Lemma 2 shows the independence of placeT(P) and of tick
with all other rules. (iii) When it is not fully expanded, ample(s) contains tick
and placeT. These two rules are invisible since they only look and modify
time, pQueue, and futureTS cells, which are irrelevant to any atomic proposi-
tions of interest. (iv) By Definition 2, when ample(s) 	= enabled(s), ample(s) =
{placeT(P), tick(τ)}. The number placeT is bounded by the number of tasks in
futureTS. With the assumption that there is no cycle only consisting of tick, if
there is a cycle in the reduced system, it must contain at least one fully expanded
state. �

6.2 Internal Transitions Without Memory Update

Certain scenarios may be equivalent even if they are not addressed by our
ample set approach. Consider the following state: s = 〈P 〉active 〈〈x � ...〉k

〈P 〉id〉program 〈(P ′, 1, 0, 30) (P, 2, 0, 20)〉pQueue Both lookup and preempt
are enabled in s. Applying preempt results in 〈P ′〉active 〈〈� � x � ...〉k

〈P 〉id〉program 〈(P ′, 1, 0, 30) (P, 2, 0, 20)〉pQueue ..., where lookup is not enabled
anymore. This makes lookup dependent on preempt and cannot satisfy Condi-
tion (ii) of ample set. All rules such as if-T, if-F, and fbCall, which operate
internally in a k cell of a program without modifying the memory state show
the same phenomena. We call these rules internal rules.

Figure 9 shows a state space diagram when an internal transition τ and
preempt is possible. Each circle represents a state and the active task is shown
below each circle. We start from the bottom-left state. Whether we choose τ or
preempt, it converges to the same state in the top-right state. States within the
same dashed oval are indistinguishable from outside because τ does not modify
any part of the memory in the system. Therefore, we only need to explore the
top path by prioritizing internal rules over preempt.

Suppose a state labeling function satisfies the following condition: for any
two states s and s′ with the same store cell, L(s) = L(s′). Based on the above
observation, we have the following theorem (the proof is in [23]).

Theorem 3. Consider a state s such that preempt(Q), τ ∈ enabled(s), where

τ is internal. For any s
preempt(Q)−−−−−−−→ s1

α1−→ · · · αn−1−−−→ sn
τ−→ t, there exists s

τ−→
s′ preempt(Q)−−−−−−−→ s′

1
α1−→ · · · αn−1−−−→ t, such that L(si) = L(s′

i) for 1 ≤ i ≤ n.

Formal Semantics and Analysis of Multitask PLC ST Programs 437

Fig. 9. State diagram when an internal transition and preempt are available

7 Experimental Evaluation

To evaluate the effectiveness of our methods, we have implemented our semantics
and state space reduction methods in Maude [8].2 We have conducted experi-
ments to measure the performance of state space exploration up to a given model
time bound. We first compare time and the number of states before and after
the abstraction. To emphasize the strength of the abstracted semantics, we also
compare it with the sampling-based approach, which is very fast but skips a
significant part of the full state space. Then, we compare the time and state
space with and without each of the reduction methods in the abstract setting.
We refer to the longer report [23] for more details.

We consider seven models, each with 2 priority settings and 3 model time
bounds. The first model is the self-balancing robot in Sect. 3. We manually
adapted and translated the original source’s C program into PLC ST programs.
The second model is the traffic light example from [24] adapted to a multitask
setting. There are four light controllers, two for cars and two for pedestrians.
There is one task for a timer, thus there are up to 5 programs in total. The
LOC of the robot model is 75 and the LOC of the traffic light model is 259.
The third to the sixth model is a variant of the second model with different
numbers of traffic lights. The seventh model is from the PLCOpen library [4]; it
is a single-task model but adapted to a multitask model (the LOC is 2154).

In the case of concrete semantics, since the nondeterministic tick rule is not
executable per se, we symbolically execute this semantics using the approach
in [24]. In the sampling-based semantics, we increase the time by the greatest
common divisor of the intervals of the programs. The sampling method samples
the time of the greatest common divisor of the intervals of all the programs.
All experiments were conducted on Intel Xeon 2.8 GHz with 256 GB memory.
Timeout is set to 1 h in all settings.

Figure 10 shows the analysis time comparison in scale between concrete and
abstract (left) and sampling and abstract (right). The timed-out data is marked
at the edge of the graph. In all cases, state space exploration with time abstrac-
tion takes less state space and time than the concrete semantics. In cases where
the execution with concrete semantics is not timed out, the abstract semantics
takes at most a hundredth of time. Except for only one case, abstract semantics
outperforms the sampling-based semantics.
2 As mentioned in Sect. 2, the K tool and Maude can be used to run K semantics. We

use Maude since it is easier to perform model checking with state space reduction.

438 J. Lee and K. Bae

Fig. 10. Analysis time comparison between concrete, sampling, and abstract semantics

Fig. 11. Analysis time comparison with and without reduction techniques

Figure 11 shows the state space exploration time comparison of abstract
semantics with and without each reduction technique. ‘noReduction’ is the result
without any reduction methods, ‘ample’ with our ample set approach, ‘internal’
with the reduction using internal memory, and ‘both’ with both reduction meth-
ods. The x-axis shows the benchmark models with their settings. ‘r’ means our
robot models and ‘t1’–‘t5’ are the traffic light models with varying numbers of
traffic lights. ‘cb2’ is the one from PLCOpen safety library. ‘s’ and ‘c’ respec-
tively note the priority setting with fewer possible preemptions (simple) and with
greater preemption points (complex). ‘b1’–‘b3’ shows the model’s time bound.
‘bn’ maps to the bound of the greatest common divisor of intervals ×n. The y-
axis shows the analysis time in seconds. Both methods proved their effectiveness.
The internal rule reduction is effective throughout all the settings. The ample
set approach is more effective in settings with more equal-priority programs.
Applying both reductions proved to be the most efficient.

8 Related Work

Numerous methods exist for formally analyzing PLC programs written in var-
ious languages, including Function Block Diagram [25,32], Sequential Function
Chart [2,15,19], Ladder Diagram [26,34], Instruction List [5], and Structured
Text [4,10,13]. Most of these approaches utilize a model checking methodology.

Formal Semantics and Analysis of Multitask PLC ST Programs 439

As mentioned in Sect. 1, they typically involve translating PLC programs into
models that are compatible with existing model checking tools.

The K framework, along with its methodology for semantic definition [35],
has been successfully applied to a variety of programming languages, including
C [12,16], Java [3], JavaScript [31], Ethereum Virtual Machine [17], etc. In par-
ticular, several studies [18,24,38] propose a K semantics for PLC ST. However,
preemptive multitasking features and their state-space reduction methods are
not considered in these previous K semantics for PLC ST.

A relatively small number of studies deal with multitask PLC. In [14], a
technique for symbolic execution of multitask PLC with preemption is pre-
sented. However, it is aimed at generating test inputs rather than formal analysis.
Another paper [28] focuses on the verification of multitask PLCs with preemp-
tion. It is used to verify a specific class of timed multitask PLC program with
input delay using the Uppaal tool. However, [28] focuses on Sequential Function
Chart (SFC) and Ladder Diagram (LD), whereas our work focuses on ST.

Real-Time Maude [30] provides several formal analysis methods for real-time
systems, along with time-complete abstraction [29]. It is based on the maximal
time elapse strategy, where time elapses until the earliest time at which any
event is enabled. However, the maximal time elapse strategy is not complete for
multitask PLC ST, because events may happen in arbitrary time. In contrast,
our time-optimal semantics is equivalent to the time-complete semantics.

9 Concluding Remarks

We have presented an executable semantics of multitask PLC ST with preemp-
tion, based on the K framework. Our semantics efficiently and faithfully cov-
ers all possible interleaving scenarios by nondeterministic preemption. We have
defined a time-complete semantics that explicitly considers a dense time domain.
We have then defined a time abstraction to identify equivalent behaviors across
time intervals, resulting in behaviorally equivalent time-abstract semantics.

To cope with the state explosion problem by nondeterministic preemptive
multitasking, we have proposed state space reduction techniques based on partial
order reduction. We have evaluated the effectiveness of our techniques using
several multitask PLC ST benchmarks. The experimental results have shown a
significant improvement in the performance of state space exploration using our
time-abstract semantics and state space reduction techniques.

There are several limitations to be addressed in the future work. We should
develop more case studies on model checking multitask PLC ST programs,
including industrial case studies. Our current implementation lacks tool sup-
port and we plan to integrate our framework with existing analysis tools, such
as STbmc [24]. Since our framework does not yet support multi-PLC configu-
rations, we should expand our semantics to support multi-PLC.

440 J. Lee and K. Bae

Acknowledgement. This work was supported in part by the National Research
Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (No.
2021R1A5A1021944 and No. RS-2023-00251577), and by the NATO Science for Peace
and Security Programme project SymSafe (grant number G6133).

Data Availability Statement. The artifact for reproducing the experiments is avail-
able at https://doi.org/10.5281/zenodo.12530343.

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
2. Bauer, N., et al.: Verification of PLC programs given as sequential function charts.

In: Ehrig, H., et al. (eds.) Integration of Software Specification Techniques for
Applications in Engineering. LNCS, vol. 3147, pp. 517–540. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-27863-4 28

3. Bogdanas, D., Roşu, G.: K-Java: a complete semantics of Java. In: Proceedings
of the 42nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 445–456. ACM (2015). https://doi.org/10.1145/2676726.2676982

4. Bohlender, D., Hamm, D., Kowalewski, S.: Cycle-bounded model checking of PLC
software via dynamic large-block encoding. In: Proceedings of the 33rd ACM Sym-
posium on Applied Computing, pp. 1891–1898. ACM (2018). https://doi.org/10.
1145/3167132.3167334

5. Canet, G., Couffin, S., Lesage, J.J., Petit, A., Schnoebelen, P.: Towards the auto-
matic verification of PLC programs written in instruction list. In: Proceedings of
the IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp.
2449–2454. IEEE (2000). https://doi.org/10.1109/ICSMC.2000.884359

6. Chikamasa, T.: NXTway-GS C API for a two wheeled self-balancing robot. https://
lejos-osek.sourceforge.net/nxtway gs.htm. Accessed 19 Apr 2024

7. Clarke, Jr., E.M., Grumberg, O., Kroening, D., Peled, D., Veith, H.: Model Check-
ing. MIT Press (2018)

8. Clavel, M., et al.: Maude manual (version 3.4). Tech. rep., SRI International, Menlo
Park (2024)

9. Commission, I.E.: Programmable controllers-part 3: programming languages. IEC
61131-3 (1993)

10. Darvas, D., Blanco Vinuela, E., Fernández Adiego, B.: PLCverif: a tool to verify
PLC programs based on model checking techniques. In: Proceedings of the 15th
International Conference on Accelerator and Large Experimental Physics Control
Systems (2015)

11. Darvas, D., Majzik, I., Viñuela, E.B.: PLC program translation for verification
purposes. Periodica Polytech. Electric. Eng. Comput. Sci. 61(2), 151–165 (2017).
https://doi.org/10.3311/PPee.9743

12. Ellison, C., Rosu, G.: An executable formal semantics of C with applications. In:
Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, vol. 47, pp. 533–544. ACM (2012). https://doi.org/10.
1145/2103656.2103719

13. Gourcuff, V., De Smet, O., Faure, J.M.: Efficient representation for formal verifi-
cation of PLC programs. In: International Workshop on Discrete Event Systems,
pp. 182–187. IEEE (2006). https://doi.org/10.1109/WODES.2006.1678428

https://doi.org/10.5281/zenodo.12530343
https://doi.org/10.1007/978-3-540-27863-4_28
https://doi.org/10.1145/2676726.2676982
https://doi.org/10.1145/3167132.3167334
https://doi.org/10.1145/3167132.3167334
https://doi.org/10.1109/ICSMC.2000.884359
https://lejos-osek.sourceforge.net/nxtway_gs.htm
https://lejos-osek.sourceforge.net/nxtway_gs.htm
https://doi.org/10.3311/PPee.9743
https://doi.org/10.1145/2103656.2103719
https://doi.org/10.1145/2103656.2103719
https://doi.org/10.1109/WODES.2006.1678428

Formal Semantics and Analysis of Multitask PLC ST Programs 441

14. Guo, S., Wu, M., Wang, C.: Symbolic execution of programmable logic controller
code. In: Proceedings of the Joint Meeting on Foundations of Software Engineering,
pp. 326–336. ACM (2017). https://doi.org/10.1145/3106237.3106245

15. Hassapis, G., Kotini, I., Doulgeri, Z.: Validation of a SFC software specification
by using hybrid automata. IFAC Proceedings Volumes 31(15), 107–112 (1998).
https://doi.org/10.1016/S1474-6670(17)40537-4

16. Hathhorn, C., Ellison, C., Roşu, G.: Defining the undefinedness of C. In: Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation, vol. 50, pp. 336–345. ACM (2015). https://doi.org/10.1145/
2737924.2737979

17. Hildenbrandt, E., et al: KEVM: a complete formal semantics of the ethereum
virtual machine. In: Proceedings of IEEE Computer Security Foundations Sympo-
sium, pp. 204–217. IEEE (2018). https://doi.org/10.1109/CSF.2018.00022

18. Huang, Y., Bu, X., Zhu, G., Ye, X., Zhu, X., Shi, J.: KST: executable formal
semantics of IEC 61131-3 Structured Text for verification. IEEE Access 7, 14593–
14602 (2019). https://doi.org/10.1109/ACCESS.2019.2894026

19. Lampérière-Couffin, S., Lesage, J.J.: Formal Verification of the Sequential Part
of PLC Programs, pp. 247–254. Springer (2000). https://doi.org/10.1007/978-1-
4615-4493-7 25

20. Lazar, D., et al.: Executing formal semantics with the K tool. In: Proceedings of
the International Symposium on Formal Methods. LNCS, vol. 7436, pp. 267–271.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9 23

21. Lee, J., Bae, K., Ölveczky, P.C., Kim, S., Kang, M.: Modeling and formal analysis of
virtually synchronous cyber-physical systems in AADL. Int. J. Softw. Tools Tech-
nol. Transf. 24(6), 911–948 (2022). https://doi.org/10.1007/s10009-022-00665-z

22. Lee, J., Kim, S., Bae, K., Ölveczky, P.C.: HybridSynchAADL: modeling and formal
analysis of virtually synchronous CPSs in AADL. In: International Conference on
Computer Aided Verification, pp. 491–504. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-81685-8 23

23. Lee, J., Bae, K.: Supplementary materials and technical report (2024). https://
github.com/postechsv/plc-release/releases/tag/v1.1

24. Lee, J., Kim, S., Bae, K.: Bounded model checking of PLC ST programs using
rewriting modulo SMT. In: Proceedings of the ACM SIGPLAN International
Workshop on Formal Techniques for Safety-Critical Systems, pp. 56–67. ACM
(2022). https://doi.org/10.1145/3563822.3568016

25. Li, J., Qeriqi, A., Steffen, M., Yu, I.C.: Automatic translation from FBD-PLC-
programs to NuSMV for model checking safety-critical control systems. In: Pro-
ceedings of the Norsk Informatikkonferanse. Bibsys Open Journal Systems, Norway
(2016). https://dblp.org/rec/conf/nik/LiQSY16.html

26. Lobov, A., Lastra, J.L.M., Tuokko, R., Vyatkin, V.: Modelling and verification of
PLC-based systems programmed with ladder diagrams. IFAC Proceedings Volumes
37(4), 183–188 (2004). https://doi.org/10.1016/S1474-6670(17)36116-5

27. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency.
Theoret. Comput. Sci. 96(1), 73–155 (1992). https://doi.org/10.1016/0304-
3975(92)90182-F

28. Mokadem, H.B., Berard, B., Gourcuff, V., De Smet, O., Roussel, J.M.: Verification
of a timed multitask system with Uppaal. IEEE Trans. Autom. Sci. Eng. 7(4),
921–932 (2010). https://doi.org/10.1109/TASE.2010.2050199

29. Ölveczky, P.C., Meseguer, J.: Abstraction and completeness for Real-Time Maude.
Electron. Notes Theor. Comput. Sci. 176(4), 5–27 (2007). https://doi.org/10.1016/
j.entcs.2007.06.005

https://doi.org/10.1145/3106237.3106245
https://doi.org/10.1016/S1474-6670(17)40537-4
https://doi.org/10.1145/2737924.2737979
https://doi.org/10.1145/2737924.2737979
https://doi.org/10.1109/CSF.2018.00022
https://doi.org/10.1109/ACCESS.2019.2894026
https://doi.org/10.1007/978-1-4615-4493-7_25
https://doi.org/10.1007/978-1-4615-4493-7_25
https://doi.org/10.1007/978-3-642-32759-9_23
https://doi.org/10.1007/s10009-022-00665-z
https://doi.org/10.1007/978-3-030-81685-8_23
https://doi.org/10.1007/978-3-030-81685-8_23
https://github.com/postechsv/plc-release/releases/tag/v1.1
https://github.com/postechsv/plc-release/releases/tag/v1.1
https://doi.org/10.1145/3563822.3568016
https://dblp.org/rec/conf/nik/LiQSY16.html
https://doi.org/10.1016/S1474-6670(17)36116-5
https://doi.org/10.1016/0304-3975(92)90182-F
https://doi.org/10.1016/0304-3975(92)90182-F
https://doi.org/10.1109/TASE.2010.2050199
https://doi.org/10.1016/j.entcs.2007.06.005
https://doi.org/10.1016/j.entcs.2007.06.005

442 J. Lee and K. Bae

30. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude. High.
Order Symbol. Comput. 20, 161–196 (2007)

31. Park, D., Stefănescu, A., Roşu, G.: KJS: a complete formal semantics of JavaScript.
In: Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 346–356. ACM (2015). https://doi.org/10.1145/
2737924.2737991

32. Pavlovic, O., Ehrich, H.D.: Model checking PLC software written in function block
diagram. In: Proceedings of the International Conference on Software Testing,
Verification and Validation, pp. 439–448. IEEE (2010). https://doi.org/10.1109/
ICST.2010.10

33. Peled, D.: Handbook of Model Checking, pp. 173–190. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-10575-8

34. Rausch, M., Krogh, B.H.: Formal verification of PLC programs. In: Proceedings of
the American Control Conference, vol. 1, pp. 234–238. IEEE (1998). https://doi.
org/10.1109/ACC.1998.694666

35. Rosu, G., Serbănută, T.F.: An overview of the K semantic framework. J. Logic
Algeb. Program. 79(6), 397–434 (2010). https://doi.org/10.1016/j.jlap.2010.03.012

36. Roşu, G., Şerbănuţă, T.F.: K overview and SIMPLE case study. Electron. Notes
Theor. Comput. Sci. 304, 3–56 (2014). https://doi.org/10.1016/j.entcs.2014.05.002

37. Şerbănuţă, T.F., Roşu, G.: K-Maude: a rewriting based tool for semantics of pro-
gramming languages. In: International Workshop on Rewriting Logic and its Appli-
cations, pp. 104–122. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-16310-4 8

38. Wang, K., Wang, J., Poskitt, C.M., Chen, X., Sun, J., Cheng, P.: K-ST: a for-
mal executable semantics of the Structured Text language for PLCs. IEEE Trans.
Softw. Eng. 49(10), 4796–4813 (2023). https://doi.org/10.1109/TSE.2023.3315292

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/2737924.2737991
https://doi.org/10.1145/2737924.2737991
https://doi.org/10.1109/ICST.2010.10
https://doi.org/10.1109/ICST.2010.10
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1109/ACC.1998.694666
https://doi.org/10.1109/ACC.1998.694666
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1016/j.entcs.2014.05.002
https://doi.org/10.1007/978-3-642-16310-4_8
https://doi.org/10.1007/978-3-642-16310-4_8
https://doi.org/10.1109/TSE.2023.3315292
http://creativecommons.org/licenses/by/4.0/

Accurate Static Data Race Detection
for C

Emerson Sales(B) , Omar Inverso , and Emilio Tuosto

Gran Sasso Science Institute, L’Aquila, Italy
{emerson.sales,omar.inverso,emilio.tuosto}@gssi.it

Abstract. Data races are a particular kind of subtle, unintended pro-
gram behaviour arising from thread interference in shared-memory con-
currency. In this paper, we propose an automated technique for static
detection of data races in multi-threaded C programs with POSIX
threads. The key element of our technique is a reduction to reachability.
Our prototype implementation combines such reduction with context-
bounded analysis. The approach proves competitive against state-of-
the-art tools, finding new issues in the implementation of well-known
lock-free data structures, and shows a considerably superior accuracy of
analysis in the presence of complex shared-memory access patterns.

1 Introduction

Multi-threaded programming is notoriously prone to subtle software glitches that
are difficult to identify and reproduce [29]. In addition, for the C language, the
specifications represent another factor of complexity [2,43,68]. Indeed, to leave
room for improving compiler efficiency and hardware support, so-called undefined
behaviour [22,40] is deliberately introduced in many points of the specifications.
Such loose ends place further burden on the programmer, who is assumed to
have a very good knowledge of the specific compiler and target architecture.

A data race is a rather insidious case of undefined behaviour in C. Such
undesirable situation, triggered by conflicting access from multiple threads to
overlapping memory locations, can be seen as a specific class of safety violations.
f() {

x = x*2;
}
g() {

x = x+1;
}

Let us consider two parallel threads respectively executing functions
f and g on the left. Assuming that shared variable x is initially 0, one
might be tempted to conclude that the value of x will eventually be
either 1 or 2, depending on which thread is executed first. However,
this reasoning incorrectly implies that the two threads are executed

in sequence. In fact, f and g may interleave and interfere with each other: if f is
pre-empted right after its read access to x, then g increases x to 1, and finally f
multiplies the previously stored value of x by two, the final value of x will be 0.

Many techniques for static checking of generic safety properties are avail-
able, e.g. traditional symbolic execution and testing [10,44], well-known

Work partially funded by projects MUR-PRIN DREAM (20228FT78M), MUR-
PRO3 Software Quality, MUR-PNRR VITALITY (ECS00000041), and PRIN PNRR
DeLICE (F53D23009130001).

c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 443–462, 2025.
https://doi.org/10.1007/978-3-031-71162-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_23&domain=pdf
http://orcid.org/0000-0001-5606-9216
http://orcid.org/0000-0002-9348-1979
http://orcid.org/0000-0002-7032-3281
https://doi.org/10.1007/978-3-031-71162-6_23

444 E. Sales et al.

under- and over-approximated analyses [5,12], and more recent inductive meth-
ods [9]. Mature off-the-shelf static analysers typically accommodate such tech-
niques within modular workflows, in form of mechanised encodings for efficient
general-purpose decision procedures. Concurrency, as well as specific aspects
thereof, can similarly be handled separately, as e.g. in context-bounded analy-
sis [47,59] and in the emulation of weak memory models under sequential con-
sistency [1].

Driven by the same modularity principle, in this paper we focus on static
detection of data races in multi-threaded C programs [39]. Much like dynamic
detection, we wish to (i) monitor shared-memory access to keep track of the
operating thread along with the relevant locations, and at the same time (ii)
check for interfering operations from other threads. Remarkably, unlike dynamic
detection, we cannot rely on low-level facilities offered by the operating system
to inspect memory access. Conducive to static detection is thus the embedding
of the whole detection mechanism within the program of interest. Intuitively, we
instrument each relevant statement with a few operations on auxiliary variables
and assertions; by construction, a feasible violation of any such assertion will
indicate a feasible data race at the corresponding point of the program.

The above encoding yields a reduction to reachability. The in-program detec-
tion system hinges on a diligent bookkeeping of the relevant memory locations.
Our instrumentation introduces no spurious or missed data races w.r.t. the feasi-
ble behaviour of the program, while avoiding any explicit representation or direct
manipulation of memory locations. This transparently delegates all complexities
(e.g. pointer aliasing, complex data structures, etc.) to the technology chosen for
reachability analysis, while retaining maximum accuracy of detection.

We implemented a prototype data race detector, CSeq-DR, by integrat-
ing our encoding within an existing sequentialisation-based workflow [37] for
context-bounded analysis. We compared CSeq-DR against four state-of-the-art
data race detectors, including the best-performing tools at SV-COMP 2022 and
2023 [3,4]. CSeq-DR proves competitive on the SV-COMP23 benchmarks; most
notably, it discovers new issues in the implementation of well-known lock-free
data structures [25,34]. Guided by a detailed static analysis of the SV-COMP23
benchmarks, we designed a second set of benchmarks, EDR, to improve the cov-
erage of specific features that are particularly relevant to data race detection, e.g.
complex synchronisation, shared composite data types, and pointers. CSeq-DR

shows a superior precision in the analysis on this second set of benchmarks.

Structure of the Paper. Section 2 introduces the syntax, semantics, and execution
model of C programs with POSIX threads. Section 3 illustrates our main technical
contribution, i.e. our reduction from data race detection to reachability. Section 4
sketches our prototype implementation and presents the experimental results. Sec-
tions 5 and 6 discuss related work and report final considerations, respectively.

2 Multi-threaded C Programs

A multi-threaded C program with POSIX threads [39] consists of multiple
threads that can perform local computations, interact through the shared

Accurate Static Data Race Detection for C 445

memory, and invoke pthread routines for thread creation, synchronisation, etc.
At any point during the execution of the program, only the active thread can
perform computations. Initially the main thread is active, and it is the only
existing thread. New threads are spawned from the active thread, and added to
the pool of inactive threads. On a context switch the active thread is pre-empted
and becomes inactive, and one from the pool of inactive threads is activated.
When a thread becomes active for the first time, its execution starts from the
beginning; otherwise the thread continues from where it was last pre-empted.

Fig. 1. Running example

Let us now refer to the example program of
Fig. 1 to informally introduce the syntax of multi-
threaded C programs. A program consists of a
sequence of declarations of global variables (in this
case, only x) shared by all threads, followed by a
sequence of function definitions (in this case g, f,
and main, without input and output parameters for
simplicity). The body of a function is composed
of the declaration of local variables (like tid1 and
tid2 in the main function) and the statements to be
executed upon invocation. A compound statement
or block is a sequence of statements enclosed in curly
brackets. A statement (or an expression) involving
only operations on the local memory without calls

to a pthread routine is non-visible, otherwise visible (as all the statements in
the example). The pthread routines include pthread create to spawn a thread
from a function (in the example with a simplified call) and pthread join to
wait for a specific thread to terminate. Other routines, e.g. for synchronisa-
tion via locks, conditional waiting, barriers, etc. are supported but not rele-
vant here; it is also possible to explicitly declare atomic compound statements,
whose execution cannot be pre-empted (as in compare-and-swap operations [32],
GCC built-in atomics, and so on). We finally add the usual primitives for pro-
gram verification, namely assume to discard all executions not satisfying a given
condition, assert to express safety properties of interest, and nondet to non-
deterministically assign to a variable any value allowed by its data type.

In the example program of Fig. 1 there are three threads. The main thread
of the program, corresponding to its main function, is spawned at the beginning.
The main thread in turn spawns two threads (from functions f and g respec-
tively) and waits for them to terminate; it then checks whether the value of x is
unchanged. The two threads update the value of x concurrently as shown.

The state of a multi-threaded program consists of the identifier of the active
thread, a snapshot of the shared memory (i.e. an evaluation of the variables
stored therein), and the local state of each thread (i.e. active or not); the local
state of a thread consists of a local memory snapshot, the thread’s program
counter pointing to the statement being executed, and a stack to handle proce-
dure calls. In the initial state, the identifier of the active thread corresponds to
the main thread, the program counter of the only thread points to the first state-
ment of the main function, the call stack is empty, and each variable is assigned

446 E. Sales et al.

its init expression, if any, or either 0 or nondet, respectively for global and local
variables. A transition is a change of state in the program resulting from the exe-
cution of a statement. An execution is a sequence of consecutive transitions from
the initial state. An execution context is a sequence of transitions performed by
a thread between it activation and the following pre-emption (or termination).
A round-robin execution is an execution where the threads are activated in a
round-robin fashion (or rounds) according to their static order of creation in
the program. A context-bounded execution is an execution with a given number
of context switches. Considering the example program, an execution invoking
main, f, g, main, g, and f takes 3 rounds, or 5 context switches.

Throughout the paper we assume sequential consistency [48]; it is worth
noticing that this does not inherently limit the applicability of our technique,
since so-called weak memory models for modern hardware can be soundly sim-
ulated under sequential consistency with extra computations and nondetermin-
ism [1]. Without loss of generality, we also assume that each non-compound
statement involves at most either one global variable or a pointer, without side
effects. We call such statements simple, observing that any complex (i.e. non-
simple) statement can be transformed into an equivalent sequence of simple
statements with temporary variables [13,53]. Similarly, we assume that branch
and loop conditions only refer to a single local scalar variable, and that function
calls input parameters and return values are passed through local variables.

3 Encoding Data Race Checking as Reachability

In this section, we define a program transformation that encodes data race check-
ing as reachability. We say that a multi-threaded program contains a data race
if it can execute two conflicting actions (i.e. one thread writes to a memory
location and another one reads from or writes to the same location), at least one
of which is not atomic, and neither happens before the other [40]. In the rest of
the paper we refer to a program as unsafe or safe depending on whether or not
that program contains a data race.

We initially sketch our program transformation for simple cases and then
progressively generalise it, elaborating a correctness argument as we go along.
The key idea of our technique is to decorate each visible statement of the pro-
gram under analysis with guarded assertions and operations on auxiliary vari-
ables. Such variables are synchronously updated to keep track of the threads and
memory locations potentially involved in conflicting actions, while the guarded
assertions combine extracted fragments of the visible statement in question to
predicate on them. By construction, a violation of any of the assertions will
indicate a feasible data race at the corresponding point of the initial program.

Auxiliary Variables. We initially add to the program under analysis the aux-
iliary global variables waddr and wtid to store the target address of the current
shared-memory write operation and the identifier of the writing thread, respec-
tively. Both variables are initialised to 0, indicating that no shared memory
location is being written and no thread is writing to the shared memory.

Accurate Static Data Race Detection for C 447

Fig. 2. Basic encoding for a read oper-
ation on a shared variable.

Basic Operations. We transform a sim-
ple read operation from a shared variable
as shown in Fig. 2. The program fragment
being transformed is l = g, where the value
of a global variable g is assigned to a local
variable l (line 5). Right before such oper-
ation, we check that the thread wtid (if
any) currently about to write to the shared
memory and the current thread pthread self are not the same. If so, we further
check whether the read address &g of g and the write address waddr match: if
they do, the assertion fails; otherwise, the access is completed. Observe that the
above check and the statement being encoded are wrapped into a single atomic
statement to prevent in-between context switching.

Fig. 3. Basic encoding for a write
operation on a shared variable.

Let us dissect the transformation for a
simple write operation g = 3, where a shared
variable is assigned a constant value (Fig. 3).
It consists of two atomic blocks. The first one
is similar to the encoding of a read oper-
ation, except that right before the actual
assignment (line 7) we set the writing thread
wtid to the current thread and waddr to the
address &g of g (lines 5–6). As in the case of a
read operation, the guarded assertion checks
upfront that no other thread is currently try-
ing to write to the same address (lines 2–3).
If so, we update g as originally intended (line 7). In the second block we simply
re-set waddr and wtid.

Proof Sketch (Reduction to Reachability). Intuitively, the race detection mecha-
nism exploits the possible pre-emption of an encoded write operation right before
the auxiliary variables waddr and wtid are re-set (line 9 in Fig. 3): at that point,
another thread competing for a read or write operation can become active and
reach an assertion violation. More concretely, suppose that the program under
analysis is composed of a reader thread and a writer thread respectively exe-
cuting l = g and g = 3 without synchronisation. Clearly, this program is unsafe
according to the definition at the beginning of the section. The transformed pro-
gram with the two threads encoded as in Figs. 2 and 3 must therefore contain
a reachable assertion failure. Indeed, the writer thread can become active first,
and then it can be pre-empted right before the second atomic block (line 9 in
Fig. 3), so that the reader will become active, failing the assertion (line 3 in
Fig. 2). Conversely, suppose the two threads are properly synchronised, e.g. via
a shared lock. If the reader becomes active first, the assertion in there cannot
fail as wtid and waddr are initialised to zero; since the reader does not modify
such variables, the assertion checked by the writer thread activated subsequently
will not fail either. If the writer becomes active first, wtid and waddr are both
set and re-set within the same execution context, therefore the reader will not

448 E. Sales et al.

be able to fail the assertion check later. Observe that the argument for two
writer threads would be similar as above. Finally two readers cannot trigger any
assertion failure, because both wtid and waddr will be always 0.

Multiple Access. The encoding seen so far covers the basic case of a single
access to a shared variable. In practice, multiple accesses to possibly differ-
ent shared variables may occur within a statement. Since non-compound com-
plex statements are assumed to be transformed into simple statements upfront
(Sect. 2), this circumstance is limited to compound statements. For a regular
block, we just encode the statements therein one by one. For an atomic block,
however, this would not work because the pre-emption of encoded writes (Fig. 3)
necessary for race detection would be disallowed. We thus encode atomic blocks
in one go, as follows.

Fig. 4. Encoding multiple shared-
memory access

Let us consider the statement atomic
{stmt1; stmt2; . . . }, where every stmti is
simple. The encoding template for such
statement (Fig. 4) generalises the previous
simple cases (Figs. 2, 4 and 3). The different
xi and wj are placeholders to be replaced
with syntactic fragments of the statement
in question that involve access to the shared
memory. We refer to every such fragment
as a target expression. Let us denote with
X = {x1, . . . , xn} the set of target expres-
sions for either a read or a write operation,
and W = {w1, . . . , wm} the set of target
expressions for write operations. For exam-
ple, we would have X = {&g} and W = {}
for the read operation l = g considered in Fig. 2, while X = W = {&g} for the
write operation g = 3 of Fig. 3. The guarded assertion for race detection is now
expanded into multiple assertions (one per target in X, lines 3–5 in Fig. 4),
whereas waddr is non-deterministically assigned to any of the write targets in
W (lines 8–11). The non-deterministic assignment to waddr keeps the encoding
compact; in particular, it avoids having to store the different target addresses
for write operations separately (for instance by representing waddr as an array
of m elements), which would in turn result in m ·n assertions at lines 3–5. We
finally omit the second atomic block (lines 14–16) when W = {}.
Proof sketch (Over-Approximation of Target ESxpressions). In order to build the
sets X and W for a given statement, it is crucial to categorise its visible expres-
sions as read-or-write or write-only target expressions. While this is relatively
straightforward, deciding whether an expression entails shared-memory access is
generally undecidable in the presence of pointers. In that respect, a convenient
feature of our encoding is in that non-visible expressions can be added to X
and W without detriment to soundness. To see why, let us suppose that some
non-visible expressions xi and wj are added to X and W , causing a violation

Accurate Static Data Race Detection for C 449

of one of the assertions (lines 3–5 of Fig. 4). Observe that both elements will
result in additional checks at those lines; in the case of wj indirectly, through
a preceding non-deterministic assignment to waddr (lines 9–11) from another
thread wtid. If only one of the expressions (i.e. only xi or wj) in the failing
assertion is non-visible, a match with the other (visible) expression would not
be possible, since the local storage of a thread and the shared memory cannot
overlap. If instead the failing assertion compares wj to xi, these would necessarily
refer to the local storage space of two distinct threads (respectively wtid and
pthread self, as enforced by the guard at line 2), and therefore no match would
be possible either. Given this argument, one could dispense with the detection of
visible expressions and just populate X and W as if every expression was visible,
without having to worry about false positives; this can be particularly useful for
an actual implementation.

Composite Data Types and Pointers. Conflicting access to composite data
types, possibly via pointers, requires some further ingenuity to achieve a precise
representation of memory interference, and avoid unsoundess.

Fig. 5. Byte-precise tracking of memory locations

In the diagram of Fig. 5 (left), an array A of short integers (two bytes each
element) is concurrently accessed at different positions. No data race is actually
taking place as the memory locations being accessed are disjunct. However, an
imprecise analysis based on a simple match of the base address of the shared
data structure being accessed can raise false alarms. A similar situation can arise
in the case of concurrent access to different fields of a shared struct (but not for
a union, since all fields of a union have the same base address). Handling such
cases requires to take into account the memory offsets for the different indexes
of the array. Since our technique does not represent the target memory loca-
tions explicitly, but only through extracted program fragments that are pasted
verbatim where appropriate, this entails no extra effort.

In the diagram of Fig. 5 (right), a producer and a consumer thread operate a
shared buffer by respectively writing blocks of 8 bytes using long integers, and
reading from the buffer byte by byte (e.g. to compute some low-level operation
like byte-wise CRC [56]) into a char as soon as new data becomes available. The
two threads access the buffer via local pointers of different types, while a shared
index signposts available data not yet consumed. Due to a programming glitch in
the handling of the shared index, the two operations may end up targeting differ-
ent base addresses within the buffer, yet overlapping memory locations. Without
taking into account the byte-width of the data being accessed, such conflicting
access would be unsoundly marked as safe. We accommodate this in our encoding
with an additional auxiliary variable wlen to be updated along with the others
right before each write operation, and amend the guarded assertions accordingly.

450 E. Sales et al.

Fig. 6. Encoding for data race check-
ing, general case

We can finally define a general tem-
plate for our encoding for data race
detection. The memory locations currently
about to be written span from waddr to
waddr+wlen, and from xi and xi+xleni,
respectively for the competing thread wtid
and for the i -th access operation in the
statement being encoded. The encoding
is shown in Fig. 6. The amended checks
(assertions at lines 3–7) detect overlaps in
the above intervals. The non-deterministic
assignment of waddr to any wi in the set W
of write target expressions (lines 10–13) is
unchanged, and the subsequent assignment
of wlen accounts for the size of the appro-
priate write target expression (line 14).

4 Experimental Evaluation

Prototype. We have developed a prototype tool, CSeq-DR, that can detect
data races in multi-threaded programs with POSIX threads in (a representative
fragment of) C99 extended with atomic compound statements (Sect. 2).

Fig. 7. Prototype verification flow for data race detection

The overall verification flow is shown in Fig. 7. The three leftmost boxes
integrate our encoding for data race detection (Sect. 3) within CSeq-Lazy [36], a
sequentialisation-based tool for context-bounded analysis. Program P is unfolded
into a bounded program Pu, equivalent to P up to the given unwinding bound
u. Program Pu is then instrumented for data-race checking, obtaining program
P ′
u. Observe that Pu is instrumented, not P : the simpler structure of Pu makes

it easier to build the sets X and W of targets (Sect. 3). To identify potentially-
visible statements we distinguish between local and global variables, pointers and
non-pointers, and structures and non-structures, possibly following structure
fields recursively, and conservatively considering pointers as global variables.1

Finally, P ′
u is turned into a sequential program Q′

u,r that simulates all executions
of P up to u loop iterations and r rounds, and fails an assertion if and only if an
execution of P can lead to a data race within the given bounds. At this point,
different tools can be plugged in to analyse Q′

u,r [37]. We use the CBMC [12],

1 Over-approximating visible statements does not affect detection accuracy (Sect. 3).

Accurate Static Data Race Detection for C 451

which reduces reachability in Q′
u,r to propositional satisfiability of φ, and in turn

invokes MiniSat [19] to find a satisfiable assignment for φ, if any.

Benchmarks. We adopted as a first benchmark set the programs from the Con-
currencySafety track of the software verification competition (SV-COMP23) [4].
This widely used set yields a good coverage of the core features of the C pro-
gramming language as well as of the basic concurrency mechanisms. All the tools
we compare against have been fine-tuned on this set for the competition, which
include different elements of complexity related to program analysis, such as com-
plex control flow, deep loops, use of pointers, non-determinism, large amounts
of threads, and so on. However, the set it not specific for data race checking.

In addition, we prepared an extended data race (EDR) benchmark set to
specifically improve the coverage of a variety of cases that are particularly rele-
vant to data race analysis. The benchmarks are organised into different subcate-
gories: arrays-ptrs for operations on shared arrays and pointers, referencing and
dereferencing, and type casting; structs-unions for other shared composite data
structures (and combinations thereof); mixed-structs for different combinations
of the first two subcategories; nested-locks for synchronisation with nested locks
and atomic sections; multiple-rw for multiple read-write access to the shared
memory; prod-cons for variants of the traditional producer-consumer example
with shared-memory access via pointers of mixed types.

Table. 1. Summary of benchmarks features

Subcategory L
O
C

C
C

T N
o
n
d
e
t

P
tr

A
rr

S
tr
u
c
t

S
y
n
c

M
u
lt
i

P
tr
+

goblint-regression 867 3.8 3301

ldv-linux 10425 1.9 4.8

ldv-races 1724 1.6 2.7

pthread 936 1.8 3.6

pthread-atomic 745 2.3 3.6

pthread-C-DAC 1263 3.0 *2.3

pthread-complex 1675 2.7 5.0

pthread-deagle 836 2.4 3.0

pthread-divine 824 1.4 2.3

pthread-drv-races 7036 1.9 3.0

pthread-ext 733 1.8 *2.0

pthread-lit 750 1.5 2.0

pthread-wmm 845 13.6 4.3

weaver 98 8.9 4.0

arrays-ptrs 24 1.0 2.9

structs-unions 30 1.0 3.0

mixed-structs 30 1.0 3.0

nested-locks 31 1.0 3.0

multiple-rw 25 1.0 3.0

prod-cons 62 1.7 3.0

The complementarity of
the SV-COMP23 and EDR
benchmarks can be observed
in Table 1, which compares
them in terms of different
complexity metrics and fea-
ture coverage. The two groups
of rows refer to SV-COMP23
(top) and EDR (bottom). The
two groups of columns refer
to common sources of com-
plexity for program analysis
in general (left) and features
that are of particular interest
for data-race detection (right).
The reported measures are the
average number of lines of code
(LOC), cyclomatic complex-
ity (CC), number of threads
(T), with starred values com-
puted excluding instances with
an infinite number of threads.
The vertical bars represent the
percentage of instances with

452 E. Sales et al.

specific characteristics, namely non-determinism (Nondet), pointers (Ptr),
arrays (Arr), other composite data types such as struct or unions (Struct), non-
trivial synchronisation (Sync), multiple shared-memory write operations (Multi),
and pointer arithmetics (Ptr+).

As shown in the table, the SV-COMP23 benchmarks are not very repre-
sentative of the sources of complexity specifically related to data race checking
(top-right part of the table), and these always occur, when at all, together with
generic elements of complexity (top-left part). The EDR set effectively counter-
balances that by limiting generic sources of complexity (bottom-left) to focus on
instances that are more interesting for race detection (bottom-right).

Setup. We evaluated CSeq-DR against a selection of four state-of-the-art data
race checkers. Dartagnan [26,50] is an SMT-based bounded model checker that
leverages common LLVM [49] compiler optimisations to simplify the input pro-
gram. Deagle [33,65] is a SAT-based bounded model checker built on top of
CBMC [12] with an efficient handling of concurrency and a tailored SAT decision
procedure; it was the winner in the ConcurrencySafety category at SV-COMP
2023 [4], which subsumes the NoDataRace demo category of the previous edition
of the competition. Ultimate GemCutter [45] is based on counterexample-
guided abstraction refinement; it ranked first at SV-COMP 2022 [3] for the
NoDataRace demo category. Goblint [61,66] is a static analyser for data race
checking based on thread-modular abstract interpretation. We used the follow-
ing versions of the selected verifiers: Dartagnan 3.1.1 [15], Deagle 2.1 [16],
GemCutter 0.2.2 [27], Goblint 1.8.2 [28].

We run the experiments on an otherwise idle workstation equipped with a
dual Xeon E5-2687W 8-core 3.10 Hz processor and 128 GB of memory, running
64-bit GNU/Linux 5.10.27, with a memory limit of 16 GB and a timeout of
15 min for each instance (as in SV-COMP). In terms of parameters, bounded
model checking requires a default unwinding bound to be used whenever a precise
number of iterations for a loop cannot be computed upfront. We set an unwinding
bound of 3 for Dartagnan and CSeq-DR, observing that our tool fully unwinds
a loop whenever a bound can be statically computed; Deagle does not allow
setting the unwinding bound but hardcodes a specific unwinding strategy which
is fine-tuned for the SV-COMP benchmarks. Our prototype also requires another
bound for context-bounded analysis, which we set to 3 rounds. GemCutter

and Goblint implement over-approximate analyses which require no bounds;
for these two tools we adopted their default configurations.

Experimental Results (SV-COMP23). The experimental results on the
SV-COMP23 benchmarks are summarised in Table 2. Here, the columns left
to right report the subcategory, the total number of instances (Count), correct
results (races found or confirmed race freedom) (Correct), incorrect results (races
missed or false alarms) (Wrong), internal errors (i.e. the tool crashed, threw
an error, was unable to answer) (Error), and resources limits hits (Unknown).
The maximum values for each subcategory are boxed. Our prototype CSeq-DR

Accurate Static Data Race Detection for C 453

Table. 2. Verification verdicts (SV-COMP23)

CSeq-DR Dartagnan Deagle GemCutter Goblint

Subcategory C
o
u
n
t

C
o
rr
ec
t

W
ro
n
g

E
rr
o
r

U
n
kn

o
w
n

C
o
rr
ec
t

W
ro
n
g

E
rr
o
r

U
n
kn

o
w
n

C
o
rr
ec
t

W
ro
n
g

E
rr
o
r

U
n
kn

o
w
n

C
o
rr
ec
t

W
ro
n
g

E
rr
o
r

U
n
kn

o
w
n

C
o
rr
ec
t

W
ro
n
g

E
rr
o
r

U
n
kn

o
w
n

goblint-regression 197 130 · 10 57 116 3 72 6 123 · 72 2 132 · 38 27 194 2 · 1

ldv-linux 6 · · 6 · · · 2 4 · · 1 5 · · 2 4 1 5 · ·
ldv-races 18 18 · · · 18 · · · 17 · 1 · 11 · · 7 10 8 · ·
pthread 28 19 · · 9 15 · 2 11 22 · 6 · 16 · 1 11 28 · · ·
pthread-atomic 13 13 · · · 12 · · 1 9 · 4 · 13 · · · 7 6 · ·
pthread-C-DAC 5 4 · · 1 2 · 2 1 4 · · 1 3 · 2 · 4 1 · ·
pthread-complex 4 2 · · 2 · · 4 · · · 1 3 · · 1 3 2 2 · ·
pthread-deagle 4 4 · · · 3 · · 1 2 · 2 · 4 · · · 4 · · ·
pthread-divine 3 2 · 1 · · · 3 · · · 3 · · · 2 1 2 1 · ·
pthread-drv-races 18 · · 18 · · · 18 · 14 · 4 · 5 · · 13 14 4 · ·
pthread-ext 31 30 · · 1 17 1 · 13 5 · 26 · 9 · 1 21 20 11 · ·
pthread-lit 2 2 · · · 2 · · · 2 · · · 2 · · · 2 · · ·
pthread-wmm 283 283 · · · 283 · · · 283 · · · 114 · 1 168 283 · · ·
weaver 171 158 · · 13 62 · 98 11 170 · 1 · 121 · 6 44 170 1 · ·
Total 783 665 0 35 83 530 4 201 48 651 0 121 11 430 0 54 299 741 41 0 1

provides 665 correct verification verdicts, 0 incorrect verdicts, fails to produce
an answer in 35 instances, and hits the resource limits on 83 instances.2

In the goblint-regression subset, CSeq-DR fails to analyse 10 programs due
to unsupported pthread library functions, parsing issues, and other internal
errors. The analysis turns out to be too expensive on 57 instances; 50 of these are
specifically crafted examples with ten thousands threads on which all verifiers
struggle, except Goblint itself (also see relevant entry in Table 1). CSeq-DR

is unable to handle any of the 6 ldv-linux instances due to embedded assem-
bly code, 1 instance of pthread-divine causing an internal error, and all the 18
instances of pthread-drv-races due to function pointers causing the function inlin-
ing module to crash. In pthread and pthread-C-DAC, our tool hits the resource
limits on a total of 10 programs with large loops (up to one thousand iterations);
the loop unfolding module is able to statically determine the loops bound and
fully unwind these loops, but the unfolded encoding ends up being too large
to be analysed within the given resource limits. The pthread-complex subcate-
gory is a small collection of programs with complex implementations of lock-free
data structures whose analysis is notoriously difficult [38], and our tool does
indeed struggle in 2 out of 4 instances. Interestingly, CSeq-DR is able to dis-
cover new issues in the remaining two instances, elimination backoff stack
and workstealqueue mutex-2, respectively containing well-known implemen-

2 We amended the SV-COMP23 categorisation from safe to unsafe for 10 instances,
which affects the count; further details are discussed later on in this section.

454 E. Sales et al.

tations of a stack [34] and a queue [25].3 Finally, CSeq-DR hits the resource
limits in 1 instance of pthread-ext4, and on 13 weaver instances containing loops
with non-deterministic exit conditions, and dynamic allocation of blocks of non-
deterministic size.

Dartagnan categorises 530 programs correctly, rejects 201 programs due
to unsupported features and internal errors, times out on 48 instances, and
incorrectly classifies 4 instances. Deagle produces 651 correct results, fails to
provide a verdict in 121 cases due to unsupported syntax and internal errors, and
times out on 11 instances. GemCutter correctly categorises 430 instances, with
internal errors on 54 instances, and 299 timeouts. Goblint achieves 741 correct
verification verdicts. However, it reports the incorrect verification verdict for 41
instances due to over-approximation.5 The tool times out on a single instance.

Experimental Results (EDR). Table 3 reports the verification verdicts on the
EDR benchmarks, divided by sub-category. For each sub-category, the results
are split in two separate rows for unsafe (top) and safe instances (bottom).
CSeq-DR correctly verifies all benchmarks.

Dartagnan misses 1 data race in arrays-ptrs due to type casting. It also
misses races on struct-to-struct assignments, generating 4 incorrect results on
structs-unions. Pointers cause 3 missed races on mixed-structs, and non-syn-
chronised read-write access causes 7 incorrect results on nested-locks and 5 on
multiple-rw. The tool hits the resources limits on 10 instances of prod-cons.

Deagle misses 12 races on arrays-ptrs due to pointer operations, type cast-
ing, aliasing, and arrays. It misses 9 races on structs-unions. On mixed-structs,
it generates 3 false and misses 8 races, totalising 11 errors. On nested-locks, it
misses 2 races due to multiple shared-memory access, and rejects 4 programs due
to use of locks occurring within atomic blocks. On multiple-rw, it misses 1 data
race involving multiple writes to composite structures. Lastly, Deagle misses 6
races in prod-cons where the shared memory is accessed via pointers.

GemCutter generates 2 false races on arrays-ptrs caused by dereferenced
null pointers. Although this is in fact undefined behaviour, it does not strictly
cause data races as null pointers are guaranteed to compare unequal to a pointer
3 The counterexamples provided by our tool turn out to be feasible upon manual

inspection. Among all the competitors, only Goblint categorises the files as unsafe,
but (due to over-approximation) without providing counterexamples. Deagle times
out but does confirm the race on a manually simplified version of one of the programs.
We amended the SV-COMP23 categorisation from safe to unsafe for both instances.

4 During preliminary runs we found 8 safe instances where the atomic sections were
defined in a syntax apparently allowed in previous editions of the competition, but
no longer supported in SV-COMP 2023 (and by none of the tools considered in our
comparison). We fixed those instances to use the correct syntax, but our prototype
reported all of them to be unsafe; we could confirm all counterexamples upon manual
inspection. Therefore, we amended the categorisation of these instances accordingly.

5 The reported incorrect verification verdicts are not consistent with the official SV-
COMP results because for the competition Goblint outputs UNKNOWN on poten-
tially unsafe programs to avoid losing points on false positives.

Accurate Static Data Race Detection for C 455

Table. 3. Verification verdicts (EDR)

CSeq-DR Dartagnan Deagle GemCutter Goblint

Subcategory C
o
u
n
t

C
o
rr
ec
t

W
ro
n
g

E
rr
o
r

U
n
kn

o
w
n

C
o
rr
ec
t

W
ro
n
g

E
rr
o
r

U
n
kn

o
w
n

C
o
rr
ec
t

W
ro
n
g

E
rr
o
r

U
n
kn

o
w
n

C
o
rr
ec
t

W
ro
n
g

E
rr
o
r

U
n
kn

o
w
n

C
o
rr
ec
t

W
ro
n
g

E
rr
o
r

U
n
kn

o
w
n

arrays-ptrs
12 12 · · · 11 1 · · · 12 · · 12 · · · 9 3 · ·
12 12 · · · 12 · · · 12 · · · 10 2 · · 5 7 · ·

structs-unions
9 9 · · · 5 4 · · · 9 · · 6 3 · · 2 7 · ·
5 5 · · · 5 · · · 5 · · · 5 · · · 5 · · ·

mixed-structs
10 10 · · · 7 3 · · 2 8 · · 3 7 · · 2 8 · ·
10 10 · · · 10 · · · 7 3 · · 10 · · · 7 3 · ·

nested-locks
16 16 · · · 9 7 · · 13 2 1 · 16 · · · 16 · · ·
26 26 · · · 26 · · · 23 · 3 · 26 · · · 25 1 · ·

multiple-rw
10 10 · · · 5 5 · · 9 1 · · 10 · · · 9 1 · ·
7 7 · · · 7 · · · 7 · · · 7 · · · 6 1 · ·

prod-cons
6 6 · · · 2 · · 4 · 6 · · 4 · · 2 6 · · ·
6 6 · · · · · · 6 6 · · · · · · 6 · 6 · ·

Total 129 129 0 0 0 99 20 0 10 84 41 4 0 109 12 0 8 92 37 0 0

to any object or function [40]. The tool also misses 3 races on structs-unions and
7 on mixed-structs, and times out on 8 instances on prod-cons.

Goblint incorrectly classifies 10 programs in arrays-ptrs, missing 3 races
involving pointer arithmetic, aliasing, and type casting, and generating 7 false
alarms on array operations. On structs-unions, Goblint misses 7 races. On
mixed-structs, it generates 8 false alarms and misses 3 races. On nested-locks, it
generates 1 false alarm. On multiple-rw, it misses 1 race and generates 1 false
alarm. At last, it generates 6 false alarms on prod-cons.

Summary. The experiments demonstrate the superiority of our prototype in
terms of data-race detection accuracy. In particular, CSeq-DR is the only tool
that produces no false positives or negatives (Tables 2 and 3). The accuracy
is particularly evident in the presence of sources of complexity that stress the
memory representation, where all competitors struggle in many cases (Table 3).

On the SV-COMP23 benchmarks (Table 2), our approach proves to be com-
petitive against the considered state-of-the-art tools. On programs with a large
number of threads and complex control flow (e.g. some instances of goblint-
regression), CSeq-DR hits the resource limits; however, it does spot two previ-
ously undetected data races in complex lock-free data structures. Additionally,
CSeq-DR rejects or crashes on considerably fewer instances than the other
tools, outperforming Deagle (winner in the ConcurrencySafety category of
SV-COMP 2023), GemCutter (which ranked first in the NoDataRace demo
category of SV-COMP 2022), and Dartagnan in terms of correct results.

456 E. Sales et al.

Fig. 8. Analysis runtime comparison (SV-COMP23, EDR)

As for speed (Fig. 8), CSeq-DR outperforms GemCutter and Dartagnan.
Goblint proves comparatively quite fast, but its overly conservative approxima-
tion yields numerous false alarms on both benchmarks, resulting in the overall
highest number of incorrect verification verdicts (Tables 2 and 3). Deagle proves
capable of fast analysis too, also thanks to the unwinding strategy fine-tuned for
SV-COMP23, but looses precision considerably on EDR (Table 3).

5 Related Work

As a recent trend in the development of programming languages and memory
models, considerable effort has been devoted to balance the conflicting desiderata
of programmers, compiler developers, and hardware vendors by moving towards
stricter semantics to limit the possibility of data races upfront. For instance, in
data race freedom semantics, all data-race-free parts of a program are guaranteed
to have sequential semantics [18]; other approaches let the compiler synchronise
shared-memory access in the likelihood of races [42], certify that some compiler
optimisations will not introduce incorrectness [42,57], or even disallow some of
them [18]. Nevertheless, such efforts are hardly effective e.g. with legacy code,
low-level device drivers, and existing codebase in currently still widespread pro-
gramming languages and platforms.

Program transformation to handle concurrency (or specific aspects thereof)
is relied upon, among the others, by preprocessors in the style of Rek [11] and
early versions of CSeq [24], both implementing so-called eager sequentialisa-
tion to reduce to sequential reachability [47], and in the mentioned semantic-
preserving encodings from weak memory models to sequential consistency [1].
An early proof-of-concept implementation [14] of CSeq-DR could only handle
basic memory access, achieving modest results (5th place with 6 false positives)
at SV-COMP 2022 [3]. GemCutter also relies on program transformation for
detecting races [17], but needs one auxiliary variable per global variable in the
program, while we only introduce three variables for the whole program; sim-
ilarly to [14], its analysis beyond basic memory access can be inaccurate. An
extension of lazy sequentialisation for deadlock checking is proposed in [35].

Besides the ones considered in this paper (Sect. 4), static techniques for
race detection usually rely on locksets to determine safe synchronisation of

Accurate Static Data Race Detection for C 457

memory access [20,21,41,58,62,63,67,69]. Known tools include Locksmith [58]
and RELAY [67], which introduce relative locksets for scalability; these tools
may return incorrect verdicts in presence of pointers. Lockset-based analysis
is usually over-approximated, thus it can prove the absence of races or report
potential races. Possible ways to reduce spurious warnings are considered in [41].
Static tools for other languages include LLOV [8] for OpenMP programs in C,
C++, and FORTRAN [55], and RacerD [6] and Chord [54] for Java.

Dynamic data race detection looks for conflicting memory access at runtime.
Known tools include Pacer [7], which uses sampling strategies for performance
improvement, ThreadSanitizer [63] for C++ and Go, ROMP [31] for paral-
lel OpenMP applications, Nondeterminator [23] for the Cilk language, and
TSVD [51], a thread-safety violation detector that injects delays on the pro-
gram to expose races. Dynamic analysis can spot potential races in real software
projects, but due to thread interleaving without a measurable coverage of the
feasible behaviours of the system under analysis; on particularly critical software
components, static analyses such as the one proposed in this paper can comple-
ment that with a systematic coverage and greater accuracy, when feasible.

6 Conclusion

C programs are particularly vulnerable to subtle data races. We have addressed
this problem with a technique that automatically annotates a program and, com-
bined with lazy sequentialisation and bounded model checking, yields effective
under-approximate data race detection.

Our prototype implementation has proved competitive with state-of-the-art
technology, showing an unmatched precision of analysis in the presence of com-
plex synchronisation patterns and particularly relevant language features such as
shared composite data types, and pointers. The approach can, in general, yield
great detection accuracy at additional computational effort, which may be ben-
eficial in the analysis of particularly critical software components. At the same
time, our specific implementation has shown that context-bounded analysis can
effectively mitigate the overhead introduced with our encoding.

Our program instrumentation allows to build the set of target expressions via
relatively inexpensive yet conservative static analysis, at the cost of additional
overhead but with no detriment to detection accuracy. Our prototype refines the
sets of visible expressions by recursively inspecting composite data structures,
but stops short of performing any pointer analysis. But of course one can plug in
more sophisticated static analyses to calculate the target expressions. We leave
for future work the investigation of different trade-offs between a more precise
static analysis for working out the target expressions and overall performance
of race detection. We also plan to explore the combination of our encoding with
dynamic partial order reduction [46] for potential efficiency gains.

As commonplace for under-approximated analyses, our approach can miss
bugs if bounds are insufficiently large. Nonetheless, out of 665 correct verification
verdicts of the SV-COMP23 benchmarks, our prototype was able to compute

458 E. Sales et al.

static loop bounds and fully unfold 431 safe instances, basically failing to do so
only on unbounded or non-deterministic loops. Also, it is empirically known that
concurrency errors on real software typically occur within a few context switches
[60] or a few memory operations [52]. In the future, we plan to experiment with
alternative techniques to handle loops, such as k-induction [64], sequentialisation
without unfolding [24,47], and context-unbounded sequentialisation on top of
modern back ends for unbounded analysis such as Kratos2 [30].

Data Availability Statement. CSeq-DR and EDR Benchmarks are publicly avail-
able and can be accessed at https://doi.org/10.5281/zenodo.11582694. All relevant
data analyzed during this study are included in this published tool. Further inquiries
regarding the data can be directed to the corresponding author.

References

1. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for weak
memory via program transformation. In: Felleisen, M., Gardner, P. (eds.) ESOP
2013. LNCS, vol. 7792, pp. 512–532. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-37036-6 28

2. Batty, M., Memarian, K., Nienhuis, K., Pichon-Pharabod, J., Sewell, P.: The prob-
lem of programming language concurrency semantics. In: Vitek, J. (ed.) ESOP
2015. LNCS, vol. 9032, pp. 283–307. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46669-8 12

3. Beyer, D.: Progress on software verification: SV-COMP 2022. In: TACAS 2022.
LNCS, vol. 13244, pp. 375–402. Springer, Cham (2022). https://doi.org/10.1007/
978-3-030-99527-0 20

4. Beyer, D.: Competition on software verification and witness validation: SV-COMP
2023. In: Sankaranarayanan, S., Sharygina, N. (eds) TACAS (2). LNCS, vol. 13994,
pp. 495–522. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30820-
8 29

5. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
BLAST. Int. J. Softw. Tools Technol. Transf. 9(5–6), 505–525 (2007)

6. Blackshear, S., Gorogiannis, N., O’Hearn, P.W., Sergey, I.: RacerD: composi-
tional static race detection. Proc. ACM Program. Lang. 2(OOPSLA), 144:1–144:28
(2018)

7. Bond, M.D., Coons, K.E., McKinley, K.S.: PACER: proportional detection of data
races. In: PLDI, pp. 255–268. ACM (2010)

8. Bora, U., Das, S., Kukreja, P., Joshi, S., Upadrasta, R., Rajopadhye, S.: LLOV:
a fast static data-race checker for openMP programs. ACM Trans. Archit. Code
Optim. 17(4), 35:1–35:26 (2020)

9. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4 7

10. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic genera-
tion of high-coverage tests for complex systems programs. In: OSDI, pp. 209–224.
USENIX Association (2008)

11. Chaki, S., Gurfinkel, A., Strichman, O.: Time-bounded analysis of real-time sys-
tems. In: FMCAD, pp. 72–80. FMCAD Inc. (2011)

https://doi.org/10.5281/zenodo.11582694
https://doi.org/10.1007/978-3-642-37036-6_28
https://doi.org/10.1007/978-3-642-37036-6_28
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-642-18275-4_7

Accurate Static Data Race Detection for C 459

12. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

13. Clarke, E.M., Kroening, D., Yorav, K.: Behavioral consistency of C and Verilog
programs using bounded model checking (2000)

14. Coto, A., Inverso, O., Sales, E., Tuosto, E.: A prototype for data race detection in
CSeq 3. In: TACAS 2022. LNCS, vol. 13244, pp. 413–417. Springer, Cham (2022).
https://doi.org/10.1007/978-3-030-99527-0 23

15. Dartagnan 3.1.1. https://github.com/hernanponcedeleon/Dat3M
16. Deagle 2.1. https://gitlab.com/sosy-lab/sv-comp/archives-2023
17. Dietsch, D., Heizmann, M., Klumpp, D., Schüssele, F., Podelski, A.: Ultimate

Taipan and race detection in Ultimate - (competition contribution). In: Sankara-
narayanan, S., Sharygina, N. (eds.) TACAS (2). LNCS, vol. 13994, pp. 582–587.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30820-8 40

18. Dolan, S., Sivaramakrishnan, K.C., Madhavapeddy, A.: Bounding data races in
space and time. In: PLDI, pp. 242–255. ACM (2018)

19. Eén, N., Sörensson, N.: An extensible SAT-solver. In: SAT, pp. 502–518 (2003)
20. Elmas, T., Qadeer, S., Tasiran, S.: Goldilocks: efficiently computing the happens-

before relation using locksets. In: Havelund, K., Núñez, M., Roşu, G., Wolff,
B. (eds.) FATES/RV -2006. LNCS, vol. 4262, pp. 193–208. Springer, Heidelberg
(2006). https://doi.org/10.1007/11940197 13

21. Engler, D.R., Ashcraft, K.: RacerX: effective, static detection of race conditions
and deadlocks. In: SOSP, pp. 237–252. ACM (2003)

22. Ertl, M.A.: The intended meaning of undefined behaviour in c programs. In: KPS,
pp. 20–28 (2017)

23. Feng, M., Leiserson, C.E.: Efficient detection of determinacy races in Cilk pro-
grams. Theory Comput. Syst. 32(3), 301–326 (1999)

24. Fischer, B., Inverso, O., Parlato, G.: CSeq: a concurrency pre-processor for sequen-
tial C verification tools. In: ASE, pp. 710–713. IEEE (2013). https://doi.org/10.
1109/ASE.2013.6693139

25. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 mul-
tithreaded language. In: PLDI, pp. 212–223. ACM (1998)

26. Gavrilenko, N., Ponce-de-León, H., Furbach, F., Heljanko, K., Meyer, R.: BMC
for weak memory models: relation analysis for compact SMT encodings. In: Dillig,
I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 355–365. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25540-4 19

27. Gemcutter 0.2.2. https://github.com/ultimate-pa/ultimate/releases
28. Goblint 1.8.2. https://github.com/goblint/analyzer
29. Gray, J.: Why do computer stop and what can be about it? In: Büroautomation.

Berichte des German Chapter of the ACM, vol. 25, pp. 128–145. Teubner (1985)
30. Griggio, A., Jonás, M.: Kratos2: An SMT-based model checker for imperative

programs. In: Enea, C., Lal, A. (eds.) CAV (3). LNCS, vol. 13966, pp. 423–436.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-37709-9 20

31. Gu, Y., Mellor-Crummey, J.M.: Dynamic data race detection for openMP pro-
grams. In: SC, pp. 61:1–61:12. IEEE/ACM (2018)

32. Harris, T.L., Fraser, K., Pratt, I.A.: A practical multi-word compare-and-swap
operation. In: Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 265–279. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-36108-1 18

33. He, F., Sun, Z., Fan, H.: Deagle: An SMT-based verifier for multi-threaded pro-
grams (competition contribution). In: TACAS 2022. LNCS, vol. 13244, pp. 424–
428. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99527-0 25

https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-030-99527-0_23
https://github.com/hernanponcedeleon/Dat3M
https://gitlab.com/sosy-lab/sv-comp/archives-2023
https://doi.org/10.1007/978-3-031-30820-8_40
https://doi.org/10.1007/11940197_13
https://doi.org/10.1109/ASE.2013.6693139
https://doi.org/10.1109/ASE.2013.6693139
https://doi.org/10.1007/978-3-030-25540-4_19
https://github.com/ultimate-pa/ultimate/releases
https://github.com/goblint/analyzer
https://doi.org/10.1007/978-3-031-37709-9_20
https://doi.org/10.1007/3-540-36108-1_18
https://doi.org/10.1007/978-3-030-99527-0_25

460 E. Sales et al.

34. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. J.
Parallel Distrib. Comput. 70(1), 1–12 (2010)

35. Inverso, O., Nguyen, T.L., Fischer, B., Torre, S.L., Parlato, G.: Lazy-CSeq: a
context-bounded model checking tool for multi-threaded c-programs. In: ASE, pp.
807–812. IEEE Computer Society (2015). https://doi.org/10.1109/ASE.2015.108

36. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Bounded model
checking of multi-threaded C programs via lazy sequentialization. In: Biere, A.,
Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 585–602. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08867-9 39

37. Inverso, O., Tomasco, E., Fischer, B., Torre, S.L., Parlato, G.: Bounded verification
of multi-threaded programs via lazy sequentialization. ACM Trans. Program. Lang.
Syst. 44(1), 1:1–1:50 (2022)

38. Inverso, O., Trubiani, C.: Parallel and distributed bounded model checking of
multi-threaded programs. In: PPoPP, pp. 202–216. ACM (2020)

39. ISO/IEC: Information technology—Portable Operating System Interface (POSIX)
Base Specifications, Issue 7, ISO/IEC/IEEE 9945:2009 (2009)

40. ISO/IEC: ISO/IEC 9899:2018: Information technology – Programming languages
– C (2018)

41. Kahlon, V., Yang, Yu., Sankaranarayanan, S., Gupta, A.: Fast and accurate static
data-race detection for concurrent programs. In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 226–239. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-73368-3 26

42. Kang, J., Hur, C., Lahav, O., Vafeiadis, V., Dreyer, D.: A promising semantics for
relaxed-memory concurrency. In: POPL, pp. 175–189. ACM (2017)

43. Kelly, T., Pan, Y.: Catch-23: the new C standard sets the world on fire. ACM
Queue 21(1), 12–30 (2023)

44. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

45. Klumpp, D., et al.: Ultimate GemCutter and the axes of generalization. In:
TACAS 2022. LNCS, vol. 13244, pp. 479–483. Springer, Cham (2022). https://doi.
org/10.1007/978-3-030-99527-0 35

46. Kokologiannakis, M., Marmanis, I., Gladstein, V., Vafeiadis, V.: Truly stateless,
optimal dynamic partial order reduction. Proc. ACM Program. Lang. 6(POPL),
1–28 (2022). https://doi.org/10.1145/3498711

47. Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to
sequential analysis. Formal Methods Syst. Des. 35(1), 73–97 (2009)

48. Lamport, L.: How to make a correct multiprocess program execute correctly on a
multiprocessor. IEEE Trans. Comput. 46(7), 779–782 (1997)

49. Lattner, C., Adve, V.S.: LLVM: a compilation framework for lifelong program
analysis & transformation. In: CGO, pp. 75–88. IEEE Computer Society (2004)

50. Ponce-de-León, H., Haas, T., Meyer, R.: Dartagnan: leveraging compiler opti-
mizations and the price of precision (competition contribution). In: TACAS 2021.
LNCS, vol. 12652, pp. 428–432. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-72013-1 26

51. Li, G., Lu, S., Musuvathi, M., Nath, S., Padhye, R.: Efficient scalable thread-
safety-violation detection: finding thousands of concurrency bugs during testing.
In: SOSP, pp. 162–180. ACM (2019)

52. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive study
on real world concurrency bug characteristics. In: ASPLOS, pp. 329–339. ACM
(2008)

https://doi.org/10.1109/ASE.2015.108
https://doi.org/10.1007/978-3-319-08867-9_39
https://doi.org/10.1007/978-3-540-73368-3_26
https://doi.org/10.1007/978-3-540-73368-3_26
https://doi.org/10.1007/978-3-030-99527-0_35
https://doi.org/10.1007/978-3-030-99527-0_35
https://doi.org/10.1145/3498711
https://doi.org/10.1007/978-3-030-72013-1_26
https://doi.org/10.1007/978-3-030-72013-1_26

Accurate Static Data Race Detection for C 461

53. Müller-Olm, M.: Variations on Constants. LNCS, vol. 3800. Springer, Heidelberg
(2006). https://doi.org/10.1007/11871743

54. Naik, M., Aiken, A., Whaley, J.: Effective static race detection for Java. In: PLDI,
pp. 308–319. ACM (2006)

55. Organization, O.: The OpenMP API specification for parallel programming (2019).
https://www.openmp.org/

56. Perez, A.: Byte-wise CRC calculations. IEEE Micro 3(3), 40–50 (1983)
57. Podkopaev, A., Lahav, O., Vafeiadis, V.: Bridging the gap between program-

ming languages and hardware weak memory models. Proc. ACM Program. Lang.
3(POPL), 69:1–69:31 (2019)

58. Pratikakis, P., Foster, J.S., Hicks, M.: LOCKSMITH: practical static race detection
for C. ACM Trans. Program. Lang. Syst. 33(1), 3:1–3:55 (2011)

59. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1 7

60. Qadeer, S., Wu, D.: KISS: keep it simple and sequential. In: PLDI, pp. 14–24.
ACM (2004)

61. Saan, S., et al.: Goblint: Thread-modular abstract interpretation using side-
effecting constraints. In: TACAS 2021. LNCS, vol. 12652, pp. 438–442. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-72013-1 28

62. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.E.: Eraser: A
dynamic data race detector for multithreaded programs. ACM Trans. Comput.
Syst. 15(4), 391–411 (1997)

63. Serebryany, K., Iskhodzhanov, T.: ThreadSanitizer: data race detection in practice.
In: WBIA, 9p. 62–71. Association for Computing Machinery (2009)

64. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction
and a SAT-solver. In: Hunt, W.A., Johnson, S.D. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 127–144. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-40922-X 8

65. Sun, Z., Fan, H., He, F.: Consistency-preserving propagation for SMT solving of
concurrent program verification. Proc. ACM Program. Lang. 6(OOPSLA2), 929–
956 (2022)

66. Vojdani, V., Apinis, K., Rõtov, V., Seidl, H., Vene, V., Vogler, R.: Static race
detection for device drivers: the Goblint approach. In: ASE, pp. 391–402. ACM
(2016)

67. Voung, J.W., Jhala, R., Lerner, S.: RELAY: static race detection on millions of
lines of code. In: ESEC/FSE, pp. 205–214. ACM (2007)

68. Yodaiken, V.: How ISO C became unusable for operating systems development.
In: PLOS, pp. 84—90. ACM (2021)

69. Yu, Y., Rodeheffer, T., Chen, W.: RaceTrack: efficient detection of data race con-
ditions via adaptive tracking. In: SOSP, pp. 221–234. ACM (2005)

https://doi.org/10.1007/11871743
https://www.openmp.org/
https://doi.org/10.1007/978-3-540-31980-1_7
https://doi.org/10.1007/978-3-030-72013-1_28
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/3-540-40922-X_8

462 E. Sales et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

cfaults: Model-Based Diagnosis for Fault
Localization in C with Multiple Test Cases

Pedro Orvalho1(B) , Mikoláš Janota2 , and Vasco Manquinho1

1 INESC-ID, IST, Universidade de Lisboa, Lisboa, Portugal
{pmorvalho,vasco.manquinho}@tecnico.ulisboa.pt

2 Czech Technical University in Prague, Prague, Czechia
mikolas.janota@cvut.cz

Abstract. Debugging is one of the most time-consuming and expensive
tasks in software development. Several formula-based fault localization
(FBFL) methods have been proposed, but they fail to guarantee a set of
diagnoses across all failing tests or may produce redundant diagnoses that
are not subset-minimal, particularly for programs with multiple faults.

This paper introduces a novel fault localization approach for C pro-
grams with multiple faults. CFaults leverages Model-Based Diagnosis
(MBD) with multiple observations and aggregates all failing test cases
into a unified MaxSAT formula. Consequently, our method guarantees
consistency across observations and simplifies the fault localization pro-
cedure. Experimental results on two benchmark sets of C programs,
TCAS and C-Pack-IPAs, show that CFaults is faster than other
FBFL approaches like BugAssist and SNIPER. Moreover, CFaults
only generates subset-minimal diagnoses of faulty statements, whereas
the other approaches tend to enumerate redundant diagnoses.

Keywords: Fault Localization · Model-Based Diagnosis ·
Formula-based Fault Localization · Debugging · Maximum Satisfiability

1 Introduction

Localizing system faults has always been one of the most time-consuming and
expensive tasks. Given a buggy program, fault localization (FL) involves identi-
fying locations in the program that could cause a faulty behaviour (bug).

Given a faulty program and a test suite with failing test cases, current
formula-based fault localization (FBFL) methods encode the localization problem
into several optimization problems to identify a minimal set of faulty statements
(diagnoses) within a program. Typically, these methods find a minimal diagnosis
considering each failing test case individually rather than simultaneously with
all failing test cases. Moreover, these FBFL methods enumerate all Minimal
Correction Subsets (MCSes) [22] to cover all diagnoses.

For instance, BugAssist [17,18], a prominent FBFL tool, implements a rank-
ing mechanism for bug locations. For each failing test, BugAssist enumerates all
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 463–481, 2025.
https://doi.org/10.1007/978-3-031-71162-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_24&domain=pdf
http://orcid.org/0000-0002-7407-5967
http://orcid.org/0000-0003-3487-784X
http://orcid.org/0000-0002-4205-2189
https://doi.org/10.1007/978-3-031-71162-6_24

464 P. Orvalho et al.

Table 1. Test-suite.

Input Output
t0 1 2 3 3
t1 6 2 1 6
t2 -1 3 1 3

Table 2. Number of diagnoses (faulty
statements) generated by BugAssist [17]
and SNIPER [21] per test.

BugAssist SNIPER
#Diagnoses t0 8 8
#Diagnoses t1 21 21
#Diagnoses t2 9 9
#Total Unique Diagnoses 32 1297
Final Diagnosis {4,13} {5,8,11}

diagnoses of a Maximum Satisfiability (MaxSAT) formula corresponding to bug
locations. Subsequently, BugAssist ranks diagnoses based on their frequency
of appearance in each failing test. Other FBFL tools, like SNIPER [21], also
enumerate all diagnoses for each failing test. However, the set of SNIPER’s
diagnoses is obtained by taking the Cartesian product of the diagnoses gathered
using each failing test. As a result, while FBFL methods can determine mini-
mal diagnoses per failing test, BugAssist cannot guarantee a minimal diagnosis
considering all failing tests, and SNIPER may enumerate a significant number
of redundant diagnoses that are not minimal [16]. These limitations may pose
challenges for programs with multiple faulty statements, as shown in Example 1.

Example 1 (Motivation). Consider the program presented in Listing 1.1, which
aims to determine the maximum among three given numbers. However, based
on the test suite shown in Table 1, the program is faulty, as its output differs
from the expected. The set of minimally faulty lines in this program is {5, 8, 11},
as all three if-conditions are incorrect according to the test suite. Fixing any
subset of these lines would be insufficient to repair the program. One possible
fix is to replace all these conditions with the suggested fixes in lines {6, 9, 12}.

In a typical FBFL approach, the minimal set of statements identified as faulty
might include, for example, lines 4 and 5. Removing the scanf statement and
an if-statement would allow an FBFL tool to assign any value to the input
variables in order to always produce the expected output. However, considering
an approach that prioritizes identifying faulty statements within the program’s
logic before evaluating issues in the input/output statements (such as scanf and
printf), one might identify lines {5, 8, 11} as the faulty statements. When apply-
ing BugAssist’s and SNIPER’s approach on the program in Listing 1.1 with
the described optimization criterion and utilizing the inputs/outputs detailed in
Table 1 as specification, distinct sets of faults are identified for each failing test.
Table 2 presents the diagnosis (set of faulty lines) produced by each tool, along
with the number of diagnoses enumerated for each failing test case and the total
number of unique diagnoses after aggregating the diagnoses from all tests, using
each tool’s respective method.

Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases 465

In the case of BugAssist, diagnoses are prioritized based on their occurrence
frequency. Consequently, BugAssist yields 32 unique diagnoses and selects {4,
13} since this diagnosis is identified in every failing test. In contrast, SNIPER
computes the Cartesian product of all diagnoses, resulting in 1297 unique diag-
noses. Note that BugAssist’s diagnoses may not adequately identify all faulty
program statements. Conversely, SNIPER’s diagnosis {5, 8, 11} is minimal, even
though it enumerates an additional 1296 diagnoses. Hence, existing FBFL meth-
ods do not ensure a minimal diagnosis across all failing tests (e.g., BugAssist)
or may produce an overwhelming number of redundant sets of diagnoses (e.g.,
SNIPER), especially for programs with multiple faults.

This paper tackles this challenge by formulating the FL problem as a sin-
gle optimization problem in Sect. 3. We leverage MaxSAT and the theory of
Model-Based Diagnosis (MBD), integrating all failing test cases simultaneously.
This approach allows us to generate only minimal diagnoses to identify all faulty
program components within a C program. Furthermore, we have implemented
the MBD problem with multiple test cases in CFaults, a fault localization tool
for ANSI-C programs, presented in Sect. 4. CFaults begins by unrolling and
instrumentalizing C programs at the code-level, ensuring independence from
the bounded model checker. Next, CFaults utilizes CBMC [5], a well-known
bounded model checker for C, to generate a trace formula of the program. Finally,
CFaults encodes the problem into MaxSAT to identify the minimal set of diag-
noses corresponding to the buggy statements.

Experimental results presented in Sect. 5 on two benchmarks of C pro-
grams, TCAS [10] (industrial), and C-Pack-IPAs [29] (programming exercises),
show that CFaults effectively detects minimal sets of diagnoses. In contrast,
SNIPER and BugAssist either generate an overwhelming number of redun-
dant diagnoses or fail to produce a minimal set required to fix each program.

To summarize, the contributions of this work are: (1) we tackle the fault
localization problem in C programs using a Model-Based Diagnosis (MBD) app-
roach considering multiple failing test cases, and formulating it as a unified
optimization problem; (2) we implement this MBD approach in a publicly avail-
able tool called CFaults [30]1 that unrolls and instrumentalizes C programs
at the code level, making it independent of the bounded model checker used;
(3) CFaults allows refinement of localized faults to pinpoint the bug’s location
more precisely; (4) we evaluate CFaults on two sets of C programs (TCAS and
C-Pack-IPAs), showing that CFaults is fast and only produces subset-minimal
diagnoses, unlike other state-of-the-art formula-based fault localization tools.

2 Preliminaries

This section provides definitions and notations that are used throughout the
paper. We start by presenting basic definitions of propositional logic and pro-
grams and then address standard model-based diagnosis (MBD) definitions.
1 https://github.com/pmorvalho/CFaults.

https://github.com/pmorvalho/CFaults

466 P. Orvalho et al.

The Boolean Satisfiability (SAT) problem is the decision problem for propo-
sitional logic [3]. A propositional formula in Conjunctive Normal Form (CNF) is
a conjunction of clauses where each clause is a disjunction of literals. A literal is
a propositional variable xi or its negation ¬xi. Given a CNF formula φ, the SAT
problem corresponds to deciding if there is an assignment to the variables in φ
such that φ is satisfied or prove that no such assignment exists. When applicable,
set notation will be used for formulas and clauses. A formula can be represented
as a set of clauses (meaning its conjunction) and a clause as a set of literals
(meaning its disjunction).

The Maximum Satisfiability (MaxSAT) problem is an optimization version of
the SAT problem. Given a CNF formula φ, the goal is to find an assignment that
maximizes the number of satisfied clauses in φ. In partial MaxSAT, φ is split into
hard clauses (φh) and soft clauses (φs). Given a formula φ = (φh, φs), the goal is
to find an assignment that satisfies all hard clauses in φh while minimizing the
number of unsatisfied soft clauses in φs. Moreover, in the weighted version of
the partial MaxSAT problem, each soft clause is assigned a weight, and the goal
is to find an assignment that satisfies all hard clauses and minimizes the sum of
the weights of the unsatisfied soft clauses. Let φ = (φh, φs) be a partial MaxSAT
formula. A Minimal Correction Subset (MCS) μ of φ is a subset μ ⊆ φs where
φh ∪ (φs \ μ) is satisfiable and, for all c ∈ μ, φh ∪ (φs \ μ) ∪ {c} is unsatisfiable.
A dual concept of MCSes are Minimal Unsatisfiable Subsets (MUSes) [16,22].

Programs. A program is considered sequential, comprising standard statements
such as assignments, conditionals, loops, and function calls, each adhering to
their conventional semantics in C. A program is deemed to contain a bug when
an assertion violation occurs during its execution with input I. Conversely, if
no assertion violation occurs, the program is considered correct for input I. In
cases where a bug is detected for input I, it is possible to define an error trace,
representing the sequence of statements executed by program P on input I.

A Trace Formula (TF) is a propositional formula that is SAT iff there exists
an execution of the program that terminates with a violation of an assert state-
ment while satisfying all assume statements. For further information on TFs,
interested readers are referred to [5,8].

Model-Based Diagnosis (MBD). The following definitions are commonly used
in the MBD theory [16,24,34]. A system description P is composed of a set of
components C = {c1, . . . , cn}. Each component in C can be declared healthy or
unhealthy. For each component c ∈ C, h(c) = 0 if c is unhealthy, otherwise,
h(c) = 1. As in prior works [16,25], P is described by a CNF formula, where Fc

denotes the encoding of component c:

P �
∧

c∈C (¬h(c) ∨ Fc) (1)

Observations represent deviations from the expected system behaviour. An
observation, denoted as o, is a finite set of first-order sentences [16,34], which

Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases 467

is assumed to be encodable in CNF as a set of unit clauses. In this work, the
failing test cases represent the set of observations.

A system P is considered faulty if there exists an inconsistency with a
given observation o when all components are declared healthy. The problem
of model-based diagnosis (MBD) aims to identify a set of components which,
if declared unhealthy, restore consistency. This problem is represented by the
3-tuple 〈P, C, o〉, and can be encoded as a CNF formula:

P ∧ o ∧
∧

c∈C h(c) � ⊥ (2)

For a given MBD problem 〈P, C, o〉, a set of system components Δ ⊆ C is a
diagnosis iff:

P ∧ o ∧
∧

c∈C\Δ
h(c) ∧

∧
c∈Δ

¬h(c) � ⊥ (3)

A diagnosis Δ is minimal iff no subset of Δ, Δ′
� Δ, is a diagnosis, and Δ

is of minimal cardinality if there is no other diagnosis Δ′′ ⊆ C with |Δ′′| < |Δ|.
A diagnosis is redundant if it is not subset-minimal [16].
To encode the Model-Based Diagnosis problem with one observation with

partial MaxSAT, the set of clauses that encode P (1) represents the set of hard
clauses. The soft clauses consists of unit clauses that aim to maximize the set
of healthy components, i.e.,

∧
c∈C h(c) [24,36]. This MaxSAT encoding of MBD

enables enumerating minimum cardinality diagnoses and subset minimal diag-
noses, considering a single observation. Furthermore, a minimal diagnosis is a
minimal correction subset (MCS) of the MaxSAT formula. Given an inconsis-
tent formula that encodes the MDB problem (2), a minimal diagnosis Δ satis-
fies (3), thereby making Δ an MCS of the MaxSAT formula. BugAssist [18],
SNIPER [21], and other model-based diagnosis (MBD) tools for fault localiza-
tion in circuits [16,24,36] encode the localization problem with partial MaxSAT.

More recently, the MaxSAT encoding for MBD [16] has been generalized to
multiple inconsistent observations. Let O = {o1, . . . om} be a set of observa-
tions. Each observation is associated with a replica Pi of the system P. The
system remains unchanged given different observations, where the components
are replicated for each observation, but the healthy variables are shared. For a
given observation oi, a diagnosis is given by the following:

Pi ∧ oi ∧
∧

c∈C\Δ
h(c) ∧

∧
c∈Δ

¬h(c) � ⊥ (4)

The goal is to find a minimal diagnosis Δ ⊆ C, such that Δ is a minimal set
of components when deactivated the system becomes consistent with all obser-
vations O = {o1, . . . om}. Moreover, when considering multiple observations,
an aggregated diagnosis is a subset of components that includes one possible
diagnosis for each given observation.

3 Model-Based Diagnosis with Multiple Test Cases

This paper encodes the fault localization problem as a Model-Based Diagnosis
with multiple observations using a single optimization problem. We simultane-

468 P. Orvalho et al.

ously integrate all failing test cases (observations) in a single MaxSAT formula.
This approach allows us to generate only minimal diagnoses capable of identify-
ing all faulty components within the system, in our case, a C program.

Given m observations, O = {o1, . . . , om}, a distinct replica of the system,
denoted as Pi, is required for each observation oi. The hard clauses, φh, in
our MaxSAT formulation correspond to each observation’s encoding (oi) and
m system replicas, one for each observation, Pi. Hence, φh =

∧
oi∈O (Pi ∧ oi).

Additionally, we aim to maximize the set of healthy components. Therefore, the
soft clauses are formulated as: φs =

∧
c∈C h(c). Thus, given the MaxSAT solution

of (φh, φs), its complement, i.e., the set of unhealthy components (h(c) = 0),
corresponds to a subset-minimal aggregated diagnosis. This diagnosis is a subset-
minimal of components that, when declared unhealthy (deactivated), make the
system consistent with all observations, as follows:

∧
oi∈O (Pi ∧ oi) ∧

∧
c∈C\Δ

h(c) ∧
∧

c∈Δ
¬h(c) � ⊥ (5)

We assume that the system remains unchanged given different observations,
where the components are replicated for each observation, but the healthy vari-
ables are shared. This is necessary because we analyze all observations jointly,
which can affect the component’s behaviour. In our work, the observations con-
sist of a test suite containing failing test cases.

The HSD [16] algorithm was proposed to localize single faults in circuits given
multiple observations. The HSD algorithm is based on hitting set dualization
(HSD). For each observation oi, this algorithm computes minimal unsatisfiable
subsets (MUSes) of the MaxSAT formula encoded by (4). Next, the HSD algo-
rithm computes a minimum hitting set H on the MUSes, and checks if H makes
the system consistent with each observation individually. Hence, to compute all
subset-minimal aggregated diagnoses of a faulty system P, the algorithm per-
forms at least m oracle calls for each minimum hitting set computed, where m is
the number of observations. Each oracle call uses a different system replica (4).

Our approach encodes the problem into a single MaxSAT formula, while
HSD [16] divides the problem into m MaxSAT formulas, one for each observa-
tion. Additionally, for each minimal hitting set computed in HSD, m oracle calls
are needed to check if a diagnosis is consistent with all observations. However,
in our case, we just need to perform a single MaxSAT call that returns a mini-
mal diagnosis, which is, by definition, consistent with all observations since all
observations are encoded into the formula. Furthermore, the HSD algorithm was
solely evaluated using single faults in circuits given multiple observations, and it
was not implemented to work with programs. A potential drawback is that our
MaxSAT formula grows with the number of observations. This could result in a
large formula and affect the performance of the MaxSAT solver. However, this
scenario was not observed in our experimental results (see Sect. 5).

Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases 469

Fig. 1. Overview of CFaults.

4 cfaults: MBD with Multiple Observations for C

CFaults is a new model-based diagnosis (MBD) tool for fault localization in C
programs with multiple test cases. Unlike previous works, CFaults uses the app-
roach proposed in Sect. 3, and C programs are relaxed at the code level, enabling
users to leverage other bounded model checkers effectively. Figure 1 provides an
overview of CFaults consisting of six main steps: program unrolling, program
instrumentalization, bounded model checking (CBMC), encoding to MaxSAT,
an Oracle (MaxSAT solver), and a refinement step. Hence, CFaults formulates
the MBD problem with multiple test cases as the 3-tuple 〈P, C,O〉, where the
observations O consist of failing test cases (inputs and assertions), the compo-
nents C represent the set of program statements, and the system description P
is a trace formula of the unrolled and instrumentalized program. The program
is instrumented at the code level with relaxation variables corresponding to our
healthy variables.

Program Unrolling. CFaults starts the unrolling process by expanding the
faulty program using the set of failed tests from the test suite. In this context, an
unrolled program signifies the original program expanded m times (m program
scopes), where m denotes the number of failed test cases. An unrolled program
encodes the execution of all failing tests within the program, along with their
corresponding inputs and specifications (assertions).

The unrolling process encompasses three primary steps. Initially, CFaults
generates fresh variables and functions for each of the m program scopes, ensur-
ing each scope possesses unique variables and functions. Subsequently, CFaults
establishes variables representing the inputs and outputs for each program scope
corresponding to the failing tests. Input operations, such as scanf, undergo
translation into read accesses to arrays corresponding to the inputs, while output
operations, such as printf, are replaced by write operations into arrays repre-
senting the program’s output. Every exit point of the program (e.g., a return
statement in the main function) is replaced with a goto statement directing the

470 P. Orvalho et al.

program flow to the next failing test’s scope. Lastly, at the end of the unrolled
program, CFaults embeds an assertion capturing all the specifications of the
failing tests. Consequently, the unrolled program encapsulates the execution of
all failing tests within a single program.

Listing 1.2 exhibits a program segment generated through the unrolling pro-
cess applied to Listing 1.1. CFaults establishes global variables to represent the
inputs and outputs of each failing test (lines 1–3, Listing 1.2). For the sake of
simplicity, the depicted listing illustrates solely the initial scope corresponding to
test 0 from the test suite outlined in Table 1. Distinct variables are introduced
for each failing test. Furthermore, the scanf function call is substituted with
input array operations (lines 8–10), while the printf calls are replaced with
CFaults’ print functions, akin to sprintf functions, which direct output to a
buffer. Lastly, the unrolled program concludes with an assertion representing the
disjunction of the negation of all failing test assertions. For instance, suppose
there are m failing tests, where Ai denotes the assertion of test ti. In this scenario,
CFaults injects the following assertion into the program: ¬A1 ∨ · · · ∨ ¬Am.

Program Intrumentalization. After integrating all possible executions and
assertions from failing tests during the unrolling step, CFaults proceeds to
instrumentalize the unrolled C program by introducing relaxation variables for
each program component (statement/instruction). Each relaxation variable acti-
vates (or deactivates) the program component being relaxed when assigned to
true (or false) respectively. CFaults ensures that there are no conflicts between
the names of the relaxation variables and the names of the program’s original
variables. For this step, CFaults needs to receive a maximum number of itera-
tions that the program should be unwound.

Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases 471

The relaxation process introduces relaxation variables that deactivate or acti-
vate program components. This process involves four distinct relaxation rules for:
(1) conditions of if-statements, (2) expression lists (e.g., an expression list exe-
cuted at the beginning of a for-loop), (3) loop conditions, and (4) other program
statements.

Example 2. Listings 1.3 shows a code snippet that sums all the numbers between
1 and n. Listings 1.4 depicts the same program statements after undergoing
relaxation by CFaults. For the sake of simplicity, all relaxation variables’ and
offsets’ names were simplified.

In more detail, the rule for relaxing a general program statement is to envelop
the statement with an if-statement, whose condition is a relaxation variable.
For example, consider lines 5 and 6 in the program on Listings 1.3. These lines
are relaxed by CFaults using relaxation variables _rv1 and _rv2 respectively,
appearing as lines 11 and 12 on Listings 1.4.

Furthermore, when relaxing if-statements, the statements inside the then
and else blocks adhere to the previously explained relaxation rule. However, the
conditions of if-statements are relaxed using a ternary operator, as shown in
line 14 of Listings 1.4. Note that if the relaxation variable is assigned true, then
the original if condition is executed. Otherwise, a different relaxation variable
(e.g., _ev4 in Listings 1.4) determines whether the program execution enters the
then-block or the else-block (if one exists). These relaxation variables (else’s
relaxation variables) are local to each failing test scope and enable different tests
to determine whether to enter the then or else-block.

When handling expression lists, CFaults adopts a comparable strategy to
that of generic program statements, enclosing each expression within a ternary
operator instead of an if-statement. If the program component is deactivated,
the expression is replaced by 1. For example, the initialization of variable i in line
11 of Listings 1.3 is relaxed into the ternary operation in line 17 of Listings 1.4.

472 P. Orvalho et al.

Lastly, all relaxation variables inside a loop are Boolean vectors to relax state-
ments within a loop. Each entry of these vectors relaxes the loop’s statements for
a given iteration. The maximum number of iterations of the loops is defined by
the CFaults user. CFaults follows a similar approach for inner loops, creating
arrays of arrays. Thus, for simple program statements within a loop, CFaults
encapsulates them with if-statements, with the relaxation variables indexed to
the iteration number. Line 20 of Listings 1.4 illustrates a relaxed statement inside
a loop. The loop’s condition is relaxed by implication of the relaxation variable,
as demonstrated in line 18 of Listings 1.4. Furthermore, each loop has its own
offsets to index relaxation variables. These offsets are initialized just before the
loop and incremented at the end of each iteration (e.g., line 19 in Listing 1.4).

When handling auxiliary functions, CFaults declares the relaxation vari-
ables needed in the main scope of the program and passes these variables as
parameters. Hence, CFaults ensures that the same variables are used through-
out the auxiliary functions’ calls.

Listing 1.5 depicts the program resulting from the instrumentalization pro-
cess of Listing 1.2 performed by CFaults. The same program components (state-
ments/instructions) across different failing test scopes are assigned the same
relaxation variable declared in the main scope. Consequently, if a relaxation vari-
able is set to 0, the corresponding program component is deactivated across all
test executions. Additionally, the relaxation variables are left uninitialized, allow-
ing CFaults to determine the minimal number of faulty components requiring
deactivation. Note that relaxation variables are not declared as global variables
but as local variables within the main scope. This is to prevent the C compiler
from automatically initializing all these variables to 0.

CBMC. After unrolling and instrumentalizing the C program, CFaults
invokes CBMC, a bounded model checker for C [5]. CBMC initially transforms
the unrolled and relaxed program into Static Single Assignment (SSA) form, an
intermediate representation ensuring that variables are assigned values only once
and are defined before use [9]. SSA achieves this by converting existing variables
into multiple versions, each uniquely representing an assignment. Next, CBMC
translates the SSA representation into a CNF formula, which represents the trace
formula of the program. During the CNF formula generation, CBMC negates the
program’s assertion (¬(¬A1 ∨ · · ·∨¬Am)) to compute a counter-example. More-
over, the CNF formula, φ, encodes each failing test’s input (Ii), assertion (Ai),
and all execution paths of the unrolled and relaxed incorrect program encoded
by the trace formula (P), i.e., φ = (I1 ∧ . . . ∧ Im) ∧ P ∧ (A1 ∧ · · · ∧ Am).
Thus, if φ is SAT , an assignment exists that activates or deactivates each relax-
ation variable and makes all failing test assertions true. Hence, each satisfiable
assignment is a diagnosis of the C program, considering all failing tests.

Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases 473

MaxSAT Encoder. Let φ denote the CNF formula generated by CBMC in
the previous step. Next, CFaults generates a weighted partial MaxSAT formula
(H,S) to maximize the satisfaction of relaxation variables in the program, aiming
to minimize the necessary code alterations. The set of hard clauses is defined by
CBMC’s CNF formula (i.e., H = φ), while the soft clauses consist of unit clauses
representing relaxation variables used to instrument the C program, expressed as
S =

∧
c∈C (rvc). Additionally, we assign a hierarchical weight to each relaxation

variable based on the height of its sub-AST (Abstract Syntax Tree). For instance,
in the case of an if-statement without an else-block, the relaxation variable
for its condition will be assigned a weight equal to the sum of the weights of the
relaxation variables within the then-block. Furthermore, to prioritize the identi-
fication of faulty statements within the program’s logic over evaluating issues in
the input/output, these statements (such as scanf and printf) are assigned a
significantly higher cost compared to other program statements. Moreover, due
to the use of hierarchical weights in the relaxation variables, CFaults enumer-
ates all MaxSAT solutions to identify all subset-minimal diagnoses since there
can be more than one MaxSAT solution (with the same cost) that differ in the
number of relaxed program statements.

Oracle. CFaults invokes a MaxSAT solver to determine the program’s minimal
set of faulty statements, aligning with the principles of Model-Based Diagnosis
(MBD) theory. By consolidating all failing tests into a unified, unrolled, and
instrumentalized program, the MaxSAT solution identifies the minimum subset
of statements requiring removal to fulfil the assertions of all failing tests.

474 P. Orvalho et al.

Refinement. The standard Model-Based Diagnosis (MBD) theory focuses on
faulty components (program statements) whose removal can rectify the system
(program’s assertions). However, addressing program faults in software may
necessitate introducing, relocating, or replacing statements. Hence, CFaults
incorporates a refinement step that introduces nondeterminism into the pro-
gram, enabling the Oracle to simulate actions such as introducing, reallocating
or replacing existing program statements. During the first iteration of CFaults,
the refinement step is invoked to introduce non-determinism, with the aim of
minimizing the number of faulty statements. This step can improve fault local-
ization by conducting a more detailed analysis of previously identified faulty
statements. For example, in the scenario outlined in Example 1, refining line 5
into

enables CFaults to determine that only the left part of the binary operation
(f < s) is faulty, while the right part remains unaffected. This fine-grained app-
roach allows for more precise detection of program faults. When the refinement
step is triggered, CFaults instrumentalizes the program again, introducing non-
determinism exclusively to the statements previously identified as faulty during
the initial Oracle call. Through this process, CFaults aims to reduce the set of
faulty program components by executing them or assigning them to nondeter-
ministic functions. All remaining program components are executed, meaning
their relaxation variables are activated during this step.

5 Experimental Results

All of the experiments were conducted on an Intel(R) Xeon(R) Silver computer
with 4210R CPUs @ 2.40 GHz running Linux Debian 10.2, using a memory limit
of 32 GB and a timeout of 3600 s, for each program. CFaults has been eval-
uated using two distinct benchmarks of C programs: TCAS [10] and C-Pack-
IPAs [27]. TCAS stands out as a well-known program benchmark extensively
utilized in the fault localization literature [18,21]. This benchmark comprises a
C program from Siemens and 41 versions with intentionally introduced faults,
with known positions and types of these faults. Conversely, C-Pack-IPAs is a
set of student programs collected during an introductory programming course.
For this evaluation, we used the first lab class of C-Pack-IPAs, which consists
of ten programming assignments, comprising 486 faulty programs and 799 cor-
rect implementations. C-Pack-IPAs has proven successful in evaluating various
works across program analysis [32], program transformation [28], and cluster-
ing [31].

CFaults uses pycparser [33] for unrolling and instrumentalizing C pro-
grams. Additionally, CBMC version 5.11 is used to encode C programs into
CNF formulas. Furthermore, since the source code of BugAssist and SNIPER
is either unavailable or no longer maintained (resulting in compilation and link-
ing issues), prototypes of their algorithms were implemented. It is worth noting
that the original version of SNIPER could only analyze programs that utilized

Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases 475

Table 3. BugAssist, SNIPER and CFaults fault localization results.

Benchmark: TCAS
Valid

Diagnosis
Memouts Timeouts

BugAssist 41 (100.0%) 0 (0.0%) 0 (0.0%)
SNIPER 7 (17.07%) 34 (82.93%) 0 (0.0%)
CFaults 41 (100.0%) 0 (0.0%) 0 (0.0%)
CFaults-Refined 41 (100.0%) 0 (0.0%) 0 (0.0%)

Benchmark: C-Pack-IPAs
Valid

Diagnosis
Memouts Timeouts

BugAssist 454 (93.42%) 0 (0.0%) 32 (6.58%)
SNIPER 446 (91.77%) 4 (0.82%) 36 (7.41%)
CFaults 483 (99.38%) 1 (0.21%) 2 (0.41%)
CFaults-Refined 482 (99.18%) 1 (0.21%) 3 (0.62%)

a subset of ANSI-C, lacked support for loops and recursion, and could only par-
tially handle global variables, arrays, and pointers. In this work, both SNIPER
and BugAssist handle ANSI-C programs, as their algorithms are built on top
of CFaults’s unroller and instrumentalizer modules. For the MaxSAT oracle,
RC2Stratified [15] from the PySAT toolkit [14] (v. 0.1.7.dev19) was used.

Furthermore, all three FBFL algorithms evaluated (CFaults, BugAssist,
and SNIPER) consistently generate diagnoses that are consistent with (5), indi-
cating that all proposed diagnoses undergo validation by CBMC once the algo-
rithm provides a diagnosis. However, this validation primarily serves to verify
diagnoses generated by BugAssist, as it has the capability to produce diagnoses
that may not align with all failing test cases. In contrast, CFaults’ MaxSAT
solution, by definition, aligns with all observations, and SNIPER’s aggregation
method (Cartesian product) produces only valid diagnoses, although they may
not always be subset-minimal. When considering BugAssist, we iterate through
all computed diagnoses based on BugAssist’s voting score, until we identify one
diagnosis that is consistent with all observations, i.e., conforms to (5).

Table 3 provides an overview of the results obtained using SNIPER, BugAs-
sist, and CFaults on the two benchmarks of C programs. The TCAS program
comprises approximately 180 lines of code and has a maximum of 131 failing tests
for each program. This leads SNIPER to reach the memory limit of 32 GB for
almost 83% of the programs when aggregating the sets of MCSes computed for
each failing test. Additionally, a higher rate of timeouts is observed for SNIPER
and BugAssist than for CFaults. Figure 2a and 2b depict cactus plots that
present the CPU time spent on fault localization in each program (y-axis) ver-
sus the number of programs with all faults successfully localized (x-axis) using
BugAssist, SNIPER, and CFaults (with and without refinement) on TCAS
and C-Pack-IPAs, respectively. Notably, CFaults generally exhibits faster per-
formance compared to BugAssist and SNIPER across both benchmarks. In
Fig. 2a, SNIPER’s performance is due to its memout rate on TCAS.

In TCAS, CFaults, whether invoking the refinement step or not, identifies
faults in the entire dataset. However, in C-Pack-IPAs, CFaults localizes faults
in one additional program when the refinement step is not called. Even if the
refinement step reaches the time limit, CFaults still possesses a subset-minimal
diagnosis from the preceding step that has not undergone refinement. The refine-
ment step slightly slows down CFaults, as shown in Fig. 2a and 2b. Nonetheless,
Fig. 2c illustrates a scatter plot comparing the optimum costs (MaxSAT solu-

476 P. Orvalho et al.

Fig. 2. Comparison between BugAssist’s, SNIPER’s and CFaults’ diagnoses.

tion’s cost) achieved by CFaults with and without calling the refinement step
on C-Pack-IPAs. Each point on this plot represents a faulty program, where
the x-value (resp. y-value) represents the optimum cost of CFaults’ with refine-
ment (resp. without refinement) diagnosis. If a point lies above the diagonal, it
indicates that a non-refined diagnosis has a higher cost than a refined diagnosis
for the same program. Therefore, while the refinement step may marginally slow
down CFaults, it enables CFaults to identify smaller diagnoses at a reduced
cost in approximately 16% of C-Pack-IPAs’s programs. Moreover, this observa-
tion was not noted in the TCAS dataset, as each program contains a maximum
of two faults, and the refinement step did not yield improved outcomes in this
particular dataset.

Additionally, Fig. 2d illustrates a scatter plot comparing the diagnoses’ costs
achieved by CFaults (x-axis) against BugAssist (y-axis) on C-Pack-IPAs.
BugAssist fails to provide an optimal diagnosis in almost 6% of cases. In the
TCAS benchmark, although BugAssist manages to localize faults in all pro-
grams, it yields a non-optimal diagnosis in 10% of the programs. Furthermore,
Fig. 2e depicts a scatter plot comparing the number of diagnoses generated by
CFaults (x-axis) against SNIPER (y-axis). While CFaults needs to enumer-
ate all MaxSAT solutions due to the weighted MaxSAT formula, it is evident
that SNIPER generates significantly more diagnoses than CFaults. This dis-

Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases 477

crepancy suggests that SNIPER overlooks the possibility of redundant diag-
noses being computed. The number of such redundant diagnoses is much larger
than the subset-minimal diagnoses generated by CFaults. Figure 2e illustrates
that in some instances, SNIPER may enumerate up to 100K diagnoses, whereas
CFaults generates less than 10.

As a validation step for our implementation, we analyzed all three fault local-
ization methods on the collection of 799 correct programs in C-Pack-IPAs. This
was done to ensure that all methods yielded zero faults for all correct implemen-
tations of each programming exercise. Moreover, we conducted a comparison
between CFaults and the HSD algorithm [16] (see Sect. 3) on the ISCAS85
dataset [13], which is a widely studied collection of single-fault circuits. It is
worth noting that HSD’s implementation currently only supports fault localiza-
tion in circuits. We encountered no performance issues during this comparison,
and both approaches successfully localized all faults within each circuit.

6 Related Work

Fault localization (FL) techniques typically fall into two main families: spectrum-
based (SBFL) and formula-based (FBFL). SBFL methods [1,2,26,38–40] esti-
mate the likelihood of a statement being faulty based on test coverage informa-
tion from both passing and failing test executions. While SBFL techniques are
generally fast, they may lack precision, as not all identified statements are likely
to be the cause of failures [23,35]. In contrast, FBFL approaches [11,12,17–
21,41,42] are considered exact. FBFL methods encode the fault localization
problem into several optimization problems aimed at identifying the minimum
number of faulty statements within a program. Typically, these methods perform
a MaxSAT call for each failing test, allowing them to individually identify a min-
imal set of faults for each failing test case rather than simultaneously addressing
all failing test cases. Program slicing [35,37,43] has also emerged as a technique
for localizing faults within programs. A more syntactic FBFL approach [35] is
to use program slicing to enumerate all minimal sets of repairs for a given faulty
program. Another method for identifying the causes of faulty program behaviour
involves analyzing the variances between various versions of the software [43].
Refinement has a long-standing tradition in verification; particularly for refining
abstractions of reachable states [4,6,7]. In that sense, our form of refinement is
different because it enables us to more precisely pinpoint faults of the user, at
the sub-expression level.

7 Conclusion

This paper introduces a novel formula-based fault localization technique for C
programs capable of addressing any number of faults. Leveraging Model-Based
Diagnosis (MBD) with multiple observations, CFaults consolidates all failing
test cases into a unified MaxSAT formula, ensuring consistency in the fault
localization process. Experimental evaluations on TCAS and C-Pack-IPAs,

478 P. Orvalho et al.

show that CFaults is faster than other FBFL approaches like BugAssist and
SNIPER. Furthermore, CFaults only generates minimal diagnoses of faulty
statements, while other methods tend to produce redundant diagnoses.

Acknowledgements. This work was partially supported by Portuguese national
funds through FCT, under projects UIDB/50021/2020 (DOI: 10.54499/UIDB/50021/-
2020), PTDC/CCI-COM/2156/2021 (DOI: 10.54499/PTDC/CCI-COM/2156/2021)
and 2022.03537.PTDC (DOI: 10.54499/2022.03537.PTDC) and grant SFRH/BD/-
07724/2020 (DOI: 10.54499/2020.07724.BD). PO acknowledges travel support from
the European Union’s Horizon 2020 research and innovation programme under ELISE
Grant Agreement No 951847. This work was also supported by the MEYS within
the program ERC CZ under the project POSTMAN no. LL1902 and co-funded
by the European Union under the project ROBOPROX (reg. no. CZ.02.01.01/00/-
22_008/0004590). This article is part of the RICAIP project that has received funding
from the EU’s Horizon 2020 research and innovation program under grant agreement
No 857306.

Data Availability Statement. CFaults’ implementation, our prototypes for
BugAssist and SNIPER, and the evaluation benchmarks, TCAS [10] and C-Pack-
IPAs [29], used for the evaluation in this paper, are publicly available on Zenodo [30].

References

1. Abreu, R., Zoeteweij, P., van Gemund, A.J.C.: Spectrum-based multiple fault local-
ization. In: ASE 2009, 24th IEEE/ACM International Conference on Automated
Software Engineering, Auckland, New Zealand, November 16-20 2009, pp. 88–99.
IEEE Computer Society (2009). https://doi.org/10.1109/ASE.2009.25

2. Abreu, R., Zoeteweij, P., Golsteijn, R., van Gemund, A.J.C.: A practical evaluation
of spectrum-based fault localization. J. Syst. Softw. 82(11), 1780–1792 (2009).
https://doi.org/10.1016/J.JSS.2009.06.035

3. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

4. Clarke, E.M., Grumberg, O., Kroening, D., Peled, D.A., Veith, H.: Model checking,
2nd Edition. MIT Press (2018). https://mitpress.mit.edu/books/model-checking-
second-edition

5. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2_15

6. Clarke, E.M., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of
ANSI-C programs using SAT. Formal Methods Syst. Des. 25(2–3), 105–127 (2004).
https://doi.org/10.1023/B:FORM.0000040025.89719.F3

7. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate
abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-31980-1_40

8. Clarke, E.M., Kroening, D., Yorav, K.: Behavioral consistency of C and verilog pro-
grams using bounded model checking. In: Proceedings of the 40th Design Automa-
tion Conference, DAC 2003, Anaheim, CA, USA, 2-6 June 2003, pp. 368–371. ACM
(2003). https://doi.org/10.1145/775832.775928

https://doi.org/10.1109/ASE.2009.25
https://doi.org/10.1016/J.JSS.2009.06.035
https://mitpress.mit.edu/books/model-checking-second-edition
https://mitpress.mit.edu/books/model-checking-second-edition
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1023/B:FORM.0000040025.89719.F3
https://doi.org/10.1007/978-3-540-31980-1_40
https://doi.org/10.1007/978-3-540-31980-1_40
https://doi.org/10.1145/775832.775928

Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases 479

9. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13(4), 451–490 (1991). https://doi.org/10.1145/
115372.115320

10. Do, H., Elbaum, S.G., Rothermel, G.: Supporting controlled experimentation with
testing techniques: an infrastructure and its potential impact. Empir. Softw. Eng.
10(4), 405–435 (2005). https://doi.org/10.1007/S10664-005-3861-2

11. Feser, J.K., Chaudhuri, S., Dillig, I.: Synthesizing data structure transformations
from input-output examples. In: Proceedings of the 36th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, Portland, OR, USA,
15-17 June 2015, pp. 229–239 (2015)

12. Griesmayer, A., Staber, S., Bloem, R.: Automated fault localization for C pro-
grams. In: Bloem, R., Roveri, M., Somenzi, F. (eds.) Proceedings of the Workshop
on Verification and Debugging, V&D@FLoC 2006, Seattle, WA, USA, 21 August
2006. Electronic Notes in Theoretical Computer Science, vol. 174, pp. 95–111. Else-
vier (2006). https://doi.org/10.1016/J.ENTCS.2006.12.032

13. Hansen, M.C., Yalcin, H., Hayes, J.P.: Unveiling the ISCAS-85 benchmarks: a
case study in reverse engineering. IEEE Des. Test Comput. 16(3), 72–80 (1999).
https://doi.org/10.1109/54.785838

14. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: a Python toolkit for proto-
typing with SAT oracles. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018.
LNCS, vol. 10929, pp. 428–437. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-94144-8_26

15. Ignatiev, A., Morgado, A., Marques-Silva, J.: RC2: an efficient MaxSAT solver. J.
Satisf. Boolean Model. Comput. 11(1), 53–64 (2019)

16. Ignatiev, A., Morgado, A., Weissenbacher, G., Marques-Silva, J.: Model-based
diagnosis with multiple observations. In: Kraus, S. (ed.) Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI
2019, Macao, China, 10-16 August 2019, pp. 1108–1115. (2019). https://doi.org/
10.24963/IJCAI.2019/155, https://www.ijcai.org/

17. Jose, M., Majumdar, R.: Bug-Assist: assisting fault localization in ANSI-C pro-
grams. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
504–509. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1_40

18. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum
satisfiability. In: Proceedings of the 32nd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2011, pp. 437–446. ACM
(2011)

19. Könighofer, R., Bloem, R.: Automated error localization and correction for imper-
ative programs. In: Bjesse, P., Slobodová, A. (eds.) International Conference on
Formal Methods in Computer-Aided Design, FMCAD 2011, Austin, TX, USA,
October 30 - November 02, 2011, pp. 91–100. FMCAD Inc. (2011). http://dl.acm.
org/citation.cfm?id=2157671

20. Lamraoui, S.-M., Nakajima, S.: A formula-based approach for automatic fault
localization of imperative programs. In: Merz, S., Pang, J. (eds.) ICFEM 2014.
LNCS, vol. 8829, pp. 251–266. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11737-9_17

21. Lamraoui, S., Nakajima, S.: A formula-based approach for automatic fault local-
ization of multi-fault programs. J. Inf. Process. 24(1), 88–98 (2016). https://doi.
org/10.2197/IPSJJIP.24.88

https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
https://doi.org/10.1007/S10664-005-3861-2
https://doi.org/10.1016/J.ENTCS.2006.12.032
https://doi.org/10.1109/54.785838
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.24963/IJCAI.2019/155
https://doi.org/10.24963/IJCAI.2019/155
https://www.ijcai.org/
https://doi.org/10.1007/978-3-642-22110-1_40
https://doi.org/10.1007/978-3-642-22110-1_40
http://dl.acm.org/citation.cfm?id=2157671
http://dl.acm.org/citation.cfm?id=2157671
https://doi.org/10.1007/978-3-319-11737-9_17
https://doi.org/10.1007/978-3-319-11737-9_17
https://doi.org/10.2197/IPSJJIP.24.88
https://doi.org/10.2197/IPSJJIP.24.88

480 P. Orvalho et al.

22. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Autom. Reason. 40(1), 1–33 (2008). https://doi.org/10.
1007/S10817-007-9084-Z

23. Liu, K., Koyuncu, A., Bissyandé, T.F., Kim, D., Klein, J., Le Traon, Y.: You cannot
fix what you cannot find! an investigation of fault localization bias in benchmarking
automated program repair systems. In: 2019 12th IEEE Conference on Software
Testing, Validation and Verification (ICST), pp. 102–113. IEEE (2019)

24. Marques-Silva, J., Janota, M., Ignatiev, A., Morgado, A.: Efficient model based
diagnosis with maximum satisfiability. In: Yang, Q., Wooldridge, M.J. (eds.) Pro-
ceedings of the Twenty-Fourth International Joint Conference on Artificial Intel-
ligence, IJCAI 2015, Buenos Aires, Argentina, 25-31 July 2015, pp. 1966–1972.
AAAI Press (2015). http://ijcai.org/Abstract/15/279

25. Metodi, A., Stern, R., Kalech, M., Codish, M.: A novel sat-based approach to
model based diagnosis. J. Artif. Intell. Res. 51, 377–411 (2014). https://doi.org/
10.1613/JAIR.4503

26. Naish, L., Lee, H.J., Ramamohanarao, K.: A model for spectra-based software
diagnosis. ACM Trans. Softw. Eng. Methodol. 20(3), 11:1–11:32 (2011). https://
doi.org/10.1145/2000791.2000795

27. Orvalho, P., Janota, M., Manquinho, V.: C-Pack of IPAs: a C90 program bench-
mark of introductory programming assignments. CoRR abs/2206.08768 (2022).
https://doi.org/10.48550/arXiv.2206.08768

28. Orvalho, P., Janota, M., Manquinho, V.: MultIPAs: applying program transforma-
tions to introductory programming assignments for data augmentation. In: Pro-
ceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE 2022, pp.
1657–1661. ACM, Singapore (2022). https://doi.org/10.1145/3540250.3558931

29. Orvalho, P., Janota, M., Manquinho, V.: C-Pack of IPAs: a C90 program bench-
mark of introductory programming assignments. In: International Workshop on
Automated Program Repair, APR@ICSE 2024, Lisbon, Portugal, April 20, 2024,
pp. – (2024). https://doi.org/10.1145/3643788.3648010

30. Orvalho, P., Janota, M., Manquinho, V.: CFaults: model-based diagnosis for fault
localization in C with multiple test cases (2024). https://doi.org/10.5281/zenodo.
12510220, https://github.com/pmorvalho/CFaults

31. Orvalho, P., Janota, M., Manquinho, V.: InvAASTCluster: on applying invariant-
based program clustering to introductory programming assignments (2022).
https://doi.org/10.48550/ARXIV.2206.14175, https://arxiv.org/abs/2206.14175

32. Orvalho, P., Piepenbrock, J., Janota, M., Manquinho, V.M.: Graph neural net-
works for mapping variables between programs. In: ECAI 2023 - 26th European
Conference on Artificial Intelligence. Frontiers in Artificial Intelligence and Appli-
cations, vol. 372, pp. 1811–1818. IOS Press, Poland (2023). https://doi.org/10.
3233/FAIA230468

33. pycparser (2024). https://github.com/eliben/pycparser. Accessed 18 April 2024
34. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95

(1987). https://doi.org/10.1016/0004-3702(87)90062-2
35. Rothenberg, B.-C., Grumberg, O.: Must fault localization for program repair. In:

Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 658–680. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-53291-8_33

36. Safarpour, S., Mangassarian, H., Veneris, A.G., Liffiton, M.H., Sakallah, K.A.:
Improved design debugging using maximum satisfiability. In: Formal Methods
in Computer-Aided Design, 7th International Conference, FMCAD 2007, Austin,

https://doi.org/10.1007/S10817-007-9084-Z
https://doi.org/10.1007/S10817-007-9084-Z
http://ijcai.org/Abstract/15/279
https://doi.org/10.1613/JAIR.4503
https://doi.org/10.1613/JAIR.4503
https://doi.org/10.1145/2000791.2000795
https://doi.org/10.1145/2000791.2000795
https://doi.org/10.48550/arXiv.2206.08768
https://doi.org/10.1145/3540250.3558931
https://doi.org/10.1145/3643788.3648010
https://doi.org/10.5281/zenodo.12510220
https://doi.org/10.5281/zenodo.12510220
https://github.com/pmorvalho/CFaults
https://doi.org/10.48550/ARXIV.2206.14175
https://arxiv.org/abs/2206.14175
https://doi.org/10.3233/FAIA230468
https://doi.org/10.3233/FAIA230468
https://github.com/eliben/pycparser
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1007/978-3-030-53291-8_33

Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases 481

Texas, USA, 11-14 November 2007, Proceedings, pp. 13–19. IEEE Computer Soci-
ety (2007). https://doi.org/10.1109/FAMCAD.2007.26

37. Soremekun, E.O., Kirschner, L., Böhme, M., Zeller, A.: Locating faults with pro-
gram slicing: an empirical analysis. Empir. Softw. Eng. 26(3), 51 (2021). https://
doi.org/10.1007/S10664-020-09931-7

38. Wong, W.E., Debroy, V., Choi, B.: A family of code coverage-based heuristics for
effective fault localization. J. Syst. Softw. 83(2), 188–208 (2010). https://doi.org/
10.1016/J.JSS.2009.09.037

39. Wong, W.E., Debroy, V., Gao, R., Li, Y.: The Dstar method for effective software
fault localization. IEEE Trans. Reliab. 63(1), 290–308 (2014). https://doi.org/10.
1109/TR.2013.2285319

40. Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault
localization. IEEE Trans. Software Eng. 42(8), 707–740 (2016). https://doi.org/
10.1109/TSE.2016.2521368

41. Wotawa, F., Nica, M., Moraru, I.: Automated debugging based on a constraint
model of the program and a test case. J. Log. Algebraic Methods Program 81(4),
390–407 (2012). https://doi.org/10.1016/J.JLAP.2012.03.002

42. Xie, Y., Aiken, A.: Scalable error detection using Boolean satisfiability. In: Pals-
berg, J., Abadi, M. (eds.) Proceedings of the 32nd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2005, Long Beach, Cal-
ifornia, USA, 12-14 January 2005, pp. 351–363. ACM (2005). https://doi.org/10.
1145/1040305.1040334

43. Zeller, A.: Yesterday, my program worked. today, it does not. why? In: Nierstrasz,
O., Lemoine, M. (eds.) ESEC/SIGSOFT FSE -1999. LNCS, vol. 1687, pp. 253–267.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48166-4_16

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/FAMCAD.2007.26
https://doi.org/10.1007/S10664-020-09931-7
https://doi.org/10.1007/S10664-020-09931-7
https://doi.org/10.1016/J.JSS.2009.09.037
https://doi.org/10.1016/J.JSS.2009.09.037
https://doi.org/10.1109/TR.2013.2285319
https://doi.org/10.1109/TR.2013.2285319
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1016/J.JLAP.2012.03.002
https://doi.org/10.1145/1040305.1040334
https://doi.org/10.1145/1040305.1040334
https://doi.org/10.1007/3-540-48166-4_16
http://creativecommons.org/licenses/by/4.0/

Detecting Speculative Execution
Vulnerabilities on Weak Memory Models

Nicholas Coughlin , Kait Lam , Graeme Smith(B) , and Kirsten Winter

Defence Science and Technology Group, Australia
School of Electrical Engineering and Computer Science,

The University of Queensland, Brisbane, Australia
g.smith1@uq.edu.au

Abstract. Speculative execution attacks affect all modern processors
and much work has been done to develop techniques for detection of asso-
ciated vulnerabilities. Modern processors also operate on weak memory
models which allow out-of-order execution of code. Despite this, there
is little work on looking at the interplay between speculative execution
and weak memory models. In this paper, we provide an information flow
logic for detecting speculative execution vulnerabilities on weak memory
models. The logic is general enough to be used with any modern proces-
sor, and designed to be extensible to allow detection of vulnerabilities
to specific attacks. The logic has been proven sound with respect to an
abstract model of speculative execution in Isabelle/HOL.

1 Introduction

Speculative execution is a hardware optimisation in which the processor uses
latent processing cycles to continue executing instructions based on a predicted
value of an unevaluated expression, such as a branch condition. If the subse-
quent evaluation of the expression agrees with the prediction, the results of the
executed instructions are committed to main memory, otherwise they are rolled
back. This optimisation came to the forefront of computer security in 2018 with
the disclosure of two related security attacks, Spectre [24] and Meltdown [25].
These were followed by the publication of a number of other speculative execution
attacks [4,5,9,22,34,35,42], each taking advantage of traces of the speculatively
executed code remaining in caches, and other micro-architectural features, after
roll-back.

While much has been done to detect speculative vulnerabilities in code [8],
most of this work has not considered additional hardware optimisations related to
a processor’s weak memory model [39]. All commercial processors (x86 processors
of Intel and AMD, ARM processors, IBM Power, etc.) operate under a weak
memory model which, again to make use of latent processing cycles, allows out-
of-order execution of instructions. This out-of-order execution is constrained
on individual threads so that only syntactically independent instructions may
execute out-of-order, thereby guaranteeing behaviour equivalent to the original
program order.
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 482–500, 2025.
https://doi.org/10.1007/978-3-031-71162-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_25&domain=pdf
http://orcid.org/0000-0001-8758-0666
http://orcid.org/0009-0001-2599-2259
http://orcid.org/0000-0003-1019-4761
http://orcid.org/0000-0002-8519-2026
https://doi.org/10.1007/978-3-031-71162-6_25

Detecting Speculative Execution Vulnerabilities on Weak Memory Models 483

While many programmers can therefore ignore weak memory effects, those
utilising data races for efficiency (e.g., programmers of low-level code of operating
system routines or library components) cannot. In the presence of data races,
weak memory effects can result in behaviour not apparent in the code itself.
As we show in this paper, this can lead to additional speculative execution
vulnerabilities. To the best of our knowledge, we are the first to show that such
vulnerabilities are possible.

Early work on weak memory models and security includes that by Vaughan
and Milstein [41] (for the x86 weak memory model TSO) and Mantel et al. [27]
(for TSO, PSO and IBM-370). These papers highlight security violations that are
not detectable using standard approaches to information flow security. In [37,38],
Smith et al. provide an information flow logic for the significantly weaker mem-
ory models of ARMv8 and IBM Power processors. This approach builds on the
work of Mantel et al. [28] which uses a restricted form of rely/guarantee reason-
ing [23,44] to allow reasoning to be done over one thread of a concurrent program
at a time. The approach is adapted to more general rely/guarantee reasoning
on the ARMv8 weak memory model by Coughlin and Smith [13]. While this
approach has been automated using symbolic execution, its inherent complexity
limits the size of the programs that can be effectively handled. In further work
by Coughlin et al. [14,15], this complexity is significantly reduced via a general
approach that allows standard reasoning (assuming instructions execute in pro-
gram order) to be augmented with additional reordering interference freedom
(rif) checks to account for the effects of a given weak memory model. As well
as being simpler to apply, the approach is parameterised by the weak memory
model and hence can be applied to any currently available processor.

In this paper, we adopt the rif approach and use it with an information flow
logic developed specifically for detecting speculative execution vulnerabilities.
In Sect. 2, we provide a brief overview of Spectre-like attacks and show via an
example how weak memory effects can introduce additional speculative execu-
tion vulnerabilities. In Sect. 3, we provide an overview of the work on which
we build: an existing information flow logic for concurrent programs [43] and
the aforementioned work on rif to capture weak memory effects [14]. Our logic
for detecting speculative execution vulnerabilities is presented and applied to
our example from Sect. 2 in Sect. 4. We compare our approach to the current
literature in Sect. 5 before concluding in Sect. 6.

2 Speculative Execution Attacks

Speculative execution has been liberally applied in processor design as chip-
makers seek to maximise performance. As a result, there are many sources of
speculation and hence many associated attacks. Canella et al. [6] taxonomise
speculative execution attacks and, in doing so, reveal additional avenues for
mistraining applicable to all such attacks.

Spectre attacks [24] exploit deficiencies in the process of reverting incorrect
speculations. Although their primary effects are reversed, their microarchitec-
tural side-effects are reverted incompletely or not at all. Through timing side

484 N. Coughlin et al.

channels, an attacker can trace these side-effects and infer information accessed
during the speculation—potentially exposing sensitive information and break-
ing traditional software isolation. Variants of Spectre differ in the root of the
speculation they exploit and also in the side channel they use to extract the
information. In this paper, we focus on Spectre-PHT, variant 1 reported in the
initial discovery of Spectre vulnerabilities by Kocher et al. [24].

2.1 Spectre-PHT

In Spectre-PHT, the source of speculation is a conditional branch. By mistraining
the pattern history table (PHT), an attacker forces the victim code to bypass a
bounds check, indexing an array out of bounds and potentially accessing sensitive
information. If that information is used to index another array, the array’s value
at that index is loaded into the cache. Since the cache line is not reverted when
speculation is cancelled, the sensitive information can be revealed by a timing
difference when accessing values of the array.

The typical Spectre-PHT gadget (from [24]) is shown below. If the second
line is speculatively executed when the guard in the first line is false, the value
of array1[x] multiplied by the cache line size (4096) is used to load a value of
array2. After roll-back, a cache timing attack will reveal the cache line which
was used from which the value of array1[x] can be derived.

if (x < array1_size)
y := array2[array1[x] * 4096]

2.2 Spectre-PHT and Weak Memory

As well as speculative execution, multicore processors employ pipelining and
superscalar design to improve the efficiency of executed code. Several instruc-
tions are evaluated simultaneously and may take effect in an order different to
their order in the program. These additional weak memory effects can largely be
ignored when code is either not concurrent, or is concurrent but data-race free.
However, these effects do need to be considered when writing efficient low-level
code for device drivers and concurrent data structures. Low-level programming
constructs, in particular fences, can be used to control instruction ordering where
required.

Consider a program in which a variable c may hold sensitive information
whenever both of the lock variables, a and b, are non-zero indicating they are
held by a writing thread. Furthermore, neither a nor b change value once set to
0. In the example, we use a, b and c for global variables shared between threads,
and r0 to r3 for thread-local registers. We use the notation [r] for dereferencing
the address held in register r.

The reading thread below checks whether a is 0 before entering the branch.
The instructions before the if statement may take time leading to speculation
on the branch condition. In the branch, b and c are read and if b is 0, c’s
value is used as an offset from a non-sensitive base address in a subsequent read.

Detecting Speculative Execution Vulnerabilities on Weak Memory Models 485

The check of b is done using a conditional expression which is not subject to
speculation. Hence, when ignoring weak memory effects, the code does not enable
a Spectre-PHT attack based on the final read: when speculatively executing the
branch when a is non-zero, the conditional expression evaluates to 0 when b is
also non-zero.

r0 := a;
r1 := r1 ^ r1; // exclusive-or sets r1 to 0
if (r0 = r1)

r0 := b; // this line could reorder with the next
r1 := c;
r2 := (r0=0) ? base + r1 : 0;
r3 := [r2]; // Spectre attack enabled if r2 is sensitive

On all current microprocessors, however, the syntactically independent reads
of b and c could be reordered leading to the following scenario. During specu-
lative execution of the branch, a sensitive value held in c is read due to both a
and b being non-zero. A thread in the environment then sets c to a non-sensitive
value and a and b to 0. Finally, b is read and, since it is now 0, the earlier
sensitive value of c is used in the final read.

It is precisely such vulnerabilities that this paper aims to detect. Weak mem-
ory reasoning or speculative execution analysis alone would not reveal the issue.

3 Background

Our information flow logic for detecting Spectre-style vulnerabilities builds on
the existing information flow logic of Winter et al. [43]. That logic introduces
proof obligations during weakest precondition (wp) reasoning [16,17] to detect
insecure information flow: the failure of such a proof obligation implies it is
possible for sensitive information to leak to a variable accessible by an attacker.

The logic is sound with respect to the standard notion of non-interference
[19] where the values of variables with a particular security classification are not
influenced by the values of those with higher classifications. Hence, an attacker
who can observe the former cannot deduce anything about the latter. This has
been demonstrated in Isabelle/HOL over a programming language introduced
in [43] with an extension to support simple array operations.

The logic also supports value-dependent security policies which enable a vari-
able’s security classification to change as the program executes [26,30,32], and
thread-local analysis of concurrent code using rely/guarantee reasoning [23,44].
It does not, however, support reasoning on weak memory models. Hence, in
this paper we also employ the notion of reordering interference freedom (rif)
checks [14] to detect additional vulnerabilities due to weak memory. As detailed
in [14,15], rif is readily customised to different processor architectures. It has
also been automated and shown to be sound both on a simple while language
and an abstraction of ARMv8 assembly code using Isabelle/HOL.

486 N. Coughlin et al.

3.1 Weakest Precondition Based Information Flow Reasoning

As is standard in information flow logics, Winter et al. [43] define the security
levels relevant to a program as the elements of a lattice (L,�) where each pair
of elements a, b ∈ L has a join, i.e., least upper bound, denoted by a � b, and
a meet, i.e., greatest lower bound, denoted by a � b. The top of the lattice �
represents the highest security classification, and the bottom ⊥ the lowest.

A weakest precondition logic traditionally captures, at each point in a pro-
gram, the weakest predicate needed to maintain correctness from that point in
the code. To additionally capture information flow, the wpif logic defined in [43]
includes for each variable v an additional variable Γv (of type L) denoting the
security level of the information currently held by the variable.

Variables are partitioned into global variables, which can be accessed by more
than one thread, and local variables which cannot. In a secure program, for
all global variables the security level of the information it holds is less than
the variable’s security classification. The latter, denoted L(v), is a conditional
expression that evaluates to a value of type L depending on the current program
state, i.e., its classification may depend on other variables referred to in this
context as control variables. Formally, a global variable in a secure program
always satisfies Γv � L(v). That is, variables never hold information at a higher
security level than their classification, ensuring non-interference. Local variables
are not accessible by an attacker, and thus may hold information at any security
level. Hence, their security classification is by default the top of the lattice.

When checking whether a particular line of code can leak information, it is
assumed that the program is secure up to that point. Hence, for global variables
Γx � L(x) is used to denote the security level of the information in variable x .
When it is not possible to deduce Γx from a program’s code, e.g., when x has
been assigned to an input, the meet in this expression ensures that its value will
not exceed L(x).

The security level of an expression e in terms of local variables and liter-
als, denoted ΓE (e), is defined as the join of the security levels of the variables
to which e refers. That is, ΓE (e) = �r∈vars(e) Γr where vars(e) denotes the
variables occurring in e.

As an example, the wpif rule for an assignment to a global variable x := e
replaces each occurrence of variable x with expression e in the post-state Q , and
each occurrence of Γx with ΓE (e) (denoted Q [x , Γx\e, ΓE (e)]). Additionally, a
proof obligation is added to Q to ensure that this change does not violate non-
interference. This amounts to checking that

(i) the security level of e is not higher than the security classification of x , and
(ii) since x ’s value may affect the security classification of other global variables,

for each such variable y , y ’s current security level Γy does not exceed its
updated security classification with e in place of x .

wpif (x := e,Q) = Q [x , Γx\e, ΓE (e)] ∧ ΓE (e) � L(x) ∧
(∀ y · Γy � L(y) � L(y)[x\e])

Detecting Speculative Execution Vulnerabilities on Weak Memory Models 487

Note that if y is not dependent on x , then L(y)[x\e] simplifies to L(y) making
the final proof obligation trivially true.

To analyse a thread within this framework, we would start with the predicate
true holding after the program and step backwards through the code, transform-
ing the predicate (from Q to Q ′) with Q ′ = wpif (α,Q) for each instruction α.
A true postcondition is used since we are focussed on information flow security
(whose proof obligations are introduced by the logic) and not functional correct-
ness (which would require a postcondition). The proof obligations added by the
wpif transformer at each step have been proven to ensure non-interference, i.e.,
that sensitive information is not leaked [43].

3.2 Extending with Rely/Guarantee Reasoning

To support reasoning about threads in a concurrent program, the wpif logic is
extended with rely/guarantee reasoning [23,44]. Each thread has a rely condition
R and guarantee condition G. The rely condition is a reflexive and transitive
relation on states that abstractly captures changes that the environment may
make to global variables. The guarantee condition is a reflexive relation on states
that abstractly captures changes to global variables that the thread itself is
allowed to make. Both conditions are expressed in terms of global variables x
and x ′, the latter representing the variable in the post-state of the relation.

For each instruction α which updates global variables, the corresponding
wpif rule is updated to include a proof obligation guar(G, α) which captures
the conditions under which executing α will ensure G. Additionally, all rules are
updated with a proof obligation that their other proof obligations are stable, i.e.,
cannot be falsified, under R. Given P comprises wpif (α,Q) and guar(G, α) if
applicable, stability of P is defined as stableR(P) = P ∧ (∀ glb′ · R ⇒ P ′) where
glb′ is the list of post-state global variables, and P ′ is the predicate P with all
global variables x replaced by x ′. The resulting logic is referred to as wpRG

if .

3.3 Reordering Interference Freedom

To take into account instruction reordering due to executing on a weak memory
model it is sufficient to check that such reordering cannot invalidate the logic’s
outcome for a particular program. To do this, we employ the reordering interfer-
ence freedom (rif) approach of Coughlin et al. [14]. This approach covers most
modern processor architectures (such as x86 and ARMv8) and can be extended
to cover all others as shown in [15]. Essentially the approach checks, for every
pair of reorderable instructions, α and β, that executing the instructions in the
reverse order does not introduce new behaviour. Reorderable instructions are
defined in terms of the specific hardware memory model, e.g., TSO, ARMv8,
based on the approach of Colvin and Smith [10].

For instructions α and β, let β′ ≺ α ≺ β be the predicate that β may reorder
before α where it is executed as β′ (changes to β are due to the possibility of
forwarding values from a later write instruction to an earlier read [10]). Given
the rely and guarantee conditions under which α and β execute, we define

488 N. Coughlin et al.

rifa(α, β) =̂ ∀Q · wpRG
if (α;β,Q) ⇒ wpRG

if (β′;α,Q)

which expresses that the order of execution of α and β does not affect the
security of their execution. This extends to programs p such that

rif (p) =̂ ∀ α, β ∈ p · (β′ ≺ α ≺ β) ⇒ rifa(α, β).

The rif approach is sound because it is defined over all possible post-states
Q . Hence, all traces (arising from different sequences of reorderings) under which
a reordering could occur are taken into account.

The approach separates the inter-thread interference (using rely/guarantee)
from the intra-thread (reordering) interference (using rif). That is, rif is thread-
local. For a thread with n instructions, the worst case is that every instruction
can reorder giving us n(n − 1)/2 reorderable pairs (significantly less than the n!
traces that such reordering would introduce). Note also that this worst case is
extremely unlikely. Instructions which refer to the same variable are not generally
reorderable.

Pairs of potentially reorderable instructions can be identified via a dataflow
analysis, similar to dependence analysis commonly used in compiler optimisa-
tion. We have previously provided such an automation for both a simple while
language and an abstraction of ARMv8 assembly code using Isabelle/HOL [14].

4 Information Flow Logic

Our approach to extend the logic of Winter et al. [43] with speculation is to
develop a weakest precondition transformer, wps , which operates over pairs of
predicates 〈Qs ,Q〉. The predicate Qs (resp. Q) represents the weakest precondi-
tion at that point in the program, assuming the processor is speculating (resp.
is not speculating).

Furthermore, proof obligations within Qs must distinguish between two ver-
sions of each global variable: base variables (those in the global state visible to
all threads), and frame variables (those in the local speculation frame of this
thread only). While speculating, writes and subsequent reads of global variables
will only access the frame variables. Reads of global variables without a previ-
ous write during speculation will access the base variables. Other threads will
concurrently read and write to the base variables. Within Qs , we denote base
variables with a � superscript so that predicates in terms of them will not be
transformed by wps over speculative instructions.

Conceptually, wps can be understood as two wp transformers, one for the
speculative case and one for the non-speculative case, running in parallel over
each instruction. For a program to be secure, its precondition must imply the
non-speculative weakest precondition. The speculative weakest precondition is
merged into the speculative one at each branching point. This framework enables
reasoning about speculation, even nested speculation, in a manner very similar
to ordinary wp reasoning and with minimal added complexity.

Detecting Speculative Execution Vulnerabilities on Weak Memory Models 489

4.1 Weakest Precondition with Speculation

For ease of presentation, we define wps over the instructions of a high-level
programming language representing assembly programs (as in [10]). The syntax
of an instruction, α, and a program, p, is defined as follows.

α ::= skip | r := e | r := x | x := e | fence | leak e
p ::= α | p ; p | if b then p else p | while b do p

where r is a local variable, x is a global variable, b a Boolean condition and
e an expression. Both b and e are in terms of local variables and literals only,
reflecting the use of registers for these values in assembly code. The language
includes a fence instruction which prevents reordering of instructions and also
terminates current speculative execution. A special ghost instruction1 leak e is
inserted into a program to indicate that the following instructions are a gadget
that leaks information through a micro-architectural side channel when executed
(speculatively, or otherwise).

Before analysing a program with our logic, we insert leak instructions before
each gadget of interest during a pre-pass over the code. Since typical gadgets
can be detected syntactically, this is a straightforward task to mechanise. The
expression e of the inserted leak instruction is based on what information leaks
when the gadget is used in an attack. For the example of Sect. 2.2 where the
memory access [r2] would leak r2, e would be r2. After this pre-pass the code is
analysed using our logic to determine whether the information leaked is possibly
sensitive and hence the gadget causes a security vulnerability. Note that not all
code conforming to the syntactic form of a gadget will enable a successful attack
on sensitive information.

Since the pre-pass can be customised for different gadgets, the overall app-
roach can be adapted to a variety of attacks, including new attacks as they are
discovered. We discuss adapting the approach for a number of existing specula-
tive execution attacks in Sect. 4.5.

The rules for our speculative execution logic wps build on those of wpif [43].
We extend them with rely/guarantee reasoning in Sect. 4.2. A formal proof in
Isabelle/HOL of the soundness of the resulting rules with respect to an abstract
semantics of speculative execution [11] is available online [12].
Skip: A skip instruction does not change the 〈Qs ,Q〉 tuple.

wps(skip, 〈Qs ,Q〉) = 〈Qs ,Q〉

Local assignment : Local variables may hold information at any security level and
cannot be used as control variables. Hence, we do not need the proof obligations

1 A ghost instruction is not part of the actual code and is used for analysis purposes
only.

490 N. Coughlin et al.

of global assignments detailed in Sect. 3.1. For assigning an expression e to a
local variable, we have

wps(r := e, 〈Qs ,Q〉) = 〈Qs [r , Γr\e, ΓE (e)],Q [r , Γr\e, ΓE (e)]〉 .

For assigning the value of a global variable x to a local variable, r := x ,
we need to modify the weakest precondition in the speculative state. Since we
do not know whether a load of x during speculation is of a frame variable or a
base variable (which is subject to interference from other threads) we need to
consider both cases. Let glb be the list of globals, i.e., all global variables x and
their associated Γx variables. For the case where the load is of the base variable,
we replace each y ∈ glb with y�. This ensures the predicate is not transformed
by speculative assignments as we reason backwards through the code. It is only
transformed by the assignments of other threads via the rely condition (as will
be described in Sect. 4.2), and so remains consistent with the actual values and
classifications of globals in terms of the base variables (which are shared with
other threads).

To ensure in the reasoning that the correct case is used, we distinguish the
cases by qualifying them with whether x has been written to during the spec-
ulation and hence is defined in the frame, or not. To do this, we introduce a
ghost variable xdef which is true when x is defined within the frame, and false
otherwise. When x is defined by an earlier write during speculation (and hence
the later load was from the frame) then xdef will be set to true (see the global
assignment rule below). This will cause the base case to be ignored, leaving just
the frame case.

If, on the other hand, there is no such earlier write to x , both cases reach
the start of speculation where xdef will be set to false (see the if and while rules
below). This will cause the frame case to be ignored, leaving just the base case.

Formally, we have

wps(r := x , 〈Qs ,Q〉) = 〈(xdef ⇒ Qs [r , Γr\x , Γx]) ∧
(¬xdef ⇒ Qs [r , Γr\x �, Γ �

x � L(x)[glb\glb�]]),
Q [r , Γr\x , Γx � L(x)]〉 .

where glb� is the list glb with each element y replaced by y�. Note that in the
base case of the speculative precondition all globals y are replaced by y�. This
ensures that they refer to the values of the base variables. In the frame case, on
the other hand, x and Γx refer to the frame variables and will be transformed
by wps over earlier speculative assignments.
Global assignment : An assignment to a global variable x := e sets xdef to true
and replaces each occurrence of variable x and Γx with expression e and security
level ΓE (e), respectively, in both Qs and Q . Additionally, in the non-speculative
case we have the proof obligations of wpif described in Sect. 3.1. The specula-
tive case does not have these proof obligations. Since a speculatively executed
assignment does not write to memory, it has no effect on the classification of
other variables.

Detecting Speculative Execution Vulnerabilities on Weak Memory Models 491

wps(x := e, 〈Qs ,Q〉) = 〈Qs [x , Γx , xdef \e, ΓE (e), true],
Q [x , Γx\e, ΓE (e)] ∧ ΓE (e) � L(x) ∧
(∀ y · Γy � L(y) � L(y)[x\e])〉

Fence: The fence instruction terminates any current speculative execution.
Hence, any proof obligations in the speculative state beyond the fence do not
need to be considered at the point in the program where a fence occurs. Qs is
therefore replaced by true and Q is unchanged.

wps(fence, 〈Qs ,Q〉) = 〈true,Q〉

Leak : The instruction leak e leaks the value of expression e via a micro-
architectural side channel, introducing a proof obligation into both Qs and Q .

wps(leak e, 〈Qs ,Q〉) = 〈Qs ∧ ΓE (e) = ⊥, Q ∧ ΓE (e) = ⊥〉
where ⊥ denotes the lowest value of the security lattice. Requiring that the

leaked information is at this level ensures that the attacker cannot deduce any-
thing new from the information, regardless of the level of information they can
observe.
Sequential composition: As in standard wp reasoning, sequentially composed
instructions transform the tuple one at a time.

wps(p1 ; p2, 〈Qs ,Q〉) = wps(p1,wps(p2, 〈Qs ,Q〉))

If-then-else: In general, an if statement might occur within a speculative context
(when nested in or following an earlier if , for example). The branch that is
followed speculatively is, in general, independent of that actually executed later.
Hence, the speculative proof obligations from both branches are conjoined to
form the speculative precondition.

Additionally, given that the if statement might initiate speculation, the specu-
lative proof obligations need to be merged into the non-speculative precondition.
We do this by (i) setting xdef for all global variables x to false in the speculative
precondition, leaving just the base case, and then (ii) renaming each global y�

to y so that the resulting speculative precondition Qs can be conjoined with the
non-speculative precondition Q .

Finally, a proof obligation ΓE (b) = ⊥ is added to the non-speculative precon-
dition. Such a proof obligation is common in information flow logics for concur-
rent programs since the value of b can readily be deduced using timing attacks
on such programs [31,37]. It is not necessary to also check this proof obligation

492 N. Coughlin et al.

in the speculative case whose purpose is to detect vulnerabilities that are not
detectable in the non-speculative case.

With 〈Qs1,Q1〉 = wps(p1, 〈Qs ,Q〉) and 〈Qs2,Q2〉 = wps(p2, 〈Qs ,Q〉),
we have

wps(if b then p1 else p2, 〈Qs ,Q〉) =
〈Qs1 ∧ Qs2, ΓE (b) = ⊥ ∧ (b ⇒ Q1) ∧ (¬ b ⇒ Q2) ∧

(Qs1 ∧ Qs2)[glb�, d1, ..., dn\glb, false, ..., false] 〉 .

where glb� is the list glb with all elements y replaced by y�, and d1, .., , dn is the
list of introduced ghost variables of the form xdef .
While-do: Similar to standard wp reasoning, we can soundly approximate the
weakest precondition of a loop by finding invariants which imply our speculative
and non-speculative postconditions, Qs and (when the loop guard is false) Q ,
and which are maintained by the loop body (when the loop guard is true in the
non-speculative case). As with the if rule, a proof obligation ΓE (b) = ⊥ must
hold in the non-speculative case.

wps(while b do p, 〈Qs ,Q〉) = 〈Invs , Inv〉

where Invs ⇒ Qs and Inv ⇒ ΓE (b) = ⊥ ∧ Invs [glb�, d1, ..., dn\glb, false, ...,
false] and Inv ∧ ¬ b ⇒ Q , and given wps(p, 〈Invs , Inv〉) = 〈Ps ,P〉, then Invs ⇒
Ps and Inv ∧ b ⇒ P . Like the if rule, the while rule copies the proof obligations in
the speculative precondition to the non-speculative precondition, and maintains
those in the speculative precondition in case the loop is reached within an existing
speculative context.

4.2 Rely/Guarantee and Reordering

Given 〈Ps ,P〉 = wps(α, 〈Qs ,Q〉), we account for a thread’s rely and guarantee
conditions, R and G, by ensuring that Ps and P are stable, i.e., cannot be
made false under changes allowed by R, and that α’s effects on global variables
satisfy G.

For Ps , frame variables y will be unaffected by the environment whereas base
variables y� represent the actual globals and will be subject to environmental
change. Ps , therefore, needs to be stable under idglb ∧ R[glb\glb�] where idglb
equates each y ∈ glb with y ′, and glb� is the list glb with all elements y renamed
to y�.

The guarantee G need only be considered for global assignments x := e as
these are the only instructions that affect the shared environment. For such
assignments, we require that G holds in P when e is used in place of x ′, and y
is used in place of y ′ for all other variables, i.e., these variables are unchanged
by the assignment. This is not needed for Ps , as globals are unchanged when
executing speculatively.

Detecting Speculative Execution Vulnerabilities on Weak Memory Models 493

Given glb′ (resp. glb�′) is the list glb with each element y replaced by y ′ (resp.
y�′), and 〈Ps ,P〉 = wps(α, 〈Qs ,Q〉), we define wpRG

s for instructions as

wpRG
s (α, 〈Qs ,Q〉) = 〈Ps ∧ (∀ glb′, glb�′ · idglb ∧ R[glb\glb�] ⇒ P ′

s),
P ∧ Gα ∧ (∀ glb′ · R ⇒ (P ∧ Gα)[glb\glb′]) 〉

where Gα is defined as G[x ′\e][glb′\glb] when α is x := e and as true for all
other instructions.

For program structures, e.g., sequential composition, wpRG
s is defined equiv-

alently to wps , with all recursive invocations replaced with wpRG
s and all loop

invariants stable under R.

4.3 Reordering Interference Freedom

Once a thread of our program has been proven secure with the logic wpRG
s ,

we separately check reordering interference freedom (rif). This will uncover any
problems due to reordering interference such as that in the example of Sect. 2.2.
For reasoning over state tuples of the logic wpRG

s , we define rifa as

rifa(α, β) = ∀Qs ,Q · wpRG
s (α;β, 〈Qs ,Q〉) ⇒ wpRG

s (β′;α, 〈Qs ,Q〉)

where 〈Qs1,Q1〉 ⇒ 〈Qs2,Q2〉 is defined to be (Qs1 ⇒ Qs2) ∧ (Q1 ⇒ Q2).

4.4 Example Revisited

Applying wpRG
s to the example of Sect. 2.2 results in a weakest precondition

of true, revealing no security vulnerability as expected when weak memory is
not taken into account. A rif check, however, reveals that the reordering of the
syntactically independent instructions r0 := b and r1 := c can lead to different
behaviour, indicating that the program may be insecure.

We investigate this possibility by applying wpRG
s to the example with the

instructions reordered in Fig. 1. We customise ΓE so that ΓE (rˆr) = ⊥ given
that the result of this expression will always be 0, and ΓE (e ? t : f) = ΓE (e) �
(if e then ΓE (t) else ΓE (f)) to reflect that the security level of the expression
will depend on just one of t or f . To improve precision, such customisations
would be built into the logic for expressions in the given programming language
to which it is applied.

We let R = (a = 0 ⇒ a ′ = 0) ∧ (b = 0 ⇒ b′ = 0) to capture that once either
a or b is zero it never changes. L(a) and L(b) are ⊥ (the lowest security level)
in any state, and L(c) is ⊥ whenever a = 0 ∨ b = 0. Where two predicate pairs
appear between lines of code, the upper one is a simplification of the lower. Since
there are no writes to global variables in the branch, for presentation purposes
we have only included those predicates in the speculative states corresponding
to all global variables being identified with the base variables (other predicates
are replaced with ...).

494 N. Coughlin et al.

None of the instructions change global variables, and hence there are no
guarantee checks. Stability checks are required, however, for those predicates in
terms of globals. The conjunct Γr1 = ⊥ above the line r0 := b is introduced as
there are no states in which the predicate b �= 0 is stable, i.e., b = 0 ⇒ Γr1 = ⊥
is stable only when Γr1 = ⊥.

Since a and b do not change when they are 0, and c does not hold sensitive
information when a or b are 0, the predicate Γc = ⊥ ∨ a = 0 ∨ b = 0 (above
the line r1 := c) is stable when a = 0 ∨ b = 0. Similarly, for the speculative
predicate Γ �

c = ⊥ ∨ a� = 0 ∨ b� = 0. Also, the predicate r0 = r1 ⇒ a = 0 ∨
b = 0 (above the line if (r0=r1)) is stable when a = 0 ∨ b = 0.

The calculated weakest precondition at the beginning of the example code is
a = 0 ∨ b = 0, indicating that the code is only secure when both locks are not
held. Therefore, the checks of a and b do not have the effect that the programmer
intended. The check on b fails due to the reordered loads on c and b, whereas the
check on a fails due to the incorrect speculation of the branch if (r0 = r1).
The latter is evident in its precondition constraining a = 0 ∨ b = 0 regardless of
the branch condition. Since not taking into account either instruction reordering

Fig. 1. Applying wpRG
s to a reordering of the example from Sect. 2.2.

Detecting Speculative Execution Vulnerabilities on Weak Memory Models 495

or speculation would be sufficient to establish a = 0 ∨ b = 0 (resulting in the
weakest precondition being true), this vulnerability can only be identified by
considering both.

4.5 Discussion

The use of leak instructions in our logic means we can readily customise it
to detect various speculative execution vulnerabilities. For example, to detect
Spectre variant 1 vulnerabilities, we would extend the logic with arrays (as
was done for the Isabelle/HOL encoding of wpif [43]). The expression e of the
leak instruction would be the value used for the final read in the standard gadget
(see Sect. 2.1). This simple extension of the logic would also allow us to detect (i)
BranchSpec vulnerabilities [9] where a sensitive value from a speculative array-
out-of-bounds access is used as a branching condition, and (ii) vulnerabilities to
the data variant of the PACMAN attack [34]. During speculation, this attack
obtains a sensitive value related to a Pointer Authentication Code (PAC), a
recent security feature of ARM processors. It then performs a load using this
sensitive value as the address to make the value accessible to the attacker (via a
cache timing attack) after the speculation.

On the other hand, the instruction variant of PACMAN relies on a specu-
latively executed indirect branch to a sensitive address. Indirect branches could
also be incorporated as in the weakest precondition calculus in [2]. A proof obli-
gation that such a branch is only taken on values with security level ⊥ could
then be added to the speculative precondition of the branch.

Ren et al. [35] describe two gadgets relying on a sensitive value accessed dur-
ing speculation being leaked by the micro-op cache of Intel and AMD processors.
These gadgets are based on function calls, and fetches of indirect branches. The
latter allows bypassing of a fence intended to stall speculative execution. To
detect related vulnerabilities, we would need to further extend our programming
language with function calls, and change the fence rule to allow later instructions
to be “fetched” but not executed.

As well as Spectre-PHT, the initial paper by Kocher et al. [24] describe
Spectre-BTB (or variant 2), which targets the branch target buffer used by the
processor to predict destinations of indirect branch instructions. Compared to
Spectre-PHT, this is more powerful. Any indirect branch is potentially vulner-
able, and an attacker’s mistraining can direct speculation towards a convenient
gadget anywhere in the program or library code. Detecting such gadgets may still
be possible in our approach if used in conjunction with recent compiler-based
mitigations, Serbeus [29] or Switchpoline [3], which vastly reduce the poten-
tial target addresses of indirect branch instructions. This also applies to other
approaches based on a speculative indirect branch (call, jump or return) to a
gadget, such as SMoTherSpectre [4] and RETBLEED [42].

496 N. Coughlin et al.

5 Related Work

Cauligi et al. [8] provide a comprehensive overview of existing semantics and
tools aimed at providing formal reasoning about speculative execution. Only 7 of
the 24 papers they examine consider out-of-order execution. These either model
the mechanism for instruction reordering directly (in terms of a multi-stage
fetch-execute-retire pipeline) [7,20,21,40], or capture the effects of instruction
reordering via higher level abstractions: reordering relations [11], pomsets [18]
and event graphs [33].

The former provide more precise characterisations of the hardware and hence
the potential to detect a wider variety of vulnerabilities than more abstract
approaches. However, such detailed models also add complexity to the verifica-
tion task. For this reason, all of these models support analysis on only a single
thread, and hence are unable to detect the kinds of leakage illustrated by our
running example from Sect. 2.2.

The abstraction-based approaches of Disselkoen et al. (based on pomsets)
[18] and Ponce de León and Kinder (based on event graphs) [33], use intra-
and inter-thread relations between instructions to capture instruction ordering
in concurrent programs (unrelated instructions can be reordered). The inter-
thread relations are necessary for these approaches, but preclude thread-local
reasoning. Instead, reasoning is over individual executions of a full program.

Our approach builds directly on the abstract semantics of Colvin and Win-
ter [11]. That paper introduces the idea of a speculative context that operates
on a fresh copy of the program state, which is key to our approach. It mod-
els out-of-order execution via a relation capturing which pairs of instructions
in a given thread can reorder. Since the relation only imposes intra-thread con-
straints, the semantics can be used in a thread-local analysis, avoiding analysis
over the exponential explosion of behaviours possible due to interleaving in a
full concurrent program. The rif approach we adopt from [14] also uses such a
reordering relation enabling our thread-local approach.

We extend the semantics of [11] with an information flow logic which defines
the capabilities of an attacker in terms of which parts of memory they can
observe, and their ability to observe control flow (via timing). The latter, in
particular, is listed as an open problem by Cauligi et al. [8] for semantics based
on abstractions of out-of-order execution.

6 Conclusion

In this paper, we have shown how information leakage can occur due to a com-
bination of speculative execution and out-of-order execution, both of which are
features of modern processors. To the best of our knowledge, this is the first
paper to demonstrate that such a leak is possible. To enable detection of such
leaks, we have developed a novel information flow logic using weakest precon-
dition reasoning over a tuple of states comprising the actual and speculative
states of the program. For scalability, the logic supports thread-local reasoning,

Detecting Speculative Execution Vulnerabilities on Weak Memory Models 497

and a notion of reordering interference freedom (rif), both of which significantly
reduce the number of behaviours that must be analysed: the former allows us
to abstract from concurrent interleaving of threads in a program, and the latter
allows us to replace reasoning over behaviours resulting from instruction reorder-
ing by pair-wise checks over reorderable instructions. Our logic has been proven
sound with respect to an abstract semantics of speculative execution [11] using
Isabelle/HOL [12].

Our future goals include mechanising the information flow logic in the auto-
active program verifier Boogie [1]. This will build on an existing encoding of
information flow and rely/guarantee reasoning in Dafny [36], and require a way
to support our novel representation of program state as a tuple of speculative
and actual state spaces.

Acknowledgments. We would like to thank the anonymous referees for their insight-
ful comments and suggestions.

Data Availability Statement. The formalisation of the logic and the proof of sound-
ness and non-interference with respect to a semantics of speculative execution are
available as Isabelle/HOL theories at https://doi.org/10.5281/zenodo.11910360.
Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192_17

2. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs.
In: Ernst, M.D., Jensen, T.P. (eds.) Proceedings of the 2005 ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis For Software Tools and Engineering,
PASTE’05, pp. 82–87. ACM (2005). https://doi.org/10.1145/1108792.1108813

3. Bauer, M., Hetterich, L., Rossow, C., Schwarz, M.: Switchpoline: a software miti-
gation for Spectre-BTB and Spectre-BHB on ARMv8. In: 2024 ACM ASIA Con-
ference on Computer and Communications Security, AsiaCCS 2024. ACM (2024).
https://doi.org/10.60882/cispa.25304857.v1

4. Bhattacharyya, A., et al.: SMoTherSpectre: exploiting speculative execution
through port contention. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.)
CCS 2019, pp. 785–800. ACM (2019). https://doi.org/10.1145/3319535.3363194

5. Bulck, J.V., et al.: Foreshadow: extracting the keys to the intel SGX kingdom with
transient out-of-order execution. In: Enck, W., Felt, A.P. (eds.) 27th USENIX
Security Symposium, USENIX Security 2018, pp. 991–1008. USENIX Association
(2018)

6. Canella, C., et al.: A systematic evaluation of transient execution attacks and
defenses. In: Heninger, N., Traynor, P. (eds.) 28th USENIX Security Symposium,
USENIX Security 2019, Santa Clara, CA, USA, August 14–16, 2019. pp. 249–266.
USENIX Association (2019)

https://doi.org/10.5281/zenodo.11910360
https://doi.org/10.1007/11804192_17
https://doi.org/10.1145/1108792.1108813
https://doi.org/10.60882/cispa.25304857.v1
https://doi.org/10.1145/3319535.3363194

498 N. Coughlin et al.

7. Cauligi, S., et al.: Constant-time foundations for the new Spectre era. In: Donald-
son, A.F., Torlak, E. (eds.) Proceedings of the 41st ACM SIGPLAN International
Conference on Programming Language Design and Implementation, PLDI 2020,
pp. 913–926. ACM (2020). https://doi.org/10.1145/3385412.3385970

8. Cauligi, S., Disselkoen, C., Moghimi, D., Barthe, G., Stefan, D.: SoK: practical
foundations for software Spectre defenses. In: 43rd IEEE Symposium on Secu-
rity and Privacy, SP 2022, pp. 666–680. IEEE (2022). https://doi.org/10.1109/
SP46214.2022.9833707

9. Chowdhuryy, M.H.I., Liu, H., Yao, F.: Branchspec: information leakage attacks
exploiting speculative branch instruction executions. In: 38th IEEE International
Conference on Computer Design, ICCD 2020, pp. 529–536. IEEE (2020). https://
doi.org/10.1109/ICCD50377.2020.00095

10. Colvin, R.J., Smith, G.: A wide-spectrum language for verification of programs on
weak memory models. In: Havelund, K., Peleska, J., Roscoe, B., de Vink, E. (eds.)
FM 2018. LNCS, vol. 10951, pp. 240–257. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-95582-7_14

11. Colvin, R.J., Winter, K.: An abstract semantics of speculative execution for reason-
ing about security vulnerabilities. In: Sekerinski, E., et al. (eds.) FM 2019, Part II.
LNCS, vol. 12233, pp. 323–341. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-54997-8_21

12. Coughlin, N., Lam, K., Winter, K.: Weak memory rely/guarantee logic with spec-
ulative execution (2024). https://github.com/UQ-PAC/wmm-rg/tree/paperwork-
st

13. Coughlin, N., Smith, G.: Compositional noninterference on hardware weak memory
models. Sci. Comput. Program. 217, 102779 (2022). https://doi.org/10.1016/j.
scico.2022.102779

14. Coughlin, N., Winter, K., Smith, G.: Rely/guarantee reasoning for multicopy
atomic weak memory models. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.)
FM 2021. LNCS, vol. 13047, pp. 292–310. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-90870-6_16

15. Coughlin, N., Winter, K., Smith, G.: Compositional reasoning for non-multicopy
atomic architectures. Formal Aspects Comput. 35(2), 8:1–8:30 (2023). https://doi.
org/10.1145/3574137

16. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976). https://www.
worldcat.org/oclc/01958445

17. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics.
Springer, Heidelberg (1990). https://doi.org/10.1007/978-1-4612-3228-5

18. Disselkoen, C., Jagadeesan, R., Jeffrey, A., Riely, J.: The code that never ran:
modeling attacks on speculative evaluation. In: 2019 IEEE Symposium on Security
and Privacy, SP 2019, pp. 1238–1255. IEEE (2019). https://doi.org/10.1109/SP.
2019.00047

19. Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE
Symposium on Security and Privacy, 1982, pp. 11–20. IEEE Computer Society
(1982). https://doi.org/10.1109/SP.1982.10014

20. Guanciale, R., Balliu, M., Dam, M.: InSpectre: breaking and fixing microarchitec-
tural vulnerabilities by formal analysis. In: Ligatti, J., Ou, X., Katz, J., Vigna, G.
(eds.) CCS ’20: 2020 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1853–1869. ACM (2020). https://doi.org/10.1145/3372297.3417246

21. Guarnieri, M., Köpf, B., Reineke, J., Vila, P.: Hardware-software contracts for
secure speculation. In: 42nd IEEE Symposium on Security and Privacy, SP 2021,
pp. 1868–1883. IEEE (2021). https://doi.org/10.1109/SP40001.2021.00036

https://doi.org/10.1145/3385412.3385970
https://doi.org/10.1109/SP46214.2022.9833707
https://doi.org/10.1109/SP46214.2022.9833707
https://doi.org/10.1109/ICCD50377.2020.00095
https://doi.org/10.1109/ICCD50377.2020.00095
https://doi.org/10.1007/978-3-319-95582-7_14
https://doi.org/10.1007/978-3-319-95582-7_14
https://doi.org/10.1007/978-3-030-54997-8_21
https://doi.org/10.1007/978-3-030-54997-8_21
https://github.com/UQ-PAC/wmm-rg/tree/paperwork-st
https://github.com/UQ-PAC/wmm-rg/tree/paperwork-st
https://doi.org/10.1016/j.scico.2022.102779
https://doi.org/10.1016/j.scico.2022.102779
https://doi.org/10.1007/978-3-030-90870-6_16
https://doi.org/10.1007/978-3-030-90870-6_16
https://doi.org/10.1145/3574137
https://doi.org/10.1145/3574137
https://www.worldcat.org/oclc/01958445
https://www.worldcat.org/oclc/01958445
https://doi.org/10.1007/978-1-4612-3228-5
https://doi.org/10.1109/SP.2019.00047
https://doi.org/10.1109/SP.2019.00047
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1145/3372297.3417246
https://doi.org/10.1109/SP40001.2021.00036

Detecting Speculative Execution Vulnerabilities on Weak Memory Models 499

22. Islam, S., et al.: SPOILER: speculative load hazards boost Rowhammer and cache
attacks. In: Heninger, N., Traynor, P. (eds.) 28th USENIX Security Symposium,
USENIX Security 2019, pp. 621–637. USENIX Association (2019)

23. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress,
pp. 321–332 (1983)

24. Kocher, P., et al.: Spectre attacks: Exploiting speculative execution. In: 2019 IEEE
Symposium on Security and Privacy, SP 2019, pp. 1–19. IEEE (2019). https://doi.
org/10.1109/SP.2019.00002

25. Lipp, M., et al.: Meltdown: reading kernel memory from user space. In: Enck, W.,
Felt, A.P. (eds.) 27th USENIX Security Symposium, USENIX Security 2018, pp.
973–990. USENIX Association (2018)

26. Lourenço, L., Caires, L.: Dependent information flow types. In: Rajamani, S.K.,
Walker, D. (eds.) Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2015, pp. 317–328. ACM
(2015). https://doi.org/10.1145/2676726.2676994

27. Mantel, H., Perner, M., Sauer, J.: Noninterference under weak memory models.
In: IEEE 27th Computer Security Foundations Symposium, CSF 2014. pp. 80–94.
IEEE Computer Society (2014). https://doi.org/10.1109/CSF.2014.14

28. Mantel, H., Sands, D., Sudbrock, H.: Assumptions and guarantees for compo-
sitional noninterference. In: Proceedings of the 24th IEEE Computer Security
Foundations Symposium, CSF 2011, pp. 218–232. IEEE Computer Society (2011).
https://doi.org/10.1109/CSF.2011.22

29. Mosier, N., Nemati, H., Mitchell, J.C., Trippel, C.: Serberus: protecting crypto-
graphic code from spectres at compile-time. In: 2024 IEEE Symposium on Security
and Privacy, SP 2024. IEEE (2024). https://doi.org/10.1109/SP54263.2024.00048

30. Murray, T.C.: Short paper: On high-assurance information-flow-secure program-
ming languages. In: Clarkson, M., Jia, L. (eds.) Proceedings of the 10th ACM
Workshop on Programming Languages and Analysis for Security, PLAS@ECOOP
2015, pp. 43–48. ACM (2015). https://doi.org/10.1145/2786558.2786561

31. Murray, T.C., Sison, R., Engelhardt, K.: Covern: a logic for compositional verifica-
tion of information flow control. In: 2018 IEEE European Symposium on Security
and Privacy, EuroS&P 2018, pp. 16–30. IEEE (2018). https://doi.org/10.1109/
EuroSP.2018.00010

32. Murray, T.C., Sison, R., Pierzchalski, E., Rizkallah, C.: Compositional verification
and refinement of concurrent value-dependent noninterference. In: IEEE 29th Com-
puter Security Foundations Symposium, CSF 2016, pp. 417–431. IEEE Computer
Society (2016). https://doi.org/10.1109/CSF.2016.36

33. Ponce de León, H., Kinder, J.: Cats vs. Spectre: an axiomatic approach to mod-
eling speculative execution attacks. In: 43rd IEEE Symposium on Security and
Privacy, SP 2022, pp. 235–248. IEEE (2022). https://doi.org/10.1109/SP46214.
2022.9833774

34. Ravichandran, J., Na, W.T., Lang, J., Yan, M.: PACMAN: attacking ARM pointer
authentication with speculative execution. IEEE Micro 43(4), 11–18 (2023).
https://doi.org/10.1109/MM.2023.3273189

35. Ren, X., Moody, L., Taram, M., Jordan, M., Tullsen, D.M., Venkat, A.: I see
dead µops: leaking secrets via Intel/AMD micro-op caches. In: 48th ACM/IEEE
Annual International Symposium on Computer Architecture, ISCA 2021, pp. 361–
374. IEEE (2021). https://doi.org/10.1109/ISCA52012.2021.00036

36. Smith, G.: A Dafny-based approach to thread-local information flow analysis.
In: 11th IEEE/ACM International Conference on Formal Methods in Software

https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1145/2676726.2676994
https://doi.org/10.1109/CSF.2014.14
https://doi.org/10.1109/CSF.2011.22
https://doi.org/10.1109/SP54263.2024.00048
https://doi.org/10.1145/2786558.2786561
https://doi.org/10.1109/EuroSP.2018.00010
https://doi.org/10.1109/EuroSP.2018.00010
https://doi.org/10.1109/CSF.2016.36
https://doi.org/10.1109/SP46214.2022.9833774
https://doi.org/10.1109/SP46214.2022.9833774
https://doi.org/10.1109/MM.2023.3273189
https://doi.org/10.1109/ISCA52012.2021.00036

500 N. Coughlin et al.

Engineering, FormaliSE 2023, pp. 86–96. IEEE (2023). https://doi.org/10.1109/
FormaliSE58978.2023.00017

37. Smith, G., Coughlin, N., Murray, T.: Value-dependent information-flow security
on weak memory models. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM
2019. LNCS, vol. 11800, pp. 539–555. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-30942-8_32

38. Smith, G., Coughlin, N., Murray, T.: Information-flow control on ARM and
POWER multicore processors. Formal Methods Syst. Des. 58(1–2), 251–293
(2021). https://doi.org/10.1007/S10703-021-00376-2

39. Sorin, D.J., Hill, M.D., Wood, D.A.: A Primer on Memory Consistency and Cache
Coherence. Synthesis Lectures on Computer Architecture, Morgan & Claypool
Publishers (2011). https://doi.org/10.2200/S00346ED1V01Y201104CAC016

40. Vassena, M., Disselkoen, C., von Gleissenthall, K., Cauligi, S., Kici, R.G., Jhala,
R., Tullsen, D.M., Stefan, D.: Automatically eliminating speculative leaks from
cryptographic code with Blade. Proc. ACM Program. Lang. 5(POPL), 1–30 (2021).
https://doi.org/10.1145/3434330

41. Vaughan, J.A., Millstein, T.D.: Secure information flow for concurrent programs
under Total Store Order. In: Chong, S. (ed.) 25th IEEE Computer Security Foun-
dations Symposium, CSF 2012, pp. 19–29. IEEE Computer Society (2012). https://
doi.org/10.1109/CSF.2012.20

42. Wikner, J., Razavi, K.: RETBLEED: arbitrary speculative code execution with
return instructions. In: Butler, K.R.B., Thomas, K. (eds.) 31st USENIX Security
Symposium, USENIX Security 2022, pp. 3825–3842. USENIX Association (2022)

43. Winter, K., Coughlin, N., Smith, G.: Backwards-directed information flow analysis
for concurrent programs. In: 34th IEEE Computer Security Foundations Sympo-
sium, CSF 2021, pp. 1–16. IEEE (2021). https://doi.org/10.1109/CSF51468.2021.
00017

44. Xu, Q., de Roever, W.P., He, J.: The rely-guarantee method for verifying shared
variable concurrent programs. Formal Aspects Comput. 9(2), 149–174 (1997).
https://doi.org/10.1007/BF01211617

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/FormaliSE58978.2023.00017
https://doi.org/10.1109/FormaliSE58978.2023.00017
https://doi.org/10.1007/978-3-030-30942-8_32
https://doi.org/10.1007/978-3-030-30942-8_32
https://doi.org/10.1007/S10703-021-00376-2
https://doi.org/10.2200/S00346ED1V01Y201104CAC016
https://doi.org/10.1145/3434330
https://doi.org/10.1109/CSF.2012.20
https://doi.org/10.1109/CSF.2012.20
https://doi.org/10.1109/CSF51468.2021.00017
https://doi.org/10.1109/CSF51468.2021.00017
https://doi.org/10.1007/BF01211617
http://creativecommons.org/licenses/by/4.0/

Staged Specification Logic for Verifying
Higher-Order Imperative Programs

Darius Foo(B) , Yahui Song , and Wei-Ngan Chin

School of Computing, National University of Singapore, Singapore, Singapore
{dariusf,yahuis,chinwn}@comp.nus.edu.sg

Abstract. Higher-order functions and imperative states are language
features supported by many mainstream languages. Their combination
is expressive and useful, but complicates specification and reasoning, due
to the use of yet-to-be-instantiated function parameters. One inherent
limitation of existing specification mechanisms is its reliance on only two
stages : an initial stage to denote the precondition at the start of the
method and a final stage to capture the postcondition. Such two-stage
specifications force abstract properties to be imposed on unknown func-
tion parameters, leading to less precise specifications for higher-order
methods. To overcome this limitation, we introduce a novel extension to
Hoare logic that supports multiple stages for a call-by-value higher-order
language with ML-like local references. Multiple stages allow the behav-
ior of unknown function-type parameters to be captured abstractly as
uninterpreted relations; and can also model the repetitive behavior of
each recursion as a separate stage. In this paper, we define our staged
logic with its semantics, prove its soundness and develop a new auto-
mated higher-order verifier, called Heifer, for a core ML-like language.

1 Introduction

Programs written in modern languages today are rife with higher-order func-
tions [3,35], but specifying and verifying them remains challenging, especially if
they contain imperative effects. Consider the foldr function from OCaml. Here
is a good specification for it in Iris [19], a state-of-the-art framework for higher-
order concurrent separation logic that is built using Coq proof assistant.

∀P, Inv , f, xs, l.
{

(∀x, a′, ys. {P x ∗ Inv ys a′} f(x, a′) {r. Inv (x::ys) r})
∗ isList l xs ∗ all P xs ∗ Inv [] a

}

foldr f a l

{r. isList l xs ∗ Inv xs r}

While this specification is conventional in weakest-precondition calculi like Iris,
one might argue that that this specification is not the best possible specification
for foldr , since it requires two abstract properties Inv and P to summarize the
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 501–518, 2025.
https://doi.org/10.1007/978-3-031-71162-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_26&domain=pdf
http://orcid.org/0000-0002-3279-5827
http://orcid.org/0000-0002-9760-5895
http://orcid.org/0000-0002-9660-5682
https://doi.org/10.1007/978-3-031-71162-6_26

502 D. Foo et al.

behaviour of f . Moreover, the input list l is also immutable, through the same
isList predicate in both its pre- and postcondition. (If mutation of list is allowed,
a more complex Inv with an extra mutated list parameter is required.)

These abstract properties must be correspondingly instantiated for each
instance of f , but unfortunately some usage scenarios (to be highlighted later
in Sect. 2.2) of foldr cannot be captured by this particular pre/post specifica-
tion of Iris, despite how well-designed it was. Thus, the conventional pre/post
approach to specifying higher-order functions currently suffers from possible loss
in precision in its specifications since the presence of these abstract properties
implicitly strengthens the preconditions for higher-order imperative methods.

This paper proposes a new logic, Higher-Order Staged Specification Logic
(HSSL), for specifying and verifying higher-order imperative methods. It is
designed for automated verification via SMT and uses separation logic as its core
stateful logic, aiming at more precise specifications of heap-based changes. While
we have adopted separation logic to support heap-based mutations, HSSL may
also be used with other base logics, such as those using dynamic frames [25].
We next provide an overview of our methodology by examples before providing
formal details and an experimental evaluation of our proposal.

2 Illustrative Examples

We provide three examples to highlight the key features of our methodology.

2.1 A Simple Example

Fig. 1. A Simple Example

We introduce the specification logic using
a simple example (Fig. 1), to highlight a
key challenge we hope to solve, namely how
should we specify the behavior of hello with-
out pre-committing to some abstract prop-
erty on f ? To do that, we can model f using
an uninterpreted relation. We use uninter-
preted relation rather than a function here
in order to model both over-approximation and possible side-effect. Since f is
effectful and may modify arbitrary state, including the references x and y , a mod-
ular specification of hello must express the ordering of the call to f with respect
to the other statements in it so that the caller of hello may reason precisely
about its effects. Therefore, a first approximation is the following specification.
We adopt standard separation logic pre/post assertions and extend them with
sequential composition and uninterpreted relations. A final parameter (named
as res here) is added to denote the result of each staged specification’s relation
(hello here), a convention we follow henceforth.

Staged Specification Logic for Verifying Higher-Order Imperative Programs 503

hello(f, x, y, res) =
∃ a . reqx �→ a; // Stage 1: requiring x be pre-allocated
ens[]x �→ a+1; // Stage 2: ensuring x is updated
∃ r . f (y, r); // Stage 3: unknown higher-order f call
∃ b . reqx �→ b ∗ y �→ ; // Stage 4: requiring x , y be pre-allocated
ens[res]x �→ b ∗ y �→ res∧res=b+r // Stage 5: y is updated, and x is unchanged

We can summarize the imperative behavior of hello before the call to f with
a read from x , followed by a write to x , as captured by Stages 1–2. The same
applies to the portion after the call to f (lines 4–6), but here we only consider the
scenario when x and y are disjoint1. Stages 4 and 5 state that memory location
x is being read while y will be correspondingly updated.

The ordering of the unknown f call with respect to the parts before and after
does matter, so the call can be seen as stratifying the temporal behavior of the
function into stages. Should a specification for f become known, usually at a call
site, its instantiation may lead to a staged formula with only req/ens stages;
which can always be compacted into a single req/ens pair. We detail a normal-
ization procedure to do this in Sect. 3.2.

As mentioned before, f can modify x despite not having direct access to it via
an argument, as it could capture x from the environment of the caller of hello.
To model this, we make worst-case assumptions on the footprints of unknown
functions, resulting in the precondition x �→ b in stage 4.

2.2 Pre/Post Vs Staged Specifications via foldr

We now specify foldr and compare it with the Iris specification from Sect. 1.

1 let rec foldr f a l =
2 match l with
3 | [] => a
4 | h :: t =>
5 f h (foldr f a t)

foldr(f, a, l, rr) =
ens[rr] l=[]∧rr=a

∨ ∃x, r, l1 . ens[] l=x::l1;
foldr(f, a, l1, r); f (x, r, rr)

We model foldr as a recursive predicate whose body is a staged formula. The
top-level disjunction represents the two possible paths that result from pattern
matching. In the base case, when l is the empty list, and the result of foldr is a.
In the recursive case, when l is nonempty, the specification expresses that the
behavior of foldr is given by a recursive call to foldr on the tail of l to produce a
result r , followed by a call to f with r to produce a value for rr . Crucially, we are
able to represent the call to the unknown function f directly in the specification,
without being forced to impose a stronger precondition on f .

foldr ’s specification’s is actually very precise, to the point of mirroring the
foldr program. Nevertheless, abstraction may readily be recovered by proving
that this predicate entails a weaker formula, and a convenient point for this
1 For simplicity, the intersection of specifications ∧sp that arises from disjoint pre-

conditions is omitted (with some loss in precision) in the main paper, but its core
mechanism is briefly described in Appendix D [15].

504 D. Foo et al.

would be when the unknown function-typed parameter is instantiated at each of
foldr ’s call sites; we discuss an example of this shortly. The point of specifying
foldr this way is that the precision of stages enables us not to have to commit
to an abstraction prematurely. We should, of course, summarize as early as is
appropriate to keep our proving process tractable.

Recursive staged formulae are needed mainly to specify higher-order func-
tions with unknown function-typed parameters. Otherwise, our preference is to
apply summarization to obtain non-recursive staged formulae whenever unknown
function-type parameters have been suitably instantiated. Under this scenario,
we may still use recursive pure predicates or recursive shape predicates in order
to obtain best possible modular specifications for our program code.

Now, we show how the staged specification for foldr can be used by proving
that we can sum a list by folding it. sum can be specified in a similar way to foldr ,
but since this is a pure function that can be additionally checked for termination,
we can automatically convert it into a pure predicate (without any stages or
imperative side effects) to be used in (the pure fragment of) our specification
logic. Termination of pure predicates is required for them to be safely used in
specifications. (Techniques to check for purity and termination are well-known
and thus omitted.) Also, each pure predicate may be used as either a staged
predicate or a pure predicate. In case a pure predicate p(v∗, res) is used as a
staged predicate; its staged definition is:

p(v∗, res) = req emp∧pre(v∗); ens[] emp∧p(v∗, res)

where pre(v∗) denotes the precondition to guarantee termination and avoids
exceptions. Note that p(v∗, res) is overloaded to be used as either a staged pred-
icate or a pure predicate. This is unambiguous from the context of its use.

6 let rec sum li =
7 match li with
8 | [] -> 0
9 | x :: xs -> x + sum xs

sum(li, res) =
l=[]∧res=0

∨ ∃ r, l1 . l=x::l1∧sum(l1, r)∧res=x+r

We can now re-summarize an imperative use of foldr with the help of sum.

10 let foldr_sum_state x xs init
11 foldr sum state(x , xs, init , res) =

∃ i, r . reqx �→ i; ens[res]x �→ i+r∧res=r+init∧sum(xs, r)
12 = let g c t = x := !x + c; c + t in foldr g xs init

This summarization gives rise to the following entailment:

∀m, xs, init , res. foldr(g, xs, init, res)
	 ∃ i, r . reqx �→ i; ens[res]x �→ i+r∧res=r+init∧sum(xs, r)

We have implemented a proof system for subsumption (denoted by)
between staged formulae in our verifier, called Heifer [13]. This particular entail-
ment can be proved automatically by induction on xs. While Iris’s earlier pre/-
post specification for foldr can handle this example through a suitable instanti-
ation of (Inv), it is unable to handle the following three other call instances.

Staged Specification Logic for Verifying Higher-Order Imperative Programs 505

13 let foldr_ex1 l = foldr (fun x r -> let v = !x
14 in x := v+1; v+r) l 0
15 let foldr_ex2 l = foldr (fun x r -> assert(x+r>=0);x+r) l 0
16 let foldr_ex3 l = foldr (fun x r -> if x>=0 then x+r
17 else raise Exc()) l 0

The first example cannot be handled since Iris’s current specification for
foldr expects its input list l to be immutable. The second example fails since
the precondition required cannot be expressed using just the abstract property
(P x). The last example fails because the abstract property (Inv (x :: ys) r)
used in the postcondition of f expects its method calls to return normally. In
contrast, using our approach via staged specification , we can re-summarize the
above three call instances to use the following subsumed specifications.

foldr ex1 (l, res) � ∃xs . reqList(l , xs) ; ∃ ys .
ens[res]List(l, ys)∧mapinc(xs, ys)∧sum(xs, res)

foldr ex2 (l, res) � req allSPos(l) ; ens[res] sum(l, res)
foldr ex3 (l, res) � ens[res] allPos(l)∧sum(l, res) ∨ (ens[] ¬allPos(l);Exc())

Note that the first example utilizes a recursive spatial List(l, xs) predicate,
while the last example used Exc() as a relation to model exception as a stage
in our specification. The three pure predicates and one spatial predicate used in
the above can be formally defined, as shown below.

mapinc(xs, ys) = (xs=[]∧ys=[]) ∨ (∃x, xs1, ys1 . xs=x::xs1∧ys=(x+1)::ys1
∧ mapinc(xs1 , ys1))

allPos(l) = (l=[]) ∨ (∃x, l1 . l=x::l1∧allPos(l1)∧x≥0)
allSPos(l) = (l=[]) ∨ (∃x, r, l1 . l=x::l1∧allSPos(l1)∧sum(l, r)∧r≥0)
List(l, rs) = (emp∧l=[]) ∨ (∃x, rs1, l1 . x �→ r ∗List(l1, rs1)∧l=x::l1∧rs=r::rs1)

We emphasize that our proposal for staged logics is strictly more expres-
sive than traditional two-stage pre/post specifications, since the latter can be
viewed as an instance of staged logics. As an example, the earlier two-stage
specification for foldr can be modelled non-recursively in our staged logics as:

foldr(f, a, l, res) =
∃P, Inv, xs . reqList(l, xs) ∗ Inv([], a)∧all(P, xs)

∧f (x, a′, r)�(∃ ys . req Inv(ys, a′)∧P(x); ens[r] Inv(x::ys, r)) ;
ens[res]List(l, xs) ∗ Inv(xs, res)

2.3 Inferrable Vs User-Provided Specifications via map

Our methodology for higher-order functions is further explicated by the map
method, shown in Fig. 2. Specifications typeset in lavender must be user-supplied,
whereas those shown in ◦red (with the small circle) may be automated or inferred
(using the rules of Sect. 4). Like sum before, length and incrg may be viewed
as ghost functions, written only for their specifications to be used to describe
behavior. These specifications are also routine and can be mechanically derived;
we elide them here and provide them in Appendix A [15]. The method map incr

506 D. Foo et al.

Fig. 2. Implementation of map incr with a Summarized Specification from map

describes the scenario we are interested in, where the state of the closure affects
the result of map. Its specification states that the pointer x must have its value
incremented by the length of xs. Moreover, the contents of the resulting list is
captured by another pure function incrg , which builds a list of as many increasing
values as there are elements in its input list.

These examples illustrate the methodology involved with staged specifica-
tions. They inherit the modular verification and biabduction-based [4] specifi-
cation inference of separation logic, adding the ability to describe imperative
behavior using function stages to the mix; biabduction then doubles as a means
to normalize and compact stages. There is emphasis on the inference of specifi-
cations and proof automation, and proofs are built out of simple lemmas, which
help summarize behavior and the shapes of data, and either remove recursion or
move it into a pure ghost function where it is easier to comprehend.

In summary, staged logic for specifying imperative higher-order functions rep-
resents a fundamentally new approach that is more general and yet can be more
precise than what is currently possible via state-of-the-art pre/post specification
logics for imperative higher-order methods. Our main technical contributions to
support this new approach include:

1. Higher-Order Staged Specification Logic (HSSL): we design a novel
program logic to specify the behaviors of imperative higher-order methods
and give its formal semantics.

2. Biabduction-based Normalization: we propose a normalization proce-
dure for HSSL that serves two purposes: (i) it allows us to produce succinct
staged formulae for programs automatically, and (ii) it helps structure entail-
ment proof obligations, allowing them to be discharged via SMT.

3. Entailment: we develop a proof system to solve subsumption entailments
between normalized HSSL formulae, prove its soundness, and implement an
automated prover based on it.

4. Evaluation: we report on initial experimental results, and present various
case studies highlighting HSSL’s capabilities.

Staged Specification Logic for Verifying Higher-Order Imperative Programs 507

3 Language and Specification Logic

We target a minimal OCaml-like imperative language with higher-order func-
tions and state. The syntax is given in Fig. 3. Expressions are in ANF (A-normal
form); sequencing and control over evaluation order may be achieved using let-
bindings, which define immutable variables. Mutation may occur through heap-
allocated ref s. Functions are defined by naming lambda expressions, which may
be annotated with a specification Φ (covered below). For simplicity, they are
always in tupled form and their calls are always fully applied. Pattern matching
is encoded using recognizer functions (e.g., is cons) and if statements. assert
allows proofs of program properties to be carried out at arbitrary points.

Fig. 3. Syntax of the Core Language and Staged Logics

Program behavior is specified using staged formulae Φ, which are disjunc-
tions and/or sequences of stages E. A stage is an assertion about program state
at a specific point. Each stage takes one of three forms: a precondition reqD, a
postcondition ens[r]D with a named result r , or a function stage f (v∗, r), rep-
resenting the specification of a (possibly-unknown) function call. For brevity, we
use a context notation Φ[r] where r explictly identifies the final result of specifi-
cation Φ. Program states D are described using separation logic formulae from
the symbolic heap fragment [4], without recursive spatial predicates (for simplic-
ity of presentation). Most values of the core language are as usual also terms of
the (pure) logic; a notable exception is the lambda expression fun (x∗)Φ[r]→ e,
which occurs in the logic as λ (x∗, r)→ Φ[r], without its body. Subsumption
assertions between two staged formulae (Sect. 5) are denoted by Φ1	Φ2 .

3.1 Semantics of Staged Formulae

From Triples to Stages. Staged formulae generalize standard Hoare triples.
The standard partial-correctness interpretation of the separation logic Hoare
triple { P (v∗, x∗) } e { ∃ y∗ . Q(v∗, x∗, y∗, res) } where v∗ denote valid pro-
gram variables and x∗ denote specification variables (e.g., ghost variables)

508 D. Foo et al.

is that for all states st satisfying P (v∗, x∗), given a reduction e, st �∗ v, st ′,
if e, st
�∗ fault , then st ′ satisfies ∃ y∗ . Q(v∗, x∗, y∗, res). The staged equivalent
is { Φ } e { Φ;∃ x∗ . reqP (v∗, x∗);∃ y∗ . ens[]Q(v∗, x∗, y∗, res) }. Apart from
mentioning the history Φ, which remains unchanged, its meaning is identical.
Consider, then, { Φ } e { Φ; reqP1; ens[]Q1; reqP2; ens[]Q2 } – an intuitive
extension of the semantics of triples is that given e, st �∗ e1, st1, where st1 sat-
isfies Q1, the extended judgment holds if st1 further satisfies P2, and reduction
from there, e1, st1 �∗ e2, st2, results in a state st2 that satisfies Q2.

While heap formulae are satisfied by program states, staged formulae (like
triples), are satisfied by traces which begin and end at particular states. Uninter-
preted function stages further allow stages to describe the intermediate states of
programs in specifications – a useful ability in the presence of unknown higher-
order imperative functions, as we illustrate in Sect. 2 and Appendix C [15]. To
formalize all this, we give a semantics for staged formulae next.

Formal Semantics. We first recall the standard semantics for separation logic
formulae in Fig. 4, which provides a useful starting point.

Fig. 4. Semantics of Separation Logic Formulae

Let var be the set of program variables, val the set of primitive values, and
loc ⊂ val the set of heap locations; � is a metavariable ranging over locations.
The models are program states, comprising a store of variables S, a partial
mapping from a finite set of variables to values var ⇀ val , and the heap h, a
partial mapping from locations to values loc ⇀ val . �π�S denotes the valuation of
pure formula π under store S. dom(h) denotes the domain of heap h. h1◦h2=h
denotes disjoint union of heaps; if dom(h1)∩dom(h2) = {}, h1∪h2 = h. We write
h1⊆h2 to denote that h1 is a subheap of h2, i.e., ∃h3 . h1◦h3=h2. s[x:=v] and
s [x
:=] stand for store/heap updates and removal of keys.

We define the semantics of HSSL formulae in Fig. 5. Let S, h�S1, h1, R|=Φ
denote the models relation, i.e., starting from the program state with store S
and heap h, the formula Φ transforms the state into S1 , h1 , with an intermediate
result R. R is either Norm(r) for partial correctness, Err for precondition
failure, or � for possible precondition failure in one of its execution paths.

When Φ is of the form reqσ∧π, the heap h is split into a heaplet h1 satisfying
σ∧π, which is consumed, and a frame h2, which is left as the new heap. Read-only
heap assertions (σ∧π)@R under req check but do not change the heap.

Staged Specification Logic for Verifying Higher-Order Imperative Programs 509

Fig. 5. Semantics of Staged Formulae

When Φ is of the form ens[]σ∧π, σ describes locations which are to be
added to the current heap. The semantics allows some concrete heaplet h1 that
satisfies σ∧π (containing new or updated locations) be (re-)added to heap h.

When Φ is a function stage f (x∗, r), its semantics depends on the specification
of f . A staged existential causes the store to be extended with a binding from
x to an existential value v . Sequential composition Φ1 ;Φ2 results in a failure �
if Φ1 does, while disjunction Φ1∨Φ2 requires both branches not to fail.

3.2 Compaction

Staged formulae subsume separation logic triples, but triples suffice for many
verification tasks, particularly those without calls to unknown functions, and
we would like to recover their succinctness in cases where intermediate states
are not required. This motivates a compaction or normalization procedure for
staged formulae, written Φ ==> Φ (Fig. 6). Compaction is also useful for aligning
staged formulae, allowing entailment proofs to be carried out stage by stage; we
elaborate on this use in Sect. 5.

Fig. 6. Select compaction rules

510 D. Foo et al.

The three rules on the left simplify flows. A false postcondition (ens σ∧false)
models an unreachable or nonterminating program state, so the rest of a flow
may be safely ignored. emp in the next two rules is either (req emp∧true) or
(ens emp∧true); either may serve as an identity for flows. The first two rules on
the right merge consecutive pre- and postconditions. Intuitively, they are sound
because symbolic heaps separated by sequential composition must be disjoint to
be meaningful – this follows from the use of disjoint union in Fig. 5. The last rule
allows a precondition req D2 to be transposed with a preceding postcondition
ens D1. This is done using biabduction [4], which computes a pair of antiframe
DA and frame DF such that the antiframe is the new precondition required,
and frame is what remains after proving the known precondition. The given rule
assumes that D1 and D2 are disjoint2. A read-only @R heap assertion under
req would be handled by matching but not removing from DF (see [7]).

Thus staged formulae can always be compacted into the following form, con-
sisting of a disjunction of flows θ (a disjunction-free staged formula)3, each
consisting of a prefix of function stages (preceded by a description of the inter-
mediate state at that point), followed by a final pre- and postcondition, capturing
any behavior remaining after calling unknown functions.

Φ ::= θ | Φ ∨ Φ
θ :: = (∃ x∗ . reqD;∃ x∗ . ens[]D; f (v∗, r) ;)∗ ∃ x∗ . reqD;∃ x∗ . ens[]D

An example of compaction is given below (Fig. 7, left). We start at the first
two stages of the flow and solve a biabduction problem (shown on the right,
with solution immediately below) to infer a precondition for the whole flow, or,
more operationally, to “push” the req to the left. We will later be able to rely
on the new precondition to know that a = 1 when proving properties of the
rest of the flow. Finally, we may combine the two ens stages because sequential
composition guarantees disjointness. Normalization is sound in the sense that it
transforms staged formulae without changing their meaning.

Fig. 7. An example of compaction

Theorem 1. (Soundness of Normalization). Given Φ1==>Φ2, if
S,H�S1,H1, R1|=Φ1, then S,H�S1,H1, R1|=Φ2.

Proof. By case analysis on the derivation of Φ1==>Φ2. See Appendix I.2 [15].

2 More exhaustive aliasing scenarios are considered in Appendix D [15].
3 Using further normalization rules such as (Φ1∨Φ2); Φ3 ==> (Φ1; Φ3)∨(Φ2;Φ3).

Staged Specification Logic for Verifying Higher-Order Imperative Programs 511

4 Forward Rules for Staged Logics

To verify that a program satisfies a given specification Φs, we utilize a set of rules
(presented in Fig. 8) to compute an abstraction or summary of the program Φp,
then discharge the proof obligation Φp	Φs (covered in Sect. 5), in a manner
similar to strongest postcondition calculations.

We make use of the following notations. denotes an anonymous existentially
quantified variable. [x:=v]Φ denotes the substitution of x with v in Φ, giving
priority to recently bound variables. We lift sequencing from flows to disjunctive
staged formulae in the natural way: Φ1 ; Φ2 �

∨{θ1 ; θ2 | θ1 ∈ Φ2, θ2 ∈ Φ2}.
The first two rules in Fig. 8 are structural. The Conseq rule uses specification

subsumption (detailed in Sect. 5) in place of implication – a form of behavioral
subtyping. The Frame rule has both a temporal interpretation, which is that the
reasoning rules are compositional with respect to the history of the current flow,
and a spatial interpretation, consistent with the usual one from separation logic,
if one uses the normalization rules (Sect. 3.2) to move untouched p from the final
states of Φ1 and Φ2 into the frame Φ.

Fig. 8. Forward Reasoning Hoare Rules with Staged Logics

512 D. Foo et al.

The Var and Val rules illustrate how the results of pure expressions are tracked
via named ens results. The Ref rule results in a new, existentially-quantified loca-
tion being added to the current state. The Deref and Assign rules are similar,
both requiring proof that a named location exists with a value, then respectively
either returning the value of the location and leaving it unchanged, or chang-
ing the location and returning the unit value. Assert checks the current heap
state without modifying it using the @R read-only annotation. If introduces
disjunction. Let sequences expressions, renaming the intermediate result of e1
accordingly; the scope of x in e2 is represented by the scope of the introduced
existential in the conclusion of the rule.

The Lambda rule handles function definition annotated with a given specifi-
cation Φs. The body of the lambda is summarized into Φp starting from pure
information Pure(Φ) from its program context. Its behavior must be subsumed
by the given specification. The result is then the lambda expression itself.

The Call rule is completely trivial, yet perhaps the most illuminating as to
the design of HSSL. A standard modular verifier would utilize this rule to look
up the specification associated with f , prove its precondition, then assume its
postcondition. In our setting, however, there is the possibility that f is higher-
order, unknown, and/or unspecified. Moreover, there is no need to prove the
precondition of f immediately, due to the use of flows for describing program
behaviors. Both of these point to the simple use of a function stage, which
stands for a possibly-unknown function call. Utilizing the specification of f , if it
is provided, is deferred to the unfolding done in the entailment procedure.

We prove soundness of these rules, which is to say that derived specifications
faithfully overapproximate the programs they are derived from. In the following
theorem, e, h, S�h1, S1 is a standard big-step reduction relation whose definition
we leave to Appendix I.1 [15]. Termination is also considered in Appendix I.5
[15]. However, completeness is yet to be established.

Theorem 2. (Soundness of Forward Rules). Given { emp } e { Φ },
then ∀S, h, S2, h1 . (S, h�S2, h1,Norm(r)|=Φ) ⇒ ∃S1 . e, h, S�Norm(v), h1, S1

and S1 ⊆ S2 and S1(r) = v.

Proof. By induction on the derivation of e, h, S1�R1, h1, S1. See Appendix I.3
[15].

5 Staged Entailment Checking and Its Soundness

In this section, we outline how entailments of the form F � Φp	Φs may be
automatically checked. F denotes heap and pure frames that are propagated by
our staged logics entailment rules. Our entailment is always conducted over the
compacted form where non-recursive staged predicate definitions are unfolded,
while unknown predicates are matched exactly. Lemmas are also used to try
re-summarize each instantiation of recursive staged predicates to simpler forms,
where feasible. As staged entailment ensures that all execution traces that sat-
isfy Φp must also satisfy Φs, we rely on theory of behavioral subtyping [20] to

Staged Specification Logic for Verifying Higher-Order Imperative Programs 513

relate them. Specifically, we check that contravariance holds for pre-condition
entailment, while covariance holds for post-condition entailment, as follows:

fresh y∗ F0 ∗ D2 � (∃x∗ .D1) ∗ F F � θa	θc
F0 � (∃ x∗ . reqD1; θa)	(∃ y∗ . reqD2; θc)

EntReq

fresh x∗ F0 ∗ D1 � (∃ y∗ .D2) ∗ F F � θa	θc
F0 � (∃x∗ . ens[r]D1; θa)	(∃ y∗ . ens[r]D2; θc)

EntEns

More details of staged entailment rules are given in Appendix G [15]. Note
that we use another entailment over separation logic D1 � D2 ∗ Fr that can prop-
agate residual frame, Fr . Lastly, we outline the soundness of staged entailemt
against the semantics of staged formulae, ensuring that all derivations are valid.

Theorem 3. (Soundness of Entailment). Given Φ1	Φ2 and S,
h�Norm(r1), S1, h1|=Φ1, then there exists h2 such that S, h�Norm(r1), S2,
h2|=Φ2 where h2 ⊆ h1. (Here, h1 ⊆ h2 denotes that ∃h3 . h1◦h3 = h2.)

Proof. By induction on the derivation of Φ1	Φ2. See Appendix I.4 [15].

6 Implementation and Initial Results

We prototyped our verification methodology in a tool named Heifer [13]. Our tool
takes input programs written in a subset of OCaml annotated with user-provided
specifications. It analyzes input programs to produce normalized staged formulae

Table 1. A Comparison with Cameleer and Prusti. (Programs that are natively inex-
pressible are marked with “✗”. Programs that cannot be reproduced from Prusti’s
artifact [1] are marked with “-” denoting incomparable. We use T to denote the total
verification time (in seconds) and TP to record the time spent on the external provers.)

Heifer Cameleer [23] Prusti [32]

Benchmark LoC LoS T TP LoC LoS T LoC LoS T

map 13 11 0.66 0.58 10 45 1.25 -

map closure 18 7 1.06 0.77 ✗ -

fold 23 12 1.06 0.87 21 48 8.08 -

fold closure 23 12 1.25 0.89 ✗ -

iter 11 4 0.40 0.32 ✗ -

compose 3 1 0.11 0.09 2 6 0.05 -

compose closure 23 4 0.44 0.32 ✗ ✗

closure [28] 27 5 0.37 0.27 ✗ 13 11 6.75

closure list 7 1 0.15 0.09 ✗ -

applyN 6 1 0.19 0.17 12 13 0.37 -

blameassgn [12] 14 6 0.31 0.28 ✗ 13 9 6.24

counter 16 4 0.24 0.18 ✗ 11 7 6.37

lambda 13 5 0.25 0.22 ✗ -

197 73 45 112 37 27

https://github.com/hipsleek/heifer

514 D. Foo et al.

(Sect. 3.2, Sect. 4), which it then translates to first-order verification conditions
(Sect. 5) suitable for an off-the-shelf SMT solver. Here, our prototype targets
SMT encodings via Why3 [11]. As an optimization, it uses Z3 [8] directly for
queries which do not require Why3’s added features.

We have verified a suite of programs [14] involving higher-order functions and
closures (Table 1). As the focus of our work is to explore a new program logic
and subsumption-based verification methodology (rather than to verify existing
programs), the benchmarks are small in size, and are meant to illustrate the
style of specification and give a flavor of the potential for automation.

Table 1 provides an overview of the benchmark suite. The first two sub-
columns show the size of each program (LoC) and the number of lines of user-
provided specifications (LoS) required. The next two give the total wall-clock time
taken (in seconds) to verify all functions in each program against the provided
specifications, and the amount of time spent in external provers.

The next column shows the same programs verified using Cameleer [23,26], a
state-of-the-art deductive verifier. Cameleer serves as a good baseline for several
reasons: it is representative of the dominant paradigm of pre/post specifications
and, like Heifer, targets (a subset of) OCaml. It supports higher-order functions
in both programs and specifications [27]. The most significant differences between
Cameleer and Heifer are that Cameleer does not support effectful higher-order
functions and is intended to be used via the Why3 IDE in a semi-interactive way
(allowing tactic-like proof transformations, used in the above programs).

The last column shows results for Prusti [32]. Despite Rust’s ownership type
system, we compare it against Prusti because of its state-of-the-art support for
mutable closures, highlighting differences below. While we were able to reproduce
the claims made in Prusti’s OOPSLA 2021 artifact [1], we were not able to verify
many of our own benchmark programs due to two technical reasons, namely
lacking support for Rust’s impl Trait (to return closures) and ML-like cons
lists (which caused timeouts and crashes). Support for closures is also not yet
in mainline Prusti [2]. Nevertheless, we verified the programs we could use for
the artifact, the results of which are shown in Table 1. All experiments were
performed on macOS using a 2.3 GHz Quad-Core Intel Core i7 CPU with 16
GB of RAM. Why3 1.7.0 was used, with SMT solvers Z3 4.12.2, CVC4 1.8, and
Alt-Ergo 2.5.2. The Prusti artifact, a Docker image, was run using Moby 25.0.1.

User annotations required. Significantly less specification than code is
required in Heifer, with an average LoS/LoC ratio of 0.37. This is helped by two
things: the use of function stages in specifications, and the use of biabduction-
based normalization, which allows the specifications of functions to be mostly
automated, requiring only properties and auxiliary lemmas to be provided. In
contrast, Cameleer’s ratio is 2.49, due to the need to adequately summarize
the behaviors of the function arguments and accompany these summaries with
invariants and auxiliary lemmas. Two examples illustrating this are detailed in
Appendix F [15]. Prusti’s ratio is 0.73, but a caveat is that in the programs for
it, only closure reasoning was used, without lemmas or summarization.

Staged Specification Logic for Verifying Higher-Order Imperative Programs 515

Expressiveness.Heifer is able to express many programs that Cameleer cannot,
particularly closure-manipulating ones. This accounts for the ✗ rows in Table 1.
While some of these can be verified with Prusti, unlike stages, Prusti’s call
descriptions do not capture ordering [1,10]; an explicit limitation as shown by
the ✗ rows in Prusti’s column. Prusti is able to use history invariants and the
ownership of the Rust type system, but this difference is more than mitigated in
Heifer with the adoption of an expressive staged logic with spatial heap state;
more appropriate for the weaker (but more general) type system of OCaml.

7 Related Work

The use of sequential composition in specifications goes back to classic theories
of program refinement, such as Morgan’s refinement calculus [21] and Hoare and
He’s Unifying Theories [17], as well session types [9] and logics [6]. It has also been
used to structure verification conditions and give users control over the order in
which they are given to provers [16], allowing more reliable proof automation.
We extend both lines of work, developing the use of sequential composition as a
precise specification mechanism for higher-order imperative functions, and using
it to guide entailment proofs of staged formulae.

Higher-order imperative functions were classically specified in program log-
ics using evaluation formulae [18] and reference-reachability predicates [34]. The
advent of separation logic has allowed for simpler specifications using invari-
ants and nested triples (Sect. 1). These techniques are common in higher-order
separation logics, such as HTT [22], CFML [5], Iris [19] and Steel/Pulse [30],
which are encoded in proof assistants (e.g. Coq, F� [29]) which do not natively
support closures or heap reasoning. While the resulting object logics are highly
expressive, they are much more complex (owing to highly nontrivial encodings)
and consequently less automated than systems that discharge obligations via
SMT. We push the boundaries in this area by proposing stages as a new, precise
specification mechanism which is compatible with automated verification.

The guarantees of an expressive type system can significantly simplify how
higher-order state is specified and managed. Prusti [32] exploits this with call
descriptions (an alternative to function stages, as pure assertions saying that a
call has taken place with a given pre/post) and history invariants, which rely
on the ownership of mutable locations that closures have in Rust. Creusot [10]
uses a prophetic mutable value semantics to achieve a similar goal with pre/post
specifications of closures. Our solution is not dependent on an ownership type
system, applying more generally to languages with unrestricted mutation.

Defunctionalization [24] is another promising means of reasoning about
higher-order effectful programs [27], pioneered by the Why3-based Cameleer [23].
This approach currently does not support closures.

Our approach to automated verification is currently based on strict evalua-
tion. It would be interesting to see how staged specifications can be extended to
support verification of lazy programs, as had been explored in [31,33].

516 D. Foo et al.

8 Conclusion

We have explored how best to modularly specify and verify higher-order impera-
tive programs. Our contributions are manifold: we propose a new staged specifi-
cation logic, rules for deriving staged formulae from programs and normalizing
them using biabduction, and an entailment proof system. This forms the basis
of a new verification methodology, which we validate with our prototype Heifer.

To the best of the authors’ knowledge, this work is the first to intro-
duce a fundamental staged specification mechanism for verifying higher-order
imperative programs without any presumptions; being more concise (without
the need for specifying abstract properties) and more precise (without imposing
preconditions on function-typed parameters) when compared to existing solu-
tions.

Acknowledgments. This research is supported by the Ministry of Education, Singa-
pore, under the Academic Research Fund Tier 1 (FY2023) (Project Title: Automated
Verification for Imperative Higher-Order Programs).

References

1. Modular specification and verification of closures in Rust (artefact). https://
zenodo.org/records/5482557 (2021)

2. Documentation of closures. https://github.com/viperproject/prusti-dev/issues/
1431 (2024)

3. Alves, F., Oliveira, D., Madeiral, F., Castor, F.: On the bug-proneness of structures
inspired by functional programming in JavaScript projects. CoRR, abs/2206.08849
(2022)

4. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis
by means of bi-abduction. In: Shao, Z., Pierce, B.C., eds, Proceedings of the 36th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2009, Savannah, GA, USA, January 21-23, 2009, pp. 289–300. ACM (2009)

5. Charguéraud, A.: Characteristic formulae for the verification of imperative pro-
grams. In: Chakravarty, M.M.T., Hu, Z., Danvy, O., eds, Proceeding of the 16th
ACM SIGPLAN international conference on Functional Programming, ICFP 2011,
Tokyo, Japan, September 19-21, 2011 pp. 418–430. ACM (2011)

6. Costea, A., Chin, W.-N., Qin, S., Craciun, F.: Automated modular verification
for relaxed communication protocols. In: Ryu, S. (ed.) APLAS 2018. LNCS, vol.
11275, pp. 284–305. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
02768-1 16

7. David, C., Chin, WN.: Immutable specifications for more concise and precise ver-
ification. In: Lopes, C.V., Fisher, K., eds, Proceedings of the 26th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2011, part of SPLASH 2011, Portland, OR, USA, October
22 - 27, 2011, pp. 359–374. ACM (2011)

8. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J., eds, Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,

https://zenodo.org/records/5482557
https://zenodo.org/records/5482557
https://github.com/viperproject/prusti-dev/issues/1431
https://github.com/viperproject/prusti-dev/issues/1431
https://doi.org/10.1007/978-3-030-02768-1_16
https://doi.org/10.1007/978-3-030-02768-1_16

Staged Specification Logic for Verifying Higher-Order Imperative Programs 517

March 29-April 6, 2008. Proceedings, vol. 4963 of Lecture Notes in Computer
Science, pp. 337–340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-
3 24

9. Deniélou, P.M., Yoshida, N., Bejleri, A., Hu, R.: Parameterised multiparty session
types. Log. Methods Comput. Sci. 8(4) (2012)

10. Denis, X., Jourdan, J.H.: Specifying and verifying higher-order Rust iterators. In:
Sankaranarayanan, S., Sharygina, N., eds, Tools and Algorithms for the Construc-
tion and Analysis of Systems - 29th International Conference, TACAS 2023, Held
as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Paris, France, April 22-27, 2023, Proceedings, Part II, vol. 13994 of
Lecture Notes in Computer Science, pp. 93–110. Springer (2023). https://doi.org/
10.1007/978-3-031-30820-8 9

11. Filliâtre, J.C., Paskevich, A.: Why3 - where programs meet provers. In: European
Symposium on Programming (2013)

12. Findler, R.B., Felleisen, M.: Contracts for higher-order functions. In: Wand, M.,
Jones, S.L.P., eds, Proceedings of the Seventh ACM SIGPLAN International Con-
ference on Functional Programming (ICFP ’02), Pittsburgh, Pennsylvania, USA,
October 4-6, 2002, pp. 48–59. ACM (2002)

13. Foo, D., Song, Y., Chin, W.N.: Heifer. https://github.com/hipsleek/Heifer (2024)
14. Foo, D., Song, Y., Chin, W.N.: Staged specification logic for verifying higher-order

imperative programs. https://doi.org/10.5281/zenodo.12513074 (2024)
15. Foo, D., Song, Y., Chin, W.N.: Staged specification logic for verifying higher-order

imperative programs (technical report). https://github.com/hipsleek/Heifer/blob/
StagedSL/docs/FM2024 TR.pdf (2024)

16. Gherghina, C., David, C., Qin, S., Chin, W.N.: Structured specifications for better
verification of heap-manipulating programs. In Michael J. Butler, M.J., Schulte,
W., eds, FM 2011: Formal Methods - 17th International Symposium on Formal
Methods, Limerick, Ireland, June 20-24, 2011. Proceedings, vol. 6664 of Lecture
Notes in Computer Science, pp. 386–401. Springer (2011)

17. He, J., and Hoare, C.A.R.: Unifying theories of programming. In: RelMiCS (1998)
18. Honda, K., Yoshida, N., Berger, M.: An observationally complete program logic

for imperative higher-order frame rules. In: 20th IEEE Symposium on Logic in
Computer Science (LICS 2005), 26-29 June 2005, Chicago, IL, USA, Proceedings,
pp. 270–279. IEEE Computer Society (2005)

19. Jung, R., Krebbers, R., Jourdan, J.-H., Bizjak, A., Birkedal, L., Dreyer, D.: Iris
from the ground up: a modular foundation for higher-order concurrent separation
logic. J. Funct. Program. 28, e20 (2018)

20. Leavens, G.T., Naumann, D.A.: Behavioral subtyping, specification inheritance,
and modular reasoning. ACM Trans. Program. Lang. Syst. 37(4), 1–88 (2015)

21. Morgan, C.: The refinement calculus. In: NATO ASI PDC (1994)
22. Nanevski, A., Morrisett, J.G., Birkedal, L.: Hoare type theory, polymorphism and

separation. J. Funct. Program. 18(5-6), 865–911 (2008)
23. Pereira, M., Ravara, A.: Cameleer: a deductive verification tool for OCaml. In:

Silva, A., Rustan, K., Leino, M., eds, Computer Aided Verification - 33rd Interna-
tional Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part
II, vol. 12760 of Lecture Notes in Computer Science, pp. 677–689. Springer (2021).
https://doi.org/10.1007/978-3-030-81688-9 31

24. Reynolds, J.C., Definitional interpreters for higher-order programming languages.
In: Donovan, J.J., Shields, R., editors, Proceedings of the ACM annual conference,
ACM 1972, 1972, Volume 2, pp. 717–740. ACM (1972)

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-031-30820-8_9
https://doi.org/10.1007/978-3-031-30820-8_9
https://github.com/hipsleek/Heifer
https://doi.org/10.5281/zenodo.12513074
https://github.com/hipsleek/Heifer/blob/StagedSL/docs/FM2024_TR.pdf
https://github.com/hipsleek/Heifer/blob/StagedSL/docs/FM2024_TR.pdf
https://doi.org/10.1007/978-3-030-81688-9_31

518 D. Foo et al.

25. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames. ACM Trans. Program.
Lang. Syst. 34(1), 1–58 (2012)

26. Soares, T., Pereira, M.: A framework for the automated verification of algebraic
effects and handlers (extended version). ArXiv, abs/2302.01265, 2023

27. Soares, T.L.: A deductive verification framework for higher order programs. CoRR,
abs/2011.14044 (2020)

28. Svendsen, K.: Modular specification and verification for higher-order languages
with state. IT-Universitetet i København (2013)

29. Swamy, N., et al.: Dependent types and multi-monadic effects in F. In: Bod́ık,
R., Majumdar, R., eds, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg,
FL, USA, January 20 - 22, 2016, pp. 256–270. ACM (2016)

30. Swamy, N., Rastogi, A., Fromherz, A., Merigoux, D., Ahman, D., Mart́ınez, G.:
Steelcore: an extensible concurrent separation logic for effectful dependently typed
programs. Proc. ACM Program. Lang. 4(ICFP), 1–30 (2020)

31. Vazou, N., Seidel, E.L., Jhala, R.: LiquidHaskell: experience with refinement types
in the real world. In: Swierstra, W., edr, Proceedings of the 2014 ACM SIGPLAN
symposium on Haskell, Gothenburg, Sweden, September 4-5, 2014, pp. 39–51. ACM
(2014)

32. Wolff, F., B́ılý, A., Matheja, C., Müller, P., Summers, A.J.: Modular specification
and verification of closures in Rust. Proc. ACM Program. Lang. 5(OOPSLA), 1–29
(2021)

33. Xu, D.N., Peyton Jones, S.L., Claessen, K.: Static contract checking for Haskell.
In: Shao, Z., Pierce, B.C., eds, Proceedings of the 36th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2009, Savannah, GA,
USA, January 21-23, 2009, pp. 41–52. ACM (2009)

34. Yoshida, N., Honda, K., Berger, M.: Logical reasoning for higher-order functions
with local state. In: Seidl, H., edr, Foundations of Software Science and Compu-
tational Structures, 10th International Conference, FOSSACS 2007, Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS
2007, Braga, Portugal, March 24-April 1, 2007, Proceedings, vol. 4423 of Lecture
Notes in Computer Science, pp. 361–377. Springer (2007)

35. Zampetti, F., Belias, F., Zid, C., Antonioland, G., Di Penta, M.: An empirical
study on the fault-inducing effect of functional constructs in Python. In: 2022
IEEE International Conference on Software Maintenance and Evolution (ICSME),
pp. 47–58 (2022)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Unifying Weak Memory Verification
Using Potentials

Lara Bargmann1(B) , Brijesh Dongol2 , and Heike Wehrheim1

1 Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
{lara.bargmann,heike.wehrheim}@uol.de

2 University of Surrey, Guildford, UK
b.dongol@surrey.ac.uk

Abstract. Concurrency verification for weak memory models is inher-
ently complex. Several deductive techniques based on proof calculi have
recently been developed, but these are typically tailored towards a single
memory model through specialised assertions and associated proof rules.
In this paper, we propose an extension to the logic Piccolo to generalise
reasoning across different memory models. Piccolo is interpreted on the
semantic domain of thread potentials. By deriving potentials from weak
memory model states, we can define the validity of Piccolo formulae for
multiple memory models. We moreover propose unified proof rules for
verification on top of Piccolo. Once (a set of) such rules has been shown
to be sound with respect to a memory model MM, all correctness proofs
employing this rule set are valid for MM. We exemplify our approach on
the memory models SC, TSO and SRA using the standard litmus tests
Message-Passing and IRIW.

1 Introduction

Weak memory models [1,4] are now a standard feature of concurrent systems and
programmers may choose to exploit them at both the level of hardware (e.g.,
Intel TSO, Arm) and the level of programming languages (e.g., C11, Java).
However, these models differ significantly from each other and are generally
incomparable (i.e., allowed behaviours in one memory model are not necessarily
a subset of the behaviours allowed by another [21,38]). This means that reasoning
about a particular memory model can be challenging since one needs bespoke
logics and assertions for verification. A variety of separation logics (e.g., [13,19,
37]) and (timestamp-based) Owicki-Gries logics (e.g., [7,11,12,27,39]) have been
developed for specific weak memory models, but are not a generic technique.

In this paper, we aim to simplify weak memory reasoning by developing
a unifying framework that captures the behaviours of different weak memory
models. Our motivation is similar to prior works [3,14,16,22], which also aim

Bargmann and Wehrheim are supported by DFG grant WE 2290/14-1. Dongol is sup-
ported by VeTSS and EPSRC grants EP/Y036425/1, EP/X037142/1, EP/X015149/1,
EP/V038915/1, EP/R025134/2.

c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 519–537, 2025.
https://doi.org/10.1007/978-3-031-71162-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_27&domain=pdf
http://orcid.org/0009-0004-8778-9098
http://orcid.org/0000-0003-0446-3507
http://orcid.org/0000-0002-2385-7512
https://doi.org/10.1007/978-3-031-71162-6_27

520 L. Bargmann et al.

to uniformly reason about programs under different memory models within a
single verification framework. Our point of departure is a new interval-based
framework, Piccolo [25], that uses a notion of potentials to describe a program’s
behaviour, which is both intuitive to use and simple to describe. Thus far, Piccolo
has been applied to a memory model known as strong release-acquire (SRA [23]),
which strengthens the release-acquire memory model used by C11 [24].

We extend Piccolo and show that potential-based reasoning can also be used
in other memory models, namely sequential consistency (SC) [28] and total store
order (TSO) [31,35]. While the extension to SC is straightforward, the TSO mem-
ory model presents a new set of challenges. Namely, unlike SRA, TSO is a weak
memory model that guarantees multi-copy atomicity (MCA), which means that
all threads see the writes to each location in the same order. As we shall see, our
logic provides a novel insight into reasoning about memory models that satisfy
MCA. In particular, we develop a proof rule, which shows that for particular
memory configurations, one can make a deduction on a thread based on the
observations made by another thread.

Related Work. A number of works have proposed program logics for reason-
ing about concurrent programs on weak memory models [7,11,19,25,27,36], all
specific to one memory model. Bargmann and Wehrheim [6] build proof rules
on top of the generic approach of [14], using the program logic proposed in [11].
This logic is, however, not able to express sequences of values seen by threads,
as possible in Piccolo (and needed for IRIW). Rely-guarantee reasoning on weak
memory models (without defining specific logics) is furthermore studied in [9,10].

Alglave et al. [3] enhance Owicki-Gries reasoning [32] with so-called Pythia
variables and communication-based proof obligations between different read and
write events. This however introduces additional complexity since validity of the
communication assertions must be proved in addition to the local correctness and
non-interference proof obligations of the Owicki-Gries method. Doherty et al. [14]
work with a timestamp-based operational semantics using a large set of axioms
to characterise the properties of each memory model. By introducing assertions
that directly describe the communication state, this method avoids an extra set
of checks, allowing correctness to be proved by establishing local correctness and
interference freedom of the assertions (as in the standard setting [32]). However,
the timestamp model tends to induce a large set of bespoke assertions that
describe a range of different phenomena and state configurations [7,11,12,14,39].
Besides these deductive approaches, Gavrilenko et al. [16] and Kokologiannakis
et al. [22] propose model checking techniques for weak memory models, both
parametric in the memory model, but only provide a bounded proof (i.e., a
proof of correctness for paths of bounded length).

Our work encompasses a logic for TSO. While many prior works have studied
verification under TSO, only a handful [9,14,34] consider program logics.

Contributions. The main contribution of this article is the use of potentials and
its associated logical framework as a unifying model for reasoning across SC, TSO
and SRA. While SRA is already defined in terms of potentials [25], we provide a
novel technique for potential-based reasoning for SC and TSO by mapping their

Unifying Weak Memory Verification Using Potentials 521

existing operational semantics into a potential domain. This unification requires
two extensions to the existing logic for potentials: (a) assertions for reasoning
about views of threads (e.g., view-maximality), and (b) a new proof rule for
reasoning about the behaviour of reads in the presence of multi-copy atomicity
(as guaranteed by memory models SC and TSO). Finally, we show how our proof
rules can be applied to reason about key examples from the literature.

2 Motivation

As a first illustration of our reasoning framework, consider the concurrent pro-
gram called the message-passing litmus test (see Fig. 1), typically used for demon-
strating the causal consistency of a memory model. Thread T1 updates x (rep-
resenting some data) to 1, then updates y (representing a flag) to 1. Thread T2
reads from y, then from x and guarantees that seeing the flag to be set (i.e.,
a = 1), it must also read the data written by T1. Causal consistency holds for all
three memory models that we consider, but does not hold for weaker models
such as C11 (when using relaxed atomics) or Arm [15]. That is, for these weaker
memory models, even if T2 reads 1 for y, it may subsequently read a stale (in
this case initial) value for x, missing the updated to x at line 1.

Fig. 1. Message-passing proof using
potentials that is valid for SC, TSO
and SRA, adapted from [25]. The
highlighted assertions are new for our
unified proof.

We seek to develop a correctness
proof that demonstrates causal consis-
tency (i.e., a proof showing that the
postcondition a = 1 ⇒ b = 1 holds)
which uniformly applies to several mem-
ory models. The proof outline in Fig. 1 is
slightly adapted from the proof outline
by Lahav et al. [25] for the SRA mem-
ory model. It shows correctness of mes-
sage passing using a notion of potentials
and an extension of the logic Piccolo to
reason over potentials. The logic aims
to exploit an operational semantics com-
prising a state domain over mappings
from threads to potentials. Potentials are lists (sequences) of stores (which them-
selves are mappings from shared locations to values). Thereby, the semantic
domain accounts for the fact that in weak memory models (a) threads do not
all see the same value of a shared location at the same time, and (b) threads
see written values in a certain order. Assertions formalise such states using an
interval-based logic. The assertion T2�[y �= 1] states the list of stores correspond-
ing to T2 are such that, for all stores in the list, y �= 1 holds. The values of other
shared locations (including x) are unconstrained. Similarly, T2�[y �= 1] ; [x = 1]
states that the list of stores corresponding to T2 may be split into an initial
(possibly empty) list, say L1, such that y �= 1 for all stores in L1, and a remain-
ing (possibly empty) list, say L2, such that x = 1 for all stores in L2. Shared
locations different from y (resp., x) are unconstrained in L1 (resp., L2). Finally,

522 L. Bargmann et al.

the assertion T1 ↑ x states that thread T1 is currently viewing the last update to
shared location x.

The prior work on Piccolo [25] employs a Hoare logic for atomic steps (stores
and loads) and potential-based assertions, allowing one to discharge the stan-
dard (Owicki-Gries [32]) proof obligations1 generated by the proof outline in
Fig. 1. Namely, the framework requires that we establish local correctness of the
assertions within a thread, as well as interference freedom from other thread(s).
As an example, consider again Fig. 1. Local correctness of the assertions in T1
for instance is straightforward. The only non-trivial assertion is the precondition
to line 2, which we refer to as T1.2 (second assertion in T1). Local correctness of
T1.2 is straightforward since execution of STORE(x, 1) directly establishes T1.2,
while interference freedom holds because T2 only contains loads, which cannot
affect the potentials of T1. In thread T2, local correctness of T2.1 is established
by the precondition of the program (since the second interval of T2.1 is allowed
to be empty). Interference freedom against line 1 holds because line 1 executes
in a state in which T1 is view maximal on x, and hence can only introduce a
store with x = 1 at the end of T2’s potential. These and similar correctness
arguments are captured as proof rules in the reasoning framework (see Sect. 4
and Sect. 5).

Our main motivation for this paper is to generalise and unify this approach.
Namely, is it possible for the same proof outline to be valid for several memory
models? Showing this would mean that a verifier only needs to understand a
single proof system, and for the resulting proof to apply to multiple memory
models. We seek to answer this question in the context of potentials and the
logic Piccolo, avoiding the shortcomings of previous approaches as discussed
in the introduction.

To this end, we provide a mapping from the operational semantics of both
SC and TSO to a potential-based semantics, allowing one to interpret (extended)
Piccolo assertions and proof rules for these memory models. Using this technique
we show that the proof outline in Fig. 1 also holds for SC and TSO, allowing
us to validate that both models satisfy causal consistency. Later, from Sect.
refsec:IRIW onwards, we shall see proof outlines that only hold in some of our
memory models (i.e., for SC and TSO, but not for SRA). A distinguishing feature
between these memory models is then that some proof rules used to construct
proof outlines are sometimes sound in one, but unsound in another model.

3 Background

In this section, we define the program syntax, and present the potential-based
domain to unify weak memory models. Later, in Sect. 4, we present a logic
over this domain.

1 In [25], Owicki-Gries proof obligations are systematised within a rely-guarantee
framework. While the generic framework in [25] applies to any causally consistent
memory model, the specific instance of the program logic only applies to SRA.

Unifying Weak Memory Verification Using Potentials 523

Notation. Lists over an alphabet A are written as L = 〈a1 · . . . · an〉 where
a1, . . . , an ∈ A. We use · to concatenate lists, write 〈〉 for the empty list, L[i] for
the i’th element of L and #L for the length of L. We assume the first element
to be L[1] and write a ∈ L to say that element a occurs in the list L. We
furthermore use Q

+ to denote the positive rational numbers including 0. Given
a function f , we let f [y �→ v] = λx. if x = y then v else f(x) denote functional
override.

Fig. 2. Program syntax

Fig. 3. Local semantics of commands (l ∈ Lab, lε ∈ Lab ∪ {ε})

Program Syntax. The syntax of programs, given in Fig. 2, is mostly standard,
comprising primitive (atomic) commands c and compound commands C. The
non-standard components are instrumented commands c̃ (typically used to sup-
port auxiliary variables), which atomically execute a primitive command c and
a local assignment a := e. Atomic commands (such as CAS), are elided since
they induce a different set of proof rules. Rules for compound statements such
as if-then-else and loops are straightforward to derive [25].

We assume top-level parallelism2, i.e., that programs are of the form C �
(λτ ∈ Tid. C), mapping threads (of type Tid) to sequential commands. Often,
we write C1‖C2‖ . . . ‖Cn (ignoring thread ids) for a program C.

Semantics. As in prior works (e.g., [7,14,25,26]), we present the semantics of
the language in three steps.

2 An extension with join and fork statements could be done along the lines of [25].

524 L. Bargmann et al.

Local Semantics. Here, the label (of type Lab = {R(x, vR), W(x, vW)}) for each
action (read/write) associated with each command is extracted. This semantics
(see Fig. 3) also tracks and updates a local register store, γ ∈ Reg → Val. In this
semantics, in the read rule, the value read is parametric and determined by the
transition label. Later, in the combined program semantics, this value will be
fixed so that the read value is consistent with the memory semantics.

Memory semantics. The semantics of memory models given by a labelled
transition system (LTS), M, with set of states denoted by M.Q, initial states
M.Q0, and transitions denoted by k−→M . Transition labels, k, of M consist of
program transition labels (elements of Tid × (Lab ∪ {ε})) and a (disjoint) set
M.Θ of internal memory steps. As an example, we present the SC memory
model below. The SRA model is presented in Example 2 and the TSO model in
Sect. 6.

Example 1 (SCmemory model). The memory model SC simply tracks the most
recent value written to each variable (plus the id of the writing thread). SC has
no internal memory transitions (i.e., SC.Θ � ∅), and the initial state is defined
by SC.Q0 � λx. 〈0, T0〉 (where T0 is a special initialising thread), and transitions
are given by:

write
l = W(x, vW) m′ = m[x �→ 〈vW, τ〉]

m
τ,l−−→SC m′ read

l = R(x, vR) m(x) = 〈vR, ·〉
m

τ,l−−→SC m

Combined Program Semantics. This semantics combines the local with the
memory semantics using the three generic rules below for steps correspond-
ing to the external memory (left), non-memory (middle) and internal memory
(right):

〈C, γ〉 τ,l−−→ 〈C′, γ′〉
l ∈ Lab m

τ,l−−→M m′

〈C, γ, m〉 τ,l−−→M 〈C′, γ′, m′〉
〈C, γ〉 τ,ε−−→ 〈C′, γ′〉

〈C, γ, m〉 τ,ε−−→M 〈C′, γ′, m〉

θ ∈ M.Θ

m θ−→M m′

〈C, γ, m〉 θ−→M 〈C, γ, m′〉

Potential Domain. Under weak memory models, a thread may read from
several possible writes to a location when determining the location’s value, and
different semantics have been developed to capture this phenomenon. In this
paper, our unifying model is based on the notion of potentials [24,25]. Each
potential store is a mapping from shared locations to values as well as the thread
that performed the write plus some auxiliary information required by specific
memory models. This auxiliary information differs between memory models:
SC requires no additional auxiliary information, TSO keeps track of timestamps,
while SRA keeps track of update flags. As we shall see, the SRA memory model is
defined directly over potentials, whereas for SC and TSO, we develop a mapping
from the memory model to the potential domain.

Unifying Weak Memory Verification Using Potentials 525

Definition 1. A potential store is a function δ : Loc → Val×Tid× Aux, where
Aux captures the auxiliary information required by the memory model at hand.

We use δ(x).val and δ(x).tid to retrieve the value and thread id of δ(x), respec-
tively. Additionally, in TSO, we use δ(x).ts to retrieve the (auxiliary) timestamp
and in SRA, we use δ(x).flag to retrieve the (auxiliary) update flag.

Definition 2. A potential is a non-empty set of store lists. We let L be the set
of all potentials. A potential mapping (of the set of all potential mappings P) is
a partial function D : Tid → 2L \ {∅} that maps thread identifiers to potentials
such that all lists agree on the last store.

Fig. 4. SRA semantics of [25] (L[x �→ R] changes the update flag of x to R in L)

Example 2 (SRAmemory model). The operational semantics of the memory
model SRA is directly defined on the potential domain using update flags
as auxiliary information, i.e., SRA.Aux � {R, RMW}. With this, SRA.Q � P,
SRA.Q0 � λτ.{〈λx.〈0, T0, RMW〉〉}, SRA.Θ � {lose, dup} and the transitions are
defined in Fig. 4. Reading requires all lists in a thread’s potential to agree on the
first value of a location. Writing changes the value of a location in all stores in
the writer thread τ , and on a suffix of the store lists in other threads. Potential
stores can furthermore be arbitrarily dropped from store lists in potentials (and
can thus enable reading) as well as duplicated. This is modelled by two inter-
nal transitions, lose and dup. For this, we employ two relations on store lists,
L′ L for losing (e.g., δ1 · δ2 · δ3 δ2 · δ3) and L � L′ for duplication (e.g.,
δ1 · δ2 � δ1 · δ2 · δ2). The relations are lifted to potential mappings as expected.

We refer the interested reader to [25] for full details of the SRA semantics.

Example 3 Consider the MP litmus test from Fig. 1. After executing instructions
1 and 2 of T1, thread T2 could have the potential:[

x �→ 〈0, T0, R〉
y �→ 〈0, T0, R〉

]
·
[
x �→ 〈1, T1, RMW〉
y �→ 〈0, T0, R〉

]
·
[
x �→ 〈1, T1, RMW〉
y �→ 〈1, T1, RMW〉

]

in which it currently sees both x and y to have the value 0. In the future (i.e.,
after some lose steps) T2 will first observe x to become 1, then y to become 1.
Note that once T2 reads 1 for y, it can only read 1 for the value of x.

526 L. Bargmann et al.

4 A Logic for Potentials

In this section, we present an extension of Piccolo [25], an interval-based logic
for weak memory models formalised using a notion of potentials. Piccolo (origi-
nally developed for SRA [25]) comprises a set of assertions over potential-based
states and a set of proof rules that allow one to formalise the values that a
thread may see now, and in the future. The extended version of Piccolo that we
develop enables reasoning about SC and TSO in addition to SRA.

Figure 5 gives the syntax of our extension to Piccolo. The extension concerns
two concepts: First, we add assertions for specifying view maximality. Informally,
a thread τ is view maximal on a location x, τ ↑ x, if it can only see the “last”
write to x. Second, we incorporate the possibility for specifying a writer thread’s
id within the logic (by stating the writer to a location x to be τ , x.tid = τ). We
require this to later be able to formulate the proof rule stating MCA. Besides
these new concepts, the other operators inherited from Piccolo are intervals: a
list fulfills an interval assertion [E] when all elements in the list satisfy E, and
a list L satisfies [I1] ; [I2] (where ; is the chop operator [8,29]) iff L can be split
into lists L1 and L2 such that L1 satisfies [I1] and L2 satisfies [I2].

Fig. 5. Assertions of Piccolo (extended)

Notation. For an assertion ϕ, we let fv(ϕ) ⊆ Reg∪Loc∪Tid be the set of regis-
ters, locations and thread identifiers occurring in ϕ. Instead of writing x.val = e,
we often simply write x = e.
Next, we formally define the interpretation of Piccolo on the domain of potentials.

Definition 3. Let γ be a register store, δ a potential store, L a store list, and
D a potential mapping. We let �e�〈γ,δ〉 � γ(e), �x.val�〈γ,δ〉 � δ(x).val and
�x.tid�〈γ,δ〉 � δ(x).tid. The extension of this notation to any extended expres-
sion E is standard. The validity of assertions in 〈γ,D〉, denoted by 〈γ,D〉 |= ϕ,
is defined as follows:

1. 〈γ, L〉 |= [E] if �E�〈γ,δ〉 = true for every δ ∈ L.
2. 〈γ, L〉 |= I1 ; I2 if 〈γ, L1〉 |= I1 and 〈γ, L2〉 |= I2 for some (possibly empty) L1

and L2 such that L = L1 · L2.
3. 〈γ, L〉 |= I1 ∧ I2 if 〈γ, L〉 |= I1 and 〈γ, L〉 |= I2 (similarly for ∨).
4. 〈γ,D〉 |= τ �I if 〈γ, L〉 |= I for every L ∈ D(τ).
5. 〈γ,D〉 |= τ ↑x if L[i](x) = L[1](x) for every L ∈ D(τ), 1 ≤ i ≤ #L.

Unifying Weak Memory Verification Using Potentials 527

6. 〈γ,D〉 |= e if γ(e) = true.
7. 〈γ,D〉 |= ϕ1 ∧ ϕ2 if 〈γ,D〉 |= ϕ1 and 〈γ,D〉 |= ϕ2 (similarly for ∨).
View maximality of a thread is determined by inspecting its entries for a location
x: if they are all the same (including thread id and auxiliary information), the
thread can only see the value of the last update to x.

Before discussing the concrete rules, we note an important property of pro-
gram logics for weak memory, namely the stability of assertions under internal
memory transitions [14,25]. That is, for every assertion ϕ, register store γ and
memory state m the following must be satisfied:

〈γ,m〉 |= ϕ ∧ m θ−→M m′ ⇒ 〈γ,m′〉 |= ϕ .

This property holds for all assertions described by Fig. 5 with respect to the lose
and dup steps of SRA (see [25]), and trivially for SC. This property also holds
for TSO and its internal memory transition (flush), see Sect. 6.

Fig. 6. Piccolo proof rules (ϕ(a := e) means replacement of a by e in ϕ), where P �{
τ �I

}
τ �→ a := LOAD(x)

{
ψ

}

Proof Rules. The proof rules we introduce here solely concern primitive instruc-
tions. These can be used either within an Owicki-Gries-like proof framework [32]
constructing proof outlines and showing these to be interference-free, or within
a rely-guarantee approach [18,40].

Figure 6 gives the proof rules3. Note that we do not explicitly state a proof
rule for instrumented primitive commands; for these, we can employ combina-
tions of rules for primitive commands with rule Subst. First, we have rules for

3 Note that this set of rules is not complete, i.e., is not sufficient for proving all valid
postconditions of programs for memory models SC, SRA and TSO.

528 L. Bargmann et al.

stability, Stable-Ld and Stable-St, stating that Piccolo formulae not refer-
ring to registers or locations, respectively, are not affected by load and store
instructions. Rule Subst next states the standard axiom of assignment of Hoare
logic [17], which is here only defined with respect to registers and local expres-
sions.

The next three rules concern store instructions. Rule St-Own describes the
changes a store has on the potential of the writing thread, namely if a thread is
view-maximal, the only value it can see for location x after the store is its own
value (and the id of the writer is its own id). Rule St-Other1 states a similar
effect for the non-writing threads, which however can also still see “old” values for
x after the store instruction. Rule St-Other2 states that properties of suffixes
of lists are preserved when the writing thread τ satisfies the same property. This
rule is essential for proving message-passing-like properties (e.g., in Fig. 1).

Rules Ld-Single and Ld-Shift describe the loading of values of shared
locations into registers when
the thread sees a list satisfying an interval assertion (consisting of one inter-
val or several intervals, respectively). These rules are for instance required for{
T2�[y �= 1] ; [x = 1]

}
a := LOAD(y)

{
a = 1 ⇒ T2�[x = 1]

}
in the proof outline

of T2 in Fig. 1.
Finally, the novel rule Mca describes the property of multi-copy atomicity.

It has not occurred in [25] as the memory model SRA studied there is not multi-
copy atomic. It details the fact that in multi-copy atomic memory models threads
(other than the writer) will all get to see a written value at the same time. Here,
we formulate it via intervals: if thread π1 loads the value e to a, then thread π2 is
also able to see this value. This rule is essential for building a proof outline for the
litmus test IRIW (see Sect. 5). This is the only rule requiring the specification
of thread identifiers: we need to be able to state that threads π1 and π2 are
different from the writing thread τ , and that π1 loads the value written by τ .

5 Example Proofs

As examples we employ two standard litmus tests for weak memory models, the
message-passing example MP already seen in Fig. 1 and a concurrent program
called Independent-Reads-of-Independent-Writes (IRIW). For both litmus tests,
we give proof outlines (programs interspersed with assertions) which can be
derived using our proof rules. As underlying base reasoning technique, we employ
Owicki-Gries reasoning [5,32], replacing the normal rule of assignment by our
proof rules. Owicki-Gries reasoning requires performing two correctness checks:

Local Correctness. For every command c̃ of thread τ with pre-assertion ϕ and
post-assertion ψ, we need to prove {ϕ} τ �→ c̃ {ψ}.

Global Correctness. For every assertion ϕ in the proof outline of a thread τ
and every command c̃ in a thread π (τ �= π) with pre-assertion ψ, we need to
show {ϕ ∧ ψ} π �→ c̃ {ϕ} (non-interference).

Unifying Weak Memory Verification Using Potentials 529

Each proof rule employed in these checks must furthermore be shown to be sound
w.r.t. the memory model of interest; if this is not the case, the proof outline is
not valid for the particular memory model. In §7, we study soundness of our
proof rules for SC, TSO and SRA.

Message-Passing. Figure 1 already gives the proof outline of MP. Note that we
can also employ the standard rules of conjunction, disjunction and consequence
of Hoare logic [17] for checking local and global correctness. The interesting
cases in MP concern the non-interference checks of the first assertion in T2 with
respect to the store instructions of thread T1. For this, we need to prove

{T2�[y �= 1] ; [x = 1] ∧ T1 ↑ x} T1 �→ STORE(x, 1) {T2�[y �= 1] ; [x = 1]}

(an instance of St-Other1) as well as the following (by St-Other2):

{
T2�[y �= 1] ; [x = 1]
∧ T1 ↑ x ∧ T1�[x = 1]

}
T1 �→ STORE(y, 1) {T2�[y �= 1] ; [x = 1]}

Independent-Reads-of-Independent-Writes. Our next litmus test IRIW
(see Fig. 7) gives an example of a proof outline which is only valid for SC and
TSO (as the employed proof rules are all sound in SC and TSO, but one rule
is not sound for SRA, see Sect. 7). IRIW is typically employed to show differ-
ences in the behaviour of multi-copy atomic and non multi-copy atomic memory
models. In IRIW, we have two writer and two reader threads, the two readers
reading values of x and y in opposite order. When IRIW runs on a memory
model guaranteeing multi-copy atomicity, the threads T2 and T3 either both see

Fig. 7. Piccolo proof of IRIW using [x = 0] as shorthand for τ �[x = 0] for all τ

530 L. Bargmann et al.

the write to x before the one to y or the other way around. In the first case,
since the two reads in each thread are in program order, if a = 1 and c = 1 then
T3 has to see the write to x when reading from it. Hence, then d = 1. Equally, in
the second case b = 1 when a = 1 and c = 1. Both cases together are described
in the postcondition of Fig. 7 (

{
(a = 1 ∧ c = 1) ⇒ b = 1 ∨ d = 1

}
).

Fig. 8. Impossible reading order and
values of auxiliary variables

Again, we use the notation Tk.i to
describe the i’th assertion in thread Tk. For
reasoning about IRIW (and thus construct
a proof outline) we need to describe the pos-
sible orders in which the two reads can hap-
pen. To this end, we employ two auxiliary
variables [32] here, f (for orderings on reads
of x) and g (for y). These are set atomically
together with their respective load instruc-
tions. If at the end of the program, auxiliary
variable f is 23, this means that thread T2 has read from x before T3 did. There-
fore, f = 23 and a = 1 implies d = 1 (see line 2 of T3.3). In the case where f = 32
at the end of the program, T3 has read from x first. Analogously, auxiliary vari-
able g describes the ordering of reads from y.

The proof outline contains several assertions detailing possible values of the
two auxiliary variables and the registers. They basically state that certain orders
of reads and thus certain combinations of values of registers a, b, c and d are
excluded. In particular, we cannot have the ordering (cycle) depicted by the
graph in Fig. 8, and hence we cannot have g = 23 ∧ f = 32 at the end of the
program. We use this fact in our proof outline as for example seen in T2.3.

Next, we exemplarily show one correctness check required for showing validity
of the proof outline, namely the non-interference of T2.1 with respect to the store
in T1, i.e. proving

{
T1.1 ∧ T2.1

}
T1 �→ STORE(x, 1)

{
T2.1

}
. Its pre-assertion can

be weakened to{
T2�[x = 0] ∧ T3�[x = 0] ∧ T1 ↑ x
∧ (g = 3 ∧ c = 1 ⇒ T2�[y = 1]) ∧ ¬(g = 0 ∧ f = 3) ∧ g ∈ {0, 3} ∧ f ∈ {0, 3}

}

For the upper part of the assertion we apply the St-Other1-rule twice
and get
{
T2�[x = 0] ∧ T3�[x = 0]
∧ T1 ↑ x

}
T1 �→ STORE(x, 1)

{
T2�[x = 0]; [x = 1 ∧ x.tid = T1]
∧ T3�[x = 0]; [x = 1 ∧ x.tid = T1]

}

Since neither c, f, g nor y are changed by the store instruction, the Stable-
St-rule tells us that the lower part of the assertion remains unchanged.

The key rule making this proof outline sound for TSO (and SC4) but not for
SRA is Mca. We need Mca to show the local correctness of 〈a := LOAD(x); f :=
10 ∗ f + 2〉 (analogous for 〈c := LOAD(y); g := 10 ∗ g + 3〉). For this, we prove
4 A pure SC version of the proof outline has been checked with the proof assistant

Isabelle using the encoding of the Owicki-Gries framework [30].

Unifying Weak Memory Verification Using Potentials 531

{
T2.1

}
T2 �→ 〈a := LOAD(x); f := 10 ∗ f+ 2〉{T2.2}

by dividing the pre-assertion
in two parts. For the first part

{
T2�[x = 0]; [x = 1 ∧ x.tid = T1] ∧ T3�[x = 0]; [x = 1 ∧ x.tid = T1]

}

we apply the Mca-rule and receive (eliding the id of the executing thread)
{
T2�[x = 0]; [x = 1 ∧ x.tid = T1] ∧
T3�[x = 0]; [x = 1 ∧ x.tid = T1]

}
〈a := LOAD(x); f := 10 ∗ f + 2〉

{
a = 1 ⇒
T3�[x = 1]

}

For the second part, by applying the rules Stable-St and Subst, we get
⎧
⎨

⎩

(g=3 ∧ c=1 ⇒ T2�[y=1])
∧ ¬(g = 0 ∧ f = 3)
∧ g ∈ {0, 3} ∧ f ∈ {0, 3}

⎫
⎬

⎭

〈
a := LOAD(x);
f := 10 ∗ f + 2

〉
⎧
⎨

⎩

(g=3 ∧ c=1 ⇒ T2�[y=1])
∧ ¬(g = 0 ∧ f = 32)
∧ g ∈ {0, 3} ∧ f ∈ {2, 32}

⎫
⎬

⎭

By combining the two Hoare-triples and weaken f ∈ {2, 32} to f ∈ {2, 23, 32}
we show local correctness.

6 Lifting SC and TSO to Potentials

The previous section has introduced a proof calculus for Piccolo which allows to
construct proof outlines and thus enables reasoning over concurrent programs on
weak memory models. The validity of proof outlines for a specific memory model
depends on the soundness of the employed rules within the memory model. To
this end, we first of all need to lift states of memory models to the level of
potentials (and thus to Piccolo), which we will next do for SC and TSO.

Fig. 9. Operational semantics of prophetic TSO using colours to highlight the updated
shared memory and write buffer components

SC Memory Model. To interpret Piccolo formulae on SC states, we provide a
mapping mapSC : SC.Q → P. For SC, Aux is empty and every thread sees the
same one value only. Thus, we define:

mapSC(m) � λτ.{〈λx.〈m(x).val,m(x).tid〉〉}

Let γ be a register store and ϕ a Piccolo formula. Then 〈γ,m〉 |= ϕ is defined as
〈γ,mapSC(m)〉 |= ϕ. In the memory model SC, all proof rules of Fig. 6 are sound

532 L. Bargmann et al.

(see §7) and assertions of Piccolo are stable under internal memory transitions
(since there are none).

TSO Memory Model. Next, we consider TSO [31,35], for this define an oper-
ational semantics for TSO and derive potentials out of TSO states. We base our
semantics on the prophetic, timestamp-based version given in [14].
Operational Semantics. TSO has one memory-model internal action which
is a flush, i.e. TSO.Θ � {flush}. A state σ = 〈s, wb〉 in prophetic TSO consists
of the shared memory s : Loc → (Val × Tid × Q

+) (recording value, writing
thread and timestamp) and write buffers wb for all threads. The entries in write
buffers record the location, written value and timestamp (to determine the order
in which writes are flushed to shared memory). Together, TSO.Q � (Loc →
(Val × Tid × Q

+)) × (Tid → (Loc × Val × Q
+)∗). Initially, we have TSO.Q0 �

(λx. 〈0, T0, 0〉, λτ. 〈〉) where T0 is the thread initializing shared locations.
The transition relation −→TSO is given in Fig. 9. The read transition needs

to determine the value which thread τ can read in state σ for location x (either
from its own write buffer or from shared memory):

valσ(τ, x) � if x ∈ σ.wb(τ) then wbValσ(τ, x) else σ.s(x)

with wbValσ(τ, x) a partial function extracting values out of write buffers.
It is defined iff 〈x, , 〉 ∈ wb(τ). If defined, we have wbValσ(τ, x) �
last((σ.wb(τ))|x).val, where last((σ.wb(τ))|x) extracts the last entry for x in the
write buffer of τ .

The write transition is writing the value to the writer’s write buffer and to
this end has to choose a new timestamp (which determines the time of flushing).
The timestamp has to be larger than any other timestamp of writes of this
thread, larger than all timestamps of entries in shared memory and different
from any other timestamp:

freshσ(τ, q) � (∀x ∈ Loc. σ.s(x).ts < q) ∧
(∀π ∈ Tid. 〈 , , q〉 /∈ σ.wb(π)) ∧ (∀〈 , , q′〉 ∈ σ.wb(τ). q > q′)

Finally, flushing needs to determine which write buffer entry to flush next.

nextFlushσ(τ) � ∃q. 〈 , , q〉 = σ.wb(τ)[1] ∧
∀π ∈ Tid\{τ}.∀〈 , , q′〉 ∈ σ.wb(π). q′ > q

Potentials of TSO States. For TSO, the auxiliary information Aux in the
potentials concerns timestamps, i.e. Aux = Q

+. A state in prophetic TSO deter-
mines one potential per thread. In this, the ordering in which a thread sees values
of shared locations depends on the timestamps. The first potential store thread
τ sees in a state σ is fixed by shared memory and its own write buffer.

Unifying Weak Memory Verification Using Potentials 533

Δτ (σ) : Loc → (Val × Tid × Q
+)

x �→ 〈valσ(τ, x), tidσ(τ, x), tsσ(τ, x)〉

where we let tidσ(τ, x) � if x ∈ σ.wb(τ) then τ else σ.s(x).tid and tsσ(τ, x) �
if x ∈ σ.wb(τ) then last((σ.wb(τ))|x).ts else σ.s(x).ts.

With this at hand, we can define a mapping which relates prophetic TSO
states to entire potentials: mapTSO : TSO.Q → P is defined as

mapTSO(σ)(τ) � {mkLst(σ)(τ)}

where mkLst(σ)(τ) � if σ flush−−→TSO σ′ then 〈Δτ (σ)〉 · mkLst(σ′)(τ) else
〈Δτ (σ)〉. This definition recursively builds a potential by flushing the next entry
in a state σ and then constructing the next element of a list. The else case applies
when all write buffers are empty.

Alike SC, we can now fix 〈γ, σ〉 |= ϕ to be 〈γ,mapTSO(σ)〉 |= ϕ. All assertions
of Piccolo are stable under internal memory transition flush.

7 Soundness of Rules in Memory Models

With the lifting for SC and TSO at hand, we can formally study the soundness of
Piccolo proof rules for our three memory models, SC, TSO and SRA. A proof rule
{ϕ}τ �→ c{ψ} is sound for a memory model MM if for all states 〈γ,m〉 satisfying
ϕ and all states 〈γ′,m′〉 reached by executing c in MM, the formula ψ is true in
〈γ′,m′〉.
Sequential Consistency. As already stated, we get:

Theorem 1. Rules Stable-Ld, Stable-St, Subst, St-Own, St-Other1,
St-Other2, Ld-Single, Ld-Shift and Mca are sound for SC.

The proof is straightforward and therefore elided. Moreover, we have a
stronger proof rule for store instructions, reflecting the essential property of
sequential consistency: all threads directly see written values.

St-SC {true}τ �→ STORE(x, e){π�[x = e]}

Total Store Ordering. For TSO, we get:

Theorem 2. Rules Stable-Ld, Stable-St, Subst, St-Own, St-Other1,
St-Other2, Ld-Single, Ld-Shift and Mca are sound for SC. Rule St-SC
is not sound for TSO.

534 L. Bargmann et al.

Proof. Due to space restrictions, we only provide a proof sketch for one rule here,
the rule Mca. Let 〈γ, σ〉 |= πi�[x �= e] ; [x = e∧x.tid = τ], i.e., there are lists Li

s.t. mkLst(σ)(πi) = Li and exists Li
1, L

i
2 with Li = Li

1 ·Li
2 and 〈γ, Li

1〉 |= [x �= e]
and 〈γ, Li

2〉 |= [x = e∧x.tid = τ]. If a = e after loading x by π1, then at least L1
2

has to be non-empty. Moreover, L1
1 has to be empty because load instructions

read the value valσ(π1, x) and by definition of mkLst this is the entry for x in
the first potential store. The question is thus why L2

1 has to be empty as well.
If π1 � [x = e ∧ x.tid = τ] holds and τ �= π1, then σ.s(x).val = e and

σ.s(x).tid = τ . Moreover, for all σ′ such that σ flush−−→TSO
∗ σ′ this holds as well.

Hence, π2�[x = e ∧ x.tid = τ] by definition of mkLst and L2
1 is empty. �

Strong Release-Acquire. As SRA already has an operational semantics with
potentials as semantic domain, no lifting is required here and we get:

Theorem 3. Rules Stable-Ld, Stable-St, Subst, St-Own, St-Other1,
St-Other2, Ld-Single and Ld-Shift are sound for SRA. Rules Mca and
St-SC are not sound for SRA.

Proof. The soundness follows from [25]. Rule Mca is not sound for SRA, because
SRA is not multi-copy atomic. As an example, consider a state D in which both
π1 and π2 can see [x = 0];[x = 1] (and for both intervals the lists are non-empty).
Now assume step Lose makes D(π1) lose the entire list with [x = 0]. Then it
can load x and read 1, whereas π2 is still able to see the old value 0. �

Knowing the soundness of rules, we get:

Theorem 4. The proof outline in Fig. 1 is valid for SC, TSO and SRA.
The proof outline in Fig. 7 is valid for SC and TSO, but not for SRA.

8 Conclusion

This paper proposes the use of the domain of potentials and the logic Piccolo
to build unified proof calculi for concurrent programs on weak memory models.
As future work, we see the study of other memory models and semantics (like
C11 [26], PSO [2]) and the treatment of read-modify-write operations. We do
not expect our technique to be applicable to promise-based semantics [20,36],
though. We furthermore aim at developing tool support for reasoning, e.g. as
in [12] or [33].

References

1. dve, S.V., Boehm, H.J.: Memory Models. In: Padua, D. (eds.) Encyclopedia of
Parallel Computing, pp. 1107–1110. Springer (2011). https://doi.org/10.1007/978-
0-387-09766-4 419

2. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: a tutorial. Com-
puter 29(12), 66–76 (1996). https://doi.org/10.1109/2.546611

https://doi.org/10.1007/978-0-387-09766-4_419
https://doi.org/10.1007/978-0-387-09766-4_419
https://doi.org/10.1109/2.546611

Unifying Weak Memory Verification Using Potentials 535

3. Alglave, J., Cousot, P.: Ogre and Pythia: an invariance proof method for weak
consistency models. In: Castagna, G., Gordon, A.D. (eds.) POPL, pp. 3–18. ACM
(2017). https://doi.org/10.1145/3009837.3009883

4. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst.
36(2), 7:1-7:74 (2014). https://doi.org/10.1145/2627752

5. Apt, K.R., de Boer, F.S., Olderog, E.-R.: Verification of Sequential and Concurrent
Programs. Texts in Computer Science. Springer (2009)

6. Bargmann, L., Wehrheim, H.: Lifting the reasoning level in generic weak memory
verification. In: Herber, P., Wijs, A. (eds.) Integrated Formal Methods. iFM 2023.
Lecture Notes in Computer Science, vol 14300. Springer, Cham (2023). https://
doi.org/10.1007/978-3-031-47705-8 10

7. Bila, E.V., Dongol, B., Lahav, O., Raad, A., Wickerson, J.: View-based owicki–
gries reasoning for persistent x86-TSO. In: ESOP 2022. LNCS, vol. 13240, pp.
234–261. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99336-8 9

8. Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Inf. Process.
Lett. 40(5), 269–276 (1991). https://doi.org/10.1016/0020-0190(91)90122-X

9. Coughlin, N., Winter, K., Smith, G.: Rely/guarantee reasoning for multicopy
atomic weak memory models. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.)
FM 2021. LNCS, vol. 13047, pp. 292–310. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-90870-6 16

10. Coughlin, N., Winter, K., Smith, G.: Compositional reasoning for non-multicopy
atomic architectures. Formal Aspects Comput. 35(2), 8:1-8:0 (2023). https://doi.
org/10.1145/3574137

11. Dalvandi, S., Doherty, S., Dongol, B., Wehrheim, H.: Owicki-Gries Reasoning for
C11 RAR. In: Hirschfeld, R., Pape, T (eds.) ECOOP, LIPIcs, pp. 11:1–11:26.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.
4230/LIPIcs.ECOOP.2020.11

12. Dalvandi, S., Dongol, B., Doherty, S., Wehrheim, H.: Integrating Owicki-Gries for
C11-style memory models into Isabelle/HOL. J. Autom. Reason. 66(1), 141–171
(2022). https://doi.org/10.1007/S10817-021-09610-2

13. Dang, H.-H., Jourdan, J.-H., Kaiser, J.-O., Dreyer, D.: Rustbelt meets relaxed
memory. Proc. ACM Program. Lang. 4(POPL), 34:1–34:29 (2020). https://doi.
org/10.1145/3371102

14. Doherty, S., Dalvandi, S., Dongol, B., Wehrheim, H.: Unifying operational weak
memory verification: an axiomatic approach. ACM Trans. Comput. Log. 23(4),
27:1–27:39 (2022). https://doi.org/10.1145/3545117

15. Flur, S., et al.: Modelling the ARMv8 architecture, operationally: Concurrency
and ISA. In: Bod́ık, R., Majumdar, R. (eds.) POPL, pp. 608–621. ACM (2016).
https://doi.org/10.1145/2837614.2837615

16. Gavrilenko, N., Ponce-de-León, H., Furbach, F., Heljanko, K., Meyer, R.: BMC for
weak memory models: relation analysis for Compact SMT encodings. In: Dillig,
I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 355–365. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25540-4 19

17. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969). https://doi.org/10.1145/363235.363259

18. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (1983). https://doi.org/
10.1145/69575.69577

https://doi.org/10.1145/3009837.3009883
https://doi.org/10.1145/2627752
https://doi.org/10.1007/978-3-031-47705-8_10
https://doi.org/10.1007/978-3-031-47705-8_10
https://doi.org/10.1007/978-3-030-99336-8_9
https://doi.org/10.1016/0020-0190(91)90122-X
https://doi.org/10.1007/978-3-030-90870-6_16
https://doi.org/10.1007/978-3-030-90870-6_16
https://doi.org/10.1145/3574137
https://doi.org/10.1145/3574137
https://doi.org/10.4230/LIPIcs.ECOOP.2020.11
https://doi.org/10.4230/LIPIcs.ECOOP.2020.11
https://doi.org/10.1007/S10817-021-09610-2
https://doi.org/10.1145/3371102
https://doi.org/10.1145/3371102
https://doi.org/10.1145/3545117
https://doi.org/10.1145/2837614.2837615
https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/69575.69577
https://doi.org/10.1145/69575.69577

536 L. Bargmann et al.

19. Kaiser, J.-O., Dang, H.-H., Dreyer, D., Lahav, O., Vafeiadis, V.: Strong Logic for
Weak Memory: Reasoning About Release-Acquire Consistency in Iris. In: Müller, P.
(eds.) ECOOP, vol. 74. LIPIcs, pp. 17:1–17:29. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2017). https://doi.org/10.4230/LIPICS.ECOOP.2017.17

20. Kang, J., Hur, C.-K., Lahav, O., Vafeiadis, V., Dreyer, D.: A promising semantics
for relaxed-memory concurrency. In: Castagna, G., Gordon, A.D. (eds.) POPL, pp.
175–189. ACM (2017). https://doi.org/10.1145/3009837.3009850

21. Kokologiannakis, M., Lahav, O., Vafeiadis, V.: Kater: Automating weak mem-
ory model metatheory and consistency checking. Proc. ACM Program. Lang.
7(POPL), 544–572 (2023). https://doi.org/10.1145/3571212

22. Kokologiannakis, M., Vafeiadis, V.: GenMC: a model checker for weak memory
models. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 427–
440. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81685-8 20

23. Lahav, O., Boker, U.: Decidable verification under a causally consistent shared
memory. In: Donaldson, A.F., Torlak, E. (eds.) PLDI, pp. 211–226. ACM (2020).
https://doi.org/10.1145/3385412.3385966

24. Lahav, O., Boker, U.: What’s decidable about causally consistent shared memory?
ACM Trans. Program. Lang. Syst. 44(2), 8:1–8:55 (2022). https://doi.org/10.1145/
3505273

25. Lahav, O., Dongol, B., Wehrheim, H.: Rely-guarantee reasoning for causally con-
sistent shared memory. In: Enea, C., Lal, A. (eds.) CAV, vol. 13964. LNCS, pp.
206–229. Springer (2023). https://doi.org/10.1007/978-3-031-37706-8 11

26. Lahav, O., Giannarakis, N., Vafeiadis, V.: Taming release-acquire consistency. In:
Bod́ık, R., Majumdar, R. (eds.)POPL, pp. 649–662. ACM (2016). https://doi.
org/10.1145/2837614.2837643

27. Lahav, O., Vafeiadis, V.: Owicki-Gries reasoning for weak memory models. In:
Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015.
LNCS, vol. 9135, pp. 311–323. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47666-6 25

28. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Computers 28(9), 690–691 (1979). https://doi.
org/10.1109/TC.1979.1675439

29. Moszkowski, B.C.: A complete axiom system for propositional interval temporal
logic with infinite time. Log. Methods Comput. Sci. 8(3) (2012). https://doi.org/
10.2168/LMCS-8(3:10)2012

30. Nipkow, T., Nieto, L.P.: Owicki/Gries in Isabelle/HOL. In: Finance, J.-P. (ed.)
FASE 1999. LNCS, vol. 1577, pp. 188–203. Springer, Heidelberg (1999). https://
doi.org/10.1007/978-3-540-49020-3 13

31. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 391–407. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03359-9 27

32. Owicki, S.S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta
Inf. 6, 319–340 (1976). https://doi.org/10.1007/BF00268134

33. Raad, A., Lahav, O., Wickerson, J., Balcer, P., Dongol, B.: Intel PMDK trans-
actions: specification, validation and concurrency. In: Weirich, S. (eds.) ESOP,
vol. 14577 LNCS, pp.150–179. Springer (2024). https://doi.org/10.1007/978-3-031-
57267-8 6

34. Ridge, T.: A rely-guarantee proof system for x86-TSO. In: Leavens, G.T., O’Hearn,
P., Rajamani, S.K. (eds.) VSTTE 2010. LNCS, vol. 6217, pp. 55–70. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15057-9 4

https://doi.org/10.4230/LIPICS.ECOOP.2017.17
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3571212
https://doi.org/10.1007/978-3-030-81685-8_20
https://doi.org/10.1145/3385412.3385966
https://doi.org/10.1145/3505273
https://doi.org/10.1145/3505273
https://doi.org/10.1007/978-3-031-37706-8_11
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.2168/LMCS-8(3:10)2012
https://doi.org/10.2168/LMCS-8(3:10)2012
https://doi.org/10.1007/978-3-540-49020-3_13
https://doi.org/10.1007/978-3-540-49020-3_13
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/BF00268134
https://doi.org/10.1007/978-3-031-57267-8_6
https://doi.org/10.1007/978-3-031-57267-8_6
https://doi.org/10.1007/978-3-642-15057-9_4

Unifying Weak Memory Verification Using Potentials 537

35. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7),
89–97 (2010). https://doi.org/10.1145/1785414.1785443

36. Svendsen, K., Pichon-Pharabod, J., Doko, M., Lahav, O., Vafeiadis, V.: A sepa-
ration logic for a promising semantics. In: Ahmed, A. (ed.) ESOP 2018. LNCS,
vol. 10801, pp. 357–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89884-1 13

37. Simon Friis Vindum and Lars Birkedal: Spirea: a mechanized concurrent separation
logic for weak persistent memory. Proc. ACM Program. Lang. 7(OOPSLA2), 632–
657 (2023). https://doi.org/10.1145/3622820

38. Wickerson, J., Batty, M., Sorensen, T., Constantinides, G.A.: Automatically com-
paring memory consistency models. In: Castagna, G., Gordon, A.D (eds.) POPL,
pp. 190–204. ACM (2017). https://doi.org/10.1145/3009837.3009838

39. Wright, D., Dalvandi, S., Batty, M., Dongol, B.: Mechanised operational reasoning
for C11 programs with relaxed dependencies. Formal Aspects Comput. 35(2), 10:1–
10:27 (2023). https://doi.org/10.1145/3580285

40. Xu, Q., de Roever, W.P., He, J.: The Rely-Guarantee Method for Verifying Shared
Variable Concurrent Programs. Formal Aspects Comput. 9(2), 149–174 (1997).
https://doi.org/10.1007/BF01211617

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1007/978-3-319-89884-1_13
https://doi.org/10.1007/978-3-319-89884-1_13
https://doi.org/10.1145/3622820
https://doi.org/10.1145/3009837.3009838
https://doi.org/10.1145/3580285
https://doi.org/10.1007/BF01211617
http://creativecommons.org/licenses/by/4.0/

Proving Functional Program Equivalence
via Directed Lemma Synthesis

Yican Sun1, Ruyi Ji1, Jian Fang1, Xuanlin Jiang1, Mingshuai Chen3,
and Yingfei Xiong1,2(B)

1 Key Laboratory of High Confidence Software Technologies (Peking University),
Ministry of Education; School of Computer Science, Peking University, Beijing, China
{sycpku,jiruyi910387714}@pku.edu.cn, {fangjian,xljiang}@stu.pku.edu.cn

2 Zhongguancun Laboratory, Beijing, China
xiongyf@pku.edu.cn

3 Zhejiang University, Hangzhou, China
m.chen@zju.edu.cn

Abstract. Proving equivalence between functional programs is a fun-
damental problem in program verification, which often amounts to rea-
soning about algebraic data types (ADTs) and compositions of struc-
tural recursions. Modern theorem provers provide structural induction
for such reasoning, but a structural induction on the original theorem
is often insufficient for many equivalence theorems. In such cases, one
has to invent a set of lemmas, prove these lemmas by additional induc-
tion, and use these lemmas to prove the original theorem. There is, how-
ever, a lack of systematic understanding of what lemmas are needed
for inductive proofs and how these lemmas can be synthesized automati-
cally. This paper presents directed lemma synthesis, an effective approach
to automating equivalence proofs by discovering critical lemmas using
program synthesis techniques. We first identify two induction-friendly
forms of propositions that give formal guarantees to the progress of the
proof. We then propose two tactics that synthesize and apply lemmas,
thereby transforming the proof goal into induction-friendly forms. Both
tactics reduce lemma synthesis to a set of independent and typically
small program synthesis problems that can be efficiently solved. Experi-
mental results demonstrate the effectiveness of our approach: Compared
to state-of-the-art equivalence checkers employing heuristic-based lemma
enumeration, directed lemma synthesis saves 95.47% runtime on average
and solves 38 more tasks over an extended version of the standard bench-
mark set.

Keywords: Program equivalence checking · Functional programs ·
Lemma synthesis

1 Introduction

Automatically proving the equivalence between functional programs is a funda-
mental problem in program verification. On the one hand, it is the basic way
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 538–557, 2025.
https://doi.org/10.1007/978-3-031-71162-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_28&domain=pdf
https://doi.org/10.1007/978-3-031-71162-6_28

Proving Functional Program Equivalence via Directed Lemma Synthesis 539

to certify the correctness of optimizing functional programs. On the other hand,
since modern theorem provers such as Isabelle [27], Coq [1], and Lean [22] are
based on functional programming languages, many other verification problems
reduce to reasoning about equivalence between functional programs.

The core of functional programming languages is built upon algebraic data
types (ADTs). An ADT describes composite data structures by combining sim-
pler types; it can be recursive when referring to itself in its own definition. ADTs
are often processed by structural recursions, where recursive calls are invoked
over the recursive substructures of the input value. As a result, the crux of veri-
fying functional program equivalence is to reason about the equivalence between
composed structural recursions, as demonstrated by the following example.

Fig. 1. An algebraic data type and structurally recursive functions.

Example 1. Fig. 1 depicts a common ADT List with two constructors, nil and
cons, and standard structurally recursive functions, rev that reverses a list, sort
that applies insertion sort, and sum that calculates the sum of a list. Functions
snoc and ins are for implementing these functions. We are interested in proving
that summing a list after reverse is the equivalent of summing a list after sorting:

∀ xs : List. sum (rev xs) = sum (sort xs) . (†)

To prove the equivalence, it is natural to apply structural induction, which has
been integrated into modern theorem provers. A structural induction certifies
that proposition P (x) holds for every instance x of some ADT by showing that
P (x) holds for each possible constructor of x, assuming the induction hypothesis
that P (x′) holds for the substructure x′ of x. For example, a structural induction
for (†) requires to prove two subgoals, each corresponds to a constructor of

540 Y. Sun et al.

List. The first subgoal is to show (†) holds when xs = nil. The second subgoal
induces the following inductive hypothesis.

sum (rev t) = sum (sort t) . (IH)

Proposition (†) holds for the cons case if: (†) is true, assuming xs = cons h t
and (IH). �

Challenge: Lemma Finding. Nonetheless, many theorems cannot be proved
by only induction over the original theorem [12]. Example 1 is such a case: Its
proof requires induction, but induction over (†) is insufficient since we cannot
apply the inductive hypothesis (IH); see the full version [34] for a formal proof.
To apply (IH), we have to transform (†) until there is a subterm matching either
the left-hand-side (LHS) or right-hand-side (RHS) of (IH), such that we can
apply (IH) to rewrite the transformed formula. However, such a subterm can
never be derived through a deductive transformation (Details in Sect. 2)

In such cases, it is necessary to invent a set of lemmas, prove these lemmas
by additional induction, and use these lemmas to prove the original proposi-
tion. Accordingly, the proof process boils down to (i) lemma finding, and (ii)
deductive reasoning with the aid of lemmas. Whereas decision procedures for
deductive reasoning have been extensively studied [3,21,25], there is still a lack
of systematic understanding of what lemmas are needed for inductive proofs and
how these lemmas can be synthesized automatically.

Due to the lack of theoretical understanding, many existing automatic proof
approaches resort to heuristic-based lemma enumeration [4,7,11,20,26,29–32].
These approaches typically work as follows: (i) use heuristics to rank all possible
lemma candidates in a syntactic space (the heuristics are commonly based on
certain machine-learning models or the textual similarity to the original propo-
sition), (ii) enumerate the candidates by rank and (iii) try to prove each lemma
candidate and certify the original proposition using the lemma. Since there is
no guarantee that the lemma candidates are helpful in advancing the proof,
such solvers may waste time trying useless candidates, thus leading to inef-
ficiency. For Example 1, the enumeration-based solver HipSpec [4] produces
lemma ∀xs. rev (rev xs) = xs, which provides little help to the proof.
Approach. We present directed lemma synthesis to avoid enumerating useless
lemmas. From Example 1, we can see that the key to the inductive proof lies
in the effective application of the inductive hypothesis. Based on this observa-
tion, we identify two syntactic forms of propositions that guarantee the effective
application of the inductive hypothesis, termed induction-friendly forms. Next,
we propose two tactics that synthesize and apply lemmas. The lemmas synthe-
sized by our tactics take the form of an equation, with one of its sides matching
a term in the original proposition, and can be used to transform the original
proposition by rewriting the matched term into the other side of the lemma.
Consequently, the current proof goal splits into two subgoals – one for proving
the transformed proposition and the other for proving the synthesized lemma
itself. Our tactics have the following properties:

Proving Functional Program Equivalence via Directed Lemma Synthesis 541

• Progress: The new proof goals after applying our tactics eventually fall into
one of the induction-friendly forms. That is, compared with existing direc-
tionless lemma enumeration, our synthesis procedure is directed: it eventually
produces subgoals that admit effective applications of the inductive hypoth-
esis.

• Efficiency: The lemma synthesis problem in our tactics can be reduced to a
set of independent and typically small program synthesis problems, thereby
allowing an off-the-shelf program synthesizer to efficiently solve the problems.

Based on the two tactics, we propose AutoProof, an automated approach
to proving the equivalence between functional programs by combining any exist-
ing decision procedure with our two tactics for directed lemma synthesis.

For Example 1, AutoProof synthesizes the lemma

∀ xs : List. sum (rev xs) = sum xs ,

where the LHS matches the LHS of the original proposition (†). Therefore, we
can use this lemma to rewrite (†) into

∀ xs : List. sum xs = sum (sort xs) .

As will be shown later, both equations above fall into the first induction-friendly
form, thus ensuring the application of the inductive hypothesis.

Evaluation. We have implemented AutoProof on top of Cvc4Ind [30] – the
available state-of-the-art equivalence checker with heuristic-based lemma enu-
meration. We conduct experiments on the program equivalence subset of an
extended version of the standard benchmark in automated inductive reasoning.
The results show that, compared with the original Cvc4Ind, our directed lemma
synthesis saves 95.47% runtime on average and help solve 38 more tasks.

Contributions. The main contributions of this paper include the follows.

• The idea of directed lemma synthesis, i.e., synthesizing lemmas to transform
the proof goal into desired forms.

• Two induction-friendly forms that guarantee the effective application of the
inductive hypothesis, as well as two tactics that synthesize and apply lemmas
to transform the proof goal into these forms. The lemma synthesis in our
tactics can be reduced to a set of independent and typically small synthesis
problems, ensuring the efficiency of the lemma synthesis.

• The implementation and evaluation of our approach, demonstrating the effec-
tiveness of our approach in synthesizing lemmas to improve the state-of-the-
art decision procedures.

Due to space limitations, we relegate the details to the full version [34].

542 Y. Sun et al.

2 Motivation and Approach Overview

In this section, we illustrate AutoProof over examples. For simplicity, we con-
sider only structurally recursive functions with one parameter in this section.
A Warm-up Example. To begin with, let us first consider an equation where
the direct structural induction yields an effective application of the inductive
hypothesis.

∀xs : List. sum (rev xs) = sum xs (†W)

To prove this equation, we conduct a structural induction on xs, the ADT
argument that the structural recursion traverses, resulting in two cases xs = nil
and xs = cons h t. The first case is trivial, and in the second case, we have an
inductive hypothesis over the tail list t.

sum (rev t) = sum t (IHW)

We first use the equation xs = cons h t to rewrite the original proposition
(†W), and obtain the following equation.

sum (rev (cons h t)) = sum (cons h t)

Here sum and rev are both structural recursions, which use pattern matching
to choose different branches based on the constructor of xs. With xs replaced
as cons h t, we can now proceed with the pattern matching and obtain the
following equation.

sum (snoc h (rev t)) = h + (sum t) (1)

Now the equation contains a subterm sum t that matches the RHS of the induc-
tive hypothesis (IHW), which allows us to rewrite this equation with (IHW),
resulting in the following equation.

sum (snoc h (rev t)) = h + (sum (rev t)) (2)

There is a common “rev t” term on both sides of the equation above, and we
can apply the standard generalization technique to replace it with a new fresh
variable r, obtaining the following equation.

sum (snoc h r) = h + (sum r) (3)

This equation is simpler than the original one as snoc does not involve calls to
other structurally recursive functions. By further applying induction on r, we
can prove this equation.

We can see that the above proof contains two key steps: (i) using the inductive
hypothesis to rewrite the equation, and (ii) using generalization to eliminate a
common non-leaf subprogram. We call such two steps an effective application
of the inductive hypothesis. Note that an effective application is guaranteed
because the RHS of the original equation is a single structural recursion call,
sum xs. Since a structural recursion applies itself to the substructure of the
input, sum t is guaranteed to appear after reduction. Then, we can use the

Proving Functional Program Equivalence via Directed Lemma Synthesis 543

inductive hypothesis to rewrite, and the rewritten RHS contains rev t. Similarly,
the inner-most function call, rev xs, is guaranteed to reduce to rev t. Therefore,
a generalization is guaranteed.

Induction-Friendly Forms. In general, we identify induction-friendly forms,
where for every equation in this form, there exists a variable such that performing
induction on it yields an effective application of the inductive hypothesis for the
cases involving a recursive substructure. From the discussion above, we have the
simplified version of the first induction-friendly form.

(F0) (Simplified (F1)). One side of the equation is a single call to a structurally
recursive function.

A Harder Example. Now let us consider the example equation (†) we have
seen in Sect. 1. Recall this equation as follows.

∀ xs : List. sum (rev xs) = sum (sort xs)

Since neither side of (†) is a single call to a structurally recursive function, this
equation does not fall into (F0), and indeed, the induction over it will get stuck.
To see this point, let us still consider the x = cons h t case, where the inductive
hypothesis (IH) is as follows, which we have seen in Sect. 1.

sum (rev t) = sum (sort t)

By rewriting and reducing the original proposition with x = cons h t, we get
the following equation.

sum (snoc h (rev t)) = sum (ins h (sort t))

Unfortunately, neither side of (IH) appears, disabling the application of the
inductive hypothesis. In fact, we can formally prove that this proposition cannot
be proved by only induction over the original proposition [34].

If we can transform the original proposition (†) into (F0), we can ensure to
effectively apply the inductive hypothesis. One way to perform this transforma-
tion is to find an equation where one side of the equation is the same as one side
of the original proposition, and the other side is a single call to a structurally
recursive function. This leads to the lemma (L1), which we have seen in the
introduction.

∀ xs : List. sum (rev xs) = sum xs (L1)

Rewriting (†) with (L1), we obtain (L2) we have seen.

∀ xs : List. sum xs = sum (sort xs) (L2)

Now the original proof goal (†) splits into (L1) and (L2), both conforming to
(F0). Now we have the guarantee that the inductive hypothesis can be applied
in the inductive proofs of both (L1) and (L2).

Automation. Most steps of the above transformation process can be easily
automated, and the only difficult step is to find a suitable lemma. Based on the

544 Y. Sun et al.

form of the lemma, the key is finding the structurally recursive function sum to be
used on the RHS, equivalent to a known term sum ◦ rev on the LHS. In general,
synthesizing a function from scratch may be difficult. However, synthesizing a
structural recursion is significantly easier for the following two reasons. First, the
template fixes a large fraction of codes in a structural recursion. In this example,
the structural recursion over xs with the following template.

Let f xs =
match xs with
| nil → base

| cons h t → Let r = f t in comb h r
end;

where the only unknown parts are base and comb. Second, we can separate the
expression for each constructor as an independent synthesis task. In this example,
we have the following two independent synthesis tasks for the constructors nil
and cons, respectively.

sum (rev nil) = base

∀ h t. sum (rev (cons h t)) = comb h (sum (rev t))

Existing program synthesizers (e.g., AutoLifter [13] in our implementation)
can easily solve both tasks. We get base = 0 and comb h r = h + r. Thus, f
coincides with sum. An additional benefit is that a typical synthesizer requires a
verifier to verify the synthesis result. Here, we can omit the verifier and rely on
tests to validate the result. This does not affect the soundness of our approach
since the synthesized lemma is proved recursively.

Tactic. Summarizing the above process, we obtain the first tactic. Given a proof
goal that does not conform to (F0), this tactic splits it into two proof goals, both
conforming to (F0). This tactic has two variants, which rewrite the LHS and the
RHS, respectively. We give only the RHS version here. In more detail, given an
equation ∀x̄.p1(x̄) = p2(x̄) that does not satisfy (F0), our first tactic proceeds
as follows.

Step 1. Derive a lemma template in the form of ∀x̄, p2(x̄) = f(x̄), where f is a
structurally recursive function to be synthesized.

Step 2. Generate a set of synthesis problems and solve them to obtain f .
Step 3. Generate two proof goals, ∀x̄.p1(x̄) = f(x̄) and ∀x̄.f(x̄) = p2(x̄).

Overall Process. Our approach AutoProof combines any deductive solver
with the two tactics to prove equivalence between functional programs. Given an
equation, our approach first invokes the deductive solver to prove the equation.
If the deductive solver fails to prove, we check if the equation is in an induction-
friendly form and apply induction to generate new proof goals. Otherwise, we
check if any tactic can be applied, and apply the tactic to generate new proof
goals. Finally, we recursively invoke our approach to the new proof goals. The
workflow of solving our harder example (†) is illustrated in Fig. 2.

Towards the Full Approach. The tactic we present here attempts to trans-
form a complex term into a single structural recursion, but it may not be possible

Proving Functional Program Equivalence via Directed Lemma Synthesis 545

Fig. 2. Workflow of AutoProof

in general. Thus, the full tactic transforms only a composition of two structural
recursions into a single one each time, to significantly increase the chance of
synthesis success.

Through out the section we consider only structurally recursive functions
taking only one parameter, but there may be multiple ADT variables in general
(e.g., proving the commutativity of natural number multiplications). Our second
tactic deals with an issue caused by inconsistent recursions, that is, different
recursions that traverse different ADT variables. Examples and details on this
tactic can be found in Sect. 4.5.

3 Preliminary

This section presents the background of program equivalence checking. We first
articulate the range of equivalence checking tasks. Throughout this paper, we
use p(v1, . . . , vk) to denote a functional program p whose free variables range
from {v1, . . . , vk}.

Types. The family of types in AutoProof consists of two disjoint parts: (1)
the algebraic data types, and (ADTs) [28], and (2) the built-in types such as
Int or Bool. For ease of presentation, we assume that there is only one built-in
type Int for integers, and only one ADT for lists with integer elements. List
has two constructors, nil: List for the empty list, and cons: Int → List →
List that appends an integer at the head of a list. AutoProof can be easily
extended to handle all ADTs and more built-in types.

Syntax. As illustrated in Fig. 3, the specification for an equivalence checking
task is generated by SPEC, where each task consists of two parts.

First, a specification defines a sequence of canonical structural recursions
(CSRs), each generated by CSRDef. A CSR f is a function whose last argu-
ment is of an ADT. It applies pattern matching to the last argument vk, which
we call the recursive argument, and considers all top-level constructors of vk. If
vk = nil, i.e., an empty list, it invokes base(v1, . . . , vk−1) generated by PROG.
Otherwise, vk = cons h t. It recursively invokes itself over t with all other argu-
ments unchanged, stores the result of the recursive call in r, and then combines

546 Y. Sun et al.

the result via the program comb(v1 . . . vk−1, h, r) generated by PROG. The non-
terminal PROG generates either a variable var, a numerical constant constant,
or an application by (1) a built-in operator op for a built-in type (e.g., +,−,×
for Int), (2) a constructor ctr of an ADT, and (3) a CSR f , followed with k
programs, where k is the number of arguments required by this application.

Having defined all CSRs, a specification gives the equation ∀x̄.p1(x̄) = p2(x̄),
where p1 and p2 are generated by PROG.

Semantics. We adapt standard evaluation rules [1] to the syntax (Fig. 3). We
defer these details to the full version [34]. We use term reduction to refer to a
single-step evaluation.

Abstraction. An abstraction is a syntactic transformation from a program p
to another program p′ performed in steps. In each step, given a program p, it
introduces a fresh variable and replaces a subprogram of p with the fresh variable.
For example, we can abstract the program p of sum (snoc (h + h) (rev t))
to p′ of sum (snoc a b), which replaces (h + h) to a, and (rev t) to b.

Note that if p′ is an abstraction of p, any transformation on p′ yields another
transformation on p by simply replacing each introduced fresh variable back with
the corresponding subprogram. For example, the transformation from p′ to a +
(sum b) yields the transformation from p to (h + h) + sum (rev t).

Fig. 3. Syntax of the surface language of AutoProof.

Expressivity. Compared with widely-considered structural recursions [1], CSR
has two additional restrictions. First, it applies pattern-matching to only one
argument. Second, it keeps other parameters unchanged in recursive calls. How-
ever, we can transform any structural recursion into a composition of CSRs by
refining defunctionalization [8]. Thus, restricting SRs to CSRs does not affect
the expressivity of functional programs, see the full version [34] for details.

Proving Functional Program Equivalence via Directed Lemma Synthesis 547

Fig. 4. Pseudocode of AutoProof

4 AutoProof in Detail

4.1 The Overall Approach

The pseudo-code of AutoProof is shown in Fig. 4. The main procedure is
Prove (Lines 11–24). The input of this procedure is a pair (pr, eq), termed as
a goal, where pr is short for premises, which is a set of equations including all
lemmas and inductive hypotheses, and eq is an equation denoting the current
proposition to be proved. The target of a goal is to prove pr � eq.

Prove wraps an underlying deductive solver responsible for performing stan-
dard deductive reasoning, such as reduction or applying a premise. Prove first
invokes the deductive solver to prove the input goal (Line 12). If the deductive
solver succeeds, the proof procedure finishes (Lines 13–14). AutoProof is com-
patible with any deductive solver. We choose the deductive reasoning module of
the state-of-the-art solver Cvc4Ind [30] in our implementation.

Otherwise, the goal is too complex for the deductive solver to handle,
which often requires finding a lemma. In this case, AutoProof first invokes
induction-friendly(e) to check if the input equation eq satisfies one of the
two identified forms (F1) and (F2) (defined in Sect. 4.2). If so, then by the
properties of induction-friendly forms, the original goal can be split into a set
of subgoals (Line 18) by induction with effective applications of the inductive
hypotheses.

If not, AutoProof applies a built-in set of tactics to transform an input
equation into an induction-friendly form gradually. We will discuss tactics in
detail in Sect. 4.3. A tactic generally has a precondition, i.e., precond(·) indi-
cating the set of applicable equations. If the tactic is applicable (Line 21), Auto-
Proof invokes another procedure t_apply that synthesizes a lemma lem and
applies this lemma to transform the input equation eq into another equation
eq′. (Line 22). Then, Prove is recursively called to prove the lemma lem and the
equation eq′ with the aid of lem (Lines 24–25).

548 Y. Sun et al.

In this algorithm, induction is applied only when the proof goal is in the
induction-friendly form, hence we need a progress property that, starting from
any goal, if all lemmas are successfully synthesized, the initial goal can be even-
tually transformed into an induction-friendly form. This property is formally
proved in Theorem 3.

4.2 Induction-Friendly Forms in AutoProof

AutoProof identifies two induction-friendly forms (defined at Sect. 2). Both
forms guarantee the effective application of the inductive hypothesis.

(F1) The first induction-friendly form is f v1 . . . vk = p(v1, . . . , vk), where
(F1.1) One side of the equation is in the form fv1 . . . vk, where f is a CSR and

v1 . . . vk are different. From the definition of CSR, f applies pattern-
matching on vk.

(F1.2) The other side of the equation is a program p(v1 . . . vk) satisfies the
condition as follows. If vk appears in p, then there exists an occurrence
of vk, such that (1) vk appears as the recursive argument of the CSR
it is passed to, and (2) all other arguments in this CSR invocation do
not contain vk.

Fig. 5. More CSRs for This Section

Intuitively, (F1.1) guarantees the applicability of the inductive hypothesis,
and (F1.2) guarantees that there is a common term for generalization. To be
more concrete, consider proving ∀x, y, z. sapp x y z = sum (app (app y z)
x), where app and sapp are defined in Fig. 5, app is the list concatenation func-
tion, and sapp calucates the sum of three concatenated lists. Note that this
equation fulfills (F1). Induction over z and consider the cons case where z =
cons h t, the LHS can be reduced to:

h + (sapp x y t) = sum (app (cons h (app y t)) x)

Due to (F1.1), the LHS contains a single call, and due to the definition of the
CSR, the recursive call must take t as the recursive argument and keep the
other argument unchanged. Therefore, the LHS must contain sapp x y t as a
subprogram, making the induction hypothesis applicable. Applying the induction
hypothesis, we get

h + (sum (app (app y t) x)) = (app (cons h (app y t)) x)

Proving Functional Program Equivalence via Directed Lemma Synthesis 549

Due to (F1.2), either z do not appear in RHS, leading to exactly the same RHS
as the inductive hypothesis, or we can find an occurrence of z in the RHS (app y
z in this example), such that z is the recursive argument and all other arguments
do not contain z. In this case, the reduction produces the recursive call app y
t, a common subprogram on both sides. In both cases, we can generalize this
subprogram to a fresh variable, yielding an effective application.

The second form is dedicated to our tactics. We propose this form to capture
the lemmas proposed by our second tactic (Sect. 4.5).

The second form is f v1 . . . vk = f ′ v′
1 . . . v′

k, where vi �= vj ∧ v′
i �= v′

j for
all 1 ≤ i < j ≤ k, i.e., each side is a single CSR call whose arguments are
distinct variables.

When the equation fulfills (F2), we can guarantee an effective application of the
induction hypothesis by a nested induction over vk and v′

k. For example, consider
proving ∀x, y, z. sapp x y z = sapp x z y. We first perform induction over
z and consider the cons case where z = cons h1t1, the goal reduces to the
following equation with the hypothesis sapp x y t1 = sapp x t1 y.

h1 + sapp x y t1 = sapp x (cons h1 t1) y

Applying the hypothesis on LHS, we obtain the following subgoal:

h1 + sapp x t1 y = sapp x (cons h1 t1) y

Note that this subgoal falls into (F1), where the RHS is a single call and y is
only used as a recursive argument, and thus an effective application of inductive
hypothesis is guaranteed when we perform induction over y. We can see that
this conformance to (F1) is guaranteed because the single call on the LHS guar-
antees the application of the inductive hypothesis, which will make the recursive
arguments on both sides the same.

The following theorem establishes that both (F1) and (F2) are induction-
friendly.
Theorem 1. Both (F1) and (F2) are induction-friendly.

4.3 General Routine of Tactics

In this part, we demonstrate the general routine of how tactics are applied to
transform the input goal, i.e., the t.t_apply(·) function in Line 6 of Fig. 4. Let
us start with the notation of abstraction.
Tactics. Informally, our tactics focus on lemmas that transform a fragment of
the input equation into a single CSR invocation. Thus, it requires a subroutine
extract(·), which needs to be instantiated per tactic, to extract the specification
of a lemma synthesis problem from the equation to be proved. The output of
extract(·) is a tuple (p′

s, v), where p′
s is an abstraction of the subprogram to be

transformed, and v is a free variable in p′
s (Line 7 in Fig. 4). The output (p′

s, v)
indicates the following lemma synthesis problem.

∀ṽ.∀v.f∗ ṽ v = p′
s(ṽ, v) (eq1)

550 Y. Sun et al.

where ṽ is the set of all free variables other than v.
The approach to finding f∗ has been fully presented in Sect. 2 and thus is

omitted here. As long as the program synthesis succeeds in finding f∗, we propose
the lemma (eq1) above. Since p′

s is an abstraction of some subprogram in the
input equation, we can easily apply the lemma (eq1) to transform the input
equation and obtain a new equation eq2 to be proved (Lines 8–9 in Fig. 4).

4.4 Tactic 1: Removing Compositions

Our first tactic is used to guarantee (F1.1). Thus, the precondition
t.precond(eq) returns true if eq does not satisfy (F1.1). Below, we demon-
strate the extract function in detail.

The extract function picks a non-leaf subprogram c p1 p2 . . . pk of some side
of the input equation eq, where c is a primitive operator, a constructor, or a CSR,
p1 . . . pk are the arguments of c, and at least one of pi is not a variable. Then,
we abstract all arguments passed to each pi with a fresh variable, obtaining the
abstracted subprogram p′

s. We define the cost of this extraction as the number
of fresh variables introduced. The extraction returns the extraction with the
minimum cost. If there are several choices with the same minimum cost, we pick
an arbitrary one.

For example, consider proving the equation app (rev a) (rev (rev b)) =
rev (rev (app (rev a) b)), where app is the list concatenation function pre-
sented in Fig. 5. Then, we may choose the subprogram rev (rev (app (rev a)
b)) and abstract the argument app (rev a) b of the inner rev with a fresh
variable x, obtaining p′

s = rev (rev x). Since this extraction only introduces
one variable, the cost is one, which is the minimum cost.

Having fixed p′
s, we then select a variable v in p′

s to be the recursive argument
of the synthesized CSR f∗. We choose the variable whose corresponding lemma
fulfills the maximum number of forms in (F1.1), (F1.2), and (F2). If there is a
tie, we choose an arbitrary variable that reaches the maximum. Note that the
lemma generated by this tactic satisfies at least (F1.1), which guarantees the
applicability of the inductive hypothesis.

4.5 Tactic 2: Switching Recursive Arguments

Our second tactic is used to guarantee (F1.2), and synthesizes a lemma such as
f x y = f′ y x to switch the recursive argument of a function (recall that the
recursive argument is always the last one). This tactic is only invoked when the
first tactic (Sect. 4.4) cannot apply. Thus, the precondition precond(eq) returns
true if eq satisfies (F1.1) but not (F1.2). Without loss of generality, we assume
the LHS is a single CSR invocation with the recursive argument x.

The extraction algorithm picks the occurrence of x with the maximum depth
in the AST, where x is passed to a CSR f . Then, each pi is either the variable
x or a program that does not contain x (otherwise, we find an occurrence of x
with a larger depth). We introduce fresh variables v1 . . . vk to abstract p1 . . . pk.

Proving Functional Program Equivalence via Directed Lemma Synthesis 551

For some 1 ≤ i < k such that pi = x (such i always exists since the equation
violates (F1.2)), the extract outputs p′

s = f v1 . . . vk and x = vi. Since all
arguments of f are abstracted, the lemma proposed by this tactic must satisfy
(F2). As a result, the lemma is induction-friendly.

For example, consider proving ∀x, y, z. plus3 y z x = plus (plus x
y) z. Note that this equation satisfies (F1.1) but not (F1.2). We choose the
subprogram plus x y and abstract it into p′

s = plus a b. Note that x appears
as the first argument, thus the algorithm outputs (p′

s, a), which requires to syn-
thesize a lemma ∀a, b. plus a b = plus’ b a. As long as the lemma is syn-
thesized, we can replace plus x y to plus’ y x, making the equation satisfy-
ing (F1.2).

4.6 Properties

First, we show the soundness of AutoProof, which is straightforward.

Theorem 2 (Soundness). If AutoProof proves an input goal, then the goal
is true.

Proof The proof of the input equation searched by AutoProof is a sequence of
induction, reduction, and application of lemmas. Thus, the soundness of Auto-
Proof follows from the soundness of these standard tactics.

Progress. As mentioned in Sect. 4.1, the effectiveness of AutoProof comes
from the following progress theorem.

Theorem 3 (Progress). Starting from any goal, if all lemmas are successfully
synthesized, the initial goal can be eventually transformed into an induction-
friendly form.

5 Evaluation

We implement AutoProof on top of Cvc4Ind [30], an extension of Cvc4
with induction and the available1 state-of-the-art prover for proving equivalence
between functional programs. We choose AutoLifter [13] as the underlying
synthesizer, which can solve the synthesis tasks in Sect. 4.3 over randomly gener-
ated tests. Cvc4Ind comes with a lemma enumeration module, our implementa-
tion invokes only the deductive reasoning module of Cvc4Ind. To compare the
lemma enumeration with directed lemma synthesis, we evaluate AutoProof
against Cvc4Ind.

Dataset. We collect 248 standard benchmarks from the equivalence check-
ing subset of CLAM [12], Isaplaaner [14], and “Tons of Inductive problems”
1 Pirate [37] is reported to have better performance than Cvc4Ind on standard
benchmarks in our evaluation, but its code and its experimental data are not pub-
licly accessible. Thus, we do not compare our approach against Pirate. Note that
AutoProof can be combined with any deductive solver, including Pirate.

552 Y. Sun et al.

Table 1. Experimental results on the number of the solved benchmarks.

#Solved (Standard) #Solved (Extension) #Solved (Total) #Fails (Timeout)
AutoProof140 (↑ 16.67%) 21 (↑ 600%) 161 (↑ 30.89%) 109
Cvc4Ind 120 3 123 147

Table 2. Experimental results on the average runtime.

AvgTime(s) (Standard) AvgTime(s) (Extension) AvgTime(s) (Total)
AutoProof 1.31 (↑ 97.16%) 3.99 (↑ 98.71%) 3.64 (↑ 95.47%)
Cvc4Ind 46.13 308.58 80.36

(TIP) [5], which have been widely employed in previous works [7,12,14,30,38].
We observe that these benchmarks do not consider the mix of ADTs and other
theories (e.g., LIA for integer manipulation), which is also an important fragment
in practice [6,10,17–19]. Thus, we created 22 additional benchmarks combining
the theory of ADTs and LIA by converting ADTs to primitive types in existing
benchmarks, such as converting Nat to Int. Our test suite thus consists of 270
benchmarks in total.

Procedure. We use our implementation and the baseline to prove the problems
in the benchmarks. We set the time limit as 360 s for solving an individual
benchmark, the default timeout of Cvc4Ind and is aligned with previous work [7,
29,30,38]. We obtain all results on the server with the Intel(R) Xeon(R) Platinum
8369HC CPU, 8GB RAM, and the Ubuntu 22.04.2 system.

Results. The comparison results are summarized in Tables 1–2. Overall, Auto-
Proof solves 161 benchmarks, while the baseline Cvc4Ind solves 123, showing
that directed lemma synthesis can make an enhancement with a ratio of 30.89%.
On the solved benchmarks, AutoProof takes 3.64 s on average, while Cvc4Ind
takes 80.36 s, indicating that directed lemma synthesis can save 95.47% runtime.
The results justify our motivation: compared with the directionless lemma enu-
meration, directed lemma synthesis can avoid wasting time on useless lemmas.
Note that AutoProof shows significant strength on additional benchmarks
with a mixed theory. This is because the tactics and induction-friendly forms
in our approach are purely syntactic, making AutoProof theory-agnostic. In
contrast, Cvc4Ind is theory-dependent. Thus, it is hard for Cvc4Ind to tackle
benchmarks with mixed theories.

Discussion. We observe that in the failed cases, the failure to synthesize a
lemma is a common cause, and this in turn is due to two reasons. The first
one is that the program synthesizer fails to produce a solution for a solvable
synthesis problem. For example, one equation involves an exponential function,
whose implementation is extremely slow on ADT types, and the synthesizer
timed out on executing the randomly generated tests. The second one is that the
potential lemma requires a structural recursion that is not canonical. Though in

Proving Functional Program Equivalence via Directed Lemma Synthesis 553

theory such a structural recursion can be converted into compositions of CSRs,
our current algorithm only supports the synthesis of CSRs, and thus cannot
synthesize such lemmas. This observation shows that, if we can further improve
program synthesis in future, our approach may prove more theorems.

6 Related Work

Lemma Finding in Inductive Reasoning. Due to the necessity, the lemma
finding algorithm has been integrated into various architectures of inductive
reasoning, including theory exploration [4,31], superposition-based provers [7,
11,26,29], SMT solvers [23,30,36,38], and other customized approaches [20,32].
These approaches can be divided into two categories.

First, most of these approaches [4,7,11,20,26,29–32,38] apply lemma enu-
meration based on heuristics or user-provided templates, which often produce
lemmas with little help to the proof, leading to inefficiency, as we have discussed
in Sect. 1. Compared with these approaches, AutoProof considers the directed
lemma synthesis and application, eventually producing subgoals in induction-
friendly forms.

Second, there are approaches [23,36] considering the lemma synthesis over a
decision procedure based on bounded quantification and pre-fixed point compu-
tation. These approaches are restricted to structural recursions without nested
function invocations or constructors, which cover only 19/248 (7%) benchmarks
in our test suite (Sect. 5).

Other Approaches in Functional Program Verification. There are other
approaches [2,16,24,35] verifying the properties of functional programs with-
out induction. These tools require the user to manually provide an induction
hypothesis. Thus, these approaches cannot prove any benchmark in our test
suite (Sect. 5).

Invariant Synthesis. Lemma synthesis has also been applied to verifying the
properties of imperative programs [9,15], where the lemma synthesis is often
recognized as invariant synthesis. Since the core of imperative programs is the
mutable atomic variables and arrays instead of ADTs, previous approaches for
invariant synthesis [9,15] cannot be applied to our problem. It is future work
to understand whether we can extend AutoProof for verifying imperative
programs.

7 Conclusion

We have presented AutoProof, a prover for verifying the equivalence between
functional programs, with a novel directed lemma synthesis engine. The concep-
tual novelty of our approach is the induction-friendly forms, which are proposi-
tions that give formal guarantees to the progress of the proof. We identified two
forms and proposed two tactics that synthesize and apply lemmas, transforming

554 Y. Sun et al.

the proof goal into induction-friendly forms. Both tactics reduce lemma synthesis
to a specialized class of program synthesis problems with efficient algorithms. We
conducted experiments, showing the strength of our approach. In detail, com-
pared to state-of-the-art equivalence checkers employing heuristic-based lemma
enumeration, directed lemma synthesis saves 95.47% runtime on average and
solves 38 more tasks over a standard benchmark set.

Acknowledgement. We sincerely thank the anonymous reviewers for their valuable
feedback on this paper. This work is sponsored by the National Key Research and
Development Program of China under Grant No. 2022YFB4501902, the National Nat-
ural Science Foundation of China under Grant Nos. 62161146003, the ZJNSF Major
Program under grant No. LD24F020013, and the ZJU Education Foundation’s Qizhen
Talent program.

Data Availability Statement. The artifact in this paper is publicly available on
Zenodo [33].

References

1. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-07964-5

2. Blanc, R., Kuncak, V., Kneuss, E., Suter, P.: An overview of the Leon verification
system: Verification by translation to recursive functions. In: Proceedings of the
4th Workshop on Scala, pp. 1–10 (2013)

3. Bradley, A.R., Manna, Z.: The Calculus of Computation - Decision Procedures
with Applications to Verification. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74113-8

4. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: Automating inductive
proofs using theory exploration. In: Bonacina, M.P. (ed.) CADE 2013. LNCS
(LNAI), vol. 7898, pp. 392–406. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38574-2_27

5. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: TIP: tons of inductive
problems. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM
2015. LNCS (LNAI), vol. 9150, pp. 333–337. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-20615-8_23

6. Codish, M., Fekete, Y., Fuhs, C., Giesl, J., Waldmann, J.: Exotic semi-ring con-
straints. SMT@ IJCAR 20, 88–97 (2012)

7. Cruanes, S.: Superposition with structural induction. In: Dixon, C., Finger, M.
(eds.) FroCoS 2017. LNCS (LNAI), vol. 10483, pp. 172–188. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66167-4_10

8. Danvy, O., Nielsen, L.R.: Defunctionalization at work. In: Proceedings of the 3rd
ACM SIGPLAN International Conference on Principles and Practice of Declarative
Programming, pp. 162–174. PPDP 2001, Association for Computing Machinery,
New York, NY, USA (2001). https://doi.org/10.1145/773184.773202

9. Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: A robust frame-
work for learning invariants. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 69–87. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08867-9_5

https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-540-74113-8
https://doi.org/10.1007/978-3-540-74113-8
https://doi.org/10.1007/978-3-642-38574-2_27
https://doi.org/10.1007/978-3-642-38574-2_27
https://doi.org/10.1007/978-3-319-20615-8_23
https://doi.org/10.1007/978-3-319-20615-8_23
https://doi.org/10.1007/978-3-319-66167-4_10
https://doi.org/10.1145/773184.773202
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1007/978-3-319-08867-9_5

Proving Functional Program Equivalence via Directed Lemma Synthesis 555

10. Gavrilenko, N., Ponce-de-León, H., Furbach, F., Heljanko, K., Meyer, R.: BMC
for weak memory models: relation analysis for compact SMT encodings. In: Dillig,
I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 355–365. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25540-4_19

11. Hajdú, M., Hozzová, P., Kovács, L., Schoisswohl, J., Voronkov, A.: Induction with
generalization in superposition reasoning. In: Benzmüller, C., Miller, B. (eds.)
CICM 2020. LNCS (LNAI), vol. 12236, pp. 123–137. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-53518-6_8

12. Ireland, A., Bundy, A.: Productive Use of Failure in Inductive Proof, pp. 79–
111. Springer Netherlands, Dordrecht (1996). https://doi.org/10.1007/978-94-009-
1675-3_3

13. Ji, R., Zhao, Y., Xiong, Y., Wang, D., Zhang, L., Hu, Z.: Decomposition-based
synthesis for applying divide-and-conquer-like algorithmic paradigms. ACM Trans.
Program. Lang. Syst. (2024). https://doi.org/10.1145/3648440, just Accepted

14. Johansson, M., Dixon, L., Bundy, A.: Case-analysis for rippling and inductive
proof. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp.
291–306. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14052-
5_21

15. Kincaid, Z., Cyphert, J., Breck, J., Reps, T.: Non-linear reasoning for invariant
synthesis. Proc. ACM Prog. Lang. 2(POPL), 1–33 (2017)

16. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4_20

17. Lopes, N.P., Monteiro, J.: Automatic equivalence checking of programs with unin-
terpreted functions and integer arithmetic. Int. J. Softw. Tools Technol. Transfer
18, 359–374 (2016)

18. Luick, D., et al.: ZKSMT: A VM for proving SMT theorems in zero knowledge.
Cryptology ePrint Archive (2023)

19. McCarthy, J.: Towards a mathematical science of computation. In: Colburn, T.R.,
Fetzer, J.H., Rankin, T.L. (eds.) Program Verification: Fundamental Issues in Com-
puter Science, vol. 14, pp. 35–56. Springer, Dordrecht (1993). https://doi.org/10.
1007/978-94-011-1793-7_2

20. Milovančević, D., Kunčak, V.: Proving and disproving equivalence of functional
programming assignments. Proc. ACM Program. Lang. 7(PLDI) (2023). https://
doi.org/10.1145/3591258

21. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

22. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The lean
theorem prover (system description). In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 378–388. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6_26

23. Murali, A., Peña, L., Blanchard, E., Löding, C., Madhusudan, P.: Model-guided
synthesis of inductive lemmas for FOL with least fixpoints. Proc. ACM Program.
Lang. 6(OOPSLA2) (2022). https://doi.org/10.1145/3563354

24. Murali, A., Peña, L., Jhala, R., Madhusudan, P.: Complete first-order reasoning
for properties of functional programs. Proc. ACM Program. Lang. 7(OOPSLA2)
(2023). https://doi.org/10.1145/3622835

https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.1007/978-3-030-53518-6_8
https://doi.org/10.1007/978-94-009-1675-3_3
https://doi.org/10.1007/978-94-009-1675-3_3
https://doi.org/10.1145/3648440
https://doi.org/10.1007/978-3-642-14052-5_21
https://doi.org/10.1007/978-3-642-14052-5_21
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-94-011-1793-7_2
https://doi.org/10.1007/978-94-011-1793-7_2
https://doi.org/10.1145/3591258
https://doi.org/10.1145/3591258
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1145/3563354
https://doi.org/10.1145/3622835

556 Y. Sun et al.

25. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures.
ACM Trans. Program. Lang. Syst. 1(2), 245–257 (1979). https://doi.org/10.1145/
357073.357079

26. Passmore, G., Cruanes, S., Ignatovich, D., Aitken, D., Bray, M., Kagan, E., Kan-
ishev, K., Maclean, E., Mometto, N.: The Imandra automated reasoning system
(system description). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020.
LNCS (LNAI), vol. 12167, pp. 464–471. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-51054-1_30

27. Paulson, L.C.: Isabelle: the next 700 theorem provers (2000)
28. Pierce, B.C., Casinghino, C., Gaboardi, M., Greenberg, M., Hriţcu, C., Sjöberg,

V., Yorgey, B.: Software foundations, p. 16 (2010). http://www.cis.upenn.edu/
bcpierce/sf/current/index.html

29. Reger, G., Voronkov, A.: Induction in saturation-based proof search. In: Fontaine,
P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 477–494. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29436-6_28

30. Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: D’Souza, D., Lal, A.,
Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 80–98. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46081-8_5

31. Singher, E., Itzhaky, S.: Theory exploration powered by deductive synthesis. In:
Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12760, pp. 125–148. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-81688-9_6

32. Sonnex, W., Drossopoulou, S., Eisenbach, S.: Zeno: an automated prover for prop-
erties of recursive data structures. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 407–421. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-28756-5_28

33. Sun, Y., Ji, R., Fang, J., Jiang, X., Chen, M., Xiong, Y.: Artifact for FM paper:
proving Functional program equivalence via directed lemma. Synthesis (2024).
https://doi.org/10.5281/zenodo.12532389

34. Sun, Y., Ji, R., Fang, J., Jiang, X., Chen, M., Xiong, Y.: Proving functional pro-
gram equivalence via directed lemma synthesis (2024). https://arxiv.org/abs/2405.
11535

35. Vazou, N.: Liquid Haskell: Haskell as a theorem prover. University of California,
San Diego (2016)

36. VK, H.G., Shoham, S., Gurfinkel, A.: Solving constrained horn clauses modulo
algebraic data types and recursive functions. Proc. ACM Program. Lang. 6(POPL),
1–29 (2022)

37. Wand, D.: Superposition: types and induction. Ph.D. thesis, Saarland University
(2017)

38. Yang, W., Fedyukovich, G., Gupta, A.: Lemma synthesis for automating induction
over algebraic data types. In: Schiex, T., de Givry, S. (eds.) CP 2019. LNCS, vol.
11802, pp. 600–617. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30048-7_35

https://doi.org/10.1145/357073.357079
https://doi.org/10.1145/357073.357079
https://doi.org/10.1007/978-3-030-51054-1_30
https://doi.org/10.1007/978-3-030-51054-1_30
http://www.cis.upenn.edu/bcpierce/sf/current/index.html
http://www.cis.upenn.edu/bcpierce/sf/current/index.html
https://doi.org/10.1007/978-3-030-29436-6_28
https://doi.org/10.1007/978-3-662-46081-8_5
https://doi.org/10.1007/978-3-030-81688-9_6
https://doi.org/10.1007/978-3-642-28756-5_28
https://doi.org/10.1007/978-3-642-28756-5_28
https://doi.org/10.5281/zenodo.12532389
https://arxiv.org/abs/2405.11535
https://arxiv.org/abs/2405.11535
https://doi.org/10.1007/978-3-030-30048-7_35
https://doi.org/10.1007/978-3-030-30048-7_35

Proving Functional Program Equivalence via Directed Lemma Synthesis 557

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Reachability Analysis for Multiloop
Programs Using Transition Power

Abstraction

Konstantin Britikov1(B) , Martin Blicha1,2 , Natasha Sharygina1 ,
and Grigory Fedyukovich3

1 University of Lugano, Lugano, Switzerland
britik@usi.ch

2 Charles University, Prague, Czech Republic
3 Florida State University, Tallahassee, FL, USA

Abstract. A wide variety of algorithms is employed for the reachabil-
ity analysis of programs with loops but most of them are restricted to
single loop programs. Recently a new technique called Transition Power
Abstraction (TPA) showed promising results for safety checks of soft-
ware. In contrast to many other techniques TPA efficiently handles loops
with a large number of iterations. This paper introduces an algorithm
that enables the effective use of TPA for analysis of multiloop programs.
The TPA-enabled loop analysis reduces the dependency on the number
of possible iterations. Our approach analyses loops in a modular manner
and both computes and uses transition invariants incrementally, mak-
ing program analysis efficient. The new algorithm is implemented in the
Golem solver. Conducted experiments demonstrate that this approach
outperforms the previous implementation of TPA and other competing
tools on a wide range of multiloop benchmarks.

1 Introduction

Model checking is one of the most active research fields within Formal Verifi-
cation. Recent advancements both in Satisfiability Modulo Theory (SMT) [2]
and Constrained Horn Clauses (CHC) [26] significantly increased model check-
ing capabilities [4,5]. Nonetheless, there is still a wide range of problems that
require attention, such as model checking for nonlinear arithmetic, search for
deep counterexamples, or analysis of multiple-loop systems.

A significant amount of research in model checking is centered around the
loop analysis. There exist a large number of different approaches, most of which
target [10,19,30,37] specifically single-loop programs. Multi-loop approaches are
less common, primarily because such systems are harder to analyze than single-
loop software due to their complex inner structures with interconnected loops
and branching. Nonetheless, developing such approaches is crucial, as multi-loop
software is widespread.

This work was partially funded by the Swiss National Science Foundation project
200021 185031 and by the Czech Science Foundation project 23-06506S.

c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 558–576, 2025.
https://doi.org/10.1007/978-3-031-71162-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_29&domain=pdf
http://orcid.org/0009-0005-7843-7290
http://orcid.org/0000-0001-8140-4098
http://orcid.org/0000-0002-8872-4913
http://orcid.org/0000-0003-1727-4043
https://doi.org/10.1007/978-3-031-71162-6_29

Reachability Analysis for Multiloop Programs Using TPA 559

One of the critical problems for multi-loop analysis is the presence of deep
loops with a large number of iterations. The presence of such loops might sig-
nificantly slow down the model checking of the whole program. Recently pub-
lished papers on Transition Power Abstraction (TPA) [9,10] tried to improve the
analysis of deep loops. TPA is driven by SMT, similar to other algorithms like
Interpolation-based Model Checking (IMC) [30], Spacer [26] or Lazy Abstraction
With Interpolants (LAWI) [31]; however, TPA abstracts over transitions rather
than states, overapproximating them and summarizing a sequence of transi-
tions into a single abstract transition. This idea is beneficial for the detection of
deep counterexamples because, unlike classic symbolic approaches, the algorithm
unfolds loop iterations exponentially faster. TPA also leverages interpolants to
abstract the system properties and this allows it to prove safety of possibly
unbounded loops by producing a loop invariant.

TPA was developed for reasoning about single-loop systems. It is still possible
to apply it to the multi-loop programs using a straightforward transformation
to merge multiple loops into a single loop [13]. However, this method would lose
structural information about the initial program leading to a potential slowdown
of the verification. In this paper, we introduce a novel algorithm that enables
effective reasoning over multi-loop programs by applying TPA modularly and
incrementally for each loop. It explores every possible execution path of the
program, discovering safe transition invariants for each loop along a path and
utilizing them during the exploration of other paths. Learned information about
the safe states is propagated back and forth through the path being explored
thus contributing to substantial runtime savings. Additionally, our approach effi-
ciently conducts reachability analysis for loops with large numbers of iterations
as a result of the usage of TPA. Our algorithm handles programs with branching
and multiple loops efficiently as confirmed by experiments.

Our approach was implemented inside the Golem CHC solver [8]. We exper-
imentally compared the new approach to classical TPA (multi-loop programs
were transformed into single-loop in advance) and state-of-the-art tools, such as
Z3 (Spacer) [32] and Eldarica [23]. Results demonstrate that our modular anal-
ysis is able to solve a significant amount of multi-loop benchmarks previously
unmanageable both by Golem competitors and TPA.

The rest of the paper is ordered as follows: Sect. 2 provides a brief overview
of the terminology and concepts used in this paper. The main contribution of
the paper, the TPA-based reachability algorithm for multi-loop programs, is
presented in detail in Sect. 3. In Sect. 4, the effectiveness of the approach is
evaluated through a series of experiments. Section 5 discusses related work, and
Sect. 6 concludes the paper.

2 Preliminaries

Our approach relies on a symbolic program representation by mapping its control
flow to formulas in first-order logic. A set of logic formulas Fla are restricted to
Linear Integer Arithmetic (LIA).

560 K. Britikov et al.

Fig. 1. Multi-loop example.

While Language. We restrict our attention to programs in the conventional
While language [33]. This language has the following meta-variables and cat-
egories: n (over integers), x (over variables), a (over arithmetic expressions), b
(over boolean expressions), and S (over statements):

a ::= n | nondet() | x | a1 + a2 | a1 ∗ a2 | a1 − a2

b ::= true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 ∧ b2

S ::= assert(b) | assume(b) | x := a | skip |
S;S | if b then S else S | while b do S

Figure 1 gives an example of a program with two consecutive loops. We
present it in a more familiar C syntax, but it could easily be translated to
While. We also use this example to illustrate the solving process of our algo-
rithm in Sect. 3.3. The first loop increments both x1 and x2 until x1 ≥ 300,
aldo decrementing x3. The second loop increments x3 and decrements x1 until
x2 ≤ x3. The safety property of the program is given in the assertion x1 ≤ 0.
This program is safe as for any value of x1 and x2 the assertion will be satisfied.
By changing the assumption x1 ≤ 100 to x1 ≤ 300, this program can be made
unsafe.

Program Encoding and Cutpoint Graphs. Our representation of the program
assumes a global set of variables denoted V . Conventional primed notation is
used to represent “next-state” variables. We model multiloop programs using
Cutpoint Graphs (CPG) [6] which offer more compact program representations
than classic Control Flow Graphs (CFG). Every node in a CPG (except entry
and error) represents a loophead in the corresponding program. For every single
loop-free segment between the loopheads, there exists a single corresponding
edge in CPG, even when there are multiple possible paths through it.

Definition 1. Given a program P, its cutpoint graph representation GP =
〈N,E,L, entry , error〉 is such where N is a finite set of cutpoints (graph nodes),
representing loopheads in the program. E is a set of actions between the cutpoints
(edges between the nodes) of a form (u, v), where u, v ∈ N ∪ {entry , error}. L is
a mapping L : E → Fla from edges to logic formulas over V and V ′, representing
symbolic encodings of loop-free statements, and entry and error are such that
∀u ∈ N : (error , u) �∈ E ∧ (u, entry) �∈ E.

Reachability Analysis for Multiloop Programs Using TPA 561

Fig. 2. Cutpoint Graph for program in Fig. 1. Transitions are labeled with constraints
from Fla.

Based on Definition 1, it is possible to represent any program specified in
While as a CPG. For example, the CPG for the program in Fig. 1 is given in
Fig. 2.

We focus on programs without nested loops. Such programs can be repre-
sented with cutpoint graphs that do not have any cycles except for the self-loops.
This is because our algorithm uses TPA to analyze reachability in individual
loops and TPA is designed to handle loops that can be represented as a transi-
tion system. The example from Fig. 2 satisfies this condition as it does not have
nested loops.

Transition System Reachability Analysis. Transition system can be defined as
〈Init, T r, V 〉, where Init is an initial state of the system represented by a first-
order logic formula, Tr is a transition formula, which represents the transition
in the system, and V is a set of system’s variables. Safety problem now can
be defined as 〈Init, T r,Bad, V 〉 where Bad is a formula that represents a state
violating the safety property. Reachability analysis in this context is the search
for a path through the transition system to reach a Bad state.

Craig Interpolation. Given two logical formulas (A,B) such that A∧B is unsat-
isfiable, a Craig interpolant [14] I is a formula that satisfies the following con-
ditions: A → I, I ∧ B is unsatisfiable, and I contains only common variables of
A and B. Interpolation can be used to prove the safety of a transition system
by over-approximating the set of reachable states [30] or to extract information
from unfeasible error path through the program [22].

Transition Power Abstraction. One of the interpolation-based model checking
approaches, Transition Power Abstraction [9,10], is used in our algorithm. TPA is
a model-checking algorithm that works based on the abstraction of the transition
relation. It takes a safety problem 〈Init ,Tr ,Bad , V 〉 as input and decides if
any bad state is reachable from some initial state. Moreover, it can return a

562 K. Britikov et al.

safe inductive transition invariant if the system is safe or produce a provably
reachable subset of Bad if the system is unsafe. A transition formula R(x, x′)
is a transition invariant, if ∀x, x′ : Tr∗(x, x′) =⇒ R(x, x′), where Tr∗ is the
reflexive transitive closure of Tr . A transition invariant R is inductive if R(x, x′)∧
Tr(x′, x′′) =⇒ R(x, x′′) or if Tr(x, x′) ∧ R(x′, x′′) =⇒ R(x, x′′). It is safe if
Init(x) ∧ R(x, x′) ∧ Bad(x′) is unsatisfiable.

One of the most important properties of the TPA is the ability to efficiently
execute deep reachability checks during the search for counterexamples. TPA
runs iteratively, using transition abstractions ATr≤n, instead of exact transi-
tions. ATr≤n over-approximates the sequence of 2n transitions for n-th iteration
of the TPA, allowing it to double the amount of the considered transitions every
iteration of the algorithm. For more details on TPA, we refer the reader to [9,10].

Example Continued. The example program in Fig. 1 has two interesting proper-
ties. First, the depth of the loops, which can overall result in up to 950 iterations.
If it was an unsafe example, TPA would be more efficient than its competitors
due to its ability to manage deep loops. Second, in the presence of multiple
loops, TPA would verify this program only if loops in the program are merged
into a single loop. The merged loop will be bigger in size and lose structural
information about the program, which could cause a slowdown in verification.

On the other hand, TPA could be applied to the loops separately. How-
ever, that would require some intermediate assertion to define safety property
for the first loop and initial conditions for the second loop. For example, the
condition x1 ≤ x2 − x3 could serve as such intermediate assertion introduced
between lines 3 and 4. Interestingly, the algorithm we present in the next section
automatically infers similar helper information and applies TPA modularly.

3 Multi-loop Analysis with TPA

Our algorithm performs forward reachability analysis over the program’s cut-
point graph. It searches for a feasible path from entry to error , building the
path gradually and backtracking when the current path cannot be extended
further. Before backtracking from a blocked state, it generalizes the reason for
the conflict and learns blocking lemmas (similar to IC3/PDR-style algorithms).
These define states that are guaranteed to be safe (i.e., there is no feasible path
to error from these states), so the algorithm will know to avoid them the next
time it reaches the same CPG node.

3.1 Overview

To utilize the strengths of TPA, the algorithm alternates between two phases:
i) reasoning about traversing from one loop to another loop, and ii) reasoning
about traversing a single loop.

Reachability Analysis for Multiloop Programs Using TPA 563

The first phase checks the feasibility of a single (large-block [6]) step in the
traditional sense, and it can be reduced to a single SMT check. However, the
second phase attempts to extend the current path by getting to the exit of
the current loop in an arbitrary number of its iterations. This effectively means
solving a reachability problem for a transition system where initial states are the
currently reached states, transition relation encodes one iteration of the loop, and
error states are the states at the loop exit not yet blocked by the algorithm. While
any algorithm for answering reachability queries over transition systems could be
applied here, TPA [9] has two advantages over traditional, state-focused model-
checking algorithms. Its deep exploration makes it less likely to get stuck in a
single loop that requires many iterations to traverse and, secondly, TPA is able to
re-use bounded and unbounded transition invariants learned in previous queries
to speed up current query to the same node. Note that when the algorithm
reaches the same node but with a new state, the initial states (and possibly the
error states too) of the reachability problem change, but the transition relation
always stays the same. Thus, the transition invariants from previous queries are
still valid, while state invariants would very likely be invalidated.

3.2 Core Algorithm

Algorithm 1 takes as input a CPG of a program with a safety property and
decides if the error node is reachable (UNSAFE) or not (SAFE). For each node
v in the graph, the algorithm keeps track of two versions of the node, vpre and
vpost , called the pre-state and the post-state, resp. The pre-state captures when
the reachability analysis has reached v from another node. In programs, this
represents execution reaching the loop header for the first time. The post-state
captures when the reachability analysis is about to exit node v and continue to
another node. In programs, this represents the execution exiting the loop. Each
node version keeps track of a set of states already shown to be safe, denoted as
vpre .safe and vpost .safe. These sets of states are represented as symbolic formulas
initialized as ⊥ (no states are proved safe at the start).

The algorithm also maintains the current feasible path prefix in the variable
path as a stack of entries of the form [v, ϕ] representing that the set of states
ϕ has been reached at node v. At the beginning, path is initialized as leaving
the entry node with no restriction on the states (Line 1). When error is added
to path, the algorithm has discovered a feasible path from entry to error and
the program is unsafe (Line 15). If the algorithm ever backtracks beyond the
initial entry (path becomes empty), there is no feasible path from entry to error,
and the program is safe (Line 25). Assuming path is not empty, the algorithm
attempts to extend the current feasible path prefix. There are two distinct cases.
If the last entry on the path is a post-state of some node v (Line 4), the algorithm
attempts to use v’s outgoing edges (ignoring the self-loop edge) to traverse to
the pre-state of a different node w. Otherwise, the last entry is a pre-state of
some node v (Line 18) and the algorithm attempts to get to the post-state of
v by traversing v’s self-looping edge some arbitrary number of times. Next, we
describe these two cases in detail.

564 K. Britikov et al.

Algorithm 1: Multiloop-TPA
Input : Cutpoint Graph G = 〈N,E,L, entry , error〉;
Output: safe/unsafe

1 path ← {[entrypost ,�]}
2 while path is not empty do
3 switch path.peek() do
4 case [vpost , curr] do
5 if ∀w ∈ N, s.t. (v, w) ∈ E : (v, w).blocked �= ⊥ then
6 vpost .safe ← vpost .safe ∨ ∧

e∈v.outgoing

e.blocked

7 path.pop()
8 for e ∈ v.outgoing do e.blocked ← ⊥
9 else

10 pick w ∈ N s.t. (v, w) ∈ E and (v, w).blocked = ⊥
11 let t(x, x′) = L((v ,w))(x, x′) ∧ ¬(wpre .safe)(x′)
12 if SAT?[curr(x) ∧ t(x, x′)] then // TraverseBridge

13 let M |= curr(x) ∧ t(x, x′)
14 path.push([wpre , MBP(∃x : curr(x) ∧ t(x, x′),M)])
15 if w = error then return unsafe

16 else
17 (v, w).blocked ← Itp(curr(x), t(x, x′))
18 case [vpre , curr] do // TraverseLoop

19 (res, reached ,TInv) = TPA(curr(x), L((v, v))(x, x′),¬(vpost .safe)(x′))
20 if res = reachable then
21 path.push([vpost , reached])
22 else
23 vpre .safe ← vpre .safe ∨ Itp(curr(x),TInv(x, x′) ∧ ¬(vpost .safe)(x′))
24 path.pop()

25 return safe

Post: When the algorithm is leaving some node v with reached states curr
(Line 4), it searches for an unblocked outgoing edge as a candidate for extending
the current path prefix (Line 5). An edge e is marked as blocked if the current
path prefix cannot be extended with this edge, and the algorithm remembers
the set of blocked source states (states for which it is not feasible to traverse the
edge) in e.blocked . Algorithm 1 ensures the blocked states are superset of curr .

If all outgoing edges are blocked, it means that all outgoing edges have been
considered as possible extensions, but all have failed eventually. The current
path thus cannot be extended, and the algorithm backtracks to the pre-state of
v (Line 7) to try a different continuation from that point. Before backtracking,
the algorithm learns a new set of safe states as the intersection of states that are
safe for individual outgoing edges (these are guaranteed to include all currently
reached states) and unblocks all edges (Lines 6–8).

If, on the other hand, there is an unblocked edge (Line 10), the algorithm
attempts to reach some potentially unsafe state of the edge’s target node. The

Reachability Analysis for Multiloop Programs Using TPA 565

feasibility of this traversal, given the constraint of the edge, is checked in Lines 12-
17 which, for simplicity, we call TraverseBridge throughout the rest of the
paper. It decides if some potentially unsafe states are reachable and computes a
set of definitely reached target states (in case of reachability) or a set of definitely
blocked source states (in case of unreachability). If the traversal is feasible, the
path is extended (Line 14), and the analysis will continue from the new reached
point unless error has been reached, in which case the algorithm immediately
terminates (Line 15). If the traversal is infeasible, the picked edge is blocked
(Line 17), marked with superset of curr for which the traversal is infeasible (see
more details on TraverseBridge below). In the next iteration, the algorithm
tries to pick a different, unblocked edge.
Pre: When the algorithm is entering some node v with reached states curr
(Line 18), it attempts to find a feasible traversal of the loop, i.e., to reach some
potentially unsafe post-state of v (taking an arbitrary number of loop iterations).
The feasibility of this traversal is checked in Lines 19-24, which for simplicity
we call TraverseLoop. Similarly to TraverseBridge, TraverseLoop not only
decides the feasibility of the traversal but also computes a set of definitely reached
target states to extend the current path (Line 21) or a set of definitely blocked
source states, which forces backtracking (Line 24). We provide further details on
TraverseBridge and TraverseLoop in the next two paragraphs.

TraverseBridge. Given reached states curr , target states ¬(wpre .safe), and
a transition constraint L((v, w)), the goal is to check if any target states are
reachable from source states with one step of the transition constraint. The
reachability check then amounts to the satisfiability check for the conjunction of
the three formulas (denoted ϕ to simplify writing). Provably reached state can
be defined exactly as ∃x : ϕ. To avoid quantifiers, we under-approximate the
set of reached states with model-based projection (MBP) [26]. Provably blocked
states can be characterized as ¬∃x′ : L((v, w))(x, x′) ∧ ¬(wpre .safe)(x′). It is
again possible to avoid quantifiers but still obtain a generalization of the source
states, using Craig interpolation [14].

TraverseLoop. Given reached states curr , target states ¬(vpost .safe), and a
transition constraint L((v, v)), the goal is to check if any target states are reach-
able from source states with any number of steps of L((v, v)). This is equivalent
to deciding a safety problem for a transition system S = 〈Init ,Tr ,Bad〉 with
Init = curr , Tr = L((v, v)) and Bad = ¬(vpost .safe). TPA can easily satisfy
the additional requirements on TraverseLoop. It already internally computes
provably reached states as part of the witness for reachability. Provably blocked
states can be computed using a safe transition invariant that TPA computes as a
witness for unreachability. Similarly to TraverseBridge, we leverage Craig inter-
polation to eliminate quantifiers. Note that computing a logically weak (more
general) interpolant for A = curr and B = TInv ∧ ¬(vpost .safe) yields a poten-
tially much larger set of blocked states than the source states themselves.

Using TPA for implementing TraverseLoop has the additional advantage
that TPA learns bounded and unbounded transition invariants during a single
reachability check, which can be leveraged to bootstrap the transition abstrac-

566 K. Britikov et al.

tions in future reachability queries for the same loop. Not starting from scratch
has the potential to significantly speed up consequent queries.

3.3 Running Example

To demonstrate the execution of Algorithm 1, we utilize the motivating example
from Fig. 2 as an input. The execution is depicted in Fig. 3.

Initially, the algorithm attempts to leave entry and picks the single
(unblocked) outgoing edge leading to s0. Potentially unsafe states at s0

pre are
� at this point, so TraverseBridge computes reached states at s0

pre to be
0 ≤ x1 ≤ 100 ∧ 0 ≤ x2 ≤ 50 ∧ x3 = 0.

As the next step, the algorithm attempts to traverse loop s0 with � as the
potentially unsafe states at s0

post . TraverseLoop determines that with one loop
iteration state 1 ≤ x1 ≤ 101 ∧ 1 ≤ x2 ≤ 51 ∧ x3 = −1 is reached at s0

post .
Attempting to continue from this state will now fail, because the only outgo-

ing edge to s1 is not feasible, as determined by TraverseBridge with x1 < 300
being the blocked states.

The algorithm now backtracks to s0
pre and attempts to traverse loop s0

again, but this time with x1 ≥ 300 as the potentially unsafe states. Here TPA
quickly determines that unsafe states are reachable, e.g. after 255 iterations of
the loop the state x1 = 300 ∧ 255 ≤ x2 ≤ 305 ∧ x3 = −255 is reached.

From this state at s0
post it is possible to traverse to s1

pre , reaching states
defined by the same formula. Next, the algorithm attempts to traverse loop s1.

Similarly to how it behaved for the first loop, TPA suggests exiting the
second loop after one iteration, in state x1 = 299∧ 255 ≤ x2 ≤ 305∧x3 = −254.
However, when checking the single outgoing edge to error , TraverseBridge
determines the infeasibility of this attempt and computes x2 > x3 as safe states
at s1

post .
Thus, the algorithm backtracks again and attempts to traverse loop s1 in a

different way so that it ends up in a potentially unsafe state x2 ≤ x3. Here TPA
quickly determines that such a state can be reached after 511 iterations, with
variable values x1 = −211 ∧ x2 = 256 ∧ x3 = 256. However, this path cannot
reach error , as determined by TraverseBridge with x1 ≤ 0 determined to be
safe states at s1

post .
In the final attempt to traverse s1 TPAdetermines that no unsafe state is

reachable anymore and computes x1 ≤ 384 ∧ 384 ≤ x2 − x3 as new safe states
at s1

pre . Thus, the algorithm backtracks again and tries to find a different way
to reach unsafe states of s1

pre from s0
post . TraverseBridge determines this to

be impossible with x1 ≤ 384 ∧ 384 ≤ x2 − x3 being safe at s0
post as well. Note

that this condition can be viewed as an intermediate assertions between the two
loops (as we briefly mentioned in Sect. 2). It is sufficient to prove error cannot
be reached by traversing the second loop, and, as we will see in a moment, it
cannot be violated by traversing the first loop.

Finally, after backtracking to s0
pre , an attempt to traverse loop s0 to avoid

the safe states at s0
post fails, as TPA in TraverseLoop determines that x1 ≤

Reachability Analysis for Multiloop Programs Using TPA 567

108 ∧ x3 − x2 ≤ 0 are safe states at s0
pre . Finally, the algorithm backtracks to

entrypost , and, with no new feasible way to extend the path, it concludes safety.

Initial state:
0 ≤ x1 ≤ 100;
0 ≤ x2 ≤ 50;
x3 = 0;

Reached model:
0 ≤ x1 ≤ 100;
0 ≤ x2 ≤ 50;
x3 = 0;

Tries to
reach S0 Reached model:

1 ≤ x1 ≤ 101;
1 ≤ x2 ≤ 51;
x3 = -1;

Iterates on the
self-loop of S0

Conflict for the
model:
1 ≤ x1 ≤ 101;
1 ≤ x2 ≤ 51;
x3 = -1;

Tries to
reach S1
from S0

Explanation:
300 > x1

Reached model:
x1 = 300;
255 ≤ x2 ≤ 305;
x3 = -255;

Updates self-loop exit
conditions of node S0

and iterates on the
self-loop of S0

Reached model:
x1 = 300;
255 ≤ x2 ≤ 305;
x3 = -255;

Tries to
reach S1
from S0

Reached model:
x1 = 299;
255 ≤ x2 ≤ 305;
x3 = -254;

Iterates on the
self-loop of S1

Tries to
reach Exit
from S1

Lines 12,
14 are

excuted

Lines 19,
21 are

excuted

Lines 12,
17 are

excuted

Lines 5-8,
19, 21 are
excuted

Lines 19,
21 are

excuted

Lines 12,
17 are

excuted

Entry S0 S1 Exit

Entry S0 S1 ExitEntry S0 S1 Exit

Conflict for the
model:
x1 = 299;
255 ≤ x2 ≤ 305;
x3 = -254;

Explanation:
x2 > x3

Entry
S

0
S

1
Exit

Entry S0 S1 Exit

Entry
S

0
S

1
Exit

Tries to exit self-
loop, satisfying
new constraints

in S1

Lines 20,
23-24 are
excuted

Entry S0 S1 Exit

Entry S0 S1 Exit

Reached Safe:
All of the possible
paths from Entry
can't reach the Exit
node.

...Set of similar
rollbacks

Entry S0 S1 Exit

Reached model:
x1 = -211;
x2 = 256;
x3 = 256;

Conflict for the
model:
x1 = -211;
x2 = 256;
x3 = 256;

Explanation:
1 > x1

Conflict for the
model:
x1 = -211;
x2 = 256;
x3 = 256;

Explanation:
x1 ≤ 384 /\

384 ≤ x2 - x3

Entry S0 ExitS1

Entry S0 S1 Exit

Tries to
reach Exit
from S1

Lines 12,
17 are

excuted

Updates self-loop exit
conditions of node S1

and iterates on the
self-loop of S1

Lines 5-8,
19, 21 are
excuted

Fig. 3. Algorithm execution flow for Fig. 2.

3.4 Correctness

We first prove correctness when Algorithm 1 answers UNSAFE.

Theorem 1. When Algorithm 1 returns UNSAFE, there exists a feasible path
from entry to error.

Proof. We show by induction that for every entry [v, ϕ] that is added to path,
states ϕ at node v are reachable from entry . This claim trivially holds for the
initial entry [entrypost ,�] added on Line 1. New entries are added to path
at Lines 14 and 21. If follows from the properties of TraverseBridge and
TraverseLoop that the new reached states added to path are indeed reachable
from the previous entry in path.

568 K. Britikov et al.

Next, we prove the correctness of the SAFE answer using some auxiliary
lemmas.

Lemma 1. The following is an invariant of the algorithm: For each node v ∈ N
and each state s ∈ v.safe there is no feasible path from entry to error going
through [v, s].

Proof. Initially, all sets of safe states are empty (⊥), so the invariant holds
trivially. Sets of safe states are extended at two points: Line 6 and Line 23.

On Line 23, the set of safe states for node vpre is extended with the blocked
states from TraverseLoop. TraverseLoop ensures that the blocked states are a
superset of the currently reached states in vpre that is guaranteed to only reach
safe states of vpost . Thus, this extension of safe states preserves the invariant.

On Line 6, the set of safe states for node vpost is extended with the
intersection of the blocked states computed for each of v’s outgoing edges.
TraverseBridge ensures that the blocked states computed for an edge are a
superset of the currently reached states in vpost that is guaranteed to only reach
safe states of w, the target of the edge. Thus, this extension of safe states pre-
serves the invariant, too.

Lemma 2. When an entry [v, ϕ] is about to be popped from path
(Lines 7 and 24), the current path cannot be extended to a feasible path from
entry to error.

Proof. The proof is analogous to the proof of Lemma 1. The entry [v, ϕ] is
popped on Line 7 (Line 24) when the superset of ϕ is added to the safe states of
vpost (vpre) on Line 6 (Line 23). This exactly means that the current path prefix
cannot be extended to a feasible path.

Theorem 2. When Algorithm 1 returns SAFE, there is no feasible path entry
to error.

Proof. Follows directly from Lemma 2 because Algorithm 1 returns SAFE when
the initial entry [entry ,�] is popped from path.

3.5 Witness Production

Here we show that Algorithm 1 can be extended to produce witnesses for both
safe and unsafe programs (if it terminates).

Violation Witnesses. We show how a witness can be computed from path
constructed by Algorithm 1. We use the standard notion of a violation witness
as a counterexample path defined by a sequence of program states.

Definition 2 (Violation Witness). Given a CPG GS = 〈N,E,L, entry ,
error〉, a violation witness is an execution trace [s1, ..., sn] such that

– for each i ∈ [1, n], tuple si = 〈vi, st i〉 where vi ∈ N and st i a program state,
i.e., an assignment of all program variables,

Reachability Analysis for Multiloop Programs Using TPA 569

– s1 = 〈entry ,�〉 and sn = 〈error , q〉 for some q �= ⊥,
– for each consecutive pair 〈vi, st i〉 and 〈vi+1, st i+1〉, (vi, vi+1) ∈ E and

L((vi, vi+1))(st i, st i+1) is satisfiable.

When Algorithm 1 decides the input CPG to be unsafe (Line 15), the entries
in path form a blueprint for the violation witness. It defines exactly which loops
the counterexample traverses and in what order. However, the information that is
missing is how many iterations are taken in each loop and what are the interme-
diate states of the program for those iterations. Fortunately, when TPA deter-
mines that target states are reachable it also computes how many steps are
required. This number of loop iterations can be stored and used at the end to
reconstruct the full execution trace. The blueprint from path combined with the
precise number of unrollings of each loop defines the full step-by-step execution
trace. To obtain concrete states at each execution step, an SMT query can be
formed from the transitions defined by the trace, and concrete program states
can be obtained directly from a model for such a query.
Safety Witnesses. We use inductive invariants as safety witnesses.

Definition 3 (Safety Witness). Given a CPG GS = 〈N,E,L, entry , error〉,
a safety witness is a mapping Inv : N �→ Fla from loops to state formulas such
that Inv(entry) = �, Inv(error) = ⊥, and ∀(v, u) = e ∈ E : Inv(v) ∧ L(e) =⇒
Inv(u).

Note that this definition includes the requirement that Inv(v) is an inductive
invariant because the condition must hold also for self-loop edges (v, v).

We show how to compute inductive invariants from the information computed
by Algorithm 1. Recall that the algorithm computes for each loop v the set of safe
states vpre .safe and vpost .safe. We can compute a safety witness by computing,
separately for each loop v, a safe inductive invariant for a reachability problem
〈vpre .safe, L((v, v)),¬vpost .safe〉 (which we know is safe).1

Lemma 3. Suppose Inv(v) is a safe inductive invariant for a reachability prob-
lem 〈vpre .safe, L((v, v)),¬vpost .safe〉 for all v ∈ N . Then Inv is a safety witness
according to Definition 3, i.e., ∀(u, v) = e ∈ E : Inv(u) ∧ L(e) =⇒ Inv(v).

Proof. Each Inv(v) is, by construction, an inductive invariant for its correspond-
ing loop v. We show that these invariants are inductive also with respect to
transitions between loops.

Consider an edge e = (u, v) with u �= v. Since Inv(u) is a safe inductive
invariant for the reachability problem 〈upre .safe, L((u, u)),¬upost .safe〉, it fol-
lows that Inv(u) =⇒ upost .safe. Moreover, we know that upost .safe∧L(e) =⇒
vpre .safe is valid based on how the set of safe states is constructed in Algo-
rithm 1: only those states at u that cannot reach states outside of vpre .safe are
ever added to upost .safe. Finally, vpre .safe =⇒ Inv(v) is valid by construction
of Inv(v) as the inductive invariant for 〈vpre .safe, L((v, v)),¬vpost .safe〉. All
three implications together yield the desired property Inv(u)∧L(e) =⇒ Inv(v).

1 Any model checking algorithm can be used here, including TPA.

570 K. Britikov et al.

4 Evaluation

We have implemented Algorithm 1 in our Golem CHC solver [8] and we refer
to this implementation as Golem-Multiloop. In the experiments, Golem-
Multiloop is compared with state-of-the-art tools Z3-Spacer (v4.13.0) [26,32]
and Eldarica (v2.1.0) [23], as well as the existing TPA and Spacer engines
of Golem (denoted as Golem-TPA and Golem-Spacer). Benchmarks are
centered specifically around the multi-loop instances. All experiments were con-
ducted on a machine with an AMD EPYC 7452 32-core processor and 8× 32
GiB of memory.

Fig. 4. Comparison of performance of Golem-Multiloop with other tools: Z3-
Spacer, Eldarica, Golem-Spacer and Golem-TPA. Plot on the left demonstrates
amount of solved SAFE instances over time, plot on the the right shows UNSAFE
instances.

The evaluation aims to answer the following two research questions:

– RQ1: How does the new modular algorithm compare to Golem-TPA run-
ning on a transformed single-loop program?

– RQ2: How does the performance of Golem-Multiloop fare against state-
of-the-art tools?

The set of benchmarks2 used in our experiments is partially composed of SV-
COMP-23 instances3 (specifically from the ‘loops-crafted-1‘ set) and partially of
crafted multi-loop examples. The benchmarks have a common structure, with
multiple loops interconnected between each other without nested loops. Our
motivating example from Fig. 1 illustrates the structure of these benchmarks.
The benchmark set consists of 263 safe and 179 unsafe problems.

2 https://github.com/BritikovKI/fv-benchmarks-2024.
3 https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks.

https://github.com/BritikovKI/fv-benchmarks-2024
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks

Reachability Analysis for Multiloop Programs Using TPA 571

Quantile plots, shown in Fig. 4, compare the performance of individual tools
on our benchmark set. A data point (x, y) in the plot represents the fact that
the corresponding algorithm solved y problems given time x (in seconds). The
results show that Golem-Multiloop outperforms Golem-TPA both for safe
and unsafe instances. We attribute the large performance improvement for safe
instances to Golem-Multiloop’s modularity. While Golem-TPA has to find
a single safe transition invariant for the whole (transformed) program, Golem-
Multiloop builds separate transition invariants for individual loops incremen-
tally.

For unsafe problems, the difference between the two approaches is smaller but
still significant. We speculate that the modular nature of Golem-Multiloop
also helps it to build better, more focused transition abstractions which, in turn,
allow it to discover the real counter-example faster than Golem-TPA, which
needs to spend more time refining the abstraction of the monolithic transition
relation. To answer RQ1, we conclude that the incremental and modular nature
of Golem-Multiloop delivers significant improvements over applying TPA in
a monolithic way to a transformed single-loop program.

Golem-Multiloop also significantly outperforms state-of-the-art tools.
From the safe problems, Golem-Multiloop solves 198 benchmarks, while the
second best, Eldarica, was able to solve 125 benchmarks. However, Eldar-
ica solved 10 safe instances uniquely, demonstrating some orthogonality to our
approach. Similar results can be observed for the unsafe benchmarks. Golem-
Multiloop solves 23 instances more than Z3-Spacer, the second-best tool,
even though Z3-Spacer was able to solve 12 instances uniquely. To answer RQ2,
our evaluation shows that Golem-Multiloop significantly improves upon the
state-of-the-art solving more instances than the next-best competitor. Moreover,
it is on average 4.1 times and 2.8 times faster than the next best competitor on
unsafe and safe instances, respectively.

Overall, the evaluation demonstrates that our new algorithm is capable of
successfully handling both safe and unsafe challenging multi-loop programs. It
significantly improves not only over TPAapplied to transformed single-loop pro-
grams but also over existing state-of-the-art tools.

5 Related Work

A well-established research area around loop analysis embraces a multitude of
approaches, many of which are overviewed below.

Loop Summarization. Several techniques aim to produce an abstraction that
captures a relationship between the input and output of the loop as a set of
symbolic constraints. Produced this way, a loop summary is then used to replace
the loop in a subsequent analysis of the program. The approaches differ mainly
due to the application of symbolic abstraction [11,27,35] or symbolic execu-
tion [21,36,37]. All those approaches are property-agnostic and thus could be

572 K. Britikov et al.

more expensive or less effective than needed when potentially employed by our
approach. By contrast, our technique abstracts loops following the guidance of
the safety property.

Loop Acceleration. A group of related techniques produce quantifier-free first-
order formulas that under-approximate loop behaviours [3,12,19,20]. They are
motivated by and applied to verification approaches to improve scalability. We
are however not aware if any such technique is applicable to complicated loops
with control flow divergence or to loops over datatypes more complicated than
just integers.

Invariant Generation. An older but more popular and more widely used tech-
nique in program analysis consists in the automated generation of inductive
invariants. Intuitively, it aims at generating an over-approximation of all possi-
ble states that can be reached after a loop iteration, assuming it started from
another over-approximation, and hoping to reach a fixpoint. There are multiple
approaches to generate invariants, e.g. based on CEGAR and predicate abstrac-
tion [23,29], IC3/PDR [26], program transformation based [24], syntax-guided
synthesis [18], or Machine Learning/Neural networks [25,34]. One of the most
popular approaches for invariant generation is interpolant production, which is
used in a wide variety of algorithms [9,23,26,28–31].

Other Techniques. Some algorithms try to analyze loops differently, for example,
to simplify loops themselves, transforming them into a simpler version of the
same loop [15,16]. These approaches are not comparable with our technique, as
they simplify loops but not abstract them.

Multi-loop to Single-Loop Transformation. One of the important techniques for
the analysis of multi-loop systems is the transformation of such systems into a
single loop [1,13,17]. This set of approaches allows to apply algorithms like IMC,
TPA, or other single-loop specific engines [7] to effectively analyze the multi-loop
program as a whole.

6 Conclusion

Our paper introduces a novel approach for model checking of programs with
multiple loops. Its main idea is a modular analysis of the program loops while
propagating information about reachable and blocked states between consecu-
tive loops. Utilization of Transition Power Abstraction for analysis of individual
loops enables incremental computation and use of transition invariants for the
program verification, which significantly improves the overall performance of the

Reachability Analysis for Multiloop Programs Using TPA 573

approach. We also proved the correctness of this algorithm and demonstrated
how witnesses, both for SAFE and UNSAFE instances, can be generated. Exper-
imental evaluation demonstrates that our algorithm significantly outperforms a
straightforward application of TPA as well as other competitors in the analysis
of multi-loop systems.

As a future work, we plan to modify this algorithm to manage multi-loop sys-
tems with nested loops. This would significantly expand the possible applications
of our approach for the analysis of real-world programs.4

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and
Tools. Addison-Wesley Series in Computer Science/World Student Series Edition.
Addison-Wesley (1986). https://www.worldcat.org/oclc/12285707

2. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: Fisman,
D., Rosu, G. (eds.) TACAS 2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-99524-9 24

3. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: FAST: acceleration from theory to
practice. Int. J. Softw. Tools Technol. Transf. 10(5), 401–424 (2008). https://doi.
org/10.1007/s10009-008-0064-3

4. Beyer, D.: Competition on software verification and witness validation: SV-COMP
2023. In: Sankaranarayanan, S., Sharygina, N. (eds.) TACAS 2023. LNCS, vol.
13994, pp. 495–522. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
30820-8 29

5. Beyer, D.: Second competition on software verification - (summary of SV-COMP
2013). In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
594–609. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-
7 43

6. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software
model checking via large-block encoding. In: Proceedings of 9th International Con-
ference on Formal Methods in Computer-Aided Design, FMCAD 2009, Austin, pp.
25–32. IEEE (2009). https://doi.org/10.1109/FMCAD.2009.5351147

7. Beyer, D., Lee, N., Wendler, P.: Interpolation and sat-based model checking revis-
ited: adoption to software verification. arXiv preprint arXiv:2208.05046 (2022)

8. Blicha, M., Britikov, K., Sharygina, N.: The golem horn solver. In: Enea, C., Lal, A.
(eds.) CAV 2023. LNCS, vol. 13965, pp. 209–223. Springer, Cham (2023). https://
doi.org/10.1007/978-3-031-37703-7 10

9. Blicha, M., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: Split transition
power abstraction for unbounded safety. In: Griggio, A., Rungta, N. (eds.) 22nd
Formal Methods in Computer-Aided Design, FMCAD 2022, Trento, pp. 349–358.
IEEE (2022). https://doi.org/10.34727/2022/isbn.978-3-85448-053-2 42

10. Blicha, M., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: Transition power
abstractions for deep counterexample detection. In: Fisman, D., Rosu, G. (eds.)
TACAS 2022. LNCS, vol. 13243, pp. 524–542. Springer, Cham (2022). https://doi.
org/10.1007/978-3-030-99524-9 29

4 Full set of benchmarks and an executable version of the algorithm described in the
paper are available at https://zenodo.org/doi/10.5281/zenodo.12522510.

https://www.worldcat.org/oclc/12285707
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/s10009-008-0064-3
https://doi.org/10.1007/s10009-008-0064-3
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-031-30820-8_29
https://doi.org/10.1007/978-3-642-36742-7_43
https://doi.org/10.1007/978-3-642-36742-7_43
https://doi.org/10.1109/FMCAD.2009.5351147
http://arxiv.org/abs/2208.05046
https://doi.org/10.1007/978-3-031-37703-7_10
https://doi.org/10.1007/978-3-031-37703-7_10
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_42
https://doi.org/10.1007/978-3-030-99524-9_29
https://doi.org/10.1007/978-3-030-99524-9_29
https://zenodo.org/doi/10.5281/zenodo.12522510

574 K. Britikov et al.

11. Blicha, M., Kofron, J., Tatarko, W.: Summarization of branching loops. In: Hong,
J., Bures, M., Park, J.W., Cerný, T. (eds.) The 37th ACM/SIGAPP Symposium on
Applied Computing, Virtual Event (SAC 2022), 25–29 April 2022, pp. 1808–1816.
ACM (2022). https://doi.org/10.1145/3477314.3507042

12. Bozga, M., Iosif, R., Konecný, F.: Fast acceleration of ultimately periodic relations.
In: Touili, T., Cook, B., Jackson, P.B. (eds.) CAV 2010. LNCS, vol. 6174, pp. 227–
242. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 23

13. Bueno, D.: Horn2vmt: Translating horn reachability into transition systems. Tech.
rep., Sandia National Lab.(SNL-NM), Albuquerque, NM (United States) (2020)

14. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symbol. Logic 22(3), 269–285 (1957)

15. Darke, P., Chimdyalwar, B., Venkatesh, R., Shrotri, U., Metta, R.: Over-
approximating loops to prove properties using bounded model checking. In: Nebel,
W., Atienza, D. (eds.) Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition, DATE 2015, Grenoble, pp. 1407–1412. ACM (2015).
http://dl.acm.org/citation.cfm?id=2757139

16. Darke, P., Khanzode, M., Nair, A., Shrotri, U., Venkatesh, R.: Precise analysis of
large industry code. In: Leung, K.R.P.H., Muenchaisri, P. (eds.) 19th Asia-Pacific
Software Engineering Conference, APSEC 2012, Hong Kong, 4–7 December 2012,
pp. 306–309. IEEE (2012). https://doi.org/10.1109/APSEC.2012.97

17. Donaldson, A.F., Kroening, D., Rümmer, P.: Automatic analysis of DMA races
using model checking and k -induction. Formal Methods Syst. Des. 39(1), 83–113
(2011). https://doi.org/10.1007/s10703-011-0124-2

18. Fedyukovich, G., Kaufman, S.J., Bod́ık, R.: Learning inductive invariants by sam-
pling from frequency distributions. Formal Methods Syst. Des. 56(1), 154–177
(2020). https://doi.org/10.1007/s10703-020-00349-x

19. Frohn, F.: A calculus for modular loop acceleration. In: Biere, A., Parker, D. (eds.)
TACAS 2020. LNCS, vol. 12078, pp. 58–76. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45190-5 4

20. Frohn, F., Giesl, J.: Proving non-termination via loop acceleration. arXiv preprint
arXiv:1905.11187 (2019)

21. Godefroid, P., Luchaup, D.: Automatic partial loop summarization in dynamic test
generation. In: Dwyer, M.B., Tip, F. (eds.) Proceedings of the 20th International
Symposium on Software Testing and Analysis, ISSTA 2011, Toronto, pp. 23–33.
ACM (2011). https://doi.org/10.1145/2001420.2001424

22. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Jones, N.D., Leroy, X. (eds.) Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2004,
Venice, pp. 232–244. ACM (2004). https://doi.org/10.1145/964001.964021

23. Hojjat, H., Rümmer, P.: The ELDARICA horn solver. In: Bjørner, N.S., Gurfinkel,
A. (eds.) Formal Methods in Computer Aided Design, FMCAD 2018, Austin, pp. 1–
7. IEEE (2018). https://doi.org/10.23919/FMCAD.2018.8603013

24. Kafle, B., Gallagher, J.P., Morales, J.F.: Rahft: a tool for verifying horn clauses
using abstract interpretation and finite tree automata. In: Chaudhuri, S., Farzan,
A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 261–268. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41528-4 14

25. Kamath, A., et al.: Finding inductive loop invariants using large language models.
arXiv preprint arXiv:2311.07948 (2023)

26. Komuravelli, A., Gurfinkel, A., Chaki, S.: Smt-based model checking for recursive
programs. Formal Methods Syst. Des. 48(3), 175–205 (2016)

https://doi.org/10.1145/3477314.3507042
https://doi.org/10.1007/978-3-642-14295-6_23
http://dl.acm.org/citation.cfm?id=2757139
https://doi.org/10.1109/APSEC.2012.97
https://doi.org/10.1007/s10703-011-0124-2
https://doi.org/10.1007/s10703-020-00349-x
https://doi.org/10.1007/978-3-030-45190-5_4
https://doi.org/10.1007/978-3-030-45190-5_4
http://arxiv.org/abs/1905.11187
https://doi.org/10.1145/2001420.2001424
https://doi.org/10.1145/964001.964021
https://doi.org/10.23919/FMCAD.2018.8603013
https://doi.org/10.1007/978-3-319-41528-4_14
https://doi.org/10.1007/978-3-319-41528-4_14
http://arxiv.org/abs/2311.07948

Reachability Analysis for Multiloop Programs Using TPA 575

27. Kroening, D., Sharygina, N., Tonetta, S., Tsitovich, A., Wintersteiger, C.M.: Loop
summarization using abstract transformers. In: Cha, S.D., Choi, J., Kim, M., Lee,
I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 111–125. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88387-6 10

28. Lin, S., Sun, J., Xiao, H., Liu, Y., Sanán, D., Hansen, H.: Fib: squeezing loop
invariants by interpolation between forward/backward predicate transformers. In:
Rosu, G., Penta, M.D., Nguyen, T.N. (eds.) Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, ASE 2017, Urbana,
pp. 793–803. IEEE Computer Society (2017). https://doi.org/10.1109/ASE.2017.
8115690

29. McMillan, K., Rybalchenko, A.: Computing relational fixed points using interpo-
lation. Technical report. MSR-TR-2013-6 (2013)

30. McMillan, K.L.: Interpolation and sat-based model checking. In: Jr., W.A.H.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Cham (2003).
https://doi.org/10.1007/978-3-540-45069-6 1

31. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006). https://doi.
org/10.1007/11817963 14

32. de Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan,
C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-78800-3 24

33. Nielson, H.R., Nielson, F.: Semantics with applications - a formal introduction. In:
Wiley Professional Computing. Wiley (1992)

34. Ryan, G., Wong, J., Yao, J., Gu, R., Jana, S.: CLN2INV: learning loop invariants
with continuous logic networks. In: 8th International Conference on Learning Rep-
resentations, ICLR 2020, Addis Ababa, Ethiopia. OpenReview.net (2020). https://
openreview.net/forum?id=HJlfuTEtvB

35. Silverman, J., Kincaid, Z.: Loop summarization with rational vector addition sys-
tems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 97–115.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25543-5 7

36. Strejcek, J., Trt́ık, M.: Abstracting path conditions. In: Heimdahl, M.P.E., Su, Z.
(eds.) International Symposium on Software Testing and Analysis, ISSTA 2012,
Minneapolis, pp. 155–165. ACM (2012). https://doi.org/10.1145/2338965.2336772

37. Xie, X., Chen, B., Zou, L., Liu, Y., Le, W., Li, X.: Automatic loop summarization
via path dependency analysis. IEEE Trans. Software Eng. 45(6), 537–557 (2019).
https://doi.org/10.1109/TSE.2017.2788018

https://doi.org/10.1007/978-3-540-88387-6_10
https://doi.org/10.1109/ASE.2017.8115690
https://doi.org/10.1109/ASE.2017.8115690
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/11817963_14
https://doi.org/10.1007/11817963_14
https://doi.org/10.1007/978-3-540-78800-3_24
https://openreview.net/forum?id=HJlfuTEtvB
https://openreview.net/forum?id=HJlfuTEtvB
https://doi.org/10.1007/978-3-030-25543-5_7
https://doi.org/10.1145/2338965.2336772
https://doi.org/10.1109/TSE.2017.2788018

576 K. Britikov et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Logic and Automata

Misconceptions in Finite-Trace
and Infinite-Trace Linear Temporal Logic

Ben Greenman1,2(B) , Siddhartha Prasad2 , Antonio Di Stasio3 ,
Shufang Zhu3 , Giuseppe De Giacomo3 , Shriram Krishnamurthi2 ,

Marco Montali4 , Tim Nelson2 , and Milda Zizyte2

1 University of Utah, Salt Lake City, USA
benjaminlgreenman@gmail.com

2 Brown University, Providence, USA
3 University of Oxford, Oxford, UK

4 Free University of Bozen–Bolzano, Bolzano, Italy

Abstract. With the growing use of temporal logics in areas ranging
from robot planning to runtime verification, it is critical that users have
a clear understanding of what a specification means. Toward this end,
we have been developing a catalog of semantic errors and a suite of test
instruments targeting various user-groups. The catalog is of interest to
educators, to logic designers, to formula authors, and to tool builders,
e.g., to identify mistakes. The test instruments are suitable for classroom
teaching or self-study.

This paper reports on five sets of survey data collected over a three-
year span. We study misconceptions about finite-trace ltlf in three ltl-
aware audiences, and misconceptions about standard ltl in novices. We
find several mistakes, even among experts. In addition, the data sup-
ports several categories of errors in both ltlf and ltl that have not
been identified in prior work. These findings, based on data from actual
users, offer insights into what specific ways temporal logics are tricky
and provide a groundwork for future interventions.

Keywords: LTL · LTLf · misconceptions · user studies

1 Introduction

Temporal logics are indispensable for specifying and verifying the behavior of
complex systems. Linear temporal logic (ltl) and its restriction to finite traces
(ltlf) are two especially useful members of the family. ltl, for example, has
been widely adopted by the robotics community [4,5,10,29,37,42,45,48,60,70].
ltlf has applications to runtime verification [64], web-page testing [54], business
process modeling [20,22], process mining [16], planning [13,24,25], reinforcement
learning [21], and image processing [65]. Furthermore, both logics support good
decision procedures [67] and enable program synthesis [2,3,7,11,49,56,62,71].

These successes all depend, however, on a crucial assumption: that users
of the logics can actually write correct specifications. Given a well-formed but
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 579–599, 2025.
https://doi.org/10.1007/978-3-031-71162-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_30&domain=pdf
http://orcid.org/0000-0001-7078-9287
http://orcid.org/0000-0001-7936-8147
http://orcid.org/0000-0001-5475-2978
http://orcid.org/0000-0002-5922-8750
http://orcid.org/0000-0001-9680-7658
http://orcid.org/0000-0001-5184-1975
http://orcid.org/0000-0002-8021-3430
http://orcid.org/0000-0002-9377-9943
http://orcid.org/0000-0002-4823-8937
https://doi.org/10.1007/978-3-031-71162-6_30

580 B. Greenman et al.

Globally / Always Finally / Eventually
σ |= G(x) ⇐⇒ ∀j, σ(j) |= x σ |= F (x) ⇐⇒ ∃j, σ(j) |= x
σN |= G(x) ⇐⇒ ∀j : j ≤ N, σN (j) |= x σN |= F (x) ⇐⇒ ∃j : j ≤ N, σN (j) |= x

Next Until
σ |= X(x) ⇐⇒ σ(1) |= x σ |= x U y ⇐⇒ ∃j, σ(j) |= y

∧ ∀i : i < j, σ(i) |= x
σN |= X(x) ⇐⇒ 1 ≤ N ∧ σN (1) |= x σN |= x U y ⇐⇒ ∃j : j ≤ N, σN (j) |= y

∧ ∀i : i < j, σN (i) |= x

Fig. 1. Semantics of four ltl and ltlf operators: G, F , X, U

incorrect formula, synthesis will output a system that behaves as specified—
whether or not that is the desired behavior. It is therefore critical to know the
specific misunderstandings that lead to incorrect formulas in order to correct
them via tools, logic design, and teaching. That is the focus of this paper.

Contributions and Outline. After a brief introduction to ltl, ltlf , and our
pedagogy (Sect. 2), we proceed with the following contributions:

– We introduce two test instruments (Sect. 3):
• a finite trace instrument that tests respondents’ understanding of the

delta between ltl and ltlf , and
• an introductory instrument that promotes active learning of ltl.

– We present a dataset of over 3,000 responses collected from dozens of respon-
dents over the past three years (Sect. 4). The data contains mistakes from
beginning, knowledgeable, and expert respondents (Sect. 6).

– We present a catalog of ltl and ltlf misconceptions (Sect. 5) that is thor-
oughly grounded in the data (Sect. 7).

The main results are in Sects. 6 and 7. The paper concludes with threats to
validity (Sect. 8), related work (Sect. 9), and a brief discussion (Sect. 10).

2 Background

ltl formulas are interpreted over infinite traces, σ = s0s1s2 · · · , where each si
is a state that provides valuations for a set of atomic propositions [55]. ltlf
formulas are interpreted over finite traces, σN = s0s1 · · · sN [69]. While ltl and
ltlf share the same syntax, their semantics differ as shown by the highlighted
constraints in Fig. 1. This figure uses the notation σ(j) to select a suffix of
σ starting from position j. For example, σ(2) is equal to s2 · · · . An always (G)
operator quantifies over all remaining states in the trace, an eventually (F) must
find a satisfying suffix before the trace ends, a next (X, aka strong next) con-
strains the suffix after the current state, and an until (U) must find a satisfying
suffix for its right operand and ensure that its left operand holds beforehand.
Not pictured is the ltlf weak next (XW , omitted to save space), which does not
require that a next state exists.

Misconceptions in Finite-Trace and Infinite-Trace Linear Temporal Logic 581

2.1 ltlf Example: Concision via Finiteness

Finite prefixes can be expressed within an infinite ltl trace, but doing so may
require intricate formulas. To illustrate, consider a busy philosopher sitting in
front of a bowl of ice cream. She has a lot of thinking to do, but if she decides to
eat ice cream, she needs to do so before the ice cream melts. In ltlf , traces are
finite. The end of a trace might correspond, e.g., to the termination of a program
or the end of a data stream. Ending the trace at the point where the ice cream
melts allows for a simple framing of this property:

G(w =⇒ F (e)) # where w means “wants to eat” and e means “is eating”
By contrast, ltl requires a larger formula with a new variable (m: ice cream has
melted) and a gadget to encode a prefix of an infinite trace.

!m ∧ F (m) ∧ # ice cream eventually melts
G(m =⇒ G(m)) ∧ # once melted, ice cream stays melted
G(m ∨ # either ice cream is melted, or

(w =⇒ F (e∧ !m))) # philosopher who wants to eat eventually does

2.2 Toward a Concept Inventory

This paper is part of a larger effort to create a set of concept inventory test
instruments for ltl, ltlf , and related logics. Our guiding example is the Force
Concept Inventory for teaching physics [39,40], a multiple choice test in which
every incorrect choice is carefully designed to match one specific misconception.
Unless test-takers select the wrong choice by mistake, their results strongly sug-
gest which concepts they need to review. We are developing test instruments that
use a variety of question types to identify the misconceptions that a temporal
logic concept inventory should cover.

In a perfect world, every course subject would come with a concept inven-
tory. However, developing an inventory takes several rounds of careful study
(e.g., via think-aloud interviews) to identify misconceptions and reliably pin-
point them among test-takers [1,63]. One impediment to development is the
expert blind spot [51,52]; namely, that test designers overlook concepts that
learners struggle with. Our Spreading X misconception (Sect. 7.6), for example,
is an issue that we were blind to.

This paper builds on prior ltl instruments [35,58] that employed a learner-
driven tool called Quizius [59] to reduce the up-front cost of discovering mis-
conceptions. Prior work [35] refined the instruments through three post-Quizius
surveys, finding support for some potential misconceptions and discarding oth-
ers. This paper represents a significant step forward in the iterative development
of concept inventories with four additional studies that find misconceptions in
ltl and in the unexplored domain of ltlf .

3 Instrument Design

This section describes the design of our study instruments. Complete instruments
are in the artifact for this paper [34]. We contribute two instruments: a finite-
trace instrument that contrasts ltlf with ltl and an introductory instrument

582 B. Greenman et al.

Q. Describe the formula G(X(red))
for and

(a) Describe Formulas

Q. Write a formula for Red is on ex-
actly once in and

(b) Write Formulas

Q. Is the formula red ∧ G(XW (blue))
satisfied by this trace?

Answer: Yes
/

No

Rationale:

(c) Trace Matching

Q. Why does the formula F (red) reject
this trace?

Answer:

(d) Explain Mismatches

Q. Is G(!a) = !F (a) valid for any term a in ?
This equation is valid in

Answer: Yes
/

No

Rationale:

(e) Check Equations

Fig. 2. Example questions

that assumes only minimal knowledge of ltl. The instruments are based on prior
ltl work [35], reusing questions and question types that have proven effective in
the past. The questions use simple state spaces with three on/off features such
as the 3-color panel in Fig. 2.

The central question types ask about informal-to-formal translations:

Describe Formulas (Fig. 2a): Given an ltl or ltlf formula, translate it to an
English-language description. This task is similar to what a person does when
reading a specification and deciding whether it is correct.

Write Formulas (Fig. 2b): Given an English statement, translate it to ltl
and/or ltlf or say that it is inexpressible. This is the key skill for doing
formal verification. (“there must be a [informal-to-formal] transition” [26]).

Three other question types address specific goals. One type, Trace Matching, is
from prior work [35]. The other two expose differences between ltl and ltlf .

Trace Matching(Fig. 2c): Given a formula and a trace, mark the trace as either
satisfying or violating. These questions test for specific, semantic misunder-
standings. All traces were either finite or repeated the final state.

Explain Mismatches (Fig. 2d): Given an ltlf formula and a finite trace that
violates the formula, explain the reason for the mismatch. The instructions

Misconceptions in Finite-Trace and Infinite-Trace Linear Temporal Logic 583

suggest four potential explanations: (1) only an infinite trace can satisfy the
formula; (2) the trace is too long, i.e., the formula accepts no traces of this
length; (3) the trace is too short; or (4) trace content mismatch, i.e., the
wrong lights are on/off in some states. These questions serve as a tutorial on
the mismatches that can arise in a finite-trace setting.

Check Equations (Fig. 2e): Given an equation and a statement of its validity
in ltl, determine whether it is valid in ltlf for non-empty traces. These
questions test general ways in which ltl and ltlf formulas differ.

3.1 ltlf Instrument

The finite trace instrument is designed for an ltl-aware audience. This instru-
ment has five parts, corresponding to the five question types above but arranged
in order of difficulty rather than importance:

1. Explain Mismatches 2. Trace Matching 3. Describe Formulas
4. Write Formulas 5. Check Equations

Part 1 functions as an ltlf primer. It presents five mismatched formulas and
traces and asks respondents to think critically about why the two disagree. For
example, the trace in Fig. 2d is rejected by the formula F (red) because it has
no red states. Respondents who expect F to accept an empty trace (similar to
weak next) may be able to use this example to correct their misconception.

Parts 2, 3, and 4 appear in order of increasing difficulty so that respondents
can build confidence as they approach the harder questions. There are six Trace
Matching questions, four Describe Formulas questions, and five Write Formulas
questions. The translation questions each ask about ltl and ltlf : respondents
must provide two formulas (or two descriptions), or write “same” if the sec-
ond would be identical. One question presents a formula that is insensitive to
infiniteness [23], for which “same” is the correct response.

Part 5 presents three equations that are valid in ltl, such as !X(a) = X(!a),
and one that is invalid in ltl: G(F (a)) = F (G(a)). Respondents must decide
whether the equations are valid in ltlf .

3.2 ltl Instruments

We used two instruments with students: a new introductory instrument, and the
ltl instrument from prior work [35]. Both instruments have three parts:

1. Trace Matching 2. Describe Formulas 3. Write Formulas
Part 1 uses lasso traces where the last shown state repeats indefinitely. The

state space is a locomotive with three features: engine smoke, a door, and a
headlight. Parts 2 and 3 ask for translations to and from ltl.

584 B. Greenman et al.

(1)

The first instrument is intended for students who have no knowledge of tem-
poral logic. It presents nine of the easy-to-answer Trace Matching questions, and
only two Describe questions and two Write questions. Some of the trace ques-
tions match the same formula with different traces to hone in on misconceptions.
The translation questions intentionally do not ask about the until operator.

The second instrument is from prior work [35] with minor enhancements. It
asks nine Match questions, five Describe questions, and five Write questions.

Table 1. Study contexts, number of respondents, and number of responses

Context Instrument Respondents Total Responses

α’23 finite-trace 22 1132
α’24 finite-trace 18 693
FTAI finite-trace 24 455
β1 introductory 31 403
β2 ltl [35] 24 456

4 Data

We deployed our instruments to four populations over three years. The finite-
trace instrument went out to two semesters of students at a public UK university
(α’23, α’24) and to the attendees of a symposium on ltlf in artificial intelligence
(FTAI—anonymized acronym). The introductory instrument was used in an
embedded systems course at a private US university (β1, β2). Between 18 and 24
respondents completed each instrument, and each participant contributed dozens
of individual responses to the overall dataset. Table 1 provides the details. We
hosted each instrument on Qualtrics.

4.1 Student α: 2023 and 2024

Populations α’23 and α’24 consisted of students enrolled in an elective course on
self-programming agents, which is dedicated to various forms of ltlf reactive
synthesis and planning in the context of autonomous agents. Students can take
this course in the final year of a BSc in computer science or during an MSc on
Advanced CS. Both α populations are similar and received comparable instruc-
tion, though we remark that the instructor joined the university in 2023. Early in

Misconceptions in Finite-Trace and Infinite-Trace Linear Temporal Logic 585

the term, students received a lecture on ltl and completed the ltl instrument
from prior work as a homework exercise. Shortly afterward, students received
a lecture on ltlf and completed the finite-trace instrument as homework. The
ltl responses were of very high quality (92% correct in α’23), so we analyze
only the ltlf responses in this paper.

The α’23 instrument differs from the final, α’24 instrument in two ways:
the Explain Mismatches questions are multiple choice and there are three addi-
tional Check Equations questions (which did not lead to interesting incorrect
responses). Free response is better for Explain Mismatches because it is less con-
straining. Respondents struggled when two choices might reasonably apply, and
forcing them to choose was not helpful in our search for misconceptions.

4.2 FTAI: 2023

FTAI is our anonymized name for a symposium on finite-trace temporal logics
for AI that was held in 2023. The event brought together world-class researchers
with deep expertise in temporal logics including ltlf . Seventeen attendees (74%)
self-reported AI as among their primary research areas, nine (39%) selected
formal methods, and five (21%) selected machine learning. Eleven claimed to be
knowledgeable in ltlf specifically. All but a few attendees were in-person.

On the first day of the symposium, we presented (via Zoom) a brief intro-
duction to our work on logic misconceptions and gave respondents 15min to fill
out the instrument. This introduction did not explain ltlf semantics and it did
not explain our question types; all instructions were in the instrument itself.
Ten respondents completed the instrument in the allotted time. Eight respon-
dents finished by the end of the conference. Six others finished later in Spring
2023; these may have been colleagues of symposium attendees, as we encouraged
attendees to share the instrument link with their research groups.

Respondents in this study received only a subset of the α’23 instrument
to maximize the completion rate, which explains the relatively low number of
responses in Table 1. They completed 3 out of 5 Explain Mismatches questions,
3 of 6 Trace Matching questions, 2 of 4 Describe Formulas questions, 2 of 5
Write Formulas questions, and 5 of 7 Check Equations questions—all selected
uniformly at random by Qualtrics.

4.3 Student β: 2022

Population β completed two instruments, β1 and β2, in the context of an elective
undergraduate course on embedded systems taught at a private US university.
The course has limited time to cover ltl-based model checking, making it critical
to teach ltl quickly to students unfamiliar with temporal logic. In 2022, near the
end of the semester, we assigned the introductory instrument as homework (β1)
without teaching ltl in lecture. Students had several days to read the course
textbook [47] and submit. The next lecture featured ltl and assigned the full
ltl instrument [35] as homework due the following week (β2).

586 B. Greenman et al.

All homework in embedded systems was graded by participation. Further-
more, students were allowed to drop three homeworks during the term. We know
from survey comments that at least two students were planning to drop an ltl
homework, but since responses are anonymous and these comments appeared
only in complete surveys, there is no reliable way to determine which of these
students, if any, actually dropped an ltl homework.

5 Catalog Design

The catalog, or “code book” (in the qualitative analysis sense), is our rubric for
temporal logic misconceptions. Figure 3 presents a short overview of the core
semantic errors. Its aim is to provide just enough background for readers to
understand our results in Sects. 6 and 7. The full catalog in our artifact comes
with instructions showing how to apply the labels to new responses [34].

Fig. 3. Brief summary of misconceptions

In addition to the labels in Fig. 3, there are three meta labels: Precedence,
RV, and Unlabeled. Precedence applies to responses that are ambiguous due to
missing parentheses. RV stands for “Reasonable Variant,” and applies to written
formulas that support an unintended reading of an English prompt. Unlabeled
is for responses that contain several mistakes or otherwise defy categorization.

The highlighted labels are new to this work. Length and Last apply only
to ltlf . Cycle G, Implicit Prefix, Trace-Split U, and Spreading X apply to
both ltlf and ltl. The other labels originate in prior work [35]. We developed
the new labels by starting from the prior catalog and applying techniques from
grounded theory [33] to discover categories of mistakes. Two authors worked as
labelers. First, the labelers independently assessed sample responses using the
baseline catalog. Coding happened in small sessions to minimize labeler fatigue.
Second, the labelers met to identify patterns among responses that did not fit the
current rubric. Third, the labelers used the standard Cohen’s κ score [17] to check
agreement. This measure typically ranges from 0 to 1, where a score above 0.8 is
considered excellent [61]. The coders quickly reached a high score, perhaps due
to the well-tested baseline catalog. Further details on instrument development
follow:

Misconceptions in Finite-Trace and Infinite-Trace Linear Temporal Logic 587

Finite Trace: κ = 0.79 after labeling 26 responses: 14 Write Formulas, 8
Describe Formulas, and 6 Check Equations.

Introductory: κ = 0.83 after labeling 13 responses: 9 Write Formulas and 4
Describe Formulas.

6 Results: Incorrect Responses, Specific Errors

Our instruments collected a variety of errors across the four populations. Table 2
presents the totals at a high-level. Table rows correspond to question types (with
abbreviated names, such as Explain for Explain Mismatches), and table columns
name the instrument deployments. Each cell counts the number of incorrect
responses (not the number of respondents who contributed these responses)
and reports it as a percentage of the total responses for that particular instru-
ment and question type. Be advised that percentages are not comparable across
columns because the number of questions in each part may have changed; for
example, Check Equations has 7 questions in α’23 and 4 in α’24.

Table 2. Total incorrect responses

α’23 α’24 FTAI β1 β2

Explain 18 (20.00%) 4 (4.44%) 16 (22.22%)n/a n/a

Match 2 (1.85%) 3 (2.78%) 6 (8.33%) 76 (27.24%) 43 (19.91%)
Describe 23 (15.97%) 23 (15.97%) 19 (19.79%) 30 (48.39%) 47 (39.17%)
Write 38 (21.11%) 45 (25.00%) 32 (33.68%) 41 (66.13%) 76 (63.33%)
Check 9 (7.14%) 5 (6.94%) 25 (20.83%)n/a n/a

The main takeaway from Table 2 is that every question type attracted some
incorrect responses, and some attracted quite a few (over 20%). Trace Matching
was the easiest question across the board and Write Formulas was the hard-
est; even the FTAI respondents submitted a fair number of incorrect formulas.
Students in β1 submitted many incorrect responses. At a glance, it would seem
that the β2 responses are only marginally better percentage-wise, but there were
nearly twice as many translation questions in the β2 instrument and they were
more difficult; the small percentage improvement is encouraging.

Each incorrect response may correspond to zero or more misconceptions in
our catalog, depending on why it is incorrect. Table 3 presents the catalog clas-
sification of the incorrect responses. The columns are grouped by three question
types: Trace Matching, Describe Formulas, and Write Formulas. We discuss the
other question types in prose below. Within each question type, columns corre-
spond to deployments. The rows are labels from the catalog. Each cell counts
the number of incorrect responses; we use a dash (-) rather than a zero to make
the nonzero numbers easier to see.

588 B. Greenman et al.

Table 3. Errors in incorrect responses (one response may match several labels)

(a) Finite trace instrument
Match Describe Write

Code α’23α’24FTAI α’23α’24FTAI α’23α’24FTAI Total
Length - 2 3 7 2 2 10 3 3 31
Last - - - - - - 1 5 - 6

Bad Prop - - - - 2 4 - 6 2 14
Bad State Index - - - - - - 2 9 5 17
Bad State Quantification - - - - - - - 1 2 3
Cycle G - - - - - - - 2 2 4
Implicit F - - - 7 6 5 3 7 2 30
Implicit G - - - 1 - - 4 8 2 15
Implicit Prefix - - - - - - 8 4 8 20
Other Implicit - - - - - 3 1 - - 4
Weak U 2 1 2 - 1 1 - - - 7
Exclusive U - - 1 - 3 2 - - - 6
Trace-Split U - - - - - - - - 3 3
Spreading X - - - - - - - - - -
Precedence - - - - - - - 1 1 2
RV - - - - - - 2 - - 2
Unlabeled - - - 8 10 4 13 2 9 46

(b) Introductory and ltl [35] instruments
Match Describe Write

Code β1 β2 β1 β2 β1 β2 Total
Bad Prop 9 7 3 8 1614 57
Bad State Index 1 8 15 7 310 44
Bad State Quantification 7 3 5 9 4 4 32
Cycle G - - - - - - -
Implicit F 1111 1 1 - 4 28
Implicit G 13 1 1 7 2323 68
Implicit Prefix - - - - - 8 8
Other Implicit - - - - - 5 5
Weak U 15 9 - 2 - - 26
Exclusive U 8 5 - 4 - - 17
Trace-Split U - - - - - 2 2
Spreading X 6 - 1 3 10 3 23
Precedence 2 - - 4 - 3 9
RV - - - - - - -
Unlabeled 6 - 2 16 719 50

Misconceptions in Finite-Trace and Infinite-Trace Linear Temporal Logic 589

Every core label has at least some support from the responses, with Bad State
Index, Implicit F, and Implicit G being among the most popular. The Weak U label
has low numbers, but these came primarily from a Trace Matching question that
specifically tests this issue; the fact that even one FTAI participant made this
mistake is noteworthy. Issues with trace length constraints (Length) are common
in ltlf ; see Sect. 7 for examples. Lastly, the low numbers for generic labels (Bad
State Quantification and Other Implicit) and for reasonable variants (RV) suggest
that the revised catalog is better at pinpointing issues and that the revised
instruments are clearer to respondents.

We report some negative findings as well. Two labels, Cycle G and Trace-
Split U, have little support overall and warrant targeted testing in the future.
Unlabeled is unfortunately common, which suggests a need for interviews to learn
the reasoning behind any deeply-incorrect responses. Some unlabeled responses
in Table 3b do, however, have explanations. These are from respondents who
were confused about ltl syntax, or who did not attempt the question.

Remaining Question Formats. The finite trace instruments include two question
types that are not in Table 3a: Explain Mismatches and Check Equations. The
incorrect Explain Mismatches responses are all Unlabeled; most of these are due
to the multiple-choice ambiguity noted in Sect. 3.1. The incorrect Check Equa-
tions responses cannot be labeled definitively because these questions did not
ask respondents to explain their reasoning (Fig. 2e). We merely note that the
data suggests issues with Length, OtherImplicit, and a weak notion of F . The
weak-F responses incorrectly marked F (a) = a ∨ X(F (a)) as invalid in ltlf .

7 Results: Categories of Errors

We turn now to the actual survey responses that support the new categories of
errors; namely, the two ltlf labels and four additional ltl labels. To ground
the discussion, the subsections below present actual instrument questions (“Q”)
and representative sample responses (“WA” for “wrong answer”). We also discuss
how tools might use our findings to provide feedback.

Certain questions appeared only in the finite-trace instruments and vice-
versa. These are noted below. Also, to streamline the presentation, we have
translated the introductory-instrument responses to use colors instead of loco-
motive characteristics (compare Fig. 2 and Eq. (1)).

7.1 Length (ltlf only)

The Length label applies to responses that require too many or too few states.
When writing an ltlf formula, this issue can arise from the use of strong next
instead of weak next. Tools might help by reporting the trace length(s) that a
formula accepts.

– Q. Describe the ltlf formula red∧ !X(blue).

590 B. Greenman et al.

– WA. “The first state must be red and the second state must not be blue.”
This answer implies that a second state must exist, but the formula does not.
There are four responses of this sort in the dataset: two in α’23, one in α’24,
and one in FTAI.

– Q. Describe the ltlf formula G(red ⇒ X(!red ∧ X(red))).
– WA. “For every state, if there is a red light on, the next state is with the

red light off, and the state afterward is with the red light on. The trace must
have at least have 3 states.”
No finite trace with a red light can satisfy this formula, as every red light
demands another two states later. There are seven responses of this sort: five
in α’23 and one each in α’24 and FTAI.

– Q. Write an ltlf formula for: Blue is on in the first state, off in the second
state, and alternates on/off for the remaining states.

– WA. blue ∧ G(blue ⇒ XW (!blue ∧ XW (blue)))
The prompt requires at least two states, but the formula accepts traces with
only one blue state. Interestingly, this formula is correct in ltl using X
instead of XW , which underscores the subtlety of ltlf . Eight α’23, one α’24,
and zero FTAI responses made this error.

7.2 Last (ltlf only)

The Last label applies to responses that attempt to encode a final state in infinite-
trace ltl instead of saying that the prompt is inexpressible. All such responses
stem from one formula-writing question.

– Q. Write (if possible) an ltl formula for: Green is on in the final state.
– WA. F (G(green))

While this response is correct for ltlf and is syntactically-valid ltl, it is
trying to answer an impossible question. There are six responses of this sort:
one from α’23, five from α’24, and zero from FTAI.

7.3 Cycle G

In ltl and ltlf , the G operator imposes a constraint on every state. Yet, some
responses expect G to constrain one state, skip a few states, and reapply later.
The skipped states are precisely those captured by occurrences of X within the
G operand. A tool might help by highlighting atom constraints at each time
index (in the following example, index 2 would show a contradiction).

– Q. Write an ltl formula for: Blue is on in the first state, off in the second
state, and alternates on/off for the remaining states.

– WA. G(blue ∧ X(!blue))
This formula is unsatisfiable because it requires blue to be both on and off
in the second state. There are four responses of this sort, two from α’24 and
two from FTAI. However, we must caution that these responses came from
only two people who made the mistake consistently in ltl and ltlf .

Misconceptions in Finite-Trace and Infinite-Trace Linear Temporal Logic 591

7.4 Implicit Prefix

The baseline catalog contains a generic label Other Implicit for responses that
accept too many traces but do not fall under a more precise category. One such
response from FTAI describes G(red ⇒ X(!red ∧ X(red))) as “whenever red
holds, it also holds two steps later,” leaving the middle state underconstrained.

The Implicit Prefix label narrows the scope of Other Implicit. It applies to
responses that correctly describe the suffix of valid traces but leave the prefix
underconstrained. It does not apply to the example in the previous paragraph.
Tools might help by showing example traces; for instance, traces with early states
that satisfy some but not all constraints under an F may be informative.

– Q. Write an ltl formula for: Red is on exactly once.
– WA. F (red ∧ X(G(!red)))

This formula describes a suffix in which red is on at one state and turns
off afterward, but it does not prevent red from turning on before this point.
There are 24 responses of this sort: eight each from α’23 and FTAI, and four
each from α’24 and β2. The finite-trace respondents made this mistake con-
sistently in ltl and ltlf , so the total in terms of people is only 14.

– Q. Write an ltl formula for: Green is on for zero or more states, then turns
off and remains off in the future.

– WA. G(F (!green))
Whereas the specification asks for green to stay on until it turns off, the
formula allows green to turn on and off before reaching a non-green suffix.
There are four responses of this sort in β2. This question is not in the finite-
trace instruments because it does not contrast ltl and ltlf .

7.5 Trace-Split U

Several responses use F and G in the left operand of an until, as in G(red) U blue.
These responses are usually incorrect. Some of them would be correct, however,
if the left and right operands were interpreted on different parts of the full trace:
a prefix on the left and a suffix on the right. (Interpreting on a prefix makes
no sense in ltl, but is sensible in ltlf .) The Trace-Split U label captures these
responses. Tools can help by reporting such nested operands as a U antipattern.

– Q. Write an ltl formula for: Blue is on in at least two states.
– WA. F (blue) U F (blue)

Any trace with one blue state satisfies the formula. There are two responses
of this sort from FTAI and zero elsewhere.

– Q. Write an ltl formula for: Green is on for zero or more states, then turns
off and remains off in the future.

– WA. G(green) U G(!green)
Although a natural-language reading of this formula sounds compelling

592 B. Greenman et al.

(always green until always not green), the left G would entail a green light in
every state. There are two responses of this sort in β2. This question is not
in the finite-trace instruments because it does not contrast ltl and ltlf .

7.6 Spreading X

The X operator targets one specific state whereas G, F , and U quantify over an
unknown future. This difference is evidently confusing to beginners, as several
of the β1 and β2 responses expect one X to constrain both the current state
and the next state. With nesting, these responses expect a longer interval, e.g.,
three red states for X(X(red)). Prior work with novices observed this issue as
well [58]. We did not find evidence for it in our earlier studies [35], so perhaps
the misconception is easily corrected. Tools can help by reminding users that an
n-fold composition of X constrains one state n steps ahead.

– Q. Describe the ltl formula blue ⇒ X(X(X(blue))).
– WA. “When the blue light is on, it will stay on for the next 3 states.”

There are three such responses. This question is only in the β2 instrument.

– Q. Write an ltl formula for: Red cannot stay on for 3 states in a row .
– WA. G(!X(X(X(red))))

There are eight such responses in β1, and three in β2. The finite-trace instru-
ment does not include this question.

8 Threats to Validity

Qualitative coding inherently comes with biases, and our high agreement scores
do not prove that these have been excised. To mitigate this issue, our data is
available for other researchers to audit. Another threat is that the sets over which
we computed agreement are not large.

One author manually classified responses for correctness and may have mis-
labeled some, despite our auditing. Write Formulas responses in particular might
have leveraged automation, but the survey did not enforce an ltl syntax in
order to lower the burden on respondents. Thus, there are variations such as or
versus | and engine versus E that we had to normalize manually. One response
uses next (perhaps inspired by PSL weak next [28]) without specifying a strong
or weak interpretation. This ambiguity is a threat; fortunately, the response
in question is incorrect in the same way with X or XW . Operator precedence
is another avenue for miscommunication; we assume, e.g., weak precedence for
implication, but respondents may have had a different meaning in mind.

Regarding external validity, the two α studies took place at the same insti-
tution with the same instructor. The β study used a different institution and
student population, and although the results are comparable to α they may not
carry over to other populations, such as learners in industry. FTAI respondents
were under time pressure due to the conference, and may have rushed through
the more difficult translation questions.

Misconceptions in Finite-Trace and Infinite-Trace Linear Temporal Logic 593

Two question types require fluency in English. Although we did not specifi-
cally check for fluency, our respondents seem to meet this bar. Both universities
that we worked with conduct all classes in English and expect a high degree
of fluency. The FTAI symposium used English as well for all papers and talks.
There were no indications of severe language issues in the responses.

Our instruments are rather weak ecologically because they ask basic ques-
tions about a rudimentary state space. Practical uses of ltl would involve sys-
tems with interacting components, and users would have access to verification
tools. Performing studies in a realistic setting is an important topic for future
work.

9 Related Work

Design tools [15,57], alternative languages and logics [6,8,28,46,66], pattern lan-
guages [27,36,43,50,57], natural-language translators [12,18,30] and error check-
ers [9,14,41,44,54], all seek to improve the usability of temporal logics such as
ltl. Yet, none of these works study the misunderstandings of humans; at best,
they address mistakes that a person might make.

Prior work on the Declare modeling language used think-aloud interviews to
discover and validate errors [38]. Our work can help separate general ltl issues
from Declare-specific issues. Other related user studies include two comparisons
of ltl to similar logics [15,19], and an interface design study [15]. While these
studies target learners, the focus is not directly on logic misconceptions.

Our translation questions are similar to those from Iltis [31,32], a tool for
teaching logic. Iltis might serve as a framework for future studies, though it is
aimed toward pedagogy rather than studies of misconceptions.

With the introductory instruments, we considered providing a link to Wick-
ström’s ltl visualizer [54,68]. We did not, due to concerns that misconceptions
about the tool, which has not been validated, would be a confounding factor.

10 Looking Forward

We conducted a first study of ltlf misconceptions in three populations with
well-informed respondents, and studied ltl in two rounds with novices. The
data offers insights into mis-specifications with two categories of ltlf -specific
mistakes, four new categories of ltl mistakes, and refined support for categories
from prior work [35]. Given the very simple scenarios and formulas that we
used, we suspect that many more issues lurk in more complicated settings.

Our work has obvious implications for learners and educators. We have
already begun to employ its insights to create a new interactive learning envi-
ronment called the LTL Tutor: https://www.ltl-tutor.xyz/. We have also had
positive experiences in an undergraduate course on logical modeling [53] and
in a graduate course on software verification. The instruments work well as an
in-class activity followed by group discussion.

https://www.ltl-tutor.xyz/

594 B. Greenman et al.

This work can also impact the design of future logics. Narrowly, it suggests
different operator designs; broadly, it provides a methodology to identify mis-
conceptions in the first place.

Finally, this work also has implications for tools that consume ltl or ltlf .
Currently, tools assume that a logical utterance precisely captures the user’s
intent, and verify, synthesize, or otherwise manifest exactly what was written.
Our work can (and should!) be used to check for the presence of predictable
errors, e.g., by checking that users really meant what they wrote (especially if
they fall within a misconception category).

Acknowledgments. This collaboration began with a few comments on Facebook. We
thank Moshe Vardi for the post that brought us together and Facebook for providing
a discussion platform. Thanks to Mark Santolucito and Raven Rothkopf for conversa-
tions that influenced the introductory instruments. Thanks to the many students and
researchers who participated in our studies.

This work has been partially supported by: the UNIBZ project ADAPTERS, the
PRIN MIUR project PINPOINT Prot. 2020FNEB27, the ERC-ADG WhiteMech (No.
834228), and US National Science Foundation grants SHF-2227863, and 2030859.

Data Availability Statement. The survey instruments, final catalog, and labeled
responses are available in the artifact for this paper [34].
Disclosure of Interests. The authors have no competing interests to declare.

References

1. Almstrum, V.L., et al.: Concept inventories in computer science for the topic dis-
crete mathematics. ACM SIGCSE Bull. 38(4), 132–145 (2006). https://doi.org/
10.1145/1189136.1189182

2. Alur, R., Bansal, S., Bastani, O., Jothimurugan, K.: A framework for transforming
specifications in reinforcement learning. CoRR abs/2111.00272 (2021). https://
arxiv.org/abs/2111.00272

3. Amram, G., Bansal, S., Fried, D., Tabajara, L.M., Vardi, M.Y., Weiss, G.: Adapting
behaviors via reactive synthesis. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021.
LNCS, vol. 12759, pp. 870–893. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-81685-8_41

4. Antoniotti, M., Mishra, B.: Discrete events models + temporal logic = supervisory
controller: automatic synthesis of locomotion controllers. In: ICRA, pp. 1441–1446.
IEEE (1995). https://doi.org/10.1109/ROBOT.1995.525480

5. Araki, B., Li, X., Vodrahalli, K., DeCastro, J.A., Fry, M.J., Rus, D.: The logi-
cal options framework. In: ICML, vol. 139, pp. 307–317. PMLR (2021). http://
proceedings.mlr.press/v139/araki21a.html

6. Armoni, R., et al.: The ForSpec temporal logic: a new temporal property-
specification language. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS,
vol. 2280, pp. 296–311. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-46002-0_21

7. Bansal, S., Li, Y., Tabajara, L.M., Vardi, M.Y., Wells, A.: Model checking strategies
from synthesis over finite traces. In: André, É., Sun, J. (eds.) ATVA 2023. LNCS,

https://www.nsf.gov/awardsearch/showAward?AWD_ID=2227863&HistoricalAwards=false
https://nsf.gov/awardsearch/showAward?AWD_ID=2030859&HistoricalAwards=false
https://doi.org/10.1145/1189136.1189182
https://doi.org/10.1145/1189136.1189182
https://arxiv.org/abs/2111.00272
https://arxiv.org/abs/2111.00272
https://doi.org/10.1007/978-3-030-81685-8_41
https://doi.org/10.1007/978-3-030-81685-8_41
https://doi.org/10.1109/ROBOT.1995.525480
http://proceedings.mlr.press/v139/araki21a.html
http://proceedings.mlr.press/v139/araki21a.html
https://doi.org/10.1007/3-540-46002-0_21
https://doi.org/10.1007/3-540-46002-0_21

Misconceptions in Finite-Trace and Infinite-Trace Linear Temporal Logic 595

vol. 14215, pp. 227–247. Springer, Cham (2023). https://doi.org/10.1007/978-3-
031-45329-8_11

8. Beer, I., Ben-David, S., Eisner, C., Fisman, D., Gringauze, A., Rodeh, Y.: The
temporal logic sugar. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS,
vol. 2102, pp. 363–367. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44585-4_33

9. Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in
ACTL formulas. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 279–290.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63166-6_28

10. Bhatia, A., Kavraki, L.E., Vardi, M.Y.: Sampling-based motion planning with
temporal goals. In: ICRA, pp. 2689–2696. IEEE (2010). https://doi.org/10.1109/
ROBOT.2010.5509503

11. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012). https://doi.org/10.
1016/j.jcss.2011.08.007

12. Brunello, A., Montanari, A., Reynolds, M.: Synthesis of LTL formulas from natural
language texts: state of the art and research directions. In: TIME, vol. 147, pp.
17:1–17:19. Schloss Dagstuhl (2019). https://doi.org/10.4230/LIPIcs.TIME.2019.
17

13. Camacho, A., McIlraith, S.A.: Strong fully observable non-deterministic planning
with LTL and LTLf goals. In: IJCAI, pp. 5523–5531. ijcai.org (2019). https://doi.
org/10.24963/IJCAI.2019/767

14. Chockler, H., Strichman, O.: Easier and more informative vacuity checks. In: MEM-
OCODE, pp. 189–198. IEEE Computer Society (2007). https://doi.org/10.1109/
MEMCOD.2007.371225

15. Choi, W., Vazirani, M., Santolucito, M.: Program synthesis for musicians: a usabil-
ity testbed for temporal logic specifications. In: Oh, H. (ed.) APLAS 2021. LNCS,
vol. 13008, pp. 47–61. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
89051-3_4

16. Ciccio, C.D., Montali, M.: Declarative process specifications: reasoning, discovery,
monitoring. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process Mining Hand-
book. LNBIP, vol. 448, pp. 108–152. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-08848-3_4

17. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur.
20(1), 37–46 (1960). https://doi.org/10.1177/001316446002000104

18. Cosler, M., Hahn, C., Mendoza, D., Schmitt, F., Trippel, C.: nl2spec: Interactively
translating unstructured natural language to temporal logics with large language
models. In: Enea, C., Lal, A. (eds.) CAV 2023. LNCS, vol. 13965, pp. 383–396.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-37703-7_18

19. Czepa, C., Zdun, U.: On the understandability of temporal properties formalized
in linear temporal logic, property specification patterns and event processing lan-
guage. IEEE Trans. Softw. Eng. 46(1), 100–112 (2020). https://doi.org/10.1109/
TSE.2018.2859926

20. De Giacomo, G., De Masellis, R., Grasso, M., Maggi, F.M., Montali, M.: Monitoring
business metaconstraints based on LTL and LDL for finite traces. In: Sadiq, S.,
Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 1–17. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10172-9_1

21. De Giacomo, G., Iocchi, L., Favorito, M., Patrizi, F.: Restraining bolts for rein-
forcement learning agents. In: AAAI, pp. 13659–13662. AAAI Press (2020).https://
doi.org/10.1609/AAAI.V34I09.7114

https://doi.org/10.1007/978-3-031-45329-8_11
https://doi.org/10.1007/978-3-031-45329-8_11
https://doi.org/10.1007/3-540-44585-4_33
https://doi.org/10.1007/3-540-44585-4_33
https://doi.org/10.1007/3-540-63166-6_28
https://doi.org/10.1109/ROBOT.2010.5509503
https://doi.org/10.1109/ROBOT.2010.5509503
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.4230/LIPIcs.TIME.2019.17
https://doi.org/10.4230/LIPIcs.TIME.2019.17
https://doi.org/10.24963/IJCAI.2019/767
https://doi.org/10.24963/IJCAI.2019/767
https://doi.org/10.1109/MEMCOD.2007.371225
https://doi.org/10.1109/MEMCOD.2007.371225
https://doi.org/10.1007/978-3-030-89051-3_4
https://doi.org/10.1007/978-3-030-89051-3_4
https://doi.org/10.1007/978-3-031-08848-3_4
https://doi.org/10.1007/978-3-031-08848-3_4
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1007/978-3-031-37703-7_18
https://doi.org/10.1109/TSE.2018.2859926
https://doi.org/10.1109/TSE.2018.2859926
https://doi.org/10.1007/978-3-319-10172-9_1
https://doi.org/10.1609/AAAI.V34I09.7114
https://doi.org/10.1609/AAAI.V34I09.7114

596 B. Greenman et al.

22. De Giacomo, G., Maggi, F.M., Marrella, A., Patrizi, F.: On the disruptive effec-
tiveness of automated planning for LTLf-based trace alignment. In: Artificial Intel-
ligence, pp. 1–7. AAAI (2017). https://doi.org/10.1609/aaai.v31i1.11020

23. De Giacomo, G., Masellis, R.D., Montali, M.: Reasoning on LTL on finite traces:
insensitivity to infiniteness. In: AAAI, pp. 1027–1033. AAAI Press (2014). https://
doi.org/10.1609/AAAI.V28I1.8872

24. De Giacomo, G., Rubin, S.: Automata-theoretic foundations of FOND planning
for LTLf and LDLf goals. In: IJCAI, pp. 4729–4735. ijcai.org (2018). https://doi.
org/10.24963/IJCAI.2018/657

25. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: IJCAI, pp. 854–860. AAAI Press (2013). https://doi.org/10.5555/
2540128.2540252

26. DeMillo, R.A., Lipton, R.J., Perlis, A.J.: Social processes and proofs of theorems
and programs. CACM 22(5), 271–280 (1979). https://doi.org/10.1145/359104.
359106

27. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: ICSE, pp. 411–420. ACM (1999). https://doi.org/10.
1145/302405.302672

28. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Springer, New York
(2006). https://doi.org/10.1007/978-0-387-36123-9

29. Fainekos, G.E., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning for
mobile robots. In: ICRA, pp. 2020–2025. IEEE (2005). https://doi.org/10.1109/
ROBOT.2005.1570410

30. Fuggitti, F., Chakraborti, T.: NL2LTL – a Python package for converting natural
language (NL) instructions to linear temporal logic (LTL) formulas. In: AAAI Con-
ference on Artificial Intelligence, vol. 37, no. 13, pp. 16428–16430 (2023). https://
doi.org/10.1609/aaai.v37i13.27068

31. Geck, G., Ljulin, A., Peter, S., Schmidt, J., Vehlken, F., Zeume, T.: Introduction to
Iltis: an interactive, web-based system for teaching logic. In: ITiCSE, pp. 141–146.
ACM (2018). https://doi.org/10.1145/3197091.3197095

32. Geck, G., et al.: Iltis: teaching logic in the Web. CoRR abs/2105.05763 (2021)
33. Glaser, B., Strauss, A.: The Discovery of Grounded Theory: Strategies for Quali-

tative Research. Sociology Press, Mill Valley (1967)
34. Greenman, B., et al.: Artifact for misconceptions in finite-trace and infinite-trace

linear temporal logic (2024). https://doi.org/10.5281/zenodo.12770102
35. Greenman, B., Saarinen, S., Nelson, T., Krishnamurthi, S.: Little tricky logic:

misconceptions in the understanding of LTL. Programming 7(2), 7:1–7:37 (2023).
https://doi.org/10.22152/programming-journal.org/2023/7/7

36. Grunske, L.: Specification patterns for probabilistic quality properties. In: ICSE.
ACM (2008). https://doi.org/10.1145/1368088.1368094

37. Gundana, D., Kress-Gazit, H.: Event-based signal temporal logic synthesis for sin-
gle and multi-robot tasks. IEEE Robot. Autom. Lett. 6(2), 3687–3694 (2021).
https://doi.org/10.1109/LRA.2021.3064220

38. Haisjackl, C., et al.: Understanding Declare models: strategies, pitfalls, empiri-
cal results. Softw. Syst. Model. 15(2), 325–352 (2016). https://doi.org/10.1007/
S10270-014-0435-Z

39. Hestenes, D.: Toward a modeling theory of physics instruction. Am. J. Phys. 55(5),
440–454 (1987). https://doi.org/10.1119/1.15129

40. Hestenes, D., Wells, M., Swackhamer, G.: Force concept inventory. Phys. Teach.
30(3), 141–158 (1992). https://doi.org/10.1119/1.2343497

https://doi.org/10.1609/aaai.v31i1.11020
https://doi.org/10.1609/AAAI.V28I1.8872
https://doi.org/10.1609/AAAI.V28I1.8872
https://doi.org/10.24963/IJCAI.2018/657
https://doi.org/10.24963/IJCAI.2018/657
https://doi.org/10.5555/2540128.2540252
https://doi.org/10.5555/2540128.2540252
https://doi.org/10.1145/359104.359106
https://doi.org/10.1145/359104.359106
https://doi.org/10.1145/302405.302672
https://doi.org/10.1145/302405.302672
https://doi.org/10.1007/978-0-387-36123-9
https://doi.org/10.1109/ROBOT.2005.1570410
https://doi.org/10.1109/ROBOT.2005.1570410
https://doi.org/10.1609/aaai.v37i13.27068
https://doi.org/10.1609/aaai.v37i13.27068
https://doi.org/10.1145/3197091.3197095
https://doi.org/10.5281/zenodo.12770102
https://doi.org/10.22152/programming-journal.org/2023/7/7
https://doi.org/10.1145/1368088.1368094
https://doi.org/10.1109/LRA.2021.3064220
https://doi.org/10.1007/S10270-014-0435-Z
https://doi.org/10.1007/S10270-014-0435-Z
https://doi.org/10.1119/1.15129
https://doi.org/10.1119/1.2343497

Misconceptions in Finite-Trace and Infinite-Trace Linear Temporal Logic 597

41. Hoskote, Y.V., Kam, T., Ho, P., Zhao, X.: Coverage estimation for symbolic model
checking. In: Design Automation Conference, pp. 300–305. ACM (1999). https://
doi.org/10.1145/309847.309936

42. Kantaros, Y., Zavlanos, M.M.: STyLuS∗: a temporal logic optimal control synthesis
algorithm for large-scale multi-robot systems. Int. J. Robot. Res. 39(7), 812–836
(2020). https://doi.org/10.1177/0278364920913922

43. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: ICSE, p. 372–381.
ACM (2005). https://doi.org/10.1145/1062455.1062526

44. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. Int.
J. Softw. Tools Technol. Transf. 4(2), 224–233 (2003). https://doi.org/10.1007/
s100090100062

45. Lahijanian, M., Almagor, S., Fried, D., Kavraki, L., Vardi, M.: This time the robot
settles for a cost: a quantitative approach to temporal logic planning with partial
satisfaction. In: AAAI, pp. 3664–3671. AAAI Press (2015). https://shaull.github.
io/pub/LAFKV15.pdf

46. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Boston (2002)

47. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems—A Cyber–Physical
Systems Approach, 2nd edn. MIT Press, Cambridge (2017)

48. Loizou, S.G., Kyriakopoulos, K.J.: Automatic synthesis of multi-agent motion tasks
based on LTL specifications. In: CDC, pp. 153–158. IEEE (2004). https://doi.org/
10.1109/CDC.2004.1428622

49. Manna, Z., Wolper, P.: Synthesis of communicating processes from temporal
logic specifications. TOPLAS 6(1), 68–93 (1984). https://doi.org/10.1145/357233.
357237

50. Menghi, C., Tsigkanos, C., Pelliccione, P., Ghezzi, C., Berger, T.: Specification
patterns for robotic missions. IEEE Trans. Softw. Eng. 47(10), 2208–2224 (2021).
https://doi.org/10.1109/TSE.2019.2945329

51. Nathan, M.J., Koedinger, K.R., Alibali, M.W.: Expert blind spot: when content
knowledge eclipses pedagogical content knowledge. In: International Conference on
Cognitive Sciences, pp. 644–648 (2001). http://pact.cs.cmu.edu/koedinger/pubs/
2001_NathanEtAl_ICCS_EBS.pdf

52. Nathan, M.J., Petrosino, A.: Expert blind spot among preservice teachers. Am.
Educ. Res. J. 40(4), 905–928 (2003). https://www.jstor.org/stable/3699412

53. Nelson, T., et al.: Forge: a tool and language for teaching formal methods.
PACMPL 8(OOPSLA1), 1–31 (2024). https://doi.org/10.1145/3649833

54. O’Connor, L., Wickström, O.: Quickstrom: property-based acceptance testing with
LTL specifications. In: PLDI, pp. 1025–1038. ACM (2022). https://doi.org/10.
1145/3519939.3523728

55. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE (1977).
https://doi.org/10.1109/SFCS.1977.32

56. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–
190. ACM (1989). https://doi.org/10.1145/75277.75293

57. Rajhans, A., Mavrommati, A., Mosterman, P.J., Valenti, R.G.: Specification and
runtime verification of temporal assessments in simulink. In: Feng, L., Fisman, D.
(eds.) RV 2021. LNCS, vol. 12974, pp. 288–296. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-88494-9_17

58. Saarinen, S.: Query strategies for directed graphical models and their application to
adaptive testing. Ph.D. thesis, Brown University (2021). https://repository.library.
brown.edu/studio/item/bdr:kgyft3b4/

https://doi.org/10.1145/309847.309936
https://doi.org/10.1145/309847.309936
https://doi.org/10.1177/0278364920913922
https://doi.org/10.1145/1062455.1062526
https://doi.org/10.1007/s100090100062
https://doi.org/10.1007/s100090100062
https://shaull.github.io/pub/LAFKV15.pdf
https://shaull.github.io/pub/LAFKV15.pdf
https://doi.org/10.1109/CDC.2004.1428622
https://doi.org/10.1109/CDC.2004.1428622
https://doi.org/10.1145/357233.357237
https://doi.org/10.1145/357233.357237
https://doi.org/10.1109/TSE.2019.2945329
http://pact.cs.cmu.edu/koedinger/pubs/2001_NathanEtAl_ICCS_EBS.pdf
http://pact.cs.cmu.edu/koedinger/pubs/2001_NathanEtAl_ICCS_EBS.pdf
https://www.jstor.org/stable/3699412
https://doi.org/10.1145/3649833
https://doi.org/10.1145/3519939.3523728
https://doi.org/10.1145/3519939.3523728
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/75277.75293
https://doi.org/10.1007/978-3-030-88494-9_17
https://doi.org/10.1007/978-3-030-88494-9_17
https://repository.library.brown.edu/studio/item/bdr:kgyft3b4/
https://repository.library.brown.edu/studio/item/bdr:kgyft3b4/

598 B. Greenman et al.

59. Saarinen, S., Krishnamurthi, S., Fisler, K., Tunnell Wilson, P.: Harnessing the
wisdom of the classes: classsourcing and machine learning for assessment instru-
ment generation. In: SIGCSE, pp. 606–612. ACM (2019). https://doi.org/10.1145/
3287324.3287504

60. Shah, A., Kamath, P., Shah, J.A., Li, S.: Bayesian inference of temporal task
specifications from demonstrations. In: NeurIPS, pp. 3808–3817 (2018). https://
proceedings.neurips.cc/paper/2018/hash/13168e6a2e6c84b4b7de9390c0ef5ec5-
Abstract.html

61. Sim, J., Wright, C.C.: The kappa statistic in reliability studies: use, interpretation,
and sample size requirements. Phys. Ther. 85(3), 257–268 (2005). https://doi.org/
10.1093/ptj/85.3.257

62. Tabajara, L.M., Vardi, M.Y.: LTLf synthesis under partial observability: from the-
ory to practice. In: GandALF, pp. 1–17. Open Publishing Association (2020).
https://doi.org/10.4204/eptcs.326.1

63. Taylor, C.B., Zingaro, D., Porter, L., Webb, K.C., Lee, C.B., Clancy, M.J.: Com-
puter science concept inventories: past and future. Comput. Sci. Educ. 24(4), 253–
276 (2014). https://doi.org/10.1080/08993408.2014.970779

64. Tracy II, T., Tabajara, L.M., Vardi, M., Skadron, K.: Runtime verification on
FPGAs with LTLf specifications. In: FMCAD, pp. 36–46 (2020). https://doi.org/
10.34727/2020/isbn.978-3-85448-042-6_10

65. Umili, E., Capobianco, R., De Giacomo, G.: Grounding LTLf specifications in
images. In: KR, pp. 45–63. ACM (2023).https://doi.org/10.24963/kr.2023/65

66. Vardi, M.Y.: Branching vs. linear time: final showdown. In: Margaria, T., Yi,
W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 1–22. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45319-9_1

67. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification (preliminary report). In: LICS, pp. 332–344. IEEE Computer Society
(1986)

68. Wickström, O.: Linear temporal logic visualizer. https://quickstrom.github.io/ltl-
visualizer

69. Wilke, T.: Classifying discrete temporal properties. In: Meinel, C., Tison, S. (eds.)
STACS 1999. LNCS, vol. 1563, pp. 32–46. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-49116-3_3

70. Wongpiromsarn, T., Ulusoy, A., Belta, C., Frazzoli, E., Rus, D.: Incremental tem-
poral logic synthesis of control policies for robots interacting with dynamic agents.
In: IROS, pp. 229–236. IEEE (2012). https://doi.org/10.1109/IROS.2012.6385575

71. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: Symbolic LTLf synthesis. In:
IJCAI, pp. 1362–1369 (2017). https://doi.org/10.24963/ijcai.2017/189

https://doi.org/10.1145/3287324.3287504
https://doi.org/10.1145/3287324.3287504
https://proceedings.neurips.cc/paper/2018/hash/13168e6a2e6c84b4b7de9390c0ef5ec5-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/13168e6a2e6c84b4b7de9390c0ef5ec5-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/13168e6a2e6c84b4b7de9390c0ef5ec5-Abstract.html
https://doi.org/10.1093/ptj/85.3.257
https://doi.org/10.1093/ptj/85.3.257
https://doi.org/10.4204/eptcs.326.1
https://doi.org/10.1080/08993408.2014.970779
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_10
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_10
https://doi.org/10.24963/kr.2023/65
https://doi.org/10.1007/3-540-45319-9_1
https://quickstrom.github.io/ltl-visualizer
https://quickstrom.github.io/ltl-visualizer
https://doi.org/10.1007/3-540-49116-3_3
https://doi.org/10.1007/3-540-49116-3_3
https://doi.org/10.1109/IROS.2012.6385575
https://doi.org/10.24963/ijcai.2017/189

Misconceptions in Finite-Trace and Infinite-Trace Linear Temporal Logic 599

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Sound and Complete Witnesses
for Template-Based Verification of LTL
Properties on Polynomial Programs

Krishnendu Chatterjee1, Amir Goharshady2, Ehsan Goharshady1,
Mehrdad Karrabi1(B), and Ðorđe Žikelić3

1 Institute of Science and Technology Austria (ISTA),
Klosterneuburg, Austria

{krishnendu.chatterjee,ehsan.goharshady,
mehrdad.karrabi}@ist.ac.at

2 The Hong Kong University of Science and Technology (HKUST),
Clear Water Bay, Hong Kong

goharshady@cse.ust.hk
3 Singapore Management University, Singapore, Singapore

dzikelic@smu.edu.sg

Abstract. We study the classical problem of verifying programs with
respect to formal specifications given in the linear temporal logic (LTL).
We first present novel sound and complete witnesses for LTL verification
over imperative programs. Our witnesses are applicable to both verifica-
tion (proving) and refutation (finding bugs) settings. We then consider
LTL formulas in which atomic propositions can be polynomial constraints
and turn our focus to polynomial arithmetic programs, i.e. programs in
which every assignment and guard consists only of polynomial expres-
sions. For this setting, we provide an efficient algorithm to automatically
synthesize such LTL witnesses. Our synthesis procedure is both sound
and semi-complete. Finally, we present experimental results demonstrat-
ing the effectiveness of our approach and that it can handle programs
which were beyond the reach of previous state-of-the-art tools.

1 Introduction

Linear-Time Temporal Logic. The Linear-time Temporal Logic (LTL) [53]
is one of the most classical and well-studied frameworks for formal specification,
model checking and program verification. In LTL, we consider a set AP of atomic
propositions and an infinite trace which tells us which propositions in AP hold
at any given time. LTL formulas are then able to not only express propositional
logical operations, but also modalities referring to the future. For example, X p
requires that p holds in the next timeslot, whereas F q means q should hold at

Ðorđe Žikelić: Part of the work done while the author was at the Institute of Science
and Technology Austria (ISTA).
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 600–619, 2025.
https://doi.org/10.1007/978-3-031-71162-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_31&domain=pdf
https://doi.org/10.1007/978-3-031-71162-6_31

Sound and Complete Witnesses for LTL Properties 601

some time in the future. This allows LTL to express common verification tasks
such as termination, liveness, fairness and safety.
Witnesses. Given a specification ϕ and a program P, a witness is a mathe-
matical object whose existence proves that the specification ϕ is satisfied by P .
We say that a witness family is sound and complete when for every program P
and specification ϕ, we have P |= ϕ if and only if there is a witness in the fam-
ily that certifies it. Witnesses are especially useful in dealing with undecidable
problems in verification, which includes all non-trivial semantic properties [56].
This is because although the general case of the problem is undecidable, having
a sound and complete notion of a witness can lead to algorithms that check for
the existence of witnesses of a special form. For example, while termination is
undecidable [64], and hence so is the equivalent problem of deciding the existence
of a ranking function, there are nevertheless sound and complete algorithms for
synthesis of linear ranking functions [54]. Similarly, while reachability (safety
violation) is undecidable, it has sound and complete witnesses that can be auto-
matically synthesized in linear and polynomial forms [1]. Our work subsumes
both [54] and [1] and provides sound and complete witnesses for general LTL
formulas.
Polynomial Programs. In this work, we mainly focus on imperative programs
with polynomial arithmetic. More specifically, our programs have real variables
and the right-hand-side of every assignment is a polynomial expression with
respect to program variables. Similarly, the guard of every loop or branch is also
a boolean combination of polynomial inequalities over the program variables.
Our Contributions. In this work, our contributions are threefold:

– On the theoretical side, by exploiting the connections to Büchi automata, we
propose a novel family of sound and complete witnesses for general LTL for-
mulas. This extends and unifies the known concepts of ranking functions [36],
inductive reachability witnesses [1] and inductive invariants [25], which are
sound and complete witnesses for termination, reachability and safety, respec-
tively. Our theoretical result is not limited to polynomial programs.

– On the algorithmic side, we consider polynomial programs and present a
sound and semi-complete template-based algorithm to synthesize polyno-
mial LTL witnesses. This algorithm is a generalization of the template-
based approaches in [1,25,54] which considered termination, reachability and
safety. To the best of our knowledge, this is the most general model check-
ing problem over polynomial programs to be handled by template-based
approaches to date.

– Finally, on the experimental side, we provide an implementation of our app-
roach and comparisons with state-of-the-art LTL model checking tools. Our
experiments show that our approach is applicable in practice and can handle
many instances that were beyond the reach of previous methods. Thus, our
completeness result pays off in practice and enables us to solve new instances.

Motivation for Polynomial Programs. There are several reasons why we
consider polynomial programs:

602 K. Chatterjee et al.

– Many real-world families of programs, such as, programs for cyber-physical
systems and smart contracts, can be modeled in this framework [10,38,42].

– They are one of the most general families for which finding polynomial wit-
nesses for reachability and safety are known to be decidable [1,12,57]. Hence,
they provide a desirable tradeoff between decidability and generality.

– Using abstract interpretation, non-polynomial behavior in a program can be
removed or replaced by non-determinism. Moreover, one can approximate any
continuous function up to any desired level of accuracy by a polynomial. This
is due to the Stone–Weierstrass theorem [30]. Thus, analysis of polynomial
programs can potentially be applied to many non-polynomial programs via
abstract interpretation or numerical approximation of the program’s behav-
ior.

– Previous works have studied (a) linear/affine programs with termination,
safety, and reachability specifications [25,54,58], and (b) polynomial programs
with termination, safety and reachability properties [1,11,12,57]. Since LTL
subsumes all these specifications, polynomial program analysis with LTL pro-
vides a unifying and general framework for all these previous works.

Related Works on Linear Programs. There are many approaches focusing
on linear witness synthesis for important special cases of LTL formulas. For
example, [43,54] consider the problem of synthesizing linear ranking functions
(termination witnesses) over linear arithmetic programs. The works [25,58] syn-
thesize linear inductive invariants (safety witnesses), while [39] considers proba-
bilistic reachability witnesses. The work [41] handles a larger set of verification
tasks and richer settings, such as context-sensitive interprocedural program anal-
ysis. All these works rely on the well-known Farkas lemma [32] and can handle
programs with linear/affine arithmetic and synthesize linear/affine witnesses. In
comparison, our approach is (i) applicable to general LTL formulas and not lim-
ited to a specific formula such as termination or safety, and (ii) able to synthesize
polynomial witnesses for polynomial programs with soundness and completeness
guarantees. Thus, our setting is more general in terms of (a) formulas, (b) wit-
nesses, and (c) programs that can be supported.
Related Works on Polynomial Programs. Similar to the linear case, there
is a rich literature on synthesis of polynomial witnesses over polynomial pro-
grams. However, these works again focus on specific special formulas only and
are not applicable to general LTL. For example, [11,15,16,44,49,51,59,68] con-
sider termination analysis, [12] extends the invariant generation (safety witness
synthesis) algorithm of [25] to the polynomial case and [14,17,18,35,62,69] add
support for probabilistic programs. The works [22,70,71] consider alternative
types of witnesses for safety (barriers) and obtain similarly successful synthesis
algorithms. Finally, [1,63] synthesize reachability witnesses. Since we can handle
any arbitrary LTL formula, our approach can be seen as an extension and uni-
fication of all these works. Indeed, our synthesis algorithm directly builds upon
and extends [1].

Sound and Complete Witnesses for LTL Properties 603

In both cases above, some of the previous works are incomparable to ours
since they consider probabilistic programs, whereas our setting has only non-
probabilistic polynomial programs. Note that we do allow non-determinism.
Related Works on LTL Model Checking. There are thousands of works
on LTL model checking and there is no way we can do justice to all. We refer
to [24,60] for an excellent treatment of the finite-state cases. Some works that
provide LTL model checking over infinite-state systems/programs are as follows:

– A prominent technique in this area is predicate abstraction [29,40,55], which
uses a finite set of abstract states defined by an equivalence relation based on
a finite set of predicates to soundly, but not completely, reduce the problem
to the finite-state case.

– [19] uses a compositional approach to falsify LTL formulas and find an indirect
description of a path that violates the specification.

– There are several symbolic approaches, including [26] which is focused on
fairness and [4] which is applicable to LLVM. Another work in this category
is [31], whose approach is to repeatedly rule out infeasible finite prefixes in
order to find a run of the program that satisfies/violates the desired LTL
formula. The work [27] uses CTL-based approaches that might report false
counter-examples when applied to LTL. It then identifies and removes such
spurious counterexamples using symbolic determinization.

– The work [33] presents a framework for proving liveness properties in multi-
threaded programs by using well-founded proof spaces.

– The recent work [52] uses temporal prophecies, inspired by classical prophecy
variables, to provide significantly more precise reductions from general tem-
poral verification to the special case of safety.

– There are many tools for LTL-based program analysis. For example, T2 [8]
is able to verify a large family of liveness and safety properties, nuXmv [20]
is a symbolic model checker with support for LTL, F3 [19] proves fairness
in infinite-state transition systems, and Ultimate LTLAutomizer [31] is a
general-purpose tool for verification of LTL specifications over a wide fam-
ily of programs with support for various types of variables.

– Finally, we compare against the most recent related work [65]. This work pro-
vides relative-completeness guarantees for general programs with LTL speci-
fications. Since it considers integer programs with recursive functions, there
is no complexity guarantee provided. The earlier work [66] provides several
special cases where termination is guaranteed. However, no runtime bounds
are established. In contrast, our approach has both termination guarantees
and sub-exponential time complexity for fixed degree.

As shown by our experimental results in Sect. 5, our completeness results enable
our tool to handle instances that other approaches could not. On the other hand,
our method is limited to polynomial programs and witnesses. Thus, there are
also cases in which our approach fails but some of the previous tools succeed,
e.g. when the underlying program requires a non-polynomial witness. In partic-
ular, Ultimate LTLAutomizer [31] is able to handle non-polynomial programs
and witnesses, too.

604 K. Chatterjee et al.

2 Transition Systems, LTL and Büchi Automata

For a vector e ∈ R
n , we use ei to denote the i-th component of e. Given a

finite set V of real-valued variables, a variable valuation e ∈ R
|V| and a boolean

predicate ϕ over V, we write e |= ϕ when ϕ evaluates to true upon substituting
variables by the values given in e.

We consider imperative numerical programs with real-valued variables, con-
taining standard programming constructs such as assignments, branching and
loops. In addition, our programs can have finite non-determinism. We denote
non-deterministic branching in our syntax by if ∗ then. See Fig. 1 for an exam-
ple. We use transition systems to formally model programs.
Transition Systems. An infinite-state transition system is a tuple T =
(V, L, linit , θinit , �→), where:

– V = {x0, . . . , xn−1} is a finite set of real-valued program variables.
– L is a finite set of locations with linit ∈ L the initial location.
– θinit ⊆ R

n is a set of initial variable valuations.
– �→ is a finite set of transitions. Each transition τ ∈ �→ is of the form τ =

(l, l′, Gτ , Uτ), where l is the source location, l′ is the target location, Gτ is the
guard of the transition, which is a boolean predicate over V, and Uτ : Rn →
R

n is the update function of the transition.

Translating programs into transition systems is a standard process. In what
follows, we assume we are given a transition system T = (V, L, linit , θinit , �→) of
the program that we wish to analyze. An example is shown in Fig. 1.
States and Runs. A state in T is a pair (l, e) with l ∈ L and e ∈ R

n. A
state (l, e) is said to be initial if l = linit and e ∈ θinit . We use S and Sinit

to denote the sets of all states and initial states. We assume the existence of a
special terminal location lt with a single outgoing transition which is a self-loop
(lt, lt, true, Id) with Id(e) = e for each e ∈ R

n. A state (l′, e′) is a successor of
(l, e), denoted as (l, e) �→ (l′, e′), if there exists a transition τ = (l, l′, Gτ , Uτ) ∈�→
such that e |= Gτ and e′ = Uτ (e). We assume each state has at least one successor
so that all runs are infinite and LTL semantics are well defined. This is without
loss of generality, since we can introduce transitions to the terminal location. A
run in T is an infinite sequence of successor states starting in Sinit .
Linear-Time Temporal Logic (LTL). Let AP be a finite set of atomic propo-
sitions. LTL formulas are inductively defined as follows:

– If p ∈ AP, then p is an LTL formula.
– If ϕ and ψ are LTL formulas, then ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, X ϕ, G ϕ, F ϕ and ϕ U ψ

are all LTL formulas.

¬,∨ and ∧ are the propositional negation, disjunction and conjunction while
X, G, F and U are the next, globally, finally and until temporal operators.
Atomic Propositions. To use LTL over the transition system T , we first need
to specify a finite set of atomic propositions AP. In this work, we let the set AP

Sound and Complete Witnesses for LTL Properties 605

Fig. 1. An example program (left) and its transition system (right). Note that there is
non-determinism at l1.

consist of (i) finitely many constraints of the form exp(x) ≥ 0 where exp : V → R

is an arithmetic expression over V, and (ii) an atomic proposition at(l) for each
location l in T . Note that unlike classical LTL settings, our atomic propositions
are not necessarily independent. For example, if we have p1 := x ≥ 0 and
p2 := x + 1 ≥ 0, it is impossible to have p1 ∧ ¬p2 at any point in time.

The semantics of LTL is standard, refer to the extended version of the paper
[13] for details.
Program Analysis with LTL Specifications. We now define the LTL pro-
gram analysis problems that we consider in this work. Given a transition system
T and an LTL formula ϕ, we are interested in two problems:

1. LTL Verification of Programs (LTL-VP). Given a transition system T and
an LTL formula ϕ in T , prove that all possible runs of T satisfy ϕ.

2. LTL Refutation of Programs (LTL-RP). Given a transition system T and
an LTL formula ϕ in T , prove that there exists a run that violates ϕ, or
equivalently, satisfies ¬ϕ.

Remark. LTL Verification asks about correctness of the program while LTL
Refutation addresses the problem of finding bugs. Both problems have been
widely studied in the literature [3,31,65]. Moreover, a witness for the refutation
problem can be used in counterexample-guided techniques such as CEGAR [23].
Example. Consider the transition system in Fig. 1 and the LTL formula ϕ =
¬[G(at(l3) ⇒ Fat(l2))]. The run that starts at (linit , 1) and chooses l2 if x0 = 0
and l3 whenever x0 = 1, does not satisfy ϕ. Therefore, in this case, the answer to
the LTL-RP problem is positive. Additionally, deciding termination of a program
with terminal location lt is equivalent to the LTL-VP problem of [F at(lt)] on
the same program.
Program Analysis with Büchi Specifications. A Büchi specification is a
subset B ⊆ S of states. A run π is B−Büchi if it visits B infinitely many times,
i.e. if {i | π(i) ∈ B} is infinite. Similar to LTL, Büchi specifications give rise to
two main decision problems as follows:

1. Universal Büchi Program Analysis (UB-PA). Given a transition system T and
a Büchi specification B on T , prove that all possible runs of T are B−Büchi.

606 K. Chatterjee et al.

2. Existential Büchi Program Analysis (EB-PA). Given a transition system T
and a Büchi specification B on T , prove the existence of a run that is B−Büchi.

Büchi Automata [2,9]. A non-deterministic Büchi automaton (NBW) is a
tuple N = (Q,A, δ, q0, F), where Q is a finite set of states, A is a finite alphabet,
δ : Q × A → 2Q is a transition relation, q0 is the initial state, and F ⊆ Q is the
set of accepting states. An infinite word a0, a1, . . . of letters in the alphabet A is
accepted by N if it gives rise to at least one accepting run in N , i.e. if there exists
a run q0, q1, . . . such that qi+1 ∈ δ(qi, ai) for each i and F is visited infinitely
many times. It is a classical result that for every LTL formula ϕ defined over
atomic predicates AP there exists a non-deterministic Büchi automaton N with
alphabet 2AP which accepts exactly those traces that satisfy ϕ [24].

Let T = (V, L, linit , θinit , �→) be a transition system and N =
(Q, 2AP , δ, q0, F) be an NBW. In order to analyse T with respect to N , we utilize
the Cartesian product T × N and the Büchi specification BT

N = L × F × R
n.

The state space of T × N is exactly the Cartesian product of the state spaces of
T and N . Moreover, for l, l′ ∈ L and q, q′ ∈ Q, there is a transition from (l, q)
to (l′, q′) if there is a transition in T from l to l′ and a transition in N from q
to q′. The formal definition of the product is available in [13]. See Fig. 2 for an
example.

Lemma 1 (From LTL to Büchi Specifications, Proof in [13]). Let T be
a transition system, ϕ an LTL formula for T and N an NBW that accepts the
same language as ϕ.

– The LTL-RP problem of T and ¬ϕ is equivalent to the EB-PA problem of
T × N and BT

N [31].
– If N is deterministic, then the LTL-VP problem of T and ϕ is equivalent to

the UB-PA problem of T × N and BT
N .

Fig. 2. An NBW accepting G F at(l2) with gray accepting nodes (left) and the product
of the transition system in Fig. 1 and this NBW (right). A node labeled i, j represents
location (li, qj). Unreachable locations have been removed. (Color figure online)

Remark. Based on the lemma above, instead of designing witnesses for the
LTL-RP problem, we only need to find sound and complete witnesses for EB-
PA. Moreover, it is easy to see that LTL-VP is reducible to LTL-RP since all

Sound and Complete Witnesses for LTL Properties 607

runs of T satisfy ϕ if and only if there is no run that satisfies ¬ϕ. So, finding
sound and complete witnesses for EB-PA will theoretically solve both verifica-
tion and refutation variants of LTL program analysis. Note that the second
statement in Lemma 1 is more restrictive than the first one since it only applies
to deterministic Büchi automata. Thus, if the LTL formula ϕ does not admit a
deterministic Büchi automaton, the above sequence of reductions from LTL-VP
to LTL-RP should be made and then the EB-PA witness should be used. How-
ever, if ϕ admits a DBW, then the reduction to UB-PA is preferable in practice.
We will provide witness concepts for both EB-PA and UB-PA problems in the
next section.

3 Sound and Complete B-PA Witnesses

Let T = (V, L, linit , θinit , �→) be a transition system and B ⊆ S a set of states
in T . In this section, we introduce our sound and complete witnesses for the
EB-PA and UB-PA problems.

3.1 Sound and Complete Witnesses for Existential B-PA

Our witness concept for the EB-PA problem is a function that assigns a real
value to each state in T . The witness function is required to be non-negative in
at least one initial state of T , to preserve non-negativity in at least one successor
state and to strictly decrease in value in at least one successor state whenever
the current state is not contained in B and the value of the witness function in
the current state is non-negative. Hence, starting in an initial state in which the
witness function is non-negative, one can always select a successor state in which
the witness function is non-negative and furthermore ensure that B is eventually
reached due to the strict decrease condition, which will also be referred to as the
Büchi-ranking condition. Intuitively, an EBRF is a function that overestimates
the distance to B and guarantees that B is reached along at least one program
run, at every program state in which the value of the EBRF is non-negative.

Definition 1 (EBRF). Given two states s1, s2 ∈ S , a function f : S → R is
said to Büchi-rank (s1, s2) where s1 �→ s2, if it satisfies one of the following:

– s1 ∈ B ∧
[
f(s1) ≥ 0 ⇒ f(s2) ≥ 0

]
; or

– s1 /∈ B ∧
[
f(s1) ≥ 0 ⇒ 0 ≤ f(s2) ≤ f(s1) − 1

]
.

f is called a B-Existential Büchi Ranking Function (B-EBRF) if it satisfies the
following conditions:

– ∃sinit ∈ Sinit where f(sinit) ≥ 0.
– For every s1 ∈ S , there exists s2 ∈ S such that s1 �→ s2 and (s1, s2) is

Büchi-ranked by f .

608 K. Chatterjee et al.

Example. The following is a {(l1, q1, ∗)}-EBRF for the transition system in
Fig. 2: f(l, x0) = x0 +3 if l = (linit , q0), f(l, x0) = x0 +2 if l = (l1, q0), f(l, x0) =
x0 + 1 if l = (l2, q0), f(l, x0) = 0 if l = (l1, q1) and f(l, x0) = 0 otherwise.

For example, the state s0 = ((l1, q0), 1) has two successors in the transition
system: s1 = ((l2, q0), 1) and s2 = ((l3, q0), 1). It is easy to see that 0 ≤ f(s1) ≤
f(s0) − 1 which shows that transition from s0 to s1 is Büchi-ranked by f .

The following theorem, proved in the extended version [13], establishes the
soundness and completeness of EBRFs for the EB-PA problem, which is the
main result of this section. Hence, since we showed in Lemma 1 that one can
reduce the LTL-RP problem to EB-PA, as a corollary it also follows that EBRFs
provide sound and complete certificates for LTL-RP.

Theorem 1 (Soundness and Completeness of EBRFs for EB-PA).
There exists a B-EBRF f for T with Büchi specification B if and only if the
answer to the EB-PA problem of T and B is positive.

Corollary 1. The answer to the LTL-RP problem of T and ϕ is positive if and
only if there exists a BT

N -EBRF for T × N, where N is the NBW accepting ¬ϕ.

3.2 Sound and Complete Witnesses for Universal B-PA

Similarly to EBRFs, we can define a witness function for the UB-PA problem.
The difference compared to EBRFs is that we now impose the Büchi ranking
condition for every successor state of a state in which the witness function is
non-negative. In contrast, in EBRFs we imposed the Büchi ranking condition
only for some successor state.

Definition 2 (UBRF). A function f : S → R
n is called a B-Universal Büchi

Ranking Function (B-UBRF) if it satisfies the following conditions:

– f(s) ≥ 0 for every s ∈ Sinit

– For every s1, s2 ∈ S such that s1 �→ s2, (s1, s2) is Büchi-ranked by f .

We have the following theorem, which establishes that UBRFs provide a sound
and complete certificate for the UB-PA problem. The proof is similar to the exis-
tential case and presented in the extended version [13]. The subsequent corol-
lary then follows from Lemma 1 which shows that the LTL-VP problem can be
reduced to the UB-PA problem if ϕ admits a deterministic Büchi automaton.

Theorem 2 (Soundness and Completeness of UBRFs for UB-PA).
There exists a B-UBRF f for T with Büchi specification B if and only if the
answer to the UB-PA problem of T and B positive.

Corollary 2. If ϕ is an LTL formula that admits a DBW D, the answer to the
LTL-VP problem of T and ϕ is positive iff there exists a BT

D-UBRF for T × D.

Sound and Complete Witnesses for LTL Properties 609

Remark. Note that if the transition system T is deterministic, (i.e. it contains
no non-determinism in initial states, assignments or branches) the LTL-VP of
T and ϕ will be equivalent to the LTL-RP of T and ¬ϕ. Thus, in this case, the
Büchi automaton determinism assumption can be relaxed as follows: if N is an
NBW that accepts the same language as ϕ, the answer to the LTL-VP of T and
ϕ is positive if and only if there exists a BT

N -EBRF for T × N .

4 Template-Based Synthesis of Polynomial Witnesses

We now present our fully automated algorithms to synthesize polynomial EBRFs
and UBRFs in polynomial transition systems. A transition system T is said
to be polynomial if guards and updates of all transitions in T are polynomial
expressions over program variables V. Given a polynomial transition system
T and a Büchi specification B, which was obtained from an LTL formula as
above, our approach synthesizes polynomial EBRFs and UBRFs of any desired
degree, assuming that they exist. Our algorithms follow a template-based syn-
thesis approach, similar to the methods used for reachability and termination
analysis [1,12]. In particular, both EBRF and UBRF synthesis algorithms first
fix a symbolic polynomial template function for the witness at each location in
T . The defining conditions of EBRFs/UBRFs are then expressed as entailment
constraint of the form

∃c ∈ R
m ∀e ∈ R

n (φ ⇒ ψ), (1)

where φ and ψ are conjunctions of polynomial inequalities. We show that this
translation is sound and complete. However, such constraints are notoriously
difficult to solve due to the existence of a quantifier alternation. Thus, we use the
sound and semi-complete technique of [1] to eliminate the quantifier alternation
and translate our constraints into a system of purely existentially quantified
quadratic inequalities. Finally, this quadratic programming instance is solved
by an SMT solver. We note that a central technical difficulty here is to come
up with sound and complete witness notions whose synthesis can be reduced
to solving entailment constraints of the form (1). While [1,12] achieved this for
termination and reachability, our EBRF and UBRF notions significantly extend
these results to arbitrary LTL formulas.

As is common in static analysis tasks, we assume that the transition system
comes with an invariant θl at every location l in T . Invariant generation is an
orthogonal and well-studied problem. In polynomial programs, invariants can
be automatically generated using the tools in [12,34,45]. Alternatively, one can
encode an inductive invariant via constraints of the form (1). This has the extra
benefit of ensuring that we always find an invariant that leads to a witness for
our LTL formula, if such a witness exists, and thus do not sacrifice completeness
due to potentially loose invariants. See [12] for details of the encoding. This is
the route we took in our tool, i.e. our tool automatically generates the invariants
it requires using the sound and complete method of [12]. For brevity, we removed
the invariant generation part from the description of the algorithms below.

610 K. Chatterjee et al.

Synthesis of Polynomial EBRFs. We now present our algorithm for syn-
thesis of a polynomial EBRF, given a polynomial transition system T =
(V, L, linit , θinit , �→) and Büchi specification B obtained from an LTL formula
with polynomial inequalities in AP. We present a detailed example that illus-
trates the steps of the algorithm in the extended version of the paper [13]. The
algorithm has five steps:

1. Fixing Symbolic Templates. Let MD
V = {m1,m2, . . . ,mk} be the set of all

monomials of degree at most D over the set of variables V. In the first step,
the algorithm generates a symbolic polynomial template for the EBRF at each
location l ∈ L as follows: fl(x) = Σk

i=1cl,i · mi. Here, all the c-variables are
fresh symbolic template variables that represent the coefficients of polynomial
expressions in f . The goal of our synthesis procedure is to find a concrete
valuation of c variables for which f becomes a valid B-EBRF for T .

2. Generating Entailment Constraints. For every location l ∈ L and variable
valuation x |= θl, there must exist an outgoing transition τ such that x |= Gτ

and τ is Büchi-ranked by f in x. The algorithm symbolically writes down
this condition as an entailment constraint: ∀x ∈ R

n x |= (φl ⇒ ψl) with
φl and ψl symbolically computed as follows: φl := θl ∧ fl(x) ≥ 0 and ψl ≡∨

τ∈Outl
Gτ ∧ B–Rank(τ), where for each τ = (l, l′, Gτ , Uτ) the predicate

B–Rank is defined as

B–Rank ≡
{

fl′(Uτ (x)) ≥ 0 ∧ fl′(Uτ (x)) ≤ fl(x) − 1 l /∈ B
fl′(Uτ (x)) ≥ 0 l ∈ B

The algorithm then writes ψl in disjunctive normal form as ∨k
i=1ψl,i. Next,

the algorithm rewrites φl ⇒ ψl equivalently as:

(φl ∧
∧k−1

i=1 ¬ψl,i) ⇒ ψl,k (2)

This rewriting makes sure that we can later manipulate the constraint in (2)
to fit in the standard form of (1)1. Intuitively, (2) ensures that whenever l was
reached and each of the first k−1 outgoing transitions were either unavailable
or not Büchi-ranked by f , then the last transition has to be available and
Büchi-ranked by f . Our algorithm populates a list of all constraints and
adds the constraint (2) to this list before moving to the next location and
repeating the same procedure. Note that in all of the generated constraints
of the form (2), both the LHS and the RHS of the entailment are boolean
combinations of polynomial inequalities over program variables.

3. Reduce Constraints to Quadratic Inequalities. To solve the constraints gener-
ated in the previous step, we directly integrate the technique of [1] into our
algorithm. This is a sound and semi-complete approach based on Putinar’s
Positivstellensatz. We will provide an example below, but refer to [1] for tech-
nical details and proofs of soundness/completeness of this step.
In this step, for each constraint of the form Φ ⇒ Ψ , the algorithm first rewrites

1 We have to find values for c-variables that satisfy all these constraints conjunctively.
This is why we have an extra existential quantifier in (1).

Sound and Complete Witnesses for LTL Properties 611

Φ in disjunctive normal form as φ1∨· · ·∨φt and Ψ in conjunctive normal form
as Ψ ≡ ψ1∧· · ·∧ψr. Then for each 1 ≤ i ≤ t and 1 ≤ j ≤ r the algorithm uses
Putinar’s Positivstellensatz in the exact same way as in [1] to generate a set
of quadratic inequalities equivalent to φi ⇒ ψj . The algorithm keeps track of
a quadratic program Γ and adds these new inequalities to it conjunctively.

4. Handling Initial Conditions. Additionally, for every variable x ∈ V, the algo-
rithm introduces another symbolic template variable tx, modeling the initial
value of x in the program, and adds the constraint [θinit(t) ∧ flinit (t) ≥ 0] to
Γ to impose that there exists an initial state in T at which the value of the
EBRF f is non-negative.

5. Solving the System. Finally, the algorithm uses an external solver (usually an
SMT solver) to compute values of t and c variables for which Γ is satisfied.
If the solver succeeds in solving the system of constraints Γ , the computed
values of c and t variables give rise to a concrete instance of an B-EBRF for
T . This implies that the answer to the EB-PA problem is positive, and the
algorithm return “Yes”. Otherwise, the algorithm returns “Unknown”, as there
might exist a B-EBRF for T of higher maximum polynomial degree D or a
non-polynomial B-EBRF.

Theorem 3 (Existential Soundness and Semi-completeness). The algo-
rithm above is a sound and semi-complete reduction to quadratic programming
for synthesizing an EBRF in a polynomial transition system T given a Büchi
specification B obtained from an LTL formula with polynomial inequalities in AP.
Moreover, for any fixed D, the algorithm has sub-exponential complexity.

In the above theorem, soundness means that every solution to the QP
instance is a valid EBRF and semi-completeness means that if a polynomial
EBRF exists and the chosen maximum degree D is large enough, then the QP
instance will have a solution. In practice, we simply pass the QP instance to an
SMT solver. Since it does not include a quantifier alternation, the SMT solvers
have dedicated heuristics and are quite efficient on QP instances.
Synthesis of Polynomial UBRFs. Our algorithm for synthesis of UBRFs is
almost the same as our EBRF algorithm, except that the constraints generated
in Steps 2 and 4 are slightly different.
Changes to Step 2. Step 2 is the main difference between the two algorithms.
In this step, for each location l ∈ L and each transition τ ∈ Out l the UBRF
algorithm adds (φl,τ ⇒ ψl,τ) to the set of constraints, where we have φl,τ ≡
θl ∧Gτ ∧fl(x) ≥ 0 and ψl,τ ≡ B–Rank(τ). The intuition behind this step is that
whenever a transition is enabled, it has to be Büchi-ranked by f .
Changes to Step 4. In this step, instead of searching for a suitable initial
valuation for program variables, the algorithm adds the quadratic inequalities
equivalent to (θinit ⇒ flinit (x) ≥ 0) to Γ . The quadratic inequalities are obtained
exactly as in Step 3. This is because the value of the UBRF must be non-negative
on every initial state of the transition system.

In the universal case, we have a similar theorem of soundness and semi-
completeness whose proof is exactly the same as Theorem 3.

612 K. Chatterjee et al.

Theorem 4 (Universal Soundness and Semi-completeness). The algo-
rithm above is a sound and semi-complete reduction to quadratic programming
for synthesizing an UBRF in a polynomial transition system T given a Büchi
specification B obtained from an LTL formula with polynomial inequalities in
AP. Moreover, for any fixed maximum polynomial degree D, the algorithm has
sub-exponential complexity.

5 Experimental Results

General Setup of Experiments. We implemented a prototype2 of our UBRF
and EBRF synthesis algorithms in Java and used Z3 [50], Barcelogic [6] and
MathSAT5 [21] to solve the generated systems of quadratic inequalities. More
specifically, after obtaining the QP instance, our tool calls all three SMT solvers
in parallel. We also used ASPIC [34] for invariant generation for benchmarks
that are linear programs. Experiments were performed on a Debian 11 machine
with a 2.60GHz Intel E5-2670 CPU and 6 GB of RAM with a timeout of 1800 s.
Baselines. We compare our tool with Ultimate LTLAutomizer [31], nuXmv [20],
and MuVal [65] as well as with a modification of our method that instead of
using Putinar’s Positivstellensatz simply passes entailment constraints to the
SMT-solver Z3 [50]:

– Ultimate LTLAutomizer makes use of “Büchi programs”, which is a similar
notion to our product of a transition system and a Büchi Automaton, to
either prove that every lasso shaped path in the input program satisfies the
given LTL formula, or find a path that violates it. However, in contrast to
our tool, it neither supports non-linear programs nor provides completeness.

– nuXmv is a symbolic model checker with support for finite and infinite tran-
sition systems. It allows both existential and universal LTL program analysis
and supports non-linear programs. It does not provide any completeness guar-
antees.

– MuVal [65] is a fixed-point logic validity checker based on pfwCSP solving
[66]. It supports both linear and non-linear programs with integer variables
and recursive functions.

– When directly applying Z3, instead of the dedicated quantifier elimination
method (Step 3 of our algorithm), we directly pass the quantified formula (1)
to the solver, which will in turn apply its own generic quantifier elimination.
This is an ablation experiment to check whether Step 3 is needed in practice.

Benchmarks. We gathered benchmarks from two sources:

– 297 benchmarks from the “Termination of C-Integer Programs” category of
TermComp’22 [37]3. Among these, 287 programs only contained linear arith-

2 Available at github.com/ekgma/LTL-VerP.
3 There were originally 335 benchmarks, but we had to remove benchmarks with

unbounded non-determinism and those without any variables, since they cannot be
translated to transition systems and are not supported in our setting.

https://github.com/ekgma/LTL-VerP

Sound and Complete Witnesses for LTL Properties 613

metic which is supported by all comparator tools, whereas 10 programs con-
tained polynomial expressions not supported by Ultimate.

– 21 non-linear benchmarks from the “ReachSafety-Loops nl-digbench” cate-
gory of SV-COMP’22 [5]4. As these benchmarks are all non-linear, none of
them are supported by Ultimate.

LTL Specifications. We used the four LTL specifications shown in Table 1. In
all four considered specifications, x represents the alphabetically first variable in
the input program. The motivation behind our specifications is as follows:

– Reach-Avoid (RA) Specifications. The first specification is an example of a
reach-avoid specification, which specifies that a program run should terminate
without ever making x negative. Reach-avoid specifications are standard in
the analysis of dynamical and hybrid systems [48,61,67]. Another example is
requiring a program to termination while satisfying all program assertions.

– Overflow (OV) Specifications. Intuitively, we want to evaluate whether our
approach is capable of detecting variable overflows. The second specification
specifies that each program run either terminates or the value of the variable x
overflows. Specifically, suppose that an overflow is handled as a runtime error
and ends the program. The negation (refutation) of this specification models
the existence of a run that neither terminates nor overflows and so converges.

– Recurrence (RC) Specifications. The third specification is an instance of recur-
rence specifications which specify that a program run visits a set of states
infinitely many times [47]. Our example requires that a program run contains
infinitely many visits to states in which x has a non-negative value.

– Progress (PR) Specifications. The fourth specification is an example of
progress specifications. In our experimental evaluation, progress specification
specifies that a program run always makes progress from states in which the
value of x is less than −5 to states in which the value of x is strictly positive.

Table 1. LTL specifications used in our experiments.

Name Formula Pre-condition θinit

RA (F at(lterm)) ∧ (G x ≥ 0) ∀x ∈ V, 0 ≤ x ≤ 64

OV F (at(lterm) ∨ x < −64 ∨ x > 63) ∀x ∈ V, −64 ≤ x ≤ 63

RC G F (x ≥ 0) ∀x ∈ V, −64 ≤ x ≤ 63

PR G (x < −5 ⇒ F (x > 0)) ∀x ∈ V, −64 ≤ x ≤ 63

Results on Linear Programs. The top rows of Table 2 summarize our results
over linear benchmarks to which all tools are applicable. First, we observe that in
all cases our tool outperforms the method that uses Z3 for quantifier elimination,
showing that our Step 3 is a crucial and helpful part of the algorithm. Compared

4 The original benchmark set contains 28 programs, but 7 of them contain unsupported
operators such as integer mod and are thus not expressible in our setting.

614 K. Chatterjee et al.

Table 2. Summary of our experimental results. For each class of benchmarks
(linear/non-linear) and each formula, We report in how many cases the tool could
successfully prove the formula (Yes) or refute it (No), total number of cases proved by
the tool (Tot.), number of instances uniquely solved by each tool and no other tools
(U.), and average runtime of each tool on programs that were successfully proved as
correct with respect to each specification (Avg. T).

Formula
Ours Ultimate nuXmv MuVal Z3

Yes No Tot. U. Yes No Tot. U. Yes No Tot. U. Yes No Tot. U. Yes No Tot. U.

L
in

ea
r

RA 141 114 255 5 142 121 263 7 76 91 137 0 118 76 194 0 56 36 92 0
OV 199 47 246 4 212 55 267 5 110 50 160 0 205 47 252 3 48 27 75 0
RC 87 187 274 0 86 194 280 0 83 183 266 0 86 191 277 0 44 71 115 0
PR 43 222 265 1 45 237 282 0 44 227 271 0 42 235 277 0 29 77 106 0

Avg. T 5.4 81.5 47.2 - 5.4 4.1 4.7 - 248.9 13.5 98.7 - 48.8 8.43 26.4 - 18.5 160.6 95.7 -

N
on

-li
ne

ar

RA 24 3 27 8 - - - - 1 0 1 0 18 1 19 2 0 0 0 0
OV 26 0 26 2 - - - - 7 0 7 0 25 0 25 1 0 0 0 0
RC 20 6 26 0 - - - - 17 9 26 2 17 7 24 2 0 0 0 0
PR 11 16 27 1 - - - - 9 16 25 0 5 16 21 1 0 0 0 0

Avg. T 10.7 99.1 32.3 - - - - - 34.6 0.3 20.0 - 109.6 14.7 84.7 - - - - -

to nuXmv, our tool proves more instances in all but two LTL refutation and one
LTL verification cases, i.e. the “No” column for the OV and PR specifications
and the “Yes” column for the PR specification. On the other hand, our prototype
tool is on par with Ultimate and MuVal, while proving 10 unique instances. Note
that Ultimate is a state of the art and well-maintained competition tool that is
highly optimized with heuristics that aim at the linear case. In contrast, it cannot
handle polynomial instances. Our results shown in Table 2 demonstrate that our
prototype tool is very competitive already on linear benchmarks, even though
our main contribution is to provide practically-efficient semi-complete algorithms
for the polynomial case.
Unique Instances. An important observation is that our tool successfully han-
dles 10 unique linear instances that no other tool manages to prove or refute.
Thus, our evaluation shows that our method handles not only polynomial, but
even linear benchmarks that were beyond the reach of the existing methods.
This shows that our algorithm, besides the desired theoretical guarantee of semi-
completeness, provides an effective automated method. Future advances in invari-
ant generation and SMT solving will likely further improve the performance.
Runtimes. Our tool and Ultimate are the fastest tools for proving LTL verifi-
cation instances with an equal average runtime of 5.4 s. For LTL refutation, our
tool is slower than other tools.
Results on Non-linear Programs. The bottom rows of Table 2 show the per-
formance of our tool and the baselines on the non-linear benchmarks. Ultimate
does not support non-linear arithmetic and Z3 timed out on every benchmark in
this category. Here, compared to nuXmv, our tool succeeded in solving strictly
more instances in all but one formula, i.e. RC, where both tools solve the same
number of instances. In comparison with MuVal, our tool proves more instances
for all four formulas. Moreover, the fact that Z3 timed out for every program in
this table is further confirmation of the practical necessity of Step 3 (Quantifier

Sound and Complete Witnesses for LTL Properties 615

Elimination Procedure of [1]) in our algorithm. Note that our prototype could
prove 11 instances that none of the other tools could handle.
Summary. Our experiments demonstrate that our automated algorithms are
able to synthesize both LTL verification and refutation witnesses for a wide
variety of programs. Our technique outperforms the previous methods when
given non-linear polynomial programs (Bottom rows of Table 2). Moreover, even
in the much more widely-studied case of linear programs, we are able to handle
instances that were beyond the reach of previous methods and to solve the
number of instances that is close to the state-of-the-art tools (Top Rows of
Table 2).

6 Conclusion

We presented a novel family of sound and complete witnesses for template-based
LTL verification. Our approach is applicable to both verification and refutation
of LTL properties in programs. It unifies and significantly generalizes previous
works targeting special cases of LTL, e.g. termination, safety and reachability.
We also showed that our LTL witnesses can be synthesized in a sound and semi-
complete manner by a reduction to quadratic programming. Our reduction works
when the program and the witness are both polynomial. An interesting direction
of future work would be to consider non-numerical programs that allow heap-
manipulating operations. A common approach to handling heap-manipulating
operations is to construct numerical abstractions of programs [7,46] and perform
the analysis on numerical abstractions. Thus, coupling such approaches, e.g. [28],
with our method is a compelling future direction.

Acknowledgements. This work was supported in part by the ERC-2020-CoG 863818
(FoRM-SMArt) and the Hong Kong Research Grants Council ECS Project Number
26208122.

Data Availability Statement. The implementations of the algorithms men-
tioned in the experiments section and the benchmarks are available at
doi.org/10.5281/zenodo.12518217.

References

1. Asadi, A., Chatterjee, K., Fu, H., Goharshady, A.K., Mahdavi, M.: Polynomial
reachability witnesses via stellensätze. In: PLDI, pp. 772–787 (2021)

2. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (2008)
3. Baresi, L., Kallehbasti, M.M.P., Rossi, M.: Efficient scalable verification of LTL

specifications. In: ICSE (1), pp. 711–721. IEEE Computer Society (2015)
4. Bauch, P., Havel, V., Barnat, J.: LTL model checking of LLVM bitcode with sym-

bolic data. In: MEMICS, pp. 47–59 (2014)
5. Beyer, D.: Progress on software verification: SV-COMP 2022. In: TACAS, pp. 375–

402 (2022)

https://doi.org/10.5281/zenodo.12518217

616 K. Chatterjee et al.

6. Bofill, M., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E., Rubio, A.:
The barcelogic SMT solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS,
vol. 5123, pp. 294–298. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-70545-1_27

7. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Programs
with lists are counter automata. Formal Methods Syst. Des. 38(2), 158–192 (2011)

8. Brockschmidt, M., Cook, B., Ishtiaq, S., Khlaaf, H., Piterman, N.: T2: temporal
property verification. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS,
vol. 9636, pp. 387–393. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49674-9_22

9. Büchi, J.R.: Symposium on decision problems: on a decision method in restricted
second order arithmetic. In: Studies in Logic and the Foundations of Mathematics,
vol. 44, pp. 1–11 (1966)

10. Cai, Z., Farokhnia, S., Goharshady, A.K., Hitarth, S.: Asparagus: automated syn-
thesis of parametric gas upper-bounds for smart contracts. In: OOPSLA (2023)

11. Chatterjee, K., Fu, H., Goharshady, A.K.: Termination analysis of probabilistic
programs through positivstellensatz’s. In: CAV, pp. 3–22 (2016)

12. Chatterjee, K., Fu, H., Goharshady, A.K., Goharshady, E.K.: Polynomial invariant
generation for non-deterministic recursive programs. In: PLDI, pp. 672–687 (2020)

13. Chatterjee, K., Goharshady, A.K., Goharshady, E.K., Karrabi, M., Zikelic, D.:
Sound and complete witnesses for template-based verification of LTL properties
on polynomial programs. arXiv preprint arXiv:2403.05386 (2024)

14. Chatterjee, K., Goharshady, A.K., Meggendorfer, T., Zikelic, D.: Quantitative
bounds on resource usage of probabilistic programs. In: OOPSLA (2024)

15. Chatterjee, K., Goharshady, A.K., Meggendorfer, T., Zikelic, D.: Sound and com-
plete certificates for quantitative termination analysis of probabilistic programs.
In: CAV, pp. 55–78 (2022)

16. Chatterjee, K., Goharshady, E.K., Novotný, P., Žikelić, D.: Proving non-
termination by program reversal. In: PLDI, pp. 1033–1048 (2021)

17. Chatterjee, K., Goharshady, E.K., Novotný, P., Žikelić, U.: Equivalence and similar-
ity refutation for probabilistic programs (PLDI) (2024). https://doi.org/10.1145/
3656462

18. Chatterjee, K., Novotný, P., Žikelić, D.: Stochastic invariants for probabilistic ter-
mination. In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages, POPL 2017, Paris, 18–20 January 2017, pp. 145–160.
ACM (2017). https://doi.org/10.1145/3009837.3009873

19. Cimatti, A., Griggio, A., Magnago, E.: LTL falsification in infinite-state systems.
Inf. Comput. 289, 104977 (2022)

20. Cimatti, A., Griggio, A., Magnago, E., Roveri, M., Tonetta, S.: Extending nuXmv
with timed transition systems and timed temporal properties. In: Dillig, I., Tasiran,
S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 376–386. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25540-4_21

21. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathsat5 SMT solver.
In: TACAS, pp. 93–107 (2013)

22. Clark, A.: Verification and synthesis of control barrier functions. In: CDC, pp.
6105–6112 (2021)

23. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: CAV (2000)

24. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R.: Handbook of Model Checking.
Springer (2018)

https://doi.org/10.1007/978-3-540-70545-1_27
https://doi.org/10.1007/978-3-540-70545-1_27
https://doi.org/10.1007/978-3-662-49674-9_22
https://doi.org/10.1007/978-3-662-49674-9_22
http://arxiv.org/abs/2403.05386
https://doi.org/10.1145/3656462
https://doi.org/10.1145/3656462
https://doi.org/10.1145/3009837.3009873
https://doi.org/10.1007/978-3-030-25540-4_21

Sound and Complete Witnesses for LTL Properties 617

25. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using
non-linear constraint solving. In: CAV, pp. 420–432 (2003)

26. Cook, B., Khlaaf, H., Piterman, N.: Fairness for infinite-state systems. In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 384–398. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46681-0_30

27. Cook, B., Koskinen, E.: Making prophecies with decision predicates. In: POPL, pp.
399–410 (2011)

28. Cook, B., Koskinen, E.: Reasoning about nondeterminism in programs. In: PLDI,
pp. 219–230 (2013)

29. Daniel, J., Cimatti, A., Griggio, A., Tonetta, S., Mover, S.: Infinite-state liveness-
to-safety via implicit abstraction and well-founded relations. In: Chaudhuri, S.,
Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 271–291. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-41528-4_15

30. De Branges, L.: The Stone-Weierstrass theorem. Proc. AMS 10(5), 822–824 (1959)
31. Dietsch, D., Heizmann, M., Langenfeld, V., Podelski, A.: Fairness modulo theory:

a new approach to LTL software model checking. In: CAV, pp. 49–66 (2015)
32. Farkas, J.: Theorie der einfachen ungleichungen. Journal für die reine und ange-

wandte Mathematik 1902(124), 1–27 (1902)
33. Farzan, A., Kincaid, Z., Podelski, A.: Proving liveness of parameterized programs.

In: LICS, pp. 185–196 (2016)
34. Feautrier, P., Gonnord, L.: Accelerated invariant generation for C programs with

aspic and c2fsm. Electron. Notes Theor. Comput. Sci. 3–13 (2010)
35. Feng, Y., Zhang, L., Jansen, D.N., Zhan, N., Xia, B.: Finding polynomial loop

invariants for probabilistic programs. In: ATVA, pp. 400–416 (2017)
36. Floyd, R.W.: Assigning meanings to programs. In: Program Verification: Funda-

mental Issues in Computer Science, pp. 65–81 (1993)
37. Frohn, F., Giesl, J., Moser, G., Rubio, A., Yamada, A., et al.: Termina-

tion competition 2022 (2021). https://termination-portal.org/wiki/Termination_
Competition_2022

38. Fulton, N.: Verifiably safe autonomy for cyber-physical systems. Ph.D. thesis,
Carnegie Mellon University (2018)

39. Funke, F., Jantsch, S., Baier, C.: Farkas certificates and minimal witnesses for
probabilistic reachability constraints. In: TACAS, pp. 324–345 (2020)

40. Graf, S., Saïdi, H.: Construction of abstract state graphs with PVS. In: CAV, pp.
72–83 (1997)

41. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving.
In: PLDI, pp. 281–292 (2008)

42. Gurriet, T., Singletary, A., Reher, J., Ciarletta, L., Feron, E., Ames, A.D.: Towards
a framework for realizable safety critical control through active set invariance. In:
ICCPS, pp. 98–106 (2018)

43. Heizmann, M., Hoenicke, J., Leike, J., Podelski, A.: Linear ranking for linear Lasso
programs. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp.
365–380. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02444-8_26

44. Huang, M., Fu, H., Chatterjee, K., Goharshady, A.K.: Modular verification for
almost-sure termination of probabilistic programs. Proc. ACM Program. Lang.
3(OOPSLA), 129:1–129:29 (2019)

45. Kincaid, Z., Cyphert, J., Breck, J., Reps, T.W.: Non-linear reasoning for invariant
synthesis. In: POPL, pp. 54:1–54:33 (2018)

46. Magill, S., Tsai, M., Lee, P., Tsay, Y.: Automatic numeric abstractions for heap-
manipulating programs. In: POPL, pp. 211–222 (2010)

https://doi.org/10.1007/978-3-662-46681-0_30
https://doi.org/10.1007/978-3-319-41528-4_15
https://termination-portal.org/wiki/Termination_Competition_2022
https://termination-portal.org/wiki/Termination_Competition_2022
https://doi.org/10.1007/978-3-319-02444-8_26

618 K. Chatterjee et al.

47. Manna, Z., Pnueli, A.: A hierarchy of temporal properties. In: PODC, pp. 377–410
(1990)

48. Meng, Y., Liu, J.: Lyapunov-barrier characterization of robust reach-avoid-stay
specifications for hybrid systems (2022). https://doi.org/10.48550/ARXIV.2211.
00814

49. Moosbrugger, M., Bartocci, E., Katoen, J.-P., Kovács, L.: The probabilistic ter-
mination tool Amber. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021.
LNCS, vol. 13047, pp. 667–675. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-90870-6_36

50. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

51. Neumann, E., Ouaknine, J., Worrell, J.: On ranking function synthesis and termi-
nation for polynomial programs. In: CONCUR, pp. 15:1–15:15 (2020)

52. Padon, O., Hoenicke, J., McMillan, K.L., Podelski, A., Sagiv, M., Shoham, S.: Tem-
poral prophecy for proving temporal properties of infinite-state systems. Formal
Methods Syst. Des. 57(2), 246–269 (2021)

53. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)
54. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-

ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239–251. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-
0_20

55. Podelski, A., Rybalchenko, A.: Transition predicate abstraction and fair termina-
tion. In: POPL, pp. 132–144 (2005)

56. Rice, H.G.: Classes of recursively enumerable sets and their decision problems.
Trans. AMS 74(2), 358–366 (1953)

57. Sankaranarayanan, S., Sipma, H., Manna, Z.: Non-linear loop invariant generation
using gröbner bases. In: POPL, pp. 318–329 (2004)

58. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constraint-based linear-relations
analysis. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 53–68. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27864-1_7

59. Shen, L., Wu, M., Yang, Z., Zeng, Z.: Generating exact nonlinear ranking functions
by symbolic-numeric hybrid method. J. Syst. Sci. Complex. 26(2), 291–301 (2013)

60. Strejcek, J.: Linear temporal logic: expressiveness and model checking. Ph.D. thesis,
Masaryk University (2004)

61. Summers, S., Lygeros, J.: Verification of discrete time stochastic hybrid systems:
a stochastic reach-avoid decision problem. Autom. 1951–1961 (2010)

62. Sun, Y., Fu, H., Chatterjee, K., Goharshady, A.K.: Automated tail bound analysis
for probabilistic recurrence relations. In: CAV, pp. 16–39 (2023)

63. Takisaka, T., Oyabu, Y., Urabe, N., Hasuo, I.: Ranking and repulsing supermartin-
gales for reachability in randomized programs. TOPLAS 43(2), 5:1–5:46 (2021)

64. Turing, A.M.: On computable numbers, with an application to the entschei-
dungsproblem. J. Math. 58(345–363), 5 (1936)

65. Unno, H., Terauchi, T., Gu, Y., Koskinen, E.: Modular primal-dual fixpoint logic
solving for temporal verification. In: POPL, pp. 2111–2140 (2023)

66. Unno, H., Terauchi, T., Koskinen, E.: Constraint-based relational verification. In:
CAV, pp. 742–766 (2021)

67. Žikelić, D., Lechner, M., Henzinger, T.A., Chatterjee, K.: Learning control policies
for stochastic systems with reach-avoid guarantees. In: AAAI, pp. 11926–11935
(2023)

https://doi.org/10.48550/ARXIV.2211.00814
https://doi.org/10.48550/ARXIV.2211.00814
https://doi.org/10.1007/978-3-030-90870-6_36
https://doi.org/10.1007/978-3-030-90870-6_36
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1007/978-3-540-27864-1_7

Sound and Complete Witnesses for LTL Properties 619

68. Wang, J., Sun, Y., Fu, H., Chatterjee, K., Goharshady, A.K.: Quantitative analysis
of assertion violations in probabilistic programs. In: PLDI, pp. 1171–1186 (2021)

69. Wang, P., Fu, H., Goharshady, A.K., Chatterjee, K., Qin, X., Shi, W.: Cost analysis
of nondeterministic probabilistic programs. In: PLDI, pp. 204–220 (2019)

70. Wang, Q., Chen, M., Xue, B., Zhan, N., Katoen, J.: Synthesizing invariant barrier
certificates via difference-of-convex programming. In: CAV, pp. 443–466 (2021)

71. Zhang, Y., Yang, Z., Lin, W., Zhu, H., Chen, X., Li, X.: Safety verification of
nonlinear hybrid systems based on bilinear programming. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 37(11), 2768–2778 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

The Opacity of Timed Automata

Jie An1,3(B) , Qiang Gao1, Lingtai Wang1, Naijun Zhan1,2(B) ,
and Ichiro Hasuo3

1 Institute of Software, Chinese Academy of Sciences, Beijing, China
{gaoqiang,wanglt,znj}@ios.ac.cn, anjie@iscas.ac.cn

2 School of Computer Science, Peking University, Beijing, China
3 National Institute of Informatics, Tokyo, Japan

i.hasuo@acm.org

Abstract. Opacity serves as a critical security and confidentiality prop-
erty, which concerns whether an intruder can unveil a system’s secret
based on structural knowledge and observed behaviors. Opacity in timed
systems presents greater complexity compared to untimed systems, and
it has been established that opacity for timed automata is undecidable.
However, the original proof cannot be applied to decide the opacity of
one-clock timed automata directly. In this paper, we explore three types
of opacity within timed automata: language-based timed opacity, initial-
location timed opacity, and current-location timed opacity. We begin
by formalizing these concepts and establishing transformation relations
among them. Subsequently, we demonstrate the undecidability of the
opacity problem for one-clock timed automata. Furthermore, we offer a
constructive proof for the conjecture regarding the decidability of opacity
for timed automata in discrete-time semantics. Additionally, we present
a sufficient condition and a necessary condition for the decidability of
opacity in specific subclasses of timed automata.

Keywords: Opacity · Timed opacity · Timed automata

1 Introduction

Opacity is a critical security and confidentiality property concerning information
flow within systems, often utilized to describe security and privacy concerns
across various scenarios. In general, it aims at safeguarding the secret information
within a system from an intruder who has knowledge of the system structure
but only partial observability of its behaviours.

Considering a Labelled Transition System (LTS), the secret information
within it can be a set of system traces or states. An intruder observes the sys-
tem behaviours, and based on the partial observations of system behaviours, the
intruder estimates whether the actual behaviours contain secret information.
The system is deemed opaque if for every secret run, there exists a non-secret

c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 620–637, 2025.
https://doi.org/10.1007/978-3-031-71162-6_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_32&domain=pdf
http://orcid.org/0000-0001-9260-9697
http://orcid.org/0000-0003-3298-3817
http://orcid.org/0000-0002-8300-4650
https://doi.org/10.1007/978-3-031-71162-6_32

The Opacity of Timed Automata 621

run exhibiting identical observations. Specifically, opacity is commonly catego-
rized into two types based on the nature of the secret information: language-
based opacity and state-based opacity. A system is called language-opaque if
an intruder with partial observability can never determine whether a trace of
the system is secret based on the observations. A system is termed initial-state
opaque if an intruder is unable to determine whether a trace starts from a secret
state, and it is termed current-state opaque if an intruder is unable to determine
whether the current trace reaches a secret state. Extensive research has been
conducted on untimed systems, such as Discrete Event Systems (DES) mod-
eled by finite-state automata. The opacity problem of finite-state automata has
been proved decidable in PSPACE [24,25]. We refer to [18] for a comprehensive
survey.

However, timed systems introduce a level of complexity beyond untimed sys-
tems, as they encompass not only untimed event sequences but also the times-
tamps associated with actions or events. Moreover, it is recognized that time
poses a potential security vulnerability for systems [10,14,19]. Therefore, con-
sidering that unobservable events also take a span of time, the opacity problem
of timed systems becomes intriguing and considerably more intricate.

Fig. 1. A simple example for the
opacity problem of timed systems

A simple example depicted in Fig. 1 illus-
trates an opacity problem inherent in timed
systems. In this scenario, Alice, Bob, and Car-
los can exchange messages, each with varying
time durations between pairs. For instance,
the transmission time between Alice and Bob,
as well as vice versa, ranges from 1 to 4 time
units, whereas between Alice and Carlos, it
spans 1 to 2 time units. Let us consider Car-
los as a secret participant within the system.
Meanwhile, an intruder named Eve, possessing only partial observability, can
solely monitor the behaviors of Alice and Bob. For instance, consider a situation
that the current real message passing is Alice 1.2−−→ Carlos 2.1−−→ Bob. With partial
observability, what Eve observed is Alice 3.3−−→ Bob. The opacity problem thus
questions whether Eve can deduce Carlos’s involvement in the message passing
process, thereby exposing the secret behaviors. If Eve remains unaware of Car-
los’s participation, we conclude that the timed system is opaque to the intruder
regarding the secret role of “Carlos” and the clandestine activities. This timed
system is deemed non-opaque because Eve can ascertain the presence of a third
participant when Eve observes that the time taken to pass messages between
Alice and Bob exceeds 4 units. In essence, this scenario can be considered a
special case of language-based opacity of timed systems if we view the dashed
secret behaviors as a secret timed language.

Timed automata (TA) [2], which extend finite-state automata with clock vari-
ables, are widely used as a formal model for timed systems. In a seminal work by
F. Cassez [11], it was proved that the opacity problem is undecidable for TA and
even for deterministic timed automata (DTA). In the proof of the undecidability

622 J. An et al.

for L-opacity1 of nondeterministic timed automata (NTA), Cassez reduced the
universality problem of NTA to a specific instance of the L-opacity problem of
NTA. Since the universality problem for NTA is known to be undecidable [2],
it logically follows that the opacity problem for NTA is also undecidable. How-
ever, in the case of one-clock timed automata (OTA), where only a single clock
is involved, the universality problem becomes decidable [1]. Consequently, the
reduction does not yield a conclusion on the opacity of OTA. Additionally, at
the end of [11], a conjecture is given that the opacity problem of TA is decid-
able in the discrete-time semantics. Therefore, all these factors serve as strong
motivations for us to revisit the opacity problem of timed automata.

In this paper, we investigate three types of the opacity of timed automata,
i.e., language-based timed opacity (LBTO), initial-location timed opacity (ILTO),
and current-location timed opacity (CLTO). These concepts are adaptations of
language-based opacity, initial-state opacity, and current-state opacity to the
realm of timed automata, respectively. Our main contributions are as follows.

– We formalize and compare the three types of timed opacity, and present the
transformations among them, i.e., ILTO and CLTO can be reduced to LBTO for
TA while the inverse reductions are restricted to DTA. (Sect. 3)

– We provide proof of the undecidability of the opacity problem of OTA. Fol-
lowing the idea in [11], it is achieved by reducing the universality problem
of OTA with epsilon transitions to an instance of CLTO problem of OTA.
(Sect. 4.1)

– We confirm the conjecture regarding the decidability of opacity for TA
in discrete-time semantics by transforming the opacity problem into the
language inclusion problem of nondeterministic finite-state automata with
epsilon transitions. (Sect.4.2)

– We present both a sufficient condition and a necessary condition for the decid-
ability of the opacity problem of specific subclasses of TA. Given a subclass
of TA, a sufficient condition requires that the subclass is closed under prod-
uct, complementation, and projection, and a necessary condition is that the
universality problem of the subclass is decidable. (Sect. 4.3)

Related Work. Opacity problems have been extensively studied in Discrete
Event Systems community [7,13,16,20,23,23,25,28,29]. We name just a few
related works here. A comprehensive introduction to verification and enforce-
ment of opacity can be found in [18]. Contrary to finite-state automata, which
enjoy decidability in opacity, it has been proven that the opacity problem is
undecidable for TA [11]. Therefore, various types of opacity for subclasses of
TA with different restrictions have been investigated. The opacity problem of
a subclass named Event-Recording Automata (ERA) [3] has also been proved
undecidable in [11]. Later in [26,27], the language-based and state-based opacity
problems have been proved decidable for RTA. A more comprehensive study on
state-based opacity of RTA is given in [31], showing that the decision complex-
ity is 2-EXPTIME. A kind of bounded-timed opacity is studied in [4]. Recently,
1 It is equivalent to the current-location timed opacity (CLTO) defined in Sect. 3.

The Opacity of Timed Automata 623

in [5,6], André et al. define a kind of timed opacity only considering the dura-
tion time of the executions but not the events, which is different from the classic
concepts in [11]. There are also some works on the approximate opacity of Cyber-
Physical Systems [21,30].

2 Preliminaries

In this section, we review the concepts of timed automata and recall several
sub-classes. Let N, R and R≥0 denote the set of natural, real and non-negative
real numbers, respectively. The set of Boolean values is denoted as B = {�,⊥},
where � stands for true and ⊥ for false. Let Σ, named alphabet, be a finite set
of events or actions. Let ε be the special empty action and let Σε = Σ ∪ {ε}.

In what follows, suppose a symbol A represents a class of automata, we write
ε-A for the automata with epsilon transitions. For instance, we write ε-TA for TA
with epsilon transitions. Also, epsilon transitions are denoted as ε-transitions.

2.1 Timed Words, Timed Languages and Timed Automata

A timed word is a finite sequence of timed actions ω = (σ1, t1)(σ2, t2) · · ·
(σn, tn) ∈ (Σ × R≥0)∗, where 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn are global timestamps, and
timed action (σi, ti) represents action σi occurs at time ti for 1 ≤ i ≤ n. The
length of the timed word |ω| = n and the length of ε is 0. Particularly, a timed
word with empty action ε is a sequence of timed actions and the empty action ε
over Σε ×R≥0. A timed language L is a set of timed words, i.e., L ⊆ (Σ ×R≥0)∗.

Definition 1 (Projection). Given a subset Σo ⊆ Σ, a projection PΣo
on timed

words w.r.t Σo is a function (Σ × R≥0)∗ → (Σo × R≥0)∗ s.t.

PΣo
(ε) = ε

PΣo
((σ, t) · ω) =

{
(σ, t) · PΣo

(ω) if σ ∈ Σo

PΣo
(w) otherwise.

Additionally, we extend PΣo
to timed languages, i.e., given a timed language

L, we have PΣo
(L) = {PΣo

(ω) | ω ∈ L}.

Example 1. Given a timed word ω = (σ1, 2)(σ2, 3.2)(σ1, 5.7)(σ3, 7), we have
P{σ1}(ω) = (σ1, 2)(σ1, 5.7) and P{σ2,σ3}(ω) = (σ2, 3.2)(σ3, 7). Note that, for
timed words with empty action ε, say ω′ = (σ1, 2)(ε, 3.2)(σ1, 5.7), we also have
P{σ1}(ω′) = (σ1, 2)(σ1, 5.7). �

Timed automata (TA) [2] extend finite-state automata with a finite set of
clock variables. In each state, all clocks increase at the same rate, and a set of
clocks can be reset to zero at each transition.

Let C be the set of clock variables and let Φ(C) denote the set of clock
constraints of the form φ:: = � | c �	 m | φ ∧ φ, where m ∈ N and
�	 ∈ {=, <,>,≤,≥}. A clock valuation v : C → R≥0 is a function assigning

624 J. An et al.

a non-negative real value to each clock c ∈ C. v ∈ φ represents that the clock
valuation v satisfies the clock constraint φ, i.e. φ evaluates to true on v. For
d ∈ R≥0, let v + d be the clock valuation which maps every clock c ∈ C to the
value v(c) + d, and for a set R ⊆ C, let [R → 0]v be the clock valuation which
resets all clock variables in R to 0 and agrees with v for every clock in C\R.

Fig. 2. An illustration for TA A (left side) and ε-TA Aε (right side).

Definition 2 (Timed automata). A (nondeterministic) timed automaton
(NTA) is a 6-tuple A = (Σ,Q,Q0, Qf , C,Δ), where Σ is the alphabet; Q is
a finite set of locations; Q0 is a set of initial locations; Qf is a set of accepting
locations; C is a finite set of clocks; and Δ ⊆ Q×Σ×Φ(C)×2C ×Q is a transition
relation.

A transition (q, σ, φ,R, q′) ∈ Δ allows a jump from location q to q′ if σ occurs
and the constraint φ is satisfied by the current clock valuation. After that, the
clocks in R are reset to zero, while other clocks remain unchanged.

A state of A is a pair (q, v), where q ∈ Q is a location and v is a clock
valuation. A run ρ of A over a timed word ω = (σ1, t1)(σ2, t2) · · · (σn, tn) is a
sequence ρ = (q0, v0)

τ1,σ1−−−→ (q1, v1)
τ2,σ2−−−→ · · · τn,σn−−−−→ (qn, vn), satisfying (1) q0 is

an initial location and v0(c) = 0 for each clock c ∈ C; (2) for all 1 ≤ i ≤ n, there
is a transition (qi−1, σi, φi,Ri, qi) such that (vi−1 + τi) ∈ φi and vi = [Ri →
0](vi−1+τi); (3) τ1 = t1 and τi = ti −ti−1 for 2 ≤ i ≤ n. Thus, each τi represents
the delay time between the transitions. A run ρ is an accepting run if qn ∈ Qf .

The trace of a run ρ is the corresponding timed word trace(ρ) = ω or the
empty timed word ε if ρ = (q0, v0). Let TrA(q0) be the set of all traces of runs
from an initial location q0 and let TrA(Q0) be the set of traces of all traces
of runs from any initial locations in Q0. Additionally, given a location q and a
subset Q′ ⊆ Q, let TrA(Q0, q) be the set of all traces of all runs starting from
Q0 and ending in location q, and TrA(Q0, Q

′) be the set of all traces of all runs
starting from Q0 and ending in any locations in Q′. A timed automaton is a
deterministic timed automaton (DTA) if |Q0| = 1 and there is at most one run
for each timed word.

Given a timed automaton A, its generated timed language is the set of traces
of runs of A, i.e. L(A) = TrA(Q0). The recognized timed language Lf (A) is the
set of traces of accepting runs, i.e. Lf (A) = TrA(Q0, Qf).

An ε-NTA Aε = (Σε, Q,Q0, Qf , C,Δ) extends an NTA with ε-transitions in
the form of (q, ε, φ,R, q′). It can recognize timed words with ε over Σε × R≥0.

The Opacity of Timed Automata 625

The special empty action ε is viewed as invisible by default. Note that the timed
language of an ε-NTA Aε is still a set of timed words defined on (Σ ×R≥0)∗ [9].

Example 2. TA A on the left side of Fig. 2 has the unique clock c, where the
alphabet Σ = {σ1, σ2, σ3}. Timed word ω = (σ2, 2)(σ3, 3) is accepted by A,
since there is a run ρ = q0

2,σ2−−−→ q2
1,σ3−−−→ q3 ending in the accepting location q3.

The recognized timed language Lf (A) = {(σ1, t1)(σ3, t2)|0 ≤ t1 ≤ 1 ∧ 0 ≤ t2 ≤
2} ∪ {(σ2, t1)(σ3, t2) | 0 ≤ t1 ≤ 2 ∧ 0 ≤ t2 − t1 ≤ 1}.

The ε-TA Aε with one clock c in Fig. 2 comes from [9]. Its generated timed lan-
guage L(Aε) is equivalent to its recognized timed language Lf (Aε), i.e., L(Aε) =
Lf (Aε) = {(σ1, t1) · · · (σn, tn) ∈ (Σ × R≥0)∗ | ∀i ≥ 0, ti ∈ 2N ∧ ti ≤ ti+1}. It is
clear that PΣ(L(Aε)) = L(Aε) and PΣ(Lf (Aε)) = Lf (Aε). �

2.2 Expressiveness and Decidability of Timed Automata

Unlike finite-state automata, TA are not closed under complementation. More-
over, the universality problem (i.e., whether Lf (A) = (Σ × R≥0)∗), inclu-
sion problem (i.e., whether Lf (A1) ⊆ Lf (A2)), and equivalence problem (i.e.,
whether Lf (A1) = Lf (A2)) are proven undecidable for TA, nonetheless, decid-
able for DTA [2]. Consequently, various subclasses of TA with different restric-
tions have been introduced and extensively studied. In the following discussion,
we will revisit some of these subclasses and provide a summary of their expres-
siveness.

We denote one-clock timed automata as OTA and refer to nondeterministic
and deterministic OTA as NOTA and DOTA, respectively. The expressive power
of NOTA strictly exceeds that of DOTA, i.e., DOTA ⊂ NOTA. However, NOTA
and DTA are incomparable. On one hand, there exist DTA languages that elude
recognition by any NOTA. Conversely, NOTA lacks closure under complemen-
tation, while DTA retains closure. There exist NOTA languages that cannot be
captured by any DTA. OTA with ε-transitions is denoted as ε-OTA.

Real-timed automata (RTA) [12] is a subclass of timed automata with a
single clock resetting at every transition, resulting in RTA ⊂ DOTA. Notably,
any nondeterministic RTA can be determinized, thereby endowing deterministic
RTA with the same expressive power as their nondeterministic counterparts.
Additionally, RTA exhibits closure properties under product, complementation,
and projection, as demonstrated in [12,27].

Event-recording automata (ERA) [3] is a kind of timed automata associating
each action σ with a clock to record the time length from the last occurrence of
σ to the current. As ERA is a class of determinizable timed automata, we have
ERA ⊂ DTA. However, ERA and RTA are incomparable. This distinction arises
because RTA may accept languages consisting of two actions separated by an
interval with integer length while ERA may not.

As shown in [2], NTA ⊂ ε-NTA, since that ε-transitions will increase the
expressive power if they reset clocks [9]. For example, in Fig. 2, the timed lan-
guage of Aε can not be represented by any NTA.

626 J. An et al.

In summary, the comparable expressive power among them is in the following
order RTA ⊂ DOTA ⊂ DTA ⊂ NTA ⊂ ε-NTA. Note that we will ignore the
character ‘N’ in general, such as NTA = TA and NOTA = OTA.

3 Opacity Problems of Timed Automata

In this section, we investigate three types of timed opacity, i.e., language-based
timed opacity (LBTO), initial-location timed opacity (ILTO) and current-location
timed opacity (CLTO), and demonstrate the transformations between them.

3.1 Language-Based and Location-Based Timed Opacity

Given a TA A = (Σ,Q,Q0, Qf , C,Δ), an observable alphabet Σo ⊆ Σ, and a
secret timed language Ls, we define LBTO as follows.

Definition 3 (Language-based timed opacity, LBTO). A is language-based
(strongly) timed opaque w.r.t Σo and Ls iff

∀ω ∈ L(A) ∩ Ls,∃ω′ ∈ L(A) \ Ls s.t. PΣo
(ω) = PΣo

(ω′) (1)

which is equivalent to PΣo
(L(A) ∩ Ls) ⊆ PΣo

(L(A) \ Ls).

LBTO requires that for each secret trace, there exists a non-secret trace such
that their observations w.r.t the observable alphabet Σo are identical.

Let us consider a secret set of locations Qs ⊆ Q within A, instead of a secret
timed language Ls. We define ILTO and CLTO as follows.

Definition 4 (Initial-location timed opacity, ILTO). A is initial-location
timed opaque w.r.t Σo and Qs ⊆ Q0 iff

∀ω ∈ TrA(Qs),∃ω′ ∈ TrA(Q0 \ Qs) s.t. PΣo
(ω) = PΣo

(ω′) (2)

which is equivalent to PΣo
(TrA(Qs)) ⊆ PΣo

(TrA(Q0 \ Qs)).

ILTO requires that for each trace starting from a secret location, there exists
a trace starting from a non-secret location such that their observations w.r.t Σo

are identical.

Definition 5 (Current-location timed opacity, CLTO). A is current-location
timed opaque w.r.t Σo and Qs ⊆ Q iff

∀ω ∈ TrA(Q0, Qs),∃ω′ ∈ TrA(Q0, Q \ Qs) s.t. PΣo
(ω) = PΣo

(ω′) (3)

which is equivalent to PΣo
(TrA(Q0, Qs)) ⊆ PΣo

(TrA(Q0, Q \ Qs)).

CLTO requires that for each trace reaching a secret location, there exists a
trace reaching a non-secret location such that their observations w.r.t Σo are
identical.

The Opacity of Timed Automata 627

Example 3. In Fig. 2, suppose Σo = {σ3} and Ls = {(σ2, t1)(σ3, t2) | 0 ≤ t1 ≤
2 ∧ 0 ≤ t2 ≤ 3}, then A is not LBTO w.r.t Ls and Σo: If the intruder observes a
‘σ3’ at time 3, they can infer that the previous action must have been ‘σ2’ rather
than ‘σ1’, as there is no non-secret trace with an observation of ‘σ3’ at time 3.

If we consider the opacity of the corresponding untimed system, the system
language is L = {σ1, σ2, σ1σ3, σ2σ3} and the secret language is Ls = {σ2σ3}. If
the current observation is σ3, the intruder cannot ascertain whether the actual
behavior is σ1σ3 or σ2σ3. Therefore, the corresponding untimed system exhibits
opacity. This illustrates that timed opacity presents a distinct and intriguingly
more complex challenge compared to untimed systems. �

3.2 Transformation Between LBTO, ILTO and CLTO

We first present the transformations from ILTO to LBTO and from CLTO to LBTO
with TA. Subsequently, we elucidate the reverse transformations from LBTO to
ILTO and CLTO restricting to DTA.

Drawing from a common assumption in untimed systems’ opacity, where a
secret language is recognized by a finite-state automaton, we suppose that Ls

can be recognized by a secret TA As, i.e. Ls = Lf (As). The assumption is
reasonable, given that every finite set of timed words can be modelled by a TA
and every regular timed language can be recognized by a TA.

From ILTO to LBTO. Given a TA A = {Σ,Q,Q0, Qf , C,Δ}, and a secret subset
of locations Qs ⊆ Q0, the ILTO problem w.r.t Qs and Σo formalized by (2) can
be transformed to an LBTO problem as follows.

We first construct a TA As = {Σ,Q,Q′
0, Q

′
f , C,Δ}. Let Q′

0 = Qs and mark
all locations as the accepting locations Q′

f = Q. Then we have L(As) = Lf (As).
Note that TrA(Qs) = TrAs

(Qs). Let Ls = Lf (As) be the secret timed language.
Then we have

L(A) ∩ Ls = L(A) ∩ Lf (As) = L(A) ∩ L(As) = L(As) = TrAs
(Qs) = TrA(Qs)

L(A) \ Ls = L(A) \ Lf (As) = L(A) \ L(As) = TrA(Q0) \ TrAs
(Qs)

= TrA(Q0) \ TrA(Qs) = TrA(Q0 \ Qs)

Hence, it is transformed to the following LBTO problem of A w.r.t Ls and Σo

∀ω ∈ L(A) ∩ Ls,∃ω′ ∈ L(A) \ Ls s.t. PΣo
(ω) = PΣo

(ω′)

��
From CLTO to LBTO. Given a TA A = {Σ,Q,Q0, Qf , C,Δ}, and Qs ⊆ Q, the
CLTO problem w.r.t Qs and Σo formalized by (3) can be transformed to an LBTO
problem as follows.

We can construct a TA A′ = {Σ,Q,Q0, Q
′
f , C,Δ} which is a copy of A

except that the accepting locations are changed from Qf to Qs, i.e. Q′
f = Qs.

628 J. An et al.

Fig. 3. The transformation between LBTO, ILTO, and CLTO.

Therefore, we have L(A) = L(A′), i.e., TrA(Q0) = TrA′(Q0). Let Ls = Lf (A′)
be the secret language, then we have

L(A′) ∩ Ls = Ls = TrA′(Q0, Q
′
f) = TrA′(Q0, Qs)

L(A′) \ Ls = TrA′(Q0) \ TrA′(Q0, Q
′
f) = TrA′(Q0, Q \ Q′

f) = TrA′(Q0, Q \ Qs)

Hence, it is transformed to the following LBTO problem of A′ w.r.t Ls and Σo

∀ω ∈ L(A′) ∩ Ls,∃ω′ ∈ L(A′) \ Ls s.t. PΣo
(ω) = PΣo

(ω′)

��
From LBTO to CLTO. Given a DTA A = {Σ,Q,Q0, Qf , C,Δ}, and a secret DTA
As and let Ls = Lf (As), the LBTO problem w.r.t Ls and Σo formalized by (1)
can be transformed to a CLTO problem as follows.

We construct a timed automaton A′ = (Σ,Q′, Q′
0, Q

′
f , C′,Δ′) in the following

steps. We first make a copy of A as A′′ = (Σ,Q,Q0, Q
′′
f , C,Δ) and let all locations

be the accepting locations Q′′
f = Q. We have Lf (A′′) = L(A). Since DTA are

closed under product and complementation [2], we construct a product TA Ap =
A′′ × As and then construct a product TA A′

p = A′′ × Ap. Therefore, we have

Lf (Ap) = Lf (A′′) ∩ Lf (As) = L(A) ∩ Ls

Lf (A′
p) = Lf (A′′) ∩ (L(A) ∪ Ls) = L(A) ∩ Ls = L(A) \ Ls.

Let A′ = Ap ∪ A′
p and let Qs be the set of accepting locations of Ap. We denote

by Q
A′

p

f the set of accepting locations of A′
p. It is clear that Q

A′
p

f ⊂ Q′ \ Qs.
Therefore, it is transformed to the following CLTO problem w.r.t Qs and Σo

∀ω ∈ TrA′(Q′
0, Qs),∃ω′ ∈ TrA′(Q′

0, Q
A′

p

f) s.t. PΣo
(ω) = PΣo

(ω′).

��
From LBTO to ILTO. The reduction is similar to the above reduction from LBTO
to CLTO. Similar to [28], we suppose that Ls and L(A) \ Ls are both prefix-
closed. Then we can build two DTA A1 and A2 such that L(A1) = Lf (Ap) and
L(A2) = Lf (A′

p). Let A′ = A1 ∪ A2 and let the secret set Qs be the initial
location set of A1. Then, the LBTO problem is transformed to the following ILTO
problem w.r.t Qs and Σo

∀ω ∈ TrA′(Qs),∃ω′ ∈ TrA′(Q′
0 \ Qs) s.t. PΣo

(ω) = PΣo
(ω′).

��

The Opacity of Timed Automata 629

Figure 3 summarizes the transformation between LBTO, ILTO, and CLTO. Since
the complementation operation is involved in the transformations from LBTO to
CLTO and to ILTO, we argue that the two transformations do not hold for general
TA. Nevertheless, it is enough for supporting the results presented in Sect. 4.

4 Decidability and Undecidability of Timed Opacity
Problems

This section serves to establish key results regarding the undecidability of opacity
problems for OTA, the decidability of opacity problems for TA in discrete-time
semantics, and a sufficient condition and a necessary condition for the decid-
ability of opacity problems within various subclasses of TA. Consequently, our
findings bridge a gap in the decidability of timed opacity problems and provide
constructive proof of the conjecture proposed in [11]. These conditions delineate
the system properties essential for designing opaque timed systems.

4.1 Undecidability of Opacity Problems of OTA

We first consider the CLTO problem of OTA and prove its undecidability. More-
over, our proof also holds for DOTA. Therefore, based on the transformations
shown in Sect. 3.2, the three types of opacity problems of DOTA, OTA, and
ε-OTA are all proven undecidable. The detailed proofs are presented as follows.

Lemma 1. Given a OTA A = (Σ,Q,Q0, Qf , {c},Δ) and an observable alphabet
Σo ⊂ Σ, there is an ε-OTA A′ s.t. A is CLTO iff A′ is CLTO.

Proof. The ε-OTA A′ = (Σ′ ∪ {ε}, Q,Q0, Qf , {c},Δ′) can be built as follows.
Build a new alphabet Σ′ s.t. Σo ⊂ Σ′ ⊂ Σ. Suppose Σ \ Σ′ = {σ′

1, σ
′
2, · · · , σ′

n},
the transition set Δ′ is constructed from Δ by replacing σ′

i with ε for each
transition (q, σ′

i, φ,R, q′) ∈ Δ.
Since each σ′

i is an unobservable action, i.e., σ′
i /∈ Σo, it is equivalent to ε

w.r.t the timed opacity problem with projection PΣo
. After replacing the corre-

sponding transitions with ε-transitions, checking CLTO of OTA A is equivalent
to checking CLTO of ε-OTA A′. ��

The following lemma follows the proof idea in [11]. The difference is that we
reduce the universality problem of ε-NTA, instead of NTA, to a CLTO problem.

Lemma 2. Given an ε-NTA Aε = {Σ ∪ {ε}, Q,Q0, Qf , C,Δ}, there is an NTA
A′ s.t. the universality problem of Aε is equivalent to the CLTO problem of A′.

Proof. Given ε-NTA Aε, the universality problem asks if Lf (Aε) = (Σ ×R≥0)∗.
We first introduce a new non-accepting location q̃ and then build its complete
ε-NTA Ãε, where the location set Q̃ = Q ∪ {q̃} and the accepting locations are
unchanged. We have Lf (Ãε) = Lf (Aε) and L(Ãε) = (Σ × R≥0)∗. Based on Ãε,
we build an NTA A′ = (Σ′, Q̃, Q0, Qf , C,Δ′) by introducing an action a �∈ Σ, i.e.,

630 J. An et al.

Σ′ = Σ ∪ {a} and replacing all ε-transitions in Ãε with a-transitions. It is clear
that PΣ(L(A′)) = L(Ãε) = (Σ ×R≥0)∗ and PΣ(Lf (A′)) = PΣ(Lf (Ãε)). Let the
secret set Qs = Q̃ \ Qf and the observable alphabet Σo = Σ, the universality
problem of Aε equals to the CLTO problem of A′ w.r.t Qs and Σo. ��

The proof of Lemma 2 is not related to the number of clocks, so the univer-
sality problem of ε-OTA can be reduced to the CLTO problem of OTA. According
to [1], the former problem is undecidable.

Theorem 1. The CLTO problems of OTA and ε-OTA are undecidable.

Note that the reduction in Lemma 1 does not depend on the nondeterministic
property. Therefore, it works for DOTA, i.e., given a DOTA A, there is an ε-
OTA A′ s.t. A is CLTO iff A′ is CLTO. Then by Theorem 1, the CLTO of DOTA
is also undecidable. Depending on the transformation in Sect. 3.2, we have the
conclusion.

Theorem 2. The LBTO, ILTO, and CLTO problems of DOTA, OTA, and ε-OTA
are all undecidable.

4.2 Decidability in the Discrete-Time Semantics

The above discussions are under the continuous-time semantics. This section
provides a constructive proof confirming the conjecture in [11] that language-
based timed opacity of TA is decidable under discrete-time semantics, i.e., the
time domain is N.

At first, we introduce several concepts under the discrete-time semantics. In
an integral timed word ω over Σ × N, all events have integral timestamps. An
integral timed language L is a set of integral timed words, i.e., L ⊆ (Σ × N)∗.
Given a TA A under discrete-time semantics, the generated and recognized timed
languages, denoted by L(A) and Lf (A), are integral timed languages. A function
Tick : (Σ ×N)∗ → (Σ ∪{�})∗ maps an integral timed word to an untimed word
over Σ ∪ {�}.

The basic proof idea is as follows. Under the discrete-time semantics, by
Definition 3, the LBTO problem is equivalent to the inclusion problem between
the projections of two integral timed languages. According to [22], every integral
timed language corresponds to an untimed Tick language, therefore we first
build an integral automaton A� accepting the integral timed language via the
Tick language. Then, based on A�, we construct a nondeterministic finite-state
automaton with ε-transitions (ε-NFA) accepting the projection of the integral
timed language via the Tick language. Therefore, we transform the LBTO problem
to the language inclusion problem of ε-NFA, which is decidable.

Definition 6 (Tick). Given an integral timed word ω = (σ1, t1)(σ2, t2)...
(σn, tn), ti ∈ N for 1 ≤ i ≤ n, Tick(ω) = � . . . �︸ ︷︷ ︸

t1

σ1 · · · � . . . �︸ ︷︷ ︸
ti−ti−1

σi · · · σn ∈

(Σ ∪ {�})∗.

The Opacity of Timed Automata 631

Hence, the number of � between two events in the untimed word Tick(ω)
is equal to the delay time length between two events in the timed word ω. For
example, let ω = (σ1, 2)(σ2, 3), we have Tick(ω) = ��σ1�σ2. We also extend
Tick to the integral timed languages, i.e., Tick(L) = {Tick(ω) | ω ∈ L}. We call
the untimed language Tick(L) as Tick language.

Therefore, we can transform the LBTO problem under discrete-time semantics
into the inclusion problem of the corresponding Tick languages.

Lemma 3. Given the LBTO problem w.r.t L(A) and Ls, we have PΣo
(L(A) ∩

Ls) ⊆ PΣo
(L(A) \ Ls) ⇔ Tick(PΣo

(L(A) ∩ Ls)) ⊆ Tick(PΣo
(L(A) \ Ls)).

In the following, we present a procedure to construct an ε-NFA recognizing
the Tick-language of the projection of the integral timed language of a given
timed automaton A.

According to [22], given a TA A, we build an integral automaton (IA) rec-
ognizing the integral timed language of A. The basic idea is to discretize the
real-valued clock valuations based on the concept of region equivalence [2,8].

Let κ : C → N be the ceiling function, i.e., κ(c) is the maximal integer
constant appearing in the clock constraints of clock c on transitions. For d ∈ R,
let �d� denote the integer part of d, and let frac(d) denote the fractional part.

Definition 7 (Region equivalence [2,8]). Two clock valuations v1, v2 : C →
R≥0 are region-equivalent, denoted by v1 ∼= v2 iff

1. ∀c ∈ C, either �v1(c)� = �v2(c)�, or v1(c) > κ(c) ∧ v2(c) > κ(c).
2. ∀c ∈ C, if v1(c) ≤ κ(c), then frac(v1(c)) = 0 iff frac(v2(c)) = 0.
3. ∀c1, c2 ∈ C, if v1(c1) ≤ κ(c1)∧v1(c2) ≤ κ(c2), then frac(v1(c1)) ≤ frac(v1(c2))

iff frac(v2(c1)) ≤ frac(v2(c2)).

A region [v] = {∀v′ : C → R≥0 | v′ ∼= v} is an equivalence class induced
by region equivalence ∼=, which denotes the set of all clock valuations v′ region-
equivalent to v. Given a TA A, we denote by Reg(A) the set of regions. According
to [2], Reg(A) is finite and |Reg(A)| is bounded by |C|! · 2|C| · ∏

c∈C(2κ(c) + 2).
Specifically, we denote by IReg(A) the set of regions only contain the integer
numbers, i.e. IReg(A) = {[v] | ∀c ∈ C, v(c) ∈ {0, 1, ..., κ(c) + 1}}. According to
region equivalence, there is only one element v in a region [v] ∈ IReg(A).

Definition 8 (Integral automata). Given a TA A = (Σ,Q,Q0, Qf , C,Δ), an
integral automaton (IA) A� = (Σ ∪ {�}, Q�, Q�

0 , Q�
f ,Δ�) can be constructed

as follows: the finite set of locations Q� = Q×IReg(A); the set of initial locations
Q�

0 = Q0 × {[0]}; the set of accepting locations Q�
f = Qf × IReg(A); and the

transition relation Δ� ⊆ Q� × Σ ∪ {�} × Q� includes σ-translations and �-
translations constructed based on transitions (q, σ, φ,R, q′) ∈ Δ:

• σ-translation: (q, [v]) σ−→ (q′, [v′]), s.t. ∃[v], [v′] ∈ IReg(A), v ∈ φ and v′ =
[R → 0]v.

• �-translation: (q, [v]) �−→ (q, [v′]), s.t. ∃[v], [v′] ∈ IReg(A), v′ = v + 1.

632 J. An et al.

A σ-translation represents a discrete jump from a symbolic state (location)
(q, [v]) to a symbolic state (q′, [v′]). It simulates the transition (q, σ, φ,R, q′) in
TA A but only triggered by the clock valuations containing integral assignments.
A �-translation simulates the one time-unit passing in a location of A. The gen-
erated and recognized languages, denoted by L(A�) and Lf (A�), are untimed
languages over Σ ∪ {�}.

The following lemma states that the corresponding IA A� recognizes the
integral timed language of TA A via the Tick language.

Lemma 4 (Proposition 10 in [22]). Given a TA A, there exists an IA A�

whose language Lf (A�) is equivalent to Tick(Lf (A)).

ε-NFA Construction. Based on A�, we can construct an ε-NFA A�
Σo

that can
accept the Tick language of the projection of the integral timed language of A,
i.e. Tick(PΣo

(Lf (A))), by the following two steps.

1. Replace all σ /∈ Σo with ε.
2. For all traces that end up in Q�

f and contain only ε-translations and �-
translations, construct a fresh set of ε-transitions Δε by

• Introducing a fresh location qs as the unique accepting location.
• For all q ∈ Q� s.t. q ∈ Q�

0 or exist (q′, σ, q) ∈ Δ� with σ ∈ Σo, if (1)
q ∈ Q�

f or (2) there exists a transition sequence from q to some location
q′′ ∈ Q�

f that only contains {ε,�}-transitions, then adding an ε-transition
(q, ε, qs) into Δε.

Therefore, we construct an ε-NFA A�
Σo

= (Σ�Σo
, Q�Σo

, Q�Σo

0 , Q�Σo

f ,Δ�Σo),

where the alphabet Σ�Σo = Σo ∪{ε,�}; the set of locations Q�Σo = Q� ∪{qs};
the set of initial locations Q�Σo

0 = Q�
0 ; the set of accepting locations Q�Σo

f =

{qs}; and the set of transitions Δ�Σo = {(q, σ, q′) ∈ Δ� | σ ∈ Σo ∪ {�}} ∪
{(q, ε, q′) | (q, σ, q) ∈ Δ� ∧ σ /∈ Σo} ∪ Δε.

Lemma 5. Given a TA A, the language of the constructed ε-NFA A�
Σo

is equiv-
alent to the Tick language of the projection of the integral timed language of A,
i.e., Lf (A�

Σo
) = Tick(PΣo

(Lf (A))).

Given a TA A and a secret TA As under the discrete-time semantics, let Ls =
Lf (As), by Lemma 4 and Lemma 5, we can always build two ε-NFA A1 and A2

such that Lf (A1) = Tick(PΣo
(L(A)∩Ls)) and Lf (A2) = Tick(PΣo

(L(A)\Ls)),
since TA in the discrete-time semantics are closed under product and comple-
mentation [15]. Hence, by Lemma 3, the LBTO problem w.r.t the integral timed
languages L(A) and Ls can be transformed into the language inclusion problem
between ε-NFA A1 and A2, and the latter is decidable in PSPACE-complete [17].
Therefore, we have the following conclusion.

Theorem 3. The LBTO, ILTO, and CLTO of TA under the discrete-time seman-
tics are decidable.

The Opacity of Timed Automata 633

4.3 Sufficient Condition and Necessary Condition

Given a subclass of TA, denoted by X -automata, we present a sufficient condition
and a necessary condition on the decidability of opacity problems of X -automata.
According to the transformation in Fig. 3, LBTO is the strongest property, i.e.,
ILTO and CLTO can be reduced to LBTO. Hence, we consider the sufficient condi-
tion of LBTO. For the necessary condition, we consider the CLTO problem.

Sufficient Condition of LBTO. Given an X -automaton X, and a secret lan-
guage Ls which can be recognized by a secret X -automaton Xs, i.e., Ls =
Lf (Xs), by Definition 3, the LBTO problem asks if ∀ω ∈ L(X) ∩ Lf (Xs),∃ω′ ∈
L(X)\Lf (Xs) s.t. PΣo

(ω) = PΣo
(ω′) which is equivalent to asking if PΣo

(L(X)∩
Lf (Xs)) ⊆ PΣo

(L(X) \ Lf (Xs)).

Theorem 4 (Sufficient condition). If X -automata are closed under product,
complementation, and projection, then the LBTO of X -automata is decidable.

Proof. For the proof, we provide a decision procedure for the LBTO of X -automata
if X -automata are closed under product, complementation, and projection.

First, we transform X to an X -automaton X ′ by labeling all locations in X as
accepting locations. Thus, we have L(X) = Lf (X ′). Since X -automata are closed
under complementation, we can build the complemented X -automaton of Xs,
denoted by Xs. By the product operation, we can build two product X -automata
Ys = X ′ × Xs and Yns = X ′ × Xs. Therefore, Ys represents the secret part, i.e.,
Lf (Ys) = L(X) ∩ Lf (Xs), and Yns represents the non-secret part Lf (Yns) =
L(X)\Lf (Xs). Since X -automata are closed under projection PΣo

, we can build
two projection X -automata Y Σo

s and Y Σo
ns . We have Lf (Y Σo

s) = PΣo
(Lf (Ys)) =

PΣo
(L(X) ∩ Lf (Xs)) and Lf (Y Σo

ns) = PΣo
(Lf (Yns)) = PΣo

(L(X) \ Lf (Xs)).
For checking if Lf (Y Σo

s) ⊆ Lf (Y Σo
ns), we build a product X -automaton Z =

Y Σo
s ×Y Σo

ns and check the emptiness problem of Z. If Lf (Z) = ∅, then X is LBTO
w.r.t Xs and Σo. As shown in [2], the emptiness problem of timed automata is
decidable in PSPACE. Since X is a sub-class of timed automata, the emptiness
problem of X -automata is also decidable.

Therefore, the LBTO of X -automata is decidable if X -automata are closed
under product, complementation, and projection. ��

For instance, we check our sufficient condition on the subclasses mentioned
in Sect. 2.2. According to [12], RTA satisfy the sufficient condition, and we know
that the opacity of RTA is decidable [27,31]. However, ε-NTA and NTA are not
closed under complementation. Although DTA and ERA are closed under com-
plementation, they are not closed under projection. [11] shows that the opacity
problems of ε-NTA, NTA, DTA, and ERA are undecidable.

Necessary Condition of CLTO. Given an X -automaton X, and a secret sub-
set of locations Qs ⊆ Q, by Definition 5, the CLTO problem asks if ∀ω ∈
TrX(Q0, Qs),∃ω′ ∈ TrX(Q0, Q \ Qs) s.t. PΣo

(ω) = PΣo
(ω′).

The following lemma states that the universality problem of X -automata can
be reduced to an equivalent CLTO problem of X -automata.

634 J. An et al.

Lemma 6. Given an X -automaton X, there exists an X -automaton X ′ s.t. the
universality problem of X is equivalent to the CLTO problem of X ′.

Proof. Given an X -automaton X = (Σ,Q,Q0, Qf , C,Δ), the universality prob-
lem asks if Lf (X) = (Σ × R≥0)∗.

Similar to the proof of Lemma 2, we first introduce a new non-accepting
location q̃ and then build its complete X -automaton X ′ = (Σ, Q̃,Q0, Qf , C,Δ′)
with Q̃ = Q ∪ q̃, which satisfies Lf (X) = Lf (X ′) and L(X ′) = TrX′(Q0) =
(Σ × R≥0)∗.

Let the observable subset Σo = Σ and the secret location subsets Qs =
Q̃ \ Qf . By Definition 5, the CLTO problem of X ′ w.r.t Qs and Σo asks if

∀ω ∈ TrX′(Q0, Qs),∃ω′ ∈ TrX′(Q0, Q̃ \ Qs) s.t. PΣ(ω) = PΣ(ω′)

which is equivalent to

∀ω ∈ TrX′(Q0),∃ω′ ∈ TrX′(Q0, Q̃ \ Qs) s.t. PΣ(ω) = PΣ(ω′)
⇔∀ω ∈ L(A′),∃ω′ ∈ Lf (X ′) s.t. PΣ(ω) = PΣ(ω′)
⇔PΣ(L(X ′) ⊆ PΣ(Lf (X ′)).

By definition, for the same automaton, the recognized language is a subset of
the generated language, then PΣ(Lf (X ′)) ⊆ PΣ(L(X ′)). Therefore, it asks if
PΣ(Lf (X ′)) = PΣ(L(X ′)) which equals

PΣ(Lf (X ′)) = (Σ × R≥0)∗

⇔ PΣ(Lf (X)) = (Σ × R≥0)∗

⇔ Lf (X) = (Σ × R≥0)∗

Therefore, it is equivalent to the universality problem of X. ��
Theorem 5 (Necessary condition). If the CLTO of X -automata is decidable,
then the universality problem of X -automata is decidable.

Fig. 4. Left: the decidability and undecidability results on the opacity of timed
automata; Right: the sufficient condition and necessary condition for the decidability
of the opacity of sub-class X -automata.

The Opacity of Timed Automata 635

5 Discussion and Conclusion

In this paper, we systematically examined three opacity problems (LBTO, ILTO,
and CLTO) for TA with their transformations. We prove the undecidability of
these opacity problems for one-clock timed automata, addressing a gap in prior
work. Additionally, we provide a constructive proof confirming the decidability
of opacity for TA under discrete-time semantics, offering a general verification
algorithm. Finally, we propose a sufficient condition for LBTO and a necessary
condition for CLTO, elucidating the system properties guiding the design of an
opaque timed system.

In Fig. 4, the figure on the left side summarizes the decidability (for RTA) and
undecidability (gray part in the figure) results on the opacity of different classes
of timed automata; the figure on the right side illustrates the relation between the
opacity problem, the necessary condition, and the sufficient condition. Hence, one
question is if there exists a subclass X -automata such that RTA ⊂ X -automata
and the opacity of X -automata is decidable. Another interesting question is
whether we can find some tighter sufficient conditions and necessary conditions
on the decidability of timed opacity or even a sufficient and necessary condition.

Acknowledgments. Thank the anonymous reviewers very much for their valuable
suggestions. J. An, Q. Gao, and N. Zhan are partly supported by the NSFC under
grants No. 62192732 and No. 62032024, and by the National Key R&D Program of
China under grant No. 2022YFA1005101. J. An and I. Hasuo are supported by ERATO
HASUO Metamathematics for Systems Design Project (No. JPMJER1603), JST.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.

References

1. Abdulla, P.A., Deneux, J., Ouaknine, J., Quaas, K., Worrell, J.: Universality anal-
ysis for one-clock timed automata. Fundam. Informaticae 89(4), 419–450 (2008).
http://content.iospress.com/articles/fundamenta-informaticae/fi89-4-04

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

3. Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: a determinizable class of
timed automata. Theor. Comput. Sci. 211(1–2), 253–273 (1999). https://doi.org/
10.1016/S0304-3975(97)00173-4

4. Ammar, I., Touati, Y.E., Yeddes, M., Mullins, J.: Bounded opacity for timed sys-
tems. J. Inf. Secur. Appl. 61, 102926:1–102926:13 (2021). https://doi.org/10.1016/
j.jisa.2021.102926

5. André, É., Lime, D., Marinho, D., Sun, J.: Guaranteeing timed opacity using para-
metric timed model checking. ACM Trans. Softw. Eng. Methodol. 31(4), 64:1–64:36
(2022). https://doi.org/10.1145/3502851

6. André, É., Sun, J.: Parametric timed model checking for guaranteeing timed opac-
ity. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019. LNCS, vol.
11781, pp. 115–130. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
31784-3 7

http://content.iospress.com/articles/fundamenta-informaticae/fi89-4-04
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/S0304-3975(97)00173-4
https://doi.org/10.1016/S0304-3975(97)00173-4
https://doi.org/10.1016/j.jisa.2021.102926
https://doi.org/10.1016/j.jisa.2021.102926
https://doi.org/10.1145/3502851
https://doi.org/10.1007/978-3-030-31784-3_7
https://doi.org/10.1007/978-3-030-31784-3_7

636 J. An et al.

7. Badouel, É., Bednarczyk, M.A., Borzyszkowski, A.M., Caillaud, B., Darondeau,
P.: Concurrent secrets. Discret. Event. Dyn. Syst. 17(4), 425–446 (2007). https://
doi.org/10.1007/s10626-007-0020-5

8. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2 3

9. Bérard, B., Gastin, P., Petit, A.: On the power of non-observable actions in timed
automata. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp.
255–268. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60922-9 22

10. Bortz, A., Boneh, D.: Exposing private information by timing web applications. In:
Williamson, C.L., Zurko, M.E., Patel-Schneider, P.F., Shenoy, P.J. (eds.) WWW
2007, pp. 621–628. ACM (2007). https://doi.org/10.1145/1242572.1242656

11. Cassez, F.: The dark side of timed opacity. In: Park, J.H., Chen, H.-H., Atiquzza-
man, M., Lee, C., Kim, T., Yeo, S.-S. (eds.) ISA 2009. LNCS, vol. 5576, pp. 21–30.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02617-1 3

12. Dima, C.: Real-time automata. J. Autom. Lang. Comb. 6(1), 3–23 (2001). https://
doi.org/10.25596/jalc-2001-003

13. Falcone, Y., Marchand, H.: Enforcement and validation (at runtime) of various
notions of opacity. Discret. Event Dyn. Syst. 25(4), 531–570 (2015). https://doi.
org/10.1007/s10626-014-0196-4

14. Felten, E.W., Schneider, M.A.: Timing attacks on web privacy. In: Gritzalis, D.,
Jajodia, S., Samarati, P. (eds.) CCS 2000, pp. 25–32. ACM (2000). https://doi.
org/10.1145/352600.352606

15. Gruber, H., Holzer, M., Kiehn, A., König, B.: On timed automata with discrete
time – structural and language theoretical characterization. In: De Felice, C.,
Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 272–283. Springer, Heidelberg
(2005). https://doi.org/10.1007/11505877 24

16. Han, X., Zhang, K., Li, Z.: Verification of strong k-step opacity for discrete-event
systems. In: CDC 2022, pp. 4250–4255. IEEE (2022). https://doi.org/10.1109/
CDC51059.2022.9993023

17. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

18. Jacob, R., Lesage, J., Faure, J.: Overview of discrete event systems opacity: models,
validation, and quantification. Annu. Rev. Control. 41, 135–146 (2016). https://
doi.org/10.1016/j.arcontrol.2016.04.015

19. Jancar, J., et al.: “They’re not that hard to mitigate”: what cryptographic library
developers think about timing attacks. In: S&P 2022, pp. 632–649. IEEE (2022).
https://doi.org/10.1109/SP46214.2022.9833713

20. Lin, F.: Opacity of discrete event systems and its applications. Automatica 47(3),
496–503 (2011). https://doi.org/10.1016/j.automatica.2011.01.002

21. Liu, S., Yin, X., Zamani, M.: On a notion of approximate opacity for discrete-time
stochastic control systems. In: ACC 2020, pp. 5413–5418. IEEE (2020). https://
doi.org/10.23919/ACC45564.2020.9147235

22. Ouaknine, J., Worrell, J.: Revisiting digitization, robustness, and decidability for
timed automata. In: LICS 2003, pp. 198–207. IEEE Computer Society (2003).
https://doi.org/10.1109/LICS.2003.1210059

23. Saboori, A., Hadjicostis, C.N.: Notions of security and opacity in discrete event
systems. In: CDC 2007, pp. 5056–5061. IEEE (2007). https://doi.org/10.1109/
CDC.2007.4434515

https://doi.org/10.1007/s10626-007-0020-5
https://doi.org/10.1007/s10626-007-0020-5
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/3-540-60922-9_22
https://doi.org/10.1145/1242572.1242656
https://doi.org/10.1007/978-3-642-02617-1_3
https://doi.org/10.25596/jalc-2001-003
https://doi.org/10.25596/jalc-2001-003
https://doi.org/10.1007/s10626-014-0196-4
https://doi.org/10.1007/s10626-014-0196-4
https://doi.org/10.1145/352600.352606
https://doi.org/10.1145/352600.352606
https://doi.org/10.1007/11505877_24
https://doi.org/10.1109/CDC51059.2022.9993023
https://doi.org/10.1109/CDC51059.2022.9993023
https://doi.org/10.1016/j.arcontrol.2016.04.015
https://doi.org/10.1016/j.arcontrol.2016.04.015
https://doi.org/10.1109/SP46214.2022.9833713
https://doi.org/10.1016/j.automatica.2011.01.002
https://doi.org/10.23919/ACC45564.2020.9147235
https://doi.org/10.23919/ACC45564.2020.9147235
https://doi.org/10.1109/LICS.2003.1210059
https://doi.org/10.1109/CDC.2007.4434515
https://doi.org/10.1109/CDC.2007.4434515

The Opacity of Timed Automata 637

24. Saboori, A., Hadjicostis, C.N.: Verification of infinite-step opacity and complexity
considerations. IEEE Trans. Autom. Control 57(5), 1265–1269 (2012). https://doi.
org/10.1109/TAC.2011.2173774

25. Saboori, A., Hadjicostis, C.N.: Verification of initial-state opacity in security appli-
cations of discrete event systems. Inf. Sci. 246, 115–132 (2013). https://doi.org/
10.1016/j.ins.2013.05.033

26. Wang, L., Zhan, N.: Decidability of the initial-state opacity of real-time automata.
In: Jones, C., Wang, J., Zhan, N. (eds.) Symposium on Real-Time and Hybrid
Systems. LNCS, vol. 11180, pp. 44–60. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-01461-2 3

27. Wang, L., Zhan, N., An, J.: The opacity of real-time automata. IEEE Trans. Com-
put. Aided Des. Integr. Circuits Syst. 37(11), 2845–2856 (2018). https://doi.org/
10.1109/TCAD.2018.2857363

28. Wu, Y., Lafortune, S.: Comparative analysis of related notions of opacity in cen-
tralized and coordinated architectures. Discret. Event Dyn. Syst. 23(3), 307–339
(2013). https://doi.org/10.1007/s10626-012-0145-z

29. Yin, X., Lafortune, S.: A new approach for the verification of infinite-step and
k-step opacity using two-way observers. Automatica 80, 162–171 (2017). https://
doi.org/10.1016/j.automatica.2017.02.037

30. Yin, X., Zamani, M., Liu, S.: On approximate opacity of cyber-physical systems.
IEEE Trans. Autom. Control 66(4), 1630–1645 (2021). https://doi.org/10.1109/
TAC.2020.2998733

31. Zhang, K.: State-based opacity of real-time automata. In: Castillo-Ramirez, A.,
Guillon, P., Perrot, K. (eds.) 27th IFIP WG 1.5 International Workshop on Cellular
Automata and Discrete Complex Systems, AUTOMATA 2021. OASIcs, vol. 90, pp.
12:1–12:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.
org/10.4230/OASIcs.AUTOMATA.2021.12

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/TAC.2011.2173774
https://doi.org/10.1109/TAC.2011.2173774
https://doi.org/10.1016/j.ins.2013.05.033
https://doi.org/10.1016/j.ins.2013.05.033
https://doi.org/10.1007/978-3-030-01461-2_3
https://doi.org/10.1007/978-3-030-01461-2_3
https://doi.org/10.1109/TCAD.2018.2857363
https://doi.org/10.1109/TCAD.2018.2857363
https://doi.org/10.1007/s10626-012-0145-z
https://doi.org/10.1016/j.automatica.2017.02.037
https://doi.org/10.1016/j.automatica.2017.02.037
https://doi.org/10.1109/TAC.2020.2998733
https://doi.org/10.1109/TAC.2020.2998733
https://doi.org/10.4230/OASIcs.AUTOMATA.2021.12
https://doi.org/10.4230/OASIcs.AUTOMATA.2021.12
http://creativecommons.org/licenses/by/4.0/

Parameterized Verification
of Round-Based Distributed Algorithms

via Extended Threshold Automata

Tom Baumeister1(B) , Paul Eichler1 , Swen Jacobs1 ,
Mouhammad Sakr2 , and Marcus Völp2

1 CISPA Helmholtz Center for Information Security,
Saarbrücken, Germany

tom.baumeister@cispa.de
2 SnT, Luxembourg University, Esch-sur-Alzette,

Luxembourg

Abstract. Threshold automata are a computational model that has
proven to be versatile in modeling threshold-based distributed algo-
rithms and enabling their completely automatic parameterized verifi-
cation. We present novel techniques for the verification of threshold
automata, based on well-structured transition systems, that allow us
to extend the expressiveness of both the computational model and the
specifications that can be verified. In particular, we extend the model
to allow decrements and resets of shared variables, possibly on cycles,
and the specifications to general coverability. While these extensions of
the model in general lead to undecidability, our algorithms provide a
semi-decision procedure. We demonstrate the benefit of our extensions
by showing that we can model complex round-based algorithms such as
the phase king consensus algorithm and the Red Belly Blockchain proto-
col (published in 2019), and verify them fully automatically for the first
time.

1 Introduction

Due to the increasing prevalence and importance of distributed systems in
our society, ensuring reliability and correctness of these systems has become
paramount. Computer-aided verification of distributed protocols and algorithms
has been a very active research area in recent years [35,37,49,52,60]. To be prac-
tical, models of distributed algorithms need to take into account that commu-
nication or processes may be faulty, and correctness guarantees should be given
based on a resilience condition that defines the quantity and quality of faults
(e.g., how many processes may crash or even behave arbitrarily [13,45,48]).

Moreover, many distributed systems consist of an arbitrary number of com-
municating processes, thus requiring parameterized verification techniques that
consider the number of processes as a parameter of the system, and that can pro-
vide correctness guarantees regardless of this parameter. However, the parame-
terized verification problem is in general undecidable, even in restricted settings
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 638–657, 2025.
https://doi.org/10.1007/978-3-031-71162-6_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_33&domain=pdf
http://orcid.org/0009-0009-8539-6246
http://orcid.org/0009-0008-6117-318X
http://orcid.org/0000-0002-9051-4050
http://orcid.org/0000-0002-5160-0327
http://orcid.org/0000-0002-8020-4446
https://doi.org/10.1007/978-3-031-71162-6_33

Parameterized Verification via Extended Threshold Automata 639

such as identical and anonymous finite-state processes that communicate by
passing a binary-valued token in a ring [58].

Since undecidability arises so easily in this setting, the research into auto-
matic parameterized verification can in principle be divided into two direc-
tions: (i) identifying decidable classes of systems and properties [1,3–7,15,24,26–
30,32,33,36,38,41,54], which are often restricted to rather specialized use cases,
and (ii) developing semi-decision procedures [2,16], which are usually much more
versatile but come without a termination guarantee. In practice however, the line
between these two approaches is not so clear. The line blurs when semi-decision
procedures serve as decision procedures for a certain fragment of their possible
inputs, and on the other hand, many decidable problems in parameterized ver-
ification have a huge complexity [24,54], and to an engineer it does not make
a difference if the verification algorithm is guaranteed to terminate within a
thousand years, or whether it comes without a termination guarantee.

In this paper, we aim for practical verification techniques that cover a large
class of fault-tolerant distributed algorithms. Our focus is not decidability, but
the development of techniques that can in practice verify a wide range of dis-
tributed algorithms, with full automation. We build on the formal model of
threshold automata (TA) and existing techniques to verify them, which we
combine with insights from the theory of well-structured transition systems
(WSTS) [32] and with abstraction techniques. This combination allows us to
lift some of the restrictions of the existing decidable fragments for TAs, and to
verify distributed algorithms that are not supported by the existing techniques.

In particular, existing verification techniques for TAs are usually restricted
to reason about shared variables that are monotonically increasing or decreasing
over any run of the automaton. An extension of the model that allows both
increasing and decreasing variables has been considered before [47], but only
to show that the problem becomes undecidable, not to develop a verification
technique for this case. In our setting, we can allow increments, decrements and
resets of shared variables, while still obtaining a semi-decision procedure, and
even a decision procedure in certain cases. In this paper, we demonstrate how
this allows us to reason about round-based algorithms such as the phase king
consensus algorithm [11] and the Red Belly Blockchain algorithm [23], which
both use resets of shared variables at the beginning of a round, without a fixed
bound on the number of rounds to be executed.

Contributions. In this paper,

1. we present an extension of threshold automata that allows increments, decre-
ments and resets of shared variables (Sect. 2),

2. we develop a technique (based on well-structured transition systems) that is
a decision procedure for general coverability properties of canonical threshold
automata [47], and is a semi-decision procedure for our extension (Sect. 3–5),

3. we develop an additional abstraction that reduces the search space of this
technique and additionally allows us to check another type of specification,
called reachability properties, on extended threshold automata (Sect. 6),

640 T. Baumeister et al.

4. we implement our techniques and demonstrate their performance on a num-
ber of examples from the literature, several of which—including the phase
king consensus algorithm and the state-of-the-art Red Belly Blockchain
algorithm—cannot be modeled in canonical threshold automata (Sect. 7).

2 System Model

In this section, we build on the existing notion of threshold automata (TAs) [45]
and generalize their notion of shared variables. TAs are a model of distributed
computation that encodes information exchange between processes into a fixed
set of shared variables. Shared variables in TAs are usually required to be mono-
tonically increasing along an execution to ensure decidability. We extend the
definition such that it permits shared variables to be decreased or reset, which
in general introduces undecidability [47]. We then define the semantics of an
unbounded number of such TAs running in parallel. In Sect. 2.1, we introduce
the notion of an abstract TA and provide the semantics for this abstraction.

Definition 1. A threshold automaton is a tuple A = (L, I, Γ,Π,R, RC) where:

– L is a finite set of locations.
– I ⊆ L is the set of initial locations.
– Γ = {x0, . . . , xm} is a finite set of shared variables over N0.
– Π is a finite set of parameter variables over N0. Usually, Π = {n, t, f}, where

n is the total number of processes, t is a bound on the number of tolerated
faulty processes , and f is the actual number of faulty processes.

– RC, the resilience condition, is a linear integer arithmetic formula over
parameter variables. E.g.: RC = n > 3t ∧ t ≥ f .
For a vector p ∈ N

|Π|
0 , we write p |= RC if RC holds after substituting

parameter variables with values according to p. Then the set of admissible
parameters is PRC = {p ∈ N

|Π|
0 : p |= RC}.

– R is a set of rules where a rule is a tuple r = (from,→, ϕ,uv, τ) such that:
• from,→∈ L.
• uv ∈ |Z||Γ | is an update vector for shared variables.
• ϕ is a conjunction of lower guards and upper guards. A lower guard has

the form: a0 +
∑|Π|

i=1 ai · pi ≤ x; An upper guard has the form: a0 +
∑|Π|

i=1 ai · pi > x, with x ∈ Γ , a0, . . . , a|Π| ∈ Q, p1, . . . , p|Π| ∈ Π.
The left-hand side of a lower or upper guard is called a threshold.

• τ ⊆ Γ is the set of shared variables to be reset to 0.

Parameterized Verification via Extended Threshold Automata 641

Fig. 1. A threshold automaton for simple
voting.

Example 1. Figure 1 sketches a thresh-
old automaton with I = {v0, v1}, L =
{v0, v1,Wait, d0, d1}, Γ = {x0, x1},
Π = {n, t, f}. A process in v0 has a
vote of 0 and a process in v1 has a vote
of 1. If at least n−t processes vote with
0 (respectively, 1), the decision will be
0 (1), modeled by all processes moving
to d0 (d1).

Semantics of TA. Given a TA A = (L, I, Γ,Π,R, RC), let the function
N : PRC → N0 determine the number of processes to be modelled (usually,
N(n, t, f) = n−f). Then, the concrete semantics of a system composed of N(p)
threshold automata running in parallel are defined via a counter system.

Definition 2. A counter system (CS) of a TA A = (L, I, Γ,Π,R, RC) is a
transition system CS(A) = (Σ,Σ0, T) where

– Σ is the set of configurations. A configuration is a tuple σ = (k, g,p) where:
• k ∈ N

|L|
0 is a vector of counter values, where k[i] represents the number

of processes in location i. We refer to locations by their indices in L.
• g ∈ N

|Γ |
0 is a vector of shared variables’ values, where g[i] is the value of

variable xi ∈ Γ .
• p ∈ PRC is an admissible vector of parameter values.

– The set Σ0 contains all initial configurations, i.e., configurations that satisfy

∀xi ∈ Γ : σ.g[i] = 0 and
∑

i∈I
σ.k[i] = N(p) and

∑

i�∈I
σ.k[i] = 0

– T ⊆ Σ × R × Σ is the set of transitions, where (σ, r, σ′) ∈ T if and only if
all of the following conditions hold:

• σ′.p = σ.p (parameter values never change).
• σ′.k[r. →] = σ.k[r. →] + 1 (one process moves to r. →).
• σ′.k[r.from] = σ.k[r.from] − 1 (one process moves out of r.from)
• σ.g |= r.ϕ (i.e., ϕ holds after replacing shared variables with values σ.g)
• σ′.g = σ.g + r.uv
• ∀xi ∈ τ σ′.g[i] = 0

Instead of (σ, r, σ′) ∈ T we also write σ
r−→ σ′. If (σ, r, σ′) ∈ T , we say r is

enabled in σ; otherwise it is disabled.

Paths of CS. A sequence σ0, r0, σ1, . . . , σk−1, rk−1, σk of alternating configura-
tions and rules is a path of a counter system CS(A) = (Σ,Σ0, T) if and only if
σ0 ∈ Σ0 and (σi, ri, σi+1) ∈ T for 0 ≤ i < k. In this case we also write σ0 →∗ σk.
We denote by Paths(CS(A)) the set of all paths of CS(A).

Example 2. Let N(n, t, f) = n − f , RC = n > 3t ∧ t ≥ f , then the following is
a valid path of the counter system of the TA in Fig. 1:
[(4, 0, 0, 0, 0)(0, 0)], r0, [(3, 0, 1, 0, 0)(1, 0)], r0, [(2, 0, 2, 0, 0)(2, 0)], r0,
[(1, 0, 3, 0, 0)(3, 0)], r0, [(0, 0, 4, 0, 0)(4, 0)], r2, [(0, 0, 3, 1, 0)(4, 0)].

642 T. Baumeister et al.

2.1 Abstract Threshold Automata

The shared variables and parameters of a TA have infinite domains. To facilitate
the application of parameterized verification techniques for finite-state processes,
we introduce an abstraction of TAs based on parametric interval abstraction [40].

Abstract Domain. Given a TA A, define as T H = {d0, d1, . . . , dk} the set of
thresholds where d0 = 0, d1 = 1 and ∀i > 1 di is a threshold in A. We assume
that ∀i, j di < dj if i < j. Note that this is always possible for a fixed p ∈ PRC .
If different p ∈ PRC result in different orders of the di, then we consider each
of the finitely many such orders separately. Based on this, define the finite set
of intervals D = {I0, I1, . . . , Ik} where Ii = [di, di+1[if i < k, and Ik = [dk,∞[.

Definition 3. Abstract Threshold Automata. Given a threshold automaton
A = (L, I, Γ,Π,R, RC), we define the abstract threshold automaton (or TA)
A = (L, I, Γ ,Π,R) where:

– A and A share the components L, I,Π.
– Let Γ = {x0, . . . , xm}, then Γ = {x0, . . . , xm}, where each xi is over the

domain D = {I0, I1, . . . , Ik}.
– R is the set of abstract rules. An abstract rule is a tuple r = (from,→, ϕ,uv,

τ) where from,→,uv, τ are as before, and the abstract guard ϕ is a Boolean
expression over equalities between shared variables and abstract values.
Formally, let ϕ = ϕ0∧. . .∧ϕk, then ϕ = ϕ0∧. . .∧ϕk where for ϕi = (dj ≤ x),
we have ϕi =

∨k−1
c=j (x = [dc, dc+1[) ∨ x = [dk,∞[, and for ϕi = (dj > x), we

have ϕi =
∨j−1

c=0(x = [dc, dc+1[).

Example 3. Consider again the TA in Fig. 1 with N(n, t, f) = n − f , RC = n >
3t ∧ t ≥ f > 1. We have T H = {0, 1, t, n − t} and D = {[0, 1[, [1, t[, [t, n − t[, [n −
t,∞[} whose order is induced by RC. Moreover, we have r0 = r0, r1 = r1 (due
to the absence of a guard), r2.ϕ = (x0 = [n − t,∞[), r3.ϕ = (x1 = [n − t,∞[).

To keep the presentation simple, in our definition all shared variables have the
same abstract domain. The abstraction can be improved by considering different
abstract domains for different variables: for a given shared variable x we can let
T Hx = {d0, d1, . . . , dl} where d0 = 0, d1 = 1 and ∀i > 1 there is a guard di ∗ x
with ∗ ∈ {≥, <}, to obtain a corresponding abstract domain Dx for x.

Semantics of TA. We first over-approximate the semantics of a system com-
posed of an arbitrary number of TAs by an abstract counter system. We later
show how to detect whether a behavior of the abstract counter system corre-
sponds to a concrete behavior of a counter system.

Definition 4. An abstract counter system (ACS) of A = (L, I, Γ ,Π,R) is a
transition system ACS(A) = (Σ,Σ0, T) where:

– Σ is the set of abstract configurations. A configuration of ACS(A) is a tuple
σ = (k, g) where:

Parameterized Verification via Extended Threshold Automata 643

• k ∈ N
|L|
0 is a vector of counter values where k[i] represents the number of

processes in location i.
• g ∈ D|Γ | is a vector of shared variables values, where g[i] is the parametric

interval currently assigned to xi.
– The set Σ0 contains all initial abstract configurations, i.e., those that satisfy

∀xi ∈ Γ : σ.g[i] = I0 and
∑

i∈I
σ.k[i] ≥ 0 and

∑

i�∈I
σ.k[i] = 0

– T ⊆ Σ × R × Σ is the set of transitions. A transition is a tuple t = (σ, r, σ′)
where:

• σ′.k[r. →] = σ.k[r. →] + 1
• σ′.k[r.from] = σ.k[r.from] − 1
• σ.g |= r.ϕ
• σ′.g = σ.g+̇r.uv, defined as follows: ∀i < |Γ |:

1. σ′.g[i] = σ.g[i], if r.uv[i] = 0
2. (σ′.g[i] = σ.g[i]) ∨ (σ′.g[i] = σ.g[i].next), if r.uv[i] = 1
3. (σ′.g[i] = σ.g[i]) ∨ (σ′.g[i] = σ.g[i].previous), if r.uv[i] = −1

the first disjunct in 2 and the second in 3 are omitted if σ.g[i] = I0.
4. ∀xi ∈ r.τ : σ′.g[i] = I0

We also write σ
r−→ σ′ instead of (σ, r, σ′) ∈ T .

In contrast to prior work [40], the domain of counters is not abstracted in ACS.

Paths of ACS. A sequence σ0, r0, σ1, . . . , σk−1, rk−1, σk of alternating abstract
configurations and rules is called a path of ACS(A) = (Σ,Σ0, T), if σ0 ∈ Σ0 and
(σi, ri, σi+1) ∈ T for 0 ≤ i ≤ k. In this case we also write σ0 →∗ σk. We denote
by Paths(ACS(A)) the set of all paths of ACS(A).

Example 4. Let I0 = [0, 1[, I1 = [1, t[, I2 = [t, n − t[, I3 = [n − t,∞[. The
following is a valid path of the abstract counter system of the TA in Fig. 1:
[(4, 0, 0, 0, 0)(I0, I0)], r0, [(3, 0, 1, 0, 0)(I1, I0)], r0, [(2, 0, 2, 0, 0)(I2, I0)], r0,
[(1, 0, 3, 0, 0)(I3, I0)], r2, [(1, 0, 2, 1, 0)(I3, I0)].

Relation Between ACS(A) and CS(A). In comparison to CS, in ACS we drop
the resilience condition, as well as the function N that determines the number
of processes to be modeled. Moreover, a transition in ACS may jump from one
interval to the next too early and may stay in the same interval although it had
to move. We will formalize the relation between the two models in Sect. 4.

3 Specifications

We consider three kinds of specifications: general coverability, which refers to the
notion of coverability that is widely used in parameterized verification, e.g., Petri
nets [31] or VASS [51], (non-general) coverability and reachability. The latter two
are specifications used in prior work on threshold automata [8,43,47]. Note that
general coverability can express mutual exclusion, e.g., that there cannot be two
leaders at the same time, while coverability cannot.

644 T. Baumeister et al.

Definition 5. The general parameterized coverability problem is: Given CS(A)
and a general coverability specification Σspec ⊆ Σ, decide if there is a path
in CS(A) that covers Σspec (i.e., decide if there is some configuration σr ∈ Σ
reachable from σ0 ∈ Σ0 and ∃σspec ∈ Σspec where ∀i σspec.k[i] ≤ σr.k[i]).

Definition 6. The parameterized coverability problem is: Given a TA and cov-
erability specification Lspec = L>0, decide if there is a path of its CS(A) that
satisfies Lspec (i.e., decide if there is some configuration σr ∈ Σ reachable from
σ0 ∈ Σ0 and σr satisfies ∀i ∈ L>0 σr.k[i] > 0).

Definition 7. The parameterized reachability problem is: Given a TA and a
reachability specification Lspec = (L=0, L>0), decide if there is a path of CS(A)
that satisfies Lspec (i.e., decide if there is some configuration σr ∈ Σ reachable
from σ0 ∈ Σ0 and σr satisfies ∀i ∈ L=0 σr.k[i] = 0 and ∀i ∈ L>0 σr.k[i] > 0).

We define similarly all three types of problems for an abstract TA and its
abstract counter system. Usually, our specifications are definitions of error con-
figurations, and therefore paths that satisfy them, are called error paths.

4 CS vs ACS

We now show that the abstraction from CS to ACS is complete with respect to
the specifications introduced in the previous section.

A path π̄ = σ0, r0, . . . , rm−1, σm in ACS(A) = (Σ,Σ0, T) corresponds to the
paths π = σ0, r

c0
0 , . . . , r

cm−1
m−1 , σm (where rci

i simulates applying ri ci times) of
CS(A) = (Σ,Σ0, T) that satisfy the following conditions:

– RC ∧ (
∑

j∈I σ0.k[j] = N(n, t, f))
– ∀i < m σi.k[ri.from] = ci + σi+1.k[ri.from] ∧ σi+1.k[ri. →] = ci + σi.k[ri. →]
– ∀i < m ∀xj ∈ Γ xj /∈ ri.τ =⇒ σi+1.g[j] = σi.g[j] + ci · ri.uv[j]
– ∀i < m ∀xj ∈ ri.τ σi+1.g[j] = 0
– ∀i < m ∀xj ∈ Γ σi.g[j] ∈ σi.g[j] ∧ σi+1.g[j] ∈ σi+1.g[j]
– ∀i < m ci > 1 =⇒ ((σi+1.g − ri.uv) |= ri.ϕ)1

Let Concretize(π̄) be the conjunction of the constraints above, where quantified
formulas are instantiated to a finite conjunction of quantifier-free formulas. Note
that Concretize(π̄) is a quantifier-free formula in linear integer arithmetic, and
a satisfying assignment for Concretize(π̄) (that can be computed by an SMT
solver) represents a path of CS(A) that corresponds to π̄. We say that a path
π̄ ∈ Paths(ACS(A)) is spurious if Concretize(π̄) is unsatisfiable.

For a given π̄ ∈ Paths(ACS(A)), let Cover(π̄) = ∀l ∈ L σm.k[l] ≥ σm.k[l].
We can show2 the following connection between error paths in CS(A) and
ACS(A):

1 This is needed only in cases where an update affects any of the guards of ri.ϕ.
2 Formal proofs of all our results can be found in the extended version of the paper [10].

Parameterized Verification via Extended Threshold Automata 645

Lemma 1. ACS(A) has a non-spurious path that covers a set of configurations
Σspec ⊆ Σ iff CS(A) has a path that covers Σspec.

Note that Lemma 1 subsumes the case of non-general coverability.
Similarly, if π̄ is a non-spurious path of ACS(A) that satisfies a reachability

specification Lspec, let Reach(π̄) = ∀l ∈ L σm.k[l] > 0 ⇐⇒ σm.k[l] > 0.
Then we can show the following with a similar proof as above, where we replace
Cover(π̄) with Reach(π̄) and reason accordingly.

Lemma 2. ACS(A) has a non-spurious path that satisfies a reachability specifi-
cation Lspec iff CS(A) has a path that satisfies Lspec.

5 Checking General Parameterized Coverability

In this section, we show how abstract counter systems (including ours) can be
framed as well-structured transition systems. We also introduce a parameterized
model checking algorithm for checking general parameterized coverability in ACS.

5.1 Well-Structured Transition Systems

Well-structured transition systems [32] (WSTS) are a class of infinite-state sys-
tems for which the general parameterized coverability problem is decidable [1,39].
In the following, we recap the standard definitions of WSTS.

Well-Quasi-Order. Given a set S, a binary relation � ⊆ S × S is a well-quasi-
order (wqo) if � is reflexive, transitive, and if any infinite sequence s0, s1, . . . ∈
Sω contains a pair si � sj with i < j. A subset R ⊆ S is an anti-chain if any two
distinct elements of R are incomparable wrt. �. Therefore, � is a wqo on S if
and only if it is reflexive, transitive, and has no infinite anti-chains. The upward
closure of a set R ⊆ S, denoted ↑R, is the set {s ∈ S | ∃s′ ∈ R : s′ � s}. We say
that R is upward-closed if ↑R = R, and we call B ⊆ S a basis of R if ↑B = R.
If � is also anti-symmetric, then any basis of R has a unique subset of minimal
elements. We call this set the minimal basis of R, denoted minBasis(R).

Compatibility. Given a transition system M = (S, S0, T), we say that a wqo
� ⊆ S × S is compatible with the transition relation T if the following holds:

∀s, s′, sx ∈ S : if s −→ s′ and s � sx then ∃s′
x with s′ � s′

x and sx −→∗ s′
x,

where s −→ s′ is a transition in T , and sx −→∗ s′
x is a path in M .

WSTS. We say that (M,�) with M = (S, S0, T) is a well-structured transition
system if � is a wqo on S that is compatible with T . The set of immediate
predecessors of a set R ⊆ S is pred(R) = {s ∈ S | ∃s′ ∈ R : s −→ s′}. We say that
a WSTS (M,�) has effective pred-basis if there exists an algorithm that takes
as input any finite set R ⊆ S and returns a finite basis of pred(↑R).

646 T. Baumeister et al.

5.2 Abstract Counter Systems as WSTS

To prove that the general parameterized coverability problem is decidable for
abstract TAs, we show that an ACS can be framed as WSTS. Here, for a given
set E′ ⊆ Σ we define pred(E′) = {σ ∈ Σ | σ′ ∈ E′ ∧ ∃r ∈ R s.t. (σ, r, σ′) ∈ T }.

Lemma 3. Given an abstract counter system ACS(A) = (Σ,Σ0, T) let � ⊆
Σ × Σ be the binary relation defined by:

(k, g) � (k′, g′) ⇐⇒ k ≤ k′ ∧ g = g′

where ≤ is the component-wise ordering of vectors. Then (ACS(A),�) is a
WSTS.

Note also that the order � is anti-symmetric, and therefore every upward-
closed set of configurations has a unique minimal basis.

Lemma 4. Given an abstract counter system ACS(A) = (Σ,Σ0, T), the WSTS
((Σ,Σ0, T),�) has effective pred-basis.

Let BasisTrans be the transitions from which we computed CPredBasis in
the proof of Lemma 4. Concretely, let uj be the unit vector with uj(j) = 1 and
uj(i) = 0 for i �= j then BasisTrans(E′) is the set
{

((k, g), r, (k′, g′)) ∈ T (k′, g′) ∈ E′ ∧ r = (li, lj , ϕ,uv, τ)∧[
(k, g) r−→ (k′, g′) ∨ ((k, g) r−→ (k′+uj , g

′)∧k′[j]=0)
]
}

.

The following corollary, derived from the aforementioned definitions, will be
instrumental in establishing the correctness of our algorithms.

Corollary 1. Given σ′
1, σ

′
2 ∈ Σ, if σ′

1 � σ′
2 then {r ∈ R | (σ1, r, σ

′
1) ∈

BasisTrans(σ′
1)} = {r ∈ R | (σ2, r, σ

′
2) ∈ BasisTrans(σ′

2)}.

5.3 WSTS-Based General Parameterized Coverability Checking

In this section, we present our algorithm for solving the general parameterized
coverability problem (see Definition 5). Given an abstract counter system ACS(A)
and a finite set of error configurations ERR ⊆ Σ, we say that a path of ACS(A)
is an error path if it starts in Σ0 and ends in the upward closure of ERR. Lemma
4 enables us to use the transitive closure of CPredBasis(ERR) to compute a
set of error paths in ACS(A) or a fixed-point in which no initial configuration
occurs. As defined in Sect. 4, we can examine whether any of these abstract error
paths corresponds to error paths in CS(A). The detailed algorithm is given in
Algorithm 1, which we explain in the following.

Procedure CheckCoverability takes as argument an ACS(A) and a basis
for a set of error configurations ERR. After initializing local variables, the pro-
cedure enters a while loop that, given Ei−1, invokes ComputePredBasis (Line
5), a sub-procedure to compute Ei ⊇ minBasis(pred(↑Ei−1)) such that ∀σ ∈

Parameterized Verification via Extended Threshold Automata 647

Algorithm 1 General Parameterized Coverability Checking
1: procedure CheckCoverability(Abstract Counter System ACS,ERR)
2: E0 ← ERR, i ← 1, errGraph ← ∅
3: visitedTrans ← ∅//set of visited transitions
4: while Ei−1 �= ∅ do //has a fixed-point been reached?
5: Ei, visitedTrans ← ComputePredBasis(Ei−1, visitedTrans)
6: i ← i + 1

7: visitedInitialConfigs ← ⋃
j<i(Ej ∩ Σ0)

8: if visitedInitialConfigs �= ∅ then //intersects with initial configurations?
9: errGraph ← ConstructErrGraph(visitedInitialConfigs, visitedTrans)

10: nonSpuriousCE = CheckforNonSpuriousCEs(errGraph)
11: if nonSpuriousCE �= ∅ then //at least one CE is non-spurious
12: return nonSpuriousCE //an error is found!

13: return “ The system is safe! ”

14: procedure ComputePredBasis(Ei−1,visitedTrans)
15: Compute BasisTrans(Ei−1) as explained at the end of Section 5.2
16: Ei = {σ ∈ Σ | ∃(σ, r, σ′) ∈ BasisTrans(Ei−1)}
17: visitedTrans.add(BasisTrans(Ei−1))
18: finalEi ← ∅
19: for all σ ∈ Ei do //remove visited bigger configurations to ensure termination
20: if ∃j ≤ i, σs ∈ Ej s.t. σs � σ then //smaller configurations, maybe ≥ 1
21: visitedTrans.add({(σs, r, σ

′) | (σ, r, σ′) ∈ BasisTrans(Ei−1)})
22: else
23: finalEi.add(σ)
24: if ∃σb ∈ finalEi s.t. σ � σb then //bigger configurations, maybe > 1
25: visitedTrans.add({(σ, r, σ′) | (σb, r, σ

′) ∈ BasisTrans(Ei−1)})
26: finalEi.remove(σb)

27: return finalEi, visitedTrans

↑Ei ∀j < i σ �∈ ↑Ej . ComputePredBasis also updates visitedTrans which
represents the set of transitions explored so far. The loop breaks once a fixed-
point has been reached. Line 7 computes the visited set of initial configurations
visitedInitialConfigs. If visitedInitialConfigs is not empty then the proce-
dure extracts all computed error paths (Line 9). ConstructErrGraph starts
from the discovered initial configuration(s) and uses visitedTrans to construct
the error graph errGraph which encodes all error paths. In a breadth-first fash-
ion, the procedure CheckforNonSpuriousCEs then unfolds errGraph and
evaluates the spuriousness of uncovered error paths that starts in Σ0 and ends
in ERR (Line 10). A path π̄ = σ0, r0, . . . , rj−1, σj in errGraph is spurious
if Concretize(π̄) ∧ Cover(π̄) is unsatisfiable (see Sect. 4). In the presence of
cycles3, unfolding may not terminate in the presence of shared-variable decre-
ments and/or resets (see Theorem 1). If all error paths are spurious, we conclude
that the system is safe. Otherwise a concrete path is returned as a witness of
the buggy system (Line 12).

3 A cycle is a sub-sequence of a path that starts and ends in the same configuration.

648 T. Baumeister et al.

Procedure ComputePredBasis takes as argument the current set Ei−1,
and the set of visited transitions visitedTrans. We compute Ei as the prede-
cessors of Ei−1 as explained at the end of Sect. 5.2 (Line 16). At this point,
Ei may contain configurations larger than those we have already explored. To
ensure termination, they must be removed. However, before removing these con-
figurations, we collect their visited transitions since these may introduce new,
unexplored behaviors. The computation of a comprehensive set of visited transi-
tions, denoted as visitedTrans in this context, is crucial for the correctness of our
algorithm. The importance of this lies in the necessity to address spurious coun-
terexamples, which mandates retrieving all paths from an initial configuration to
an error configuration. This is in contrast to ordinary backward model checking,
where a single counterexample suffices. After adding all computed transitions to
visitedTrans (Line 17), we check for each configuration σ in Ei the following:

– For every configuration σs with σs � σ, we add from BasisTrans(Ei−1)
transitions that start in σ to visitedTrans after replacing σ with σs.

– Otherwise, we add σ to finalEi. Also, for every σb ∈ finalEi with σ � σb,
we add from BasisTrans(Ei−1) transitions that start in σb to visitedTrans
after replacing σb with σ, and we remove σb from finalEi.

5.4 Correctness

Algorithm 1 is sound, complete, and terminates when the TA is restricted as in
[8,43,44,46,47]. Soundness follows directly from encoding non-spuriousness into
the constraint Concretize(π̄) ∧ Cover(π̄), as defined in Sect. 4.

Corollary 2 (Soundness). Algorithm 1 is sound. That is, if the algorithm
computes a non-spurious error path, then there is a configuration in ↑ERR that
is reachable in CS(A).

With Lemma 1, the following lemma proves the algorithm’s completeness.

Lemma 5 (Completeness). If ACS(A) has a non-spurious error path π̄, then
Algorithm 1 will find it.

Termination. Since Algorithm 1 is sound and complete, it will terminate when-
ever CS has a path that covers Σspec. However, Lines 21 and 25 of the algorithm
could create cycles in errGraph. In the presence of cycles however, the algo-
rithm could compute an infinite sequence of error paths. Therefore, we proved
the following theorem.

Theorem 1. If ∀r ∈ R : r.uv ∈ |N0||Γ | ∧ r.τ = ∅, then Algorithm 1 terminates.

It is important to note that if errGraph is acyclic, the algorithm is also
guaranteed to terminate. This includes the case when errGraph is empty, i.e.,
the corresponding ACS has neither spurious nor non-spurious error paths. The
algorithm also terminates if no cycle in errGraph has decrements or resets.

Parameterized Verification via Extended Threshold Automata 649

6 Reachability via (0, 1)-Abstraction

Two configurations σ, σ′ may be comparable with respect to order � even if some
location l is occupied in σ while it is not occupied in σ′. This implies that an algo-
rithm based on upward-closed sets wrt. � cannot be used to decide reachability
properties. Furthermore, note that coverability and reachability specifications
(Definition 6 and 7) are agnostic to the precise number of processes in each loca-
tion, i.e., they require only to distinguish between locations that are occupied
by one or more processes and those that are not occupied.

To enable reachability checking and to enhance the performance of our algo-
rithm for (non-general) coverability checking, we introduce a second, similar
abstraction of our system model as in [39], where each counter can only assume
one of two values: 1 to indicate that the location is currently occupied by at least
one process; and 0 to indicate that it is not occupied.

(0, 1)-Configuration. Given an abstract threshold automaton A = (L, I, Γ ,Π,
R), a (0, 1)-configuration is a tuple σz = (kz, g), where kz ∈ B

|L|, and g is
defined as before. That is kz[i] indicates the presence (1) or absence (0) of at
least one process at location i.

Definition 8. A (0, 1)-counter system (or ZCS) of A = (L, I, Γ ,Π,R), is a
transition system ZCS(A) = (Σz, Σz

0 , T z), where:

– Σz = B
|L| × D|Γ |, is the set of (0, 1)-configurations

– Σz
0 ⊆ Σz is the set of (0, 1)-configurations σz that satisfy the following:
• ∀i ∈ Γ : σz.g[i] = I0
• ∀i ∈ L : σz.kz[i] = 1 =⇒ i ∈ I

– the transition relation T z is the set of transitions (σz, r, σz ′) with:
• r = {from,→, ϕ,uv} ∈ R
• σz.g |= r.ϕ
• σz.kz[r.from] = 1 and (σz ′.kz[r.from] = 0 or σz ′.kz[r.from] = 1)
• σz ′.kz[r. →] = 1
• σz ′.g = σz.g+̇uv
• ∀xi ∈ r.τ : σz ′.g[i] = I0

Paths. A sequence σz
0, r0, σ

z
1, . . . , σ

z
k−1, rk−1, σ

z
k of alternating (0, 1)-

configur-ations and abstract rules is a path of ZCS(A) if ∀i < k we have
(σz

i, ri, σ
z
i+1) ∈ T z. We denote by Paths(ZCS(A)) the set of all paths of

ZCS(A).
We say that a 01-configuration σz satisfies a reachability specification Lspec,

denoted σz |= Lspec, if for all i ∈ L=0, σz.kz[i] = 0, and for all i ∈ L>0,
σz.kz[i] > 0. We say that ZCS(A) satisfies Lspec, denoted ZCS(A) |= Lspec, if
there is a non-spurious path of ZCS(A) that ends in σz with σz |= Lspec.

650 T. Baumeister et al.

Together with Lemma 2, the following lemma shows that our (0, 1)-
abstraction is precise for reachability and coverability specifications. In other
words, we have ZCS(A) |= Lspec if and only if CS(A) |= Lspec, given that Lspec

is a reachability or coverability specification.

Lemma 6. Let A = (L, I, Γ ,Π,R) be an abstract TA, and Lspec a reachability
or coverability specification. We assume w.l.o.g. that I = {l0}.

Then, there exists a path σz
0, r0, σ

z
1, . . . , rn−1, σ

z
n ∈ Paths(ZCS(A)) such

that σz
n |= Lspec if and only if there exists a path σ0, r0, σ1, . . . , rm−1, σm ∈

Paths(ACS(A)) such that σm |= Lspec.

6.1 Parameterized Reachability Algorithm (PRA)

Our algorithm PRA for solving the parameterized reachability problem accepts
two input parameters: a 01-counter system ZCS(A) and a finite set of error
configurations ERR ⊆ Σz. It outputs either “The system is safe” to indicate that
no (0, 1)-configuration in ERR is reachable, or an error path of ZCS(A). PRA
is very similar to Algorithm 1, differing primarily in the approach to computing
the predecessor set. Instead of checking if two configurations are comparable,
we look for equality. Moreover, in contrast to Algorithm 1, checking whether an
error path πz in ZCS(A) is spurious is based on constraint Reach(πz) instead of
Cover(πz), as described in Sect. 4. More details on PRA can be found in [10].

Just like Algorithm 1, we have demonstrated soundness and completeness of
PRA in a general context, along with termination, subject to the restrictions
outlined in Theorem 1. Moreover, with minimal adjustments to the reachability
algorithm, we can also check coverability within a ZCS (see again [10]).

7 Implementation and Experimental Evaluation

We implemented Algorithm 1 with explicit, unbounded integer counters and
PRA symbolically, leveraging CUDD Decision Diagrams [55] as BDD package.
Both use Z3 [25] as SMT solver back-end. We evaluated our implementations
on an AMD Ryzen 7 5800X CPU, running at 3.8 GHz with 32 GiB memory of
system memory. For comparisons with ByMC [46], the state-of-the-art model
checker for threshold automata, we executed the tool in the VM provided by
the authors on the same machine, with 6 out of 8 cores and 25GiB of the total
system memory. To ensure an equal environment, we also executed our tool in
a virtual machine with the same restrictions.4

4 The benchmark files and a container image with our tool are available on Zenodo [9].

Parameterized Verification via Extended Threshold Automata 651

Table 1. Comparison of execution time
(in s) between ByMC [46] and our sym-
bolic implementation of PRA. In the Prop.
column, A denotes agreement, V denotes
validity, and U denotes unforgeability. TO
denotes a timeout after 1.5 h.

Benchmark Prop. ByMC PRA

aba U 0.52 0.12
bcrb U 0.30 0.06
bosco V 42.22 0.73
c1cs V TO 0.23
cc A, V 0.24 0.24
cf1s V 380.81 0.42
frb U 0.19 0.07
nbacg A 0.18 0.36
nbacr V 0.19 0.14
strb U 0.17 0.12
RB-bc A,V 0.32 0.49
RB V TO 1.03
RB-Simpl V TO 61.77

As benchmarks in our decid-
able fragment, we used the follow-
ing threshold-based algorithms from
the literature [42]: folklore reliable
broadcast (frb) [20], one-step consen-
sus with zero-degradation (cf1s) [18],
consensus in one communication
step (c1cs) [19], consistent broadcast
(strb), asynchronous byzantine agree-
ment (aba) [17], non-blocking atomic
commit (nbacr [53] and nbacg [34]),
condition-based consensus (cc) [50],
and byzantine one step consensus
(bosco) [56]. Moreover, we considered
the following parts of the Red Belly
blockchain [22], which have already
been modeled as TA in [12]: the
broadcast protocol (RB-bc), the one-
round consensus protocol (RB), and a
simplified one-round consensus proto-
col (RB-Simpl).

We verified interesting safety spec-
ifications: agreement (consistent deci-
sions among correct processes), valid-
ity (the value that has been decided must have been proposed by some process),
and unforgeability (if all correct processes have an initial value of 0, then no
correct process ever accepts).

Table 1 compares execution times of ByMC and our implementation of PRA.
It shows that PRA significantly outperforms ByMC on all benchmarks except
two. Except for Red Belly protocols, our non-symbolic implementation can verify
all the benchmarks above in less than 2 min.

For the undecidable fragment, we used our extended model of TA to model
the following FTDAs from the literature: reliable broadcast [57], k-set agree-
ment [21], multi-round simplified Red Belly blockchain consensus [22], multi-
round full Red Belly blockchain consensus [22], and phase king consensus [11].
Note that, in [12], only the one-round protocols were modeled, and only the
simple version was verified. In contrast, we can model the multi-round versions,
and were able to verify all (single- and multi-round) versions except one.

652 T. Baumeister et al.

Table 2. Execution time
(in s) for PRA on multi-
round protocols. TO denotes
a timeout after 2 h.

Benchmark PRA

multiR-floodMin 0.3
multiR-RelBrd 0.1
multiR-RB-Simpl 6859
multiR-RB TO
phase-king-buggy 120
phase-king-partial 300

For the aforementioned TAs, we conducted our
experiments on a machine with 2x AMD EPYC
7773x - 128 Cores, 256 Threads and 2TB RAM.
Table 2 presents execution for running our sym-
bolic implementation on all the aforementioned
multi-round protocols. For the phase-king proto-
col, PRA was able to locate a bug in an incorrect
model of the algorithm within 2 minutes, and was
also able to prove partial correctness properties,
for example that consensus is actually reachable,
in around 5 min. We verified validity for all the
remaining benchmarks, and for floodmin we veri-
fied additionally agreement. During benchmarking,
memory usage peaked at 73 GB.

8 Related Work

After presenting an approach for verifying FTDAs based on abstraction [40],
Konnov et al. [43–46] developed several approaches and algorithms specif-
ically tailored for verifying the safety and liveness properties of threshold
automata. Starting from an acyclic CFA (control flow automaton), they con-
struct in [40] a finite counter system using parametric interval abstraction for
variables and counters. To refine the abstraction, they detect spurious tran-
sitions using ordinary model checking and user-defined invariants. Subsequent
works [43,45] improve on the efficiency when verifying reachability properties
in TAs. In [45], they showed the existence of an upper bound on the distance
between states within counter systems of TAs, hence, demonstrating the com-
pleteness of bounded model checking. In [43], the authors use partial order reduc-
tion to generate a finite set of sequences comprising sets of guards and rules. Each
of these sequences represents a possibly infinite set of error traces. An SMT solver
is employed to validate the existence of concrete error traces. Extending [43],
Konnov et al. presented an approach capable of detecting lasso-shaped traces
that violate a given liveness property [44]. The latter two approaches have been
implemented in the tool ByMC [46]. To enable the functionality of all afore-
mentioned approaches, the authors found it necessary to impose constraints
on threshold automata. This involved explicitly prohibiting cycles and variable
decrements.

A verification tool for parameterized distributed algorithms has been intro-
duced in [59]. The tool relies on layered threshold automata [14] as a sys-
tem model, which can be seen as an infinitely repeating threshold automata.
However, the tool requires users to identify layers (rounds) in the model, their
sequence (infinite interleaving or lasso-shaped sequences), and to provide predi-
cates.

Decidability and the complexity of verification and synthesis of threshold
automata have also been studied in [8]. Their decision procedure is based on

Parameterized Verification via Extended Threshold Automata 653

an SMT encoding of potential error paths, where in general the size of the
SMT formula grows exponentially with the length of the paths. While having
achieved good results with some heuristics that avoid this exponential blow-
up in practice, we believe that these heuristics would not work for threshold
automata with decrements and/or resets5. Moreover, their method requires a
bound on the number of changes in the valuation of thresholds. However, such
a constraint does not apply in the presence of decrements and/or resets.

9 Conclusion

In this paper, we have introduced an extension of the computational model
known as threshold automata, to support decrements and resets of shared vari-
ables. This extension in general comes at the cost of decidability, even for simple
state-reachability properties. We developed a semi-decision procedure for this
extended notion of TA, supporting not only the simple coverability properties
from the TA literature, but also general coverability properties as known from
Petri nets or well-structured systems. To support also reachability properties, we
presented an additional abstraction, called (0, 1)-abstraction, which is the basis
for a semi-decision procedure for reachability properties of extended TAs.

We have implemented our techniques and evaluated them on examples from
the literature, and on several round-based algorithms that cannot be modeled
with canonical TAs. We show that our semi-decision procedure can find bugs
in a faulty protocol and prove correctness of protocols, even outside the known
decidable fragment. Moreover, on a set of benchmarks in the decidable fragment,
it matches or outperforms the TA model checker ByMC [46].

Acknowledgments. T. Baumeister and P. Eichler carried out this work as members
of the Saarbrücken Graduate School of Computer Science. This research was funded in
whole or in part by the German Research Foundation (DFG) grant 513487900 and the
Luxembourg National Research Fund (FNR) grant C22/IS/17432184. For the purpose
of open access, and in fulfilment of the obligations arising from the grant agreement,
the author has applied a Creative Commons Attribution 4.0 International (CC BY 4.0)
license to any Author Accepted Manuscript version arising from this submission.

Data Availability. The program, benchmark scripts and the benchmark files as eval-

uated in Sect. 7 are available at https://doi.org/10.5281/zenodo.12527556.

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: General decidability theorems
for infinite-state systems. In: Proceedings 11th Annual IEEE Symposium on Logic
in Computer Science, pp. 313–321. IEEE (1996)

2. Abdulla, P.A., Haziza, F., Hoĺık, L.: Parameterized verification through view
abstraction. Int. J. Softw. Tools Technol. Transf. 18(5), 495–516 (2016). https://
doi.org/10.1007/S10009-015-0406-X

5 We could not verify this conjecture since their code is not publicly available.

https://doi.org/10.5281/zenodo.12527556
https://doi.org/10.1007/S10009-015-0406-X
https://doi.org/10.1007/S10009-015-0406-X

654 T. Baumeister et al.

3. Aminof, B., Jacobs, S., Khalimov, A., Rubin, S.: Parameterized model checking of
token-passing systems. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS,
vol. 8318, pp. 262–281. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54013-4 15

4. Aminof, B., Kotek, T., Rubin, S., Spegni, F., Veith, H.: Parameterized model
checking of rendezvous systems. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014.
LNCS, vol. 8704, pp. 109–124. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44584-6 9

5. Außerlechner, S., Jacobs, S., Khalimov, A.: Tight cutoffs for guarded protocols
with fairness. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol.
9583, pp. 476–494. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49122-5 23

6. Balasubramanian, A.R., Bertrand, N., Markey, N.: Parameterized verification
of synchronization in constrained reconfigurable broadcast networks. In: Beyer, D.,
Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 38–54. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89963-3 3

7. Balasubramanian, A.R., Guillou, L., Weil-Kennedy, C.: Parameterized analysis of
reconfigurable broadcast networks. In: FoSSaCS 2022. LNCS, vol. 13242, pp. 61–80.
Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99253-8 4

8. Balasubramanian, A.R., Esparza, J., Lazić, M.: Complexity of verification and
synthesis of threshold automata. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020.
LNCS, vol. 12302, pp. 144–160. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-59152-6 8

9. Baumeister, T., Eichler, P., Jacobs, S., Sakr, M., Völp, M.: Parameterized verifi-
cation of round-based distributed algorithms via extended threshold automata -.
Artifact (2024). https://doi.org/10.5281/zenodo.12513748

10. Baumeister, T., Eichler, P., Jacobs, S., Sakr, M., Völp, M.: Parameterized veri-
fication of round-based distributed algorithms via extended threshold automata
(2024). https://arxiv.org/abs/2406.19880

11. Berman, P., Garay, J.A., Perry, K.J., et al.: Towards optimal distributed consensus.
In: FOCS, vol. 89, pp. 410–415 (1989)

12. Bertrand, N., Gramoli, V., Konnov, I., Lazic, M., Tholoniat, P., Widder, J.: Holistic
verification of blockchain consensus. In: DISC. LIPIcs, vol. 246, pp. 10:1–10:24.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

13. Bertrand, N., Thomas, B., Widder, J.: Guard automata for the verification
of safety and liveness of distributed algorithms. In: Haddad, S., Varacca, D.
(eds.) 32nd International Conference on Concurrency Theory, CONCUR 2021,
August 24–27, 2021, Virtual Conference. LIPIcs, vol. 203, pp. 15:1–15:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/10.
4230/LIPICS.CONCUR.2021.15

14. Bertrand, N., Thomas, B., Widder, J.: Guard automata for the verification of safety
and liveness of distributed algorithms. In: Concur 2021-International Conference
on Concurrency Theory, pp. 1–17 (2021)

15. Bloem, R., et al.: Decidability of Parameterized Verification. Synthesis Lectures on
Distributed Computing Theory, Morgan & Claypool Publishers (2015). https://
doi.org/10.2200/S00658ED1V01Y201508DCT013

16. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:
Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418.
Springer, Heidelberg (2000). https://doi.org/10.1007/10722167 31

17. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. J. ACM
(JACM) 32(4), 824–840 (1985)

https://doi.org/10.1007/978-3-642-54013-4_15
https://doi.org/10.1007/978-3-642-54013-4_15
https://doi.org/10.1007/978-3-662-44584-6_9
https://doi.org/10.1007/978-3-662-44584-6_9
https://doi.org/10.1007/978-3-662-49122-5_23
https://doi.org/10.1007/978-3-662-49122-5_23
https://doi.org/10.1007/978-3-319-89963-3_3
https://doi.org/10.1007/978-3-030-99253-8_4
https://doi.org/10.1007/978-3-030-59152-6_8
https://doi.org/10.1007/978-3-030-59152-6_8
https://doi.org/10.5281/zenodo.12513748
https://arxiv.org/abs/2406.19880
https://doi.org/10.4230/LIPICS.CONCUR.2021.15
https://doi.org/10.4230/LIPICS.CONCUR.2021.15
https://doi.org/10.2200/S00658ED1V01Y201508DCT013
https://doi.org/10.2200/S00658ED1V01Y201508DCT013
https://doi.org/10.1007/10722167_31

Parameterized Verification via Extended Threshold Automata 655

18. Brasileiro, F., Greve, F., Mostefaoui, A., Raynal, M.: Consensus in one commu-
nication step. In: Malyshkin, V. (ed.) PaCT 2001. LNCS, vol. 2127, pp. 42–50.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44743-1 4

19. Brasileiro, F., Greve, F., Mostefaoui, A., Raynal, M.: Consensus in one commu-
nication step. In: Malyshkin, V. (ed.) PaCT 2001. LNCS, vol. 2127, pp. 42–50.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44743-1 4

20. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM (JACM) 43(2), 225–267 (1996)

21. Chaudhuri, S., Erlihy, M., Lynch, N.A., Tuttle, M.R.: Tight bounds for k-set agree-
ment. J. ACM (JACM) 47(5), 912–943 (2000)

22. Crain, T., Gramoli, V., Larrea, M., Raynal, M.: DBFT: efficient leaderless byzan-
tine consensus and its application to blockchains. In: 2018 IEEE 17th International
Symposium on Network Computing and Applications (NCA), pp. 1–8. IEEE (2018)

23. Crain, T., Natoli, C., Gramoli, V.: Red belly: a secure, fair and scalable open
blockchain. In: SP, pp. 466–483. IEEE (2021)

24. Czerwinski, W., Orlikowski, L.: Reachability in vector addition systems is
Ackermann-complete. In: 62nd IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022. pp. 1229–1240.
IEEE (2021). https://doi.org/10.1109/FOCS52979.2021.00120

25. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

26. Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of ad hoc net-
works. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp.
313–327. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-
4 22

27. Emerson, E.A., Kahlon, V.: Model checking guarded protocols. In: LICS, pp. 361–
370. IEEE Computer Society (2003). https://doi.org/10.1109/LICS.2003.1210076

28. Emerson, E.A., Namjoshi, K.S.: On reasoning about rings. Found. Comput. Sci.
14(4), 527–549 (2003). https://doi.org/10.1142/S0129054103001881

29. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few. In:
McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831, pp. 236–254. Springer,
Heidelberg (2000). https://doi.org/10.1007/10721959 19

30. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In:
LICS, pp. 352–359. IEEE Computer Society (1999). https://doi.org/10.1109/LICS.
1999.782630

31. Finkel, A.: The minimal coverability graph for Petri nets. In: Rozenberg, G. (ed.)
ICATPN 1991. LNCS, vol. 674, pp. 210–243. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-56689-9 45

32. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theo-
ret. Comput. Sci. 256(1–2), 63–92 (2001)

33. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM
39(3), 675–735 (1992). https://doi.org/10.1145/146637.146681

34. Guerraoui, R.: Non-blocking atomic commit in asynchronous distributed systems
with failure detectors. Distrib. Comput. 15(1), 17–25 (2002)

35. Hawblitzel, C., et al.: Ironfleet: proving safety and liveness of practical distributed
systems. Commun. ACM 60(7), 83–92 (2017). https://doi.org/10.1145/3068608

36. Jaber, N., Jacobs, S., Wagner, C., Kulkarni, M., Samanta, R.: Parameterized veri-
fication of systems with global synchronization and guards. In: Lahiri, S.K., Wang,
C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 299–323. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-53288-8 15

https://doi.org/10.1007/3-540-44743-1_4
https://doi.org/10.1007/3-540-44743-1_4
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-15375-4_22
https://doi.org/10.1007/978-3-642-15375-4_22
https://doi.org/10.1109/LICS.2003.1210076
https://doi.org/10.1142/S0129054103001881
https://doi.org/10.1007/10721959_19
https://doi.org/10.1109/LICS.1999.782630
https://doi.org/10.1109/LICS.1999.782630
https://doi.org/10.1007/3-540-56689-9_45
https://doi.org/10.1007/3-540-56689-9_45
https://doi.org/10.1145/146637.146681
https://doi.org/10.1145/3068608
https://doi.org/10.1007/978-3-030-53288-8_15

656 T. Baumeister et al.

37. Jaber, N., Wagner, C., Jacobs, S., Kulkarni, M., Samanta, R.: Quicksilver: model-
ing and parameterized verification for distributed agreement-based systems. Proc.
ACM Program. Lang. 5(OOPSLA), 1–31 (2021). https://doi.org/10.1145/3485534

38. Jacobs, S., Sakr, M.: Analyzing guarded protocols: better cutoffs, more systems,
more expressivity. In: VMCAI 2018. LNCS, vol. 10747, pp. 247–268. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-73721-8 12

39. Jacobs, S., Sakr, M., Völp, M.: Automatic repair and deadlock detection for param-
eterized systems. In: Conference on Formal Methods in Computer-Aided Design–
FMCAD 2022, p. 225 (2022)

40. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Parameterized model
checking of fault-tolerant distributed algorithms by abstraction. In: 2013 Formal
Methods in Computer-Aided Design. pp. 201–209. IEEE (2013)

41. Kaiser, A., Kroening, D., Wahl, T.: Dynamic cutoff detection in parameterized
concurrent programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS,
vol. 6174, pp. 645–659. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14295-6 55

42. Konnov, I.: Fault-tolerant benchmarks. https://github.com/konnov/fault-
tolerant-benchmarks/tree/master/cav15

43. Konnov, I., Lazić, M., Veith, H., Widder, J.: Para 2: parameterized path reduc-
tion, acceleration, and SMT for reachability in threshold-guarded distributed algo-
rithms. Formal Meth. Syst. Des. 51(2), 270–307 (2017)

44. Konnov, I., Lazić, M., Veith, H., Widder, J.: A short counterexample property for
safety and liveness verification of fault-tolerant distributed algorithms. In: Pro-
ceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, pp. 719–734 (2017)

45. Konnov, I., Veith, H., Widder, J.: On the completeness of bounded model checking
for threshold-based distributed algorithms: reachability. Inf. Comput. 252, 95–109
(2017)

46. Konnov, I., Widder, J.: ByMC: byzantine model checker. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2018. LNCS, vol. 11246, pp. 327–342. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03424-5 22

47. Kukovec, J., Konnov, I., Widder, J.: Reachability in parameterized systems: all
flavors of threshold automata. In: CONCUR 2018-29th International Conference
on Concurrency Theory (2018)

48. Marić, O., Sprenger, C., Basin, D.: Cutoff bounds for consensus algorithms. In:
Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 217–237.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 12

49. McMillan, K.L., Padon, O.: Ivy: a multi-modal verification tool for distributed
algorithms. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp.
190–202. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53291-8 12

50. Mostéfaoui, A., Mourgaya, E., Parvédy, P.R., Raynal, M.: Evaluating the condition-
based approach to solve consensus. In: 2003 International Conference on Depend-
able Systems and Networks, 2003. Proceedings, pp. 541–541. IEEE Computer Soci-
ety (2003)

51. Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theoret. Comput. Sci. 6(2), 223–231 (1978)

52. Rahli, V., Guaspari, D., Bickford, M., Constable, R.L.: Formal specification, ver-
ification, and implementation of fault-tolerant systems using eventml. Electron.
Commun. Eur. Assoc. Softw. Sci. Technol. 72 (2015). https://doi.org/10.14279/
TUJ.ECEASST.72.1013

https://doi.org/10.1145/3485534
https://doi.org/10.1007/978-3-319-73721-8_12
https://doi.org/10.1007/978-3-642-14295-6_55
https://doi.org/10.1007/978-3-642-14295-6_55
https://github.com/konnov/fault-tolerant-benchmarks/tree/master/cav15
https://github.com/konnov/fault-tolerant-benchmarks/tree/master/cav15
https://doi.org/10.1007/978-3-030-03424-5_22
https://doi.org/10.1007/978-3-319-63390-9_12
https://doi.org/10.1007/978-3-030-53291-8_12
https://doi.org/10.14279/TUJ.ECEASST.72.1013
https://doi.org/10.14279/TUJ.ECEASST.72.1013

Parameterized Verification via Extended Threshold Automata 657

53. Raynal, M.: A case study of agreement problems in distributed systems: non-
blocking atomic commitment. In: Proceedings 1997 High-Assurance Engineering
Workshop, pp. 209–214. IEEE (1997)

54. Schmitz, S., Schnoebelen, P.: The power of well-structured systems. In: D’Argenio,
P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 5–24. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40184-8 2

55. Somenzi, F.: CUDD: cu decision diagram package release 2.3. 0. University of
Colorado at Boulder 621 (1998)

56. Song, Y.J., van Renesse, R.: Bosco: one-step byzantine asynchronous consensus.
In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 438–450. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-87779-0 30

57. Srikanth, T., Toueg, S.: Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Distrib. Comput. 2(2), 80–94 (1987)

58. Suzuki, I.: Proving properties of a ring of finite-state machines. Inf. Process. Lett.
28(4), 213–214 (1988). https://doi.org/10.1016/0020-0190(88)90211-6

59. Thomas, B., Sankur, O.: Pylta: a verification tool for parameterized distributed
algorithms. In: International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, pp. 28–35. Springer, Cham (2023). https://doi.
org/10.1007/978-3-031-30820-8 4

60. Wilcox, J.R., et al.: Verdi: a framework for implementing and formally verifying
distributed systems. In: Grove, D., Blackburn, S.M. (eds.) Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, Portland, OR, USA, June 15–17, 2015, pp. 357–368. ACM (2015). https://
doi.org/10.1145/2737924.2737958

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-40184-8_2
https://doi.org/10.1007/978-3-540-87779-0_30
https://doi.org/10.1016/0020-0190(88)90211-6
https://doi.org/10.1007/978-3-031-30820-8_4
https://doi.org/10.1007/978-3-031-30820-8_4
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2737924.2737958
http://creativecommons.org/licenses/by/4.0/

The Nonexistence of Unicorns
and Many-Sorted Löwenheim–Skolem

Theorems

Benjamin Przybocki1(B) , Guilherme Toledo2 , Yoni Zohar2 ,
and Clark Barrett1

1 Stanford University, Stanford, USA
benjamin.przybocki@gmail.com, barrett@cs.stanford.edu

2 Bar-Ilan University, Ramat Gan, Israel

Abstract. Stable infiniteness, strong finite witnessability, and smooth-
ness are model-theoretic properties relevant to theory combination in
satisfiability modulo theories. Theories that are strongly finitely witness-
able and smooth are called strongly polite and can be effectively combined
with other theories. Toledo, Zohar, and Barrett conjectured that stably
infinite and strongly finitely witnessable theories are smooth and there-
fore strongly polite. They called counterexamples to this conjecture uni-
corn theories, as their existence seemed unlikely. We prove that, indeed,
unicorns do not exist. We also prove versions of the Löwenheim–Skolem
theorem and the Łoś–Vaught test for many-sorted logic.

1 Introduction

Given decision procedures for theories T1 and T2 with disjoint signatures, is there
a decision procedure for T1 ∪T2? In general, the answer is “not necessarily”, but a
central question in Satisfiability Modulo Theories (SMT) [3] is: what assumptions
on T1 and T2 suffice for theory combination? This line of research began with
Nelson and Oppen’s theory combination procedure [15], which applies when T1

and T2 are stably infinite, roughly meaning that every Ti-satisfiable quantifier-
free formula is satisfied by an infinite Ti-interpretation for i ∈ {1, 2}.

The Nelson–Oppen procedure is quite useful, but requires both theories to
be stably infinite, which is not always the case (e.g., the theories of bit-vectors
and finite datatypes are not stably infinite). Thus, sufficient properties of only
one of the theories were identified, such as gentleness [7], shininess [20], and
flexibility [9]. The most relevant property for our purposes is strong politeness
[4,8,18,19]. It is essential to the functioning of the SMT solver cvc5 [1], which is
called billions of times per day in industrial production code. A theory is strongly
polite if it is smooth and strongly finitely witnessable, which are model-theoretic
properties we will define later. These properties are more involved than stable
infiniteness, so proving a theory to be strongly polite is more difficult. But the
advantage of strongly polite theories is that they can be combined with any other
decidable theory, including theories that are not stably infinite.
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 658–675, 2025.
https://doi.org/10.1007/978-3-031-71162-6_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_34&domain=pdf
http://orcid.org/0009-0007-5489-1733
http://orcid.org/0000-0002-6539-398X
http://orcid.org/0000-0002-2972-6695
http://orcid.org/0000-0002-9522-3084
https://doi.org/10.1007/978-3-031-71162-6_34

The Nonexistence of Unicorns 659

Given the abundance of model-theoretic properties relevant to theory com-
bination, some of which interact in subtle ways, it behooves us to understand
the logical relations between them. Recent papers [21,22] have sought to under-
stand the relations between seven model-theoretic properties—including stable
infiniteness, smoothness, and strong finite witnessability—by determining which
combinations of properties are possible in various signatures. In most cases, a
theory with the desired combination of properties was constructed, or it was
proved that none exists. The sole exception was theories that are stably infinite
and strongly finitely witnessable but not smooth, dubbed unicorn theories and
conjectured not to exist. Our main result, Theorem 2, confirms this conjecture.

Besides completing the taxonomy of properties from [21,22], our result has
practical consequences. The nonexistence of unicorns implies that strongly polite
theories can be equivalently defined as those that are stably infinite and strongly
finitely witnessable. Since it is easier to prove that a theory is stably infinite than
to prove that it is smooth, this streamlines the process of proving that a theory
is strongly polite. Thus, each time a new theory is introduced, proving that it
can be combined with other theories becomes easier.1 Similarly, our results give
a new characterization of shiny theories, which makes it easier to prove that a
theory is amenable to the shiny combination procedure (see Corollary 2).

We also believe that our result is of theoretical interest. Theorem 3, which
is the main ingredient in the proof of Theorem 2, can be seen as a variant of
the upward Löwenheim–Skolem theorem for many-sorted logic, since proving
that a theory is smooth amounts to proving that cardinalities of sorts can be
increased arbitrarily, including to uncountable cardinals. This result may be of
independent interest to logicians studying the model theory of many-sorted logic,
and we hope the proof techniques are useful to them as well.

Speaking of proof techniques, our proof is curious in that it uses Ramsey’s
theorem from finite combinatorics. This is not the first time Ramsey’s theorem
has been used in logic. Ramsey proved his theorem in the course of solving a
special case of the decision problem for first-order logic [17]. Ramsey’s theorem
also shows up in the Ehrenfeucht–Mostowski construction in model theory [5].
Our proof actually requires a generalization of Ramsey’s theorem, which we
prove using the standard version of Ramsey’s theorem.

A major component of the proof of Theorem 2 amounts to proving a many-
sorted version of the Löwenheim–Skolem theorem. On the course to proving this,
we realized that a proper understanding of this theorem for many-sorted logic
appears to be missing from the literature, despite the fact that the SMT-LIB
standard [2] is based on many-sorted logic. To fill this gap, we prove generaliza-
tions of the Löwenheim–Skolem theorem for many-sorted logic, and use them to
prove a many-sorted Łoś–Vaught test, useful for proving theory completeness.

The remainder of this paper is structured as follows. Section 2 provides back-
ground and definitions on many-sorted logic and SMT. Section 3 proves the main

1 [21] already proved that stably infinite and strongly finitely witnessable theories
can be combined with other theories. Our result gives a new proof (see Corollary 1),
and shows that their procedure is not more general than polite combination.

660 B. Przybocki et al.

result of this paper, namely the nonexistence of unicorn theories. Section 4 proves
new many-sorted variants of the Löwenheim–Skolem theorem. Section 5 con-
cludes and presents directions for future work.2

2 Preliminaries

2.1 Many-Sorted First-Order Logic

We work in many-sorted first-order logic [14]. A signature Σ consists of a non-
empty set SΣ of sorts, a set FΣ of function symbols, and a set PΣ of predicate
symbols containing an equality symbol =σ for every sort σ ∈ SΣ .3 Every func-
tion symbol has an arity (σ1, . . . , σn, σ) and every predicate symbol an arity
(σ1, . . . , σn), where σ1, . . . , σn, σ ∈ SΣ and n ≥ 0. Every equality symbol =σ has
arity (σ, σ). To quantify a variable x of sort σ, we write ∀x : σ. and ∃x : σ. for the
universal and existential quantifiers respectively. Let |Σ| = |SΣ |+ |FΣ |+ |PΣ |. If
a signature contains only sorts and equalities, we say it is empty. Two signatures
are said to be disjoint if they share at most sorts and equality symbols.

We define Σ-terms and Σ-formulas as usual. The set of free variables of sort
σ in ϕ is denoted varsσ(ϕ). For S ⊆ SΣ , let varsS(ϕ) =

⋃
σ∈S varsσ(ϕ). We also

let vars(ϕ) = varsSΣ
(ϕ). A Σ-sentence is a Σ-formula with no free variables.

A Σ-structure A interprets each sort σ ∈ SΣ as a nonempty set σA, each
function symbol f ∈ FΣ as a function fA with the appropriate domain and
codomain, and each predicate symbol P ∈ PΣ as a relation PA over the appro-
priate set, such that =A

σ is the identity on σA. A Σ-interpretation A is a pair
(A, ν), where A is a Σ-structure and ν is a function, called an assignment, map-
ping each variable x of sort σ to an element ν(x) ∈ σA, denoted xA. We write
tA for the interpretation of the Σ-term t under A, which is defined in the usual
way. The entailment relation, denoted �, is defined as usual.

Two structures are elementarily equivalent if they satisfy the same sentences.
We say that A is an elementary substructure of B if A is a substructure of B

and, for all formulas ϕ and all assignments ν on A, we have (A, ν) � ϕ if and
only if (B, ν) � ϕ. Note that if A is an elementary substructure of B, then they
are elementarily equivalent. A is an elementary subinterpretation of B if A is an
elementary substructure of B and A’s assignment is the same as B’s assignment.

Given a Σ-structure A, let SA

≥ℵ0
= {σ ∈ SΣ : |σA| ≥ ℵ0} and SA

<ℵ0
=

SΣ \ SA

≥ℵ0
. We similarly define SA

≥ℵ0
and SA

<ℵ0
for a Σ-interpretation A.

A Σ-theory T is a set of Σ-sentences, called the axioms of T . We write 	T ϕ
instead of T � ϕ. Structures satisfying T are called T -models, and interpretations
satisfying T are called T -interpretations. We say a Σ-formula is T -satisfiable if it
is satisfied by some T -interpretation, and we say two Σ-formulas are T -equivalent
if every T -interpretation satisfies one if and only if it satisfies the other. T is

2 Due to lack of space, some proofs are omitted. They can be found in the arXiv
version of this paper [16].

3 When specifying a signature, we often omit the equality symbols, and include them
implicitly. We also omit σ from =σ when it does not cause confusion.

The Nonexistence of Unicorns 661

complete if for every sentence ϕ, we have 	T ϕ or 	T ¬ϕ. T is consistent if there
is no formula ϕ such that 	T ϕ and 	T ¬ϕ. If Σ1 and Σ2 are disjoint, let Σ1∪Σ2

be the signature with the union of their sorts, function symbols, and predicate
symbols. Given a Σ1-theory T1 and a Σ2-theory T2, the (Σ1 ∪Σ2)-theory T1 ∪T2

is the theory whose axioms are the union of the axioms of T1 and T2.
The following theorem, proved in [14], is a many-sorted variant of the first-

order compactness theorem.

Theorem 1 (Compactness Theorem [14]). A set of Σ-formulas Γ is satis-
fiable if and only if every finite subset of Γ is satisfiable.

We say that a Σ-theory T has built-in Skolem functions if for all formulas
ψ(−→x , y), there is f ∈ FΣ such that 	T ∀−→x . (∃ y. (ψ(−→x , y)) → ψ(−→x , f(−→x))).4
The following is a many-sorted variant of Lemma 2.3.6 of [12]. The proof is
almost identical to that of the single-sorted case from [12].

Lemma 1. If T is a Σ-theory for a countable Σ, then there is a countable
signature Σ∗ ⊇ Σ and Σ∗-theory T ∗ ⊇ T with built-in Skolem functions.

We state a many-sorted generalization of the Tarski–Vaught test, whose proof
is also similar to the single-sorted case [12, Proposition 2.3.5].

Lemma 2 (The Tarski–Vaught Test). Suppose A is a substructure of B.
Then, A is an elementary substructure of B if and only if (B, ν) � ∃ v. ϕ(−→x , v)
implies (A, ν) � ∃ v. ϕ(−→x , v) for every formula ϕ(−→x , v) and assignment ν over
A.

2.2 Model-Theoretic Properties

Definition 1. Let Σ be a many-sorted signature, S ⊆ SΣ, and T a Σ-theory.

– T is stably infinite with respect to S if for every T -satisfiable quantifier-free
formula ϕ, there is a T -interpretation A satisfying ϕ with |σA| ≥ ℵ0 for every
σ ∈ S.

– T is stably finite with respect to S if for every quantifier-free Σ-formula ϕ
and T -interpretation A satisfying ϕ, there is a T -interpretation B satisfying
ϕ such that |σB| ≤ |σA| and |σB| < ℵ0 for every σ ∈ S.

– T is smooth with respect to S if for every quantifier-free formula ϕ, T -
interpretation A satisfying ϕ, and function κ from S to the class of cardinals
such that κ(σ) ≥ |σA| for every σ ∈ S, there is a T -interpretation B satisfying
ϕ with |σB| = κ(σ) for every σ ∈ S.

Next, we define arrangements. Given a set of sorts S ⊆ SΣ , finite sets of
variables Vσ of sort σ for each σ ∈ S, and equivalence relations Eσ on Vσ, the
arrangement δV on V =

⋃
σ∈S Vσ induced by E =

⋃
σ∈S Eσ is

∧

σ∈S

⎡

⎣
∧

xEσy

(x = y) ∧
∧

xEσy

¬(x = y)

⎤

⎦ ,

4 Intuitively: T has enough function symbols to witness all existential formulas.

662 B. Przybocki et al.

where Eσ is the complement of Eσ.

Definition 2. Let Σ be a many-sorted signature, S ⊆ SΣ a finite set, and T a
Σ-theory. Then T is strongly finitely witnessable with respect to S if there is a
computable function wit from the quantifier-free formulas into themselves such
that for every quantifier-free formula ϕ:

(i) ϕ and ∃−→w .wit(ϕ) are T -equivalent, where −→w = vars(wit(ϕ)) \ vars(ϕ); and
(ii) given a finite set of variables V and an arrangement δV on V , if wit(ϕ)∧δV

is T -satisfiable, then there is a T -interpretation A satisfying wit(ϕ) ∧ δV

such that σA = varsσ(wit(ϕ) ∧ δV)A for every σ ∈ S.

2.3 Notation

N denotes the set of non-negative integers. Given m,n ∈ N, let [m,n] := {
 ∈ N :
m ≤
 ≤ n} and [n] := [1, n]. Given a set X, let Pn(X) := {Y ⊆ X : |Y | = n},
Xn := {(x1, . . . , xn) : xi ∈ X for all i ∈ [n]}, and X∗ :=

⋃
n∈N

Xn. For any x, we
denote (x, . . . , x) by (x)⊕n. Given a tuple of tuples (−→x1, . . . ,

−→xn), where −→xi ∈ X∗

for all i, we will often treat it as an element of X∗ by flattening the tuple.

3 The Nonexistence of Unicorns

We now state our main theorem, which implies that unicorn theories do not
exist. Note that since we are motivated by applications to SMT, we hereafter
assume all signatures are countable.5

Theorem 2. Assume that T is a Σ-theory, where Σ is countable. If T is stably
infinite and strongly finitely witnessable, both with respect to S ⊆ SΣ, then T is
smooth with respect to S.

For our proof, we define a weaker variant of smoothness, that focuses the
requirements only for finite cardinals.

Definition 3. A Σ-theory T is finitely smooth with respect to S ⊆ SΣ if for
every quantifier-free formula ϕ, T -interpretation A with A � ϕ, and function
κ from SA

<ℵ0
∩ S to the class of cardinals with |σA| ≤ κ(σ) < ℵ0 for every

σ ∈ SA
<ℵ0

∩ S, there is a T -interpretation B with B � ϕ with |σB| = κ(σ) for
every σ ∈ SA

<ℵ0
∩ S.

We make use of the following two lemmas.

Lemma 3. If T is stably infinite and strongly finitely witnessable, both with
respect to some set of sorts S ⊆ SΣ, then T is finitely smooth with respect to S.

Lemma 4 ([22, Theorem 3]). If T is strongly finitely witnessable with respect
to some set of sorts S ⊆ SΣ, then T is stably finite with respect to S.
5 The paper that introduced unicorn theories [21] also made this assumption.

The Nonexistence of Unicorns 663

In light of the above two lemmas, the following theorem implies Theorem 2.

Theorem 3. Assume that T is a Σ-theory, where Σ is countable. If T is stably
finite and finitely smooth, both with respect to some set of sorts S ⊆ SΣ, then T
is smooth with respect to S.

The remainder of this section is thus dedicated to the proof of Theorem 3.

3.1 Motivating the Proof

In this section, we illustrate the proof technique with a simple example. The goal
is to motivate the proof of Theorem 3 before delving into the details.

Suppose T is a Σ-theory, where SΣ = {σ1, σ2}, FΣ = {f}, f has arity
(σ2, σ1), and the only predicate symbols are equalities. Suppose that T is also
stably finite and finitely smooth, both with respect to S = SΣ . Let ϕ be a T -
satisfiable quantifier-free formula and A a T -interpretation satisfying ϕ. Let κ be
a function from S to the class of cardinals such that κ(σ) ≥ |σA| for both σ ∈ S.
For concreteness, suppose |σA

1 | = |σA
2 | = 10, κ(σ1) = ℵ0, and κ(σ2) = ℵ1. Our

goal is to show that there is a T -interpretation B− satisfying ϕ with |σB−
1 | = ℵ0

and |σB−
2 | = ℵ1.6

A natural thought is to apply some variant of the upward Löwenheim–Skolem
theorem, but this doesn’t quite work. As will be seen in Sect. 4, generalizations
of the Löwenheim–Skolem theorem to many-sorted logic do not let us control
the cardinalities of σ1 and σ2 independently. Nevertheless, let us emulate the
standard proof technique for the upward Löwenheim–Skolem theorem.

Here is the most natural way of generalizing the proof of the upward
Löwenheim–Skolem theorem to our setting. For simplicity, assume that T
already has built-in Skolem functions. We introduce ℵ0 new constants {c1,α}α<ω

and ℵ1 new constants {c2,α}α<ω1 . We define a set of formulas Γ = {ϕ}∪Γ1, where

Γ1 = {¬(ci,α = ci,β) : i ∈ {1, 2}; α, β < κ(σi); α �= β}.

By Theorem 1 and finite smoothness, there is a T -interpretation B satisfying Γ :
indeed, were that not true, Theorem 1 would guarantee that some finite subset
of Γ is unsatisfiable; yet such a set would only demand the existence of finitely
many new elements, which can be achieved by making use of finite smoothness.
Since B � Γ1, we have |σB

1 | ≥ ℵ0 and |σB
2 | ≥ ℵ1.

Since B may be too large, we construct a subinterpretation B− with

σB−
1 = {cB

1,α}α<ω ∪ {fB(cB
2,α)}α<ω1

σB−
2 = {cB

2,α}α<ω1 .

And using the assumption that T has built-in Skolem functions, we can prove
that B− is an elementary subinterpretation of B, so B− � Γ ; we can then prove

6 The reason for the − superscript in B− will be clear presently.

664 B. Przybocki et al.

that |σB−
2 | = ℵ1, but we unfortunately cannot guarantee that |σB−

1 | = ℵ0. This
is because B− has not only the ℵ1 elements {cB

2,α}α<ω1 of sort σ2, but also
the elements {fB(cB

2,α)}α<ω1 of sort σ1. The function symbol f has created a
“spillover” of elements from σ2 to σ1.

To fix this, we need to ensure that |{fB(cB
2,α)}α<ω1 | ≤ ℵ0. To that end, define

Γ to instead be {ϕ} ∪ Γ1 ∪ Γ2, where

Γ2 = {f(b) = f(d) : b, d ∈ {c2,α}α<ω1}.

Then, if there is a model B satisfying Γ , we have |{fB(cB
2,α)}α<ω1 | = 1 ≤ ℵ0. To

show Γ is T -satisfiable, it suffices by the compactness theorem to show that T ∪Γ ′

is satisfiable for every finite subset Γ ′ ⊆ Γ . So let Γ ′
1 ⊆ Γ1 and Γ ′

2 ⊆ Γ2 be finite
subsets. We will construct a T -interpretation B′ such that B′ � {ϕ} ∪ Γ ′

1 ∪ Γ ′
2.

For concreteness, suppose that {c1,0, c1,1, . . . , c1,99} and {c2,0, c2,1, . . . , c2,9} are
the new constants that appear in Γ ′

1 ∪ Γ ′
2. By finite smoothness, there is a T -

interpretation B′ satisfying ϕ such that |σB′
1 | = 100 and |σB′

2 | = 901. By the
pigeonhole principle, there is a subset Y ⊆ σB′

2 with |Y | ≥ 10 such that fB′
is

constant on Y ; if 901 pigeons are put in 100 holes, then some hole has at least
10 pigeons (although this is not true for 900 pigeons). Then, B′ can interpret
the constants {c1,0, c1,1, . . . , c1,99} as distinct elements of σB′

1 and the constants
{c2,0, c2,1, . . . , c2,9} as distinct elements of Y . This proves that Γ is T -satisfiable.

Fig. 1. How we move from inter-
pretation to interpretation

We illustrate the top level structure of the
proof idea in Fig. 1, applied to the working
example. The x axis represents cardinalities
of interpretations of σ1, and the y axis does
the same for σ2. Starting from the interpre-
tation A with |σA

1 | = |σA
2 | = 10, we con-

struct some interpretation B, represented by
the array of red dots as there is some degree
of uncertainty regarding the precise cardinal-
ities of its domains, with |σB

1 | ≥ ℵ0 and
|σB

2 | ≥ ℵ1. From B we hope to construct B−,
which has |σB−

1 | = ℵ0 and |σB−
2 | = ℵ1: the lat-

ter can be achieved using techniques similar to
the many-sorted Löwenheim-Skolem theorems
(see Sect. 4 below), while the former requires
the aforementioned pigeonhole principle argu-
ments.

The above proof sketch illustrates the main ideas behind the proof of Theo-
rem 3. The generalization to more sorts and function symbols requires some extra
bookkeeping. More interestingly, the generalization to functions of arity greater
than one requires a version of Ramsey’s theorem, which is a generalization of
the pigeonhole principle.

3.2 Ramsey’s Theorem and Generalizations

In this section, we state Ramsey’s theorem and a generalization of it.

The Nonexistence of Unicorns 665

Ramsey’s theorem is sometimes stated in terms of coloring the edges of hyper-
graphs, but for our purposes it is more convenient to state it as follows. In the
following lemma, the notations Pn(X) and [k] are defined as in Sect. 2.3.

Lemma 5 (Ramsey’s theorem [17, Theorem B]). For any k, n,m ∈ N,
there is an R(k, n,m) ∈ N such that for any set X with |X| ≥ R(k, n,m) and
function f : Pn(X) → [k], there is a subset Y ⊆ X with |Y | ≥ m such that f is
constant on Pn(Y).

Note that in Ramsey’s theorem, the set [k] can be replaced by any set of
cardinality k.

We want to generalize Ramsey’s theorem to functions f : Xn → [k]. The
most natural generalization would state that there is a large subset Y ⊆ X
such that f is constant on Y n. But this generalization is false, as the following
example shows.

Example 1. Let X = Z, and let f : X2 → [2] be given by

f(m,n) =

{
1 if m < n

2 otherwise.

Then, f(m,n) �= f(n,m) for all m,n ∈ X with m �= n. Thus, there is no subset
Y ⊆ X with |Y | ≥ 2 such that f is constant on Y 2.

To avoid counterexamples like this, our generalization needs to consider the
order of the arguments of f . This motivates the following definition.

Definition 4. Let (X,<) be a totally ordered set, and let −→x = (x1, . . . , xn) and
−→y = (y1, . . . , yn) be elements of Xn. We write −→x ∼ −→y if for every 1 ≤ i < j ≤ n
we have

xi < xj ⇐⇒ yi < yj and
xi = xj ⇐⇒ yi = yj .

Observe that ∼ is an equivalence relation on Xn with finitely many equiva-
lence classes.7

Now we can state our first generalization of Ramsey’s theorem.

Lemma 6. For any k, n,m ∈ N, there is an R∗(k, n,m) ∈ N such that for any
totally ordered set (X,<) with |X| ≥ R∗(k, n,m) and function f : Xn → [k],
there is a subset Y ⊆ X with |Y | ≥ m such that f is constant on each ∼-
equivalence class of Y n.

Next, we further generalize Ramsey’s theorem to multiple functions
f1, . . . , fr.

7 The number of equivalence classes is given by the ordered Bell numbers (https://
oeis.org/A000670).

https://oeis.org/A000670
https://oeis.org/A000670

666 B. Przybocki et al.

Lemma 7. For any k,m ∈ N and −→n = (n1, . . . , nr) ∈ N
r, there is a num-

ber R∗∗(k,−→n ,m) ∈ N, such that for any totally ordered set (X,<) with |X| ≥
R∗∗(k,−→n ,m) and functions fi : Xni → [k] for i ∈ [r], there is a subset Y ⊆ X
with |Y | ≥ m, such that fi is constant on each ∼-equivalence class of Y ni for all
i ∈ [r].

3.3 The Proof of Theorem 3

Fix a Σ-theory T and a set of sorts S ⊆ SΣ . Assume that Σ is countable.
Suppose that T is stably finite and finitely smooth, both with respect to S. Let
ϕ be a T -satisfiable quantifier-free formula and A a T -interpretation satisfying
ϕ. Let κ be a function from S to the class of cardinals such that κ(σ) ≥ |σA| for
every σ ∈ S.

Write S = {σ1, σ2, . . . } and, without loss of generality, assume κ(σ1) ≤
κ(σ2) ≤ · · · . For notational convenience, we write all Σ-terms in the form
t(−→x1,

−→x2, . . .),8 where −→xi is a tuple of variables of sort σi. If κ(σi) < ℵ0 for
all i, then we are done by the fact T is finitely smooth. Otherwise, let
 be the
largest natural number such that κ(σ�) < ℵ0 if there is such a number, and let

 = 0 otherwise.

The proof of Theorem 3 proceeds in two steps. First, we construct a set
of formulas Γ such that ϕ ∈ Γ and prove that there is a T -interpretation B
satisfying Γ . Second, we prove that B has an elementary subinterpretation B−

such that |σB−
i | = κ(σi) for all i. Since ϕ ∈ Γ , it will follow that T is smooth.

The assumption that T is stably finite and finitely smooth is used to construct
T -interpretations of the following form, which will be useful for a compactness
argument.

Lemma 8. There is a T -interpretation B satisfying ϕ such that |σB
i | = κ(σi)

for all i ≤
, and |σB
i | is arbitrarily large but finite for all i >
.

Proof. First, apply stable finiteness to get a T -interpretation A′ satisfying ϕ
such that |σA′

i | ≤ |σA
i | and |σA′

i | < ℵ0 for all i. Then, apply finite smoothness to
A′ with κ′ given by κ′(σi) = κ(σi) for all i ≤
 and κ′(σi) arbitrarily large but
finite for all i >
. ��

It will be convenient to work with a theory with built-in Skolem functions,
so we use Lemma 1 to get a Σ∗-theory T ∗ ⊇ T , where Σ∗ ⊇ Σ and Σ∗ is
countable. To construct our set of formulas Γ , we introduce κ(σi) new constants
{ci,α}α<κ(σi) of sort σi for each i. We consider these constants to be part of
an even larger signature Σ′ ⊇ Σ∗. In what follows, we construct sentences and
interpretations over Σ′. Impose an arbitrary total order on each {ci,α}α<κ(σi) to
be used for the ∼ relation. For the definition below, recall that given a set X,
we define X∗ =

⋃
n∈N

Xn.

8 Even if S is infinite, the denoted term is still finite since each term only has a finite
number of variables occurring in it.

The Nonexistence of Unicorns 667

Definition 5. We define a set of formulas Γ = {ϕ} ∪ Γ1 ∪ Γ2 ∪ Γ3, where

Γ1 ={¬(ci,α = ci,β) : 1 ≤ i ≤ |S|; α, β < κ(σi); α �= β}

Γ2 =
{

t
(−→c1 , . . . ,−→ci ,

−−→
bi+1,

−−→
bi+2, . . .

)
= t

(−→c1 , . . . ,−→ci ,
−−→
di+1,

−−→
di+2, . . .

)
:

t is a Σ∗ − term of sort σi; i >
; −→ck ,
−→
bk ,

−→
dk ∈ ({ck,α}α<κ(σk))∗

for all k;
−→
bj ∼ −→

dj for all j > i
}

Γ3 =

⎧
⎨

⎩
∀x : σi.

∨

α<κ(σi)

x = ci,α : i ≤

⎫
⎬

⎭
.

Note that the disjunctions in Γ3 are finite given the condition i ≤
.

Lemma 9. There is a T ∗-interpretation B such that B � Γ .

This lemma forms the core of the argument. By the compactness theorem, it
suffices to prove that for any finite subset Γ ′ ⊆ Γ , there is a T ∗-interpretation
B′ such that B′ � Γ ′. The tricky part is making B′ satisfy Γ ′∩Γ2. The strategy is
to use Lemma 8 to construct a model B′ in which |σB′

i+1| is very large in terms of
|σB′

i | for each i >
. Lemma 7 will ensure that there is some way of interpreting
the constants {ci,α}α<κ(σi) so that B′ � Γ ′ ∩ Γ2.

We are now ready to prove Theorem 3.

Proof (Theorem 3). By Lemma 9, there is a T ∗-interpretation B such that B � Γ .
Let

B =
{
tB

(
(−→c1)B, (−→c2)B, . . .

)
: t is a Σ∗-term; −→ci ∈ ({ci,α}α<κ(σi))

∗ for all i
}

.

For every f ∈ FΣ , the set B is closed under fB. Thus, we can define B− to
be the subinterpretation of B obtained by restricting the sorts, functions, and
predicates to B.9 Since the Σ∗-theory T ∗ has built-in Skolem functions, B− is
an elementary subinterpretation of B by Lemma 2. We claim |σB−

i | = κ(σi) for
all i.

First, {cB−
i,α }α<κ(σi) is a set of κ(σi) distinct elements in σB−

i , because B− �
Γ1. Thus, |σB−

i | ≥ κ(σi) for all i.
Second, |σB−

i | ≤ |{ci,α}α<κ(σi)| = κ(σi) for all i ∈ [
], as B− � Γ3.
Finally, it remains to show that |σB−

i | ≤ κ(σi) for all i >
. Inductively
suppose that |σB−

j | ≤ κ(σj) for all j < i. Now, every element of σB−
i is of the

form
tB

(
(−→c1)B, . . . , (−→ci)B, (−−→ci+1)B, (−−→ci+2)B, . . .

)
,

where t is a Σ∗-term of sort σi. Since Σ∗ is countable, there are at most ℵ0

choices for t. We have at most κ(σi) choices for (−→c1)B, . . . , (−→ci)B. Finally, we
have finitely many choices for (−−→ci+1)B, (−−→ci+2)B, . . . up to ∼-equivalence. Since
9 In other words, B− is the Skolem hull of

⋃
i{cBi,α}α<κ(σi) in B [12, p. 180].

668 B. Przybocki et al.

B− � Γ2, it follows that there are at most κ(σi) elements of σB−
i . Therefore,

B− is a T ∗-interpretation satisfying ϕ with |σB−
i | = κ(σi) for all i. Taking the

reduct of B− to Σ gives the desired T -interpretation. ��

3.4 Applications to Theory Combination

Since Theorem 2 implies that stably infinite and strongly finitely witnessable
theories are strongly polite, we can restate the theorem on strongly polite the-
ory combination with weaker hypotheses. This was already proved in [21] via a
different method, but is now obtained as an immediate corollary of Theorem 2.

Corollary 1. Let Σ1 and Σ2 be disjoint countable signatures. Let T1 and T2

be Σ1- and Σ2-theories respectively, and let ϕ1 and ϕ2 be quantifier-free Σ1-
and Σ2-formulas respectively. Suppose T1 is stably infinite and strongly finitely
witnessable, both with respect to SΣ1 ∩ SΣ2 , and let V = varsSΣ1∩SΣ2

(wit(ϕ1)).
Then, ϕ1 ∧ ϕ2 is (T1 ∪ T2)-satisfiable if and only if there is an arrangement δV

on V such that wit(ϕ1) ∧ δV is T1-satisfiable and ϕ2 ∧ δV is T2-satisfiable.

We can also use our results to give a new characterization of shiny theories,
which allows us to restate shiny combination theorem with weaker hypotheses.

To define shininess, we first need a few other notions. Let Σ be a signature
with SΣ finite, and let S ⊆ SΣ . Write S = {σ1, . . . , σn}. Then, the S-size of
a Σ-interpretation A is given by the tuple (|σA

1 |, . . . , |σA
n |). Such n-tuples are

partially ordered by the product order: (x1, . . . , xn) � (y1, . . . , yn) if and only
if xi ≤ yi for all i ∈ [n]. Given a quantifier-free formula ϕ, let minmodsT ,S(ϕ)
be the set of minimal S-sizes of T -interpretations satisfying ϕ. It follows from
results in [10] that minmodsT ,S(ϕ) is a finite set of tuples.10

Then, we say a Σ-theory T is shiny with respect to some subset of sorts
S ⊆ SΣ if SΣ is finite, T is stably finite and smooth, both with respect to S, and
minmodsT ,S is computable. Theorem 3 implies that we can replace smoothness
by finite smoothness, which may make it easier to prove that some theories are
shiny. We can therefore improve the shiny theory combination theorem from [4,
Theorem 2] as an immediate corollary of Theorem 3.

Corollary 2. Let Σ1 and Σ2 be disjoint countable signatures, where SΣ1 and
SΣ2 are finite. Let T1 and T2 be Σ1- and Σ2-theories respectively, and assume the
satisfiability problems for quantifier-free formulas of both T1 and T2 are decidable.
Suppose T1 is stably finite and finitely smooth, both with respect to SΣ1 ∩SΣ2 , and
minmodsT1,SΣ1∩SΣ2

is computable. Then, the satisfiability problem for quantifier-
free formulas of T1 ∪ T2 is decidable.

10 [4] proves this assuming that T is stably finite, using Hilbert’s basis theorem. This
assumption can be dropped by using the fact that if (X, ≤) is a well-quasi-order,
then so is (Xn, ≺), where ≺ is the product order. Here X is the class of cardinals.

The Nonexistence of Unicorns 669

4 Many-Sorted Löwenheim–Skolem Theorems

In this section, we state many-sorted generalizations of the Löwenheim–Skolem
theorem. Our first results, in Sect. 4.2, hold with no assumptions on the signature.
Later, in Sect. 4.3, we state stronger results for restricted signatures, which we
then use for a many-sorted variant of the Łoś–Vaught test in Sect. 4.4. But first,
in Sect. 4.1, we explain the limitations of relying solely on translations to single-
sorted first-order logic.

4.1 Lost in Translation

We may transform a many-sorted signature into a single-sorted signature by
adding unary predicates signifying the sorts; of course, some restrictions are
necessary, distinctness of sorts, etc. This procedure [6,13,24] is often used to
lift results from single-sorted to many-sorted logic. As one example, standard
versions of the downward Löwenheim–Skolem theorem for many-sorted logic,
found in [14], are proven using this translation; we can, however, strengthen
these results while still using only translations:

Theorem 4 (Downward). Let Σ be a many-sorted signature with |SΣ | < ℵ0.
Suppose we have a Σ-structure A with max{|σA| : σ ∈ SΣ} ≥ ℵ0, a cardinal κ
satisfying max{|Σ|,ℵ0} ≤ κ ≤ min{|σA| : σ ∈ SA

≥ℵ0
}, and sets Aσ ⊆ σA with

|Aσ| ≤ κ for each σ ∈ SΣ. Then, there is an elementary substructure B of A
such that σB = σA for every σ ∈ SA

<ℵ0
, ℵ0 ≤ |σB| ≤ κ for all σ ∈ SA

≥ℵ0
, |σB| = κ

for some σ ∈ SΣ, and Aσ ⊆ σB for all σ ∈ SΣ.

Theorem 5 (Upward). Let Σ be a many-sorted signature with |SΣ | < ℵ0.
Suppose we have a Σ-structure A with max{|σA| : σ ∈ SΣ} ≥ ℵ0 and a cardinal
κ ≥ max{|Σ|,max{|σA| : σ ∈ SΣ}}. Then, there is a Σ-structure B containing A

as an elementary substructure such that σB = σA for all σ ∈ SA

<ℵ0
, ℵ0 ≤ |σB| ≤ κ

for all σ ∈ SA

≥ℵ0
, and |σB| = κ for some sort σ ∈ SΣ.

As convenient as translation arguments are, the above Löwenheim–Skolem
theorems seem unsatisfactory, as they only allow us to choose a single cardinal,
rather than one for each sort.

4.2 Downward, Upward, and Combined Versions

The following are generalizations of the downward and upward Löwenheim–
Skolem theorems to many-sorted logic, which are proved by adapting the proofs
of the single-sorted case. Notice that we set all infinite domains to the same
cardinality, while finite domains preserve their cardinalities.

Theorem 6 (Downward). Fix a first-order many-sorted signature Σ. Suppose
we have a Σ-structure A, a cardinal κ such that max{ℵ0, |Σ|} ≤ κ ≤ min{|σA| :
σ ∈ SA

≥ℵ0
}, and sets Aσ ⊆ σA with |Aσ| ≤ κ for each σ ∈ SA

≥ℵ0
. Then, there is

an elementary substructure B of A that satisfies |σB| = κ and σB ⊇ Aσ for every
σ ∈ SA

≥ℵ0
, and also σB = σA for every σ ∈ SA

<ℵ0
.

670 B. Przybocki et al.

Theorem 7 (Upward). Fix a first-order many-sorted signature Σ. Given a
Σ-structure A, pick a cardinal κ ≥ max{|Σ|,ℵ0, sup{|σA| : σ ∈ SA

≥ℵ0
}}. Then,

there is a Σ-structure B containing A as an elementary substructure that satisfies
|σB| = κ for every σ ∈ SA

≥ℵ0
, and also σB = σA for every σ ∈ SA

<ℵ0
.

Theorems 6 and 7 can be combined to yield yet another variant of the
Löwenheim–Skolem theorem, which may be called the combined version.

Corollary 3 (Combined). Fix a many-sorted signature Σ. Given a Σ-
structure A, pick a cardinal κ ≥ max{|Σ|,ℵ0}. Then, there is a Σ-structure
B elementarily equivalent to A with |σB| = κ for every σ ∈ SA

≥ℵ0
, and σB = σA

for σ ∈ SA

<ℵ0
.

Fig. 2. Illustration of Corollary 3.

We illustrate Corollary 3 in Fig. 2.
In black, we represent the cardinali-
ties of the resulting structure, and in
red, those of the original one. When
they coincide, we use marks split
between the two colors. This repre-
sentation shows a set of sorts in the
horizontal axis, and the heights of
the marks represent the cardinalities
of the respective domains. We clearly
separate cardinals larger and smaller
than ℵ0 with a rule. Assume, without
loss of generality, that initially σ1 . . . σn have finite cardinalities and σ′

1 has the
least and σ′

m the greatest infinite cardinality.11 Corollary 3 allows us to pick an
infinite cardinal κ in between the least and greatest infinite cardinalities, and
set all infinite cardinlaities in the interpretation to κ.

The above theorems require that the desired cardinalities of the infinite sorts
are all equal. The following example shows that this limitation is necessary.

Example 2. Take the signature Σ with sorts S = {σ1, σ2}, no predicates, and
only one function f of arity (σ1, σ2). Take the Σ-structure A with: σA

1 and σA
2

of cardinality ℵ1, and fA a bijection. It is then true that A � ϕinj ∧ ϕsur ,
where ϕinj = ∀x : σ1. ∀ y : σ1.

[
[f(x) = f(y)] → [x = y]

]
and ϕsur = ∀u :

σ2. ∃x : σ1. [f(x) = u], codifying that f is injective and surjective respectively.
Notice then that, although max{|Σ|,ℵ0} = ℵ0, there cannot be an elementary
substructure B of A with |σB

1 | = ℵ0 and |σB
2 | = ℵ1: for if B � ϕinj ∧ ϕsur , fB

must be a bijection between σB
1 and σB

2 . A similar argument shows that the
corresponding generalization of the upwards theorem fails as well.

11 For greater clarity, the diagram only depicts the cases where there are finitely many
sorts and the signature is countable.

The Nonexistence of Unicorns 671

4.3 A Stronger Result for Split Signatures

Example 2 relies on “mixing sorts” by using a function symbol with arities
spanning different sorts. We can state stronger versions of the many-sorted
Löwenheim–Skolem theorems when such mixing of sorts is restricted.

Definition 6. A signature Σ is said to be split by Λinto a family of signatures
{Σλ : λ ∈ Λ} if Λ is a partition of SΣ, SΣλ

= λ for each λ ∈ Λ, FΣ =
⋃

λ∈Λ FΣλ
,

and PΣ =
⋃

λ∈Λ PΣλ
. If Σ is split by Λ and each λ ∈ Λ is a singleton, then we

say that Σ is completely split by Λ.

If Σ is split by Λ, then the function/predicate symbols of Σλ must be disjoint
from Σλ′ for λ �= λ′. Given a partition Λ of SΣ and λ ∈ Λ, let SA

≥ℵ0
(λ) = SA

≥ℵ0
∩λ.

We state the downward, upward, and combined theorems for split signatures.

Theorem 8 (Downward). Fix a first-order many-sorted signature Σ split by
Λ. Suppose we have a Σ-structure A, a cardinal κλ such that max{ℵ0, |Σλ|} ≤
κλ ≤ min{|σA| : σ ∈ SA

≥ℵ0
(λ)} for each λ ∈ Λ, and sets Aσ ⊆ σA with |Aσ| ≤ κλ

for each σ ∈ SA

≥ℵ0
(λ). Then, there is an elementary substructure B of A that

satisfies |σB| = κλ and σB ⊇ Aσ for σ ∈ SA

≥ℵ0
(λ), and σB = σA for σ ∈ SA

<ℵ0
.

Theorem 9 (Upward). Suppose Σ is split by Λ. Given a Σ-structure A, pick
a cardinal κλ ≥ max{|Σλ|,ℵ0, sup{|σA| : σ ∈ SA

≥ℵ0
(λ)}} for each λ ∈ Λ. Then,

there is a Σ-structure B containing A as an elementary substructure that satisfies
|σB| = κλ for σ ∈ SA

≥ℵ0
(λ), and σB = σA for σ ∈ SA

<ℵ0
.

Corollary 4 (Combined). Suppose Σ is split by Λ. Given a Σ-structure A,
pick a cardinal κλ ≥ max{|Σλ|,ℵ0} for each λ ∈ Λ. Then, there is a Σ-structure
B elementarily equivalent to A with |σB| = κλ for every σ ∈ SA

≥ℵ0
(λ), and also

σB = σA for every σ ∈ SA

<ℵ0
.

Fig. 3. Illustration of Corollary 4.

Corollary 4 is illustrated in Fig. 3.
We add sorts S′′ = {σ′′

1 , . . . , σ′′
m},

and assume our signature is split into
Σλ1 and Σλ2 , where SA

≥ℵ0
(λ1) =

{σ′
1, . . . , σ

′
m} and SA

≥ℵ0
(λ2) = S′′

(the sorts with finite cardinalities can
belong to either). Then, κ′ is the car-
dinal associated with Σλ1 , and κ′′

with Σλ2 . Thus, we are able to choose
a cardinality for each class of sorts.

4.4 An Application: The Łoś–Vaught Test

We describe an application of our Löwenheim–Skolem theorems for theory-
completeness: the Łoś–Vaught test. This is particularly relevant to SMT, as if a
complete theory T has a decidable set of axioms, then it is decidable whether
	T ϕ [12, Lemma 2.2.8]. The single-sorted Łoś–Vaught is the following.

672 B. Przybocki et al.

Definition 7. Let Σ be a signature and κ a function from SΣ to the class of
cardinals. A Σ-theory T is κ-categorical if it has exactly one model A (up to
isomorphism) with the property that |σA| = κ(σ) for every σ ∈ SΣ. If there is
only one sort σ ∈ SΣ, we abuse notation by using κ to denote the cardinal κ(σ).

Theorem 10 ([11,23]). Suppose Σ is single-sorted and T is a Σ-theory with
only infinite models. If T is κ-categorical for some κ ≥ |Σ|, then T is complete.

The Łoś–Vaught test is quite useful, e.g., for the completeness of dense linear
orders without endpoints and algebraically closed fields. We generalize it to many
sorts. Translating to one-sorted logic and using Theorem 10 gives us:

Corollary 5. Let Σ be a signature with |SΣ | < ℵ0. Suppose T is a Σ-theory,
all of whose models A satisfy max{|σA| : σ ∈ SΣ} ≥ ℵ0. Suppose further that for
some cardinal κ ≥ |Σ|, T has exactly one model A (up to isomorphism) such
that max{|σA| : σ ∈ SΣ} = κ. Then, T is complete.

This is not the result one would hope for, because it excludes some many-
sorted κ-categorical theories, as the following example demonstrates.

Example 3. Suppose Σ has S = {σ1, σ2}, no predicate symbols, and function
symbols 0, 1, +, and ×, of the expected arities. Let T = ACF0 ∪

{
ψσ2

≥n : n ∈ N
}
,

where ACF0 is the theory of algebraically closed fields of characteristic zero
(with respect to σ1) and ψσ

≥n = ∃x1 : σ. · · · ∃xn : σ.
∧

1≤i<j≤n ¬(xi = xj),
which asserts that there are at least n elements of sort σ. T is κ-categorical,
where κ(σ1) = ℵ1 and κ(σ2) = ℵ0. But T is also κ′-categorical, where κ′(σ1) =
κ′(σ2) = ℵ1. Thus, T has multiple models A satisfying max{|σA| : σ ∈ SΣ} = ℵ1.
Similar reasoning holds for other infinite cardinals, so Corollary 5 does not apply.

For completely split signatures, we prove a more natural Łoś–Vaught test:

Definition 8. A Σ-structure A is strongly infinite if |σA| ≥ ℵ0 for all σ ∈ SΣ.

Theorem 11. Suppose Σ is completely split into {Σσ : σ ∈ SΣ}, T is a Σ-
theory all of whose models are strongly infinite, and T is κ-categorical for some
function κ such that κ(σ) ≥ |Σσ| for every σ ∈ SΣ. Then, T is complete.

The assumption that Σ is completely split is necessary for Theorem 11:

Example 4. Let Σ have sorts σ1, σ2, and function symbol f of arity (σ1, σ2). Let
T =

{
ψσ1

≥n : n ∈ N
}

∪
{
ψσ2

≥n : n ∈ N
}

∪
{
ϕinj ∨ ∀x : σ1. ∀ y : σ1. [f(x) = f(y)]

}
.

In T , σ1, σ2 are infinite, and f is injective or constant. T is κ-categorical for
κ(σ1) = ℵ1, κ(σ2) = ℵ0, but not complete, due to the sentence ∀x, y : σ1.f(x) =
f(y). This does not contradict Theorem 11, as Σ is not completely split.

The Nonexistence of Unicorns 673

5 Conclusion

We closed the problem of the existence of unicorn theories and discussed applica-
tions to SMT. This included a result similar to the Löwenheim–Skolem theorem,
which inspired us to investigate the adaptation of this theorem to many-sorted
logic. We also obtained a many-sorted version of the Łoś–Vaught test.

In future work, we plan to investigate whether Theorem 3 can be extended
to uncountable signatures. More broadly, we intend to continue studying the
relationships among many-sorted model-theoretic properties related to SMT.

Acknowledgments. This work was supported in part by the Stanford Center for
Automated Reasoning, NSF-BSF grant numbers 2110397 (NSF) and 2020704 (BSF),
ISF grant 619/21, and the Colman-Soref fellowship. The first author thanks the orga-
nizers of the CURIS research program.

References

1. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: TACAS
(1). Lecture Notes in Computer Science, vol. 13243, pp. 415–442. Springer, Munich
(2022)

2. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech.
rep., Department of Computer Science, The University of Iowa (2017).http://smt-
lib.org

3. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Clarke, E.M., Hen-
zinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 305–
343. Springer, New York (2018). https://doi.org/10.1007/978-3-319-10575-8_11,
http://theory.stanford.edu/~barrett/pubs/BT18.pdf

4. Casal, F., Rasga, J.a.: Many-sorted equivalence of shiny and strongly polite theo-
ries. J. Automat. Reason. 60(2), 221–236 (2018)

5. Ehrenfeucht, A., Mostowski, A.: Models of axiomatic theories admitting automor-
phisms. Fund. Math. 43, 50–68 (1956)

6. Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press, New York
(1972)

7. Fontaine, P.: Combinations of theories for decidable fragments of first-order logic.
In: Ghilardi, S., Sebastiani, R. (eds.) Frontiers of Combining Systems, pp. 263–278.
Springer, Berlin Heidelberg, Berlin, Heidelberg (2009)

8. Jovanović, D., Barrett, C.: Polite theories revisited. Tech. Rep. TR2010-922, Depa-
trment of Computer Science, New York University (Jan 2010). http://www.cs.
stanford.edu/~barrett/pubs/JB10-TR.pdf

9. Krstić, S., Goel, A., Grundy, J., Tinelli, C.: Combined satisfiability modulo para-
metric theories. In: Grumberg, O., Huth, M. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems, pp. 602–617. Springer Berlin Heidelberg,
Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-1_47

10. Kruskal, J.B.: The theory of well-quasi-ordering: a frequently discovered con-
cept. J. Comb. Theory Ser. A 13, 297–305 (1972). https://doi.org/10.1016/0097-
3165(72)90063-5

11. Ł oś, J.: On the categoricity in power of elementary deductive systems and some
related problems. Colloquium Mathematicum 3, 58–62 (1954)

http://smt-lib.org
http://smt-lib.org
https://doi.org/10.1007/978-3-319-10575-8_11
http://theory.stanford.edu/~barrett/pubs/BT18.pdf
http://www.cs.stanford.edu/~barrett/pubs/JB10-TR.pdf
http://www.cs.stanford.edu/~barrett/pubs/JB10-TR.pdf
https://doi.org/10.1007/978-3-540-71209-1_47
https://doi.org/10.1016/0097-3165(72)90063-5
https://doi.org/10.1016/0097-3165(72)90063-5

674 B. Przybocki et al.

12. Marker, D.: Model theory: an introduction, Graduate Texts in Mathematics, vol.
217. Springer-Verlag, New York (2002). https://doi.org/10.1007/b98860

13. Monk, J.D.: Mathematical Logic. Springer, New York (1976).https://doi.org/10.
1007/978-1-4684-9452-5

14. Monzano, M.: Introduction to many-sorted logic. In: Meinke, K., Tucker, J.V. (eds.)
Many-sorted Logic and its Applications. Wiley professional computing, Wiley, New
York (1993)

15. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Trans. Program. Lang. Syst. 1(2), 245–257 (oct 1979).https://doi.org/10.1145/
357073.357079

16. Przybocki, B., Toledo, G., Zohar, Y., Barrett, C.: The nonexistence of uni-
corns and many-sorted Löwenheim–Skolem theorems (2024). https://arxiv.org/
abs/2406.18912

17. Ramsey, F.P.: On a problem of formal logic. Proc. London Math. Soc. (2) 30(4),
264–286 (1929)

18. Ranise, S., Ringeissen, C., Zarba, C.G.: Combining data structures with nonstably
infinite theories using many-sorted logic. In: Gramlich, B. (ed.) 5th International
Workshop on Frontiers of Combining Systems - FroCoS’05. Lecture Notes in Artifi-
cial Intelligence, vol. 3717, pp. 48–64. Springer, Vienna/Austria (Sep 2005https://
doi.org/10.1007/11559306, https://hal.inria.fr/inria-00000570

19. Sheng, Y., Zohar, Y., Ringeissen, C., Lange, J., Fontaine, P., Barrett, C.: Polite
combination of algebraic datatypes. J. Autom. Reasoning 66(3), 331–355 (2022).
https://doi.org/10.1007/s10817-022-09625-3

20. Tinelli, C., Zarba, C.G.: Combining decision procedures for sorted theories. Tech.
rep., Berlin, Heidelberg (2004).https://doi.org/10.1007/978-3-540-30227-8_53

21. de Toledo, G.V., Zohar, Y., Barrett, C.W.: Combining combination properties: an
analysis of stable infiniteness, convexity, and politeness. In: CADE, Lecture Notes
in Computer Science, vol. 14132, pp. 522–541. Springer, Rome (2023). https://doi.
org/10.1007/978-3-031-38499-8_30

22. de Toledo, G.V., Zohar, Y., Barrett, C.W.: Combining finite combination proper-
ties: finite models and busy beavers. In: FroCoS, Lecture Notes in Computer Sci-
ence, vol. 14279, pp. 159–175. Springer, Prague (2023). https://doi.org/10.1007/
978-3-031-43369-6_9

23. Vaught, R.L.: Applications of the Löwenheim-Skolem-Tarski theorem to problems
of completeness and decidability. Nederl. Akad. Wetensch. Proc. 57, 467–472 (1954)

24. Wang, H.: Logic of many-sorted theories. J. Symbolic Logic 17(2), 105–116 (1952).
http://www.jstor.org/stable/2266241

https://doi.org/10.1007/b98860
https://doi.org/10.1007/978-1-4684-9452-5
https://doi.org/10.1007/978-1-4684-9452-5
https://doi.org/10.1145/357073.357079
https://doi.org/10.1145/357073.357079
https://arxiv.org/abs/2406.18912
https://arxiv.org/abs/2406.18912
https://doi.org/10.1007/11559306
https://doi.org/10.1007/11559306
https://hal.inria.fr/inria-00000570
https://doi.org/10.1007/s10817-022-09625-3
https://doi.org/10.1007/978-3-540-30227-8_53
https://doi.org/10.1007/978-3-031-38499-8_30
https://doi.org/10.1007/978-3-031-38499-8_30
https://doi.org/10.1007/978-3-031-43369-6_9
https://doi.org/10.1007/978-3-031-43369-6_9
http://www.jstor.org/stable/2266241

The Nonexistence of Unicorns 675

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Author Index

A
Ábrahám, Erika I-131
Adelt, Julius II-208
Akshay, S. I-111
Aldinucci, Marco I-226
Ammar, Nejib II-267
An, Jie I-620, II-286
Arcaini, Paolo II-286

B
Bae, Kyungmin I-425
Baier, Daniel II-543
Baldauf, Jake Brandon I-381
Barbosa, Haniel II-573
Bargmann, Lara I-519
Barrett, Clark I-658, II-573
Barros, Ana II-104
Basin, David I-29
Baumeister, Jan II-626
Baumeister, Tom I-638
Beckert, Bernhard II-599
Bergersen, Gunnar R. II-167
Beutner, Raven II-67
Beyer, Dirk II-39, II-543
Blicha, Martin I-558
Bombarda, Andrea II-492
Bonfanti, Silvia II-492
Bono, Viviana I-226
Bordais, Benjamin I-304
Bordis, Tabea I-151
Brain, Martin II-393
Britikov, Konstantin I-558
Bubel, Richard II-599
Bury, Guillaume II-76
Busany, Nimrod I-245

C
Cai, Shaowei I-55
Calinescu, Radu II-356
Chakraborty, Supratik I-111
Chambart, Pierre II-76
Chatterjee, Krishnendu I-600

Chen, Guangke I-343
Chen, Mingshuai I-538
Chen, Taolue II-189
Chien, Po-Chun II-543
Chin, Wei-Ngan I-501
Colonnelli, Iacopo I-226
Coopmans, Tim II-420
Coughlin, Nicholas I-482
Courant, Nathanaëlle II-76
Cunha, Alcino II-104

D
De Giacomo, Giuseppe I-579
Dedden, Frank II-469
Dell’Erba, Daniele II-48
Deng, Weilin II-338
Di Stasio, Antonio I-579
Ding, Jianqiang II-140
Dong, Jin Song I-343
Dong, Zhen I-285
Dongol, Brijesh I-519
Drodt, Daniel II-599
Dutta, Souradeep I-381

E
Ehlers, Rüdiger I-170
Eichler, Paul I-638

F
Fang, Jian I-538
Fang, Wang I-403
Fedyukovich, Grigory I-558
Feliu, Marco A. II-20
Feng, Shenghua II-229, II-248
Finkbeiner, Bernd II-67, II-626
Foo, Darius I-501
Frohn, Florian I-73
Fu, Yubao II-325
Furia, Carlo A. I-285

G
Gan, Ting I-92, II-248
Ganlath, Akila II-267

© The Editor(s) (if applicable) and The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 677–680, 2025.
https://doi.org/10.1007/978-3-031-71162-6

https://doi.org/10.1007/978-3-031-71162-6

678 Author Index

Gao, Qiang I-620
Gargantini, Angelo II-492
Garlan, David II-267
Geng, Yuang I-381
Gerasimou, Simos II-356
Giesl, Jürgen I-73
Göbl, Angelina II-67
Goharshady, Amir Kafshdar I-111
Goharshady, Amir I-600
Goharshady, Ehsan I-600
Goodloe, Alwyn E. II-469
Goubault, Eric I-324
Govind, R. I-111
Greenman, Ben I-579
Gu, Yinyou II-325
Guan, Ji I-403

H
Hähnle, Reiner II-599
Hartmanns, Arnd I-206
Hasuo, Ichiro I-620, II-286
He, Xiang I-55
Herber, Paula II-208
Hofmeier, Xenia I-29
Huang, Chao I-381
Huang, Lin II-307
Hupel, Lars II-3

I
Imrie, Calum II-356
Inverso, Omar I-443

J
Jacobs, Swen I-638
Jakobs, Marie-Christine II-543
Jankola, Marek II-543
Janota, Mikoláš I-463
Ji, Juntao II-325
Ji, Ruyi I-538
Jiang, Xuanlin I-538
Johnsen, Einar Broch II-167
Jongmans, Sung-Shik II-158
Junges, Sebastian I-267

K
Kang, Eunsuk II-267
Kapoor, Parv II-267
Karrabi, Mehrdad I-600
Kettl, Matthias II-543

Klein, Dan I-245
Kobialka, Paul II-167
Kohlen, Bram I-206
Kohn, Florian II-626
Krishnamurthi, Shriram I-579
Kruger, Loes I-267
Kwiatkowska, Marta I-3, I-363

L
Laarman, Alfons II-420
Lam, Kait I-482
Lammich, Peter I-206
Lanzinger, Florian II-599
Laurenti, Luca I-3
Laviron, Vincent II-76
Lee, Jaeseo I-425
Lee, Nian-Ze II-543
Leino, K. Rustan M. I-151
Lemberger, Thomas II-543
Leuschel, Michael II-122
Li, Bohan I-55
Li, Wei II-338
Li, Xiakun I-92
Li, Yong II-48
Liang, Zhen II-140
Lin, Qingshan II-325
Lin, Yanling I-403
Lingsch-Rosenfeld, Marian II-543

M
Macedo, Nuno II-104
Manquinho, Vasco I-463
Maoz, Shahar I-245
Martina, Maurizio II-373
Masci, Paolo II-20
Medić, Doriana I-226
Mei, Jingyi II-420
Meira-Góes, Rômulo II-267
Mensing, Robert II-208
Mishra, Shatadal II-267
Montali, Marco I-579
Moscato, Mariano II-20
Motwani, Harshit Jitendra I-111
Mulone, Alberto I-226
Muñoz, César A. II-20
Murray, Toby I-188

N
Neider, Daniel I-304
Nelson, Tim I-579

Author Index 679

Nenchev, Vladislav II-356
Neto, Henrique II-104
Niemetz, Aina II-573
Norman, Gethin I-363

O
Ohrimenko, Olga I-188
Orvalho, Pedro I-463

P
Padovani, Luca I-226
Paiva, Ana C. R. II-104
Parker, David I-363
Patane, Andrea I-3
Pereira, Mário II-518
Perez, Ivan II-469
Pfeifer, Wolfram II-599
Pferscher, Andrea II-167
Pham, Van-Thuan I-188
Polgreen, Elizabeth II-393
Pombo, Carlos G. Lopez II-84
Prakash, Jyoti I-285
Prasad, Siddhartha I-579
Preiner, Mathias II-573
Promies, Valentin I-131
Przybocki, Benjamin I-658
Putot, Sylvie I-324

Q
Quist, Arend-Jan II-420

R
Raia, Gaetano II-373
Reynolds, Andrew II-573
Riccobene, Elvinia II-492
Rigano, Gianluca II-373
Rot, Jurriaan I-267
Roy, Rajarshi I-304
Ruchkin, Ivan I-381

S
Sakr, Mouhammad I-638
Sales, Emerson I-443
Santos, Gabriel I-363
Sasse, Ralf I-29
Scandurra, Patrizia II-492
Scheerer, Frederik II-626
Schewe, Sven II-48
Shalom, Rafi I-245

Sharygina, Natasha I-558
Sison, Robert I-188
Smith, Graeme I-482
Song, Fu I-343, II-189
Song, Yahui I-501
Stoelinga, Mariëlle II-447
Stübinger, Terru II-3
Su, Han II-229
Su, Zhaofeng I-403
Sun, Jun I-343
Sun, Yican I-538
Suñé, Agustín Eloy Martinez II-84

T
Tan, Huiyu II-189
Tarifa, S. Lizeth Tapia II-167
Tinelli, Cesare II-573
Titolo, Laura II-20
Tiwari, Abhishek I-285
Toledo, Guilherme I-658
Toro-Pozo, Jorge I-29
Tuosto, Emilio I-443, II-84

U
Ulbrich, Mattias II-599

V
Valnet, Milla II-76
Varanasi, Sai Teja I-111
Vincenzoni, David II-373
Völp, Marcus I-638

W
Wachowitz, Henrik II-39, II-543
Wang, Hanfeng II-338
Wang, Jie I-92, II-248
Wang, Lingtai I-620
Wang, Minghua II-307
Wang, Xilong II-338
Wehrheim, Heike I-519
Wei, Tao II-307
Weigl, Alexander II-599
Wendler, Philipp II-543
Wicker, Matthew I-3
Winter, Kirsten I-482
Wu, Hao I-92, II-248
Wu, Taoran II-140
Wu, Zhilin II-189

680 Author Index

X
Xia, Bican I-92, II-248
Xiong, Yingfei I-538
Xue, Bai II-140
Xue, Jingling II-307

Y
Yan, Pengbo I-188
Yan, Rui I-363
Yang, Xi II-189
Yang, Zhibin II-338
Ying, Mingsheng I-403

Z
Zhan, Naijun I-92, I-620, II-229, II-248
Zhan, Sinong II-229
Zhang, Changjian II-267
Zhang, Yedi I-343
Zhang, Zhenya II-286
Zhao, Mengyu I-55
Zhou, Yong II-338
Zhu, Shufang I-579
Zi, Yuan II-307
Žikelić, Ðor -de I-600
Zizyte, Milda I-579
Zohar, Yoni I-658, II-573

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this book are included in the book’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the book’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Preface
	Organization
	Contents – Part I
	Contents – Part II
	Invited Papers
	Adversarial Robustness Certification for Bayesian Neural Networks
	1 Introduction
	2 Background on Bayesian Deep Learning
	3 Problem Statement
	3.1 Decision Robustness
	3.2 Approach Outline

	4 BNN Adversarial Robustness via Weight Sets
	4.1 Bounding Probabilistic Robustness
	4.2 Bounding Decision Robustness
	4.3 Computation of the Lower and Upper Bounds

	5 Explicit Bound Computation
	5.1 Integral Computation over Weight Intervals
	5.2 Bounding Bayesian Neural Network Output

	6 Complete Bounding Algorithm
	6.1 Lower-Bounding Algorithm
	6.2 Upper-Bounding Algorithm

	7 Experiments
	7.1 Airborne Collision Avoidance
	7.2 Image Classification

	8 Conclusion
	References

	Getting Chip Card Payments Right
	1 Introduction
	1.1 Attacks on EMV
	1.2 Applying Formal Methods
	1.3 Contributions

	2 Background
	2.1 The C8 Protocol
	2.2 The Tamarin Prover

	3 Tamarin Model of C8
	3.1 Protocol Model
	3.2 Security Properties
	3.3 Analysis Approach

	4 Results
	4.1 Secure Configurations
	4.2 Insecure Configurations
	4.3 Privacy
	4.4 Relay Resistance

	5 Conclusion
	A Lemmas
	B Acronyms
	References

	Fundamentals of Formal Verification
	A Local Search Algorithm for MaxSMT(LIA)
	1 Introduction
	2 Preliminary
	2.1 MaxSMT on Linear Integer Arithmetics
	2.2 Local Search Components

	3 Review of LS-LIA
	4 Pairwise Operator
	4.1 Motivation

	5 Compensation-Based Picking Heuristic
	5.1 Pairwise Operation Candidates for Compensation
	5.2 Two-Level Heuristic
	5.3 Algorithm for Picking a Pairwise Operation

	6 Local Search Algorithm
	7 Experiments
	7.1 Experiment Preliminaries
	7.2 Comparison to Other MaxSMT Solvers
	7.3 Evolution of Solution Quality
	7.4 Effectiveness of Proposed Strategies

	8 Discussion on the Extension of Pairwise Operation
	9 Conclusion and Future Work
	References

	Integrating Loop Acceleration Into Bounded Model Checking
	1 Introduction
	2 Preliminaries
	3 From BMC to ABMC
	3.1 Bounded Model Checking
	3.2 Accelerated Bounded Model Checking
	3.3 Fine Tuning Acceleration

	4 Guiding ABMC with Blocking Clauses
	5 Related Work
	6 Experiments and Conclusion
	References

	Nonlinear Craig Interpolant Generation Over Unbounded Domains by Separating Semialgebraic Sets
	1 Introduction
	2 Preliminaries
	2.1 Quadratic Module
	2.2 Homogenization
	2.3 Problem Description

	3 Existence of Interpolant
	3.1 Interpolant Between (x) and (x)
	3.2 Interpolant Between (x,y) and (x,z)

	4 Sum-of-Squares Formulation
	4.1 SOS Characterization for Polynomial Interpolants
	4.2 SOS Characterization for Semialgebraic Interpolants

	5 Synthesizing Interpolant via SOS Programming
	6 Conclusions and Future Work
	References

	Practical Approximate Quantifier Elimination for Non-linear Real Arithmetic
	1 Introduction
	2 Algorithm
	2.1 Problem Definition
	2.2 Our Overapproximation Algorithm
	2.3 Our Implication Oracle
	2.4 Removing the Satisfiability Oracle

	3 Experimental Results
	4 Conclusion
	References

	A Divide-and-Conquer Approach to Variable Elimination in Linear Real Arithmetic
	1 Introduction
	2 Preliminaries
	3 A Divide-and-Conquer Approach
	3.1 Divide: The FMplex Method
	3.2 Conquer: Obtaining a Conjunctive Result
	3.3 Further Improvements

	4 Relation to Virtual Term Substitution
	5 Experimental Evaluation
	6 Conclusion
	References

	Foundations
	Free Facts: An Alternative to Inefficient Axioms in Dafny
	1 Introduction
	2 Dafny and Its Verifier
	2.1 Proof Obligations
	2.2 Axioms Versus Assumptions
	2.3 Expression Translation

	3 Free Facts
	3.1 Motivating Example
	3.2 Free Facts
	3.3 Free Facts for Collection Types
	3.4 Discussion

	4 Evaluation
	4.1 Research Questions
	4.2 Methodology
	4.3 Results and Discussion
	4.4 Threats to Validity

	5 Related Work
	6 Conclusion
	References

	Understanding Synthesized Reactive Systems Through Invariants
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Computing Mixed Monotone/Antitone Invariants
	3.1 Computing a Set of Mixed Monotone/antitone Invariants

	4 Experiments and Case Studies
	4.1 GUI Glue Code Synthesis
	4.2 Generalized Buffer

	5 Conclusion
	References

	Combining Classical and Probabilistic Independence Reasoning to Verify the Security of Oblivious Algorithms
	1 Introduction
	2 Overview
	2.1 Challenges for Verification
	2.2 Mixing Probabilistic and Classical Reasoning

	3 Preliminaries
	3.1 Programming Language and Semantics

	4 Logic
	4.1 Assertions
	4.2 Judgements and Rules
	4.3 Soundness
	4.4 Oversights in Original PSL

	5 Case Studies
	6 Related Work
	7 Conclusion and Future Work
	References

	Efficient Formally Verified Maximal End Component Decomposition for MDPs
	1 Introduction
	2 Background
	3 Correctness of the MEC Algorithm
	3.1 Abstract MDP Structure
	3.2 Specification
	3.3 Abstract Algorithm

	4 Data Structures and Refinement
	4.1 Supplementary Data Structures
	4.2 The mcsta Data Structure
	4.3 Filter List

	5 Code Generation and Integration
	5.1 Compatibility with mcsta

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Results

	7 Conclusion
	References

	Introducing SWIRL: An Intermediate Representation Language for Scientific Workflows
	1 Introduction
	2 Background and Related Work
	2.1 Related Work
	2.2 Scientific Workflow Models
	2.3 Distributed Workflow Models

	3 The SWIRL Representation
	3.1 Semantics
	3.2 Workflow Model Encoding
	3.3 Consistency of SWIRL Semantics

	4 Optimisation
	5 Implementation
	6 Evaluation
	7 Conclusion
	References

	Fast Attack Graph Defense Localization via Bisimulation
	1 Introduction
	2 Illustrative Example
	3 Preliminaries
	3.1 Monotonic Criteria and Cores
	3.2 Bisimulation Relations
	3.3 Analytical Attack Graphs

	4 The Defense Problem and a Naive Defense Algorithm
	5 Applying Bisimulation to Attack Graphs, and a Fast Defense Algorithm
	5.1 Folding an AAG
	5.2 The AF-Defense Algorithm

	6 Evaluation
	7 Related Work
	8 Conclusion and Future Work
	References

	Learn and Repair
	State Matching and Multiple References in Adaptive Active Automata Learning
	1 Introduction
	2 Overview
	3 Preliminaries
	4 L# with Rebuilding
	4.1 Observation Trees
	4.2 The L# Algorithm
	4.3 Rebuilding in L#

	5 L# Using State Matching
	5.1 State Matching
	5.2 Optimised Separation Using State Matching
	5.3 Approximate State Matching

	6 Adaptive L#
	7 Adaptive Learning with Multiple References
	8 Experimental Evaluation
	9 Conclusion
	References

	Automated Repair of Information Flow Security in Android Implicit Inter-App Communication
	1 Introduction
	2 Preliminaries
	2.1 Android Basics
	2.2 How Intent Communication Works
	2.3 An Example of the Challenges of Implicit Intent Communication

	3 Methodology
	3.1 An Abstract Model of Implicit Intents
	3.2 How Intent Repair Works
	3.3 Implementation

	4 Evaluation
	4.1 RQ1: Effectiveness of [0.5]IntentRepair
	4.2 RQ2: Scalability of [0.5]IntentRepair
	4.3 Discussion

	5 Related Work
	6 Conclusions and Future Work
	References

	Learning Branching-Time Properties in CTL and ATL via Constraint Solving
	1 Introduction
	2 Preliminaries
	2.1 Concurrent Game Structure (CGS) and Kripke Structure
	2.2 Alternating-Time Temporal Logic

	3 Passive Learning for ATL
	3.1 SAT-Based Learning Algorithm
	3.2 Deciding the Separability

	4 Experimental Evaluation
	5 Conclusion
	References

	A Zonotopic Dempster-Shafer Approach to the Quantitative Verification of Neural Networks
	1 Introduction
	2 Problem Statement
	3 Analysis with Interval Dempster-Shafer Structures
	4 Analysis with Probabilistic Zonotopes
	5 Analysis with Zonotopic Dempster-Shafer Structures
	6 Evaluation
	7 Conclusion
	References

	Certified Quantization Strategy Synthesis for Neural Networks
	1 Introduction
	2 Preliminaries
	3 Our Approach
	3.1 Foundation of Quadapter
	3.2 Overview of Quadapter
	3.3 Template T2i of Preimage P2i
	3.4 Details of Function UnderPreImage
	3.5 Checking (A"0362A2i)P2i

	4 Applications: Robustness and Backdoor-Freeness
	4.1 Certified Quantization for Robustness
	4.2 Certified Quantization for Backdoor-Freeness

	5 Evaluation
	5.1 Performance of UnderPreImage Function
	5.2 Certified Quantization for Robustness
	5.3 Certified Quantization for Backdoor-Freeness

	6 Related Work
	7 Conclusion
	References

	Partially Observable Stochastic Games with Neural Perception Mechanisms
	1 Introduction
	2 Background
	3 One-Sided Neuro-Symbolic POSGs
	4 Values of One-Sided NS-POSGs
	5 P-PWLC Value Iteration
	6 Heuristic Search Value Iteration for NS-POSGs
	6.1 Lower and Upper Bound Representations
	6.2 One-Sided NS-HSVI
	6.3 Belief Representation and Computations

	7 Experimental Evaluation
	8 Conclusions
	References

	Bridging Dimensions: Confident Reachability for High-Dimensional Controllers
	1 Introduction
	2 Background and Problem Setting
	3 Verification of High-Dimensional Systems
	4 Experimental Evaluation
	5 Related Work
	6 Conclusion
	References

	VeriQR: A Robustness Verification Tool for Quantum Machine Learning Models
	1 Introduction
	2 Robustness for Quantum Machine Learning Models
	2.1 Quantum Machine Learning Model
	2.2 Robustness Verification of QML Models
	2.3 Challenges of Implementation

	3 Overview and Features of VeriQR
	3.1 Verifying Robustness
	3.2 Improving Robustness

	4 Evaluation
	4.1 Local Robustness
	4.2 Global Robustness

	5 Conclusion
	References

	Programming Languages
	Formal Semantics and Analysis of Multitask PLC ST Programs with Preemption
	1 Introduction
	2 Preliminaries
	3 Multitask PLC and a Running Example
	4 Formal Semantics of Multitask PLC
	4.1 K Configuration for Multitask PLC
	4.2 K Rules for Multitask PLC
	4.3 Example of K Rule Applications

	5 Time Abstraction
	5.1 Abstraction Function
	5.2 Equivalence Before and After Abstraction

	6 State Space Reduction
	6.1 Our Ample Set Approach
	6.2 Internal Transitions Without Memory Update

	7 Experimental Evaluation
	8 Related Work
	9 Concluding Remarks
	References

	Accurate Static Data Race Detection for C
	1 Introduction
	2 Multi-threaded C Programs
	3 Encoding Data Race Checking as Reachability
	4 Experimental Evaluation
	5 Related Work
	6 Conclusion
	References

	cfaults: Model-Based Diagnosis for Fault Localization in C with Multiple Test Cases
	1 Introduction
	2 Preliminaries
	3 Model-Based Diagnosis with Multiple Test Cases
	4 cfaults: MBD with Multiple Observations for C
	5 Experimental Results
	6 Related Work
	7 Conclusion
	References

	Detecting Speculative Execution Vulnerabilities on Weak Memory Models
	1 Introduction
	2 Speculative Execution Attacks
	2.1 Spectre-PHT
	2.2 Spectre-PHT and Weak Memory

	3 Background
	3.1 Weakest Precondition Based Information Flow Reasoning
	3.2 Extending with Rely/Guarantee Reasoning
	3.3 Reordering Interference Freedom

	4 Information Flow Logic
	4.1 Weakest Precondition with Speculation
	4.2 Rely/Guarantee and Reordering
	4.3 Reordering Interference Freedom
	4.4 Example Revisited
	4.5 Discussion

	5 Related Work
	6 Conclusion
	References

	Staged Specification Logic for Verifying Higher-Order Imperative Programs
	1 Introduction
	2 Illustrative Examples
	2.1 A Simple Example
	2.2 Pre/Post Vs Staged Specifications via foldr
	2.3 Inferrable Vs User-Provided Specifications via map

	3 Language and Specification Logic
	3.1 Semantics of Staged Formulae
	3.2 Compaction

	4 Forward Rules for Staged Logics
	5 Staged Entailment Checking and Its Soundness
	6 Implementation and Initial Results
	7 Related Work
	8 Conclusion
	References

	Unifying Weak Memory Verification Using Potentials
	1 Introduction
	2 Motivation
	3 Background
	4 A Logic for Potentials
	5 Example Proofs
	6 Lifting SC and TSO to Potentials
	7 Soundness of Rules in Memory Models
	8 Conclusion
	References

	Proving Functional Program Equivalence via Directed Lemma Synthesis
	1 Introduction
	2 Motivation and Approach Overview
	3 Preliminary
	4 AutoProof in Detail
	4.1 The Overall Approach
	4.2 Induction-Friendly Forms in AutoProof
	4.3 General Routine of Tactics
	4.4 Tactic 1: Removing Compositions
	4.5 Tactic 2: Switching Recursive Arguments
	4.6 Properties

	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	Reachability Analysis for Multiloop Programs Using Transition Power Abstraction
	1 Introduction
	2 Preliminaries
	3 Multi-loop Analysis with TPA
	3.1 Overview
	3.2 Core Algorithm
	3.3 Running Example
	3.4 Correctness
	3.5 Witness Production

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	Logic and Automata
	Misconceptions in Finite-Trace and Infinite-Trace Linear Temporal Logic
	1 Introduction
	2 Background
	2.1 ltlf Example: Concision via Finiteness
	2.2 Toward a Concept Inventory

	3 Instrument Design
	3.1 ltlf Instrument
	3.2 ltl Instruments

	4 Data
	4.1 Student : 2023 and 2024
	4.2 FTAI: 2023
	4.3 Student : 2022

	5 Catalog Design
	6 Results: Incorrect Responses, Specific Errors
	7 Results: Categories of Errors
	7.1 Length (ltlf only)
	7.2 Last (ltlf only)
	7.3 Cycle G
	7.4 Implicit Prefix
	7.5 Trace-Split U
	7.6 Spreading X

	8 Threats to Validity
	9 Related Work
	10 Looking Forward
	References

	Sound and Complete Witnesses for Template-Based Verification of LTL Properties on Polynomial Programs
	1 Introduction
	2 Transition Systems, LTL and Büchi Automata
	3 Sound and Complete B-PA Witnesses
	3.1 Sound and Complete Witnesses for Existential B-PA
	3.2 Sound and Complete Witnesses for Universal B-PA

	4 Template-Based Synthesis of Polynomial Witnesses
	5 Experimental Results
	6 Conclusion
	References

	The Opacity of Timed Automata
	1 Introduction
	2 Preliminaries
	2.1 Timed Words, Timed Languages and Timed Automata
	2.2 Expressiveness and Decidability of Timed Automata

	3 Opacity Problems of Timed Automata
	3.1 Language-Based and Location-Based Timed Opacity
	3.2 Transformation Between LBTO, ILTO and CLTO

	4 Decidability and Undecidability of Timed Opacity Problems
	4.1 Undecidability of Opacity Problems of OTA
	4.2 Decidability in the Discrete-Time Semantics
	4.3 Sufficient Condition and Necessary Condition

	5 Discussion and Conclusion
	References

	Parameterized Verification of Round-Based Distributed Algorithms via Extended Threshold Automata
	1 Introduction
	2 System Model
	2.1 Abstract Threshold Automata

	3 Specifications
	4 CS vs ACS
	5 Checking General Parameterized Coverability
	5.1 Well-Structured Transition Systems
	5.2 Abstract Counter Systems as WSTS
	5.3 WSTS-Based General Parameterized Coverability Checking
	5.4 Correctness

	6 Reachability via (0,1)-Abstraction
	6.1 Parameterized Reachability Algorithm (PRA)

	7 Implementation and Experimental Evaluation
	8 Related Work
	9 Conclusion
	References

	The Nonexistence of Unicorns and Many-Sorted Löwenheim–Skolem Theorems
	1 Introduction
	2 Preliminaries
	2.1 Many-Sorted First-Order Logic
	2.2 Model-Theoretic Properties
	2.3 Notation

	3 The Nonexistence of Unicorns
	3.1 Motivating the Proof
	3.2 Ramsey's Theorem and Generalizations
	3.3 The Proof of Theorem 3
	3.4 Applications to Theory Combination

	4 Many-Sorted Löwenheim–Skolem Theorems
	4.1 Lost in Translation
	4.2 Downward, Upward, and Combined Versions
	4.3 A Stronger Result for Split Signatures
	4.4 An Application: The Łoś–Vaught Test

	5 Conclusion
	References

	Author Index

