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Preface 

By their very definition, the Ginibre ensembles are a class of non-Hermitian random 
matrix ensembles. At the same time, the statistical states formed by the eigenvalues 
in the complex plane permit interpretations in terms of the equilibrium statistical 
mechanics of particular two-dimensional Coulomb gases. Ginibre’s work dates back 
to 1965 [293]. Come the decade of the 2020s and its lead-up, more and more 
researchers in mathematics and theoretical physics have been drawn to the field 
of non-Hermitian quantum mechanics on one front, and that of higher dimensional 
point processes relating to long-range potentials on another. With the Ginibre ensem-
bles impacting on both of these broad themes, their relevance is on the increase. It is 
moreover the case that research on these themes has contributed to the development 
of the theory and applications of Ginibre ensembles. 

With these circumstances in mind, the present project has been embarked on 
with the aim of giving an extended account of the Ginibre ensembles. The ongoing 
research programs of both co-authors have contributed to the original literature on this 
topic. In fact the senior co-author, Forrester, was introduced to the Ginibre ensembles 
GinUE (complex entries Gaussian matrices) and GinSE (quaternion entries Gaussian 
matrices) through their Coulomb gas analogies during his M.Sc. year in 1982. His 
supervisor, E. R. Smith, had just worked out the details of a solvable two-dimensional 
one-component plasma with Neumann boundary conditions [504]. This related to 
calculations reported in the first edition of Mehta’s book [435] for the eigenvalue 
correlation functions of GinSE. The work of Smith was in turn inspired by the 
work of Jancovici, who in the year before had modified methods of study of the 
correlation functions for GinUE to obtain a solvable model of the two-dimensional 
one-component plasma with hard wall boundary conditions [337]. The research of 
co-author Byun on topics relating to the Ginibre ensembles began in 2017, at the 
commencement of his Ph.D. His supervisor, N.-G. Kang, had worked on developing 
the probabilistic and complex analytic articulation of the conformal field theory 
and its applications [352], which included the theory of Ward’s equations for finite 
Boltzmann–Gibbs ensembles [61]. At the same time, as a participating doctoral 
student of the Bielefeld–Seoul graduate exchange program, International Research

v



vi Preface

Training Group 2235, Byun was mentored by G. Akemann, who has contributed 
vastly to the study of exactly solvable non-Hermitian random matrix models [13]. 

While the combined research of the co-authors relating the Ginibre ensembles 
provides a base for the present work, it is the sum effort of many researchers over 
several decades that has revealed the extent of knowledge as it now stands. We have 
been most happy immersing ourselves in many of these works, both to further inspire 
our own current research programs, and to assimilate the content for use in properly 
showcasing the extent of the theory and applications. 

Accounts prior to the year 2010 of the Ginibre ensembles with emphasis similar 
to our own can be found in [237, Chap. 15, with several proofs], [362, some proofs 
sketched], with the latter overlapping mainly with Chap. 2. To make the presentation 
as self-contained as possible, this material is also part of the present work, albeit with 
some reordering and additional context. And when practical from the viewpoint of 
the space required, proofs are presented of a number of the results. Progress during 
the period from 2010 to the present has been rapid, as can be gleaned by inspection 
of the publication dates in the References section. While on the one hand our work 
consolidates the state of knowledge relating to the Ginibre ensembles up to the end 
of 2022, with their ever-increasing relevance, it is expected that subsequent years 
will see new applications emerge, which will in turn motivate a new generation of 
theoretical studies. We put forward the present work primarily to facilitate such a 
future, whereby foundations already laid can be built upon. 

Seoul, Korea (Republic of) 
Melbourne, Australia 
August 2023 

Sung-Soo Byun 
Peter J. Forrester
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Chapter 1 
Introduction 

The Ginibre ensembles are non-Hermitian random matrices with real, complex or 
quaternion Gaussian entries. For reasons to be discussed below, these are denoted 
by GinOE, GinUE and GinSE respectively. With the quaternion entries of the latter 
identified as the .2 × 2 complex block structure 

.

[
z w

−w̄ z̄

]
, (1.1) 

members of each of these ensembles are readily realised; Fig. 1.1 gives example 
plots of the corresponding eigenvalue distribution in the complex plane. Ginibre 
introduced these non-Hermitian random matrix ensembles in 1965 [293]. Although 
with a self-described motivation of mathematical curiosity [ 31, Sect. 2.2, quoting 
correspondence with Ginibre], the line of investigation follows on from ideas and 
methods put forward by Dyson a few years earlier. 

Thus in a fundamental paper on random matrix theory published in 1962, Dyson 
[205] isolated three ensembles of Hermitian matrices, and three ensembles of unitary 
matrices. This was done by seeking the minimal requirement of a quantum Hamil-
tonian . H , respectively evolution operator . U , to exhibit a time reversal symmetry or 
not, and then imposing a probability measure. First, for a time reversal operator. T— 
defined in general by the requirement that it be anti-unitary—it was first shown that 
there are two possibilities, either .T 2 = I or .T 2 = −I, with the latter requiring that 
the Hilbert space be even-dimensional. For . T to commute with .H or .U it was then 
shown that in the case.T 2 = I both.H and.U should be invariant under the transpose 
operation. In the other possible case, that.T 2 = −I, an invariance under the so-called 
quaternion dual .M |→ Z2N MT Z−1

2N was deduced. Here .Z2N is the .2N × 2N anti-
symmetric tridiagonal matrix with entries all .−1 in the leading upper triangular 
diagonal, and all . 1 in the leading lower triangular diagonal, and moreover in this 
case it was shown that .T has the realisation .T = Z2N K where .K corresponds to 
complex conjugation and .2N is the dimension of the Hilbert space. In the case of a 
quantum Hamiltonian . H , it was then shown that .[H, T ] = 0 with .T 2 = I implies a 
basis can be chosen so that the elements are real, while with.T 2 = −I it implies that 

© The Author(s) 2025 
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2 1 Introduction

(a) GinOE (b) GinUE (c) GinSE 

Fig. 1.1 Eigenvalues of 500 Ginibre matrices of size. 20

the elements can be chosen to have a .2 × 2 block structure (1.1), which as already 
remarked can be identified with a member of the (real) quaternion number field. 
Hence for quantum Hamiltonians, Dyson was led to the requirement that matrices 
in his sought ensemble theory should have real entries, or have a .2 × 2 block struc-
ture corresponding to the quaternion number field in the presence of time reversal 
symmetry, or to be complex without a time reversal symmetry. This requirement is 
in addition to the matrices being Hermitian and thus having real eigenvalues and a 
matrix of eigenvectors which can be chosen to be unitary. 

The work [205] specifies the eigenvalue probability density function (PDF) for 
an ensemble of quantum Hamiltonians.H modelled as random matrices, and chosen 
from a Gaussian distribution on the elements proportional to 

. exp(−β Tr H 2/2). (1.2) 

The scaling factor . β is chosen for convenience, and takes on the value of the num-
ber of independent parts of the corresponding number field—thus .β = 1 for real 
entries (time reversal symmetry with .T 2 = I), .β = 2 for complex entries (no time 
reversal symmetry), and .β = 4 for quaternion entries (time reversal symmetry with 
.T 2 = −I). With this specification,. β is referred to as the Dyson index. A detail is that 
Hermitian matrices commuting with the quaternion dual must have doubly degen-
erate eigenvalues (Kramer’s degeneracy), with the convention in (1.2) that the trace 
operation relates to the independent eigenvalues only. The result of Dyson, known 
earlier in the case .β = 1 by Wigner (see the Introduction section of the book edited 
by Porter [463] for references and moreover reprints of the original works) is that 
the eigenvalue PDF is given by [205, Eq. (146)] 

.

N∏
l=1

e−βλ2
l /2

∏
1≤ j<k≤N

|λk − λ j |β, (1.3)
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up to proportionality. If instead of the distribution on elements being chosen as (1.2), 
a weighting 

. exp(−β Tr V (H)/2) (1.4) 

for some real-valued function .V (λ) is chosen instead, the modification of (1.2) is  
that it now reads 

.

N∏
l=1

e−βV (λl )/2
∏

1≤ j<k≤N

|λk − λ j |β. (1.5) 

Here it is being assumed that .V (λ) decays sufficiently fast at infinity for (1.5) to be  
normalisable. A weighting of the form (1.4) is said to specify an invariant ensemble, 
since it is invariant under conjugation by a unitary matrix .H |→ UHU † (and where 
too the elements of.U are restricted to be real (.β = 1) and quaternion (.β = 4) so that 
.H remains in the same ensemble). A weighting of the form (1.2) is said to specify a 
Gaussian ensemble. 

Ginibre in his work [293] initiated a study of non-Hermitian Gaussian ensem-
bles of matrices .G = [gi j ]Ni, j=1, with either real, complex or quaternion entries, by 
replacing (1.2) with the joint distribution on elements proportional to 

. exp(−β Tr G†G/2) =
N∏

i, j=1

exp(−β|gi j |2/2). (1.6) 

Note that the second form in this expression shows that the real and imaginary 
parts (there are .β such parts; e.g. in the quaternion case .β = 4 there is one real 
and three imaginary parts) are all independent, identically distributed Gaussians. 
The concern of Ginibre was with the functional form of the eigenvalue PDF, and 
the implied eigenvalue statistics. The most obvious difference with the Hermitian 
case is that the eigenvalues are now in general complex. Also significant is the fact 
that the eigenvectors no longer form an orthonormal basis. Notwithstanding these 
differences, it was found in the complex case (referred to as the complex Ginibre 
ensemble, or alternatively as GinUE, where in the latter the U stands for unitary 
and refers to the bi-unitary invariance of (1.6) being unchanged by the mapping 
.G |→ UGV for .U, V unitary matrices) that the eigenvalue PDF is proportional to 

.

N∏
l=1

e−|zl |2 ∏
1≤ j<k≤N

|zk − z j |2, (1.7) 

which is in direct correspondence with the Hermitian result (1.3) with.β = 2, obtained 
essentially by replacing .λ j by . z j . We mention that the invariant non-Hermitian 
ensembles, known as the normal matrix models, with a general potential beyond 
the weight .|z|2 (i.e. the counterpart of (1.5)), have been extensively studied as well. 
See Chap. 5 for more details. For a classification of non-Hermitian random matrices
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in a similar spirit to Dyson’s classification of Hermitian matrices explained above, 
we refer to Remark 6.3. 

The eigenvalue PDF in the case of real and quaternion entries does not follow a 
direct correspondence with their Hermitian counterparts. First, in both these cases the 
eigenvalues come in complex conjugate pairs. Appreciating this point, the functional 
form of the eigenvalue PDF as found by Ginibre in the quaternion case can be obtained 
from (1.7) (not (1.3) with .β = 4) by first replacing .N by.2N , then identifying . z j+N

as.z̄ j and ignoring terms which involve only.{z̄ j } (which are thought of as part of the 
image system [245]) to obtain 

.

N∏
l=1

e−2|zl |2 |zl − z̄l |2
∏

1≤ j<k≤N

|zk − z j |2|zk − z̄ j |2, Im zl > 0. (1.8) 

The real case is still more complicated. First, the eigenvalue PDF is not absolutely 
continuous. Rather, it decomposes into sectors depending on the number of real 
eigenvalues. Its precise functional form was not obtained in Ginibre’s original work, 
with a further 25 years or so elapsing before this was achieved in a publication 
by Lehmann and Sommers [401], followed a few years later by an independent 
calculation of Edelman [211]. To present this, define the normalisation and the weight 
by 

.Cg
N = 1

2N (N+1)/4
∏N

l=1 ┌(l/2)
, ωg(z) = e−|z|2e2y

2
erfc(

√
2y) (1.9) 

respectively, where.z = x + iy. Note that with.z = x and thus real, the weight simpli-
fies to.ωg(x) = e−x2 . The joint eigenvalue PDF for. k real eigenvalues.{λl}l=1,...,k and 
the .(N − k)/2 complex eigenvalues .{x j + iy j } j=1,...,(N−k)/2 in the upper half plane 
(note that the remaining.(N − k)/2 complex eigenvalues are the complex conjugate 
of these and so not independent) is then given by 

. Cg
N

2(N−k)/2

k!((N − k)/2)!
k∏

s=1

(ωg(λs))
1/2

(N−k)/2∏
j=1

ωg(z j )

×
|||Δ({λl}l=1,...,k ∪ {x j ± iy j } j=1,...,(N−k)/2)

|||, (1.10) 

where.Δ({z p}p=1,...,m) := ∏m
j<l(zl − z j ). Here.λl ∈ (−∞,∞)while. (x j , y j ) ∈ R ×

R+,.R2+ := {(x, y) ∈ R
2 : y > 0}. In addition to the distinction in eigenvalue PDFs, 

we mention that GinUE forms a determinantal point process, while GinSE and GinOE 
form Pfaffian point processes. Further details can be found in Sects. 2.2, 7.5, and 
10.4. 

It would seem that the first occurrence of a Ginibre ensemble in applications 
(especially the real Ginibre ensemble or GinOE, where the “O” stands for orthogonal 
and refers to the bi-orthogonal invariance of the matrices) arose in the 1972 work 
of May [431] on the stability of complex ecological webs. Upon linearising about
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a fixed point, and the modelling of the fluctuations away from an attractor by a real 
Ginibre matrix . G, May was led to the first-order linear differential equation system 
for the perturbed populations—an.n × 1 column vector . x—specified by 

.
d

dt
x = (−I + αG)x, (1.11) 

where . α is a scalar parameter. The stability is then determined by the maximum 
of the real part of the spectrum of . G, the precise determination of which has only 
recently become available in the literature [ 85, 161]. 

At the beginning of the 1980s the interpretation of (1.7), written in the Boltzmann 
factor form 

.e−βU (z1,...,zN ), U = 1

2

N∑
j=1

|z j |2 −
∑

1≤ j<k≤N

log |zk − z j |, β = 2, (1.12) 

as a model of charged particles, repelling pairwise via a logarithmic potential, and 
attracted to the origin in the plane via a harmonic potential, gained attention [41, 131]. 
This viewpoint was already prominent in the works of Dyson in the context of (1.3) 
(see too the even earlier work of Wigner [533] as reprinted in [463]), and was noted 
for (1.8) in Ginibre’s original article [293]. In contrast to (1.3), in (1.12) the domain 
is two-dimensional, and the logarithmic potential is the solution of the corresponding 
Poisson equation (in one spatial dimension, the solution of the Poisson equation is 
proportional to .|x |), so (1.12) corresponds to a type of Coulomb gas. Broad aspects 
of the latter have been the subject of the recent reviews [141, 403]. Also in the early 
1980s, for all positive values of.β/2 odd, (1.12) gained attention as the absolute value 
squared of Laughlin’s trial wave function for the fractional quantum Hall effect [389]. 

Fast-forward 40 years, and there are now a multitude of applications which require 
knowledge of properties of Ginibre matrices, in particular their eigenvalues and 
eigenvectors. These topics will be further discussed in Chap. 6. This is due in no 
small part to a resurgence of interest in non-Hermitian quantum mechanics [ 67, 83]. 
Moreover, the progression of time has seen a much deeper understanding of the 
mathematical structures associated with the Ginibre matrices, and the theoretical 
progress has been considerable. It is the purpose of this book to give a presentation 
of a number of these advances, both in the theory and the applications. 

Part I is on GinUE, and consists of four main themes. These form Chaps. 2 
to 5: eigenvalue PDFs and correlation functions, fluctuation formulas, sum rules 
and asymptotic behaviours, and normal matrix models. There is also a sixth chapter 
entitled “Further theory and applications”. Here the topics considered are the analogy 
between GinUE and the quantum many-body system for free fermions in the plane 
subject to a perpendicular magnetic field, the relevance of GinUE statistics to studies 
in quantum chaos, singular values and statistical properties, eigenvectors of GinUE 
matrices and non-Hermitian Wigner matrices. When excluding the Gaussian case, 
this latter class of ensembles has the distinct feature relative to the other matrix
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generalisations of GinUE considered in our presentation of not permitting explicit 
formulas at the level of the joint eigenvalue PDF. 

Part II is on GinOE and GinSE. Of the themes considered in Part I, the one on 
eigenvalue probability density functions and correlation functions shows the most 
complete analogy between GinUE, GinOE and GinSE. This is notwithstanding the 
already-mentioned fact that the eigenvalues of GinUE form a determinantal point 
process, while those of GinOE and GinSE form a Pfaffian point process. Nor the fact 
that eigenvalue PDF of in the GOE is not absolutely continuous, but rather according 
to (1.10) divides into sectors depending on the number of real eigenvalues. We know 
in the theory of GinUE that there are elliptic and induced extensions, as well as one 
giving rise to a spherical ensemble, one coming from truncating Haar distributed 
unitary matrices, and a product ensemble of GinUE matrices or truncated Haar uni-
tary matrices. These are distinguished by having an explicit formula for the joint 
eigenvalue PDF, with the correlation kernel relating to certain special functions, the 
properties of which allow for a detailed asymptotic analysis. We will see that each of 
these ensembles has a counterpart in the theory of GinOE and GinSE, which further-
more permit detailed asymptotic analysis making use of the same classes of special 
functions. To varying degrees of generality, fluctuation formulas, gap probabilities, 
sum rules, asymptotic expansion of the partition function and eigenvector statistics, 
discussed in Part I for GinUE, are again amenable to exact analysis. 

Topics distinct from those seen in Part I show themselves. The fact that the eigen-
values form a Pfaffian point process is one reason for this. Thus associated with the 
Pfaffian structure is an underlying skew inner product, and associated skew poly-
nomials. In GinOE theory, essential use is made of their form as a matrix average 
(7.18). But for GinSE, a relation with the corresponding GinUE orthogonal polyno-
mials turns out to have a wider scope. Asymptotic analysis is more challenging for 
GinSE, with a technique based on differential equations found to be powerful. The 
topic of real eigenvalues is unique to GinOE. The corresponding statistics have fea-
tures distinct to those exhibited in GinUE studies. They also provide for a number of 
applications, coming from areas as diverse as diffusion processes and persistence in 
statistical physics, topologically driven parametric energy level crossings for certain 
quantum dots, and equilibria counting for a system of random nonlinear differential 
equations. 

Chapters 7–9 relate to GinOE, and Chaps. 10 and 11 to GinSE.
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Part I 
GinUE



Chapter 2 
Eigenvalue PDFs and Correlations 

A GinUE random matrix has all entries as independent standard complex Gaus-
sians. The eigenvalue PDF can be explicitly calculated, revealing an analogy with 
the Boltzmann factor for a particular two-dimensional Coulomb gas. The func-
tional form of the eigenvalue PDF leads to a determinantal structure for the general 
.k-point correlation function. The corresponding correlation kernel admits bulk and 
edge scaling limits, while the density also admits a global scaling limit giving rise 
to an example of the circular law. Various generalisations of the GinUE permit 
analogous analysis. Those considered in the present chapter are the elliptic GinUE 
consisting of a linear combination of Hermitian and anti-Hermitian Gaussian ran-
dom matrices; the induced GinUE which relates to a polar decomposition involving 
a rectangular generalisation of a GinUE matrix; the complex spherical ensemble of 
matrices.G−1

1 G2, with both.G1,G2 GinUE matrices; the sub-block of a Haar unitary 
random matrix; and products of both GinUE matrices, and of truncated Haar unitary 
matrices. 

2.1 Eigenvalue PDF 

In the original paper of Ginibre [293], the diagonalisation formula .G = VɅV−1, 
where.Ʌ is the diagonal matrix of eigenvalues, and.V is the matrix of corresponding 
eigenvectors which are unique up to normalisation, was used as the starting point 
to derive the eigenvalue PDF (1.7). The matrix .V was then further decomposed 
.V = UT D, where .U is unitary, .T is upper triangular with all diagonal elements 
equal to. 1, and.D is a diagonal matrix with real positive elements. As a consequence 

.Tr G†G = Tr Ʌ̄BɅB−1, B = T †T . (2.1) 

This is independent of .U and . D, and .B−1 is a simpler structure than .V−1, since it 
has determinant unity. It is necessary to integrate out the variables of . B, which was 

© The Author(s) 2025 
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done in .N steps with each one consisting of integrating out over the last remaining 
row and column. 

A more versatile (equally applicable to the GinOE, for example) method of deriva-
tion of (1.7) has since been found. It is due to Dyson, and first appeared in published 
form in [436, Appendix 35]. Here, instead of using the diagonalisation formula for 
. G, the starting point is the Schur decomposition 

.G = UZU †. (2.2) 

Here.U is a unitary matrix, unique up to the phase of each column, and. Z is an upper 
triangular matrix with elements on the diagonal equal to the eigenvalues of . G. 

Proposition 2.1 For GinUE matrices, specified by the distribution on elements pro-
portional to (1.6) in the case .β = 2 (complex elements), the eigenvalue PDF is equal 
to .1/CN times (1.7), where upon relaxing the ordering constraint on the eigenvalues 
implied by (2.2), the normalisation constant .CN is specified by 

.CN = π N
N∏

j=1

j !. (2.3) 

Proof We have from (2.2) that 

.Tr G†G =
N∑ 

j=1

|z j |2 +
∑ 

1≤ j<k≤N

|Z jk |2, (2.4) 

where.{z j } denotes the diagonal elements of. Z (which are the eigenvalues of. G), and 
.{Z jk} denotes the upper triangular elements. Note the simplification relative to (2.1). 

After this brisk start, it is still quite a challenge to compute the Jacobian corre-
sponding to (2.2). The strategy of [436, Appendix 35] is explained in more detail 
in [326], and repeated in [237, Proof of Proposition 15.1.1]. Here one begins by 
computing the matrix of differentials .U †dG U , with the Jacobian corresponding to 
the (absolute value of) factor which results from the corresponding wedge product. 
For the latter task, proceeding in the order of the indices .( j, k), with . j decreasing 
from.N to . 1, and . k increasing from. 1 to . N , gives the factor 

.

∏

j<k

|z j − zk |2. (2.5) 

However, the product of differentials so obtained is not immediately recognisable in 
the factorised form 

. ∧ j dz
r
j dz

i
j ∧ (U †dU ) ∧ j<k d Z

r
jkd Z

i
jk, (2.6)
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where the superscripts indicate the real and imaginary part. Further arguing involving 
a count of the number of independent real variables associated with. U , which implies 
some apparent differentials contribute zero to the wedge product, is required to make 
the simplification to this form. With (2.6) established, the integration over .{Z jk} in 
(2.4) is immediate. 

To deduce the normalisation (2.3) from this calculation requires first that the 
normalisation of (2.4) be included throughout the calculation, and second knowledge 
of the integration formula (see e.g. [194, Eq, (4.4)]) 

.

{

U
(U †dU ) = vol

(
U (N )/(U (1))N

)
= 2N (N−1)/2

N−1∏

l=1

π l

┌(l + 1)
. (2.7) 

Finally, an extra factor of .N ! is required in .CN to account for relaxing an ordering 
of the eigenvalues. □

2.2 Correlation Functions 

With the joint eigenvalue PDF denoted by .pN (z1, . . . , zN ), the  .k-point correlation 
function .ρ(k),N (z1, . . . , zk) is specified by 

. ρ(k),N (z1, . . . , zk) = N (N − 1) · · · (N − k + 1)
{

C

d2zk+1 · · ·
{

C

d2zN pN (z1, . . . , zN ),

(2.8) 
where, with .z := x + iy, .d2z := dxdy. In the simplest case .k = 1 this corresponds 
to the eigenvalue density. Ginibre [293] showed that 

.ρ(k),N (z1, . . . , zk) = det
[
KN (z j , zl)

]k
j,l=1

, (2.9) 

for a particular function.KN (w, z), referred to as the correlation kernel. The structure 
(2.9) makes the eigenvalues of GinUE an example of a determinantal point process 
[103]. 

Proposition 2.2 The kernel function in (2.9) is specified by 

. KN (w, z) = 1

π
e−(|w|2+|z|2)/2

N∑ 

j=1

(wz̄) j−1

( j − 1)! = 1

π
e−(|w|2+|z|2)/2ewz̄ ┌(N ;wz̄)

┌(N )
,

(2.10) 
where .┌( j; x) = { ∞

x t j−1e−t dt denotes the (upper) incomplete gamma function. 

Proof The second equality follows from the first by the identity
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. 
┌(N ; x)
┌(N )

= e−x
N∑ 

j=1

x j−1

( j − 1)! .

To deduce the determinantal structure (2.9) with .KN specified by the first equality 
in (2.10), the first step is to rewrite the product in (1.6) according to 

.

∏

1≤ j<k≤N

|zk − z j |2 =
∏

1≤ j<k≤N

(zk − z j )(zk − z j ), (2.11) 

then to rewrite each of the product of differences on the right-hand side (RHS) as a 
Vandermonde determinant, 

.

∏

1≤ j<k≤N

(zk − z j ) = det[zk−1
j ]Nj,k=1; (2.12) 

see e.g. [237, Exercises 1.9 q.1] for a derivation. Multiplying (2.12) by its conjugate 
and taking the transpose of the matrix on the RHS (which leaves the determinant 
unchanged) shows 

.
1

CN

N∏

l=1

e−|zl |2 ∏

1≤ j<k≤N

|zk − z j |2 = det
[
KN (z j , zk)

]N
j,k=1

. (2.13) 

The significance of the form (2.13) for purposes of computing the integrations as 
required by (2.8) are the reproducing and normalisation properties of .KN , 

.

{

C

KN (w1, z)KN (z, w2) d
2z = KN (w1, w2),

{

C

KN (z, z) d2z = N . (2.14) 

Using these properties, a cofactor expansion along the bottom row can be used to 
show [208] 

.

{

C

det[KN (z j , zk)]mj,k=1 d
2zm = (−(m − 1) + N ) det[KN (z j , zk)]m−1

j,k=1; (2.15) 

see also [237, Proof of Proposition 5.1.2]. Applying this inductively gives (2.9). □

According to (2.9) with .k = 1 and (2.10), the eigenvalue density is given by the 
rotationally invariant functional form 

.ρ(1),N (z) = 1

π

┌(N ; |z|2)
┌(N )

. (2.16) 

Ginibre [293] identified a sharp transition for .|z| ≈ √
N from the constant value . 1

π

for .|z| less than this critical value, to a value approaching zero for .|z| greater than 
this critical value. An equivalent statement is the limit law
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(a) = 20 (b) = 100 

(c) = 500 (d) = 2500 

Fig. 2.1 Graphs of.x |→ ρ(1),N (
√
Nx) (full line) and their comparison with. 1

π
χx<1 (dashed line) 

. lim
N→∞ ρ(1),N (

√
Nz) =

⎧
⎨

⎩

1

π
, |z| < 1,

0, |z| > 1.
(2.17) 

(See Fig. 2.1.) This was the first example of what now is termed the circular law, 
which specifies the (global) scaled limiting eigenvalue density for a wide class of non-
Hermitian random matrices, with identically and independently distributed elements 
to be constant inside a particular circle in the complex plane, and zero outside [ 68, 
100, 294, 300, 302, 336, 514]. 

Remark 2.1 1. In the sense of probability theory, (2.17) is a statement in the mean, 
due to the ensemble average. The strong version of the circular law establishes that 
for large .N the eigenvalues of a single GinUE matrix obey the circular law almost 
surely [100]. 
2. Define the numerical range of an.N × N matrix. X by.W (X) = {Xu · u | ||u|| = 1}. 
By the variational characterisation of eigenvalues, for .X Hermitian .W (X) must be 
contained in the interval of the real line .[λmin, λmax], and in fact is equal to this 
interval. It is proved in [408] that for. X a global-scaled Ginibre matrix, and thus with 
eigenvalue density obeying the circular law (2.17), .W (X) converges to the centred 
disk in the complex plane of radius .

√
2. Here, the annulus .{z ∈ C : 1 ≤ |z| ≤ √

2}
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of width .
√
2 − 1 can be interpreted as a quantification of the non-normality of the 

GinUE. 

The correlation kernel (2.10), and thus the correlation functions (2.9), admit dis-
tinct scaling limits depending on the centring of the variables being in the bulk region, 
where the density is constant, or the edge region, where the density begins to decrease 
to zero. The first was specified in Ginibre’s original paper [293], whereas the latter 
was not made explicit until some time later [252]. 

Proposition 2.3 Let .KN (w, z) be specified by (2.10). We have 

.K b
∞(w, z) := lim

N→∞ KN (w, z) = 1

π
e−(|w|2+|z|2)/2ewz̄, (2.18) 

. K e
∞(z1, z2) := lim

N→∞ KN (−i
√
N + z1,−i

√
N + z2)

= e−(|z1|2+|z2|2)/2ez1 z̄2h
(1
2
(−i z1 + i z̄2)

)
, (2.19) 

where 

. h(z) = 1

2π

(
1 + erf(

√
2z)

)
.

Proof The limit (2.18) is immediate from (2.10), and the fact that for fixed .wz̄, 

. lim
N→∞

┌(N ;wz̄)

┌(N )
= 1.

The derivation of (2.19) relies on (the first term of) the asymptotic expansion [444] 

. 
┌(N ; N + τ

√
N )

┌(N )
= 1

2
(1 − erf(τ/

√
2)) + 1

3
√
2πN

e−τ 2/2(τ 2 − 1) + O
( 1

N

)
.

(2.20) 

With the leading support of the eigenvalues the disk .|z| <
√
N , it is natural to 

consider as a point in the bulk any.z0 = s
√
N + i t

√
N for some.|s|, |t | < 1. Making 

use of the fact that .┌(N ; u)/┌(N ) → 1 for .|u|/√N → c, .c < 1 as .N → ∞, as is  
consistent with (2.20), it follows that 

. lim
N→∞ KN (z0 + w, z0 + z) = K b

∞(w, z)

independent of . z0; see also [104, Appendix C]. Similarly, for any .|ν| = 1, 

. lim
N→∞ KN (ν(

√
N + z1), ν(

√
N + z2)) = e−(|z1|2+|z2|2)/2ez1 z̄2h

(1
2
(−z1 − z̄2)

)

(2.21) 
as calculated in [104, Appendix C with .sk = νzk]. 

Generally, (2.9) gives for the appropriately scaled two-point correlation
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. ρ(2),∞(z1, z2) = ρ(1),∞(z1)ρ(1),∞(z2) − K∞(z1, z2)K∞(z2, z1).

For large separation of .z1 and .z2 the leading-order of the RHS is given by the first 
term which is the product of the densities. The second term. −K∞(z1, z2)K∞(z2, z1)
must decay sufficiently rapidly for it to be square integrable, since the limiting form 
of the first integration formula in (2.14) remains valid, 

.

{

C

K∞(w1, z)K∞(z, w2) d
2z = K∞(w1, w2). (2.22) 

This can be verified from the results of Proposition 2.3 by the evaluation of appro-
priate Gaussian integrals. To separate off the product of densities, one defines the 
truncated (or connected) two-point correlation 

. ρT
(2),∞(z1, z2) := ρ(2),∞(z1, z2) − ρ(1),∞(z1)ρ(1),∞(z2) = −K∞(z1, z2)K∞(z2, z1).

(2.23) 
In particular, with bulk scaling, we read off from this and (2.18) that 

.ρ
b,T
(2),∞(z1, z2) = − 1

π2
e−|z1−z2|2 , (2.24) 

which thus exhibits a Gaussian decay. With edge scaling, (2.23) and (2.19) give  

.ρ
e,T
(2),∞(z1, z2) = −e−(x1−x2)2−(y1−y2)2

||||h
(1
2
(y1 + y2 − i(x1 − x2))

)||||
2

. (2.25) 

Use of the asymptotic expansion of the error function [450, Eq. (7.12.1)] gives to 
leading-order 

.ρ
e,T
(2),∞(z1, z2) ∼|z1−z2|→∞ − 1

2π3

e−2y21−2y22

(y1 + y2)2 + (x1 − x2)2
. (2.26) 

While this decays in all directions, parallel to the boundary of the leading-order 
density (i.e. in the .x-direction) we see that the decay is algebraic, as an inverse 
square. 

Remark 2.2 1. Generally for a matrix with eigenvalues.{zl}l=1,...,N the characteristic 
polynomial is given by.QN (z) := ∏N

l=1(z − zl). From the functional form (1.7) and 
the formula (2.8) we see that for GinUE 

. ρk,N+k(w1, . . . , wk) = N (N − 1) · · ·(N − k + 1)e− ∑k
l=1 |wl |2 ∏

1≤ j1< j2≤k

|w j2 − w j1 |2

× CN

CN+k

/ k∏

s=1

|QN (ws)|2
\

pN
, (2.27)
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where the average is with respect to the GinUE eigenvalue PDF .pN (z1, . . . , zN ) of 
.{zl}l=1,...,N . In words, this says that for the.(N + k) × (N + k) version of GinUE, the 
.k-point correlation is up to multiplicative factors given by the average with respect to 
the.N × N GinUE of a product of absolute value squared characteristic polynomials. 
As a generalisation of the average in (2.27) one can consider 

. Ik(u1, . . . , uk; v1, . . . , vk) :=
/ k∏

s=1

Q(us)Q(vs)
\

pN
.

This first arose in the work [449] where, using Grassmann calculus a .k × k matrix 
integral evaluation was obtained. In the simplest case .k = 1 the matrix integral 
reduces to an ordinary integral, giving 

. I1(u, v) =
{ ∞

0
e−s(s + uv̄)N ds;

see also [354]. Subsequently, it was noted in [ 40] that an orthogonal polynomial 
method underlying the proof of Proposition 2.2 gives 

. Ik(u1, . . . , uk; v1, . . . , vk) =
( k−1∏

l=0

(l + N )!
) det[KN (u j1 , v j2)] j1, j2=1,...,k∏

1≤ j1< j2≤k(u j2 − u j1)(v̄ j2 − v̄ j1)
.

2. It follows from (2.20) that the edge scaling of the eigenvalue density, in the coor-
dinates of (2.19) with .z = x + iy, has the large .N expansion 

.ρe
(1),N (y) = 1

2π

(
1 + erf(

√
2y)

)
+ 1

3π
√
2πN

e−2y2(y2 − 1) + O
( 1

N

)
, (2.28) 

and thus in particular 

.ρe
(1),∞(y) = 1

2π

(
1 + erf(

√
2y)

)
, (2.29) 

where this latter expression is consistent with (2.19) upon setting .z1 = z2 = z. See 
Fig. 2.2 for the graph of .ρe

(1),∞. There is interest in the functional form of the. 1/
√
N

correction term in our discussion of Sect. 4.2 below; see too [ 51, 397]. Integrating 
(2.29) over.y ∈ (−∞, 0] and multiplying by.2π

√
N (the length of the bounding circle 

of the leading-order support) shows that to leading-order the expected number of 
eigenvalues with modulus greater than.

√
N is.

√
N/(2π) [293]. Note too that setting 

.y = 0 in (2.29) gives  .ρe
(1),∞(0) = 1

2π , or equivalently .limN→∞ ρ(1),N (
√
N ) = 1

2π , 
which is exactly . 

1
2 of the limiting value inside the unit circle as given by (2.17). 

3. The two-dimensional classical Coulomb system interpretation (1.12) of the eigen-
value PDF (1.7) allows for (2.17) to be anticipated. For this, one scales. z j |→ √

Nz j
and introduces a mean field energy functional
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Fig. 2.2 Graph of 
.y |→ ρe

(1),∞(y) in (2.29) 

. 
N

2

N∑ 

j=1

|z j |2 −
∑ 

1≤ j<k≤N

log |zk − z j |

∼ N

2

( {

Ω

ρ(1)(z)|z|2 d2z −
{

Ω

d2w ρ(1)(w)

{

Ω

d2z ρ(1)(z) log |z − w|
)
, (2.30) 

with the hypothesis that .ρ(1)(z) is chosen so that this functional is minimised and 
furthermore integrates over .Ω to unity. Characterising the minimisation property by 
the vanishing of the functional upon variation with respect to .ρ(1)(z) gives 

.|z|2 − 2
{

Ω

ρ(1)(w) log |z − w| d2w = C, (2.31) 

where. C is a constant, valid for .z ∈ Ω. Applying the Laplacian operation.∇2
z to this, 

using the standard fact 

. − ∇2
z log |z − w| = −2πδ(z − w),

it follows that 

.ρ(1)(w) = 1

π
χ|w|<1. (2.32) 

Here the restriction to .|w| < 1 is implied by the rotational invariance, together with 
the minimisation and normalisation requirements. The notation.χA denotes the indi-
cator function of the condition . A, taking on the value . 1 when .A is true, and . 0
otherwise. The support .Ω of .ρ(1)(w) — which here is the unit disk — in such a 
Coulomb gas picture is typically referred to as the droplet (see e.g. [ 7, 322]). More-
over, this potential theoretic reasoning can rigorously be justified; see e.g. [141, Sect. 
3.1] and references therein, as well as the discussion and references in the paragraph 
including (5.7) of Sect. 5 below.
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4. Let .X0 have finite rank, and .X be a GinUE matrix, scaled so that the leading 
support of the eigenvalues is the unit disk, and consider the sum .X0 + X . Assume 
too that the eigenvalues of.X0 are inside of the unit disk and near the boundary. In the 
limit.N → ∞ it has recently been shown that the edge correlation functions centred 
on the eigenvalues of .X0 form a determinantal point process with kernel involving 
generalisations of the error function [412]. 

2.3 Elliptic GinUE 

In the 1980s, a one-parameter generalization of the non-Hermitian complex Gaussian 
matrices specifying GinUE was introduced [295, 507]. In this generalisation, varying 
the parameter allows for the Hermitian ensemble of Gaussian matrices known as the 
GUE (Gaussian unitary ensemble) to be obtained. A Hermitian matrix .H from the 
GUE can be constructed from a scaled non-Hermitian GinUE matrix. G̃ = (1/

√
2)G

according to 

.H = 1

2

(
G̃ + G̃†

)
. (2.33) 

Proposition 2.4 Let the parameters .0 < τ, v < 1 be related by . τ = (1 − v2)/(1 +
v2). For .H1, H2 elements of the GUE, define 

.J = √
1 + τ(H1 + ivH2). (2.34) 

The eigenvalue PDF of the ensemble of matrices .{J } is given by 

.
1

CN ,τ

exp
(

− 1

1 − τ 2

N∑ 

j=1

(
|z j |2 − τ

2
(z2j + z̄2j )

)) ∏

1≤ j<k≤N

|zk − z j |2, (2.35) 

where .CN ,τ = ∏N
(1 − τ 2)N/2 ∏N

j=1 j !. 
Proof Following [275] and [237, Exercises 15.1 q.1], the starting point is to 
note that the joint element PDF of .

√
1 + τH1 and .

√
1 + τH2 is proportional to 

.exp(− 1
1+τ

Tr(H 2
1 + H 2

2 )). The definition of . J gives 

. Tr H 2
1 = 1

2

(
Tr(J J †) + Re Tr(J 2)

)
, Tr H 2

2 = 1

2v2

(
Tr(J J †) − Re Tr(J 2)

)
.

As a consequence, it follows that the joint element PDF of . J is proportional to 

. exp
(

− 1

1 − τ 2
Tr(J J † − τRe J 2)

)
. (2.36) 

With this knowledge, the strategy of the proof of Proposition 2.1 leads to (2.35). □



2.3 Elliptic GinUE 21

The correlations for (2.35) have, for an appropriate correlation kernel.KN (w, z; τ), 
the determinantal form (2.9). This involves the scaled monic Hermite polynomials 

.Cn(z) :=
(τ

2

)n/2
Hn

( z√
2τ

)
, z ∈ C. (2.37) 

Proposition 2.5 In the notation specified above, we have 

. KN (w, z; τ) = 1

π

1√
1 − τ 2

× exp
(

− 1

2(1 − τ 2)

(
|w|2 + |z|2 − τ(Rew2 + Re z2)

)) N−1∑ 

l=0

Cl(w)Cl(z̄)

l! .

(2.38) 

Proof Following the same procedure as used to begin the proof of Proposition 2.2, 
we modify (2.12) so that it reads 

.

∏

1≤ j<k≤N

(zk − z j ) = det[pk−1(z j )]Nj,k=1, (2.39) 

where .{pl} is a set of monic polynomials, each .pl of degree . l. Choosing these poly-
nomials according to (2.37), with this choice being motivated by the orthogonality 
[193, 215] 

. 

{ ∞

−∞
dx

{ ∞

−∞
dy e−x2/(1+τ)−y2/(1−τ)Cm(z)Cn(z̄) = πm!

√
1 − τ 2δm,n,

the remaining working of the proof of Proposition 2.2 establishes the result. □

Applying the Coulomb gas argument of Remark 2.2.2, with the scaling . zl |→√
Nzl , we conclude that within some domain .Ω the density is constant, taking the 

value .ρ(1)(w) = 1/(π(1 − τ 2)). This domain, or equivalently droplet, can be deter-
mined to be an ellipse with semi-axes .A = 1 + τ , .B = 1 − τ and area equal to 
.π(1 − τ 2). The shape can be verified directly, by showing that with .Ω so specified, 
and .|z|2 in (2.31) replaced by 

.
1

1 − τ 2
(|z|2 − τRe z2), (2.40) 

the required minimisation equation is indeed satisfied [155], [237, Exercises 15.2 
q.4]; see also [114, 193, 257, 397]. This droplet shape explains the terminology 
elliptic GinUE in relation to (2.35). For complex non-Hermitian matrices (2.34), now 
with the Hermitian random matrices .H1, H2 constructed from (2.33) with general 
zero mean, unit standard deviation identically distributed entries that are not required
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to be Gaussian, a constant density in an ellipse was first deduced by Girko [295] upon 
additional assumptions. A complete proof has been given by Nguyen and O’Rourke 
[446]. 

As for the GinUE, as the boundary of the leading support of the elliptic GinUE is 
approached, there is a transition from a constant density to a density which decays to 
zero. Beginning with (2.38) in the case.w = z, the analysis of the eigenvalue density 
in this edge regime is more complicated than for the deduction of (2.20). It was 
carried out by Lee and Riser [397];  see also [  25, 441]. 

Proposition 2.6 Consider the elliptic GinUE, with the eigenvalues scaled . z j |→√
Nz j so that for .N large the leading-order support is the ellipse . Ω. Let .z0 be 

a point on the boundary of . Ω. Denote the unit vector corresponding to the outer 
normal at this point by . n, and the corresponding curvature by . κ . We have 

. ρ(1),N

(
z0 + (α + iβ)n√

N

)
= 1

2π

(
1 − erf(

√
2α)

)
+ κ

π
√
2πN

e−2α2
(α2 − 1

3
− β2

)
+ O

( 1

N

)
.

(2.41) 

Remark 2.3 1. The leading term in (2.41) is identical to that in (2.28) with the 
identification.y = −α. The universality of this functional form has been established 
for a wide class of normal matrix models (see Sect. 5 in relation to this class), and 
moreover extended to the edge-scaled correlation kernel (2.19) [  61, 324]. This has 
recently been proved too for non-Hermitian random matrices constructed according 
to (2.33) with the elements of .G identically distributed mean zero, finite variance 
random variables [159]. 
2. Consider the elliptic-shaped domain 

. {z ∈ C : 1 − 1

1 − τ 2
(|z|2 − τRe z2) > 0}.

Let the function on the left-hand side (LHS) of the inequality be denoted by.1 − f (z). 
We see that . f (z) coincides with (2.40). It has been shown in [ 34, 443] that the 
polynomials .{pn(z)} satisfying the orthogonality 

. 

{

Ω

pm(z)pn(z)(1 − f (z))α d2z ∝ δm,n,

are simply related to the Gegenbauer polynomials .{C (1+α)
n (z)}. After scaling, the 

result (2.37) can be reclaimed by taking the limit .α → ∞. 
3. We see from (2.34) that as .τ → 1−, . J is proportional to a GUE matrix, and in 
particular its eigenvalues are then all real. It was found by Fyodorov, Khoruzhenko 
and Sommers [276] that setting.τ = 1 − π2α2/2N and scaling the eigenvalues. z j |→
π z j/N = π(x j + iy j )/N that
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. lim
N→∞

π2

N 2
KN (πw/N , π z/N ; τ)

|||
τ=1−π2α2/2N

=
/

2

πα2
exp

(
− y21 + y22

α2

) 1

2π

{ π

−π

exp
(

− α2u2

2
+ iu(w − z̄)

)
du.

(2.42) 

(For a direct comparison between (2.42) and what has been reported in the literature, 
see [ 24, .Kweak(z1, z2) in Theorem 3] and [ 50, Sect. 1].) This is referred to as the 
weakly non-Hermitian limit. Scaling of the correlation kernel at the edge in this limit 
has been considered in [ 85, 280]. 

2.4 Induced GinUE 

The fact that a complex Gaussian matrix.G is bi-invariant with respect to multiplica-
tion by unitary matrices allows for the distribution of the singular values to be related 
to the eigenvalue distribution [228, 364]. 

Proposition 2.7 Let .G be bi-unitary invariant, and let .U be a Haar distributed uni-
tary matrix. We have that. G and.(G†G)1/2U have the same joint element distribution, 
and so in particular have the same distribution of eigenvalues. 

Proof By the singular value decomposition,.G = U1∑U2 for some unitary matrices 
.U1,U2 and where .∑ is the diagonal matrix of the singular values. We then have 
.(G†G)1/2U = U †

2∑U2U . By the assumed bi-unitary invariance of . G, this matrix 
and .G have the same distribution. □

The matrix 
.A := (G†G)1/2U (2.43) 

is well defined for .G rectangular, and moreover the property of .G being bi-unitary 
invariant can be generalised to this setting. Of interest is the relation between the 
joint element distributions of .G and . A [228]. 

Proposition 2.8 Let .G be a bi-unitary invariant rectangular .n × N random matrix 
with joint element distribution of the functional form .g(G†G). The joint element 
distribution of the matrix .A (2.43) with .U a Haar distributed unitary matrix is 
proportional to 

.(det A†A)(n−N )g(A†A). (2.44) 

As a consequence, for .G a rectangular complex Ginibre matrix, the eigenvalue PDF 
of . A is 

.
1

Cn,N

N∏

l=1

|zl |2(n−N )e−|zl |2 ∏

1≤ j<k≤N

|zk − z j |2, (2.45)
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with normalisation .Cn,N = N !π N
∏N

j=1(n − N + j − 1)!. 
Proof Write .B = G†G. With the joint element distribution of .G of the functional 
form .g(G†G), it is a standard result (see e.g. [237, Eq. (3.23)]) that the joint ele-
ment distribution of .B is proportional to .det Bn−N g(B). But  .B and .A†A have 
the same joint element distribution from the bi-unitary invariance of . G, and the 
result just quoted with .n = N tells us that the Jacobian for the joint element dis-
tribution of .A and .B is a constant, which implies (2.44). In the particular case 
that .G is a rectangular complex Ginibre matrix, the function . g in (2.44) is the  
exponential .g(X) = e−Tr X . Furthermore, with the eigenvalues of .A denoted by 
.{zl}, we have  .(det A†A)(n−N ) = ∏N

l=1 |zl |2(n−N ). Taking these points into consid-
eration, we see (2.45) results by following the proof of Proposition 2.1. More-
over, with.ω(z) = ω(|z|2) = |z|2(n−N )e−|z|2 the weight function, that the analogue of 
(2.13) in that proof have the properties (2.14) requires that the normalisation equal 
.N !∏N−1

j=0 2π
{ ∞
0 r2 j+1ω(r) dr . This implies the stated value of .Cn,N . □

The correlations for (2.45) are of the determinantal form (2.9). Denoting the 
corresponding correlation by .K iG(w, z), the derivation of (2.10) shows  [  10, 228] 

. K iG
N (w, z) = 1

π
e−(|w|2+|z|2)/2

N∑ 

j=1

(wz̄)n−N+ j−1

(n − N + j − 1)!

= 1

π
e−(|w|2+|z|2)/2ewz̄

(┌(n;wz̄)

┌(n)
− ┌(n − N ;wz̄)

┌(n − N )

)
. (2.46) 

We know that the eigenvalue density, .ρ iG
(1),N (z) say, results by setting .w = z in 

.K iG
N (w, z). Knowing from (2.20) that for .N large .┌(N ; xN )/┌(N ) exhibits a tran-

sition from the value . 1 for .0 < x < 1 to the value . 0 for .x > 1, we see from (2.46) 
that 

. lim
N→∞ ρ iG

(1),N (
√
Nz)

|||
n/N=α+1

= 1

π

(
χ|z|<√

α+1 − χ|z|<√
α

)
. (2.47) 

Here .(χ|z|<√
α+1 − χ|z|<√

α) corresponds to an annulus of inner radius .
√

α and outer 
radius .

√
α + 1. See Fig. 2.3 for the graphs illustrating the convergence (2.47). Gen-

erally, for random matrices of the form.A = UTV , where.U, V are Haar distributed 
and the singular values of .T converge to a compactly supported probability mea-
sure, it is known that the eigenvalue PDF in the complex plane is either a disk or 
an annulus. This is referred to as the single ring theorem [222, 305, 306]. Scaling 
of (2.46) in the bulk of the annulus, or at the boundary, is straightforward and leads 
to the functional forms exhibited in Proposition 2.3 for the GinUE. Furthermore, in 
the double scaling regime where the spectrum tends to form a thin annulus of width 
.O(1/N ), the scaling of (2.46) in the bulk gives rise to the weakly non-Hermitian 
limit (2.42) [128]. We also stress that the induced Ginibre ensemble was introduced 
more generally in [ 10], where the eigenvalue PDF is a mixture of (2.35) and (2.45).
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(a) = 20 (b) = 100 

(c) = 500 (d) = 2500 

Fig. 2.3 Graphs of .x |→ ρiG
(1),N (

√
Nx) (full line) and their comparison with. 

1
π

(χx<
√

α+1 − χ√
α)

(dashed line), where. α = 1

(The induced GinUE model is then obtained by setting the masses to zero . m f = 0
and .τ = 0.) In [ 10], the finite-.N expression of the correlation functions as well as 
their scaling limits both at strong and weak non-Hermiticity were obtained. 

2.5 Complex Spherical Ensemble 

For .G1,G2 matrices from the GinUE, matrices of the form.G = G−1
1 G2 are said to 

form the complex spherical ensemble [373]. For with.α, β ∈ Cwith.|α|2 + |β|2 = 1, 
introduce the transformed pair of matrices .(C, D), 

. C := −β̄G2 + ᾱG1, D = αG2 + βG1.

Since.G1,G2 have independent standard complex elements, it is easy to check that the 
pair.(G1,G2) has the same distribution as.(C, D). As a consequence, the eigenvalues 
.{z j } of .G are unchanged by the fractional linear transformation
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. z |→ zα − β̄

zβ − ᾱ
.

This implies that upon a stereographic projection from the complex plane to the 
Riemann sphere, the eigenvalue distribution of .{G} is invariant under rotation of the 
sphere, giving rise to the name of the ensemble and telling us that on this surface the 
eigenvalue density is constant. 

The explicit eigenvalue PDF for the complex spherical ensemble was calculated 
by Krishnapur [373]. 

Proposition 2.9 For the complex spherical ensemble, the eigenvalue PDF is pro-
portional to 

.

N∏

l=1

1

(1 + |zl |2)N+1

∏

1≤ j<k≤N

|zk − z j |2, zl ∈ C. (2.48) 

Proof The joint element distribution of.(G1,G2) is proportional to. exp(−Tr G†
1G1 −

Tr G†
2G2). Substituting .G2 = GG1, (this gives a Jacobian factor .| det G1|N ) then 

integrating over .G1 gives that the element distribution of .G is proportional to 

. det(I + G†G)−2N . (2.49) 

Introducing now the Schur decomposition (2.2), and changing variables as in the 
proof of Proposition 2.1, we have from this that the element distribution of the upper 
triangular matrix . Z therein is proportional to 

. det(I + Z†Z)−2N
∏

1≤ j<k≤N

|zk − z j |2. (2.50) 

Here .{z j } are the eigenvalues of . G, and also the diagonal entries of . Z . 
It remains to integrate over the strictly upper triangular entries of . Z . For this, 

denote the leading .n × n sub-block of .Z by .Zn and let the product of differentials 
for the strictly upper entries of .Zn be denoted by .(d Z̃n). For .p ≥ n, define 

. In,p(z1, . . . , zn) :=
{

1

det(In + Zn Z
†
n)p

(dT̃n).

Writing 

.Zn =
[
Zn−1 u
0Tn−1 zn

]
, u = [Z jn]n−1

j=1, (2.51) 

it is possible to integrate out over the elements of . u to obtain the recurrence [260, 
326] 

.In,p(z1, . . . , zn) = Cn−1,p

(1 + |zn|2)p−n+1
In−1,p−1(z1, . . . , zn−1),
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where 

. Cn−1,p =
{

(dv)
(1 + v†v)p

.

Iterating this with .n = 2N , .p = N shows 

. 

{
det(I + Z†Z)−2N (d Z̃N ) ∝

N∏

l=1

1

(1 + |zl |2)N+1
,

which when used in (2.50) implies (2.48). 

The stereographic projection from the south pole of a sphere with radius .1/2, 
spherical coordinates .(θ, φ), to a plane tangent to the north pole is specified by the 
equation 

. z = eiφ tan
θ

2
, z = x + iy.

Making this change of variables in (2.50) gives the PDF on the sphere proportional 
to 

.

∏

1≤ j<k≤N

|ukv j − u jvk |2, u = cos(θ/2)eiφ/2, v = −i sin(θ/2)e−iφ/2. (2.52) 

Here.u, v are the Cayley–Klein parameters, and moreover. |ukv j − u jvk | = |rk − r j |
where .r j , rk are the vector coordinates on the sphere. It is furthermore the case that 
minus the logarithm of this distance solves the Poisson equation on the sphere, and 
so (2.52) has the interpretation of the Boltzmann factor at coupling .β = 2 of the 
corresponding Coulomb gas; see [237, Sect. 15.6] for more details. 

After first removing.uk, u j from the product of differences in (2.52), the Vander-
monde determinant identity (2.12) can be used to compute the correlation functions 
following a strategy analogous to that used in the proof of Proposition 2.2. This  
calculation was first done in the context of the corresponding two-dimensional one-
component plasma, as obtained by the rewrite of (2.52) analogous to (1.12) [131]. 

Proposition 2.10 The .n-point correlations for (2.52) are given by 

.ρ(n,N ) ((θ1, φ1), . . . , (θn, φn)) =
(N

π

)n
det

[(
u j ūk + v j v̄k

)N−1
]

j,k=1,...,n
. (2.53) 

Remark 2.4 1. Changing variables .θ j = 2r j
√

π/N in (2.53) and taking .N → ∞, 
the bulk-scaled correlation kernel (2.18) results. Here there is no edge regime. 
2. Denote by. a (. X ) an.n × N (.N × M),.n ≥ N (.M ≥ N ) standard complex Gaussian 
matrix, and set.A = a†a, .Y = A−1/2X . In terms of. Y define.Z = U (YY †)1/2, which 
corresponds to the induced ensemble construction of Sect. 2.4. It was  shown in [229] 
that the element PDF of . Z is proportional to
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. (det Z†Z)M−N 1

det(I + Z†Z)n+M
.

The proof of Proposition 2.9 now gives that the corresponding eigenvalue PDF is 
proportional to 

.

N∏

l=1

|zl |2(M−N )

(1 + |zl |2)n+M−N+1

∏

1≤ j<k≤N

|zk − z j |2. (2.54) 

With.M, n scaled with. N ,.M/N → α1 ≥ 1, n/N → α2 ≥ 1 the leading-order eigen-
value support now occurs in an annulus with inner and outer radii 

.r1 = √
(α1 − 1)/α2, r2 = √

α1/(α2 − 1). (2.55) 

The associated correlation kernel .KN can be expressed in terms of the incomplete 
beta function .Ix (a, b) ∝ { x

0 ta−1(1 − t)b−1 dt , normalised to equal unity for . x = 1
as 

.KN (w, z) = 1

π

|zw|M−N

((1 + |z|2)(1 + |w|2))(n+M−N+1)/2
(2.56) 

× (M + n − N )(1 + wz̄)n+M−N−1
(
Iζ (M − N , n) − Iζ (M, n − N )

)
, 

where .ζ = (wz̄)/(1 + wz̄), see e.g. [120]. Scaling of the correlation functions at 
either of these boundaries gives the edge kernel (2.19). Setting .w = z and with 
.α1, α2 as in (2.55) allows for the computation of the global density [229] 

. lim
N→∞

1

N
ρ(1),N (z) = α1 + α2 − 1

π(1 + r2)2
χr1≤r≤r2 . (2.57) 

Note that for .α1, α2 → 1+, this is supported on the whole complex plane, and upon 
a stereographic projection gives rise to a constant density on the sphere, in keeping 
the prediction at the end of the first paragraph of this section (Fig. 2.4). 

2.6 Sub-block of a Unitary Matrix 

Let .U be an .(n + N ) × (n + N ) unitary matrix, and let .A be the top .N × N sub-
block. The non-zero eigenvalues of .A are then the nonzero eigenvalues of .DUD, 
where .D is the diagonal matrix with the first .N diagonal entries . 1, and the last . n
diagonal entries. 0. The eigenvalues of this matrix are the same as that for.UD, since in 
general for square matrices the eigenvalues of.AB and.BA coincide, and furthermore 
.D2 = D. For  . u a normalised eigenvector of .UD with eigenvalue . λ, computing the 
length squared of .UDu gives .u†Du = |λ|2, where use has been made of the fact
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(a) = 20 (b) = 100 

(c) = 500 (d) = 2500 

Fig. 2.4 Illustrations of the convergence (2.57), where.α1 = 1 and. α2 = 2

.U †U = I. But with the entries of . u all nonzero, the action of .D reduces the length, 
implying .|λ| < 1. With .U chosen with Haar measure, it was shown by Zyczkowski 
and Sommers [542] that the exact eigenvalue PDF of . A can be calculated. 

Proposition 2.11 For. A the top.N × N sub-block of an.(n + N ) × (n + N ) unitary 
matrix chosen with Haar measure, the eigenvalue PDF is proportional to 

.

N∏

l=1

(1 − |zl |2)n−1
∏

1≤ j<k≤N

|zk − z j |2, |zl | < 1. (2.58) 

Proof Let. C be the block of.U in the first .N columns directly below. A. Then by the 
unitarity of . U , .A†A + C†C = IN . This implies a joint distribution in the space of 
general .N × N and .n × N complex matrices .A,C proportional to the matrix delta 
function 

.δ(A†A + C†C − IN ) ∝
{

eTr((i H−μIN )(A†A+C†C−IN ) (dH), μ > 0. (2.59) 

Here in the integral form of the matrix delta function .H is Hermitian; see e.g. [237, 
Eq. (3.27)]. Beginning with this integral form the integration of the complex matrix



30 2 Eigenvalue PDFs and Correlations

. C can be carried out according to [237, displayed equation below (3.27)] to give that 
the element PDF of .A =: AN is proportional to 

.Fn(AN ) :=
{

(det(i HN − IN ))−neTr((i HN−IN )(A†
N AN−IN )) (dHN ). (2.60) 

This matrix integral is the starting point for the derivation of (2.59) given  in  [  17, 
Appendix B], which we follow below. 

In (2.60) the integral is unchanged by conjugating.H with a unitary matrix.V say. 
Choosing .V to be the unitary matrix in the Schur decomposition (2.2) allows us to 
effectively replace.AN by.ZN throughout (2.60). Doing this, and integrating too over 
.Z̃N (i.e. the strictly upper triangular entries of.ZN ), we denote the matrix integral by 
.F̃n(z1, . . . , zN ). 

Substituting the decomposition (2.51) for.ZN we see that the vector. u occurs as a 
quadratic form, and can be integrated over. To progress further,.HN too is decomposed 
by a bordering procedure of the leading .(N − 1) × (N − 1) sub-block .HN−1, with 
the.N − 1 column (row) vector . w (.w†) and entry.hN in the bottom right corner. Key 
now is a determinant identity for a block matrix 

. det

[
A B
C D

]
= det(D) det(A − BD−1C),

familiar from the theory of the Schur complement (see e.g. [457]), applied to the 
first term in the integrand of (2.60) with.D = hN (a scalar). A shift of the integration 
domain according to the additive rank 1 perturbation.HN−1 |→ HN−1 − iww† gives 
a quadratic form in . w, which after integration reduces (2.60) to  

. F̃n(z1, . . . , zN ) ∝
{

(det(i HN−1 − IN−1))
−n(ihN − 1)−ne(|zN |2−1)(ihN−1)

× eTr(Z
†
N−1ZN−1(i HN−1−IN−1)) (dHN−1)(dZN−1)dhN . (2.61) 

Here, using the residue theorem, the integral over.hN can be performed, yielding the 
recurrence 

. F̃n(z1, . . . , zN ) ∝ (1 − |zN |2)n−1χ|zN |2<1 F̃n(z1, . . . , zN−1).

Iterating gives the first factor in (2.58), while the product of differences is due to the 
Jacobian (2.5) for the change of variables to the Schur decomposition as computed 
in the proof of Proposition 2.1. □

Remark 2.5 The matrix integral (2.60) can be evaluated to deduce that the element 
distribution of . A is proportional to [167, 277] .det(I − A†A)n−N . Only for .n ≥ N is 
the normalisable. This is in keeping with .A†A having .N − n eigenvalues equal to 
. 1 for .n < N . Starting with this expression, and thus the corresponding restriction
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on . n and . N , a derivation of (2.48) can be given which is analogous to the proof of 
Proposition 2.9 [260]. 

We have seen that the eigenvalue PDF (2.48) can, after a stereographic projection, 
be identified as the Boltzmann factor for a Coulomb gas model on the sphere. The 
concept of stereographic projection can also be applied to a pseudosphere, which 
refers to the two-dimensional hyperbolic space with constant negative Gaussian cur-
vature. Doing so gives the metric specifying the Poincaré disk. Consideration of the 
solution of the Poisson equation on the latter allows (2.58) to be interpreted as the 
Boltzmann factor for a Coulomb gas model on the Poincaré disk [260]. 

The eigenvalue correlations for (2.58) are determinantal with correlation kernel, 
.KN ,n say, expressible in terms of the incomplete beta function .Ix (a, b). Thus [227, 
Sect. 3.2.3] 

.KN ,n(w, z) = n

π

(1 − |w|2)(n−1)/2(1 − |z|2)(n−1)/2

(1 − wz̄)n+1

(
1 − Iwz̄(N , n + 1)

)
. (2.62) 

In the limit .n, N → ∞ with .(N + n)/N = α > 1 it follows from this that 

. lim
N→∞

1

N
ρ(1),N (z) = α − 1

π

1

(1 − |z|2)2 χ|z|2<1/α. (2.63) 

See Fig. 2.5 for the graphs of .ρ(1),N . 
Hence there is a bulk regime, and an edge regime. The neighbourhood of the 

origin is typical of the bulk regime, and it follows from (2.62) that 

. lim
n,N→∞
n/N=α

1

n
KN ,n(w/

√
n, w/

√
n) = K b

∞(w, z), (2.64) 

where.K b∞ is specified by (2.18). And after appropriate scaling about.|z| = √
α), the  

universal edge density as given by the first term in (2.41) is obtained [227], 

. lim
n,N→∞

(n+N )/n=α

α(1 − α)
1

N
ρ(1),N

(√
α + ξ√

N

√
α(1 − α)

)
= 1

2π

(
1 − erf(

√
2ξ)

)
.

(2.65) 
A distinct scaling regime, referred to as close to unitary [277], or more specifically 

a multiplicative rank. n contraction of a random unitary matrix, is obtained by taking 
.N → ∞with. n fixed in (2.62). Scaling the eigenvalues.zk = (1 − yk/N )eiφk/N gives 
[362] [227, Eq. (3.2.140)] 

. lim
N→∞

1

N 2
KN ,n(z1, z2) = 1

π

(2
√
y1y2)n−1

(n − 1)!
{ 1

0
sne−(y1+y2+i(φ1−φ2))s ds. (2.66) 

This functional form was first obtained for the scaled correlation kernel in the setting 
of a rank . n additive anti-Hermitian perturbation of a GUE matrix [273, Eq. (15)
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(a) = 20 (b) = 100 

(c) = 500 (d) = 2500 

Fig. 2.5 Illustrations of the convergence (2.63), where. α = 2

after setting.ν(x) = 1/π , identifying.z̃k = (φk + iyk)/2 and taking the limit. gm → 0
(.m = 1, . . . , M) with .M identified as . n]. 

A generalisation of the setting of Proposition 2.11 is to consider the top . (N +
L) × N sub-block of an .(n + N + L) × (n + N + L) unitary matrix chosen with 
Haar measure. Denote such a rectangular matrix by .AN ,L , and define from this 
. ÃN ,L = V (A†

N ,L AN ,L)
1/2, where .V is an .N × N random Haar distributed unitary 

matrix. It was shown in [227] that the eigenvalue PDF of . ÃN ,L is proportional to 
(2.48) with an additional factor of.

∏N
l=1 |zl |2L . Denote the corresponding correlation 

kernel by.KN ,n,L . Scaling. L by requiring that.L/N = α > 0 as.N → ∞, scaling the 
eigenvalues.zk as in the above paragraph, and keeping. n fixed, it was shown in [362], 
[227, Eq. (3.2.122)] that 

. lim
N→∞

1

N 2
KN ,n,L(z1, z2)

|||
L/N=α

= 1

π

(2
√
y1y2)n−1

(n − 1)!
{ α+1

α

sne−(y1+y2+i(φ1−φ2))s ds.

(2.67) 
Note the consistency with (2.66) in the limit .α → 0+. 

Another class of generalisation is, for .U an.(n + N ) × (n + N ) Haar distributed 
unitary matrix, and. A a fixed diagonal matrix with first. n diagonal entries. a1, . . . , an
and the remaining entries unity, to consider the product .U A [271, 277]. With each



2.7 Products of Complex Ginibre Matrices 33

.ai = 0, this corresponds to the truncated Haar unitary model of this section. The 
simplest case is when .n = 1, and furthermore we take .a1 = a with .|a| < 1. Notice 
that this corresponds to a multiplicative rank . 1 perturbation of .U — see the recent 
review [249] for context from this viewpoint. The eigenvalue PDF is then proportional 
to 

.(1 − |a|2)N δ
(
|a|2 −

N+1∏

l=1

|zl |2
) ∏

1≤ j<k≤N+1

|z j − zk |2, |zl | < 1, (2.68) 

(cf. (2.58)) and an explicit formula for the general .k-point correlation function is 
known [271, 277]. The latter involves determinants but technically the state is not 
(unless.a = 0) a determinantal point process as no correlation kernel can be identified. 
Specifically, the functional form of the density is 

.ρU A
(1),N+1(z) = 1

π

1

(1 − |a|2)N
d

dx

(
xN − 1

x − 1
+

(
1 − |a|2

x

)N
)||||

x=|z|2
. (2.69) 

For recent works relating to the .U A model see [202, 255]. Let us also mention that 
a fixed trace constraint of the form (2.68) was also considered in [ 23, 24] for GinUE 
and its generalisations. 

2.7 Products of Complex Ginibre Matrices 

Consideration of the eigenvalue PDF for the product.G1G2, where.G1 (.G2) are inde-
pendent.N × p .(p × N ) rectangular complex Ginibre matrices was first undertaken 
by Osborn [456], in the context of a study relating to quantum chromodynamics. 
(We also mention that the GinUE has been directly used in the QCD bulk spectrum 
[421].) Later [333] it was realised that this eigenvalue PDF must be the same as 
that for the product .G̃1G̃2 (or .G̃2G̃1), where each.G̃i is an .N × N complex random 
matrix with element distribution proportional to 

.| det G̃i G̃
†
i |νi e−Tr G̃i G̃

†
i , ν1 = 0, ν2 = p − N ; (2.70) 

note the construction (2.43) for random matrices with this element PDF. Hence it suf-
fices to consider the square case. Key for this is the generalised Schur decomposition 
(equivalent to the so-called QZ decomposition in numerical linear algebra) 

.G̃1 = UZ1V, G̃2 = V †Z2U
†, (2.71) 

where .Z1, Z2 are upper triangular matrices with diagonal entries .{z(1)
j }, {z(2)

j } such 
that 

.z(1)
j z(2)

j = z j (2.72) 

with .{z j } the eigenvalues of .G̃1G̃2.
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For the change of variables (2.71) the wedge product strategy of the proof of 
Proposition 2.1 can again be implemented [456], [237, proof of Proposition 15.11.2] 
to give for the Jacobian (2.5). Substituting (2.71) in (2.70) and recalling (2.72), it 
follows that the eigenvalue PDF is proportional to 

.

N∏

l=1

w(2)(zl)
∏

j<k

|z j − zk |2, (2.73) 

where 

. w(2)(z) :=
{

C

d2z1 |z1|2ν1
{

C

d2z2 |z2|2ν2δ(z − z1z2)e
−|z1|2−|z2|2 .

Moreover, it was shown in [456] that.w(2)(z) can be expressed in terms of the modified 
Bessel function .Kν2−ν1(2|z|), assuming .ν2 ≥ ν1. 

Akemann and Burda [ 15] (in the case of all square matrices), and soon after 
Adhikari et al. [ 5] (the general rectangular case), generalised (2.73) to hold for the 
product of .M complex Gaussian matrices. As already indicated in the case .M = 2, 
following the work of Ipsen and Kieburg [333], it is now known that the rectangular 
case can be reduced to the square case, where the square matrices have distribution 
as in (2.70), with the .νi equal to the difference (assumed non-negative) between the 
number of rows in.Gi and the number of rows in.G1 (.= N ). The role of the modified 
Bessel function, as the special function evaluating the weight .w(2)(z) in (2.73), is 
now played by the Meijer .G-function 

. Gm,n
p,q

(
z
|||
a1, . . . , ap

b1, . . . , bq

)
= 1

2π i

{

C

∏m
j=1 ┌(b j − s)

∏n
j=1 ┌(1 − a j + s)

∏q
j=m+1 ┌(1 − b j + s)

∏p
j=n+1 ┌(a j − s)

zs ds,

(2.74) 
where . C is an appropriate contour as occurs in the inversion formula for the corre-
sponding Mellin transform; see e.g. [414] for an extended account. 

Proposition 2.12 Consider the product .G̃1 · · · G̃M (in any order) of complex Gaus-
sian matrices with element PDF as given in (2.70), with each .νi ≥ 0 but otherwise 
unrestricted. The eigenvalue PDF is proportional to 

.

N∏

l=1

w(M)(zl)
∏

j<k

|z j − zk |2, w(M)(z) = GM,0
0,M

(
|z|2

|||
ν1, . . . , νM

)
. (2.75) 

The functional form (2.75) remains valid for the product of rectangular complex 
Ginibre matrices.G1 · · ·GM, with. νi specified as in the second sentence above (2.74). 

Proof (Sketch) The generalised Schur decomposition (2.71) can be extended to a 
general number.M of square matrices to give what is referred to as the periodic Schur
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form [ 99], [415, Corollary 3.2] 

.G̃i = Ui Zi Vi , Vi = U †
i+1 (i = 1, . . . , M − 1), VM = U †

1 ; (2.76) 

in [ 15] this was deduced independently. The key features with respect to computing 
the eigenvalue PDF of the product.G̃1 · · · G̃M , as already discussed in the case.M = 2, 
again hold true. In particular the Jacobian factor for the change of variables is given by 
(2.5), and the.k-th diagonal entry of each.Zi multiply together to give the eigenvalue 
.zk of the product. It follows that the eigenvalue PDF is given by (2.75) with 

.w(M)(z) ∝
{

C

d2z1 |z1|2ν1 · · ·
{

C

d2zM |zM |2νM δ(z − z1 · · · zM)e− ∑M
j=1 |z j |2 . (2.77) 

As noted in [ 5, 15], taking the Mellin transform of this expression leads to the Meijer 
.G-function form in (2.75). □

An easy consequence of (2.75) is that the eigenvalue correlations are determinantal 
with kernel, .KN ,M say, given by [ 5, 15], 

.KN ,M(w, z) =
(
w(M)(w)w(M)(z)

)1/2 N∑ 

j=1

(wz̄) j−1

∏M
m=1 ┌( j + νm)

. (2.78) 

Rigorous asymptotic analysis of (2.78) can be carried out [ 15, 409]. For example, 
with .w = z and .z |→ NM/2z, one obtains 

. lim
N→∞ NM−1ρ(1),N (NM/2z) = |z|−2+2/M

πM
χ|z|<1, (2.79) 

where it is assumed each.νi is fixed. To interpret this result, form the .M-th power of 
a single GinUE matrix . G. The eigenvalues are .{z̃ j = zMj } with .{z j } the eigenvalues 
of . G. Changing variables in the circular law (2.17) .z̃ = zM gives the density (2.79) 
in the variable. z̃. Hence, as anticipated in [112], the global eigenvalue density for the 
product of .M independent GinUE matrices is identical to that of the .M-th power of 
a single GinUE matrix. This same global scaling limit is also well defined if some 
or all of the .νi are proportional to . N . An explicit limit formula has been obtained 
by Liu and Wang [409]. It is found that the density has the support of an annulus 
if each .μi := limN→∞ νi/N is positive, but otherwise is again supported in a disk, 
albeit with a density function distinct to that in (2.79). 

One observes from (2.79) a singularity at .z = 0, not present in the circular law 
global density (2.17) for GinUE. A consequence is that the correlation kernel about 
this point, simply obtained by setting the upper terminal of the sum in (2.78) equal to 
infinity, is distinct from the corresponding kernel (2.18) for the bulk-scaled GinUE. 
On the other hand, it is shown in [409] that the bulk-scaled GinUE kernel is reclaimed 
by choosing the origin a distance .α

√
N from.z = 0, for any .0 < α < 1. Also, from
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[ 15, 409] we know that the scaling of (2.78) about.|z| = 1 reclaims the kernel (2.19) 
for the edge-scaled GinUE. 

Remark 2.6 1. Required in the derivation of (2.79) from (2.78) is knowledge of the 
.z → ∞ asymptotic expansion [414] 

. GM,0
0,M

(
z
|||
ν1, . . . , νM

)
∼ 1√

M

(2π
z

)(M−1)/2
e−Mz1/M z(ν1+···+νM )/M

(
1 + O(z−1/M)

)
.

(2.80) 
Of particular interest is the exponential term herein, which with . z replaced by . |z|2
as required in (2.78) reads .e−M |z|2/M . This suggests a modification of .U in (1.12) to  
read 

.UM := M

2

N∑ 

j=1

|z j |2/M −
∑ 

1≤ j<k≤N

log |zk − z j |. (2.81) 

Indeed, starting from .UM and repeating the working of Remark 2.2 reclaims 
(2.79). The correlation kernel appearing in such a calculation is called the Mittag– 
Leffler kernel. This terminology applies too in the more general case that a term 
.−c

∑N
j=1 log |z j | is included in (2.81) [  60, 64]. This very case, for.c = (k − M)/M , 

.(k = 1, . . . , M), appears in the calculation of the joint distribution of the eigenvalues 
of the.M-th power (.M ≤ N ) of a GinUE matrix [198, Th. 1.5]; for generalisations in 
this direction see [201]. We also refer to [357, 358] for the appearance of particular 
Mittag–Leffler point process as a degenerate limit of so-called elliptic determinantal 
point processes, characterised by the product of differences in (1.7) being replaced 
by a product over Jacobi theta functions. 
2. The eigenvalue PDF for a product of GinUE matrices and inverses of GinUE matri-
ces has been shown to be of the form (2.75), but with the Meijer .G-function therein 
replace by a different Meijer .G-function [ 5]. The corresponding limiting eigenvalue 
density, in the case of equal numbers of matrices and inverses, is [301, 540] 

. lim
N→∞ ρ(1),N (z) = 1

πM

|z|−2+2/M

(1 + |z|2/M)2
. (2.82) 

This functional form relates to the .M = 1 case in the same way as (2.79) relates to 
(2.17), being the .M-th power of the so-called spherical law. 
3. The case.M = 2 of Proposition 2.12 permits a generalisation. Thus for the matrices 
in the product .G̃1G̃2 choose 

. G̃1 = √
1 + τ X1 + √

1 − τ X2, G̃2 = √
1 + τ X†

1 + √
1 − τ X†

2, 0 < τ < 1,

where .X1, X2 are .N × (N + p) rectangular complex Gaussian matrices. The joint 
element distribution is then proportional to 

. exp

(
− 1

1 − τ 2
Tr

(
G̃†

1G̃1 + G̃†
2G̃2 − 2τRe G̃1G̃2

))
;
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cf. (2.36). Results in [456] give that the eigenvalue PDF of .G̃1G̃2 is of the form in 
(2.73) but with.w(2)(z) now dependent on. τ . Due to the shape of the resulting droplet, 
this gives rise to the so-called shifted elliptic law [ 21, Th. 1]. See also [127] for the  
eigenvalue correlations. 
4. The product of .M random matrices in the limit .M → ∞ is of interest from a 
dynamical systems viewpoint, as the scaled logarithm of the singular values gives the 
Lyapunov spectrum. Closely related for product matrices themselves are the stability 
exponents, defined as . 1M log |zk |, (.k = 1, . . . , N ). In fact for bi-unitary invariant 
random matrices at the least, the Lyapunov and stability exponents are the same [468]. 
Works relating to the computation of these exponents and their related statistical 
properties for GinUE include [ 9, 16, 239, 243, 298, 331, 356, 410, 411]. 

2.8 Products of Truncated Unitary Matrices 

The eigenvalue PDF for a truncation of a Haar distributed unitary matrix has been 
given in Proposition 2.11. It turns out that knowledge of the evaluation of the matrix 
integral (2.61), as implied in the proof of Proposition 2.11, used in conjunction with 
the periodic Schur form (2.76), is sufficient to allow for the determination of the 
eigenvalue PDF of the product of .M truncated Haar distributed unitary matrices 
[ 17]. 

Proposition 2.13 Consider .M independent Haar distributed . (n j + N ) × (n j + N )

unitary matrices, with the top .N × N sub-block of each denoted by .A j (. j =
1, . . . , M). The eigenvalue PDF of the product .A1 · · · AM (in any order) is given 
by (2.75) with 

.w(M)(z) = GM,0
M,M

(
|z|2

|||
n1, . . . , nM

0, . . . , 0

)
χ|z|<1. (2.83) 

Proof (Sketch) The method of proof of Proposition 2.12, which begins with the 
periodic Schur decomposition (2.76), and then integrates out over the upper triangular 
entries of the matrices .Z j (here this latter step requires knowledge of the evaluation 
of the matrix integral (2.61)) gives (2.75) with 

. w(M)(z) ∝
{

C

d2 z1 · · ·
{

C

d2 zM δ(z − z1 · · · zM)

M∏

j=1

(1 − |z j |2)n j−1.

Taking the Mellin transform of this expression leads to the Meijer .G-function form 
in (2.83). 

Analogous to (2.78), it follows from the result of Proposition 2.13 that the eigen-
value correlations are determinantal with a kernel (to be denoted by.KU

N ,M ) given by 
[ 17]
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. KU
N ,M(z1, z2) =

(
w(M)(z1)w

(M)(z2)
)1/2 N∑ 

j=1

(z1 z̄2)
j−1

M∏

m=1

M∏

m=1

(nm + j − 1)!
( j − 1)! .

(2.84) 
Note here, that in distinction to (2.78), the .w(M) are given by (2.83). Suppose all 
the .ni are equal to . n, and that for large . N , .n/N = α > 0. Using  (2.84) in the case 
.z1 = z2, it is derived in [ 17] that 

.ρ(1),N (z) ∼ αN

πM

|z|−2+2/M

(1 − |z|2/M)2
χ|z|<(1+α)−M/2; (2.85) 

cf. (2.82). 
In the same limit, with the scaling.z |→ z/NM/2 (and similarly for . w), the kernel 

(2.84) multiplied by .N−M has the same limit as the kernel (2.78) for the product of 
.M GinUE matrices about the origin in the case of each matrix square (all .νi = 0). 
If instead a point .z0 with .0 < z0 < (1 + α)−M/2 is chosen before this scaling, one 
obtains instead the GinUE result (2.18), while at the boundary of support, generalising 
(2.65) it is found that [ 17] 

. lim
n,N→∞
n/N=α

M

N

α

(1 + α)M+1
ρ(1),N

(
1

(1 + α)M/2
+ ξ√

N

√
Mα1/2

(1 + α)(M+1)/2

)

= 1

2π

(
1 − erf(

√
2ξ)

)
, (2.86) 

thus again exhibiting the universal functional form seen at the edge scaling of the 
GinUE (2.29). 

Also considered in [ 17] is a close-to-unity scaling, with .ni = n all fixed (. i =
1, . . . , M) as  .N → ∞. Scaling the eigenvalues .zk = (1 − yk/N )eiφk/N , it is found 
that (2.66) again holds but with each occurrence of . n replaced by .nM . 

2.9 The Distribution of the Squared Eigenvalue Moduli 

All the explicit eigenvalue PDFs obtained in this chapter, excluding the elliptic Gini-
bre ensemble, have the form 

.

N∏

l=1

w(|zl |2)
∏

1≤ j<k≤N

|zk − z j |2, (2.87) 

for some weight function . w. In particular, they are invariant under rotations about 
the origin. An observation of Kostlan [372] for the GinUE case (1.7) of (2.87) is that 
the set of squared eigenvalue moduli .{|z j |2}Nj=1, appropriately ordered, are indepen-
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dently distributed (specifically as gamma random variables .{┌[ j; 1]}); see too [145, 
Theorem 1.2]. 

Proposition 2.14 Let .Fw(s1, . . . , sN ) denote the PDF for the distribution of . {s j :=
|z j |2}Nj=1 for the PDF (2.87). We have 

.Fw(s1, . . . , sN ) = 1

N !Sym
N∏

j=1

w(s j )s
l−1
l{ ∞

0 w(s)s j−1 ds
, (2.88) 

where Sym denotes symmetrisation with respect to .{s j }. 
Proof Starting with (2.11), then substituting (2.12) and its complex conjugate, we 
see 

. 

N∏

l=1

w(|zl |2)
∏

1≤ j<k≤N

|zk − z j |2 =
N∏

l=1

w(|zl |2) det[ fk−1(z j )]Nj,k=1 det[gk−1(z j )]Nj,k=1,

where . fl(z) = zl , .gl(z) = z̄l . According to Andréief’s identity (see e.g. [246]), it 
follows from this that the integral over .zl ∈ C .(l = 1, . . . , N ), .Iw,N say, is itself 
given by a determinant 

. Iw,N = N ! det
[ {

C

w(|zl |2) f j−1(z)gk−1(z) d
2z

]N
j,k=1

.

Substituting the explicit form of . fl , gl and changing to polar coordinates . zl = rleiθl

shows that only the diagonal terms are non-zero. This allows the determinant to be 
evaluated as 

.Iw,N = N !π N
N∏

j=1

{ ∞

0
w(s)s j−1 ds, (2.89) 

where in each integration the change of variables .r2 = s has been made. Forming 
now .Iwφ,N/Iw,N , where . φ is a suitable test function, and assuming that (2.87) is  
normalisable, the result (2.88) follows. □
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Chapter 3 
Fluctuation Formulas 

Generally, a statistic of a point process refers to the stochastic variable defined by 
evaluating a function at the points. In this setting the class of functions of a single 
variable are referred to as linear statistics. One example is the counting function for 
eigenvalues in a specified region. The large region size form of the variance of this 
statistic, when proportional to the surface area, is used to specify the state as being 
hyperuniform. In the case of GinUE eigenvalues, a central limit theorem for the 
distribution can be established, and this can be strengthened for a local limit theorem 
of the underlying probabilities. Moreover, large deviation formulas for the latter 
are obtained. The counting function linear statistic is discontinuous. Smooth linear 
statistics with global scaling exhibit distinct large .N behaviours, in particular the 
variance is now an .O(1) quantity for GinUE eigenvalues. A decomposition of this 
variance as a contribution from the bulk, and a contribution from the boundary, is 
exhibited. The chapter concludes with a discussion of GinUE eigenvalues in spatial 
modelling. 

3.1 Counting Function in General Domains 

The eigenvalues of a non-Hermitian matrix are examples of point processes in the 
plane. Statistical quantities characterising the point process are functions of the eigen-
values .{z j } of the form.

∑N
j=1 f (z j )—referred to as linear statistics—for a given . f . 

Such statistics are closely related to the correlation functions. Thus 

.

/ N∑

j=1

f (z j )
\
=

{

C

f (z)ρ(1),N (z) d2z, (3.1) 
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while 

. Cov
( N∑

l=1

f (zl),
N∑

l=1

g(zl)
)

=
{

C

d2z
{

C

d2z, f (z)g(z,)
(
ρT

(2),N (z, z,) + ρ(1),N (z)δ(z − z,)
)

= −1

2

{

C

d2z
{

C

d2z, ( f (z) − f (z,))(g(z) − g(z,))ρT
(2),N (z, z,), (3.2) 

see e.g. [250, Sect. 2.1]. Here .ρT
(2),N (z, z,) := ρ(2),N (z, z,) − ρ(1),N (z)ρ(1),N (z,). 

One of the most prominent examples of a linear statistic is the choice. f (z) = χz∈D, 
where .D ∈ C. The linear statistic is then the counting function for the number of 
eigenvalues in . D, .N (D) say. Let .EN (n;D) denote the probability that there are 
exactly . n eigenvalues in . D, so that .EN (n;D) = Pr (

∑N
j=1 χz j∈D = n). Denote the 

corresponding generating function (in the variable .1 − ξ ) by .ẼN (ξ ;D) so that 

.ẼN (ξ ;D) =
N∑

n=0

EN (n;D)(1 − ξ)n. (3.3) 

Note that with .1 − ξ = eit this corresponds to the characteristic function for the 
probability mass functions.{EN (n;D)}. A straightforward calculation (see e.g. [237, 
Proposition 9.1.1]) shows that.ẼN (ξ ;D) can be expressed in terms of the correlation 
functions according to 

.ẼN (ξ ;D) = 1 +
N∑

n=1

(−ξ)n

n!
{

D
d2z1 · · ·

{

D
d2zn ρ(n),N (z1, . . . , zn). (3.4) 

It can readily be checked that (3.1) and (3.2) in the special case. f (z) = g(z) = χz∈D
are consistent with (3.4). 

Specialising now to the circumstance that the PDF for the eigenvalues is of the form 
(2.87), a particular product formula for.ẼN (ξ ;D) can be deduced, which was known 
to Gaudin [286]. 

Proposition 3.1 Let .{ρ(n),N } in (3.4) be given by (2.9) where the correlation kernel 
.KN corresponds to (2.87). Let .KN ,D denote the integral operator supported on . z2 ∈
Dwith kernel.KN (z1, z2). This integral operator has at most.N non-zero eigenvalues 
.{λ j (D)}Nj=1, where .0 ≤ λ j (D) ≤ 1, and 

.ẼN (ξ ;D) =
N∏

j=1

(1 − ξλ j (D)). (3.5)
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Proof Let .{ps(z)}∞s=0 be a set of orthogonal polynomials with respect to the inner 
product.⟨ f, g⟩ := {

C
w(|z|2) f (z)g(z̄) d2zwith corresponding normalisation denoted 

by . hs . Taking as a basis .{(w(|z|2)1/2 pk(z)}∞k=0 it is straightforward to check that 

.KN (z1, z2) = (w(|z1|2)w(|z2|2))1/2
N−1∑

s=0

ps(z1)ps(z2)

hs
, (3.6) 

and so the eigenfunctions of .KN ,D are of the form .(w(|z|2)1/2 ∑N−1
s=0 cs ps(z) (see 

e.g. [237, proof of Proposition 5.2.2]). Hence there are at most .N nonzero eigenval-
ues, which moreover can be related to a Hermitian matrix and so must be real. In 
terms of these eigenvalues, the determinantal form (2.9) substituted in (3.4) implies 
(3.5)—this is a result from the theory of Fredholm integral operators (see e.g. [532]). 
Since by definition, each .n-point correlation is non-negative, we see from the RHS 
of (3.4) that .ẼN (ξ ; D) > 0 for .ξ < 0, and so .λ j (D) ≥ 0 (. j = 1, . . . , N ). Also, the 
definition (3.3) tells us that.ẼN (ξ ;D) > 0 for all .ξ < 1. This would contradict (3.5) 
if it was to be that any .λ j (D) > 1, since in this circumstance there would be a . ξ in 
this range such that .ẼN (ξ ;D ) vanishes. □

Consider.
∑N

j=1 x j where.x j ∈ {0, 1} is a Bernoulli random variable with. Pr (x j =
1) = λ j (D). The characteristic function is .

∏N
j=1(1 − λ j (D) + eitλ j (D)). With 

.eit = 1 − ξ this gives the RHS of (3.5). But it has already been noted that. ẼN (ξ ;D)

with. ξ related to.eit in this way is the characteristic function for the counting statistic 

.N(D), and hence the equality in distribution.N(D)
d= ∑N

j=1 Bernoulli(λ j (D)) [317, 
326]. From this, it follows using the standard arguments (see [223, Sect. XVI.5, 
Theorem 2]) that a central limit theorem holds for .N(DN ) (here the subscript .N on 
.DN is to indicate that the region .D depends on . N ), 

. lim
N→∞

N(DN ) − ⟨N(DN )⟩
(VarN(DN ))1/2

d=N[0, 1], (3.7) 

valid provided .VarN(DN ) → ∞ as .N → ∞; see also [172, 498, 510]. 
A stronger result, extending the central limit theorem (3.7), follows from the fact 

that (3.5) in the variable .z = 1 − ξ has all its zeros on the negative real axis [262]. 

Proposition 3.2 In the setting of the applicability of Proposition 3.1, and with 
.σND := (VarN(DN ))1/2, we then have that .{EN (k;DN )} satisfy the local central 
limit theorem 

. lim
N→∞ sup

x∈(−∞,∞)

|
|
|σND EN ([σND x + ⟨N(DN )⟩];DN ) − 1√

2π
e−x2/2

|
|
| = 0. (3.8) 

Proof The fact that the zeros of (3.5) with the variable .z = 1 − ξ are on the neg-
ative real axis implies, by Newton’s theorem on log-concavity of the sequence of 
elementary symmetric functions [448], that .{EN (k;D)} is log concave. It is known
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that log-concavity is a sufficient condition for extending a central limit theorem to a 
local limit theorem [ 84]. □

For large . N , inside the disk of radius .
√
N , the eigenvalue density for GinUE 

is constant and the full distribution is rotationally invariant. In such circumstances, 
for a two-dimensional point process in general, it is known [ 76] that Var. N(DN )

cannot grow slower than of order .|∂DN |, i.e. the length of the boundary of .DN . 
Thus both (3.4) and (3.5) are valid for any region .DN constrained strictly inside 
the disk of radius .

√
N and with a boundary of length tending to infinity with . N . 

In fact for GinUE more precise asymptotic information is available [148, Eq. (11)], 
[224, Eq. (2.7)], which gives that for any .D0 ⊆ {z : |z| ≤ 1}, 

.VarN(
√
ND0) = √

N
|∂D0|
2π

{ ∞

−∞

(
Var χU≤(1+erf(t/

√
2))/2

)
dt + O

( 1

N 1/2

)
. (3.9) 

Here .U is a random variable uniform in .[0, 1]. A direct calculation gives that the 
integral evaluates to.

/
1
π
—the advantage of the form (3.9) is that it remains true if the 

appearance of the variance throughout is replaced by any even cumulant [148, 224]. 
In particular this shows that the growth of the variance with respect to the region is the 
smallest order possible—the corresponding point process is then referred to as being 
hyperuniform [289, 523, 524]. A corollary of the property of being hyperuniform, 
together with the fast decay of the correlations, is that the bulk-scaled GinUE exhibits 
number rigidity [290, 292]. This means that conditioning on the positions of the 
(infinite number of) points outside a region .D fully determines the number of (but 
not positions of) the points inside . D, and their centre of mass. 

3.1.1 Counting Function in a Disk and Scaled Asymptotics 

In the special case that.DN is a disk of radius. R centred at the origin (we write this as 
.DR), the polynomials in (3.6) are simply the monomials.ps(z) = zs . The eigenfunc-
tions of.KN ,D are also given in terms of the monomials as.{(w(|z|2))1/2z j−1} j=1,...,N , 
and hence for the corresponding eigenvalues we have 

. λ j (DR) =
{ R2

0
r j−1w(r) dr

/{ ∞

0
r j−1w(r) dr, j = 1, . . . , N .

Substituting in (3.5) and choosing .w(|z|2) = exp(−|z|2) then shows that for the 
GinUE [232] 

.ẼN (ξ ; DR) =
N∏

j=1

(
1 − ξ

γ ( j; R2)

┌( j)

)
, (3.10)
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where.γ ( j; x)denotes the (lower) incomplete gamma function. Note that this remains 
valid for .N → ∞ in keeping with the discussion of the previous paragraph. Setting 
.ξ = 1, asymptotic expansions for the incomplete gamma function can be used to 
deduce the .N → ∞ asymptotic expansion of .EN (0; Dα

√
N ), 

. EN (0; Dα
√
N ) = exp

(
C1N

2 + C2N log N + C3N + C4

√
N + 1

3
log N + O(1)

)
,

(3.11) 
where.0 < α < 1. Here the constants.C1, . . . ,C4 depend on. α and are known explic-
itly (e.g. .C1 = −α4/4), being first given in [232]. The first two of these can be 
deduced from the large . R expansion of the quantity .F∞(0; DR), defined in Remark 
3.1.1 below, given in the still earlier work [304]. The .log N term was determined 
recently in [149], as too was the explicit form of the next order term, a constant with 
respect to . N . 

Let .D̄α
√
N denote the region .{z : |z| > α

√
N }, i.e. the region outside the disk 

of radius .α
√
N , where it is assumed .0 < α < 1. Note that then . EN (0; D̄α

√
N ) =

EN (N ; Dα
√
N ). The analogue of (3.11) has been calculated in [149], where in 

particular it is found that 

.C1 = α4/4 − α2 + (1/2) logα2 + 3/4, (3.12) 

the coefficient .C4 is unchanged, while the coefficient . 13 for .log N seen in (3.11) 
is to be replaced by .− 1

4 . (We also refer to [175] for an earlier work for which this 
expansion was obtained up to.C3.) One sees from (3.12) that.C1 = 0 for.α = 1, and the 
result of [149] gives that.C2,C3 similarly vanish, giving that.EN (N ; D√

N ) ∼ eC4
√
N . 

Extending . α larger that . 1 according to the precise .N dependent value 

.α = 1 + 1

2
√
N

(√
γN + x√

γN

)
, γN = log

N

2π
− 2 log log N , (3.13) 

gives the extreme value result .limN→∞ EN (N ; DαN

√
N ) = exp(− exp(−x)) [469] 

(see too [145, Th. 1.3 with.α = 2] for a generalisation to the case of (2.81), considered 
also in [149] for .α < 1), which is the Gumbel law. Other references on fluctuations 
of the spectral radius under various boundary conditions include [ 63, 105, 128, 
142, 283, 489]. Furthermore, an intermediate fluctuation regime which interpolates 
between the Gumbel law with the large deviation regime (3.12) was investigated 
in [382]. Another case considered in [149] is when.DN is specified as the outside of an 
annulus contained inside of the disk of radius.

√
N . Two features of the corresponding 

asymptotic expansion (3.11) are: (1) the absence of a term proportional to.log N , and 
(2) the presence of oscillations of order 1 that are described in terms of the Jacobi 
theta function. We also refer to [ 54– 56, 151] for further recent studies in this direction 
in the presence of hard edges.
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For general .DN with.|DN | → ∞ the coefficient .C1 in (3.11) relates to an energy 
minimisation (electrostatics) problem, and similarly for the .|D| → ∞ expansion of 
.E∞(0;D) [ 3, 4, 175, 207, 342]. Thus for .D = Dα

√
N the electrostatics problem 

is to compute the potential due to a uniform charge density .1/π inside a disk of  
radius . α, with a neutralising uniform surface charge density .−α/2π on the bound-
ary. The applicability of electrostatics remains true for the asymptotic expansion 
of .EN (k; Dα

√
N ) (and .E∞(k;D)) in the so-called large deviation regime, when 

.k « Nα2 or.k ≫ Nα2. For a disk the electrostatics problem can be solved explicitly 
to give [ 45] 

.

EN (k; Dα
√
N ) ∼ e−N 2ψ0(α;k/N ),

ψ0(α; x) = 1

4

|
|
|(α2 − x)(α2 − 3x) − 2x2 log(x/α2)

|
|
|.

(3.14) 

Note in particular that .ψ0(α; 0) = α4/4, which is the value of .−C1 in (3.11), while 
setting.x = 1gives the value of.−C1 noted in the above paragraph. There is also a scal-
ing regime, where.|k − Nα2| = O(N 1/2), for the asymptotic value of . EN (k; Dα

√
N )

which interpolates between (3.14) and the local central limit theorem result (3.8) [224, 
383]. In the case of.E∞(k; DR), it makes sense to consider. k proportional to not only 
.αR2 but also to .αRγ with .γ > 2. Then [224, 342] 

. E∞(αRγ ; DR) ∼ e− 1
2 (γ−2)α2R2γ log R(1+o(1)).

Remark 3.1 1. Closely related to the probability .EN (N ;D) is the condi-
tioned quantity .FN (n;D) := Pr(

∑N
j=1 χz j∈D = n|z j = 0). Denote the corre-

sponding generating function by .F̃N (ξ ;D). Proceeding as in the derivation of 
(3.10) shows  .F̃N (ξ ; DR) = ẼN (ξ ; DR)/(1 − ξ(1 − e−R2

)). Thus in particular 
.FN (0; DR) = eR

2
EN (0; DR) [304]. Note that .− d

dR F(0; DR) gives the spacing 
distribution between an eigenvalue conditioned to be at the origin, and its nearest 
neighbour at a distance . R. The  work  [495] gives results relating to the PDF for the 
minimum of all the nearest neighbour spacings with global scaling, obtaining a scale 
of .N−3/4 and a PDF proportional to .x3e−x4 . 
2. For any .p ≥ 2, the  .p-th cumulant .κp(DR) of the number of eigenvalues in . DR

can be written as 

.κp(R) = (−1)p+1
N−1∑

j=0

Li1−p

(
1 − 1

λ j (DR)

)
, (3.15) 

where .Lis(x) = ∑∞
k=1 k

−s xk is the polylogarithm function. The formula (3.15) as  
well as its large.N behaviour both in the bulk and at the edge were obtained in [384].
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3.1.2 Counting Function in the Infinite System 

We turn our attention now to the circumstance that a (possibly scaled) large .N limit 
has already been taken, and ask about the fluctuations of the number of particles in a 
region.N(D) for large values of.|D|, i.e. the volume of. D. The first point to note is that 
if the coefficient of .ξ n in (3.4) tends to zero as.N → ∞, then the expansion remains 
valid in this limit [402]. The decay is easy to establish in the determinantal case, 
since then (see e.g. [237, Eq. (9.13)]) .ρ(n),N (z1, . . . , zn) ≤ ∏n

l=1 ρ(1),N (zl). Hence it 
is sufficient that.

{
Ω

ρ(1),N (z) d2z be bounded for.N → ∞. With the limiting form of 
(3.4) valid, the theory of Fredholm integral operators [532] tells us that the limit of 
(3.5) is well defined with the RHS identified as the Fredholm determinant . det(I −
ξK∞,D). In (3.10) the limit corresponds to simply replacing the upper terminal of 
the product by .∞. We stipulate the further structure that the correlation kernel be 
Hermitian, as holds for the appropriately scaled form of (3.6). Then the argument 
of the proof of Proposition 3.1 tells us that the eigenvalues of .K∞,D are all between 
. 0 and . 1, which in turn allows the reasoning leading to (3.7) to be repeated. The 
conclusion is, assuming .VarN(D) → ∞ as .|D| → ∞ which as already remarked 
is guaranteed by the results of [ 76], that (3.7) remains valid with.DN replaced by. D, 
and the limit .N → ∞ replaced by the limit .|D| → ∞ [172, 326, 510]. 

It is moreover the case that in the above setting and with these modifications 
the local central limit theorem of Proposition 3.2 remains valid [262]. Another point 
of interest is that the expansion (3.11) is uniformly valid in the variable .R = α

√
N , 

provided this quantity grows with. N , and hence also provides the large. R expansion of 
.E∞(0; DR). Finally, we consider results of [395] as they apply to number fluctuations 
in the infinite GinUE. The plane is to be divided into squares.┌ j of area.L2 with centres 
at.LZ2. Define.ϒ j = N(┌ j )/

√
VarN(┌ j ). For  large. L , in keeping with (3.9)we have  

.Var (┌ j ) ∼ 2L/π3/2. The question of interest is the joint distribution of .{ϒ j }. It is  
established in [395] that for .L → ∞ this distribution is Gaussian, with covariance 
.
1
4 [−Δ] j,k , where .Δ is the discrete Laplacian on .Z2. Consequently, fluctuations of 
.N (┌ j ) induce opposite fluctuations in the regions neighbouring .┌ j . 

For the infinite GinUE the exact result in terms of modified Bessel functions 

. VarN(DR) = R2e−2R2
(
I0(2R

2) + I1(2R
2)

)
=

∞∑

j=1

γ ( j; R2)

┌( j)

(
1 − γ ( j; R2)

┌( j)

)

(3.16) 
is known [496, Th. 1.3], [224, Appendix B]. The second expression in (3.16) also  
appears in [384] as a large  .N limit of the number variance of the finite Ginibre 
ensemble in the deep bulk regime. This exhibits the leading large .R form . R/

√
π

which is consistent with identifying .
√
N |∂D0| as .2πR on the RHS of (3.9); see 

also [ 20]. 

Remark 3.2 Consider the weakly non-Hermitian limit of the elliptic Ginibre 
ensemble specified by the correlation kernel (2.42), parametrised by .α > 0. Let  
.Eα∞(0;D(χ|x |<s)) denote the probability that there are no eigenvalues in the strip
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of the complex plane .Re z < s. It is a celebrated result of the Kyoto school that for 
.α → 0 this gap probability can be expressed as a Painlevé V transcendent in sigma 
form (. σPV function) [347]. Recently, Bothner and Little [106] extended this result 
to all .α > 0, with the role of the . σPV function now played by a certain integro-
differential Painlevé function. In [106] the same authors have obtained an analogous 
characterisation of .Eedge,α

∞ (0,D(χx>s)), i.e. the probability of no eigenvalues with 
.Re (z) > 0 for the edge-scaled weakly non-Hermitian limit of the elliptic Ginibre 
ensemble. 

3.2 Smooth Linear Statistics 

The theory of fluctuation formulas for GinUE in the case that. f (z) in (3.1) is smooth  
has some different features to the discontinuous case . f (z) = χz∈D. This can be 
seen by considering the bulk-scaled limit, and in particular the truncated two-point 
correlation (2.24). From this we can compute the structure factor 

.SGinUE∞ (k) :=
{

R2

(
ρ
b,T
(2),∞(0, r) + 1

π
δ(r)

)
eik·r dr = 1

π

(
1 − e−|k|2/4

)
. (3.17) 

The knowledge of the structure factor allows the limiting covariance (3.2) to be  
computed using the Fourier transform 

. CovGinUE∞
( ∑

f (rl),
∑

g(rl)
)

= 1

(2π)2

1

π

{

R2
f̂ (k)ĝ(−k)

(
1 − e−|k|2/4

)
dk,

(3.18) 
valid provided the integral converges. Here, with .z = x + iy, .r = (x, y) and the 
Fourier transform . f̂ (k) is defined by integrating . f (r) times .eik·r over .R2—thus 
according to (3.17) .SGinUE∞ (k) is a particular Fourier transform. Now introduce a 
scale . R so that . f (r) |→ f (r/R), g(r) |→ g(r/R). It follows  from  (3.18) that 

. lim
R→∞CovGinUE∞

(∑
f (rl/R),

∑
g(rl/R)

)
= 1

(2π)2

1

4π

{

R2
f̂ (k)ĝ(−k)|k|2 dk,

(3.19) 
again provided the integral converges. Most noteworthy is that this limiting quantity 
is O.(1). In contrast, with. f (r) = g(r) = χ|r|<1, and then introducing. R as prescribed 
above, we know that (3.18) has the evaluation (3.16). As previously commented, the 
large .R form of the latter is proportional to . R, which in turn is proportional to the 
circumference of the disk-shaped region implied by the linear statistic .χ|r|<R . 

Remark 3.3 Consider the linear statistic .A(x) = −∑N
j=1(log |x − r j | − log |r j |). 

In the Coulomb gas picture relating to (1.12), this corresponds to the difference in 
the potential at . x and the origin. For bulk-scaled GinUE, one has from (3.18) the  
exact result [ 42]
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. VarGinUE∞ A(x) = 1

2

(
2 log |x| + (|x|2 + 1)

{ ∞

|x|2
e−t

t
dt − e−|x|2 + C + 1

)
,

(3.20) 
where .C denotes Euler’s constant. In particular, for large .|x|, . VarGinUE∞ A(x) ∼
log |x|. This last point shows that the introduction of a scale .R as in (3.19) would 
give rise to a divergence proportional to.log R. Such a log-correlated structure under-
lies a relationship between the logarithm of the absolute value of the characteristic 
polynomial for GinUE and Gaussian multiplicative chaos [387]. 

The covariance with test functions . f (r) |→ f (r/
√
N ), . g(r) |→ g(r/

√
N )

assumed to take on real or complex values is also an order-one quantity for GinUE 
in the.N → ∞ limit, upon the additional assumption that . f, g are differentiable and 
don’t grow too fast at infinity [ 58, 59, 235, 472]. 

Proposition 3.3 Require that . f, g have the properties as stated above. Let 

. f (r)|r=(cos θ,sin θ) =
∞∑

n=−∞
fne

inθ

and similarly for the Fourier expansion of .g(r) for .r = (cos θ, sin θ). We have 

. lim
N→∞CovGinUE

( N∑

j=1

f (r j/
√
N ),

N∑

j=1

ḡ(r j/
√
N )

)

= 1

4π

{

|r|<1
∇ f · ∇ ḡ dxdy + 1

2

∞∑

n=−∞
|n| fn ḡ−n.

(3.21) 

Proof (Sketch) In the method of [472], a direct calculation using (3.2), (2.18) and 
(2.10) allows (3.21) to be established for . f, g polynomials jointly in.z = x + iy and 
.z̄ = x − iy. The required integrations can be computed exactly using polar coor-
dinates. To go beyond the polynomial case, the so-called dbar (Cauchy–Pompeiu) 
representation is used. This gives that for any once continuously differentiable . f in 
the unit disk .D1, and . z contained in the interior of the disk, 

. f (z) = − 1

π

{

D1

∂w̄ f (w)

w − z
d2w + 1

2π i

{

∂D1

f (w)

w − z
dw, (3.22) 

where with.w = α + iγ ,.∂w̄ = 1
2 (

∂
∂α

+ i ∂
∂γ

). The covariance problem is thus reduced 
to the particular class of linear statistics of the functional form.h(z) = 1/(w − z). The  
required analysis in this case is facilitated by the use of the corresponding Laurent 
expansion, with only a finite number of terms contributing after integration. □

Remark 3.4 1. As predicted in [235], upon multiplying the RHS by .2/β, (3.21) 
remains valid for the Coulomb gas model (1.12) [  75, 394, 491]. In the case of the
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elliptic GinUE, a simple modification of (3.21) holds true. Thus the domain.|r| < 1 in 
the first term is to be replaced by the appropriate ellipse, and the Fourier components 
of the second term are now in the variable . η, where .(A cos η, B sin η), . 0 ≤ η ≤ 2π
parametrises the boundary of the ellipse. The results of [ 59, 235, 394] also cover 
this case. 
2. In the case of an ellipse, major and minor axes .A, B say, there is particular inter-
est in the linear statistic .Px := ∑N

j=1 x j [155]. Linear response theory gives for the 
.xx component of the susceptibility tensor. χ—relating the polarisation density to the 
applied electric field—the formula.χxx = (β/(π AB)) limN→∞ Var Px (and similarly 
for the .xy and .yy components). This same quantity can be computed by considera-
tion of macroscopic electrostatics, which gives .χxx = (A + B)/(πB). Using  (3.21) 
modified as in the above paragraph, the consistency of these formulas can be verified. 
3. Considering further the case of elliptic GinUE, dividing by.N and taking the limit 
.τ → 1 gives the GUE with eigenvalues supported on.(−2, 2), and similarly for the. β
generalisation limiting to (1.12) restricted to this interval. For this model it is known 
(see e.g. [250, Eq. (3.2) with the identification .x = 2 cos θ ]) that 

. lim
N→∞Cov

( N∑

j=1

f (x j ),

N∑

j=1

g(x j )
)

= 2

β

∞∑

n=1

n f cn g
c
n,

where . f (x)|x=2 cos θ = f c0 + 2
∑∞

n=1 f cn cos nθ and similarly for .g(x). We observe 
that this is identical to the final term in (3.21), modified according to the specifications 
of point 1. above. 
4. There has been a recent application of Proposition 3.3 in relation to the computation 
of the analogue of the Page curve for a density matrix constructed out of GinUE 
matrices [164]. 

We turn our attention now to the limiting distribution of a smooth linear statis-
tic. By way of introduction, consider the particular linear statistic .

1
N

∑N
j=1 |r j |2 for 

GinUE. An elementary calculation gives that the corresponding characteristic 
function, .P̂N (k) say, has the exact functional form 

.P̂N (k) = (1 − ik/N )−N (N+1)/2. (3.23) 

It follows from this that after centring by the mean, the limiting distribution is a 
Gaussian with variance given by (3.21) (which is this specific case evaluates to one). 
A limiting Gaussian form holds in the general case of the applicability of (3.21), as 
first proved by Rider and Virág [472]. 

Proposition 3.4 Let . f be subject to the same conditions as in Proposition 3.3, and 
denote the case . f = g of (3.21) by .σ 2

f . For the GinUE, if . f takes on complex values 
then as . N → ∞

.

N∑

j=1

f (r j/
√
N ) −

/ N∑

j=1

f (r j/
√
N )

\
d→N[0, σ f ] + iN[0, σ f ],
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while if . f is real-valued the RHS of this expression is to be replaced by .N[0, σ f ]. 
Moreover, this same limit formula holds for the elliptic GinUE [59] and its . β gener-
alisation [394] (both subject to further technical restrictions on. f ), with the variance 
modified according to Remark 3.4.1. 

Proof (Comments only) The proof of [472] proceeds by establishing that the higher-
order cumulants beyond the variance tend to zero as .N → ∞. Essential use is made 
of the rotation invariance of GinUE. The method of [59] uses a loop equation strategy, 
while [394] involves energy minimisers and transport maps. For GinUE with . f a 
function of .|r|, a simple derivation based on the proof of Proposition 2.14 together 
with a Laplace approximation of the integrals [235] (see also [120, Appendix B]). □

Remark 3.5 Other settings in which Proposition 3.4 has proved to be valid include 
products of GinUE matrices [171, 371] (with the additional assumption that the test 
function has support strictly inside the unit circle), and for the complex spherical 
ensemble of Sect. 2.5 after stereographic projection onto the sphere [ 88, 471]. 

3.3 Spatial Modelling and the Thinned GinUE 

The GinUE viewed as a point process in the plane has been used to model geograph-
ical regions by way of the corresponding Voronoi tessellation [391], the positions of 
objects, for example trees in a plantation [390] or the nests of birds of prey [ 12], 
and the spatial distribution of base stations in modern wireless networks [188, 440], 
amongst other examples. The wireless network application has made use of the 
thinned GinUE, whereby each eigenvalue is independently deleted with probability 
.(1 − ζ ),.0 < ζ ≤ 1. The effect of this is simple to describe in terms of the correlation 
functions, according to the replacement 

.ρ(n),N (z1, . . . , zn) |→ ζ Nρ(n),N (z1, . . . , zn). (3.24) 

With the bulk density of GinUE uniform and is equal to.1/π , we can also rescale the 
position.z j |→ z j/ζ so that this remains true in the thinned ensemble. For this (3.24) 
is to be updated to read 

.ρ(n),N (z1, . . . , zn) |→ ρ(n),N (z1/
√

ζ , . . . , zn/
√

ζ ). (3.25) 

Recalling now (2.9) and (2.18), for the bulk-scaled limit of the thinned GinUE 
we have in particular 

.ρ tGinUE
(1),∞ (z) = 1

π
, ρ

tGinUE,T
(2),∞ (w, z) = − 1

π2
e−|w−z|2/ζ .



52 3 Fluctuation Formulas

From these functional forms we see 

. 

{

C

ρ
tGinUE,T
(2),∞ (w, z) d2z = − ζ

π
/= −ρ tGinUE

(1),∞ (w) unless ζ = 1,

where the superscript “tGinU” denotes the thinned GinUE. Equivalently, in terms of 
the structure factor (3.17), 

. StGinUE∞ (0) = 1 − ζ

π
/= 0 unless ζ = 1.

Due to this last fact, the O.(1) scaled covariance for smooth linear statistics (3.18) is  
no longer true, and now reads instead 

. CovtGinUE
( ∑

f (rl/R),
∑

g(rl/R)
)

∼
R→∞

R2

(2π)2

(1 − ζ )

π

{

R2
f̂ (k)ĝ(−k) dk.

(3.26) 
This leading dependence on .R2 holds too for the counting function . f (z) = χ|z|<1, 
since in distinction to (3.18) the integral now converges. Hence, in the terminology 
of the text introduced below (3.9), the statistical state is no longer hyperuniform. 
There is an analogous change to the O.(1) scaled covariance (3.21), which is now 
proportional to .N and reads 

. CovtGinUE
( N∑

j=1

f (r j/
√
N ),

N∑

j=1

ḡ(r j/
√
N )

)
∼

N→∞ N
(1 − ζ )

π

{

|r|<1
f ḡ dxdy.

(3.27) 
Notwithstanding this difference, the corresponding limiting distribution function 
is still Gaussian [386]. A more subtle limit, also considered in [386], is when 
.N → ∞ and .ζ → 1− simultaneously, with .N (1 − ζ ) fixed. The quantity (3.21) 
returns to being O.(1), but consists of a contribution of the form (3.21), and a term 
characteristic of a Poisson process; see also [455]. 

We turn our attention now to the probabilities .{E tGUE
N (k; Dα

√
N )}. Upon consid-

eration of the thinning prescription (3.25), the proof of Proposition 3.1, and (3.10) 
shows that the corresponding generating function is given by 

.Ẽ tGUE
N (ξ ; Dα

√
ζN ) =

N∏

j=1

(

1 − ξζ
γ ( j;α2N )

┌( j)

)

. (3.28) 

Setting .ξ = 1 in this gives the probability .E tGUE
N (0; Dα

√
ζN ). Note that the implied 

formula shows .E tGUE
N (0; Dα

√
ζN ) = ẼGUE

N (ζ ; Dα
√
N ). The  large  .N asymptotics of 

.ẼGUE
N (ζ ; Dα

√
N ), and various generalisations, are available in the literature [116, 

150]. Here we present a self-contained derivation of the first two terms (cf. (3.11)).
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Proposition 3.5 For large .N and with .0 < α, ζ < 1 we have 

.Ẽ tGUE
N (0; Dα

√
ζN ) = exp

(
α2N log(1 − ζ ) + √

α2N h(ζ ) + O(1)
)
, (3.29) 

where 

. h(ζ ) =
{ ∞

0
log

(1 − (ζ/2)(1 + erf(t/
√
2))

1 − ζ

)
dt

+
{ ∞

0
log

(
1 − (ζ/2)(1 − erf(t/

√
2))

)
dt. (3.30) 

Proof Our main tool is the uniform asymptotic expansion [529] 

.
γ (M − j + 1; M)

┌(M − j + 1)
∼

M→∞
1

2

(
1 + erf

( j√
2M

))
; (3.31) 

cf. the leading term in (2.20). Here it is known that the error term has the structure 
.(1/

√
M)g( j/

√
2M), where .g(t) is integrable on .R and decays rapidly at infinity. 

This expansion suggests we rewrite the product in (3.28) with .ξ = 1 in the form 

. (1 − ζ )[M
∗]
( M∗

∏

j=1

1 − ζγ ( j; M∗)/┌( j)

1 − ζ

)( N∏

j=M∗+1

(1 − ζγ ( j; M∗)/┌( j))

)

,

where .M∗ = [α2N ]. 
We see that the first term in this expression gives the leading-order term in (3.29). In 

the first product we change labels. j |→ M∗ − j + 1.( j = 1, . . . , M∗). In the second 
we change labels . j |→ M∗ + j + 1 (. j = 0, . . . , N − M∗ − 1). Now writing both 
these products as exponentials of sums and applying (3.31) gives, upon recognising 
the sums as Riemann integrals, the O.(

√
α2N ) term in (3.29). □

The leading term in (3.29) is consistent with the general form expected for thinned 
log-gas systems, being of the form of the area of the rescaled excluded region, times 
the density, times .log(1 − ζ ) [242, Conj. 10]. 

Remark 3.6 1. The topic of spatial modelling using Ginibre eigenvalues naturally 
leads to questions on the efficient simulation of the point process confined to a 
compact subset of . C. Practical algorithms for this task have been given in [181, 
182]. 
2. Beyond Voronoi cells as a geometrical measure, a topological measure known as 
persistence diagrams has been introduced in the context of Ginibre point processes 
in [291]. 
3. A question of long-standing interest is the spectrum of an adjacency matrix for a 
random graph or network; see for example [196]. In the particular case of directed 
random networks, for which the adjacency matrix is asymmetric, relationships to 
bulk GinUE spectral statistics have been found [460, 537].
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Chapter 4 
Coulomb Gas Model, Sum Rules and 
Asymptotic Behaviours 

Throughout this chapter we consider the Coulomb gas model (1.12) with general 
.β > 0, for which we use the notation OCP, which stands for one-component plasma. 
The special case .β = 2 coincides with GinUE. The study of thermodynamic prop-
erties of the OCP requires the asymptotic expansion of the logarithm of the renor-
malised configuration integral for large. N . This holds true for the Coulomb gas model 
confined to general domains. A conjectured universal logarithmic term, which is pro-
portional to the Euler characteristic of the domain, is highlighted and a conjecture for 
the .

√
N surface tension term in the case of disk geometry is also reported, as are 

some exact results for the energy per particle. In relation to the edge-scaled charge 
density, sum rules for the total charge and the dipole moment are given, and an 
asymptotic expansion of the density outside of the droplet is formulated, which as 
the multiplicative constant term involves the dimensionless free energy per parti-
cle. The final section of the chapter addresses sum rules and asymptotics associated 
with the truncated two-point correlation function, which is conveniently interpreted 
as the screening cloud about a fixed charge. Its Fourier transform gives the structure 
function, for which several terms in the small wavenumber expansion can be pre-
dicted. Also emphasised is distinct, slowly decaying, asymptotic behaviour of the 
truncated two-point correlation function at the boundary. 

4.1 Asymptotics Associated with the Configuration Integral 

The configuration integral for the Boltzmann factor (1.12) is specified by 

.QOCP
N (β) =

{
C

d2z1 · · ·
{
C

d2zN e−(β/2)
∑N

j=1 |z j |2 ∏
1≤ j<k≤N

|zk − z j |β. (4.1) 
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From the OCP viewpoint, it is more natural to consider the renormalised quantity 

.ZDR ,OCP
N (β) = 1

N ! AN ,βQ
OCP
N (β), AN ,β = e−βN 2( 1

4 log N− 3
8 ); (4.2) 

see [237, Eq. (1.72)]. The symbol .DR on the LHS indicates an underlying disk of 
radius. R (with.R = √

N although we suppress this detail). Specifically, .AN ,β on the 
RHS of (4.2) is derived as the Boltzmann factor of the electrostatic self-energy of a 
smeared out uniform background, charge density .− 1

π
, confined to the disk .DR , and 

the constant terms of its electrostatic energy when coupled to a particle inside of this 
disk. The quantity .ZDR ,OCP

N (β) is then the partition function of the charge neutral 
OCP. Generally, in statistical mechanics for a stable system the dimensionless free 
energy, .βFN (β) = − log ZN (β), is an extensive quantity, meaning that for large . N
it is proportional to . N . For the closely related model when the particles are strictly 
restricted to the disk, the validity of this statement was established in [405, 486], and 
has been reconsidered recently using more far-reaching techniques in [393] (which  
for example form a platform for the study of fluctuation formulas in [394]). Making 
use of Proposition 2.1 the large.N form of.βFDR ,OCP

N (β) can be computed for. β = 2
[520, Eq. (3.14)]. 

Proposition 4.1 We have 

. βFDR ,OCP
N (β)

|||
β=2

= Nβ f (β)|β=2 + 1

12
log N − ζ ,(−1) − 1

720N 2
+ O

( 1

N 4

)
,

(4.3) 
where 

.β f (β)|β=2 = 1

2
log

( 1

2π3

)
. (4.4) 

Proof This relies on (2.3), identifying .
∏N−1

j=1 j ! = G(N + 1), where .G(x) denotes 
the Barnes .G-function, and the knowledge of the known asymptotic expansion of 
.G(N + 1) (see e.g. [226, Th. 1]). □

For the OCP on a sphere of radius . R, .S2R say, and with .R = 1
2

√
N so that the 

particle density is .1/π , the partition function of the charge neutral system is (see 
e.g. [520, Eq.  (2.1)])  

. Z
S2R ,OCP
N (β) = 1

N !N
−Nβ/2eβN 2/4

×
{
S2R

dθ1dφ1 · · ·
{
S2R

dθNdφN

∏
1≤ j<k≤N

|ukv j − u jvk |β.

Here the variables .{u j , vk} are the Cayley–Klein parameters as in (2.52). From the 
analogue of Proposition 2.1 this can be evaluated exactly at .β = 2 [131], implying 
that for large .N [344], [520, Eq. (3.6)]
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. βF
S2R ,OCP
N (β)

|||
β=2

= Nβ f (β)|β=2 + 1

6
log N + 1

12
− 2ζ ,(−1) + 1

180N2 + O
( 1

N4

)
,

(4.5) 
where .β f (β)|β=2 is as in (4.3). 

Both expansions (4.3) and (4.5) illustrate a conjectured universal property of 
the large .N expansion of .βFOCP

N in the case that the droplet forms a shape with 
Euler index . χ [344] 

.βFOCP
N (β) = Nβ f (β) + aβ

√
N + χ

12
log N + · · · , (4.6) 

valid for general .β > 0. To compare against the exact results for .β = 2 it should 
be recalled that .χ = 1 for a disk and .χ = 2 for a sphere. An analogous calculation 
in annulus geometry at .β = 2 gives an expansion with a term proportional to . log N
absent, in keeping with .χ = 0 [229], [125]. A further point of interest is that the 
large.N expansions for.EN (0;DN ) from [149] as reviewed in Sect. 3.1.1, also exhibit 
simple fractions for the coefficient of .log N , and moreover this term is not present 
in the case where the eigenvalues are constrained to a single annulus. 

We note that the term proportional to .
√
N in (4.6) has the interpretation as a 

surface tension, and so is expected not to be present in the case of a sphere for any 
. β. Also, for the disk geometry, it has been conjectured (see [135, Eq. (3.2)]) that 

.aβ = 4 log(β/2)

3π1/2
, (4.7) 

which in particular vanishes in the special case .β = 2, as is consistent with (4.5). 

Remark 4.1 1. Multiplication of the configuration integral .QOCP
N (β) by .AN ,β as in 

(4.2) effectively shifts the microscopic energy .U in (1.12) by a function of  . N . We  
denote this shifted, charge neutral, energy by .U ,, and similarly in relation to the 
sphere. For .β = 2 direct calculation of the mean is possible. Thus in the case of the 
OCP on the plane, one finds [494, equivalent to Eqs. (25) and (29)] 

. ⟨U ,⟩ DR
|||
β=2

= − 1

2

(
N2

2
(ψ(N ) − log N ) + N + 1

4
+ NC

2
− ┌(N + 3/2)

┌(N + 2)┌(3/2)

× 3F2
(1, N − 1, N + 3/2

N + 2, N + 1

|||1
))

= −CN

4
+ 2

√
N

3
√

π
− 5

48
+ O(N−1/2),

where .C denotes Euler’s constant and .ψ(N ) denotes the digamma function. The 
corresponding result for the sphere geometry at .β = 2 gives the simpler formula 
[ 43, 132, 480] 

.⟨U ,⟩ S2R
|||
β=2

= N

4

(
− HN + log N

)
= −CN

4
− 1

8
+ O(N−1),
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where .HN denotes the harmonic numbers. The common leading-order value of the 
charge neutral energy per particle,.−C/4, was known to Jancovici [337] through the 
formula 

. lim
N→∞

1

N
⟨U ,⟩ OCP

|||
β=2

= −π

2

{
R2

log |r| ρb,GinUE
(2),∞ (0, r) dr = −C

4
,

where the integral is evaluated from the explicit formula for .ρb,GinUE
(2),∞ given by 

(2.24). Note as an expansion about.β = 2,. βFN (β) = βFN (β)|β=2 + (β − 2)⟨U ,⟩ +
O((β/2 − 1)2), so the above results allow (4.3) and (4.5) to be extended to first order 
in .(β − 2). In particular consistency is obtained with (4.6). 
2. In the low temperature limit .β → ∞ the OCP particles are expected to form a 
triangular lattice. Recent works relating to this include [ 48, 65, 66, 93, 138, 394, 
474, 484]. The conjectured exact value of twice the charge neutral energy per particle 
in this limit, with bulk density.1/(4π) (not.1/π as is natural for GinUE in the plane, 
rather the geometry used was a sphere of unit radius) is [108] 

. 2 log 2 + 1

2
log

2

3
+ 3 log

√
π

┌(1/3)
= −0.0556053 . . . ;

see [511] for a lower bound close to this value. To obtain this, a limit from the known 
number theoretic expression for the potential at the origin due to a triangular lattice 
of particles interacting by the Riesz.1/r s pairwise potential is taken—the work [493] 
discusses analytic properties of such lattice sums and regularisations. Relevant to the 
different bulk density is the generalisation of (4.2) to the case of a general background 
charge density.−ρb inside.DR . Let this quantity be denoted by.ZDR ,OCP

N (β; ρb). Using  
[237, Eq. (1.72)] a simple change of variables in the configuration integral shows 

.ZDR ,OCP
N (β; ρb) = eN (1−β/4) logπρb ZDR ,OCP

N (β; 1/π). (4.8) 

Consequently, upon taking the logarithmic derivative with respect to . β, the limiting 
internal energy per particle, .uOCP∞ (β; ρb) say, has the functional form 

.uOCP∞ (β; ρb) = −1

4
logπρb + uOCP∞ (β; 1/π), (4.9) 

exhibiting a simple dependence on. ρb. We also refer to [ 18, 144, 388] and references 
therein for recent works on the opposite, high-temperature limit.β → 0. In particular, 
Debye–Huckel theory predicts 

.uOCP∞ (β; ρb) ∼
β→0

−1

4
logπρb − 1

4
log(β/2) − C

2
, (4.10) 

where C denotes Euler’s constant; see e.g. [481, Sect. 2.1]. Finite size corrections in 
the Debye–Huckel formalism are considered in [519, 525].
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4.2 Sum Rules and Asymptotics for the Edge Density 

First we note that for large .N the leading-order support of the density is a disk of 
radius .

√
N , independent of . β, as follows from the potential theoretic argument of 

Remark 2.2.2. Using the vector coordinate .r = (x, y), as in the second equation in 
(2.19) we introduce edge-scaling coordinates by writing 

.ρOCP
(1),N ((x,

√
N − y)) = ρ

e,OCP
(1),∞ (y) + 1√

N
μ
e,OCP
(1),∞ (y) + O

( 1

N

)
. (4.11) 

Here the form of the correction terms, known to be valid at.β = 2 according to (2.28), 
are at this stage presented as an ansatz. We seek some integral identities that must 
be satisfied by.ρ

e,OCP
(1),∞ (y) and.μ

e,OCP
(1),∞ (y). Identities of this type are referred to as sum 

rules. 

Proposition 4.2 We have 

.

{ ∞

−∞

(
ρ
e,OCP
(1),∞ (y) − 1

π
χy>0

)
dy = 0 (4.12) 

and 

.

{ ∞

−∞
y
(
ρ
e,OCP
(1),∞ (y) − 1

π
χy>0

)
dy =

{ ∞

−∞
μ
e,OCP
(1),∞ (y) dy. (4.13) 

Proof Because of the large. N form of the density, we have that. ρe,OCP
(1),N (r) − 1

π
χ|r|<√

N

will be concentrated near.|r| = √
N . Now, the normalisation condition for the density 

gives, with the use of polar coordinates 

. 

{ ∞

0
r
(
ρ
e,OCP
(1),N (r) − 1

π
χ|r|<√

N

)
dr

=
{ √

N

−∞
(
√
N − y)

(
ρ
e,OCP
(1),N (

√
N − y) − 1

π
χy>0

)
dr = 0.

In the second term we now substitute (4.11) and equate terms of order .
√
N and of 

order unity to zero to obtain (4.12) and (4.13). □
From the functional forms for.ρe,GinUE

(1),∞ (y) and.μ
e,GinUE
(1),∞ (y) as read off from (2.28), 

we verify both of the above sum rules in this special case. Note that the integral on 
the LHS of (4.13) has the interpretation of the dipole moment of the excess charge in 
the edge boundary layer, using the Coulomb gas picture. In fact it is possible to derive 
a further sum rule which evaluates this dipole moment explicitly [521, Eq. (5.13)]. 

Proposition 4.3 We have 

.

{ ∞

−∞
y
(
ρ
e,OCP
(1),∞ (y) − 1

π
χy>0

)
dy = − 1

2πβ

(
1 − β

4

)
. (4.14)
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Proof From the definition, we observe 

. 

/ N∑
j=1

|r j |2
\
= − ∂

∂c
log

({
R2

dr1 · · ·
{
R2

drN e−c
∑N

j=1 |r j |2 ∏
1≤ j<k≤N

|rk − r j |β
)||||

c=β/2

.

(4.15) 
The . c dependence of the integral can be factored by a simple change of variables, 
allowing the integral to be replaced by .c−N−βN (N−1)/4, and so giving 

.

/ N∑
j=1

|r j |2
\
= 2N

β
+ 1

2
N (N − 1). (4.16) 

By writing the LHS as an average over the density and the use of polar coordinates, 
we see that this is equivalent to the sum rule 

. 2π
{ ∞

0
r3

(
ρOCP

(1),N (r) − 1

π
χr<

√
N

)
dr = N

2

( 4

β
− 1

)
.

Proceeding now as in the proof of Proposition 4.2, by substituting (4.11), equating 
terms proportional to .N on both sides, and making use too of (4.13), we deduce 
(4.14). □

One observes that the RHS of (4.14) changes sign as. β increase beyond. 4. In fact 
in the work [134] it is predicted that for general .β > 2, the edge density profile of 
the OCP exhibits an overshoot effect where it rises before tailing off to zero. The 
exact evaluation of the edge density to leading-order in.β − 2 in [135] lends analytic 
evidence to this claim, while numerical evidence from Monte Carlo simulations 
is presented in [138]. This edge density overshoot effect has been observed in the 
random matrix ensemble of even-dimensional random matrices .ZNW , where. ZN =
IN ⊗

[
0 1

−1 0

]
and .W is a complex anti-symmetric Gaussian random matrix [243, 

319]. Moreover, in [319], upon the assumption of large eigenvalue separation, an 
analytic calculation of the joint eigenvalue PDF gives the functional form of the 
OCP with .β = 4. 

We now turn our attention to the large .N form of the global-scaled density, 
.ρ

g,OCP
(1),N (r) := ρOCP

(1),N (
√
Nr). From the theory noted at the beginning of the section, 

this will limit to the circular law (2.17). We ask about the leading correction term. A 
hint is given by (4.16), which after dividing both sides by.N 2 to correspond to global 
coordinates tells us 

. 

/ 1

N 2

N∑
j=1

|r j |2
\
g,OCP

= 1

2
− 1

2

(
1 − 4

β

) 1

N
.

Here, the subscript “g, OCP” means that the average is taken with respect to the 
measure (4.1). The first term . 12 is the average of the function .g(r) = |r|2 over the
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disk.D√
N with density. 

1
π
. The second term is a. 1N correction, so we might expect that 

the leading correction to the circular law is O.(1/N ). In fact, knowledge of (4.14) 
is sufficient to compute the leading correction term of the large .N expansion of 
all the moments .⟨ 1

N

∑N
j=1 |r j |p⟩ g,OCP (.p = 1, 2, . . . ), allowing us to conclude [521, 

Eq. (5.18)] that 

. ρ
g,OCP
(1),N (r) = 1

π
χ|r|<1 + 1

N
κ(r) + O(N−3/2), κ(r) = 1

2πβ

(
1 − β

4

)1
r
δ,(r − 1).

(4.17) 
Thus the correction term is concentrated on the boundary. For GinUE, it can be 
deduced from (2.10) that inside the droplet the corrections are exponentially small 
[397, Th. 1.2],[334, Lemma 3.1]. (See also [300, 335]) This same formula can also be 
read off from a more general formula relating to. β generalised normal matrix models 
(see § 5.3) obtained by Zabrodin and Wiegmann [539, Eq. (5.16)]. Associated with 
(4.17) is the expansion [393, Eq. (1.14)] 

. 

/ 1
N

N∑
j=1

g(r j )
\g,OCP = 1

π

{
|r|<1

g(r) dxdy

+ 1

N

1

2πβ

(
1 − β

4

) {
|r|<1

∇2g(r) dxdy + o(N−1), (4.18) 

valid for sufficiently smooth test functions . g (note that rotational invariance is not 
assumed). In the case .β = 2 this expansion can be found in [ 59, Th. 2.1]. 

As our final topic under this heading, we consider the.y → −∞ asymptotic form 
of .ρe,OCP

(1),∞ (y). According to (2.29), at .β = 2 we have 

.ρ
e,OCP
(1),∞ (y) ∼

y→−∞
e−2y2

(2π)3/2|y| . (4.19) 

As a first step to extend this to general.β > 0, a large deviation formula for. ρOCP
(1),N (r)

can be computed, which asks for the asymptotic form of .ρOCP
(1),N (

√
Nr) (here polar 

coordinates are being used), .r > 1 [135, Proposition 1]. 

Proposition 4.4 With .β f (β) the dimensionless free energy per particle as in (4.6), 
for .r > 1 we have 

. ρOCP
(1),N (

√
Nr) = eβ f (β)

Nβ/4
e−(Nβ/2)(r2−1) exp

(
Nβ log r − β

2
log(r2 − 1) + o(1)

)
.

(4.20) 

Proof (Sketch) The starting point is to manipulate the definition of .ρOCP
(1),N to obtain 

its form written as an average 

. ρOCP
(1),N+1(

√
N + 1r)
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= (N + 1)N β N/2 e−(N+1)βr2/2 Q
OCP 
N (β) 

QOCP 
N+1(β)

/ N∏
l=1

|||
/

N + 1 
N 

r − rl
|||β

\
OCPg 

. (4.21) 

Here .QOCP
N (β) is the configuration integral (4.1), and the average is with respect to 

the global-scaled OCP, specified by the Boltzmann factor (1.12) but with the factor 
of . 12 multiplying the first sum in .U replace by . N2 . The significance of this is that 
upon exponentiating the product, the average can be recognised as the characteristic 
function for a particular linear statistics. For this, with .|r| = r > 1 Proposition 3.4 
applies, telling us the leading two terms in its large.N asymptotic expansion, once the 
corresponding mean and variance have been computed. After calculating these, (4.20) 
results. □

From (4.20) we compute the limit formula 

. lim
N→∞ ρOCP

(1),N (
√
Nr)|r=1−y/

√
N = eβ f (β) e−βy2

(2|y|)β/2
, (4.22) 

which under the assumption that the large deviation formula connects to the. y → −∞
tail of .ρe,OCP

(1),∞ (y) is the sought .β > 0 generalisation of the .β = 2 result (4.19). The 
consistency between (4.22) and the latter is immediate upon substituting (4.4). 

4.3 Sum Rules and Asymptotics for the Two- and 
Higher-Point Correlations 

Setting .k = 0 in (3.17) gives  

.

{
R2

(
ρ
b,T
(2),∞(0, r) + 1

π
δ(r)

)
dr = 0, (4.23) 

where .ρb,T
(2),∞ is given by (2.24). This constraint on .ρb,T

(2),∞ is an example of a sum 
rule. In physical terms, using the Coulomb gas picture, it says that the response 
of the system by the introduction of a charge (corresponding to the delta function) 
is to create a screening cloud (corresponding to .ρT

(2),∞) of opposite total charge. 
Consequently, (4.23) is referred to as the perfect screening sum rule. It relates to the 
point process being hyperuniform or equivalently incompressible—for a state that is 
compressible the RHS of (4.23) is not zero but rather is given in terms of the second 
derivative of the pressure with respect to the fugacity; see e.g. [248, Eq. (3.7)]. For 
states with an underlying long-range potential (as in (1.12)) the perfect screening sum 
rule is expected to be a necessary condition for thermodynamic stability [422]. Of 
similar general validity is the sum rule which results when the integrand of (4.23) is  
replaced by
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. q(r1, . . . , rk, r) := ρ(k+1),∞(r1, . . . , rk, r)

− 1

π
ρ(k),∞(r1, . . . , rk) +

k∑
j=1

δ(r − r j )ρ(k),∞(r1, . . . , rk). (4.24) 

Furthermore, the fast decay of the correlations upon truncation (i.e. suitable subtrac-
tion by combinations of lower-order correlation as in the definition of.ρT

(2),∞) implies 
that not only does the total charge associated with . q vanish, but in fact so too all the 
multipole moments [422]. 

Proposition 4.5 Let . q be as in (4.24) and set .r = (x, y). For bulk-scaled GinUE, 
specified in terms of the correlation functions by (2.9) with .N → ∞ and the 
correlation kernel (2.18), we have 

.

{
R2

(x − iy)pq(r1, . . . , rk, r) dr = 0, p = 0, 1, . . . (4.25) 

Proof For any .k ≥ 1 integrating over the term involving the sum of delta func-

tions gives.
( ∑k

j=1(x j − iy j )p
)
ρ(k),∞. To then integrate over the first two terms, we 

expand the determinant specifying .ρ(k+1),∞ by the final row. The term coming from 
the last entry is recognised as .(1/π)ρ(k),∞ and so cancels. For each of the . k other 
terms, we multiply the term coming from the . j-th entry of the final row . K b∞(r, r j )
times .(x − iy)p down the final column containing .[K b∞(rm, r)]km=1, and integrate 
over . r. For the latter task, polar coordinates can be used to deduce that 

. 

{
R2

(x − iy)pK b
∞(rm, r)K b

∞(r, r j ) dr = (x j − iy j )
pK b

∞(rm, r j );

the case .p = 0 is (2.22) with bulk scaling. After rearranging the columns, the result 
of the integration in each case can be identified as .−(x j − iy j )pρ(k),∞, and thus in 
total cancel out with the integration over the final term. □

Replacing.1/π in (4.24) by.ρ(1),∞(r) the sum rule (4.25) with.p = 0 remains valid 
in the case of edge-scaling as a consequence of the validity of (2.22). For . p ≥ 1
the slow decay of the correlations along the direction of the boundary as seen in 
(2.26) means that the integral in (4.25) is not well defined. Specifically the .p = 0, 
.k = 1 sum rule (4.25) at the edge reads 

.

{
C

ρ
e,OCP,T
(2),∞ (z, z,) d2z, = −ρ

e,OCP
(1),∞ (z). (4.26) 

This is the edge counterpart of the bulk perfect screening sum rule (4.23). 

Remark 4.2 It turns out that in the GinUE case, the determinantal structure together 
with (4.26) can be used to show that .ρ(z) := ρ

e,GinUE
(1),∞ (z) (this is (2.29)) satisfies a 

non-linear equation of infinite order,
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.ρ(z) =
∞∑
n=0

|∂(n)
z ρ(z)|2
n! ; (4.27) 

see [ 61, Sect. 3.6], where (4.26) is referred to as a mass-one equation. The non-linear 
equation is equivalent to the special function function identity 

. 
1

4

(
1 + erf(

√
2x)

)(
1 − erf(

√
2x)

)
= e−4x2

π

∞∑
n=1

(Hn−1(
√
2x))2

2nn! (x ∈ R);
(4.28) 

see [ 61, Sect. 4.5] for the proof of (4.28). Together with the loop equation, the identity 
(4.27) is used in [  61] to study the universality of normal matrix models; see Sect. 
5.4. 

To deduce (3.19) from (3.18) requires that 

. lim
R→∞ R2SGinUE∞ (k/R) = |k|2

4π
. (4.29) 

In the general .β > 0 case of the OCP we denote the bulk-scaled structure factor 
by .SOCP∞ (k). A perfect screening argument extending the viewpoint which implies 
(4.23) (for this see e.g. [237, Sect. 15.4.1], [234, Sect. 3.2]) predicts 

. lim
R→∞ R2SOCP∞ (k/R) = |k|2

2βπ
. (4.30) 

This result, in the slightly different guise of a mesoscopic scaling limit, is consistent 
with the recent work [394, Th. 1 mesoscopic case, formula for the variance]. Hence, 
as a generalisation of (3.19), we have 

. lim
R→∞CovOCP

( ∑
f (rl/R),

∑
g(rl/R)

)
= 1

(2π)2

1

2πβ

{
R2

f̂ (k)ĝ(−k)|k|2 dk,

(4.31) 
provided the integral converges. 

As previously remarked in the case of (3.19), the choice. f (r) = g(r) = χ|r|<1 is an 
example when the RHS of (4.31). Yet this case is of some interest as it corresponds 
to .VarOCP N (DR). To determine its large .R behaviour, we first note that simple 
manipulation of the appropriate specialisation of the first equality in (3.2) shows  

. VarOCP N (DR) ={
R2

drCOCP
∞ (r)

{
R2

dr,
(
χr+r,∈DR − 1

)
χr,∈DR + |DR|

{
R2

COCP
∞ (r) dr, (4.32) 

where .COCP∞ (r) is the notation for the integrand of (4.23). But (4.23) itself, which 
is the perfect screening sum rule, tells us that the last integral in (4.32) vanishes.
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Let us write.α(r/R) := 1
|DR |

{
R2 dr, (χr+r,∈DRχr,∈DR . We see from the definition that 

.α(r/R) = 0 for .r ≥ R, while for .0 < r < 2R it is shown in [524] that 

. α(x) = 2

π

(
Arcos x − x(1 − x2)1/2

)
= 1 − 2

π
x + O(x2).

Consequently, for large . R [424] 

.VarOCP N (DR)∼ −2R
{
R2

|r|COCP
∞ (r) dr. (4.33) 

This being proportional to the surface area of.DR then represents the smallest possible 
growth of the variance (recall the discussion (3.9), and establishes too that the OCP 
is hyperuniform for general .β > 0. 

Remark 4.3 1. In the cases of the OCP applied to the anomalous quantum Hall 
effect (.β = 2M with .M odd), the sum rule (4.30) combined with the Feynman–Bijl 
formula quantifies the collective mode excitation energy from the ground state [296]. 
2. The working leading to (4.33) is conditional on the validity of the perfect screening 
sum rule (4.23), which excluding the case.β = 2 has no independent proof. A rigorous 
demonstration that the OCP is hyperuniform for general .β > 0, independent of the 
validity of (4.23) has recently been established in [392]. However, the bound obtained 
on the variance, while decaying faster than the area of.DR as required by the definition 
of hyperuniform, is not sharp. 

From the definition of the structure factor, (4.30) is equivalent to the moment 
formula 

.

{
R2

|r|2ρOCP,T
(2),∞ (r, 0) dr = − 2

πβ
, (4.34) 

known as the Stillinger–Lovett sum rule [512]; see [423] for a derivation which 
makes use of (4.25) for.p = 1 and.k = 1, 2. Higher-order moment formulas can also 
be derived, 

.

{
R2

|r|4ρOCP,T
(2),∞ (r, 0) dr = − 16

πβ2

(
1 − β

4

)
, (4.35) 

and 

.

{
R2

|r|6ρOCP,T
(2),∞ (r, 0) dr = − 18

πβ3

(
β − 6

)(
β − 8

3

)
; (4.36) 

in distinction to (4.30) the precise statement of these results depends on the underlying 
bulk particle density, which in keeping with GinUE has been assumed to be . 1

π
. In  

keeping with the relationship between (4.30) and (4.34), the moment formulas can 
be related to the small . k expansion of .SGinUE∞ (k), which must therefore read
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. 
2πβ

|k|2 S
OCP
∞ (k) = 1 +

(β

4
− 1

) |k|2
2β

+
(β

4
− 3

2

)(β

4
− 2

3

)( |k|2
2β

)2 + O(|k|6).
(4.37) 

Evidence is given in [350] that the polynomial structure in .β/4 of the coefficients 
in this expansion breaks down at .O(|k|6). This is in contrast to the power series 
expansion of the bulk-scaled (density .1/π for definiteness) structure factor for the 
log-gas on a one-dimensional domain, .S(β)

∞ (k) say. Thus expanding .πβS(β)
∞ (k)/k as 

a power series in .(k/β), the  . j-th coefficient is a monic polynomial of degree . j in 
.β/2 [247, 258, 535]. 

A linear response argument can be used to derive the coefficient of .|k|2 in the 
expansion (4.37); see e.g. [237, Sect. 14.1.1]. It involves the thermal pressure for 
the OCP, which using the simple scaling relation (4.8) takes the value . ρb(1 − β/4)
(for a discussion of the relation between the thermal and mechanic pressure in the 
OCP, see [154]) which explains the appearance of this factor. Mayer high-temperature 
diagrammatic expansion methods and the direct correlation function were used to 
first derive the coefficient of .|k|4 in the expansion (4.37), or equivalently the sixth 
moment condition (4.36) [350]. Later a response argument involving variations to 
the spatial geometry was used to give an alternative derivation of this result [136]. 

The use of linear response to quantify the change of charge density upon the 
introduction of a charge . q into the OCP, computing from this the change of charge 
by integrating, and requiring by screening that this must equal.−q can be used [340] 
to deduce the Carnie–Chan sum rule [139, 140] 

. − β

{
R2

dr
( {

R2
dr, log |r,|

(
ρ
OCP,T
(2),∞ (r, r,) + 1

π
δ(r − r,)

))
= 1. (4.38) 

Here the integral cannot be interchanged, as according to (4.23) integrating over . r
first would give zero. The validity of (4.38) can be checked directly for .β = 2 in the 
bulk (i.e. for GinUE in the bulk). 

Proposition 4.6 The Carnie–Chan sum rule (4.38) is valid for GinUE in the bulk. 
Proof Denote the integral over .r, in (4.38) by  .g(r). Assuming only rotation and 
translation invariance of .ρOCP,T

(2),∞ implies 

. g(r) = log |r|
( {

|r,|<|r|
ρ
OCP,T
(2),∞ (r,, 0) dr, + 1

π

)
+

{
|r,|>|r|

log |r,|ρOCP,T
(2),∞ (r,, 0) dr,.

Specialising now to .β = 2 by substituting (2.24), the use of polar coordinates and 
integration by parts allows the integrals to be simplified, with the result 

. g(r) = − 1

π

{ ∞

|r|
e−(r ,)2

r , dr ,.

The integration over .r ∈ R
2 of this can be computed by further use of polar 

coordinates and integration by parts to confirm (4.38). □
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Formal use of the convolution theorem in (4.38) shows that it reduces to 
(4.30) [458]. In the case of the edge geometry, this approach can be used [343] 
to derive from (4.38) in the edge case the edge dipole moment sum rule 

. − 2πβ

{ ∞

−∞
dy

( { ∞

−∞
dy, (y, − y)

{ ∞

−∞
dx , ρe,OCP,T

(2),∞ ((0, y), (x ,, y,))
)

= 1,

(4.39) 
first derived in [ 97]. In keeping with the analogous property of (4.38), it is not possible 
to interchange the integrations over . y and .y, in this expression (if it was the LHS 
would vanish due to the sign change of .y, − y). In the case .β = 2 this is readily 
verified using the exact result (2.25). 

Proposition 4.7 The edge dipole moment sum rule (4.39) is valid for edge-scaled 
GinUE. 

Proof Substituting (2.25), integration by parts gives 

. 

{ ∞

−∞
dy, (y, − y)

{ ∞

−∞
dx , ρe,GinUE,T

(2),∞ ((0, y), (x ,, y,)) = − 1√
8π3

e−2y2

(this formula can be found in [338, Eq. (2.41)]). Now integrating over . y verifies 
(4.39) for .β = 2. □

The exact result (2.26) exhibits a slow decay of .ρT
(2),∞((x1, y1), (x2, y2)) parallel 

to the edge. This was first predicted by Jancovici [339, 341], who on the basis of a 
linear response argument relating to the screening of an oscillatory external charge 
density applied at the edge, obtained for general .β > 0, 

. ρT
(2),∞((x1, y1), (x2, y2)) ∼|x1−x2|→∞

f (y1, y2)

(x1 − x2)2
,

{ ∞

−∞
dy1

{ ∞

−∞
dy2 f (y1, y2) = − 1

2βπ2
. (4.40) 

A derivation of this using the Carnie–Chan sum rule for the OCP confined to a strip 
geometry is given in [340]. In keeping with this, in [345] the amplitude . f (y, y,)
in (4.40) is related to the dipole moment of the screening cloud at the edge by 
deriving that 

.

{ ∞

−∞
dy, (y, − y)

{ ∞

−∞
dx , ρe,OCP,T

(2),∞ ((0, y), (x ,, y,)) = π

{ ∞

−∞
dy, f (y, y,). (4.41) 

Then the result for the integral over . y on the RHS follows from the dipole moment 
sum rule (4.39). 

We consider now a global scaling, so that the droplet support is the unit disk. For 
large . N , define the charge–charge surface correlation by
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.⟨σ(θ)σ (θ ,)⟩ TN :=
{

dn
{

dn, ρg,OCP,T
(2),N (r, r,). (4.42) 

Here .ρg,OCP,T
(2),N refers to .ρOCP,T

(2),N computed using global scaling (as specified below 
(4.21)), then considering the large.N form with edge coordinates (these can be taken 
as .(r, θ) with .r ≈ 1. The integration is over the normal direction . n (here the radial 
direction); the more general notation has been used as this quantity can be defined in 
other geometries, e.g. for the elliptic GinUE [257]. The reasoning leading to (4.40) 
has been extended [341] to lead to the prediction 

.⟨σ(θ)σ (θ ,)⟩ T∞ = − 1

8π2β sin2((θ − θ ,)/2)
. (4.43) 

This has been checked at .β = 2 using the exact result for GinUE in [155]. Further, 
again for.β = 2, we note that a low-energy effective conformal field theory viewpoint 
of this result, obtained within the Fermi gas interpretation of Sect. 6.1, has recently 
been given in [452]. 

Remark 4.4 1. The knowledge of (4.43) can be used to predict the surface contri-
bution of the OCP generalisation of the covariance formula (3.21) [235]. 
2. For the bulk-scaled OCP with . β an even integer, there is a constraint on the small 
.r = |r| form of .ρb

(2),∞(r, 0). Thus [483] 

. ρb
(2),∞(r, 0) = rβe−βr2/4 f (r4),

for . f (z) analytic. Note from (2.24) that for GinUE, 

. f (z) = 2

π2

sinh(
√
z/2)√
z

.

Recently, consequences have been found in [482]. 
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Chapter 5 
Normal Matrix Models 

Normal matrix models, characterised by the requirement that the matrices commute 
with their adjoint so that their eigenvectors form a unitary matrix, permit an explicit 
Coulomb gas Boltzmann factor type eigenvalue PDF with .β = 2, so determinan-
tal structures hold. They permit a simplified global scaling in which the one-body 
potential is taken as being strictly proportional to. N . The support of the correspond-
ing large .N equilibrium measure is referred to as a droplet. Perturbing the GinUE 
one-body potential by the real part of a polynomial leads to a relation between the 
moments of the droplet and the coefficients of the polynomial. Generally, the main 
question of interest is the dependence on the potential in characterising quantities. 
This is addressed in relation to the large .N expansion of the partition function, and 
for the bulk, edge and global-scaled correlation functions. In the case of bulk and 
edge scaling, universality can be exhibited, meaning that the limiting correlations 
are in fact independent on the details of the potential, provided it corresponds to a 
non-vanishing density locally. 

5.1 Eigenvalue PDF 

A generalisation of the joint element PDF (2.36) is the functional form proportional to 

. exp
(

− N

t0
Tr(J J †) − 2Re

M∑
p=2

tpTr (J
p)

)
, t0 > 0; (5.1) 

note the scaling so that there is a factor of .N in the exponent. Use of the Schur 
decomposition (2.2) gives a separation of the eigenvalues and the strictly upper 
triangular elements in the exponent analogous to (2.4). This allows the latter to be 
integrated over, showing that the corresponding eigenvalue PDF is proportional to 
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. exp

(
− N

t0

N∑
j=1

(
|z j |2 − 2Re

M∑
p=2

tpz
p
j

))
. (5.2) 

However, for .tM /= 0 this is not normalisable for .M > 2. 
A simple remedy is to impose a cutoff by restricting the eigenvalues to a disk 

centred about the origin of radius. R, and restricting to small. t0 and values of. t2, . . . , tM
so that the support .Ω (assumed simply connected) of the density is contained inside 
this disk [217]. The mean field argument leading to (2.31) tells us that in relation 
(5.2), the normalised density has the constant value .1/π t0 in . Ω, where the latter is 
such that 

.W (z) = 1

π

{

Ω

log |z − w| d2w, W (z) = 1

2

(
|z|2 − 2Re

M∑
p=2

tpz
p
)
, (5.3) 

for . z contained inside of . Ω. From this equation the coupling constants .{tp}Mp=2 can 
be related to moments associated with .Ω [ 7, 538]. 

Proposition 5.1 In the above setting, for .p ≥ 2 we have 

.tp = 1

2π i p

{

∂Ω

z̄z−p dz = − 1

πp

{

C\Ω
z−p d2z. (5.4) 

Proof By applying.∂z to both sides of (5.3), then introducing.W (w) in the integrand 
via the identity .2∂w∂w̄W (w) = 1 shows 

. ∂zW (z) = 1

π

{

Ω

∂w∂w̄W (w)

z − w
d2w.

Now, using the Cauchy–Pompeiu formula (3.22) with.C1 replaced by. Ω, we see from 
this that 

. 

{

∂Ω

∂wW (w)

w − z
dw = 0.

Simple manipulation then shows 

. 
1

2π i

{

∂Ω

w̄

w − z
dw =

M∑
p=2

ptpz
p−1.

The first equality of (5.4) now follows by power series expanding the LHS with 
respect to . z. The second equality can be deduced from the first by applying the 
version of (3.22) valid for . z outside.C1 (chosen as .C\Ω), for which the LHS is to be 
replaced by . 0. □

The simplest case of (5.2) beyond that corresponding to (2.36) is to take .M = 3. 
After scaling, the choice of .t3 can be fixed. Choosing .t3 = 1

3 , results from [379]
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give that the support of .Ω is contained in a disk for all .0 < t0 ≤ 1/8, with the 
critical value .t0 = 1/8 involving three cusp singularities. Then, the boundary .∂Ω is 
a 3-cusped hypercycloid. For general .M ≥ 2 and .Ω contained in a disk and simply 
connected, it is shown in [217] that.∂Ω can be parametrised by a Laurent polynomial 
of the form.α1w + α0 + · · · + αM−1w

−M+1 with.|w| = 1. Dropping the assumption 
that. Ω be simply connected requires the theory of quadrature domains; see [396] and 
references therein. 

More general than the joint eigenvalue PDF (5.1) is the functional form 

. exp
(

−
∞∑

j,k=1

c jkTr (J
j (J †)k)

)
=: exp

(
− TrW (J, J †)

)
. (5.5) 

However, unlike the former, substituting the Schur decomposition (2.2) does not 
in general lead to a separation of the eigenvalues from the strictly upper triangular 
variables. To overcome this, attention can be restricted to the subset of .N × N com-
plex matrices having the further structure .[J, J †] = 0, which specifies the matrices 
as being normal. For normal matrices, the eigenvectors can be chosen to form an 
orthonormal set, and so .J = UDU †, for  .U unitary and .D the diagonal matrix of 
eigenvalues. Moreover, the change of variables from. J to .{U, D} gives a decompo-
sition of measure into separate eigenvalue and eigenvector factors, with the Jacobian 
given by (2.5) [152]. Hence the eigenvalue PDF corresponding to (5.5) in this setting 
is proportional to 

. exp
(

−
N∑
j=1

W (z j , z̄ j )
) ∏

1≤ j<k≤N

|zk − z j |2. (5.6) 

Note that for the joint element PDF (5.1), the same eigenvalue PDF (5.2) results for 
. J specified on the full space of.N × N complex matrices, as it does on the restriction 
to normal matrices as implied by (5.6). 

5.2 Equilibrium Measure 

Analogous to (5.1), to obtain a compact eigenvalue support for large. N , one considers 
the case that the weight.e−W is exponentially varying in a sense that.W is of order. N , 
say .W (z, z̄) = NQ(z) for a fixed potential .Q : C → R. Thus the eigenvalue PDF 
(5.6) is written as 

.e−H(z1,...,zN ), H(z1, . . . , zN ) :=
∑

1≤ j<l≤N

log
1

|z j − zl |2 + N
N∑
j=1

Q(z j ). (5.7)
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(Cf. Note that this is an extension of (1.12) to a general potential. Q.) As in Remark 2.2, 
the macroscopic behaviour of the system (5.7) can be described using the two-
dimensional Coulomb gas interpretation with the help of logarithmic potential theory. 
Namely, it is well known in the literature [ 49, 143, 144, 322, 348] that for a general 
.Q under suitable potential theoretic assumptions, the empirical measure . 1N

∑
δz j

weakly converges to a unique probability measure .μQ that minimises 

.IQ[μ] :=
{

C2
log

1

|z − w| dμ(z) dμ(w) +
{

C

Q dμ. (5.8) 

One may notice that (5.8) can be interpreted as a continuum limit of the Hamiltonian 
.HN in (5.7) after normalisation, generalising (2.30). The probability measure .μQ is 
called the equilibrium measure and its support.SQ := supp(μQ) is called the droplet, 
as previously remarked. Furthermore, if .Q is .C2-smooth in a neighbourhood of 
.SQ , by Frostman’s theorem [479], .μQ is absolutely continuous with respect to the 
Lebesgue measure and takes the form 

.dμQ(z) = ∂z∂z̄ Q(z)

π
χz∈SQ d

2z. (5.9) 

In particular, for a rotationally symmetric potential .q(r) = Q(|z| = r), the droplet 
is of the form .SQ = {r1 ≤ |z| ≤ r2}, where .(r1, r2) are the unique pair of constants 
satisfying 

.r1q
,(r1) = 0, r2q

,(r2) = 2, (5.10) 

see [479, Sect. IV.6]. Here, we have assumed that.Q(z) is strictly subharmonic in. C, 
which is equivalent to the requirement that.r |→ rq ,(r) is increasing in.(0,∞).Let us 
mention that all the explicit macroscopic densities with rotation invariance in Chapter 
2 can be obtained as special cases of the formulas (5.9) and (5.10). For instance, the 
RHS of (2.47) can be realised as the RHS of (5.9) with .Q(z) = |z|2 − 2α log |z|. 
Beyond the case when.Q is radially symmetric, the determination of the droplet, also 
known as the two-dimensional equilibrium problem (e.g. the ellipse in Sect. 2.3), is 
far from being obvious even for some explicit potentials with simple form; see [ 21, 
71, 73, 174, 376] and references therein for recent works in this direction. 

5.3 Partition Functions 

Continuing the discussion in Sect. 4.1, we consider the global-scaled, non-charge 
neutral, partition function 

.ZN (β; Q) = 1

N !
{

C

d2z1 · · ·
{

C

d2zN e− β

2 H(z1,...,zN ), (5.11)
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where .H(z1, . . . , zN ) is the Hamiltonian given in (5.7). An explicit formula for the 
large.N expansion of.ZN (β; Q)was predicted in [539]. Fairly recently, it was shown 
by Leblé and Serfaty [393] that for general.β > 0 and. Q,.ZN (β; Q) admits the large 
.N asymptotic expansion of the form 

. log ZN (β; Q) = −β

2
N2 IQ [μQ ] +

(β

4
− 1

)
N log N −

(
C(β) +

(
1 − β

4

)
EQ [μQ ]

)
N + o(N );

(5.12) 
see also an earlier work [485] on  (5.12) up to the.O(N log N ) term. The term. IQ[μQ]
appearing in the leading-order asymptotic is the energy (5.8) evaluated at the equi-
librium measure.μQ . In the case of the OCP, up to a sign it is the quantity appearing 
in the exponent of .AN ,β in (4.2) at order .N 2. To see this, we note that for a radially 
symmetric potential .q(r) = Q(|z| = r) generally, it is evaluated as 

.IQ[μQ] = q(r1) − log r1 − 1

4

{ r1

r0

rq ,(r)2 dr, (5.13) 

where .r1 and .r2 are the constants specified in (5.10). For the OCP .Q(z) = |z|2, 
which gives .IQ[μQ] = 3/4, this indeed being the coefficient of .N 2 seen in .AN ,β . 
The appearance of the term .(β/4 − 1)N log N in (5.12), whereas there is a term 
.
1
4βN

2 log N in .AN ,β of (4.2), due to the simple scaling .z j |→ z j/
√
N required to 

go from the OCP with global-scaled coordinates (as assumed in (5.12)) to the OCP 
itself (as assumed in (4.2)). The terms appearing in the .O(N ) term of (5.12) are  the  
entropy 

.EQ[μQ] :=
{

C

μQ(z) logμQ(z) d2z (5.14) 

associated with.μQ and a constant.C(β) independent of the potential. Q. Their sum is 
the free energy per particle, .β f (β; Q). The expansion (5.12) with quantitative error 
bounds is also available in the literature [ 75, 492]. 

For the random normal matrix model when .β = 2, the determinantal structure 
(2.9) allows an explicit expression 

.ZN (2; Q) =
N−1∏
j=0

h j , (5.15) 

where .h j is the orthogonal norm in (5.18); cf. Proposition 2.1. In particular, if .Q is 
rotationally symmetric, since .p j (z) = z j , we have  

.h j = 2π
{ ∞

0
r2 j+1e−Nq(r) dr; (5.16) 

cf. (2.89). Based on this knowledge together with a Laplace approximation of the 
integrals, the precise asymptotic expansion of the free energy up to the .O(1) term 
was derived in a recent work [125]. (See also [ 53].) This in particular shows that
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. log ZN (2; Q) = −N 2 IQ[μQ] − 1

2
N log N +

( log(2π2)

2
− 1

2
EQ[μQ]

)
N

− χ

12
log N + χζ ,(−1) + O(1), (5.17) 

where. χ is the Euler index; cf. (4.6). Let us recall that.χ = 0 for the annulus (.r0 > 0) 
and.χ = 1 for the disk (.r0 = 0) geometry. Here, . ζ is the Riemann zeta function and 
the.χζ ,(−1) term is expected to appear universally. Furthermore, it was proposed in 
[539] that the.O(1)-term is given in terms of the spectral determinant of the Laplacian. 
See [125, Sect. 4] and [229, Sect. 4] for some concrete examples of (5.17) associated 
with the matrix models discussed in Chap. 2. We also refer to [129] for a recent work 
establishing the free energy expansion for a non-radially symmetric potential. 

5.4 Correlation Functions and Universality 

Turning to the correlation functions.ρ(k),N of (5.7), the determinantal structure (2.9) 
remains valid with the correlation kernel 

.KN (z, w) = e− N
2 (Q(z)+Q(w))

N−1∑
j=0

p j (z)p j (w)

h j
, (5.18) 

where.p j is the monic orthogonal polynomial of degree. j with respect to the weighted 
Lebesgue measure .e−NQ(z) d2z and .h j is its squared orthogonal norm; cf. (3.6). 

Let us first discuss the asymptotic behaviours of .ρ(k),N in the micro-scale. Given 
a base point .p ∈ SQ for which we zoom the point process, we denote by 

.δ := ∂z∂z̄ Q(z)

π

|||
z=p

(5.19) 

the mean eigenvalue density at . p; cf.(5.9). From universality principles (see 
e.g. [375]), one expects that for a general .Q and . p such that .δ ∈ (0,∞) (i.e. the 
eigenvalue density does not vanish or diverge at . p), the universal scaling limit in 
Proposition 2.3 arises. For the bulk case when .p ∈ Int(SQ), such a universality was 
established by Ameur, Hedenmalm and Makarov in [ 58] where they showed that for 
a fairly general potential .Q under some mild assumptions, 

.
1

(Nδ)k
ρ(k),N

(
p + z1√

Nδ
, . . . , p + zk√

Nδ

)
→ det

[
K b

∞(z j , zl)
]k
j,l=1

, (5.20) 

uniformly on compact subsets of . C as .N → ∞, where .K b∞ is given by (2.18). See 
also [ 87, 89]. In a sequential work [ 59] the theory of loop equations (or Ward’s 
identities) was also used to show the bulk scaling limit (5.20). It says that for a given 
test function . ψ ,
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.ENW
+
N [ψ] = 0, (5.21) 

W + 
N [ψ] :=  

1 

2

∑
j /=k 

ψ(z j ) − ψ(zk) 
z j − zk 

− N 
N∑
j=1 

[∂ Q · ψ](z j ) + 
N∑
j=1 

∂ψ(z j ), 

where we have used the notations.[∂z Q · ψ](z j ) := ∂z Q(z)|z=z j ψ(z j ) and. ∂ψ(z j ) =
∂zψ(z)|z=z j . The functional .W

+
N is also called the stress energy tensor in the context 

of conformal field theory [352, Appendix 6]. The identity (5.21) easily follows from 
the integration by parts 

.EN [∂ψ(z j )] = EN [∂z j H(z1, . . . , zN ) · ψ(z j )]. (5.22) 

The approach using Ward’s identities was further developed in [ 61] and several 
related works to study various scaling limits of the random normal matrix models 
(see e.g. [ 50, 62] for the bulk scaling limit at weak non-Hermiticity (2.42); [ 63, 490] 
for the edge scaling limit with boundary confinements (2.67); [ 60, 64] for normal 
matrices with Mittag–Leffler type singularities as in Sects. 2.4 and 2.7) and we refer 
to [ 22, Remark 2.9] for an expository summary of this strategy. In particular, in [ 61], 
the rescaled version of Ward’s identity was introduced and used to show the edge 
universality: for . p ∈ ∂SQ,

.
1

(Nδ)k
ρ(k),N

(
p + in

z1√
Nδ

, . . . , p + in
zk√
Nδ

)
→ det

[
K e

∞(z j , zl)
]k
j,l=1

, (5.23) 

where . n is the outer normal vector at . p as in Proposition 2.6 and .K e∞ is given by 
(2.19). However, the result in [ 61] has an additional assumption that the limiting 
correlation function is translation invariant along the real axis. This assumption is 
intuitively natural but hard to rigorously show in general (except e.g. for the rota-
tionally symmetric potential . Q). The edge universality was later then shown by 
Hedenmalm and Wennman for a wide class of potentials .Q in [324], where they 
developed an asymptotic theory for general planar orthogonal polynomials; see also 
[321] for an alternative approach to derive the main result in [324] and [323] for a  
theory developed for the orthogonal polynomials associated with non-exponentially 
varying weight. The asymptotic results in [324] together with (5.18) then leads to 
(5.23) by the Riemann sum approximation. 

We now turn our attention to the asymptotic behaviours of .ρ(k),N in the macro-
scale. Let us begin with the .1-point function .ρ(1),N . For the bulk case when . z is the 
interior of the droplet, the asymptotic behaviour of.ρ(1),N is well known in the litera-
ture, see [ 47, 87] and references therein. It says that under the suitable assumptions 
on . Q, there are real-analytic functions .Bj such that 

.πρ(1),N (z) = NΔQ(z) + 1

2
Δ logΔQ(z) + N−1B2(z) + · · · + N−k+1Bk (z) + O(N−k ), (5.24)
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where .Δ := ∂z∂z̄ is one quarter of the usual Laplacian. Notice here that the leading-
order asymptotic of (5.24) is implied by the Laplacian growth (5.9). As a concrete 
example, we consider the induced spherical ensemble (2.54) with .M = α1N and 
.n = α1N − 1, which can be realised as (5.7) with 

. Q(z) = (α1 + α2 − 1) log(1 + |z|2) − 2(α1 − 1) log |z|.

On the other hand, it follows from (2.56) that with .ζ = |z|2/(1 + |z|2), 

.πρ(1),N (z) = |z|2(M−N )

(1 + |z|2)2 (M + n − N )
(
Iζ (M − N , n) − Iζ (M, n − N )

)
. (5.25) 

Then using the well-known asymptotic behaviours of the incomplete beta function, 
one can observe that for.r1 < |z| < r2, where.r1, r2 are given in (2.55), the asymptotic 
behaviour (5.24) holds with 

. ΔQ(z) = α1 + α2 − 1

(1 + |z|2)2 , Δ logΔQ(z) = − 2

(1 + |z|2)2 .

Next, we consider the off-diagonal asymptotic behaviour of the correlation kernel. 
For the Ginibre ensemble, equivalently, for the random normal matrix model (5.7) 
with .Q(z) = |z|2, the associated correlation kernel .KN in (5.18) satisfies 

. KN (z, w) =
/
2N

π
(zw̄)NeN− N

2 (|z|2+|w|2)S(z, w)
(
1 + O(

1

N
)
)
, (z /= w)

(5.26) 
where .S(z, w) is the exterior Szegö kernel 

.S(z, w) := 1

2π

1

zw̄ − 1
. (5.27) 

From a viewpoint of Proposition 2.2, the asymptotic behaviour (5.26) can be realised 
as a uniform expansion of the incomplete gamma function.z |→ ┌(N ; Nz), which is 
available in the literature in some particular domains; see e.g. [529] for. | arg(z − 1)| <

3π/4. In a recent work [ 57], generalising the classical results, it was shown that 
the asymptotic behaviour (5.26) remains valid as long as .zw̄ is outside the Szegö 
curve .{z ∈ C : |z| ≤ 1, |z e1−z| = 1}. Note in particular that if .|z| = |w| = 1, then 
(5.26) reads 

.KN (z, w)
c∼

/
2N

π
S(z, w)

(
1 + O(

1

N
)
)
, (5.28) 

where .
c∼ means that the asymptotic expansion holds up to a sequence of cocycles 

(in this case .(zw̄)N ), which cancel out when forming a determinant (2.9). From a 
statistical physics point of view, the behaviour (5.28) indicates that there are strong 
correlations among the particles on the boundary of the droplet, which also shows the
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slow decay of correlations at the boundary. For GinUE this is explicit in (4.43). For 
elliptic GinUE, the phenomenon was studied in [257], as a test of the generalisation 
to more general shaped droplets, when the RHS of (4.43) is predicted to be given 
in terms of a certain Green’s function for an electrostatics problem outside of the 
droplet, which acts as a macroscopic conductor [341], [234, Eq. (3.29]. Furthermore, 
it was obtained by Ameur and Cronvall [ 57] that for a general class of potentials . Q, 
the associated correlation kernel .KN satisfies 

.KN (z, w) ∼ √
2N

(∂z∂z̄ Q(z)

π

)1/4(∂w∂w̄Q(w)

π

)1/4
S(z, w)(1 + o(1)). (5.29) 

For this, the use of a general theory on the orthogonal polynomial due to Hedenmalm 
and Wennman [324] was made. We also refer to [ 25, 51, 52, 130] for more recent 
studies in this direction. 

Remark 5.1 Let .{p(N ,R)
j (z)} j=0,1,... be the orthogonal polynomials with respect to 

the inner product.⟨ f |g⟩ := {
CR

f (z)g(z̄)e−2NW (z)/t0 , where.W (z) as in (5.3) and it is 
assumed that the limiting eigenvalue support .Ω corresponding to (5.2) is contained 
in .DR . Consider the probability distribution.P(N ,R)

k specified by the eigenvalue PDF 
proportional to 

.

k∏
l=1

e−2NW (zl )/t0
∏

1≤ j<l≤k

|zl − z j |2. (5.30) 

As a result of the underlying determinantal structure, one has the formula for 
.p(N ,R)

k (z) as an expectation with respect to.P(N ,R)
k (see e.g. [237, proof of Proposition 

5.1.3]; in fact such formulae were known to Heine [513]): 

. p(N ,R)
k (z) =

/ k∏
l=1

(z − zl)
\
P(N ,R)
k

.

For.k/N = x as.k, N → ∞ it has been conjectured [216] that the zeros of. p(N ,R)
k (z)

accumulate on certain arcs .∑ contained in . Ω, with corresponding measure .μ∗
x . 

Assuming this, it follows that for . z ∈ C\Ω

.
1

π t0

{

Ω

log |z − w| d2w =
{

∑

log |z − s| dμ∗
x . (5.31) 

This identifies .∑ as the so-called mother body or potential theoretic skeleton of 
. Ω. A number of works give further developments along these lines, especially 
in relation to the strong asymptotics of the planar orthogonal polynomials based 
on Riemann–Hilbert analysis. In the case of (5.1) with a cubic potential .p = 3, 
references include [ 95, 96, 379, 425]. For the induced Gaussian-type weight 

.2W (z)/t0 = |z|2 − 2c log |z − a|,
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the associated Riemann–Hilbert problem was first derived in [ 71], where the authors 
also performed a detailed analysis for the case .c = O(1). This Riemann–Hilbert 
problem was further used in [ 72, 92, 398] to obtain strong asymptotics of the orthog-
onal polynomials when.c = O(1/N ). These results were later utilised in [180, 387, 
531] to study the characteristic polynomials of the Ginibre matrix. Recently, the 
higher-order Riemann–Hilbert problems for a more general potential of the form 

. 2W (z)/t0 = |z|2 − 2
M∑
j=1

c j log |z − a j |

were constructed in [ 86, 399] as well, and the case.c j = O(1/N )was further analysed 
in [400]. 
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Chapter 6 
Further Theory and Applications 

In addition to an analogy with the Boltzmann factor of the OCP with inverse tempera-
ture.β = 2, the GinUE eigenvalue PDF permits an interpretation as the absolute value 
squared of the ground state wave function for spinless fermions in the plane subject 
to a perpendicular magnetic field. More generally, for. β twice an odd positive integer 
.m the OCP Boltzmann factor occurs as proportional to the absolute value squared 
of Laughlin trial wavefunction in the theory of the fractional quantum Hall effect 
with filling fraction .1/m. In relation to the topic of chaotic behaviour in dissipative 
quantum systems, statistical properties of the now complex energy spectrum can be 
compared with those of bulk GinUE eigenvalues. This leads to consideration of the 
so-called dissipative spectral form factor, the second moment of the absolute value 
of the statistics.Tr Xk , and simple dissipators associated with Lindblad operators, all 
of which can be calculated exactly for GinUE matrices. The remaining two sections 
of this chapter are on the singular values, and eigenvectors, respectively of GinUE 
matrices. Consideration of the singular values is natural in relation to the questions 
relating to the determinant of GinUE matrices, while there have been recent appli-
cations of the statistical properties of eigenvectors to the eigenstate thermalisation 
hypothesis for non-Hermitian Hamiltonians. 

6.1 Fermi Gas Wave Function Interpretation 

We have seen that the rewrite of (1.7), written in the exponential form (1.12), allows 
for the GinUE eigenvalue PDF to be interpreted as the Boltzmann factor for a par-
ticular Coulomb gas. If instead of an exponential form we use (2.12) to rewrite 
(1.7) as  

.

|
|
|

N
∏

j=1

e−|z j |2/2 det[zk−1
j ] j,k=1,...,N

|
|
|

2
, (6.1) 
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then we are led to an interpretation as the absolute value squared of a ground state 
free Fermi quantum many-body wave function. Thus inside the absolute value of (6.1) 
is a Slater determinant of single-body wave functions .{φl(z)}l=0,...,N−1 with. φl(z) =
e−|z|2/2zl . What remains then is to identify the corresponding one-body Hamiltonian 
for quantum particles in the plane which have these single-body wave functions for 
the lowest energy states. 

The appropriate setting for this task is a quantum particle confined to the .xy-
plane subject to a perpendicular magnetic field, .(0, 0, B), .B > 0. Fundamental to 
this setting is the vector potential . A, related to the magnetic field by . ∇ × A =
(0, 0, B). The so-called symmetric gauge corresponds to the particular choice 
.A = (−By, Bx, 0) =: (Ax , Ay, 0), which henceforth will be assumed. Physical 
quantities in this setting are. m (the particle mass),. e (particle charge),. h (Planck’s con-
stant), . c (speed of light), which together with. B are combined to give. ωc := eB/mc
(cyclotron frequency) and .l := √

hc/eB (magnetic length). 
Defining the generalised momenta and corresponding raising and lowering 

operators by 

. ∏u = −ih
∂

∂u
+ e

c
Au (u = x, y), a† = l√

2h
(∏x + i∏y), a = (a†)†,

allows the quantum Hamiltonian to be written in the harmonic oscillator like form 
.HB = hωc(a†a + 1

2 ) [166]. Important too are the quantum centre of orbit operators 
and associated raising and lowering operators 

. U = u − l2

h
∏u (U = X,Y ; u = x, y), b† = 1√

2l
(X − iY ), b = (b†)†,

for which .X2 + Y 2 = 2l2(b†b + 1
2 ). The operators .{a, a†} commute with .{b, b†}, 

implying that .H and .X2 + Y 2 permit simultaneous eigenstates. A complete orthog-
onal set can be constructed using the raising operators according to 

.|n,m⟩ = (a†)n(b†)m√
n!m! |0, 0⟩, (6.2) 

with eigenvalues of.H equal to.(n + 1
2 )hωc and eigenvalue of.X2 + Y 2 equal to. (2m +

1)l2. The ground state.|0, 0⟩ is characterised by.a|0, 0⟩ = b|0, 0⟩ = 0, which can be 
checked to have the unique solution .|0, 0⟩ ∝ e−(x2+y2)/4l2 . From this, application 
of .(b†)m gives .|0,m⟩ ∝ z̄me−|z|2/4l2 , .z = x + iy. Forming a Slater determinant with 
respect to the first .N eigenstates of this type gives (6.1) with .l2 = 1/2. Generally, 
states with quantum number.n = 0 and thus belonging to the ground state are said to 
be in the lowest Landau level. One remarks that the largest eigenvalue of . X2 + Y 2

is then .N − 1/2, which is in keeping with the squared radius of the leading-order 
support in the circular law.
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The above theory of a quantum particle in the plane subject to a perpendicular 
magnetic field can be recast to apply to a rotating quantum particle in the plane [325, 
384]. There, for an appropriate rotation frequency, the infinite degenerate lowest 
Landau level in the magnetic interpretation becomes a unique ground state wave 
function. It is further true that the elliptic GinUE PDF (2.35) admits an interpretation 
as the absolute value squared of state in the lowest Landau level, and furthermore the 
corresponding orthogonal polynomials (2.37) can be constructed using a Bogolyubov 
transformation of .{b, b†} [257]. Also, the PDF on the sphere (2.52) permits an inter-
pretation as the absolute value squared of the ground state wave function for a free 
Fermi gas on the sphere subject to a perpendicular magnetic field [311]. Another 
point of interest relates to the.N -body Fermi ground state corresponding to the quan-
tum Pauli Hamiltonian in the plane with a perpendicular inhomogeneous magnetic 
field .B(x, y). The Hamiltonian .HB defined above then is to be multiplied by the 
.2 × 2 identity matrix, and the spin coupling term. −(gh/2m)B(x, y)diag (1/2,−1/2)
added. With.B(x, y) = − 1

2∇2W (x, y) for some real-valued. W , and with the assump-
tion .Φ := {

B(x, y) dxdy < ∞, the ground state for this model (which is spin 
polarised with all spins up) permits an exact solution for.g = 2 [ 8]. The ground state 
of normalisable eigenfunctions has degeneracy.[Φ/2πh] =: N , with basis of eigen-
functions .{z j eW (x,y)/2h}N−1

j=0 . This implies the Fermi many-body ground state (6.1) 

with .e−|z j |2/2 replaced by .eW (x j ,y j )/2h [ 7]. 
A single particle state formed as a linear superposition of.{|0,m⟩}Nm=0 has the form 

. φ(z) = 1

Nπ1/2
e−|z|2/2 p(z̄), p(z) :=

N
∑  

n=0

αn√
n! z

n,

with.N = (
∑  N

j=0 |αn|2)1/2. Following [252] and choosing each.αn as an independent 
standard complex Gaussian one has that .p(z) is an example of a complex Gaussian 
random polynomial, where the variance of each coefficient is .1/n!. Nearly ten years 
before Ginibre’s calculation of the GinUE eigenvalue PDF (1.7), Hammersley [315] 
obtained the explicit functional form of the zero PDF of .p(z), which was found to 
be proportional to 

.

∏

1≤ j<k≤N |zk − z j |2
(
∑  N

j=0 |e j |2)N
, (6.3) 

where .e j is the . j-th elementary symmetric polynomial in .{z j }. One immediately 
notices that the product term .

∏

1≤ j<k≤N |zk − z j |2 is common to both (1.7) and 
(6.3). However, while (1.7) gives rise to a determinantal point process, it turns out 
that the point process implied by (6.3) is permanental [316]. Nonetheless, there 
are many striking similarities, including a circular law for the global eigenvalue 
density, a rapidly decaying simple functional form for the bulk truncated two-particle 
correlation 

.ρT
(2)(z1, z2) = 1

π2

(

f (|z1 − z2|2/2) − 1
)

, f (x) = 1

2

d2

dx2
(x2 coth x),
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and a slowly decaying truncated two-point correlation at the boundary; see [252, 
316]. In the limit .N → ∞ this Gaussian random polynomial forms what is referred 
to as the Gaussian analytic function [326]. 

Remark 6.1 
1. Upon stereographic projection of the sphere to the plane, it is possible to write 
the quantum Hamiltoniacge particle in a constant perpendicular magnetic field in a 
form unified with the original planar case [203]. This involves the Kähler metric and 
potential, and permits a viewpoint which carries over to further generalise the space 
to higher-dimensional complex manifolds in .C

m . A point of interest is that doing so 
gives, for the bulk scaling limit of the corresponding.N particle lowest Landau level 
state, the natural higher-dimensional analogue of the kernel (2.19) [  89, 90]. 
2. The squared wavefunction for higher Landau levels (say the.r -th) has been shown 
to give rise to the determinantal point process with bulk-scaled kernel 

. Kr
∞(w, z) = L0

r (|w − z|2)ewz̄e−(|w|2+|z|2)/2;

see e.g. [497, Proposition 2.5]. Allowing for mixing between Landau levels up to and 
including level. r leads to squared wave functions giving rise to the same determinantal 
point process except for the replacement of Laguerre polynomials .L0

r |→ L1
r in the 

kernel [309]. For finite .N both kernels are built up from particular polyanalytic 
functions; see e.g. [ 2]. Extending [384], the precise mapping between the rotating 
fermions in the higher Landau levels and the polyanalytic Ginibre ensemble was 
established in [380]. Furthermore, its full counting statistics and generalisations to 
finite temperature were obtained in [381, 505], while [ 1, 148] relates the variance of 
the counting statistics to the entanglement entropy of the region. 
3. In the theory of the fractional quantum Hall effect, constructing an anti-symmetric 
state with filling fraction of the lowest Landau level .ν = 1/m, for .m an odd integer, 
plays a crucial role. To accomplish this, Laughlin [389] proposed the ground state 
wave function proportional to 

.

N
∏

l=1

e−|zl |2/4l2 ∏

1≤ j<k≤N

(z̄k − z̄ j )
m; (6.4) 

note that with the assumption that .m is odd, this is anti-symmetric as required for 
fermions. Moreover, it belongs to the lowest Landau level as follows from the theory 
in the text below (6.2). The absolute value squared of (6.4) coincides with the Boltz-
mann factor (1.12) with .β = 2m, and the scaling .zl |→ zl/

√
2ml2. From potential 

theoretic/Coulomb gas reasoning, the bulk density is therefore.1/(2mπl2). The fac-
tor of .m in the denominator is in precise agreement with the requirement that the 
filling fraction be equal to .1/m. 
4. The ground state.N -body free spinless Fermi gas in the plane, without a magnetic 
field but confined by a radial harmonic potential, is also an example of a determinantal 
point process for which exact calculations are possible; see the recent review [179].
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However, its statistical state is distinct from that of GinUE. Thus with a global scaling 
so that the support is the unit disk, the density profile is the .d = 2 Thomas–Fermi 
functional form . 2

π
(1 − |z|2)χ|z|<1, in contrast to the circular law (2.17). The bulk-

scaled two-point correlation function (bulk density.1/4π ) is given in terms of the. J1
Bessel function 

. ρhF
(2),∞(z1, z2) =

( 1

4π

)2
(

1 −
(2J1(|z1 − z2|)

|z1 − z2|
)2

)

,

in contrast to (2.24). This gives a decay proportional to .1/|z1 − z2|3 of .ρhF,T
(2),∞. Also,  

the edge-scaled correlation kernel now involves Airy functions [178], rather than 
the error function seen in (2.19). Universality results relating to many-body free 
Fermi ground states in dimension .d ≥ 2 have recently been obtained [184]. We 
highlight in particular the macroscopic fluctuation theorem for the linear statistic 
.G = ∑  

j g(r j/R), with . g assumed sufficiently smooth and absolutely integrable, in 
the .R → ∞ limit [184, Th. III.2]: 

.

G − Rdωd
(2π)d

{

Rd g(r) ddr

σd R(d−1)/2

d→N[0, ∑(g)], (∑(g))2 =
{

Rd

|ĝ(r)|2|r| ddr. (6.5) 

Here .ωd = πd/2/┌  (1 + d/2) is the volume of the Euclidean ball in .Rd , . ωd/(2π)d

is the bulk density, .σ 2
d := ωd−1/(2π)d and the Fourier transform has the definition 

.ĝ(ξ) = 1
(2π)d/2

{

Rd e−iξ ·rg(r) ddr. Note in particular that in contrast to (3.19), the 
variance of .G now diverges with the scale . R. 
5. The functional form (6.3) consists of the product over differences times a many-
body term, whereas the GinUE eigenvalue PDF (1.7) is the same product over dif-
ferences times a single-body term. Another occurrence of the former structure, now 
with the product over differences raised to the power of. β as for the OCP, has recently 
appeared as the eigenvalue PDF for a particular tridiagonal non-Hermitian random 
matrix [438]. 

6.2 Quantum Chaos Applications 

The pioneering works of Wigner and Dyson relating to the Hermitian random matrix 
ensembles was, as noted in Chap. 1, motivated by seeking a model for the (highly 
excited) energy levels of a complex quantum system. Later, in the 1980s, as a 
fundamental contribution to the then emerging subject of quantum chaos, Bohigas 
et al. [ 98] identified the correct meaning of a complex quantum system not by the 
number of particles but rather as one for which the underlying classical mechan-
ics is chaotic. To test this prediction on say the numerically generated spectrum of 
a quantum billiard system, the energy levels (beyond some threshold to qualify as 
being highly excited) were first unfolded so that their local density became unity,
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and then their numerically determined statistical properties were compared against 
random matrix predictions for the appropriate symmetry class; see e.g. [307]. Most 
popular among the statistical properties have been the variance for the number of 
eigenvalues in a large interval, and the distribution of the spacing between successive 
eigenvalues. 

A natural extension of these advances is to inquire about the spectrum of a dis-
sipative chaotic quantum system, which due to the loss of energy need not be real. 
This question was taken up by Grobe, Haake and Sommers [304] for the specific 
model of a damped periodic kicked top. The quantum dynamics are specified by a 
subunitary density operator. It is the spectrum of this operator, which after unfold-
ing, and considering only those eigenvalues in the upper half plane away from the 
real axis (there is a symmetry which requires that the eigenvalues come in complex 
conjugate pairs—see the recent paper [ 32] for a discussion of this point in a random 
matrix context) that was compared in [304] in a statistical sense to GinUE. Fol-
lowing from precedents in the Hermitian case, in the statistical quantity measured 
was the distribution of the radial spacing between closest eigenvalues, to be denoted 
by .P s,GinUE(r) with the normalisation .

{ ∞
0 P s,GinUE(r) dr = 1. This is the quantity 

.F∞(0; Dr ) of Remark 3.1.1. Recalling (3.10) we therefore have 

.P s,GinUE(r) = − d

dr
er

2
∞
∏

j=1

(

1 − γ ( j; r2)
┌  ( j)

)

. (6.6) 

It follows that for small . r , .P s,GinUE(r) ∼ 2r3, while it follows from (3.11) and the 
statement in the final sentence of the first paragraph of Sect. 3.1.2 that for large . r , 
.log P s,GinUE(r) ∼ −r4/4. A numerical plot can be obtained from the functional form 
(6.6). For the moments the formula .⟨ r p⟩ = p

{ ∞
0 r p−1er

2
E∞(0; r) dr holds true. In 

particular, for the mean we calculate .⟨ r⟩ = 1.142929 . . . . 
A variation of the closest neighbour spacing for an eigenvalue at . z is the complex 

ratio .(zc − z)/(znc − z), where .zc is the closest neighbour to . z, and .znc is the next 
closest neighbour [477]. An approximation, with fast convergence properties to the 
large .N form, has been given recently in [204]. 

Also very recently a non-Hermitian Hamiltonian realisation of GinUE has been 
obtained in the context of a proposed non-Hermitian .q-body Sachdev–Ye–Kitaev 
(SYK) model, with .N Majorana fermions—.N large and tuned .mod 8—and . q > 2
and tuned .mod 4 [281]. On another front, again very recently, the emergence of 
GinUE behaviours in certain models of many-body quantum chaotic systems in the 
space direction has been demonstrated [499]. Of interest in both these lines of study 
is the so-called dissipative (connected) spectral form factor 

.Kc
N (t, s) = 1

N
Cov

( N
∑  

j=1

ei(x j t+y j s),

N
∑  

j=1

e−i(x j t+y j s)
)

.
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Making use of the first formula in (3.2) and the finite .N form of (2.23), this can be 
evaluated in terms of the hypergeometric function .1F1 [404, Eq. (3)] (corrected in 
[282, Appendix A]; note too that both those references use global-scaled variables, 
whereas we do not). 

Proposition 6.1 We have 

. Kc
N (t, s) = 1 − 1

N

N−1
∑  

m,n=0

(t2 + s2)|m−n|/2

n!m!2|m−n|

×
(
max(m, n)!
|m − n|! 1F1

(

max(m, n) + 1, |m − n| + 1;− t2 + s2

4

))2

.

(6.7) 

In particular, 
. lim
N→∞Kc

N (t, s) = 1 − e−(t2+s2)/4; (6.8) 

cf. (3.17). 

Remark 6.2 From [404] one has the large .N form 

. 
1

N
Kc

N

( t√
N

,
s√
N

)

∼ 1

N
+ 4

J1(|τ |2)
|τ |2 − 1

N
e−|τ |2/4N , τ := t + is,

extending the limit formula (6.8) and exhibiting a so-called slope-dip-ramp-plateau 
graphical form; see also [163]. 

Also of interest in the many-body quantum chaos application is the GinUE average 
of .|Tr Xk |2 for positive integer . k [499]. 

Proposition 6.2 We have 

. 

/

|Tr Xk |2
\

GinUE
= 1

(k + 1)(N − 1)!
(

(k + N )! − N !(N − 1)!
(N − k − 1)!

)

.

In particular 

. lim
N ,k→∞
k/N=x

1

kNk

/

|Tr Xk |2
\

GinUE
= 2 sinh(x2/2)

x2
.

Proof (Sketch) In [499] the average is reduced to .
{

C
dz1

{

C
dz2 ρ(2),N (z1, z2)zk1 z̄

k
1; 

see too the earlier work [374]. The evaluation of a more general quantity can be 
found in [268, Corollary 4]. □

We conclude this section with a brief account of the use of the GinUE in an 
ensemble theory of Lindblad dynamics [133, 189, 478]. This relates to the evolution 
of the density matrix .ρt for an .N -level dissipative quantum system in the so-called
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Markovian regime, specified by the master equation.ρ̇t = L(ρt ). Here the operator. L
assumes a special structure identified by Lindblad [406], and by Gorini, Kossakowski, 
and Sudarshan [299]. Specifically, .L consists of the sum of two terms, the first 
corresponding to the familiar unitary von Neumann evolution, and the second to a 
dissipative part, being the sum over operators.DL (referred to as simple dissipators), 
represented as .N 2 × N 2 matrices according to 

. DL = 2L ⊗T L† − L†L ⊗T IN − IN ⊗T L†L ,

for some.N × N matrix. L .Here.A ⊗T B := A ⊗ BT , where. ⊗ is the usual Kronecker 
product. In an ensemble theory, there is interest in .FN (t) := 1

N 2 ⟨ Tr etDL ⟩L [133]. 

Proposition 6.3 Let . L be chosen from GinUE with global scaling. We have 

. lim
N→∞ FN (t) = e−4t

(

I0(2t) + I1(2t)
)2

.

Proof (Sketch) Following Can [133], using a diagrammatic calculus, it is first 
demonstrated that 

. lim
N→∞

1

N 2
⟨ Dk

L⟩ = lim
N→∞

(−1)k

N 2

/(

L†L ⊗T IN + IN ⊗T L†L
)k\

L∈GinUE
.

The average on the RHS, in terms of the eigenvalues .{x j } of .L†L , reads 

. 

/ N
∑  

j,l=1

(x j + xl)
k
\

L†L

and consequently 

. lim
N→∞ FN (t) = lim

N→∞

/ 1

N 2

N
∑  

j,l=1

e−t (x j+xl )
\

L†L
= lim

N→∞

(/ 1

N

N
∑  

j=1

e−t x j

\

L†L

)2

.

The latter is the mean of a linear statistic in the ensemble .{L†L} (complex Wishart 
matrices; see e.g. [237, Sect. 3.2]). Using the Marchenko–Pastur law for the global 
density of this ensemble (see e.g. [237, Sect. 3.4.1]), the stated result follows. □

Remark 6.3 (Classification of non-Hermitian matrices) It was commented in the 
Introduction that, in distinction to Dyson’s viewpoint based on symmetry consider-
ations, Ginibre’s study [293] was not similarly motivated. Nowadays however, it is 
recognised that a symmetry viewpoint is fundamental to topologically driven effects 
in non-Hermitian quantum physics [ 67]. Starting with [ 91, 418] and continuing in 
[359], a classification scheme based on symmetries with respect to the involutions of 
transpose, complex conjugation and Hermitian conjugation, and in which the (anti-
)commutation relation involves unitary matrices satisfying certain quadratic relations
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in terms of these involution, has been given. For example, defining the block unitary 
matrix .P = diag (IN ,−IN ), and requiring that the matrix ensemble .{A} have the 
(anti-)symmetry .A = −PAP , gives that each . A has the form 

.A =
[

0N×N X
Y 0N×N

]

(6.9) 

for some square matrices .X,Y . Denoting the eigenvalues of the matrix product 
.XY as .{−z2j }, one sees that the eigenvalues of .A are .{±i z j }. In the realm of non-
Hermitian classifications, this is referred to as the chiral class [456]. Additionally, 
the chiral models corresponding to GinSE and GinOE were studied in [ 11] and [ 38], 
respectively. 

In keeping with the viewpoint of this section, a basic question concerns signatures 
of the symmetry in the eigenvalue spectrum. For example, in (6.9), with.X,Y GinUE 
matrices, are the bulk-scaled eigenvalues of .A statistically distinct from individual 
GinUE matrices? We know from the results quoted in the paragraph above Remark 2.6 
that the answer in this case is no. However, the answer to this question is yes, if instead 
the symmetry is that .A = AT , for the independent entries of .A standard complex 
Gaussians. This was demonstrated in [313] by a numerical study of the nearest 
neighbour spacing distribution, and the relevance to Lindblad dynamics discussed. 

6.3 Singular Values 

One recalls that for a complex square matrix .X the squared singular values are 
the eigenvalues of .X†X . For a general ensemble of non-Hermitian matrices .{X}, 
motivation to study the singular values comes from various viewpoints. For example, 
in Remark 2.6.4, singular values (specifically of product matrices) appeared in the 
context of Lyapunov exponents. As other example, one recalls that plus/minus of the 
singular values are the eigenvalues of the .2N × 2N Hermitian matrix 

.H =
[

0N×N X
X† 0N×N

]

. (6.10) 

The importance of this in relation to the eigenvalues of .X is that the resolvent of the 
modification of (6.10) obtained by replacing each .X by .X − zIN is fundamental to 
the study of the circular law for the spectral density beyond the Gaussian case; see 
e.g. [100, Sect. 4.1]. Another piece of theory is that the condition number .κN asso-
ciated with .X is equal to the ratio of the smallest to the largest singular value [210]. 
We remark too that from the identity .| det X | = | det X†X |1/2 the distribution of the 
modulus of .det X is determined by the singular values. 

For the GinUE, the squared singular values .{s j }Nj=1 say are known to have for 
their joint distribution a PDF proportional to
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.

N
∏

j=1

e−s j
∏

1≤ j<k≤N

(sk − s j )
2, s j ∈ R+; (6.11) 

see e.g. [237, Proposition 3.2.2 with .β = 2, .n = m = N ]. This is an example of 
the Laguerre unitary ensemble (LUE). After scaling by . N , almost surely the largest 
squared singular value has the limiting value . 4 [459]. However, after the same scal-
ing, a simple change of variables in (6.11) integrated from .(s,∞) in each variable 
reveals that the smallest singular value is an exponential random variable with rate 
parameter .N 2. Putting these facts together implies that for large . N , .κN/N is dis-
tributed according to the heavy tailed distribution with PDF . 8x3 e

−4/x2χx>0 [210]. 
Also, for .n × N (.n ≥ N ) rectangular GinUE matrices it is proved in [153] that 
.⟨ log κN ⟩ < N

|n−N |+1 + c, where .c = 2.24, for any .N ≥ 2. 

Let .PN (t) denote the PDF for the distribution of .| det X |2 for GinUE matrices. 
Making use of knowledge of the PDF of squared singular values (6.11) shows that 
the Mellin transform of .PN (t) is equal to the multiple integral 

.
1

CN

{ ∞

0
ds1 · · ·

{ ∞

0
dsN

N
∏

j=1

ss−1
j e−s j

∏

1≤ j<k≤N

(sk − s j )
2 =

N−1
∏

j=0

┌  (s + j)

┌  (1 + j)
. (6.12) 

Here the normalisation .CN is such that the expression equals unity for .s = 1, while 
the evaluation of the multiple integral follows as a special case of the Laguerre weight 
Selberg integral; see e.g. [237, Proposition 4.7.3]. As noted in [269, Eq. (2.17)] (see 
also [475, Proposition 2.2]), it follows immediately from this that 

.| det X |2 d=
N

∏

l=1

1

2
χ2
2l . (6.13) 

(Proposition 2.14 regarding the independent distribution of the absolute values of the 
eigenvalues.) In words this says that the absolute value squared of the determinant 
of GinUE matrices is equal in distribution to the product of .N independent chi-
squared distributions, with degrees of freedom.2, 4, . . . , 2N , each scaled by a factor 
of 2. Starting from (6.13), and defining the global-scaled GinUE matrices .Xg by 
.Xg = 1√

N
X , the distribution of .log | det Xg|2 can be shown to have leading-order 

mean .−N , variance .log N , and after recentring and rescaling satisfy a central limit 
theorem [475, Th. 3.5]. For a general linear statistic .

∑  N
j=1 f (z j ) of global-scaled 

GinUE matrices, the leading-order mean is . N
π

{

|z|<1 f (z) d2z. For  . f (z) = log |z|2, 
this gives the stated value of .−N . Also, we notice that substituting this choice of 
. f (z) in the variance formula implied by (3.21) gives  . 1

π

{

|r|<1
1

x2+y2 dxdy, which is 
not integrable at the origin, in keeping with the variance actually diverging as.log N . 

There is an alternative viewpoint on the result (6.13) which does not require 
knowledge of the joint distribution of the singular values (6.11), nor the evaluation 
of the multiple integral (6.12). The idea, used in both [269, 475] and which goes
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back to Bartlett [ 74] in the case of real Gaussian matrices, is to decompose .X in 
terms of its QR (Gram–Schmidt) decomposition. The matrix of orthonormal vectors 
.Q constructed from the columns of .X will for .X ∈ GinUE, be a Haar distributed 
unitary matrix, which we denote by. U . The matrix.R = [r jk]Nj,k=1 is upper triangular 
with diagonal elements real and positive. One notes 

. det X†X =
N

∏

j=1

r2j j , (6.14) 

and so it suffices to have knowledge on the distribution of .{r j j }Nj=1 for . X . 

Proposition 6.4 Let.{r j j }Nj=1 denote the diagonal elements in the QR decomposition 
of a GinUE matrix . X. We have 

.r2j j
d= 1

2
χ2
2 j . (6.15) 

Proof The QR decomposition .X = UR gives the corresponding decomposition of 
measure (see e.g. [237, Proposition 3.2.5]) 

. (dX) =
N

∏

j=1

r2(N− j)+1
j j (dR)(U †dU ),

where as anticipated .(U †dU ) is recognised as the Haar measure on the space of 
complex unitary matrices. The element distribution of GinUE matrices is proportional 
to .e−Tr X†X = e− ∑  

1≤ j≤k≤N |r jk |2 . The various factorisations imply that integrating over 
.U and the off-diagonal elements of . R only changes the normalisation. We then read 
off that each .r j j has a distribution with PDF proportional to .r2(N− j)+1e−r2 , which 
implies (6.15). □

Using (6.15) in (6.14) reclaims (6.13). 

Remark 6.4 1. The fact that the QR decomposition of a Ginibre matrix gives rise to 
a Haar distributed random unitary matrix provides a practical realisation of the latter. 
However, the QR decomposition of in-built mathematical software may not generate 
the triangular matrix . R with strictly positive entries, which affects the properties of 
. Q. Further details, and how this can be fixed, are discussed in [213]. 
2. Since with .{z j } the eigenvalues of . X , .| det X |2 = ∏N

j=1 |z j |2, the fact that the 
Mellin transform of the distribution of this quantity is given by the product of gamma 
functions in (6.12) implies 

.

/ N
∏

l=1

|zl |2(s−1)
\g

GinUE
= NN (s−1)

N−1
∏

j=0

┌  (s + j)

┌  (1 + j)
. (6.16)
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Here the superscript “g” indicates the use of global scaling coordinates.zl |→ √
Nzl . 

We observe that the knowledge of the induced GinUE normalisation.Cn,N in Propo-
sition 2.8 provides a direct derivation of (6.16). For large .N this ratio of gamma 
functions can be written in terms of the Barnes .G-function according to .

G(N+s)
G(N+1)G(s) ; 

see [237, Eq. (4.183)]. Known asymptotics for ratios of the Barnes .G-function 
(see e.g. [237, Eq. (4.185)]) then gives that for large . N , and with .s = γ /2 + 1 for 
convenience, 

.

/ N
∏

l=1

|zl |γ
\g

GinUE
∼ N γ 2/8e−(γ /2)N (2π)γ/4

G(1 + γ /2)
. (6.17) 

This is the special case .z = 0 of an asymptotic formula for . ⟨ ∏N
l=1 |z − zl |γ ⟩gGinUE

given by Webb and Wong [531, Th. 1.1]. 
3. It is a standard result in random matrix theory (see e.g. [459]) that the density 
of singular values in (6.11), after the global scaling .s j |→ s j N , has the particular 
Marchenko–Pastur form .ρMP

(1),∞(x) = 1
2π ( 4−x

x )1/2χ0<x<4. The  .k-th moment of the 
density is given in terms of the specific mixed moment of a global-scaled Ginibre 
matrix . G̃, .⟨ Tr(G̃†G)k⟩. The calculation of these moments for large .N relates to 
free probability—see the recent introductory text [464] for the main ideas—and to 
combinatorics as is seen from the fact that.

{ 4
0 xkρMP

(1),∞(x) dx = Ck , where.Ck denotes 
the.k-th Catalan number. Works on mixed moments of Ginibre matrices include [176, 
191, 312, 530]. An explicit example is the average in Proposition 6.2. The scaling 
limit therein where both .N and . k become large with their ratio fixed is called the 
BMN large .N limit; see e.g. [ 40, Sect. 6]. Mixed moments of the pseudo inverse of 
rectangular GinUE are calculated in [168]. 
4. The squared singular values as specified by the PDF (6.11) form a determinantal 
points process, being a special case of the LUE; see e.g. [237, Chaps. 3 and 5]. This 
is similarly true of the squared singular values of the various extensions of GinUE 
considered above: for example in the case of the spherical model and truncated unitary 
matrices, it is the classical Jacobi unitary ensemble (JUE) which arises, while the 
singular values of products of GinUE matrices, or of truncated unitary matrices, gives 
rise to a class of determinantal point processes called Pólya ensembles [270, 365, 366, 
378]. A determinantal point process also results from the squared singular value of 
the so-called shifted GinUE—matrices.G + A for.G ∈ GinUE and. A fixed [ 81, 263, 
377]. A notable exception is the singular values of elliptic GinUE matrices, which 
form a Pfaffian point process [351]. Similarly, with .G ∈ GinUE and . U ∈ U (N )

chosen with Haar measure, the squared singular values of .X;= (IN +U )G form a 
Pfaffian point process [259]. The random matrix .X occurs in the construction of the 
Bures–Hall measure on the space of density matrices [541]. 
5. Remark 6.3 drew attention to a symmetry based classification of non-Hermitian 
matrices. The recent work [360] discusses properties of the corresponding singular 
values.
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6.4 Eigenvectors 

Associated with the set of eigenvalues .{z j } of a Ginibre matrix .G are two sets of 
eigenvectors—the left eigenvectors .{l j } such that .lTj G = x jl

T
j , and the right eigen-

vectors .{r j } such that .Gr j = x jr j . These are not independent, but rather (upon 
suitable normalisation), form a biorthogonal set 

.lTi r j = δi, j . (6.18) 

This property follows from the diagonalisation formula .G = XDX−1, where the 
columns of .X are the right eigenvectors, .D the diagonal matrix of eigenvectors, and 
the rows of .X−1 are the left eigenvectors. For nonzero scalars.{ci } we see that (6.18) 
is unchanged by the rescalings .r j |→ c jr j and .l j |→ (1/c j )l j . 

For .N × 1 column vectors .u, v, define the inner product .⟨ u, v⟩ := ūT v. The  so-
called overlap matrix has its elements .Oi j expressed in terms of this inner product 
according to 

.Oi j := ⟨ li , l j ⟩⟨ ri , r j ⟩. (6.19) 

Note that this is invariant under the mappings noted in the final sentence of the above 
paragraph, and for fixed . i and summing over . j gives . 1. Also, it follows from (6.19) 
that the diagonal entries relate to the lengths 

.O j j = ||l j ||2||r j ||2. (6.20) 

The square root of this quantity is known as the eigenvalue condition number; see 
the introduction to [107] and [173, Sect. 1.1] for further context and references. 
Significant too is the fact that the overlaps (6.20) appear in the specification of a 
Dyson Brownian motion extension of GinUE [107, 220, 303]. 

Statistical properties of .{Oi j } for GinUE were first considered by Chalker and 
Mehlig [146, 147]. By the Schur decomposition (2.2), instead of a GinUE matrix. G, 
we may consider an upper triangular matrix. Z with the eigenvalues.{z j } of.G on the 
diagonal, and standard complex Gaussians, as off-diagonal entries. For the eigenvalue 
. z1, the triangular structure shows that.l1 = (1, b2, . . . , bN )T and. r1 = (1, 0, . . . , 0)T

where for .p > 1 and .b1 = 1, .bp = 1
z1−z p

∑  p−1
q=1 bq Zqp. From this last relation, it 

follows that with .l
(n)
1 = (1, b2, . . . , bn)T for .n < N we have 

. ||l(n+1)
1 ||2 = ||l(n)

1 ||2
(

1 + 1

|z1 − zn+1|2
|
|
|

n
∑  

q=1

b̃q Zq(n+1)

|
|
|

2)

, b̃q := bq
/

∑  n
q=1 |bq |2

.

(6.21) 
This has immediate consequences in relation to .O11 as shown by Bourgade and 
Dubach [107].
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Proposition 6.5 Let the eigenvalues .{z j } be given. We have 

.O11
d=

N
∏

n=2

(

1 + |Xn|2
|z1 − zn|2

)

, (6.22) 

where each.Xn is an independent complex standard Gaussian. Furthermore, it follows 
from this that after averaging over . {z2, . . . , zN }

.O11

|
|
|
z1=0

d= 1

B[2, N − 1] , (6.23) 

where .B[α, β] refers to the beta distribution. 
Proof A product formula for .O11 follows from (6.20), the fact that .||r1|| = 1, and 
by iterating (6.21). This product formula is identified with the RHS of (6.22) upon 
noting that a vector of independent standard complex Gaussians dotted with any unit 
vector (here .(b̃1, . . . , b̃n)) has a distribution equal to a standard complex Gaussian. 

In relation to (6.23) a minor modification of the proof of Proposition 2.14 shows 
that conditioned on .z1 = 0, the ordered squared moduli .{|z j |2}Nj=2 are indepen-
dently distributed as .{┌  [ j; 1]}Nj=2. Noting too that with each.X j a standard complex 

Gaussian, .|X j |2 d= ┌  [1; 1] it follows that 

. O11

|
|
|
z1=0

d=
N

∏

n=2

(

1 + X̃n

Yn

)

, X̃n
d= ┌  [1; 1], Yn

d= ┌  [n; 1].

Next, we require the knowledge of the standard fact that .Yn/(Yn + X̃n)
d=B[n, 1]. 

Furthermore (see e.g. [237, Exercises 4.3 q.1]), for .x
d=B[α + β, γ ], .y d=B[α, β], 

we have that .xy
d=B[α, β + γ ], which tells us that with .bn d=B[n, 1] we have 

.
∏N

n=2 bn
d=B[2, N − 1]. 

Dividing both sides of (6.23) by.N we see that the .N → ∞ is well defined since 
.NB[2, N − 1] → ┌  [2, 1]. After scaling the GinUE matrix .G |→ G/

√
N so that the 

leading eigenvalue support is the unit disk, an analogous limit formula has been 
extended from.z1 = 0 to any .z1 = w, .|w| < 1 in [107]. Thus 

.

O11

|
|
|
z1=w1

N (1 − |w1|2)
d→ 1

┌  [2; 1] . (6.24) 

In words, with.O11 corresponding to the condition number, one has that the instability 
of the spectrum is of order .N and is more stable towards the edge. Another point of 
interest is that the PDF for.1/┌  [2, 1] is.χt>0e−1/t/t3, which is heavy tailed, telling us 
that only the zeroth and first integer moments are well defined. We remark that limit
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theorems of the universal form (6.24) have been proved in the case of the complex 
spherical ensemble of Sect. 2.5, and for a sub-block of a Haar distributed unitary 
matrix [200];  see also [451]. 

The .1/t3 tail implied by (6.24) has been exhibited from another viewpoint in 
the work of Fyodorov [272]. There the joint PDF for the overlap non-orthogonality 
.O j j − 1, and the eigenvalue position. z j , was computed for finite. N . The global-scaled 
limit of this quantity, .Pg(t, w) say, was evaluated as [272, Eq. (2.24)] 

.Pg(t, w) = (1 − |w|2)2
π t3

e−(1−|w|2)/t , |w| < 1. (6.25) 

Note that for the first moment in . t this gives 

.

{ ∞

0
tPg(t, w) dt = 1

π
(1 − |w|2), (6.26) 

in keeping with a prediction from [146, 147]. This was first proved in [530]. 
An explicit formula for the large .N form of the average of the overlap (6.19) 

in the off-diagonal case (say .(i, j) = (1, 2)), with the GinUE matrix scaled . G |→
G/

√
N , and conditioned on .z1 = w1, .z2 = w2 with .|w1|, |w2| < 1 is also known 

[ 39, 107, 146, 147, 173]: 

. 

/

O12

|
|
|
z1=w1,z2=w2

\

∼
N→∞ − 1

N

1 − w1w̄2

π2|w1 − w2|4
(
1 − (1 + N |w1 − w2|2)e−N |w1−w2|2

1 − e−N |w1−w2|2

)

.

(6.27) 
This formula is uniformly valid down to the scale.N |w1 − w2| = O(1). The  large. N
form of the average value of the diagonal overlap for products of .M global-scaled 
GinUE matrices has been considered in [ 78, 113], with the result 

. lim
N→∞

1

N

/

O11

|
|
|
z1=w

\

= 1

π
|z|−2+2/M(1 − |z|2/M)χ|z|<1; (6.28) 

cf. (2.79). We remark that the average values of.O11 and.O12, conditioned on multiple 
eigenvalues are shown to have a determinantal form in [ 39, Th. 1], thus exhibiting 
an integrable structure for these eigenvector statistics. 

For general complex non-Hermitian matrices with independently distributed 
entries of the form .ξ jk + iζ jk , where each .ξ jk, ζ̃ is an identically distributed zero 
mean real random variable of unit variance (this class is sometimes referred to as 
complex non-Hermitian Wigner matrices; see e.g. [ 28] and Sect. 6.5 below), a line of 
research in relation to the normalised eigenvectors is to quantify the similarity with 
a complex vector drawn from the sphere embedded in.C

N with uniform distribution. 
Recent references on this include [413, 417]. For random vectors on the sphere, there 
are bounds on the size of the components which rule out gaps in the spread of the 
size of the components, referred to in [476] as no-gaps localisation. As noted in [417,
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Sect. 1.1], the bi-unitary invariance of GinUE matrices implies individual eigenvec-
tors are distributed uniformly at random from the complex sphere, and thus with 
probability close to one have that the . j-th largest modulus of the entries is bounded 
above and below by a positive constant times .

√
N − j/N , for  . j in the range from 

.N/2 up to .N minus a constant time .log N . 

Remark 6.5 1. The overlap.O11|z=w as specified by (6.24) shows itself in a construc-
tion of a reduced density matrix.ρA associated with Ginibre eigenvectors, conditioned 
on the event that the eigenvalue . z is equal to . w. Thus from [164, Eq. (18)] we have 

.ρA = IA

NA
+

/

1 − |w|2
┌  [2, 1] G, (6.29) 

where .1 « NA « NB , .NA + NB = N , and .G is an .N × N global-scaled Ginibre 
matrix. Relevant to the study of [164] is the eigenvalue density implied by (6.29). 
Appropriately shifting the functional form of the circular law (2.32) and averaging 
over.┌  [2, 1] shows that in the variable.x = |N−1

A − z|/√1 − |w|2 the density is given 
by [164, Eq. (21)] 

.μ(x) = 1

π

(

2 − e−1/x2
(1 + 2x2 + 2x4

x4

))

. (6.30) 

2. Another appearance of.O11 (and.O12) is in the study of the eigenstate thermalisation 
hypothesis (ETH) for non-Hermitian Hamiltonians [165]. In this topic, with. A a fixed  
.N × N matrix, of interest is the statistical properties of.⟨ li , Ar j ⟩. With.EU denoting 
the expectation with respect to the matrix .U in the Schur decomposition (2.2), it is 
found, restricting attention to the case .i = j for simplicity, that 

. EU ⟨ li , Ari ⟩ = Tr A

N
,

EU |⟨ li , Ari ⟩|2 = |Tr A|2
N

+ O11

N 2

(

Tr A†A − |Tr A|2
N

)

.

With.Tr A = O(N ), in light of (6.24) this shows that the fluctuations are of the same 
order as the mean, which is interpreted as a violation of the ETH. 
3. A so-called non-Hermitian Rosenweig–Porter model can be defined by weighting 
each of the off-diagonal entries of a GinUE matrix by .N−γ /2, where .γ > 0. As for  
the Hermitian case, of interest is the inverse partition ratio .Iq( j), defined as 

.Iq( j) =
N

∑  

p=1

|
|
|⟨ ep, r j ⟩⟨ l j , ep⟩

|
|
|

q
, q > 1/2,
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where .ep denotes the .p-th standard basis vector in .C
N . It is found in [177] that 

. Iq( j) ◡ N 1−q , γ < 1 Iq( j) = O(1), γ > 1,

independent of. j . In particular,.Iq( j) = O(1) has the interpretation of the eigenstates 
being localised. 

6.5 Non-Hermitian Wigner Ensembles 

As remarked at the beginning of the paragraph below (6.28), the term (complex) 
non-Hermitian Wigner matrices refers to the class of non-Hermitian random matrices 
with independently distributed entries of the form .ξ jk + iζ jk , where each .ξ jk, ζ̃ is 
an identically distributed zero mean real random variable of unit variance. When 
the latter is the real normal .N[0, 1/√2], the GinUE is obtained. However, more 
generally, non-Hermitian Wigner matrices do not share with GinUE the property of 
allowing for explicit formulas in relation to the joint eigenvalue PDF or the correlation 
functions. Nonetheless, for large .N many statistical properties of non-Hermitian 
Wigner matrices are in fact independent of the detail of the particular distribution of 
the elements, beyond it having mean zero and unit variance. This property is referred 
to as universality, and generally is a prominent theme in random matrix theory [219]. 

In the specific case of the universality of the circular law functional form for the 
global density, references on this have been given below (2.17). As noted in the first 
paragraph of Sect. 6.4, important to establishing this result is control of the resolvent 
associated with a shifted version of the matrix .H (6.10). The work [ 46] establishes 
the near optimal convergence of the spectral radius .sN say, improved on in [162] to  
the statement that for any .∈ > 0 there is a .C∈ > 0 such that 

. lim sup
N

Pr
(|
|
|sN − 1 −

/
γN

4N

|
|
| ≥ C∈√

N log N

)

≤ ∈,

where .γN is as in (3.13). An analysis based on the resolvent associated with (6.10) 
has been used to establish local universality of the edge correlation functional form 
associated with the correlation kernel (2.19), where it is required that the expected 
value of the square of the entries vanish. In such work it is not convergence to the 
explicit functional form that is established, but rather convergence to the case of 
standard complex Gaussian entries. 

Consider now the global-scaled covariance of smooth linear statistics. f, ḡ, which 
in the case of GinUE is given by (3.21), with a normal Gaussian fluctuation as 
specified by Proposition 3.4. In the case of complex non-Hermitian Wigner matrices, 
with the expected value of the square of the entries random variable .ξ + iζ equally 
zero, the RHS of (3.21) aquires the extra term [160] (see also the review [156])
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. κ4

( 1

π

{

|r|<1
f (r) dxdy − f0

)( 1

π

{

|r|<1
ḡ(r) dxdy − ḡ0

)

.

Here.κ4 is the fourth cumulant of a single entry,.κ4 := ⟨ |ξ + iζ |4⟩ − 2 (note that this 
vanishes for GinUE) and. f0, ḡ0 are as those in the statement of Proposition 3.3. Note  
that this extra term vanishes if . f or . g are real analytic. Similarly, the .β = 2 case of 
the expansion (4.18) must be modified by the additive term [160] 

. − κ4

πN

{

|z|<1
f (r)(2|z|2 − 1) d2z.

Should the variance of the entries of a non-Hermitian Wigner matrix not be well 
defined due to the entries being heavy tailed, distinct statistical properties to those 
described above are expected. While explicit formulas are generally not available, 
introducing a parameter . α as in the theory of Lévy.α-stable laws it is known that the 
limiting global density decays proportionally to .|z|2(α−1)e−(α/2)|z|α for large .|z|; see  
[100, Sect. 6]. 

Aspects of universality in relation to eigenvector overlaps are investigated at a 
numerical level in [107]. In particular, evidence is presented for the validity of the 
inverse gamma distribution (6.24) for a general class of complex non-Hermitian 
Wigner ensembles. 
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Part II 
GinOE and GinSE



Chapter 7 
Eigenvalue Statistics for GinOE 
and Elliptic GinOE 

For GinUE matrices the (complex) Schur decomposition underpinned our ability 
to compute the eigenvalue PDF. This has a real analogue, although it is necessary 
to condition on the number of real eigenvalues. Consequently, the eigenvalue PDF 
is no longer absolutely continuous, but rather breaks up into sectors depending on 
the number of real eigenvalues. Nonetheless, as for real symmetric GOE matrices, 
structures giving rise to a Pfaffian point process result, the further development 
of which requires identifying particular skew-orthogonal polynomials. Questions 
relating to the distribution of real eigenvalues have a rich content, the development 
of which is facilitated by the identification of a simpler determinantal structure for 
the generating function, which permits the establishment of a local central limit 
theorem. Remarkably, the Pfaffian point process specifying the correlations of the 
real eigenvalues coincides with the those for the annihilation process on the real 
line.A + A → ∅, which has consequences with respect to determining the large gap 
asymptotics. An extension of GinOE also considered in this chapter is elliptic GinOE, 
which is defined as a linear combination of real symmetric and real anti-symmetric 
Gaussian matrices. Similar structures to those for GinOE result, but now with the 
possibility of studying the weakly non-symmetric limit. An application is given to 
equilibria counting. 

7.1 Eigenvalue PDF for GinOE 

Dyson’s derivation of the GinUE eigenvalue PDF consisted of the following main 
steps (see Sect. 2.1): 

(i) Decompose a GinUE matrix .G using the Schur decomposition .G = UZU †. 
Here .U is a unitary matrix, and. Z is an upper triangular matrix with the eigen-
values .{z j } of .G on the diagonal. 

(ii) Decompose the measure for the independent elements of . G, both real and 
imaginary parts, using the coordinates from (i). It is found that the dependence 
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on . U , .Z̃ (the strictly upper triangular elements of . Z ) and .{z j } factorises, and 
that the Jacobian equals .

∏
j<k |zk − z j |2. 

(iii) Rewrite the weight for the joint element PDF using the coordinates of (i), 

.e−Tr G†G = e−∑N
j=1 |z j |2−∑

j<k |Z̃ jk |2 . 
(iv) From the decomposition in (ii) and (iii) observe that the dependence on the 

elements of . Z̃ factorises and hence only contributes to the normalisation after 
integration over these variables to leave the functional form (1.7). 

Following [211] (see also [237, Sect. 15.10]), in the case of .A ∈ GinOE, con-
ditioned to have . k real eigenvalues (. k same parity as . N ), the appropriate Schur 
decomposition in step (i) reads .A = QRQT . Here  .Q is a real orthogonal matrix, 
while . R is upper block triangular. The first . k diagonal elements of . R are the scalars 
.{λ j }kj=1—the real eigenvalues—while the next.(N − k)/2 diagonal elements are the 
.2 × 2 matrices 

. X j :=
[
x j b j

−c j x j

]

, b j , c j > 0,

where .x j ± iy j (.y j = √
b j c j ) are the complex eigenvalues. 

Step (ii) seeks to decompose the measure for the elements of . A. A factorisation 
again results, with the Jacobian equalling .2(N−k)/2|Δ̃|, where .Δ̃ is as in (1.10) but  
with the difference between each pair .x j ± iy j omitted, times the additional factor 
.
∏(N+k)/2

l=k+1 |bl − cl |. For step (iii) we calculate 

. e−Tr AAT /2 = e−∑
i< j r

2
i j /2e−∑k

j=1 λ2
j/2e−∑(N−k)/2

j=1 (x2j +y2j +δ2j /2),

where .δ j = b j − c j and .{ri j } are the off-diagonal elements. To carry out step (iv) 
and thus integrate out all variables except the eigenvalues, it is convenient to change 

variables from.{b j , c j } to .{y j , δ j } according to . db jdc j = (2y j/
/

δ2j + 4y2j )dy jdδ j .

Integrating over.δ j in this is responsible for the factors.e
y2j erfc(

√
2y j ) in (1.10), while 

integrating over the other variables only contributes to the normalisation. 

7.2 Coulomb Gas Perspective 

The factor .|Δ| in (1.10) can be written in exponential form 

. 

|
|
|Δ({λl }l=1,...,k ∪ {x j ± iy j } j=1,...,(N−k)/2)

|
|
|

= exp
( ∑

1≤ j<p≤k

log |λp − λ j | +
k∑

j=1

(N−k)/2∑

s=1

log |zs − λ j ||z̄s − λ j | +
(N−k)/2∑

a,b=1

log |za − z̄b|
)

× exp
(
2

∑

1≤a<b≤(N−k)/2

log |zb − za ||zb − z̄a |
)
. (7.1)
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This permits the interpretation as a Boltzmann factor for a classical two-dimensional 
Coulomb gas [245, 284]. Relevant to this is the fact that the solution of the 
two-dimensional Poisson equation .∇2

rφ(r, r ,) = −2πδ(r − r ,) with the Neumann 
boundary condition along the.x-axis. ∂

∂yφ(r, r ,)|y→0+ = 0 is, with the use of complex 
coordinates, given by 

.φ(r, r ,) = − log
(
|z − z,| |z − z̄ ,|

)
. (7.2) 

How to approximate (7.2) in terms of different dielectric constants for .y > 0 and 
.y < 0 is discussed in [237, Sect. 15.9]; its effect is to give rise to an image particle 
of identical charge at the reflection point .z̄ , of .z , about the real axis. 

We see that (7.1) contains terms corresponding to the sum over pairs of the poten-
tial (7.2) for the complex coordinates .{z j }(N−k)/2

j=1 in the upper half plane, interacting 
at dimensionless inverse temperature.β = 2. In addition there is an interaction energy 
between. k real coordinates and the complex coordinates. However, this is only con-
sistent with (7.2) if the real eigenvalues are weighted by assigning their charge to 
equal .1/2. Assuming this, after noting from (7.2) that before weighting the . k real 
coordinates themselves interact via the pair potential.− log |λ − λ,|2, the correct term 
in the Boltzmann factor is obtained. 

We turn our attention now to the one-body terms involving the weight in (1.10), 
which when written out in full read 

.e−∑k
j=1 λ2

j/2e−∑(N−k)/2
j=1 (x2j +y2j )

(N−k)/2∏

j=1

e2y
2
j erfc(

√
2y j ). (7.3) 

From a two-dimensional Coulomb gas viewpoint, we see that the first two exponential 
terms result from a coupling between the charges (particles on the real line having 
charge .1/2) confined to the semi-disk .|z| <

√
N , .y > 0, and with a neutralising 

background of uniform density.ρ = 1/π filling the semi-disk. In the random matrix 
problem, this implies that the global-scaled eigenvalues obey the circular law (2.17). 
The final term can be interpreted as the coupling of the complex coordinates to a 
smeared out charge on the real axis; asymptotically each factor decays as.1/y j . This  
is then cancelled by the term in (7.1) corresponding to the interaction between the 
complex coordinate and its image. 

7.3 Generalised Partition Function and Probabilities 

Integrating (1.10) over the specified range of the eigenvalues gives the probability 
that a GinOE matrix has precisely . k real eigenvalues, .pGinOEk,N say. However, to per-
form the integrations in general, more theory is required—that of skew-orthogonal 
polynomials—which is to be developed below. An exception is the case.k = N [211].
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Proposition 7.1 We have .pGinOEN ,N = 2−N (N−1)/4. 

Proof According to (1.10) with .k = N , 

. pGinOEN ,N = Cg
N

N !
{ ∞

−∞
dλ1 · · ·

{ ∞

−∞
dλN e−∑N

j=1 λ2
j/2

∏

1≤ j<k≤N

|λk − λ j |.

This multiple integral—the .β = 1 case of what is referred to as Mehta’s integral— 
has a known evaluation in terms of products of gamma functions (see [237, Propo-
sition 4.7.1]), which implies the result. □

Pfaffian structures associated with integrations over (1.10) are most readily 
revealed by considering the so-called generalised partition function 

.Zk,(N−k)/2[u, v] =
/ k∏

l=1

u(λl)

(N−k)/2∏

l=1

v(xl , yl)
\
. (7.4) 

Proposition 7.2 Let .{pl−1(x)}l=1,...,N be a set of monic polynomials, with . pl−1(x)
of degree .l − 1. With the weight .ωg(x) as in (1.9) let  

. α
g
j,k =

{ ∞

−∞
dx u(x)

{ ∞

−∞
dy u(y) (ωg(x)ωg(y))1/2 p j−1(x)pk−1(y)sgn (y − x),

β
g
j,k = 2i

{

R
2+
dxdy v(x, y)ωg(z)

×
(
p j−1(x + iy)pk−1(x − iy) − pk−1(x + iy)p j−1(x − iy)

)
.

For .k, N even and with .Cg
N as in (1.9) we have 

.Zk,(N−k)/2[u, v] = Cg
N [ζ k/2]Pf[ζα

g
j,l + β

g
j,l ] j,l=1,...,N , (7.5) 

where .[ζ p] f (ζ ) denotes the coefficient of .ζ p in . f (ζ ). With 

.ZN [u, v] :=
N/2∑

k=0

Z2k,(N−2k)/2[u, v], (7.6) 

it follows that 
.ZN [u, v] = Cg

NPf[αg
j,k + β

g
j,k] j,k=1,...,N . (7.7) 

Proof The strategy to deduce (7.5) is to combine two integration methods involv-
ing determinants due to de Bruijn [110]. Details can be found in [237, proof of 
Proposition 15.10.3]. □
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Remark 7.1 The case.u = v of (7.7) is due to Sinclair [502], who also considered the 
modification required for .N odd. Subsequently, the .N odd case of GinOE was con-
sidered in more detail in [104, 264, 509]. Introducing. νk := {∞

−∞ e−x2/2 pk−1(x) dx,
the .N odd version of (7.7) reads 

.ZN [u, v] = Cg
NPf

[ [α j,k + β j,k] [ν j ]
[−νl ] 0

]

j,k=1,...,N

. (7.8) 

However, below, for efficiency of presentation, we will always take .N to be even as 
we further develop the theory relating to GinOE. 

Define.ZN (ζ ) := ∑N/2
k=0 ζ k Z2k,(N−2k)/2[1, 1], which is the generating function for 

the probabilities .pGinOE2k,N = Z2k,(N−2k)/2[1, 1] of there being exactly.2k real eigenval-
ues. Choosing .p j (x) to be even for . j even and odd for . j odd, the Pfaffian in (7.7) 
can then be written as a determinant of half the original size [ 31], 

.ZN (ζ ) = Cg
N det

[
α2 j−1,2k |u=1 + β2 j−1,2k |v=1

]

j,k=1,...,N/2
. (7.9) 

Moreover, further refining the choice of the .p j to be skew-orthogonal—see the 
following section for this notion and their expansion as monomials—allows (7.9) to  
be written in the explicit form [355] 

.ZN (ζ ) = det

[

δ j,k + (ζ − 1)√
2π

┌( j + k − 3/2)√
┌(2 j − 1)┌(2k − 1)

]

j,k=1,...,N/2

. (7.10) 

As an application, the first term of the conjectured asymptotic formula 

.
1√
N

log pGinOEN ,0 = − 1√
2π

ζ
(3

2

)
+ C√

N
+ · · · , (7.11) 

where .ζ(x) denotes the Riemann zeta function and 

.C = log 2 − 1

4
+ 1

4π

∞∑

n=2

1

n

(
− π +

n−1∑

p=1

1

p(n − p)

)
≈ 0.0627, (7.12) 

as implied by results of [244] for the probability of a large gap in the real spectrum 
of bulk-scaled GinOE, was rigorously established. Beyond the case .k = o(N ), the  
leading-order asymptotic behaviour of .log pGinOE2k,N , with .k = O(N ), was derived in 
[185] using a Coulomb gas approach. A known arithmetic property of.{pGUE2k,N }, namely 

that each member of the sequence is of the form .p2k,N = r + s
√
2, with . r and . s

rational numbers which in reduced form consist of powers of . 2 in the denominator 
[211], is (after minor manipulation) also evident from (7.10). 

Another application of (7.10) is to differentiate with respect to . ζ and set .ζ = 1. 
This gives for the expected number of real eigenvalues, .E r

N := ∑N/2
k=0 2kp2k,N , the
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explicit formulas [212] 

. E r
N =

/
2

π

N/2∑

k=1

┌(2k − 3/2)

┌(2k − 1)
= 1

2
+
/

2

π

┌(N + 1/2)

┌(N )
2F1

(
1,−1/2

N

|
|
|
|
1

2

)

,

(7.13) 
where the validity of the hypergeometric expression can be checked by recurrence. 
The latter, which holds too for.N odd, has the utility of implying the large.N asymp-
totic expansion 

.E r
N − 1

2
∼

N→∞

/
2N

π

(

1 − 3

8N
− 3

128N 2
+ · · ·

)

. (7.14) 

(We refer to [115, 123] for recent works on extending this to the general spectral 
moments.) We will see later (working below Proposition 7.6) that the leading-order 
value .

√
2N/π is consistent with the bulk density of real eigenvalues equalling the 

value .1/
√
2π , and being supported on the interval .[−√

N ,
√
N ] to leading-order. 

Relating to this, we already know from the Coulomb gas viewpoint of Sect. 7.2 that 
the density of complex eigenvalues is .1/π supported on the disk of radius .

√
N . We  

also mention that the leading-order asymptotic of (7.14) has been extended to a class 
of i.i.d. real random matrices [515]. 

The variance.(σ r
N )2 of the distribution of the real eigenvalues can, using (7.10), be 

expressed in terms of a double summation over gamma functions; however, the large 
.N asymptotic form is not easy to then deduce. Later, in Proposition 7.7, an alterna-
tive method will be used which shows.(σ r

N )2 ∼ (2 − √
2)E r

N , and so in particular the 
variance diverges as.N → ∞. This fact, together with a corollary of (7.10) regarding 
the zeros of .ZN (ζ ), can be used to deduce that upon centring and scaling, the prob-
ability distribution for the number of real eigenvalues satisfies a local central limit 
theorem. This is in the spirit of Proposition 3.2, although to our knowledge a local 
central limit theorem in this context has not appeared previously in the literature. 
For the corresponding central limit theorem in a more general setting, see [500] and 
Sect. 7.7 below. 

Proposition 7.3 We have that .{pGinOE2k,N } satisfies the local central limit theorem 

. lim
N→∞ sup

x∈(−∞,∞)

|
|
|σ r

N p2k,N |2k=[σ r
N x+E r

N ] − 1√
2π

e−x2/2
|
|
| = 0. (7.15) 

Proof It is established in [355] that the matrix formed by the ratio of gamma functions 
in (7.10) is positive definite, and hence the zeros of .ZN (ζ ) are all real. Moreover, 
they are negative real since .ZN (ζ ) is the generating function for the probabilities 
.{pGinOE2k,N }. As remarked above, we know too that for .N → ∞ the variance of this 
probability distribution diverges. Combining these two facts gives, upon appealing 
to [ 84, Th. 2], the stated result. □
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Remark 7.2 It has been commented in Sect. 7.2 that the global density of the eigen-
values obeys the circular law in the limit.N → ∞. However, the fact that the expected 
value of real eigenvalues is proportional to .

√
N , whereas the corresponding distri-

bution function takes on non-zero values for all (even) values of the number up to 
.N creates, for finite . N , a so-called Saturn effect whereby the support of the real 
eigenvalues visibly overshoots the circular law; see [ 69, Fig. 1].  

7.4 Skew-Orthogonal Polynomials 

In (7.7) set .γ j,k := α j,k |u=1 + β j,k |v=1. We see that associated with .γ j,k is the skew 
inner product 

. ⟨ f, g⟩gs,O :=
{ ∞

−∞
dx

{ ∞

−∞
dy (ωg(x)ωg(y))1/2 f (x)g(y)sgn (y − x),

+ 2i
{

C+
d2z ωg(z)

(
f (z)g(z̄) − g(z) f (z̄)

)
. (7.16) 

Here the subscripts on the inner product indicate that it is skew symmetric and asso-
ciated with the GinOE. A Pfaffian is well defined for anti-symmetric matrices of 
even size only. The analogue of a diagonal form in this setting is the direct sum of 
.N/2 two-by-two anti-symmetric matrices. We would like to choose the polynomials 
.{pl−1(x)} in the definition of.[γ j,k] so that it takes on such a direct sum form. Equiv-
alently, we seek a monic polynomial basis that skew-diagonalises the skew inner 
product (7.16). This requires that 

.γ2 j,2k = γ2 j−1,2k−1 = 0, γ2 j−1,2k = −γ2k,2 j−1 = r j−1δ j,k, (7.17) 

where .{r j−1} (the skew norms) are the nonzero elements in the block diagonal form 

. [γ j,k] = ⊕N/2
j=1

[
0 r j−1

−r j−1 0

]

.

If these relations are satisfied, the polynomials are said to be skew-orthogonal. 
One observes that (7.17) does not uniquely determine the polynomials. Thus the 

odd polynomials .p2n+1(z) can be replaced by .p2n+1(z) + cq2n(z) for any constant 
. c (see e.g. [237, Sect. 6.1.1]). On the other hand, the existence of .{qm}m≥0 follows 
from a Gram–Schmidt skew-orthogonalisation procedure [26, Th. 2.4]. Nevertheless, 
since this procedure requires us to evaluate certain Pfaffians, it is not very useful for 
the actual computation of the skew-orthogonal polynomials. 

Crucial for determining the skew-orthogonal polynomials relating to the skew 
inner product (7.16), and various generalisations associated with ensembles related 
to the GinUE to be discussed below, are their realisations as .2n × 2n GinOE matrix 
averages [ 33, Eqs. (4.6)–(4.7)]:
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.p2n(z) = ⟨det(zI2n − G)⟩, p2n+1(z) = zp2n(z) + ⟨det(zI2n − G)Tr G⟩. (7.18) 

The matrix averages in (7.18) are simple to evaluate [254]. 

Proposition 7.4 Let the random matrix .G = [g jk] such that the average of distinct 
pairs is the same as the product of the averages of the individual entries. Suppose 
that the distribution of each .g jk is the same as that for .−g jk . Then the formulas of 
(7.18) simplify, 

.p2n(z) = z2n, p2n+1(z) = z2n+1 − ⟨Tr G2⟩z2n−1. (7.19) 

Also, in the case of GinOE, .⟨Tr G2⟩ = 2n which allows (7.19) to be written 

.pg2n(z) = z2n, pg2n+1(z) = −ez
2/2 d

dz
e−z2/2 p2n(z). (7.20) 

For the normalisation we have 

.rgn−1 = 2
√
2π┌(2n − 1). (7.21) 

Proof The expansion of .det(zI2n − G) gives a term.z2n plus terms involving lower-
order powers of . z, the coefficients of which are linear with respect to any single 
matrix element. Averaging over the matrix element using the assumed invariance of 
the distribution by negation must give zero. In relation to .⟨det(zI2n − G)Tr G⟩, the  
assumed invariance of the distribution by negation implies that a nonzero value will 
result only for terms in the expansion of .det(zI2n − G) which contain single powers 
of the matrix elements, these terms being in total .z2n−1Tr G. The  value of  . ⟨Tr G2⟩
for .G a member of .2n × 2n GinOE is immediate from the fact that the elements 
all have unit variance. For the normalisation . rn , from the block diagonal form we 
have .Pf [γ j,k] = ∏N/2−1

j=0 r j . Substituting in (7.7), and noting that as a result of its 
interpretation as a sum over probabilities we have .ZN [1, 1] = 1, allows (7.21) to be  
verified. □
Remark 7.3 
1. The skew inner product 

. α j,k :=
{ ∞

−∞
dx

{ ∞

−∞
dy (ωg(x)ωg(y))1/2 p j−1(x)pk−1(y)sgn (y − x),

is well known in the theory of the Gaussian orthogonal ensemble (GOE). The corre-
sponding skew-orthogonal polynomials are then given in terms of Hermite polyno-
mials (see e.g. [ 6]) 

. pGOE2 j (x) = 2−2 j H2 j (x), pGOE2 j+1(x) = −ex
2/2 d

dx

(
e−x2/2 pGOE2 j (x)

)
;

cf. (7.19) and (7.20).
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2. Let .φ(z) = | 12 (z + √
z2 − 4)|−2s , .s > N and define the skew inner product 

.⟨ f, g⟩φs,O as in (7.16) but with .ωg(z) replaced by .φ(z) throughout. This arose in 
a study of the so-called Mahler measure of random polynomials [503], and the cor-
responding skew-orthogonal polynomials were required. Without a random matrix 
underpinning, there is no meaning to (7.18). Nonetheless, in [503, Th. 2.1], the 
skew-orthogonal polynomials have been explicitly determined in terms of a single 
Chebyshev polynomial (for .p2n(z)) and a sum of two Chebyshev polynomials (for 
.p2n+1(z)). 

7.5 Correlation Functions for the Real Eigenvalues 

From a statistical mechanics viewpoint, the eigenvalues of GinOE matrices form a 
two-component system consisting of the real eigenvalues, and of the complex eigen-
values. Both form Pfaffian point processes. Details relating to the real–real correla-
tions are considered here, with the complex–complex and complex–real correlations 
treated in the next section. 

As a starting point, use will be made of the definition (7.4) of the generalised par-
tition function.ZN [u, v], containing arbitrary functions.u(x) and.v(x, y). Generally, 
for integrations involving arbitrary functions, the remaining factors of the integrand 
can be extracted by functional differentiation, 

.
δ

δa(x)

{ ∞

−∞
a(y) f (y) dy = f (x). (7.22) 

All correlations can be obtained from.ZN [u, v] in (7.6) using the operation of func-
tional differentiation. As an explicit example, for the.m-point correlation function of 
the real eigenvalues, .ρr

(m),N say, we have 

.ρr
(m),N (x1, . . . , xm) = δm

δu(x1) · · · δu(xm)
ZN [u, v]

|
|
|
|
u=v=1

. (7.23) 

This can be checked from (7.22) and the definition of.ρr
(m),N as the sum over (1.10) for  

.k = m, . . . , N , with .λl = xl (.l = 1, . . . ,m), each term weighted by the combinato-
rial factor.k!/(k − m)!, and the variables.{λl}l=m+1,...,k each integrated over. R. Start-
ing with (7.7), and choosing the polynomials therein to have the skew-orthogonality 
property (7.17), a Pfaffian formula for .ρr

(m),N can be deduced [104, 266, 506]. 

Proposition 7.5 Let .{p j (x)} be the skew-orthogonal polynomials for GinOE as 
specified in (7.20), and for . x real set .ω(x) = ωg(x) as implied by (1.9) (specifi-
cally then .ω(x) = e−x2 ). Use these polynomials and this weight to define . Φk(x) ={∞
−∞ sgn(x − y)pk(y)(ω(y))1/2 dy, which in turn is used to define
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. SrN (x, y) =
N/2−1∑

k=0

(ω(y))1/2

rk

(
Φ2k(x)p2k+1(y) − Φ2k+1(x)p2k(y)

)
,

Dr
N (x, y) = 1

2

∂

∂x
Sr(x, y), Ĩ rN (x, y) = sgn(y − x) − 2

{ y

x
Sr(x, z) dz. (7.24) 

(An equivalent form of . Ĩ r(x, y) is to replace the integral therein by . 
{∞
−∞ sgn(y −

z)Sr(x, z) dy.) We have 

. ρr
(m),N (x1, . . . , xm) = Pf [K r

N (x j , xk)] j,k=1,...,m,

K r
N (x, y) :=

[
Dr

N (x, y) SrN (x, y)
−SrN (y, x) Ĩ rN (x, y)

]

. (7.25) 

Before presenting the proof, it is instructive to outline a derivation of the determi-
nantal expression for the.m-point eigenvalue correlation function of GinUE (cf. (2.9) 
and Proposition 2.2), the main steps of which can be generalised to GinOE [432]. 
These steps are: 

(i) Show that for the monic polynomials .p j (z) = z j , 

. 

/ N∏

l=1

u(zl)
\

GinUE

= det
[
δ j,k + 1

⟨p j−1, p j−1⟩
{

C2
e−|z|2(u(z) − 1)z j−1 z̄k−1 d2z

]N

j,k=1
,

where .⟨p j−1, pk−1⟩ := {
C2 e−|z|2 z j−1 z̄k−1 d2z. 

(ii) With . I denoting the identity operator, use the operator theoretic identity 

. det(I + AB) = det(I + BA), (7.26) 

valid whenever the determinant is well defined (see [183]) to rewrite the formula 
in (i) as 

. 

/ N∏

l=1

u(zl)
\

GinUE
= det(I + Ku),

where.Ku is the integral operator on. C with kernel.(u(z2) − 1)KN (z1, z2), with 
.KN (z1, z2) given by (2.9). 

(iii) Use functional differentiation to now extract the.m-point eigenvalue correlation 
function from the Fredholm expansion [532] 

. det(I + Ku) = 1 +
N∑

k=1

1

k!
{

C

dz1 u(z1) · · ·
{

C

dzN u(zN ) det[KN (z j , zl )] j,l=1,...,k .
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Proof of Proposition 7.5 In relation to steps (i) and (ii), we follow [237, Proof of 
Proposition 6.3.6]. Starting with (7.7), we set.v = 1,.u = 1 + û and choose. {pl−1(x)}
to have the skew-orthogonality property (7.17). Also, we introduce the notations 
.ψ j (x) = e−x2/2 p j−1(x) and .ε[ f ](x) = {∞

−∞ sgn(x − y) f (y) dy. Then, with 

. γ j,k := α j,k |u=1 + β j,k |v=1,

we have 

. α jk + β jk = γ jk

−
{ ∞

−∞

(
û(x)ψ j (x)ε[ψk](x) − û(x)ψk(x)ε[ψ j ](x) − û(x)ψk(x)ε[ûψ j ](x)

)
dx .

Next, we introduce the further notation .G2 j−1(x) = ψ2 j (x), .G2 j (x) = −ψ2 j−1(x), 
multiply the even rows by.−1 and use the facts that.[γ jk] has the block diagonal form 
as specified below (7.17) and that the square of the Pfaffian is the corresponding 
determinant, to deduce 

. (ZN [1 + û, 1])2 =
N∏

j=1

r2j−1 det

[

δ j,k + 1

r[( j−1)/2]

×
{ ∞

−∞

(
û(x)G j (x)ε[ψk](x) − û(x)ψk(x)ε[G j ](x) − û(x)ψk(x)ε[ûG j ](x)

)
dx

]

.

(7.27) 

This accomplishes step (i). 
For step (ii), the key observation, due to [526], is that the determinant in (7.27) can 

be written as.det(IN + AB) for. A and. B appropriate matrix operators. Specifically,. A
is the.N × 2 matrix-valued integral operator, with row. j of the kernel corresponding 
to the pair 

. 
1

r[( j−1)/2]

(
− û(y)ε[G j ](y) − û(y)ε[ûG j ](y), û(y)G j (y)

)
.

The operator .B is a certain matrix multiplication. Specifically, the matrix has size 
.2 × N matrix with first row.ψk(y), and second row.ε[ψk](y). 

We are now ready to apply (7.26). With. A and. B as above we see that the operator 
.I + BA is the .2 × 2 matrix integral operator 

. 

⎡

⎣
1 − ∑N

j=1

(
ψ̃ j ⊗ f εG j + ψ̃ j ⊗ f ε( f G j )

) ∑N
j=1 ψ̃ j ⊗ f G j

−∑N
j=1

(
εψ̃ j ⊗ f εG j + εψ̃ j ⊗ f ε( f G j ) 1 + ∑N

j=1 εψ̃ j ⊗ f G j

⎤

⎦

=
[

1 − ∑N
j=1 ψ̃ j ⊗ f εG j

∑N
j=1 ψ̃ j ⊗ f G j

−∑N
j=1 εψ̃ j ⊗ f εG j − ε f 1 + ∑N

j=1 εψ̃ j ⊗ f G j

][
1 0
ε f 1

]

. (7.28)
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Here .ψ̃ j := ψ j/r[( j−1)/2] and the notation .a ⊗ b denotes the integral operator with 
kernel .a(x)b(y). The determinant of the second matrix in the second expression 
is equal to . 1, and so it can be replaced by the elementary anti-symmetric matrix 
obtained by setting .z = 0, .w = 1 in (1.1), without changing its value. Doing this 
we can identify the kernel of the matrix integral operator as being given by an anti-
symmetric matrix so the square root of the determinant is a Pfaffian. Hence 

.ZN [1 + û, 1] = Pf

([
0 I

−I 0

]

+
[
Dr(x, ·)[û] Sr(x, ·)[û]
−Sr(·, x)[û] Ĩr(x, ·)[û]

])

, (7.29) 

where the Pfaffian is defined in terms of the product of the eigenvalues. In the second 
matrix the operators act by integration over the non-specified variable, weighted by 
. û, and otherwise have kernels given by the corresponding entries in (7.25). 

We are now up to stage (iii) of the outlined strategy. Analogous to the theory of 
Fredholm determinants, this quantity—a Fredholm Pfaffian—can be expanded in a 
series of Pfaffians of scalar matrices to read [466] 

. ZN [1 + û, 1] = 1 +
N∑

m=1

1

m!
{ ∞

−∞
dx1 û(x1) · · ·

{ ∞

−∞
dxm û(xm)

× Pf [K r
N (x j , xk)] j,k=1,...,m . (7.30) 

Here the .2 × 2 anti-symmetric matrix kernel .K r
N is determined by the kernel of the 

second matrix integral operator in (7.29). We note that the formula (7.23) remains 
valid with each .u(x) in the functional derivative replaced by . û, with the latter now 
set equal to zero after the derivatives have been computed. Applying this modified 
formula to (7.30), we read off the sought Pfaffian formula (7.25) for the correlations.

□

With the polynomials .{p j−1(x)} given according to (7.20), the matrix elements 
in (7.24) can be made explicit, with knowledge of .Sr(x, y) sufficing. 

Proposition 7.6 We have 

. SrN (x, y) = e−(x2+y2)/2
√
2π

N−2∑

k=0

(xy)k

k! + e−y2/2

2
√
2π

yN−1ΦN−2(x)

(N − 2)!

= e−(x2+y2)/2
√
2π

(

exy
┌(N − 1; xy)

┌(N − 1)
+ 1

2
(
√
2y)N−1ex

2/2sgn(x)
γ (N/2 − 1/2; x2/2)

┌(N − 1)

)

.

(7.31) 

Proof The key to obtaining the first equality is to first note from the derivative form 
of .p2n+1(z) given by (7.20) that 

.Φ2k+1(x) = −2e−x2/2x2k,
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which implies the summation identity 

. −
N/2−1∑

k=0

1

rk
Φ2k+1(x)p2k(y) = 1√

2π
e−x2/2

N/2−1∑

k=0

(xy)2k

(2k)! . (7.32) 

Also needed is the further derivative formula 

.
2(k + 1)

rk+1
p2k+2(x) − 1

rk
p2k(x) = − 1

2
√
2π

1

(2k + 1)!e
x2/2 d

dx
e−x2/2x2k+1, (7.33) 

which implies the further summation identity 

. 

N/2−1∑

k=0

1

rk
Φ2k(x)p2k+1(y) = 1√

2π
e−x2/2

N/2−2∑

k=0

(xy)2k+1

(2k + 1)! + 1

rN/2−1
ΦN−2(x)y

N−1.

(7.34) 
Adding (7.32) and (7.34) establishes the first equality. 

In relation to the second equality, by identifying terms with the first equality, the 
task becomes to show 

. ΦN−2(x) = 2(N−1)/2sgn(x)γ (N/2 − 1/2; x2/2).

Since from the definition in Proposition 7.5, 

. ΦN−2(x) = 2
{ x

0
e−y2/2yN−2 dy,

this is readily verified. □

Setting .x = y in (7.31) gives the density of real eigenvalues 

. ρr(1),N (x) = 1√
2π

(
┌(N − 1; x2)

┌(N − 1)
+ 1

2
(
√
2x)N−1e−x2/2sgn(x)

γ (N/2 − 1/2; x2/2)
┌(N − 1)

)

.

(7.35) 
Now setting .x = √

N x̃ corresponds to a global scaling of the density of real eigen-
values. One can verify that the large .N limit is determined entirely by the first term, 
with the simple result 

. lim
N→∞ ρr

(1),N (
√
N x̃) = 1√

2π
χ|x̃ |<1. (7.36) 

Knowledge of (7.36) indicates that local limit theorems associated with (7.31) 
will depend on the choice of origin. In keeping with this, we find that with the latter 
chosen on the real axis at.ν

√
N with.|ν| < 1 the final term does not contribute, while 

the ratio of the incomplete gamma function in the first term equals unity, giving for 
the bulk limit
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.Sr,b∞ (x, y) := lim
N→∞ SrN (ν

√
N + x,

√
N + y) = 1√

2π
e−(x−y)2/2. (7.37) 

Setting.x = y in this gives for bulk density the value.ρr,b
(1),∞(x) = 1/

√
2π , as already 

anticipated below (7.14). The result (7.37) gives for the bulk limiting kernel in (7.25) 
the functional form 

.K r,b
∞ (x, y) =

[
1

2
√
2π

(y − x)e−(x−y)2/2 1√
2π
e−(x−y)2/2

− 1√
2π
e−(x−y)2/2 sgn(x − y)erfc(|x − y|/√2)

]

. (7.38) 

The result (7.37) breaks down for.ν = ±1, as.±√
N are the (leading-order) bound-

aries of the support of the real eigenvalues. Then the uniform asymptotic expansion 
[529] 

.
γ (M − j + 1; M)

┌(M − j + 1)
∼

M→∞
1

2

(
1 + erf

( j√
2M

))
(7.39) 

gives for the edge scaling limit 

. lim
N→∞ SrN (

√
N + x,

√
N + y) = 1√

2π

(
1

2
e−(x−y)2/2

(
1 − erf

x + y√
2

)
+ e−y2

2
√
2

(1 + erf x))

)

.

(7.40) 
In particular, setting .x = y gives for the edge-scaled density 

.ρ
r,e
(1),∞(x) = 1

2
√
2π

(

1 − erf(
√
2x) + e−x2

√
2

(1 + erf x))

)

. (7.41) 

For .x, y → −∞ (7.40) reclaims the bulk limiting form (7.37). 
For finite. N , the density of real eigenvalues.ρr

(1),N (x) = SrN (x, x) was first calcu-
lated in [212]. The starting point was the formula 

.ρr
(1),N (x) = e−x2/2

2N/2┌(N/2)

/
| det(G − xIN−1)|

\
, (7.42) 

where the average is over.(N − 1) × (N − 1) GinOE matrices. This can be deduced 
from (1.10), although in [212] a method called eigenvalue deflation was used, 
whereby a Householder transformation is applied to reduce all entries in the final 
column, except the last entry, to zero. The formula.E r

N = {∞
−∞ ρr

(1),N (x) dx can then 
be used to deduce (7.13). 

Remark 7.4 
1. Up to proportionality the term involving the summation in the first equality of 
(7.31) is recognised as the correlation kernel .KN (w, z) for GinUE (2.10), with . w, z
real and.N |→ N − 1. Using this notation, the results of Proposition 7.4 for the skew-
orthogonal polynomials substituted into the definition of .SrN in (7.24) show that it is 
furthermore true that [254, Sect. 4.2]
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.Sr,gN (x, y) = 1

2
√
2π

{ ∞

−∞
(y − s)sgn(x − s)KN−1(y, s) ds. (7.43) 

2. The entry.Dr
N (x, y) of.K r

N in (7.25) can be multiplied by any scalar.c /= 0, provided 
that the entry . Ĩ rN (x, y) is multiplied by the scalar .1/c without changing the value 
of .ρr

(m),N . This follows from the fact for .B a .2m × 2m symmetric matrix, and .A a 
.2m × 2m anti-symmetric matrix, .Pf(BABT ) = det(B)Pf(A) (for a derivation see 
e.g. [237, Exercises 6.1 q.1]). 

7.6 Correlation Functions for Complex Eigenvalues 

For finite.N the complex–complex correlation function is formally the same as (7.25), 
but now with the entries of the .2 × 2 correlation kernel .K c

N , but now with the need 
to only introduce a single scalar kernel .ScN (w, z). For this purpose, set . q j (z) =
(ωg(z))1/2 p j (z), where.{p j (z)} are the skew-orthogonal polynomials of Proposition 
7.4. The definition of the scalar kernel is then 

.ScN (w, z) = 2i
N/2−1∑

j=0

1

r j

(
q2 j (w)q2 j+1(z̄) − q2 j+1(w)q2 j (z̄)

)
, (7.44) 

with the matrix kernel then being given by [104, 266], [432, Sect. 4.5] 

.K c
N (w, z) =

[−i ScN (w, z̄) ScN (w, z)
−ScN (z, w) i ScN (w̄, z)

]

. (7.45) 

The results of Proposition 7.4 substituted in (7.44) shows  

.ScN (w, z) = i(z̄ − w)√
2π

(
erfc(

√
2u)e2u

2
erfc(

√
2y)e2y

2
)1/2

KN−1(w, z), (7.46) 

where.KN−1 corresponds to the correlation kernel for GinUE (2.10) with. N |→ N − 1
and .y = Im z, .u = Imw. In particular, this implies 

.ρc
(1),N (z) = ScN (z, z) =

/
2

π
y erfc(

√
2y)e2y

2 ┌(N − 1; x2 + y2)

┌(N − 1)
, (7.47) 

which was first derived in [211] by (effectively) obtaining a complex analogue of 
(7.42), 

.ρc
(1),N (z) = 2yωg(z)

Cg
N−1

Cg
N

/
| det(G − zIN−1)|2

\
, (7.48)
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with the average over .(N − 1) × (N − 1) GinUE matrices. (This approach can also 
be utilised for the elliptic Ginibre ensembles [ 37].) The global scaling limit of (7.47) 
is readily computed to give [211, Th. 6.3] 

. lim
N→∞ ρc

(1),N (
√
Nz) =

{
1
π
, |z| < 1,

0, |z| > 1,
(7.49) 

in keeping with the circular law (2.17). Moreover, in the neighbourhood of the bound-
ary, but away from the real axis, the edge scaling reclaims the edge-scaled GinUE 
result (2.19) with .(x1, y1) = (x2, y2)); see [104]. 

Away from the boundary but still in the vicinity of the real axis, the bulk-scaled 
limit of the correlation kernel is [104, 266] 

.K c
∞(w, z) = 1√

2π
(erfc(

√
2v)erfc(

√
2y))1/2 (7.50) 

. ×
[

(z − w)e−(w−z)2/2 i(z̄ − w)e−(w−z̄)2/2

i(z − w̄)e−(w̄−z)2/2 −(z̄ − w̄)e−(w̄−z̄)2/2

]

, (7.51) 

where .w = u + iv, .z = x + iy with .v, y > 0. In particular, we read off from the 
latter of these the formula for the bulk density of complex eigenvalues 

.ρc
(1),∞(z) =

/
2

π
erfc(

√
2y)ye2y

2
, (7.52) 

which tends to the constant .1/π as .y → ∞, as required by the circular law (7.49). 
The matrix kernels determining the real–real and complex–complex correlations 

both appear in the formula for the .(k1, k2)-point correlation function for .k1 real 
eigenvalues .x1, . . . , xk1 and .k2 complex eigenvalues .z1, . . . , zk2 . Thus from [104, 
266, 509] we have that this has the Pfaffian form 

. ρ(k1,k2),N (x1, . . . , xk1; z1, . . . , zk2)

= Pf

⎡

⎣
[K r

N (x j , xl)]k1j,l=1 [K r,c
N (x j , zl)] j=1,...,k1

l=1,...,k2(
− [K r,c

N (x j , zl)] j=1,...,k1
l=1,...,k2

)T [K c
N (z j , zl)]k2j,l=1

⎤

⎦

generalising (7.25), where each of .K r
N ,K r,c

N ,K c
N is a .2 × 2 correlation kernel. The 

bulk scaling limits of .K r
N ,K c

N are known from (7.38) and (7.50) respectively. In 
relation to .K r,c∞ we have [104, Cor. 9]  

. K r,c
∞ (x, w) = 1√

2π
(erfc(

√
2v))1/2

[
(w − x)e−(x−w)2/2 i(w̄ − x)e−(x−w̄)2/2

−e−(x−w)2/2 −ie−(x−w̄)2/2

]

.

Remark 7.5 The formula (7.48) has the generalisation [ 37, 509]
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. ScN (w, z) = i(z̄ − w)
(
ωg(w)ωg(z)

)1/2Cg
N−1

Cg
N

/
det

(
(G − wIN−1)(Ḡ − z̄IN−1)

)\
.

(7.53) 
With the matrix in the determinant of this expression generalised by the inclusion 
of a term .|μ|2IN−1, and .G now drawn from a general non-Hermitian ensemble, the 
corresponding average has been used in [111] to probe the eigenvalue density of . G. 

7.7 Fluctuation Formulas for Real Eigenvalues 

The variance .(σ r
N )2 of the distribution of the real eigenvalues can be expressed in 

terms of .ρr
(2),N (x, y), and its explicit expression as implied by (7.25) used to deduce 

its large .N form [266]. 

Proposition 7.7 In terms of the leading large .N form of .E r
N , .E

r
N ∼ √

2N/π as 
given by (7.14), we have 

.(σ r
N )2 ∼ (2 − √

2)E r
N . (7.54) 

Proof With .ρT
(2),∞(z1, z2) := ρ(2),∞(z1, z2) − ρ(1),∞(z1)ρ(1),∞(z2), we have  

.(σ r
N )2 =

{ ∞

−∞
dx

{ ∞

−∞
dy (ρ

r,T
(2),N (x, y) + ρ(1),N (x)δ(x − y)); (7.55) 

cf. first formula of (3.2). From the qualitative knowledge that .ρr,T
(2),N (x, y) is to 

leading-order translationally invariant for .x, y ∈ (−√
N ,

√
N ) with corresponding 

density .1/
√
2π =: ρr it follows that 

.(σ r
N )2 ∼ E r

N

(
1 + 1

ρr

{ ∞

−∞
ρ
r,T
(2),∞(0, y) dy

)
. (7.56) 

We read off from (7.25) that 

.ρ
r,T
(2),∞(x, y) = −Sr∞(x, y)Sr∞(y, x) + Dr

∞(x, y) Ĩ∞(x, y), (7.57) 

where the explicit form of the functions herein are the matrix elements of (7.38). 
This allows the integral to be computed to give (7.54). □

The asymptotic formula (7.54) can be generalised to the setting of scaled linear 
statistics .F := ∑N

j=1 f (x j/
√
N ) [231, 500]. 

Proposition 7.8 Subject only to a mild growth condition on . f , we have 

.Var F ∼
(1

2

{ 1

−1
f 2(x) dx

)
(2 − √

2)E r
N . (7.58)
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Proof (Sketch) The variance is given by the RHS of (7.55) with factors 

. f (x/
√
N ) f (y/

√
N )

also in the integrand. A simple change of variables, and knowledge that correlations 
decay as Gaussians outside the leading support, gives in place of (7.56) 

. 
Var F

E r
N

∼1

2

{ 1

−1
f 2(x) dx+1

2

{ 1

−1
dx f (x)

{ 1

−1
dy f (y)

√
2πNρT

(2),∞(
√
Nx,

√
N y).

From the explicit functional form (7.57) we observe that for large . N

. 

√
2πNρT

(2),∞(
√
Nx,

√
N y) ∼ (1 − √

2)δ(x − y).

This provides the result at least for piecewise continuous test function . f . As noted 
in [231], following an idea in [370], taking advantage of the translation invariance 
of the limiting two-point truncated correlation function allows the integral instead to 
be computed in terms of Fourier transforms, and so further enlarging the class of . f
for its applicability. □

In the case of the counting function for a determinantal point process, we know 
that a diverging variance is sufficient to conclude that the centred and rescaled linear 
statistics obey a central limit theorem. Here we see that for general linear statistics 
the variance diverges (this is in distinction to the case of smooth statistics for GinUE; 
recall Sect. 3.2), and furthermore the correlations are no longer determinantal but 
rather Pfaffian. Nonetheless, it was shown in [231, Th. 3.10] that the higher-order 
cumulants of .F are of order .O(

√
N ) as .N → ∞. The conclusion is then that the 

statistic.(F − ⟨F⟩)/√E r
N tends to a zero mean Gaussian, with variance given by the 

RHS of (7.58) with the factor .E r
N omitted. 

7.8 Relationship to Diffusion Processes and Gap 
Probabilities 

A Pfaffian point process with correlation kernel (7.38), distinct from the real eigen-
values of GinOE, has been known in the literature (at least implicitly) for a long 
time [427]. This point process is the annihilation process .A + A → ∅ on the real 
line, in which particles are initially non-interacting on the real line with density 
.ρ0 = 1/

√
2π , and evolving according to Brownian motion for all .t > 0. Colliding 

particles are each annihilated, and the density is rescaled to have the initial value. ρ0. 
As explained in [244], assembling results in [427] gives that the correlation functions 
of this process are, in the limit .t → ∞ the Pfaffian point process with the same cor-
relation kernel (7.38) as the real eigenvalues of GinOE matrices in the bulk scaling 
limit. This process was reconsidered in [528], in which the Pfaffian point process
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structure, and its correlation kernel, were made explicit. Our interest here is first 
to make note of some consequences of this co-incidence in relation to certain gap 
probabilities in the GinOE, and then to proceed to discuss special properties of other 
GOE gap probabilities. 

For the first such consequence, knowledge about the correlations for another 
diffusion process—specifically the coalescence process .A + A → A—is required 
[ 80]. As for the annihilation process the particles are initially non-interacting on the 
real line with density .ρ0 = √

2/π (not .
√
1/2π ), and evolve according to Brownian 

motion for all .t > 0. Now pairs of colliding particles merge to a single particle, and 
the density is rescaled to have the initial value. ρ0. Results from [244, 427, 528] give  
that that this is a Pfaffian point process with correlation kernel equal to (7.38), now 
multiplied by a factor of . 2. From the theory of thinning a point process (recall Sect. 
3.3) it follows that bulk-scaled GinOE real eigenvalues are statistically equivalent 
to the coalescence process with every particle deleted with probability .1/2. Now  
denote by .Eb,r(even; J ) the probability that a collection of intervals . J contain an 
even number of particles for bulk-scaled GinOE real eigenvalues. Furthermore, we 
denote by.Ec(k; J ) the probability that there are . k particles in . J for the coalescence 
process. The relationship between the two processes via deletion with probability 
half in the latter implies [244, 427] 

.E r,b(even; J ) = Ec(0; J ) + 1

2

∞∑

k=1

Ec(k; J ) = 1

2
+ 1

2
Ec(0; J ). (7.59) 

Furthermore, for a set.J = ∪m
j=1(x2 j−1, x2 j ) of. m disjoint intervals,.Ec(0; J ) is given 

by [427] 

.Ec(0; J ) = Pf
[
Ai j

]2m
i, j=1, Ai j = erfc

( x j − xi√
2

)
. (7.60) 

This leads to an explicit formula of .E r,b(even; J ). Thus in the simplest case of a 
single interval, it follows that 

.E r,b(even; (0, s)) = 1

2

(
1 + erfc

s√
2

)
. (7.61) 

The second and final consequences as noted in [244] relates to the small and large 
. s expansions of .Eb,r(0; (0, s)). As these had earlier been reported in the literature 
for the same gap probability in the case of the annihilation process [190], the fact 
that the statistical state of the latter coincides with that of bulk-scaled real GinOE 
eigenvalues gives the sought results. 

Proposition 7.9 For small . s

.E r,b(0; (0, s)) = 1 − s√
2π

+ s3

12
√
2π

− s5

80
√
2π

+ s6

720π
+ · · · , (7.62)



118 7 Eigenvalue Statistics for GinOE and Elliptic GinOE

while for large . s
.E r,b(0; (0, s)) = e−cs+C+o(1), (7.63) 

where .c = 1
2
√
2π

ζ(3/2) ≈ 0.5211, and .C is as in (7.12). 

Remark 7.6 
1. We comment now on an application of .E r,b to a certain topological transition 
relating to parametric energy levels associated with particular quantum dots, due to 
Beenakker et al. [ 77]. This appears in a setting of energy levels . · · · > E3 > E2 >

E1 > 0 and .|E0| < E1. Thus each .E j is positive, while .E0 may be positive or neg-
ative, but no bigger in absolute value to .E1. Moreover, the energy levels are all 
functions of a parameter . φ. The question of interest is the statistics of the values 
of . φ such that .E0(φ) = 0. As a theoretical model of the particular scattering prob-
lem (Andreev reflection) giving rise to these energy levels, the solution of this last 
equation is mapped to the real eigenvalues of the real, but non-symmetric, random 
matrix 

.M = (I2N − R)(I2N + R)−1
Z2N , (7.64) 

where. R is a.2N × 2N Haar distributed real orthogonal matrix with determinant.+1, 

and.Z2N = IN ⊗
[
0 1

−1 0

]

. Note that.M has the skew symmetry.MT = −Z2N MZ2N , 

implying all eigenvalues of .M are doubly degenerate. Although no exact solution 
relating to the ensemble .{M} is known, numerics indicate that the leading term for 
the number of real eigenvalues is .

√
2N/π as for GinOE, and most significantly for 

present purposes that after rescaling so that the mean density is .1/
√
2π , these real 

eigenvalues have bulk spacing specified by the GinOE distribution .E r,b. 
2. The ensemble of random matrices (7.64) is one example of a member of the same 
universality class for its real eigenvalues (at least according to numerical evidence) as 
GinOE. On the other hand, there are known ensembles for which the real eigenvalues 
appear (from numerical evidence) to have different statistics, for example 

. 

[
A B

−BT C

]

,

where.A, B,C are square random matrices of the same size with.A,C real symmetric 
from the GOE, and .B from GinOE [536]. We make mention too of ensembles of 
non-Hermitian random matrices with complex entries which exhibit real eigenvalues; 
see [429, Sect. 8], [221] and [536]. An explicit example is random matrices of the 
form.Ik,N−kG, where.G is a member of the GUE, while.Ik,N−k is the diagonal matrix 
consisting of . k entries equal to 1 and.N − k entries equal to.−1. In [221] it is shown  
that for .μ := k/N fixed as .N → ∞, there is a finite fraction of real eigenvalues 
provided.μ /= 1/2, the density of which can be explicitly calculated. Let us also stress 
that the weakly non-symmetric regime [ 35, 38, 267] provides additional examples 
where the real eigenvalue statistics differ from those of GinOE.
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Choosing .û(x) = −χx∈(0,s) in the generalised partition function .ZN [1 + û, 1] of 
Sect. 7.5 we see that .E r,b(0; (0, s)) = limN→∞ ZN [1 + û, 1] and thus from (7.29) 
we have a Fredholm Pfaffian formula for this probability. From the standard fact that 
a Pfaffian is the square root of the corresponding determinant (this can be deduced 
from the Pfaffian/determinant identity of Remark 7.4.2), the fact that the.2 × 2 entries 
of the operator defining the corresponding Fredholm determinant is a function of 
differences was used in [244] to give an alternative derivation of . c. Moreover, this 
calculation was also carried out in the more general setting of the thinned point 
process, in which each real eigenvalue is deleted with probability .1 − ξ ; we know 
from Sect. 3.3 that its effect in the Fredholm Pfaffian formula is simply to multiply 
the kernel by . ξ . Denoting the corresponding gap probability by .E r,b(0; (0, s); ξ), it  
was found 

. E r,b(0; (0, s); ξ) ∼
s→∞ e−c(ξ)s+O(1), c(ξ) = − 1

4π

{ ∞
−∞

log
(
1 − (2ξ − ξ2)e−u2/2

)
du;

(7.65) 

evaluating the integral as a series for .ξ = 1 reclaims the value of . c in (7.63). In 
[230] the theory of the asymptotics of Fredholm Pfaffians was further developed to 
derive the value of . C independent of a certain continuity assumption implicit in the 
calculation of [190]. 

It was observed in [355] that the asymptotic result (7.63), with the interval of the 
LHS replaced by.(−s, s), and. s in the exponent of the RHS replaced by. 2s, is sugges-
tive in relation to the large.N form of the probability.pGinOEN ,N that all the eigenvalues of 
an .N × N matrix are real. First it is argued that the quantity .E r,b(0; (−s, s)) can be 
replaced by the corresponding quantity for finite. N , provided.N is taken as large and 
.(−s, s) is contained in the leading interval of support.(−√

N ,
√
N ). But with. (−s, s)

chosen as exactly this interval, up to corrections which vanish as .N the finite .N gap 
probability is the same quantity as .pGinOEN ,0 for the probability of no real eigenvalues, 
and thus the prediction (7.11). 

Further developing the viewpoint of the above paragraph, let.E r
N (0; (a, b)) denote 

the probability that the interval .(a, b) in the .N × N GinOE is free of eigenvalues. 
From the definition of edge scaling, we see that 

. lim
N→∞ E r

N (0; (
√
N + s,∞)) = E r,e(0; (s,∞)); (7.66) 

note that minus the derivative of the RHS with respect to . s gives the PDF of the 
largest eigenvalue for .N → ∞. It turns out that the .s → −∞ asymptotic of this 
quantity is closely related to (7.63) [230] (see also [  69]), 

.E r,e(0; (s,∞)) ∼
s→−∞ e−c|s|− 1

2 log 2+C+O(s−1+ ), (7.67) 

where .c,C are as in (7.63). Note that in both (7.63) and (7.67) a gap with no real 
eigenvalues is being created, which has size .|s| relative to the bulk region. This has 
been generalised to the thinned case in [ 70],
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.E r,e(0; (s,∞); ξ) ∼
s→−∞ e−c(ξ)|s|+C(ξ)+o(1), (7.68) 

where .c(ξ) is as in (7.65) and, with .Lis(z) := ∑∞
n=1 z

n/ns , 

. C(ξ) = 1

2
log

2

2 − ξ
+ 1

4π

{ 2ξ−ξ 2

0

(
(Li1/2(x))

2 − πx

1 − x

) dx

x
.

In relation to the diffusion processes that have featured in this section, we remark 
that for the annihilation process.A + A → ∅ with half line initial positions, an exact 
coincidence with the edge state Pfaffian point process of real Ginibre eigenvalues 
can be exhibited [285]. 

Knowledge that the edge-scaled real Ginibre eigenvalues form a Pfaffian point 
process with the explicit kernel determined by the formulas of Proposition 7.5 and 
the limit formula (7.40) imply a Fredholm Pfaffian formula for . E r,e(0; (s,∞); ξ)

(see also [461, 470]). A recent result of Baik and Bothner [ 70] gives that a simpler 
Fredholm determinant formula holds true. For this denote by .S(s,∞) the integral 
operator of .(s,∞) with kernel 

. S(x, y) = 1

2
√

π
e−(x+y)2/4,

and write .ξ̄ := ξ(2 − ξ). One then has [ 70, Th 1.8]  

. E r,e(0; (s,∞); ξ) =
/

1 −
√

ξ̄

2(2 − ξ)
det

(
I +

/

ξ̄S(s,∞)

)
+
/

1 +
√

ξ̄

2(2 − ξ)
det

(
I −

/

ξ̄S(s,∞)

)
.

(7.69) 
Note that with.ξ = 1 (no thinning) the coefficient in front of the first of these Fredholm 
determinants vanishes, and then [ 69, Th. 1.12] 

.E r,e(0; (s,∞)) = det(I − S(s,∞)). (7.70) 

As emphasised in [ 70], both (7.69) and (7.70) are structurally identical to known 
Fredholm determinant formulas for the soft edge-scaled largest eigenvalue of GOE 
matrices; see [225] and [236] respectively. Moreover, it is shown in [ 69, 70] that 
associated with these gap probabilities are certain integrable systems, associated with 
the Zakharov–Shabat inverse scattering problem, which lead to alternative formulas 
again identical in structure to those known for the soft edge-scaled largest eigenvalue 
of GOE matrices in terms of transcendents from Painlevé II [195, 527]. 

For the Fredholm determinants in (7.70) and (7.69) the methods of Bornemann 
[101, 102] provide for fast, high precision numerical evaluations. This in turn allows 
for the determination of the values of statistical quantities associated with the corre-
sponding distributions. Specifically, in relation to the distribution of the edge-scaled 
largest eigenvalue (no thinning), it is found that to five decimals the mean, variance,
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skewness and kurtosis are equal to [ 69, Table 1] . −1.30319, 3.97536,−1.76969,
5.14560, respectively. 

Remark 7.7 Instead of the largest real eigenvalue, one can ask about the distribution 
of the maximum of the real part of all GinOE eigenvalues, or the maximum modulus 
of all the eigenvalues. Both are known. With global scaling .G |→ 1√

N
G, the first 

involves the extreme value scaled variable 

. 1 +
/

γN

4N
+ x√

4NγN
, γN = 1

2

(
log N − 5 log log N − log(2π4)

)
,

while the second involves the same extreme value scaled variable as for GinUE, 
(3.13). In these scalings, the extreme values obey the rescaled Gumbel law, with 
cumulative distribution.exp(− 1

2e
−t ); see  [  35, 161] and [470] respectively. As already 

remarked, the result for the largest real part is directly relevant to the stability of the 
system of the matrix differential equation (1.11). 

7.9 Elliptic GinOE 

The elliptic GinOE interpolates between the asymmetric GinOE and the symmetric 
Gaussian orthogonal ensemble (GOE). First we recall that a member of the GOE, 
. S say, can be constructed from a GinOE matrix .G according to .S = 1

2 (G + GT ). 
In addition to . S, we introduce the antisymmetric real Gaussian matrix . A with joint 
distribution of its elements proportional to .e−Tr A2/2. For a parameter . τ , .0 ≤ τ < 1, 
and a scale factor . b, following [401] a random matrix .X is defined according to 

.X = 1√
b
(S + √

cA), c = (1 − τ)/(1 + τ). (7.71) 

Up to the scale factor, when .τ = 0, .X is a member of the GinOE, while for .τ = 1, 
.X is a member of the GOE. 

Proposition 7.10 The joint element distribution of .X is 

.Aτ,b exp
(

− b

2(1 − τ)

(
Tr XXT − τTr X2

))
, (7.72) 

where 
. Aτ,b = (

√
c)−N (N−1)/2(

√
b)N

2
(2π)−N 2/2.

Define the normalisation and the weight
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. Ce
N (τ ; b) = (

√
b)N (N+1)/2(

√
1 + τ)N (N−1)/2

2N (N+1)/4
∏N

l=1 ┌(l/2)
,

ωe(z) = e−b|z|2e2by
2
erfc

(/ 2b

1 − τ
y
)
, (7.73) 

where .z = x + iy. The probability density that there are . k real eigenvalues for the 
random matrix .X is then 

. Ce
N (τ ; b) 2(N−k)/2

k!((N − k)/2)!
k∏

s=1

(ωe(λs))
1/2

(N−k)/2∏

j=1

ωe(z j )

×
|
|
|Δ({λl}l=1,...,k ∪ {x j ± iy j } j=1,...,(N−k)/2)

|
|
|. (7.74) 

Proof We see from (7.71) that 

. (dX) = 2N (N−1)/2(
√
c)N (N−1)/2(

√
b)−N 2

(dS)(d A).

Using this we can change variables in the joint element distribution of . S and .A to 
deduce that the joint element distribution of .X is equal to (7.72). 

Denote (1.10) by  .Pk,(N−k)/2({λ j }kj=1; {x j ± iy j }(N−k)/2
j=1 ), which corresponds to 

the eigenvalue PDF in the case .τ = 0, .b = 1, conditioned so that there are exactly . k
real eigenvalues. For these matrices scale .X |→ √

bX/(1 − τ)1/2 to obtain that for 
matrices with PDF 

.A0,1b
N 2/2(1 − τ)−N 2/2e−bTr XXT /2(1−τ), (7.75) 

the eigenvalue PDF is equal to 

. bN/2(1 − τ)−N/2Pk,(N−k)/2

(
{√bλ j/(1 − τ)1/2}kj=1;

{√bx j/(1 − τ)1/2 ± i
√
by j/(1 − τ)1/2}(N−k)/2

j=1

)
.

Comparing (7.75) to (7.72) it follows that for matrices with element PDF (7.72) the  
eigenvalue PDF, conditioned so that there are exactly . k eigenvalues, is equal to 

. 
Aτ,b

A0,1
(1 − τ)N (N−1)/2 exp

( τb

2(1 − τ)

( k∑

j=1

λ2
j + 2

(N−k)/2∑

j=1

(x2j − y2j )
))

× Pk,(N−k)/2

({/ b

1 − τ
λ j

]k

j=1
;
{/ b

1 − τ
x j ± i

/
b

1 − τ
y j
](N−k)/2

j=1

)
.

This is (7.74). □
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We see that (7.74) with .b = 1/(1 + τ) can, in the Coulomb gas picture of Sect. 
7.2, be viewed as a modification of the Coulomb gas identified in relation to elliptic 
GinUE (see text below proof of Proposition 2.7), the modification being that there 
are imaginary terms and charges on the real line as for GinOE itself; recall Sect. 
7.2. These modifications do not alter the interpretation of the origin of the one-body 
couplings in terms of the same neutralising background charge as for GinUE. The 
conclusion then is that after scaling.X |→ 1√

N
X , and with.b = 1/(1 + τ), the limiting 

eigenvalue density of elliptic GinOE is the constant .1/(π(1 − τ 2)), with the shape 
of the droplet being an ellipse specified by semi-axes.A = 1 + τ , .B = 1 − τ . Using  
different reasoning, this result was first deduced in [507]. 

Denote the analogue of (7.4) in the elliptic GinOE ensemble by .Z eGinOE
k,(N−k)/2[u, v], 

and use this to define.Z eGinOE
N [u, v] as specified above (7.7). Starting with (7.74), by 

following the strategy of the proof of Proposition 7.2, Pfaffian formulas for these 
quantities can be obtained. It suffices to record that for .Z eGinOE

N [u, v]. 
Proposition 7.11 Let .{pl−1(x)}l=1,...,N be a set of monic polynomials of the indexed 
degree, and let .αe

j,k[u], βe
j,k[v] be defined as for .αg

j,k[u], βg
j,k[v] in Proposition 7.2 

but with each .ωg replaced by .ωe. For .k, N even we have 

.Z eGinOE
N [u, v] = Ce

N (τ ; b)Pf [αe
j,l[u] + βe

j,l [v]] j,l=1,...,N . (7.76) 

Next, we would like to compute the skew-orthogonal polynomials associated 
with .(αe

j,k[u] + βe
j,l [v])|u=v=1. While the formulas (7.18) for the latter still apply, 

according to the definition (7.71), for .τ /= 0 the elements .x jk and .xk j in .X are cor-
related, so the simple formula (7.19) is no longer valid. Nonetheless, an expansion 
of .det(zI2n − G) can still be used to compute the averages required in (7.18)—see 
[253, proof of Proposition 11] for details of a closely related calculation—with the 
result 

. pe2n(z) = C2n(z),

pe2n+1(z) = C2n+1(z) − 2nC2n−1(z) = −(1 + τ)e
z2

2(1+τ)
d

dz

(
e− z2

2(1+τ) C2n(z)
)
,

(7.77) 

where.Cn(z) := (τ/2)n/2Hn(z/
√
2τ) and for convenience the specific choice of scale 

.b = 1/(1 + τ) has been made. These polynomials were first identified in [267] with-
out knowledge of (7.18). The corresponding normalisation is given by 

.r en = (2n)!2√2π(1 + τ). (7.78) 

We can check that (7.77) and (7.78) reduce to the result of Proposition 7.4 in the 
limit .τ → 0+. 

From knowledge of the skew-orthogonal polynomials, the entries in the correlation 
kernels specifying the Pfaffian point process are explicit. For example, in the case
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of the real–real correlations, these entries are specified in Proposition 7.5 and it is 
the quantity .SrN (x, y) therein which determines the other entries. It is possible to 
simplify the summation in its definition to obtain a structure identical to that in the 
.τ = 0 case (7.31), in which the first term is recognised from its appearance as the 
correlation kernel for elliptic GinUE (2.38) (up to proportionality, with.w, z real, and 
with .N |→ N − 1). 

Proposition 7.12 For elliptic GinOE with .b = 1/(1 + τ) we have 

. Sr,eN (x, y) = e−(x2+y2)/2(1+τ)

√
2π

N−2∑

k=0

1

k!Ck(x)Ck(y) + e−y2/2(1+τ)

2
√
2π(1 + τ)

CN−1(y)ΦN−2(x)

(N − 2)! .

(7.79) 

Proof The derivative formula for.p2n+1 in (7.77) implies a summation identity anal-
ogous to (7.32). We can furthermore check from (7.77) and (7.78) that analogous to 
(7.33) there is the further derivative formula 

. 
2(k + 1)

rek+1
p2k+2(x) − 1

rek
p2k(x) = − 1

2
√
2π

1

(2k + 1)! e
x2/2(1+τ) d

dx
e−x2/2(1+τ)C2k+1(x),

which implies a summation identity analogous to (7.34). □

The result (7.79) can be used to show that both the bulk-scaled, and edge-scaled 
real-real correlation functions of elliptic GinOE are identical to that for the original 
GinOE, with the change of scale in the latter.λ j |→ λ j/

√
1 − τ 2, . z j |→ z j/

√
1 − τ 2

[267]. This implies that, structurally, the formula (7.54) for the variance of the number 
of real eigenvalues with .N large, remains true. Another application of (7.79) is in  
relation to the weakly non-symmetric limit, obtained by the scaling. τ |→ 1 − α2/N
before the computation of the large .N limit [267]. Thus 

. lim
N→∞

π√
N
Sr,eN

( πx√
N

,
πy√
N

)|
|
|
τ=1−α2/N

=
{ 1

0
e−α2u2 cosπu(x − y) du,

which implies in particular that the correlations now decay algebraically, in contrast 
to the Gaussian decay exhibited by (7.37). See also [ 35] for the scaling limit at the 
edge of the spectrum. 

Setting .x = y in (7.79) gives the eigenvalue density. From this, with . τ fixed, it 
was shown in [124, 267] that the expected number of real eigenvalues .E r,e

N satisfies 
the large .N asymptotic expansion 

. E r,e
N − 1

2
∼

N→∞

/
2

π

1 + τ

1 − τ
N

(

1 + τ − 3

8(1 − τ)

1

N
+ 5τ 2 − 14τ − 3

128(1 − τ)2

1

N 2
+ · · ·

)

,

(7.80) 
which recovers (7.14) for  .τ = 0, cf.  [115]. On the other hand, in the scaling . τ |→
1 − α2/N , one finds
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.E r,e
N ∼

N→∞ c(α)N + O(1), c(α) := e−α2/2

(

I0
(α2

2

)
+ I1

(α2

2

))

; (7.81) 

see [124, Th. 2.1]. (We mention that the function.c(α) also appears in several different 
contexts; cf. (3.16) and Prop. 6.3.) Furthermore, as an analogue of Proposition 7.7, 
it was shown in [124, Th. 2.3] that in the weakly non-symmetric regime the variance 
.(σ

r,e
N )2 is again proportional to .E r,e

N as 

.(σ
r,e
N )2 ∼ 2

(

1 − c(
√
2α)

c(α)

)

E r,e
N ; (7.82) 

note that as.α → ∞ the ratio in (7.82) tends to.2 − √
2 in (7.54). The global density 

of real eigenvalues for . τ fixed tends to be uniform in the interval .(−1 − τ, 1 + τ); 
see [267]. In contrast, in the regime.τ |→ 1 − α2/N , it was proposed by Efetov [214] 
using the supersymmetry method that for .x ∈ (−2, 2), 

. lim
N→∞ ρ

r,e
N (

√
Nx)

|
|
|
τ=1−α2/N

= 1

c(α)

1

2α
√

π
erf

(α

2

√
4 − x2

)
. (7.83) 

This convergence was recently shown in [124] by properly analysing the double scal-
ing limits of (7.79). As expected, the limiting density in (7.83) interpolates between 
the uniform density (.α → ∞) with the semi-circle law (.α → 0). A point of interest 
is that Efetov was motivated by an application of almost symmetric random matrices 
to the study of vortices in disordered superconductors with columnar defects [320]. 

To provide more details of the statistics of the real eigenvalues, we again consider 
the generating function .Z e

N (ζ ) := ∑N/2
k=0 ζ k peGinOE2k,N of the probabilities .peGinOE2k,N of 

having exactly .2k real eigenvalues. Then by using the explicit form of the skew-
orthogonal polynomials (7.77), it was shown in [126, Proposition 2.1] that . Z e

N (ζ )

can be written as 

.Z e
N (ζ ) = det

[

δ j,k + (ζ − 1)√
2π

M (τ )
n ( j, k)

]

j,k=1,...,N/2

, (7.84) 

where 

. M (τ )
n ( j, k) = 1√

┌(2 j − 1)┌(2k − 1)

{

R

e− x2

1+τ C2 j−2(x)C2k−2(x) dx

=
(1 + τ

1 − τ

) 1
2 ┌( j + k − 3

2 )2F1(k − j + 1
2 , j − k + 1

2 ;− j − k + 5
2 ;− τ

1−τ
)√

┌(2 j − 1)┌(2k − 1)
.

(7.85) 

It can be easily observed that for .τ = 0, the determinantal formula (7.84) recovers 
(7.10). As an application of (7.84), it was proven in [126] that with . τ fixed,
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. lim
N→∞

log peGinOE0,N√
N

= −
/
1 + τ

1 − τ

ζ(3/2)√
2π

, (7.86) 

generalising the leading-order asymptotic of (7.11), whereas with the scaling . τ |→
1 − α2/N , 

. lim
N→∞

log peGinOE0,N

N
≤

∞∑

m=1

c(
√
m α)

2m
= 2

π

{ 1

0
log

(
1 − e−α2s2

)√
1 − s2 ds, (7.87) 

where .c(α) is given in (7.81). In [251], the formula (7.84) was further applied to 
prove the local central limit theorem of .peGinOE2k,N , cf. Proposition 7.3. 

Remark 7.8 
1. It can be checked from the formula for .pe2n(z) and the first formula for .pe2n(z) in 
(7.77), together with the formula (7.78) for the normalisation that the analogue of 
(7.43), with.KN−1 now the kernel for elliptic GinUE (2.38), is also valid for.S

r,e
N (x, y). 

2. Denote the probability density (7.74) by.PN ,k({λ j }kj=1; {x j ± iy j }(N−k)/2
j=1 ; τ, b). It  

follows from (7.73) and (7.74) that 

. PN ,N ({λ j }Nj=1; τ, b) = (1 + τ)N (N−1)/4PN ,N ({λ j }Nj=1; τ = 0, b = 1).

Hence upon integration and use of Proposition 7.1,.peGinOEN ,N = ((1 + τ)/2))N (N−1)/4. 
Note in particular that this is equal to unity for .τ = 1, as is consistent with . τ = 1
corresponding to real symmetric matrices. 
3. A variation of the construction of elliptic GinOE matrices (7.71) is to consider 
asymmetric random matrices .S + A0, where .S ∈ GOE, while .A0 is a fixed real 
antisymmetric matrix. An analysis of this setting in [279] reclaimed the result of 
[214] for the density of both the real (as given by (7.83)) and complex eigenvalues, 
although this was shown to break down if .A0 was of finite rank. 

7.10 An Application of Elliptic GinOE to Equilibria 
Counting 

In this section, following Fyodorov and Khoruzhenko [274], it will be shown that 
generalisations of the considerations underpinning the random differential equation 
(1.11) as formulated in [431] relate to elliptic GinOE. The starting point (see the 
review [ 44] for an extended description) is the coupled nonlinear differential equa-
tions 

.
dXi (t)

dt
= fi (X(t)), i = 1, . . . , N . (7.88) 

Here the . fi are not known explicitly. An equilibrium point .X∗ is when . fi (X∗) = 0. 
Stability around the fixed point is probed in terms of the Jacobian .Mi j = ∂ fi (X)

∂X j
|X∗ .
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May [431], on consideration of the applied setting within ecology, took the diagonal 
elements to have mean.−1. Taking the off-diagonal elements to have mean zero and 
all elements to have variance .α2 then leads to (1.11). 

The work [274] takes a global approach to the study of equilibria in (7.88), with 
the RHS written with the addition of.−μXi (t). This allows the question: “what is the 
probability that a randomly chosen equilibrium is stable?” to be probed. To proceed 
further, the . fi are decomposed into the sum of a gradient (curl-free) and solenoidal 
(divergence free) components, 

. fi (X) = −∂V (X)

∂Xi
+ 1√

N

N∑

j=1

∂Ai j (X)

∂Xi
.

The matrix .A(X) is anti-symmetric. Both .V (X) and .A(X) are assumed to be statis-
tically independent, isotropic, centred, homogeneous random Gaussian fields with 
covariances 

. ⟨V (X)V (Y)⟩ = v2┌V (|X − Y|2),
⟨Ai j (X)Anm(Y)⟩ = a2┌A(|X − Y|2)(δi,nδ j,m − δi,mδ j,n),

and with .┌,,
V (0) = ┌,,

A(0) = 1 as normalisations. 
The primary observable considered in [274] is the expected number.⟨N⟩ of equi-

librium points implied by this model. Through use of the Kac–Rice formula, this is 
reduced to the form of a random matrix average 

. ⟨N⟩ =
/
| det

[
δi, j (1 + ξ

√
τ/m) − 1

m
√
N
Ji j
]N

i, j=1

\
,

m = μ
√
4N (v2 + a2)

, τ = v2

v2 + a2
, (7.89) 

where. ξ is distributed as N.[0, 1/√N ] and the.Ji j are entries of a zero mean Gaussian 
random matrix with correlations (for large . N ) 

.⟨Ji j Jkl⟩ =
(
δi,kδ j,l + τ(δi, jδk,l + δi,lδ j,k)

)
. (7.90) 

In the case that .τ = 0 the entries of .[Ji j ] are seen to be statistically independent, 
which relates to May’s setting. On the other hand, when.τ = 1, (7.90) specifies. [Ji j ]
as proportional to a real symmetric GOE matrix. We refer to [420] for an extensive 
discussion of May’s model when.τ = 1 in connection to the universality of the Tracy– 
Widom distribution. For general .0 < τ < 1, .[Ji j ] defines an elliptic GinOE matrix 
as specified in Sect. 7.9. 

In the theory of the real eigenvalues of GinOE matrices, note has been made 
of the formula (7.42) relating the average of the absolute value of the characteristic
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polynomial to the density. Such a formula holds equally as well for the elliptic GinOE, 
and gives [274, Eq. (12)] 

.⟨N⟩ = CN

mN

{ ∞

−∞
e−NS(λ)ρ

r,e
(1),N+1(λ

√
N ) dλ, (7.91) 

where 

. CN = 2
√
1 + 1/τ(N − 1)!

N (N−1)/2(N − 2)!! , S(λ) = (λ − m)2/(2τ) − λ2/(2(1 + τ)).

The minimum of .S(λ) occurs at .λ∗ = m(1 + τ). On the other hand, we know that 
in the global variable .λ

√
N the support of the real eigenvalue for elliptic GinOE 

is .λ| < 1 + τ . Hence .λ∗ lies inside the support for .m < 1, and outside otherwise. 
Moreover, inside the support.ρr,e

(1),N+1(λ
√
N ) has the large.N value.1/

√
2π(1 − τ 2). 

It follows that for .m < 1 [274, Eq. (14)] 

.⟨N⟩ =
/
2(1 + τ)

(1 − τ)
eN ((1/2)(m2−1)−logm), (7.92) 

which grows exponentially in . N . Analysis in the case of .m > 1 requires knowledge 
of.ρr,e

(1),N+1(λ
√
N ) in the large deviation regime outside of the support. This is derived 

in [274] starting from the finite.N expression (7.79) with.x = y, which in turn is used 
to deduce that then.⟨N⟩ → 1. Moreover, in [274, Eq. (16)] a formula involving (7.41) 
was given which interpolates between (7.92) and the regime of a single equilibrium 
for .m scaled about unity. 
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Chapter 8 
Analogues of GinUE Statistical 
Properties for GinOE 

A fundamental property of GinOE is that away from the real axis its statistical 
properties coincide with GinUE. In keeping with this, the limiting variance formula 
is found to the be the same as for GinUE. Also, the Coulomb gas interpretation of the 
eigenvalue PDF for GinOE implies, that as for GinOE, screening sum rules linking 
correlation functions hold true. The singular values and eigenvectors both permit 
studies analogous to those for GinUE, although in the case of the eigenvectors, there 
is now an advantage in considering the joint probability distribution of the position 
of the eigenvalue (assumed real) and the invariant overlap. 

8.1 Bulk and Edge Correlations 

The bulk correlation kernels for the real–real, real–complex and complex–complex 
correlations are given by (7.38) and the formulas of Remark 7.4.3. However, with 
regard to the latter two, it needs to be clarified that here the term bulk is used in the 
sense of being away from the spectrum boundary, but still in the vicinity of the real 
axis. Suppose we take the limits.v, y → ∞with.v − y fixed in.K c∞ of Remark 7.4.3. 
Then from the large . s form of .erfc(

√
2s) we calculate 

. lim
v,y→∞

|v−y| fixed
K c

∞(w, z) = 1

π

[
0 e−(|w|2+|z|2)/2ewz̄

−e−(|w|2+|z|2)/2ew̄z 0

]
. (8.1) 

The Pfaffian of this kernel as required according to the first displayed formula of 
Remark 7.4.3 with .k1 = 0, k2 = k to compute the .k-point complex–complex cor-
relation therefore reduces to a determinant. Moreover, the correlation kernel in the 
determinant is precisely that for bulk-scaled GinUE (2.18). 
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The edge scaling of the finite .N complex–complex correlation kernel (7.45) is  
readily calculated from (7.46). Thus in the neighbourhood of the spectrum edge of 
the real eigenvalues one finds [104, Cor. 9]  

. lim
N→∞ ScN (

√
N + w,

√
N + z) = i(z̄ − w)√

2π

(
erfc(

√
2u)e2u

2
erfc(

√
2y)e2y

2
)1/2

e− 1
2 (w−z̄)2 .

(8.2) 

Now taking .v, y → ∞ with .v − y fixed in .K c∞ gives for the analogue of (8.1) 

. lim
v,y→∞

|v−y| fixed
K c,e

∞ (w, z) =
[

0 K e∞(w, z)
−K e∞(w̄, z̄) 0

]
. (8.3) 

Here .K c,e∞ denotes the correlation kernel for edge-scaled GinUE as given in (2.21) 
with .ν = 1. Again the corresponding Pfaffian as determines the edge complex– 
complex correlations reduces to a determinant, with the latter that for edge-scaled 
GinUE with origin .(

√
N , 0). 

For real random matrices of identical and independently distributed, zero mean 
and fixed standard deviation entries, a universality result for their edge statistics 
agreeing with those for GinOE has been established in [159]. 

8.2 Global Density and Fluctuations 

We know that with global scaling .z j |→ √
Nz j , the density for both the GinOE and 

GinUE obeys the circular law (2.17). In the GinUE case convergence to this limit can 
be proved by computing the radial moments .⟨ 1

N

∑N
j=1 |r j |p⟩ (.p = 1, 2, . . . ); recall 

Sect. 4.2 and (4.16) with .β = 2. Instead of the radial moments, more natural in the 
case of GinOE are averages of the eigenvalue power sums .

∑N
j=1 z

k
j . We have  

. 

/ N∑
j=1

zkj
\
=

{ ∞

−∞
xkρr

(1),N (x) dx +
{
R

2+
((x + iy)k + (x − iy)k)ρc

(1),N ((x, y)) dxdy.

(8.4) 
Only for . k even is this nonzero, so we write .k = 2p with . p a non-negative integer. 
Note that for the GinUE, this average vanishes for all positive integers . p, due to 
rotation invariance. Although the exact functional forms of .ρr

(1),N (x) (7.41) and of 
.ρc

(1),N ((x, y)) (7.47) are known, evaluation of (8.4) in a structured form following 
from direct integration does not seem possible. However, a less direct approach 
in which the average of a general Schur polynomial in GinOE eigenvalues is first 
computed, implies the sort structured evaluation [508, Sect. 4] (see also [268]) 

.

/ N∑
j=1

z2pj

\
=

p∏
j=1

(N + 2p − 2 j). (8.5)
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Changing variables .z j |→ √
Nz j , and making an ansatz of expansions in .1/

√
N , 

. ρc
(1),N (

√
N (x, y)) = 1

π
χ|z|<1 + 1√

N
μc

(1)((x, y)) + · · · ,

ρr
(1),N (

√
Nx) = 1√

2π
χ|x |<1 + · · · ,

the equating of powers of .N with (8.5) substituted on the LHS allows deductions 
about the functional form in the ansatz to be made. 

Proposition 8.1 We have 

.μc
(1)((x, y)) = − 1√

2π
δ(y)χ|x |<1, (8.6) 

which is valid up to the possible addition of a rotationally invariant functional form 
which integrates to zero. 

Proof After making the substitutions, we see that the highest power on the LHS is 
.N p, while on the RHS the highest power is .N p+1, with next highest power of order 
.N p+1/2. Thus we begin by equating the term of order .N p+1 to zero, which gives 
.
1
π

{
|z|<1 z

2p d2z = 0. This is identically true since . p is a positive integer. Equating 

the terms of order .N p+1/2 to zero gives 

. 
1√
2π

{ 1

−1
x2p dx +

{
C

z2pμc
(1)((x, y)) d

2z = 0,

from which we deduce (8.6). □ 

We remark that the result in (8.6) has, in the Coulomb gas picture, the interpretation 
of perfect screening of the charge density on the unit interval by the charges in the 
disk. With the next term in the.N−1/2 expansion of.ρr

(1),N (
√
Nx) denoted by.μr

(1)(x), 
the exact functional form (7.41) of .ρr,e

(1),∞(X) can be used for its evaluation. Thus 

. 

{ ∞

−∞
x2pμr

(1)(x) dx = 2 lim
N→∞ N−p

{ ∞

0
x2p

(
ρr

(1),N (x) − 1√
2π

χ|x |<√
N

)
dx

=2
{ ∞

−∞

(
ρ
r,e
(1),∞(x) − 1√

2π
χx<0

)
dx = 1

2
,

(8.7) 

where the second equality follows by shifting the origin to the right spectrum edge 
.x = √

N according to the change of variables .x |→ √
N + x , and the final equality 

is the explicit evaluation of the integral using (7.41). This implies 

.μr
(1)(x) = 1

4

(
δ(x − 1) + δ(x + 1)

)
. (8.8)



132 8 Analogues of GinUE Statistical Properties for GinOE

Let the order .1/N term in the expansion of .ρc
(1),N (

√
N (x, y)) be denoted by 

.νc
(1)((x, y)). Equating terms of order .N p on both sides of (8.5) and using too 
(8.8) gives  

.

{
C

z2pνc
(1)((x, y)) d

2z = 1

2
. (8.9) 

However, unlike the circumstance for (8.7) this does not allow us to deduce 
.νc

(1)((x, y)). Instead, returning to (7.47), with the knowledge that the ratio of the 
incomplete gamma function to the gamma function therein approaches unity expo-
nentially fast in .N for .|z| < 1 (see below (4.17) for references), simple asymptotics 
associated with .erfc(

√
2N y) give the expansion [158, Remark 2.6] 

.νc
(1)((x, y)) = 1

π
− 1

4πNy2
+ O

( 1

N 3/2

)
. (8.10) 

While an order .1/N correction is clearly distinguished, in general this cannot be 
integrated in the full unit disk due to the order .1/y2 singularity as the real axis 
is approached. In fact it has been proved by Cipolloni, Erdős and Schröder [158, 
Th. 2.2] that for a large class of test functions . f , 

. 

/ 1
N

N∑
j=1

f (z j )
\g − 1

π

{
|z|<1

f (z) d2z

= 1

N

(
1

8π

{
|z|<1

∇2 f (z) d2z + 1

4π

{
|z|<1

f (x) − f (z)

y2
d2z + 1

2π

{ 1

−1

f (x)√
1 − x2

dx

− 1

2π

{ 2π

0
f (eiθ ) dθ + 1

4

(
f (x − 1) + f (x + 1)

))
+ o(N−1), (8.11) 

where the superscript “g” on the average indicates the use of global scaling. Here 
. f (x) = f (z)|y=0 and similarly the interpretation of . f (eiθ ). This shows that the cor-
rection (8.6) completely cancels the expected term from the density of real eigen-
values at order .N−1/2. The final term is identified with the real density correction 
(8.8). For. f with support off the real axis, the contribution from (8.11) is recognised. 
However, if this is not the case, a formula for.νc

(1)((x, y)) cannot be read off. It can be 
verified that with . f (z) = z2p, (8.11) is consistent with the leading .N form of (8.5) 
[158, Remark 2.7]. Also, we can check that the RHS vanishes for . f a constant, as it 
must. 

A fundamental question is the variance associated with the linear statistic 
.
∑N

j=1 f (z j ), and furthermore its distribution. In the case of GinUE, we know that the 
behaviour is different depending on the smoothness of. f . On the other hand, we have 
already seen for the real eigenvalues of GinOE that the fluctuations are proportional 
to .

√
N independent of this property. However, for smooth . f it is known that when 

averaging over all the eigenvalues, this effect is suppressed, and again the limiting 
variance is of order unity [158, 370, 453].



8.2 Global Density and Fluctuations 133

Proposition 8.2 Let . f, g be smooth real or complex-valued functions in the plane, 
and subject to a constraint on their growth. Define the Fourier components of their 
Fourier expansion on the unit circle in the plane as in Proposition 3.5. Define too 
. f s = 1

2 ( f (x, y) + f (x,−y) and similarly the meaning of . gs. We have 

. lim
N→∞CovGinOE

( N∑
j=1

f (r j/
√
N ),

N∑
j=1

ḡ(r j/
√
N )

)

= 1

2π

{
|r|<1

∇ f s · ∇ ḡs dxdy +
∞∑

n=−∞
|n| f sn ḡs−n; (8.12) 

cf. (3.21). 

Proof (Comments only) With .X ∈ GinOE, define the .2N × 2N Hermitian matrix 

. Hz =
[

0N×N X − zIN
X† − z̄IN 0N×N

]
,

and write.Gz(w) = (Hz − wIN )−1 for the resolvent of .Hz . The starting point of the 
calculations of [158] is the formula 

. 

N∑
j=1

f (z j ) = − 1

4π

{
C

∇2 f (z)
{ ∞

0
Im Tr Gz(iη) dηd2z,

where.{z j } are the eigenvalues of. X (both real and complex). Hence the task is reduced 
to first finding the limiting covariance for the traces of the resolvents. Aiding this is 
the fact that for large. N , .Gz(w) becomes approximately deterministic, with its limit 
expressed in terms of the solution of the scalar equation 

. − 1

mz
= w + mz − |z|2

w + mz
, ηImmz > 0, η = Imw /= 0,

which is a special case of the matrix Dyson equation; see [218] for an introduction 
to the latter. □ 

Remark 8.1 1. It is elementary to compute that for .G ∈ GinOE, 

.Varg(Tr G) := ⟨(Tr G)2⟩g − (⟨Tr G⟩g)2 = 1. (8.13) 

Since.Tr G = ∑N
j=1 z j , this corresponds to the circumstance that. f s = gs = x on the 

RHS of (8.12), and furthermore . f sn = gsn = 1
2 for .n = ±1, . f sn = gsn = 0 otherwise. 

We verify agreement between the value obtained from the general formula (8.12) 
and (8.13). 
2. In the setting of Proposition 8.2, and after centring by subtracting from the linear
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statistic its mean, the results of [158, 370, 453] give that for .N → ∞ a central limit 
theorem holds, whereby the distribution is a mean zero Gaussian with variance as 
implied by (8.12). 
3. For the counting function .

∑N
j=1 χz j/

√
N∈D, where the set .D contained entirely 

within the upper half disk .|z| < 1, .Im z > 0, the recent work [297] makes use of (a 
refinement of) (8.1) to establish that (3.7) is true for the complex eigenvalues of the 
GinOE. The variance therein is that implied by (3.9) and thus also as for the GinUE. 

8.3 Sum Rules 

In this section we view the eigenvalues from the Coulomb gas perspective of Sect. 7.2. 
Suppose we fix a real eigenvalue at the origin. Requiring that the corresponding total 
charge be cancelled by a redistribution of all the other charges implies the sum rule 

.2
{
C+

ρ
c,b,T
(2),∞(0, z) d2z +

{ ∞

−∞
ρ
r,b,T
(2),∞(0, y) dy = −ρr. (8.14) 

If instead the charge was fixed in the upper half plane at a point. z0, then (8.14) would 
need to be modified to read 

.2
{
C+

ρ
c,b,T
(2),∞(z0, z) d

2z +
{ ∞

−∞
ρ

(c,r),b,T
(2),∞ (z0, x) dx = −2ρc,b

(1),∞(z0). (8.15) 

As for in the one-component case (recall Sect. 4.3) the sum rules (8.14) and (8.15) 
can be generalised to involve higher point correlation functions. In stating the general 
result it is convenient to make use of the truncated correlations associated with the 
latter; see e.g. [237, Sect. 5.1.1] for their definition. 

Proposition 8.3 We have 

. 

{ ∞

−∞
ρT

(k1+1,k2),∞({x j } j=1,...,k1 ∪ {y}; {z j } j=1,...,k2) dy

+2
{
R

2+
ρT

(k1,k2+1),∞({x j } j=1,...,k1; {z j } j=1,...,k1 ∪ {z}) d2z

= −(k1 + 2k2)ρ
T
(k1,k2),∞({x j } j=1,...,k1; {z j } j=1,...,k2). (8.16) 

Proof Underlying this sum rule are the matrix correlation kernel identities 

.

{ ∞

−∞
K r(x, u)K r(u, y) du + 2

{
C+

K r,c(x, z)K c,r(z, y) d2z

= K r(x, y)

[
0 0
0 1

]
+

[
1 0
0 0

]
K r(x, y),
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. 

{ ∞

−∞
K c,r(z, y)K r,c(y, v) dy + 2

{
C+

K c(z, w)K c(w, v) d2w = 2K c(z, v),

{ ∞

−∞
K c,r(z, y)K r(y, x) dy + 2

{
C+

K c(z, w)K c,r(w, x) d2w = K c,r(z, x),

{ ∞

−∞
K r(x, y)K r,c(y, z) dy + 2

{
C+

K r,c(x, w)K c(w, z) d2w = K r,c(x, z).

Further details are given in [265, Sect. 4.4]. We remark that identities of this sort 
in relation to the correlation kernel for a random matrix ensemble with orthogonal 
symmetry first appeared in [208, 419]. □ 

As discussed in Sect. 4.3, the fast decay of the correlations implies that not only 
the total charge in the screening cloud, but also its integer moments should vanish. 
We will illustrate this in relation to (8.15). First, in forming the moments we should 
interpret.2ρc,b,T

(2),∞(z0, z) as.ρ
c,b,T
(2),∞(z0, z) + ρ

c,b,T
(2),∞(z0, z̄), thus making the contribution 

of the image explicit. Similarly, we should interpret .−2ρc
(1),∞(z0) as the integral 

over . z of .−δ(z0 − z)ρc,b
(1),∞(z) − δ(z0 − z̄)ρc,b

(1),∞(z̄). Weighting the integrands by 
.(z − z0)k then gives the .k-th moments. We can see that this is identically zero for . k
odd. Our interest then is in the sum rule implied by the .k = 2p even case. 

Proposition 8.4 For . p a non-negative integer we have 

.2
{
R

2+
w2pρT

(0,2)(z, w) d2w +
{ ∞

−∞
x2pρT

(1,1)(z, x) dx = −2z2pρc,b
(1),∞(z). (8.17) 

Proof Multiplying by.α p/p!, for.|α| < 1 a parameter and summing over. p replaces 
the corresponding terms by exponentials. This transformed identity can be checked 
to be a corollary of an appropriately exponential weighted version of the second of 
the sum rules listed in the proof of Proposition 8.3 with .v = z, 

. 

{ ∞

−∞
eαy2K c,r(z, y)K r,c(y, z) dy

+ 2
{
C+

eαw2K c(z, w)K c(w, z) d2w = 2eαz2K c(z, z).

This can be checked component-wise; see [265, proof of Prop. 4.8]. □ 

8.4 Singular Values 

Matrices. X from GinOE being real, the squared singular values are the eigenvalues of 
.XT X . With the meaning of GinOE extended to include rectangular.p × N matrices, 
the random matrices .XT X have an interpretation in multivariate statistics. Thus one 
interprets each column as a particular trait that is being measured from a population
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of size.N so that. X is regarded as a data matrix. Moreover, let the distribution of each 
of the traits be a standard Gaussian, which serves as a structureless base case. Up to 
a simple normalisation factor,.XT X is the matrix of sample covariances between the 
traits. Because of its statistical interest, this class of random matrix attracted attention 
in one of the earliest works relating to random matrix theory [534]. 

The result of [534] was to establish that the Jacobian for the change of variables 
.A = XT X is proportional to .(det A)(p−N−1)/2. Around a decade later, the Jacobian 
for the change of variables from a real symmetric matrix to its eigenvalues and 
eigenvectors was calculated [327]. This exhibited a factorised form, with Jacobian 
.
∏

1≤ j<k≤N |λk − λ j | relating only to the eigenvalues. Denoting the squared singular 
values of a .p × N rectangular GinOE matrix by .{s j }Nj=1, it then follows that the 
corresponding joint PDF is proportional to 

.

N∏
j=1

s(p−N−1)/2
j e−s j /2

∏
1≤ j<k≤N

|sk − s j |. (8.18) 

Introducing the global scaling .XT X |→ 1
N XT X , and with .p scaling with . N

according to .p = αN , .α > 1, it is a well-known result [288] that the smallest and 
largest squared singular values tend almost surely to the values.(

√
α ∓ 1 + 1)2. Hence 

the ratio of the largest to the smallest singular value (i.e. the condition number . κN

of . X ) tends to a constant. However, with .p = N (or more generally . p = N + p1
with .p1 independent of . N ), while the largest squared singular value tends to . 4, the  
smallest now tends to zero at the rate.1/N 2. Specifically in the square case.p = N , it  
has been shown by Edelman [210] that this implies.κN/N has a limiting distribution 
with the heavy tailed PDF 

.
2x + 4

x3
e−2/x−2/x3 . (8.19) 

In the rectangular case, for any .N ≥ 2, a result of [153] gives the bound 

. ⟨log κN ⟩ <
N

|p − N | + 1
+ 2.258,

which apart from the last two digits of the constant, is the same as that known for 
rectangular GinUE matrices (recall Sect. 6.3). 

Shifting a global-scaled square GinOE matrix .X̃ = 1√
N
X by defining 

.Y = −zIN + X̃ (8.20) 

leads to a transition effect for the corresponding smallest singular value in the neigh-
bourhood of .|z| = 1. Thus for .|z| > 1 and independent of . N , the smallest singular 
value is bounded away from . 0 as .N → ∞. The transition region . |z| < 1 + c/N 1/2

is studied in [157], with a distinction between . z complex and .z ≈ ±1 quantified.
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For. X a square GinOE matrix, we turn our attention to the distribution of.(det X)2, 
which is well known in multivariate statistics [442]. 

Proposition 8.5 For .X a GinOE matrix 

.(det X)2
d=

N∏
j=1

χ2
j . (8.21) 

Proof Either of the strategies used to establish (6.13) can be used. Specifically, to 
make use of (8.18) (with.p = N ), we use the fact that.(det X)2 = ∏N

l=1 sl and hence 
that the Mellin transform of the distribution of .(det X)2 is given by 

. 
1

CN

{ ∞

0
ds1 · · ·

{ ∞

0
dsN

N∏
j=1

ss−3/2
j e−s j /2

∏
1≤ j<k≤N

|sk − s j |2

=
N∏
j=1

2s−1┌(s + j/2)

┌(1 + j/2)
,

where .CN is the same multiple integral in the case .s = 1. The gamma function 
evaluation follows from the Laguerre weight Selberg integral as given in, e.g. [237, 

Proposition 4.7.3]. It follows from this that .(det X)2
d=∏N

j=1 Fj , where .Fj is inde-

pendent with the Mellin transform of its PDF given by . 2
s┌(s+ j/2)
┌(1+ j/2) . One verifies that 

thus .Fj is equal to .χ2
j , as required. □ 

There is an interpretation of .(det X)2 in integral geometry. The idea is to regard 
the columns of .X as vectors in .RN . Then .| det X | is equal to the volume of the 
parallelotope generated by these vectors. For .X a GinUE matrix, the parallelotope 
is random, and said to be Gaussian. Then (8.21) gives the distribution of the squared 
volume. For large. N , (8.21) can be used to establish that the distribution of. log(det X)2

has, to leading-order mean equal to .−N , variance .2 log N , and after recentring and 
rescaling satisfies a central limit theorem [428, 439]. 

Let .Yk denote the shifted GinOE matrix (8.20) restricted to the first . k columns. 
For . z real the positive definite matrix .Wk = Y T

k Yk is an example of a non-central 
Wishart matrix, well known in mathematical statistics [442]. An exact evaluation 
of .⟨(detWk)

α⟩ in terms of a generalised hypergeometric function of . k variables has 
been given in [169]; see [269, Sect. 4] for a discussion of the implications of this 
result in relation to the Lyapunov spectrum for products of shifted GinOE matrices. 

Remark 8.2 3. The squared singular values as specified by the PDF (8.18) specify 
the classical Laguerre orthogonal ensemble and form a Pfaffian point process, see 
e.g. [237, Chaps. 3 and 6]. However, there is no known analogous result for elliptic 
GinOE. Also, with regards to the squared singular values of the various extensions 
of GinOE to be considered below, in particular the spherical model and truncated 
real orthogonal matrices, the classical Jacobi orthogonal ensemble results, which is a
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Pfaffian point process. However, no such structure is known for the squared singular 
values of products of GinOE matrices. 

8.5 Real GinOE Eigenvector Statistics 

The basic question of interest is, as for GinUE, the statistical properties of the scaled 
invariant overlaps of the left and right eigenvectors, .Oi j := ⟨li , l j ⟩⟨ri , r j ⟩. In the 
diagonal case, the approach of Fyodorov [272] was to study the joint PDF 

. Pr(t, λ) := ⟨ N∑
j=1

δ(Õ j j − 1 − t)δ(λ − λ j )
⟩ 
, Õ j j := O j j/N ,

and where . λ is restricted to real values (thus the superscript “r”). This was shown to 
permit an exact evaluation generalising the GinOE eigenvalue density formula for 
.ρr

(1),N (λ), (7.31) with .x = y [272, Th.2.1 and Eq. (2.5)]. 

Proposition 8.6 We have 

. Pr(t, λ) = 1

2
√
2π

e
λ2

2
1

1+t
1

t (1 + t)

( t

1 + t

)(N−1)/2

×
(
e−λ2

λ2(N−1)

(N − 2)! + 1

(N − 2)!┌(N − 1; λ2)
(
(N − 1) − λ2 t

1 + t

))
.

(8.22) 

Proof (Comments only) The first step is to introduce the Laplace transform 
.
{ ∞
0 e−ptPr(t, λ) dt . Next, it was shown that this Laplace transform can be expressed 
in terms of a GinOE average involving ratios of characteristic polynomials 

. 

/
det((z IN − G)(z̄ IN − G†))

(det(2pIN + (z IN − G)(z̄ IN − G†))1/2

\
.

Supersymmetric integration techniques are then used to evaluate this average. □ 

We remark that an extension of this proposition to the elliptic GinOE has been 
given in [278, Th. 2.1]. From the definition .ρr

(1),N (λ) = { ∞
0 Pr (t, λ) dt , which is 

readily verified. Bulk and edge scaling limits follow [272, Eqs. (2.7) and (2.10)]. 

Corollary 8.1 We have 

.P r,b(s, x) := lim
N→∞ NPr(Ns,

√
Nx) = 1

2
√
2π

e− (1−x2)

2s

s2
(1 − x2)χ|x |<1 (8.23)
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and 

. P r,e(s, x) := lim
N→∞

√
NPr(

√
Ns,

√
N + δ)

= 1

2
√
2π

1

σ 2
e− 1

4σ2
+ δ

σ

(
1√
2π

e−2δ2 +
( 1

σ
− 2δ

)
erfc(

√
2δ)

)
. (8.24) 

Here one has the sum rules 

. 

{ ∞

0
P r,b(s, x) ds = 1√

2π
χ|x |<1,

{ ∞

0
P r,b(s, x) ds = ρ

r,e
(1),∞(x)

reclaiming the global and edge-scaled densities (7.36) and (7.41). The result (8.23) is  
the real analogue of the result for GinUE (6.24). Note that the tail is now proportional 
to .1/s2, so only the zeroth integer moment in . s (which gives the global density) is 
defined. In particular, the mean value with respect to . s, which for GinUE is given 
by the result of Mehlig and Chalker (6.26), formally diverges, telling us that for 
GinOE,.Oi i averaged over the full spectrum is no longer proportional to. N . If instead 
.Oi i is conditioned on a single eigenvalue away from the real away from the real 
axis, numerical experiments from [160, Fig. 3] indicate that .Oi i is proportional to 
. N . Hence eigenvalues on (or close to) the real axis are responsible for this breaking 
down in general. 
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Chapter 9 
Further Extensions to GinOE 

As for GinUE, GinOE permits a number of related ensembles which share many 
of its special properties. One of these, already introduced in the previous chapter, 
is elliptic GinOE. Considered in this chapter are the induced GinOE, which relates 
to a polar decomposition involving a rectangular generalisation of a GinOE matrix 
and a random Haar real orthogonal matrix; the real spherical ensemble of matrices 
.G−1

1 G2, with both .G1,G2 GinOE matrices; the sub-block of a Haar real orthogonal 
matrix; and products of GinOE matrices. Common structures and statistical features 
are emphasised, with again the occurrence of real eigenvalues responsible for topics 
of study beyond those for GinUE and its extensions. 

9.1 Common Structures 

Recall that for a given parameter .τ ∈ [0, 1), the elliptic GinOE is defined in terms 
of (anti-)symmetric GOE matrices by (7.71), follows the distribution (7.72), and 
recovers the GinOE when.τ = 0. Comparison between the development of the theory 
of the eigenvalue statistics for GinOE and elliptic GinOE shows a number of common 
structures: 

(S1) The joint eigenvalue PDF has the functional form (1.10) for a certain weight 
function .ω(z), and a certain normalisation .CN ; cf.  (7.74). As a consequence 
the summed generalised partition function.ZN [u, v] has the Pfaffian form (7.7) 
involving the same weights and normalisation. 

(S2) The functional form for the joint eigenvalue PDF in the sector that all eigen-
values are real leads to a closed form expression for the probability that all 
eigenvalues are real. 

(S3) Associated with .ZN [u, v] in the case .u = v = 1 is a particular skew inner 
product, while associated with the latter are a family of skew-orthogonal poly-
nomials. These skew-orthogonal polynomials admit the matrix theoretic form 
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(7.18), and their normalisations.r j−1 can be computed from.CN . Moreover, the 
odd degree skew-orthogonal polynomials can be written in a derivative form 
involving the weight .(ω(x))1/2. 

(S4) The general.m-point correlation function between real–real, complex–complex 
and real–complex eigenvalues is of the form of a Pfaffian point process and 
as such are determined by particular .2 × 2 correlation kernels. The latter in 
turn are in fact fully determined by their upper off-diagonal entry, denoted by 
.SN (x, y). In the real–real case, due to the derivative formula for the odd degree 
skew-orthogonal polynomials, and a further derivative formula for a certain 
linear combination of successive even degree skew-orthogonal polynomials, 
the normalisations and the weight .(ω(x))1/2, the summation can be written in 
a simplified form involving a rank one perturbation of the kernel known in 
the case of the GinUE and elliptic GinUE. Another form valid in both cases 
is (7.43), while its analogue in the complex–complex case (7.46) is similarly 
valid in both cases. 

(S5) The structural form of the large .N asymptotic formula (7.54) for the variance 
of the number of real eigenvalues is valid, or more generally the formula (7.58) 
for the variance of a linear statistic. 

(S6) The global density of the complex eigenvalues is the same as found for GinUE 
(the circular law) and elliptic GinUE. 

As we further develop the theory of ensembles related to GinOE below, we will 
see that most of the properties listed above again hold true. 

9.2 Induced GinOE 

Let. G be an.n × N (.n ≥ N ) random matrix with independent real standard Gaussian 
entries. Let. R be a Haar distributed real orthogonal matrix (for this notion see [194]). 
In the case that.G is square, it is easy to check that.(GTG)1/2R has the same element 
distribution as . G, and thus is an element of GinOE; see e.g. Proposition 2.10 in 
the case that .G is an element of GinUE, and .R is a Haar complex unitary matrix. 
In the rectangular case, the element distribution of .G̃ = (GTG)1/2R is the same 
as the element distribution of .G multiplied by the factor .(detGTG)(n−N )/2 [228]; 
cf. Proposition 2.11. The essential fact required to establish this is that the factor is the 
Jacobian for the change of variables .A = (GTG)1/2, which itself can be established 
in two steps: first change variables .G†G = B, then change variables .B = A2. The  
Jacobian in both these steps can be read off from the change of variables required in 
the theory of real Wishart matrices; see [442, Ch. 2]. 

Of relevance is the explicit form of the proportionality coefficient. 

Proposition 9.1 Set .L := n − N. The element distribution on .N × N real random 
matrices .G̃ specified by
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. 
1

CL ,N
(det G̃T G̃)L/2e−Tr G̃T G̃/2, CL ,N = π N 2/22N

2/2+NL/2
N|  |

j=1

l(( j + L)/2)

l( j/2)

is correctly normalised. 

Proof According to the QR decomposition, we can write .G̃ = QR, where .Q is 
an .N × N real orthogonal matrix, and .R is an .N × N real upper triangular matrix 
with positive diagonal entries. With this change of variables, it is known that [442, 
Th. 2.1.13 with .n = m = N ], 

. (dG̃) =
N|  |

j=1

r N− j
j j (dR)(QTdQ),

where .(QTdQ) is the Haar measure on real orthogonal matrices. Hence 

. 

{
(det G̃†G̃)L/2e− 1

2 Tr G̃
†G̃ (dG̃)

=
( N|  |

j=1

{ ∞

0
r L+ j−1e− 1

2 t
2
dr

)( { ∞

−∞
e− 1

2 r
2
dr

)N (N−1)/2
{

(QTdQ).

Computing the integrals over . t , and using the known result for the volume of the 
orthogonal group [442, Corollary 2.1.16] 

.

{
(QTdQ) = 2Nπ N (N+1)/4

|  |N
l=1 l(l/2)

, (9.1) 

we can identify the RHS with .Cn,N . u 

For random matrices .{G̃}—referred to as induced GinOE matrices—the element 
distribution of Proposition 9.1 tells us that the eigenvalue PDF in the sector of . k real 
eigenvalues is again given by (1.10), multiplied by . C0,N

CL ,N

|  |k
l=1 |λl |L |  |(N−k)/2

l=1 |zl |L . 
With .Z iGinOE

N [u, v] denoting the analogue of .ZN [u, v] as specified above (7.7), we 
see that (7.7) again holds true, but with the modification that there is an extra factor of 
.C0,N/CL ,N , and that.α j,k, β j,k are replaced by.αi

j,k, β
i
j,k , defined as in Proposition 7.2, 

but with extra factors of .(xy)L and .(x2 + y2)L in the integrands respectively. Most 
crucially, the formulas (7.19) for the skew-orthogonal polynomials corresponding to 
.(αi

j,k + β i
j,k)|u=v=1 are again valid with.{Tr G2} = (2 j + L) (we replace the index. n

in (7.19) by . j to avoid conflict with the . n appearing in the definition of the induced 
GinOE, and specifically the parameter . L). Moreover, with .C j (z) = z j they permit 
the structural form 

.pi2 j (z) = C2 j (z), pi2 j+1(z) = −z−Lez
2/2 d

dz

(
zLe−z2/2C2 j (z)

)
(9.2)
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cf. (7.77), and the derivation of (7.21) implies 

.r ij−1 = 2
√
2πl(L + 2 j − 1). (9.3) 

Taking into consideration these modifications, we can check that the determinant 
formula (7.10) remains valid for .Z i

N (ζ ), except that .L needs to be added to the 
argument of each of the gamma functions. As a consequence, for the expected number 
of real eigenvalues, we obtain the formula 

.E r,i
N =

/
2

π

N/2E

k=1

l(L + 2k − 3/2)

l(L + 2k − 1)
, (9.4) 

cf. the first equality in (7.13). From the determinant formula the validity of the 
analogue of the local central limit theorem Proposition 7.3 can also be checked. 
Another consequence of (9.2) and (9.3), substituted in the formula for .SrN given in 
(7.24), together with the validity of a derivative formula analogous to (7.33), is the 
simplified summation form 

.Sr,iN (x, y) = e−(x2+y2)/2

√
2π

N−2E

k=0

(xy)k+L

(k + L)! + yL+N−1e−y2/2

2
√
2π

oN−2(x)

(L + N − 2)! , (9.5) 

which reduces to (7.31) when .L = 0. 
In studying the large .N limit, the most interesting circumstance is to simultane-

ously set .L = Nα, (.α > 0). It follows  from  (9.4) that to leading-order the expected 
number of real eigenvalues is then .

√
2N/π(

√
α + 1 − √

α). Setting .x = y in (9.5) 
gives the eigenvalue density. Further introducing the global scaling .x |→ √

Nx we 
can check that the final term goes to zero, while up to proportionality the summation 
can be identified with.K iG

N−1(x, x) as given by (2.46). From the known global-scaled 
limit of the latter (2.47) it follows that 

. lim
N→∞ ρ

r,i
(1),N (

√
Nx) = 1√

2π

(
χ|x |<√

α+1 − χ|x |<√
α

)
. (9.6) 

Note that this can be used to provide an alternative derivation of the leading form 
of the expected number of real eigenvalues as stated above. Bulk and edge scalings 
in this limit exhibit the same functional forms as for GinOE, given by (7.37) and 
(7.40) respectively. The former of these implies that the analogue of (7.54) remains 
valid. Also, using (7.44), the analogue of (7.46) can be obtained for .Sc,iN (w, z), thus 
giving an expression in terms of the induced GinUE kernel .K iG

N−1(w, z), with in fact 
precisely the same prefactor. A consequence is that the global scaling limit of the 
complex eigenvalues coincides with that of the induced GinUE (2.47), 

. lim
N→∞ ρ

c,i
(1),N (

√
Nx) = 1

π

(
χ|z|<√

α+1 − χ|z|<√
α

)
. (9.7)
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9.3 Spherical GinOE 

For .(X1, X2) a pair of .N × N matrices, the generalised eigenvalues are defined 
as the solution of the equation .det(X1 − λX2) = 0. We see that for .X2 invertible, 
the generalised eigenvalues then coincide with the eigenvalues of .X−1

2 X1. Here our 
interest is in the case that both .X1, X2 are GinOE matrices—then the ensemble 
specified by .{X−1

2 X1} is referred to as the spherical GinOE. 
Already in the pioneering paper on this topic, it was identified that statistical 

properties of real eigenvalues relate to integral geometry [212]. To see this, the matrix 
pair.(X1, X2) is viewed as two vectors in.R

N 2
. The plane spanned by these two vectors 

intersects the sphere .SN 2−1 to define a great circle. Introducing .X = c(X1 − λX2), 
with . c such that .Tr(XT X) = 1, we see that real generalised eigenvalues correspond 
to intersections of the great circle with a unit vector corresponding to a singular 
matrix of unit Frobenius norm. In fact this viewpoint was used to deduce that the 
expected number of real eigenvalues, .E r,s

N say, is given by 

.E r,s
N =

√
πl((N + 1)/2)

l(N/2)
∼

N→∞

/
πN

2

(
1 − 1

4N
+ · · ·

)
; (9.8) 

cf. (7.13), (7.14). With.E r,s
N determined, it was also noted in [212] that the density of 

real eigenvalues can be deduced. To see this, set.λ = tan θ so the equation determin-
ing the generalised eigenvalues can be written .det(cos θX1 − sin θX2) = 0. Since 
.X1, X2, being GinOE matrices, are invariant with respect to rotations it follows that 
.(cos θ, sin θ) must be uniformly distributed on the unit circle and so . λ must have a 
Cauchy distribution. Consequently, 

.ρsGinOE
(1),N (λ) = 1

π

E r,s
N

1 + λ2
. (9.9) 

Subsequent to [212] it has been established that the eigenvalues of the spherical 
GinOE form a Pfaffian point process, with (9.8) and (9.9) corollaries of this general 
structure [265]. We require the normalisation 

.Cνs
N = l(ν − N

2
+ 1

2
)N

N|  |

j=1

1

l( j/2)l(ν − N + j/2)
(9.10) 

and weight 

.ωνs(z) = 2√
π

l(ν − N
2 + 1)

l(ν − N
2 + 1

2 )

1

|1 + z2|2ν−N+1

{ ∞

2y/(1+|z|2)
dt

(1 + t2)ν−N/2+1
, (9.11) 

where .z = x + iy. With .z = x real, this reduces to .ωνs(x) = (1 + x2)−2ν+N−1.
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Proposition 9.2 In the above notation and that of (1.10), the joint eigenvalue PDF 
for . k real eigenvalues .{λl}l=1,...,k and the .(N − k)/2 complex eigenvalues . {z j :=
x j + iy j } j=1,...,(N−k)/2 in the upper half plane for the spherical GinOE is 

. Cνs
N

2(N−k)/2

k!((N − k)/2)!
k|  |

s=1

(ωνs(λs))
1/2

(N−k)/2|  |

j=1

ωνs(z j )

×
|||/\({λl}l=1,...,k ∪ {x j ± iy j } j=1,...,(N−k)/2)

|||, (9.12) 

with .ν = N. 

Proof To derive (9.12), aspects of the derivation of the eigenvalue PDF for the 
spherical GinUE, and the GinOE, are required. In order, these are: 

(i) Determine the analogue of the joint element distribution (2.49). Using the same 
method, one obtains that for .Y = A−1B with .A, B GinOE matrices, the joint 
element distribution is 

. AN ,ν det(IN + Y T Y )−ν
|||
ν=N

, AN ,ν = π−N 2/2
N|  |

j=1

l((2ν − N + j)/2)

l((2ν − 2N + j)/2)
.

(9.13) 
This is an example of the matrix .t-distribution [170]. There is some advantage 
in keeping the variable . ν general throughout the remainder of the calculation. 
In particular, knowledge of the corresponding functional forms becomes use-
ful in the computation of the skew-orthogonal polynomials to be undertaken 
subsequently. 

(ii) Introduce the real Schur decomposition .Y = QRQT , conditioned on . k real 
eigenvalues, with the notations of Sect. 7.1. Integrate out the strictly upper 
triangular entries of . R using a modification of the technique used for spherical 
GinUE Sect. 2.5. This results in the conditional PDF 

. Cνs
N

(
l(ν − N

2 + 1)√
πl(ν − N

2 + 1
2 )

)(N−k)/2|||/̃\({λl}l=1,...,k ∪ {x j ± iy j } j=1,...,(N−k)/2)

|||

×
k|  |

s=1

1

(1 + λ2
s )

ν−(N−1)/2

(N−k)/2|  |

s=1

2|bs − cs |
det(I2 + Rs RT

s )ν−N/2+1
, (9.14) 

where .Cνs
N is given by (9.10). The quantity ./̃\ is defined as for ./\ in (1.10) 

except that the difference factor between each .z j := x j + iy j and its complex 
conjugate is omitted, so that 

./̃\({λl}l=1,...,k ∪ {x j ± iy j } j=1,...,(N−k)/2) =
|  |

1≤p<q≤k

(λq − λp)
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× 
k|  |

p=1 

(N−k)/2|  |

l=1 

(λp − zl )(λp − z̄l )
|  |

1≤l1<l2≤(N−k)/2 

|zl2 − zl1 )|2|zl2 − z̄l1 |2 . 

Each .Rs is a .2 × 2 matrix on the part of the diagonal of the block diagonal 
matrix . R corresponding to the complex eigenvalues. 

(iii) The final step is to change variables from .{b j , c j } to .{y j , δ j } and to integrate 
over .δ j as for GinOE; recall Sect. 7.1. Now setting .ν = N , after some minor 
manipulation (9.12) results. u 

Let .ανs
j,k[u], βνs

j,k[v] be defined as for .αg
j,k[u], βg

j,k[v] in Proposition 7.2 but with 
each .ωg replaced by .ωνs as defined in (9.11). The analogue of (7.7) can then be 
checked to be 

.Z νs
N [u, v] = Cνs

N Pf[ανs
j,k + βνs

j,k] j,k=1,...,N . (9.15) 

Further progress relies on the polynomials .{pl−1(x)} having the skew-orthogonality 
property (7.17) with respect to the skew inner product corresponding to . γ νs

j,k :=
ανs
j,k |u=1 + βνs

j,k |v=1. We see from (9.11) that with the replacement . ν |→ (ν + N )/2
the weights in the definitions of .ανs

j,k, β
νs
j,k are independent of . N . On the other hand, 

there is a known construction of an .N × N matrix with element distribution (9.13) 
and this value of. ν. Thus form the product.W−1/2B with. B an.N × N Haar distributed 
orthogonal matrix and.W the Wishart matrix.W = G̃T G̃ with. G̃ a rectangular. ν × N
GinOE matrix—generally the exponent is.1/2 of the sum of the row and column size 
in. G̃; see e.g. [237, Exercises 3.6 q.3]. It is immediate how to modify the construction 
to a .2n × 2n matrix with the corresponding weight similarly independent of . n. This  
can then be used in the formulas of Proposition 7.4 to determine the skew-orthogonal 
polynomials, first derived using evaluations of the averages in (7.18) deduced from 
symmetric function theory [227, 240]. 

Proposition 9.3 Consider the ensemble specified by .N × N matrices with the ele-
ment distribution (9.13) modified so that .ν |→ (ν + N )/2, and the corresponding 
skew inner product implied by .γ νs

j,k . We have 

. pνs
2n(z) = z2n,

pνs
2n+1(z) = z2n+1 − 2n

ν − 2n − 1
z2n−1 = − (1 + z2)(ν+1)/2

ν − 2n − 1

d

dz

(
(1 + z2)−(ν−1)/2z2n

)
.

Furthermore, 

. r νs
n = π22−νl(2n + 1)l(ν − 2n − 1)

l((ν + 1)/2)2
.

Proof From the theory of the previous paragraph, the matrix .G in (7.18) can be 
constructed as the matrix product .W−1/2B with .B a .2n × 2n GinOE matrix and . W
a real Wishart matrix constructed from a rectangular .ν × 2n GinOE matrix. Thus 
this gives a .2n × 2n random matrix with the same eigenvalue weight (9.11) made 
independent of .N by .ν |→ (ν + N )/2. Because the matrix product is isotropic, the
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distribution of each element unchanged by negation, and moreover the joint first 
moment of distinct pairs of elements are uncorrelated. As a result the skew-orthogonal 
polynomials are again given by the simple formula (7.19). For the quantity . {Tr G2}
therein, we have 

. {Tr G2} = {Tr B2}{TrW−1} = 2n
( 1

ν − 2n − 1

)
.

Here we have used the elementary result that for .B a .2n × 2n GinOE matrix, 
.{Tr B2} = 2n, and the fact that for a Wishart matrix.W constructed from a rectangular 
.ν × 2n GinOE matrix, .{TrW−1} = 1/(ν − 2n − 1); see  [429, Appendix A], [473]. 

The formula for the normalisation .r νs
n again relies on the weights for . ν |→

(ν + N )/2 being independent of . N , together with the facts that for .u = v = 1, 
.Z νsGinOE

N [u, v] in (9.15) has the value unity by its construction, while by skew-
orthogonality the Pfaffian equals .

|  |N/2−1
l=0 r νs

l . An important point for the calculation 
is that the product in (9.10) can be written in the form 

. 

N|  |

l=1

1

l(l/2)l(ν − N + l/2)

||||
ν |→(ν+N )/2

=
N/2|  |

l=1

1

π22−νl(2l − 1)l(ν − 2l + 1)

so that the only dependence on .N is in the upper limit of the product. u 

Using the derivative formula for .pνs
2n+1(z) from Proposition 9.3 in the definition 

above (9.15) of .ανs
j,k shows 

. ανs
2 j−1,2k

|||
ν |→(ν+N )/2

u=v=1

= 2

ν − 2k + 1

l( j + k − 3/2)l(3/2 − j − k + ν)

l(ν)
=: α̃νs

j,k

ν − 2k + 1

With .r̃ νs
j−1 := (ν − 2 j + 1)r νs

j−1 It follows that the analogue of (7.10) is the formula 

.Z νs
N (ζ )

|||
ν |→(ν+N )/2

= det
[
δ j,k + ζ − 1

(r̃ νs
j−1r̃

νs
k−1)

1/2
α̃νs
j,k

]

j,k=1,...,N/2
. (9.16) 

This can be used to deduce the analogue of (7.54) and the local central limit theorem 
Proposition 7.3 (the case.ν = N of the local central limit theorem is known from the 
earlier study [265, Proposition 3.5], based instead on (9.22) below). The derivative 
formula for .pνs

2n+1(z), supplemented by the further derivative relation 

. 
2(k + 1)

(ν − 2k − 3)r νs
k+1

p2k+2(z) − 1

r νs
k

p2k(z)

= − l((ν + 1)/2))2

π22−νl(2k + 2)l(ν − 2k − 1)
(1 + z2)(ν+1)/2 d

dz

z2k+1

(1 + z2)(ν−1)/2
,

gives for the analogue of the summation identity in the first line of (7.31).
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Proposition 9.4 We have 

. Sr,νsN (x, y)
|||
ν |→(ν+N )/2

= l((ν + 1)/2)2

π21−ν
(1 + y2)−(ν+1)/2

×
(

(1 + x2)−(ν−1)/2
N−2E

k=0

(xy)k

k!(ν − k − 1)! + 1

2l(N − 1)l(ν − N + 1)
yN−1oN−2(x)

)
.

(9.17) 

In the case .ν = N this further simplifies to give [265] 

. Sr,νsN (x, y)
|||
ν=N

= l((N + 1)/2)2

π21−Nl(N )
(1 + x2)−(N−1)/2(1 + y2)−(N+1)/2(1 + xy)N−1.

(9.18) 

For .ν = N + p for any fixed .p > 0 the bulk scaling limit involves the scalings 
.x |→ X/

√
N . With this assumed, the result (7.37) first derived for GinOE itself, is 

reclaimed. We note there is no edge for spherical GinOE. In (9.17), setting.ν = Nα2, 
.α2 ≥ 1 as is consistent with the notation below (2.54), setting .x = y and taking the 
large .N limit gives for the global density of real eigenvalues [227, Th. 4.2.14] 

. lim
N→∞

1√
N

ρ
r,νs
(1),N (x) =

/
α2

2π

1

1 + x2
χ|x |<√

1/(α2−1). (9.19) 

In relation to the complex eigenvalues, the key formula is (7.44), further simplified 
to the form analogous to (7.46) with this involving the (generalised) GinUE spherical 
ensemble kernel. As is consistent with (9.19) we first suppose that in (9.13) the  
replacement .ν |→ (N + ν)/2 has been made, and then set .ν = α2N , .α2 > 1. The  
corresponding GinUE spherical ensemble kernel is then given by (2.56) with . M =
N , n = ν. From this one finds the same functional form as obtained in the GinUE 
case (2.57) 

. lim
N→∞

1

N
ρ
c,νs
(1),N (x) = α2

π

1

(1 + |z|2)2 χ|z|<√
1/(α2−1); (9.20) 

see [227, Th. 4.2.14]. One observes that the global real density (9.19) is proportional 
to the square root of the global complex density (9.20) continued to the real line. 
The proportionality constant is .1/

√
2. This inter-relation (apart from the value of 

the proportionality) has been predicted by Tarnowski [516] to hold for a wide class 
of asymmetric real random matrices. For example, it holds for the GinOE itself 
(compare (7.36) and (7.49)), and the induced GinOE (compare (9.6) and (9.7)). 

Remark 9.1 
1. Setting .x = y in (9.18) reclaims (9.9). Also, since the bulk GinUE correlations 
are the limit of bulk scaling, the analogue of the asymptotic variance formula (7.54) 
holds [265, stated below (14)]. 
2. In [265] an approach to studying the eigenvalue distribution for the spherical 
GinOE (i.e. the case .ν = N of the above) making use of a stereographic projection
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to the sphere was detailed. In this approach it was found that the corresponding 
skew-orthogonal polynomials have the skew-orthogonality property with respect to 
the analogues of .αs

j,k and .βs
j,k individually. Consequently, the generating function 

for the probability of . k real eigenvalues, .Z s
N , was shown to be given in the product 

form 

. Z s
N (ζ ) = (−1)(N/2)(N/2−1)/2

2N (N−1)/2

× l((N + 1)/2)N/2l(N/2 + 1)N/2
N|  |

s=1

1

l(s/2)2

N/2−1|  |

l=0

(ζαl + βl), (9.21) 

where 

. αl = 2π

N − 1 − 4l

l((N + 1)/2)

l(N/2 + 1)
,

βl = 2
√

π

N − 1 − 4l

(
2N

l(2l + 1)l(N − 2l)

l(N + 1)
− √

π
l((N + 1)/2)

l(N/2 + 1)

)
; (9.22) 

cf. the determinant formula (9.16) with .ν = N . 
3. Again in the case .ν = N , the matrix element .Sc,sN as specified by (7.44) has the 
explicit form [265, Proposition 4.3] 

. Sc,sN (w, z) = N (N − 1)

2N+1πrwrz

[{ ∞

r−1
w −rw

2

dt
)
1 + t2

)N/2+1

]1/2 [{ ∞
r−1
z −rz

2

dt
)
1 + t2

)N/2+1

]1/2

×
(
ei(θz−θw)/2

(rwrz)1/2
+ e−i(θz−θw)/2

(rwrz)−1/2

)N−2 (
ei(θz−θw)/2

(rwrz)1/2
− e−i(θz−θw)/2

(rwrz)−1/2

)
,

where .w, z := rweiθw , rzeiθz . Used here are coordinates inside the unit disk, which 
result from the conformal mapping of the half plane .Z = i(1 − z)/(1 + z). Setting 
.w = z = reiθ in this gives for the transformed complex density [265, Eq. (17)] 

. ρ
c,s
(1),N (z) = N (N − 1)

2N+1πr2

(1
r

+ r
)N−2(1

r
− r

) { ∞

r−1−r
2

dt

(1 + t2)N/2+1
.

We calculate from this the limiting form 

. lim
N→∞

1

N
ρ
c,s
(1),N (z) = 1

π

1

(1 + r2)2
, (9.23) 

which is in fact invariant upon the inverse of the applied conformal mapping and so 
applies too in the original coordinates. Note that this is consistent with (9.20) in the  
case .α2 = 1.
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9.4 Truncations of Haar Real Orthogonal Matrices 

Starting with an .(n + N ) × (n + N ) Haar distributed real orthogonal matrix 
(see [194] for a discussion of the origin of this class of random matrices), we consider 
an.N × N sub-block.AN say and seek the corresponding eigenvalue PDF [227, 363, 
432]. As for truncations of Haar distributed unitary matrices, the eigenvalues must 
be contained inside the unit disk .|z| < 1. 

Proposition 9.5 With .z = x + iy, introduce the weights 

.ωt(z) =
}

n(n−1)
2π |1 − z2|n−2

{ 1
2|y|/|1−z2|(1 − u2)(n−3)/2 du, n /= 1

1
π
|1 − z2|−1, n = 1.

(9.24) 

After denoting (9.1) as .vol(O(N )), define the normalisation 

. C t
N ,n = vol(O(n))vol(O(N ))

vol(O(n + N ))

( (2π)n

n!
)N/2 =

(2n

n!
)N/2 N|  |

j=1

l((n + j)/2)

l( j/2)
.

The joint eigenvalue PDF for . k real eigenvalues .{λl}l=1,...,k and the .(N − k)/2 com-
plex eigenvalues .{z j := x j + iy j } j=1,...,(N−k)/2 in the upper half plane for the an 
.N × N truncation of a Haar distributed .O(n + N ) matrix is then equal to 

. C t
N ,n

2(N−k)/2

k!((N − k)/2)!
k|  |

s=1

(ωt(λs))
1/2

(N−k)/2|  |

s=1

ωt(zs)

×
|||/\({λl}l=1,...,k ∪ {x j ± iy j } j=1,...,(N−k)/2)

|||. (9.25) 

Proof Following the working given to derive the analogous result for the GinUE in 
Sect. 2.6, which is based on [ 17, Appendix B], the calculation can be carried out 
according to a number of specific steps. 

(i) Make use of a matrix integral form of the matrix delta function constraint 
relating to the top.N × N block.AN of the.(n + N ) × (n + N ) real orthogonal 
matrix, to deduce that the element PDF of an .N × N sub-block .AN is up to 
normalisation equal to (2.60), now with the integral over the space of . N × N
real symmetric matrices .{HN }. 

(ii) Introduce the real Schur decomposition.AN = QRQT conditioned on the num-
ber of real eigenvalues, and integrate over the off (block diagonal) entries of . R
therein with the columns as variables. This requires carrying out the analogue 
of the steps used to deduce (2.60). However, there is the complication that in the 
columns corresponding to the complex eigenvalues, each column has a block 
structure. From this viewpoint, we then need to proceed analogous to step (ii) 
of the proof of Proposition 9.2, the details of which are given in [265]. With
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.n /= 1 (this case needs to be considered separately) the conditional eigenvalue 
PDF 

. Cνt
N ,n

(n(n − 1)

2π

)N/2|||/̃\({λl}l=1,...,k ∪ {x j ± iy j } j=1,...,(N−k)/2)

|||

×
k|  |

s=1

(√
πl((n − 1)/2)

l(n/2)
|1 − λ2

s |n−2
)1/2

×
(N−k)/2|  |

s=1

2|bs − cs | det(I2 − Rs R
T
s )(n−3)/2 (9.26) 

results. 

(iii) As for the derivations of the eigenvalue PDF detailed for the GinOE and spher-
ical GinOE, the final step is to change variables from.{b j , c j } to.{y j , δ j } and to 
integrate over . δ j . u 

Next, we let .αt
j,k[u], β t

j,k[v] be defined as for .αg
j,k[u], βg

j,k[v] in Proposition 7.2, 
but now with weight .ωt as defined in (9.24). For the analogue of (7.7) we then have 

.Z t
N [u, v] = C t

N ,n Pf[αt
j,k + β t

j,k] j,k=1,...,N . (9.27) 

We now come to the skew-orthogonal polynomials associated with. γ t
j,k := αt

j,k |u=1 +
β t
j,k |v=1. For this the formulas of Proposition 7.4 can be used. 

Proposition 9.6 Consider the ensemble specified by .N × N random matrices 
obtained by deleting . n rows and columns of an .(n + N ) × (n + N )Haar distributed 
orthogonal matrix. For the skew-orthogonal polynomials associated with .γ t

j,k we 
have 

. pt2 j (z) = z2 j ,

pt2 j+1(z) = z2 j+1 − 2 j

n + 2 j
z2 j−1 = − (1 − z2)−n/2+1

n + 2 j

d

dz

(
(1 − z2)n/2z2 j

)
.

Furthermore, 

. r tj = n!(2 j)!
(n + 2 j)! .

Proof The matrix .G in (7.18) (with . n replaced by . j to avoid a conflict in notation) 
is constructed as the .2 j × 2 j sub-block of an .(n + 2 j) × (n + 2 j) Haar distributed 
orthogonal matrix. The requirements of the applicability of the formulas (7.19), 
namely that the distribution of each element is unchanged by negation, and that the 
joint first moment of distinct pairs of elements are uncorrelated, is therefore valid. 
The square of an element of.G is then equal in distribution to.a21/(a

2
1 + · · · + a2n+2 j ), 

where each .a j is a standard Gaussian, and is thus a beta B.[1/2, (n + 2 j − 1)/2]
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random variable. Its mean is .1/(n + 2 j) and so .Tr {G2} = 2 j/(n + 2 j), which so 
specifies .p2 j+1. This reasoning is a special case of a calculation first given in [256]. 
The formula for the normalisation .r tj follows from setting .u = v = 1 in (9.27), and 
noting that the LHS then has the interpretation of a sum over probabilities of eigen-
values being real and so is unity, while by the skew-orthogonality property the RHS 
equals .C t

N ,n

|  |N/2−1
l=0 r tl . u 

Next, we use the derivative formula for .pi2 j+1(z) of Proposition 9.6, and the 
definition of .αt

j,k in Proposition 7.2 with .ωg replaced by .ωt to compute 

. αt
2 j−1,2k

|||
u=v=1

= 1

(n + 2 j)
√

π

l((n + 1)/2)l(n + 1)

l(n/2)

l(−3/2 + j + k)

l(−3/2 + j + k + n)
=:

α̃t
j,k

n + 2 j
.

(9.28) 

Hence for the generating function for the number of real eigenvalues we obtain 
a formula structurally identical to (9.16), but with .α̃νs

j,k replaced by .α̃t
j,k and . r̃ νs

j−1

replaced by .(n + 2 j)r tj−1. This in turn allows the analogues of (7.54) and the local 
central limit theorem Proposition 7.3 to be deduced. 

In relation to the real–real correlation kernel .SrN from Proposition 7.5, we have  
seen that supplementing the derivative formula for .pt2 j+1(z) by a further derivative 
relation involving the normalisations of the skew-orthogonal polynomials, allows for 
a simplification [238]. 

Proposition 9.7 We have 

. Sr,tN (x, y) = 1

π

l(1/2)l((n + 1)/2)

l(n/2)
(1 − x2)n/2−1(1 − y2)n/2

N−2E

j=0

(n + j − 1)!
(n − 1)! j ! (xy) j

− 1

rN/2−1
oN−2(y)ω

t(x)xN−1. (9.29) 

Proof The required additional derivative formula is 

. 
2( j + 1)

(n + 2 j + 2)r tj+1

p2 j+2(z) − 1

r tj
p2 j (z)

= − (n + 2 j)!
n!(2 j + 1)! (1 − z2)(−n/2+1) d

dz

(
(1 − z2)n/2z2 j+1

)
.

Introducing the incomplete beta function .Ix (a, b) and beta integral .B(x, y) in 
standard notation, one observes that (9.29) admits an expression in terms of these 
functions. Specifically, with .x = y as corresponds to the density [227, 363, 432], 

. Sr,tN (x, x) = 1

B(n/2, 1/2)

I1−x2(n + 1, N − 1)

1 − x2

+ (1 − x2)(n−2)/2|x |N−1

B(N/2, n/2)
Ix2((N − 1)/2, (n + 2)/2). (9.30)
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From this form the scaled large .N , n asymptotics with .α = N/(N + n) can be 
computed as [363] 

. lim
N→∞

1√
N

ρ
r,t
(1)(x) =

/
1 − α

2πα

1

1 − x2
χ−√

α<x<
√

α. (9.31) 

A corollary of this, obtained by integrating the RHS, is the asymptotic formula for 
the number of real eigenvalues 

.E r,t
N

|||
α=N/(N+n)

∼
/
2N (1 − α)

πα
Arctanh

√
α. (9.32) 

The corresponding bulk and edge scaling of .Sr,tN (x, y) in this setting reclaims the 
GinOE results (7.37) and (7.40). Hence we know that the analogue of the asymptotic 
formula (7.54) for the variance of the number of real eigenvalues will hold true. 

For finite.N the formula (7.44) upon a simplification analogous to (7.46) provides 
a simple to analyse expression for the complex density. From this one can calculate 
[363] 

. lim
N→∞

1

N
ρ
c,t
(1),N

|||
α=N/(N+n)

= 1 − α

πα

1

(1 − |z|2)2 χ|z|<√
α. (9.33) 

Here one observes that the global real density (9.31) is proportional to the square root 
of the global complex density (9.33) continued to the real line, with proportionality 
.1/

√
2 in keeping with [516]. We note too that the functional form (9.33) is identical 

to that given in (2.63) for the eigenvalue density of truncated unitary random matrices 
in the same global scaling limit, in accordance with common feature (S6) of Sect. 9.1. 

With . n fixed, and thus .α = 1, the asymptotic formula (9.32) breaks down. In 
keeping with this is that for . n fixed the .N → ∞ limit of (9.29) is well defined 
without any scaling of . x and . y. Thus 

. lim
N→∞ Sr,t(x, y) = 1

π

l(1/2)l((n + 1)/2)

l(n/2)

(1 − x2)n/2−1(1 − y2)n/2

(1 − xy)n
. (9.34) 

Also, there is an edge scaling distinct from (7.40). Thus from (9.30) we have [363] 

. lim
N→∞

1

N
ρ
r,t
(1)

(
1 − x

N

)
= ρ̃

e,t
(1)(x), (9.35) 

where, with .γ̄ (n, x) := (xnl(n))−1γ (n, x), 

. ρ
e,t
(1)(x) = xn/2−1e−x

2l(n/2)

(
1 − xn/2+1γ̄ (n/2 + 1, x) + (2x)n

B(n/2, 1/2)
γ̄ (n + 1, 2x)

)
.

This exhibits the large . x tail behaviour .1/(B(n/2, 1/2)x) which is in keeping with 
the large .N form of the expected number of real eigenvalues for . n fixed [363]
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.E r,t
N ∼ log N

B(n/2, 1/2)
. (9.36) 

The limit .N → ∞ with .n = 1 is of special interest due to an interpretation in 
terms of the zeros of a certain random power series [238, 373]. 

Proposition 9.8 Consider the random power series. f (z) = e∞
p=0 apz p, where each 

.ap is an independently distributed standard real Gaussian random variable. We have 
that the distribution of the zeros of . f (z) coincides with the limiting distribution of 
the eigenvalues of an .N × N sub-block of .(N + 1) × (N + 1) Haar distributed real 
orthogonal matrices for .N → ∞. 

Proof Let .UN+1 denote the Haar distributed orthogonal matrix. Set . AN+1 =
diag (a, 1, . . . , 1), .a > 0. Then the matrix .UN+1AN+1 has the same eigenvalues 
as .A1/2

N+1UN+1A
1/2
N+1. In the limit .a → 0 these eigenvalues are . 0 and the eigenval-

ues of the .N × N sub-block of .UN+1 obtained by deleting the first row and column. 
Introducing.I

,
N+1 = diag (0, 1, . . . , 1) and.e1 = (1, 0, . . . , 0), manipulations includ-

ing use of (7.26) reduce the characteristic equation for the nonzero eigenvalues of 
.UN+1AN+1 in the limit .a → 0 to the secular equation 

. eT1 (IN+1 − λU †
N+1I

,
N+1)

−1U †
N+1e1 = 0;

see [255, proof of Proposition 1]. Since for .|a| < 1 the eigenvalues also have mod-
ulus less than one, the inverse can be expanded according to the geometric series, 
with coefficient of .λk equal to .eT1 (U †

N+1I
,
N+1)

kU †
N+1e1. Noting that for large .N this 

coefficient has the form .eT1 (U †
N+1I

,
N+1)

ke1(1 + O(k/N )), then applying the known 
result [373] 

. {√N (eT1 (U †
N+1I

,
N+1)

ke1}k=0,1,...
d={ak}k=0,1,...,

where each.ak is an independent standard real Gaussian, implies the statement of the 
proposition. u 

The random power series in this result can itself be viewed as the .N → ∞ limit 
of the random polynomial .pN (z) = eN

p=0 akz
k with standard real Gaussian coeffi-

cients. The density of the real zeros of this random polynomial, .ρr,K
(1),N (x) say, was 

first investigated by Kac [349], making use of what is now referred to as the Kac–Rice 
formula; for an introduction see [447]. It was found 

. ρ
r,K
(1),N (x) = 1

π

(
1

(1 − x2)2
− (N + 1)2x2N

(1 − x2N+2)2

)1/2

.

Taking the limit .N → ∞ with .|x | < 1 reclaims the functional form (9.34) with 
.x = y in the case .n = 1, as is consistent with this being the limiting density for the 
random matrix problem of Proposition 9.8. The higher point correlation functions for 
the real zeros of the random polynomial are, according to the Kac–Rice formalism, 
structurally given by a .k-dimensional Gaussian integral with a particular covariance
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matrix, weighted by a product of the absolute value of the integration variables [ 94]. 
In addition, this structure is maintained upon taking the.N → ∞ limit. On the other 
hand, the result of Proposition 9.8, together with Proposition 7.5 as it applies to 
truncations of Haar real orthogonal matrices, tells us that these same correlations 
can be written as a Pfaffian; see also [430]. This is also true of for the correlations 
between the complex zeros, where the Kac–Rice formalism leads to an expression 
in terms of a so-called Hafnian (a Hafnian relates to a Pfaffian as a permanent does 
to a determinant) [465]. 

We have remarked that the generating function for the number of real eigenvalues 
is given by a formula structurally identical to (9.16), but with .α̃νs

j,k replaced by . α̃
t
j,k

defined in (9.28) and .r̃ νs
j−1 replaced by .(n + 2 j)r tj−1. Specifically, with .n = 1 this 

shows [462] 

.Z t
N (ζ )

|||
n=1

= det
[
δ j,k + ζ − 1

π( j + k − 3/2)

]

j,k=1,...,N/2
∼
ζ=0
N→∞

N−3/8, (9.37) 

where the asymptotic result, applying when .ζ = 0, relates to the probability of no 
real eigenvalues; for more on the asymptotics see [230, 287]. The work [462] (see 
also [137, 186, 187, 197, 487, 488]) relates the exponent in the asymptotic formula, 
interpreted in terms of the probability of no real zeros for random Kac polynomials, 
to the so-called persistence exponent for two-dimensional (.d = 2) diffusion. 

The diffusion in question is of a scalar field .φ(x, t), which at time .t = 0 is a 
zero mean Gaussian random field with short-range (delta function) correlations. The 
persistence is the probability that, for a system of linear size . L and with the origin. 0
in the bulk, .φ(0, t) does not change sign from its initial value. (We refer the reader 
to [109] for a comprehensive review on the persistence in extended many-body 
nonequilibrium systems.) The persistence exponent .θ(d) quantifies the expected 
large. L asymptotic form that the probability decays as .L−2θ(d) for .t >> Ld . Through 
a common inter-relation with a Gaussian stationary process with (in logarithmic 
time) covariance .sech(T/2) [186, 487, 488] it is predicted that .θ(2) is equal to . 1/4
of the exponent in the analogue of the asymptotic formula (9.37) for Kac random 
polynomials, which in turn is twice the exponent in (9.37). The leads to the conclusion 
that .θ(2) = 3/16. 

9.5 Products of GinOE 

As for products of GinUE matrices, the most general case of products of compatibly 
sized rectangular matrices.Gi can be reduced to products of .N × N square matrices 
.G̃i , now with element distribution proportional to 

.| det G̃i G̃
T
i |νi/2e−Tr G̃i G̃T

i /2,
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again with.νi > 0 equal to the difference in the number of rows in.Gi and the number 
of rows in.Gi .(= N ) [333]. The eigenvalue probability density function, conditioned 
on the number of real eigenvalues, can be computed for a general number .M of 
matrices in the product [254, Proposition 8]. 

Proposition 9.9 Define the real weight 

.wν
r (λ) =

m|  |

j=1

[ {

R

dλ( j)
(λ( j)

2

)ν j/2
e− 1

2 (λ( j))2
]

δ(λ − λ(1) · · · λ(M)) (9.38) 

and the complex weight 

. wν
c (x, y) = 2π

{

R

dδ
|δ|/

δ2 + 4y2
W ν

( [
μ+ 0
0 μ−

] )
,

μ± = 1

2

(
± |δ| + [δ2 + 4(x2 + y2)]1/2

)
(9.39) 

with 

. W ν(G) =
M|  |

l=1

[ {

R2×2
(dX (l)) det

( X (l)X (l)T

2

)νl/2 e− 1
2 Tr X

(l)X (l)T

√
2π3

]

× δ(X − X (1) · · · X (M)). (9.40) 

Define too the normalisation 

.ZM,ν
N ,k = 2MN (N+1)/4

M|  |

l=1

N|  |

j=1

l
( j + νl

2

)
. (9.41) 

With this notation, we have that the joint eigenvalue eigenvalue PDF of the random 
product matrix .G̃1 · · · G̃M , conditioned on there being . k eigenvalues, is given by the 
functional form (1.10) with the normalisation .Cg

N replaced by .1/ZM,ν
N ,k , . (ω

g(λs))
1/2

replaced by .wν
r (λs) and .ωg(z j ) replaced by .wν

c (x j , y j ). 

Proof Enabling this calculation is the real matrix version of the periodic Schur form 
(2.71), where now each .Zi is a block diagonal matrix of the structure of .R in the 
real Schur decomposition of Sect. 7.1, and is thus conditioned on. k real eigenvalues. 
In keeping with the notation of Sect. 7.1, we write .G̃l = Ql(Dl + Rl)Ql+1,. (l =
1, . . . , M), where each .Dl is block diagonal, and each .Rl is strictly block upper 
triangular. We denote the scalar diagonal elements of .Dl by .{λ(l)

s }ks=1 and the . 2 × 2
block diagonal entries by .{X (l)

s }ks=1. 
The first . k diagonal entries are scalars, .{λi := λ

(1)
t · · · λ(l)

t }kt=1, while the latter 
.(N − k)/2 entries are .2 × 2 matrices, .{Gs := G(1)

s · · ·G(l)
s }(N+k)/2

s=k . With this nota-
tion, the Jacobian for the above given change of variables reads [330, Proposition 
A.26], [254]
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. 

M|  |

l=1

(dG̃l) =
|||/̃\({λl}l=1,...,k ∪ {x j ± iy j } j=1,...,(N−k)/2)

|||

×
M|  |

l=1

(dRl)(Q
T
l dQl)

M|  |

l=1

( k|  |

j=1

dλ
(l)
j

(N+k)/2|  |

s=k+1

dX (l)
s

)
, (9.42) 

where .λs := |  |M
j=1 λ

( j)
s and .Xs := |  |M

j=1 X
( j)
s , while ./̃\ is as in (1.10) but with the 

difference between each pair .xs ± iys (which are the eigenvalues of .Xs) omitted. 
Making the change of variables in the element PDF of the matrix product gives 

. 

M|  |

l=1

e− 1
2 Tr G̃l G̃T

l =
M|  |

l=1

e− 1
2

ek
s=1(λ

(l)
s )2− 1

2

e(N+k)/2
s=k+1 Tr X (l)

s (X (l)
s )T e− 1

2

e
i< j (r

(l)
i j )2 .

Hence, after integrating over.{r (l)
i j }, we obtain that up to proportionality the eigenvalue 

PDF is equal to 

. 

k|  |

j=1

δ(λ j − λ
(1)
j · · · λ(M)

j ) dλ j

(N+k)/2|  |

s=k+1

δ(Gs − G(1)
s · · ·G(M)

s ) (dGs)

× 1

ZM,ν
k,N

M|  |

l=1

[ k|  |

j=1

(
e− 1

2 (λ
(l)
j )2dλ

(l)
j

) (N+k)/2|  |

s=k+1

(e− 1
2 Tr X

(l)
s X (l)T

s

√
2π3

(dX (l)
s )

)]
. (9.43) 

The final step is to change variables from the off-diagonal elements of the.Xs , param-
eterised as in Sect. 7.1, to the quantities .y j (the imaginary part of . j-th complex 
eigenvalue) and . δ j ; recall the final paragraph in Sect. 7.1. u 

Remark 9.2 The real weight (9.38) can be written in terms of the Meijer.G-function 
according to 

. ων
r (λ) = GM,0

0,M

( −
ν1
2 , . . . , νM

2

||||
λ2

2M

)
;

cf. (2.74). With .M = 2, .ν1 = ν2 = 0 this simplifies to 

.ων
r (λ) = 2K0(|λ|). (9.44) 

For general .M ≥ 2 no special function evaluation of the matrix integral defining. ων
c

is known. An exception is .M = 2, ν1 = ν2 = 0, for  which [  38, 254] 

. ων
c (x, y) = 4

{ ∞

0

1

t
exp

(
− 2(x2 − y2)t − 1

4t

)
K0(2(x

2 + y2)t) erfc(2
√
t y) dt.

(9.45) 
Comparing (9.44) and (9.45) makes it clear that unlike the structure highlighted in 
point (S3) of Sect. 9.1, it is no longer true that .ωr(x) = (ωc(x, 0))1/2.
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We turn our attention now to the calculation of the skew-orthogonal polynomi-
als associated with .γ p

j,k := α
p
j,k |u=1 + β

p
j,k |v=1. Here we define .α

p
j,k[u], .βp

j,k[v] as 
in Proposition 7.2, but with .(ωg(x)ωg(y))1/2 replaced by .wν

r (x)w
ν
r (y) and . ωg(z)

replaced by .wν
c (x, y). Through the use of (7.19), a simple calculation gives that the 

skew-orthogonal polynomials are given by [254, Proposition 9] 

.pν,M
2n (z) = z2n, pν,M

2n+1(z) = z2 j+1 − z2 j−1
M|  |

k=1

(2 j + νk), (9.46) 

with normalisation 

.hM
j−1 =

M|  |

k=1

2
√
2π

2νk
l(2 j + νk − 1). (9.47) 

However, there is no longer a derivative formula for .pν,M
2n+1(z) analogous to that for 

.pg2n+1(z) in (7.20). Associated with the latter is that the structural feature (S2) of 
earlier cases for the probability of all eigenvalues being real is no longer true; see 
[254, Eq. (5.2)] for a determinant formula involving particular Meijer .G-functions. 
Asymptotics of the latter allows for an effect first noticed in [385]—that the proba-
bility of all eigenvalues being real tends to. 1 as.M → ∞ for large classes of product 
random matrices—to be proven in the Gaussian case [241]. Subsequent references 
on this topic include [314, 467, 468]. 

In keeping with the effect of the probability of all eigenvalues being real increasing 
as .M increases, is the result of Simm [501, Th. 1.1] for the expected number of real 
eigenvalues,.Eν,M

N say. Here the point to draw attention to is the factor of.
√
M relative 

to the .M = 1 case. 

Proposition 9.10 We have 

.Eν,M
N ∼

N→∞

/
2NM

π
+ O(log N ). (9.48) 

Proof (Sketch) The starting point for this result, obtained with the specialisation 
each .νi = 0, is the exact expression for the density .ρ

r,M
(1),N (x) implied by knowledge 

of the skew-orthogonal polynomials, written in terms of the corresponding product 
GinUE correlation kernel (2.78) according to the structural form (7.43) with .x = y. 
The implied sum is then integrated term-by-term, which results in a sum of particular 
Meijer.G-functions. The summand is now in a form suitable for asymptotic analysis 
in the large .N limit. u 

The different behaviour of .Eν,M
N for .N fixed and .M → ∞, relative to .M fixed 

and.N → ∞, makes it natural to inquire about the asymptotic behaviour of .Eν,M
N in 

the circumstance that .M = αN . This has been determined in [ 19, Th. 1.1] as being 
given by
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. lim
N→∞

Eν,M
N

N

||||
M=αN

=
(
1 + α

4

)
erf

(/
α

8

)
− α

4
+

/
α

2π
e− α

8 , (9.49) 

which can be demonstrated to provide an interpolation between the previously found 
behaviours. 

Remark 9.3 
1. A further application of .ρr,M

(1),N (x) expressed in the structural form (7.43) is to  
the calculation of the global scaling limit. Thus in [501, Th. 1.2] this was used to 
establish the validity of the corresponding product GinUE result (2.79). 
2. As noted in Remark 2.6.4, there is interest in a product of .M random matrices 
in the limit .M → ∞ from a dynamical systems perspective. For GinOE matrices, 
the explicit Lyapunov spectrum was computed long ago by Newman [314]. This 
exact result in the case of the largest Lyapunov exponent was generalised in [269, 
356] to allow for the GinOE matrices to be left multiplied by a positive definite 
matrix. A direct study of the stability exponents associated with the modulus of the 
eigenvalues—these becoming all real as .M → ∞—was undertaken in [331]. 
3. The averaged absolute value of the product of GinOE matrices, which analogous 
to (7.42) relates to the density of the real eigenvalues, has appeared in a counting 
problem for equilibria in an analysis of a discrete analogue of the random nonlinear 
differential equations (7.88) [332]. 
4. The spectral density of the product of.M independent elliptic GinOE matrices has 
been studied in [454]. The limiting global density is the .M-th power of the circular 
law, independent of the parameter . τ . Note in particular that this result applies to the 
global density of products of GOE matrices. 
5. The products of .M truncated orthogonal matrices in Sect. 9.4 have also been 
studied in the literature [256, 261, 407]. In particular, for strong non-orthogonality, 
it was shown in [407] that the leading-order asymptotic of the expected number of 
real eigenvalues is of the form (9.32) multiplied by.

√
M ; cf. (9.48). On the other hand, 

for weak non-orthogonality, the asymptotic form (9.36) with .B(n/2, 1/2) replaced 
by .B(Mn/2, 1/2) holds. 

The structural form (7.43) for  .Sr,MN (x, y) also has consequences for the analysis 
of the two-point correlation and associated fluctuation formula. In particular, it is 
used in [231] to establish that the structural formula (7.58) for the variance of a 
linear statistic as .N → ∞ holds true independent of . M . For the particular linear 
statistic corresponding to the counting function for the number of real eigenvalues, 
this formula was shown to break down in the case that.M simultaneously tends to. ∞
with . N . Rather then .(σ

r,M
N )2/E r,M

N |M=αN tends to an . α dependent quantity; see [ 19, 
Th. 1.2].
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Chapter 10 
Statistical Properties of GinSE and 
Elliptic GinSE 

Eigenvalues of GinSE matrices occur in complex conjugate pairs as for complex 
GinOE eigenvalues, but now with zero probability of an eigenvalue being real. Also 
in common with complex GinOE eigenvalues is that the GinSE eigenvalues form a 
Pfaffian point process, and that their PDF admits a Coulomb gas interpretation with 
image terms. While the determination of the required skew-orthogonal polynomials is 
straightforward, the particular form gives a new challenge in relation to analysing the 
various scaling limits. This is overcome by making use of a certain inhomogeneous 
partial differential equation satisfied by the pre-kernel. Such an approach carries over 
to the analysis of a weakly non-Hermitian regime. Also contained in this chapter is the 
large.N analysis of the partition function and gap probability associated with GinSE 
eigenvalues, and results relating to the singular values and eigenvectors. Furthermore, 
a study is undertaken of an elliptic generalisation, which interpolates between GinSE 
and Hermitian GSE matrices. 

10.1 Eigenvalue PDF 

Using a similarity transformation, the symplectic Ginibre matrix.G can be identified 
via the matrix-valued version of the quaternion realisation (1.1) as  

.

[
A B

−B̄ Ā

]
∈ C

2N×2N , (10.1) 

where .A, B are independent copies of GinUE. Due to this form, the matrix .G has 
.2N eigenvalues that come in complex conjugate pairs .±z j , where we take . Im z j >

0. Importantly from the viewpoint of calculating the Jacobians associated with a 
change of variables involving eigenvalues, the eigenvectors of complex conjugate 
eigenvalues are related by a linear transformation. This can be encoded by forming 
a block Schur decomposition .G = UZU † with .U a .2N × 2N unitary matrix with 
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.2 × 2 block entries of the form (1.1)—a conjugation equivalent symplectic unitary 
matrix—and . Z a block triangular matrix, with diagonal blocks 

. 

} [
0 z j
z̄ j 0

] }N

j=1

containing the eigenvalues of . G, and off-diagonal elements having the quaternion 
form (1.1); see [331, Proposition A.25]. As in the proof of Proposition 2.1, the  
Jacobian calculation is carried out by forming the wedge product of the matrix of 
differentials of .U †dGU , in the order of the block indices .( j, k) with . j decreasing 
from.N to 1, and. k increasing from. 1 to. N . This gives the eigenvalue dependent factor 

. 

N|  |
j=1

e−2W (z j ,z̄ j )|z j − z̄ j |2
|  |

1≤ j<k≤N

|zk − z j |2|zk − z̄ j |2,

and moreover (after some working) the product of differentials can be shown to 
factorise as in (2.6). The eigenvalue PDF now follows by integrating over the inde-
pendent off-diagonal entries of . Z . The resulting functional form (1.8) is formally  
the same as the GinUE eigenvalue PDF (1.7) with .N |→ 2N , and where .z j+N is 
identified with . z̄ j , but with terms involving only differences of .{z̄ j } ignored (due to 
dependencies in the quaternion structure these are not associated with independent 
differentials). As previously mentioned, the eigenvalue PDF (1.8) of GinSE was 
derived already in the original work [293] of Ginibre starting from the eigenvalue– 
eigenvector decomposition. For the details of the above outlined method using the 
quaternionic Schur decomposition, see [331, proof of Proposition A.25]. 

In general, an eigenvalue PDF of the non-Hermitian random matrices in the same 
symmetry class of the GinSE is of the form 

. 
1

N ! ZH

N (W )

N|  |
j=1

e−2W (z j ,z̄ j )|z j − z̄ j |2
|  |

1≤ j<k≤N

|zk − z j |2|zk − z̄ j |2, Im z j > 0,

(10.2) 
where .ZH

N ≡ ZH

N (W ) is the partition function, which turns (10.2) into a probability 
measure. Here.W can be an arbitrary real function such that.ZH

N exists, which further-
more is assumed to satisfy the complex conjugation symmetry .W (z, z̄) = W (z̄, z). 
The ensemble of the form (10.2) is called the planar symplectic ensemble [ 22]. 

10.2 Coulomb Gas Perspective 

The eigenvalue PDF (10.2) can be rewritten in terms of the Hamiltonian 

.HH(z1, . . . , zN ) :=
E

1≤ j<l≤N

log
1

|z j − zl |2|z j − z̄l |2
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+ 
NE 

j=1 

( 
2W (z j , z̄ j ) + log 

1 

|z j − z̄ j |2 
) 

(10.3) 

as 

.
1

N ! ZH

N (W )
e−HH(z1,...,zN ). (10.4) 

Analogous to the discussion of Sect. 7.2, this can be regarded as a two-dimensional 
Coulomb gas [245] in the upper half plane .H with image charges in the lower half 
plane; cf. [367]. As such, this is an image system counterpart of the eigenvalue PDF 
of the normal matrix model, which by way of comparison is given by 

.
1

N ! ZC

N (W )
e−HC(z1,...,zN ), (10.5) 

where 

. HC(z1, . . . , zN ) :=
E

1≤ j<l≤N

log
1

|z j − zl |2 +
NE
j=1

W (z j , z̄ j );

see Sect. 5 and references therein. 
The Coulomb gas interpretation (10.4) allows one to describe the limiting spectral 

distribution using logarithmic potential theory. In the scaling .W (z, z̄) = NQ(z), 
chosen to make the interaction and the potential term in (10.3) of the same order, 
one can observe that the continuum limit of the Hamiltonian (10.3) divided by . 2N 2

is given by 

. IQ[μ] := 1

4

{
C2

log
1

|z − w||z − w̄| dμ(z) dμ(w) +
{
C

Q dμ

=
{
C2

log
1

|z − w| dμ(z) dμ(w) +
{
C

Q dμ. (10.6) 

Here, we have used the complex conjugation symmetry.Q(z) = Q(z̄) for the second 
line. Thus it is natural to expect that the empirical measure .μQ of (10.4) converges 
to Frostman’s equilibrium measure, a unique probability measure minimising the 
energy functional (10.6). This convergence was shown by Benaych-Georges and 
Chapon [ 82] for a general potential. Q. In particular it shows that the limiting spectral 
distributions of (10.4) and (10.5) are identical Sect. 5.2. In particular, for.Q(z) = |z|2, 
this gives rise to the universal appearance of the circular law for the GinUE and 
GinSE. 

With regards to quantitative features, let us first recall that under minor assump-
tions on . Q, the equilibrium measure .μQ is absolutely continuous and takes 
the form 

.dμQ(z) = ∂z∂z̄ Q(z)

π
χz∈SQ d

2z, (10.7)
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where the compact set .SQ is called the droplet. For a radially symmetric potential 
.q(r) = Q(|z| = r) which is strictly subharmonic in . C, the droplet is of the form 
.SQ = {R1 ≤ |z| ≤ R2}, where the pair of constant .(R1, R2) is characterised by 

.R1q
,(R1) = 0, R2q

,(R2) = 2, (10.8) 

see [479, Sect. IV.6]. In particular, for.Q(z) = |z|2, it follows that.∂z∂z̄ Q(z) = 1 and 
.R0 = 0, R1 = 1, which coincides with the circular law of the GinSE. 

Remark 10.1 Underlying the image charge viewpoint of (10.3) is the pair potential 
(7.2), which we know is the solution of the two-dimensional Poisson equation in 
Neumann boundary conditions along the .x-axis. If instead we take the point . r to be 
inside a disk of radius. R and require Neumann boundary conditions on the boundary 
of the disk, the pair potential is [237, Eq. (15.188) with .E = 0] 

. φ(r, r,) = − log
)
|z − z,||R − zz,/R|

)
.

Imposing a smeared out charge neutral background of density.1/π (and hence taking 
.R = √

N ) the corresponding charge neutral Boltzmann factor is [237, Eq. (15.190)] 

.AN ,βe
−β

EN
j=1 |z j |2/2 |  |

1≤ j<k≤N

|zk − z j |β |1 − z j z̄k/N |β
N|  |
j=1

(1 − |z j |2/N )β/2, (10.9) 

where .AN ,β = e−βN 2((1/4) log N−3/8). Here .β > 0 is the inverse temperature, with the 
case.β = 2 being the disk analogue of (10.3), although this viewpoint gives the self-
energy term of exponent . 1 rather than . 2 as in (1.8); see [245, Sect. 2.1] for more on 
this point. 

10.3 Skew-Orthogonal Polynomials 

We define the skew-symmetric form.(·, ·)s,S by 

.( f, g)s,S :=
{
C

)
f (z)g(z̄) − g(z) f (z̄)

)
(z − z̄)e−2W (z,z̄) d2z, (10.10) 

where in keeping the notation of (7.16) the subscripts indicate skew and GinSE. 
Note the similarity with the second term in (7.16). As discussed in Sect. 7.4, a  
family .{qm}m≥0 of monic polynomials .qm of degree .m is said to be a family of 
skew-orthogonal polynomials if the following skew-orthogonality conditions hold: 
for all .k, l ∈ N
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. (q2k, q2l)s,S = (q2k+1, q2l+1)s,S = 0,

(q2k, q2l+1)s,S = −(q2l+1, q2k)s,S = rk δk,l . (10.11) 

We mention that the matrix averages formulas (7.18) are again valid; see [353]. In 
distinction to ensembles based on GinOE, there are also alternative methods which 
in fact have a broader scope, so these instead will be discussed below. 

Proposition 10.1 For a radially symmetric potential .W (z, z̄) = ω(|z|), let 

.hk = 2π
{ ∞

0
r2k+1e−2ω(r) dr (10.12) 

be the squared orthogonal norm. Then 

.q2k+1(z) = z2k+1, q2k(z) = z2k +
k−1E
l=0

z2l
k−l−1|  |
j=0

h2l+2 j+2

h2l+2 j+1
(10.13) 

forms a family of skew-orthogonal polynomials. Furthermore, the skew-norm is given 
by .rk = 2h2k+1. 

Proof Since the monomials .{zk} are orthogonal polynomials with respect to a 
rotationally symmetric weight function, it follows that 

. (zk, zl)s,S =
{
C

)
zk+1 z̄l − zl+1 z̄k − zk z̄l+1 + zl z̄k+1

)
e−2ω(|z|) d2z

= 2δk+1,l hk+1 − 2δl+1,khk .

Note here that the indices in the Kronecker delta differ by one, which in turn imme-
diately leads to.(q2k+1, q2l+1)s,S = 0. Furthermore, it follows that. (q2k, q2l+1)s,S = 0
if .l > k. Let us write 

.al =
k−l−1|  |
j=0

h2l+2 j+2

h2l+2 j+1
. (10.14) 

Then we have 

. (q2k, q2k+1)s,S =
/
z2k +

k−1E
l=0

al z
2l , z2k+1

\
s,S

= 2h2k+1.

On the other hand, for the case.k < l, after straightforward computations, we obtain 

. (q2k+1|q2l)s,S = 2(akh2k+1 − ak+1h2k+2) = 0.

Therefore, we have shown that .(q2k+1, q2l+1)s,S = rkδk, j . The other cases follow 
from similar computations with minor modifications. U
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As an example of Proposition 10.1, for  .W g(z, z̄) = |z|2, the associated skew-
orthogonal polynomials .qg

k are given by 

.qg
2k+1(z) = z2k+1, qg

2k(z) =
kE

l=0

k!
l! z

2l, rgk = (2k + 1)!
22k+1

π. (10.15) 

These are a special case of the skew-orthogonal polynomials obtained in [353] for  
the elliptic GinSE; see the sentence below (10.23). We also refer to [237, Exercises  
15.9 q.2] and [240, Proposition 1] for a derivation of (10.15). 

The crux of Proposition 10.1 is that one can construct the skew-orthogonal poly-
nomials using the associated (monic) orthogonal polynomials .p j with respect to the 
same weight, i.e. 

.

{
C

p j (z)pk(z)e
−2W (z,z̄) d2z = hkδ j,k . (10.16) 

A setting beyond the radially symmetric case in which we can construct the skew-
orthogonal polynomials is when the associated orthogonal polynomials satisfy a 
three-term recurrence relation. 

Proposition 10.2 Suppose that the sequence of monic orthogonal polynomials . (p j )

satisfies the three-term recurrence relation 

.zpk(z) = pk+1(z) + bk pk(z) + ck pk−1(z), bk, ck ∈ R. (10.17) 

Then 

. q2k+1(z) = p2k+1(z),

q2k(z) =
kE

l=0

al z
l, al :=

k−l−1|  |
j=0

h2l+2 j+2 − c2l+2 j+2h2l+2 j+1

h2l+2 j+1 − c2l+2 j+1h2l+2 j
(10.18) 

satisfies (10.11) with .rk = 2(h2k+1 − c2k+1h2k). Conversely, if the skew-orthogonal 
polynomials have the form (10.18), then the three-term recurrence (10.17) holds. 

Proof (Sketch) The essential idea of the proof has already been given in the proof 
of Proposition 10.1 above. The notable difference is that while computing the skew-
symmetric form.(qk, ql)s,S , we expand the term 

.

)
qk(z)ql(z) − qk(z)ql(z)

)
(z − z̄) (10.19) 

in the integrand using the three-term recurrence relation (10.17). U 

The idea of constructing skew-orthogonal polynomials in Proposition 10.2 first 
appeared in [353], where the Hermite polynomials were considered. Later, this was 
extended to the Laguerre polynomials in [ 11]. The general statement in Proposi-
tion 10.2 was given in [ 26]. As an example, we consider the elliptic GinSE potential
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.W e(z, z̄) = 1

1 − τ 2
(|z|2 − τ Re z2), τ ∈ [0, 1). (10.20) 

The associated monic orthogonal polynomials and norms are given by 

.pek(z) =
)τ

4

)k/2
Hk

) z√
τ

)
, hek =

/
1 − τ 2

k!
2k+1

π, (10.21) 

see e.g. [ 24, Lem. 7]. Then by using the recurrence relation 

.zpek(z) = pek+1(z) + τ

2
k pek−1(z) (10.22) 

and Proposition 10.2, we have  

. qe
2k+1(z) = pe2k+1(z), qe

2k(z) =
kE

l=0

k!
l! p

e
2l(z),

r ek = (1 − τ)
/
1 − τ 2

(2k + 1)!
22k+1

π. (10.23) 

Note that (10.15) can be recovered by taking the .τ → 0 limit of (10.23). 

10.4 Correlation Functions and Sum Rules 

The .k-point correlation function .ρs
(k),N of the ensemble (10.4) is given  by  

.ρs
(k),N (z1, . . . , zk) := N !

(N − k)!
1

ZH

N (W )

{
CN−k

e−HH(z1,...,zN )

N|  |
j=k+1

d2z j . (10.24) 

As an analogue of Proposition 7.5, a Pfaffian formula for .ρs
(k),N follows [353]. 

Proposition 10.3 Let.q j be the skew-orthogonal polynomials as specified in (10.11). 
Using these polynomials, define 

.κs
N (z, w) =

N−1E
k=0

q2k+1(z)q2k(w) − q2k(z)q2k+1(w)

rk
. (10.25) 

Then we have 

.ρs
(k),N (z1, . . . , zk) =

k|  |
j=1

(z j − z j )Pf [K s
N (z j , zl)] j,l=1,...,k, (10.26)
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where 

. K s
N (z, w) = e−W (z,z̄)−W (w,w̄)

/
κs
N (z, w) κs

N (z, w̄)

κs 
N (z̄, w)  κs 

N (z̄, w̄) 

] 

. (10.27) 

Using Proposition 10.3 and (10.15), it follows that the matrix entry .κg
N (z, w)— 

referred to as the pre-kernel—of the GinSE is given by 

. κ
g
N (z, w) =

√
2

π

( N−1E
k=0

(
√
2z)2k+1

(2k + 1)!!
kE

l=0

(
√
2w)2l

(2l)!! −
N−1E
k=0

(
√
2w)2k+1

(2k + 1)!!
kE

l=0

(
√
2z)2l

(2l)!!
)

.

(10.28) 

One strategy for analysing the double summation is to derive a suitable differential 
equation for the kernel. This idea essentially goes back to an early work [437] of  
Mehta and Srivastava. 

As an analogue of Proposition 7.6, the following holds true; see [ 22]. 

Proposition 10.4 Letting .̂κ
g
N (z, w) := e−2zwκ

g
N (z, w), we have 

. ∂z κ̂
g
N (z, w) = 2(z − w)̂κ

g
N (z, w) + 2

π

L(2N ; 2zw)

(2N − 1)! − 1

π
(2z)2Ne−z2 L(N ;w2)

(2N − 1)! .
(10.29) 

Proof Note that 

. ∂z

N−1E
k=0

(
√
2z)2k+1

(2k + 1)!!
kE

l=0

(
√
2w)2l

(2l)!! = √
2

N−1E
k=0

(
√
2z)2k

(2k − 1)!!
kE

l=0

(
√
2w)2l

(2l)!!

= √
2

N−1E
k=1

(
√
2z)2k

(2k − 1)!!
k−1E
l=0

(
√
2w)2l

(2l)!! + √
2

N−1E
k=0

(
√
2z)2k

(2k − 1)!!
(
√
2w)2k

(2k)!! .

Rearranging the terms, we have 

. ∂z

N−1E
k=0

(
√
2z)2k+1

(2k + 1)!!
kE

l=0

(
√
2w)2l

(2l)!! = 2z
N−1E
k=0

(
√
2z)2k+1

(2k + 1)!!
kE

l=0

(
√
2w)2l

(2l)!!

+ √
2

N−1E
k=0

(
√
2z)2k

(2k − 1)!!
(
√
2w)2k

(2k)!! − √
2

(
√
2z)2N

(2N − 1)!!
N−1E
l=0

(
√
2w)2l

(2l)!! .

Similarly, we have 

.∂z

N−1E
k=0

(
√
2w)2k+1

(2k + 1)!!
kE

l=0

(
√
2z)2l

(2l)!!
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= 2z 
N−1E 

k=0 

(
√
2w)2k+1 

(2k + 1)!! 
kE 

l=0 

(
√
2z)2l 

(2l)!! − 2z 
N−1E 

k=0 

(
√
2w)2k+1 

(2k + 1)!! 
(
√
2z)2k 

(2k)!! . 

Combining above identities, we conclude (10.29). U 

As a consequence of Proposition 10.4, the uniform asymptotic expansion (3.31) 
can be used to derive a linear inhomogeneous differential equation of order one 
satisfied by the limiting correlation kernels. Then the anti-symmetry of the limiting 
pre-kernels characterises a unique solution, which in turn determines the limiting 
kernels; see [ 22, 118]. 

For the bulk case, we have 

. ρ
s,b
(k),∞(z1, . . . , zk)

:= lim
N→∞ ρs

(k),N (z1, . . . , zk) =
k|  |
j=1

(z j − z j )Pf [K s,b
∞ (z j , zl)] j,l=1,...,k, (10.30) 

where .K s,b∞ is of the form 

. Ks,b∞ (z, w) := e−|z|2−|w|2
/
κ
s,b∞ (z, w) κ

s,b∞ (z, w̄)

κ
s,b∞ (z̄, w)  κs,b∞ (z̄, w̄) 

] 
, κ

s,b∞ (z, w)  := 
ez

2+w2 

√
π 

erf(z − w). 

(10.31) 
In particular, this gives the bulk-scaled density 

.ρ
s,b
(1),∞(x + iy) = 4

π
yF(2y), (10.32) 

where.F(z) := e−z2
{ z
0 et

2
dt is Dawson’s integral function. As.y → 0+, this tends to 

zero with leading term.
8y2

π
, while for.y → ∞ this limits to. 

1
π
which is the interior bulk 

density away from the real axis. There is a peak in this profile, as is consistent with the 
sum rule (10.39) below. It can be checked from (10.31) that the truncated two-point 
correlation implied by (10.30) decays like a Gaussian in all directions. The limiting 
pre-kernel (10.31) first appeared in the second edition of Mehta’s book [436] using  
a different approach; cf. [416, Lem. 3.5.2]. Later, this was rederived by Kanzieper 
in [353] using a similar method described above. 

Generally, if each .Im(z j ), .( j = 1, . . . , k) in (10.32) is taken to infinity, but with 
the relative distance between each .zi still finite, the RHS simplies to the Pfaffian of 
the anti-symmetrix matrix (8.1), as for GinOE. We know that this in turn reduces to 
the determinantal formula implied by Proposition 2.3 for bulk-scaled GinUE. 

Contrary to the bulk case, the analogous result for the edge case appeared in the 
literature [ 22] only recently. The same Pfaffian structure was found 

. lim
N→∞ ρs

(k),N (
√
N + z1, . . . ,

√
N + zk) =

k|  |
j=1

(z j − z j )Pf [K s,e
∞ (z j , zl)] j,l=1,...,k,

(10.33)
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with .K s,e∞ as for .K s,b∞ in (10.33) but with .κs,b∞ replaced by .κs,e∞ throughout, where 

.κs,e
∞ (z, w) := e2zw

π

{ 0

−∞
e−t2 sinh(2t (w − z))erfc(z + w − t) dt. (10.34) 

Setting .w = z̄, this gives for the density 

.ρ
s,e
(1),∞(x + iy) = −2y

π

{ 0

−∞
e−s2 sin(4sy)erfc(2x − s) ds. (10.35) 

Note here that unlike the bulk case, the edge scaling limit does not have the translation 
invariance along the horizontal .x-direction. We also remark that 

.ρ
s,e
(1),∞(x + iy) ∼ erfc(2x)

2π
+ e−4x2

8π3/2y2
+ · · · , y → ∞. (10.36) 

The leading term of the RHS of (10.36) as a function of. x coincides with the limiting 
edge density of the GinUE up to scaling. As in Sect. 8.1, such a limiting relation 
holds too for the general.k-point function, which in particular exhibits a deformation 
from a Pfaffian to a determinant; see [ 22, Cor. 2.2].  

A structural feature, highlighted in [ 22, 119], is that the kernels (10.31) and (10.34) 
can be expressed in a unified way 

.κs
∞(z, w) := ez

2+w2

√
π

{
E
W ( fw, fz)(u) du, (10.37) 

where .W ( f, g) := f g, − g f , is the Wronskian, and 

. fz(u) := erfc(
√
2(z − u))

2
, E :=

}
(−∞,∞) for the bulk case,

(−∞, 0) for the edge case. 
(10.38) 

As in Sect. 7.5, the expression (10.37) allows one to observe the bulk limiting form 
from the edge limiting form with .z, w → −∞. 

We now discuss sum rules for the limiting densities (10.32) and (10.35); 
cf. Propositions 4.3 and 4.4. 

Proposition 10.5 We have 

.

{ ∞

−∞

)
ρ
s,b
(1),∞(x + iy) − 1

π

)
dy = 0 (10.39) 

and 

..

{
(−∞,∞)2

)
ρ
s,e
(1),∞(x + iy) − ρ

s,b
(1),∞(x + iy)χx<0

)
dx dy = −1

8
. (10.40)
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Proof The first identity (10.39) immediately follows from the property of Dawson’s 
integral.F(2y)/2 = {

(1 − 4yF(2y)) dy. For the second identity (10.40), letting. DR

be a disk of radius .R > 0, we first observe that by the change of variables, 

. 

{
DR

)
ρ
s,b
(1),∞(x + iy)χx<0 − ρ

s,e
(1),∞(x + iy)

)
dx dy

−
{
DR

)
ρ
s,b
(1),∞(x + iy) − 1

π

)
χx<0 dx dy

=
{
DR

)χx<0

π
− ρ

s,e
(1),∞(x + iy)

)
dx dy =

{
DR

) 1

2π
− ρ

s,e
(1),∞(x + iy)

)
dy dx

= 1

π

{
DR

)1
2

+ 2y
{ 0

−∞
e−s2 sin(4sy)erfc(2x − s) ds

)
dy dx

= 1

π

{
DR

)1
2

− 2y
{ ∞

0
e−s2 sin(4sy)

)
2 − erfc(2x − s)

)
ds

)
dy dx .

By adding the last two expressions and using 

.4y
{ ∞

0
e−s2 sin(4sy) = 4yF(2y) = πρ

s,e
(1),∞(x + iy), (10.41) 

it follows that 

.. 

{
DR

)
ρ
s,b
(1),∞(x + iy)χx<0 − ρ

s,e
(1),∞(x + iy)

)
dx dy

= 1

π

{
DR

y
) { ∞

−∞
e−s2 sin(4sy)erfc(2x − s) ds

)
dy dx .

Furthermore, by using .
{ ∞
−∞ e−s2 sin(4sy) ds = 0 and the principal value integral 

. lim
R→∞

{ R

−R
erf(s − 2x) dx = −s, (10.42) 

we obtain 

. − lim
R→∞

1

π

{
DR

y
) { ∞

−∞
e−s2 sin(4sy)erf(s − 2x) ds

)
dy dx

= 1

π

{ ∞

−∞
y
) { ∞

−∞
e−s2 sin(4sy)s ds

)
dy = 2√

π

{ ∞

−∞
y2 e−4y2 dy = 1

8
,

which leads to (10.40). U 

Note that compared to the analogous identity (4.12) for the GinUE edge scaling 
limit, the RHS of (10.40) takes on the nonzero value.−1/8. Curiously, the companion
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identity to (4.12), namely Proposition 4.4 with .β = 2, which relates to the dipole 
moment of the edge density profile takes on the nonzero value .−1/8π . 

We remark that the bulk multipole screening sum rule analogous to (8.17) 

.

{
C+

w2pρ
s,b T
(2),∞(z, w) d2w = −z2pρs,b

(1),∞(z), p ∈ Z≥0, (10.43) 

has been established in [244]. 

10.5 Elliptic GinSE 

The elliptic GinSE is defined in a similar way to Sect. 7.9. Namely, for a parameter 
. τ , .0 ≤ τ < 1, set  

.X = √
1 + τ S + √

1 − τ A. (10.44) 

Here . S is a member of Gaussian symplectic ensemble (GSE) of Hermitian matrices 
(see e.g. [237, Sect. 1.3.2], whereas. A is a member of anti-symmetric GSE. Its eigen-
value PDF is of the form (10.4) with the elliptic GinSE potential (10.20) previously 
mentioned. 

As discussed in Sect. 10.2, the global-scaled eigenvalues .z j → √
Nz j distribute 

in a way to minimise the energy (10.6) with the potential (10.20). This minimisation 
problem can be exactly solved, which gives that the limiting spectrum is given by 
the ellipse 

.

}
(x, y) ∈ R

2 :
) x

1 + τ

)2 +
) y

1 − τ

)2 ≤ 1
}
; (10.45) 

see e.g. Sect. 2.3 and [114]. As in the elliptic GinU/OE, this is the elliptic law for 
the elliptic GinSE. 

Turning to the correlation functions, by combining (10.25) and (10.23), one can 
show that the associated pre-kernel .κe

N (z, w) is evaluated as 

. κe
N (z, w) =

√
2

π(1 − τ)
√
1 − τ 2

N−1E
k=0

(τ/2)k+1/2

(2k + 1)!! H2k+1

) z√
τ

) kE
l=0

(τ/2)l

(2l)!! H2l

) w√
τ

)

−
√
2

π(1 − τ)
√
1 − τ 2

N−1E
k=0

(τ/2)k+1/2

(2k + 1)!! H2k+1

) w√
τ

) kE
l=0

(τ/2)l

(2l)!! H2l

) z√
τ

)
.

(10.46) 

It reduces to the pre-kernel .κg
N in (10.28) in the limit .τ → 0+. In the weakly non-

Hermitian regime when.τ = 1 − α2/N , the scaling limit of the correlation functions 
at the origin was derived in [353]. The analogous result at the edge of the spectrum 
was later obtained in [ 35]. (We also remark that a mapping between the elliptic GinSE
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with a fermion field theory was suggested by Hastings [318].) Fairly recently, it was 
shown in [ 26] that for a fixed. τ (also called the regime of strong non-Hermiticity), the 
universal scaling limit (10.31) appears at the origin. Let us mention that the analysis 
in [ 35, 353] was based on proper Riemann sum approximations, whereas a double 
contour integral representation was used in [ 26]. These methods provide a short way 
to find an explicit formula of the limiting pre-kernel, but it is not easy to perform the 
asymptotic analysis in a more general setup or to precisely control the error term. For 
these purposes, extending Proposition 10.4, the idea of using a proper differential 
equation was established in [118, 209], which reads as follows. 

Proposition 10.6 We have 

. ∂zκ
g
N (z, w) = 2z

1 + τ
κ
g
N (z, w) + 2

π(1 − τ 2)3/2

2N−1E
k=0

(τ/2)k

k! Hk

) z√
τ

)
Hk

) w√
τ

)

− 2

π(1 − τ 2)3/2

(τ/2)N

(2N − 1)!!H2N

) z√
τ

) N−1E
l=0

(τ/2)l

(2l)!! H2l

) w√
τ

)
.

(10.47) 

Proof (Sketch) The general idea to derive such an identity is the same as that used 
in the proof of Proposition 10.4; differentiate the pre-kernel and properly rearrange 
the indices in the summations to extract the pre-kernel itself multiplied by . z up to 
proportionality, and then collect all the remaining additive terms. Contrary to the 
proof of Proposition 10.4, the well-known functional relations 

.H ,
j (z) = 2 j Hj−1(z), Hj+1(z) = 2zHj (z) − H ,

j (z) (10.48) 

of the Hermite polynomials are crucially used in the computations and we refer to 
[118] for more details. U 

We also refer to [127] for the Laguerre version of such an identity. 
We now bring to attention the fact that the first inhomogeneous term in (10.47) 

corresponds to the kernel of the elliptic GinUE with .N |→ 2N ; see Proposition 2.5. 
(A similar feature for the elliptic GinOE is highlighted above Proposition 7.12.) As 
will be discussed below, such a relation can be observed in further extensions to 
GinSE. We also refer the reader to [ 6] for a similar relation for the Hermitian random 
matrix models. 

Using Proposition 10.6, one can derive the scaling limits of the elliptic GinSE cor-
relation functions in various regimes. For . τ fixed, it was shown in [118] that for the 
real axis centred bulk and edge of the spectrum, the universal scaling limits (10.31) 
and (10.34) arise. Furthermore, in the edge scaling limits, as a counterpart of Propo-
sition 2.6, the subleading correction term was derived. In the weakly non-Hermitian 
regime when.τ = 1 − α2/N , the bulk and edge scaling limits were obtained in [119], 
extending previous results [ 35, 353];  see also [209]. The first paper on this topic [369] 
used supersymmetry techniques to deduce the density profile perpendicular to the
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real axis in the bulk, and was motivated by numerical findings in quantum chromody-
namics (QCD) [310]. A structural finding in [119] shows that the limiting pre-kernel 
in the bulk scaling limit is of the unified Wronskian form (10.37) with 

. fz(u) := 1

2π

{ C(α)

−C(α)

e−t2/2 sin(2t (z − u))
dt

t
, E := R, (10.49) 

where .C(α) is an explicit constant depending on . α and on the position where we 
zoom the point process. In the same spirit, the edge scaling limit is again of the form 
(10.37) with 

. fz(u) := 2α
{ u

0
eα3(z−t)+ α6

12 Ai
)
2α(z − t) + α4

4

)
dt, E := (−∞, 0). (10.50) 

Remark 10.2 Note that the bulk scaling limit (10.49) has again the translation invari-
ance. Conversely, it was shown in [ 22] that if a scaling limit of (10.4) satisfies the 
translation invariance, then it is of the form (10.49). The main idea for this char-
acterisation was a use of Ward’s identity for the ensemble (10.4), which says that 
.ENW

+
N [ψ] = 0, where .ψ is a test function and 

. W+
N [ψ] :=

E
j /=k

ψ(z j )
) 1

z j − zk
+ 1

z j − z̄k

)
+ 2

NE
j=1

ψ(z j )

z j − z̄ j

− 2
NE
j=1

[∂zW · ψ](z j ) +
NE
j=1

∂ψ(z j ); (10.51) 

cf. (5.21). Here, .[∂zW · ψ](z j ) := ∂zW (z)|z=z j ψ(z j ) and . ∂ψ(z j ) = ∂zψ(z)|z=z j .

10.6 Partition Functions and Gap Probabilities 

Recall that the normal matrix ensemble (10.5) forms a determinantal point process. 
This integrable structure allows an explicit expression of the partition function; see 
(5.15). Similarly, using the Pfaffian structure (10.26) and de Bruijn type formulas 
[110], one can express the partition function .ZH

N (W ) in terms of the skew norms 
(10.11) as  

.ZH

N (W ) =
N−1|  |
j=0

r j ; (10.52) 

see e.g. [ 26, Remark 2.5]. For instance, for the elliptic GinSE, it follows from (10.23) 
that the associated partition function .ZH

N (W e) is given by 

.ZH

N (W e) = ((1 − τ)
√
1 − τ 2π)N

2N 2

N−1|  |
k=0

(2k + 1)!. (10.53)
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This explicit expression leads to the following asymptotic expansion; cf. Proposi-
tion 4.1 for its counterpart for .ZC

N (W g). 

Proposition 10.7 We have 

. log ZH

N (W e) = N2 log N − 3

2
N2 + 1

2
N log N +

) log(4π3(1 − τ)3(1 + τ))

2
− 1

2

)
N

− 1

24
log N + 5 log 2

24
+ 1

2
ζ ,(−1) − 1

48N
− 1

1920N2 + O(
1

N3 ).

(10.54) 

In particular, we have 

. log ZH

N (NW g) = −3

2
N 2 − 1

2
N log N +

) log(4π3)

2
− 1

2

)
N

− 1

24
log N + 5 log 2

24
+ 1

2
ζ ,(−1) − 1

48N
− 1

1920N 2
+ O(

1

N 3
).

(10.55) 

Proof One can rewrite (10.53) in terms of the Barnes .G-function as 

. ZH

N (W e) = ((1 − τ)
√
1 − τ 2π)N

23N 2/2−N/2

G(2N + 1)

G(N + 1)

= ((1 − τ)3(1 + τ)π)N/2G(N + 1)
G(N + 3

2 )

G( 32 )
.

Then the asymptotic behaviour (10.54) follows from the knowledge of the known 
asymptotic expansion of the .G-function (see e.g. [226, Th. 1]). The second expan-
sion (10.55) immediately follows from (10.54) with .τ = 0, where the additional 
difference .(N 2 + N ) log N is due to the simple scaling .z j |→ √

Nz j . U 

We now discuss the asymptotics of the partition functions in a more general setup. 
For a fixed. Q, the asymptotic expansion of the partition function.ZC

N (NQ) in (10.5) 
was discussed in Sect. 5.3 in detail. For radially symmetric potentials, the use of 
(10.52) and (10.13) was made in [125] to show that 

. log ZH

N (NQ) = −2N 2 IQ[μQ] − 1

2
N log N

+
) log(4π2)

2
− 1

2
EQ[μQ] −UμQ (0)

)
N (10.56) 

. − χ

24
log N +

)χ

2
ζ ,(−1) + 5

24
log 2

)
+ O(1), (10.57) 

where 

.EQ[μQ] :=
{
C

μQ(z) logμQ(z) d2z (10.58)
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is the entropy of the equilibrium measure .μQ . Here  .χ is the Euler index of the 
droplet; for instance.χ = 1 for the disk and.χ = 0 for the annulus. Compared to the 
expansion (5.17) of  .ZC

N (NQ), a notable difference is the additional .UμQ (0) in the 
.O(N ) term, which is the logarithmic potential 

.Uμ(z) =
{

log
1

|z − w| dμ(w) (10.59) 

evaluated at the origin. This term is closely related to the notion of renormalised 
energy of the Hamiltonian (10.3) (cf. [394]) since it can be checked that 

.UμQ (0) = −
{

log |w − w̄| dμQ(w). (10.60) 

For a radially symmetric potential .q(r) = Q(|z| = r) with the droplet specified 
by the radii (10.8), we have 

. IQ[μQ] = q(R1) − log R1 − 1

4

{ R1

R0

rq ,(r)2 dr,

UμQ (0) = − log R1 + q(R1) − q(R0)

2
. (10.61) 

This gives that for .Q = W g, 

.IQ[μQ] = 3

4
, UμQ (0) = 1

2
, EQ[μQ] = − logπ. (10.62) 

Substituting these in the formula (10.57) reclaims (10.55). 
We now discuss a relation between .ZC

N and .ZH

N . 

Proposition 10.8 For a radially symmetric potential .WC(z, z̄) ≡ ωC(|z|), let  

.WH(z, z̄) ≡ ωH(|z|) := 1

2
ωC(|z|2). (10.63) 

Then we have 
.ZH

N (WH) = ZC

N (WC). (10.64) 

Proof By the change of variables, 

. 4
{ ∞

0
r4k+3e−2ωH(r) dr = 2

{ ∞

0
r2k+1e−2ωH(

√
r) dr = 2

{ ∞

0
r2k+1e−ωC(r) dr.

Then result now follows from Proposition 10.1, (5.15) and (10.52). U
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As an example, note that by (5.15), we have 

.ZC

N (2|z|) =
N−1|  |
k=0

2π
{ ∞

0
r2k+1e−2r dr =

N−1|  |
k=0

(2k + 1)!
22k+1

π. (10.65) 

Then one can observe that this coincides with (10.53) with .τ = 0. We also mention 
that if the droplet .SH associated with .WH is 

.SH = {z ∈ C : R0 ≤ |z| ≤ R1}, (10.66) 

then its counterpart .SC for .WC is given by 

.SC = {z ∈ C : R2
0 ≤ |z| ≤ R2

1}. (10.67) 

This can be directly checked using (10.8). Such a relation holds in general beyond 
the radially symmetric potentials; see [ 73, Lem. 1].  

As a consequence of Proposition 10.8, one can obtain various statistics of the 
ensemble (10.4) from the analogous results for (10.5). To be more concrete, let us 
focus on the gap probabilities. 

Proposition 10.9 For a radially symmetric domain . D, let  .EWH

N (0; D) be the prob-
ability that the ensemble (10.4) with a potential .WH has no particle inside . D. We  
define .EWC

N in a same way  for  (10.5). Then we have 

.EWH

N (0; D) = EWC

N (0; D̃), (10.68) 

where .D̃ is the image of .D under the map .z |→ z2. 

Proof Let us write 

. WH,D(z, z̄) :=
}
WH(z, z̄) if z ∈ Dc,

+∞ otherwise,
, W

C,D̃(z, z̄) :=
}
WC(z, z̄) if z ∈ D̃c,

+∞ otherwise.

Then by Proposition 10.8, 

.EH

N (0; D) = ZH

N (WH,D)

ZH

N (WH)
= ZC

N (W
C,D̃)

ZC

N (WC)
= EWC

N (0; D̃), (10.69) 

which completes the proof. U 

This proposition is particularly helpful in the context of the Mittag–Leffler ensem-
bles. They are two-parameter generalisations of the GinU/SE for which the associated 
potential is of the form 

.ωML(|z|) = |z|2b − 2α log |z|, b > 0, α > −1. (10.70)
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For the complex Mittag–Leffler ensemble, the precise asymptotic behaviours of the 
gap probabilities were obtained in [149]; cf. see Sect. 3.1.1 for a summary and 
further references for the GinUE case when.α = 0, b = 1. Then as a consequence of 
Proposition 10.9, the analogous results for the symplectic Mittag–Leffler ensemble 
immediately follow. In particular, the gap probabilities of the GinSE can be obtained 
from the result of a complex Mittag–Leffler ensemble with .α = 0, b = 1/2. (See 
also [ 36] for an earlier work.) Beyond the gap probabilities, Proposition 10.8 can be 
used to investigate various counting statistics [ 20, 116, 150] as well as fluctuations 
of the maximal modulus [199, 469]. 

Remark 10.3 1. The Neumann boundary conditions disk Coulomb gas with Boltz-
mann factor (10.9) is exactly solvable for.β = 2 [504]. In distinction to the expansion 
(10.55), it is found that the large .N form of the logarithm of the partition function 
is at order .N and order .log N the same for the GinUE (4.3), although now there is 
also an .O(

√
N ) surface tension term [518, Eq. (3.42)]. Let us also mention that a 

generalisation to a two-component Coulomb gas and its Pfaffian structure have been 
studied in [346]. 
2. The simple explicit formula involving (10.12) of Proposition 10.1 for the skew-
orthogonal polynomials normalisations in the radial case facilitates the derivation 
of a central limit theorem for a radially symmetric linear statistic in GinSE [120, 
Appendix B]. The covariance is again given by (3.21) except that the boundary term 
therein is not present (as a consequence of the restriction to a radial potential), and 
with the bulk term now multiplied by a factor of .1/2. 

10.7 GinSE Singular Values 

Consider a.p × N (.p ≥ N ) rectangular GinSE matrix. X . As a complex matrix,. X is of 
size.2n × 2N . Forming.X†X gives the well known construction of quaternion Wishart 
matrices [237, Sect. 3.2.1]. The .2N eigenvalues of .X†X—which are the square 
singular values of. X—are doubly degenerate. Let the.N independent eigenvalues be 
denoted by .{s j }. Their PDF is proportional to (see [237, Proposition 3.2.2]) 

.

N|  |
l=1

s2(p−N )+1
l e−2sl

|  |
1≤ j<k≤N

(sk − s j )
4. (10.71) 

Upon the global scaling.X†X |→ 1
N X†X , and with.p = αN (.α > 1), as for (8.18) 

the smallest and largest tend almost surely to .(
√

α ∓ 1 + 1)2, as for the real case. 
This coincidence can be understood as being a consequence of .{s j } in both (9.43) 
and (10.71) as being well approximated by the zeros of the Laguerre polynomials 
.L p−N

N (px) [192, 328]. As in the real case, we thus have that the condition number 
tends to a constant in the circumstance that .α > 1. On the other hand, this breaks 
down for .α = 1. Specifically, we will consider the square case .p = N . It seems
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that the limiting condition number has not previously been reported in the literature. 
The starting point is to calculate the PDF for the smallest eigenvalue. This is equal 
to the differentiation operation .− d

ds applied to the gap probability . EqW
N (0, (0, s))

of there being no eigenvalues from the origin to a point . s. The latter is defined by 
integrating the PDF (10.71) over .sl ∈ (s,∞), .(l = 1, . . . , N ). Changing variables 
.sl |→ sl + s then shows 

. EqW
N (0, (0, s)) = e−2Ns

CN

{ ∞

0
ds1 · · ·

{ ∞

0
dsN

N|  |
l=1

(s + sl)e
−2sl

|  |
1≤ j<k≤N

(sk − s j )
4,

where.CN is such that the LHS equals unity for.s = 0. According to [237, Eq. (13.44) 
with.a = 0,m = 1, β = 4, t1 = −s], the normalised multiple integral is equal to the 
hypergeometric polynomial .1F1(−N ; 1/2;−s), which in turn is proportional to the 
Laguerre polynomial .L(−1/2)

N (−s). From the confluent limit of the hypergeometric 
polynomial, we conclude the simple result 

. lim
N→∞ EqW

N (0, (0, x/N )) = e−2x
0F1(1/2; x) = e−2x cosh(2

√
x); (10.72) 

this is equivalent to [233, Eq. (2.15a)]. Consequently, the scaled condition number 
.κN/(2N ) has the limiting PDF 

. − 2

y3
d

dx

)
e−2x cosh(2

√
x)

)|||
x=1/y2

.

In keeping with our previous discussion relating to singular values, we record here 
too the explicit form of the distribution of .| det X |2 for .X a square GinSE matrix 
[269, Proposition 2 with .β = 4, σ 2

l = 1/4], 

.| det X |2 d=
N|  |
j=1

1

4
χ2
4 j . (10.73) 

Here we have defined .| det X |2 = |  |N
l=1 sl , even though the eigenvalues of .X are 

doubly degenerate. One approach to the derivation of (10.73) is to make use of 
knowledge of the joint PDF (10.71) and the Laguerre weight version of Selberg’s 
integral to compute first the Mellin transform of the distribution; recall (6.12). 

10.8 GinSE Eigenvectors 

Consider an eigenvalue.z j of a GinSE matrix, and let.e j , r j denote the corresponding 
left and right eigenvectors. As for GinUE and GinOE eigenvectors, of interest is the 
matrix of overlaps (6.19). In particular, the considerations of the paragraph above
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Proposition 6.5 are again valid, to allow for the quaternion structure. Thus while 
.r j can be chosen as the first standard basis vector (now in .C2N ), we now require 
.e1 = (b1, c1, . . . , bN , cN ) where .b1 := 1, .c1 := 0 so that 

. O11 = (e1, e1) =
NE

k=1

(|bk |2 + |ck |2).

Moreover, with.Z pq =
[

z pq wpq

−w̄pq z̄ pq

]
now a.2 × 2 block element of the strictly upper 

triangular portion of the triangular matrix .Z in the block Schur decomposition 
.{bk, ck}, and regarding now .E1 as a left eigenvector of .Z with eigenvalue .z1 (this 
does not effect .O11), it follows that .{bk, ck} satisfy the coupled recurrence 

. bp = 1

z1 − z p

p−1E
k=1

(bkzk,p − ckw̄k,p), cp = 1

z1 − z p

p−1E
k=1

(bkwk,p + ck z̄ p,q),

subject to the initial conditions .b1 = 1 and .c1 = 0. 
Writing now .e1 = e

(N )
1 and denoting by .e(n)

1 the truncation of this vector ending 
with .bn, cn , it follows that 

. ||e(n+1)
1 ||2 = ||e(n)

1 ||2
(
1 + 1

|z1 − zn+1|2
|||

NE
q=1

(b̃k zk,p − c̃kwk,p)

|||2

+ 1

|z1 − zn+1|2
|||

NE
q=1

(b̃kwk,p + c̃k zk,p)
|||2

)
,

where 

. b̃k = bk
/) nE

q=1

(|bq |2 + |cq |2)
)1/2

, c̃k = ck
/) nE

q=1

(|bq |2 + |cq |2)
)1/2

.

Taking into consideration that.(b̃1, c̃1, . . . , b̃N , c̃N ) is a unit vector and each. zk,p, wk,p

is an independent standard complex Gaussian, the analogue of (6.22) now follows 
[ 27, 199]: 

.O11
d=

N|  |
n=2

)
1 + |Xn|2

|z1 − zn|2 + |Yn|2
|z1 − zn|2

)
. (10.74) 

Here .Xn,Yn are independent standard complex Gaussians. 

Remark 10.4 1. A Pfaffian formula for the average of (10.74) over.{z j }Nj=2 is given 
in [ 27]. To obtain from (10.74) the analogue of (6.22) one requires knowledge of 
the distribution of .{|zn|2}Nn=2 conditioned on .z1 = 0. The first result of this type,
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which is an easy consequence of (10.52) and the normalisation formula in Proposi-

tion 10.1 gives that [469] .{|zn|2}Nn=1
d={L[2n; 1]}Nn=1. As shown  in  [199], this same 

result holds true conditioned on .z1 = 0 with the sets now beginning at .n = 2. From  
this, conditioning on .z1 = 0 and averaging over .{|zn|2}Nn=2 in (10.74) gives [199] 

.(O11)|z1=0
d= 1/B[4, 2N ] and hence .

1
2N (O11)|z1=0

d→ 1/L[4; 1]. 
2. In [ 27], evidence is given for the validity of the analogue of the large .N forms 
(6.28) (with .M = 1) and (6.22) (with respect to the leading-order term at least). 
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Chapter 11 
Further Extensions to GinSE 

The elliptic extension of GinSE considered in the previous chapter gives rise to a 
potential which is not spherically symmetric. In contrast, the extensions of GinSE 
to be considered in this chapter—specifically the induced GinSE relating to a polar 
decomposition involving a rectangular generalisation of GinSE and a random Haar 
symplectic unitary matrix, the quaternion spherical ensemble of matrices . G−1

1 G2

with .G1,G2 both GinSE matrices, a sub-block of a Haar symplectic unitary matrix, 
and products of GinSE matrices—all have the common feature that the corresponding 
potential is spherically symmetric. This allows for a unified treatment in relation to 
the corresponding skew-orthogonal polynomials. Furthermore, in each case the pre-
kernel can be shown to satisfy an inhomogeneous partial differential equation, from 
which scaled limits can be computed. 

11.1 Common Structures 

The eigenvalue PDF of several extensions to GinSE discussed in this section is of the 
form (10.4) with a radially symmetric potential .W (z, z̄) = ω(|z|). Before moving 
on to each example, let us draw together some common structures. 

We first note the following consequence of Proposition 10.1 and (10.25). 

Proposition 11.1 For a radially symmetric potential .W (z, z̄) = ω(|z|) the associ-
ated pre-kernel is given by 

.κs
N (z, w) = 1

π

E

0≤l≤k≤N−1

a2k+1a2l(z
2k+1w2l − z2lw2k+1), (11.1) 
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where 

.a2k+1 := 1√
2

h2k
h2k+1

h2k−2

h2k−1
· · · h0

h1
, a2l := 1√

2

h2l−1

h2l

h2l−3

h2l−2
· · · h1

h2

1

h0
. (11.2) 

Due to Proposition 11.1, we have  

. ρs
(1),N (z) = e−2ω(|z|)

π

×
E

0≤l≤k≤N−1

a2k+1a2l(z
2k+1 z̄2l+1 − z2l z̄2k+2 − z2k+2 z̄2l + z2l+1 z̄2k+1). (11.3) 

The asymptotic behaviour of.ρs
(1),N (z) in the global scaling.W = NQ can be deduced 

from the Coulomb gas approach previously discussed in Sect. 10.2, and so is 
independent of knowledge of (11.3). It gives 

. lim
N→∞

ρs
(1),N (z)

N

|||
W=NQ

= ∂z∂z̄ Q(z)

π
χz∈SQ , (11.4) 

where we recall that .SQ is the droplet. 
As a feature dependent on (11.3), we now consider the radial density 

.ρ̂s
(1),N (r) := 1

2π

{ 2π

0
ρs

(1),N (reiθ ) dθ = e−2ω(r)

π

N−1E

k=0

r4k+2

h2k+1
. (11.5) 

Here the second identity readily follows from (11.3) and .2akak+1 = 1/hk+1. This  
same formula, with .2k + 1 in the summation replaced by . k, holds for the radial 
density of the normal matrix ensemble (10.5), due to the determinantal structure 
(5.18). A consequence of (11.5) is that the expected number of eigenvalues . E s

N (R)

in the disk of radius .R > 0 can be expressed as 

.E s
N (R) = 2π

N−1E

k=0

{ R
0 r2k+1e−2ω(r) dr

h2k+1
; (11.6) 

see [ 20, Proposition 1.1] for a similar expression for the number variance. Further-
more, (11.6) is consistent with the fact that in the case of a general radially symmetric 
potential, the joint density of moduli of the eigenvalues forms a permanental process; 
see e.g. [ 29]. 

In the asymptotic analysis of the pre-kernel, the differential equations (10.29) and 
(10.47) have been key. This technique will be shown to be of further utility in the 
study of the extensions of GinSE considered below.
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11.2 Induced GinSE 

The induced GinSE can be constructed in a similar way described in Sect. 9.2. For this, 
we begin with an .n × N (.n ≥ N ) Gaussian random matrix .G with independent real 
quaternion elements. Then we define .G̃ = (G†G)1/2U , where .U is a Haar unitary 
matrix with elements from the real quaternion field (see e.g. [194]). Then letting 
.L := n − N , the element distribution on .N × N matrices is proportional to 

.(det G̃†G̃)2Le−2Tr G̃†G̃; (11.7) 

see [245, Sect. 2.4]. Its eigenvalue PDF follows (10.4) with 

.W i(z, z̄) = |z|2 − 2L log |z|. (11.8) 

This can be regarded as a special case of (10.70). We remark here that when we 
consider the model as a Coulomb particle system governed by the law (10.4), we 
can allow . L to be an arbitrary real number as long as .L > −1. Let us also mention 
that the system (10.4) with (11.8) can be interpreted as a distribution of .N random 
eigenvalues of .(N + L) × (N + L) GinSE, conditioned to have zero eigenvalues 
with multiplicity . L . 

We first discuss the global scaling.z |→ √
Nz in the regime.L = Nα. As discussed 

in Sect. 10.2, the empirical measure of the eigenvalues converges to the equilibrium 
measure .μQi , where 

.Qi(z) = |z|2 − 2α log |z|. (11.9) 

Then it follows from (10.7) and (10.8) that 

. lim
N→∞ ρ i

(1),N (
√
Nz) = 1

π

(
χ|z|<√

α+1 − χ|z|<√
α

)
, (11.10) 

which agrees with the limiting density (9.7) for the induced GinOE. Notice that for 
.α = 0, we recover the circular law. 

Turning to the higher correlation functions, we first note that due to Proposi-
tion 10.1, the associated skew-orthogonal polynomials are given by 

. q i
2k+1(z) = z2k+1, q i

2k(z) =
kE

l=0

l(k + 1 + L)

l(l + 1 + L)
z2l ,

r ik = l(2k + 2 + 2L)

22k+1+2L
π; (11.11) 

cf. (10.15). Combining this with (10.25) gives rise to the pre-kernel 

.κ i
N (z, w) = 22L+1/2

π

N−1E

k=0

(
√
2z)2k+1

(2k + 1 + 2L)!!
kE

l=0

(
√
2w)2l

(2l + 2L)!!
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− 
22L+1/2 

π 

N−1E 

k=0 

(
√
2w)2k+1 

(2k + 1 + 2L)!! 
kE 

l=0 

(
√
2z)2l 

(2l + 2L)!! . (11.12) 

Taking into consideration the integrable structure, we further define the transforma-
tion 

. ̂κ i
N (z, w) = (zw)2Lκ i

N (z, w),

K̂ i
N (z, w) = e−|z|2−|w|2

[
κ̂ i
N (z, w) κ̂ i

N (z, w̄)

κ̂ i
N (z̄, w) κ̂ i

N (z̄, w̄)

]
. (11.13) 

Then by Proposition 10.3 together with basic properties of the Pfaffian, we have 

.ρ i
(k),N (z1, . . . , zk) =

k|   |

j=1

(z j − z j )Pf [K̂ i
N (z j , zl)] j,l=1,...,k . (11.14) 

The following was found in [117]. 

Proposition 11.2 We have 

. ∂z κ̂
i
N (z, w) = 2z κ i

N (z, w) + 2

π
e2zw

(l(2L + 2N ; 2zw)

l(2L + 2N )
− l(2L; 2zw)

l(2L)

)

− 23/2

π

z2N+2L

l(N + L + 1/2)
ew2

(l(N + L;w2)

l(N + L)
− l(L;w2)

l(L)

)

− 2√
π

z2L−1

l(L)
ew2

(l(N + L + 1/2;w2)

l(N + L + 1/2)
− l(L + 1/2;w2)

l(L + 1/2)

)
.

(11.15) 

Note that Proposition 11.2 with.L = 0 reduces to Proposition 10.4. For.L = 0, the  
last term in the RHS of (11.15) vanishes since .limL→0 1/l(L) = 0. As previously 
remarked below Proposition 10.6, one can notice again that the first inhomogeneous 
term in (11.15) coincides with the kernel of the induced GinUE with .N |→ 2N up 
to a weight function; see Sect. 2.4. 

As in Sect. 10.4, the uniform asymptotic expansion (3.31) can be used to derive 
various scaling limits. It then follows that for .L = αN with .α > 0, the universal 
scaling limits (10.31) and (10.34) appear in the bulk and edge of the spectrum. 
Another interesting regime is the case when . L is fixed while .N → ∞. In this case, 
the scaling limit at the origin should be treated separately since the potential (11.8) 
reveals a conical singularity. This was investigated in [ 22]. 

Proposition 11.3 For a fixed .L > −1, we have 

. lim
N→∞ ρ i

(k),N (z1, . . . , zk) =
k|   |

j=1

(z j − z j )Pf [K s,L
∞ (z j , zl)] j,l=1,...,k, (11.16)
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where 

.K s,L
∞ (z, w) := e−|z|2−|w|2

[
κs,L∞ (z, w) κs,L∞ (z, w̄)

κs,L∞ (z̄, w) κs,L∞ (z̄, w̄)

]
. (11.17) 

Here, 

. κs,L
∞ (z, w) = 2

π
(2zw)2L

{ 1

0
s2L

(
ze(1−s2)z2 − we(1−s2)w2

)
E2,1+2L((2szw)2) ds,

(11.18) 
where .Ea,b(z) := E∞

k=0 z
k/l(ak + b) is the two-parametric Mittag–Leffler func-

tion. This can be rewritten in terms of the incomplete gamma function as 

. κs,L
∞ (z, w) = 1

π

{ 1

0
(ze(1−s2)z2 − we(1−s2)w2

)

×
(
e2szw

γ (2L; 2szw)

l(2L)
+ (−1)−2Le−2szw γ (2L;−2szw)

l(2L)

)
ds.

(11.19) 

We mention that if .2L is a non-negative integer, the pre-kernel .κs,L∞ can also be 
expressed in terms of error functions. (Cf. See also [ 14] for a different way to express 
the correlation functions as a ratio of certain Pfaffians.) Namely, if. L is a non-negative 
integer, we have 

. κs,L
∞ (z, w) = ez

2+w2

√
π

erf(z − w) + 1

π

E

0≤l<k≤L−1

w2k z2l+1 − z2kw2l+1

k!(1/2)l+1

+ ew2

√
π
erf(w)

L−1E

k=0

z2k

k! − ez
2

√
π
erf(z)

L−1E

k=0

w2k

k! . (11.20) 

Note that if.L = 0, this recovers (10.31), where we have used the convention that the 
summation with an empty index equals zero. Here . (a)n = a(a + 1) · · · (a + n − 1)
is Pochhammer’s symbol. On the other hand, if .L − 1/2 is a non-negative integer, 
we have 

. κs,L
∞ (z, w) = ez

2+w2

√
π

(erf(z − w) − erf(z) + erf(w))

+ 1

π

E

1≤l<k≤L−1/2

w2k−1z2l − z2k−1w2l

l!(1/2)k

+ ew2 − 1

π

L−1/2E

k=1

z2k−1

(1/2)k
− ez

2 − 1

π

L−1/2E

k=1

w2k−1

(1/2)k
. (11.21)
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Setting .w = z̄ gives the density, in particular reclaiming (10.32) for  .L = 0. We  
mention that other than .L = 0, the limiting .1-point function is no longer translation 
invariant along the real axis. 

Another interesting double scaling limit arises in the so-called almost-circular 
regime, where the spectrum tends to form a thin annulus of width .O(1/N ). In this  
case, the scaling limits both at the real axis as well as away from the real axis were 
obtained in [117]. For the former case, the limiting correlation functions are Pfaffians, 
which interpolate the bulk scaling limits of the GinSE and of the antisymmetric 
Gaussian Hermitian ensemble. For the latter case, the limiting correlation functions 
are determinants, and the kernel is the same as the one appearing in the bulk scaling 
limit of the weakly non-Hermitian elliptic GinUE [ 24, 276]. 

11.3 Spherical Induced GinSE 

Following [228, 434], we first consider an.(N + L) × N rectangular GinSE. X and an 
.N × N Wishart matrix with quaternion entries . A (constructed as .A = B†B with . B
an.n × N (.n ≥ N ) rectangular GinSE matrix) to introduce a particular. (N + L) × N
random matrix .Y = X A−1/2 with each entry itself a .2 × 2 matrix representation of 
a quaternion (1.1). In terms of such . Y together with a Haar distributed unitary ran-
dom matrix .U with quaternion entries, we define .G = U (Y †Y )1/2. Then the matrix 
distribution of .G is given by 

.
det(GG†)2L

det(IN + GG†)2(n+N+L)
. (11.22) 

It was shown in [227, 433, 434] that its eigenvalue PDF follows (10.4) with 

.W si(z, z̄) = (n + L + 1) log(1 + |z|2) − 2L log |z|. (11.23) 

We refer to [120, Appendix A] for a Coulomb gas picture of the spherical induced 
ensemble. 

With .L , n scaled with .N in a way that .L/N → α1 − 1 ≥ 0 and.n/N → α2 ≥ 1, 

.
W si(z, z̄)

N
∼ (α1 + α2 − 1) log(1 + |z|2) − 2(α1 − 1) log |z|. (11.24) 

Then by (10.8) one can specify inner and outer radii of the limiting spectrum, which 
leads to 

. lim
N→∞

1

N
ρsi

(1),N (z) = 1

π

α1 + α2 − 1

(1 + |z|2)2
(
χ|z|<√

α1/(α2−1) − χ|z|<√
(α1−1)/α2

)
, (11.25)



11.3 Spherical Induced GinSE 191

where the limiting eigenvalue density is obtained by taking the Laplacian of the RHS 
of (11.24); cf. (10.7). This limiting distribution is in consistent with the spherical 
induced GinUE; see Sect. 2.5. Due to the limiting form (11.25), one again notices 
that the stereographically projected eigenvalues tend to uniformly occupy a spherical 
annulus, whence the name spherical. 

Beyond the leading-order asymptotic of the eigenvalue density, a fluctuation 
formula can be found [120, Appendix B]. 

Proposition 11.4 Let .o = EN
j=1 φ(|z j |) be a radially symmetric linear statistic, 

where . z j ’s are drawn from the spherical induced ensemble as specified by (10.4) 
and (11.23). It is required that . φ be smooth and subject to a growth condition as 
.|z| → ∞. Then the corresponding characteristic function .P̂N ,B(k) satisfies 

. log P̂N ,o(k) = ikμ̃N ,o − k2σ̃ 2
B/2 + o(1), (11.26) 

where 

.μ̃N ,o = n + L

π

{

Ssi

φ(z)

(1 + |z|2)2 d
2z, σ̃ 2

o = 1

8π

{

Ssi
||∇φ(|z|)||2 d2z. (11.27) 

Here .Ssi is the droplet specified in (11.25). 

As a consequence of this proposition, the asymptotic normality of the centred 
linear statistic.o − μ̃N ,o follows. The variance is equal to one half times that for the 
GinUE in the case of a radially symmetric test statistic; see (3.21). 

We now discuss the higher-order correlation functions and their scaling limits. 
Due to the radial symmetry of the potential (11.23), the associated skew-orthogonal 
polynomials can be again constructed by using Proposition 10.1. This in turn gives 
that [240, Proposition 4] 

. qsi
2k+1(z) = z2k+1, qsi

2k(z) = l(k + L + 1)

l(k − n + 1
2 )

kE

l=0

(−1)k−l l(l − n + 1
2 )

l(l + L + 1)
z2l ,

(11.28) 
with the skew norm 

.r sik = 2l(2k + 2L + 2)l(2n − 2k)

l(2n + 2L + 2)
. (11.29) 

Now it follows from (10.25) and basic functional identities of the gamma function that 

. κsi
N (z, w)

= l(2n + 2L + 2)

22L+2n+1

N−1E

k=0

kE

l=0

z2k+1w2l

l(k + L + 3
2 )l(n − k)l(n − l + 1

2 )l(l + L + 1)
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− 
l(2n + 2L + 2) 

22L+2n+1 

N−1E 

k=0 

kE 

l=0 

w2k+1z2l 

l(k + L + 3 2 )l(n − k)l(n − l + 1 2 )l(l + L + 1)
; 

(11.30) 

see [120, Lem 3.1]. Next, we define 

._κsi
N (z, w) = (zw)2L

((1 + z2)(1 + w2))n+L− 1
2

κsi
N (z, w). (11.31) 

As in Sect. 9.3, the correlation kernel can be effectively analysed using the incomplete 
beta function . Ix , which admits the expression 

.Ix (m, n − m + 1) =
nE

j=m

(
n

j

)
x j (1 − x)n− j . (11.32) 

The following identity was found in [120, Proposition 1.1]. 

Proposition 11.5 Let 

.ζ := zw

1 + zw
, η := w2

1 + w2
. (11.33) 

Then we have 

.∂z_κsi
N (z, w) = IN (z, w) − I IN (z, w) − I I IN (z, w), (11.34) 

where 

. IN (z, w) = (1 + zw)2n+2L−1

(1 + z2)n+L+ 1
2 (1 + η2)n+L− 1

2

(2n + 2L + 1)(n + L)

×
(
Iζ (2L , 2n) − Iζ (2N + 2L , 2n − 2N )

)
, (11.35) 

. I IN (z, w) = z2N+2L

22L+2n(1 + z2)n+L+ 1
2

π l(2n + 2L + 2)

l(N + L + 1
2 )l(n − N )l(n + L + 1

2 )

×
(
Iη(L , n + 1

2 ) − Iη(N + L , n − N + 1
2 )

)
, (11.36) 

and 

. I I IN (z, w) = z2L−1

22L+2n(1 + z2)n+L+ 1
2

π l(2n + 2L + 2)

l(n + 1
2 )l(L)l(n + L + 1

2 )

×
(
Iη(L + 1

2 , n) − Iη(N + L + 1
2 , n − N )

)
. (11.37)
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From this result, we can again observe a common feature relating the correlation 
kernels of the symplectic and complex ensembles; namely, up to a weight function, 
the term .IN agrees with the correlation kernel of the complex spherical induced 
ensemble; see Sect. 2.5. Also, one can use the known asymptotic behaviours of the 
incomplete beta functions (that can be found for instance in [522, Sect. 11.3.3]) to 
derive various scaling limits. As a consequence, the bulk and edge universality with 
the limiting pre-kernels (10.31) and (10.34) were shown in [120]. Furthermore, in 
the regime where.L ≥ −1 is fixed, the scaling limit at the origin turns out to be again 
universal, with the limiting form (11.18). 

Remark 11.1 The recent work [308] on winding number statistics for chiral ran-
dom matrices encounters the average over GinSE matrices .K1, K2 of the ratio of 
determinants 

. det(α1IN + K−1
1 K2)/ det(α2IN + K−1

1 K2)

(as well as higher-order products). As noted in this reference,.K−1
1 K2 is a member of 

spherical GinSE, and so the eigenvalues have the PDF (11.22) with .n = N , L = 0, 
facilitating the computation of the average. 

Using (10.52) and (11.29), one can express the partition function .ZH

N (W si) in 
terms of the Barnes .G-function as 

. ZH

N (W si) =
( 22n+2L+1

l(2n + 2L + 2)

)N

× G(N + L + 1)

G(L + 1)

G(N + L + 3/2)

G(L + 3/2)

G(n + 1)

G(n − N + 1)

G(n + 3/2)

G(n − N + 3/2)
.

(11.38) 

Then the well-known asymptotic behaviour of the Barnes .G-function (see [226, 
Th. 1]) allows the large .N expansion of .ZH

N (W si) to be calculated explicitly. In 
the scaling .L = (α1 − 1)N and .n = α2N − 1, where the associated droplet is an 
annulus, one can directly check that the general asymptotic result (10.57) with the 
Euler characteristic.χ = 0 holds. On the other hand, for the spherical case when. L =
0, n = N , the limiting eigenvalue support is the whole complex plane with density 
.1/(π(1 + |z|2)2). In this case, it follows from straightforward computations that 

. log ZH

N (W si)

|||
L=0,n=N

= −N 2 − 1

2
N log N +

( log(4π3)

2
− 1

)
N − 1

12
log N

− 13

24
+ 5 log 2

12
+ ζ ,(−1) + 1

12N
− 61

1440N 2
+ O(

1

N 3
).

(11.39) 

This exhibits the universal coefficient .−χ/24 of the.log N in (10.57), with the Euler 
characteristic .χ = 2 for the sphere. Also, we check that the.O(N ) term is consistent 
with the general form in (10.57); see [229, Sect. 4] for the complex counterparts.
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11.4 Truncations of Haar Unitary Symplectic Matrices 

We now consider the truncations of unitary symplectic matrices, or equivalently 
unitary matrices with quaternion elements each realised as a .2 × 2 complex block 
(1.1). These unitary matrices are to be chosen with Haar measure—see [194] for  
an extended discussion on this. Their eigenvalues are all on the unit circle in the 
complex plane and are doubly degenerate. Let .AN be the .N × N sub-block of an 
.(n + N ) × (n + N ) quaternion unitary matrix drawn with Haar measure. It was 
derived in [245, Sect. 2.3, conditional of .n ≥ N ], and later in [361] unconditionally, 
that the eigenvalue PDF of .AN follows the law (10.4) with 

.W t(z, z̄) =
{

−(n − 1/2) log(1 − |z|2) if |z| < 1,

∞ otherwise.
(11.40) 

This form of potential makes all the eigenvalues completely contained inside the unit 
disk .|z| < 1, as is consistent with the effect of the truncation. We remark too that 
after the truncation the eigenvalues are no longer doubly degenerate, but rather occur 
in complex conjugate pairs. 

From the Coulomb gas viewpoint, the potential (11.40) can be interpreted as a 
situation under the presence of a hard edge. In this situation, the equilibrium problem 
should be treated depending on the position of the hard edge. To be more precise, if 
the hard edge is built inside the droplet, the mass outside the hard edge then lies on the 
boundary of the droplet, which makes the equilibrium measure no longer absolutely 
continuous with respect to the area measure. Namely, in this case, the equilibrium 
measure is a combination of two and one-dimensional measure, where the latter is 
given in terms of the balayage measure. We refer to [ 55, Appendix A] for an explicit 
formula. Here, the balayage measure is a unique measure supported on the boundary 
of the droplet whose logarithmic energy is the same as the equilibrium measure; see 
[479, Ch. II] for further details. On the other hand, if the hard edge is built outside 
the droplet, the resulting equilibrium measure is not affected by the hard edge. 

In the scaling .n = (1 − α)/αN , the empirical measure converges to the equilib-
rium measure associated with the potential 

.Qt(z) = α − 1

α
log(1 − |z|2). (11.41) 

Then it follows from (10.7) and (10.8) that 

. lim
N→∞

ρ t
(1),N (z)

N

|||
α=N/(N+n)

= 1 − α

πα

1

(1 − |z|2)2 χ|z|<√
α; (11.42) 

cf. (9.33). We mention that 

. lim
α→0

Qt(
√

αz) = |z|2. (11.43)
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This means that after the scaling.z j |→ z j/
√

α, the eigenvalue statistics of truncated 
ensembles tend to the GinSE as .α → 0, equivalently, .n >> N . On the other hand, in 
the regime when . n is fixed while .N → ∞, the limiting global scaled potential has 
its value . 0 inside the unit disk, and .∞ outside the disk. The associated equilibrium 
measure is a uniform distribution on the unit circle. This is consistent with the fact 
that when .n → 0, the truncated ensemble corresponds to the circular symplectic 
ensemble [237, Sect. 2.6]. 

Turning to the correlation functions, Proposition 11.1 gives that [361, Eq. (14)] 

.κ t
N (z, w) = B(1/2, n)

π

E

0≤l≤k≤N−1

z2k+1w2l − z2lw2k+1

B(k + 3/2, n)B(l + 1, n)
. (11.44) 

As an analogue of Propositions 10.6, 11.2 and 11.5, we have the following. Let us 
stress that this proposition has not been reported in previous literature. 

Proposition 11.6 We have 

. 
1 − z2

2n
∂zκ

t
N (z, w) = n + 1

n
z κ t

N (z, w) + 2n + 1

2π

1 − Izw(2N , 2n + 2)

(1 − zw)2n+2

− z2N√
π

l(n + N + 3/2)

l(n + 1/2)l(N + 1/2)

1 − Iw2(N , n + 1)

(1 − w2)n+1
. (11.45) 

Proof The proof is similar in spirit to that of Proposition 11.5, which can be found 
in [120]. Let us write 

.G t
N (z, w) :=

N−1E

k=0

kE

l=0

l(n + k + 3/2)l(n + l + 1)

l(k + 3/2)l(l + 1)
z2k+1w2l . (11.46) 

By differentiating this expression, we have 

. ∂zG
t
N (z, w) = 2z

N−1E

k=0

kE

l=0

l(n + k + 3/2)l(n + l + 1)

l(k + 1/2)l(l + 1)
z2k−1w2l

= 2
l(n + 3/2)l(n + 1)

l(1/2)
+ 2z

N−2E

k=0

k+1E

l=0

l(n + k + 5/2)l(n + l + 1)

l(k + 3/2)l(l + 1)
z2k+1w2l .

Rearranging the summations, the last term can be rewritten as 

. 2z
N−1E

k=0

kE

l=0

l(n + k + 5/2)l(n + l + 1)

l(k + 3/2)l(l + 1)
z2k+1w2l

− 2
N−1E

l=0

l(n + N + 3/2)l(n + l + 1)

l(N + 1/2)l(l + 1)
z2Nw2l
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+ 2 
N−1E 

k=1 

l(n + k + 3/2)l(n + k + 1) 
l(k + 1/2)l(k + 1) 

(zw)2k . 

Here, we have 

. 

N−1E

k=0

kE

l=0

l(n + k + 5/2)l(n + l + 1)

l(k + 3/2)l(l + 1)
z2k+1w2l

=
N−1E

k=0

kE

l=0

((n + 1) + (k + 1/2))
l(n + k + 3/2)l(n + l + 1)

l(k + 3/2)l(l + 1)
z2k+1w2l

= (n + 1)G t
N (z, w) + z

2
∂zG

t
N (z, w).

Combining all of the above, we obtain 

. (1 − z2)∂zG
t
N (z, w) = 2(n + 1)zG t

N (z, w)

− 2
N−1E

l=0

l(n + N + 3/2)l(n + l + 1)

l(N + 1/2)l(l + 1)
z2Nw2l

+ 2
N−1E

k=0

l(n + k + 3/2)l(n + k + 1)

l(k + 1/2)l(k + 1)
(zw)2k . (11.47) 

We now compute .∂zG t
N (w, z). We begin by writing 

. ∂zG
t
N (w, z) = 2z

N−1E

k=0

kE

l=0

l(n + k + 3/2)l(n + l + 2)

l(k + 3/2)l(l + 1)
w2k+1z2l

− 2
N−1E

k=0

l(n + k + 3/2)l(n + k + 2)

l(k + 3/2)l(k + 1)
(zw)2k+1.

Note here that 

.

N−1E

k=0

kE

l=0

l(n + k + 3/2)l(n + l + 2)

l(k + 3/2)l(l + 1)
w2k+1z2l

=
N−1E

k=0

kE

l=0

((n + 1) + l)
l(n + k + 3/2)l(n + l + 1)

l(k + 3/2)l(l + 1)
w2k+1z2l

= (n + 1)G t
N (w, z) + z

2
∂zG

t
N (w, z).
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We have shown that 

. (1 − z2)∂zG
t
N (w, z) = 2(n + 1)zG t

N (w, z)

− 2
N−1E

k=0

l(n + k + 3/2)l(n + k + 2)

l(k + 3/2)l(k + 1)
(zw)2k+1. (11.48) 

Then by combining (11.44), (11.47) and (11.48), we conclude the desired 
identity. U 

As before, an important point to note here is the form of the second term in (11.45), 
which agrees with the kernel of the complex counterpart up to a weight function; see 
[120, Eq. (2.59)]. Furthermore, as in Sect. 11.3, Proposition 11.6 and the knowledge 
of the uniform asymptotic expansion of the incomplete beta functions can be used 
to derive scaling limits. In the regime of strong non-unitarity when .n = O(N ), the  
universal bulk and edge scaling limits (10.31) and (10.34) again appear. On the 
other hand, in the regime of weak non-unitarity when . n is fixed while .N → ∞, a  
qualitatively distinct scaling limit arises at the edge of the spectrum. In particular, it 
was shown in [361, Th. 6.13] that for .x > 0 and .y ∈ R, 

. lim
N→∞

1

N 2
ρ t

(1),N

(
1 − x + iy

N

)

= 24n yx2n+1

πl(2n)

{

(0,1)2
s2n+1tne−2s(1+t)x sin(2s(1 − t)y) ds dt. (11.49) 

In [361], instead of Proposition 11.6, a contour integral representation of .κ t
N was 

used to derive various scaling limits including those away from the real axis. We 
mention too that the scaling limit (11.49) also appears in the context of the GinSE 
with hard edge; see [119, Th. 2.4]. 

Remark 11.2 Distinct from Haar distributed symplectic unitary matrices are matri-
ces from Dyson’s circular symplectic ensemble (see e.g. [237, Sect. 2.2.2] or [206] 
for the original work). However, both have quaternion elements represented as. 2 × 2
complex blocks (1.1), and each eigenvalue is doubly degenerate. It has been shown 
in [368] that the deletion of a single (quaternion) row and column gives for the 
PDF of the independent eigenvalues, taken to be in the upper half plane as now the 
eigenvalues appear in complex conjugate pairs, is proportional to 

.

|   |

1≤ j<k≤N

|zk − z j |2|1 − z j z̄k |2
N|   |

j=1

(1 − |z j |2)χ|z j |<1,z j∈C+; (11.50) 

cf. (10.9) with .β = 2. As noted in [245, Sect. 5] this corresponds to a Pfaffian point 
process, with correlation kernel given by that computed in [237, Sect. 15.9 with 
.η → 0+].
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11.5 Products of GinSE 

As in Sect. 9.5, to describe the products of GinSE in the most general setup, we begin 
with the .N × N square matrices .G̃i whose element distribution is proportional to 

. | det G̃i G̃
†
i |νi e−Tr G̃i G̃

†
i ,

where .νi > 0 are the differences between matrix dimensions. Then the eigenvalue 
PDF can be computed for a general .M and .ν j (see [ 30, 329]). It is of the form 
(10.4) with 

.W ν(z, z̄) = −1

2
logGM,0

0,M

( −
2ν1, . . . , 2νM−1, 2νM

|||| 2
M |z|2

)
, (11.51) 

where.GM,0
0,M is the Meijer.G-function as previously discussed in Remark 9.2. For  the  

special case when.M = 2 and.ν1 = ν2 = 0, this can be written in terms of the Bessel 
function.K0. Furthermore, as mentioned in Remark 2.6.3, the case.M = 2 permits a 
generalisation using a non-Hermiticity parameter; see [ 11]. 

Turning to the Coulomb gas perspective, we first note that the well-known 
asymptotic behaviour (2.80) of the  Meijer .G-function implies 

. − 1

2N
logGM,0

0,M

( −
2ν1, . . . , 2νM−1, 2νM

|||| (2N )M |z|2
)

∼ M |z|2/M − 2(ν1 + · · · + νM)

MN
log |z|.

Therefore, in the scaling .(ν1 + · · · + νM)/N ∼ Mα (.α ≥ 0), the general formula 
(11.4) can again be applied to the product ensembles, which gives rise to 

. lim
N→∞ NM−1ρ(1),N (NM/2z) = |z|−2+2/M

πM

(
χ|z|<(α+1)M/2 − χ|z|<αM/2

)
. (11.52) 

The associated skew-orthogonal polynomials can be constructed by Proposi-
tion 10.1 with the evaluation 

.

{

C

|z|2ke−2W ν (z,z̄) d2z = π

2M(k+1)

M|   |

l=1

l(2νl + k + 1). (11.53) 

Furthermore, by Proposition 11.1, we have  

. κ
M,ν
N (z, w) = 2M−1−2

E
j ν j

π2−M/2

E

0≤l≤k≤N−1

z2k+1w2l − z2lw2k+1

| M
j=1 l(ν j + k + 3/2)l(ν j + l + 1)

.

(11.54)
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As we have illustrated, the main idea to analyse various pre-kernels presented above 
is to write down proper differential equations and then derive their large .N limit. 
This technique can be extended to the present case. Contrary to the previous cases, 
the resulting differential equation is of order. M . In the case of.M = 2, the associated 
second-order differential equation was found and used in [ 11] to derive the limiting 
correlation kernel at the origin; see also [ 26]. A similar situation arises in the study 
of the Mittag–Leffler ensemble with the potential (10.70) and it was found in [ 22] 
that the associated pre-kernel satisfies a fractional differential equation of order.1/b. 
On the other hand, as expected from the structure (11.5), the analysis for the radial 
density is considerably simplified; see [ 29, 329, 333]. We also mention that in the 
same spirit as Remark 9.3, the Lyapunov and stability exponents of the products of 
GinSE are available in the literature [269, 330, 356]. 

11.6 A Summary of GinSE Analogues with GinUE and 
GinOE 

Comparing the development of GinSE theory as presented above with that of GinUE 
and GinOE, the following relative features—both quantitative and qualitative—are 
evident. 

• Like both GinUE and GinOE, the joint eigenvalue PDF of GinSE has a Coulomb 
gas interpretation (Sect. 10.2). This gives relevance to the large .N expansion of 
the associated partition function (Sect. 10.6). 

• Like GinOE, GinSE eigenvalues form a Pfaffian point process (Sect. 10.2). The 
pre-kernel then involves particular skew-orthogonal polynomials. The latter can 
be explicitly determined for radial potentials (Sect. 10.3). 

• The generalisation of GinSE considered in earlier sections of this chapter all relate 
to radial potentials, and scaling limits can be analysed in detail. These general-
isations, already listed in the introductory paragraph of this chapter, each have 
analogues for GinOE and GinUE. The radial symmetry facilitates the analysis of 
gap probabilities and a central limit theorem for smooth radially symmetric linear 
statistics (Sect. 10.6). 

• The elliptic generalisation of GinSE provides for a continuous deformation to the 
Hermitian ensemble of GSE matrices. An analogous generalisation also holds for 
GinOE and GinUE. Now the associated potential is not radially symmetric, and 
the theory relating to the skew-orthogonal polynomials is more involved (Sect. 
10.3). The analysis of a weakly non-Hermitian scaling limit is possible; see the 
paragraph including (10.49) for references. 

• Singular values and eigenvectors of GinSE matrices can be studied along the same 
lines as for GinUE and GinOE.
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A distinction between the GinSE analysis, and that of GinUE and GinOE, is the 
extra challenge of the asymptotic analysis imposed by the particular structure of the 
pre-kernel. Here, an approach based on an inhomogenous partial differential equation 
satisfied by the pre-kernel is shown to provide a unified treatment. We remark too 
that to date there is no theory relating to Wigner generalisations of GinSE. 
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