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Preface

In recent years, Machine Learning has become more important than ever before. Large
Language Models have revolutionized language-based tasks, with an impact far beyond
the research community and IT-related industries: Artificial Intelligence for solving
day-to-day tasks has become available for a wide range of end users across the world.

Machine Learning not only influences our daily lives, but also many fields of science
and technology. As a specific example, we present Artificial Intelligence in organic
chemistry and pharmaceutical research: a variety of tasks in this field are tackled with
state-of-the-art Neural Networkmethods, leading to improved design and higher security
of medical drugs, and to better solutions for chemical tasks in general, improving the
quality of life of a large number of persons across the globe.

It is in this context that we proudly present the Proceedings of the 33th Interna-
tional Conference on Artificial Neural Networks (ICANN 2024). ICANN is the annual
flagship conference of the European Neural Network Society (ENNS). This edition
was co-organized by Istituto Dalle Molle di studi sull’intelligenza artificiale (IDSIA
USI-SUPSI https://www.idsia.usi-supsi.ch) and by the Marie Skłodowska-Curie (MSC)
Innovative Training Network European Industrial Doctorate “Advanced machine learn-
ing for Innovative Drug Discovery” (AIDD https://ai-dd.eu), supported by the MSC
Doctoral Network “Explainable AI for Molecules” (AiChemist https://aichemist.eu).
After two years of on-line and two years of hybrid conferences, ICANN 2024 was again
organized as an in-person event, held on the premises of Università della Svizzera ital-
iana (USI) and Scuola Universitaria Professionale della Svizzera italiana (SUPSI) in
Lugano from September 17 to September 20, 2024.

ICANN 2024 featured three main conference tracks, namely Artificial Intelligence
and Machine Learning, Bio-inspired Computing, and an Application Track. Dedicated
members of the ICANN community also organized three workshops:

• AI in Drug Discovery
• Explainable AI in Human-Robot Interaction
• Reservoir Computing

as well as three special sessions:

• Spiking Neural Networks and Neuromorphic Computing
• Accuracy, Stability, and Robustness in Deep Neural Networks
• Neurorobotics.

Two tutorial sessions

• FEDn –A scalable federatedmachine learning framework for cross-device and cross-
silo environments

• TSFEL - A Hands-on Introduction to Time Series Feature Extraction

https://www.idsia.usi-supsi.ch
https://ai-dd.eu
https://aichemist.eu
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were likewise proposed and organized by the community, as well as the

• Tox24 Challenge (prediction of toxicity of chemical compounds).

The proceedings of the conference are published as Springer volumes belonging
to the Lecture Notes in Computer Science series. The conference had a total of 764
articles submitted to it. The papers went through a double-blind peer-review process
supervised by experienced Area Chairs who suggested decisions to Program Chairs. In
total, 564 Area Chairs, Program Committee (PC) members, and reviewers participated
in the review process. The reviewers were on average assigned 3–4 articles each and
submissions received on average 2.03 reviews each. A list of reviewers/PC Members
who agreed to publish their names is included in the proceedings.

Based on the Area Chairs’ and reviewers’ comments, 310 articles (40.5% of initial
submissions) were accepted, including 180 manuscripts selected for oral presentations.
Out of the total number of accepted articles the majority (285 papers) were full articles
with an average length of 15 pages, 20 manuscripts were short articles with an average
length of 10 pages, and 5 were abstracts with an average length of 3 pages.

The accepted papers of the 33rd ICANN conference are published as 11 volumes,
including one open-access volume with papers supported by the AIDD project.

The authors of accepted articles came from 29 different countries. As indicated by
first author affiliation the largest number of articles came from China, followed by Ger-
many, Japan, and Italy.While themajority of the articleswere fromacademic researchers,
the conference also attracted contributions from many industries including large phar-
maceutical companies (Pfizer, Bayer, AstraZeneca, Johnson & Johnson), information
and communication technology companies (Fujitsu and Baidu inc.), as well as multi-
ple startups. This speaks to the increasing use of artificial neural networks in industry.
Four keynote speakers were invited to give lectures on the timely aspects of advances in
understanding the brain (Michael Reimann); new insights into cortical attention mech-
anisms and context-dependent gating and how they might inspire future developments
in AI (Walter Senn); the current state of cognitive systems and how the full range of
bio-signals can be utilized to further enhance human-robot interactions (Tanja Schultz);
and a general overview of the past, present and future of machine learning (Jürgen
Schmidhuber).

These proceedings provide comprehensive and up-to-date coverage of the dynami-
cally developing field of Artificial Neural Networks. They are of major interest both
for theoreticians as well as for applied scientists who are looking for new innova-
tive approaches to solve their practical problems. We sincerely thank the Program and
Steering Committee, Area Chairs, and the reviewers for their invaluable work.

September 2024 Djork-Arné Clevert
Michael Wand

Kristína Malinovská
Jürgen Schmidhuber

Igor V. Tetko
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Past, Present, Future, and Far Future of Machine
Learning

Jürgen Schmidhuber

IDSIA USI-SUPSI, Switzerland, and KAUST AI Initiative, Saudi Arabia

I’ll discuss modern Artificial Intelligence and how the principles of the G, P and T in
Chat GPT emerged in 1991. I’ll also discuss what’s next in AI, and its expected impact
on the future of the universe.



Dendritic Computations and Deep Learning in the Brain

Walter Senn

University of Bern, Institut für Physiologie, Computational Neuroscience Lab,
Switzerland

Artificial Intelligence, through its working horse of neural networks, is inspired by the
biological example of the brain. The unprecedented success of AI in modeling cognitive
processes, in turn, inspires functional models of the brain. Yet, when looking into the
brain, additional biological structures become apparent, such as dendritic morphologies,
interneuron circuits, recurrent connectivity, error representations, top-down signaling
and various gating hierarchies. I will give a review on these biological elements and show
how theymay integrate in an energy-based theory of cortical computation. Dendrites and
cortical microcircuits turn out to implement a real-time version of error-backpropagation
based on prospective errors. The theory is inspired by the least-action principle in physics
from which all dynamical equations of motions are derived. We likewise derive the neu-
ronal dynamics, including the synaptic dynamics with gradient-descent learning, from
our Neuronal Least-Action (NLA) principle. The principle tells that the cortical activi-
ties and the real-time learning follows a path that minimizes prospective errors across all
neurons of the network. Prospective errors in output neurons relate to behavioral errors,
while prospective errors in deep network neurons relate to errors in the neuron-specific
dendritic prediction of somatic firing. I will explain how these ideas relate to cortical
attentionmechanisms and context-dependent gating that link to, and potentially inspires,
recent developments in AI.



Biosignal-Adaptive Cognitive Systems

Tanja Schultz

University of Bremen, Fachbereich 3 - Mathematik und Informatik, Cognitive Systems
Lab, Germany

I will describe technical cognitive systems that automatically adapt to users’ needs
by interpreting their biosignals: Human behavior includes physical, mental, and social
actions that emit a range of biosignals which can be captured by a variety of sensors.
The processing and interpretation of such biosignals provides an inside perspective
on human physical and mental activities, complementing the traditional approach of
merely observing human behavior. As great strides have been made in recent years in
integrating sensor technologies into ubiquitous devices and inmachine learningmethods
for processing and learning from data, I argue that the time has come to harness the full
spectrum of biosignals to understand user needs. I will present illustrative cases ranging
from silent and imagined speech interfaces that convert myographic and neural signals
directly into audible speech, to interpretation of human attention and decision making
in human-robot interaction from multimodal biosignals.



Workshop: AI in Drug Discovery

The dramatic increase in the use of Artificial Intelligence (AI) and traditional machine
learning methods in different scientific fields has become an essential asset in the future
development of the chemical industry, including the pharmaceutical, agro biotech, and
other chemical sectors. The Workshop on AI in Drug Discovery collected cutting-edge
contributions in the rapidly evolving field of AI-driven drug discovery. Submissions
encompassing various facets such as generative models, explainable AI, model distil-
lation, uncertainty quantification, reaction informatics and synthetic route prediction,
quantum machine learning for reactivity, methodologies for mining very large com-
pound data sets, federated learning, analysis of HTS data and identification of frequent
hitters and other topics related to the use of ML in chemistry were considered. In total
12 submissions were selected for oral talks and 12 articles were presented as posters.

The covered topics included:

• Big Data and advanced machine learning in chemistry
• eXplainable AI (XAI) in chemistry
• Chemoinformatics
• Use of deep learning to predict molecular properties
• Modeling and prediction of chemical reaction data
• Generative models

As part of the workshop, the Tox24 Challenge [1] was organized in collaboration
with the Chemical Research in Toxicology journal and the AIDD https://ai-dd.eu and
AiChemist https://aichemist.eu projects. The training and test sets consisted of chemicals
and compounds that have been tested for activity against Transthyretin (TTR) by the US
Environmental Protection Agency. Participants competed for a prize of 1000 e, which
was awarded to the developers of the winning model during the closing ceremony.

The authors of articles/abstracts of the AIDD workshop were invited to submit their
articles to the special issue of J. Cheminformatics.

Keynote

Artem Cherkasov University of British Columbia, Vancouver,
Canada

Organizers
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Igor Tetko Helmholtz Munich
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The Use of Active Learning for Effective Exploration
of the Chemical Universe

Ekaterina Manskaia and Artem Cherkasov

Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6T 1Z4
Canada

artc@mail.ubc.ca

Over recent decades, drug discovery has heavily relied on in-silico methods of hits
identification, since the use of CADDcan significantlyminimize the costs and time of the
process [1–3]. The major CADD tool, molecular docking, emerged as a computationally
efficient alternative to resource-intensive wet lab screening of up to million-molecules-
sized chemical databases [4].

In recent years chemical libraries have dramatically expanded reaching the levels
beyond dozens of billions of entities [5]. Since traditional docking relies on a brute-force
computation, such a tremendous database increase not only improved the chances of
finding effective hits [6, 7] but also forced in-silico methods to adapt to the reality of new
Big Data and to appropriate elements of machine learning (ML), artificial intelligence
(AI) and active learning (AL) [8–10].

A number of ML-accelerated docking techniques have recently evolved. An early
example of AL integrated with ML methods was Progressive Docking, which aimed to
emulate docking scores for a subset of a database and develop quantitative structure-
activity relationship (QSAR) models integrated into active learning (AL) iterative cycles
[16]. In 2020, we released the DeepDocking (DD), an AI-driven platform enhancedwith
AL [17]. DD facilitated efficient exploration of billions of molecules and consistently
provided reliable access to extensive docking results using moderate computational
resources [17]. DD has demonstrated significant success in various studies, achieving
up to a 6000-fold enrichment for top-ranked hits and accelerating screening processes
by up to 50 times compared to brute-force methods [17].

Following the launch of DD, several research groups have revisited the AL concept
in docking including MEMES [20], MolPAL [21], AutoQSAR/DeepChem [22, 23], and
the approach developed by Xu et al. [24], among many others.

WhileALhas proven indispensable for exploring large datasets, it has also found suc-
cessful applications in diverse domains, including lead optimization and drug response
prediction models [25-30].

To summarize, the recent use of ML methods for the exploration of the Chemical
Universe has revolutionized all phases of drug discovery. Among those methods, Active
Learningmethodologies have proven to be particularly effective in significantly reducing
computational demands for ultra-large screening campaigns. Continued research aimed

https://orcid.org/0009-0000-5884-970X
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at enhancing active learning techniques will maximize the potential of chemical space
exploration, thereby accelerating the discovery of novel therapeutics.
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Enhancing Interpretability in Molecular
Property Prediction with Contextual
Explanations of Molecular Graphical

Depictions

Marco Bertolini1,2(B) , Linlin Zhao3 , Floriane Montanari1 ,
and Djork-Arné Clevert1,2

1 Machine Learning Research, Bayer AG, 13353 Berlin, Germany
2 Machine Learning Research, Pfizer Worldwide Research Development

and Medical, Berlin, Germany
marco.bertolini@pfizer.com

3 Field Solutions, Bayer AG, 40789 Monheim am Rhein, Germany

Abstract. The field of explainable AI applied to molecular property pre-
diction models has often been reduced to deriving atomic contributions.
This has impaired the interpretability of such models, as chemists rather
think in terms of larger, chemically meaningful structures, which often do
not simply reduce to the sum of their atomic constituents. We develop an
explanatory strategy yielding both local as well as more complex struc-
tural attributions. We derive such contextual explanations in pixel space,
exploiting the property that a molecule is not merely encoded through a
collection of atoms and bonds, as is the case for string- or graph-based
approaches. We provide evidence that the proposed explanation method
satisfies desirable properties, namely sparsity and invariance with respect
to the molecule’s symmetries, to a larger degree that the SMILES-based
counterpart model. Nonetheless, they correlate as expected with these
string-based explanation as well as with ground truths, when available.
Contextual explanations thus maintain the accuracy of the original expla-
nations while improving their interpretability.

1 Introduction

The rapid development of Deep Learning (DL) models for molecular property
prediction [9,23,25] has increased the need for equally powerful interpretability
methods. These are crucial to gain trust in the model, understand its limitations,
and support the chemist’s knowledge and intuition in the process of property
optimization. An ideal explainable AI (XAI) framework for molecular property
prediction would assign attributions to both individual atoms and larger sub-
structures. Additionally, it would also be able to provide ideas of modifications
that can be made to the structure to overcome a particular issue.

Common modeling strategies involve fully connected networks from pre-
computed molecular fingerprints [19] or latent representations and, when enough
c© The Author(s) 2025
D.-A. Clevert et al. (Eds.): AIDD 2024, LNCS 14894, pp. 1–12, 2025.
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training data is available, end-to-end training with graph convolutional networks
(GCNs) [7,17]. Explanations for these types of models can take the form of atomic
attributions (particularly for GCNs [10,24]), or feature importance using pack-
ages such as SHAP [15]. Many of our in-house models are built upon the CDDD
embedding space [22], which poses a challenge for explainability. The CDDD
space is the bottleneck layer of a pre-trained autoencoder translating between
different SMILES representations of molecules. One approach to explainability
consists of assigning the attributions to the original SMILES, i.e., tracing back
gradients through the pre-trained encoder. However, the interpretation and visu-
alization of attributions for string characters is challenging [11]. Additionally, the
validity of the use of gradients for discrete character inputs can also be questioned
[1].

In this work, we propose a novel XAI approach tailored to networks built
upon CDDD descriptors. This method, which we refer to as contextual explain-
ability, is able to capture both atomic and structural contributions. We rely
on explainability of concepts derived in the context of image analysis [2–
4,8,12,18,21] as well as on Img2Mol, a recently published optical molecular
recognition model [6], that is able to translate images of molecules to their CDDD
embeddings. We find that early layers in Img2Mol capture basic chemical features
like atoms and bonds, while deeper layers learn more complex chemical struc-
tures, for instance, rings. By aggregating explanations from all the layers [5], we
show that we can provide sparse and robust explanations that respect molecular
symmetry and show both very localized highlights for particular atoms and more
global importance for entire substructures. Moreover we also provide evidence
that our contextual explanations are faithtful, that is, they agree with ground-
thruth ones, when available. We also show that they agree, as expected, with
the character-based explanations obtained through the original CDDD encoder.

2 Setup

Our explainability framework relies on the recently proposed Img2Mol model. It
consists of a convolutional neural network whose task is to map molecular graph-
ical depictions to their CDDD embeddings. The CDDD space C = [−1, 1]512 is
constructed as the bottleneck layer of a Seq2Seq-autoencoder network trained
to translate several million chemically-equivalent SMILES representations of
molecules and defines a continuous molecular descriptor, which can be utilized as
a powerful input for training downstream tasks. Figure 1a depicts the structure
of the Img2Mol encoder. Img2Mol is trained on over ten million unique canonical
SMILES and establishes the new state-of-the-art performance in reconstruction
accuracy. The training objective consists in minimizing the distance in CDDD
space between the Img2Mol embeddings and the embeddings obtained through
the encoder from [22]. The reconstruction from CDDD to SMILES to evaluate
the model’s performance occurs through the pre-trained decoder from [22]. For
further details concerning the model architecture, as well as the training proce-
dure and the model performance, we refer the reader to [6].
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Fig. 1. Summary of the contextual explanation framework for molecular property pre-
dictions: (a) Architecture of the image-based QSAR model; (b) channel layer activa-
tions learned by Img2Mol; (c) layer attributions; (d) contextual explanation obtained
by aggregating over the various layer attributions. Green (pink) overlay indicates pos-
itive (negative) contribution towards the prediction. (Color figure online)

We trained a quantitative structure-property relationship (QSAR) model
to predict the lipophilicity of small molecules. The dataset consists of ∼63000
molecules with measured values in a in-house logD assay. Specifically, the down-
stream model is a multilayer perceptron (MLP) with two hidden layers and has
been trained on the molecules’ CDDD embeddings. The model performance is
excellent with a cluster cross-validation coefficient of determination (R2) score
of 0.902. Upon testing on an independent dataset of 62 molecules, whose end-
points have been reviewed and curated from the Pesticide Properties Database
[14], the final model led to an R2 score of 0.914. All the XAI experiments and
examples presented in this work are obtained from this final model, where the
CDDD embeddings are generated through the Img2Mol encoder network. All
the used input molecules are obtained from public data.

We will also compare our explanations with those obtained through the orig-
inal pretrained SMILES-based encoder. For these atom-based explanations, we
follow the strategy of [26], which we briefly summarize here. The approach for
assessing the impact of individual characters within a SMILES string consists in
computing a character-wise sensitivity score, which is determined by averaging
the predictions of the network Φ when a particular position is substituted with
any character from the SMILES vocabulary. Specifically, for a character at posi-
tion i in a SMILES string s of length n, its contribution to the prediction Φ(s)
is defined as
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Ai = Φ(s) − 1
|ν|

∑

k∈ν

Φ(s̃i
k) , (1)

where i = 1, . . . , n, ν is the set of all possible characters in the SMILES vocabu-
lary, and s̃i

k represents the modified SMILES string with the character at position
i replaced by character k from ν.

3 Methods

Our strategy is based on the fact that 1) deep layers in neural networks learn high-
level concepts and 2) for pure convolutional networks, the value of each “super-
pixel” is determined by its receptive field in input space [16]. We combine these
two properties by tracing back attributions to pixel space through the Img2Mol
encoder instead of the original CDDD encoder. We remark that this is possible
since both encoders map the respective inputs to the CDDD space. Explicitly,
let Λ : C → R be the QSAR downstream model and Img2Mol : M → C, where
M � [0, 255]224×224 is the input space consisting of images of 224×224 pixels. We

then construct the network Φ = Img2Mol ◦ Λ : M ψp−−→ Mp
ξp−→ C Λ−→ R by con-

catenating the Img2Mol encoder with the logD downstream network described
in the previous section. Here, Mp is the output space of the pth convolutional
layer in the network. Mp has dimension kp × kp × Cp, where Cp is the number
of channels in the pth layer, and kp is the size length of the embedding in terms
of superpixels. Thus, our contextual explanations are obtained via the network
Φ applied to a graphical depiction of the sample molecule.

Figure 1b shows a few channels activations, further grouped by the corre-
sponding convolutional block. This example supports our intuition: while filters
in early layers reduce to node, angle, and edge detectors, filters in deeper layers
are activated by larger sub-structures in the molecule, e.g., rings and functional
groups. It is then natural to use these layer attributions as a chemically mean-
ingful feature basis for our explanations. Thus, we compute feature attributions
values for each convolutional layer of the network Φ, choosing gradients to mea-
sure feature importance. Explicitly, for each convolutional layer p we compute
superpixel attributions as

ap(x) =
Cp∑

cp=1

∂(ξp,cp ◦ Λ)(x)
∂ψp,cp(x)

× ψp,cp(x) , (2)

where the sum is over the channel dimension. The above formula formalizes
our intuition: for a given convolutional layer p, each channel output activation
ψp,cp(x) is weighted by its contribution ∂(ξp,cp ◦Λ)(x)/∂ψp,cp(x) to the endpoint
prediction. The attribution method (2) is known as activation×gradient, which is
a natural extension of input×gradient [20] to obtain layer-wise attributions. Our
implementation of (2) is based on the captum package [13]. Figure 1c depicts
some layer-wise explanations. We notice that attributions for early layers, as
expected, focus on simple geometric features like atoms and bonds, in contrast
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Fig. 2. Explanations are sparse and incorporate both local and structural features

to attributions for deeper layers, where explanations involve entire functional
groups.

Finally, as we assume that an exhaustive explanation would involve a com-
bination of both local and structural features, we propose a simple procedure
to extract a single explanation from the layer attribution maps. Namely, we
aggregate the maps (2) over all the convolutional layers to obtain a unique
network-wide attribution map

a(x) =
∑

p∈{conv.layers}
ap(x) . (3)

The above equation determines the weighting of the various local and structural
components, as determined by the relative value of the different layer attribu-
tions, resulting in the final contextual attribution map. Figure 1d illustrates an
example of the result of such an aggregation strategy.

4 Experiments and Properties of Contextual
Explanations

In this section, we turn to examine some of the desired properties that our con-
textual explanations (3) possess, namely, sparsity, the interplay of both local
and structural features, and the invariance of explanations with respect to the
symmetries of the molecule’s graphical depiction Fig. 2. We will then conclude
by showing that the contextual explanations exhibit a strong correlation with
the character-based explanations (1) and, in a simple setting, to known ground
truths. Therefore, our proposed strategy generates explanations that are accu-
rate, robust, and faithful to the underlying ground truth. These explanations
are more interpretable due to their emphasis on chemical sub-structures, align-
ing more closely to a chemist’s perspective, compared to the somewhat artificial
approach of atom-based attributions. The molecules used in the experiments
described below are publicly available compounds and were not included in the
training or test sets.
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Contextual Explanations and Sparsity. The examples in Fig. 4a illustrates
the defining characteristic of our approach. The attribution heat map incorpo-
rates both atomic and structural features. In particular, in the left example, the
model attributes positive contributions (indicated by a green overlay) to the
outermost Cl atom and methyl group, while it assigns negative contributions
(marked by a pink overlay) to the central N atom and the triazine ring. These
assignments are in alignment with a medicinal chemist’s intuition about logD
contributions.

The aggregation procedure (3) has, in addition, a denoising effect. As can
be seen in Fig. 1d, the aggregated map is more sparse than the individual layer
attribution maps, as it concentrates only on the most important features con-
tributing to the prediction. Sparsity is a desirable property for an explanation,
as feature cluttering impairs the interpretability of the predictions.

Fig. 3. Definition of the symmetry score (a) and example for a 30◦ rotation (b).

Invariance with Respect to Molecule’s Symmetries. An important prop-
erty for interpretability is that the explanations respect the symmetries of the
input molecule. Among the CDDD-based methods, those based on SMILES will
fail to produce invariant explanations, as the SMILES string representations
explicitly break the molecule’s symmetries. In what follows, we provide evidence
that our contextual explanations, instead, tend to be invariant under such sym-
metries. Explicitly, let T be the symmetry group of a molecule’s graphical depic-
tion, that is, the group of image transformations that leave the chemical content
invariant: given a molecule image x and a transformation T ∈ T , then x′ = T (x)
corresponds to the same molecule. To quantify the invariance of our contextual
explanations with respect to a symmetry group T , we define the symmetry score
for the transformation T ∈ T as

sT (x) =
1
2
|â(T (x)) − T (â(x))| , (4)

where â is obtained from (3) upon normalization to the range [−1, 1], and the
overline denotes the average in pixel space. The score is graphically illustrated
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in Fig. 3 with an example for a rotation of the molecular depiction of a 30◦

angle. The score measures the average absolute difference between two attribu-
tion maps, and thus provides a quantitative measure of the correlation between
two explanations. In performing this average, we only include normalized attribu-
tions â(x) in absolute value above a given threshold (0.05), to avoid the score to
depend on the amount of white space in the picture. The score is normalized such
that it takes value between 0 (which occurs when the transformation commutes
with the attribution maps, âT = T â) and 1 (which occurs when âT = −T â and
â = ±1).

Fig. 4. Properties of contextual explainability for molecular property prediction. Expla-
nations tend to preserve the molecule’s depiction symmetry under (a) reflections and
(c) rotations; (b) the symmetry score for reflection transformation is in average much
lower for contextual explanations that for SMILES-based ones, showing a higher degree
of symmetry invariance (lower is better); (d) explanations are robust with respect to
different pictorial representations. Green (pink) overlay indicates positive (negative)
contribution towards the prediction.

We compute the score (4) for two transformations, namely reflection across
the vertical axis T = Tx↔−x, and rotation of a 30◦ angle in the plane of the image
T = R(30◦). For reflections we report a value of E[sTx↔−x

] = 0.135±0.003, com-
puted by averaging scores for 21 images of molecules exhibiting such symmetry.
This value indicates that the symmetry is well captured by our explanations, as
can be seen in Fig. 4b. For rotations we instead report an average score over 121
molecule images of E[sR(30◦)] = 0.169 ± 0.004, which again indicates that upon
rotations, the attribution maps show a high consistency. We report in Fig. 4a-
c some examples of such transformations, the respective explanations and the
associated scores. Such examples provide a visual intuition that for the achieved
values of the score, the symmetries are well-respected by our explanations. We
note that these tend to be less sparse than the original contextual explanations
due to the normalization we introduced in (4).

While not feasible for rotation transformations, we tested the symmetry
invariance properties under reflection of the SMILES based explanations (1).
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We reported the corresponding examples in Fig. 4a, and the scores for both con-
textual and character-based attributions in Fig. 4b. This quantitative analysis
indicates that, on average, our contextual explanations respect the molecules’
symmetry more faithfully than those derived from SMILES-based explanations.

Robustness with Respect to the Graphical Depiction. There are sev-
eral standards for graphically representing a molecule structure. We provide
evidence that our contextual explanations are robust with respect to different
graphical representations by slightly modifying the score (4). Let G1(m),G2(m)
be two different graphical depictions of the same molecule m, then the score
sG(m) = 1

2 |â(G1(m)) − â(G2(m))| measures the average absolute difference
between two attribution maps obtained from the two different graphical methods.
We computed the score across a set of 121 molecules, and we obtained an average
value of E[sG] = 0.148 ± 0.003, which reveals a high level of agreement between
explanations obtained from different graphical representations. Figure 4d shows
some examples of such pictorial representations with their respective contextual
explanations.

Correlation with Ground Truth. Explainability methods are primarily
employed to assess the alignment between a model’s predictions and the salient
features that influence these predictions, at least when they are accurate. This
process is particularly daunting in the realm of chemistry, where it is often
unclear even to experts which molecular structures contribute to a compound’s
specific properties. Due to this we design a simple task, where the ground truths
are well-established, to assess whether our model’s contextual explanations are
consistent with known ground truths. Our experiment consists in training a
classifier on the CDDD representations of molecules to detect the presence of
benzene rings. As expected, our model achieves perfect accuracy on both training
and test datasets. We then quantified the agreement between both the contex-
tual and the character-based explanation with the ground truths, given by the
atoms forming a benzine ring. We employ an overlap score, similar to the above,
defined as sO(x) = 1

2 |â(x) − g(x)|, where g are the ground truths maps obtained
by graphically depicting the attribution maps that assign value 1 to the carbon
atoms of any benzine rings, and zero to all other atoms (there are no negative
contributions to this task). The comparison then happens in pixel space. We
observed that both the SMILES-based and the contextual explanations exhibit
very similar results, with an average test score of about ∼ 0.15 (Fig. 5), which
signifies a strong agreement. In fact, we depicted as a benchmark the theoretical
value sO = 0.4 of the overlap score for random maps where the attributions
are drawn from a uniform distribution U(0, 1). We also computed the score sO

for contextual explanations using an untrained classifier, and we observe that it
still performs better than random maps. This is a confirmation of the fact that,
while the classifier cannot solve the tasks, the attributions (2) are a combina-
tion of meaningful activations, among which benzine rings, which then tend to
appear more often into the explanations than in randomly drawn maps. Thus, our
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contextual explanations have some intrinsically knowledge of chemistry struc-
tures, which help the interpretability of the explanations.

Fig. 5. Correlation between the contextual explanations and (a,b) ground truth and
(a,c) SMILES-based attributions (lower is better).

Correlation with SMILES-Based Explanations. To investigate the rela-
tionship between contextual explanations and atomistic SMILES-based expla-
nations (1), we overlay graphical depictions derived from SMILES explanations
onto similar molecular representations. By analyzing the red and green image
channels, we extract a map that quantifies the negative and positive attributions,
respectively, facilitating direct comparison between the two explanation types.
Examples in Fig. 5c illustrate the alignment between these explanations, show-
ing a notable qualitative agreement. Additionally, we quantify their correlation
using the overlap score defined above, sO(x) = 1

2 |â(x) − âSM(x)|, where âSM
denotes the graphical representation of the SMILES explanations. We assess a
strong correlation, evidenced by a score of sO ∼ 0.1 (Fig. 5a on the right). This
indicates an even more robust correlation than previously noted between the
SMILES explanations and the ground truth. Such findings strongly support the
reliability of our contextual explanations and the well-behaved structure of the
CDDD space.

5 Conclusions

This work introduced an approach to explaining molecular property predictions
based on molecules’ graphical depictions, which we named contextual explain-
ability. Our method is able to capture both basic (like atoms and bonds) as well
as more complex structures (like rings and chemical groups), yielding explana-
tions that are more aligned with chemists’ intuition. We provided evidence that
our contextual explanations possess several desirable properties: the attributions
tend to be sparse, are robust with respect to the chosen graphical representa-
tion, and respect the symmetry of the input image. In addition, the strongly
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correlate with the corresponding SMILES-based attributions, obtained trough
the pretrained CDDD encoder, as well as with known ground truths.

It would be interesting to explore our explanation framework in the context
of property optimization: explanations in pixel space have the advantage that
the model can explain a prediction not exclusively in terms of what is present
in the given molecule, but also in terms of what is missing. The explanations
could then be employed to provide suggestions of structure modifications for
optimizing the given molecular property.

More generally, this approach is a first step into designing explainability
frameworks leveraging the multi-modality of the data. In this case, one modality
(string-based SMILES) is suitable to train a highly informative embedding to
train downstream models, while the other (pixel space) yields more inherently
interpretable results.
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1 Introduction

The quantification of uncertainties associated with neural network predictions
can facilitate optimal decision-making and accelerate workflows where time and
resource efficiency are essential. In drug discovery, computational tools exist that
estimate predictive uncertainties to enable the assessment of costs and risk in
the discovery and development pipeline [11]. There are various sources of uncer-
tainty in machine learning. A common classification found in literature is the
distinction between aleatoric uncertainty, which originates from uncertainty in
the data, and epistemic sources, which quantifies uncertainty inherent in the
choice of model. We refer to Hüllermeier & Waegemann [6] and Gruber et al.
[3] for a deeper discussion of uncertainty sources. It is important to point out
that modern neural networks often fail to give realistic estimates of the uncer-
tainty associated with a prediction in classification tasks, resulting in poorly
calibrated models [4,11]. There are various calibration methods for classification
models, that aim to obtain better uncertainty estimates by fitting a calibrating
model to a separate dataset in a post-hoc manner. Another strategy to achieve
more reliable predictions is the incorporation of model uncertainty, by taking into
account model variance, which increases when the model is overfitting or the test
instance lies outside the domain of the training data. This work compares the
performance of single-task classification models trained on industry-scale assay
data in a temporal analysis. In contrast to random or cluster-based strategies
to split the data, temporal splits simulate most accurately the drug discovery
pipeline in pharmaceutical companies [16]. A temporal splitting strategy enables
model training on older data and prediction on subsequent folds. We use tem-
poral splits to compare the performance and calibration of Random Forest (RF)

c© The Author(s) 2025
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models for classification tasks with and without post-hoc calibration using two
different calibration approaches. Furthermore, we investigate whether the inclu-
sion of data uncertainty in the form of probabilistic labels improves uncertainty
estimation. Finally, we use the temporal setting to investigate how the temporal
evolution of the test set affects model calibration.

2 Methods

We evaluate single-task classification models on data from ten assays and two
assay categories, including ’Panel’ and ’Other’ assays [5]. The assays are labeled
using the assay category combined with a number from 1 to 5, e.g. ’Panel-1’.
The ’Panel’ category comprises cross-project assays such as undesired off-target
effects, whereas ’Other’ includes project-specific assays from on-target activity
screens. The data solely includes affinity data with pIC50 or pEC50 as end-
points. The assays were chosen to be representative, exhibiting various assay
sizes and active ratios. Figure 1[A] summarizes the number of measurements and
the ratio of actives for all assays used in our study. Standardized SMILES were
obtained using the method described in the MELLODDY-TUNER [1] package
and extended connectivity fingerprints (ECFPs) of size 1024 and radius 2 were
generated with RDKit [8]. Given that the date of each measurement is available,
a real temporal split was performed. After ordering the data according to the
measurement date, the data was split into five folds of equal size, so that each
fold represented a specific period in the assay history. For generating single-task
classification models, two label types were used to assess if the incorporation
of aleatoric uncertainty improves model performance. First, hard labels were
generated using a pIC50/pEC50 threshold of 6 for assigning active or inactive
labels based on the result. This specific threshold was chosen because the mod-
els will be deployed in the early stages of the drug discovery pipeline, in which
the desired binding affinity of drug candidates is in the micromolar range (10−6

molar concentration) corresponding to a pIC50/pEC50 of 6. Second, the same
threshold was applied and the assay-specific measurement error, corresponding
to the standard deviation of the control compound measurements, was used to
obtain probabilistic labels. In detail, a normal distribution X ∼ N (μ, σ2) was
generated, where μ corresponded to the chosen threshold and σ2 to the standard
deviation of the control compound of the respective assay. In this step, the con-
trol compound corresponded to the compound with the most measurements in
the respective assay. Subsequently, the CDF of these assay-specific distributions
was used to obtain the probabilistic label [9]. Figure 1[B] shows the standard
deviation (Std) of the control compound as well as the available number of mea-
surements to calculate the Std for every assay.
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Fig. 1. Overview over Assay data. Assays from two categories, ’Other’ and ’Panel’,
were used. [A] The number of measurements (#Compounds) of each assay as the sum
of active and inactive compounds (pIC50/pEC50 threshold = 6) is shown. [B] shows
the standard deviation (Std) and the number of measurements (in brackets) of the
control compound for every assay.

2.1 Model Generation

Random Forest (RF) models were generated using scikit-learn. The maximum
depth of the trees and the required number of estimators were tuned using a
validation dataset. Probability-like outputs were generated by taking the ratio
of decision trees in an RF that voted for a specific test instance to be active.
Furthermore, Probabilistic Random Forests (PRF) [15] were generated using
probabilistic labels as ground truth. A detailed description of the PRF training
procedure can be found in Mervin et al. [9]. Post-hoc probability calibration
techniques fit a calibration model to the raw scores of a classifier using a sepa-
rate calibration dataset. In our work, we use the validation dataset for this step.
Two uncertainty calibration approaches were used, namely Platt scaling [14] and
Venn-ABERS (VA) predictors [18]. Platt scaling [14] involves fitting a logistic
regression to the classification scores to counteract over- or underfitted uncer-
tainty estimations. For calibration with VA predictors [18] two isotonic regression
functions are trained on the validation data and the test instance, representing
the two possible hypotheses that the test instance is active versus inactive. As
such, two different probabilities are obtained from the isotonic regression mod-
els, corresponding to a lower and an upper bound on the probability, which are
subsequently condensed to a point estimate as proposed by Tocatelli et al. [17].
For more detail on VA predictors we refer to Mervin et al. [10].

3 Results

3.1 Incorporation of Aleatoric Uncertainty Using Measurement
Errors

Table 1 summarizes the Binary Cross Entropy (BCE↓) loss and the Adaptive
Calibration Error (ACE↓) [12] for five model repeats of all model types trained
on two example datasets, namely the Panel-1 and Other-3 assays. The first
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Table 1. Overview over RF model performance based on two example
assays. Averages over five model repeats are shown. The best results for each metric
are marked in bold, while not significantly worse scores are indicated in italics.

Method Panel-1 Other-3

BCE ↓ ACE ↓ BCE ↓ ACE ↓
Hard Labels

RF 0.187 ± 0.005 0.032 ± 0.001 0.312 ± 0.009 0.192 ± 0.008

RF-Platt 0.182 ± 0.004 0.029 ± 0.002 0.235 ± 0.007 0.117 ± 0.006

RF-VA 0.183 ± 0.002 0.037 ± 0.001 0.211 ± 0.007 0.089 ± 0.006

Probabilistic Labels

PRF 0.181 ± 0.002 0.032 ± 0.002 0.307 ± 0.01 0.187 ± 0.008

PRF-Platt 0.181 ± 0.001 0.03 ± 0.001 0.229 ± 0.005 0.112 ± 0.004

PRF-VA 0.185 ± 0.002 0.038 ± 0.002 0.212 ± 0.006 0.092 ± 0.006

three folds were used for model training, while the last fold was used for testing.
Using probabilistic labels instead of hard labels improves the calibration error
and the BCE loss of the RF and RF-Platt models trained on Other-3 assay data.
Models for the Panel-1 assay do not show any improvements when incorporating
aleatoric error. This result could be explained by the difference in standard devi-
ations shown in Fig. 1[B], which are used for generating the probabilistic labels.
Given that the measurement error of the Panel-1 assay is smaller compared to
the Other-3 assay the normal distribution used for generating the probabilistic
labels is narrower, resulting in probabilistic labels that are more similar to the
hard labels, thus leading to similar results of RF and PRF models. The post-hoc
calibration methods improve the BCE loss and ACE scores of Other-3 models,
with RF-VA performing best in terms of both metrics, with a BCE and ACE of
0.211 ± 0.007 and 0.089 ± 0.006, respectively. The results for the Panel-1 assay
show that in terms of ACE the RF-Platt model performs slightly better than the
uncalibrated RF model, while the PRF models did not improve after calibration.
In general, the control compounds of the Panel assays exhibit smaller standard
deviations than those of the Other assays, as illustrated in Fig. 1[B]. The results
of the assays omitted from Table 1 reveal that using probabilistic labels generally
leads to better BCE scores for Other assays. In contrast, such clear improvements
can not be observed for Panel assays. This could be a result of the differences
mentioned above in standard deviations of the control compounds between the
assay categories. However, there are also exceptions from this trend, such as the
Other-1 assay, which does not show improvements when including probabilistic
labels, despite the large standard deviation of its control compound. Hence, we
conclude that it is required to look at the model performance on the individual
assay to find the best calibration method for that specific dataset. For all assays,
the same model performs best in terms of BCE scores when comparing models
trained with hard labels versus probabilistic labels. This is also true in terms of
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the ACE results, except for the Other-1 assay, for which the RF model performs
best for hard labels and the VA-calibrated model is best for probabilistic labels.
However, the difference between PRF and PRF-VA is not significant. A more
elaborate study is required to understand the effect of probabilistic labels on
probability calibration in detail, which will be the object of our future research
but is outside the scope of this abstract.

3.2 Probability Calibration Across Evolving Test Sets

Figure 2 shows the performance of five model repeats of different RF models
across all ten assays and test sets in terms of ACE. The models were trained
on one fold and then used for separately predicting three test folds representing
subsequent time spans in the assay history. Test set 1 corresponds to the fold
closest in time to the training fold, while test set 3 represents the fold furthest
away. The ACE for test set 1 is the smallest across all models for the majority
of assays as shown in Fig. 2, indicating that the models are better calibrated
for compounds measured closer in time to the training fold. This pattern can
also be observed in some assays when comparing test sets 2 and 3, however, the
tendency is not as clearly visible as for test set 1. One of the reasons for the
observed behavior could be a distribution shift in training and test data that
increases as we progress in time, which is supported by a paper by Ovadia et al.
[13], in which an increasing distribution shift was reported to impair probability
calibration.

Fig. 2. Model calibration over time. The Adaptive Calibration Error (ACE) is
shown for five model repeats across all assays. The models were trained on one training
fold. Test Set 1 is closest in time to the training set, whereas Test Set 3 is furthest
away.
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4 Conclusion and Outlook

In this study, we showed that using probabilistic labels in combination with
probability calibration approaches can improve uncertainty estimation in RF
models. In addition, we present a comprehensive analysis of how model cali-
bration changes over time using temporal splits of internal data from a phar-
maceutical company. Based on these preliminary results, we will take further
steps to understand model calibration in a temporal setting. Furthermore, we
will extend our study to other model architectures, including multi-layer per-
ceptrons (MLP), to investigate if the same conclusions can be drawn for other
model types. Finally, we will explore uncertainty estimation methods to account
for model uncertainty, including deep ensembles [7] and Monte-Carlo Dropout
[2], to analyze if these approaches improve probability calibration.
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Abstract. The increasing use of machine learning and artificial intelli-
gence in chemical reaction studies demands high-quality reaction data,
necessitating specialized tools enabling data understanding and curation.
Our work introduces a novel methodology for reaction data examination
centered on reagents - essential molecules in reactions that do not con-
tribute atoms to products. We propose an intuitive tool for creating
interactive reagent space maps using distributed vector representations,
akin to word2vec in Natural Language Processing, capturing the statis-
tics of reagent usage within datasets. Our approach enables swift assess-
ment of reagent action patterns and identification of erroneous reagent
entries, which we demonstrate using the USPTO dataset. Our contribu-
tions include an open-source web application for visual reagent pattern
analysis and a table cataloging around six hundred of the most frequent
reagents in USPTO annotated with detailed roles. Our method aims to
support organic chemists and cheminformatics experts in reaction data
curation routine.

Keywords: Reagents · word2vec · USPTO · Chemical data curation

1 Introduction

Over the many years chemical science has existed, chemists have amassed a vast
body of knowledge and records about organic chemical reactions. This wealth
of information encapsulates hundreds of distinct reaction types determined by
a general transformation scheme and the required reagents [13]. As machine
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learning is cementing its place among widely used approaches to various reaction
modeling problems [8,16], chemists are becoming increasingly concerned with
understanding and curating their reaction data.

The most widely known reaction data collections are Reaxys [3], CASREACT
[1], the open dataset of reactions from US patents (USPTO) [15], Pistachio [2],
and a recent Open Reaction Database (ORD) [10]. Different reaction datasets
may have unique particularities and biases [24], and comprehending those in
one’s dataset of choice is an advisable prerequisite for any study relying on that
dataset. One of the possible sources of reaction data imperfections is reagent
information.

A chemical reaction scheme (Fig. 1) typically involves reactants, products,
and reagents. A reactant, as defined by IUPAC, is a substance consumed in the
course of a chemical reaction. Consequently, reagents are other molecules that
enable a reaction but do not contribute atoms to the products. Reagents are
commonly written above or below the arrow in a reaction scheme. For exam-
ple, catalysts and solvents are reagents. However, in practice, for convenience,
substances with other roles, such as reducing and oxidizing agents, may also be
considered reagents. Reagents may be integral to the mechanism of a reaction
or merely improve the reaction rate. Reactions that use the same reagents may
often correspond to the same reaction type.

Fig. 1. An instance of the Suzuki coupling reaction. Reagents are normally written
above or below the arrow. Various reaction types are often enabled by specific reagents.

Before building and testing machine learning models on some reaction
dataset, it may be beneficial to pay special attention to reagent information
within reagent records: verify whether reactant-reagent separation is adequate,
or if there are redundant records of the same reagent, or if information about
detailed roles of reagents is available. While the creators of popular reaction
databases try to address all those issues, the data often needs additional cura-
tion. For example, reactant-reagent separation in USPTO is based on atom-atom
mapping provided by the Indigo toolkit. The imperfection of this mapping may
lead to imperfect separation. Additionally, reagent roles may not be detailed
enough: both Reaxys and USPTO feature only three roles (“catalysts”, “sol-
vents”, or “reagents”). When building reagent prediction models, their detailed
performance analysis may require access to richer reagent role attribution [4].

In this paper, we describe a simple visual tool that helps to curate reagents
in chemical reaction data. This tool is an interactive reagent space map based on
distributed vector representations of reagents and served in a web application.
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We obtain reagent representations using an algorithm equivalent to the famous
word2vec [18] algorithm from Natural Language Processing, and they reflect
the statistics of reagent co-occurrences and interaction in a given reaction data
corpus: representations of reagents of the same role tend to cluster together. We
demonstrate the application of our tool to the USPTO dataset [15]. Using our
tool, we label around six hundred most common reagents in USPTO into ten
detailed roles, detect reactants erroneously listed as reagents, and ensure the
uniqueness of unique reagents’ names.

Our reagent space mapping and the web application work with any reaction
dataset, and we are confident that it will benefit organic chemists and chemin-
formatics specialists working with their own reaction data.

The codebase is open-source and available at https://github.com/Academich/
reagent_emb_vis.

2 Results

2.1 Interactive Application

We have built a lightweight web application for the interactive exploration of the
USPTO reagent space. Figure 2 demonstrates the application’s appearance. The
application displays an interactive UMAP [17] projection of reagent embeddings
that capture the statistics of reagent co-occurrences within the dataset. Vari-
ous filters are available in the application: it is possible to display only reagents
with desired indices or roles, and one can also filter reagents by SMARTS pat-
terns. When the user hovers over a point on the map, the corresponding reagent
structure and its SMILES appear on the screen. Two versions of the map are
available: a flat 2D map and a map on the surface of a sphere.

Users can explore reagents in their own reaction data in the application after
carrying out necessary preprocessing described in the repository with the code.

2.2 Properties of Reagent Embeddings

If some two reagents tend to occur in similar contexts, i.e., with similar other
reagents, then it is likely that these two reagents are alternatives, and they likely
get embeddings that are close to each other. For example, we do not expect two
different palladium catalysts for Suzuki coupling to occur in one reaction, but one
can use the same bases and solvents with both of them. Therefore, we can expect
the map of reagent embeddings to feature role clusters, e.g., a cluster of specific
catalysts, ligands, or other reagents. The reagent embeddings are obtained by
factorizing the point-wise mutual information (PMI) scores matrix with singular
value decomposition (SVD). We can easily derive the table of PMI scores from
the table of reagent counts by Eq. 1.

PMI(x, y) = log2
P (x, y)

P (x)P (y)
(1)

https://github.com/Academich/reagent_emb_vis
https://github.com/Academich/reagent_emb_vis
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Fig. 2. The appearance of the web application for the exploration of reagent space.
Reagents in our demonstration come from USPTO. On the right, there is an interactive
UMAP projection of reagent embeddings. Every point corresponds to a unique reagent.
Upon hovering over a point, the corresponding reagent is displayed on the left. Various
filters for the map are available. The embeddings are obtained by factorizing the matrix
of point-wise mutual information scores between pairs of reagents with singular value
decomposition (SVD). The original embedding dimensionality is 50.

where x and y are reagents, P (x, y) is a relative frequency of a reagent pair
among all reagent pairs, and P (x) and P (y) are relative frequencies of individual
reagents. Reagent vector representations obtained in this manner lie close in the
vector space for entities with similar "meanings", which are determined by the
"companions" of those entities. This method of obtaining reagent embeddings is
equivalent to the word2vec algorithm (see 3.1) if we treat reagent molecules as
words and reagents in one reaction as one context. One can freely select reagent
embedding dimensionality, and we choose it to be 50 to achieve information
compression that forces reagent embeddings into role clusters but with enough
degrees of freedom. Other dimensionalities lead to different shapes of the map
but do not tend to affect the observed clusters.

2.3 Reagent Data Curation

When reagents are displayed in this interactive map (Fig. 2), it is much easier
to curate them than when working with just table data. We showcase two use
cases when the map facilitates reagent curation: labeling reagents into detailed
roles and finding redundancies in reagent SMILES entries.

Reagent Number. To study the reagents in USPTO, we obtain the entire
dataset using the rxnutils [9] Python package and carry out relevant preprocess-
ing (see 3.2). We rely on the atom-atom mapping (AAM) provided in USPTO to
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extract reagents from reactions. After filtering, we are left with 1,128,297 reac-
tions that feature at least one reagent. In these reactions, we recognize 40,556
unique molecules as reagents using AAM. Among them, two-thirds (27,100)
occur only once. We disregard them, as their attribution to reagents is mostly the
result of erroneous atom-atom mapping, and, in any case, our method works best
with reagents that occur in the data several times and desirably come together
with various other reagent species. Furthermore, for demonstration we decided
to limit our study to the reagents that occur at least 100 times in the filtered
dataset, and we are left with 626 unique reagent SMILES, which we sort by
occurrence frequency in descending order.

Reagent Roles. Reagent role information in the USPTO is rather limited and
only differentiates between catalysts, solvents, and everything else. We decided
to manually categorize every reagent in our subset of 626 USPTO reagents into
one of the following eleven roles:

Acids
Acidic compounds typically used as catalysts, e.g., HCl, H2SO4.

Bases
Basic compounds typically used as catalysts, e.g., NaOH, n-butyllithium, or
Hünig’s base.

Lewis Acids
Catalysts that are Lewis acids, e.g., AlCl3.

Catalysts
Other catalysts, mostly metal-based. For example, those would comprise
homogeneous palladium-based catalysts for cross-coupling reactions, such as
Suzuki coupling, or heterogeneous catalysts for hydrogenation, such as metal
nickel.

Ligands
Compounds with the purpose of forming coordination complexes with metal
ions, e.g., phosphorus-based ligands for homogeneous palladium catalysts or
chelating agents.

Oxidizing Agents
Various oxidizers, including halogenating agents. For example, KMnO4, CrO3,
SOCl2.

Reducing Agents
Various reducing agents, e.g. H2, SnCl2, LiAlH4.

Activators
Reagents that facilitate an overall reaction but are consumed in the pro-
cess. For example, we call activators the agents that allow the formation
of active intermediates enabling a reaction, such as active esters for pep-
tide coupling reactions. A comprehensive review by El-Faham and Albericio
[5] systematizes a number of such reagents, many of which are present in
USPTO. The examples of activators are 1-hydroxybenzotriazole and N,N’-
dicyclohexylcarbodiimide for peptide coupling or diethyl azodicarboxylate for
Mitsunobu reaction.
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Ambience
Other reagents that do not fit any described role and serve some auxiliary
purpose, such as radical reaction inhibitors or nitrogen for inert atmosphere.

Reactants
Molecules that, in fact, contribute atoms to the product and are mistakenly
classified as reagents.

The interactivity of the application and the clustering tendency of reagents
with the same role on the map allow for faster decision-making about reagent
roles compared to using only tabular reagent data. After reagent labeling, the
map in the web application looks as in Fig. 3. The reagents are now colored
according to the roles we assigned to them.

Fig. 3. The map of embeddings for the subset of 626 most common USPTO reagents
colored according to the detailed reagent roles assigned manually.

The tendency to role cluster formation is visible in the map, although it is
not perfect.

Questionable Reagent SMILES. The properties of the reagent embedding
map enable easy detection of different SMILES that represent the same reagent.
Alternative SMILES of the same reagent are naturally assigned similar embed-
dings by our method. For example, Fig. 4 demonstrates a zoom-in on a map
region occupied by strong bases.

By exploring this region on the interactive map, we can immediately discover
that there are sometimes several different SMILES representations for the same
reagent in USPTO. We see two SMILES representations for n-butyllithium, two
for lithium diisopropylamide, and three for lithium bis(trimethylsilyl)amide. In
other regions of the map in Fig. 3, there are sometimes mixtures of reagents deter-
mined in our preprocessing as one reagent (see 3.2), e.g., two solvents together
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Fig. 4. A region of the reagent embedding map that reveals unique reagents represented
by several different SMILES. In this region of strong bases, the SMILES representa-
tions of n-butyllithium, lithium diisopropylamide, and lithium bis(trimethylsilyl)amide
require standardization.

as a unique reagent. We want to ensure that each unique reagent is represented
by a unique SMILES string in our reaction data. We revise our reagent map
once more, standardizing all redundant SMILES we find this way and reducing
the number of unique reagent entries in our map from 626 to 559.

2.4 Analysis

After labeling our reagents with roles and standardizing all reagent SMILES, we
generate reagent embeddings again. The embedding map we thus obtain has a
slightly different shape but preserves the same clusters united by reagent action.

Contiguous Regions of Reagent Action. Figure 5 demonstrates the Voronoi
diagram for the reagent embedding map we obtain for the final 559 reagents in
our application. A Voronoi diagram for a set of two-dimensional points is a
partition of a plane into regions drawn around every point in the set. In this
case, the points are called seeds, and the regions are called Voronoi cells. In
every cell, the points of the plane are closer to the seed forming the cell than to
any other seed. In our case, UMAP projections of reagent embeddings are seeds.

The cells formed by reagent embedding projections are colored by the roles
of the corresponding reagents, and the touching cells of the same color merge. A
Voronoi diagram makes it easy to see regions formed by reagents of the same pur-
pose. We highlight nine example regions in the diagram. The region labeled with
1 comprises various reagents enabling peptide coupling. Among them are HOBt,
HOAt, DCC, and their alternatives, many of which are described in the corre-
sponding review [5]. Region 2 unites organophosphorus ligands for homogeneous
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metal catalysts, e.g., 1,3-bis(diphenylphosphino)propane (dppp), CyJohnPhos
and BrettPhos. Region 3 is defined by homogeneous palladium catalysts, such
as Pd2(dba)3 or Pd(PPh3)4. Region 4 is the region of chelating agents, e.g., 8-
hydroxyquinoline or phenanthroline. Region 5 features two clusters: one cluster
is defined by hydrogenation catalysts, such as palladium on carbon and other
10th group metals; the other cluster is formed by catalytic compounds of CuI

and CuII. Region 6 unites the reagents for Mitsunobu reactions, namely diethyl
azodicarboxylate (DEAD) and structurally similar TMAD, DIAD, and DtBAD.
Region 7 comprises chlorinating agents such as SOCl2, PCl5, or cyanuric chlo-
ride. Region 8 is the region of Grignard reagents. Region 9 features borohydrides
that serve as reducing agents, e.g., NaBH4 or NaBH(Ac)3. These nine regions are
just some examples, and the map contains many more regions uniting reagents of
the same action. We invite the readers to explore the interactive map of USPTO
reagents themselves.

Reagent Role Distribution. Figure 6 demonstrates the distribution of reagent
roles among our subset of 559 reagents.

One can see that nineteen percent of the reagents are actually reactants. It
hints that the atom mapping tool used in USPTO often fails to resolve noisy
reactions this dataset is notorious for.

We make the list of USPTO reagents and their roles available alongside our
codebase. We hope that researchers will this information useful for their own
work involving USPTO.

Reagent Counts. Figure 7 displays the logarithm of the number of occurrences
for every reagent. Around 50 most common reagents dominate the dataset. How-
ever, ∼ 35 percent of all reactions use reagents other than those 50 most common
ones. The less common reagents form a fat tail of the occurrence frequency dis-
tribution: the relative occurrence frequency of reagents starting from the 100th
falls like 1

x2 .

3 Methods

3.1 Theory

The original word2vec [18] is a machine learning algorithm, whose success pop-
ularized machine learning for Natural Language Processing. The goal of the
algorithm is to obtain learned distributed vector representations of words of
the natural language for subsequent usage in downstream tasks, such as text
classification [14]. It has been also shown that embeddings similar to word2vec
enable very effective text compression [21]. The idea behind word2vec is the
distributional hypothesis: the words occurring in similar contexts have similar
meanings and, therefore, must get similar vector representations - embeddings.
The algorithm iteratively trains those initially random embeddings by solving a
classification task - what words are in the context for a given word. The context



Curating Reagents in Chemical Reaction Data 29

Fig. 5. Voronoi diagram of the UMAP projection of reagent embeddings. Reagents
of the same role tend to form contiguous regions corresponding to the same type of
reagent action. Numbers highlight 9 example regions that unite reagents of the same
purpose.

Fig. 6. Distribution of 559 most common USPTO reagents by detailed roles.
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Fig. 7. Decimal logarithm of the number of occurrences of unique reagents in the
USPTO dataset. We consider only the reagents that occur at least 100 times. The
dataset is dominated by approximately 50 most common reagents, and the others are
relatively rare. Unique reagent indices are sorted by occurrence frequency.

of a word consists of other words within a window centered on that word, and
the data pairs for training are obtained using a sliding window over a large text
corpus.

Word2vec has gained widespread adoption in the fields of cheminformatics
and bioinformatics. For example, researchers have adapted it for the construc-
tion of universal feature vectors for small molecules [7,23]. Also, it has been
employed to create meaningful representations of nucleic acids for phylogenetic
analysis [20], predicting drug-miRNA associations [6] and RNA degradation pre-
diction [11]. Additionally, word2vec embeddings have been utilized for proteins
in tasks such as drug-target interaction [26], drug-target affinity [28], protein-
protein interaction [27], and others. A survey [19] offers a broad overview of the
diverse applications of word2vec in bioinformatics and cheminformatics.

While word2vec is an iterative algorithm, Levy and Golberg [12] derived
a proof that a formulation of word2vec called SGNS (skipgram with negative
sampling) is equivalent to factorising the matrix of point-wise mutual informa-
tion (PMI) scores with singular value decomposition (SVD). PMI scores can be
obtained from co-occurrence counts (Eq. 1). Although learning word embeddings
is better approached with the iterative algorithm as there are hundreds of thou-
sands of unique words and their co-occurrence matrix would be too large, we can
resort to PMI matrix factorization when building reagent embeddings, as there
are only several hundreds of the latter.
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Singular value decomposition is a way of factorising a matrix in linear algebra.
It is a generalization of matrix eigendecomposition to non-square matrices. SVD
decomposes a real-valued matrix M of size m × n into three factors according
to Eq. 2:

M = UΣV T (2)

where U and V are orthogonal matrices with sizes m×m and n×n, respectively,
and Σ is an m × n diagonal matrix with non-negative real numbers on the
diagonal called singular values. The number of non-zero singular values is equal
to the rank of M , and we can truncate the sizes of Σ to the desired number of
singular values, which controls the sizes of U and V . We perform SVD in Python
using the SciPy library [25] and use U as the matrix of reagent embeddings, in
which every row is a reagent embedding with the dimensionalily equal to the
chosen number of singular values.

3.2 Data

Preprocessing. We use the entire USPTO dataset for our study. We download
the USPTO reactions as SMILES using the rxnutils Python package [9]. The
raw data before preprocessing consists of 3,748,191 reactions. We use rxnutils to
build the pipeline for the initial preprocessing. First, we canonicalize all SMILES
strings and remove the reactions that contain molecules not canonicalizeable by
RDKit. Then, we remove stereochemical information from all molecules and
drop duplicate reactions. Finally, we keep only those reactions in which the
number of precursors (reactants and reagents together) is less than 10. This
initial preprocessing reduces the data volume to 1,393,677 reactions. We do not
remove the CXSMILES information because it is necessary to assemble scattered
reagent fragments like ions or ligands that belong together into one species.

The consequent preprocessing does not rely on rxnutils and consists of the
following steps:

1. Reagent extraction:
We determine reagents for every reaction using the atom-atom mapping infor-
mation available in USPTO. We use the CXSMILES information provided in
reactions to assemble disjoint reagent fragments (e.g., ions or ligands) into
whole reagent species.

2. Reaction filtering:
We drop reaction records involving more than ten reactants and reagents,
more than five reagents, or zero reagents. We also delete trivial reactions -
the ones in which the product is found among reactants or reagents.

3. Reagent filtering:
We remove bound water from reagents such as Na2SO4·10H2O and delete
bare ions and other reagent species with unbalanced charge.

Eventually, we remove reactants and products from every reaction and obtain
a text file in which every row contains reagent SMILES for a reaction sepa-
rated by semicolons. In this file, we count all unique reagents and remove those
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that appear less than 100 times. This leaves us with 626 unique reagents (559
after ensuring one-to-one correspondence between unique reagents and unique
SMILES in our data, see 2.3).

We then use this file to derive a table of reagent co-occurrence counts and
point-wise mutual information scores. Finally, we factorize this table using sin-
gular value decomposition and use one of the factors as a matrix of reagent
embeddings.

UMAP Details. We use the default parameters of the UMAP class (15
neighbors, Euclidean metric) in the UMAP Python package [17] in the web
application.

Alternative Reagent Determination. As an alternative to relying on AAM
to determine reagents, we also try the fingerprint-based procedure described by
Schneider et al. [22] and available in RDKit. It does not depend on AAM and
is therefore more universal, even though it may occasionally fail, determining
all reactants as reagents. In such cases, we fall back to the AAM-based reagent
extraction. With this preprocessing, we obtain 558 unique reagents that appear
at least 100 times in the dataset. Among those, 25 reagents, 14 of which we assign
the “reactant” role, are not among our 559 reagents determined using AAM. At
the same time, 26 reagents (19 “reactants”) determined by AAM are not in the
set of reagents determined by the fingerprint procedure. However, the reagent
embedding space maps in both cases do not differ significantly, and the map for
reagents obtained by the fingerprint procedure contains the same regions as in
Fig. 5. Therefore, we conclude that both reagent determination procedures are
alternatives for the user to choose from depending on the user’s confidence in
the AAM reliability in their data.

4 Conclusion

Our paper introduces a novel approach to facilitate chemical reaction data
curation with a focus on reagents. By counting unique reagents in a reaction
dataset, turning the table of their pairwise counts into point-wise mutual infor-
mation scores, and factorizing that table with singular value decomposition, we
effectively apply a word2vec algorithm to reagents and obtain their distributed
vector representations that capture reagent co-occurrence statistics. Projecting
the obtained reagent representations on the plane with UMAP, we construct a
reagent space map demonstrating intriguing clustering patterns among reagents,
highlighting that reagents united by common purpose lie close together and par-
tition into distinct clusters. Based on this map, we present an interactive web
application providing a user-friendly platform for researchers to navigate and
explore reagent patterns within reaction datasets. We demonstrate the use of
the application with the USPTO dataset.

Additionally, we systematize and catalog several hundreds of the most com-
mon reagents used in USPTO and label them into detailed roles. We believe
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that such information will be valuable for reagent prediction models trained on
USPTO. For example, it can be used to estimate the performance of a reagent
prediction model not by the often interchangeable individual molecules, but by
the correctness of predicted roles. The code and data are available at https://
github.com/Academich/reagent_emb_vis.
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Abstract. We propose PoLiGenX for de novo ligand design using
latent-conditioned, target-aware equivariant diffusion. Our model lever-
ages the conditioning of the generation process on reference molecules
within a protein pocket to produce shape-similar de novo ligands that can
be used for target-aware hit expansion and hit optimization. The results
of our study showcase the efficacy of PoLiGenX in ligand design. Dock-
ing scores indicate that the generated ligands exhibit superior binding
affinity compared to the reference molecule while preserving the shape.
At the same time, our model maintains chemical diversity, ensuring the
exploration of diverse chemical space. The evaluation of Lipinski’s rule of
five suggests that the sampled molecules possess a higher drug-likeness
than the reference data. This constitutes an important step towards the
controlled generation of therapeutically relevant de novo ligands tailored
to specific protein targets.

Keywords: Equivariant Graph Neural Networks · Diffusion ·
Generative Chemistry · Structure-based drug discovery · De novo
molecule design · Hit Expansion

1 Introduction

In recent years, the intersection of artificial intelligence (AI) and drug discovery
has witnessed remarkable strides, with the potential to revolutionize the tra-
ditional approaches to identifying novel therapeutic compounds. Among these
innovations, AI-enabled structure-based drug discovery has emerged as a promis-
ing research avenue, in particular in form of equivariant target-aware diffusion
models. By conditioning the diffusion process on the receptors of proteins, these
models exhibit a remarkable capacity to generate de novo ligands with enhanced
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Fig. 1. Graphical model of the proposed latent diffusion model. The encoded ligand z
serves as input to the diffusion model pθ to steer the generation process of new ligands
M0.

affinity [7,14,19,20]. Failing to consider the essential chemical properties for tar-
get binding can lead to a significant lack of specificity and result in ineffective
drug candidates. Moreover, these candidates must exhibit favorable absorption,
distribution, metabolism, excretion (ADME), and toxicity profiles. Designing
ligands from scratch without addressing these critical properties may produce
molecules with poor bioavailability or potential toxicity, thereby limiting their
therapeutic potential. This challenge is further exacerbated by the often sparse
and noisy data available for developing effective machine learning models. How-
ever, machine learning shows considerable promise during the hit expansion
phase of drug discovery. This crucial stage involves enhancing and exploring the
chemical space around promising hits already identified through high-throughput
screening or other methods. In this study, we introduce PoLiGenX (Pocket-based
Ligand Generator for hit eXpansion) that generates ligands de novo within a
protein binding pocket. Unlike previous models, PoLiGenX starts with a seed
molecule, such as a hit candidate or an initial scaffold, and iteratively refines and
modifies it to improve its efficacy. We enhance the capabilities of the existing
equivariant diffusion model, EQGAT-diff [14], by incorporating a latent encod-
ing as a condition. It is derived from an invariant graph neural network that
is jointly trained to process 3D molecular inputs. The setup ensures that the
newly generated ligands retain structural characteristics of the seed molecules
while undergoing necessary chemical modifications and diversification. Our pro-
posed approach adds a new level of control to the process of generating de novo
ligands, aligning it more closely with the specific needs of targeted drug design,
particularly during the hit expansion phase (Fig. 1).
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2 Related Work

Deep generative modeling in the life sciences has become a promising research
area. Recent work by [12,25] uses Denoising Diffusion Probabilistic Models
(DDPMs) [8,13,21,22] to predict the 3d coordinates of molecules with the help
of 3d equivariant graph neural networks. In the de novo setting, another line
of research focuses on directly generating the atomic coordinates and elements,
using autoregressive models [5,6,18]. [9] introduced E(3) equivariant diffusion
model (EDM) for de novo molecule design that simultaneously learns atomic
elements next to the coordinates while treating chemical elements as continu-
ous variables to utilize the formalism of DDPM. Follow-up work leverages EDM
and develop diffusion models for linker design [11] and structure-based ligand
modeling [7,14,20]. In the context of shape-conditioned molecule generation [1]
(SQUID) and [3] (ShapeMol) recently proposed to incorporate the shape of a seed
molecule into the generation process. Both approaches use an equivariant surface
encoding of a seed molecule, whereby SQUID uses variational auto-encoding on
graphs and focuses more on fragment-based design. ShapeMol is an adaption
of SQUID in 3d space leveraging an equivariant diffusion model. However, both
works do not include a protein receptor condition. We propose to use a simple
approach employing reference molecules in a latent representation, as outlined
in more details below.

3 Methods

Problem Formulation and Notation. We investigate the generation of molecular
structures M in a de novo setting conditioned on a protein pocket P , i.e., build-
ing a generative model pθ(M |P ). For this, we use the EQGAT-diff framework
proposed by [14]. In this setup, a noisy ligand Mt = (Xt,Ht, Et) - representing
perturbed atomic coordinates, element types, and bond features - is used, and
the diffusion model pθ predicts the uncorrupted data modalities (X̂0, Ĥ0, Ê0),
because the distribution Mt−1|Mt depends on both Mt and M̂0. Specifically,
for continuous coordinates, the reverse distribution adheres to a multivariate
Gaussian model, while for discrete-valued modalities, it follows a categorical
distribution. We refer to [14] for further details.

While models like EQGAT-diff, TargetDiff or DiffSBDD generate ligands
in context of a protein pocket, they do not constraint the generated ligands to
preserve properties like shape or chemical similarity during training. In contrast,
we include a latent variable z ∈ R

K that relates to the input molecule M̂0.
The latent z may serve as a shape conditioning that also comprises chemical
information like the atom composition of the molecule M̂0. The graph encoder
qφ : X M → R

K is invariant to permutation, rotation and translation of atoms
[15,24].

Following [1], chemical similarity of two molecules is measured as the Tani-
moto similarity of ECFP4 fingerprints (2048 bits) computed by RDKit, whereby
shape similarity is defined by Gaussian descriptions of molecular shape in form
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of atom-centered Gaussians and calculated by the volume overlaps between them
as in [1].

PoLiGenX. To model the dependence on variable z, we include a variational
distribution qφ(z|M0) similar to [17,26] and obtain the ELBO

pθ(M0|P ) = Eq(M1:T |M0)qφ(z|M0)[
pθ(M0,M1:T , z|P )

q(M1:T |M0)qφ(z|M0)
]

≥ Eq(M1:T |M0)qφ(z|M0)[log
pθ(M0,M1:T , z|P )

q(M1:T |M0)qφ(z|M0)
]

= Eq(M1|M0)qφ(z|M0)[log pθ(M0|M1, P, z)]

+ Eq(MT |M0)qφ(z|M0)[log
p(MT |z)

q(MT |M0)
]

− DKL(qφ(z|M0)||p(z)) −
T∑

t=2

Eq(Mt|M0)qφ(z|M0)[Lt−1],

(1)

where the diffusion loss Lt−1 is per timestep and defined as

Lt−1 = DKL(q(Mt−1|Mt,M0)||pθ(Mt−1|Mt, P, z)). (2)

We extend the diffusion model by a conditioning on z and train pθ(M |P, z)
to minimize the KL divergence to the tractable reverse distribution, which is
achieved when predicting the original data points M̂0 [2,8,14]. Similar to prior
works, we optimize the diffusion Lt−1 by drawing steps per minibatch instead
of the entire trajectory. We adopt a Gaussian prior for the latent distribution,
i.e., p(z) ∼ N(0, I) and enforce a smooth latent space by choosing the maximum
mean discrepancy (MMD) loss [23] over the KL divergence. The prior distribu-
tion for the ambient data space, i.e., MT is a 0-CoM Gaussian for coordinates
and empirical categorical distribution for discrete data types from the training
set as discussed in [14]. During training, we sample a batch of pocket-ligand
pairs and a step t ∈ {1, . . . , 500}. Next, we encode the ligands M0 into latents z,
apply the noise process to the ligands to obtain Mt and minimize the diffusion
loss while providing z as an additional input via adaptive layer normalization
[10] next to the protein pocket P . We refer to the supplementary material for
further details including the derivation of the ELBO.

4 Results

We train PoLiGenX using the CrossDocked2020 [4] dataset, following the same
dataset splits as found in previous research [7,14,16,19,20]. Unlike other models,
PoLiGenX incorporates not only the protein pocket as a condition for generating
novel ligands but also utilizes a latent embedding of a ligand from the dataset
as an initial condition. This distinctive approach positions PoLiGenX differently
from the mentioned models - it is specifically designed to perform tasks akin to
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Fig. 2. Top: Violin plot of the Tanimoto shape similarity evaluated across all test
targets of the CrossDocked dataset. PoLiGenX (left) is compared to EQGAT-diff
(right). In the conditional setting the model generates significantly more shape-similar
molecules. Bottom: Heatmap histogram comparing PoLiGenX (left) with EQGAT-diff
with respect to Tanimoto shape and chemical similarity on the CrossDocked test set.
The brighter the color the higher the molecule count.

hit expansion by enhancing specificity, chemical diversity, and binding affinity,
rather than operating solely as a target-aware, but unconditional de novo model.
In the following, we evaluate if PoLiGenX effectively maintains the structural
shape of the seed molecule while promoting chemical diversity.

Figure 2 (top) shows the evaluation of the mean shape similarity on the Cross-
Docked test set for both PoLiGenX (conditional) and EQGAT-diff (uncondi-
tional). The test set comprises 100 ligand-pocket complexes for which 100 ligands
each were sampled and the Tanimoto shape similarity measured against the ref-
erence ligands. PoLiGenX exhibits significantly higher shape similarities across
complexes. However, we aim to preserve the shape between reference and sample
without sacrificing chemical diversity to ensure an efficient exploration of chem-
ical space. Figure 2 (bottom) shows the distribution of shape similarity against
chemical similarity for conditional and unconditional sampling. We observe a
mean shape similarity of 0.64 and 0.12 chemical similarity for EQGAT-diff. In
contrast, PoLiGenX exhibits a significant increase in shape similarity with mean
value of 0.87, but also generates a reasonably high diversity in samples with
mean chemical similarity of 0.33.

To evaluate the expressiveness of the learned latent embeddings, Fig. 3 visu-
alizes the UMAP projections of the latent embeddings. We sampled 100 ligands
per receptor for ten randomly selected targets of the CrossDocked test set. The
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Fig. 3. UMAP plot showing the 2d projections of the latent embeddings of 100 sampled
ligands per target for ten randomly sampled test set targets.

Fig. 4. Reference molecules extracted from the CrossDocked test split (left) and four
generated molecules sampled randomly with PoLiGenX. Below each generated ligand,
we also show the chemical similarity to the reference ligand.
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resulting UMAP projections reveal that the latent embeddings effectively sep-
arate the ligands into distinct clusters specific to each target. This observation
suggests that our latent model successfully captures the context of ligands in
relation to their respective protein receptors.

Table 1. Docking performance on the CrossDocked test set and ligands generated
using PoLiGenX. QuickVina2 is employed for docking. We report mean values across
all targets with standard deviations given as subscripts. Drug-likeness is measured via
RDKit’s QED value. Further, molecules are evaluated in terms of the octanol-water
partition coefficient (logP), the molecular weight (MolWt) and the number of hydrogen
acceptors and donors. Following Lipinski’s rule of five, we report the percentage of
molecules that obey the respective rule. The last column gives the average of molecules
fulfilling all rules.

Data QVina2 (All) ↓ QVina2 (Top-10%) ↓ QED ↑ logP ↑ MolWt ↑ H-acceptors ↑ H-donors ↑ Lipinski ↑
CrossDocked test set −6.85±2.33 − 0.47±0.20 0.79 0.85 0.84 0.8 3.35±1.14

PoLiGenX −7.21±2.22 −8.04±2.44 0.59±0.20 0.91 0.87 0.85 0.91 3.57±0.93

Next, we compare molecules sampled conditionally from our model, PoLi-
GenX, with the reference test data, focusing on docking scores and chemical
properties. As previously outlined, the purpose of PoLiGenX is significantly dif-
ferent to recent de novo models, such as EQGAT-diff, hence we omit a compar-
ison. Table 1 summarizes the results. We observe improved docking scores for
generated samples compared to the CrossDocked test data, in particular within
the top 10% of each target. Here, we reach a docking score of −8.04 ± 2.44 com-
pared to −6.85 ± 2.33 for the test data. At the same time, the generated ligands
per target show improvement in RDKit’s drug-likeness score (QED) and adher-
ence to Lipinski’s Rule of Five. These are chemical features recognized from a
medicinal chemistry perspective as guidelines to identify compounds likely to
possess favorable bioavailability. Specifically, the octanol-water partition coeffi-
cient (logP) should be less than 5, molecular weight (MolWt) should be less than
500 Daltons, hydrogen bond acceptors (H-acceptors) less than 10 and hydrogen
bond donors (H-donors) should be less than 5.

Figure 4 depicts three randomly chosen test set ligands with four condition-
ally sampled and randomly selected ligands each. Judging by visual inspection,
the topology is well preserved. We note that chemical similarity, especially based
on fingerprints can change drastically if some chemical elements are interchanged.
As shown in the bottom panel in Fig. 2, PoLiGenX achieves a mean chemical
similarity of around 0.33 while preserving shape similarity of 0.87 compared to
the unconditional case with 0.12 and 0.64 for chemical and shape similarity,
respectively.

The controllable generation of PoLiGenX can be further regulated by includ-
ing a control parameter λ ∈ (0, 1] that scales the latent z when going into
the diffusion model. That is, for small λ values approaching 0, PoLiGenX does
not include any latent information and collapses to the unconditional EQGAT-
diff and only leverages the pocket information as context. With λ interpolating
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Fig. 5. Density plot for chemical similarity of generated ligands from PoLiGenX with
varying λ control parameter. With increasing λ, the latent z of reference/seed ligand
M0 is preserved such that generated ligands exhibit higher chemical similarity to M0.

between e.g. (0.5, 1.0), we observe that the mean chemical similarity for gener-
ated ligands with respect to the references also increases as depicted in Fig. 5.
We detail the influence of the latent variable z in combination with the scale
parameter λ in the supplementary materials.

5 Conclusions

We have developed PoLiGenX for controlled de novo ligand generation within a
protein binding pocket. By incorporating a latent encoding from a seed molecule
into the diffusion model, we ensure that the generated ligands preserve shape and
also adhere to the structural constraints of the target protein binding site. The
effectiveness of PoLiGenX is evidenced by improved docking scores compared to
reference ligands. Additionally, the generated ligands conform to Lipinski’s Rule
of Five, demonstrating their drug-likeness. Importantly, the model maintains
chemical diversity, which is essential for exploring a broad range of chemical
space and discovering novel therapeutic candidates. This integration of shape
preservation, target specificity, and chemical diversity provides a powerful app-
roach for the targeted generation of drug candidates, particularly useful in the
hit expansion phase of drug discovery campaigns.
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Abstract. Understanding how solvation affects structure-property and
property-property relationships of drug-like molecules is crucial for de
novo design, as most relevant reactions occur in aqueous environments.
We have thus performed an exhaustive analysis of the recently proposed
Aquamarine dataset to gain insights into the effect of solvent-molecule
interaction on the quantum-mechanical (QM) properties of large drug-
like molecules. Our results show that the inclusion of an implicit solvent
model of water changes the values of (extensive and intensive) QM prop-
erties but it does not alter the correlations among them. Moreover, we
have found that solvation can limit the identification of unique molecu-
lar conformations, with variations in specific properties being rational-
ized by the extent of structural changes. Δ-learning approach was used
to predict solvent effects on the dipole moment μ and the many-body
dispersion energy EMBD, resulting in more accurate and scalable predic-
tive models compared to these directly trained on solvated properties.
Hence, our work provides valuable insights into the effect of solvent-
molecule interaction on physicochemical properties, which could assist
in the development of machine-learning models for designing solvated
molecules of pharmaceutical and biological relevance.

Keywords: Drug-like molecules · Quantum-mechanical properties ·
Solvent effects · Property prediction

1 Introduction

Solvation constitutes a big challenge for current chemoinformatics methods. A
proper computational description of solvated systems requires explicit treatment
of numerous interactions of different natures (e.g., electrostatic, van der Waals,
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hydrogen bonding), which is unfeasible for large systems and long time scales.
At the same time, however, accounting for solvent effects is crucial in many
applications, from drug discovery to material science, because the aforemen-
tioned interactions can radically affect the electronic and geometrical structure
of the solute, leading to large modifications of molecular and atomic proper-
ties. To appreciate these effects on large systems, models for implicit solvation
have been proposed [1,2]. In these models, the solvent is considered as a con-
tinuum medium, and interactions are treated in a mean-field way, thus leading
to a substantial reduction in degrees of freedom. This increased computational
efficiency allows for simulations of larger systems and longer time scales com-
pared to explicit methods while maintaining an acceptable accuracy for many
applications. Examples of implicit models include modified Poisson-Boltzmann
(MPB) [3], conductor-like screening model for real solvents (COSMO-RS) [4],
and Generalized Born (GB) [5] model augmented with the hydrophobic solvent
accessible surface area (GBSA) [6].

Even though the molecular theory of solvation is well-known [7], an exhaus-
tive analysis of the effects that interactions with a solvent may have on an
extensive set of solutes is still lacking. This is due to the vastness and diversity of
the chemical space, which makes it extremely difficult to acquire comprehensive
knowledge on the subject. The literature is rich in studies about solvent effects
on specific systems, for example, Matczak et al. [8] considered ten formaldehyde
and thioformaldehyde derivatives and studied how geometry, energetics, HOMO
and LUMO orbitals, dipole moment and polarizability change upon solvation
on solvents of low polarity. Instead, Odey et al. [9] studied how polar solvation
affects the structure, dynamical stability, spectroscopy, and antiviral inhibitory
potential of Cissampeline. Ensing et al. [10] also studied solvation effects on the
SN2 reaction between Cl− and CH3Cl. This non-exhaustive list demonstrates
how previous studies have concentrated on specific systems, properties, or reac-
tions.

Within the context discussed above, in this work, we use the recently pro-
posed Aquamarine (AQM) dataset [11] to obtain valuable insights into the effect
of solvent-molecule interactions on structure/property and property/property
relationships of large drug-like molecules. AQM contains 40 physicochemical
properties for 59,783 conformers of 1,653 drug-like molecules with sizes up to
92 atoms, including H,C,N,O,F,P,S, and Cl elements. Using the two versions of
AQM dataset, namely AQM-gas and AQM-sol, we have performed an extensive
data-driven analysis of how hydration affects correlations between properties
and energy ranking of conformers. We also investigated the relationship between
the variation in properties (dipole moment μ and many-body dispersion energy
EMBD) and the structural changes. As a final analysis, we show that a machine
learning model trained to learn the difference between the values of proper-
ties in water Psol and the values of the same properties in gas-phase Pgas (i.e.,
ΔP = Psol − Pgas) can help predict solvated-phase properties with higher pre-
cision compared to a model directly trained on Psol values. Previous studies
used Δ-learning to improve the level of theory of calculated properties [12–15],
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or to predict solvation free energies [16–18]. To the best of our knowledge, this
is the first time Δ-learning is applied to predict the QM properties of solvated
molecules using only information from the gas-phase system.

2 Computational Methods

Aquamarine Property Space. Compounds in AQM [11] were sampled from
ChEMBL [19] with the requirement of being similar to the Johnson & Johnson
Innovative Medicines corporate database in terms of molecular weights (less than
1200), number of rotatable bonds (less than 30), quantitative estimate of drug-
likeness (QED) score [20] (more than 0.4), and number of heavy atoms (less than
200). More details on the selection of representative chemistries can be found
in Ref. [11]. For the selected molecules, conformers were generated using the
conformational search workflow implemented in CREST code [21]. Represen-
tative conformers were optimized using the DFTB3 [22–24] method augmented
with many-body dispersion (MBD) interactions [25–28]. Over 40 global and local
properties were then computed at the PBE0+MBD [25,29,30] level of theory.
The great advancement of AQM is its availability of these properties in gas-and
solvated-phase, producing the two subsets AQM-gas and AQM-sol, respectively.
For AQM-sol, conformations were optimized in implicit water using the GBSA [6]
model. The properties calculations were instead performed using the MPB [3,31]
model. Among all the properties in AQM, we selected the the molecular dipole
moment μ (an intensive property) and the many-body dispersion energy EMBD

(an extensive property) for further analysis. This choice is motivated by the
fact that μ is expected to be heavily influenced by a polar solvent such as
water. Whereas, EMBD was selected because van der Waals interactions signifi-
cantly affect the conformations of large molecules, so large changes in dispersion
energy are expected to be related to significant changes in the 3D configuration
of the molecule. These properties describe the electrostatic and long-range dis-
persion interactions in large molecular complexes, which are crucial components
for screening the stability of molecules within drug discovery frameworks.

Delta Learning Model. We have used the state-of-the-art equivariant neural
network MACE [32] to train the predictive models on ΔP = Psol−Pgas, with P =
μ and EMBD. MACE decomposes the target property into atomic contributions
and learns them as a function of atomic numbers and coordinates. In the final
layer, these contributions are summed up to reconstruct the predicted property
value. The training features were atomic numbers and cartesian coordinates in
the gas phase. With the same features, other MACE models were trained to
learn directly Psol values. We have trained four different models depending on
the maximum number of atoms of molecules in the training data, i.e., up to 30
atoms (6,433 conformations), 40 atoms (12,760 conformations), 50 atoms (23,221
conformations), and 70 atoms (51,958 atoms). The validation set included 20% of
the training data, and the evaluation was always performed on molecules larger
than 70 atoms (6,625 conformations). To train the models, we have considered
a cutoff radius of 6Å and 2 MACE layers.
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Fig. 1. Analysis of the correlation structure for small drug-like molecules in gas-phase
(QM7-X), large drug-like molecules in gas-phase (AQM-gas) as well as in implicit water
(AQM-sol). The thickness of edges is according to Pearson correlation coefficient ρ (see
color bar), and the color is purple for weakly correlated properties (ρ < 0.57), blue for
moderately correlated properties (0.57 ≤ ρ < 0.91), and green for strongly correlated
properties (ρ ≥ 0.91). (Color figure online)

3 Results and Discussion

We start by analyzing the pairwise property correlation among a set of selected
QM properties contained in QM7-X [33], AQM-gas, and AQM-sol (see Fig. 1).
As it was discussed by Medrano-Sandonas et al. [34], the lack of correlation
among the majority of properties for small molecules contained in QM7-X is
evidence of the “freedom of design” conjecture in the QM7-X property space,
i.e., there is the possibility of designing molecules with the desired value for
a property, without sensibly affecting other properties [35]. To investigate the
validity of this statement for large solvated drug-like molecules, we have per-
formed a similar analysis using both AQM-gas and AQM-sol. Accordingly, we
have examined pairwise correlations between 16 of out 19 properties studied
in Ref. [34] (AQM dataset do not contain RMSD with respect to equilibrium
structure, maximum distance between heavy atoms, and total DFTB energy).
The selection criteria aimed to cover properties relevant to the drug discovery
community from a quantum-mechanical point of view, striking a good balance
between extensive and intensive, molecular and atomic, as well as ground-state
and response properties. Following the approach in Ref. [34], we defined three
categories according to ρ values: weak correlations (ρ < 0.57), moderate correla-
tions (0.57 ≤ ρ < 0.91), and strong correlations (ρ ≥ 0.91). As depicted in Fig. 1,
we found out that “freedom of design” conjecture still exists (properties are gen-
erally weakly correlated), however, the number of moderately correlated pair of
properties strongly increases from QM7-X to AQM (from 8 to 18). Interestingly,
this result is only due to the increased molecular size, as the correlation structure
observed in AQM-sol is largely similar to that in AQM-gas. This indicates that
while solvation impacts the property values, it does not alter the correlations
between them.

We proceeded with the analysis studying how solvation affects the energetic
landscape of a molecule. To do this, we first computed the energy range for
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Fig. 2. (a) Variation of the energy range for molecules in implicit water and molecules
in gas phase. For each unique molecule, the difference between the energy of the high-
est energy conformer and the lowest energy one was computed. The large majority
of molecules lie under the bisect, indicating that generally, the presence of a solvent
reduces the energy range. (b) Population of consecutive energy windows above the
ground state. The average number of conformers inside windows of increasing energy
above the ground state was computed. The solvated phase is consistently more popu-
lated than the gas phase in the low-energy regime, indicating a degeneracy.

all molecules in the dataset, defined as the energy difference between the con-
formers at the highest and lowest energy. The results show a reduction of the
energy range, meaning that the same number of conformers is compressed in
a smaller energetic window in the solvated phase (see Fig. 2(a)). To see how
conformers distribute inside these reduced regions, we counted for each com-
pound the number of conformations inside windows of increased energy from
1 kcal/mol over the ground state to 23 kcal/mol, as shown in Fig. 2(b). Indeed,
solvation leads to a degeneration: lower energy windows are systematically more
densely populated in the solvated phase than in the gas phase. Accordingly, a
direct implication of this finding is that it becomes more challenging to uniquely
identify conformations with a specific energy value in a solution, particularly
near an energy minimum. Together with this change in energies, it also comes
a modification of the radius of gyration, Rg, which increases or decreases for
molecules with Rg ≈ 5.0 Å in the gas phase (see Fig.3 in Ref. [11]). This means
that the molecular structures can become either more extended or more com-
pact after interacting with the solvent, affecting their flexibility, and hence, the
entropy of the system.

To understand how structural changes induced by the implicit solvent model
affect the molecular properties, we compared the root mean squared deviation
(RMSD) [36–38] between the structure before and after solvation with the varia-
tion in the dipole moment μ (intensive) and many-body dispersion energy EMBD

(extensive). Figure 3 displays the correlation plots for these properties, which
appear as unstructured conglomerates of data points. This finding highlights the
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Fig. 3. Geometrical change measured as root mean squared deviation (RMSD), as
a function of the variation of (a) dipole moment Δμ and (b) many-body dispersion
energy ΔEMBD. Yellow horizontal lines follow the variation of the respective prop-
erty for molecules showing the same RMSD. Molecules with increasing μ show a pla-
nar geometry, while molecules with increasing EMBD are associated with structures
becoming more compact. On the other hand, yellow vertical lines show the variation
of RMSD along molecules with the same property change. The same variation in prop-
erty is obtainable by a wide variety of compositions—a clear evidence of the"freedom
of design" in the chemical space spanned by AQM. (Color figure online)

absence of significant correlations, even when analyzing the variation in prop-
erties (ρ = 0.27 for μ and ρ = 0.68 for EMBD). μ exhibits greater variations as
the molecular structure becomes more planar, whereas EMBD shows more sig-
nificant changes when the structure becomes more compact. Both effects can be
rationalized using physics and chemical intuition. Moreover, we found that the
"freedom of design" conjecture can be applied in the space defined by the vari-
ation of properties under the influence of solvation. In Fig. 3(a,b), it is evident
that the same variation in each molecular property can be achieved with diverse
RMSD values (indicated by yellow vertical lines), i.e., with molecules that are
either more or less flexible. Indeed, it is possible to identify diverse molecules with
increasing geometrical differences when considering the mean value of Δμ = 0.52
eÅ. For example, C16H14Cl2O2 does not change its geometry with respect to the
gas phase, while C23H23F3N4O2 shows an RMSD = 2.5 Å. As an extreme case,
we have found molecules with RMSD larger than 3.5 Å, e.g., C23H23ClN6S.
Similarly, one can identify molecules for which the change in dispersion energy,
EMBD, is zero, but the molecular structure can remain unaltered (as in C7H8O),
or it can have an RMSD > 3 Å (C22H23N3O5).

As a last analysis, we used the equivariant neural network architecture
MACE [32] to learn and predict solvent effects for the QM properties discussed
above. We adopted a Δ-learning approach, where the learning targets are Δμ
and ΔEMBD, i.e., we learned corrections to obtain solvated property values from
gas-phase ones. The predictions obtained via Δ-learning were compared to the
ones obtained by direct learning over four training sets of increasing size, con-



Predicting Solvent Effects in Large Drug-Like Molecules 53

Fig. 4. Mean Absolute Error (MAE) for the prediction of dipole moment μ and many-
body dispersion energy EMBD of solvated molecules using Δ-learning and direct learn-
ing methods. Evaluations were computed on molecules larger than 70 atoms, while the
training was performed on molecules with a maximum number of atoms of 30, 40, 50,
and 70 atoms. The black lines represent the error on the training set.

taining molecules up to 30, 40, 50, and 70 atoms, respectively. The evaluations
were always done on molecules larger than 70 atoms. This approach enabled a
comprehensive assessment of the robustness of the models across varying molec-
ular sizes. Figure 4 shows the evaluations for the two properties and the four
training sets. It is evident how the Δ-learning approach yields better predic-
tions than direct learning for both properties. Moreover, these models display
the lowest mean absolute error (MAE) for all training sets—a clear example
of their improved scalability. This is more evident when analyzing μ, for which
the lowest MAE obtained by Δ-learning is 0.35 e Å for the training set with
molecules up to 70 atoms, while MAE of direct learning for the same set is 0.66 e
Å. Interestingly, increasing the size of the molecules in the training set does not
always increase the accuracy of the predictions. For example, MAE for direct
learning in the prediction of μ increases from 0.71 e Å in the second training
set (max. size = 40) to 1.09 e Å in the third training set (max. size = 50). This
result could be attributed to the increased complexity of the training data when
larger molecules are taken into account, as evidenced by the rise in training error
(depicted by the black line). However, further in-depth analysis is necessary to
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fully elucidate this finding. Similar results were observed for EMBD, although
the variance in performance is less pronounced. This is because van der Waals
interactions are inherently long-range, and using only a 6 Å cutoff is not enough
to correctly describe them.

4 Conclusions

In conclusion, our study offers valuable insights into how solvent effects influence
the physicochemical properties of an extensive set of large drug-like molecules
that, to the best of our knowledge, were previously unknown. These findings
could assist the development of machine learning (ML) models for investigating
the property space of solvated molecules. For example, the lack of correlation
between structural RMSD and the variation of the studied properties showed
that solvent can affect the electronic structure of a diverse set of molecules with-
out altering their structure. Hence, ML models should take into consideration the
electronic features of these molecules. The matter concerning energetic degenera-
tion also highlights the necessity for a more rigorous molecular description within
machine-learned force fields, particularly when applied to systems immersed in
a solvent as opposed to those in the gas phase. Lastly, our results on Δ-learning
show a way to predict solvated phase properties only using structures and prop-
erties of gas-phase molecules. This can be relevant for obtaining information on
solvent effects only using the information available in gas-phase, thus avoiding
expensive QM calculations. A similar approach can be applied to investigate the
dynamics of solvated molecules using data from molecular dynamics simulations
[39] or molecular density functional theory [40].
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Abstract. In recent years, there has been growing interest in lever-
aging human preferences for drug discovery to build models that cap-
ture chemists’ intuition for de novo molecular design, lead optimiza-
tion, and prioritization for experimental validation. However, existing
models derived from human preferences in chemistry are often black-
boxes, lacking interpretability regarding how humans form their prefer-
ences. Enhancing transparency in human-in-the-loop learning is crucial
to ensure that such approaches in drug discovery are not unduly affected
by subjective bias, noise or inconsistency. Moreover, interpretability can
promote the development and use of multi-user models in drug design
projects, integrating multiple expert perspectives and insights into multi-
objective optimization frameworks for de novo molecular design. This
also allows for assigning more or less weight to experts based on their
knowledge of specific properties. In this paper, we present a method-
ology for decomposing human preferences based on binary responses
(like/dislike) to molecules essentially proposed by generative chemistry
models, and inferring interpretable preference models that represent
human reasoning. Our approach aims to bridge the gap between human-
in-the-loop learning and user model interpretability in drug discovery
applications, providing a transparent framework that elucidates how
human judgments can shape molecular design outcomes.
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1 Introduction

Designing effective molecule scoring functions for drug discovery is a highly
complex and multifaceted challenge. This complexity arises from the need to
balance multiple objectives, such as potency, selectivity, toxicity and synthetic
accessibility (SA), each of which must be optimized simultaneously. Traditional
computational methods often struggle to integrate these diverse factors into
a single, coherent scoring function, making the discovery process both time-
consuming and uncertain. The dynamic nature of biological systems and the vast
chemical space further complicate the task, requiring innovative approaches to
accurately evaluate molecular efficacy beyond conventional manually-engineered
scoring functions.

Human-in-the-loop assisted drug discovery offers a promising solution by
incorporating the expertise and intuition of chemists directly into the computa-
tional workflow. Unlike static, manually-defined scoring functions, human-in-the-
loop learning approaches allow for real-time adjustments based on expert knowl-
edge and evolving insights. This dynamic interaction enables a more nuanced
evaluation of candidate molecules, leveraging human judgment to guide the dis-
covery process more effectively. By integrating human expertise, data-driven
methods can adapt to new information and improve the relevance and accuracy
of molecular predictions.

Several models have been developed to harness human input in drug discov-
ery. Notable among these are the works of Sundin et al. [15] and MolSkill [5].
While Sundin et al. focus on dynamically learning a scoring function from binary
human preference responses on proposed designs, MolSkill authors train a neural
network using pairwise comparisons between molecules to infer user preferences.
These models represent significant advancements in incorporating human pref-
erences into drug discovery, yet they often operate as black-box systems with
limited transparency.

The lack of interpretability in these user models is a critical concern. Black-
box user models can obscure the rationale behind chemist intuition, making it
difficult to trust and validate the outcomes. This may represent a bottleneck to
the effective integration of human expertise into the drug discovery process.

A previous study by Kutchukian et al. [10] has shown that medicinal chemists
simplify the complex task of identifying promising compounds by focusing on
a subset of parameters, despite the complexity involved. Moreover, the study
highlighted discrepancies between chemists’ reported decision criteria and the
actual parameters that influence their choices, emphasizing the need for more
transparent and interpretable user models in drug discovery.

To address these challenges, we propose inferring interpretable user models
by decomposing observed preference data into meaningful features or molecular
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descriptors. Feature decomposition [12] is a supervised learning strategy with the
potential to efficiently dissect user preference data and understand the underly-
ing factors influencing their decisions. This approach aligns with related work in
feature decomposition, which has been successfully applied in various fields such
as social science to enhance transparency and robustness of human behavioral
models [8]. By adopting a similar strategy, we aim to create interpretable user
models of chemist intuition that can be used for molecular design, optimization
or experiment prioritization, which can later be integrated in drug discovery
pipelines without the need for direct human intervention.

In this paper, we propose a methodology for decomposing human preferences,
presented as binary responses (i.e., like/dislike) to molecules either proposed by
generative chemistry models or from existing chemical libraries. Our approach
seeks to bridge the gap between user modelling and model interpretability for
human-in-the-loop assisted drug discovery. By providing a transparent frame-
work, we aim to elucidate how human judgments shape molecular design out-
comes, ultimately encouraging the reliance on user models and hybrid machine-
user models as scoring functions.

2 Methodology

We consider a setting where a user provides a binary response y ∈ {0, 1} to
a molecular design x, reflecting their preference for the design. We assume a
response model

y ∼ Ber
(
sigmoid

(
wT g(x)

))
(1)

where the user’s binary response comes from a Bernoulli distribution, with the
probability given by a sigmoidal function of wT g(x). The function g(x) ∈ R

D

represents the features considered by the user in their decision, and w ∈ R
D

represents a linear weighting of these features. For example, the user might
consider the following descriptors

g(x) = (synthetizability(x), solubility(x),patentability(x), activity(x))

and weigh them by (0.5, 0.3, 0.4, 0.7) respectively. Given that users may make
errors in their mental evaluation of descriptors, we assume g is an approximation
of some underlying true function g�

g(x) = g�(x) + ε, ε ∼ N (0,diag(σ2)) (2)

For instance, a user might misjudge the solubility of a molecule.
Furthermore, we consider that each user has a different labelling function.

Let j index the labeller, and define its labelling function as

yj ∼ Ber
(
sigmoid

(
wT

j gj(x)
))

(3)
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Thus, by querying a collection of users (1, . . . , J) about a single molecule,
we obtain a set of binary responses (y1, . . . , yJ ), each stemming from different
preference functions wT

j gj(x).
We assume a dataset of binary ’votes’ Y = (yij) ∈ R

N×J , where yij is the
label of the i-th molecule from the j-th user.

Our goal is to infer the mental variables {wj , gj}, but this task is unrealistic
in its current form, since we have no direct knowledge of the mental descriptors
gj or the weightings wj of the users.

Instead, we simplify the problem by assuming that all experts share the same
descriptors. More precisely, we assume that the set of descriptors used by any
expert is the union of all expert descriptors, with unused descriptors showing as
zeros in w. We thus reformulate the model as

yj ∼ Ber
(
sigmoid

(
wT

j g(x)
))

(4)

Given that fitting binary outcome variables directly might not yield a closed-
form solution, we consider using a probit link function instead of the logit (sig-
moid) function. The probit link can simplify the sampling process, resulting in
a straightforward Gibbs sampler when only the weights are learned. This modi-
fication is expressed as:

yj ∼ Ber
(
Φ

(
wT

j g(x)
))

(5)

where Φ denotes the cumulative distribution function (CDF) of the standard
normal distribution.

Finally, our problem is to infer the posterior

p(W, g | Y) ∝ p(Y | W, g)p(g)
∏

j

p(wj) (6)

where all weights wj share the same prior. We aim to determine the mental
descriptors g and the user preferences W = (w1, . . . ,wJ ) ∈ R

J×D. Prior knowl-
edge can be incorporated into this problem. First, the preferences wj are assumed
to be sparse, for instance, by employing a Horseshoe prior p(wj) = HS(wj). Sec-
ond, the descriptor function g can be fixed to a dictionary of known descriptors
(e.g., from chemoinformatics software) or can be the feature embedding of a
molecular deep learning network (e.g., MolBert). A more advanced approach
would be to treat these as the prior mean functions and infer slight fine-tuning
of them.

Given the expense of human evaluations, even if this model does not have a
closed-form solution, MCMC methods such as Hamiltonian Monte Carlo (HMC)
are likely feasible options. These methods can handle the complex posterior dis-
tributions involved in our problem and provide robust estimates of the parame-
ters.

In summary, while a closed-form solution would be ideal for computational
simplicity, the use of probabilistic methods like HMC offers a practical and effec-
tive route for inference in our setting. We will implement and compare both logit
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and probit models, evaluating their performance using real-world data to ensure
the robustness and applicability of our approach.

3 Experiments

We conducted experiments to infer interpretable user models for chemist pref-
erences in molecular design using Bayesian inference with a Stan model. Our
approach involved querying experts to provide binary preference responses
(like/dislike) for a dataset of molecules represented by molecular descriptors.
The model assumes that each expert’s preference is influenced by a weighted
combination of these descriptors.

3.1 Experimental Setup

Data Collection. We collected a dataset consisting of binary responses (Y)
from J = 3 experts for N = 150 molecules generated using the molecular design
tool REINVENT [3]. The experts were asked to rate those molecules based on
how much they align with the molecular design objective of producing novel
binders for the Dopamine receptor D2 (DRD2). Feedback from experts was col-
lected in real-time through the Metis interface [9] by sampling (after a defined
number of reinforcement learning steps) molecules from the generative chem-
istry model implemented in REINVENT. This generative chemistry model was
trained to maximize predicted DRD2 probabilities by a Quantitative Structure-
Activity Relationship (QSAR) model. A screenshot of the interface is provided
in Figure S6, where structures of generated molecules are displayed alongside
their DRD2 activity probabilities. The experts were asked to express, on a scale
from 0 to 100, how much they liked the proposed DRD2 binders. Expert scores
were transformed into binary labels using a threshold value of 50 and included
in the initial training dataset of the DRD2 QSAR model, which was then used
to guide the generation of subsequent DRD2 binders by REINVENT. This itera-
tive process ensured that the generative chemistry model continually improved in
alignment with expert preferences. All three participating experts are co-authors
of this manuscript.

For the set of evaluated molecules, we calculated molecular descriptors using
RDKit [1], which include the molecular weight (MolWt), number of rotatable
bonds (NumRotaBonds), the logarithm of the octanol-water partition coefficient
or LogP (MolLogP), the number of aromatic rings (NumAromRings), the num-
ber of hydrogen bond acceptors (HBA) and donors (HBD), the topological surface
area (TPSA), and the structural alerts or undesirable substructures according
to the Quantitative Estimate of Drug-likeness (QEDAlerts) [2]. For the lat-
ter, we modified the standard QED implementation in RDKit by setting the
weights for all other properties (MolWt, MolLogP, HBA, HBD, TPSA, NumRotaBonds,
NumAromRings) to 0 and only keeping the weight for the presence of undesirable
substructures to 1. This ensures that the QED score solely reflects the presence
of structural alerts. Additionally, we used the SA score developed by Ertl et
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al. [7], as well as the probability of DRD2 bioactivity according to the classi-
fier developed by Olivecrona et al. [13], as descriptors that can explain the user
preference responses.

We analyzed the Pearson correlations among the molecular descriptors used
for this study (Figure S7). Notably, MolLogP shows the strongest positive correla-
tion (0.78) with TPSA. All correlations, ranging from -0.63 to 0.78, are indicative
of meaningful relationships between descriptors that can enhance model accu-
racy and interpretability.

Model Specification. The Bayesian model was implemented using the Stan
probabilistic programming language [4]. The model included:

– Parameters:
• τ : Global scale parameter controlling the overall sparsity of weights

assigned to the molecular descriptors.
• λj : Local scale parameters for each expert j.
• w: Preference weights matrix, where each column represented the weights

for one expert across all descriptors.
– Priors:

• τ ∼ Cauchy(0, τ0): Cauchy prior for global shrinkage.
• λj ∼ Cauchy(0, 1): Cauchy priors for local shrinkage.
• w ∼ Normal(0, λj · τ): Normal priors for weights adjusted by local scales.

– Likelihood:
– Ynj ∼ Bernoulli(logit(X · w·j)): Likelihood of expert j’s response based

on the linear combination of molecular descriptors weighted by w·j .

3.2 Implementation

The Stan model was compiled and fitted to the data using Hamiltonian Monte
Carlo (HMC) sampling (2000 iterations, 2 Markov chains with a maximum tree
depth of 15 and the parameter adapt_delta set to 0.99). This approach enabled
us to approximate the posterior distribution of parameters w and λj , which
represent the preference weights and local scale parameters, respectively.

Since the dataset is already very small (due to limited resource availability
for human data collection), we die not split it into training and testing, and chose
to fit the model to the entire dataset instead to reach the highest accuracy.

Convergence diagnostics, including the R̂ statistic and the trace plots, were
performed to assess the model’s convergence and ensure reliable inference across
multiple chains. The R̂ statistic, also known as the potential scale reduction fac-
tor, is a convergence diagnostic used to assess whether the Markov chains in the
MCMC sampling have converged to the target distribution (i.e., response labels).
Specifically, it compares the variance within chains to the variance between
chains. A value close to 1 (typically R̂ < 1.1) indicates convergence, which is
what we have observed with our model. Trace plots are visual representations
that show how the Markov chain samples evolve over iterations, allowing to diag-
nose issues like non-stationarity and mixing problems. Our trace plots (Figure
S5) show that the Markov chains have mixed properly (low divergence).
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3.3 Benchmark

We compared our model against a non-probabilistic logistic regression (LogReg)
and a Random Forest Classifier (RFC), implemented using the Scikit-learn pack-
age [14]. The purpose is to demonstrate that our model is more transparent than
its non-probabilistic counterparts, allowing for direct interpretability of the rea-
soning process behind the human preferences, in addition to a reasonable classifi-
cation accuracy. The same set of molecular descriptors described in Sect. 3.1 was
used to train the LogReg and RFC models on the 150 human-rated molecules
by each expert, individually. The classification accuracy scores (i.e., percentages
of correctly classified molecules into liked or disliked) were calculated for each
individual user model, then the average accuracy scores were reported. To assess
the interpretability of the RFC models, Shapely values for tree-based algorithms
were computed [11]. For LogReg models, we analyzed feature importance.

4 Results

4.1 Interpretability of Human Preferences

We consider that a model is able to accurately interpret human preferences based
on how the participating experts described their reasoning. Our Stan model
effectively deciphered the human reasoning behind the preference dataset for the
DRD2 binders. The learned descriptor contributions are weights are illustrated
in Fig. 1.

Fig. 1. Density plots of the molecular descriptor weights learned by the
Stan model for each expert. Each subplot corresponds to a different descriptor,
with density curves representing the weight distributions for Expert 1 (blue), Expert 2
(orange) and Expert 3 (green). These plots illustrate the variations in how each expert
weighted the descriptors, reflecting their individual preferences and reasoning. Notably,
the plots show that the DRD2 bioactivity descriptor was consistently important across
all experts, while other descriptors such as MolLogP, SynthAccess and QEDAlerts had
varying levels of importance depending on the expert. (Color figure online)
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When asked to describe their personal experiences from interacting with
DRD2 binders generated using REINVENT, Expert 1 highlighted their focus
on the structural characteristics of the generated molecules, rejecting many at
the initial stages of the interaction because they appeared too different and
"odd" compared to known DRD2 actives. This was accurately captured by the
Stan model, showing greater correlation between Expert 1 preferential feedback
and the QEDAlerts descriptor (Fig. 2). The focus of Expert 1 on the presence
of structural alerts in the generated DRD2 binders has led to the generation
of more drug-like molecules, which can be observed through an increased QED
score (Table S1 where molecular generation performance metrics are reported for
top-scoring DRD2 binders generated by REINVENT after incorporating expert
preference feedback).

Conversely, Expert 3 described that they were more concerned with the
SA of the generated DRD2 binders. This preference was well captured by the
higher estimated weights for the SynthAccess descriptor (Fig. 1) and correla-
tion between Expert 2 preferential feedback and SynthAccess (Fig. 2). Expert 2
described that they rated the molecules based on how much they liked them as
a lead, aiming to select molecules that would be synthesizable, stable and with
reasonable lipophilicity to maximize their chance for being made and tested.
The Stan model’s learned weights revealed that Expert 2 indeed prioritized the
molecular LogP followed by synthetic accessibility, as indicated by the higher
weights for those descriptors (Fig. 1) and stronger correlation with MolLogP
(Fig. 2). Moreover, a higher percentage of lead-like compounds according to the
rule of three (RO3) [6] for molecular LogP was identified based on feedback from
Expert 2 (Table S1). Expert 2 showed similarities with Expert 3 in their reason-
ing regarding DRD2 binders: they both acknowledged not having any particular
knowledge of the target or known binders.

Interestingly, the weights for the DRD2 bioactivity descriptor were high for
all three experts, indicating that the model successfully captured that the pref-
erence feedback was related to the rating of DRD2 binders. These findings are
consistent with the descriptions provided by the experts upon the completion
of the interaction exercise, validating the model’s ability to interpret and reflect
their reasoning accurately.

The interpretability analysis from the RFC models also highlighted the
importance of the DRD2 activity descriptor in explaining user preference feed-
back 3. For Expert 1, the RFC models accurately captured their preference
for more complex molecular structures but did not fully reflect their reliance
on the presence of structural alerts that could undermine drug likeness. For
Experts 2 and 3, MolLogP and SynthAccess were correctly identified as impor-
tant descriptors in explaining their feedback. However, MolWt was also identified
as significantly important, though it was not explicitly emphasized in the expert
feedback. Therefore, we consider the RFC models’ interpretations to be close to
the Stan model’s performance, with the latter being the most aligned with the
expert descriptions Fig. 3.
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Fig. 2. Correlation between each expert and molecular descriptors according
to the fitted Stan model. Heatmap matrix showing the relationship between each
expert’s feedback and the molecular descriptors used for fitting the Stan model. The
matrix highlights a higher correlation between Expert 1 and QEDAlerts, Expert 2 and
MolLogP, and Expert 3 and SynthAccess. All experts show a high correlation with the
DRD2 activity descriptor, indicating its importance to explain the expert preferential
responses.

Fig. 3. SHAP summary plots for the Random Forest Classifier predictions,
illustrating the importance of various molecular descriptors for each expert. The plots
provide a visual explanation of how each descriptor contributes to the model’s predic-
tions, with distinct patterns emerging for each expert that align with their feedback
preferences.

Conversely, the LogReg models provided the least accurate interpretation of
descriptor importance. They failed to clearly capture Expert 1’s emphasis on
structural alerts and Expert 3’s focus on SA for the generated DRD2 binders
Fig. 4. This suggests that while the LogReg models can provide some insights,
they are not as reliable as the Stan and RFC models in reflecting the experts’
reasoning.
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Fig. 4. SHAP summary plots for the Logistic Regression predictions, depict-
ing the significance of molecular descriptors in determining the experts’ feedback. These
plots highlight the differences in descriptor importance across experts and provide
insight into the Logistic Regression model’s interpretation of the data.

4.2 Accuracy in Predicting Human Preferences

We compared our model against a non-probabilistic logistic regression (LogReg)
and a Random Forest Classifier (RFC), implemented using the Scikit-learn pack-
age [14]. The primary goal of this comparison is to demonstrate the interpretabil-
ity of our model in contrast to its non-probabilistic counterparts, while also
showcasing its reasonable classification accuracy. The same molecular descrip-
tors were used to train the LogReg and RFC models on the 150 human-rated
molecules by each expert, individually. The classification accuracy scores (i.e.,
percentages of correctly classified molecules into liked or disliked) were calculated
for each individual user model, then the average accuracy scores were reported.

Despite the slight edge in predictive performance by the RFC model, the
Stan (Bayesian) model offers significant advantages in terms of interpretability.
Unlike its non-probabilistic counterparts, the Stan model provides posterior dis-
tributions for the learned weights of molecular descriptors. This feature not only
allows for a clear understanding of the importance of different descriptors but
also incorporates the uncertainties associated with these weights. Such prob-
abilistic insights are crucial for gaining a deeper understanding of the factors
driving experts’ preferences and ensuring that the model’s predictions are not
only accurate but also comprehensible and justifiable.

In summary, while the RFC model boasts the highest predictive accuracy,
the Stan model’s interpretability and ability to quantify uncertainties make it a
valuable tool for elucidating the rationale behind experts’ preferences in molec-
ular design. This dual benefit of accuracy and interpretability underscores the
potential of Bayesian models in explaining complex decision-making processes
such as human rating.

5 Discussion

In this work, we developed and evaluated models to decipher and predict human
preferences in molecular design, focusing on the interpretation of these prefer-
ences using various, known and self-explanatory molecular descriptors. The Stan
(Bayesian) model, Logistic Regression (LogReg), and Random Forest Classifier



68 Y. Nahal et al.

(RFC) were employed to fit the preference data provided by three experts on a
set of DRD2 binders proposed by a molecular design tool.

The posterior distributions of the Stan model provided insights into the
importance of different molecular descriptors for each expert, revealing distinct
patterns in their preferences. Expert 1 focused on the structural complexity of
molecules and presence of undesired structures for drug-likeness, as evidenced by
higher correlations with QED structural alerts. Expert 2’s preferences indicated
a focus on lipophilicity and synthetic accessibility, similar to Expert 3. Interest-
ingly, all three experts were characterized by high correlations with the DRD2
activity descriptor, aligning with the core objective of the feedback exercise which
is to rate DRD2 binders. Notably, the interpretations derived from the Stan
model aligned the closest with the reasoning process described by the experts
themselves, enhancing the model’s ability to accurately explain the expert pref-
erence data and decision-making.

The interpretability analysis from the RFC models also highlighted the
importance of the DRD2 activity descriptor. For Expert 1, the RFC model did
not capture the reliance on structural alerts. For Experts 2 and 3, the molecular
LogP and synthetic accessibility descriptors were correctly identified as impor-
tant, although the RFC model also highlighted molecular weight as a significant
factor, which was not explicitly mentioned in expert descriptions. The LogReg
models, however, provided a less accurate interpretation.

In terms of predictive accuracy, the RFC model achieved the highest perfor-
mance, followed by the Stan model and the LogReg model. Despite the superior
predictive accuracy of the RFC model, the Stan model’s ability to better cap-
ture the relationships between the human reasoning processes and the molecular
descriptors, and to quantify uncertainties through the posterior distributions,
makes it a more interpretable and insightful tool for understanding the reason-
ing behind experts’ preferences.

One of the main limitations of this study is the small amount of expert pref-
erence data available. This limited data set may not fully capture the variability
and complexity of experts’ decision-making processes. Consequently, the gener-
alizability of our models to new, unseen data remains an open question. Future
work should focus on collecting more extensive preference data from a larger
and more diverse group of experts. This would not only improve the robustness
and generalizability of our model but also provide a more comprehensive under-
standing of how different molecular descriptors influence human preferences in
molecular design.

Additionally, it would be valuable to validate the model on unseen data to
assess their predictive performance in real-world scenarios. This validation step
is crucial for ensuring their practical applicability in molecular design tasks.

In conclusion, while our preliminary model demonstrate high predictive accu-
racy and provide valuable insights into the reasoning behind experts’ preferences,
addressing the limitations related to data size and generalizability are essential
steps for future work.
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Abstract. This study explores the impact of pretraining Graph Trans-
formers using atom-level quantum-mechanical features for molecular
property modeling. We utilize the ADMET Therapeutic Data Commons
datasets to evaluate the benefits of this approach. Our results show that
pretraining on quantum atomic properties improves the performance of
the Graphormer model. We conduct comparisons with two other pre-
training strategies: one based on molecular quantum properties (specifi-
cally the HOMO-LUMO gap) and another using a self-supervised atom
masking technique. Additionally, we employ a spectral analysis of Atten-
tion Rollout matrices to understand the underlying reasons for these
performance enhancements. Our findings suggest that models pretrained
on atom-level quantum mechanics are better at capturing low-frequency
Laplacian eigenmodes from the molecular graphs, which correlates with
improved outcomes on most evaluated downstream tasks, as measured
by our custom metric.

1 Introduction

In recent years, the application of deep learning techniques has brought about a
paradigm shift in molecular representation learning, playing a pivotal role in a
wide array of biochemical endeavors including property modeling and drug design
[3,5–7,18,20]. Leveraging deep learning methodologies has enabled researchers
to extract intricate features from molecular data, thereby enhancing our under-
standing of molecular structures and their interactions. However, despite the
remarkable successes achieved, challenges such as data scarcity and generaliz-
ability remain pertinent concerns in the field [3,4,8,10,12]. To address these
challenges, the concept of pretraining models on related tasks or employing self-
supervised learning strategies has gained significant traction. Pretraining serves
c© The Author(s) 2025
D.-A. Clevert et al. (Eds.): AIDD 2024, LNCS 14894, pp. 71–81, 2025.
https://doi.org/10.1007/978-3-031-72381-0_7
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Fig. 1. Example of the similarity observed between the eigenvectors |ai〉 of the rollout
matrix Ã and the eigenvectors |li〉 of the graph Laplacian L for a Graphormer pretrained
on atomic QM properties. The molecule used here comes from the TDC dataset.

as a means to provide models with a foundational understanding of molecu-
lar structures, enabling them to learn meaningful representations even in the
presence of limited or noisy labeled data. By leveraging pretraining techniques,
researchers aim to enhance model generalizability and performance across a spec-
trum of downstream tasks [15,19,25–27].

In this context, our study focuses on investigating the impact of pretrain-
ing on atom-level quantum mechanical (QM) properties, associated with funda-
mental aspect of molecular behavior with profound implications in biochemical
research [2] and present in an incresing number of public datasets [14,17,21],
implemented on Graphormer neural network [28], an instance of the increasingly
popular family of Graph Transformer (GT) architectures [22]. Specifically, we
compared the efficacy of such pretraining with alternative strategies such as pre-
training on a molecular quantum property (HOMO-LUMO gap) and masking,
an atom-level self-supervised pretraining method. As downstream tasks that are
relevant for applications in the pharmaceutical industry we utilized the ADMET
properties dataset from the Therapeutics Data Commons (TDC) [16]. For each
pretraining technique and downstream property we compared the model perfor-
mance with a spectral analysis of the Attention Rollout matrix, to understand in
approximation the contributing factors to the model. This analysis reveals that
models pretrained with atom-level quantum properties and with masking extract
graph spectral properties in the form of Laplacian eigenvectors. Moreover, we
observe that models pretrained with atom-level quantum properties can extract
more low-frequency Laplacian eigenmodes from the input graph signal and we
demonstrate how this effect correlates with improved performances on a good
part of the downstream tasks.
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2 Methods

We consider a custom implementation of Graphormer [24,28] as an instance of
network that belongs to the category of GTs. As baseline we employed the non-
pretrained Graphormer version, which was compared with pretrained models for
a total of 8 different cases: one per each of the 4 atom-resolved QM properties
(atomic charges, NMR shielding constants, electrophilic and nucleophilic Fukui
function indexes), one considering all atomic properties in a multi-task setting,
one for the considered molecular property (HOMO-LUMO gap), and one for
masking node pretraining. A spectral analysis of the Attention Rollout matrix
Ã is then performed to gain insights into the behaviour of each obtained model.

Model Description. Graphormer is a GT where the input molecule is seen
as a graph where atoms are nodes and bonds are edges. This model in general
works by encoding the atoms in the molecule tokenized based on their atom
type, and then repeatedly applying self-attention layers with an internal bias
term before the softmax. This term is based on the topological distance matrix
of the molecular graph and allows to encode the structural information of the
molecular graph. In particular, the network employed in this work is an imple-
mentation of Graphormer from [24], inspired by the implementation from [28].
In this implementation the centrality encoder is adapted from using only explicit
neighbours to including both explicit atoms and implicit hydrogens. As a result
of the combination of this modified centrality encoding together with the usual
atom type encoder, the hybridization of atoms is handled implicitly. For this
reason this implementation does not present any edge encoder component.

Datasets. For pretraining, we used a publicly available dataset [13] consisting
of 136k organic molecules and containing, among other things, atomic properties
calculated with quantum chemistry methods. Each molecule is represented by a
single conformer generated using the Merck Molecular Force Field (MMFF94s)
in RDKit library. The initial geometry for the lowest-lying conformer was then
optimized at the GFN2-xtb level of theory followed by refinement of the elec-
tronic structure with DFT (B3LYP/def2svp). Notice that while the 3D struc-
ture is used for the computation of the properties, this is not used in the model
where the molecule is represented as 2D input (graph). The advantage of the
described dataset is several reported atomic properties: charge, electrophilicity,
and nucleophilicity Fukui indexes and an NMR shielding constant. The same
set of molecules was used for masked node pretraining. Another pretraining
dataset, PCQM4Mv2, consists of a single molecular property per molecule, a
HOMO-LUMO gap that was also calculated using quantum chemistry meth-
ods https://ogb.stanford.edu/docs/lsc/pcqm4mv2/. It was curated under the
PubChemQC project [23]. For the benchmarking of the obtained pretrained
models, we used the absorption, distribution, metabolism, excretion, and tox-
icity (ADMET) group of the TDC dataset, consisting of 9 regression and 13

https://ogb.stanford.edu/docs/lsc/pcqm4mv2/
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binary classification tasks for modeling biochemical molecular properties https://
tdcommons.ai/benchmark/admet_group/overview/.

Atom-Level Quantum Pretraining. The pretraining on atom-level quantum
mechanical properties is achieved via regression task. In the model, each node
corresponds to a heavy (non-hydrogen) atom. Accordingly, the obtained node
embeddings, are used to train atom-level properties via a linear layer. The model
is trained on the dataset from [13] on each one of the available atomic properties,
as well as on all of them at the same time in a multi-task setting. As a result, we
obtain from this pretraining 5 different pretrained models. In each case except
for HOMO-LUMO gap the model was trained as a regression task using L1 loss.
A batch size of 100 was used with a fixed learning rate of 10−4. In the case of
HOMO-LUMO pretraining a triangular cyclic scheduling was employed with a
minimum value of 2× 10−5 and a maximum value of 2× 10−4. The training was
stopped using an early stopping criterion with patience of 100 epochs. For what
concerns labels, the properties were not scaled except for a constant scaling factor
of 10−2 for NMR shielding constants as we observed it to helped convergence.

Molecule-Level Quantum Pretraining. The pretraining on molecular quan-
tum properties is achieved via a simple regression task where the output is
obtained by applying a linear layer to the class token embedding at the last
layer of the network. The model is trained on the modeling of HOMO-LUMO
gap on the PCQM4Mv2 dataset. We used the same training hyperparameters as
the ones indicated in 2. As a result of this pretraining we obtain an additional
pretrained model to consider for the downstream tasks.

Masking. Masking pretraining is carried out in a similar way to what is usually
done in BERT-based models [9,11]. This procedure entails randomly masking
15% of the input graph node tokens by replacing them with the mask token, and
then training the model to restore the correct node type from the masked embed-
ding as a multi-class classification task. The model is trained on the molecular
structures present in the dataset used for atomic QM properties. As a result,
we obtain one additional pretrained model to consider for the downstream tasks.
The hyperparmeters used for this pretraining are the same as the ones used in
2, while the loss employed is a cross entropy loss.

Downstream Tasks. The training and testing on downstream tasks is car-
ried out on the ADMET group from the TDC dataset in the same way as any
molecular property modeling. For splittings and evaluation metrics we follow the
guidelines of the benchmark group that we consider, hence we refer to [16]. The
pretrained models are fine tuned for each downstream task by training without
freezing any layer. Additionally, we also train a model from scratch, obtaining a
total of 8 final models per each of the 5 default train/validation splitting seeds
on each task (considering 22 tasks, 5 seeds and 8 models we obtain a total of

https://tdcommons.ai/benchmark/admet_group/overview/
https://tdcommons.ai/benchmark/admet_group/overview/
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880 models). The hyperparameters used in each downstream task are the same:
the batch size used is 32, while for what concerns the learning rate a triangular
cyclic scheduling was employed with a minimum value of 2 × 10−5 and a maxi-
mum value of 2× 10−4. The training is stopped with an early stopping criterion
with patience of 200. The loss used for regression tasks is L1 loss, while for clas-
sification tasks a censored regression approach is used using again L1 loss with
right censor set at 0 for negative examples and left censor set at 1 for positive
examples. For what concerns regression labels, given the diversity of the tasks
we opted for a standard scaling. Finally, the performances on each task’s test
set are obtained per each pretraining case by taking mean and standard devia-
tion of the performances obtained by the 5 models coming from the 5 different
training/validation splits.

Spectral Analysis of Attention Rollout. To have a better understanding
of the mechanism behind the pretrained models’ improvements, we shift our
focus on the analysis of attention weights. What we aim to understand is along
which directions the input molecular representation is decomposed when passed
through a given model. In order to do so we start by considering the Attention
Rollout matrix [1] Ã as a proxy for the model’s action on the input. While
this approximation is a strong one, as we will see it provides a number of non-
trivial insights. For the definition of Ã we refer to [1]. We start by considering a
simple spectral decomposition of Ã (from here on we will make use of the bra-ket
notation):

Ã =
N−1∑

i=0

ai |ai〉 〈ai| (1)

with ai ∈ C and |a0| ≥ |a1| ≥ ... ≥ |aN−1| and, based on an empirical observation
on one of the pretrained Graphormers (see Fig. 1), we analyse the similarity of
the eigenvectors |ai〉 with the eigenvectors of the Laplacian matrix L of the input
molecular graph decomposed as

L =
N−1∑

i=0

li |li〉 〈li| (2)

with l0 ≤ l1 ≤ ... ≤ lN−1. In particular, by considering the overlap matrix
Cij = | 〈li|aj〉 | we study both how many Laplacian modes are used as models’
eigendirections as well as how relevant they are as fraction of the non-trivial
spectrum of Ã (by non-trivial we mean i �= 0 as by construction | 〈l0|a0〉 | = 1 for
properties of L and Ã). This fraction is quantified by considering η =

∑
i∈U\0 |ai|

∑i=N−1
i=1 |ai|

where U = {j|maxj Cij ≥ 0.9 for i ∈ (0, 1, 2, ..., N − 1)} with 0.9 being a chosen
arbitrary threshold for similarity. Based on these quantities, we define a metric
that factors everything together as:

ζ = η

N−1∑

i=1

Θ

(
max

j
Ci,j − 0.9

)
(3)
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Table 1. Global results obtained from the ADMET group of TDC are presented.
Each row corresponds to a specific task, along with the metric used for evaluation.
Columns represent different pretrainings considered. Highlighted values denote the best
performance achieved among our models, based on the average value as per ranking
criterion form the TDC leaderboard. Additionally, cases where our results surpass the
top-performing model in the TDC leaderboard are marked with an asterisk (*).

TDC ADMET Task metric scratch all fukui_e nmr fukui_n charge HLgap masked

caco2_wang MAE ↓ 0.48 ± 0.06 0.41 ± 0.03 0.45 ± 0.07 0.48 ± 0.06 0.39 ± 0.02 0.40 ± 0.08 0.53 ± 0.02 0.45 ± 0.01

hia_hou ROC-AUC ↑ 0.96 ± 0.03 0.94 ± 0.05 0.93 ± 0.03 0.97 ± 0.02 0.94 ± 0.02 0.95 ± 0.02 0.96 ± 0.020.98 ± 0.01
pgp_broccatelli ROC-AUC ↑ 0.87 ± 0.04 0.89 ± 0.02 0.89 ± 0.03 0.86 ± 0.03 0.90 ± 0.01 0.88 ± 0.02 0.86 ± 0.01 0.89 ± 0.01

bioavailability_ma ROC-AUC ↑ 0.52 ± 0.01 0.64 ± 0.05 0.64 ± 0.02 0.66 ± 0.01 0.69 ± 0.05 0.62 ± 0.07 0.55 ± 0.03 0.66 ± 0.05

lipophilicity_astrazeneca MAE ↓ 0.58 ± 0.020.42 ± 0.01* 0.49 ± 0.02 0.46 ± 0.01* 0.48 ± 0.01 0.43 ± 0.01* 0.57 ± 0.02 0.47 ± 0.01

solubility_aqsoldb MAE ↓ 0.89 ± 0.040.75 ± 0.01* 0.80 ± 0.02 0.78 ± 0.02 0.78 ± 0.02 0.75 ± 0.01* 0.89 ± 0.02 0.76 ± 0.02*

bbb_martins ROC-AUC 0.83 ± 0.010.88 ± 0.02 0.86 ± 0.03 0.86 ± 0.02 0.85 ± 0.02 0.87 ± 0.01 0.82 ± 0.03 0.85 ± 0.02

ppbr_az MAE ↓ 8.38 ± 0.24 7.79 ± 0.24 7.92 ± 0.12 8.02 ± 0.40 7.79 ± 0.28 7.57 ± 0.32 8.22 ± 0.23 8.09 ± 0.13

vdss_lombardo Spearman ↑ 0.58 ± 0.04 0.59 ± 0.03 0.64 ± 0.02 0.61 ± 0.04 0.61 ± 0.01 0.63 ± 0.03 0.59 ± 0.04 0.63 ± 0.01

cyp2d6_veith PR-AUC ↑ 0.43 ± 0.030.61 ± 0.02 0.55 ± 0.03 0.56 ± 0.04 0.56 ± 0.02 0.58 ± 0.04 0.47 ± 0.02 0.59 ± 0.02

cyp3a4_veith PR-AUC ↑ 0.73 ± 0.010.80 ± 0.03 0.77 ± 0.03 0.78 ± 0.01 0.79 ± 0.03 0.76 ± 0.04 0.74 ± 0.03 0.77 ± 0.02

cyp2c9_veith PR-AUC 0.63 ± 0.020.69 ± 0.02 0.67 ± 0.02 0.69 ± 0.040.69 ± 0.010.69 ± 0.02 0.66 ± 0.030.69 ± 0.03
cyp2d6_substrate_carbonmangelsPR-AUC ↑ 0.52 ± 0.01 0.58 ± 0.03 0.53 ± 0.06 0.64 ± 0.06 0.57 ± 0.04 0.63 ± 0.03 0.54 ± 0.040.66 ± 0.03
cyp3a4_substrate_carbonmangelsROC-AUC ↑ 0.63 ± 0.07 0.64 ± 0.02 0.66 ± 0.03 0.62 ± 0.02 0.61 ± 0.02 0.63 ± 0.02 0.64 ± 0.03 0.65 ± 0.01

cyp2c9_substrate_carbonmangels PR-AUC ↑ 0.35 ± 0.020.37 ± 0.04 0.32 ± 0.04 0.34 ± 0.03 0.37 ± 0.04 0.36 ± 0.04 0.33 ± 0.03 0.31 ± 0.03

half_life_obach Spearman ↑ 0.39 ± 0.070.48 ± 0.06 0.48 ± 0.04 0.42 ± 0.10 0.48 ± 0.03 0.47 ± 0.04 0.34 ± 0.07 0.47 ± 0.06

clearance_microsome_az Spearman ↑ 0.49 ± 0.030.60 ± 0.01 0.47 ± 0.06 0.57 ± 0.01 0.58 ± 0.02 0.58 ± 0.01 0.46 ± 0.03 0.59 ± 0.01

clearance_hepatocyte_az Spearman ↑ 0.34 ± 0.04 0.46 ± 0.03 0.42 ± 0.02 0.44 ± 0.04 0.41 ± 0.02 0.46 ± 0.04 0.31 ± 0.020.47 ± 0.02
herg ROC-AUC ↑ 0.78 ± 0.01 0.77 ± 0.06 0.73 ± 0.06 0.77 ± 0.05 0.77 ± 0.02 0.79 ± 0.03 0.76 ± 0.040.81 ± 0.04
ames ROC-AUC ↑ 0.72 ± 0.020.80 ± 0.01 0.78 ± 0.02 0.80 ± 0.02 0.76 ± 0.01 0.80 ± 0.01 0.73 ± 0.01 0.79 ± 0.01

dili ROC-AUC ↑ 0.86 ± 0.02 0.88 ± 0.03 0.86 ± 0.04 0.89 ± 0.03 0.82 ± 0.04 0.85 ± 0.04 0.87 ± 0.010.91 ± 0.01
ld50_zhu MAE ↓ 0.61 ± 0.02 0.57 ± 0.02 0.60 ± 0.01 0.56 ± 0.02 0.60 ± 0.02 0.57 ± 0.01 0.60 ± 0.03 0.57 ± 0.02

where Θ is the Heaviside function. We then evaluate ζ averaged over the test set
of each downstream task reporting per each architecture the distribution across
tasks for fixed pretraining condition, and also analyse for every task if the model
ranking in peformance correlates with the ranking coming from the evaluation
of the average ζ over that test set. Finally, for this reason we make use of the
Spearman’s rank coefficient and consider performances as the higher the better
(e.g. we consider MAE with a negative sign but ROC-AUC with positive sign).

3 Results and Discussion

Pretraining on Atom-Resolved Tasks Give the Best Overall Perfor-
mances. Model performances obtained for the downstream tasks are summa-
rized in Table 1. The table reveals, among other things, that the models trained
from scratch or pretrained on the HOMO-LUMO gap (molecular proeperty)
are never among the top performers. The superior performance of the models
pretrained on atom-level properties is remarkable considering that the HOMO-
LUMO gap dataset contains ∼ 20 times more molecules than present in the
dataset used for pretraining on atomic QM properties and for masking.

The Right Atomic QM Pretraining Usually Gives the Best Perfor-
mances. In the same table it is also possible to count which pretraining gives
most frequently the best results. Despite the fact that results can be quite close,
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Fig. 2. Violin plots of the average value of ζ on each task in the ADMET group of
TDC (〈ζtask〉) for every Graphormer model considered.

if we rank the models by average value of the metric as done in the TDC leader-
board, the models that demonstrate the highest number of top performances
were pretrained using all the atomic QM properties with 10 and pretrained with
masking with 6 top results, respectively. Atom-level QM pretraining as a group
reveals even higher superiority over studied alternatives: that is in 17 out of 22
downstream tasks the correct choice of atom-level QM pretraining provides the
top performant model.

Atom-Level QM Pretraining Boosts the Spectral Perception of
Molecules. We evaluate the metric ζ defined in Eq. 3 as described in the Sect. 2
obtaining a distribution of 22 values over the downstream tasks per each pretrain-
ing. The result is reported in Fig. 2 as a set of violin plots. Firstly, we clearly see
that models trained from scratch or pretrained on HOMO-LUMO gap present
values of ζ that are close to 0 indicating little to no presence of non-trivial
Laplacian eigenmodes in the spectrum of their Ã matrix. On the contrary, every
atom-resolved pretrained model (including masking) presents nonzero values of
ζ across the downstream tasks raging from ∼ 1 to ∼ 5. Within these last group of
models we can clearly notice how pretraining on the atom-level QM properties
provides the strongest boost in perception of graph Laplacian eigenmodes. In
particular, the model pretrained using all properties in a multi-task fashion and
using only NMR data present the highest values of ζ, followed by the models
pretrained on charges, nucleophilic and electrophilic Fukui functions.

A Better Spectral Perception of Molecules Usually Correlates with
Better Performances. As described in the Sect. 2, we proceed to analyse the
Spearman’s rank coefficient rS between ζ and performances in each task using
the 8 datapoints coming from the different pretraining methods. The results
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Fig. 3. Spearman’s rank coefficient rS between the average ζ value per each model and
the correspondent performance per each task in the ADMET group of TDC.

are reported in Fig. 3. We can see that for most tasks (20 out of 22) the value
of rS is positive, with 13 tasks presenting rS ≥ 0.5 and 8 tasks presenting
rS ≥ 0.75. These results are a strong indication that models with a better
spectral perception of the molecular graph also demonstrate better performances
across different tasks.

4 Conclusions

A Graphormer neural network was pretrained on several tasks to improve its
performance in modelling molecular ADMET properties that are relevant to
drug discovery using the TDC dataset containing 22 downstream tasks. It was
found that out of studied methods, pretraining on atom-level QM properties
such as atomic charges, NMR shielding constants and Fukui indexes, or using
a masking task similar to the one used in BERT model, significantly improve
the performance in comparison to the non-pretrained model. One of atom-level
QM property pretraining tasks was found to yield the best results for 17 out of
22 downstream tasks. For comparison, pretraining on a much larger dataset of
calculated HOMO-LUMO gaps, a molecular electronic property, brings little or
no improvement. Finally, through a spectral analysis of the Attention Rollout
matrices, we showed how pretraining on atom-level QM properties improves
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the model perception of spectral properties of the input molecular graph. In
particular, by defining an appropriate metric, we show that this effect correlates
with the model performance on most of the downstream tasks.
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Abstract. Drug-induced liver injury (DILI) presents a multifaceted
challenge, influenced by interconnected biological mechanisms. Current
DILI datasets are characterized by small sizes and high imbalance, pos-
ing difficulties in learning robust representations and accurate modeling.
To address these challenges, we trained a multi-modal multi-task model
integrating preclinical histopathologies, biochemistry (blood markers),
and clinical DILI-related adverse drug reactions (ADRs). Leveraging pre-
trained BERT models, we extracted representations covering a broad
chemical space, facilitating robust learning in both frozen and fine-
tuned settings. To address imbalanced data, we explored weighted Binary
Cross-Entropy (w-BCE) and weighted Focal Loss (w-FL) . Our results
demonstrate that the frozen BERT model consistently enhances perfor-
mance across all metrics and modalities with weighted loss functions
compared to their non-weighted counterparts. However, the efficacy of
fine-tuning BERT varies across modalities, yielding inconclusive results.
In summary, the incorporation of BERT features with weighted loss func-
tions demonstrates advantages, while the efficacy of fine-tuning remains
uncertain.

Keywords: Toxicity · DILI · BERT · Focal loss

1 Introduction and Background

Thalidomide, the tragedy of birth defects led the foundation of systematic testing
of drugs safety prior to marketing (Kim and Scialli, 2011). Pharmacovigilance
efforts start with in-vitro and in-vivo studies during the drug development stage,
continue through clinical trial and post-marketing surveillance.
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The liver, as the primary organ affected by xenobiotics, plays a crucial role in
drug metabolism (Stanley, 2017). Drug-induced liver injury (DILI) stands as a
significant cause of late-stage drug failure and post-marketing drug withdrawal
(Watkins, 2011; Parasrampuria et al., 2018). Toxic compounds can be catego-
rized into intrinsic toxins, whose toxicity can be modeled based on chemical
information, and idiosyncratic toxins, which pose challenges in both preclinical
and clinical modeling due to their unpredictable effects influenced by genetic
variations (Lancaster et al., 2015; Parasrampuria et al., 2018). Over the years,
several methods have been developed to model DILI using molecular structure
and various fingerprints (Cruz-Monteagudo et al., 2008; Chen et al., 2013b; Xu
et al., 2015; Ai et al., 2018; Wang et al., 2019; Asilar et al., 2020). Combin-
ing other modalities with molecular features, such as transcriptomics (Wang et
al., 2019a), physicochemical properties (Ekins et al., 2010; Chen et al., 2013a),
and selected in-vitro assays (Williams et al., 2020), has been shown to pro-
vide robust DILI models. During the drug design process, toxicity assessment
spans multiple stages, encompassing in-vitro assays, preclinical investigations,
and clinical trials. Toxicity presents across diverse endpoints and species, thus
prompting a multitask approach for data integration and cross-modality learn-
ing. This strategy has demonstrated promise in extracting toxicity patterns by
jointly considering various dose administration methods, endpoints, and species,
particularly in acute toxicity modeling (Sosnin et al., 2019; Jain et al., 2021).
Moreover, extending this approach to incorporate joint learning from in-vitro,
in-vivo, and clinical data has improved balanced accuracy (as defined in Eq. 7)
of the ClinTox dataset. (Sharma et al., 2023).

Class imbalance is a prevalent issue in toxicity datasets, where negative
instances vastly outnumber positive ones. This disparity makes machine learning
models inaccurate, as classifiers trained on imbalanced data tend to prioritize the
majority class, leading to ineffective performance on the minority class (Rawat
and Mishra, 2022). To address this, various strategies are employed, includ-
ing resampling techniques like oversampling and undersampling. Oversampling
methods such as Synthetic Minority Oversampling Technique (SMOTE) arti-
ficially increase the number of minority instances (Chawla et al., 2002), while
undersampling involves reducing the number of majority instances (Laveti et
al., 2021; Lee and Seo, 2022). However, both approaches have drawbacks; under-
sampling may lead to loss of valuable data, while oversampling can be computa-
tionally intensive (Rawat and Mishra, 2022). Cost-Sensitive Learning (CSL) can
also be used as this method assigns higher costs to samples from the minority
class (Elkan, 2001; López et al., 2012). Unlike resampling techniques, CSL main-
tains the original data distribution while enhancing computational efficiency.
CSL, coupled with traditional machine learning algorithms such as Random
Forest (RF) and Support Vector Machine (SVM), has been used for drug dis-
covery application, including compound activity estimation (Alashwal and Luc-
man, 2020), CYP450 modeling (Eitrich et al., 2007), and Drug-Induced Liver
Injury (DILI) modeling (Moein et al., 2023), demonstrating improvements in
some cases. In the realm of deep learning, binary-cross-entropy loss serves as a
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Fig. 1. Mean performance across all tasks was evaluated using multiple metrics. Solid
lines represent Frozen-BERT, while dotted lines indicate fine-tuned BERT. Perfor-
mance improved from BCE to weighted-BCE, Focal loss, and weighted Focal loss for
the Frozen-BERT model. However, this trend is inconsistent for fine-tuned BERT. In
certain tasks, such as pathological ones, the fine-tuned model outperformed Frozen-
BERT. In other cases, negative transfer is observed.

common choice for training binary classification models, often augmented with a
weighting factor to elevate the cost of positive instances, thus ensuring a balanced
contribution from both classes in the overall loss function. Focal loss represents
a refinement of BCE loss, introducing a modulating factor that aids in distin-
guishing between easy and difficult examples naturally favours minority class
Lin et al. (2018).

One method for representing three-dimensional chemical structures as text
strings is the Simplified Molecular Input Line Entry System (SMILES), which
employs a defined set of ordered rules and specific syntax Weininger (1988).
The chemical characteristics of a compound xc can be described through vari-
ous modalities. Encoding schemes like Mold, PaDel, RDF, ECFC, and Marvin
molecular descriptors have been developed to capture molecular structural prop-
erties. Despite their individual successes, there’s no universal encoding scheme
or algorithm to rule them all (Gao et al., 2020). In drug development, small-
scale datasets often fail to adequately represent the vast chemical space, leading
to models trained on handcrafted features that struggle to generalize to unseen
chemical spaces (Moein et al., 2023). To address this limitation, researchers lever-
age representations derived from large amounts of unlabeled data (Harnik and
Milo, 2024). Various models such as Variational Autoencoders (VAEs) (Kingma
and Welling, 2013), Normalizing Flows (NFs) (Rezende and Mohamed, 2015),
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and Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) aim to
uncover low-dimensional latent representations φ(x) ∈ R

d of complex, high-
dimensional objects x ∈ R

D, where d � D (Ruthotto and Haber, 2021). These
models transform data into a vectorized space, generating concise and well-
structured representations that encompass broader chemical space (Li et al.,
2022). To facilitate learning of underlying chemistry, various pretext tasks are
carefully designed, including input translation between modalities (Winter et
al., 2019; Yang et al., 2019), input reconstruction (Wang et al., 2019b; Li and
Fourches, 2020; Maziarka et al., 2020), and recovering masked or corrupted input
(Liu et al., 2023).

In recent years, various transformer-based models have been applied to molec-
ular representation learning (Chithrananda et al., 2020; Li and Jiang, 2021;
Ahmad et al., 2022; Irwin et al., 2022) with many studies opted for transformer
based BERT architecture (Li and Jiang, 2021; Liu et al., 2023; Shermukhame-
dov et al., 2023). BERT (Bidirectional Encoder Representations from Trans-
formers) is pre-trained on large text corpora using two objectives, defined by
Devlin et al. (2019) as the “masked language model” (MLM) and “next sentence
prediction” (NSP) task. During pre-training, BERT learns bidirectional contex-
tual embeddings for each token, capturing nuanced word meanings within the
sentence context. Utilizing the Transformer architecture, BERT employs self-
attention mechanisms to dynamically weigh word importance. By fine-tuning
on task-specific labeled data, BERT adapts its learned representations to var-
ious downstream natural language processing tasks, achieving state-of-the-art
performance. BERT can learn molecular representations by treating molecular
structures as token sequences. Pre-training BERT on large molecular datasets
with appropriate objectives, such as incorporating physicochemical properties
or molecule relationships, enables it to learn robust chemical representations
(Fabian et al., 2020). Fine-tuning the pre-trained BERT model on small task-
specific labeled data can provide improved performance in some drug discovery
applications (Liu et al., 2023).

2 Materials and Method

2.1 Datasets

The preclinical study integrates liver histopathology endpoints from the TG-
Gates dataset (Igarashi et al., 2015), covering 170 compounds administered to
rats across varying concentrations and exposure conditions, later expanded to
430 compounds with re-annotated INHAND labels (Moein et al., 2023). Out of 55
liver endpoints, we focus on 12 for this study. We extend preclinical tasks by
incorporating selected blood markers (ALP, AST, ALT, GTP, TC, TG, TBIL,
DBIL) from biochemistry database provided by TG-GATES converting both
histopathological and bloodmarker labels into binary labels using expert-derived
thresholds. Additionally, we enrich preclinical data with DILI related adverse
drug reactions (ADRs) extracted from the SIDER dataset , comprising 6060
ADRs associated with 1430 drugs (Kuhn et al., 2016). Further details regarding
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Fig. 2. Results from Frozen-BERT model. Top row: The log-loss analysis of positive
and negative data points is depicted in this plot, where blue and green colors represent
the training and testing data, respectively. Task-wise means are represented by small
blobs, while ellipses indicate the 95% confidence interval. This visualization revealed
that the network tends to be biased towards the majority class (negatives), leading
to significantly lower log-loss for negatives, particularly evident with Binary Cross-
Entropy (BCE). Transitioning to weighted Binary Cross-Entropy (BCE-W), the model
is forced to equally prioritize both negatives and positives, resulting in a decrease in
log-loss for positives. Focal Loss naturally emphasizes on hard examples, which, in this
context, are positive examples. Weighted Focal Loss further supported the model by
applying additional weighting to positive examples, as a result further reduced in logloss
of positive instances. Bottom row: This plot presents the ROC-AUC for the train and
test sets. Light lines represent task-wise ROC-AUC, while the thick line represents the
mean ROC-AUC across all tasks. Weighted Focal Loss provided the highest validation
ROC-AUC

task selection, binarization, and distributions are available in the supplementary
material.

2.2 Loss Functions

We consider a modeling problem from molecules x to binary toxicity profiles
y ∈ {0, 1}P of P = 50 endpoints from a dataset D = {(xn,yn)}N

n=1 of size N ≈
2000. We assume a function f(x; θ) ∈ [0, 1]P that outputs separate probabilities
for endpoints, and we use a shorthand fnp = f(xn; θ)p.
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Fig. 3. This plot shows task-wise performance, with colors representing different modal-
ities and tasks organized from lowest to highest ROC score. This plot also shows that
clinical tasks were the most challenging to model. Additionally, the model failed to
learn two tasks: Extramedullary (pathological) and 100197554 (clinical)

Binary-Cross-Entropy Loss (BCE). The binary cross-entropy (BCE) train-
ing loss is appropriate for this problem

LBCE =
P∑

p=1

N∑

n=1

ynp log σ(fnp) + (1 − ynp) log(1 − σ(fnp)) (1)

Weighted-BCE. The toxicity datasets are generally zero-inflated with nega-
tives being much more common, however, the BCE treats each observation as
equally important, and will lead the model to focus more on negatives. We can
tackle this positive-negative imbalance by overweighting the positive datapoints
within each endpoint,

Lw
BCE =

N∑

n=1

P∑

p=1

w+
p ynp log σ(fnp) + (1 − ynp) log (1 − σ(fnp)) (2)

where w+
p = Np−/Np+ ∈ R

+ is the inverse ratio of positives Np+ to negatives
Np− in endpoint p. Here we only upscale the positives while leaving negatives
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Table 1. The distribution of positive and negative samples across each modality. For
visualization purpose, a molecule is classified as positive if it is active in any task, and
negative if it is inactive in all tasks. The total represents the number of unique SMILES
in the complete dataset.

positive negative Modality Sum

Pathologies 176 234 410
Biochemistry
(blood
markers)

124 286 410

Clinical 749 470 1219
Total 1049 990 1554*

intact. This loss ensures that within-class positive and negative observations
have equal mass. Further, we can try to find the balancing, by selecting optimal
α through cross validation

w+
p = α

Np−
Np+

+ (1 − α)1 (3)

where α ∈ [0, 1] denotes the positive balancing.

Focal Loss. In scenarios of significant class imbalance, mere weighting can be
insufficient, as it fails to discriminate between easy and challenging examples,
thereby risking the overwhelming of gradients by the dominant class. A remedy
for this issue is focal loss, initially devised for object detection within images
(Lin et al., 2018). This approach incorporates a modulating parameter alongside
cross-entropy loss, thereby decrease the influence of accurately classified exam-
ples and consequently mitigating their overall impact. This modulating factor
can be adopted and integrated into our binary cross-entropy loss framework.

LFL =
N∑

n=1

P∑

p=1

(1 − σ(fnp))
γ

ynp log σ(fnp) + σ(fnp)γ(1 − ynp) log (1 − σ(fnp))

(4)

Weighted Focal Loss. Focal loss can also be assisted by incorporating positive
weighting as described earlier.

Lw
FL =

N∑

n=1

P∑

p=1

w+
p (1− σ(fnp))

γ ynp log σ(fnp) + σ(fnp)
γ(1− ynp) log (1− σ(fnp))

(5)
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2.3 Models

Baseline. We are using Random Forest as our baseline. Random Forest is a
robust baseline as it combines decision trees through ensemble learning, reducing
overfitting and providing reliable results. Additionally, Random Forest maintains
interpretability and scales efficiently for large datasets. To optimize performance,
we conducted individual task-specific hyperparameter searches and presented the
mean results across all tasks in Table 2. The hyperparameter search space details
are provided in supplementary Table 2.

MolBERT. The MolBERT model Fabian et al. (2020), an adaptation of the
BERT architecture Devlin et al. (2019), consists of 12 attention heads, 12 layers,
and a 768-dimensional hidden layer, containing 85 million parameters. It is pri-
marily optimized for the masked token estimation, employing cross-entropy loss.
Additionally, it incorporates physicochemical properties computed via RDKit as
an auxiliary task, with optimization achieved through mean squared error. The
final loss function is determined by the arithmetic mean of all individual task
losses. This model is pretrained for 100 epochs using the Adam optimizer.

MLP Head. This MLP head consists of an input-hidden-output layers, where
x0 is initialized as the input features x, which can be either BERT features or
ECFP . We utilize dropout for regularization, batch normalization for training
stability, and the rectified linear unit (ReLU) activation function as the default
activation. Additionally, the network incorporates a skip connection, merging
the input and output of the hidden layer, enhancing information flow. Finally,
the output layer generates logits, which can be transformed into probabilities by
passing through a sigmoidal activation function.

x0 = x BERT features or ECFP

x� = Dropout(ReLU(BatchNorm(W�x0 + b�)))
x̃�+1 = BatchNorm(W�+1x� + b�+1)
x�+1 = Dropout(ReLU(x� + x̃�+1))
xout = W�+2x�+1 + b�+1

(6)

The hyper-parameters of this model are given in Table 1 in supplementary.

2.4 Feature Extraction

ECFP Fingerprints. ECFP or Extended-Connectivity Fingerprints (Rogers
and Hahn, 2010), is a method used in cheminformatics to represent molecular
structures as binary fingerprints, capturing structural information by encoding
the presence or absence of substructural features within a specified radius around
each atom. Through iterative traversal of the molecular structure, unique sub-
structural fragments are identified and hashed into a fixed-length bit vector,
generating a binary fingerprint where each bit indicates the presence or absence
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of a specific substructural fragment. We encoded each molecule into fix 1024
dimensional binary vector by using radius 6. We have compared ECFP finger-
prints with BERT features explained below.

BERT Features. We encoded preclinical and clinical SMILES into continuous
features, utilizing a large transformer model MolBERT, pretrained on 1.6 million
SMILES via masking, alongside physicochemical properties (Fabian et al., 2020).
Extracting a pooled output of dimension 764 from the pretrained model, we
employed these features to train an MLP head. This strategy allowed us to
leverage a significant volume of unlabeled data,and encapsulated the contextual
information of larger chemical space.

2.5 Evaluation

Here, we briefly sketch the evaluation metrics used in model selection and to
report final results.

Balanced Accuracy. Given the imbalance between positive and negative
instances, using accuracy as a performance metric becomes inadequate. There-
fore, we chose balanced accuracy, which represents the arithmetic mean of sen-
sitivity (true positive rate) and specificity (true negative rate). We compute the
balanced accuracy at varying thresholds for each task and select the threshold
(τmax

p ) that yields the highest balanced accuracy.

BA(τp) =
1
2
(Sensitivity(τp) + Specificity(τp))

τmax
p = argmax

τp
BA(τp)

BA =
1
P

p∑

p=1

BA(τmax
p )p

(7)

ROC AUC. The ROC curve, generated by plotting true positive rates (TPR)
against false positive rates (FPR) at various thresholds(τp), illustrates the trade-
off in model performance. The area under this curve (ROC AUC) condenses the
curve’s information into a single value, ranging between 0.5 (no discrimination)
and 1.0 (ideal discrimination).

AUPR. The ROC-AUC curve can yield overly optimistic results with highly
imbalanced datasets, thus we used Precision-Recall (PR) curves (Davis and
Goadrich, 2006; Forman and Scholz, 2010). The Average Precision (AP) score
provides a summary of a precision-recall curve by calculating the weighted mean
of precisions achieved at each threshold, with the increase in recall from the
previous threshold used as the weight (Zhu, 2004):

AP =
∑

n

(Rn − Rn−1)Pn (8)
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where Pn and Rn denote the precision and recall at the n-th threshold, respec-
tively. We selected the optimal hyperparmeters based on AP-score

F1-score. This metric combines the precision and recall using the harmonic
mean. To select the optimal threshold, we followed the similar procedure to
balance accuracy

F1 score = 2 × Precision(τp) × Recall(τp)
Precision(τp) + Recall(τp)

(9)

Log-Loss. To compute the loss of positive and negative instances for each task,
we use the following equations:

Lp
pos =

1
Npos

N∑

n=1

(ynp log σ(fnp))

Lp
neg =

1
Nneg

N∑

n=1

((1 − ynp) log(1 − σ(fnp)))

(10)

3 Results and Discussions

Table 2. Comparison of different loss functions with ECFP and BERT features. We
also showed the effect of BERT fine-tuning

Model
Loss type Features

Finetuning
Metrics

BCE BCEw FL FLw ECFP BERT BA F1 ROC AP

RF - - - - - - - 0.67 ± 0.002 0.36 ± 0.003 0.65 ± 0.004 0.27 ± 0.003

✓ - - - ✓ - - 0.67 ± 0.004 0.34 ± 0.001 0.62 ± 0.003 0.26 ± 0.002
- ✓ - - ✓ - - 0.66 ± 0.003 0.34 ± 0.004 0.63 ± 0.002 0.26 ± 0.001
- - ✓ - ✓ - - 0.67 ± 0.004 0.37 ± 0.002 0.64 ± 0.003 0.28 ± 0.004
- - - ✓ ✓ - - 0.68 ± 0.001 0.35 ± 0.003 0.65 ± 0.002 0.26 ± 0.001

MT ✓ - - - - ✓ - 0.68 ± 0.003 0.37 ± 0.004 0.65 ± 0.001 0.28 ± 0.003
- ✓ - - - ✓ - 0.70 ± 0.002 0.38 ± 0.001 0.67 ± 0.003 0.29 ± 0.002
- - ✓ - - ✓ - 0.70 ± 0.001 0.39 ± 0.003 0.67 ± 0.004 0.31 ± 0.001
- - - ✓ - ✓ - 0.72 ± 0.004 0.40 ± 0.002 0.70 ± 0.003 0.30 ± 0.001
✓ - - - - ✓ ✓ 0.73 ± 0.001 0.37 ± 0.002 0.70 ± 0.003 0.28 ± 0.004
- ✓ - - - ✓ ✓ 0.72 ± 0.004 0.37 ± 0.001 0.70 ± 0.002 0.29 ± 0.003
- - ✓ - - ✓ ✓ 0.72 ± 0.003 0.38 ± 0.004 0.69 ± 0.001 0.30 ± 0.002
- - - ✓ - ✓ ✓ 0.72 ± 0.002 0.37 ± 0.003 0.68 ± 0.002 0.28 ± 0.001

We observed a significant performance gain when using BERT features com-
pared to ECFP, as highlighted in Table 2. Figure 1 compares weighted and non-
weighted loss functions for both frozen and fine-tuned BERT models. For the
frozen BERT model, we observed a consistent performance improvement in bal-
anced accuracy, F1-score, ROC-AUC, and average precision across all modalities
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when transitioning from Binary Cross-Entropy (BCE) to weighted Binary Cross-
Entropy (BCE-w), Focal Loss (FL), and weighted Focal Loss (FL-w). However,
this trend was not consistent in the fine-tuned BERT model. Fine-tuning BERT
improved performance in some modalities but decreased it in others. In conclu-
sion, BERT features outperformed ECFP, weighted loss functions were superior
to unweighted ones, and the effectiveness of fine-tuning remained inconclusive.

To analyze the impact of different loss functions, we computed the log-loss for
positive and negative instances generated from Frozen-BERT, as shown in Fig. 2.
Task-wise means, calculated using Eq. 10, are represented by small blobs with
ellipses indicating the 95% confidence interval across all tasks. The visualization
highlighted a network bias towards the majority class (negatives), resulting in
elevated log-loss for positive instances, particularly with Binary Cross-Entropy
(BCE). Transitioning to weighted Binary Cross-Entropy (BCE-W) prompted
the model to equally prioritize both positives and negatives, decreasing log-
loss for positives compared to BCE. Moreover, Focal Loss naturally emphasizes
on hard examples, in this case, positive instances, lead to significantly lower
log-loss for positives. Weighted Focal Loss further supported this by assigning
additional weight to positive examples, consequently reducing the log-loss of
positive instances even further. Further, in our experience frozen-BERT model
provided the highest ROC-AUC with weighted Focal loss as depicted in the
bottom row of the Fig. 2.

We computed a task-wise performance, as depicted in Fig. 3. Our models
achieved the highest ROC-AUC for biochemistry related tasks and lowest for
the clinical tasks the highest ROC scores. Interestingly, the model encounters
difficulty in learning two specific tasks: Extramedullary from the pathological
category and 100197554 from the clinical category.

4 Supplementary Information

The related supplementary information can be found on project GitHub repos-
itory https://github.com/Arslan-Masood/Tox_balance
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Abstract. Computer-aided drug discovery gradually builds on previous
work and requires reusable code to advance research. Currently, research
code is mainly used to provide further insights into the original research
whilst code reuse has a lower priority. Modularity, the segmentation of
code for independent modules, promotes good coding practices and code
reuse. The registry pattern has been proposed as a way to call functional-
ities dynamically, but it is currently overlooked as a shortcut to promote
code reuse. In this work, we expand the registry pattern to better suit
computer-aided drug discovery and achieve a unified, reusable, and inter-
changeable interface with optional meta information. Our reformulated
pattern is particularly suitable for collaborative research with standard-
ized frameworks where multiple internal and external modules are used
interchangeably and coding is more focused on fast iteration over low-
debt technical code, such as in machine learning-based research for drug
discovery. In a workflow, we exemplify the usage of the design patterns.
Additionally, we provide two case studies where we 1) showcase the effec-
tiveness of registration in a larger collaborative research group, and 2)
overview the potential of registration in currently available open-source
tools. Finally, we empirically evaluate the registry pattern through pre-
vious implementations and indicate where additional functionality can
improve its use.
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1 Introduction

The development of computer-aided drug discovery relies on previous research
from multiple fields to bridge the knowledge gap between domain experts and
computer scientists [41]. As such, software development in the field is often built
up of a combination of open-source tools, collaborative developments, and inde-
pendent research. Currently, research code is mainly used to provide further
insights into the original research rather than to use in future research [6]. There
is also a reproducibility problem [3] of code that stems from the low priority
of code reuse, as noted by Nature Computational Science (“But is the code
(re)usable?” [Editorial]. 2021, 23 July). Benureau and Rougier [5] proposed that
research code should adhere to particular requirements for stable and reliable
results. Code should be replicable, to obtain the same results as the original
paper; be able to run without problems; repeatable (i.e., deterministic); repro-
ducible (i.e., deterministic over multiple runs); and, finally, reusable. However,
research code is different from production software because its goals are focused
mostly on replication, where reuse is often an afterthought.

Code reuse is dependent on the concept of modularity [4]. Modular code is
code that is grouped with related code and mostly independent of other parts
of the code, named high cohesion and low coupling, respectively [33,46]. This
results in code that is interchangeable, replaceable, and can be updated and
used without issue [23,25,39]. Modular code also avoids the need to repeat code
segments [17] and forces code modules to achieve single objectives over multiple
responsibilities [26].

Machine learning (ML) workflows are inherently modular (Fig. 1). The work-
flow of ML is usually segmented into separate steps, such as data generation and
model creation, regardless of implementation. ML approaches are becoming more
prominent for research in drug discovery [7,11,42]. Computational research, like
all scientific research, builds on the knowledge from previous discoveries and uti-
lizes known methods and coding frameworks to create new tools, apply methods
to new fields, or investigate new problems. ML researchers use the available tools
to compare their novel models to previous approaches [9,22,45] and to stream-
line their pipeline [14,47]. There are also tools designed explicitly for ML in drug
discovery, some of which focus on aiding new practitioners in quickly finding and
comparing state-of-the-art approaches [10,24,28,34,40,44]. Other similar tools
can function to bridge the knowledge gap between natural scientists and com-
puter scientists. The latter can be achieved either by supplying domain-specific
knowledge to ML workflows [16,21,27,31] or by making common ML frameworks
[1,32] more accessible through higher-level abstractions [8,15,43]. Although tools
are created to be used by others, and therefore surpass research code in reusabil-
ity, tools are often semi-rigid, made to work out of the box for a fixed domain,
purpose, or type of method. This means there is often a high bar to add new
functionalities in open-source tools [4].

In this work, we identify registries [12] as a shortcut to code reuse for ML-
based drug discovery. We introduce the registry design pattern to those unfamil-
iar and suggest additional capabilities. Furthermore, we identify situations where
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Fig. 1. Overview of model generation pipeline and applicability of tools for
each step. Repository tools are primarily used for reproducibility and to benchmark
new approaches against the existing state-of-the-art. Data tools bridge the knowledge
gap between domain experts and ML practitioners. Finally, ML frameworks add
workflow abstractions that accelerate the ML pipeline. Multidisciplinary collaborations
rely on the use of a combination of tools from these categories, as illustrated in the
leftmost panel.

the cheminformatics community can benefit from registries to easily make their
code more reusable as well as more replicable [5]. We provide an open-source
implementation of the generic registry design pattern through the Python Pack-
age Index. While the fast pace of drug discovery research can result in bad
coding practices, the simplicity of our proposed registry is meant to encour-
age improved coding practices with minimal effort for the researchers. The use
of registries during codebase design can additionally serve as an easy way to
enforce desired behaviors, such as a factory pattern or test adherence, which
in turn helps contributors adhere to the desired coding standards. Finally, we
identify where previous implementations of registries have succeeded and failed,
and discuss the reasons behind successful implementations in both research code
and software tools. Our contributions are summarized as follows.

– We extend previous explanations of the registry with capabilities for use by
researchers.

– We outline several use cases of where and when registries can be a shortcut
for reuse in computer-aided drug discovery research.

– We identify previous implementations of registries and note their positive and
negative implications.

2 Methods

The registry design pattern has been proposed as a tool for dynamic instance
creation of object-oriented classes [12]. Best practices in object-oriented pro-
gramming are often formalized as design patterns. A software design pattern
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provides a template for a general and reusable way that solves a recurring prob-
lem in software engineering [13]. We reformulate the registry as a method to
retrieve similar modules with similar functionalities or uses. Consider a set of
modules M supplying the same type of functionality but with different impli-
cations to a workflow. Given that the modules follow the Liskov substitution
principle [23], i.e. that f : X → Y,∀f ∈ M where X and Y are the set of
inputs and outputs respectively, it is commonly known that they can be used
interchangeably through inheritance. A problem with inheritance is that each
module still has to be initialized individually. The standard design pattern to
interchange such modules is the factory pattern (Fig. 2 left). However, this app-
roach requires strict inheritance from an abstract class.

The registry design pattern uses call and set functions, usually renamed to
get and register, to dynamically set and retrieve objects from a unified storage
location. Registry systems are often initialized at run-time and used in combi-
nation with alias-based retrieval. As such, a registry follows the factory design
pattern in that it provides a common interface for categorically similar function-
alities without the explicit need for concrete classes. Furthermore, the registry
encapsulates each alternative module, hiding individual details behind a unified
set of function calls.

Formally, we reformulate the existing registry design pattern [12] as
a means to collect interchangeable modules with encapsulated functionali-
ties retrievable using a unified command. Additionally, the registry pattern
is dynamic in its application. We provide our proposed design pattern to
the cheminformatics community through the Python Package Index as the
registry-factory package under the MIT license [29], which specifies the imple-
mentation of a collection of registries. The open-source code is available at
https://github.com/aidd-msca/registry-factory.

3 Results

3.1 Workflow: Creating a Registry and Registering Modules

An overview of the process of creating a registry is illustrated in Fig. 3. A new
registry is either imported from the package or is instantiated from a factory
class. No instance of a registry needs to be created to use it. First, a section of
code is separated from the framework. This is then converted into a function
or class and registered into the registry. All subsequent scripts and external
collaborators are then able to call upon the registry for this code.

When a registry is outlined as above it promotes and allows specific actions
to be performed more fluently: 1) A registry provides a framework to exchange
modules with similar functions. This switch is also stable in execution and flexible
in application, depending on how strictly the registry is set up. 2) The registry
setup allows control over how modules should be set up. More strict setups will
force standardized modularity and interfaces, whilst more flexible setups allow
faster extension and broader application. 3) Due to the standardization, more
internal and external modules can use the same execution framework to function.

https://pypi.org/project/registry-factory/
https://github.com/aidd-msca/registry-factory
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Fig. 2. Unified Modeling Language (UML) diagram of the factory design
pattern and our proposed Registry design pattern. Left: UML of the fac-
tory pattern. The ShapeFactory functions as an interface where all subclasses of the
Shape superclass can be called by the client. Right: UML of the registry pattern. The
ShapeRegistry functions as an interface where any object no matter their superclass
can be registered dynamically and called by the client.

Fig. 3. Workflow of creating and using a registry. 1) Part of the code framework
is identified which can be separated from the rest. 2) This section is modularized to
be independent of the rest of the code. 3) A registry is created. Here, the choice of
additional meta information such as versioning, accreditation, and arguments are set
as well as the choice to share modules and force a specific class pattern. There is also
the option to add post-registration checks, both custom and those that reference a
testing script. 4) New modules are registered to the registry. 5) Finally, the modules
are called in the main workflow using the registry.
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3.2 Enhanced Functionality and Expanded Capabilities

Minimal usage of registries can be limited in their application. As a result, addi-
tional capabilities can increase the application options of registries, even in more
advanced architecture designs. In this paper, we advocate for a non-exhaustive
selection of additional capabilities and have implemented them into a separate
package that will be made available upon acceptance (Fig. 3).

Upon creation, the specifications of the registry are instantiated and a selec-
tion of additional capabilities can be included. Firstly, to increase ease of use,
inter-registry module sharing and argument registration are implemented. Sec-
ondly, the following features are implemented to allow for better control in a
codebase setting, factory pattern forcing, versioning, and automatic testing upon
registration. Finally, to accommodate the research community when contribut-
ing to packages, we have implemented accreditation which can be retrieved when
calling registered objects.

3.3 A Shortcut to Modularity and Reusability

The main reason for the integration of registries is the passive enforcement of
modularity. Experienced programmers will inherently shift to modular code and
separate classes and functions into coherent modules and packages. However,
research code and practitioners from other fields in the cheminformatics com-
munity will often focus on fast iteration over low-debt technical code. As such,
the use of registries aims to passively enforce the usability of sections that the
researcher will need repeatedly without the need for that code to be of high
standard. Similarly, registries allow researchers to share code more easily, both
internally during a project and externally after the research has been published.
Contrary to common Python principles the use of registries gives a more flexi-
ble way of sharing code such that certain parts can be reused while others are
updated or changed entirely. For example, this can be achieved by using the
registries as hooks, allowing researchers to add functionalities without altering
the code.

Case Study: Codebase Design and Collaboration. Registries are ideal for
collaborative work, as they signify which part of the code is reusable to col-
laborators. The field of cheminformatics is multidisciplinary by definition and
researchers often work collaboratively or using shared codebases. In these set-
tings, low-quality code can prohibit collaboration.

By utilizing registries in collaborative work, researchers can specify before-
hand what parts of code can be easily shared between collaborators. It also stops
collaborators from having to dive into messy code and instead be able to just
extract the segments of interest.

Furthermore, codebase designers and maintainers can use registries together
with our added capabilities to automatically check and control suggested code
submissions. Using automatic testing, registered modules are submitted to test-
ing upon entering the registry, whereas custom controls can enforce desired
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behaviors, such as consistent input variables. This approach not only eliminates
redundancy but also enhances code readability and maintainability.

Case Study: Registries in Cheminformatics Tools. The usage of chemin-
formatics tools can also benefit from registries. Table 1 gives a non-exhaustive list
of available tools often used in ML for drug discovery. These tools are essential in
their respective domains but they can be difficult to combine or use interchange-
ably. Many of them are internally built in a modular way but less so developed
to be adjusted by the users. The registry design pattern can be used on different
levels together with these tools to create adaptability and interchangeability,
which in turn allows for code reuse.

Firstly, including registration can allow the individual tools to open up the
possibility for users to contribute with their own functionalities or include other
open-source packages. Users can test out new functionalities directly in the tool
environment using registries, without the need to download and add to the pack-
age code. Model repository tools can benefit from registries by allowing users
to register additional models in the collection. One can imagine entire libraries
of models and data collections being allowed in ML pipeline tools or workflow
systems, such that different collections can be used interchangeably.

Additionally, tools can open up internal capabilities using registries. Often-
times, modules from cheminformatics tools are built with a specific functionality
in mind. However, most modules contain multiple useful functionalities inside
which can be used outside of that specific module. The use of registries allows
users to easily extract internal capabilities and use them in their own code.

Finally, allowing users access to internal sections allows them to switch parts
of the internal characteristics of tools. In the field of ML, this can include func-
tionalities such as custom loss functions, weight initialization schemes, layers, or
activation functions. In a more general sense, framework tools can create reg-
istries by specifying the sections that can be altered, and controlling how these
sections operate in a unified interface.

Consequently, implementation of registries in open-source code allows for
quick benchmarks, inherently supports contribution to tools, and promotes code
reuse.

3.4 Empirical Evaluation: Application and Impact in Previous
Implementations

Previous packages have been implemented with versions of the registry that we
propose. Here, we assess their impacts and analyze possible limitations in the
implementations. Here, we analyze two model repositories and one ML pipeline
package that have internal registries, the graph-based TorchDrug [49], the model
training GT4SD package [24] and the ML pipeline package MLFlow [47]. We also
compare these packages with how the highly cited and often-used Hugging Face
package [45] operates. The Hugging Face package uses an online repository sys-
tem to collect machine learning models and benchmarking datasets. For this, the
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Table 1. Overview of tools. Non-exhaustive overview of open-source tools used for
ML and/or drug discovery.

Software Description

Data tools

CDK [38] Chemistry development kit with methods for
molecular informatics.

RDKit [21] Extensive toolkit for cheminformatics logic and
functionalities.

OpenBabel [31] Toolbox with functionalities for chemical
languages.

TDC [16] Collection of benchmarks in several drug
discovery applications.

DataMol [27] Library for intuitive manipulation of molecules.

Datasets [22] HuggingFace collection of natural language
dataset.

...

Model repositories

OCHEM [40] ML framework for the collection of QSAR
models.

Transformers [45] HuggingFace collection of language models.

bio embedding [10] State-of-the-art language models for protein
encoding.

solo-learn [9] Collection of self-supervised models for
representation learning.

GT4SD [24] Generative modeling environment for material
discovery.

...

ML pipelines

ODDT [44] Traditional ML methods applied to drug
discovery.

TensorFlow [1] General tool for deep learning logic.

MLFlow [47] Standardized ML workflow.

PyTorch [32] General tool for deep learning logic.

DeepChem [34] High-level ML framework for drug discovery.

AMPL [28] High-level ML framework for drug discovery.

MetaFlow [14] Standardized ML workflow.

TorchDrug [49] Geometric deep learning for drug discovery.

...

Workflow systems

KNIME [36] Graphical user interface for data analytics with
components for ML.

AZOrange [37] Graphical environment for high-performance
ML-based QSAR models.

...
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package uses an alias resolver similar to registry calls to map string names to
model instances and classes. As such, it has no obvious relation to the registry
design pattern but it does use many of the same functionalities. TorchDrug is
a package that uses a registry as an alias resolver analog as well, but that also
actively uses it for registration purposes. Here, models and datasets are regis-
tered to be easily retrieved by users using simple string representations. It then
further supports changing models and datasets within their internal pipeline,
opening up the interface to other users. In GT4SD, the available algorithms are
stored in a registry that can be called upon to retrieve each algorithm. Here,
the registry is used to combine the interfaces of different molecular representa-
tion and prediction models and collections, including those from TorchDrug and
Hugging Face. This is a good example of how to use registries to combine mod-
els from different classes. Finally, the MLFlow package uses online registration
of models with version tracking and aliasing. It uses registries, but its registry
is online or saved to a local log file. This is primarily used for model training,
versioning, and benchmarking.

Both TorchDrug and GT4SD use registries internally built in a modular way
but are less useful for user adjustments. As mentioned, registries can be used
on different levels to create adaptability and interchangeability. TorchDrug uses
its registry to allow users to add datasets to their selection and then use these
new datasets similarly to their ways, seamlessly integrating new data into the
workflow. GT4SD uses its registries more to standardize the interface between
the model libraries of other packages. While Hugging Face uses the basic alias
call function, but not the registry function itself, it is clear that it values the
capabilities of registries, though prefers the higher-level modularity that allows
users to publish code in a GitHub fashion over code snippets.

4 Discussion

In this work, we have introduced the idea of using the registry design pattern
to promote code reuse, as well as other good coding practices. In the following
section, we discuss previous adoptions, specify important aspects to consider
when employing registries, and outline the advantages and disadvantages of reg-
istries implemented for research.

4.1 Adoption in Previous Implementations

The three current implementations of registries in packages that we have ana-
lyzed, in TorchDrug [49], GT4SD [24] and MLFlow [47], indicate promise usage
of registries, but these implementations lack the simple integration of opening
up internal modules to changes and only use it to change external models. Hug-
ging Face mentions as much in their description of the Transformers package
[45], where models are exclusively used for comparison and simple optimization,
not for further refinement. This means that the registries, or registry-like sys-
tems, are limited in their applicability. GT4SD does something more interesting,



Registries in Machine Learning-Based Drug Discovery 107

in that it uses its registry to combine the different registered objects from both
Hugging Face and TorchDrug. They achieve a large library of models however, it
means that the package is somewhat limited in its integration of further models
by users. Both TorchDrug and GT4SD have the issue that registries are mostly
used internally to resolve and gather different models, rather than a method of
code reuse. This can limit external contributions to the package. We also note
that models are more often submitted to Hugging Face compared to packages
whose registry systems are more code-based rather than online. One of the rea-
sons might be that Hugging Face has a very clear way and tutorials regarding
how to contribute to the Transformers package, as well as allowing local inte-
gration. A second reason for the mismatch between TorchDrug, GT4SD, and
Hugging Face is the broader view as well as the adoption of Hugging Face as a
platform, meaning that a critical mass may have been achieved for the Hugging
Face package that promotes registering models there over other systems. How-
ever, note that TorchDrug also has a significant amount of external contributions
and users of more than the implemented models.

4.2 Registration as a Design Pattern

Design patterns are software generic solutions to problems that often arise [13].
When registration is implemented at the start of the project, it enforces mod-
ular code. If it is instead adopted into preexisting code, it allows users to use
any standardized framework and switch a segment out to replace it with exter-
nal code. There is an ongoing debate on the effectiveness of design patterns in
general, criticizing the relative lack of empirical evidence of effectiveness [2,48].
However, meta-studies conclude that the original design patterns [13] are mostly
correlated with system complexity [19], which in turn is positively correlated
with system design quality [18]. This leads to the suggestion that registries as a
design pattern might be best used in complex systems, or, in the case of ML for
drug discovery, in highly consistent systems where the calls to the registry are
sparse.

Jaspan et al. have found that coding speed depends on code visibility [20].
Due to the ability to register any object using registries, registration introduces
some encapsulation and information hiding because it makes major module
logic inaccessible from the execution program. Despite promoting good soft-
ware design principles, including decoupling [30], this also introduces a layer of
invisibility for the programmer. Moreover, the layer of invisibility can impede
speed by making it harder to track source code. However, the main advantage of
encapsulation is the ease of interchanging modules without knowledge about the
encapsulated function. Therefore, the trade-off is the need to inspect the inter-
nal logic of encapsulated modules, and researchers should consider this when
deciding which objects to keep in a registry.
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4.3 Advantages and Considerations of the Registry

Our reformulation of the registry design pattern offers several advantages for
software development, including increased modularity and reusability, improved
interchangeability, enhanced code clarity, increased stability, and ease of future
extensions. In the following section, these advantages and considerations are
discussed in more detail.

Modularity. Registration allows researchers to easily list and call objects to
standardize workflows and switch out modules in a structured and flexible man-
ner. Researchers can register any object, from small modular functionalities to
entire scripts. As a result, total flexibility in the scale of modularity is possible,
which crucially also allows the integration of external tools. The dependency of
registration on modularity is through their execution mechanism where mod-
ules require similar input-output regimens, which inherently pushes for modular
design choices in research code. There are two things to consider when making
modular design choices.

The first consideration for modular design is composability. The composabil-
ity of a system refers to the relationships between modules in the execution.
Following the classification described by Sarjoughian et al. [35], modules can be
composed to follow one another hierarchically (mono) or be used within high-
level modules (super). Additionally, there are the meta and poly composability
options. These options are higher-level systems to translate the mono system,
where the execution runs on the transformed modules in the higher-level system.
Due to their complexity, these latter composability options are often avoided in
ML. The use of registries helps to make the composability clear to anyone using
the system and spells out what can and should be modified.

The second consideration is that modularity can be coded on different scales
of abstraction. Module abstraction describes the scope that a module has. Code
can be modular on a small scale of minimal functionalities or large scales, e.g., in
the case of ML, it can be one step of data analysis or the entire data preparation.
The scale of modularity and abstraction influences the amount of effort needed.
Small-scale modularity allows programmers to use the individual parts of the
model but requires a more specific framework to combine the code. In compari-
son, modularity on a larger scale allows for more flexibility in the framework but
less reuse of specific code. Consequently, there is a time trade-off between code
reuse and time spent on modularity. Registries often use meta-coding principles,
the meta composability, to register and call modules. This is to limit compu-
tational overhead, but registries are still susceptible to computational overhead
in frequent calls when the assignment is often overwritten or is not a pointer
assignment.

Reusability. Starting from scratch or reconstructing previously written code
is an inefficient way to build on previous research. Reusable code instead allows
researchers to bypass this initial stage and directly build upon previous research.
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When previous work contains an implemented registration system, new work can
automatically use the entire system and easily adapt or exchange any registered
module [24]. Furthermore, previously registered modules can be called from a
new system. In contrast, previous research can also be refactored to support
registration, either by modularizing the specific functionalities of interest or by
modularizing and registering the section of the execution that requires change.
Consequently, registered modules are easily reused in new research and new
research can easily build upon old implementations. Both forward-implemented
and backward-implemented registries bypass initial avoidable time commitments
and allow researchers to focus on the new research immediately.

Interchangeability. Registries for models also help to streamline the process
to benchmark various methods. Similarly, a registry of datasets aids the pro-
cess of applying the same method to varying benchmarks. Easily switching
between implementations can increase experimentation speed in writing code
connected with new research. Modularity allows researchers to experiment more
easily with various options for code applications. Registration, in turn, further
allows researchers to variate, update, adapt, and modify modules because regis-
tered modules are inherently modular. This automatically forces code to adhere
to the five R’s of published work [5], as discussed in the introduction. Depending
on the abstraction level of the modules, other researchers can variate and use the
coding framework, as well as easily replace and reuse parts of it. Furthermore, it
increases code longevity as outdated code can be easily updated. Similarly, due
to increased reuse by other researchers, citations and longevity increase as the
original author is no longer the only one with a vested interest in the original
code.

Tools. Registration of modules inside the toolkit can allow users to retrieve
modules and generate new applications following tool specifications. The latter
decreases the threshold for new functionalities to be suggested to the main tool.
Moreover, registries allow researchers to build functionalities in private reposito-
ries using the framework set out by the toolkit and then easily upload those, once
the original work has been published. As previously stated, some available tools
already provide versions of the registration feature [24,47,49]. However, their
scope is mostly limited to the registration of ML models. The main advantage of
our proposed generic registration, which is missing in previous implementations,
is the flexibility to make specific design choices.

Clarity. Research collaborations in multidisciplinary fields, such as drug discov-
ery, rely on integrating code from various sources and contributors, thus requir-
ing deliberate forethought and coordination. As such, a standardized workflow
is of particular importance and written code should be modular to avoid code
instability when working on different interdependent code sections. The reg-
istration system creates a clear structure to use the registered modules, thus
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allowing researchers or project coordinators to standardize their workflows and
call functionalities through registries where code can be varied. Consequently,
registration increases the efficiency of research collaborations.

Stability. The stability of a codebase can be affected when new modules are
added. As new functionality is introduced, the potential for interactions and
conflicts with existing code increases. This can lead to defects and unexpected
behavior. Additionally, adding new modules to a codebase can increase its com-
plexity and make it more difficult to maintain and understand, which can lead to
issues in the long term. To mitigate these risks, it is important to have a thorough
testing process in place before new modules are added and to thoroughly review
and test the entire codebase after the new modules are integrated. A registry
can be used to increase the stability of code through specified points to integrate
new modules as well as the ability to introduce post-registration checks. These
post-checks can then be used to enforce adaptation of external code to the exist-
ing framework, such as passing a set of tests or adherence to meta information,
such as versioning and factory patterns. As an example, registries can be set up
to handle different versions of the same module such that modules are registered
together with their version. This way users can more easily track the influence
of changing modules. Additionally, the modularity of new functionality ensures
minimal impact on the existing codebase.

4.4 Codebases for Efficient Coding in Research

Codebases focus more on the software development process. As such, a codebase
should particularly ease continuous development, aid code stability, and allow for
incremental addition of modules. Due to the multidisciplinary field, ML research
focused on drug discovery uses multiple external tools. The usage of tools ranges
from the curation and processing of data to the general setup and deployment
of models. While the ML pipelines are primarily created for individual projects
separately, the developed functionalities can often be helpful for other projects
or researchers in the same field. Functionalities from individual projects are
often presented with an irregularity in the level of modularity and, therefore,
accessibility and usability.

For collaborations or big projects, a choice is made between keeping multi-
ple single-application repositories or creating a bigger shared codebase. There
is an open discussion on the advantages and disadvantages of codebases over
multiple single-project repositories [20]. Codebases represent an opportunity for
collaborators to standardize their workflows as well as share and reuse code
with particular functionalities. In general, more standardized workflows allow
for more specific coding criteria. Modular code or modular tools are parts of the
workflow that can be easily updated with or interchanged for applications with
similar functionality. More modular codebases increase collaborator contribu-
tion [4] and allow for more use of external tools within its framework. By using
registries when designing a codebase, active choices can be made to promote
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modularity in the project. The benefits of choosing a high level of modular-
ity include code longevity, reuse, and increased potential for collaboration and
research speed. Therefore, using a codebase can widen the scope of single, mul-
tidisciplinary research projects, making them more modular and reusable for
other projects or researchers.

On the other hand, there are disadvantages to coding in a codebase environ-
ment: 1) Even though the level of modularity is flexible, this level should be static
during research development to prevent unnecessary overhead. It can otherwise
be costly to uphold the modularity and maintain backward compatibility. 2)
Codebases can restrict reproducibility. Reproducibility requires specific version-
ing, which can be more fluid in the continuous development within codebases.
3) Codebases can introduce irrelevant functionalities that obscure crucial func-
tionalities in open-source publications. 4) Although coding in a codebase can
speed up research long-term, setting up research using modular code is more
time-consuming.

However, we advocate for a more general perspective on codebases where any
published code can be considered a codebase. This interpretation of published
code is less dependent on actual features of codebases, as most code in research
often does not require active design, nor intricate design patterns to function
properly. Instead, we view the act of writing code as actively assuming others
will reuse parts of the code, which will then promote the idea of modularity and
reusability, including the use of registries where warranted. This view is more
flexible in its application and gives the scientist a base from which to work.

4.5 Future Work

The capabilities of registries can be further explored. For example, future
research can further investigate how registration aids reproducibility in practice
through experiments or surveys. As previously mentioned, continuous develop-
ment and non-contributing code can impede reproducibility and clarity. Simi-
larly to the accreditation system, versioning, and optional factory patterns, other
modules could be attached to registered modules in the registry to aid stabil-
ity and reproducibility. One can even imagine a generative functionality of the
registry to produce a single repository of only the necessary modules from a
codebase for a specific application.

A common issue that can occur when combining modules from different
sources is that versions can be incompatible. Registries, as proposed here, would
not immediately solve problems with dependency conflicts but one can imagine
an extension where the registration of modules is accompanied by dependency
requirements that are automatically checked and installed upon execution. This
in turn will not deal with situations where different parts of the code use different
versions of third-party dependencies. However, it would allow for the registration
of modules that depend on conflicting versions into the same registry where only
one at a time is used during execution.

Furthermore, future research might analyze how their effectiveness depends
on using a generic registry. While higher usage promotes modularity, it also
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removes a level of visibility. An analysis of the overall usage and the usage
focused on specific groups of modules will give a better understanding of the
best practices of registries. Likewise, one can investigate the trade-off between
code visibility and coding speed as noted by Jaspan et al. [20]. Ultimately, col-
laborating researchers should investigate whether using registries and codebases
instead of multiple repositories is advantageous for their research goals and try
to design their code to best suit their needs.

5 Conclusions

To conclude, we highlight the importance and promise of the registry design pat-
tern, especially in the field of ML development for drug discovery. Registries can
promote code reuse through their modular nature. Modularity is the indepen-
dence of a module from the rest of the code and is crucial for reuse. A registry also
promotes other important coding practices and includes the possibility to eas-
ily switch between custom functionalities and functionalities from open-source
tools. We introduce a method to flexibly register objects and add additional
functionalities such as accreditation and versioning. Additionally, we outline the
advantages and considerations of registries and stress that registries clarify the
usually concealed abstraction and composability of a system. Finally, registries
promote clarity, experimentation speed, good coding practices, and code reuse.
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1 Introduction

In recent years, the integration of machine learning (ML) and artificial intelli-
gence (AI) with biochemical and biomedical research has opened new avenues
for understanding the toxicological effects of various chemicals on biological sys-
tems. Among these effects, mitochondrial dysfunction has emerged as a critical
area of investigation due to its implications for numerous diseases and physiolog-
ical processes [4,11]. Indeed, mitochondria play a central role in cell metabolism,
serving as fundamental components in energy production, metabolism, and cel-
lular signaling. Dysfunction in these organelles can lead to a wide range of health
issues, including neurodegenerative diseases, and metabolic, liver, and cardiac
disorders [8,16]. Remarkably, chemical compounds have been shown to disrupt
mitochondrial function through various mechanisms, such as inducing oxidative
stress, disrupting the electron transport chain, or inhibiting other crucial mito-
chondrial processes which can also result in adverse effects like chemicals-induced
liver injury [8,16,25]. These reasons highlight the importance of early identifica-
tion of potential mitochondrial toxic compounds during the drug development
process to mitigate the risk of adverse reactions and toxic effects.

Currently, the assessment of mitochondrial toxicity has heavily relied on in
vitro assays measuring specific endpoints, such as alterations in membrane poten-
tial or inhibition of the respiratory chain [13]. However, these assays often require
significant time and resource investments and may fail to capture the full spec-
trum of effects that a compound can have on mitochondrial function. Moreover,
they necessitate a priori knowledge of the mechanism of toxicity, which may not
always be readily available for newly synthesized compounds.
To overcome these limitations, in silico methods have emerged as indispensable
tools in toxicological research and artificial intelligence (AI) and machine learn-
ing (ML) are among today’s advanced approaches for evaluating chemical haz-
ards. Diverse ML and AI models can be found in literature developed to predict
mitochondrial dysfunction using different methodologies based on Quantitative
Structure Activity Relationship (QSAR) [5,11,23,27].

Also, more recent advances in high-throughput imaging technologies have
enabled the generation of large-scale datasets that capture cellular and organelle
morphology in response to chemical perturbations, which can be used to improve
models’ predictions [15,24]. One of these works tested multiple ways to encode
chemical information revealing that one of the most promising approaches to
manage mitochondrial dysfunction is using neural language processing (NLP)
directly on chemical notation [27]. Based on the evidence provided by the litera-
ture, we decided to further explore the prediction efficacy of NLP models using
different chemical notations.

These NLP methods offer a data-driven and computationally efficient app-
roach to toxicological screening by predicting chemical toxicity directly from
chemical notations. Leveraging advancements in deep learning and neural lan-
guage processing, these methods hold promise for accelerating drug discovery,
environmental risk assessment, and chemical safety evaluation.
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NLP models for predicting chemical toxicity from chemical notation often
utilize sequence-to-sequence (Seq2Seq) models or variants. The architecture of
these networks can process chemical notation directly as text using specific layers
for text vectorization and character embedding, which describes each character
or segment of the string as a numerical vector. These models, such as Recurrent
Neural Networks (RNNs), Long Short-Term Memory (LSTM), or transformers,
are designed to handle sequential data and capture dependencies between tokens
in the input sequence and the properties.

In this study, we focus on exploring various chemical notations that can
serve as input for NLP methods. We evaluated the SMILES (Simplified Molec-
ular Input Line Entry System) that is a widely used chemical notation sys-
tem that represents the structure of molecules as a linear string of charac-
ters, DeepSMILES [17] and Self-Referencing Embedded Strings (SELFIES) [12].
DeepSMILES and SELFIES are adaptations of SMILES designed to address
some of the issues that arise when using strings to represent chemicals in machine
learning. For instance, DeepSMILES avoids the problem of pairing ring closure
symbols by using only a single symbol at the ring closing location, where the
symbol indicates the ring size. SELFIES (Self-Referencing Embedded Strings)
instead is designed to be a more robust notation since every possible SELFIES
string corresponds to a valid molecule. These differences in notation can have
significant impacts on the performance of machine learning models trained on
these representations.

2 Material and Methods

2.1 Dataset

We collected data from the ICE database (https://ice.ntp.niehs.nih.gov/
accessed on 15 October 2023), which provides high-quality curated data to sup-
port the development and evaluation of new, revised, and alternative methods.
Table 1 lists the assays used.

We selected datasets containing specific biological assays that have a critical
role in identifying potentially harmful compounds able to interact as stressors
for the increase in mitochondrial dysfunction.

The chemicals retrieved are univocally defined by the CAS number. We then
retrieved the SMILES from CAS using in-house software (https://github.com/
EdoardoVigano/Chemical-Resolver). We represent compounds using SMILES
because it is a widely used and standardized notation system for representing
chemical structures and molecules, using text strings.

We curated the retrieved SMILES by performing standard SMILES canon-
ization, followed by the removal of structures displaying inconsistencies that
might indicate chemical errors. We also excluded stereochemistry and removed
salts, concentrating solely on the largest fragments. Any duplicate structures
were removed, maintaining only one instance in cases where the experimental
values were consistent between duplicates. This approach to SMILES curation
is very commonly used [9].

https://ice.ntp.niehs.nih.gov/
https://github.com/EdoardoVigano/Chemical-Resolver
https://github.com/EdoardoVigano/Chemical-Resolver
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Table 1. Assays to evaluate mitochondrial dysfunction.

ASSAYS to Increase in Mitochondrial Dysfunction

APR HepG2 MitoMass 24 h dn

APR HepG2 MitoMass 24 h up

APR HepG2 MitoMass 72 h dn

APR HepG2 MitoMass 72 h up

APR HepG2 MitoMembPot 24 h dn

APR HepG2 MitoMembPot 24 h up

APR HepG2 MitoMembPot 72 h dn

APR HepG2 MitoMembPot 72 h up

ATG XTT Cytotoxicity up

TOX21 MMP ratio down

TOX21 MMP ratio up

TOX21 MMP rhodamine

The data are labeled as active or inactive for classification modeling pur-
poses. We define activity as follows: a chemical is considered active if it shows
a hit call label as active in at least one of the selected assays for that specific
biological target; otherwise, it is labeled as inactive. The individual assay label
was available in the files downloaded from the ICE platform.

The raw data provided by a vendor or laboratory underwent processing,
indexing, transformation, and normalization using standardized methods. Sub-
sequently, the concentration-response data are subjected to modeling through
three selected models (constant, Hill, and gain-loss). If any models fit sufficiently,
the chemical assay pair is considered ‘active’ (hit call = active); otherwise, the
final hit call is ‘inactive’. Characteristics of the data collected, and class propor-
tions are shown in Table 2.

Table 2. Summary of data for mitochondrial dysfunctions with information about
number of compounds, and percentages of active and inactive.

Name N Active Inactive Active % Inactive % N of Assays

Mitochondrial Dysfunction 5004 1147 3857 23 77 12

The datasets is unbalanced, and the statistics on dataset composition are
reported in Table 2. That information is important to consider applying a method
for oversampling the minority class and selecting the right metrics to assess the
model’s performance.
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2.2 Chemical Notations and Data Augmentation

Chemical notation refers to the standardized symbols and conventions used
to represent chemical compounds and other chemical phenomena. In this
work, we explore three different chemical notations: SMILES, SELFIES, and
DeepSMILES (Fig. 1). All these chemical notations represent the chemical as a
list of text characters suitable for NLP models.

Fig. 1. Chemical notations explored as input in NLP models.

To encode chemical information from chemical notations various approaches
exist, such as the conventional methods typically employed in QSAR as molecular
descriptors (MDs) [7], or different types of fingerprints like Morgan fingerprint
and Molecular ACCess System (MACCS). Other possible methods involve graph
[6], latent representations generated by encoder-decoder architecture [10,28] and
character embeddings commonly used in neural language processing. In our work
we focused on the latter since this approach is computation efficient and very
promising.

Character/word embedding is applied directly to the chemical notation, as
a string of characters, without any other considerations or intermediate steps.
Tokenization involves breaking the text into smaller units known as tokens, that
can be a single character or group of characters. We adopted two different meth-
ods to tokenize the string of characters: one is the atomwise tokenizer, and the
other is the kmer tokenizer with ngram parameter of 4 [14,22]. Kmer with ngram
of 4 meaning the length of each segment contains 4 characters.

To determine the maximum length of tokenized molecules, we calculated the
number of tokens for each chemical and then utilized the value corresponding
to the 95th percentile. In Fig. 2 is reported an example of different tokenizer
methods to break the chemical notation for instance on DeepSMILES.

The tokenized chemical notation can be used as input in an embedding layer
where each token is represented by a numerical vector in the network. The model
learns this embedding during training, which is one of the most significant advan-
tages compared to classical techniques such as Molecular Descriptors used in
QSAR, where chemicals are described in a predefined manner.
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Fig. 2. Comparison of the results of the two different tokenizers used, the atomwise
and the kmer.

With the aim of further improving the performance of the NLP models, we
employed a data augmentation process. Data augmentation is an essential tech-
nique for enhancing the diversity and size of training data in machine learning,
especially when the data is limited. We utilized the SMILES enumeration app-
roach [4]. Here, the fact that multiple SMILES representations correspond to
the same molecule is leveraged as a technique to expand the dataset. With this
method, we were able to increase the dataset by a factor of 10.

2.3 Data Pre-processing

It is common practice to split the original dataset into training, validation, and
testing sets. We initially split the data into 90% for training and 10% for hold-
out test set. Then, within the training data, we further split it into 90-10% to
generate the validation set. In both splits, we maintained the ratio between the
toxic and non-toxic labels as in the original dataset. The results are reported in
Table 3.

The data preparation for AI architectures must consider the computational
cost and optimize the training time to create the best conditions for model con-
vergence and stability during training. One way to achieve this is by normalizing
activations within each mini-batch, which can reduce the likelihood of overfitting.

In the case of our NLP architecture, the dataset was divided into mini-batches
of 32, and we employed TensorFlow for data prefetching. This technique is used
to enhance the training performance of deep learning models by overlapping
the data loading and model training phases. The goal of data prefetching is
to minimize the idle time of the GPU or CPU during training and mitigate
the impact of data loading latencies on overall training speed. By keeping the
computational units, such as GPUs or CPUs, fully utilized, data prefetching
achieves faster training times and more efficient model convergence.
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Table 3. Summary of Mitochondrial Dysfunction data after preprocessing phase.

Mitocondrial
Dysfunction

All dataset Training set Validation set Holdout set

All 5004 4052 451 501

Active 1147 929 103 115

Inactive 3857 3123 348 386

2.4 Applicability Domain

To calculate the applicability domains (AD) of our models, we used the Applica-
bility Domain Toolbox (Milano Chemometrics and QSAR Research Group) [1].
This tool implements a set of AD approaches based on several strategies, such
as range-based methods, geometric methods, and distance-based methods.

In this work specifically we selected the ‘Bounding box PCA’, the ‘Leverage’,
the ‘Distance from centroid’, and the ‘Distance kNN with predefine k to 5’
methods to define the AD [19–21]. These methods are used to reach a consensus;
therefore, if a chemical in the test set is defined as out of domain by at least
three out of four of these algorithms, it is considered potentially to be discarded.

This evaluation was conducted on a dataset where chemicals were encoded
using latent representations generated by the SeqToSeq encoder-decoder archi-
tecture trained on SMILES notation [28].

2.5 Model Architecture

We employed an NLP model with an architecture able to work directly on chem-
ical notations as strings of text. This way, the networks learn the chemical nota-
tion grammar and correlations between strings or sequences of characters with
biological target interactions.

The network architecture consists of several layers designed to process input
data in the form of chemical notation text strings. It begins with the Input Layer,
which receives the text strings representing chemical notations. These strings are
then converted into numerical vectors by the Text Vectorization Layer, specifi-
cally designed for converting SMILES strings. The next step is the Embedding
Layer that represents each tokenized character from the chemical notation strings
as a dense vector. Convolutional Layers (Conv1D) are then employed to perform
convolution operations, capturing local patterns within the chemical notation
strings. The results of the convolution serve as input for the Bidirectional LSTM
layers, which are designed to capture contextual information from both preced-
ing and succeeding tokens in the chemical notation strings. The Global Max
Pooling 1D Layer is then applied to extract the most relevant features from the
output of the bidirectional LSTM layers. Subsequently, Dense Layers perform
fully connected operations to further process the extracted features and Batch
Normalization and Dropout Layers are employed to enhance training stability
and prevent overfitting by normalizing and randomly dropping out units during
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training. Finally, the Output Layer produces the final output of the classification
prediction. Together, these layers form a comprehensive network architecture
optimized for processing and classifying chemical notation data.

Table 4 provides a more detailed summary of the NLP model architecture
used for each chemical notation. Notably, although the architecture remains
the same for each of the NLP models developed, to mitigate specific cases of
overfitting or poor performance, a grid search was performed on different model
parameters. These parameters included the embedding dimension, the number
of convolution filters and the number of hidden layers in LSTM.

Table 4. Summary of NLP model architecture.

Layer (type) Output Shape Param #

Input Layer [(None, 1)] 0

Text Vectorization (None, 54) 0

Embedding (None, 54, 128) 2091776

Conv1D (None, 54, 128) 328192

Conv1D (None, 54, 64) 655616

Bidirectional (None, 54, 64) 394240

Bidirectional (None, 54, 32) 123648

GlobalMaxPooling1D (None, 128) 0

Dense (None, 128) 16512

Batch Normalization (None, 128) 512

Dropout (None, 128) 0

Dense (None, 128) 1056

Batch Normalization (None, 128) 128

Dropout (None, 128) 0

Dense (None, 64) 528

Dense (None, 1) 17

Tot. param: 2303081 (8.79 MB)

Trainable params: 2302953 (8.79 MB)

Non-trainable params: 128 (512.00 Byte)

2.6 Model Training and Model Validation

One of the most important limitations we encountered in reaching good perfor-
mance for modeling is the presence of unbalanced classes. This is a very com-
mon problem with real data provided by biological assays, and data distribution
makes it challenging for a model to learn and predict the minority class effec-
tively. In addition, models operating on imbalanced data can seem very accurate
when measured by traditional accuracy metrics, yet they may perform poorly
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in practice. We employed two different approaches to address these issues. One
of them involves weighting the loss higher for the minority class during train-
ing, which is a common practice to help overcome the imbalance problem. The
other method we adopted was to initialize the final layer weights considering the
unbalanced proportion of our dataset, rather than using the common method
of random initialization. Indeed, considering the class ratio, it is possible to set
the bias on the logits such that the network predicts a predefined probability
at initialization. Setting these correctly will speed up convergence and account
for the unbalanced dataset at the same time, in this way during the first few
iterations network is not limited to essentially just learning the bias.

After the pre-processing phase, the data can be used to train and validate
models with internal and holdout validation. The models are trained on the
training dataset for multiple epochs. During each epoch, input data are processed
through the model and model parameters are updated based on the prediction
errors evaluated on the validation set. This iterative process enables to track the
history of your selected optimization metric as it converges to a minimum over
epochs. To further optimize computational cost and improve model performance,
prevent overfitting, and make the training process more efficient, we monitored
the validation loss. In cases where during training the model stops to improving
or reaches a plateau for a certain number of epochs (patience), the learning rate
is reduced by a factor of 0.1. We decided to reduce the learning rate to help
the model navigate closer to the optimal point in the parameter space, hopefully
finding a better minimum. In cases where, even after the reduction of the learning
rate, the model didn’t improve for three epochs, we stopped the training phase,
assuming the model reached convergence.

For the holdout validation, we incorporated diverse metrics to show a fuller
assessment of the model’s predictive abilities, so we could evaluate more deeply
the model’s ability to generalize the knowledge gained from the training set. The
metrics selected to evaluate the model’s performance on holdout tests are bal-
ance accuracy, precision, sensitivity, specificity, Matthews correlation coefficient
(MCC), and F1-score.

2.7 Software

All models and architecture implementations were performed with Python pack-
ages. Python 3.9.16, RDKit (version 2023.03.1), scikit-learn 1.2.2, SciPy 1.8.1,
pandas 1.5.3, matplotlib 3.7.1, and deepchem 2.7.1, TensorFlow 2.12.0 and Keras
2.12.0 were used to create architecture for deep learning models as NLP methods.

3 Results

We encoded the chemical information using CDDD descriptors and defined
whether the chemicals were outside or inside the AD using a consensus app-
roach based on ‘Bounding box PCA’, ‘Leverage’, ‘Distance from centroid’, and
‘Distance kNN with a predefined k of 5’.
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There were 4 chemicals considered outside of the domain, and they were
discarded from the test set (CAS: 147536-97-8, 81-55-0, 40220-08-4, 25999-
20-6).

The performance of the NLP models is reported for each of the tested chemi-
cal notations. Each of these notations was tokenized in two different ways: using
the atomwise tokenizer and the kmer tokenizer, which fragment the strings of
characters differently. For a better comparisons between our methodologies and
machine learning, we added in the Table 5 the results from literature regarding
baseline models to predict mitochondrial dysfunction [11,15,27].
The overall results are presented in Table 5.

Table 5. Summary of NLP model results obtained. In green is reported the results
obtained for SMILES notation with different tokenizer and with or without data aug-
mentation (AUG). In yellow are reported the results for the DeepSMILES notation
and in blue the ones related to the SELFIES notation. The red values represent the
values of the best models overall. In the last rows in grey, the results obtained in other
works using machine learning methods built on conventional molecular descriptors are
reported.

Holdout Set Validation

Notation BA Prec Sens Spec MCC F1-Score F1-Score Tokenizer AUG

SMILES atomwise 0.766 0.660 0.625 0.906 0.542 0.642 0.744 atomwise no

AUG SMILES atomwise 0.810 0.552 0.812 0.808 0.550 0.657 0.803 atomwise yes

SMILES kmer 0.747 0.536 0.661 0.834 0.461 0.592 0.857 kmer no

AUG SMILES kmer 0.761 0.717 0.589 0.932 0.561 0.647 0.613 kmer yes

DeepSMILES atomwise 0.785 0.557 0.741 0.829 0.519 0.636 0.731 atomwise no

AUG DeepSMILES atomwise 0.764 0.503 0.741 0.787 0.469 0.599 0.745 atomwise yes

DeepSMILES kmer 0.764 0.503 0.741 0.787 0.469 0.599 0.822 kmer no

AUG DeepSMILES kmer 0.742 0.503 0.679 0.805 0.439 0.578 0.757 kmer yes

SELFIES atomwise 0.775 0.707 0.625 0.924 0.575 0.664 0.688 atomwise no

AUG SELFIES atomwise 0.749 0.605 0.616 0.883 0.495 0.611 0.887 atomwise yes

SELFIES kmer 0.715 0.438 0.688 0.742 0.375 0.535 0.812 kmer no

AUG SELFIES kmer 0.738 0.551 0.625 0.851 0.456 0.586 0.613 kmer yes

ML from literature Holdout Set Validation Descriptors

Gradient Boosting [11] 0.708 0.573 0.467 0.948 - - - Atom Pair FP -

Random Forest [11] 0.743 0.279 0.793 0.692 - - - RDKit mol.desc. -

Neural Network [15] - 0.45 0.68 0.88 0.48 0.54 0.62 CDDD -

Extreme GB [27] 0.742 0.650 0.600 0.883 0.485 0.602 0.912 CDDD SMOTE

The table presents the results obtained for each of the chemical notations
under evaluation. Two different tokenizers were tested for each notation, and the
results are provided for both augmented and non-augmented datasets. Based on
these results, various comparisons between the methods were conducted. Specif-
ically, our aim was to first determine which method achieved the highest per-
formance overall in the holdout test set. Secondly, we specifically focused on
comparing the different notations, tokenizer methods, and/or data augmentation
approaches. The purpose of these comparisons is to explore how these various
approaches can affect the models’ performance.

The metrics we prioritized for comparison were primarily the F1-Score, MCC,
and Balanced Accuracy, considering the unbalanced nature of the dataset. Based
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on these metrics, the model named SELFIES atomwise emerged as the top
performer overall, outperforming the others in two out of three prioritized metrics
achieving the values for Balanced Accuracy of 0.775, an MCC of 0.575, an F1-
Score of 0.664, and a considerable precision value of 0.707. However, further
consideration must be given, since the sensitivity metric for this specific model
is not optimal. Indeed, it is common practice in toxicology field to consider the
model’s capability to recognize the positive compounds more important than
recognize the non-active ones. Although precision has a very good value for this
model, it’s possible that is not the best to identify the positive compounds and
then we thought to highlight also the model called AUG SMILES atomwise as
a promising candidate as the best model overall. The AUG SMILES atomwise
model utilizes SMILES as input for the network and employs the atomwise
segmentation method for tokenization. Also, the dataset was extended using
the data-augmentation techniques. This model achieved a Balanced Accuracy of
0.810, an MCC of 0.550, and an F1-Score of 0.657, and a considerable sensitivity
value of 0.802.

Since the aim of our work was to explore different chemical notations and
tokenizers to find the most suitable for NLP methodologies to predict a specific
toxicological endpoint, we didn’t define a priori which model behavior would
be preferred (e.g. high precision or high specificity). For this reason, we are
searching for the most robust and general model without considering the final
aims of our approaches in detail. The prediction model’s capability was evaluated
by focusing mainly on the performance of the holdout test set rather than the
validation set, as the latter is considered during the training process to adjust
the learning rate.

Remarkably is the general comparison between the two different tokeniz-
ers. The atomwise tokenizer reaches higher performance in each of the chemical
notations explored. These findings indicate that breaking down any chemical
notations into single characters and using them as tokens in NLP could enhance
the model’s performance and generalization capabilities in prediction compared
to the segmentation provided by the kmer tokenization.

To facilitate a better comparison of the diverse methods used to tokenize the
chemical notations, a bar plot is provided in Fig. 3.

In almost all metrics, atomwise tokenization performs slightly better across
almost all chemical notations, except for SMILES. One of the main reasons could
be related to the fact that the kmer tokenizer increases the vocabulary size sig-
nificantly given the available data in compared to atomwise tokenizer. Indeed,
with atomwise tokenization, we obtained a vocabulary of about 40 to 50 ele-
ments depending on the chemical notation, while for the kmer tokenizer, the
vocabulary dimensions are between 4000 and 5000. Models with larger vocabu-
laries must overcome some challenges. For instance, larger vocabulary of course
may contribute to improved generalization by enabling the model to capture a
more diverse pattern, however, there’s a potential downside where the dataset is
limited. Indeed the model might inadvertently memorize rare or irrelevant pat-
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Fig. 3. Comparison of the NLP model results across different metrics. The images
depict the model performance for all chemical notations and tokenizer methods, high-
lighting the effect of data augmentation. Models trained on the original dataset with
atomwise tokenizer are shown in green. Models trained on the original dataset with
kmer tokenizer are shown in yellow. Models trained on the augmented dataset with
atomwise tokenizer are shown in lilac. Models trained on the augmented dataset with
kmer tokenizer are shown in orange. (Color figure online)

terns present in the expanded vocabulary and this could compromise its ability
to perform well on unseen data, thus undermining its generalization capabilities.

Regarding the performance improvement due to data augmentation methods,
it seems to have a significant impact only on the SMILES notation. There was
a F1-score increase of 2.3% for the atomwise tokenizer and 9.3% for the kmer.
The comparison between model performance trained on the original dataset or
the augmented ones is also reported in Fig. 3.

Notably, only the NLP models using SMILES notation as input achieved
an overall performance improvement with both tokenization methods employed,
while SELFIES and DeepSMILES did not show any clear improvement after
augmentation. Several factors can explain these results, starting with the fact
that the data augmentation approach used in this study was specifically designed
for SMILES and not for other chemical notations. SELFIES and DeepSMILES
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are more robust and less ambiguous compared to SMILES, but these character-
istics, which are generally very useful for ML, might be limiting when the aim
is to apply data augmentation to string-based chemical notations. Since aug-
mentation involves rewriting the same chemicals in various ways, a less robust
notation like SMILES could be more suitable for this purpose.

4 Conclusion

The use of in silico approaches in New Approach Methodologies-assisted toxicol-
ogy, such as AI and ML models, to predict hazards is progressing fast, with the
potential to transform the toxicology field by providing a greater understanding
of the mechanisms underlying chemical toxicity and permitting the development
of safer and more sustainable products.

In this work, we developed NLP models to assess the potential mitochondrial
toxicity effects of chemicals belonging to different classes such as pesticides,
drugs, and industrializers. We selected precise well-defined endpoints that is
fundamental in the regulatory perspective, as mentioned in OECD Environment
Health and Safety Publications, Series on Testing and Assessment No. 69, Paris
2007 [2]. With our models, we evaluated the potential hazard of chemicals for
increased mitochondrial dysfunction, and we carried out different experiments
to build advanced and high-performance AI networks.

This work is a step ahead of what has already been done with ML and AI to
predict mitochondrial toxicity effects. Considering the results obtained by other
studies [27], we focused our efforts on developing NLP models since they are
the most promising. We explored different chemical notations such as SMILES,
SELFIES, and DeepSMILES, and different tokenization considering atomwise or
kmer tokenizers. Also we applied methodologies for data augmentation and we
tried to overcome the problem of unbalanced datasets using different approaches
during network training. Our efforts led us to consider the SELFIES represen-
tation with atomwise tokenization as the most robust chemical notation for
performing NLP methodologies to predict mitochondrial dysfunction with the
currently available high-throughput data. These methods offer great promise
since they can learn from various chemical notations and further enhance their
ability to predict potential toxicity without incurring high computational costs.

One of the limitations of these methodologies is linked to the fact that increas-
ing the complexity of models often sacrifices model transparency. The challenge,
therefore, lies in crafting models where each layer of complexity serves a purpose,
rendering them both powerful and comprehensible. The ‘black box’ aspect asso-
ciated with advanced AI methods leads the final user to prefer more transpar-
ent approaches, potentially sacrificing predictive capacity and performance. The
need to increase the transparency of these approaches is often recognized, and
indeed, a stronger emphasis on the model’s explainability is considered crucial.
Various methods, including SHAP and LIME [3,18,29], appear to be promising
solutions as well as integrating a self-attention mechanism into the network [26]
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with the goal of exploring the reasoning behind the models’ assessments and pro-
viding a chemical or toxicological explanation. In the future, we hope to explore
the model’s interpretability and explainability in different aspects.
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Abstract. Uncertainty quantification is emerging as a critical tool in
high-stakes decision-making processes, where trust in automated pre-
dictions that lack accuracy and precision can be time-consuming and
costly. In drug discovery, such high-stakes decisions are based on mod-
eling the properties of potential drug compounds on biological assays.
So far, existing uncertainty quantification methods have primarily been
evaluated using public datasets that lack the temporal context necessary
to understand their performance over time. In this work, we address the
pressing need for a comprehensive, large-scale temporal evaluation of
uncertainty quantification methodologies in the context of assay-based
molecular property prediction. Our novel framework benchmarks three
ensemble-based approaches to uncertainty quantification and explores
the effect of adding lower-quality data during training in the form of
censored labels. We investigate the robustness of the predictive perfor-
mance and the calibration and reliability of predictive uncertainty by
the models as time evolves. Moreover, we explore how the predictive
uncertainty behaves in response to varying degrees of distribution shift.
By doing so, our analysis not only advances the field but also provides
practical implications for real-world pharmaceutical applications.
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of humans in the models [2]. The effects are particularly important in high-
stakes decision-making processes that rely on machine learning as they allow
users to judge results based on the predicted uncertainty quantification before
basing critical decisions on the results [11]. Drug discovery is a complex field
of research where experiments are time-consuming, expensive, and high-risk,
therefore wrong decisions regarding which experiments to make can be highly
wasteful [29]. Additionally, the early stages of drug discovery rely on modeling
the complex chemical space where data availability is typically limited, another
effect of the time-consuming and costly experiments needed to generate data.
As such, there is a continuously increasing need to develop application-specific
uncertainty quantification methods in molecular property prediction and mod-
eling of quantitative structure-activity relationships (QSAR) [15].

Approaches that quantify uncertainty in machine learning for regression
tasks can be classified into Bayesian learning [7], ensemble-based [12,25,36,38],
distance-based [4,40], mean-variance-estimation [6,8,31], evidential learning [1],
etc. Several recent efforts have been made to compare and benchmark the avail-
able methods on publicly available datasets related to molecular property pre-
diction or QSAR modeling [10,16,18,23,42,47]. However, no consensus has been
reached regarding a single method that consistently outperforms the other meth-
ods across evaluation metrics and tasks [48]. Hirschfeld et al. [18] stress the need
for a more realistic evaluation, such as a temporal data split, to gain insights into
the real implications and nuances between the approaches. Additionally, Yin et
al. [47] point out that public benchmarks do not allow proper temporal eval-
uation as they lack relevant information and sufficient replications for reliable
statistics.

Prior work that uses temporal evaluation on public data for molecular prop-
erty prediction can be misleading [27]. The reason is that the available informa-
tion regarding the time of data points in public data does not relate to the real
evolution of experiments in a pharmaceutical company, which is what makes a
temporal evaluation truly useful in real drug discovery. Earlier work on inter-
nal pharmaceutical assay-based data from Merck compares a temporal splitting
strategy with random and structure-based splitting strategies [39]. Sheridan [39]
concludes that the temporal option best approximates the true predictive per-
formance, but they do not explore uncertainty quantification.

Uncertainty quantification can be disentangled to detail the underlying
sources behind the uncertainty, which gives a more comprehensive understand-
ing of the factors that contribute to the total predictive uncertainty. In machine
learning, the two main sources of uncertainty can be derived from are the
aleatoric and the epistemic parts [2,20,22]. Aleatoric uncertainty is the inherent
stochastic variability in experiments, also considered irreducible as it cannot be
reduced with additional data or changes to the model. Epistemic uncertainty
includes all remaining sources, such as lack of knowledge and model limitations.
The epistemic uncertainty can be reduced with additional data or changes to the
model, but understanding which adjustments are needed requires further dissec-
tion of the predicted uncertainty [13]. Awareness of the aleatoric uncertainty in
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molecular property prediction can lead to better risk management by recogniz-
ing and quantifying the unpredictable nature of certain properties or parts of
the chemical space [46]. Quantified epistemic uncertainty, on the other hand, can
be used during drug discovery to guide the search through the chemical space
by redirecting data collection [16]. If the parts of the epistemic uncertainty that
relate to missing data or distribution shift can be effectively separated from the
remaining model uncertainty, it can also aid in developing the machine learning
model.

In this work, we provide a sought-after comparison of available methods for
uncertainty quantification in a temporal evaluation of assay-based QSAR mod-
eling for real pharmaceutical data. We focus the analysis on ensemble-based
approaches that quantify predictive uncertainty and attempt to further dis-
entangle the uncertainty between distributional uncertainty and model uncer-
tainty such that the results are most useful in guiding the real-world search for
new drugs. Additionally, we explore the effects of including lower-quality data
through censored labels during training.

2 Methods

Our analysis has been performed on data from ten internal biological assays dif-
ferentiated by the categories proposed by Heyndrickx et al. [17], namely Panel,
Other, and ADME assays. The Panel category includes cross-project assays
related to undesired off-target effects. The Other category includes on-target
activity from project-specific assays. The ten assays presented in this work belong
to these two categories. Larger assays of the ADME type, related to Absorption,
Distribution, Metabolism, and Excretion, are left for future work. The respec-
tive distributions of observed experimental labels for each assay are shown in
the bottom half of Fig. 1.

All but one of the assays model pIC50 values, while the Other 3 assay models
pEC50. Due to the infeasibility of performing an unlimited number of experi-
ments to find exact experimental results, such as pIC50 values, significant pro-
portions of the data are provided as censored labels. Censored labels define a
threshold below or above which the true results lie, e.g. the censored label < 3
pIC50 means that the true pIC50 value is below three. In some cases, the cen-
sored labels have been included in model training, as explained further in the
following section. However, note that the available censored labels are highly
imbalanced, as for all but two assays less than 1% of the censored labels are
lower bound, i.e. >. The Other 2 assay has just above 1% of > censored labels
and the Other 4 assay has 2%, while the < labels typically make up between
30–60% of each assay’s total number of results. There are two assays without
any censored labels, namely Other 5 and 7. Data points that are not censored
are called observed labels in the remainder of this work.

Duplicated measurements for molecular compounds in the data are aggre-
gated using the median of the result and the standard deviation is stored for
later reference. Each molecular compound is then encoded with RDKit [26]
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Fig. 1. Five-fold temporal split. (Upper left) Five folds and how they are used to
create three temporal settings, each with more training data. For each setting, the first
subsequent fold is used for validation and calibration, and the second subsequent fold is
used for testing. (Upper right) Training data size for each assay and temporal setting,
with and without including available censored labels. (Lower) Distribution of observed
labels across the temporal folds for two example assays, one from each category.

from SMILES strings [43] to Morgan Fingerprints [30] of size 1024 and radius 2.
Other. More advanced ways to encode molecular compounds exist, such as the
graph-based ChemProp model [46] and the pre-trained language-based CDDD
model [44]. Models based on the resulting embeddings from these neural network
encoders have been compared and shown improvements in prior work [10,18,27].
Specifically, Dutschmanm et al. [10] showed that fingerprints perform best in
combination with RF and are close second to CDDD in combination with neural
networks. While the fingerprint representations are used in our study for sim-
plicity, we encourage considering state-of-the-art, learned representations before
deploying the proposed methods in practical applications.

Temporal Split. The main contribution of our work relates to evaluating the
uncertainty quantification of molecular property prediction in a temporal evolv-
ing setting. As such, we simulate realistic assay-based modeling of pharmaceuti-
cal projects by splitting the data of each assay into five folds based on the date
of the experiment. Where duplicated measurements were aggregated, the first
experiment date of all measurements was used. The upper left panel in Fig. 1
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illustrates the folds and resulting three settings that can be used to evaluate
trained models as time evolves. The time intervals are chosen to create roughly
equally sized folds regarding the number of observed labels. The resulting sizes
of training sets for each assay are shown in the top right panel of Fig. 1. The
solid lines show only observed results while the dashed lines include the censored
labels. Note that the size of the setting with one train fold also corresponds to
the size of the validation and test sets respectively, as individual, subsequent
folds are used for these.

As previously mentioned, the lower part of Fig. 1 illustrates the distribution
of observed labels in each fold of every assay. Note particularly, the shift in dis-
tributions between folds in the Other assays compared to the highly similar label
distributions over time in the Panel assays. The assays are ordered according to
the overall dataset size throughout this work.

2.1 Ensemble-Based Modeling

We compare three ensemble-based approaches for regression QSAR modeling
of several internal biological assays. As such, we consider each assay t as an
individual single-task dataset Dt := {(xn, yn

t )}Nn=1 of molecular compounds rep-
resented by a one-dimensional numerical embeddings xn ∈ R

e and continuous
activity labels yn

t ∈ R. An ensemble is defined as a set of K base estimators
ŷn
t = f(xn). We consider two base estimators, a decision tree regressor and a

multi-layer perceptron (MLP), i.e. fully connected deep neural network. We take
the average of the individual base estimators’ predictions as the final prediction
by the ensemble μt and define the variance of the predictions as an estimate of
the predictive uncertainty σ2

t , as follows

μt(xn) =
1
K

K∑

k=1

fk(xn), σ2
t (x

n) =
1
K

K∑

k=1

(fk(xn))2 − (μt(xn))2. (1)

The ensemble of decision tree regressors results in a Random Forest (RF) model
[38] while we use the MLP base estimator to create a Deep Ensemble (DE)
as proposed by Lakshminarayanan et al. [25] and an MC-Dropout model as
proposed by Gal & Ghahramani [12]. Prior work has compared similar methods
for variability in QSAR modeling [41]. The DE combines base 50 MLPs trained
from different weight initialization whereas the MC model generates 500 samples
from a single trained base MLP with dropout turned on during inference.

In a Bayesian framework, the uncertainty in model parameters ω results in
the predictive uncertainty of the model p(yn

t |xn, ω). The true posterior distri-
bution of model parameters for a given dataset can be described as p(ω|Dt),
such that the predictive uncertainty of the Bayesian model average is defined
by p(yn

t |xn,Dt) =
∫
Ω

p(yn
t |xn, ω̃)p(ω̃|Dt)dω̃ [11,20]. As shown by both Lakshmi-

narayanan et al. [25] and Gal & Ghahramani [11], the variance in ensemble pre-
dictions provides an approximation of the epistemic part of this true posterior
distribution. Figure 2 gives an overview of the three ensemble-based methods
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considered in our work. The remainder of this section gives details about the
training procedures used in the evaluation of the three methods.

Training Details. The Random Forest is implemented using scikit-learn [34]
and the two neural network-based models are trained with PyTorch [32]. All
models are initially trained with a Mean Squared Error (MSE) loss only on
data points with observed labels. However, in addition, we include versions of
the neural network-based models for which censored labels are also included in
the training data. We denote these models as DE+ and MC+ in the result.
Note that these extended models are not provided for the Other 5 and 7 assays,
which do not include censored labels. Training these extended models requires
adjustments to the loss function, as censored labels only give a one-sided view
of the true result. We adopt the CensoredMSE defined by Arany et al. [3] with
a one-sided squared error applied for the censored labels as follows

L(xn, yn
t ) =

1
N

N∑

n=1

⎧
⎪⎨

⎪⎩

min (yn
t − μt(xn), 0)2 , if censored label < yn

t ,

(yn
t − μt(xn))2, if observed label yn

t ,

max (yn
t − μt(xn), 0)2 , if censored label > yn

t .

(2)

To compare the models trained on censored labels fairly against the ones trained
only on observed labels we only include the censored labels in the training sets.
Thus, the validation and test sets are identical between the models. We believe
this could hinder the censored models somewhat, especially due to the imbalance
between lower and upper-bound labels.

We optimize the hyperparameters for each base estimator detailed in Table 1
of the Appendix for each assay and each temporal setting individually using a
grid search based on the validation MSE loss. It would not be computationally
feasible to optimize the DE model in terms of any score that incorporates the
calibration of uncertainty estimates due to the large number of models that
would need to be trained. Therefore, we do not consider this option for any of
the models to ensure a fair comparison. However, such optimization schemes
should be considered for practical applications.

Evaluation. While the MSE loss is used to evaluate the performance of the pre-
dictions made by the models, other metrics are required to evaluate the accuracy
and calibration of the predicted uncertainties. We consider two types of ways to
evaluate predicted uncertainty, ones that evaluate only the accuracy or calibra-
tion of the uncertainty and ones that evaluate predictive performance intertwined
with how well-calibrated the predicted uncertainty is. A detailed way to evaluate
the predicted uncertainties by themselves is by comparing the confidence-based
calibration curve to the identity function which corresponds to perfect calibration
[16,19,42,45]. The confidence-based calibration curve is obtained by computing
the z% confidence interval (CI) for every predicted uncertainty in the test set.
Next, the observed fraction of errors within each CI is calculated for several
expected fractions between 0 and 1.
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Fig. 2. Ensemble-based models. Three approaches to ensemble-based modeling
including uncertainty quantification.

Furthermore, the Gaussian Negative Log Likelihood (NLL) [49] and the
Expected Normalized Calibration Error (ENCE) [28] are two global metrics that
evaluate the intertwined predictive performance and calibration of uncertainties.
The Gaussian NLL is defined as,

NLL =
1

2N

N∑

n=1

(
ln(2π) + ln(σ2

t (x
n)) +

(yn
t − μt(xn))2

σ2
t (xn)

)
. (3)

The ENCE metric is derived from the error-based calibration plot proposed by
Levi et al. [28] which is made from a binned representation of the Root MSE and
the Root Mean Variance (RMV), i.e. predicted uncertainty. Computationally, the
errors and corresponding predicted uncertainties are ordered based on increasing
predicted uncertainty and split into a set B of bins. For each bin b of size |b| the
RMSE and RMV are calculated as,

RMSEb =

√
1
|b|

∑

i∈b

(yi
t − μt(xi))2, RMVb =

√
1
|b|

∑

i∈b

σ2
t (xi). (4)

Finally, the bins are summarized to give the ENCE metric as follows,

ENCE =
1

|B|
∑

b∈B

|RMSEb − RMVb|
RMVb

. (5)

Several additional metrics have been proposed and used to evaluate uncer-
tainty estimates in drug discovery applications, such as Spearman’s Rank Cor-
relation Coefficient between predicted uncertainties and corresponding errors
[10,18,42,47]. However, this score has been criticized due to the stochasticity
and unreliability of the result [35]. Statistically, a data point with high pre-
dicted uncertainty can still result in a prediction with low error and vice versa.
Therefore, we discard the metric from our analysis.

Recalibration. Several post hoc alternatives have been proposed to recalibrate
predicted uncertainties by ensemble-based models [21,28,35], as the original esti-
mates have been found to underestimate the epistemic uncertainty [9,37]. Janet
et al. [21] recalibrate the uncertainty estimates based on a maximum-likelihood
estimation strategy on the NLL, while Levi et al. [28] propose a re-scaling of
the predicted uncertainty based on the NLL similar to temperature scaling [14].
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Fig. 3. Error-based recalibration. Linear recalibration of uncertainty estimates
based on the validation set.

Most recently, Rasmussen et al. [35] instead proposed to recalibrate the pre-
dicted uncertainty using the fit of the RMSE versus RMV curve described above
as the error-based calibration plot. The latter is the strategy that we adopt in
this work and Fig. 3 illustrates an example of a recalibration on the validation
set of one of our datasets. A linear regression is fitted to the binned RMSE versus
RMV results on the validation set, resulting in parameters aval for the slope and
bval for the intercept. During inference the predicted standard deviation is then
shifted according to σcal = aval · σ + bval.

3 Experiments

In the experimental setup, we first analyze and compare the performance of
the models averaged over ten repeated experiments on all assays and temporal
settings. The global evaluation scores are shown in Fig. 4 and the confidence-
based calibration curves are shown in Fig. 5. We then provide a more in-depth
case study of the predictions by one of the best-performing models on the Other 6
assay, which exhibits a particularly challenging distribution shift in terms of both
the feature and label space. Here, we illustrate how the predicted uncertainties
relate to the distribution shift in the feature space and suggest how the model’s
predictions could have practical implications for future decisions in the given
drug discovery project.

Model Comparison. Figure 4 presents an overview of the MSE and recali-
brated NLL and ENCE scores. Note that the recalibration step only affects the
predicted uncertainties and therefore does not affect the MSE. In the figure, the
models can be compared in several ways: 1) as the training set size increases
over time for each assay with increasing #Train folds, 2) as the overall size of
the assay increases, going from smallest assays in the left-most columns to larger
assays in the right-most columns, 3) in terms of the varying amounts of label
shifts between the Panel and Other assays, or 4) in terms of the different metrics.

The first observable trend is that predictive performance is higher for the
Panel assays compared to the Other assays. This is not surprising given the
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Fig. 4. Benchmarking overview. Results for each assay and temporal setting aver-
aged over ten repeated experiments. DE+ and MC+ are trained with censored labels
as supplementary lower-quality data. However, these models do not apply to Other 5
and 7 as they do not include censored labels.

constant distribution over time as illustrated in Fig. 1. A similar trend can be
observed in the NLL but not in terms of ENCE. As the Gaussian NLL includes
the squared error term, a likely conclusion is that distribution shifts do not
generally hurt the calibration of uncertainty estimates. This conclusion is also
reasonable as the predictive uncertainty from ensemble-based approaches model
specifically the epistemic uncertainty which should cover distribution shifts. In
general, the ranking of the methods from the MSE scores are often the same in
the NLL while they can vary in terms of the ENCE. For example, for the Other
1 assay the DE is always among the best models for all three temporal settings
in terms of the MSE and NLL scores, while in terms of the ENCE score, it is
outperformed by the RF model in the first two temporal settings.

For the most part, the performances of the two MLP-based models are usually
indistinguishable from each other for the cases trained with and without censored
data respectively. On the contrary, there are no general trends regarding whether
the RF model or the MLP-based models are best. This changes depending on
the assay, metric, and even temporal setting. However, the versions of the neural
network-based models trained with supplementary censored labels, DE+ and
MC+, do not generally improve the predictive performance or the calibration
of uncertainty estimates over their respective base versions. Only one instance
occurs where the DE+ is better than the DE model and all other models for
all three scores, namely the Other 2 model trained on 2 folds. However, as this
result is not consistent across the other two temporal settings of the assay, it is
more likely the result of statistical variability. The non-competitive results with
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Fig. 5. Confidence-based calibration over time. Discrete visualization of the
observed fraction of results for each expected confidence interval based on the pre-
dicted uncertainty. The black, solid lines illustrate perfect calibration.

the censored models require further analysis, but we believe it could be due to
the uneven nature of the censored labels available. As described in Sect. 2, the
vast majority of the censored labels are upper bound (<). Given that all models
are evaluated only on observed labels for a fair comparison, the imbalance in the
censored labels may shift the models’ understanding of the label distributions.

In light of the overall poor performance of the models trained with censored
data, we have omitted these models from the confidence-based calibration curves
presented in Fig. 5. The curves are shown for each assay and temporal setting
with error bands illustrating the confidence from the ten repeated experiments.
A majority of calibration curves are not far away from being perfectly cali-
brated. This indicates that most models produce useful uncertainty estimates.
The possibility of such intuitive interpretations of the calibration curves is not
as easily derived from the scores presented in Fig. 4. The reason for this is that
the ENCE score is unbounded, such that it can be hard to determine whether
achieved scores are useful or not. For the calibration curves in Fig. 4 it is clear
that they are significantly closer to being perfectly calibrated than to the extreme
cases of completely over- or under-calibration. On the other hand, it is harder
to compare the models and temporal settings in terms of the calibration curves,
as many of the curves are indistinguishable. However, in practical applications
where perhaps a particular confidence is of interest, a closer evaluation of the
calibration curves can be crucial to distinguish between the models.

Case Study. Finally, we provide a practical case study of one of the Other
assays, Other 6, which exhibits a particularly challenging evolution of the data
throughout time. Our case study aims to test the top-performing model from
the model comparison above in this demanding setting to determine in detail
how well the predictive uncertainties perform, and how individual predictions
can be used in practice to impact future decisions of the drug discovery project.
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Fig. 6. Practical temporal evaluation. A t-SNE projection of the Other 6 assay,
colored by temporal fold. The left panel illustrates the full dataset, where a distribution
shift can be seen throughout time. The remaining panels in the right column, show
individual test sets with predicted uncertainty by the RF model presented as the size
of data points.

The leftmost part of Fig. 6 illustrates the feature space of the compounds
tested on the assay decomposed to two t-SNE projections and colored by the five
temporal folds. A clear distribution shift in the feature space can be observed in
the t-SNE projection where the second fold tends more toward the bottom right
corner of the feature space and the last two folds shift drastically to the left side
of the plot. Similarly, highly varying label distributions were seen between the
same folds in the lower part of Fig. 1 in Sect. 2. Also, the label distribution does
not shift continuously over time, but instead first shifts greatly toward higher
pIC50 values in the second fold and then back toward more extreme lower values
by the last two folds. In the remaining three plots to the right in Fig. 6, the t-
SNE projections of each test set, i.e. folds 3, 4, and 5, are repeated separately.
Here, the size of the data points is determined by the recalibrated predicted
uncertainty of the RF model trained on the three temporal settings respectively,
i.e. with an increasing number of training folds. The RF model is chosen for
this analysis due to being best-performing on the Other 6 assay in terms of the
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ENCE score. Note that the legends of these plots detail the respective minimum
and maximum predicted uncertainties on the given test set.

We observe that the model trained on the least amount of data namely on
only the first fold and tested on fold 3, seen in the top panel of the right column
in Fig. 6, indicates overall high uncertainty for most test compounds. A likely
explanation is that the amount of training data was insufficient for the model
to learn from, meaning that it overfitted and could not generalize well to the
test compounds. The described scenario is also corroborated by the relatively
poor MSE score seen for RF trained on one fold of assay Other 6 in Fig. 4
compared to the same model trained on two and three folds respectively. For
the models trained on two and three folds, the span of predicted uncertainties
is notably much smaller, 0.11 and 0.13, compared to the first model, 0.51. As
a result, we can observe more distinct patterns in the predicted uncertainty
between different regions of the feature space. The regions with high uncertainty
predicted by the model trained on two folds seem uncorrelated with proximity
to training data. However, when the third and final training fold is included, it
is clear that the clusters with the highest predicted uncertainty are also located
furthest away from the training data. The same trend is reflected in the ENCE
scores presented in Fig. 4 where the calibration error of the model trained on
two folds is significantly worse than the one achieved by the model trained on
three folds.

Given the distribution shift present in the feature space, and that the
ensemble-based model’s predicted uncertainty accounts for epistemic uncer-
tainty, it follows our expectation that the distribution shift should be reflected
in the estimated uncertainty. As such, our analysis provides empirical evidence
to support this claim, but it also illustrates that the uncertainty estimates cover
additional sources of uncertainty related to the model itself such as overfitting.
It is important to understand all sources of uncertainty when basing future high-
stakes decisions on them, such as in drug discovery. Considering the identified
cases in this case study, we provide practical suggestions on how the identi-
fied sources can impact the continued drug discovery process. If overfitting is
determined, such as through overall high uncertainty estimates and low perfor-
mance seen in the model train on one fold, the modeling requires overall more
data before deployment. Another alternative would be to reconsider the choice
of model, but our temporal split shows that the RF continues to be the best
choice in the future when more data is included. When distribution shifts are
instead identified, such as seen later in the given project for the model trained
on three folds, more data exploration is needed in the chemical spaces where the
uncertainty estimates are high before deployment.

Further research is necessary to disentangle the sources of epistemic uncer-
tainty between distribution shifts and other model-related sources, such that
more reliable measurements of these situations can be obtained. One alterna-
tive approach would be to quantify the distribution shift using other means,
either with distance-based approaches, such as the average Tanimoto similarity
[40] between an inference compound and compounds in the training set, or the
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interpretable method proposed by Kulinski and Inouye [24]. Additionally, more
advanced pre-training procedures can be used, that are trained to incorporate
distribution shift more effectively [5]. After the distribution shift has been inde-
pendently quantified, the predicted epistemic uncertainty could be re-evaluated
such that the remaining model uncertainty is disentangled from this information.

4 Conclusions

In this comparison between three ensemble-based uncertainty quantification
approaches evaluated temporally on data from multiple biological assays, we
have shown varying results between the assays emphasizing the impact of indi-
vidual assay characteristics on predictive outcomes. No single model was consis-
tently best across evaluation metrics or assays, but some conclusions could be
drawn for particular assays. Specifically, we analyzed the results in light of the
varying presence of shifts in label distributions and feature space distributions
in the assays over time. While doing so we found that predictive performance
and calibration of uncertainty can be robust and reliable for assays without
distribution shifts and that the method can be used to identify data points out-
side of the training distribution when distribution shifts are present. As such,
we give insights and provide practical advice on how uncertainty estimates by
ensemble-based models can be used to impact future decision-making in high-
stakes situations such as drug discovery. Incorporating lower-quality data in the
form of censored labels did not yield improvements in the predictive performance
of the models. Suggestions were given as to why this could be the case, such as
the uneven nature of the censored labels and the evaluation strategy. Future
work can explore other ways to include the censored labels or extend the anal-
ysis to other modeling approaches that allow censored labels, such as Censored
Quantile Regression [33]. Overall, this study has gained valuable insights into
how distribution shift affects uncertainty quantification in assay-based QSAR
modeling, which can impact real-world pharmaceutical drug discovery.
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Appendix

Table 1 presents the hyperparameters explored in the model selection for the RF
model and the base MLP used for both the DE and MC models. A grid search
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was used to find the optimal hyperparameters for every assay and temporal
setting based on the validation MSE loss. Additionally, the MLPs were trained
using the Adam optimizer with a weight decay of 0.0005, the learning rate was
reduced when plateauing with a patience of 50 epochs, and a batch size of 64
was used.

Table 1. Model selection. Considered hyperparameter space for model selection of
RF and base MLP during grid search based on validation MSE loss.

Base Model Hyperparameter Explored space

RF n estimators {50, 100, 250, 500, 1000}
min samples leaf {2, 10, 0.25, 0.5, 0.75}
min samples split {1, 25, 50, 100, 250, 500}

MLP Learning rate {0.00005, 0.0001, 0.0005, 0.001}
Scheduler Factor {0.1, 0.5}
Number of hidden layers {2, 3, 4}
Hidden dimension {64, 128, 256, 512}
Decreasing dimension {False, True}
Dropout {0, 0.25, 0.5, 0.75}
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20. Hüllermeier, E., Waegeman, W.: Aleatoric and epistemic uncertainty in machine
learning: an introduction to concepts and methods. Mach. Learn. 110, 457–506
(2021)

21. Janet, J.P., Duan, C., Yang, T., Nandy, A., Kulik, H.J.: A quantitative uncer-
tainty metric controls error in neural network-driven chemical discovery. Chem.
Sci. 10(34), 7913–7922 (2019)

22. Kendall, A., Gal, Y.: What uncertainties do we need in bayesian deep learning for
computer vision? In: Advances in Neural Information Processing Systems, vol. 30.
Curran Associates, Inc. (2017)

23. Kim, Q., Ko, J.H., Kim, S., Park, N., Jhe, W.: Bayesian neural network with
pretrained protein embedding enhances prediction accuracy of drug-protein inter-
action. Bioinformatics 37(20), 3428–3435 (2021)

24. Kulinski, S., Inouye, D.I.: Towards explaining distribution shifts. In: International
Conference on Machine Learning, pp. 17931–17952. PMLR (2023)

25. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive
uncertainty estimation using deep ensembles. In: Advances in Neural Information
Processing Systems, vol. 30. Curran Associates, Inc. (2017)

http://arxiv.org/abs/2305.16703


Temporal Evaluation of Uncertainty Quantification 147

26. Landrum, G.: RDKit: Open-Source Cheminformatics (2006). https://doi.org/10.
5281/zenodo.6961488, http://www.rdkit.org

27. Lenselink, E.B., et al.: Beyond the hype: deep neural networks outperform estab-
lished methods using a ChEMBL bioactivity benchmark set. J. Cheminf. 9(1),
1–14 (2017)

28. Levi, D., Gispan, L., Giladi, N., Fetaya, E.: Evaluating and calibrating uncertainty
prediction in regression tasks. Sensors 22(15), 5540 (2022)

29. Mervin, L.H., Johansson, S., Semenova, E., Giblin, K.A., Engkvist, O.: Uncertainty
quantification in drug design. Drug Discovery Today 26(2), 474–489 (2021)

30. Morgan, H.L.: The generation of a unique machine description for chemical struc-
tures - a technique developed at chemical abstracts service. J. Chem. Doc. 5(2),
107–113 (1965)

31. Nix, D.A., Weigend, A.S.: Estimating the mean and variance of the target probabil-
ity distribution. In: Proceedings of 1994 IEEE International Conference on Neural
Networks (ICNN’94), vol. 1, pp. 55–60. IEEE (1994)

32. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems, vol. 32. Curran
Associates, Inc. (2019)

33. Pearce, T., Jeong, J.H., Jia, Y., Zhu, J.: Censored quantile regression neural net-
works for distribution-free survival analysis. In: Advances in Neural Information
Processing Systems, vol. 35, pp. 7450–7461. Curran Associates, Inc. (2022)

34. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

35. Rasmussen, M.H., Duan, C., Kulik, H.J., Jensen, J.H.: Uncertain of uncertainties? a
comparison of uncertainty quantification metrics for chemical data sets. J. Cheminf.
15(1), 121 (2023)

36. Scalia, G., Grambow, C.A., Pernici, B., Li, Y.P., Green, W.H.: Evaluating scal-
able uncertainty estimation methods for deep learning-based molecular property
prediction. J. Chem. Inf. Model. 60(6), 2697–2717 (2020)

37. Schweighofer, K., Aichberger, L., Ielanskyi, M., Klambauer, G., Hochreiter, S.:
Quantification of Uncertainty with Adversarial Models. In: Advances in Neural
Information Processing Systems, vol. 36. Curran Associates, Inc. (2023)

38. Sheridan, R.P.: Three useful dimensions for domain applicability in QSAR models
using random forest. J. Chem. Inf. Model. 52(3), 814–823 (2012)

39. Sheridan, R.P.: Time-split cross-validation as a method for estimating the goodness
of prospective prediction. J. Chem. Inf. Model. 53(4), 783–790 (2013)

40. Sheridan, R.P., Feuston, B.P., Maiorov, V.N., Kearsley, S.K.: Similarity to
molecules in the training set is a good discriminator for prediction accuracy in
QSAR. J. Chem. Inf. Comput. Sci. 44(6), 1912–1928 (2004)

41. Tetko, I.V., et al.: Critical Assessment of QSAR Models of Environmental Toxicity
Against Tetrahymena Pyriformis: Focusing on Applicability Domain and Overfit-
ting by Variable Selection. J. Chem. Inf. Model. 48(9), 1733–1746 (2008)

42. Wang, D., et al.: A hybrid framework for improving uncertainty quantification in
deep learning-based QSAR regression modeling. J. Cheminf. 13(1), 1–17 (2021)

43. Weininger, D.: SMILES, a Chemical Language and Information System. 1. Intro-
duction to Methodology and Encoding Rules. J. Chem. Inf. Comput. Sci. 28(1),
31–36 (1988)
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Abstract. In drug discovery, prioritizing compounds for testing is an
important task. Active learning can assist in this endeavor by priori-
tizing molecules for label acquisition based on their estimated potential
to enhance in-silico models. However, in specialized cases like toxicity
modeling, limited dataset sizes can hinder effective training of modern
neural networks for representation learning and to perform active learn-
ing. In this study, we leverage a transformer-based BERT model pre-
trained on millions of SMILES to perform active learning. Additionally,
we explore different acquisition functions to assess their compatibility
with pretrained BERT model. Our results demonstrate that pretrained
models enhance active learning outcomes. Furthermore, we observe that
active learning selects a higher proportion of positive compounds com-
pared to random acquisition functions, an important advantage, espe-
cially in dealing with imbalanced toxicity datasets. Through a compar-
ative analysis, we find that both BALD and EPIG acquisition functions
outperform random acquisition, with EPIG exhibiting slightly superior
performance over BALD. In summary, our study highlights the effective-
ness of active learning in conjunction with pretrained models to tackle
the problem of data scarcity.

Keywords: Drug Discovery · Active learning · Bayesian · BERT

1 Introduction and Background

Drug design is a complex process, with costs exceeding $4 billion and a decade
of development time required to bring a new drug to market (Schlander et al.,
2021). Despite this investment, a vast majority of drugs never make it to clinical
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trials and of those drugs that do enter clinical trials a staggering 90% of drugs fail
(Sun et al., 2022), with 50% of failures attributed to unexpected human toxicity
(Van Norman, 2019). Traditional toxicological studies rely on animal models
at the preclinical stage, yet these models face limitations in reliability, time,
and ethical concerns, with their translational relevance to humans remaining
uncertain (Raies and Bajic, 2016).

The adoption of the 3R principles (Replace, Reduce, Refine) to curtail ani-
mal testing has catalyzed the development of in vitro methods for toxicological
assessment of new compounds (Choudhuri et al., 2018). In the early phases
of drug discovery, multiple cytotoxicity assays measure the impact of chemi-
cal compounds on cellular structure and function, providing early indications of
potential tissue and organ toxicity (Ballantyne, 2006; Tabernilla et al., 2021).

Well-designed in vitro experiments can reduce the reliance on animal testing.
An experiment is a systematic procedure aimed at collecting scientific data to
test hypotheses or generate new ones. Common experimental designs include
completely randomized experiments or randomized block testing (Festing, 2001).

In contexts such as high throughput screening (HTS) and toxicity assays,
where exhaustive search is infeasible due to the vast number of possible combi-
nations, efficient experimental design is paramount (Niedz and Evens, 2016). It’s
simply not feasible to test every drug against each target. Bayesian experimental
design (BeD) emerges as a powerful tool in this regard, reducing the required
number of experiments (Khan et al., 2023). BeD achieves this by providing hypo-
thetical experimental options based on the outcomes of previous ones, thereby
potentially curtailing costs and expediting the drug discovery process (Daly et
al., 2019; Bader et al., 2023).

In-silico methods are often used in conjunction with in-vitro studies to model
the behaviour of biological systems by leveraging available experimental data
(Merino-Casallo et al., 2018; Abd El Hafez et al., 2022). Bayesian methods
have been applied to select the optimal parameters of the in-vitro experiments
(Pauwels et al., 2014; Johnston et al., 2016), parameters estimation of mecha-
nistic models (Merino-Casallo et al., 2018; Demetriades et al., 2022), estimating
drug synergies (Cremaschi et al., 2019; Rønneberg et al., 2021), and computing
in-vitro dose response curves (Hennessey et al., 2010). It still remains unclear
which experiment to conduct next in order to obtain the most informative data
point for inclusion in the subsequent iteration of training, aimed at enhancing
the overall performance of these in-silico models. Addressing this challenge, we
borrowed Bayesian methods for experimental design from the computer vision
community and applied to model toxicity endpoints.
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Fig. 1. Mean average precision across 12 tasks of Tox21 dataset.Active learning with
pretrained BERT features outperforms models trained on ECFP. Furthermore, BALD
and EPIG acquisition functions select more informative samples than uniform (random)
sampling, with EPIG demonstrating a slight superiority over BALD

2 Methods

2.1 Bayesian Active Learning

We first consider fully supervised learning tasks, e.g., estimating molecular prop-
erties, using a probabilistic model with likelihood function p(y|x, φ), where x is
an input, y is the output, and φ is the parameter of the model f(x;φ) which
has a prior distribution p(φ) and a posterior p(φ|D) given a labelled training
set D = {(xi, yi)}N

i=1. In active learning or experimental design (Rainforth et
al., 2024), we have access to another unlabelled set Du = {(xu

i )}Nu
i=1 and select

which labels to acquire when training the model f(x;φ) by maximizing an acqui-
sition function that captures the expected utility of acquiring the label ys of the
selected input xs. Then the new labelled data (xu

s , ys) is incorporated into the
training set D = D ⋃{(xu

s , ys)} and the probabilistic model, i.e., the posterior
p(φ|D), is updated accordingly.

Acquisition Function: BALD One popular acquisition function is Bayesian
Active Learning by Disagreement (BALD) (Houlsby et al., 2011), which is the
expected information gain, measured by the reduction in Shannon entropy, of
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the model parameter φ from labelling x across all possible realisations of its
label y given by p(y|x,D). Specifically, we have

BALD(x) = Ey∼p(y|x,D) [H[φ|D] − H[φ|x, y,D]]
= H[y|x,D] − Eφ∼p(φ|D) [H[y|x, φ]]

(1)

with the optimal design x� = argmaxx BALD(x). The first term in BALD mea-
sures the total uncertainty on x while the second term measures its aleatoric
uncertainty, i.e., the irreducible uncertainty from observational noise. Therefore,
BALD selects x with the highest epistemic uncertainty, i.e., the reducible uncer-
tainty from the lack of data (Kendall and Gal, 2017).

Acquisition Function: EPIG BALD targets a global uncertainty reduction on
the parameter space φ. However, in most supervised learning tasks, users are
interested in improving the model accuracy on a target set p(x∗), e.g., the test
set. Therefore, recent work (Smith et al., 2023a) claimed that an acquisition
function, Expected Predictive Information Gain (EPIG), explicitly reducing the
model output uncertainty on random samples from p(x∗) is more effective than
BALD in improving the model performance. Specifically, as discussed and defined
in (Smith et al., 2023b) EPIG(x) =

Ep(x∗)
[
H[y∗|x∗,D] − Ep(y|x,D) [H[y∗|x∗, y,x]]

]
(2)

is expected reduction of the “expected predictive uncertainty” over the target
input distribution p(x∗) by observing the label of x. Intuitively, compared with
BALD which reduces the parameter uncertainty globally, EPIG only reduces the
parameter uncertainty that reduces model output uncertainty on p(x∗).

Semi-supervised Active Learning (SSAL). In the fully supervised scenario, the
model f(x;φ) only learns from the labelled dataset D. This is inefficient in
active learning because the labelled dataset for training is limited initially, and
active learning has to collect more data to learn a good input manifold, which is
required to estimate the uncertainty of downstream tasks (Smith et al., 2024).
This is particularly challenging in the chemical space, where the input manifold
is nontrivial (Zhou et al., 2019). Therefore, researchers proposed semi-supervised
active learning (SSAL) approaches (Zhang et al., 2019; Hao et al., 2020) to learn
the representations of input molecules using both labelled and unlabeled data
and conduct active learning on the representation space with the labelled data.
However, the available molecules in most public molecular property datasets are
still limited (ranging from hundreds to thousands), even without labels.

In this paper, we propose to use molecular representations from a pretrained
self-supervised learning model. Specifically, we encoded the molecular SMILES
sequences into corresponding embeddings, utilizing a large transformer model
MolBERT, pretrained on 1.6 million SMILES via masking, alongside physic-
ochemical properties (Fabian et al., 2020) . The embedding of each SMILES
sequence is a pooled output from the pretrained MolBERT with dimension 764.
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Fig. 2. Sum of samples across 12 tasks of Tox21 dataset. EPIG and BALD are acquiring
more positive sample than random acquisition

We employed these embeddings from MolBERT to train a fully connected (i.e.,
MLP) head. This strategy allowed us to leverage a significant volume of molecule
data, offering particular benefits for conducting active learning on relatively
small datasets.

2.2 Practical Bayesian Neural Networks

In this work, we use a Bayesian neural network to account for the model uncer-
tainty. According to recent research on dropout variational inference (Gal and
Ghahramani, 2016), a practical Bayesian neural network for a wide variety of
architectures can be obtained by simply training a neural network with dropout
(MC dropout), and interpreting this as being equivalent to variational infer-
ence (Blei et al., 2017). The uncertainty is then estimated by using the multiple
forward-passing with different dropout masks. Although the uncertainty from
MC dropout is often underestimated, it has been a popular choice for Bayesian
active learning with neural networks and shows promise on real-world datasets
(Gal et al., 2017; Rakesh and Jain, 2021).

This neural network architecture consists of an input-hidden-output layers,
where x0 is initialized as the input features x, which can be either BERT fea-
tures (in the semi-supervised AL) or binary fingerprints (in the supervised AL).
We utilize dropout for uncertainty estimation, batch normalization for training
stability, and the rectified linear unit (ReLU) activation function as the default
activation. Additionally, the network incorporates a skip connection, merging
the input and output of the hidden layer, enhancing information flow. Finally,
the output layer generates logits, which can be transformed into probabilities by
passing through a sigmoidal activation function.
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x0 = x BERT features or ECFP

x� = Dropout(ReLU(BatchNorm(W�x0 + b�)))
x̃�+1 = BatchNorm(W�+1x� + b�+1)
x�+1 = Dropout(ReLU(x� + x̃�+1))
xout = W�+2x�+1 + b�+1

(3)

The hyper-parameters of this model are given in Table 1.

3 Experiments

3.1 Dataset

Tox21. The Tox21 dataset, or Toxicology in the 21st Century dataset, is a pub-
licly available dataset used in the field of computational toxicology (Richard
et al., 2021). The Tox21 dataset consists of a large collection of chemical com-
pounds, each of which is associated with various types of toxicity outcomes.
These outcomes are typically measured using high-throughput screening assays
to evaluate the potential toxic effects of the compounds. The dataset provides
a quantitative assessment (in form of binary labels) of toxicity of ≈ 8000 com-
pounds in 12 different toxicity pathways.

Table 1. Hyperparameters used of BNN and training

Hyperparameter Values

BNN Activation [ReLU]
Batch normalization [True]
Skip connection [True]
Input layer [768, 1024]
hidden layer dim [128]
Number of hidden layers [1]
Dropout probability [0.3]

Training Optimizer [Adam]
Learning rate [10−3]
Weight decay [1e-2]
Scheduler [CosineAnnealingLR]
T-max (LR cycle) [10]
Batch size [16]
Epochs [110]
num. Forward pass [20]

The Tox21 dataset is widely used as a benchmark in the development of in
silico toxicology models. In this dataset, 6.24% measurements are active (ranges
from 2% to 12%), 73% are inactive, while 20.56% are missing values as shown
in Fig. 3.
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Fig. 3. The output space of Tox21, displaying active compounds in red, inactive com-
pounds in blue, and missing data points in white. (Color figure online)

3.2 Data Splitting

Test, Train Set. For the better of evaluation of generalization, we employed scaf-
fold splitting with 80:20 ratio to create distinct training and testing sets. Scaffold
splitting partitions a molecular dataset according to core structural motifs iden-
tified by the Bemis-Murcko scaffold representation (Bemis and Murcko, 1996),
prioritizing larger groups while ensuring that the train and test sets do not share
identical scaffolds. The testset for all the experiments is identical.

Initial and Pool Sets. A balanced initial set was constructed by randomly select-
ing 100 molecules from the training set, with equal representation of positive and
negative instances. Subsequently, a pool set was generated by excluding the ini-
tial set from the training set.
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3.3 Baselines

We consider three acquisition functions, random, BALD, and EPIG (Sect. 2.1),
and two learning paradigms, supervised active learning (AL) and semi-supervised
active learning (SSAL). In SSAL, we use the BERT features pretrained on 1.6
million SMILES, and in AL, we use ECFP, or Extended-Connectivity Finger-
prints, directly. ECFP is a method used in cheminformatics to represent molecu-
lar structures as binary fingerprints, capturing structural information by encod-
ing the presence or absence of substructural features within a specified radius
around each atom. Through iterative traversal of the molecular structure, unique
substructural fragments are identified and hashed into a fixed-length bit vector,
generating a binary fingerprint where each bit indicates the presence or absence
of a specific substructural fragment. We encoded each molecule into a fixed
1024-dimensional binary vector using a radius of 6.

4 Results and Discussions

We began by training separate neural networks for each task, starting with an
initial set of 100 molecules. Then, we iteratively chose the next molecule based on
acquisition functions (BALD, EPIG, and random) for 200 iterations, evaluating
the test set after each round. Our study compared active learning strategies using
both ECFP and BERT features. We repeated this process with 5 different seeds,
showing the average precision (AUPR) performance evolution across iterations
(Fig. 1). Notably, active learning with pretrained BERT features outperformed
models trained on ECFP. Additionally, BALD and EPIG acquisition functions
consistently selected more informative samples than uniform (random) sampling,
with EPIG showing a slight edge over BALD. Many learning algorithms face
challenges in effectively learning from imbalanced datasets, where the dominance
of the majority class can overwhelm the learning process. As illustrated in Fig. 2,
our analysis demonstrates that both EPIG and BALD consistently acquire a
higher proportion of positive samples compared to random acquisition. This
observation holds particular significance in the modeling of toxicity datasets.
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Abstract. The ChemSpace Atlas is a user-friendly tool developed to
answer the challenges of drug discovery in the context of Big Data,
with the use of Generative Topographic Mapping. Here, we present a
new addition to the functionalities offered by the ChemSpace Atlas: an
autoencoder-based de novo molecular generator.

Keywords: Chemoinformatics · Big Data · Deep Learning

1 ChemSpace Atlas Navigator

Nowadays, the evolution of combinatorial chemistry has led to a significant
increase in compound library size, making the process of searching for good drug
candidates more challenging. The Structure generation module of the ChemSpace
Atlas Navigator tool1 was developed in answer of these novel challenges of “Big
Data”-driven drug discovery.

The tool is meant to respond to key requests by medicinal chemists: not only
must it be easy to navigate through chemical space and visualize compound sim-
ilarities, but the researcher must also be able to predict and visualize properties
of said compounds, as well as their biological activities and polypharmacologi-
cal profiles. It supports analogue searching and structural analysis, all of these
features within the scope of chemical Big Data.

In the ChemSpace Atlas navigator [5], Generative Topographic Mapping
(GTM) represents the chemical space as fuzzy-logical 2-dimensional maps. GTM
landscapes can be colored in different ways, to represent comparisons of libraries,
or quantitative structure-activity/property (QSA/PR) analyses. Several univer-
sal GTMs (uGTM), based on different ISIDA chemical information-rich descrip-
tors, are implemented in the ChemSpace Atlas navigator, providing different

1 https://chematlas.chimie.unistra.fr/chemblactivity/chematlas_userspace/.
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perspectives on the different chemical spaces. Moreover, the hierarchical zoom-
ing approach (hGTM) makes it possible to “zoom” on different areas of the maps,
up to 4 levels of zoom, and access a detailed view of the content of each libraries.

Currently, the ChemSpace Atlas contains thousands of GTMs, organized in
a hierarchical structure. The different atlases proposed are based on ChEMBL
activity profiling, natural products (from the COCONUT and ZINC databases),
different types of compounds compiled from ChEMBL and COCONUT and com-
mercial databases (ZINC).

The current development aims however to go beyond existing compound
libraries, opening ChemSpace Atlas to the realm of possible structures, by cou-
pling a de novo molecular generator to the mapping tool. These maps rely on
expert-designed ISIDA fragment counts, which - unlike autoencoder latent vec-
tors - cannot be directly decoded into structure, an attention-based conditional
variational autoencoder (ACoVAE) [1] was implemented. This approach uses its
distinct latent space representation, but relies on molecular descriptor vector
“seeds” as “conditions” to bias the decoding process towards structures likely
to correspond to the given seeds. The architecture is an innovation based on
the model developed by Lin et al. [2]. The ACoVAE model has been trained to
generate SMILES from chemical descriptors, namely from the in-house ISIDA
descriptors [4].

The model trains with a list of SMILES and their associated ISIDA descrip-
tors. The training follows 3 steps:

– First, a random latent vector distribution is generated from the SMILES in
the training dataset, using a Gated Recurrent Unit (GRU)-based encoder. At
this stage, we aim for an hyperspherical distribution with a mean of 0 and a
variance of 1.

– Second, the initial descriptor vectors are transformed into conditional latent
vectors, using a Grouped Linear Transformation layer (GLT).

– Finally, the conditional and random latent vectors are converted into SMILES
strings using an Autoregressive Multihead Attention (AMA) decoder.

Then, during inference, a specific vector corresponding to the desired struc-
ture is used, along with random latent vectors sampled from the hyperspherical
distribution previously generated. The supplied descriptor vector acts as the
“condition” while the sampled vectors define the latent space. The model gener-
ates desired SMILES based on these 2 inputs, and, thanks to the random factor,
produces alternative SMILES at each inference even if the same specific vector
is used.

Using this ACoVAE model, two new functionalities have been added to the
atlas of ChEMBL activities, one important chapter in ChemSpace Atlas:
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– “Molecular” seed descriptor vector can be taken directly from user-input, rel-
evant compounds, with the ACoVAE model generating new compounds that
“mimic” the former. Running this in the ChemSpace context has however the
benefit of allowing both seed compounds and analogues in the rich context
provided by all the molecules in the databases behind: property landscapes
predicting the proficiency to hit certain targets, be bioavailable, soluble, orig-
inal with respect to commercial alternatives, etc. A pop-up window displays
the list of valid structures and allows the projection of these new compounds
directly on the chosen landscape, as illustrated in Fig. 1.

– “Node” seed descriptor vectors are obtained from the GTM nodes within
an area of user interest on the landscape. For example, the coloration of
a landscape makes it possible to easily identify areas containing numerous
actives against a specific ChEMBL target. Therefore, when the user clicks on a
node from one of these areas, descriptor vectors are sampled using a Gaussian
distribution around the selected node, to generate a list of “seed” vectors for
the ACoVAE. A list of compounds is then designed by the ACoVAE and
displayed in a pop-up window. As for the previous functionality, it is possible
in one click, to project the list of newly generated compounds into the same
landscape of interest, and evaluate their predicted activity based on the area
in which they are projected.

Fig. 1. On the left: Projection of the compounds generated from a query compound
originating from node 1623 (black dots) on the activity landscape for the target
CHEMBL1862. (Red: actives, blue: inactives). On the right: The query compound
used as seed (top) and example of compounds generated using ACoVAE and projected
on the landscape in the active zone around node 1623 (bottom). (Color figure online)
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By default, four instances of the ACoVAE are launched in parallel on the
ChemSpace Atlas server, to generate in total 40 new compounds. This process
creates a variety of SMILES outputs for each combination of descriptor and
random latent vectors. The validity of these generated SMILES is assessed using
our internal standardization software based on the Indigo API [3], which filters
out any erroneous sequences, and only valid SMILES are displayed to the user.
This approach is effective in generating compounds that not only predict to
have desired activities, but are also novel, whilst some display promising levels
of drug-likeness and synthetic accessibility.
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Abstract. Retrosynthesis consists of recursively breaking down a target
molecule to produce a synthesis route composed of easily accessible build-
ing blocks. In recent years, computer-aided synthesis planning methods
have allowed a greater exploration of potential synthesis routes, combin-
ing state-of-the-art machine-learning methods with chemical knowledge.
However, these methods are generally developed to produce linear routes
from a singular product to a set of proposed building blocks and are not
designed to leverage potential shared paths between targets. Routes pro-
posed from such developed methods do not encompass the real-world
use case in medicinal chemistry where one often seeks to synthesize sets
of target compounds in a library mode, ideally converging into a shared
retrosynthetic path with respect to advanced intermediate compounds.

Using a graph-based processing pipeline, we explore Johnson & John-
son Electronic Laboratory Notebooks (J&J ELN) and publicly available
datasets to identify complex routes with multiple products sharing com-
mon intermediates, producing convergent synthesis routes. We find that
over 70% of all reactions are involved in convergent synthesis, covering
over 80% of all projects in the case of J&J ELN data.

We introduce a novel planning approach to develop convergent synthe-
sis routes, which can search multiple products and intermediates simul-
taneously as an extension of state-of-the-art machine learning single-
step retrosynthesis models, enhancing the overall efficiency and prac-
tical applicability of retrosynthetic planning. We evaluate the multi-
step synthesis planning approach using the extracted convergent routes
and observe that solvability is generally very high across those routes,
being able to identify a convergent route for over 90% of the test routes
and showing an individual compound solvability of over 98%. Moreover,
we find that using the convergent search approach allows us to further
improve the accuracy of the suggested retrosynthetic routes, as compared
to proposing individual routes.
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1 Background

Multimodal learning is a subfield of machine learning that aims to process and
relate information from multiple modalities [3]. This field has recently seen
increased interest in drug discovery [4].

Cell Painting data (CP) is a type of morphological profiling, where a com-
pound is characterized by the morphological changes in cells. Transcriptomics
data (TX) is a type of gene expression profiling, where a compound is char-
acterized by the expression change in genes. These two profiling methods can
be viewed as two modalities that describe the same cell state. Hence, Multi-
modal learning techniques can potentially be used to capture the correspon-
dences between them, potentially enhance understanding of biology.

In this work, we explore Cross Modality Feature Learning for CP and TX
data. It is a setting where data from both modalities is available during fea-
ture learning, but only one modality is provided during supervised training and
testing for downstream tasks. We find this setting particularly suitable for multi-
modal learning between CP and TX, since typically CP and TX data are avail-
able for compounds in our library. However, for new compounds, it is highly
likely that only CP data is available, as TX data is comparatively more costly
to obtain.

2 Methods

For feature learning, we train two methods: Contrastive Learning and Bimodal
Autoencoder. Contrastive Learning [1] learns representations using one Multi-
layer Perceptron (MLP) encoder for each modality. The model is trained by
minimizing a contrastive loss that forces the embeddings of the same compound
close, and different compounds far away. Then embeddings are extracted from
the CP encoder. Bimodal Autoencoder [2] learns representation using one MLP
encoders for CP, and two MLPs decoder for CP and TX. The model learns to
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reconstruct both modalities using only CP. The embeddings are then extracted
from the middle layer.

To understand how good the embeddings are in which tasks, compared to
directly using CP or TX as features, we benchmark them on a range of activity
modelling downstream tasks.

3 Results

Preliminary results show on average across all tasks, performances of models
using the embeddings are comparable to using CP or TX features. However, the
embeddings manage to improve performances in underperforming tasks that only
use one modality. In terms of unsupervised tasks, embeddings improve clustering
based on cell painting replicates and modes of action.
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Abstract. Automated planning of organic chemical synthesis, first for-
malized around fifty years ago [6], is one of the core technologies
enabling computer-aided drug discovery. While first computer-aided syn-
thesis planning (CASP) systems relied on manually encoded rules [2, 4],
researchers now primarily focus on CASP methods powered by artifi-
cial intelligence techniques. The design principles of the latter were out-
lined in the seminal work by Segler et al. [9]: a machine learning-based
single-step retrosynthesis model combined with a planning algorithm.
The former proposes several candidate retrosynthetic chemical trans-
formations for a given molecule, and the latter, e.g., Monte-Carlo Tree
Search, uses those candidates to construct a synthesis tree. One of the
way of doing single-step retrosynthesis is to pose the task as SMILES-to-
SMILES translation. Both reaction product prediction and single-step
retrosynthesis can be done in this way. The transformer [7, 12], a neu-
ral architecture initially proposed for neural machine translation, adapts
well to SMILES-to-SMILES translation and now serves as a backbone for
state-of-the-art models for single-step retrosynthesis [3, 10] and reaction
product prediction [3, 8].

As transformer-based single-step retrosynthesis models reach state-
of-the-art accuracy in the task, they become increasingly interesting
for integration in multi-step synthesis planning systems. However, the
latency of the transformer hinders its suitability for synthesis planning
[11]. Therefore, a need for accelerating the inference of the SMILES-to-
SMILES transformer arises.

Recently, transformer-based Large Language Models (LLMs) [1]
gained a lot of attention and attracted a lot of research effort. One of the
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critical issues in LLMs is their slow inference speed. Speculative decoding
[5] is a technique that allows to generate more than one token for one
forward pass of the model.

In our work, we propose a method to accelerate inference from
SMILES-to-SMILES translation models based on speculative decoding
combined with insights from the chemical essence of the problem. We
reimplement the Molecular Transformer [8] in Pytorch Lightning and
use our method to demonstrate its inference acceleration in single-step
retrosynthesis and product prediction by three times without changing
the model architecture or the training procedure. Our implementation
of the Molecular Transformer (MT) successfully reproduces the accuracy
scores of the original MT [8] that relies on OpenNMT. Comparing our
MT and the original MT, we observe at most 0.2% points discrepancy
of top-1 to top-5 accuracy in product prediction with beam search. We
use are approach to significantly accelerate greedy decoding from MT in
reaction product prediction on USPTO MIT and beam search in single-
step retrosynthesis on augmented USPTO 50K.

Acknowledgments. This study was partially funded by the European Union’s Hori-
zon 2020 research and innovation program under the Marie Skłodowska-Curie Inno-
vative Training Network European Industrial Doctorate grant agreement No. 956832
“Advanced machine learning for Innovative Drug Discovery”, and also by the Hori-
zon Europe funding programme under the Marie Skłodowska-Curie Actions Doctoral
Networks grant agreement “Explainable AI for Molecules - AiChemist” No. 101120466.

References

1. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process.
Syst. 33, 1877–1901 (2020)

2. Gasteiger, J., et al.: Computer-assisted synthesis and reaction planning in combi-
natorial chemistry. Perspect. Drug Discov. Des. 20, 245–264 (2000)

3. Irwin, R., Dimitriadis, S., He, J., Bjerrum, E.J.: Chemformer: a pre-trained trans-
former for computational chemistry. Mach. Learn. Sci. Technol. 3(1), 015022 (2022)

4. Johnson, P.Y., Burnstein, I., Crary, J., Evans, M., Wang, T.: Designing an Expert
System for Organic Synthesis: the Need for Strategic Planning. ACS Publications,
Washington, DC, USA (1989)

5. Leviathan, Y., Kalman, M., Matias, Y.: Fast inference from transformers via spec-
ulative decoding. In: International Conference on Machine Learning, pp. 19274–
19286. PMLR (2023)

6. Pensak, D.A., Corey, E.J.: LHASA—Logic and Heuristics Applied to Synthetic
Analysis. ACS Publications, Washington, DC, USA (1977)

7. Schmidhuber, J.: Learning to control fast-weight memories: an alternative to recur-
rent nets. Neural Comput. 4(1), 131–139 (1992)

8. Schwaller, P., et al.: Molecular transformer: a model for uncertainty-calibrated
chemical reaction prediction. ACS Central Sci. 5(9), 1572–1583 (2019)

9. Segler, M.H., Preuss, M., Waller, M.P.: Planning chemical syntheses with deep
neural networks and symbolic AI. Nature 555(7698), 604–610 (2018)



Accelerating the Inference of String Generation-Based Chemical Reaction 173

10. Tetko, I.V., Karpov, P., Van Deursen, R., Godin, G.: State-of-the-art augmented
NLP transformer models for direct and single-step retrosynthesis. Nat. Commun.
11(1), 5575 (2020). https://doi.org/10.1038/s41467-020-19266-y

11. Torren-Peraire, P., et al.: Models matter: the impact of single-step retrosynthesis
on synthesis planning. Digit. Discov. 3(3), 558–572 (2024)

12. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30
5999–6010 (2017)

https://doi.org/10.1038/s41467-020-19266-y


Author Index

A
Andronov, Mikhail 21, 171
Andronova, Natalia 21, 171
Arany, Adam 13, 132
Arjona-Medina, José 71

B
Ballabio, Davide 116
Bertolini, Marco 1
Bonachera, Fanny 163

C
Ceulemans, Hugo 82, 167, 169
Chernichenko, Konstantin 71
Clevert, Djork-Arné 1, 21, 36, 171
Colombo, Erika 116
Cremer, Julian 36
Cui, Tianyu 149
Czodrowski, Paul 169

E
Engkvist, Ola 13, 47, 58, 98, 132

F
Fallani, Alessio 71
Friesacher, Hannah Rosa 13, 132

G
Genheden, Samuel 98

H
Ha, Son V. 169
Hartog, Peter B. R. 98
Heinonen, Markus 58, 82
Herman, Dorota 82, 167, 169

Hilfiker, Mathias 47
Horvath, Dragos 163

J
Jaensch, Steffen 169
Janet, Jon Paul 58

K
Kabeshov, Mikhail 58
Kandula, Maciej 169
Kaski, Samuel 58, 82, 149
Klähn, Marco 47
Klimchuk, Olga 163

L
Le, Tuan 36

M
Marcou, Gilles 163
Masood, Muhammad Arslan 82, 149
Mervin, Lewis 13, 98, 132
Montanari, Floriane 1

N
Nahal, Yasmine 58
Nittinger, Eva 58
Nugmanov, Ramil 71

R
Roncaglioni, Alessandra 116

S
Sandonas, Leonardo Medrano 47
Schmidhuber, Jürgen 21, 171
Schütt, Kristof T. 36
Svensson, Emma 13, 98, 132

© The Editor(s) (if applicable) and The Author(s) 2025
D.-A. Clevert et al. (Eds.): AIDD 2024, LNCS 14894, pp. 175–176, 2025.
https://doi.org/10.1007/978-3-031-72381-0

https://doi.org/10.1007/978-3-031-72381-0


176 Author Index

T
Tetko, Igor V. 98, 167
Tkatchenko, Alexandre 47, 71
Torren-Peraire, Paula 167

V
Varnek, Alexandre 163
Verhoeven, Jonas 167
Viganò, Edoardo Luca 116
Volkov, Mikhail 163

W
Wand, Michael 21, 171
Wegner, Jörg Kurt 71, 167

Z
Zhao, Linlin 1


	 Preface
	 Organization
	Plenary Talks
	 Past, Present, Future, and Far Future of Machine Learning
	 Dendritic Computations and Deep Learning in the Brain
	 Biosignal-Adaptive Cognitive Systems
	 Workshop: AI in Drug Discovery
	 The Use of Active Learning for Effective Exploration of the Chemical Universe
	 Contents

	Enhancing Interpretability in Molecular Property Prediction with Contextual Explanations of Molecular Graphical Depictions
	1 Introduction
	2 Setup
	3 Methods
	4 Experiments and Properties of Contextual Explanations
	5 Conclusions
	References

	Temporal Evaluation of Probability Calibration with Experimental Errors
	1 Introduction
	2 Methods
	2.1 Model Generation

	3 Results
	3.1 Incorporation of Aleatoric Uncertainty Using Measurement Errors
	3.2 Probability Calibration Across Evolving Test Sets

	4 Conclusion and Outlook
	References

	Curating Reagents in Chemical Reaction Data with an Interactive Reagent Space Map
	1 Introduction
	2 Results
	2.1 Interactive Application
	2.2 Properties of Reagent Embeddings
	2.3 Reagent Data Curation
	2.4 Analysis

	3 Methods
	3.1 Theory
	3.2 Data

	4 Conclusion
	References

	Latent-Conditioned Equivariant Diffusion for Structure-Based De Novo Ligand Generation
	1 Introduction
	2 Related Work
	3 Methods
	4 Results
	5 Conclusions
	References

	Leveraging Quantum Mechanical Properties to Predict Solvent Effects on Large Drug-Like Molecules
	1 Introduction
	2 Computational Methods
	3 Results and Discussion
	4 Conclusions
	References

	Towards Interpretable Models of Chemist Preferences for Human-in-the-Loop Assisted Drug Discovery
	1 Introduction
	2 Methodology
	3 Experiments
	3.1 Experimental Setup
	3.2 Implementation
	3.3 Benchmark

	4 Results
	4.1 Interpretability of Human Preferences
	4.2 Accuracy in Predicting Human Preferences

	5 Discussion
	References

	Atom-Level Quantum Pretraining Enhances the Spectral Perception of Molecular Graphs in Graphormer
	1 Introduction
	2 Methods
	3 Results and Discussion
	4 Conclusions
	References

	Balancing Imbalanced Toxicity Models: Using MolBERT with Focal Loss
	1 Introduction and Background
	2 Materials and Method
	2.1 Datasets
	2.2 Loss Functions
	2.3 Models
	2.4 Feature Extraction
	2.5 Evaluation

	3 Results and Discussions
	4 Supplementary Information
	References

	Registries in Machine Learning-Based Drug Discovery: A Shortcut to Code Reuse
	1 Introduction
	2 Methods
	3 Results
	3.1 Workflow: Creating a Registry and Registering Modules
	3.2 Enhanced Functionality and Expanded Capabilities
	3.3 A Shortcut to Modularity and Reusability
	3.4 Empirical Evaluation: Application and Impact in Previous Implementations

	4 Discussion
	4.1 Adoption in Previous Implementations
	4.2 Registration as a Design Pattern
	4.3 Advantages and Considerations of the Registry
	4.4 Codebases for Efficient Coding in Research
	4.5 Future Work

	5 Conclusions
	References

	Artificial Intelligence Methods for Evaluating Mitochondrial Dysfunction: Exploring Various Chemical Notations Suitable for Neural Language Processing Models
	1 Introduction
	2 Material and Methods
	2.1 Dataset
	2.2 Chemical Notations and Data Augmentation
	2.3 Data Pre-processing
	2.4 Applicability Domain
	2.5 Model Architecture
	2.6 Model Training and Model Validation
	2.7 Software

	3 Results
	4 Conclusion
	References

	Temporal Evaluation of Uncertainty Quantification Under Distribution Shift
	1 Introduction
	2 Methods
	2.1 Ensemble-Based Modeling

	3 Experiments
	4 Conclusions
	References

	Deep Bayesian Experimental Design for Drug Discovery
	1 Introduction and Background
	2 Methods
	2.1 Bayesian Active Learning
	2.2 Practical Bayesian Neural Networks

	3 Experiments
	3.1 Dataset
	3.2 Data Splitting
	3.3 Baselines

	4 Results and Discussions
	References

	Abstracts from the AIDD Workshop
	Cartography-Driven Molecular Generation with ChemSpace Atlas
	1 ChemSpace Atlas Navigator
	References

	Improving Route Development Using Convergent Retrosynthesis Planning
	Abstract Submission: Cross Multimodal Learning of Cell Painting and Transcriptomics Data
	1 Background
	2 Methods
	3 Results
	References

	Accelerating the Inference of String Generation-Based Chemical Reaction Models for Industrial Applications
	References

	Author Index

