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Preface

So—you’ve turned the first page, wanting to find out what this book is all about. 
Poised to help, arrayed in your mind you have an immense resource, a huge 
armoury of concepts. You’ll need to pull out the right ones, tweaking here and 
there, perhaps adding some new ones. Then if you arrange them in the right way, 
you’ll be in a position to understand whatever I throw at you. You are all set to 
make use of the everyday wonder that is human conceptual thought.

Let’s just play with our concepts a little to start with. Imagine a skiing crab 
wearing a graduation gown. Yes, do. Not something you have experienced before 
I guess. But still, images begin to form. Snow, skis, and legs arrange themselves 
into some sort of order. You can work out what he is doing with his claws. (Were 
you, with me, assuming it was a he?) Where is all this material coming from? It 
was there somewhere in your mind, in your concepts of crabs and of skiing. Each 
concept contributes images, assumptions, and beliefs. Your imagination fills out 
the picture. Is the crab moving? If so, no doubt he’s going downhill. Now look at 
his gown. Is it flapping in the wind? And we’re off, having fun with concepts. The 
process is both so familiar as to be almost banal and so marvellous as to be almost 
miraculous.

Concepts are the tools with which we think. Concepts are how we classify 
things in the world and organise our knowledge about them. Concepts make us 
take things for granted, quickly parsing our experience into categories and rap-
idly drawing all kinds of interesting conclusions. But concepts also lead us astray, 
driving lazy overgeneralisations and housing unpleasant prejudices. Much is 
implicit, shaping how we see the world in ways we don’t even realise—just as you 
don’t see how hazy the air is in the valley until you step into the crystalline clear-
ness of a high mountain peak.

Nevertheless, we all do realise that there is a lot of variation in how people 
conceptualise the world. It is endlessly fascinating to explore with people from a 
different culture how they see—that is, conceptualise—the world differently. A 
straightforward distinction between cutting and tearing seems obvious, for exam-
ple, but is that distinction universal? More locally, as we teach, we are constantly 
trying to second guess the student’s mindset, what they have misconstrued and 
what they’ve understood. The five-year-old hasn’t grasped that, however many 
times you divide a number, you’ll never get to zero. The first-year student doesn’t 
understand that ∞ doesn’t work like a number. Even everyday conversation calls 
for some vigilance about whether the other person conceives of things 
differently.
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I have been interested in concepts ever since I started studying philosophy. 
Beyond the fascination of how we all see the world in our own peculiar way, 
I  found myself drawn—in a move which I suppose diagnoses a philosophical 
bent—to the deeper question of how we can be thinkers at all. What sort of mech-
anism enables people to divide up the world into categories and reason about it? 
How can goings-on in the brain be the basis of this rich and useful mental life?

It was a good time to ask. Although these questions have troubled philosophers 
for thousands of years, striking progress was being made on them in the last 
decades of the last century and the first decades of this one. A new idea opened up 
space for a new answer. That answer is the Representational Theory of Mind 
(RTM), the theory that thinking consists in a causal process, the interaction of 
physical particulars, representations, which have meaning or content. Where cat-
egorisation and inference appear to us as an unfolding series of thoughts with 
meaning, RTM promises to explain how this works in terms of a sequence of 
physical representations interacting in a causal process that is ultimately realized, 
in some way, in the brain. This idea, inspired by mechanical and then digital 
computers from the 1940s onwards, initiated the ‘cognitive revolution’ in psychol-
ogy, the implications of which are still gradually being worked out.

There are actually two foundational questions here. First, how can goings-on 
in the brain be the basis of a rich mental life? Second, how can there be meanings 
at all—how is there space for meaning or representational content in the natural 
world? The first question looks more psychological, the second philosophical, 
but in fact both disciplines have contributed to answering both questions. Not 
only has philosophy liberally made use of results from psychology. Psychology 
has readily taken inspiration from philosophers like Wittgenstein and Frege (and 
admonitions from Fodor). As I happily remember from the (psychologist-led) 
London Concepts Group as a student, this is a field where psychologists are keen 
to talk to philosophers—as well as our needing to pump them for their results. 
Concepts research is a parade case for the new enterprise that is cognitive sci-
ence: a self-conscious alliance between psychology, linguistics, neuroscience, 
anthropology, computer science, and philosophy, a collaborative endeavour 
aimed at making progress on shared questions about the mind.

Philosophers initially tried to base an answer to the question of where meaning 
comes from—a theory of conceptual content—on a theory of categorisation, on 
how thinkers apply concepts to things in the world. Theories based on definitions 
were displaced, for philosophical as well as psychological reasons, giving way to 
prototypes and exemplars. Some objects are typical members of a category—
when an object has most of the prototypical properties or matches some stored 
exemplar. Others are more marginal. Compare a robin with a penguin as an 
example of a bird. Then it was discovered that sharing an underlying essence was 
important in many cases, and that other sorts of theoretical knowledge is involved 
in categorisation and inference.
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The empirical data is overwhelmingly drawn from WEIRD populations 
(Henrich et al. 2010), so questions remain about how well the basic mechanisms 
generalise. Cross-cultural studies are only just beginning to fill in the picture. 
However, the empirical story was already getting much richer, with striking data 
on the role of sensorimotor simulation, many insights from subtle studies with 
infants and children, better appreciation of how the body and world support cog-
nition, and increasing knowledge of how conceptual abilities relate to the brain 
and its pathologies. Philosophers realised that a theory of content would not just 
drop out of an account of how concepts are applied to the world. Plus, they had 
been working with a too-simple theory of the mechanism. But what to replace it 
with? The richness of the data—psychological, computational, neurological—
makes it hard to see what philosophical theorising should be based on.

Actually, I think a framework has emerged from the science that offers some 
unity, at a relatively abstract level, and integrates a wide range of empirical results. 
That is what I aim to present in this book: a framework that incorporates the 
wider range of phenomena which concepts are now known to be involved with, 
formulated at a level of generality which is suited to our philosophical questions. 
This involves treating the issues rather more abstractly than a psychologist 
would—there is a lot in the book about representations, structures, and types of 
inference—but in a way that is, I hope, recognisably continuous with the science.

Perhaps this framework will eventually prove to be a useful basis for formulat-
ing a theory of content. For myself, it seems premature to launch into the meta-
physics of content without getting clearer about how conceptual thought actually 
works. The connection of content to consciousness also makes the issues a lot 
harder with concepts than they are in the subpersonal case (Shea 2018). Whether 
or not it helps with theorising about content, though, the framework is valuable 
in its own right, as an answer to our first question. It shows us, in outline, how 
goings-on in the brain, and its interactions with the world, give rise to our rich 
mental life. It demonstrates that the promise of RTM can be vindicated.

Another aim is to make the person more central. Thinking is something we do 
with concepts. To highlight this, I focus on the use of concepts offline: when, 
rather than reacting to a stimulus, the agent is thinking about what to do in the 
future or drawing fresh conclusions about what is the case. Psychological research 
has understandably focused on how people react to a stimulus, since that is what 
participants do in an experiment. Philosophy, though, has always had offline 
thinking in its sights. (We are contemplative folk.) But our paradigm has been 
reasoning, something like the step-by-step theorem proving of logic. Empirical 
research shows that we need to cast the net much wider and encompass all the 
other things that go into our thinking, like conjuring up mental images, running 
simulations, and relying on a broader range of processes, sensory and motoric, 
affective and evaluative. A concept provides access to a diverse store of informa-
tion about a category, only a small part of which is activated and used on each 
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occasion, as the context demands. So we need to make a sharp distinction between 
the store of interconnected information about a category (which is what some 
theorists mean by ‘concept’) and the mental representation that is manipulated in 
occurrent thinking. Making the offline case central also serves to highlight other 
features that situate conceptual thinking at the level of the whole person. It is a 
sphere for mental agency, often effortful, where the thinker appreciates what is 
going on, and where what they do can reflect their goals and values.

The picture I present is informed both by classic results in the cognitive psy-
chology of concepts and by newer work in neuropsychology and cognitive neuro-
science. In addition, advances in computational modelling offer insightful ways 
of modelling the computations going on in the brain. Some recognisably philo-
sophical questions are centre stage: about the types of representations with which 
we think, how they are used to build informational models of the world, and the 
different types of computations they enter into. This throws up a long-standing 
puzzle about how cognition retrieves only a selection of relevant memories on 
which to perform inferences—the notorious frame problem. The framework 
developed in the book shows that, in many cases, the mind has resources for cir-
cumventing the frame problem, and for tackling it when it has to. I argue that this 
hybrid solution shows us why human cognition has proved to be such a powerful 
resource. The book is concerned with grappling with the details, with making a 
philosophical contribution to a collaborative enterprise. However, the picture 
that emerges demonstrates, I think, that cognitive science is realising its promise 
of delivering a tangible understanding of where our rich mental life comes from.
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1.1  Concepts in the Playground of Thought

This book is about thinking, in the everyday sense—what we might call conscious 
deliberation. How does it work? Why is human cognition so powerful? We have a 
tremendous capacity for thinking things through. We think about possible strate-
gies and courses of action as we decide how to act. We use the same tools to derive 
deep conclusions from what we already know. When we learn something new, we 
can think through the implications, enlarging on what we have learnt. That is, we 
have an enormous capacity for practical and theoretical inference.

When faced with an immediate choice, although we will often simply respond 
out of impulse or habit without forethought, we do sometimes take a few 
moments to think about how to deal with the situation. More typically we find 
ourselves thinking things through when the world is not pressing: we sit quietly 
thinking, walk along thinking, or screen out the chatter and just think—in any 
situation where the ongoing task does not occupy all of our cognitive capacity.

Humans do a lot of deliberation. Other species less so, or not at all. We think 
things through not only to work out the possibilities for action and their conse-
quences, but also to discover new facts—to infer new conclusions from what we 
already know. Complex forms of forward planning and elaborate processes of 
theoretical inference are undoubtedly unique to humans. I want to get a clear 
picture of the cognitive resources that go into our tremendous capacity for think-
ing and reasoning about the world in this way.

In philosophy, practical and theoretical inference is standardly thought of as a 
step-by-step mental process, each step moving from one or two premises to a 
conclusion, which then forms the basis of the next step. Logical reasoning is the 
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paradigm, although the steps involved need not be deductive. I will call it just 
‘reasoning’. The steps take place between thoughts that are structured like the 
sentences of natural language. (They may or may not be subvocalised uses of the 
language faculty.)

Important as it is, reasoning captures only a part of what we do when we are 
working out what is the case and how to act. We imagine possibilities and simulate 
unfolding scenarios using much of the rest of the mind’s rich palette of resources. 
Actions are simulated in sensorimotor systems, relying on their highly-tuned grasp 
of the sensorimotor contingencies that characterise our physical world. Routes are 
planned in reliance on the cognitive map in the medial temporal lobe. The values 
of actions and outcomes are estimated by reinforcement learning systems. Social 
situations are simulated through the lens of systems that grasp others’ mental states 
and their likely emotional responses. Our overall assessment of a situation is 
bathed in our evaluative responses to the rich picture we build up using all these 
special-purpose systems. Intelligent thinking mines all these resources in planning 
how to act and working out the implications of what we know.

At the same time, our capacity for reasoning is clearly crucial. Reasoning with 
explicit conceptually-structured thoughts can take us to consequences that go far 
beyond the expertise of any of our special-purpose systems. We can work out 
logical consequences that are powerful precisely because of their generality. 
Reasoning can transcend the assumptions by which special-purpose systems 
operate. Assumptions, though useful, are also limitations. Reasoning can move 
beyond them. Conceptual thought can also recombine the information it draws 
on in new ways.

How does human thinking achieve all of that? At the heart of the story are 
concepts. A concept is a key that unlocks a rich array of stored information. At 
the same time, a concept is a component that can figure in reasoning. Concepts 
allow our thought processes to mine the rich stores of information laid down 
elsewhere in the mind. Combining a collection of concepts in thought allows the 
mind to integrate a diverse array of information, much from special-purpose sys-
tems, into a coherent thought. Combining existing concepts in new ways allows 
us to think of, and then simulate, striking new possibilities. The models we build 
of these scenarios in turn generate new ideas of their own.

* * *
Human cognition underpins many of our species’ most remarkable outputs. It 
has given us the power to construct the complex social groups that we Homo 
sapiens have always depended on for our survival. More recently, it has allowed 
us to imagine the elaborate social institutions that now regulate our lives: politi-
cal, commercial, and legal systems that make possible our highly specialised form 
of obligate cooperation and deep interdependence. Human cognition has created 
the stories and explanations of organised religions, and then of modern science. 
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It drives the rich imagining of the arts. Doubtless there are many other factors 
behind the effervescence of human creation—behind the complexity of the things 
we produce and the scale of our impact on the world. Our peculiar form of 
culturally-based inheritance is surely crucial. High-powered vision, manual dex-
terity, and linguistic communication are probably all part of the story. But so too 
is the power of human cognition. Conceptual thinking is the motor that drives 
many of the ways that humans manage to understand the world and plan our 
complex activities in it.

In piecing together how all this works, the key parts of the jigsaw are concepts. 
Concepts are elements of the thoughts we have when deliberating. When I think, 
what sport shall I play this week?, I am making use of my concept sport, putting it 
together with other concepts to form the thought. Concepts then connect our 
thinking to all of the information, of different kinds, that we rely on in thought. 
The concept sport gives me access to semantic memories (e.g. that ultimate fris-
bee is an easy sport to get into) and to information in many special-purpose sys-
tems: what is physically involved in various activities and how I am likely to feel 
doing them. In the input direction, concepts are applied to the world. This is the 
process of categorisation. I see a bunch of people running around in a field and 
categorise the situation under the concept sport. In the other direction, thinking 
with my sport concept allows me to recall and entertain perceptual representa-
tions of sport, motor representations of doing sport, and emotional and evalua-
tive representations of what it is like to watch or take part.

So the picture I paint will have concepts at the centre. How do they interface 
between different systems and what kinds of representations and processes are 
involved in each? The full story needs to tell us how representations are typed 
and combined, how those representations are processed or computed with, and 
what kinds of representational models or structures are used for representing and 
storing information. Many of the elements I rely on are familiar. I have my own 
standpoint on how some of the elements should be characterised, and also on 
how they need to be put together. The result is a somewhat distinctive picture. 
The approach is also distinctive in drawing together points about representa-
tional structure, computational process and informational models, attempting to 
offer a single coherent account of how they work together in concept-involving 
cognitive processes. I will call this ‘concept-driven thinking’, or sometimes just 
‘conceptual thinking’ for convenience, but note that these terms are intended 
to  include the special-purpose representations that are involved, which need 
not  be constructed out of concepts. (Note also that conceptual thinking does 
not  cover all uses of concepts—concepts may play roles outside of conscious 
deliberation, e.g. storage in long-term memory or activation in non-conscious 
processing: §1.4.)

Building up a cohesive picture of conceptual thought involves bringing 
together several different literatures. Most prior work on concepts targets only 
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thin slices of our conceptual life. Psychological work has tended to focus on cate-
gorisation of perceived stimuli. That is understandable, given the need for tracta-
ble experiments, but much of our conceptual thought happens offline. Philosophy 
has long been interested in the role of concepts, offline, in logical reasoning, but 
it has tended to neglect the large part of our conceptual life that is concerned with 
imagination, simulation, or building a model of a real or possible situation. My 
aim is to offer a more comprehensive account of conceptual thought, combining 
the different elements into a coherent, unified picture.

* * *
I also want to highlight a feature of our thought processes that is familiar and 
obvious, but somewhat overlooked in most treatments. Deliberate thought is a 
way that a range of information is collected and considered together. For exam-
ple, I may find myself conflicted between helping my son with a problem and 
leaving him to it, to develop his self-reliance. I weigh these competing concerns 
in thought. The forecast is dry but the sky looks like rain. I weigh the competing 
evidence in thought. Thought is a place where we bring together a variety of 
information and consider it together. We can bring together a series of facts or 
semantic memories. We can also bring together a collection of sensorimotor 
expectations and evaluative responses, allowing us to see how each bears on the 
others. At a party I enter a room and consider joining the nearest group of people. 
But then I see that the encounter could be emotionally tense, so I select a physi-
cally more awkward route through the room. Thinking is a process where we 
bring these disparate pieces of information together, enabling us to appreciate the 
relevance of each piece to each piece. That is, thinking takes place in some kind 
of shared representational space.

A good metaphor for this a workspace. A workspace has the capacity to main-
tain a set of representations together so that they can be manipulated in respect of 
one another. This familiar phenomenon is often presupposed in accounts of 
thinking, but it seldom takes centre stage in theories of conceptual thought. It has 
been given a strong role elsewhere, as a theory of consciousness—the global 
workspace theory. The metaphor is apt for our purposes, so I want to appropriate 
it here, shorn of any commitment to acting as a theory of consciousness. 
Deliberative thought does indeed typically take place in a workspace, but for all 
I say here there could be conscious representations outside the workspace, or 
indeed workspaces that are not conscious. I’m interested in the cognitive phe-
nomenon: a way of entertaining representations such that they are in touch with 
one another, so that they can be manipulated in relation to one another, and so 
that the consequences of one for another are typically apparent.

The other field in which the idea of a workspace shows up is in research on 
working memory. Working memory is a capacity for holding representations 
online and manipulating them. Experiments on working memory have focused 
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more on the former than the latter—characterising storage and maintenance, 
more than the capacity for manipulation (Cowan 2008; Hasson, Chen, and 
Honey 2015, p. 304). The latter is there, though, often obliquely, and is sometimes 
brought to the fore (Baddeley 2012; Reuter-Lorenz and Iordan 2021, pp. 285–6; 
Masse et al. 2019). Claire Sergent has recently introduced the idea of a ‘global 
playground’ (Sergent et al. 2021). This was also in the context of work on con-
sciousness, but the way she introduces the global playground characterises it as a 
cognitive phenomenon, more akin to working memory. Representations in the 
global playground are maintained and shared, offering ‘wider cognitive possibili-
ties than automatic unconscious processing’, but without being tied to the perfor-
mance of any specific task (Sergent et al. 2021, p. 12). This is a useful construct for 
my purposes, both because it allows the contents of the playground to be richer 
than in typical models of the global workspace, which are usually committed to 
global ‘broadcasting’ occurring one stimulus at a time; and because it emphasises 
that there may be a currently active representation of a scenario (which for me 
can be suppositional as well as actual) that is not there to guide performance of a 
particular current task (Cohen et al. 2023). Another merit of ‘playground’ is that, 
as a new term, it is less redolent of theories of consciousness.

The cognitive playground is a system in which representations are maintained 
and manipulated together, such that connections between representations, like 
relations of support and contradiction, are inherent in the way the information is 
entertained. A simple example occurs with binocular rivalry, where conflicting 
information is presented to each eye. The inconsistent information is processed 
in parallel in different areas of the brain, but other areas are dedicated to repre-
senting a coherent scene, which is what the subject consciously experiences 
(Haynes and Rees 2005). My own view is that this playground characteristic is 
extremely important. I will use ‘thought’ liberally, for representations of all kinds 
in the cognitive playground, whether composed out of concepts or not; and 
‘thinking’ for the unfolding of sequences of thoughts and for the cognitive pro-
cesses that apply to them (e.g. directing attention). Much of the utility of thinking 
depends on its taking place in an integrated playground. This makes it pressing to 
give an account of how the various representational structures, informational 
models, and computational processes involved in cognition can interface with 
one another so as to work together in concert. Much of the book will be dedicated 
to characterising those elements and their interactions. Whilst doing that, I want 
to ensure that the fact that thinking takes place in some kind of shared represen-
tational space, which is so often in the theoretical background, remains fully in 
focus. There is an arena in which all this thinking takes place. Hence I will freely 
talk about the cognitive ‘playground’, with its connection to the cognitive idea of a 
workspace, even while wanting to disavow its resonance with theories of con-
sciousness. I want to lay claim to the term. It neatly encapsulates a critically 
important property of concept-driven thought.
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1.2  Deliberation

Here is another way to say what the book is about. I’m interested in the role of 
concepts in executive processes: in processes of ‘controlled semantic cognition’ 
(Jackson, Rogers, and Lambon Ralph 2021), under ‘endogenous control’ 
(Calzavarini 2022). ‘Executive’ is sometimes used to smuggle in a homunculus, 
an unexplained cognitive faculty that is ‘me’ and does all the crucial thinking and 
deciding. More often it is unobjectionable: a useful umbrella for a variety of 
higher level cognitive processes, processes of which we can give a (non-
homuncular) computational/functional account. I want to give centre stage to 
the kind of thinking that depends on working memory, and on which executive 
processes operate. It has the characteristics associated with ‘type 2’ cognition (or, 
misleadingly, ‘system 2’), in particular being subject to interference from concur-
rent cognitive load. (Empirical support for this characteristic does not imply that 
we need to endorse a type 1/type 2 dichotomy.) When cognitive-load-dependent 
thinking takes place in a series of steps, that constitutes deliberation—although 
note that ‘deliberation’ need not be deliberate in the sense of being the result of 
intending to deliberate or choosing what to think about.

Executive processes operate on representations in working memory. There is 
much that is controversial about working memory, including whether there are 
several different working memory systems or just one. Either way, it is clear that 
there is a tight capacity limit on the amount of information, of whatever kind, 
that can be actively maintained and manipulated at once.1 This is the episodic 
buffer (Cowan, Morey, and Naveh-Benjamin 2021) or focus of attention 
(Baddeley, Hitch, and Allen 2021). (Separately, verbal rehearsal can take place 
relatively autonomously in a phonological loop.) A larger collection of informa-
tion, drawn from long-term memory and/or perception, is activated at any one 
time, forming a model of the environment (Cowan et al. 2021, p. 49; Reuter-
Lorenz and Iordan 2021, p. 285). The focus of attention applies to small parts of 
this model at a time (Cowan et al. 2021, p. 47). Similarly, it may be that the con-
tents of conscious experience are wider than the narrow set of contents currently 
at the focus of attention in working memory (Block 2011). Working memory is, 
however, crucial for maintaining information in consciousness in the absence of 
input, beyond a very short time window (Baddeley et al. 2021).

The contents of working memory are determined by how attention is directed. 
Attention is needed to hold items in active working memory, and for dealing with 
external stimuli, inputting them into working memory or blocking them depend-
ing on the thinker’s goals (Baddeley et al. 2021). Attention is captured when a 

1  The capacity limit may be, not a resource constraint, but a functional feature that allows the 
shared use of the same representations: a bound to interference between different tasks that engage 
the same representations (Musslick and Cohen 2021).
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sudden change in an environmental feature is processed. These ‘bottom-up’ 
effects compete with the attention directed intentionally, ‘top-down’, in pursuit of 
the agent’s current goals (Cowan et al. 2021, p. 74). The latter means that the con-
tent and manipulation of working memory is partly under executive control. 
During development, the child’s capacity to direct attention improves: to use 
attention to enter new items into working memory and screen out distraction, 
and to actively remove from working memory items that are no longer task-
relevant. This capacity also varies between individuals. It seems that it is variation 
in this capacity that accounts for the strong correlation which exists between per-
formance on working memory tasks and standardised tests for fluid intelligence 
(G), and with educational attainment (Cowan et al. 2021). Thus, a very simple 
measure of whether a thinker can maintain an internal representation in the pres-
ence of distraction can be a strong predictor of these seemingly much more com-
plex traits (Stanovich 2009). The task probing the domain-general element of 
working memory manipulation can be as simple as measuring whether a partici-
pant can resist the urge to saccade towards a flickering stimulus (Engle 2010). It is 
striking that such a simple test can measure a cognitive capacity that has such 
wide-ranging effects on life outcomes.

So, on one common understanding of the term, intelligent thought is under-
pinned by the operation of working memory. The content of the thinker’s current 
active model—a collection of information activated in working memory—
depends on the agent’s limited-scope capacity for directing attention. Working 
memory research gives us a functional account of how conscious thinking pro-
vides a capacity for manipulating a variety of informational resources, running 
simulations in existing models of the environment and combining previously 
learned models in new ways (Langdon et al. 2022).

This is related to the distinction between what are often called ‘system 1’ and 
‘system 2’ (Evans and Stanovich 2013). Rather than two separate cognitive sys-
tems, these are better thought of as two characteristic ways in which different 
psychological systems can operate, type 1 and type 2. Type 1 processes are fast 
and automatic, and can operate in parallel with one another with minimal inter-
ference. Type 2 processes are slower, operating step-by-step, and tend to interfere 
with one another. They typically induce a feeling of effort. Interference occurs 
because type 2 processes depend on working memory. They interfere with one 
another because the capacity for manipulating items in working memory is lim-
ited. We need not think of this as a dichotomy. A cognitive process may depend 
more or less on the capacity to direct attention to supervise the contents of work-
ing memory. The extent of inference or autonomy may lie along a continuum.

A central case of load-dependent thinking is where we think through a prob-
lem step-by-step: what I have been calling deliberation. Deliberation can be 
abstract and rule-based; and it can account for how an agent conforms to an 
explicit norm (Evans and Stanovich 2013). We should not take this to be 
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exclusive: we should not assume, as some dual systems theorists do, that follow-
ing a norm or making a logically valid inference are things that can only occur in 
the type 2 way. Automatic processes can also account for how agents comply with 
normative requirements, and some logical transitions occur automatically (De 
Neys 2023); conversely, type 2 thinking can be erroneous and irrational. But step-
by-step deliberation—load-dependent and effortful—is a key place where we find 
concepts at work. It serves to highlight the way concept-driven cognition depends 
on a capacity-limited ability to manipulate representations in working memory. 
That phenomenon is actually wider. Capacity-limited conceptual thinking 
doesn’t just happen offline. We engage in it online, when thinking about how to 
respond to a situation, for example, or when trying to understand what someone 
has said. I emphasise the offline case here in order to highlight the phenomenon.

The book will lay out a picture in which concepts afford access to many kinds 
of information, conceptual and nonconceptual, so that a thought composed out 
of concepts in working memory can drive the construction of a multimodal 
and amodal, cross-domain model of an actual or hypothetical situation, a ‘suppo-
sitional scenario’. This is constructed in working memory, in the cognitive 
playground. A series of steps between such overall models, supported by 
conceptually-structured representations in working memory, will then be a load-
sensitive, type 2 process. These are the characteristics of conscious conceptual 
thinking.

A final cognitive property to mention is the distinction between model-based 
and model-free learning and decision-making. The distinction has its home in 
research on reinforcement learning. A model-free system learns, from a history of 
reinforcement, which actions produce the most long-run reward in which con-
texts. The system is just learning the value of actions, without appreciating which 
outcomes in the environment produce those rewards. Thus, when the value of an 
outcome changes, for example when fed to satiety on a particular foodstuff, the 
model-free system has to laboriously re-learn new values-in-context for all the 
actions it could perform. ‘Model-based’ tends to be something of a catch-all for 
any system that is not so-limited, but it also has a more positive sense.

In the more positive sense, a model-based system has any or all of the follow-
ing four properties: (i) it represents something about the causal structure of the 
environment, (ii) it calculates over those representations in working memory, 
(iii) it makes choices that are stimulus-independent (not just driven by the cur-
rent stimulus), and (iv) it produces an immediate change in behaviour when the 
value of an outcome changes (devaluation sensitivity). The first property comes 
in degrees and is not particularly connected with executive functions. Special-
purpose systems like the cognitive spatial map represent some of the structure of 
the environment and use it to calculate what to do. (ii) is more sophisticated, 
since it calls on working memory. This is found in non-human animals that use 
perceptual- and motor-systems offline, in prospection, to plan a course of action 
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and make a choice (Tomasello 2022, pp. 48–52). (iii) Reliance on working mem-
ory allows for choices that are stimulus-independent—to a degree that reflects 
the extent of the agent’s control over the direction of attention. If an agent is 
planning its actions in this way then, (iv), a change in the value of an outcome 
can be input in the offline calculation, resulting in an immediate change in what 
the agent will decide to do. In short, although the collection of systems that can 
be said to make use of a model, in some sense or other, may be heterogeneous, the 
richer idea of model-based cognition connotes a collection of features which 
together characterise intelligent deliberation.

Notice, too, that decisions taken in this way can reflect the current goals and 
values of the agent. Special-purpose systems operating in automatic ways need 
not (e.g. stimulus-response tendencies acquired by model-free reinforcement 
learning). They may presuppose values built in through experience, or canalized 
in development through gene-based evolution, values that are contextually inap-
propriate, biased, prejudicial, or otherwise at odds with the reflective values of 
the agent. Decisions taken by conscious deliberate thinking have access to the 
agent’s goals and to the values which they attach to outcomes entertained in 
the global playground. Deliberation can help to produce coherence in an agent 
that has a disjointed set of goals and motivations across different systems 
(Shepherd 2023).

1.3  Non-Local Inference

In widening our conception of concept-involving thought processes, I need to 
leave space for inferences that work in a quite different way from reasoning. I will 
stipulate that reasoning involves conceptual representations, moving from one or 
two premises to a conclusion, the conclusion then forming the basis for further 
steps, sometimes introducing new premises along the way. Inference is a more 
inclusive category, covering every kind of content-assessable transition between 
representations. Reasoning is not only found in the logic class. It also captures 
one way that humans perform everyday inferences. But there is another, rather 
different, way that people reach conclusions and take decisions. We have pro-
cesses that can take account of a wide range of considerations at once, weighing 
or integrating them in reaching a conclusion.

We see examples of that when people make choices for which many different 
factors are relevant (Usher et al. 2011; Newell and Shanks 2014); also in work on 
high dimensional category learning (Sloutsky 2010; Ashby and Valentin 2017). In 
both cases, the output of the process depends on weighing, seemingly in parallel, 
an array of different factors at once. One case of this that philosophers have been 
interested in is abduction (or inference to the best explanation). In deciding 
which theory or hypothesis is most plausible, we can take into account a wide 
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range of evidence and theoretical arguments, weighing each piece of information 
against the others in order to reach an overall assessment. Or so it seems.

Abductive inference was famously declared by Jerry Fodor to present a deep 
challenge to classical computationalist versions of the representationalist theory 
of mind, theories that are committed to the causal role of a representation in cog-
nition being based entirely on its constituent structure. Fodor agrees that infer-
ence to the best explanation does indeed call for the judicious weighing of a wide 
range of evidence, but argues that we don’t know how step-by-step reasoning that 
takes just a few premises at once as input could achieve this kind of overall assess-
ment in a realistic timescale (Fodor 2000). He adds that assessments of confirma-
tion, simplicity, and centrality also have this character. Fodor calls these processes 
‘global’, but the problem arises even if they do not in practice involve the thinker 
taking into account everything they know and believe. The problem is that these 
inferences involve the inclusive reliance on a large amount of information at 
once, seemingly in parallel. In this sense they seem to be non-local, even if not 
fully global. We do not have realistic ways of modelling these processes as being 
performed by step-by-step reasoning, one or two premises at a time; so we doubt 
that is how it is done. We need to enlarge our conception of the kind of computa-
tions that could be involved.

In fact we do have plausible computational models of how non-local inferences 
occur, and we now have good behavioural and neural evidence for their psycho-
logical reality in several domains. As we shall see, the cognitive spatial map in the 
hippocampus may be one case (§2.2). Some computations plausibly take place 
across the whole coherent map, rather than locally, place cell by place cell 
(Samsonovich and Ascoli 2005; Khajeh-Alijani, Urbanczik, and Senn 2015). 
Conclusions are reached in reliance on the structural representation as a whole. 
The computations are not well-modelled as step-by-step moves between a small 
number of premises. Nevertheless, the commitments of the representational 
theory of mind (RTM) are respected: the way chains of representations unfold 
depends only on syntactic/vehicular properties of the representations. It is just 
that relations between a whole array of individual representations (place cell acti-
vations) are critical to the way computations are performed over the map. An 
analogy would be looking at a cartographic map and seeing various features that 
pop out at a glance. The mountaineer performs a holistic assessment over the 
map, but what they conclude is driven only by the individual marks on the page 
and their relations. The former makes the process non-local. So Fodor is wrong 
to suggest that we have no idea how computations could be non-local, consistent 
with RTM—but that does not yet show how humans actually perform inference 
to the best explanation and other forms of non-local inference.

In the cognitive map the non-local process takes place outside consciousness 
and may not involve concepts, but this kind of non-local assessment probably 
does also take place in the course of conscious deliberation. A range of different 
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facts and considerations are processed in working memory, entered into the cog-
nitive playground, and the thinker makes an overall assessment based on them. 
The capacity of the cognitive playground is of course limited, so this is by no 
means a global assessment. If we perform abduction over a collection of evidence 
held in working memory, then this is far short of being an all-things-considered 
inference to the best explanation. It does, however, depart from a standard way of 
thinking of representational transitions, in terms of step-by-step reasoning. We 
can find many everyday examples when we think about imagination or simula-
tion. When I am imagining walking through the crowded room at that party, my 
assessment of where to go and what to do is taking on board, at the same time, the 
physical constraints of the room and the things in it, my physical capacity for 
moving through it, the social relations between people in the room and between 
them and me, and the effects on them of various things I might say or do. 
Individual considerations may grab my attention and be highlighted one at a 
time, but what I end up doing gets shaped by many different factors all at once.

Admittedly, I am not offering a very precise characterisation of the phenome-
non. For now, I want to get by with an impressionistic feel, a sense, offered by a 
few examples, that there is something here that differs from step-by-step reason-
ing. The examples suggest a style of inference that contrasts with classical compu-
tation. Familiar examples take place within a cognitive playground, but that is 
neither necessary, as the cognitive map case suggests, nor sufficient, in the sense 
that step-by-step logical reasoning can also be performed on representations in 
the playground. Some of the examples involve inferences over a complex struc-
tural representation (cognitive map; sensorimotor simulation). Other examples 
seem to involve the parallel processing of a large amount of information (weigh-
ing factors in making a choice; multi-dimensional categorisation; confirmation). 
The latter are often well captured by computational models that perform parallel 
distributed processing in artificial neural networks, as we shall see.

In all of these cases the inference is performed on a representation that is more 
complex than one or two premises. It is some kind of larger model of the situa-
tion: a cognitive map of spatial layout; a sensorimotor simulation of potential 
ways of moving one’s body and limbs; a collection of interconnected, potentially 
relevant evidence; an array of competing considerations and evaluations weigh-
ing against one another in making a choice. ‘Model’ here has to be understood 
loosely, if it is to cover the phenomenon I am pointing to, but it does suggest the 
idea that conclusions are being drawn from some sort of coherent representation 
that cognition has built.

‘Model’ also has a useful resonance with the contrast between models and the-
ories in philosophy of science. Inferences from theories tend to take place 
hypothesis-by-hypothesis. A model, by contrast, can be manipulated as a whole. 
Think of mechanical models of the solar system. But ‘model’ in philosophy of 
science does not have quite the same meaning since it encompasses models as 
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simple as a single mathematical equation. Most mathematical models are used in 
inferences in the step-by-step way rather than the non-local way. ‘Model’ also has 
resonances with the contrast between model theory and proof theory in formal 
logic. The connection here is more tenuous since model-theoretic inferences also 
take place step-by-step. But the intuition behind the label may still be apt, because 
model-theoretic consequences are things that follow from the model as a whole. 
They do involve an overall assessment (e.g. truth on every assignment of values 
to terms), unlike the application of proof rules, even if in practice that overall 
assessment is often performed exhaustively, piecemeal and step-by-step.

Informational model is a rather inclusive category. Special-purpose systems 
also involve informational models (the topic of Chapter 4). These can operate 
outside of the cognitive playground. Informational models are also stored in 
long-term memory. For now, I am focusing on informational models assembled, 
under the influence of conceptual thought, in the cognitive playground. When 
a model is constructed in the playground, that provides us with a way of spot-
ting  inconsistencies—inconsistencies between different beliefs (more generally, 
between descriptive representations), between beliefs and values, or between dif-
ferent values—and of doing something to restore consistency, often by changing 
what we believe or represent (although not always in a rational way; Harmon-
Jones and Mills 2019). This predicts that people should be more likely to achieve 
consistency between beliefs that they have considered together. That offers little 
protection against beliefs stored in long-term memory being radically inconsistent 
with one another. That is, it predicts a degree of belief fragmentation—an impli-
cation which has some empirical support (Lewandowsky and Kirsner 2000; 
Bendaña and Mandelbaum 2021).

1.4  Concepts as an Interface

Concepts, as I use the term here, are a type of mental representation. They are 
freely-recombinable elements of the thoughts we have when we are deliberating. 
They can represent all manner of things (objects, properties, events, etc.), from 
the mundane to the extraordinary: dog, number, heavy, and, Monday, bus, 
Mandela (small caps denote concepts). Abstractness has sometimes been taken 
as an indication that a representation is conceptual, but we form concepts of the 
concrete as well as the abstract. They are sub-propositional, in the sense that a 
single concept does not make a claim about the world on its own. It is only when 
two or more concepts are combined together into a complete thought that we 
have a representation with a truth condition (or satisfaction condition, etc.). 
When so-combined, a conceptual representation is propositional in the sense 
that its content is something that can be affirmed as true.
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Concepts are found in our judgements, hypotheses, intentions, aims, occur-
rent desires, and occurrent beliefs. The very same representations might show up 
elsewhere. Concepts might also be computed with non-consciously. It is possible 
that they are re-deployed in special-purpose representations, for example as a 
label in a cognitive map of space. And it could be that they are stored as represen-
tations in long-term memory. I want to leave these possibilities open as empirical 
questions rather than ruling them out by definition. So I am introducing concept 
by indicating paradigmatic cases, rather than defining it. I point to conscious 
deliberation because that is the most convenient way of pointing to this familiar 
kind of thought process. However, this is not a book about consciousness. I will 
not be putting any weight on consciousness as such. I am concerned to character-
ise this kind of thinking cognitively, in terms of representations and functions, 
remaining neutral as to how (or indeed whether) these properties depend on the 
nature of consciousness.

We could adopt a wider definition of ‘concept’ so as to encompass categorical 
representations of any kind. There are forms of categorical perception (e.g. of 
phonemes) that doubtless depend on representations that categorise their subject 
matter but that do not directly show up as freely-recombinable elements of 
thought. (We can form concepts of phonemes, but categorical perception does 
not depend on possessing freely-recombinable representations of phonemes.) 
Much work on whether non-human animals have concepts is concerned with 
investigating their abilities to categorise, and to generalise in useful ways, for 
example, to represent the same/different distinction. Those are important and 
sometimes sophisticated abilities. But I need a term that is tied to our central phe-
nomenon of interest, namely deliberation, and no better term than ‘concept’ pres-
ents itself to talk about the components out of which thoughts of this kind are 
constructed. So-understood, concepts are not limited to the categorical. They can 
refer to individuals and stuffs (substances: Millikan 2000); also to properties that 
are quantitative or graded rather than categorical. What singles out the paradig-
matic instances I’m pointing to is not their subject matter, but their general-
purpose recombinability in conscious thoughts.

* * *
The next four chapters of the book will flesh out the picture I have just sketched. 
Conceptual thought often drives the process. I will spell out how concepts held in 
working memory provide access to various kinds of stored information, concep-
tual and nonconceptual, entertained in an integrated fashion in a cognitive play-
ground. A thought may bring to mind mental images: visual, auditory, gustatory, 
tactile, olfactory. It may make us feel a certain way (pleasure, distaste). One 
thought may prompt another. We can see all of this as building a model of a 
situation—of an actual or suppositional scenario. It seems that some non-local 
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process allows the thinker to draw conclusions about what is supported by the 
model, or follows by extrapolating or filling in missing elements. If we under-
stand ‘inference’ broadly so as to cover all these kinds of transitions between rep-
resentations, then what we have is a picture of inference in the playground of 
concept-driven thought. Chapters 2 to 5 will consider elements of this story in 
turn. The aim is to develop the details of each in a way that coheres with the 
overall picture.

Chapter 2 examines how representations are structured. Chapter 3 looks at the 
computations they enter into and how that relates to representational structure. 
Structural representations enter into computations that depend on the relations in 
the structure having the particular contents they do. Representations displaying 
language-like compositional structure will, as we will see, afford computations of 
a different kind—broadly-logical transitions that depend on the general-purpose 
compositionality of concepts. Concepts, I will argue, enable cognition in the play-
ground to take advantage of inferences over structural representations, often tar-
geted at a specific domain. At the same time, concepts in working memory are a 
locus of domain-general recombination and the general-purpose operations of 
broadly-logical reasoning. (Although that is not the only way of performing infer-
ences with conceptual representations. There is no simple dichotomy here.) We 
can combine and reason with concepts in ways that are almost entirely uncon-
strained by their specific contents, allowing us to formulate novel thoughts and 
derive surprising new consequences from what we already know.

Chapter 4 discusses informational models. Much of the information we rely on 
in thought derives from special-purpose representational systems of various 
kinds. Chapter 4 will go into more detail about the examples above, like cognitive 
maps and sensorimotor simulation, as well as models representing causal rela-
tions and other kinds of relational structure, including those used in analogical 
reasoning.

Using these systems offline, in prospection, is not special to humans. Tomasello 
(2022) points to the perceptual- and motor-planning inferences that non-human 
animals perform using perceptual, proprioceptive, and motor systems. Although 
taking place in special-purpose systems, he treats this form of planning as cogni-
tive, presumably because it takes place somewhat offline and depends on work-
ing memory.

Chapter 5 lays out the benefits, for this kind of thinking, of having recourse to 
freely-recombinable concepts. Each concept affords access to information held 
in  special-purpose systems (characterizations), as well as semantic memories 
(explicit conceptual representations). A concept held in working memory allows 
us to rely in our thinking on the deliverances of those models, and to integrate 
them with information accessed through other concepts. Not all special-purpose 
representations can be made available in the cognitive playground, but for those 
which are, conceptual thought plays an orchestrating role. Chapter 5 offers an 
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account—at a relatively high level, but based on empirical results—of how this 
kind of thinking works and the role of concepts in it. The slogan is that concepts 
are ‘plug-and-play’ devices.

This discussion will prompt long-standing questions about how concepts are 
to be individuated and how their reference is determined. In section 5.7, I show 
how concepts should be individuated so as to fit into this picture—what makes a 
token representation an instance of the same concept again. The book will not, 
however, address the question of content-determination. The important question 
of the right metaphysics of content for concepts is one for another day. To make 
progress on that difficult issue it will be important first to have a detailed, plausi-
ble, and empirically well-supported account of how conceptual thinking works. 
That is what this book aims to provide.

1.5  Metacognition

A final reason for focusing on executive functions is that this is the sphere where 
metacognition is thought to operate. As we have seen, executive function encom-
passes several different cognitive capacities. It has sometimes been called the 
‘supervisory attentional system’ (Norman and Shallice 1986), although that tends 
towards treating it as a pluripotent homunculus. The term does helpfully point 
out that executive functions include capacities for monitoring cognition itself and 
controlling how it unfolds. Those are the signature properties of metacognition 
(Nelson and Narens 1990).

Some theorists treat metacognition as a single cognitive capacity, some kind of 
inner eye that the mind turns in on itself. A better view is that it is an umbrella 
term for a variety of ways that cognitive processes are monitored, both explicitly 
and procedurally, and for the effects of that monitoring on how downstream cog-
nitive processes unfold (control). Despite the label, metacognition is not an addi-
tional module or capacity that operates on top of cognition, but a type that 
characterises some of the executive processes that go on in cognition. Whilst 
some kinds of monitoring or metarepresentation may occur in special-purpose 
systems, outside the playground of thought (Shea 2014c), most psychological 
work on metacognition has focused on conscious thought and metacognition 
within the cognitive playground (Proust 2013; Koriat 2016; Schneider and Löffler 
2016; Ackerman and Thompson 2017). There are functional reasons why moni-
toring for accuracy, that is assessments of confidence, may be important to the 
well-functioning of a cognitive playground (Shea and Frith 2019). So there is 
good reason for thinking that conceptual thought, which occurs at the executive 
level, will involve metacognition.

I have been talking about informational models of two different kinds: models 
in special-purpose systems; and models constructed in the playground using 
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concepts. Special-purpose systems use a variety of representational structures to 
encode information in models of different kinds. In the picture I have sketched, 
conceptual thinking builds up informational models in the playground. Each 
concept is connected to its own bodies of information. When held in working 
memory and put together compositionally into a thought, they drive the con-
struction of a cross-domain model, a model that can put together existing infor-
mation in novel ways. Metacognitive processes are likely to monitor that model 
and aspects of the way that conceptual thinking unfolds.

While we do not yet have a clear picture of how this works, Chapter 8 will 
point to some existing empirical literature that gives an indication of how meta-
cognition applies to conceptual thinking. The upshot is that the thinker probably 
has a rich metacognitive appreciation of an informational model constructed in 
conceptual thought: of the dependability of the concepts used to construct it, of 
the accuracy of the information relied upon, of the reliability of the inferences 
that take place, and potentially of the overall coherence of the contents of the 
playground. Conceptual thinking is not just taking place in the playground; it 
takes place in ways that the thinker themselves appreciates in various ways.

1.6  Re-casting the Distinctions

I am aiming to paint a picture of human practical and theoretical inference, argu-
ing that we need to conceive of thinking broadly so as to encompass all the diverse 
resources we rely on when deliberating. My picture is that concepts act as an 
interface between general-purpose reasoning and many of the other information-
using systems of the mind. Concept-driven thinking corrals an assorted collec-
tion of information in the cognitive playground. How can that work, when these 
resources are so diverse? They draw on a variety of different kinds of informa-
tional models (Chapter 4), which utilise different kinds of representational struc-
tures (Chapter 2), and run different types of computations (Chapter 3).

To construct a picture of how these elements all play together, it is crucial to 
characterise them accurately. Chapters 2 to 4 ground the distinctions we need in a 
series of empirically well-supported psychological examples. Philosophy has 
tended to dichotomise the mind. Representations are separated into the iconic 
versus the discursive; or into the conceptual versus the nonconceptual. 
Representational transitions are split into the rule-based versus the associative. 
The mind’s architecture is split into modules versus central systems, or the per-
ceptual versus the cognitive. None of these dichotomies provides quite what we 
need in order to characterise the elements of the picture accurately. Psychology 
and cognitive science show that the elements are more various than these dichot-
omies suggest.
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In each case, the properties that underlie the dichotomy are perfectly useful. 
For example, iconic representations can be characterised as analogue, dense, 
holistic, and concrete; discursive representations as digital, sparse, arbitrary, and 
abstract. There is debate about which of these properties are necessary, and which 
if any is basic. Rather than arguing about how best to draw an analogue/digital 
distinction, I want to go straight to the underlying properties and use them to 
characterise the elements of my picture. So when I discuss semantically-
significant representational structure in Chapter 2, I identify six different proper-
ties of the way representations are structured. A range of examples show that 
these properties are exhibited piecemeal, in different combinations, in differ-
ent cases.

Many of these representational systems are compositional. Compositionality is 
usually seen as the core tenet of the language of thought hypothesis. The cases 
show that the landscape is more complex. Compositionality is exhibited in a 
range of different ways. Chapter 2 distinguishes the kind of compositionality at 
work in cognitive maps and other kinds of structural representations, which can 
support separate singular and general terms, and allow for rich recombination, 
from the language-like form of compositionality exhibited by the conceptual rep-
resentations involved in conscious deliberation. The latter employ a general-
purpose and semantically-neutral mode of combination, like predication in 
natural language. Rather than debating whether this means that the mind really 
uses a language of thought, or not, I concentrate on pinning down the properties 
exhibited by the different cases. Calling these other systems ‘nonconceptual’ is 
potentially misleading. First, it may be that concepts—representations that figure 
as recombinable components of deliberative thoughts—can also be deployed in 
special-purpose systems, for example in object files involved in tracking visual 
objects, or to label locations in the cognitive map. Second, many of these puta-
tively nonconceptual systems actually exhibit, piecemeal, properties often taken 
to be characteristic of the conceptual. So I will mainly avoid relying on a conceptual/
nonconceptual distinction.

Similarly, when the mind is dichotomised into modules versus central systems, 
most of the properties used to characterise modularity are real features of some 
psychological systems. But rather than adding another epicycle to the extensive 
literature on whether the mind is modular and how modularity should be 
defined, it is more useful for our purposes to work directly with some of the 
underlying properties. Many of the informational models discussed in Chapter 4 
are domain-specific, for example being specialised for visuo-motor coordination 
and control. ‘Domain-specific’ is not quite the right distinction, however. The 
map-type structures in the medial temporal lobe that are used to represent spatial 
locations are seemingly also deployed to represent other kinds of relational struc-
tures, domains where the content can be more abstract. These systems are 



18  Thinking with Concepts

special-purpose, in that they are suited for representing only some kinds of con-
tent, but they are not specific to a particular domain (cp. ‘functional specificity’; 
Margolis and Laurence 2023). A related distinction is modality-specific vs. 
amodal. Some of the resources that I argue are involved in concept-driven think-
ing have been taken be modality-specific (and, further, to support a modality-
specific theory of concepts; Barsalou 2008; Prinz 2002). While there are clearly 
amodal elements in my picture of conceptual thinking as well, I refrain from 
characterising the special-purpose systems as modality-specific since many, like 
the cognitive map, are clearly supra-modal (that may be true of all special-
purpose systems; Calzavarini 2022). Accordingly, I will mostly talk about special-
purpose informational models, to contrast with the general-purpose mode of 
representation exemplified by the language-like combinatorial structures of con-
ceptual thought.

My view also differs from the Fodorian dichotomy between modules and cen-
tral systems in other respects. Concepts can occur as representations in special-
purpose informational models, for example for representing natural kinds, 
mental properties, or natural numbers (§4.7). Conversely, conscious conceptual 
representations are involved in transitions that are automatic and content-specific 
(Chapter 3).

Other properties associated with modularity I also treat piecemeal. We have 
seen that deliberation draws on working memory and so exhibits the characteris-
tics of type 2 cognitive processes (§1.2). These are features associated with Fodor’s 
central systems, contrasted with the fast and automatic operation of modules. 
However, some of the special-purpose informational models I discuss in Chapter 4 
also exert cognitive load. They are not all simply fast and automatic. Many of 
these special-purpose systems rely on dispositions to make transitions between 
representations that effectively build in assumptions about the nature of the envi-
ronment. (They perform a ‘content-specific’ type of computation, in the sense to 
be defined in Chapter 3.) This means that their operation is often somewhat 
encapsulated from information in other systems. But this does not imply com-
plete encapsulation. The picture is compatible with there being a range of top-
down and contextual effects on how special-purpose systems operate (and hence 
with the empirical evidence to that effect). Conversely, there can be fast, auto-
matic transitions between conceptual representations. Finally, I completely avoid 
any claims about innateness. My picture is compatible with many different views 
about which capacities and representations are learned and unlearned, and the 
extent to which their adaptiveness depends on gene-based evolution or cultural 
evolution (Shea 2012). My picture has a collection of components and capacities 
that make up the mind, but these are not modules in anything like the classical, 
Fodorian sense.

Nor does my picture require a clear distinction between perception and the 
rest of cognition. Cases like the systems of ‘core cognition’ described by Susan 
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Carey look to be interestingly intermediate between the two. These systems 
deploy representations on the basis of input in a relatively automatic way, build-
ing in assumptions about the domain (e.g. of agents), but they also seem to be 
richly entwined with more cognitive processes. To the extent that my picture 
appeals to anything like a perception/cognition distinction the special feature is 
at the other end, the non-perceptual end, where we find deliberation. I will argue 
that there is something special about the way concepts combine in conceptual 
thought and the way deliberation has access to a general-purpose mode of non-
content-specific, broadly-logical, reasoning. But ‘cognition’ is not a good label for 
this capacity. On my picture, cognition is much broader, bringing in and marshal-
ling information from across the mind.

Perhaps the most problematic distinction is the dichotomy between rules and 
associations. ‘Associative’ is used to mean many different things. Sometimes it is 
about the way a disposition to transition between representations is learnt or 
acquired (or lost: whether it is susceptible to counter-conditioning). Other times 
it is about those dispositions themselves, for example ‘associative’ is used to talk 
about the way activation of one concept can prime another, like salt-pepper, 
where the transition is not inferential or faithful to content. These are real phe-
nomena, but they do not support a neat division into modes of cognition, the 
rule-based versus the associative. It is also problematic to treat classical computa-
tion versus parallel distributed processing as a matter of rules versus associations. 
One of the properties in the mix here is indeed computational, related to the abil-
ity to compute with variables, or to perform computations that depend on what 
Lake et al. (2017) call model-building as opposed to pattern matching. In Chapter 3 
I argue that the most fundamental contrast is between computational transi-
tions that are content-specific and non-content-specific, in a sense I spell 
out there.

In short, in laying out my account of how concepts mine information from 
throughout the mind and drive the construction of rich scenarios in the play-
ground of thought, I will mostly eschew contested dichotomies and instead use 
the underlying properties—some of which I also re-cast—to characterise the vari-
ety of representational structures, computational processes, and informational 
models involved.

1.7  What’s New?

My account colonises territory that is under-explored in existing work on con-
cepts. Many have focused on the domain-generality of conceptual thought (Evans 
1982; Fodor 1998, 2000). They have tended to overlook the role of concepts in 
deploying and organizing special-purpose resources. Other theorists have 
emphasised the domain-specific aspects of conceptual thought (Prinz 2002; 
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Barsalou 2008) while under-estimating the importance of being able to marshal 
these elements in general-purpose ways. My account shows that conceptual 
thinking decisively involves both.

The idea that concepts are an interface is not new. I draw heavily on Liz Camp’s 
work on the variety of resources, in addition to explicit conceptual representa-
tions (psychologists’ semantic memories), that concept-driven thinking makes 
use of (Camp 2015, 2019). She emphasises ways in which sensory, affective, and 
evaluative responses also characterize the subject matter a person is thinking 
about, whether it be a person, a foodstuff, or a favourite pet. These ‘characteriza-
tions’ offer us a much richer conception of the range of information accessed 
through a concept. But the hypothesis that concepts act as an interface does not 
yet answer our question about how real-world theoretical and practical inference 
actually works. It raises a knot of thorny problems that need to be addressed if the 
hypothesis of concepts-as-interface is going to fly.

Special-purpose systems encode information about the world in a variety of 
ways: a suite of sensorimotor expectations; relational structure in a spatial map; 
similarity structure in a social-semantic space representing the people we know. 
Can the deliverances of diverse informational models be integrated? How do the 
various representational structures inter-operate? Many special-purpose systems 
perform computations of a different type than those driving conceptual reason-
ing. Can one cognitive process have recourse to both? And what kind of cognitive 
process is thinking, exactly? Some parts seem to be fast and automatic (type 1), 
but the overall phenomenon is deliberate and controlled (type 2). Working mem-
ory plays a role, as does metacognition. Which cognitive capacities feed into 
concept-driven thinking and how do they work together?

The aim of the book is to answer those questions and assemble the answers 
into a coherent picture. The answers are empirically driven. There is also theoret-
ical work to precisify, and in some cases re-cast, existing distinctions. The way 
I put the pieces together is, I think, novel.

The picture is of course only tenable if it is empirically well-supported. But it 
should also be assessed as a whole, for its theoretical coherence, and for what it 
can explain. So the book is not a point-by-point argument that my theory is supe-
rior to other views. The book is focused on constructing the picture. The aim is to 
synthesise elements that appear in different streams of current work and arrange 
them into a more full-bodied account of conceptual thinking. That picture will 
only succeed if it forms an attractive whole. If it does, it shows that the hypothesis 
of concepts-as-interface is tenable. So the first aim is that the overall picture 
should make good on the interface hypothesis. It also has explanatory payoffs: it 
can help us deal with some other important problems. That is the focus of the 
second half of the book.

So, having expended so much effort on the details of the view in the first half of 
the book, the aim of the second half is to showcase some of the things this new 
picture allows us to explain. First off, it explains how deliberate thinking manages 
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to dance around the notorious frame problem (faced by classical AI systems), 
while at the same time transcending the limits imposed by the lesser-known 
‘if-then’ problem (Chapter 6; see e.g. Gallistel and King 2009). Concept-driven 
thinking can make use of the built-in assumptions of special-purpose informa-
tional models, while at the same time having access to general-purpose composi-
tional power and content-general computational processes. Acting as an interface, 
concepts allow us to take advantage of the benefits of each and to circumvent 
their complementary limitations.

Chapter 7 turns to the commonplace but elusive idea that the unfolding 
process of thinking draws on the meaning of the thoughts involved. That has 
proven difficult to reconstruct in the context of the representational theory of 
mind, with its commitment to transitions between representations being imple-
mented in causal transitions between representational vehicles caused by their 
non-semantic properties. While RTM has proven to be an extremely fruitful 
framework and has strong empirical support, it has left a puzzle about what role 
semantic contents are playing in thought, for the thinker. My picture shows that 
thinkers are right to think that much of their thinking draws substantially on the 
meaning—referential content—of the representations involved (while not on its 
own answering questions about the causal efficacy of content). A conceptually-
constructed informational model in the cognitive playground supports content-
driven, abductive inferences.

The picture makes more space for the role of the person in conceptual think-
ing. While not being homuncular, by incorporating metacognitive processes we 
get a slightly clearer glimpse of the thinker in the process of conceptual thinking 
(Chapter 8).

Finally, painting on an even larger canvas, the account explains why human 
concept-driven thinking is an especially powerful way of inferring new facts and 
planning for the future. The unreasonable power of human cognition lies in our 
ability to go beyond, as well as to perform, reasoning (Chapters 5 and 9).

In short, the ambition of the book is to characterise the elements of thinking 
(Chapters 2–4) so as to construct a picture of how concepts act as a psychological 
interface—keys that unlock the mind’s many informational resources and assem-
ble them in an integrated way in the cognitive playground (Chapter 5); and then to 
show that the resulting picture has significant explanatory payoffs (Chapters 6–9).

Chapter Summary

1.1  Concepts in the Playground of Thought

The book is about how conscious deliberation—practical and theoretical 
inference—works. Much is done offline, when there is spare cognitive capacity; 
sometimes also in a few moments before responding to a situation. Humans do a 
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lot of deliberation. Some thinking is a matter of step-by-step reasoning, logic 
being the paradigm. (p. 2)2 But much thinking involves simulation and imagina-
tion, drawing on the mind’s other resources. Reasoning is important for its gener-
ality and the ability to transcend the assumptions of special-purpose systems. The 
way this happens depends crucially on concepts, which can both figure in reason-
ing, and also integrate many other forms of information.

Human conceptual thinking underpins many of the remarkable achievements 
of our species. (p. 3) Concepts are crucial parts of the jigsaw, combining to form a 
thought but then connecting to information stored both in conceptual represen-
tations, and in special-purpose systems: sensory, motoric, evaluative, and affec-
tive. This picture calls for an account of how representations are typed and 
combined, computed with, and used to form informational models of the world. 
The psychology of concepts has tended to focus on categorisation, philosophy on 
reasoning; the book aims for a comprehensive account.

(p. 4) Thinking takes place in a shared representational space where different 
kinds of information and competing evaluations can be considered together. 
These are the functional features of a global workspace (bracketing any connec-
tion with theories of consciousness). A better idea is the cognitive ‘playground’. 
(p. 5) The cognitive playground has the functional property that representations 
are maintained together and manipulated in relation to one another (glossing: 
‘playground’, ‘thought’, ‘thinking’).

1.2  Deliberation

(p. 6) To put it another way, the book is about the role of concepts in executive 
processes (glossing ‘deliberation’). Executive processes operate on representa-
tions in working memory, with a tight capacity limit on how much information 
can be manipulated at once. The contents of working memory are determined by 
how attention is directed; doing so skilfully is a cognitive capacity with wide-
ranging consequences. (p. 7) Working memory offers a functional characterisation 
of how thinking has the capacity to manipulate diverse informational resources.

Using the type 1/type 2 distinction, deliberation works in the type 2 way—it 
depends on our limited capacity to direct attention to supervise the contents of 
working memory. Step-by-step or type 2 reasoning is a clear instance of capacity-
limited conceptual thinking. (p. 8) A thought constructed out of concepts in 
working memory drives the construction of a suppositional scenario in the cog-
nitive playground. This is related to the model-based/model-free distinction. 
‘Model-based’ connotes four features which, although separable, come together 

2  Each sentence of the summary corresponds to one paragraph. Page numbers indicate where the 
paragraphs begin.
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in intelligent deliberation. (p. 9) This process has access to the current values and 
goals of the agent, from which special-purpose systems and model-free decisions 
may be disconnected.

1.3  Non-Local Inference

As well as reasoning between conceptual representations, step-by-step, we can 
perform inferences that take account of a wide array of considerations at once 
(glossing ‘reasoning’ and ‘inference’). Example: multi-factor choice; high-
dimensional category learning; and, in philosophy, abduction. (p. 10) To account 
for non-local inference, we need to enlarge our conception of computation (that 
is the truth behind Fodor’s critique). We do now have models of non-local com-
putations, taking place over an array of representations, that respect RTM’s stric-
ture that transitions occur in virtue of vehicle properties. Non-local inference also 
occurs in conscious thinking, for example deciding how to walk through a room 
at a party. (p. 11) For now, I am simply characterising the phenomenon roughly 
by reference to a few examples.

Such inferences occur over a more complex representation or set of represen-
tations, some kind of ‘model’ of a situation. ‘Model’ has an intended resonance 
with scientific models (contrasted with theories), and with model-theoretic 
entailment in logic. (p. 12) An informational model in the cognitive playground is 
subject to some kind of check for consistency.

1.4  Concepts as an Interface

Concepts (glossed here) are sub-propositional freely-recombinable elements of 
the thoughts we have when deliberating. (p. 13) This is not a definition, but a way 
of pointing to paradigm instances. It does not cover categorical representations that 
do not display general-purpose recombinability in deliberate conscious thought.

The book will build up a picture of how conceptual thought drives inferences 
taking place over a collection of representations, of different kinds, in the cognitive 
playground. (p. 14) Chapter 2 examines how representations are structured and 
Chapter 3 looks at the computations they enter into and how that relates to repre-
sentational structure. Chapter 4 surveys different kinds of informational models. 
Some other animals can use informational models in prospection. Chapter 5 
shows how conceptual thought makes this more powerful: concepts act as a locus 
for accessing and combining information from a wide array of different special-
purpose informational models (they are ‘plug-and-play’ devices). (p. 15) Chapter 5 
offers an account of concept individuation; the fundamental issue of content-
determination is not addressed in the book.
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1.5  Metacognition

Executive functions include the capacity for metacognition: for monitoring and 
controlling how psychological processes operate. Metacognition covers a variety 
of ways that concept-driven thinking is monitored and controlled. Metacognitive 
processes can monitor the current cross-domain model in the cognitive play-
ground. (p. 16) Chapter 8 points to some existing empirical literature; the upshot 
is that concept-driven thought is something that the thinker themselves appreci-
ates in various ways.

1.6  Re-casting the Distinctions

How can concepts act as an interface between diverse kinds of informational 
models, representational structures, and computational processes? We need more 
subtle distinctions than the standard philosophical dichotomies provide. (p. 17) 
My tactic is to characterise a variety of psychological cases by reference to the 
useful properties that underlie the common dichotomies, for example six differ-
ent properties of semantically-relevant representational structure (Chapter 2).

Compositionality itself comes in different forms, for example in cognitive 
maps vs. the general-purpose language-like recombination of concepts. Related 
to modularity, many of the informational models in Chapter 4 are special-
purpose (some not all specific to a particular domain, but probably not modality-
specific). (p. 18) My view also differs from Fodor’s modules/central-systems 
dichotomy in the way properties are distributed. Special-purpose systems can be 
fast and automatic, but may instead exert cognitive load; they have built-in 
assumptions and can be partly encapsulated, but admit a range of contextual and 
top-down effects. I do not rely on a clear perception/cognition distinction—
general-purpose concept combination (Chapter 2) and content-general transi-
tions (Chapter 3) are probably proprietary, but cognition goes much wider. (p. 19) 
Nor do I work with a dichotomy between rules and associations, although the 
distinction in Chapter 3 is in the vicinity. In short, I aim to use underlying prop-
erties directly to characterise the variety of representational structures, computa-
tional processes, and informational models involved.

1.7  What’s New?

Previous theories of concepts have focused either on the domain-general or on 
the domain-specific; the account here decisively involves both. (p. 20) I rely heav-
ily on Camp’s idea that concepts access a wide range of conceptions; the aim is to 
show how these are integrated in theoretical and practical inference. I ask: which 
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cognitive capacities feed into concept-driven thinking and how do they work 
together? Any novelty is in the way I put together the pieces (and perhaps in how 
I re-cast some of the distinctions). The picture should be assessed as a whole, 
including for its explanatory payoffs.

The picture developed in the first half of the book shows how concept-driven 
thinking manages to circumvent the frame problem and its converse, the ‘if-then’ 
problem (Chapter 6). (p. 21) It vindicates the idea, compatibly with RTM, that 
much thinking draws substantially on the meaning of the representations 
involved (Chapter 7). By including a role for metacognition, it brings the thinker 
somewhat better into sight (Chapter 8). Most ambitiously, the picture shows why 
human concept-driven cognition is an especially powerful way of inferring new 
facts and planning what to do (Chapters 2, 5, and 9). In short, the book charac-
terises the elements of (Chapters 2–4), and sets out (Chapter 5) a framework, and 
shows what it can explain (Chapters 6–9).

Concepts at the Interface. Nicholas Shea, Oxford University Press. © Nicholas Shea 2024. 
DOI: 10.1093/9780191997167.003.0001
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2.1  What is Semantically-Significant Representational  
Structure?

This chapter is about the different kinds of representational structure exemplified 
by the representations involved in concept-driven thinking. I start off by saying 
what representational structure is, and identifying six aspects of semantically-
significant representational structure. Section 2.2 shows that these six features are 
exhibited, piecemeal, by mental representations of various kinds. Section 2.3 sets 
out what it takes to be a structural representation, and how this differs from rep-
resentational organization, with which it is sometimes elided. Section 2.4 exam-
ines whether the general-purpose compositionality of language and concepts is 
an instance of structural representation. I argue tentatively that it is not; or, if it is, 
that conceptual representations and sentences are structural representations of a 
special kind.

Representational structure interacts with the way that representations are pro-
cessed. Chapter 3 distinguishes two broad kinds of computational process. We 
will see that, although there are no necessary connections, there are reasons why 
representational structure tends to align with computational process. Different 
kinds of representational structure also form the basis of the different varieties of 
informational model described in Chapter 4. These are the elements that need to 
fit together in order to give an account of concept-driven thinking (Chapter 5).

First off, what is representational structure? External representations give us 
familiar examples. A public language sentence is structured out of words. A carto-
graphic map is structured out of marks and symbols arranged spatially in two 
dimensions on the page. Some simple signals have no representational structure 
at all: think of the ringing of a fire alarm bell or the tail-slap of a beaver to signal 
danger. The physical vehicle does have structure—a fire alarm is a series of 



28  Representational Structure

rings—but its structure has no representational significance. It does not affect the 
content carried by the representation. (It could, but in these cases does not.)

In the case of a sentence, many ways of dividing up marks on the page do not 
correspond to representational structures (Burge 2018). The representational 
structure of a sentence is grammatical or syntactic. In the sentence ‘the dog bit 
the man’, ‘the d’ is a part, but not a syntactic or representational part. Nor is ‘dog 
bit the’, given the way the sentence is parsed grammatically; whereas ‘the man’ is a 
representational part. A map can be divided into spatial parts. Most contiguous 
regions are representational parts; but not, for example, a region that bisects a 
symbol on the map. The symbol for a pub could be split into handle and glass. 
The half symbol is not a representational unit on the map. Not every way 
of  dividing a representational vehicle into parts produces semantically-
significant units.

This point makes for terminological difficulties: a representation can have 
structure that is not semantically-significant, so does not count as representa-
tional structure in the standard sense. The ringing of a fire alarm is a representa-
tion which, while having structure, lacks semantically-significant representational 
structure. I will follow the standard usage, so that representational structure 
(unmodified) is taken to be semantically-significant representational structure, 
disambiguating explicitly when necessary. This is one of several places where the 
terminology becomes complex. So, as well as explaining how I am using each 
new term when I introduce it, at the end of the chapter I have drawn together a 
list which recaps how I am defining or using each term (§2.5).

A further terminological difficulty is that ‘structural representation’ is the 
standard term for a specific kind of representational structure: representations 
that rely on a structural correspondence between representation and world 
(Swoyer 1991; Ramsey 2007, pp. 77–92; Shagrir 2012). Maps are one example. 
This is just one kind of semantically-significant representational structure. 
Sentences have a different kind of representational structure (although whether 
this really is different is a matter of controversy, see §2.4). I will not attempt to 
legislate a new term for structural representation, so it will be important to bear 
in mind that a representation’s having semantically-significant representational 
structure does not entail that it is a structural representation.

In the case of maps and sentences, representational structure is part-whole 
structure. The whole is a complex representation. Other representations are parts. 
The meaning, content, or semantic significance of the whole is systematically 
related to the meanings of the parts and their mode of combination. One way of 
being ‘systematically related’ is that the meaning of the whole is determined by 
the meaning of the parts and their mode of combination. That is the standard 
account of sentence meaning. It is not the only option. Another way of being sys-
tematically related is that the meaning of the parts derives from the meaning of 
the whole, given the mode of combination. For example, in certain kinds of map 
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the points on the map pick out locations in virtue of their relations to other points 
in the structure (Shea 2014a, p. 131; 2018, p. 125).

Representations can have constituents in a way that is not a matter of part-
whole structure (certainly not spatial part-whole structure). For example, a dis-
tributed pattern of neural activation may be decomposable into separate 
activation vectors (Smolensky 1988, 1995; Shea 2007; Eliasmith 2013). One com-
ponent may carry information about colour and another about direction (Mante 
et al. 2013). If the separate activation vectors are functionally significant, then it 
may be right to think of the distributed pattern of activity as constituted by the 
combination of the component vectors. The distributed pattern of activation is a 
superposition of component patterns. The vectors are not spatially separable. 
Each neuron’s activity is affected by contributions from both vectors. In what 
sense, then, are they separate? There is a strong analogy with the way two waves 
add up when they pass through the same space. Consider two searchlight beams 
crossing in an X. At the point where they cross, the light intensity at any moment 
will be the sum of that from both beams. (The waves can cancel out as well as 
combining into higher peaks.) Nevertheless, each beam retains its identity and 
continues onwards towards its target. In the same way, a distributed pattern of 
neural activation may be the sum of component vectors, components that act 
independently in the way processing unfolds. In the strongest case, where the 
component vectors are orthogonal, operations can be performed on one compo-
nent without having any effect on the others. Thus, superposed patterns of activa-
tion can be representational constituents.

It will be convenient to call representations—the entities that carry representa-
tional content—‘vehicles’ of content. ‘Vehicle properties’ are non-semantic prop-
erties that are or may be relevant to the way representations are combined and 
processed. Since vehicle properties can carry semantic values, they too should be 
considered to be vehicles of content. So ‘vehicle’ can be used both for particulars 
(representations) and for their (non-semantic) properties.

Semantically-significant representational structure is a functional notion 
(Burge 2018; Lande 2021). It depends on how a putative representation is formed 
and processed, and also on which (non-semantic) properties are causally relevant 
to those transitions. Written words are an obvious case. With words and sentences, 
representational structure starts from the sequential order in which they are writ-
ten. The syntactic or grammatical structure of a sentence divides up words in the 
sequence into a higher level pattern (classically, a tree structure). But vehicles in 
the brain are quite unlike written words. In general, vehicles are individuated 
functionally. As we have just seen, constituents need not be spatially separable.

In the case of mental representation, the entities that count as vehicles may be 
quite abstract by reference to activity in the brain. What RTM is committed to, 
however, is that vehicles and vehicle properties are a legitimate non-semantic 
way of characterising the causal dynamics of the system (Shea 2018, pp. 37–41). 
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The components out of which a representational structure is composed must be 
psychologically real: they must figure in psychological processes and competen-
cies (Burge 2018). It is constituency relations amongst the entities and properties 
so-characterised that are the basis for representational structure.

Representational structure is a matter of how vehicles and vehicle properties 
are combined. The representational structure of the whole is fixed by vehicle 
properties of the constituents and how they are put together. The structure of a 
representation is semantically significant to the extent that vehicle properties and 
relations have semantic import; that is, carry semantic values or make a differ-
ence to the content of a complex representation. For example, the compositional 
structure of the sentence ‘man bites dog’ makes it the case that its content con-
cerns a dog being bitten rather than a dog doing the biting. Other vehicle proper-
ties, like the typographic font, have no semantic significance.

The cognitive sciences have developed a variety of techniques for investigating 
representational structure. It can be inferred from: which entities and properties 
are and are not distinguished; patterns in reaction times and errors; indirect facil-
itation and interference effects like priming or neural repetition suppression; and 
patterns of breakdown under cognitive load, as a result of pathology, or by direct 
interference (e.g. via transcranial magnetic stimulation, TMS). There is also an 
increasing range of techniques that measure vehicles directly, for example 
through recording neural activity with electrodes or by multivariate pattern anal-
ysis of fMRI data.

Representational structure is also inferred by investigating constraints on what 
can and cannot be represented together. For example, a cartographic map cannot 
be used to represent the spatial relation between Almaty and Bishkek, and 
between Bishkek and Chimkent, without also representing the spatial relation 
between Almaty and Chimkent. That is, representational structure determines 
‘distributional properties’ (Lande 2021): which representations can, cannot, 
and must co-occur. Lande (2021) shows how this logic works in vision science: 
experiments involving adaptation have allowed researchers to discover the 
distributional properties of visual representations and thereby to infer their 
semantically-significant representational structure.

There is much philosophical work taxonomizing representational structure 
into broad kinds, usually dichotomies. These broad kinds are known as represen-
tational formats. The most prominent format distinction is between iconic 
and  discursive representations (Quilty-Dunn 2020). As explained in the first 
chapter (§1.6), these dichotomies are not ideal for my purposes, either being too 
contested, or running together different properties that we will need to separate.1 

1  Coelho Mollo and Vernazzani (2023), preprinted on arXiv just before the book went into produc-
tion, make a similar argument. Further, they make a persuasive case that existing work on representa-
tional formats in cognition has relied too heavily on analogies with public external representations.



I  will instead proceed by working directly with six aspects of semantically-
significant representational structure that are identified in this literature. These 
features are exhibited, amongst other places, by the representational structure of 
natural language sentences:

(a)	 They have semantically-significant components (e.g. words) (unlike an 
unstructured alarm call).

(b)	 The components can be tokened separately, one without the other.
(c)	 When tokened together, the components are typically ‘bound’ together by 

a device whose semantic significance is that their contents should concern 
the same state of affairs, rather than being a simple list of contents.

(d)	 Each constituent is ‘incomplete’ in the sense that it does not, on its own, 
make a claim or pick out a worldly condition.

(e)	 Different components make different kinds of contribution to the overall 
content, for example some act as singular terms that represent particulars, 
others as predicates that represent properties or relations.

(f )	 The representation makes use of a general-purpose device of concatena-
tion: predication, or an even more general-purpose form of concatenation 
(like Merge in natural language).

These features are also exhibited, piecemeal, by representations of other kinds. 
I will go on to argue that the conceptual representations entertained in conscious 
deliberation have all six features. There have been many attempts in philosophy 
to distinguish between conceptual and nonconceptual representations. Several 
different ways of drawing the distinction are on offer. Since the structural features 
of paradigmatic conceptual representations do not come and go together, but are 
found piecemeal in other cases, any way of drawing a dichotomy risks being mis-
leading. It is better to accept that there is a plurality of types of representation, 
exhibiting a variety of kinds of representational structure (Camp 2007, 2018). 
I have instead pinned down what I mean by concept by reference to their paradig-
matic occurrences—concepts are generally-recombinable constituents tokened in 
deliberative thinking—leaving open that concepts may also figure in other places 
(e.g. in non-conscious processing, as constituents of some representations in 
special-purpose systems, or in long-term memory). The next section examines how 
these structural properties are exemplified across a range of psychological cases.

2.2  Varieties of Semantically-Significant  
Representational Structure

This section surveys a variety of forms of representational structure exemplified 
by mental representations of different kinds. We will see that the features just 
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listed, derived from language-type structure, are in fact found, piecemeal, in 
mental representations of various other kinds.

The base case is where there is no structure at all. This may be rare when it 
comes to mental representations. With external symbols, a paradigm is the vervet 
alarm call signalling system (Seyfarth, Cheney, and Marler 1980). There are three 
different calls, not systematically related to one another, each arbitrarily related to 
a different kind of predator. Vervets have evolved and/or learnt to react appropri-
ately to each type of call. The animals do not register or make use of any relation 
between the different calls. These are nominal signs (following Godfrey-Smith 
2017; see also Planer and Godfrey-Smith 2021).

Nominal signs lack any semantically-significant representational structure. 
Nor are the relations between them of any semantic significance. Planer and 
Godfrey-Smith (2021) give an example of a nominal sign system established by 
explicit convention: as used by Paul Revere, one lantern meant the English are 
coming by land, two lanterns meant the English are coming by sea. The latter sign 
is built of out two lanterns, but the spatial structure has no semantic significance. 
It is not semantically-significant representational structure. Nor are the relations 
between the two signs, for example that the second is twice as bright as the first, 
of any significance.

Most examples of nominal sign systems are non-psychological. They concern 
signals sent between organisms, or internal signalling within the body, for exam-
ple by hormones. When it comes to mental representations, even the simplest 
representations tend to be more than a simple on/off signal. They usually come in 
degrees. A neural signal that registers surprise at a novel stimulus correlates with 
how unusual the stimulus is (Polich 2007). Similarly, the dopamine signal regis-
tering reward reflects the degree to which the reward was unexpected (Rushworth, 
Mars, and Summerfield 2009). There are many types of mental representation 
that track quantity, like the much-studied analogue magnitude system that tracks 
the number of discrete objects or events encountered (Nieder and Dehaene 
2009). In these examples there is a system of interrelated representations, of 
which only one is tokened at a time. For example, the level of neural activation 
may represent numerosity. Different levels of activation represent different 
numerosities. Only one level of activation is tokened at a time.

These cases differ from nominal sign systems in that there are relations 
between the different representations. Since no two representations are tokened 
as a part of the same structure, these are not structural representations. 
The  representations do not have semantically-compositional components. 
Nevertheless, the way the representations are interrelated in a family can 
be  computationally useful, as we shall see (§2.3). They display what Peter 
Godfrey-Smith calls ‘organization’ (Godfrey-Smith 2017; see also Planer and 
Godfrey-Smith 2021). Such families of organized representations are one step 
up from nominal signs.



The next case is where a representation has more than one semantically-
significant dimension of variation. For example, the honeybee nectar dance has 
two dimensions of variation: angle to the vertical and number of waggles. Neither 
dimension can be tokened without the other. A dance must occur at a certain 
angle and will always consist of a certain number of waggles. However, these two 
vehicle properties have semantic significance independently of one another. A 
dance at θ degrees to the vertical means: there is nectar along a bearing θ degrees 
ahead of the direction of the sun. A dance of n waggles means something of the 
form there is nectar x metres away. Consumer bees could be set up to forage based 
on one of these dimensions while remaining oblivious to the other. The semantic 
significance of the representation does not depend on their being combined (as it 
does with predication in natural language). Each dimension carries its own cor-
rectness condition. (Contrast predication: Fa has a truth condition but F and 
a  do not.) The representation has two semantically-significant components, 
tokened together, but the two components are not bound together using a 
semantically-significant mode of combination.

Some mental representations work in the same way. Mante et al. (2013) studied 
how macaque monkeys performed a task that involves looking at arrays of mov-
ing coloured dots (see also: Thura et al. 2022; Langdon, Genkin, and Engel 2023). 
The researchers discovered a distributed pattern of activation in prefrontal cortex 
that carries both colour and motion information. The two properties are regis-
tered by independent dimensions in (high dimensional) activation space. Which 
dimension the animal relies on to guide behaviour depends on whether colour or 
motion is relevant to the judgement they have to make on a particular trial. Any 
pattern of distributed activation necessarily has a component along both dimen-
sions. Neither can be tokened without the other. But they have separate semantic 
significance, each carrying its own correctness condition (Shea 2018, pp. 100–3), 
rather than being combined (e.g. one being predicated of the other).

By contrast, in early visual processing it is likely that representations of attri-
butes like colour and motion can be physically tokened separately, so that one 
attribute can be represented without representing the other (Gazzaniga, Ivry, and 
Mangun 2019, p. 198). For example, if there are separate feature maps for colour 
and contour curvature, then the way the colour of a location is represented does 
not require anything about its curvature to be represented. They are not part of 
the same representational structure, as they are in the Mante et al. example in 
prefrontal cortex.

Something more is needed if two attributes are to be represented as instanti-
ated together, for example as features of the same object or of the same location. 
They need to be ‘bound’ (Treisman 1996). Binding is a matter of vehicles for the 
two attributes being combined together in a representational structure. For 
example, there is good evidence for object files in visual processing, or in visually-
driven working memory, in which various properties are predicated of a 

Varieties of Representational Structure  33



34  Representational Structure

perceived object that is being tracked through space, including as it moves in and 
out of sight behind other objects (Pylyshyn 1989; Quilty-Dunn 2016, 2020). 
Visually-registered properties may also be co-attributed to the same spatial loca-
tion, or each attributed to the other in some way. The semantic significance of any 
of these forms of binding is that both features are attributed to the same object, 
event, or state of affairs. Consider someone seeing a blue circle at the same time 
as seeing a green triangle. The visual system is registering both the circle and the 
triangle. There are also visual representations of the two colour properties, blue-
ness and greenness. The significance of binding is that the blueness is attributed 
to the circle and not to the triangle. Some device of concatenation connects the 
representation of blueness with the representation of circularity. (This may be by 
predicating both of a location or of a visual object representation.) The semantic 
significance of the way the two representational vehicles are combined is that 
blueness and circularity are represented as properties of the same object. Because 
of binding, the visual system is able to represent the difference between encoun-
tering a green circle plus a blue triangle, on the one hand, and a blue circle plus a 
green triangle, on the other.

In this case the representational constituents do not make a claim about the 
world on their own, but only when combined into a complex representation. Each 
is incomplete. In the same way, in the sentence ‘Layla runs’, both the singular term, 
‘Layla’, and the predicate, ‘runs’, are incomplete. Only the whole sentence represents 
what we can call a ‘complete condition’. In this case the complete condition is a truth 
condition. In other cases it is a correctness condition, accuracy condition, or satis-
faction condition. I am stipulating that a complete condition is found at the level of 
facts or states of affairs, something that could be the case, or against which the 
world could be assessed (also at the level of a proposition, but calling a content 
propositional often carries further theoretical baggage).2 With a nominal sign, its 
content concerns a complete condition even though the representational vehicle 
has no semantically-significant representational structure. With incomplete repre-
sentations, they must be bound together in order to represent a complete condition.

Investigating what kind of concatenation is at work in the visual system is an 
important question for vision science. Feature representations may combine with 
an object representation to make a claim about an object (that object has a green 
surface).3 Or the attributes may be represented in a feature map that ascribes 
properties to an array of locations (Treisman and Souther 1985; Clarke 2021), 
with each colour representation combining with the map so as to represent the 

2  The term is slightly awkward in that being incomplete does not imply that the system forming the 
representation has more work to do. A perceptual mechanism that has the function of identifying 
(Burge 2010) has not fallen short when it outputs a representation with a content like a demonstrative 
noun phrase (that F). However, we need a term for the contrast, and alternatives (e.g. unsaturated, 
sub-propositional) have disadvantages of their own.

3  Contrast a perceptual attributive, e.g. that green surface (Burge 2018, p. 90).



colour at a particular location. Either way, the constituents are incomplete. They 
do not individually concern a complete condition, a way that the world could be. 
In this respect they contrast with the bee dance case, and with the PFC colour-
motion case, in which two complete conditions are represented, separately, by 
two different aspects of a complex vehicle.

The constituents of a sentence (‘Layla runs’), in addition to being incomplete, 
are also physically tokenable separately (‘Layla’). The bee dance is a case where 
two components are not tokenable separately, but each represents a complete 
condition. (Also in the Mante et al. 2013 colour-motion case.) There are other 
psychological cases where there are incomplete components which are not token-
able separately.

An illustration of that is found in the hippocampal place cell system. This is an 
example we will return to repeatedly, so it is worth introducing in some detail. 
The medial temporal lobe contains a system which represents spatial locations 
and is used for navigating through space, a ‘cognitive map’ (O’Keefe and Nadel 
1978; O’Keefe and Burgess 1996). The cognitive map relies on various compo-
nents: place cells, grid cells, head direction cells, landmark cells, object-vector 
cells, border cells, etc. (Grieves and Jeffery 2017). Structural representations in 
the medial temporal lobe have been most extensively studied in rats, in relation to 
space, but there is converging evidence in humans where, in addition to spatial 
locations, the same neural structures can also come to represent more abstract 
relational structures (Schuck and Niv 2019; Liu et al. 2021). An important compo-
nent of the cognitive map is the array of place cells found in the hippocampus. 
Place cells show remarkable sensitivity to spatial location. When active during 
movement, place cell firing correlates with the animal’s location in a given arena. 
Irrespective of which way the animal is facing or what it can see, a given place cell 
fires when and only when the animal is at a certain location. Place cells retain 
their spatial sensitivity in the dark, updated based on feedback from the animal’s 
self-generated movement. In this ‘online’ mode of operation, place cells correlate 
in a highly reliable fashion with current location.

The representational structure we are interested in is observed when the cog-
nitive map is taken offline—when it is not being driven by current sensory input. 
In this offline mode of operation, chains of place cell activity correspond to 
potential routes through the environment (Dragoi and Tonegawa 2011; Wang, 
Foster, and Pfeiffer 2020). This is not a matter of the way place cells are spatially 
arranged within the hippocampus. Rather, as a result of the experience of moving 
around, neural interconnections form between place cells that correspond to 
neighbouring locations (Fig. 2.1). Place cells for nearby locations that ‘fire 
together’, ‘wire together’ (or were already wired together). This pattern of synap-
tic connections means that, when place cells are active offline, one cell activates 
another in a way that reflects the spatial proximity of the places to which they 
correspond. We will focus on the patterns of activity that occur when place 
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cells  are active, leaving aside the standing network of synaptic connections. 
Co-activation of vehicles reflects proximity of locations.

These relations of co-activation are used to calculate potential routes through 
the environment. Routes through the environment are assigned value based on 
how readily they lead to rewarding outcomes (Mattar and Daw 2018; Krausz et al. 
2023). There are various ways this could happen, but for simplicity we can think 
of the system in offline mode as simulating various potential routes. It starts by 
activating a target location to be reached and runs through sequences of co-
activation that trace back to the current location. It picks the shortest of the simu-
lated sequences and, switching to online mode, follows that sequence in reverse 
in order to reach the target. The role of place cells in route planning gives us good 
reason to think that place cell activity represents spatial locations, and that the 
activation of one place cell by another represents that the two corresponding 
locations are near one another. I won’t attempt to reproduce that argument here 
(see Shea 2018). For the sake of the example we can simply take it that the activa-
tion of a place cell represents a location and co-activation of two place cells rep-
resents spatial proximity between two locations.

This, then, is an example of a representational structure consisting of incom-
plete components that cannot be tokened separately. The vehicles of content are 
place cell activations. The relation of co-activation between vehicles represents 
the relation of spatial proximity between locations. Where cell 1 represents loca-
tion 1 and cell 2 represents location 2, the activation of cell 1 by cell 2 represents 
that location 1 is near to location 2. In this offline mode of operation, the activa-
tion of a single cell in isolation does not represent a complete condition. It is 
incomplete. Only in combination does the activation of two or more place cells 

Fig. 2.1  The left panel schematically illustrates an array of place cells in the CA1 layer 
of the hippocampus. Heat maps are shown for four of the place cells, indicating where 
each is active when the animal is moving around freely in a square arena (viewed 
from above). Cells corresponding to nearby locations (black blobs that are close 
together in the square arena) need not be close together in the hippocampus. 
Nevertheless, as shown in the right panel, cells that correspond to pairs of places that 
are near one another (L1 and L2; L3 and L4) are interconnected, and thus, in offline 
processing, tend to activate one another.
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represent a complete condition (e.g. that location 1 is near location 2). There is 
also an incomplete representation of proximity. The vehicle property that carries 
the content nearby is co-activation. Unlike in the case of a sentence, however, the 
relation (co-activation) cannot be tokened without tokening the incomplete con-
stituents between which that relation obtains.

The way space is represented in offline place cell activations exemplifies many 
but not all of the above-noted structural features of natural language sentences 
(§2.1): semantically-significant representational components, which are incom-
plete, making semantic contributions of different kinds (some representing par-
ticulars, others relations), with contributions that are semantically bound to one 
another—i.e. (a), (c), (d), and (e) above, but not (b) (being separately tokenable). 
The same is true of the way cartographic maps represent spatial relations between 
places. A map cannot token a representation of a spatial relation, like being 10 km 
to the west of, without tokening representations of the entities (e.g. towns) 
between which that relation obtains.

The cognitive map is an example of a structural representation (on which 
more in a moment). It uses a device of semantically-significant concatenation: 
activating one place cell after another. But this is a special-purpose device of con-
catenation. It has the significance of predicating spatial proximity of two loca-
tions. This is unlike the general-purpose device of concatenation by which words 
are connected in a sentence; or the general-purpose way in which concepts are 
combined in conscious deliberate thoughts (meeting the ‘generality constraint’; 
Evans 1982). In the visual system we saw a case where incomplete constituents 
can be tokened separately. There, too, however, it appears that the device of con-
catenation is probably special-purpose: a mechanism that binds together visual 
features into bundles, or binds visual features to perceptually tracked objects. 
Neither the place cell system nor visual feature binding makes use of a domain-
general device of representational concatenation, of the kind found in natural 
language sentences.

This brief survey of just a few selected examples is enough to give a sense of the 
variety of types of representational structure exemplified by the mental represen-
tations studied by psychology and cognitive neuroscience. The features that are 
exemplified together in natural language sentences and canonical cases of con-
ceptual representation are also found at work, piecemeal, in mental representa-
tions of other kinds.

2.3  Structural Representation

The aim of the next two sections is to further characterise two broad kinds of 
representational structure: the structure exhibited by maps and the structure 
exhibited by sentences. To start with, this section focuses on the representational 
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genus of which maps, both cognitive and cartographic, are a species. The genus is 
structural representation.

A structural representation makes use of a structural correspondence between 
representation and world. With a cartographic map, the correspondence is 
between spatial structure on the page and spatial structure in the world. As we 
saw, in the cognitive map in the hippocampus, the correspondence is between 
the relation of co-activation on place cells and the relation of spatial proximity 
between places. Because the correspondence is representational, this is a case of 
structural representation. A relation on representational vehicles represents a 
relation on entities in the world:

Structural Representation
A complex representation in which a relation on representational vehicles 
v1, . . . , vn represents a relation on the entities represented by v1, . . . , vn

It is hard to get clear evidence that mental representations are structural repre-
sentations. The cognitive map is a notable exception; we will see some further 
plausible examples below. But the clearest cases arise with public external repre-
sentations. For example, when I list the students in my class by test score, I have 
created a structural representation. The relation of higher/lower in the list rep-
resents the relation of better/worse academic attainment. I could do the same by 
reading out the names in order (as in an old fashioned classroom). Then the 
relation of temporal order would represent relative academic attainment. Many 
familiar examples use spatial arrangement or temporal sequence to stand for 
other relations. We could use spatial relations to represent relative wealth, for 
instance. I can plot my students on a graph with parental income on the horizon-
tal axis and average test score on the vertical axis. Relations between points along 
the horizontal dimension then represent relative affluence.

Colour is also often used to represent property values on a map or graph. To 
represent the weather, a temperature heat map uses colour to show the current 
temperature across the country. Colour relations between points can be taken to 
represent temperature relations between places. The same device could be added 
to our graph of student test scores. Colour the points from yellow through orange 
to red depending on the students’ high school exam grades at admission. Colour 
relations allow us to read off, at a glance, students’ relative academic standing 
when they started the course. The resulting graph is a structural representation of 
relations in all three properties: test scores, parental income, and high school 
performance.

There is considerable controversy about whether a theory of content can 
rely on structural correspondence to play a content-determining role. The basic 
worry is that structural correspondence and related notions (isomorphism, 
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homomorphism) are too liberal for the obtaining of a correspondence to be the 
reason why a representation represents as it does. I have argued that it can, when 
suitably constrained (Shea 2018, pp. 111–26). I won’t recapitulate that argument 
here. The stronger claim about content-determination is not needed for our pur-
poses. The definition of structural representation does not require that the corre-
spondence between relations is doing the content-fixing. It simply requires that a 
relation carries content (a relation represents a relation). In the case of our stu-
dent graph, for example, the representational contents are set up by stipulation or 
convention. That is why colour representations represent relative school perfor-
mance. What makes the graph count as a structural representation is that they do 
so represent.

With endless ingenuity, people have used spatial relations on the page to repre-
sent all kinds of relations, concrete and abstract, mundane and transcendent. 
Very many relations correspond in some way to the structure of space. However, 
there is a strong limitation once a representational scheme has been established 
(by convention or use, cp. Shea 2018, pp. 120–37). In my list of students, above/
below on the list represents relative test score. I can use those relations to perform 
computations, for example to sort the students into similar-ability groups. There 
is a certain amount of compositionality. For any two students, I can represent 
that they have similar scores (by putting them one above the other on the list) or 
that they have very different scores. The representational system we have estab-
lished allows us to represent any relation of relative test performance between any 
two or more students. What it cannot do, without being changed or supple-
mented, is to represent other relations between these students. Contrast the way 
we represent relations in natural language. Using the structure of a sentence to 
represent one relation between individuals (‘Aisha loves Milly’) does not pre-
clude using sentence structure, deploying other words, to represent other rela-
tions between those individuals. If a structural representation uses spatial 
relations to represent relative test scores, that spatial relation cannot be used at 
the same time to represent other relations. The correspondence is giving the con-
tent, and that limits the representational significance of the semantically-
significant relations within a given system of structural representation. This 
limitation will prove to be important in the next chapter, when we consider how 
representational structures enter into computations of different kinds.

Structural representations often have another notable feature: holism (Camp 
2018). Consider a cartographic map showing the location of the towns in a region. 
Adding a new town to the map simultaneously represents its relations to all the 
other towns on the map. In the spatial cognitive map, if offline activity involved 
spreading activation across the whole array of place cells, as in the computational 
model in (Corneil and Gerstner 2015; Khajeh-Alijani et al. 2015) (Fig. 2.2), then 
this would be a holistic representation in the same way (Camp 2022). Even short 
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chains of activation display holism, albeit on a limited scale: for each location 
represented, its spatial relations to all other locations represented by other place 
cells in the chain are also represented (Shea 2022a).

* * *
One kind of representational structure that does not amount to being a structural 
representation is being an organized representational system (introduced in the 
last section). (The cognitive map displays organization, but also has the stronger 
property of being a structural representation.) Organized representations come 
in families, for example neural signals representing surprise, reward, or numeros-
ity. While only one representation in the family is tokened at a time (in the sim-
plest cases), there are systematic relations between the representations in the 
family. Lande calls this extrinsic, inter-representational structure (2021, p. 667). 
As I have argued elsewhere, being an organized representational system is not 
sufficient for being a structural representation (Shea 2013, p. 127; 2018, 2023c). 
Briefly, although the representations tokened on different occasions are related, 
they are never composed together into a combined representational structure. 
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Fig. 2.2  Plots from a computational model of a way in which a whole array of place 
cells can be used in parallel to calculate long-range distance relations. The model is 
based on the fact that all place cells are involved in background oscillations at a 
certain frequency (theta oscillations). The phase of an individual cell’s firing relative 
to the ensemble oscillation (e.g. firing 0.5ms after the peak of the background wave) 
can encode spatial information. (In experiments when an animal moves along a 
linear track, this is observed in the form of ‘theta phase precession’.) In the model, the 
phase offset of each cell (0.0 to 0.6, blue-red/grayscale) correlates with the distance 
of its corresponding location from the origin (bottom left). In the right-hand panel, a 
barrier (shown in black) increases the length of the shortest route to locations in the 
middle of the space. This scheme displays holism: the activity of each cell 
simultaneously stands in the relevant vehicle relation (phase offset) to all the other 
cells in the array. From Khajeh-Alijani et al. (2015). See the open access online edition 
of the book for the full colour figure.
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We can see that clearly with the bee dance. There is a nice systematic relation 
between number of waggles and distance to nectar (e.g. distance = number of 
waggles multiplied by a constant). But consumer bees responding to the signal 
are not acting on a relation between dances. As classically described, they never 
compare two dances or take the relation between a pair of dances as input. 
Relations between dances do not enter into downstream computations.

Nevertheless, the systematic relation between different vehicles is a ‘good mak-
ing’ feature of an organized representational system. It is error-tolerant and 
extends non-accidentally to novel cases. Families of related representations may 
be easier to implement and easier to learn. The relations make it easy for down-
stream operations to respond systematically to different vehicles in the range.

Furthermore, a collection of different organized representations can interact to 
perform computations. Different analogue magnitude signals, for example, can 
interact to perform analogue computations. Computation of visual distance from 
ocular vergence may work like that (Banks et al. 2016; Shea 2018, pp. 137–8). Two 
signals correlating with the viewing angle of the two eyes can easily enter into a 
computational step which generates a third signal that correlates with the dis-
tance to the object being fixated. The activity of the third signal is caused by the 
activity of the first two signals. But the first two signals are not composed into a 
complex representation, nor is the relation between them acting as a vehicle of 
content. The vehicle for the content about object distance is the activity of the 
third signal.

The brain deploys various devices for systematically manipulating patterns of 
activation, which prove to be computationally useful. For example, one unit may 
sum the activity of some other units, or accumulate the activity generated by a 
range of units over time, or perform exponentiation, linear filtering, or divisive 
normalisation (Carandini and Heeger 2012). Where the so-connected vehicles 
form an organized representational system, the whole set up is potentially compu-
tationally useful. Representational systems that are organized, in this sense, can 
therefore form the basis of what I have snappily called ‘computationally useful pro-
cessing structure’ (Shea 2023c). While this kind of organization is a property worth 
noting, we should be careful to distinguish it from structural representation.

Organized representational systems are analogue, in one sense of that term.4 If 
by ‘digital’ we mean representations for which the only principle of vehicle 
individuation is same-different (LeCun, Bengio, and Hinton 2015, p. 441), then 
organized representational systems are non-digital because vehicles are individu-
ated partly in terms of their interrelations within a family. For example, a firing 
rate of  10Hz is more similar to a firing rate of 11Hz than it is to a firing rate of 
40Hz; and those similarities map on to similarities in content. When organized 

4  This relates to the ‘mirroring’ conception of analogue representation, variously developed by 
Maley (2011, 2023); Beck (2018); and Lee, Myers, and Rabin (2023).
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representational systems are connected together in a computationally useful pro-
cessing structure we have a case of analogue computation, in one sense of that 
term (cp. Peacocke 2019).

There are several other features that have been used to draw an analogue/
digital distinction. One is that the vehicles should be continuous (Camp 2007; 
Peacocke 2019, p. 55). That may seem possible if vehicle types are individuated by 
a continuous quantity like firing rate or inter-spike interval, but it is almost cer-
tainly an idealisation since some fine-grained differences between such states 
may make no difference to downstream processing.5 Organized representational 
systems need not be continuous. A related criterion is that the system of represen-
tations should be dense, in the sense that between any two representations there 
is a third, at least down to a level beyond which differences make no difference to 
downstream processing (Goodman 1968, pp. 160–2; Peacocke 2019, pp. 62–3). An 
organized representational system need not be dense, but our examples have 
been (e.g. analogue magnitude representations; semantic dimensions in an acti-
vation state space). So our examples count as analogue in several senses. Being 
organized is a property that captures one aspect of what theorists have meant by 
analogue representation.

The examples so far have been representations that vary along one dimension, 
like a neuron’s firing rate. An organized representational system can also be 
organized along several different dimensions at once. The waggle dance has two 
dimensions, one correlating with distance, the other with direction. Distributed 
patterns of activation can lie in a many-dimensional space of potential variations. 
These are found both in the brain and in artificial neural networks. We noted 
above that directions or vectors in activation space may have semantic signifi-
cance. For example, perceived faces are represented in such a space. It seems that 
any face we encounter is located in a quality space that rates it on dimensions 
like  masculine-feminine, trustworthy-untrustworthy, and dominant-submissive 
(Todorov et al. 2015; Lee and Kuhl 2016). This is an organized representational 
system. The way it is organized builds-in various properties for free (properties 
that, in another representational system, would have to be inferred). For exam-
ple, if a face is masculine then it cannot be feminine. That just drops out of the 
way those properties are represented, i.e. by a family of vehicles of which only one 
can be tokened at a time.

* * *

5  A related criterion is that a causal description of how vehicle processing unfolds should be stated 
in terms of continuous quantities, even if the vehicles that are tokened do not or cannot realize all 
those values (cf. Peacocke 2019). Perhaps a better criterion is that the semantic mapping—from vehi-
cle properties to contents—should be continuous in the relevant vehicle property (even if not every 
instance of that mapping is or could be realized).
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Consider the case of representations that consist of patterns of activation in a high 
dimensional state space (p. 29). State space representations are not, without more, a 
case of structural representation. However, it is common that where representations 
are organized in a state space the thinker is able to make comparisons between 
them. Two different faces can be represented in the same space and the thinker can 
rate how similar they are in their dominance. If that judgement is made by relying 
directly on distance between points in state space, without forming a downstream 
representation of dominance, then relations between the points are plausibly repre-
senting dominance relations and this would be a case of structural representation.

A second property to distinguish from structural representation is illustrated by 
some iconic representations. While some iconic representations qualify as structural 
representations (e.g. many maps), others, like a collection of colour chips representing 
colours, are mere organized representations. Interestingly, some icons have 
semantically-relevant structure without qualifying as structural representations. 
Consider computer icons, the graphical symbols we click on to operate computer soft-
ware. Arguably a graphic icon has its content partly in virtue of a correspondence 
between its structure and the structure of the entity it represents. That may be why an 
icon that looks like an antiquated cardboard folder from a filing cabinet represents a 
directory in the computer’s file structure. Convention is clearly also at work, but focus-
ing on the contribution made by structure, that does not obviously require that the 
parts of the icon are also representations in their own right. Many users may have no 
idea why the folder icon looks the way it does. They just recognise the picture and 
know its conventional meaning. Nevertheless, the structure is relevant to fixing the 
icon’s content. What makes this interesting is that, within the representational system 
for interacting with the computer, the parts of the icon do not compose to form its 
semantic value. They make no semantic contribution to the semantic value of the icon.

The case of computer icons is complicated by the fact that their conventional 
meaning trades on what they look like. A potentially cleaner example is the use of 
a set of arbitrary tokens to represent number. A set of n arbitrary tokens can be 
used to check numerosity by seeing if a collection of individuated objects maps 
one-to-one to the set. Plausibly, such a set, of three arbitrary tokens, say, could be 
used to represent threeness (the number property exemplified by sets of three 
objects). Susan Carey argues that mental representations of this form are used to 
represent the numerosity of small sets of objects, up to a set size of four objects 
(Carey 2009). For example, a canonical collection C of three object files can act 
as a representation of threeness. The system checks whether a set of objects it 
encounters has three members by seeing whether it can be put into one-to-one 
correspondence with C. That is a reliable way to track threeness. C as a whole is 
acting as a representation of a property (the property of having the cardinality 
three)—it is not a compositional representation (e.g. conjunctively representing 
1 + 1 + 1). The three elements of C need not, in principle, represent anything at all, 
for the one-to-one mapping from the elements of C to sets of three objects to be 
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part of what makes it the case that C represents threeness. At a later developmen-
tal stage, the count words, learnt by rote and at that stage no more than meaning-
less symbols for the child, become a means for expanding the capacity of the 
system beyond four items (Carey 2009). The n internal entities that together rep-
resent the number n, when they are mere uninterpreted words, may have no rep-
resentational contents individually.6 The internal set is a representational vehicle, 
representing what it does in part because it is composed of n individuated ele-
ments, but its so-representing does not require that the components are represen-
tational constituents. The structured vehicle represents as it does in part because 
of its structure, but this is not a case of structural representation.

The examples in this section serve to outline the contours of one important 
category of representational structure, structural representation. In the next sec-
tion we turn to the kind of representational structure exhibited by natural lan-
guage sentences and by conscious deliberate thoughts composed out of concepts.

2.4  General-Purpose Compositional Structure

The aim of this section is to characterise a second important category of repre-
sentational structure: the kind of structure exemplified by natural language sen-
tences. The parade case of language-like compositionality is predication: ‘Aisha 
loves Mildred’. The component terms are incomplete and play different semantic 
roles. The meaning of the whole is structure-dependent: ‘man bites dog’ means 
something different from ‘dog bites man’. To contrast with the last section, a cen-
tral question will be whether language-like compositionality differs from the kind 
of compositionality at work in a structural representation or, if not, what distin-
guishes it as a special kind of structural representation.

Language-like compositional structure is plausibly exhibited by the conceptual 
representations which are tokened in episodes of conscious deliberation (occur-
rent beliefs, desires, hypotheses, intentions, etc.). The compositional principle 
at work is general-purpose, in the sense that any concept can be combined in 
thought with any other concept or concepts of the right kind (there may be adic-
ity restrictions). This is why concepts meet Gareth Evans’s generality constraint 
(Evans 1982).7 It forms the centrepiece of Jerry Fodor’s account of what it is to 
think in a language of thought (Fodor 1975; Fodor and Pylyshyn 1988). There is 
good evidence that people use mental representations exhibiting language-like 
compositionality for a range of tasks, for example: following and remembering 
geometric patterns of movement (Amalric et al. 2017), thinking about shapes 

6  In legalese, they are jointly but not severally responsible for carrying content.
7  For Evans, a constraint on what it takes to be a concept; for me, an empirical fact about the type 

of representation to which I pointed when introducing the term (§1.4).
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(Sablé-Meyer et al. 2022), learning new concepts (Piantadosi and Jacobs 2016), 
combining thoughts in new ways (Frankland and Greene 2020); as well, of 
course, as understanding natural language (Pietroski 2018).

Having language-like compositional structure corresponds to one understand-
ing of what it takes to be a propositional representation. There is a thin sense of 
‘propositional’ which just means that a representation has a content which is 
assessable for truth and falsity. A stronger sense requires a representation to have 
sentential structure, with object-predicate structure being the paradigm. The 
conceptual representations entertained in conscious deliberation are proposi-
tional in this sense. Since I want to allow that concepts may also show up as con-
stituents of representations of other kinds (§1.7), for example as labels in a 
cognitive map, not every representation involving concepts need be propositional 
in this sense. This stronger sense of propositional goes along with being the type 
of representation that supports logical reasoning, specifically reasoning involving 
conjunction, negation, and disjunction. (Strictly, this is a further condition, 
requiring terms for conjunction and negation and/or disjunction, and the capac-
ity to use language-like compositional principles to combine those terms with 
conceptual representations.) We will see in the next chapter that there is an 
explanatory connection between having language-like compositional structure 
and supporting logical reasoning involving conjunction, disjunction, and nega-
tion (although no necessary connection between the two).

Some argue that the language-like compositionality of conceptual thought 
derives, in all cases, from the language faculty (Chomsky 2017). As against this, 
there is good evidence that performance of many non-linguistic tasks which seem 
to involve conceptual reasoning, like solving arithmetical and logic puzzles, can 
survive the near complete loss of linguistic abilities (Fedorenko and Varley 2016). 
While this is an important question (Dehaene et al. 2022), it need not detain us 
here. The distinctively language-like way of composing concepts in deliberate 
thought might depend constitutively on a capacity that is fundamentally part of 
the language capacity; alternatively, it may be entirely independent of the lan-
guage faculty; or there may be instances of each. My account just turns on con-
cepts being able to enter into general-purpose compositional structures meeting 
something like Evans’s generality constraint.

A related question is whether there really are any concepts. Maybe we just have 
words, plus representations of other kinds—kinds that do not qualify as concep-
tual. Edouard Machery has mounted a prominent challenge of this type (Machery 
2009). Machery argues that psychologists take a concept to be something more 
than just a constituent of thought. A concept has to be a body of knowledge about 
a thing X that is used by default in categorisation and inference. Since there is 
evidence that, in thinking about any given X, people will sometimes deploy a 
prototype, sometimes rely on exemplars, and sometimes draw on theoretical 
knowledge and information of other kinds, there are no concepts in this sense. 
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My project calls for no such restriction (Vicente and Martínez Manrique 2016). 
I  allow that a concept—which may or may not be a mental use of a linguistic 
token—will give the thinker access to a rich body of information, of many differ-
ent kinds, with different types of information used on different occasions 
(Weiskopf 2009a). Nor need the information connected to a concept of X be the 
same, as between different thinkers (Millikan 2017).8 It is this plurality that raises 
the problem of explaining how these different kinds of representational structure 
(this chapter), informational models (Chapter 4), and computational processes 
(Chapter 3) can play together in thought (Chapter 5).

While many kinds of representation exhibit forms of compositionality, as 
we have seen, predicate-argument structure is a special kind of compositional-
ity, often taken to be characteristic of a ‘language of thought’ in the classic 
Fodorian sense. Predication is an extremely general-purpose device of concat-
enation. It allows any predicate to be put together with any singular term or 
terms (according to the predicate’s adicity). Although very general, it is just 
one of several forms of language-like composition. For example, two nouns 
can be composed to make a new predicate (‘ice sculpture’); and devices of 
negation can be composed with a predicate to create a new predicate (‘non-
fiction’, ‘not green’). I will start with predication and bring in other forms of 
compositionality later.

To give a proper philosophical analysis of language-like compositionality 
would be a book-length project in its own right (Collins 2011). There is a large 
literature, in philosophy and linguistics, on the unity of linguistic meaning or the 
unity of the proposition. It will be impossible to do justice to those debates here. 
My aim is more modest: to bring out some of the key characteristics of language-
like compositional structure without aiming to reach firm conclusions about the 
thorniest philosophical issues. As we will see, compositionality in language-like 
cases works differently from our examples of structural representation. There is a 
deep issue as to whether it is in fact an instance of structural representation, of a 
very general kind. I will venture only a tentative view about that. Whichever way 
that question is resolved, predication differs in an important way from paradig-
matic examples of structural representation. The point of this section is to high-
light that difference.

I am taking predication to be a relation between representations. A term repre-
senting a property is predicated of a term representing a particular. The result is a 
complex representation with the content that the particular instantiates or exem-
plifies the property. (‘Predication’ is also sometimes used to talk about a relation 
between an object and a property in an abstract object, a proposition. I am set-
ting that aside here.) In first-order predicate logic, writing a predicate followed by 

8  That is why I talk in terms of a thinker’s concept of X, rather than the concept of X.
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a singular term thus—Fa—counts as predication. In natural language, the relation 
between words that amounts to predication is much more complex. It depends 
on the grammatical structure of the sentence, which is marked by word order and 
morphology. Words are concatenated in a sentence, and various grammatical 
(and perhaps also semantic) features determine that predication is at work (or 
other forms of compositionality).

Something has to play the role of determining the semantic significance of con-
catenating words into a sentence (or of concatenating concepts into a complete 
thought). A sentence is more than simply a list of words (‘under dogs trees run-
ning love’). Similarly, to form a conceptual thought is to do something more than 
to entertain a collection of concepts (under dog tree run love). In very many 
cases, hearers can understand the meaning of a sentence without relying on word 
order, even for a language like English where word order carries much of the bur-
den of specifying compositional structure. Just hearing ‘wants Fido dinner’, you 
can probably work out what I mean. Experiments show that this is true of up to 
90 per cent of English sentences. For the remaining 10 per cent, word order is 
crucial (Mahowald et al. 2022). That is still a lot of sentences—enough that 
understanding compositional structure is critical to successful communication.

Fodor argues forcefully that semantic constituency in thought is something 
more than one concept’s being tokened and then another (Fodor 2003, pp. 91–4). 
In fact, he makes a stronger claim. He argues that tokening two representations in 
succession could not have the significance of predication (Fodor 2003, p. 93). 
That is too strong. A representational system could be configured, by convention 
or as a matter of use, so that the mere succession of a predicate by a singular 
term is the way that predication is marked. Something close to that is true of a 
standard notation for first order predicate logic, as we saw. (We also saw that  
succession—of a causal kind—has semantic significance in the place cell system. 
That was because of the way succession is relied on in calculating routes.) In any 
case, there would have to be something that makes it the case that succession has 
semantic significance. Fodor is doubtless right that, as a matter of fact, in the con-
ceptual system, mere succession between concepts does not have the semantic 
significance of predication. Something else is at work when one concept is predi-
cated of another. Similarly with language: it is the syntactic and morphological 
features giving the grammar of the sentence, not the mere succession of words, 
that signifies predication.

* * *
What is the semantic significance of predication? A straightforward view is that 
predication ascribes a property to an object (King 2009). Frege’s account was in 
terms of function application: a predicate is a function to truth values and predi-
cation saturates that function with an object so as to produce a truth value 
(Pietroski 2016). Fodor argues that predication represents that an object 
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instantiates a property (Fodor 2003, pp. 91–4). In common between these views 
is the claim that the significance of predication lies in some object or objects 
instantiating or exemplifying some property (Rescorla 2009; Camp 2018).

Many go further. They take instantiation or exemplification to be a substantive 
relation between an object and a property and they take predication to represent 
that relation. As we just saw, Fodor (2003, pp. 91–4) claims that syntactic constit-
uency (at the level of vehicles) expresses the instantiation relation (at the level of 
reference). That raises the problem of the Bradley regress (Orilia and Paolini 
Paoletti 2020). If instantiation is a substantive relation that unites object and 
property, then presumably the object, the property, and the relation of instantia-
tion can all exist without the object and the property being related by the relation 
of instantiation. So it looks like we need the relation of instantiation to come in 
again to unite them. And so on up a potentially infinite hierarchy.

One way to forestall the Bradley regress is to deny that instantiation really is a 
relation. Metaphysically there is just an object having a property. Objects have 
some properties and that is metaphysically basic. No further relation is needed. 
That move is coupled with a claim at the level of representations: predication, 
while being a relation between vehicles, is not a relation that carries semantic 
content. It is a way of concatenating vehicles which has representational signifi-
cance—by making a complex representation different from a mere list of terms—
but its representational significance does not consist in representing or referring. 
I will return to this insight in a moment.

Another way to diffuse the Bradley regress is to accept it but argue that it is not 
vicious. Yes indeed, when Leyla runs, Leyla stands in the instantiation relation to 
running; Leyla, running, and the instantiation relation stand together in the rela-
tion of instantiation; and so on up the hierarchy. However, for all those things to 
be true just is for it to be true that Leyla runs. Nothing more is needed for all 
these facts to exist (all at once, as it were). This second view has the advantage of 
making it easier to understand how we can sometimes refer explicitly to the rela-
tion of instantiation. But note that it shares something important with the first 
answer. In standard cases of predication using ordinary syntactic devices (rather 
than when referring to instantiation explicitly) there need be no representational 
constituent or device that serves to stand for or represent instantiation.

I won’t attempt to resolve the Bradley regress here, but I will adopt two insights 
that are common to the solutions we have just seen. First, when F and a are com-
bined by means of a form of syntactic constituency that has the significance of 
predication, the result is a complex representation with the content Fa. Second, 
this can be done without there being a representational constituent that expresses 
instantiation.

The constituency of predication contrasts with the constituency at work in 
structural representations. In a structural representation, a relation between 
representational constituents represents a relation between the entities those 
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constituents represent. A relation serves to concatenate two representational 
constituents: points on a map are related by a relation of spatial separation; place cell 
activations are related by the time it takes for one to activate the other (or by 
phase offset, as in Fig. 2.2). The relation serves to combine two representational 
constituents into a complex representation. It also carries semantic content: it 
represents the distance between the two corresponding locations. The vehicle 
property doing the combining is also a carrier of semantic content. But, unlike 
predication, a given scheme of structural representation is limited in the entities 
and relations it can pick out and combine. As we saw in the last section, although 
a given structure could be used to represent many things, once a representational 
scheme has been established, that limits what can be represented.

The source of the limitation is that, in a structural representation, the relations 
between representations themselves have semantic values. In both cases the 
structure has semantic significance, but with a structural representation this is 
because something stronger is true: the relations that define the structure have 
semantic values. The content of the whole is constrained by a structural 
correspondence—when correct, the structure of the representation corresponds 
with the structure in the world it represents.9 In the cognitive spatial map, for 
example, the time it takes for one place cell to activate another represents the 
distance between their corresponding locations. The structure so-constituted is 
correct just in case the locations represented by the two place cells are so-
separated in space. The relations between vehicles which define the structure 
have a specific representational significance (spatial proximity). It is a way of 
combining vehicles so as to represent spatial relations between locations, not a 
means for predicating properties of locations (Rescorla 2009; Camp 2018). By 
contrast, predication provides a way of combining any n-ary predicate with any 
collection of n singular terms. The form of constituency does not place strong 
constraints on what relations can be represented of the singular terms that are 
combined into a complete content. The syntactic principle for combining words 
in a sentence is neutral: it has ‘minimal representational import beyond mere 
combination’ (Camp pers. comm., elaborating on Camp 2007).

But why isn’t predication just a very abstract kind of structural representation? 
The syntactico-morphological feature that signifies that a given concatenation 
has the significance of predication (e.g. the word order in ‘Layla runs’) is a rela-
tion between vehicles (‘Layla’ and ‘runs’). Why isn’t this a structural representa-
tion in which the relevant relation stands for instantiation?

My first answer is that this view raises the problem of the Bradley regress. That 
is avoided on the view where predication has semantic significance—it makes it 
the case that the content of the whole representation is Fa—without itself being a 

9  Recall: that may be, but need not be, because the obtaining of a correspondence in certain cir-
cumstances is what determines content: Shea (2018, chapter 5).
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vehicle carrying representational content. One obvious difference is that there are 
many different determinate relations (distances) that relate points on a map, each 
with a different semantic content—each represents a different distance between 
locations. Predication is not a relation which varies in this way. Even leaving that 
aside, recall the point that it is not possible to token the representational constitu-
ent which represents the relation of spatial proximity without tokening represen-
tations of the locations which it relates. Contrast the predicate and singular term, 
F and a, each of which can be tokened separately. Something further is needed to 
form a representation whose semantic content is Fa. With points on a map, noth-
ing further is needed to concatenate R, a, and b so as to represent the complete 
content aRb, beyond tokening the vehicles which represent a, R, and b. No fur-
ther mode of combination is needed.

My second answer to the challenge is more concessive. Maybe the relation of 
predication does carry content, referring to the instantiation relation. Even so, 
there is a clear contrast with paradigmatic examples of structural representation. 
There, the relations which define the structure have specific representational con-
tents. They refer to relations like spatial proximity, relative exam performance, 
relative dominance, etc. If predication refers to instantiation, this places very little 
constraint on what can be represented by the structure. It is an extremely general 
scheme of concatenation (Camp 2018, p. 25). The simpler view, it seems to me, is 
that predication is not a case of structural representation, but even if it is, there is 
still a clear difference in generality. In paradigmatic cases of structural representa-
tion, the relation that fixes the structure carries specific representational content; 
predication, by contrast, is extremely general. Predication is much more semanti-
cally neutral than the mode of combination at work in paradigmatic structural 
representations.10

Concepts appear to combine in the same general-purpose way. It has long 
been thought that the way concepts combine obeys a generality constraint (Evans 
1982). The conceptual system allows any two or more concepts to be combined 
into a coherent thought. The concepts may need to be of the right kind to be so-
combined, for example singular term with predicative concept (but see Magidor 
2009). But the principles of concatenation are not restrictive as to the subject 
matter represented, for example constraining the kinds of relations that are allow-
ably combined with two singular concepts. (There will also be constraints of 
memory, processing capacity, etc. that prevent certain thoughts being enter-
tained; but the generality constraint is a ceteris paribus principle capturing a 
characteristic that flows from the nature of the constituency relations.)

10  This concessive answer has the merit that it offers a straightforward account of how predication 
could develop or evolve from something less semantically neutral. A mode of combination that 
evolved to represent cause, say, as in e1 caused e2, could start to be used for other purposes (gives, 
loans, owes), with the specific semantic significance fixed by another marker. Greater semantic neu-
trality could thus evolve gradually through a series of intermediate cases. (Thanks to Liz Camp for 
this idea.)
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A much-celebrated merit of the general-purpose compositionality of concepts 
is that it enables a very useful form of productivity. It allows us to represent things 
we have never encountered, considered, or represented before. A limited vocabu-
lary of representational types can be used to represent an extremely large number 
of states of affairs (perhaps without bound). Any form of compositionality, 
whether special- or general-purpose, has a combinatorial payoff: the total num-
ber of representations that can be formed is a multiplicative function of the num-
ber of representational constituents. This means that, when it is not specified in 
advance which things will need to be represented, there is a benefit in terms of 
representational efficiency with using a combinatorial system (Frankland, Webb, 
and Cohen preprint). With general-purpose compositionality, because the mode 
of combination is not restricted by subject matter, the number of representations 
that can be formed combinatorially is very large indeed. The capacity to form a 
very large number of novel representations makes this an efficient way to use rep-
resentational resources when the nature of the to-be-represented information is 
not well specified in advance.

To sum up, when we move beyond the simplest representations that lack any 
semantically-significant structure, then compositionality, of various kinds, is at 
work. Natural language and conceptual thought are compositional, but so too are 
structural representations. The meaning of the whole is systematically related 
to the meanings of the parts and their mode of combination. All of these types 
of representation display semantically-significant representational structure. 
Language and conceptual thought are special, though. They make use of a 
general-purpose mode of combination. To a first approximation, they can put 
together any two representational elements to make another meaningful 
representation. Less approximately, ‘any’ = any of the right type (e.g. adicity), 
and ‘two’ = a small number (cf. locations on a map).

I have focused on predication as the parade case of a general constituency rela-
tion, but it is actually just the most prominent example of a family of general 
constituency relations. Concatenating words or concepts can have other kinds of 
semantic significance. As we have seen, we can put together two concepts to form 
a new concept (ice sculpture); and we can use predicate negation to form new 
concepts (non-fiction, not green). Sentences can be concatenated to form a 
new sentence (e.g. through propositional conjunction: p and q); or concatenated 
with a sentential negation operator (‘It is not the case that it’s raining’). There is 
also quantification: the way quantifiers combine with other terms, in language or 
thought, has semantic significance, but is not a matter of predication.11

In typological grammar there is a single operation, ‘Merge’, for putting together 
any two elements (Moortgat 2010). There is a calculus, NL, that gives a logic for 

11  If predication is taken to express the relation of instantiation, does each of these modes of combi-
nation express some (previously unrecognised) relation between the objects or properties referred to 
by the terms being concatenated?
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Merge with no restriction on its interpretation.12 Merge is something more than 
bare concatenation. It imposes a hierarchical structure that goes beyond the lin-
ear order of words in a string. This allows for the many asymmetries that are 
essential to language: subject-predicate (importantly), but also antecedent and 
anaphor, operator and variable, internal argument and external argument, speci-
fier and adjunct, etc. (Collins 2011, p. 106). The semantic significance of joining 
two items via Merge will usually depend on various syntactic and morphological 
markers. For example, in ‘red is a colour’ the ‘is’ signifies predication (cf. ‘red 
square’).

These examples remind us that the semantic significance of the way words are 
combined into a sentence is not limited to predication. There are a variety of 
forms of representational combination, each with its own semantic significance. 
Each has a very general domain of application, not being limited to a specific 
subject matter. It is a further claim to argue that there is a single mode of combi-
nation, Merge, that encompasses all these cases. Conceptual thought may also 
have a combinatorial device like Merge: a way of concatenating any two represen-
tations, whose semantic significance is fixed by further syntactic markers.13 That 
would substantiate my claim about the generality of language-like compositional 
structure in a particularly strong way, since Merge is a completely semantically-
neutral device of concatenation.

The existence of Merge in conceptual thought would serve to illustrate the 
point that the generality of language-like compositionality contrasts with the 
content-specificity of the compositional principles at work in paradigmatic cases 
of structural representation. However, I do not need there to be a mental equiva-
lent of Merge to establish my conclusion. Just focusing on one of these forms of 
combination, like predication, is enough to demonstrate a clear contrast. There is 
an important difference between the content-specific way representations com-
bine in a structural representation and the content-general way representations 
combine in language and conceptual thought.

2.5  Terminology

Complete condition: a way the world could be, or a condition against which 
the world could be assessed, for example a truth condition, correctness 
condition, accuracy condition, or satisfaction condition.

Complete content: representational content at the level of a complete 
condition.

12  Another calculus, LG, distinguishes two Merge operations, both meeting the generality con-
straint, each having further restrictions.

13  That would explain the recursive nature of thought, since any representation so formed could be 
subject to further concatenation (subject to memory and processing constraints).
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Computationally-useful processing organization: a processing structure that 
can be used for performing certain computations; derivatively, the compu-
tations for which a processing structure can be so used.

Concatenate: link or join together items in any way (not limited to serial 
order); thus, predication is a form of concatenation.

Concept (non-definitional: pointing at the phenomenon): freely-recombinable 
constituent of the thoughts that occur in deliberation.

Conceptual representation: a representation, constructed out of concepts, 
with a complete content.

Deliberation: thinking in a series of steps and subject to cognitive load.
Incomplete representation: representation that does not represent a complete 

condition on its own, but only when combined with other representational 
constituents into a complex representation.

Inference: a content-based transition between representations.
Language-like compositional structure: the type of compositional structure 

exhibited by natural language sentences, for example involving predication 
(see §2.4 for details); also exhibited by at least some forms of conceptual 
thought.

Organized representational system: a collection of representations where the 
function mapping vehicles to contents applies systematically across all 
vehicles in the family, mapping similar vehicles to similar contents. (All our 
cases concern similarity structure, but the phenomenon may generalise to 
systematic relations of other kinds.)

Paradigmatic structural representation: a structural representation that does 
not have language-like compositional structure (if that turns out, pace the 
first position argued for in §2.4, to count as a case of structural representation).

Processing structure: the way a collection of vehicles or vehicle families inter-
act causally in internal processing.

Reasoning: step-by-step inferences from one or a few conceptual representa-
tions (premise or premises) to another (conclusion).

Representation: content-bearing entity (can be used for the vehicle, or to pick 
out a content-bearing entity in terms of its content).

Representational structure: shorthand for semantically-significant representa-
tional structure.

Semantically-compositional components: narrower than semantically-
significant representational structure: component representational vehicles 
and vehicle properties that have a semantic value.

Semantically-significant representational structure: aspects or components of 
a representational vehicle that carry or determine semantic content. (So the 
predicational structure of a sentence counts as semantically-significant rep-
resentational structure, even though predication does not carry semantic 
content—it contributes to determining semantic content. The organization 
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of an organized representational system counts as semantically-significant 
representational structure, when it is part of a computationally useful pro-
cessing organization that is used, since it contributes to determining 
semantic content. The structure of an iconic representation whose parts are 
not representational (e.g. computer icon; set of object files for number) 
counts as semantically-significant representational structure since it con-
tributes to determining reference.)

Structural representation: a complex representation in which a relation on 
representational vehicles represents a relation on the entities they represent.

Structure of a representation: any kind of structure of a representation, i.e. 
aspects or components of a representational vehicle, and their relations.

Thinking: the unfolding of a sequence of thoughts, and the executive pro-
cesses that apply to them.

Thought: an inclusive term for any kind of representation figuring in the cog-
nitive playground, whether conceptual or not-conceptually-compositional, 
including structural representations and organized representations.

Vehicle of content: entity, property, or relation bearing content. Used narrowly 
for the particular (e.g. word, pattern of activation), more broadly to include 
properties that carry content, i.e. properties to which a semantic value 
attaches (‘vehicle properties’). Most often used in respect of a particular 
picked out in terms of content-bearing properties: for example, when 
marks on the page are picked out as words, that picks out vehicles in terms 
of a type to which a semantic value attaches.

Chapter Summary

2.1  What is Semantically-Significant  
Representational Structure?

This chapter is about the different kinds of representational structure exemplified 
by the representations involved in concept-driven thinking. These form the 
basis  of different computational processes (Chapter 3) and informational 
models (Chapter 4), and fit together in my account of concept-driven thinking 
(Chapter 5).

All representations have physical structure; some have no representational 
structure. (p. 28)14 Not every way of dividing a representational vehicle into 
parts  produces semantically-significant units. I use ‘representational structure’ 
(unmodified) to mean semantically-significant representational structure, which 

14  Each sentence of the summary corresponds to one paragraph. Page numbers indicate where the 
paragraphs begin.



Chapter Summary  55

is what concerns us here. ‘Structural representation’—where there is a structural 
correspondence between representation and world—is just one kind of represen-
tational structure. In maps and sentences, representational structure is part-
whole structure, with the meaning of the whole systematically related to the 
meaning of the parts. (p. 29) Representations can have semantically-significant 
structure that is not a matter of part-whole structure, for example component 
activation vectors that superpose into a distributed pattern of neural activation. 
‘Vehicles’ are the entities that carry content; ‘vehicle properties’ are non-semantic 
properties that are or may be relevant to the way representations are combined 
and processed. Semantically-significant representational structure is individuated 
functionally. Vehicles of mental content are found in the brain; while they may be 
highly abstract, they must figure in psychological processes and competencies.

(p. 30) The structure of a representation is semantically significant to the extent 
that vehicle properties and relations have semantic import; that is, carry semantic 
values or make a difference to its content. The cognitive sciences have developed a 
variety of techniques for investigating representational structure. Representational 
structure determines ‘distributional properties’: which representations can, can-
not, and must co-occur. Rather than a dichotomy (like iconic vs. discursive), I will 
work with six different aspects of representational structure (all exhibited by natu-
ral language sentences). (p. 31) List (a)–(f ). These six features are likewise exhib-
ited by conceptual representations; also piecemeal by representations of other 
kinds (so using a conceptual/nonconceptual dichotomy can be misleading).

2.2  Varieties of Semantically-Significant Representational Structure

This section surveys a variety of forms of representational structure exemplified by 
mental representations of different kinds. (p. 32) The base case is nominal signs, 
where there is no representational structure (e.g. vervet alarm calls). In Paul Revere’s 
lantern signalling system, neither the physical structure of the representation (e.g. 
two lanterns), nor the relations between representations (e.g. brighter than), have 
semantic significance. With mental representations, even simple signals are rarely 
nominal—often the magnitude of the signal will track some quantity represented. 
These are not structural representations, but the different representations tokened at 
different times form a family that displays representational ‘organization’.

(p. 33) Next, a representation can have more than one semantically-significant 
dimension of variation; these need not be ‘bound’ to one another—they can have 
semantic significance independently. Mental representations can work in the 
same way, for example with colour information and motion information carried 
by independent dimensions in dynamic neural activation space, neither token-
able without the other. Contrast representations in early visual processing, where 
colour and motion are represented separately, each tokenable independently. 
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More is needed for binding: combining two vehicles in a representational struc-
ture such that two attributes are represented as instantiated together. (p. 34) In 
this case, the representational constituents are ‘incomplete’: neither makes a 
claim about the world on its own, but only when combined. Whatever way 
concatenation of visual features works, it contrasts with cases where two com-
plete conditions are represented separately, by different aspects of a complex 
representational vehicle. (p. 35) Incomplete components may or may not be 
separately tokenable.

A central example is representation of locations and their spatial relations by 
place cells in the hippocampus. Co-activation of place cells represents that the 
corresponding locations are near to one another spatially. (p. 36) The way place 
cells are used to calculate routes supports the conclusion that the activation of a 
place cell represents a location and the co-activation of two place cells represents 
spatial proximity. The vehicle property representing the spatial relation (namely, 
co-activation) cannot be tokened without tokening the incomplete constituents 
between which that relation obtains. (p. 37) The way place cell activation rep-
resents spatial relations exemplifies features (a), (c), (d), and (e) of representa-
tional structure, but not (b) (separate tokenability). Nor (f ): the cognitive map, 
and visual feature binding, both deploy a special-purpose device of concatena-
tion, unlike the general-purpose concatenation at work in natural language.

This brief survey shows that the features that are exemplified together in natu-
ral language sentences and canonical cases of conceptual representation are also 
found at work, piecemeal, in mental representations of other kinds.

2.3  Structural Representation

This section is about structural representation, the kind of structure exhibited by 
maps; the next is about the kind of structure exhibited by sentences. (p. 38) A struc-
tural representation makes use of a structural correspondence between representation 
and world. Definition: structural representation. The clearest examples of structural 
representation are public external representations, for example using spatial 
arrangement or temporal sequence to represent relations in the world. When 
colour is used to represent property values (e.g. temperature), colour relations 
can represent worldly relations. The definition of structural representation does 
not require that the correspondence between relations is doing the content-fixing. 
(p. 39) The representational significance of the semantically-significant relations 
within a given system of structural representation is limited. Structural represen-
tations also often display holism.

(p. 40) A system that displays representational organization need not amount 
to being a structural representation. (p. 41) Organization is useful for a number of 
reasons: error-tolerance, extension to novel cases, ease of implementation. Furthermore, 
and less-recognised: organized vehicles can readily interact so as to perform useful 
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computations. The brain deploys various devices for systematically manipulating 
patterns of activation, which are computationally useful: they form a computa-
tionally useful processing structure. Organized representations are analogue in the 
sense that vehicles are individuated partly in terms of their similarity to other vehi-
cles; they can enter into analogue computations. (p. 42) Organization differs from 
other properties that have been used to draw an analogue/digital distinction. An 
organized representational system builds in for free the fact that different determi-
nates of the same determinable property (e.g. trustworthiness) exclude one another.

(p. 43) Representations in a state space are organized and not automatically 
structural, but when two representations are tokened in the same state space, the 
relation between them can carry representational content (e.g. relative dominance). 
The structure of a representation can play a role in fixing content without the parts 
each having their own semantic significance. For example, a set of three arbitrary 
tokens can be used to represent a numerical property: having the cardinality three.

(p. 44) The examples in this section have served to outline the contours of one 
important category of representational structure, structural representation, to 
contrast with general-purpose compositional structure in the next section.

2.4  General-Purpose Compositional Structure

This section characterises a second important category of representational struc-
ture: that exemplified by natural language sentences. There are mental represen-
tations with language-like compositional structure, exhibiting general-purpose 
compositionality. (p. 45) Having language-like compositional structure is what 
makes a conceptual representation propositional (in one sense), and supports 
logical reasoning. My account can remain neutral on whether conceptual compo-
sitionality is underpinned by linguistic compositionality, or the converse, or 
whether they are independent. My account does not require that a concept con-
sists of or gives access to a default body of information (cf. Machery 2009).

(p. 46) Predication is the most prominent, but not the only, form of language-
like compositionality. Predication differs in an important way from paradigmatic 
examples of structural representation; tentatively, it is not a kind of structural 
representation at all. Predication is a relation between representational constitu-
ents, a way of concatenating representations. (p. 47) A sentence is more than a list 
of words—its compositional structure is crucial (and required for understanding 
a significant proportion of sentences). Mere succession of one concept by another 
is not enough to predicate one of the other—concepts are combined by some 
device that has the semantic significance of predication.

In common between theories of the semantic significance of predication is that the 
result involves an object or objects instantiating or exemplifying a property. (p. 48) 
Some theorists claim, further, that the predication relation represents instantia-
tion, potentially launching an infinite hierarchy of instantiation (the Bradley 



58  Representational Structure

regress). Some deny that instantiation really is a relation; coupling this with the 
view that the vehicle-based relation of predication does not itself refer or repre-
sent. Or we can accept the whole infinite hierarchy; and still deny that there is a 
device which serves to stand for or represent the relation of instantiation. Without 
resolving the whole issue, I endorse the view that combing F and a by the vehicle 
relation of predication has the effect that the content Fa is represented; and that 
doing so does not require there to be a representational constituent that expresses 
instantiation.

The constituency of predication contrasts with the constituency at work in 
structural representations. (p. 49) Predication is semantically neutral: it places no 
strong constraints on what relations can be represented of the entities referred to. 
Objection: why isn’t it a structural representation, one in which the relation of 
predication represents instantiation? Answer: to avoid the Bradley regress. (p. 50)  
But for present purposes it is enough that there is a clear difference in generality 
between the general-purpose compositionality of predication and the composi-
tional principles at work in paradigmatic structural representations. Concepts 
combine in the same general-purpose way. (p. 51) The general-purpose composi-
tionality of concepts underpins a powerful form of productivity; which is an  
efficient way to use representational resources when the nature of the to-be-
represented information is not readily specified in advance.

To sum up, all but the simplest representations display forms of compositional-
ity; language and conceptual thought are special in making use of a general-
purpose mode of combination. There are other general-purpose constituency 
relations, for example predicate negation and nominal compounding. There may 
be a single, most-general concatenation operation, Merge. (p. 52) There may 
instead be a variety of different forms of general-purpose concatenation (in lan-
guage and conceptual thought). Just focusing on predication is enough to establish 
a contrast between the content-specific way representations combine in a struc-
tural representation and the content-general way representations combine in lan-
guage and thought.

Concepts at the Interface. Nicholas Shea, Oxford University Press. © Nicholas Shea 2024. 
DOI: 10.1093/9780191997167.003.0002
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3.1  Transitions Faithful to Content

This chapter is about the computational processes that mental representations 
enter into. The foundational claim of the representational theory of mind 
(RTM) is that representations are physical particulars that undergo causal pro-
cesses in the service of generating appropriate behavioural outputs—behaviour 
that is appropriate to the current situation. RTM’s insight is that transitions 
between representations can be configured in such a way that the transitions are 
faithful to representational contents. That can in fact be achieved in two quite 
different ways, as I will argue. Some transitions are ‘content-specific’, others 
‘content-general’ (or ‘non-content-specific’). This chapter will define that dis-
tinction and set out the characteristics of these two different kinds of computa-
tional process.

The content-specific/content-general distinction is based on two ways of 
implementing the fundamental insight of representationalism. Machines were 
originally designed to be physically useful, to weave cloth, say. The big discovery 
underpinning the advent of information technology was that a machine could be 
designed to do something intellectually useful. A mechanical process can be con-
figured so as to multiply two large numbers together, for example. Charles 
Babbage’s difference engine was designed to achieve that using cogs and wheels.1 
A digital computer does it using currents in semiconductors. The basic principle 
is the same in both cases. There are physical particulars with content, representa-
tions of numbers, which interact causally in ways that are faithful to their 
contents.

1  Babbage and Ada Lovelace built on this to develop plans for a general-purpose mechanical com-
puting device (the analytical engine).
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In the difference engine, transitions between representations are faithful to 
content in the sense that, given two numbers at input, the output will represent 
their product. The most straightforward way for a transition to be faithful to con-
tent is for it to be truth preserving: if the inputs are true then the outputs will be 
true. Logically valid inferences, for instance, are truth preserving; necessarily so. 
To use the standard example:

	 (1)	 All humans are mortal
	 (2)	 Socrates is human

∴	 (3)	 Socrates is mortal

A digital computer is built on ramifying schemes of valid inferences. It deploys 
logic gates to make truth-preserving transitions. Operations specified in a pro-
gramming language are compiled so that they can be carried out by complex 
arrangements of these basic components. That is how a digital computer can 
multiply two very large numbers together. Operations are faithful to content 
when they correctly perform the functions they are designed to implement. A 
transition that is designed to take the diameter of a circle as input and output the 
circumference will be faithful to content if the content represented by the output 
is π times that of the input.

There are many different ways that a transition can be faithful to content. 
Computations can involve both descriptive and directive representations. Given 
a represented goal O (directive) and a descriptive representation of how to pro-
duce it (doing A causes O), the computation outputs an intention (do A). That 
transition is faithful to content provided the intended action is likely to bring 
about the goal if the descriptive premise is true. For present purposes we can 
focus on systems that are engaged in working out what is the case, broadly speak-
ing. So only descriptive representations will be in play. Necessary truth preserva-
tion, as in the case of a deductively valid inference, is a strong form of faithfulness. 
Transitions that sometimes go wrong but mostly go right are also likely to be 
useful. For example, we may be disposed to draw categorical conclusions from 
probabilistic information:

	 (4)	 p is more than 95 per cent probable
	 (5)	 p

Being disposed to make inferences of this form, the thinker won’t go wrong very 
often, provided the premise is accurate. (We can see how often.) This is the form 
of faithfulness that will concern us most: transitions where the output is likely to 
be correct if the inputs are correct.

Not every transition that occurs need be faithful to content. A system can 
misrepresent and a transition can misfire. Furthermore, a system can have a 
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disposition to make a transition which is systematically mistaken. People may, for 
instance, affirm the consequent in situations where that leads to false conclusions. 
In a different kind of case, the inferential dispositions encapsulated in the visuo-
motor system can be mis-trained, for example by wearing prism goggles (Redding 
and Wallace 1997). Afterwards the transitions it is disposed to make go wrong, 
outputting conclusions that are false in normal environments. Furthermore, 
some transitions are not held to this standard at all, such as the way some thoughts 
cause others when the thinker is free-associating. So this notion of faithfulness to 
content does not require that every transition between representations should be 
faithful to content.

It is a nice question just how much faithfulness is required. Of the transitions 
that count, enough of them must be faithful to content so that RTM can get a 
grip—so that the operations of the system and its behaviour in the world are 
explicable in terms of representational content (Shea 2016). How much is that? 
Fortunately, we don’t need an answer here. For our purposes what matters is that 
the faithfulness of a transition turns on the contents of the representations 
involved. For a transition where faithfulness is a matter of the conclusion’s being 
likely to be true if the premises are true, we ask which contents underpin truth 
transmission. The distinction I will draw between content-specific and content-
general transitions turns on which contents the faithfulness-to-content of a tran-
sition depends on.

In many of the computational processes studied by cognitive neuroscience, the 
transitions involved are nothing like the necessarily truth-preserving inferences 
of formal logic. Internal processes are wired up by experience to work well 
enough in the context of the organism’s normal environment, but the outputs are 
only accurate often enough to be useful, and they only get things right, to the extent 
that they do, by trading on presuppositions about statistical regularities in the 
environment. The visual system, for example, may be set up to make transitions 
from a contrast map, to representing line segments, to an edge map (Wolfe et al. 
2018). These dispositions effectively presuppose that certain arrangements of 
contrast are a reliable sign of the location of edges—which they are, in normal 
environments. Deep neural networks (DNNs) work in the same way. Through a 
vast amount of training, transitions between distributed representations in hid-
den layers come to reflect statistical regularities in the training environment. So 
DNNs too learn to make transitions from distributions of contrast to representa-
tions of edges, shapes, and patterns (Güçlü and van Gerven 2015) (Fig. 3.1). 
Indeed, there are interesting similarities between the way processing unfolds 
across the layers of a deep neural network and in the human visual system 
(Yamins et al. 2014; Cichy et al. 2016; Cao and Yamins 2021).

The exact form of these transitions is not yet well understood, either in the 
human visual system or in artificial neural networks. Complexity presents a 
challenge in both cases, with additional difficulties in the brain with collecting 
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detailed data about how processing unfolds. Preliminary work in DNN models 
suggests that some of the learnt transitions are highly specific to the subject 
matter on which the system was trained. For example, in InceptionV1, a DNN 
trained to categorise visual images, there is a transition from detecting left-
oriented and right-oriented fur (in layer 3b), to detecting left-oriented and 
right-oriented dog heads (layer 4a), to detecting orientation-invariant dog 
heads (layer 4b) (Olah et al. 2020). This analysis focused on contents carried 
by individual units. It is likely that many computations take place over distributed 
patterns of activation (in DNNs and in the brain). The key transitions may, in 
particular, take place between components of activation vectors, or between 
dimensions of the neural manifolds that capture the activity of a population of 
neurons in the brain (Langdon et al. 2023). (Operations can occur inde-
pendently to the extent that components are orthogonal.) For example, Nanda 
et al. (2023) were able to discover the internal transitions that a simple neural 
network had learned in order to perform modular addition. If these analyses 
give us any indication of what is being represented by distributed patterns of 
activation, they suggest that the transitions the system makes, en route to 
achieving its trained outputs, are highly tailored to the subject matter on which 
it was trained.

L1 L2 L3 L4 L5 L6 L7 L8

Fig. 3.1  Transitions between representations in a deep neural network trained to 
perform image classification. The network has learnt transitions from contrast patterns 
to edges and textures, and then to parts of objects. From Güçlü and van Gerven (2015). 
See the open access online edition of the book for the full colour figure.
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In many systems which are described as performing analogue computations, 
representations interact to carry out a computation, and the interactions are 
faithful to content only because of the specific contents involved. For example, 
desert ants are able to navigate by path integration, maintaining a representation 
of the distance and direction back to their nest even as they follow a tortuous, 
winding outbound route. There is evidence that they achieve this by keeping 
track of their angle of travel at each step and carrying out a simple multiplicative 
calculation (Mueller and Wehner 1988). This approximation is not perfect, but it 
works well enough, given the way the ants behave. The transitions between inter-
nal states are faithful to content enough of the time to be useful. The contents to 
which they are faithful concern angles and distances. Faithfulness to content 
turns on the components representing these quantities.

Analogue computations can be more abstract, for example representing num-
ber. Children can perform addition, subtraction, and multiplication on the set 
size of large arrays of objects (Barth et al. 2006; McCrink and Spelke 2010). It 
seems likely that this is achieved through the interaction of analogue signals in 
the brain tracking numerosity (Nieder 2016). These interactions are suited to 
many different tasks, since doing (approximate) arithmetic is useful in many dif-
ferent circumstances. They exhibit considerable generality, taking them closer 
towards the content-general end of the spectrum. Nevertheless, the faithfulness-
to-content of these transitions depends on the fact that it is quantity that is being 
represented (number, numerosity, or some such). They would not be even 
approximately correctness-preserving for any arbitrary contents.

Computational models in cognitive neuroscience often have this characteris-
tic. Here are some examples. Keeping track of eye position by integrating inputs 
encoding velocity (Shagrir 2012). Integrating instantaneous direction of motion 
in order to calculate the overall direction of motion of a stimulus and to program 
a corresponding saccade (Beck et al. 2008; Shea 2014b). Anticipating the trajec-
tory of a limb in response to a motor command, and updating based on feedback 
(Miall and Wolpert 1996, pp. 183–5; Shea 2018). Calculating distance from ocular 
vergence (§2.3) (Banks et al. 2016). Our go-to example of the spatial cognitive 
map also has this characteristic. There are internal vehicles (place cell activity 
and co-activation) that interact in performing offline route calculation. Picking 
the shortest internal chain of co-activation is a way of calculating the shortest 
route, it is a content-faithful transformation, but this faithfulness turns on the fact 
that place cells represent locations and co-activation represents spatial proximity. 
It is an elegant computational mechanism, but its faithfulness to content depends 
on those specific contents.

The cognitive map has a further characteristic. It is a structural representation, 
as we have seen. The faithfulness to content of the way representations are proc
essed turns on how the structure represents and is used. I will return to this point 
shortly (§3.3).
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All these examples contrast with logical inference. A logical inference’s being 
faithful to content does not turn on the subject matter. It takes a form such that 
the conclusion is bound to be true if the premises are true, irrespective of the 
specific subject matter involved. The next section will pin down this contrast.

3.2  Content-Specific and Content-General Transitions

So far we have seen examples of two different ways in which transitions between 
representations can be configured so as to be faithful to content. First there are 
broadly-logical transitions. Speaking very roughly, these transitions are faithful to 
content whatever contents are involved. Second, there are transitions that operate 
within a particular domain, working well enough to be useful, but only because 
of the specific contents being represented. The impetus for RTM was the realisa-
tion that a mechanical process could be set up to make transitions of the first 
kind. In fact, however, when it comes to mental processes, transitions of the sec-
ond kind may be more common. We saw examples ranging from visual process-
ing, through analogue magnitude arithmetic and probabilistic information 
integration, to motor control.

This second category generalises Wilfred Sellars’s idea that, in language, there 
are material inferences as well as logical inferences (Sellars 1953). The inference 
from ‘it is raining’ to ‘the streets will be wet’ is not simply a disguised logical 
inference with a suppressed general premise. It is its own type of inference, 
widely used in practical reasoning. The aim of this section is to develop this dis-
tinction in a way which is applicable, beyond language, to a broad range of cases 
from the cognitive sciences.2 My more inclusive use of the term ‘inference’ covers 
any kind of computational or content-based transition. It applies to representa-
tions of any kind: nominal representations, mere organized representations, 
structural representations, and representations displaying general-purpose com-
positionality. My aim is to endorse Sellars’s insight and show that it can be given 
general application.

Although content-specific transitions are the more basic case, it will be con
venient to start with content-general transitions. Experimental work finds that 
deductive reasoning operates differently from other forms of inference, like 
inductive reasoning, that depend on world-knowledge and context (Heit and 
Rotello 2010). We are disposed to make some logical transitions automatically, 
just in virtue of representing the relevant premises, irrespective of the plausibility 
of the conclusion (Ball, Thompson, and Stupple 2018; De Neys 2023). For exam-
ple, Reverberi et al. (2012) found that modus ponens transitions are made 

2  Nor need the distinction be tied to a use theory of meaning.
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automatically, but not modus tollens. I have said that logical inferences are truth 
preserving no matter what contents are involved, but that is too quick. The valid-
ity of an inference does of course depend on the contents of the logical terms. A 
content-general transition is one whose faithfulness to content only depends on 
the content of the logical terms, not on the content of the non-logical terms. 
Consider some examples:

	 (6)	 p and q
∴	 (7)	 p

	 (8)	 For all x, if Fx then Gx
	 (9)	 Fa

∴	 (10)	 Ga

Inferences of these forms are deductively valid. Other examples, while still 
being formal, are not deductively valid. The conclusion is likely to be true if the 
premises are true, given the form of the transition. We saw that with (4) to (5): 
moving from high probability to a categorical conclusion. Another example is:

	 (11)	 All observed Ks have been P
	 (12)	 Ka

∴	 (13)	 Pa

This pattern works well enough in most ordinary applications, but it famously 
won’t work for arbitrary predicates K and P (Goodman 1955, p. 74; Quine 1969).

These forms of transitions are all characterised by their generality. The exam-
ples involving ‘and’ and ‘if . . .then’ are completely general as to their subject mat-
ter. (6) to (7) is faithful to content whatever complete contents are substituted for 
p and q. (8) to (10) is faithful to content whatever singular term is substituted for 
a, and whatever predicates are substituted for F and G. (11) to (13) is somewhat 
less general; nevertheless, it is faithful to content for very many of the predicates 
in ordinary use. There is probably no sharp cut-off between content-general pat-
terns of inference and the rest. The difference is a matter of degree, marked by 
how wide-ranging the class of representations is over which the disposition oper-
ates and is faithful to content.

In all of these cases the inference does depend on the content of the logical 
terms. What works for ‘all’ would not work for ‘some’. In our examples faithful-
ness to content depends on: ‘all’, ‘and’, ‘if . . . then’, ‘% probable’, and ‘observed’. 
I  will call these ‘broadly-logical’ terms: terms on whose content the validity 
or  truth-conduciveness of a generally-applicable transition pattern depends. 
Broadly-logical terms contrast with open class terms like ‘Socrates’ and ‘mortal’.

Content-general inferences involve terms with specific contents, but their 
being faithful to content does not turn on the content of these terms. Think about 
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the Socrates inference again, (1)–(3). It would be meaningless without using 
terms that refer to properties and particulars (e.g. Socrates). A fortiori, it would 
not be truth preserving without them. But it is content-general, not content-
specific. Substitute other concepts for Socrates, human, and mortal and you 
get another truth-preserving inference. This transition’s being faithful to content 
turns only on the contents of the broadly-logical concepts involved. By contrast, 
the faithfulness to content of content-specific transitions does depend on the con-
tent of the non-logical terms (of the non-broadly-logical-representations). So we 
can define the distinction as follows:

Content-specific transition: a transition between representations such that 
whether or not the transition is faithful to content depends on the content 
of representations other than broadly-logical terms.

Content-general transition/non-content-specific transition: a transition between 
representations such that whether or not the transition is faithful to content 
depends at most on the content of broadly-logical terms.

Content-general transitions do depend on content, but their faithfulness to 
content turns only on the content of broadly-logical terms (if any3). Something 
stronger may also be true. On certain plausible theories of content, the content of 
broadly-logical concepts is determined by the role they play in patterns of infer-
ence. For example, the content of and is plausibly fixed by its role in inference 
patterns like (6)–(7) (Peacocke 1992). By contrast, the content of concepts like 
Socrates and mortal, which figure in the variable positions in these schemata, 
depends on relations between the thinker and their environment. If that is cor-
rect, then the faithfulness to content of broadly-logical transitions only turns on 
their form, which fixes the content of the concepts on whose meaning faithfulness-
to-content depends. In any event, content-specific transitions turn on their par-
ticular subject matter: contrast and edges; dogs and fur; locations and proximity; 
etc. The sense in which content-general transitions are non-content-specific is 
that their faithfulness to content does not depend on the content of any non-
broadly-logical terms. If these are indeed different kinds of transitions then we 
should expect to find functional differences between the way people identify log-
ical contradictions (x is red and not red) and semantic contradictions (x is red all 
over and blue all over). That is an empirical prediction of my account.

My way of defining broadly-logical terms relates to one of the ways that logi-
cians have attempted to define the logical constants. The idea there is that an 

3  Trivially, the inference from p to p does not depend on the content of any non-broadly-logical 
terms, but it is valid and content-general. There are also truth-conducive ways of introducing a con-
clusion de novo, without a preceding premise, e.g. ‘Either it’s raining or it’s not raining’.
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operation is logical just in case it is invariant under permutations of the objects in 
the domain of interpretation (Bonnay 2008). This is to characterise logical 
notions in terms of their generality (Bonnay 2008, p. 33) and formality (p. 34). 
There are various objections to this definition, for example it implies that ‘most’ 
counts as a logical constant. Fortunately, for our purposes we don’t need a resolu-
tion of the issue in formal logic. Logic is concerned with the nature of various 
abstract structures. We are after a distinction between different kinds of transi-
tion, transitions that actually occur between representations in biological brains 
and computing machines. Our distinction can be a matter of degree and accom-
modate intermediate cases. Terms like ‘most’, and indeed other quantifiers, are at 
the broadly logical end of the distinction. They can underpin content-general 
computational steps.

Another example of a content-general transition is a disposition to update 
beliefs through exact or approximate Bayesian inference (Rescorla 2024). 
Bayesian inference works well no matter what the subject matter is. It is, however, 
difficult to implement, so real cognitive processes resort to approximations. How 
well these work may depend on the domain; nevertheless, schemes of approxi-
mate Bayesian inference are typically very generally applicable. They will still lie 
towards the content-general end of our distinction. A more controversial example 
involves our capacity to detect and punish cheaters. If this depends on a domain-
specific module that identifies situations in which a benefit is received, and no 
reciprocation is made or cost paid (Gigerenzer and Hug 1992), then the transition 
to social censure would be content-specific. However, the core reasoning may be 
performed in a content-general way (Oaksford and Chater 1994), supplemented 
by content-specific biases in salience or attention. Content-generality or content-
specificity turns on the particular empirical facts of the case.

Content-general computation is related to the computer science idea of vari-
able binding. It has long been recognised that a key attribute of classical comput-
ers is their ability to compute with variables—representations which can be 
‘bound’ to specific values, but which can be computed with without specifying 
their values (Penn et al. 2008; Gallistel and King 2009; Kriete et al. 2013; Bottou 
2014; Graves et al. 2016; Santoro et al. 2017). Content-general computation is a 
generalisation of this idea (which is already very general). Our canonical example 
of a content-general transition, the Socrates inference (1)–(3), does not use vari-
ables. It takes place with a particular singular term and particular predicates. 
Nevertheless, its truth conduciveness does not turn on the nature of these specific 
contents. It is content-general, not content-specific.

The patterns of inference at (6)–(7), (8)–(10), and (11)–(13) were specified in 
terms of variables. One way to implement a disposition would be to store these 
schema using variables and then to match them to current inputs. If so, a particu-
lar instance like our Socrates inference might be performed using bound 
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variables. But a disposition can conform to a pattern without the system having 
to represent the pattern explicitly. In that case a variable-involving schema like 
(8)–(10) would accurately capture a disposition without the system needing to 
have access to variables. The schema would describe patterns in what the system 
does with specific, non-variable representations.

A system with access to variables might perform these inferences without call-
ing up the specific values of the variables. We can see that clearly in an inference 
that is performed over free variables:

	 (14)	 (x – 1)2 ≡ x2 – 2x + 1
∴	 (15)	 2x ≡ x2 + 1 – (x – 1)2

So variables can underpin content-general transitions. On the other hand, vari-
ables might also occur in content-specific transitions. A domain-specific cheater 
detection module might store an inference scheme encoding variables with a 
restricted range of application (people and social exchanges, say). Nor does 
content-generality require the use of variables, as we have seen. Content-
generality is the more inclusive category.

* * *
There is a notion of computation where only content-general transitions count as 
computational. If computations have to be defined wholly in virtue of syntax, 
and to be neutral about what subject matter is being represented (or whether 
any subject matter is being represented), then only broadly-logical inferences 
will qualify as computational. (Even more narrowly, the capacity for variable 
binding might be thought to be required for computation.) That is a possible 
terminological choice. However, content-specific transitions are an equally 
good way of meeting the core RTM commitment to transitions which are faithful 
to content. Many putative analogue computations fit in this category, as do the 
examples of content-specific transitions I have drawn from computational 
cognitive neuroscience. So it is reasonable to think of both types of transition 
as computational.

In the computers invented in the twentieth century, content-general transitions 
have been to the fore. The computers in use in most practical applications are 
built on ramifying schemes of broadly-logical inference. Where they have built-in 
mathematical computations, these are somewhat content-specific, since they 
concern numerical quantities, but they lie towards the content-general end of the 
spectrum. The earliest computing machines were somewhat special-purpose, and 
there have been experiments in analogue computing machines deploying 
content-specific transitions, but it is only with the advent of powerful DNNs in 
the last decade that practical applications place widespread reliance on content-
specific transitions, ones which are learnt incrementally from a large training set 
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(as in the image classification example above). However, phylogenetically, it 
seems most likely that the order is reversed. Content-specific transitions seem to be 
the basic case, ubiquitous in representational processing in the animal kingdom.

It may be that the capacity for content-general computation is an ontogenetic 
achievement. Whether this is so turns on tricky empirical issues about whether 
the capacity for language depends on content-general computations (on which 
the jury is still out), and on whether developing that capacity depends on 
learning—whether the capacity for content-general computation is learnt from 
the environment rather than canalized in development. While phylogenetically it 
is reasonably clear that humans engage in more widespread and systematic logi-
cal reasoning than other animals, ontogenetically the issue is less clear-cut. On 
the one hand, Catarina Dutilh Novaes has recently made an impressive case that 
the capacity for deductive reasoning is socially learnt (Dutilh Novaes 2020), hav-
ing evolved through cultural evolution as a ‘cognitive gadget’ (Heyes 2018). On 
the other hand, the cross-cultural evidence for a language of thought quoted in 
Chapter 2 includes tasks that seem to call for relatively content-general computa-
tional dispositions (Dehaene et al. 2022), suggesting less variability than might be 
expected from a cognitive gadget. Either way, we still need to think of the capacity 
for content-general inference as a cognitive achievement, with content-specific 
computation the more basic way that representational processing manages to be 
faithful to content.

Is this a new distinction? It is not new to point out that there are important 
distinctions in this area. It is widely recognised that computational models divide 
into significantly different types. Theorists have drawn many different distinc-
tions. There is the difference between classical computational architectures and 
artificial neural networks (connectionist systems), sometimes characterised as a 
difference between symbolic and subsymbolic computation. Lake et al. (2017) 
argue that underlying the symbolic/subsymbolic dichotomy there is in fact a 
deeper distinction, that between model-building systems and those that just per-
form pattern recognition. The distinction I am offering, similarly, identifies 
something fundamental that, amongst other things, does separate paradigmatic 
classical computational systems from paradigmatic artificial neural networks. But 
it does not align perfectly: both types of system could in principle perform both 
content-specific and content-general transitions.

The distinction is not a matter of whether representations do or do not display 
compositionality. There is a connection with modularity: content-specific transi-
tions feature in familiar modules, as standardly understood. But my distinction is 
not equivalent to modular vs. non-modular. In one sense I am drawing a new 
distinction in the vicinity of these existing dichotomies; in another sense I am 
simply characterising a familiar distinction in a somewhat novel way. My aim is 
to precisely specify a distinction that is sufficiently deep and general that it can do 
the explanatory work I need—that I need for the wider project of explaining how 
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various representational structures, informational models, and computational 
processes play together in the course of concept-driven thinking.

The content-specific/content-general distinction concerns two broad types of 
computational processing. The last chapter drew a distinction between two broad 
types of representational structure. The next section explores whether the two are 
connected.

3.3  Types of Transition Go with Types of 
Representational Structure

In the last chapter, we saw that there is a contrast between paradigmatic cases of 
structural representation, on the one hand, and predication in language and 
thought, on the other (§2.4). The general-purpose compositional principles of 
language contrast with the special-purpose compositional principles at work in a 
map (physical or cognitive). In a structural representation, the relation by which 
components are combined into a complex representation has specific representa-
tional content. In the spatial cognitive map, the relation is co-activation and the 
content represented by that relation is spatial proximity.

Structural representations work by there being a correspondence between a 
relation on representational vehicles and a relation on the entities represented by 
those vehicles. The way that a structural representation enters into computations 
trades on that correspondence. For instance, internal computations over chains 
of place cell activation are used to calculate the relative length of potential routes 
through the environment. That computation works as a way of calculating route 
lengths because there is a correspondence between place cell co-activation and 
spatial proximity. The relation which defines the structure has representational 
content and the way it is computed with depends on that specific content. These 
are content-specific transitions.

What is coming into view here is a connection between the distinctions dis-
cussed in this chapter and those in the last. On the one hand, non-content-
specific transitions are characterised by the generality of their operation, their 
content-faithfulness turning only on the content of broadly-logical terms; simi-
larly, language-like compositionality is characterised by the generality of its appli-
cation. On the other hand, content-specific transitions are faithful to content only 
because of the specific content of non-broadly-logical terms; and the composi-
tionality of a structural representation is special purpose: its compositional device 
has specific representational significance (e.g. it represents spatial proximity). 
Special-purpose compositionality seems to line up with content-specific compu-
tation, and general-purpose compositionality with content-general computation.

However, as we will see shortly, there is no necessary connection here. Conceptual 
representations can enter into content-specific transitions (§3.4). It is also possible 
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for structural representations to be operated on in content-general ways. But there is 
an underlying alignment between type of transition and form of compositionality. 
Plausibly, what gives the compositional device at work in a structural representation 
a specific content (e.g. representing spatial proximity) is the way the representations 
are used computationally—in transitions whose content-faithfulness depends on 
that specific content. Alternatively, the specificity of the content means that stronger 
conclusions can be drawn in inference, content-specifically, than would be possible 
if the compositional principle did not have specific representational significance. 
Either way round, there is a reason why special-purpose composition should go 
hand-in-hand with content-specific transitions.

However, once a structural representation is established there is nothing to 
stop it being operated on in content-general ways. To do that in rich ways may 
require the representational system to include some broadly-logical terms or 
devices. Even without that, inferences could be drawn from a map that depend 
only on the vehicle relation representing a transitive relation (not necessarily spa-
tial proximity); or even just on the fact that it represents a two-place relation. 
Something similar is going on with Venn diagrams. In a Venn diagram, spatial 
relations stand for set inclusion. Reasoning with a Venn diagram can establish 
various set-theoretic conclusions. That case is more complex, since Venn dia-
grams are used by an interpreter rather than being computed over directly. 
(There are more examples of analogical inference in §4.6.) But it illustrates how a 
structural representation can be computed with in less content-specific ways. In 
short, structural representation goes with content-specific computation in the 
sense that structural representations are likely to enter into content-specific com-
putations and forming structural representations does not require a capacity 
content-general computation.

Similarly, content-general computation aligns with general-purpose composi-
tionality, but again with no necessary connection. Plausibly what makes a 
language-like compositional principle like predication general-purpose is that it 
is operated on in ways that do not depend on its having any specific content, that 
is, in content-general ways. In both ‘Socrates is human’ and ‘all humans are mor-
tal’, the mode of combination serves to predicate biological properties of people. 
But the logical conclusion we draw does not depend on a restriction to biological 
properties. It would work for any objects and properties. Alternatively, in a repre-
sentational system that includes a general-purpose mode of combination, that 
expressive power would be idle if representations were only ever computed with 
in ways that depend on specific contents—if we only reasoned with ‘Socrates is 
human’ in ways that depend on the combination concerning biological proper-
ties of people. Only when the sentence enters into broadly-logical inferences do 
we take advantage of the general-purpose nature of the compositional principle. 
Nevertheless, language-like representations can be operated on in content-
specific ways, as we will see in the next section, so there is no necessary 
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connection here. Rather, general-purpose compositionality tends to go along 
with having the capacity for content-general computation.

In short, there are good reasons why the distinctions in this chapter and the 
last tend to align. Content-specific transitions over representations displaying 
special-purpose compositionality is the base case. Content-general transitions 
over representations displaying general-purpose compositionality is a more 
sophisticated computational achievement.

This all relates to a sense in which the conceptual representations used in con-
scious deliberation are propositional. We saw in the last chapter that there is a 
stronger sense of propositional, beyond merely being truth-assessable, according 
to which a propositional representation has sentence-like structure. This is some-
times related to the idea that propositional representations support logical 
reasoning. We can now see why. A representational system that supports 
language-like compositionality, and that includes terms for conjunction and 
negation/disjunction, is one over which broadly-logical inferences could be per-
formed. A representation’s being propositional in this stronger sense enables logi-
cal reasoning involving conjunction, negation, and disjunction.

Content-general computation also goes along with another property often 
thought to be distinctive of classical computation, and of a language of thought, 
namely role-filler independence (Hummel et al. 2004; Quilty-Dunn et al. 2023). 
A representational system shows complete role-filler independence when the 
meaning of the individual elements in a combinatorial structure does not vary 
depending on how they are combined. In some maps, the location picked out by 
a point depends on its relations to other points on the map. The points do not, 
then, display role-filler independence. Or if, in natural language, the predicate 
‘green’ means something different in the compound ‘green leaf ’ than it means in 
‘green tomato’ (Travis 1997), then that mode of combination would not exhibit 
role-filler independence. The truth-conduciveness of broadly-logical inference 
requires that the meaning of terms does not shift during the course of the infer-
ence—at least not too much. If ‘human’ means something very different in the 
first and second premises of the Socrates inference (1)–(3), then the truth of the 
premises will no longer make probable the truth of the conclusion. (With logical 
inference, strict validity depends on there being absolutely no equivocation when 
terms are reused.) So content-general computation requires a good degree of 
role-filler independence, at least within an inferential step. To turn to an example 
in Chapter 5, it could be that dog means something different in the thought dog 
bites man than it does in the thought man bites dog, but if these were both 
relied on in a single chain of inference, the shift could introduce some inaccuracy.

Having seen that the structural and computational distinctions tend to align 
(but with exceptions), in the final section I want to elaborate on an important 
exception: the way conceptual representations are involved in content-specific 
transitions.
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3.4  Content-Specific Transitions Involving Concepts

In the examples we have considered so far, content-general transitions have 
involved deliberate reasoning, taking place over conceptual representations; and 
content-specific transitions have occurred within special-purpose systems, 
involving non-conceptually-compositional representations (representations that 
do not have language-like compositional structure). Are concepts restricted to the 
sphere of content-general computation? In this section I will argue that they are 
not. There are also content-specific transitions involving concepts. These come in 
two kinds, those linking conceptual representations to each other and those link-
ing concepts to representations of other kinds.

Starting with the latter, dispositions to categorise are often content-specific 
transitions. We move from seeing a certain arrangement of shapes, colours, and 
textures to forming the thought that is a dog.4 Although we can be misled by 
how things look, this disposition works pretty well most of the time. It is faithful 
to content because the features represented in perception are a reliable (but falli-
ble) sign of the presence of a dog. That is to say, it is a content-specific transition. 
Although concepts can, of course, be applied by reasoning from other concepts, 
theories of concepts have to leave space for concepts to be applied based on per-
ception or other special-purpose resources. Elisabeth Camp has an expansive 
account of what she calls ‘characterizations’, on the basis of which we can apply a 
concept (or characterize its referent). Christopher Peacocke’s theory of concepts, 
with a narrower focus, has transitions from non-conceptual representations to 
concept application. For example, the concepts square and diamond are applied 
on the basis of perceptual representations of a four-sided figure and its bisectors 
(Peacocke 1992, pp. 74–7).

There is empirical evidence for distinguishing between applying a concept 
by  reasoning from other conceptual representations and applying a concept 
based on content-specific transitions from non-conceptual representations. 
Experimental evidence shows that there are two routes to categorisation (Ashby 
and Valentin 2017). One route to applying a concept is automatic and relatively 
insensitive to concurrent cognitive load. A concept is applied based on a weighted 
sum of many sensory dimensions. The other route is deliberative, drawing on 
working memory and sensitive to cognitive load (Smith and Grossman 2008). It 
involves application of a rule that the thinker represents explicitly and can report 

4  The property of being a dog may already be represented in perception, but there are almost cer-
tainly some cases where the act of categorisation introduces a new content: applying the concept 
ingratitude, say, or (legal) contract. Even if the property of being a dog is represented in percep-
tion, the transition from that representation to application of a concept, although less substantive, 
would also be content-specific. A disposition to transition from a feature-placing or non-conceptually-
compositional content involving dogs to applying the predicative concept dog to a particular is only 
faithful to content because of the specific contents of the representations on each side of the transition.
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(e.g. that Cs have long legs and no spots), using a process that can only rely on 
one or two dimensions at once.

The two processes have distinctive psychological and neural signatures 
(Ashby and Maddox 2011). Learning a multi-dimensional categorisation 
requires feedback and works better if the category label comes after the sample 
being categorised (but only shortly after). With rule-based learning, a category 
label is not essential and, when given, helps even if it comes before or long after 
seeing the exemplar. Learning a multi-dimensional categorisation is impaired 
by switching the location of the response key and is minimally compromised by 
concurrent cognitive load. This dissociation predicts that when people catego-
rise stimuli on the basis of multiple dimensions they may not be able accurately 
to report the basis on which they sort stimuli into categories (as found by 
Hampton and Passanisi 2016; and by Frith and Frith 1978). People may know 
many of the reasons an animal is categorised as a dog, for example, but this 
need not accurately reflect the features relied on by their own categorisation 
dispositions.

We can caricature these two types of transition as follows:

	 (16)	 That object has long legs and no spots
	 (17)	 If an object has long legs and no spots, then it is a flug
	 (18)	 That is a flug

	 (19)	 [That is high on three, and low on four, specific perceptible features]
	 (20)	 It’s a dax

The route involving reasoning, (16)–(18), is a content-general transition. 
(Reasoning can also encompass content-specific transitions between conceptual 
representations inter se—an idea we return to later.) The multi-dimensional 
route, (19)–(20), is a content-specific transition. (The description in square 
brackets is shorthand for some collection of perceptual representations.) It is a 
content-specific transition from other resources to a conceptual representation.

Concepts are also involved in content-specific transitions in the other direc-
tion, from a conceptual representation to other resources. When I think about 
dogs using my dog concept, that brings to mind the characteristic sight, sound, 
feel, and smell of dogs. Theorists talk about this information as being ‘associated’ 
with the concept, but these are not bare associative links, in the way that salt 
makes us think pepper, say. They encode information about the subject matter of 
the concept. As Camp puts it, they serve to characterize the referent (Camp 2015). 
This can be quite important to the way a concept works. For example, many think it 
is central to the way that moral concepts work that when we categorise a situation 
as falling under a concept like unfair, or categorise a person as falling under a 
concept like cruel, that produces a characteristic emotional response (a reactive 
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attitude: Strawson 1962). In short, we move in thought from conceptual represen-
tations to a whole host of sensory, motoric, affective, and evaluative representa-
tions. These transitions tend to be appropriate to the subject matter. To the extent 
that they are faithful to content, that is because of the specific contents involved. 
They too are content-specific transitions.

Often special-purpose representations act as intermediates in a process that 
starts with one conceptual thought and eventually takes us to another. I am trying 
to work out whether a chair I want to buy will fit in the car. Having asked myself 
the question (conceptually), I imagine rotating the chair at various angles to see if 
it is likely to fit. When I conclude that it won’t, that is a conceptual judgement. 
The thought process that took me there proceeded via some special-purpose, 
not-conceptually-compositional representations. This relies on content-specific 
transitions at every stage: from concept to visual image (of the chair), amongst 
visual images and motor commands (mental rotation), and back to a conceptual 
conclusion (categorising the resultant image under does not fit). I call the process 
of getting from one conceptual thought to another in this way a mediated content-
specific transition (‘mediated-CS transition’).

* * *
We will examine mediated-CS transitions in detail in Chapter 5. I mention them 
now only briefly, in order to distinguish them from direct-CS transitions 
(see  Fig.  3.2). These are transitions that occur between conceptual representa-
tions directly, taking place within conceptual thought. Our existing examples of 
reasoning have been broadly-logical and content-general. But there are also plau-
sibly links between concepts inter se, links that underpin transitions which, with-
out being logical or deductively valid, work well enough to be useful (Machery 
2017, p. 222). For example:

	 (21)	 Moby is whale
	 (22)	 Moby is a mammal

	 (23)	 Cyrus is a dog
	 (24)	 Cyrus barks

The idea is that the thinker is disposed to make transitions of these forms 
whatever singular concept is substituted for Moby or Cyrus. They are not neces-
sarily truth preserving, but if a thinker is disposed to make direct dog-bark 
inferences like (23)–(24), they won’t go wrong very often. It is a worthwhile dis-
position to have. The transitions are faithful to content in the sense that the con-
clusion is likely to be true if the premise is true. The above examples count as 
direct-CS transitions provided the thinker has the disposition to make transitions 
of the following forms, without depending on some further premise:
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	 (25)	 x is a whale
	 (26)	 x is a mammal

	 (27)	 x is a dog
	 (28)	 x barks

We need examples where the transition occurs when the thinker is in ‘factual 
mode’, working out what is the case or what to do, and not simply free associating. 
A direct-CS transition is not just a matter of spreading activation (cf. Vicente and 
Martínez Manrique 2016), like the way tree activates palm which in turn acti-
vates wrist (Marcel 1980). Furthermore, the disposition is specified at the level 
of  complete representations. For example, if we substitute x is not a whale for 
premise (25), the thinker would not be disposed to transition to (26). Notice that 

ALL MEN
ARE MORTAL

SOCRATES IS A MAN

SOCRATES
IS MORTAL

perceptual, motoric, sensory, a�ective, …

CYRUS BARKS

perceptual, motoric, sensory, a�ective, …

SHALL I BUY
THAT CHAIR?

WILL IT FIT
IN THE CAR?

IT WILL FIT WITH
THE BACK SEAT DOWN

perceptual, motoric, sensory, a�ective, …

content-speci�c
direct mediated

content-general

CYRUS IS A DOG

Fig. 3.2  Types of representational transition: content-general and content-specific 
(direct and mediated). (The cartoon head is intended to show that these things are 
going on the mind. There is no correspondence to parts of the brain. The dotted line 
serves to separate representations in conscious deliberation that are constructed out 
of concepts from the rest. This is not a matter of levels of processing.)
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the faithfulness to content of these transitions depends on the specific contents 
involved. A disposition to move between two arbitrary predicates, x is F to x is G, 
would make no semantic sense.

It is an empirical question whether there are in fact any direct-CS transitions 
between conceptual representations. The most promising examples include cases 
like whale→mammal, kill→die, and red→coloured (Laurence and Margolis 
1999).5 In particular, although hierarchical category inclusion relations are some-
times calculated using typical features (typical dogs have features of typical mam-
mals), it may be that inferences between atypical instances, like whale(x) → 
mammal(x), are stored directly (Murphy 2002, p. 209; citing Glass and Holyoak 
1974). There is evidence that, when certain concepts are tokened, related prop-
erty concepts are activated, whatever the context, for example rabbit→fur and 
gun→trigger (Whitney et al. 1985; see also Machery 2015). To the extent that 
these reflect transitions between complete conceptual representations, and not 
bare associations between concepts, they are also evidence of direct-CS transi-
tions. Research on ‘shallow’ semantic processing (Solomon and Barsalou 2004) 
provides further evidence (which we return to below).

Importantly, these are cases where the transition does not depend on any fur-
ther premise or other input. They contrast with cases where the thinker will only 
draw the relevant conclusion when they are explicitly representing the general 
premise. Lea, Mulligan, and Walton (2005) illustrate one way of testing whether 
people are relying on an explicit premise in making an inference. They use 
inconsistency to probe the representations people build up when reading a text. 
The same sentence will take longer to read when it conflicts with the discourse 
representation the reader has formed up to that point. If a text has said that 
Nathan broke down in his car and missed the chance to give his best man’s 
speech before the start of the wedding meal, readers will slow down when reading 
the sentence, ‘The groom’s mother complimented Nathan on his wonderful 
speech’. In one condition, rather than being told explicitly that he missed the 
chance to give his speech, the reader had to infer that from the premises ‘If 
Nathan does not arrive before the food is served, he will not be able to give his 
speech’, and ‘By the time he got back, people were halfway through the meal’. 
The measure of whether people infer that he did not make his speech is that 
they read the same sentence (complimenting him on the speech) more slowly 
in the conflict condition. In this experiment, participants only made the inference 
if the conditional premise occurred shortly before the antecedent, or if they were 
reminded of it by a cue, not if they had read it ten sentences before. This suggests 

5  A rival explanation for these transitions would be that the determinate-determinable or class 
inclusion relation forms an explicit premise and the conclusion is reached in reliance on a broadly-
logical rule, e.g. F is a determinate of G, x is F, therefore x is G. That would then be a content-general 
transition.
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that drawing the conclusion depended on explicitly representing the conditional 
premise. The case contrasts with inferences based on ‘pragmatic world-
knowledge’, which require no explicit premise. On reading, ‘The angry husband 
threw the delicate porcelain vase against the wall’, readers will slow down over a 
subsequent sentence in which the vase is intact. There is no need to tell them 
explicitly, ‘if a delicate porcelain vase is thrown against a wall, then it will break’.

In the same way, the transition from (27) to (28) would count as a direct transi-
tion provided it does not depend on explicitly representing that dogs bark. The 
inferential disposition is ‘built into’ the concept dog. Just tokening the concept in 
an appropriate syntactic frame in factive mode disposes the thinker to make the 
transition. In this particular respect it is like the content-general transitions in the 
last section: just tokening the concept if . . . then in an appropriate syntactic 
structure when reasoning about what is the case disposes the thinker to make a 
modus ponens inference.

The direct-CS disposition works by effectively presupposing the generic con-
tent that dogs bark, but there is no vehicle for that background assumption. The 
agent relies on a fact about their situation without articulating it explicitly 
(cp. ‘situated inference’: Barwise 1986). The content dogs bark is represented only 
implicitly—represented by means of a disposition to make transitions between 
explicit representations (27) and (28) (Shea 2015). The transition is not relying 
on a representation that dogs bark that could enter into computations in its own 
right. Assimilating direct-CS transitions to logical inferences with a further prem-
ise would elide a psychologically real difference (e.g. explicit LTM vs. implicit 
LTM: Smith and Grossman 2008) and obscure the distinction between content-
specific and content-general computational processes.

Although some direct-CS connections could be innate (sensu unlearnt), most 
are doubtless built up from experience. For an illustration of how direct inferen-
tial dispositions are overturned by experience, think of the way students start 
reasoning with the concept of infinity when they first learn the symbol ‘∞’. We 
start using infinity as if it were a natural number. We soon learn that this leads 
us into falsehoods and contradiction, so we acquire a disposition to infer with 
infinity in more circumscribed ways. That is an experience-based change to pat-
terns of direct-CS transition.

There is a history to the idea of direct-CS transitions. At one time it was 
thought that a lexical concept encoded a definition, represented explicitly. In 
response to strong evidence against explicit definitional structure, Fodor turned 
for a while to ‘inference rules’ to account for semantic inference (Fodor, Fodor, 
and Garrett 1975; but cf. Fodor 1998, pp. 108–12). Inference rules are in fact a type 
of direct-CS transition between conceptual representations. This was in effect to 
adopt what Laurence and Margolis (1999, p. 5) call an ‘inferential model’ of how a 
concept is ‘structured’ (as opposed to the earlier ‘containment model’, which was 
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a matter of representational structure in our sense). The idea was that transitions 
like the whale–mammal inference, (25)–(26), are made quickly and automatically 
as a result of tokening the concept. Putative examples include:

	 (36)	 x is a bachelor → x is an unmarried man
	 (37)	 x causes y to die → y dies
	 (38)	 x is red → x is coloured

The conclusion is reached in each case, not by recalling a piece of information 
from memory, but by executing a procedure that is built into the rules for proc
essing the focal concepts (bachelor, cause, red).

These transitions were called meaning postulates (Montague 1974). Meaning 
postulates should be necessary, analytic, and partly individuative of the concepts 
involved. Meaning postulates have now been rejected by most theorists because it 
turned out to be difficult to identify a privileged set of inferences that are neces-
sary, analytic, or plausibly individuative of a lexical concept. Nevertheless, having 
given up the claim that there is a privileged set of analytic inferences that individu-
ates a concept, we can still distinguish between procedures that involve a concept 
and information explicitly represented using a concept. For example, relevance 
theorists treat concepts as atomic and then distinguish between two ways that the 
contents connected with a concept are stored (Carston 2010; Allott and Textor 
2012). Most information is stored in the form of ‘encyclopaedia entries’ in mem-
ory: propositionally-structured assumptions and beliefs, and non-conceptual 
imagistic and/or sensory-perceptual representations; but there are also ‘logical 
entries’. These are inference rules involving the concept (Carston 2010, p. 246).

Inference rules work like meaning postulates in terms of how they are proc
essed, but they are not analytic or individuative of a concept, nor need they be 
deductively valid (Block 1993; Machery 2017, 222). They are revisable, and a con-
cept’s identity may survive changes to the direct-CS transitions in which it is 
involved. They can encode ordinary empirical information (like the fact that dogs 
bark). While my thesis is neutral about the issue, it seems very likely that most are 
acquired through learning. The key point for our purposes is that they are proce-
dural and not explicitly represented. They subsist directly between premise(s) 
and conclusion, without a further explicit representation being relied on.

Cognitive science has a long history of drawing a distinction between rules 
and associations (Pinker 1991; Quilty-Dunn and Mandelbaum 2019). Rules are 
often thought to go with symbolic representation and classical computational 
systems. Associations align with subsymbolic representation and artificial neural 
networks or connectionist computational systems. The distinction I have drawn 
here problematizes the rules/associations dichotomy. From one point of 
view,  direct-CS transitions are a kind of rule that operates over symbolic, 
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conceptually-structured representations. They are inference rules. From another 
point of view, direct-CS transitions are more like associations. They reflect statis-
tical structure and are likely acquired through entities being connected in experi-
ence; they are unlike the theorem-proving of classical computers and more like 
the trained content-specific dispositions of an artificial neural network. So while 
accepting that what were called ‘inference rules’ are a kind of direct-CS transi-
tion, I want to eschew the unhelpful rules/associations dichotomy in favour of 
various better distinctions—the different kinds of representational structure enu-
merated in the last chapter, and the distinction between content-general and 
content-specific transitions defined in this one.

Triggering a direct transition disposes the thinker to token a certain conclu-
sion, but whether that conclusion is in fact reached may depend on competing 
dispositions and other facts. The disposition may have exceptions or be cancelled 
in certain contexts (e.g. in a high-stakes context). And whether the conclusion is 
in fact drawn will depend on what else is being represented concurrently (as in 
classic dichotic listening experiments, e.g. Lackner and Garrett 1972). For exam-
ple, the conclusion may not be drawn if it contradicts something that is already 
represented to be the case. Still, triggering the disposition does not depend on 
further premises being represented.

Digital computers use direct-CS transitions to encode some types of informa-
tion. Most processing steps draw on explicitly represented information retrieved 
from memory. Some, however, are built in. Gallistel and King (2009) give the 
example of a ‘literal’: where the value of a constant like π is not represented 
explicitly but is implicit in a processing disposition. Think of a procedure set up 
so that it outputs 3.14159 times the number given as input. The procedure can be 
used to calculate the circumference of any circle, given its diameter. But the value 
of π is not looked up or explicitly represented anywhere. It is purely implicit in 
the processing disposition.

In the examples so far, the direct links have existed between conceptual repre-
sentations piecemeal, a pair at a time. However, there may also be more system-
atic connections between a whole collection of concepts. Artificial neural 
networks trained in natural problem domains often develop similarity spaces in 
their hidden layers (Laakso and Cottrell 2000; Khaligh-Razavi and Kriegeskorte 
2014). There is growing evidence that the same thing happens with conceptual 
spaces in the brain (Cichy et al. 2016; Mok and Love 2019). Paul Churchland 
argues that concepts are represented in a semantic state space which has the 
property that tokening one conceptual representation disposes the thinker to 
move to tokening nearby conceptual representations (Churchland 1998, 2012). If 
that is right, some direct transitions between concept-involving representations 
are underpinned by the topography of the state space in which they are 
represented.
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Reaching a conclusion in virtue of a direct-CS transition between conceptual 
representations is significantly different from reaching a conclusion by relying on 
further premises. While the latter could be content-general, depending only on 
the content of the broadly-logical concepts involved, direct concept-concept 
transitions are content-specific. They are only faithful to content in the light of 
the specific contents of the open class concepts involved.

Direct-CS transitions also contrast with the mediated-CS transitions men-
tioned above (which we will return to at length in Chapter 5). Solomon and 
Barsalou (2004) performed experiments that serve to contrast the two. In a prop-
erty verification task, participants were given two words and they had to say 
whether the first refers to something that is a physical part of the second: given 
HORSE-mane the correct answer is ‘yes’. As lures they were given entirely unre-
lated pairs like PLIERS-river, and also associatively-related pairs like DONKEY-
mule. Participants gave correct responses more quickly when faced with 
unassociated pairs than with associated but false pairs: for the associated pairs, 
making the true-false judgement took longer. Only these difficult cases led to neu-
ral activation in perceptual systems (Kan et al. 2003). These results suggest that 
there are ‘shallow’ semantic connections, consisting of the presence or absence of 
a direct link, that obtain between conceptual representations directly, without 
relying on activating associated sensorimotor representations.

A plausible interpretation is that participants were relying on direct transitions 
to rapidly differentiate pairs like HORSE-mane from PLIERS-river, but went via 
mediated transitions to differentiate HORSE-mane from DONKEY-mule. There 
is evidence that these direct transitions are activated earlier in the processing 
sequence (Lea et al. 2005). They are selectively spared when other semantic rela-
tionships are impaired in Alzheimer’s disease (Glosser et al. 1998). These results 
thus show that there is an empirical contrast between (at least some forms of ) 
direct and mediated transitions.

In short, there is an important difference between direct- and mediated-CS 
transitions between conceptual representations. In one way, direct-CS transitions 
pattern with content-general transitions, since both consist of moves between 
conceptual representations directly. In another important respect, however, 
direct-CS transitions pattern with mediated-CS transitions, since both are 
content-specific.

To sum up, there is an important difference between two ways that representa-
tions can be computed with—two ways that transitions between representations 
can be configured so as to be faithful to content. Faithfulness to content may be 
content-specific, depending on the specific contents of the non-broadly-logical 
concepts involved, or content-general, depending only on the content of the 
broadly-logical concepts involved. The various ways that information is stored in 
the mind—‘informational models’ (Chapter 4)—may operate in either way. 
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Structural representations, relying on special-purpose compositional principles, 
tend to enter into content-specific transitions. Language-like representations, like 
the conceptual representations involved in conscious deliberation, relying as they 
do on general-purpose compositional principles, are well suited to content-
general computations. It is these types of representational structure and compu-
tational process that need to be integrated in an account of concept-driven 
thinking (Chapter 5).

Chapter Summary

3.1  Transitions Faithful to Content

This chapter argues that RTM’s commitment to representations being processed 
so as to be faithful to content can be achieved in two quite different ways: 
content-general and content-specific transitions. In computing machines, 
mechanical or electronic, physical particulars representing numbers interact in 
ways that perform useful computations. (p. 60)6 A basic way to make transitions 
faithful to content is to implement logically valid inferences. These basic compo-
nents are arranged so as to perform useful operations, like multiplication.

There are many ways of being faithful to content; it is sufficient if the conclu-
sion is likely to be true, given true premises, often enough to be useful. This 
notion does not require that every transition is faithful to content—there can be 
errors and transitions that are systematically mistaken in some contexts. (p. 61) We 
don’t need to say here how much faithfulness is required and in which circum-
stances; our question is: which contents does faithfulness turn on?

In many cases studied by cognitive neuroscience, processes are wired up 
by experience just to work well enough in the organism’s normal environment. 
Research on DNNs and neural activation patterns suggests that the internal tran-
sitions are highly specific to the subject matter on which the network was trained. 
(p. 63) Similarly, desert ants navigate based on analogue computations involving 
representations of angles and distances. More abstract analogue computations, 
for example approximate arithmetic, are much more generally applicable, but 
still turn on certain specific contents being represented (numerosity or magni-
tudes). Many computational models in cognitive neuroscience are also like 
this, including the cognitive map. The cognitive map is also a structural represen-
tation; faithfulness to content turns on this (§3.3). (p. 64) All these examples 

6  Each sentence of the summary corresponds to one paragraph. Page numbers indicate where the 
paragraphs begin.
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contrast with logical inferences, which are faithful to content irrespective of the 
specific subject matter involved.

3.2  Content-Specific and Content-General Transitions

This section pins down the difference, introduced in the last section, between 
two different ways in which a transition can be configured so as to be faithful to 
content. This develops Sellars’s distinction between logical inference and material 
inference. A content-general transition is one whose faithfulness to content 
depends only on the content of the logical terms (examples). (p. 65) They need 
not be deductively valid. They just need to work well enough to be useful. They are 
characterised by being very generally applicable as to subject matter. ‘Broadly-logical 
terms’ are those on whose content the truth-conduciveness of a generally-applicable 
pattern of inference depends. Content-general transitions = faithfulness to content 
turns only on broadly-logical terms (if any). (p. 66) Definitions: content-specific 
transition; content-general (or non-content-specific) transition.

Content-specific transitions depend on their particular subject matter; 
content-general transitions do depend on content, but only on broadly-logical 
content; that may be fixed just by the form of the transition. This relates to defin-
ing logical operations as those that are invariant under permutations of objects, 
accepting that terms like ‘most’ are broadly logical. (p. 67) Bayesian inference is 
content-general; approximations to Bayesian inference are likely to lie at the content-
general end of the graded distinction; cheater detection could be either.

Content-general transition is a generalisation of the idea of variable binding, as 
used in computer science. Content-general transitions need not involve opera-
tions on variables. (p. 68) Variable-based inferences need not be content-general; 
being content-general is the more inclusive category.

The notion of computation should not be restricted to the broadly-logical. 
Until recently, the vast majority of computers depended on content-general tran-
sitions; phylogenetically, it is likely that content-specific transitions came first. 
(p. 69) Whether the capacity of broadly-logical transitions depends on cultural 
learning is an open question.

My distinction is not completely novel—it is related to, but deeper than, the 
distinction between classical and connectionist architectures, symbolic vs. sub-
symbolic computation, or model-building vs. pattern recognition. Nor is it a mat-
ter of compositional vs. non-compositional, or modular vs. non-modular, 
although there is some rough alignment—it is a new way of drawing a deep dis-
tinction in the vicinity of existing dichotomies.

(p. 70) Next: connections between this distinction and the difference in repre-
sentational structure highlighted in the last chapter.
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3.3  Types of Transition Go with Types of  
Representational Structure

In the last chapter we saw that the general-purpose compositional principles of 
language-like representations contrast with the special-purpose compositional 
principles at work in a structural representation. In a structural representation, 
the relation that defines the structure has content and the way it is computed with 
depends on that specific content. Special-purpose compositionality lines up with 
content-specific computation, and general-purpose compositionality with non-
content-specific computation.

There are no necessary connections, but there are reasons—based on what 
gives the compositional principle its specific content; and/or the strength of the 
conclusions that can be drawn—why the special-purpose compositionality of 
structural representations tends to go hand-in-hand with computational transi-
tions that are content-specific. (p. 71) Once a structural representation is established, 
there is no bar on its being operated on in content-general ways. Similarly, there 
are good reasons—based on what makes the compositional principle general-
purpose; and/or use of its expressive power—why content-general transitions 
tend to align with general-purpose compositionality.

(p. 72) Performing content-general transitions over representations displaying 
general-purpose compositionality is a more sophisticated achievement. The 
argument here shows why two senses of ‘propositional’ tend to go together: having 
language-like structure; and supporting logical reasoning involving conjunction, 
disjunction, and negation. Content-general transitions require a good degree of 
role-filler independence, at least within the scope of a chain of inferences. The 
next and final section will elaborate on an important exception to the alignment 
between transition and structure discussed here.

3.4  Content-Specific Transitions Involving Concepts

(p. 73) Concepts also take part in content-specific transitions: between conceptual 
representations and other representations, and amongst conceptual representations 
themselves. Categorisation is often a content-specific transition. Categorisation 
can also occur by reasoning from other conceptual representations—experiments 
show functional differences between these two routes. (p. 74) They have different 
psychological and neural signatures. Stylised examples of each. Moving from a 
conceptual representation to sensory, motoric, affective, and evaluative represen-
tations is also a content-specific transition. (p. 75) When special-purpose repre-
sentations act as intermediaries from one conceptual thought to another, we have 
a mediated content-specific transition (more on this in Chapter 5).
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Links between concepts inter se can underpin direct content-specific transi-
tions between conceptual representations, for example: x is a whale → x is a 
mammal. Without a further explicit premise, the transition does not exhibit 
necessary truth preservation, but it is still a worthwhile disposition to have. (p. 76) 
This is not just a matter of associations between concepts: these transitions occur 
when the agent is thinking ‘factually’.

(p. 77) There is some evidence for direct-CS transitions (i.e. where there is no 
explicit general premise). Experiments can show whether a further explicit prem-
ise is involved in drawing an inference. (p. 78) The dog→bark transition counts 
as direct provided just tokening the concept in the appropriate syntactic frame 
in factual mode (e.g. Fido is a dog) disposes the thinker to make the transition. 
The general premise, for example that dogs bark, is merely implicit—it is not a 
representation that could enter into computations in its own right. Direct-CS 
transitions are doubtless built up from experience; an example is changes with 
experience in the way students use the concept of infinity (and the symbol ‘∞’).

Transitions of this type were once relied on by Fodor as ‘inference rules’. 
(p.  79) As ‘meaning postulates’, these were taken to be necessary, analytic, and 
individuative of concepts; dropping those commitments, there is still space for 
inference rules (relevance theorists’ ‘logical entries’, contrasted with ‘encyclopaedia 
entries’). Direct-CS dispositions encode ordinary empirical information and are 
revisable. They are poorly classified by the traditional rules/associations dichotomy. 
(p. 80) Whether the conclusion is drawn will depend on what else is represented 
in context, but triggering the disposition does not depend on further premises. 
Digital computers use some direct-CS transitions, for example in having a ‘literal’ 
(procedure) encoding the value of π. Some direct-CS transitions between con-
ceptual representations may be underpinned by a representational state space, 
rather than occurring piecemeal. (p. 81) The absence of an explicit general premise 
means that the direct transition is only faithful to content because of specific 
contents (e.g. whale and mammal), and so contrasts with content-general transi-
tions between conceptual representations.

Experiments support the distinction between direct-CS transitions and 
mediated-CS transitions. Direct transitions are activated earlier in processing 
and  are selectively spared when other semantic relationships are impaired in 
Alzheimer’s disease. Direct-CS transitions are like content-general transitions, 
in that they occur between conceptual representations directly; but they are like 
mediated-CS transitions, in being content-specific.

To sum up, there is an important difference between two ways that transitions 
can be configured so as to be faithful to content: content-specific and content-
general transitions.
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4.1  Ways of Storing Information

The overall aim of the book is to present a picture of how concepts are involved 
in the processes by which people work out what is the case or what to do. 
Prospection or forward planning requires the agent to have some kind of model 
of the world, a model which they use to calculate the likely consequences of their 
actions. Conscious deliberation draws not just on semantic memories—explicit 
representations composed out of concepts in a general-purpose way—but also on 
information encoded in many other forms.

In work on reinforcement learning an apparently simple contrast is drawn 
between model-based and model-free decision-making—decisions which do or 
do not rely on a world model. In fact, the cases where a thinker relies on some 
kind of mental model of the world in working out what is the case or what to do 
are rather varied and heterogeneous. There are a whole range of ways of planning 
and deciding that go beyond the decision-making of model-free reinforcement 
learning, as we shall see.

To encompass the range of what could be considered to be a cognitive or psycho-
logical model in this inclusive sense I will use the term ‘informational model’. An 
informational model is a collection of interconnected representations, of any kind, 
which can support planning, prospection, or other forms of inference that derive 
novel conclusions about what to do or what is the case. I am not committed to there 
being any clear boundary between what should and should not count as an informa-
tional model, nor for what should count as having a ‘world model’ or ‘knowledge 
structure’ about some aspect of the world. What the cases show is that there is a 
continuum between just storing some useful information and having a rich 
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interconnected model. The cases vary along multiple dimensions in how 
information is encoded and computed with. Different forms of representing and 
storing information make different contents easy to update, easy to access, and easy 
to compute with for different purposes, with trade-offs between these advantages.

One kind of informational model is a database of stored semantic memories, 
for example the collection of explicit conceptual representations about Paris that 
are stored in my long-term memory. Conscious deliberation has paradigmatically 
been regarded as drawing on this kind of information. I have been emphasising 
the way deliberate thinking also brings information and conclusions drawn from 
informational models of other kinds into the playground of thought. Some of 
these models—like cognitive maps or semantic state spaces—support non-local 
inferences. The aim of this chapter is to give a sense of the variety of informa-
tional models that can be relied on when we are deliberating.

The aim of the next chapter (Chapter 5) is to paint a picture of how concepts 
held in working memory allow us to rely on informational models and integrate 
them with information accessed through other concepts. The challenge is that 
conceptual thought has to integrate informational models, representational struc-
tures, and computational processes of different kinds. We will see, in this chapter, 
that informational models use representations with various kinds of semantically-
significant representational structure (from Chapter 2), characterised by different 
combinations of the six features highlighted at the end of §2.1. In terms of compu-
tational process (Chapter 3), many informational models work with content-
specific transitions, contrasting with the content-general transitions by which we 
can reason with conceptual representations. Some informational models may 
also support less content-specific and more broadly-logical computations (§4.7). 
It is the variety in the characteristics of these informational models which sets up 
the problematic to which the picture in Chapter 5 is a response.

This chapter divides the cases into sections in somewhat arbitrary way. I start 
with simpler cases, but there is no straightforward hierarchy of complexity. 
Different informational models that are relied on by deliberation illustrate differ-
ent combinations of the features discussed in Chapters 1, 2, and 3. Of these, in this 
chapter I focus on:-

	(i)	 Representational structure: organized representation, structural repre-
sentation, general-purpose compositionality.

(ii)	 Computational process: content-specific, content-general.

Where evidence is available, I also comment on:-

(iii)	 Whether the computations are local or non-local.
	(iv)	 What is found in the cognitive playground: inferences over the model, or 

just its outputs; whether the thinker deliberates with the informational 
model itself, or just its outputs.
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And whether inferences over the informational model are modular in the 
sense of:

	 (v)	 special-purpose or general-purpose;
	(vi)	 informationally encapsulated or not;
	(vii)	 fast and automatic, or working-memory-dependent and deliberative.

4.2  Information in Domain-Specific Transitions

As we saw in the last chapter (§3.2), one way that systems store information about 
the world is in their dispositions to make content-specific transitions between 
representations. On a common understanding of visual processing, the primate 
ventral stream contains dispositions to move from certain distributions of con-
trast to representations of edges and textures, from edges and textures to surfaces, 
and then to objects and so on. Another set of examples involve perceptual 
decision-making (Gold and Shadlen 2007). We might see an array of random 
dots in motion and have to decide if there is coherent motion to the right or to the 
left. In macaque monkeys trained to perform this task there is evidence of a neu-
ral circuit that integrates moment-by-moment probabilistic information, pro-
duces a maximum likelihood estimate, and programs a behavioural output in 
response (Gold and Shadlen 2001; Beck et al. 2008; Shea 2014b). In both cases, 
content-specific dispositions implicitly encode information about the statistics of 
the normal visual environment.

The human visual system is not often talked of as having a model of the world, 
but the deep neural networks which perform the same task (Krizhevsky, 
Sutskever, and Hinton 2012), in something like the way the visual system does 
(Yamins et al. 2014), are often described as statistical models of the problem 
space. Special-purpose perceptual processing systems should also count as con-
taining informational models in my sense. To the extent that they can be reused 
in offline simulation for the purposes of planning and deciding, they can be 
thought to encode a model of the task space.

These are informational models in only a thin sense. They contain information 
about regularities in the world, but since that information is represented only 
implicitly, it cannot enter into computations in its own right. Deliberation can 
only make use of it by running simulations over the representations between 
which the content-specific dispositions subsist. It is little more sophisticated than 
another case that is always described as model-free, namely model-free reinforce-
ment learning.

A classic example of behaviour that appears model-free is demonstrated in the 
trap tube task (Mulcahy and Call 2006). Subjects have to use a stick to get food 
out of a clear horizontal tube. The tube has a visible trap in the middle down 
which the food will fall and get stuck. Most of the non-human animals that have 
been tested fail to appreciate that, moved the wrong way, the food will fall into the 
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trap. After many trials they can eventually learn to push from the correct end, but 
then they continue to do so even when the tube is inverted so the trap will no 
longer catch the food and it would be easier to get the food from the other end.

The model-free reinforcement learning system learns from experience what 
reward will be obtained on average from each action it performs in each situation 
it encounters. These ‘cached’ action values do not depend on representing which 
kinds of rewarding outcome are produced by the actions (food, water, etc.), nor 
on representing how they are obtained, nor anything about the structure of the 
environment. That is why it is called ‘model free’. So if an outcome loses value for 
the agent, for example because the agent has been fed to satiety with a certain 
foodstuff, the model-free system will keep picking that option until it can labori-
ously re-learn new values.

The model-free reinforcement learning system is very well-characterised in 
humans, primates, rodents, and even insects. A huge number of experiments have 
converged on a consensus about the computations responsible for reinforcement-
driven choice behaviour and the brain mechanisms in which they are realized 
(O’Doherty, Cockburn, and Pauli 2017). Suppose that, when image A is on the 
screen, if the left button is pressed there is an 80 per cent chance that a grape will 
be delivered and a 20 per cent chance that nothing will happen; whereas for a 
right button press the chances are 30 per cent and 70 per cent, respectively. 
Organisms can learn the average payoff for each available action in each context. 
The model-free reinforcement learning algorithm does that by representing, 
when it takes an action, the expected value of that action-in-context. Comparing 
the expected value with the outcome that is actually delivered produces a teach-
ing signal, a reward prediction error. This is used to update the stored action 
value, increasing it when the reward was greater than expected, decreasing it 
when it was less. There is strong behavioural and neural evidence for reward pre-
diction error signals and their role in updating value representations through an 
algorithm known as temporal difference learning (Schultz, Dayan, and Montague 
1997; Sutton and Barto 1998; O’Doherty et al. 2003).

It takes considerable experience to learn the correct action values. When the 
environment changes, the values have to be laboriously re-learnt. Once learnt, 
action values tell the organism what to do in each context. The value of action 1 in 
context A is cached in memory; ditto for all other actions and contexts. 
Encountering context A again, the system represents that action 1 is on average 
worth 0.8 and action 2 worth 0.3. These values are input into a decision policy. A 
standard decision policy will mostly pick the most valuable option. (But not 
always—it makes sense to pick the lower-value option some of the time in case 
the environment has changed.1) When ‘deciding’ what to do, there is a direct 

1  For a system with limited memory in a probabilistic environment it will always make sense to 
randomise to some extent (Icard 2021). A system with limited memory can work out the best option 
given information about the last n time steps. Sometimes that will also be the best option had it stored 
a complete history; other times a complete history would have recommended a different choice. 
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throughput from input to behaviour, with computational steps involving expected 
value on the way. The system knows what to do and has information about its 
environment, but it doesn’t really know anything about the structure of the envi-
ronment or about how its actions produce rewards.

Another example concerns motor control. We can accurately guide our limbs 
to points around us in space. This ability depends on a circuit that takes visual 
information from the limb in motion and continuously adjusts the limb trajec-
tory so that it smoothly reaches the target. A detailed account of this visuo-motor 
control system, well supported by the evidence, involves forward and inverse 
models of how motor programs issue in behaviour (Wolpert, Diedrichsen, and 
Flanagan 2011). Once a target for action has been selected this system acts in 
direct throughput mode. Nevertheless, it involves predictions derived from an 
informational model (the forward model). The system is continuously predicting 
where the limb is likely to go given the current motor command. It uses the dif-
ference between these predictions and the goal state to update the motor com-
mands being issued. Further updates are made when information arrives about 
where the limb is in fact going, but they come in later. Using predictions from the 
forward model makes for smoother motor execution. This is characterised as a 
model-based account, contrasted in the literature with a rival ‘model-free’ 
hypothesis in which movements are based directly on a learned policy (Hadjiosif, 
Krakauer, and Haith 2021). However, even the directly learned policy implicitly 
encodes some information, so if it could be used in simulation mode, then it too 
would qualify minimally as an informational model in my inclusive sense.

These three systems—special-purpose perceptual processing, model-free rein-
forcement learning, and motor control—all store information about the environ-
ment which they use in online processing. All three systems can also be relied on 
offline, by running simulations driven by deliberate thought. That is, they contain 
informational models, of at least a minimal kind. What about the properties can-
vassed in the first three chapters? All three systems deal with tasks that are rea-
sonably stable over time, allowing the system to learn, from a wealth of experience, 
dedicated transitions between representation types, transitions that implement 
computations suited to the problems on which they have been trained. Thus, they 
make use of organized representations, computed over in content-specific ways. 
They have many characteristics of modularity: they are special-purpose (and 
domain-specific), fast, and automatic. Their computational steps are driven by 
specific inputs and not sensitive to the agent’s overall beliefs—that is, they exhibit 
informational encapsulation. Their online operation does not draw on concepts. 
They can be used in simulation mode deliberately, deploying working memory, 
but it is only their outputs that are integrated into the cognitive playground. The 
information they contain is not directly available to be reasoned with in 

Randomising so as to pick a lower-value choice some of the time is a way of sampling to see whether 
you are in one of these other histories.
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deliberation. The thinker deliberates with the outputs of the informational model 
rather than with the model itself. Standard accounts of all three systems 
involve local rather than non-local computations (although it remains open 
that some relatively constrained but nevertheless non-local parallel constraint 
satisfaction may be at work in perceptual processing). In short, they exemplify 
a collection of features that contrast with the properties of conscious delibera-
tion with conceptual representations. These characteristics have to be accom-
modated in any account of how these systems are relied on and integrated in 
conceptual thinking.

4.3  ‘Model-Based’ Tasks

The last section looked at the characteristics of three relatively simple systems. 
We move now to systems that encode richer information about the structure of 
the environment and perform somewhat more sophisticated inferences with it. 
Research on ‘model-based’ decision-making examines the way an agent uses 
some kind of representation of the causal structure of the environment—for 
example of which actions cause which outcomes—to work out the likely conse-
quences of their actions (Butlin 2021). These predictions are used to decide how 
to act. Model-based planning is studied with tasks where the choice at one step 
affects the options that will be available at future steps.2 Turning left at a junction 
in a maze will open up one set of future choices and close off those available 
down the other branch. Moving the queen out now in a game of chess affects 
what can happen next. Chess players typically think through a branching space of 
future possibilities—effortfully—before they move a piece.

One set-up that has been used experimentally is a task similar to choosing an 
apartment. It involves searching for rewards and deciding at each time step 
whether to accept the current offer or to keep searching (Kolling et al. 2018). The 
experiments show that people decide in a way that takes into account how their 
decisions affect which states they are likely to encounter in the future (if you sign 
up for this apartment now and a better one comes along next week, you will 
miss out). Another task is a game in which the agent’s choices may or may not 
affect the behaviour of the group they are playing with (Na et al. 2021). Taking the 
highest reward at step 1 is suboptimal if that is going to reduce how generous the 
rest of the group will be in future interactions. The researchers find behavioural 
evidence that participants engage in forward thinking, taking into account the 
long-run effect of their choices. Computationally, in both studies regions of ven-
tromedial prefrontal cortex were found to encode the prospective value of the 

2  Butlin (2022) argues that this kind of learning is necessary for agency.
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choice arrived at by forward thinking. Thus both behavioural and neural evi-
dence showed that people were engaging in prospection, calculating the long-run 
consequences of their choices before deciding what to do.

As these results show, researchers are beginning to understand how informa-
tion about task structure is stored and used. The classic test of whether an animal 
understands the connection between its actions and outcomes is to devalue one 
of the outcomes. For example, an animal can be fed to satiety on a previously 
valued foodstuff. An animal shows ‘goal-directed’ behaviour if it then turns down 
the chance to pull a lever (say) to get that foodstuff (Balleine and Dickinson 
1998). It shows ‘habit based’ behaviour if it continues to pull the lever until it 
gradually learns that the outcome (foodstuff ) is no longer rewarding. Model-
based behaviour depends on representing world states and how they are related 
in a way that is independent of which particular states currently attract reward 
(Akam et al. 2021).

Courtin et al. (2022) measured and perturbed neural activity in the amygdala 
of mice exhibiting goal-directed behaviour. They observed one pattern of activity 
that reflects the value of the experienced outcomes and remaps when an outcome 
(e.g. getting sucrose solution) has been devalued. They observed another pattern 
of activity reflecting the action-outcome contingency (e.g. that the right-hand 
lever usually delivers sucrose solution). This activity was remapped when (e.g.) 
the lever that previously usually delivered sucrose solution started delivering 
milk instead. The animal’s choices rely on a model that encodes action-outcome 
contingencies (e.g. the right hand lever usually produces sucrose) and outcome 
values (the current value to the animal of getting sucrose). This information is 
encoded, at least in part, in the amygdala, and relied on by the animal in planning 
its actions.

The most-used task for studying model-based reinforcement learning is the so-
called 2-step task (Daw et al. 2011). Here is an analogy. I race sailing dinghies and 
live mid-way between two lakes. Whatever the national weather, on Lake Placid 
the wind is usually light but local conditions sometimes whip up a stiff breeze. On 
Lake Windermere it’s usually windy but occasionally calm. I’m not a particularly 
good sailor, sometimes winning and sometimes losing races whichever lake 
I choose. One week I choose Windermere but it turns out, unusually, to be calm. 
I discover a new trick for getting more speed out of the boat in light winds, win-
ning the race hands down. Which lake do I choose next week? Lake Placid of 
course—so that I have the best chance of getting to use my newfound skill in light 
winds. That is the signature of model-based choice. I choose A at step 1 but am 
sent down the low-probability branch. At step 2 I make a choice that is rewarded. 
This decreases the chance that, next time around, I will choose A at step 1. For a 
purely model-free reinforcement-learning agent, the chance of choosing A at step 
1 would increase, because choosing A last time around was part of a chain of 
actions that led to reward.
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When people are given the 2-step task and told about the structure of the prob-
lem, they mostly behave in a model-based way (although the pattern of behaviour 
is also affected by a model-free effect whereby the fact that a chain of actions led 
to reward makes it somewhat more attractive). It is difficult to learn action-
outcome contingencies when the connections are probabilistic. Without instruc-
tion, only a minority of people learn that the first step choice has a common 
outcome and a rare outcome (in our analogy: that Lake Windermere is usually 
but not always windy) (Castro-Rodrigues et al. 2022).3

Another way to test the models used in reinforcement learning is to give the 
agent separate pieces of information and see if they can perform a simple infer-
ence to put them together. Participants observe that an auditory tone is associated 
with a particular picture, and later that the picture is associated with reward. 
When they then hear the tone again, do they expect the reward? The answer is 
yes, both for humans and mice, with evidence that the hippocampus is involved 
in making the inference (Barron et al. 2020).

A final example of the way information is stored and computed with concerns 
value. The task concerned novel foodstuffs. The new foodstuffs were novel com-
binations of familiar foods: avocado and raspberry smoothie, tea jelly, and so on 
(Barron, Dolan, and Behrens 2013). Participants had to rate how much they 
wanted, in the future, to consume each of these new foods, without being given 
the chance to try them first. Medial prefrontal cortex was again found to encode 
the future value of the various options. The experiment examined how these new 
values were constructed out of the representations people already had about the 
value of the familiar components (tea, avocado, raspberries, jelly, etc.). Barron et al. 
found that representations of the components and their values were activated in 
forming a representation of the value of the compound. This effect gradually 
went away after repeatedly imagining the compound. It seems that, by then, par-
ticipants could value the new compound directly, without going via the compo-
nents, even though they had never tried it. Their neural activity was, at that stage, 
the same as in participants who had had the chance to taste the novel compounds 
before rating them. The hippocampus was involved in performing the inference 
from the familiar components to the novel compound. This is evidence of a com-
putation that constructs a representation of a novel compound and infers its 
value from representations of the value of the components. The decision about 
what to choose is thus made on the basis of computations performed on a simple 
model of the task environment.

These examples are a small sample from a very large body of relevant research. 
What this work shows is that agents that learn about which actions will be 
rewarded in different contexts store a simple representational model. The model 

3  This despite the fact that the motor system appears to have learnt the connection, reflected in 
quicker reaction times for the second choice following the common transition.
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represents connections between events or states in the world inter se, connections 
between their actions-in-context and outcomes, and representations of how valu-
able those outcomes are. This information is used to carry out forward planning 
in order make choices. These types of experiments suggest that people are doing 
deliberate reasoning with representations of the causal structure of the problem 
space they are interacting with (Gershman et al. 2014). Devaluation sensitivity 
shows that this form of reasoning is integrated with the agent’s goals and values 
(not informationally encapsulated), which is in turn suggestive of representations 
in the global playground. If this is on the right track, then we have a kind of 
thought-driven planning that makes use of informational models in the cognitive 
playground, drawing on working memory, and performs deliberate inferences 
over them. That leaves open questions about representational structure and the 
nature of the computational process.

Methodologically, it is extremely challenging to find out what representational 
structures and computational processes are responsible for this kind of planning 
and inference. However, neural data is increasingly providing an indication of the 
way information is stored and computed with in these kinds of cases, as we will 
see in the next section.

4.4  Structural Representations

In the last section we saw a few examples of what is classically described as 
‘model-based’ reward-guided decision-making. This section will look at a sugges-
tion about what the informational models involved in this kind of behaviour may 
be like. This is almost certainly not the only system responsible for classically 
goal-directed or ‘model-based’ behaviour, but it is useful for our purposes because 
it offers a more detailed characterisation of the representational structures and 
computational processes involved in one kind of informational model.

The representational structure here is a structural representation, a form of 
cognitive map. Section 2.2 introduced the spatial cognitive map in the hippo-
campus and wider medial temporal lobe, arguing that it forms a structural 
representation of relations between locations in the organism’s environment. 
In this section we will see that the same neural areas are involved in con-
structing non-spatial structural representations of more abstract relations. 
There is no indication that the pre-play and replay phenomena observed in 
hippocampal place cells are a form of working-memory-dependent deliberate 
inference. (The rapid timescale suggests that they are not: Liu et al. 2021.) 
Deliberation can nevertheless rely on the outputs of inferences performed in 
the cognitive map, for example when I ask myself how to get back to the library 
when I am in the pub. The same may apply to the more abstract cognitive 
maps discussed in this section.
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We saw in the last section that the hippocampus is involved in inferring a novel 
sound-reward association and in inferring the likely reward value of a novel com-
bination of known foodstuffs. These are inferences that rely on memories of 
(non-spatial) relations between objects or events. Whittington et al. (2020) have 
constructed a computational model that links these kinds of task. Their model 
explains many aspects of the neural activity recorded in the medial temporal lobe 
(in particular in the hippocampus and entorhinal cortex).4 The model is trained 
on sequences of sensory inputs that have an underlying structure. For example, 
the inputs might be generated by moving around the nodes of a two-dimensional 
grid (Fig. 4.1). The critical feature of the computational model is that it learns the 
underlying structure independently of the particular objects that populate 
the structure. For example, when it sees the chair (see Fig. 4.1), it represents 
that the current situation lies at a particular node in the abstract structure and 
also that there is a chair at that location. The node structure can be used to represent 
another environment that is also arranged in a two-dimensional grid, but where a 
different set of objects are encountered in moving around the grid.

The structure learnt by the model can be re-deployed in different tasks in 
which the stimuli encountered have an underlying two-dimensional grid struc-
ture. The model predicts the activity of many kinds of cells in the medial tempo-
ral lobe, including place cells in the hippocampus and grid cells in the entorhinal 
cortex. It also explains the finding in rats that spatially-tuned place cells ‘remap’ 
when a rat is moved to a new spatial environment. Whittington et al. (2020) show 
that this is plausibly because a structural representation of the underlying spatial 

4  See Mok and Love (2019) for a different account of grid cell and place cell activity.

Fig. 4.1  In Whittington et al. (2020), transitions between objects occur as if the 
objects lie on a two-dimensional grid. For example, having seen a chair on the screen, 
pressing the up key will produce a motorbike next.
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structure is carried across between environments, being instantiated in different 
features (landmarks, geometry, smells) in different environments. They also show 
how the structure learnt by the model can generalise to a new task that is not 
entirely spatial. In this environment a reward occurs periodically every fourth lap 
round a circuit. The relation of the animal’s current activity to when a reward will 
be delivered is a non-spatial relation—it depends on how many laps they have 
completed. The model ends up representing the number of cycles between the 
current lap and reward, and does so in a way that is consistent with neural record-
ings from mice performing the task.

A related team found evidence in humans for neural representation of the 
abstract structure of the way different stimuli-reward contingencies were related 
(Baram et al. 2021). Participants learn that, in one environment, although rewards 
are changing, two different stimuli always share the same reward probability; in 
another environment, the rewards for two stimuli are anti-correlated. The iden-
tity of the visual stimuli varied independently of the relational structure (correla-
tion vs. anti-correlation). Baram et al. (2021) found that the representations 
evoked in entorhinal cortex were preserved when tasks shared the same abstract 
structure but not when the underlying structure changed. This is consistent with 
the Whittington et al. (2020) computational model of the way the hippocampus 
and entorhinal cortex form a structural representation of the environment. 
Schwartenbeck et al. (2023) found that the same brain area is involved in repre-
senting relations between simple geometric building blocks (on top of, beside) as 
they are used to construct 2D figures. It is not yet known if there are limitations 
on the kinds of abstract relations that this system can represent or whether it has 
to build on pre-existing conceptual knowledge of a domain.

Using a different task, Park, Miller, and Boorman (2021) also found evidence 
that the abstract structure of a non-spatial problem space is encoded in a grid-like 
code in entorhinal cortex. In their task participants had to learn the way sixteen 
individuals were organised into a social hierarchy (Fig. 4.2). The sixteen individ-
uals differed in both competence and popularity. On day one participants learnt 
the relationships between people who differed by one rank in competence, on 
day two, by popularity. Participants were tested on longer-range relationships 
which they had not seen in training, but that could be inferred. When partici-
pants took these decisions, a grid-like representation of the relational structure 
was activated in entorhinal cortex. This is plausibly a structural representation of 
the network of social relations, allowing participants to infer relations of compe-
tence or popularity that they did not observe in training. When participants were 
asked to choose a partner to collaborate with, medial prefrontal cortex activity 
reflected the ‘value’ of the partner they selected, a combination of competence 
and popularity.

Structural representations of space in the medial temporal lobe have been 
studied extensively for fifty years, delivering a reasonably good understanding of 
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how information about spatial locations is stored and computed with (§2.2). The 
just-mentioned results suggest that information about other kinds of relational 
structure is likely to be stored and computed with in the same way. The medial 
temporal lobe is involved in representing the relational structure that obtains 
across an array of entities (locations, objects, people). It is computed with to infer 
new relationships. For our purposes, these results illustrate a family of informa-
tional models in which relations are represented by means of a structural repre-
sentation. Computations performed over the structure allow the agent to infer 
new relationships, estimate the value of options, and take decisions. Unlike a cir-
cuit of organized representations linked by learned content-specific transitions, a 
structural representation enjoys the benefits of compositionality, albeit of a special-
purpose kind. A relation between vehicles has specific representational signifi-
cance. It can be combined and recombined with representations of any of the 
available relata (as in Schwartenbeck et al. 2023). Content-specific computations 
allow inferences to be made about these relata, independently of which particular 
relata are involved.

The cognitive spatial map is usually described as domain-specific (specific to 
locomotion in space). Here we see that the same kind of structural representation 
can be deployed in other domains too. But it is still special-purpose in the sense that 
it turns on making use of a structural correspondence between neural representa-
tions and relations of interest in the world. The experiments of Baram et al. (2021) 
and Park et al. (2021) suggest that the model is connected to participants’ 

Fig. 4.2  In the task used by Park et al. (2021), participants had to learn how the 
people pictured were organised along two separate social dimensions, competence 
and popularity.
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conceptual understanding of the problem. It could even turn out that concepts 
are what labels nodes of the structure. The evidence discussed does not show 
whether computations over the map are encapsulated from the thinker’s wider 
beliefs; nor whether they occur automatically or require deliberation/working 
memory. The experiments show that at least the outputs of inferences over the 
model can be represented in the cognitive playground and relied on by delibera-
tion. Inferences may take place locally, over parts of the model piecemeal, 
although computational models of the cognitive spatial map show that this kind 
of structural representation could also support non-local computations.

Finally in this section, I will mention evidence of a simpler form of structural 
representation which shares these features. The examples so far involve structures 
with more than one relation: two different spatial dimensions (north/south and 
east/west, or up/down and left/right), two different social relations (competence 
and popularity), or two different dimensions on a grid. In a simpler form of infor-
mational model items are represented as related by a single relation. For example, 
in an experiment performed by Nelli et al. (2023) participants learnt a novel rela-
tion between a random collection of objects: ‘brispiness’. The objects are repre-
sented by patterns of neural activation in posterior parietal cortex and 
dorsomedial prefrontal cortex. We can consider the high dimensional neural 
activation space defined by plotting the activity of each neuron along a different 
axis. Regions in this space are vehicles of content and directions in this space can 
have semantic significance. Semantically-relevant dimensions will not usually 
align with any axis (with the activity of a single neuron). In this experiment, as a 
result of learning, objects become arranged in neural activation space along a 
dimension that reflects their relative brispiness. This arrangement is reflected in 
choice behaviour (accuracy and reaction times). To look at inferences involving 
this relation, participants are initially taught the relation only within two disjoint 
sets of objects: the relative brispiness of objects in set A and, separately, the rela-
tive brispiness of objects in set B. When they are later given comparisons at the 
boundary which show that the objects in set B are all brispier than those in set A, 
neural activation space rapidly reconfigures so as to arrange all the objects along 
a single elongated dimension. Subjects can then make correct relational judge-
ments when one object is from set A and the other is from set B.

Many experiments look at a single relation of similarity-dissimilarity. For 
example, the scenes people see in movies elicit neural activations that form a sim-
ilarity space reflecting the similarities between the scenes (Huth et al. 2012). The 
same is true for the words people hear when they are listening to stories (Huth 
et al. 2016). In some cases, at least, these are not just reflections of similarity but 
appear to be the basis on which people judge similarities between objects. For 
example, Charest et al. (2014) asked people to judge the similarities and differ-
ences between an array of different objects. Participants’ individual, idiosyncratic 
similarity judgements were predicted by similarities and differences in the 
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particular patterns of neural activity in inferior temporal cortex elicited by seeing 
the objects. Experience of the objects was arranged into a similarity space that 
formed the basis of their judgements.

This too is a simple form of structural representation. Objects are represented 
in a high-dimensional neural activation space (Churchland 1998; Shea 2007; 
Kriegeskorte and Kievit 2013). When two objects are represented in the same 
space, the distance between them is taken to be a measure of similarity (or some 
other relation). The distance measure feeds into downstream processes that 
depend on similarity and dissimilarity—processes like sorting an array of pic-
tures by similarity (Charest et al. 2014). This is a very simple way in which a rela-
tion between represented objects (similarity) is represented by a relation between 
vehicles (distance in activation space) and then used in downstream computa-
tions. As such, these cases too exemplify a simple form of informational model 
(again one that would not typically be called ‘model-based’ according to the 
standard ‘model-based’/‘model-free’ dichotomy). They have broadly the same 
kind of features as the examples earlier in the section and can be relied on by 
deliberate thinking in broadly the same way.

4.5  Relational Inference Tasks

The last section looked at some informational models that rely on structural rep-
resentation. The results of computations over structural representations are avail-
able to deliberation. It was not clear whether deliberation is needed to use the 
model or whether computations over the model can take place without drawing 
on working memory. This section turns to examples where deliberation is central. 
There is a set of experiments in cognitive psychology that task participants 
with  engaging in relational reasoning in order to answer explicitly relational 
questions. These are also cases where it is plausible that relations are represented 
by concepts, as part of conceptual representations exhibiting general-purpose 
compositionality, rather than by a structural representation (e.g. a cognitive map).

One experimental tactic is to examine transitive inference. People are given 
two premises, ‘the car is slower than the train’ and ‘the tractor is faster than the 
train’ (counterintuitively), and then asked whether the tractor is faster than the 
car (Andrews 2010). Participants who know that ‘faster than’ is transitive, and 
discount their background knowledge, will say that the tractor is indeed faster 
than the car. This kind of experiment probes people’s explicit grasp of relations 
(and examines whether, in reasoning, they rely on logical inference or back-
ground knowledge). A relation can be mentally represented and computed with 
in these ways without being represented structurally. It may instead be repre-
sented by a concept in a thought with language-like structure.
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An extensively-used set of problems that in fact probe relational inference rely 
on Raven’s progressive matrices. These are a series of pictures that form a pattern. 
The task is to use the pattern to infer the missing picture (Lovett and Forbus 2017) 
(see Fig. 4.3). The problems are designed so that there is no simple visual pattern. 
Neighbouring pictures are connected by two relations. To solve for the missing 
picture one has to identify the two relations and apply them to the missing box. 
Raven’s progressive matrices are widely used as a test of fluid intelligence. They 
are of interest to us because they rely on the capacity to represent relations and 
compute with relations. Performing the task depends on working memory and it 
seems to draw on representing the relations explicitly (Krawczyk 2012; Lovett 
and Forbus 2017).

An elaboration of the working-memory-dependent ability to represent and 
reason with relations is the capacity to do so-called analogical inference 
(Krawczyk 2012). One measure may be familiar from school tests: questions like, 
‘cat is to kitten as dog is to . . .?’ (puppy) (Goswami 2001). The same capacity can 
be tested using pictures rather than verbal materials (Markman and Gentner 
1993; Gentner and Maravilla 2018). For example, participants have to match the 
boy reaching for food in one scene with the dog reaching for food in another 
scene (Krawczyk 2012). A boy in the second scene (perceptual match) acts as a 
distractor (see Fig. 4.4). Representing the relation depends on understanding the 
whole scene rather than tracking any simple perceptual cue. The ability to represent 
relations in a way that enables such inferences is a cognitive achievement in 

Fig. 4.3  An example of Raven’s progressive matrices. Which picture from the lower 
box completes the empty square in the top grid? From Lovett and Forbus 
(2017, p. 62).
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childhood (Goswami 2001) and is much more developed in humans than in 
other animals (Penn et al. 2008).

This large body of work shows that people are able to explicitly represent rela-
tions like X is the offspring of Y and W is reaching for Z, and to reason with these 
relations. In what sense is this analogical if it is the same relation in each pair (cat 
is to kitten as dog is to . . .)? The analogy exists at the level of the relata. Kitten is 
analogous to puppy, in that they are both offspring. In other cases, however, it is 
the relations themselves that are analogous. For example, there is an analogy 
between the way too many people streaming movies slows down the internet, 
and the way too many people coming home from work slows down the traffic 
(Silliman and Kurtz 2019). By using a subtle change detection task when people 
read these kinds of narratives researchers show that some people do, and some 
people do not, represent the analogy between the two situations.

What kind of informational model are people using to perform these kinds of 
relational and analogical inferences? The experimental data do not offer us a 
definitive answer, so I will focus on a plausible account that offers a contrast with 
the last section. This is LISA (‘Learning and Inference Schemas with Analogies’). 
LISA combines distributed connectionist representations of the relata, learnt 
from perceptual features, with explicit representations of relations, implemented 
by dedicated units in the model architecture (Hummel and Holyoak 2003). To 

Fig. 4.4  To successfully perform the analogy task, participants had to match the boy 
in the top picture with the dog in the bottom picture, and not with the same boy in 
the bottom picture. From Krawczyk (2012, p. 16).
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represent the relation of loving, there is a unit dedicated to representing the subject 
and another for the object. To represent that Jay loves Alex, the unit for being the 
lover is connected to and activated with the distributed representation of the 
features of Jay, and the unit for being the beloved is connected to and activated 
with a distributed representation of the features of Alex. If this representation is 
activated and the relata are mapped to a second pair of individuals, Chris and 
Sam, respectively, the model will perform an analogical inference: it will infer 
that Chris loves Sam. LISA is a model of how people can use relational knowl-
edge to solve analogical inference problems. It does not rely on structural repre-
sentations (where a relation on representational vehicles represents a relation). It 
has dedicated non-relational vehicles for each relation represented, together with 
a way of binding them together to form complete contents. So it exhibits a limited 
form of the kind of compositionality found in conceptual thought.

Since LISA has dedicated units for each relation (and each role in each rela-
tion), its performance does not scale well to representing a realistic number of 
relations. The semantic pointer architecture (SPA) of Eliasmith (2013) avoids this 
problem by compressing the distributed representations that result from combin-
ing relata and relation (see also Blouw et al. 2016). Relata (objects, people, etc.) 
are represented by distributed patterns of activation across units registering per-
ceptual features. Higher levels in the processing hierarchy compress these pat-
terns into simpler patterns that capture statistical regularities. The input 
representations can be reconstructed from the deeper representations, but not 
wholly reliably. These compressed representations are combined using vector 
convolution techniques (inspired by Smolensky and Legendre 2006).5 Each rela-
tion (e.g. loving) is represented by a dedicated vector and is combined with two 
other vectors (e.g. for Jay and Alex) in a way that distinguishes between subject 
and object. The relata can be ‘extracted’ from the compressed combined vector: 
there is one vector operation that outputs the lover and another that outputs the 
beloved. Compression means that these extracted vectors are only imperfect 
reconstructions of the inputs. It is this compression that allows the model to scale 
effectively to a large combinatorial space of possibilities. But to the extent that it 
does succeed in capturing and inferring with relational knowledge, that is because 
it works with a dedicated non-structural representation (distributed activation 
pattern) of each relation, combined in a way that approximates general-purpose 
compositionality. This form of compositionality allows the system to engage in 
multi-step inferences to solve problems like the tower of Hanoi puzzle (Eliasmith 
2013, pp. 191–8).

These computational models offer detailed proposals for the kinds of informa-
tional models that people are using in cognitive psychological experiments which 

5  Such compositions may be induced by learning in an appropriate deep neural network, without 
being built-in in advance (McCoy et al. 2019).
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ask participants explicitly to draw conclusions about relations. Relational infer-
ences are performed with informational models in which relations are repre-
sented by constituents that combine in language-like ways. Plausibly, then, 
relations are represented by concepts. These support computational processes 
that are less content-specific, for example turning only on the transitivity of the 
relation, or on an analogy between relations, transitions that are more towards 
the content-general end of the spectrum. This is modelled in LISA by a way of 
performing analogical inference that does not depend on the specific content of 
the relation or relata involved. In both LISA and SPA, computations involving 
relations and relata are local, taking place piecemeal over activation vectors; but 
these models are compatible with a non-local (and content-specific) process of 
parallel constraint satisfaction being responsible for recognising instances of the 
relata and the relations. LISA and SPA do not speak to our other distinctions. In 
the psychological experiments, relational inferences seem to depend on delibera-
tion. It is not clear whether they are informationally unencapsulated, nor whether 
the inferential steps, or just the conclusions, are found in the cognitive play-
ground. However, the experiments and computational models together do point 
to a family of informational models with a different profile, across our features of 
interest, than those discussed in previous sections.

4.6  Using One Relation to Stand for Another

In this section we look at cases where the thinker uses one relation to represent 
another. This is not simply a matter of structural representation. In a structural 
representation, a relation on representational vehicles (e.g. co-activation; dis-
tance in activation space) represents a relation on the entities represented by 
those vehicles (e.g. spatial proximity; similarity). In the cases in this section the 
thinker is representing one relation (e.g. ordering on the page) and using that 
represented relation to represent something else (e.g. relative academic achieve-
ment). The initially-represented relation could be represented structurally or by 
means of a freely-recombinable concept.

Consider an example. I give you some facts about the heights of four people, 
telling you that I will ask you some further questions about them: Leyla is taller 
than Rishi, Rishi is taller than Alex, Jane is taller than Rishi, and Leyla is taller 
than Jane. A natural way to tackle the problem is to record the facts I’ve given thus:

Leyla Leyla Leyla
Jane

Rishi → Rishi → Rishi
Alex Alex
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If I then ask, ‘Is Jane taller than Alex?’, the answer is easy to read off. You 
can  rely on the correspondence between the above relation between names 
on  the page and the taller than relation between people represented. The 
arrangement of names on the page is a structural representation of the height 
relations between the people named. Now suppose I do the same thing in my 
head using visual imagery. Then I am using a representation of the names 
being above and below one another in space as a representation of relative 
height. I am using one represented relation (represented visually) to represent 
another.

In this example the way the relation taller than is represented is independent of 
the way the individuals are represented (by names). I could instead have repre-
sented the individuals with scale drawings, aligned at the feet. The taller than 
relation would then be represented by spatial relations between the tops of their 
heads on the page. This diagram would also make it easy to read off facts about 
who is taller than whom. But the way the relation is represented would be tied to 
the way the individuals are represented. The example I gave using names exhibits 
role-filler independence. We saw the same in the example of analogical inference 
in the last section.

When I make inferences about the heights of Leyla, Jane, Rishi, and Alex 
using my simple diagram, the transitions do not depend on the identity of 
the people but do depend on the content of the relation (taller than). They are 
non-content-specific as to relata and content-specific as to relation. In fact, the 
inferences are only making use of the transitive nature of the relation. It is 
because above on the page is transitive that it can be used to stand for taller 
than. So this way of using one relation to stand for another also lies towards 
the content-general end of the spectrum. Penn et al. (2008) argue that non-
human animals can only represent relations in ways that are tied to the ways 
they represent the relata perceptually, not exhibiting role-filler independence. 
By contrast, our example above demonstrates the flexibility that comes with 
the human capacity to represent relations in ways that exhibit role-filler 
independence.

A familiar example of using one relation to stand for another is reasoning with 
Venn diagrams. Spatial relations of containment and overlap are used to stand for 
set-theoretic relations of inclusion. Inferences about membership of the sets can 
be performed by seeing how areas on the page relate to one another in space. We 
represent A ⊂ B with a circle for A wholly contained within a circle for B, and 
B ⊂ C with a circle for B wholly contained within a circle for C. It is then easy to 
read off A ⊂ C from the fact that the circle for A lies wholly inside the circle for 
C. In a similar way, if areas of a Venn diagram are taken to represent probability 
density, then probabilistic relationships can be inferred from the diagram, for 
example P(B|A) is the ratio of the B area within A to the overall size of A, so is 
equal to P(A&B)/P(A). In reasoning with a Venn diagram, the thinker takes 
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spatial relations, which the thinker represents visually, to stand for mathematical 
relations. The Venn diagram then becomes, derivatively, a form of structural rep-
resentation. It is used in deliberation in a way that depends on the structure of 
space corresponding to the mathematical structure of interest.

In these examples the thinker relies on a structural representation outside the 
mind. This does not settle the question of what kinds of representations and pro-
cesses are at work in the mind. That depends on how spatial properties of the 
diagram are mentally represented—organized, structural, and/or language-like—
and whether computations on them are local or non-local. So the issue is rather 
subtle. But we can say that the way the external representation is reasoned with is 
content-specific as to the relation (but not strongly so). They exemplify of an 
external version of what we saw in sections 4.4 and 4.5 above: reuse of a relational 
structure to represent a number of different relations. Inferences made using the 
external structure here are carried out deliberately, relying on working memory, 
not automatically. It seems plausible that inferences take place within the cogni-
tive playground and are relatively unencapsulated, but further evidence would be 
needed to settle that definitively.

4.7  Models Built out of Concepts

Finally, I want to turn to a range of cases where the informational model is built 
out of conceptual representations. While concepts showed up as potentially 
involved in some of the informational models in earlier sections, for example as 
labels for the relata in a structural representation, the informational models in 
this section are cases where researchers take the relevant knowledge structure to 
be a conceptual representation.

The field of core cognition offers one set of examples. These are domain-
specific knowledge systems for thinking about physical objects, space, number, 
and agents. Each contains conceptual representations, which are thought to be 
innate (sensu unlearnt), together with a set of basic principles for identifying enti-
ties in the domain and reasoning about them (Carey and Spelke 1996). It is a 
contested empirical question whether the mind contains systems of core cogni-
tion of this kind, and especially whether they are innate. The behavioural evidence 
used to argue for core cognition does derive from a very substantial body of 
careful research in developmental psychology. These results call for explanation, 
and the hypothesis advanced by advocates of core cognition is a good candidate. For 
our purposes the important issue is not innateness, but which features (structure, 
process, etc.) core cognition exemplifies, if the hypothesis is correct.

In the domain of number, Susan Carey argues that, in addition to an analogue 
magnitude system for keeping track of the approximate number items in large arrays 
of objects, the child’s system for tracking individual objects, the object file system, 
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affords exact representations of the cardinality of small sets of objects (Carey 
2009). The ‘parallel individuation system’ can keep track of one, two, three, or 
four objects by mapping objects one-to-one to sets of object files. Further, it can 
perform exact addition and subtraction amongst these sets. These innate concep-
tual roles give the child a set of built-in ways of reasoning about number. 
Furthermore, reasoning about the analogy between the sequence of counting 
words (‘one’, ‘two’, ‘three’, . . .) and the process of adding one to a set of object files 
allows the child to acquire the richer set of conceptual roles constitutive of grasp 
of the concept of natural number—in particular the principle that the last word 
in any count sequence represents the number of objects in the counted set.

In our terms, both the parallel individuation system and the natural number 
system are informational models—models of the domain of quantities. 
Dispositions to make inferences between concepts encode information about the 
domain, for example that adding one object to a set of n objects produces a set 
whose cardinality is the natural number which is the successor of n. These are 
local, somewhat content-specific computations taking place over representations 
constructed out of concepts (presumably exhibiting the general-purpose compo-
sitionality of conceptual representations). They are applied to the world in a way 
that is automatic and relatively informationally encapsulated (Carey and Spelke 
1996), although their outputs must be available to deliberation (including in par-
ticular to the inference by which children notice an analogy and thereby acquire 
the concept of natural number).

Other examples include the concept of a physical object, with principles for 
tracking physical objects and their interactions (cohesiveness, contact, occlu-
sion), and the concept of an agent. These concepts are applied to the world in a 
way that is fast and automatic, based on spatiotemporal analysis of perceptual 
input. To this extent, they are perception-like, and unlike concepts that are 
applied based on intuitive theories (or scientific theories). But they are supposed 
to be fully concepts, representations that figure in cognition, freely recombine 
with other concepts, and come with a set of in-built conceptual roles.

Moving beyond core cognition, the way people represent natural kinds is usu-
ally taken to be based on an informational model consisting of conceptual repre-
sentations. People store in long-term memory a collection of facts about instances 
of a kind (e.g. dogs), information which they rely on to categorise objects under 
the kind concept and to make inferences about them. Much of the information 
may be represented explicitly, in the form of semantic memories, although some 
could be implicit in content-specific dispositions to move between representa-
tions, as we have seen (§3.4). What is characteristic of natural kind concepts is 
that they come with the assumption that members of the kind share an underly-
ing property that is responsible for the surface features of the kind. Much studied 
developmentally, there is a stage where children are shown to prioritise internal 
properties or essence over surface features in categorising members of the kind 
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(Keil 1992). Although not innate, this is an informational model which, like 
examples from core cognition, is supposed to include patterns of inference 
involving a concept that are specific to its domain of application (here, to natu-
ral kinds).

A more contested example concerns cheater detection (§3.2). Experiments 
with the Wason selection task famously showed that people are better at testing 
the truth of a conditional in some domains than in others. An initial hypothesis 
was that we have a cheater detection module or a domain-specific set of assump-
tions concerning norm compliance. If that were correct, then people would have 
a domain-specific informational model involving normative concepts, equipped 
with dispositions to make certain content-specific inferences. If instead the 
advantage is just due to familiarity with the subject matter, then the effect would 
be evidence of a more diffuse family of informational models that encode expec-
tations about the evidence for and against conditionals in each familiar domain 
(Cox and Griggs 1982). A third possibility is that the choice pattern displayed by 
participants in Wason-type scenarios is the result of a domain-general way of 
gathering data for testing an inductive hypothesis (Oaksford and Chater 1994). In 
that case, people have a set of dispositions for reasoning about if-then generalisa-
tions but these are not particularly content-specific.

There are other cases where people are plausibly working with informational 
models that have a wide sphere of application. One example is the ‘mental mod-
els’ long championed by Philip Johnson-Laird to account for deductive reasoning 
with conditionals (Johnson-Laird and Byrne 2002). These are something like 
collections of mental sentences recording a list of possibilities compatible with a 
linguistically-described scenario. This fits within the philosophically familiar par-
adigm of an informational model consisting of a set of explicit conceptual repre-
sentations entertained in conscious deliberate thought. The system has distinctive 
features that are supposed to account for patterns in the way people perform 
inferences, for instance that false clauses are not represented in a mental model. 
To the extent that the operation of mental models has built-in assumptions—
processing dispositions—these are applicable whatever the subject matter being 
reasoned about, and hence are content-general and broadly logical.

Two other cases of mental models enjoying a wide sphere of application are 
those for causation, and for probabilistic reasoning. In the case of causation, work 
on core cognition suggests that there is a domain-specific appreciation of some 
causal relations as part of our automatic perceptual or perception-like processing 
of physical objects and their interactions (Carey 2009). Michotte-style experi-
ments show that interactions between simple object-like images can be perceived 
very differently—as a causal ‘launching’ or a non-causal ‘passing’, for instance—
based on quite subtle spatiotemporal characteristics of the display. Those effects 
are based on an informational model that appears to be specific to the domain of 
object causation. It is also likely that humans have a more domain-general means 
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of identifying causes and effects and learning about them. This is an area where 
there are many different theories, from nativist to empiricist to constructivist.

To take just one prominent example, Gopnik et al. (2004) argue that children 
have a specialised cognitive system that allows them to recover an accurate causal 
map of any aspect of the world. The causal learning system makes substantive 
assumptions about how patterns of correlation between variables reflect causal 
relations; and in particular about how to infer causation from interventions on a 
variable. The output of the causal learning mechanism is a representation of the 
network of causal relations between a set of events. Gopnik et al. suggest that 
what the child learns is a graphical causal model (Pearl 2000). There are thus two 
kinds of informational model on display here. First, there is the informational 
model of causation embedded in the learning mechanism. Second, there is the 
graphical causal model of those so-learned causal relations, for example how the 
various wheels and levers on a toy work. The former is relatively domain-general, 
applying to causal relations in any of the spheres which people interact with or 
communicate about. Nevertheless, its substantive assumptions are content-
specific, in that they are suited to the realm of causation. (That is to assume that 
the learning system’s assumptions are implicit in its inferential dispositions, 
rather than based on explicit representations of causal principles.) Being applica-
ble so widely, they lie some way towards the less content-specific end of the 
spectrum. The Gopnik et al. model does not make commitments about our other 
features of interest, although the experiments make it plausible that the process is 
deliberative, not wholly informationally encapsulated, and involves concepts. It 
also seems plausible that the substantive causal models that are learnt can then be 
represented in the cognitive playground.

Goodman, Tenenbaum, and Gerstenberg (2015) advance a different account of 
how people infer causal relationships. Their account has even more general 
application. It accounts for probabilistic reasoning in general. Of most interest, 
for our purposes, is their hypothesis about representational structure. They 
argue that humans perform inferences in a probabilistic language of thought. 
This allows us to form informational models that consist of representations 
structured out of concepts using general-purpose principles of composition. 
These conceptual representations are used to represent probabilistic information 
in the form of a probability distribution over world states. Goodman et al. 
prescind from making claims about psychological processing, but it seems that 
their concept-based informational models are used in deliberation, in patterns 
of inference that are broadly logical, applying general principles for reasoning 
with probabilities.

Taking stock, the cases in this section illustrate a variety of ways that informa-
tional models can be formed out of conceptual representations. They cover a 
broad range of cases, from agents, through natural kinds, causation and number, 
to logical reasoning and probabilistic inference. Being applied to such broad 
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domains, the representational scheme takes advantage of the flexibility of general-
purpose compositionality. In most cases, working-memory-dependent delibera-
tion is required. To the extent that computational details are offered, the 
computations have been local. But they also exemplify both sides of many of our 
other features of interest: content-specific and content-general transitions; infor-
mationally encapsulated vs. not; automatic and deliberate modes of operation. 
An account of thinking with concepts needs to be able to accommodate this 
diverse range of features.

4.8  Conclusion

Chapters 2 and 3 used various empirically-supported cases to ground distinctions 
between different aspects of semantically-significant representational structure, and 
between content-specific and content-general computational processes. The exam-
ples canvassed in this chapter illustrate that these features are distributed in diverse 
ways across informational models of different kinds. They also show that the idea of 
having an informational model comes in degrees, with no bright-line distinction 
between representing the world in model-based and model-free ways. Many of the 
informational models we discussed used structural representations, but others were 
formulated conceptually, and some just deploy organized representations processed 
in content-specific computations suited to a particular domain.

Deliberation can make use of all these different models, either by running sim-
ulations and relying on their outputs, or by making inferences with aspects of the 
model directly. This raises the question of how deliberate conceptual thought can 
rely on and integrate with informational models of these diverse kinds. That is 
perhaps straightforward for informational models built out of conceptual repre-
sentations, but less obvious when other kinds of representational structures and 
computational processes are involved. Thus, the diversity of these informational 
models presents a puzzle—a puzzle which the next chapter aims to address. 
There, I develop a framework that, while being flexible enough to encompass all 
these cases, aims also to be detailed enough to be genuinely illuminating.

Chapter Summary

4.1  Ways of Storing Information

Prospection or forward planning relies, not just on semantic memories, but on 
diverse informational models of other kinds—illustrated by examples presented 
in this chapter. The models that are involved in model-based decision-making—if 
that is simply the converse of model-free decision-making—are in fact rather 
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heterogeneous. An informational model is a collection of interconnected 
representations, of any kind, that can support planning, prospection, or other 
forms of inference which derive novel conclusions about what to do or what is 
the case.

(p. 88)6 As well as semantic memories, deliberation brings information and 
conclusions drawn from diverse informational models of other kinds into the 
playground of thought. This variety sets up the problematic to which the frame-
work in the next chapter (Chapter 5) is a response. There is no simple hierarchy 
of complexity; the cases illustrate different combinations of representational 
structure, computational process, and the other properties discussed in the first 
three chapters (listed).

4.2  Information in Domain-Specific Transitions

(p. 89) One way of storing information is in dispositions to make content-specific 
transitions between representations (examples from visual processing). Although 
not standardly described as constituting a model, it should be, and to the extent 
that visual processing can be used in offline simulation, we can consider it to be a 
generative model. These are informational models only in a thin sense, since the 
information is encoded merely implicitly, relied on by running simulations.

Apparently model-free behaviour is illustrated by performance on the trap tube 
task, where animals can learn to avoid a trap and extract food from the tube, but 
seemingly fail to appreciate the causal structure. Model-free reinforcement learning 
laboriously learns how to act to obtain reward, without learning what rewards are 
obtained, nor how. (p. 90) Model-free decision-making has been well characterised, 
including the computations involved in learning action values (based on reward 
prediction error). The system calculates what to do based on representing the 
expected value of performing available actions, but does not really know anything 
about the structure of the environment. (p. 91) Motor control uses an informational 
model, even in direct-throughput mode. Outputs of simulations with these systems 
can be relied on in deliberation, but their properties (listed) contrast with the 
characteristics of deliberation with conceptual representations.

4.3  ‘Model-Based’ Tasks

(p. 92) This section looks at ‘model-based’ decision-making—where the agent uses 
some kind of representation of the causal structure of the environment and of how 

6  Each sentence of the summary corresponds to one paragraph. Page numbers indicate where the 
paragraphs begin.
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their actions will affect what happens next. Examples: two tasks in which partici-
pants were found to encode and decide on the basis of the long-run prospective 
value of their choice.

(p. 93) The classic test of whether a subject represents the way actions 
produce outcomes, independent of the varying value of these outcomes, is to 
look for one-shot learning when rewards are devalued. One study in mice 
found patterns of neural activity representing outcome values and, separately, 
action-outcome contingencies. A much-used experimental test of model-based 
decision-making is the 2-step task (described). (p. 94) People who are told 
the  structure of the problem (which is hard to infer) behave in a primarily 
model-based way. Another test is to see whether subjects can chain together a 
stimulus-stimulus association with a stimulus-response association. A human 
study found evidence that a representation of the value of a novel foodstuff is 
constructed, before the compound is tasted, by means of an inference from the 
values of the ingredients.

These examples are evidence of a kind of working-memory-driven planning 
that makes use of informational models in the cognitive playground and deliberates 
with them. (p. 95) In the next section we will see that neural data can tell us about 
the representational structures and computational processes responsible for this 
kind of model-based planning and inference.

4.4  Structural Representations

This section looks at a case where we have a more in-depth understanding of the 
informational model responsible for one kind of model-based behaviour. The 
cognitive map in the medial temporal lobe can represent more abstract relations, 
making inferences whose outputs can form the basis of conscious judgements. 
(p. 96) Whittington et al. (2020) propose a computational model of how inferences 
are made about problems that conform to a two-dimensional relational structure. 
The model accounts for neural activity, including the remapping of place cells 
when moving to a different spatial arena and, in mice, neural activity which 
represents a non-spatial relation. (p. 97) Converging evidence was found in 
humans for representation of abstract relational task structure in the same 
brain area. A grid-like code in the same brain area was found to represent 
learnt social relations between people—who is more popular, or more competent, 
than whom.

These cases illustrate a family of informational models in which relations 
between locations, objects, or people are represented by means of structural rep-
resentations, inferences over which allow the agent to infer new relationships, 
estimate the value of options, and thereby take decisions. (p. 98) Computations over 



Chapter Summary  113

these models are content-specific; how they exemplify our other properties of 
interest is unclear.

(p. 99) A structural representation may involve only one relation; this may be 
represented by a dimension in neural activation space (empirical example). 
A much-studied one-dimensional relation is similarity/dissimilarity; the similarity 
relations between neural patterns of activation are found to form the basis of 
people’s judgements of similarity. (p. 100) Using distance in activation space to 
represent similarity is a structural representation, and counts as a simple form 
of informational model (although the behaviour would not typically be called 
‘model-based’).

4.5  Relational Inference Tasks

This section looks at cases where people are explicitly tasked with deliberating 
with relations. An example is transitive inference, which can be performed using 
concepts of relations instead of with a structural representation. (p. 101) Working 
with Raven’s progressive matrices, a widely-used test of fluid intelligence, relies 
on the capacity to represent relations and reason with them. An elaboration of 
the working-memory-dependent ability to represent and reason with relations is 
the capacity to do analogical inference (explained). (p. 102) These inferences 
involve drawing an analogy, either at the level of the relata, or between rela-
tions themselves.

A possible model of the way people represent relations in these tasks is LISA—
which does not use structural representations, but non-relational vehicles repre-
senting relations, bound together with general-purpose compositionality. (p. 103) 
A more sophisticated model, the semantic pointer architecture, can represent 
more relations, using vector convolution to combine representational constitu-
ents in a way that approximates general-purpose compositionality. In terms of the 
other properties of interest (end  of §4.1), some of the computations here are 
somewhat content-general; also working-memory-dependent and local (albeit 
compatible with recognition of the relations and relata involving parallel con-
straint satisfaction, as in an artificial neural network).

4.6  Using One Relation to Stand for Another

(p. 104) This section looks at cases where the thinker uses one relation to represent 
another. If I visualise a list of names so as to order people by height, I am using one 
represented relation (of spatial properties) to represent another relation (taller 
than). (p. 105) This way of representing heights exhibits role-filler independence 
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(unlike other examples). Using one relation to stand for another, relying only on 
the fact that both are transitive, is a move towards the content-general end of the 
spectrum. In a Venn diagram, spatial relations on the page are taken to stand for 
set theoretic inclusion; it thereby becomes a structural representation. (p. 106) 
These examples involve reasoning with external relations, deliberately, in the 
cognitive playground.

4.7  Models Built out of Concepts

A final set of cases are where the informational model consists of a collection of 
conceptual representations. Systems of core cognition offer good examples (irre-
spective of whether they are innate). The parallel individuation system gives the 
child a way of reasoning about small numbers of objects, which is then enlarged into 
a system for representing all the natural numbers. (p. 107) These are informational 
models, constituted out of concepts and reliant on content-specific computa-
tional transitions. The representations of core cognition are applied rapidly and 
automatically, with built-in content-specific transitions; but they are supposed to 
be fully concepts, displaying general-purpose compositionality and figuring in 
conscious deliberation.

Natural kind concepts are part of an informational model, one which includes 
patterns of inference (about underlying properties) that are specific to its domain of 
application. (p. 108) Cheater detection is contested: it may involve an informational 
model specific to the domain of norm compliance; or it may be one of a series of 
models encoding conditionals learnt in familiar domains; or it may reflect a 
domain-general way of reasoning about if-then generalisations. Johnson-Laird’s 
mental models are language like, displaying general-purpose compositionality 
and using content-general computations.

Michotte-style perception of causation is based on a somewhat encapsulated 
informational model that is domain-specific. (p. 109) Proposals about how we infer 
causal relations (e.g. about how a toy works) rely on principles which, while specific 
to the domain of causation, have wide application (in a process that appears to be 
deliberative and to involve concepts). Goodman et al. (2015) offer an even more 
general informational model: a probabilistic language of thought, used for learn-
ing and reasoning about probabilistic relationships in general.

These concept-based informational models exemplify both sides of many of 
our other features of interest: content-specific and content-general transitions; 
domain-specific and domain-general spheres of application; automatic and delib-
erate modes of operation; informational encapsulation and informational 
promiscuity.
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4.8  Conclusion

(p. 110) The idea of having an informational model of the environment comes in 
degrees and is implemented in a variety of ways, including using conceptual 
representations, structural representations, and mere organized representations 
processed content-specifically. This raises a puzzle, which the framework in the 
next chapter addresses: how can deliberative thought make inferences with, and 
rely on the outputs of, such diverse models?
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5.1  Reaching Conclusions via Simulations

The book aims to offer a more full-bodied account of conceptual thought than 
those that just focus on categorisation. A central phenomenon is concept-driven 
thinking: cognitive processes that reach new conclusions having started with a 
conceptual thought. Reasoning is one way to do that. In reasoning we move from 
some conceptually-structured thoughts to others using a domain-general process 
rather like theorem proving in logic. But much of what we do with concepts 
draws on informational models of other kinds. Thoughts prompt mental images, 
simulations of potential actions, feelings and evaluative responses. Those pro-
cesses in turn cause further thoughts: judgements, plans, decisions, and actions. 
This chapter is about the way we arrive at concept-involving conclusions via 
these other types of informational models.

For example, thinkers can arrive at new beliefs via sensorimotor emulation or 
imagination (Grush 2004). The thinker simulates an action, observes the likely 
outcome, evaluates it, and thereby decides what to do (Carruthers 2015, pp. 152–60). 
I am in a furniture shop thinking about whether to buy a new chair. One 
consideration is whether I can take it straight home in the car. I rotate the chair in 
my mind’s eye to see if it will fit. Probably not. What about with the back seat 
down? Then I can put the legs in first. If so, it probably will fit. My eventual con-
clusion—an intention to buy the chair—relies in part on my capacity for senso-
rimotor simulation and on the knowledge encoded in my sensorimotor systems 
about what happens to objects when they are rotated. A second example is spatial 
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planning, where the thinker imagines different routes through the environment 
in order to decide which one to follow. Another is prospection, where the thinker 
uses the resources of episodic memory to imagine what a certain situation would 
be like. Simulation, prospection, and imagination are all ways of drawing on 
special-purpose systems in the service of forming new beliefs—that is, of reaching 
conclusions expressed in the general-purpose system of conceptual thought.1

To illustrate the contrast with reasoning, suppose in an idle moment I start 
thinking about Paris. That could start a chain of reasoning. I find myself thinking 
Paris is the capital of France. I then recall my ‘bucket list’ goal of visiting all of 
Europe’s capitals. Knowing that France is in Europe, I reason my way to forming 
an intention to visit Paris, to go online at the weekend to look for tickets, and so 
on. I could instead reach the same conclusion by a completely different route. 
I start by thinking about Paris as before. I contemplate the city and various situa-
tions pass before my mind: elegant streets, lively cafés, shady spots in a formal 
garden on a sunny day—constructed from episodic memories and culturally-
transmitted stereotypes. The scenes prompt various emotions and a positive eval-
uative response. As a result, I form the intention to visit Paris, and so to look for 
tickets, and so on. Both trains of thought arrive at the same conclusion; the sec-
ond relies largely on information and processing dispositions encoded in special-
purpose systems. Our focus is on the second process, and on the role that 
concepts play in it.

Often special-purpose systems know things it seems the thinker doesn’t. More 
carefully, a simulation can be relied on to reach an accurate conclusion where the 
relevant information cannot simply be retrieved from long-term memory or 
inferred by reasoning alone. One classic set of experiments probed people’s 
expectations about what would happen when a glass of water is tipped sideways. 
The task was to predict, for various different glasses, when the water would spill 
out. People who simply reason about the problem usually get the wrong answer. 
Those who imagine performing the action get it right (Schwartz and Black 1999). 
Sensorimotor models of the scenario are accurate, doubtless because of a wealth 
of practical experience. The thinker can probe that knowledge in imagination 
and arrive at the right answer in conceptual thought. Bascandziev and Carey 
(2022) showed that children too can learn-by-simulation. Many six-year-olds 
claim that a single grain of rice weighs nothing at all. They change their mind 
when they see that a single grain of rice will topple a small see-saw made out of a 
piece of card. Amazingly, children simply asked what would happen in this 

1  There are different brain mechanisms for imagining what one might have done and for imagining 
what one might do (Miyamoto, Rushworth, and Shea 2023). Many psychological processes form rep-
resentations of more than one possibility, for example representing a range of hypotheses and their 
probabilities given current sensory evidence, or representing unchosen options when making choices 
for reward. Here we are concerned specifically with simulating or imagining potential future scenar-
ios (in the service of working out what is the case or what to do).
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scenario make an accurate prediction and change their judgement too—just as 
much as with a real demonstration. Even in children, then, simulation may be an 
important way that we learn explicit knowledge about the world.

An earlier line of work on ‘mental rotation’ also provides evidence of reliance 
on sensory representations to solve a problem (Shepard and Metzler 1971). The 
task is to report whether one image is a rotated version of another. The simulated 
images are prompted by visual perception, not concepts, but the process is car-
ried out deliberately and is relevant to our question. These experiments were an 
early demonstration that representations not directly produced by sensory input, 
but with the same structure and content as perceptual representations, are 
involved in performing some tasks. Aphantasics, who lack conscious mental 
imagery (Keogh and Pearson 2018), seem to perform the task in a similar way, but 
with non-conscious simulations (Pounder et al. 2022). Lawrence Barsalou and 
his colleagues have collected a large body of data showing effects of sensorimotor 
processing on the way conceptual thinking unfolds (Barsalou 1999, 2003). Much 
of this imagery is unconscious (Barsalou 2009, pp. 1281–2, 1286). Barsalou makes 
the strong claim that a concept consists in a simulation of a perceptual state. 
Whether or not that is right, these results show that concept-driven thinking does 
engage a range of special-purpose systems. As in everyday life, in science too 
people solve problems by simulating situations and events (Nersessian 2018). 
They construct and manipulate a model of a scenario using sensory, motoric, and 
affective representations.

We can ask how it could be that a simulation allows the thinker to discover 
something new (Gendler 2004). The thinker is not going out into the world to 
make an observation. They are interrogating their own psychological systems. 
How does this allow them to uncover new facts? One answer points to encapsula-
tion. Special-purpose systems may contain representations that are encapsulated, 
so not directly available for use in conceptual thought. Using a system in simula-
tion mode is a way of bringing the information into conceptual thought 
(Aronowitz and Lombrozo 2020). A complementary answer is that special-
purpose systems operate with trained dispositions which implicitly encode 
assumptions about the world. We saw examples of these content-specific disposi-
tions in Chapter 3. Where information is implicit in a disposition to move 
between representations it can only be made use of by tokening the representa-
tions between which the disposition subsists (Shea 2015). By running a simula-
tion the thinker can effectively rely on the implicitly-encoded information.

This chapter focuses on the role of concepts in this process. We start with a 
concept-involving thought. This could be a question to consider (whether to 
marry), a goal to be achieved, a memory to reflect on, a belief whose conse-
quences are of interest, or just a concept (e.g. Paris). We then deliberate, relying 
on working memory to hold and manipulate representations in the cognitive 
playground. Steps in this thought process can go via special-purpose 
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informational models. Through simulation, prospection, or imagination, a repre-
sentation of a situation or scenario is built up using special-purpose systems, 
often relying on sensory, motoric, affective, and evaluative representations. 
Equally, information encoded conceptually (§4.7) can be represented in the cog-
nitive playground, or used by relying on content-specific dispositions between 
concepts (§3.4). I will use the term ‘suppositional scenario’ for the collection of 
representations that, by drawing on informational models, is built up in the cog-
nitive playground. ‘Simulation’ here is used broadly to include prospection and 
concept-driven imagination—any process by which special-purpose systems are 
engaged to work out what is the case or would be the case. Inferences take place 
within special-purpose systems as we fill out a suppositional scenario and see 
what follows from it. A concept-driven simulation takes us via suppositional sce-
narios to new conclusions (e.g. a judgement or an intention), proceeding from 
conceptual representations via special-purpose representations to further con-
ceptual thoughts.

Section 5.2 makes the case that conceptual thought can drive simulations in 
the kinds of special-purpose informational models described in the last chapter. 
Section 5.3 advances a hypothesis about how concepts are able to interface 
between special-purpose informational models and general-purpose conceptual 
thought. The slogan is that a concept is a ‘plug-and-play’ device. Section 5.4 dis-
cusses some evidence that concepts do indeed mediate between type 1 processes 
running in special-purpose informational models and type 2 processes taking 
place over conceptual representations. Section 5.5 argues that conditionals—
explicit if-then beliefs—serve to shift information coded in content-specific dis-
positions into a format that can act as a premise in reasoning (and the converse). 
Section 5.6 delves into illustrative models of the way a concept held in working 
memory operates computationally, considering some analogies from computer 
science. I use the neutral term ‘label’ to describe how concepts operate. Section 5.7 
explains how concepts should be individuated in my framework. Section 5.8 
raises a puzzle for the plug-and-play hypothesis: how does the suppositional sce-
nario constructed in a simulation come to reflect the compositional structure of 
the conceptual thought that drives it? I sketch a tentative solution. Finally, section 
5.9 argues that the ability of concepts to act as this kind of interface makes human 
thinking an especially powerful way of working out what is the case or what to do.

5.2  Simulations Use Special-Purpose Informational Models

Our focus is the way conceptual thinking can reach new conclusions in reliance 
on simulations involving special-purpose representations. Concepts act as a cru-
cial interface in this process. While many rightly emphasise the domain general-
ity of conceptual thought (Fodor 1998), this has under-estimated the role of 



concepts in organizing domain-specific and special-purpose resources. Others 
have emphasised the domain-specific aspects of conceptual thinking (Prinz 2002; 
Barsalou 2009) but overlooked the importance of being able to marshal these 
resources in domain-general ways. Between the two, what has been underplayed 
is the way concepts provide an interface between special-purpose representation 
models, on the one hand, and general-purpose compositional reasoning, on 
the other.

A concept provides access to a rich body of information about its subject matter. 
Some information is stored in the form of explicit conceptual representations—
what psychologists call semantic memories. My Paris concept gives me access to 
the belief that Paris is the capital of France. That provides material to reason with. 
Content-general computations in reasoning will take us to new conclusions. 
While doubtless important, this is far from the whole story. Concepts of concrete 
objects connect with sensory and motoric features: dog with how the animal 
looks, feels, and smells; penknife with how to open the blade and what kind of 
actions it affords. Concepts also lead into affective responses, for example the 
feeling of moral disapprobation that comes with categorising someone under 
racist, which is often also tied up with valence, for example when you value per-
son Y more than person X. These are amongst what Liz Camp calls the character-
izations connected with a concept (Camp 2015).2 When a concept-involving 
thought drives a simulation, a suppositional scenario is constructed out of vari-
ous characterizations.

I have been emphasising modality-specific information, but representations 
driven by a preferred modality (e.g. vision) can also be driven by other inputs 
(e.g. touch) and so should perhaps be considered supra-modal (Calzavarini 
2022). Special-purpose systems also encode information in amodal structures 
(Frankland and Greene 2020; Calzavarini 2022). The cognitive map of the spatial 
environment is one example. It may be domain-specific, representing the domain 
of spatial locations, but we have seen that the same or similar relational structures 
are used to represent other domains (e.g. social hierarchy; Park et al. 2021). For 
this reason, I consider these systems special-purpose rather than domain-specific. 
They use a representational system or range of representational models suited to 
some purposes and not others. Another example is the high dimensional activa-
tion space in the brain which encodes objects of different types (Huth et al. 2016; 
Frankland and Greene 2020; Tang et al. 2023). Concepts afford access to the 
information in these special-purpose systems, often represented structurally, 
employing compositional principles that are different to the general-purpose 
concatenation of conceptual thought (as we saw in Chapter 2). These 

2  Camp requires characterizations to exhibit a high degree of interpersonal similarity, which I do 
not require here.
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representations are processed in content-specific ways (Chapter 3), and form 
informational models of various kinds (Chapter 4).

The capacity for simulation does not seem, in itself, to require the exercise of 
concepts in conscious deliberate thought. The simulations in medial temporal 
lobe in the service of route planning are one example (Dragoi and Tonegawa 
2011). Non-human animals engage in various other forms of prospection and 
simulation (Clayton and Dickinson 1998; Passingham 2021; Tomasello 2022, 
pp. 48–52), seemingly without drawing on a human-like capacity for deliberate 
concept-involving thought. Our question is how simulation works when it is 
driven by deliberate concept-involving thoughts. More specifically, what role do 
concepts play? We will see that concepts perform a special job. They interface 
between general-purpose thinking and special-purpose informational models. 
Combining the two makes concept-driven simulation a particularly powerful 
way of drawing conclusions about the world.

5.3  Concepts as Plug-and-Play Devices

In this section I offer an account of the role of concepts in simulation-mediated 
inference. I argue that a concept is a ‘plug-and-play’ device (Shea 2022b). The idea 
of a plug-and-play device is modelled on the way representations are involved in 
offline computations in special-purpose systems like the spatial cognitive map. 
That insight can be carried over and applied to concepts; but with one crucial 
modification, as we shall see.

The mechanism by which offline simulations in a cognitive map are used in 
route calculation does not involve concepts in our sense. Place cells are active 
online as an animal moves through its spatial environment. As we have seen 
(Chapter 2), as a result of experience, a co-activation structure is formed over the 
place cells which corresponds to the spatial structure of the locations to which 
they correspond. The location-specific receptivity of a place cell is a considerable 
achievement, using a range of different cues to register where the animal is 
located (visual input from any direction, proprioceptive updating, etc.). Even 
more useful, however, is the capacity to take the array of place cells offline and 
make use of the co-activation structure over them. This is what happens when, in 
offline mode, the hippocampus runs through chains of place cells in order to try 
out different possible routes. The place cells are severed from their input-output 
connections and ‘played with’ offline in order to make use of the information 
encoded in the co-activation structure.

This is a widely-applicable trick, a computational device that can be played out 
in many places. Representations that are useful because they correlate in a sensi-
tive and specific way with task-relevant features of the environment are also often 
interconnected in memory. They may form structural representations or 
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representational models of other kinds. The principle we see at work when run-
ning a simulation is that representations are severed from their worldly connec-
tions, ‘played with’ in constructing suppositional scenarios and running 
simulations that make use of their interconnections, and then restored to their 
online input-output profile so that the conclusions that have been worked out 
offline can be used to guide behaviour.

The literature on simulation and imagination shows that people are able to 
engage in this process deliberately, driven by conceptual thought. I start with a 
thought like, Will the chair I saw earlier fit in the car? The concepts involved in 
the thought are connected to various kinds of information. The concept my car 
calls up an imagistic representation of the spatial dimensions of the car. I imagine 
different ways of manoeuvring the chair into it. I then categorise the result: it 
fits or it does not fit. We have thereby arrived back in the general-purpose 
system of conceptual thought. A few steps of reasoning then lead to the intention 
to buy the chair. I have arrived there via ‘playing with’ representations in special-
purpose systems.

Concepts act as an interface in this process. They plug into special-purpose 
systems, driving simulations. But they also plug in at the other ‘end’—they plug 
into the general-purpose compositional structures of conceptual thought. A con-
cept is a plug-and-play device with plugs at both ends. It provides an interface 
between the informational models and content-specific computations of special-
purpose systems, at one end, and the general-purpose compositionality and 
content-general reasoning of deliberate thought, at the other.

Conceptual thought gives us a general-purpose capacity to use representations 
offline—both concepts themselves, and the special-purpose sensorimotor, 
affective, evaluative, and amodal representations which are accessed through 
concepts. A concept, it seems, gives us the capacity for offline use of any of the 
special-purpose representations to which it is connected, and a way to manipu-
late many of the representations of objects, properties, and relations in those 
systems.

We saw in Chapter 2 that the general-purpose combinatorial system of concep-
tual thought—whether it is language-based or a separate competence—contrasts 
with the special-purpose modes of combination at work in structural representations. 
The representational competence of concept combination is not restricted by 
subject matter. A thinker who can think Layla loves Rishi has the capacity to 
represent aRb using any of the singular and relational concepts that they possess 
(meeting the generality constraint). Less recognised is the fact that this normally 
underpins a second capacity, the capacity to construct a suppositional scenario 
corresponding to the thought. When thinking recombines existing concepts to 
formulate a novel thought, that can often prompt a simulation of a novel scenario. 
Whether the thinker will succeed in simulating a scenario equal to the thought is 
another matter. They may face ‘imaginative resistance’ (Gendler 2000; Yablo 2002), 
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or formulate a thought for which no scenario can be imagined (e.g. green ideas 
sleep furiously), but the literature on metaphor shows that people succeed in 
making sense of a surprisingly wide range of novel combinations (Camp 2006). 
Where people do succeed in simulating a novel scenario based on the thought, it 
is the combinatorial power of concepts that allows them to imagine the new 
scenario. Conceptual recombination drives a simulation that puts together special-
purpose representations in novel configurations. When some kind of sense can 
be made of the combination, a novel suppositional scenario is the result.

A simulated scenario usually integrates information from many different 
special-purpose informational models. Suppose I’m at my desk thinking about 
what to make for dinner (working hard as ever). I remember that there are plenty 
of tomatoes in the garden. Also mint. A tomato salad with mint? This simulation 
prompts an evaluative response (not good). Maybe with green beans instead, 
from that stall on the way home? And some squash. Roast that first? Also fresh 
peas? No, too much preparation. Perhaps a few cherries from the garden instead, 
even though they’re probably not quite ripe. The picture I’m building integrates 
information from lots of different special-purpose systems: sensorimotor knowl-
edge of ways of preparing ingredients, olfactory and gustatory simulation of 
potential dishes, affective-evaluative responses to the imagined results; a spatial 
map of where things are in my environment; motoric knowledge of the effort cost 
of various potential actions; and semantic knowledge of the monetary cost of 
potential ingredients. The suppositional scenario is multi-system and holistic. 
Concepts allow the thinker to manipulate and recombine specific elements of 
these scenarios.

* * *
How do concepts give us this capacity? There is much evidence in psychology 
and cognitive neuroscience for a family of representations that have the adapt-
ability and flexibility required. These are the temporary task-dependent or work-
ing memory representations that are usually localised to prefrontal cortex. These 
representations are variously theorised as representing task-relevant goals and 
means (Miller and Cohen 2001), adaptively coding for information that is specif-
ically relevant to current concerns (Duncan 2001), or flexibly holding items in 
working memory (Bouchacourt and Buschman 2019). These accounts share a 
commitment to a flexible capacity for tokening representations that are adapted 
to the current context or task, and which serve to give access to and manage 
information in the mind’s special-purpose systems.

I argue that these representations are concepts. Concepts, recall, were introduced 
as a type of mental representation. I pointed to canonical instances: freely-
recombinable constituents of the thoughts that occur during deliberation (§1.4). 
Temporary representations in working memory which have these characteristics 
are concepts. To token a concept is to token a representation that can be 
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combined and manipulated in working memory, and that is connected to a wider 
store of information in long-term memory. What is it to be ‘connected’? I will 
have much more to say about that in due course, but the basic idea is that the 
label in working memory can access and hold online representations in other 
systems so that computations are performed with them. A slightly stronger idea is 
that working memory is part of an executive system that can manipulate repre-
sentations accessed via working memory labels and exercise control over how 
they are processed. I can endorse this stronger claim, where it is empirically well-
supported, but the slightly weaker thesis is sufficient.

From one perspective, a working memory label looks like the wrong kind of 
entity to be a concept. A concept is often supposed to be a store of information 
that is used in categorisation and inference (Machery 2015). At the very least, it 
was supposed to be a mental word for X that shows up every time one thinks 
about Xs. Working memory labels appear to be too temporary and task-
dependent to be concepts. Here it is crucial to distinguish between two ways the-
orists have talked about concepts. On the one hand, they are a representation 
type, a representation of X, that is tokened in occurrent thinking. On the other 
hand, they are a store of information about Xs that is used in categorisation, infer-
ence, and other cognitive processes. Many theorists have assumed that the same 
representation plays both roles. If so, it would be innocuous to talk about con-
cepts both ways—to assume that concepts have both these properties. We have 
seen, however, that to think clearly about concepts, it is crucial to separate these 
two roles. Furthermore, the data suggests that the two roles dissociate in practice: 
the representations in working memory displaying general-purpose composi-
tionality that we reason with in deliberation are not themselves bodies of infor-
mation that are used in cognition. That may seem like a fussy distinction, since 
working memory labels provide access to bodies of stored information. But it 
turns out to be important that the collection of stored information is separate 
from the entities over which online deliberation occurs.3 Later I will argue that, 
although they do not correspond to a single mental word (vehicle type), tempo-
rary working memory labels deployed on different occasions can count as tokens 
of the same concept in an individual thinker (§5.7).

My claim is supported by evidence that the capacity liberally to recombine 
concepts (meeting the generality constraint) depends on working memory repre-
sentations in prefrontal cortex (Halford, Wilson, and Phillips 2010; Krawczyk 
2012; Frankland and Greene 2020). These representations are connected to 
representations of other kinds, for example in anterior temporal cortex 

3  Bodies of stored information can also exist without the capacity for controlled semantic cogni-
tion. So in non-human animals, who have less capacity for flexible cognition or free recombination in 
working memory, ‘concept’ is commonly used in the second sense—a stored body of information that 
is used in categorisation.
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(Frankland and Greene 2020). The working memory representations enter into 
general-purpose combinatorial structures. When running a simulation, they 
serve to activate, sustain, and manipulate representations in special-purpose 
systems: structural representations, for instance, or points in a high dimensional 
state space. Special-purpose representations are operated on in content-specific 
ways. At the other ‘end’, a working memory representation interacts and com-
bines with other working memory representations in ways that break free of 
the state space to which each is connected. Section 5.6 below discusses some illus-
trative models of how prefrontal cortical systems facilitate the capacity for con-
ceptual recombination.

The interaction exemplifies both role-filler binding and role-filler independ
ence (Penn et al. 2008). Temporary representations in working memory are ‘role’ 
representations, undergoing operations (combination, broadly-logical reasoning) 
that are independent of the particular contents to which they provide access. The 
role representations are then ‘bound’ to contents in special-purpose systems 
(‘fillers’). Inferences take place there, when constructing a scenario and running 
a simulation, that depend on having bound the working memory role representa-
tions to these fillers.

Further support comes from neuropsychological evidence. Patients with defi-
cits in semantic cognition have selective difficulty in understanding the meaning 
of words, and of pictures, objects, sounds, faces, and events in both verbal and 
non-verbal tasks. The deficits are selective in that other capacities are preserved: 
visual processing, phonology, decision-making, and so on. Within semantic 
cognition a distinction is standardly made between semantic dementia, on the 
one hand, and semantic aphasia or failure of semantic control, on the other 
(Corbett et al. 2009; Lambon Ralph et al. 2017). Patients with semantic demen-
tia lack underlying knowledge about most categories. For example, they can’t 
understand the word ‘cup’ or, shown a picture of a cup, tell you what it’s called, 
what to do with it, or very much else about it. (This is different from anomia, a 
deficit specifically in naming items, with conceptual knowledge preserved.) 
Semantic dementia is particularly associated with bilateral damage to the ante-
rior temporal lobe. By contrast, patients with a deficit in semantic control exhibit 
superficially similar difficulties with word and picture tests, but on closer exam-
ination they show some preserved conceptual knowledge but a specific impair-
ment with linking and processing conceptual knowledge. How well they perform 
a task depends strongly on how complex the task is in terms of sorting and mak-
ing use of conceptual knowledge—in simple tasks they demonstrate that they 
still have considerable knowledge about the category. Their performance is 
aided by cues but easily interfered with by distracters, and they are prone to 
associative errors (between ‘squirrel’ and ‘nuts’, say). This deficit in semantic 
control is associated with damage to the left prefrontal cortex and/or left tempo-
roparietal cortex.



Concepts as Plug-and-Play Devices  127

Semantic dementia is a failure in the storage of information, semantic aphasia 
is an impairment in its use, part of a wider executive deficit. This broadly sup-
ports our distinction between the way information about a category is stored and 
the way it is used online in episodes of thinking. Damage to the areas of prefrontal 
cortex that instantiate temporary working memory labels, or to their connectivity 
to other areas of the cortex, produces deficits in semantic control. Damage to 
areas where information about a category is stored produces semantic dementia. 
Lambon Ralph et al. (2017) advocate a model in which all the stored information 
about a category (sensory, motoric, functional, valanced, etc.) is connected to 
a  single hub in the anterior temporal lobe. On this view, all the information 
about a category is connected to a single index. On other views, information 
about a category is stored in a more distributed manner, with no single index. My 
framework is compatible with either view. Online, thinking depends on working 
memory labels and executive functions. If Lambon Ralph et al. (2017) are right, a 
working memory label accesses information via a semantic index in anterior tem-
poral lobe. On a distributed view of long-term memory, information about a cat-
egory is connected together in memory in a more distributed fashion. A working 
memory label can access this information via many parts of the distributed net-
work. There is functional reality to the fact that information about the category is 
stored together, but this need not be achieved by there being an index—a single 
representation (in anterior temporal lobe) by which that information is con-
nected and accessed.

I have said that one ambition for my framework is to show how the different 
representational structures, computational processes, and informational models 
that are involved in concept-driven thinking can work together. In this chapter I 
am arguing that concepts act as an interface: between the general-purpose com-
positionality and content-general transitions of deliberate reasoning, and the 
special-purpose representational structures and content-specific computational 
processes found in many of the other informational models in the mind. But 
don’t concepts then face an interface problem? How do they provide the capacity 
to interface between all these other things?

I hope it is becoming clear that there is no interface problem, at the level of 
concepts, if my framework is on the right track. There might be an interface prob-
lem if we had to make inferences between very different representations, perhaps 
from a structural representation providing a cognitive map of space directly to 
the organized representations of a perceptual quality space. (Even there it is not 
obvious that there is a deep problem, since connections between representations 
of different types can be learned from experience, e.g. the perceptual signs to 
expect when located at a particular spatial location.) But recall the separation 
between storage and processing. Since general-purpose composition and content-
general reasoning take place over working memory labels, rather than over bod-
ies of stored information, there is no problem of putting together concepts whose 
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stored information is different and heterogeneous. The content and significance 
of the different working memory labels that are put together in forming a thought 
depends very much on the different bodies of information to which they are con-
nected. But those bodies of information do not need to interface (though they 
may) in order for the thinker to combine and reason with the concepts.

When conceptual thinking relies on a simulation in a special-purpose infor-
mational model to infer something new (e.g. that the sofa will fit in the car), the 
conclusion becomes expressed as a conceptually-structured thought, for example 
by categorising the output of an episode of visuomotor imagery. In conceptual 
thought that conclusion can be considered alongside conclusions based on other 
special-purpose systems (e.g. evaluating the sofa as aesthetically pleasing). Context 
strongly influences concept-driven thinking (Spiro et al. 1987; Barsalou 1983, 
2016; Medin and Shoben 1988). So the way a suppositional scenario is constructed 
in a special-purpose system will be affected by the other contents being repre-
sented on that occasion. That is the topic of section 5.8 below. Within a special-
purpose system, what counts as relevant and similar will also depend on context. 
For example, two people may seem similar in a context where we are thinking 
about hierarchy and dominance. The same two individuals may seem quite dis-
similar in a context when we are thinking about competence. The ability of 
special-purpose systems to make non-local relevance-dependent inferences is 
explored further in the next chapter (§6.3). There are also likely to be effects that 
stem from the integration of the outputs of different special-purpose systems 
within the global playground. This is the question of how different aspects of our 
conscious experience are unified with one another so as to form part of a single 
coherent whole. That poses an interface problem, not for concepts and offline 
thinking, but for the way non-concept-involving representations are integrated in 
experience. This is a phenomenon which it is important to highlight, as I have 
argued, but it is not something that this book attempts to explain.

Having laid out the basic framework, the next section discusses some further 
evidence that serves to flesh out the metaphor of a concept as a two-ended plug-
and-play device.

5.4  Mediating between Type 1 and Type 2 Processes

The claim that a concept is a two-ended plug-and-play device is supported by 
research on concept learning. Experiments show that people can learn a new cat-
egory in one of two different ways (Ashby and Valentin 2017; Gabay, Roark, and 
Holt 2023). One way is multi-dimensional, implicit, and automatic. The other 
way is low-dimensional, rule-based, and deliberate.

Deliberate category learning is a matter of inferring a rule for categorising 
items based on one or at most two features of the stimuli. I look for a rule 
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distinguishing Xs from Ys and infer that Xs have long necks and no spots. 
Feedback about how to categorise is not essential, and when it is provided, the 
category label may be given before or even long after the samples to be catego-
rised. Learning is impaired by cognitive load, that is, by having to perform a con-
current task that draws on working memory. As we saw in section 1.2, this is the 
signature of the type 2 (or ‘system 2’) style of cognitive processing (Evans and 
Stanovich 2013).

By contrast, multi-dimensional category learning exhibits the signature of type 
1 processing. It occurs automatically, without deliberate reasoning, showing little 
impairment under cognitive load. The category can be demarcated by a large 
number of features in a high dimensional state space. Learning works better if the 
category label comes after the stimulus. Feedback on performance is essential, and 
the response must be made within a short time after seeing the stimulus. The sys-
tem learns response-relevant categories, illustrated by the fact that learning is 
impaired if the location of the response key is switched (Ashby and Valentin 2017). 
Categorisation is a matter of a content-specific transition from a number of repre-
sented features (e.g. perceptual features) to application of the concept. In princi-
ple, the category might itself come to be represented in high dimensional state 
space, in which case concept-application would involve a content-specific transi-
tion from a non-conceptually-compositional representation of X to a concept of X.

These two kinds of learning take place at opposite ‘ends’ of the plug-and-play 
device that is a concept. Category inclusion can be defined explicitly using con-
ceptual representations of what it takes for a sample to fall under a concept. 
Deliberation uses reasoning to test hypotheses about what it takes to be an X. By 
contrast, categories can be carved out within the representational space of a 
special-purpose system without relying on deliberate reasoning. Learning pro-
cesses which are independent of cognitive load take place within sensory, affec-
tive, motoric, and evaluative systems. Salient distinctions between stimuli can be 
carved out as regions in the high dimensional state spaces used by special-
purpose informational models. The neat thing about concepts is that they are 
keyed into both systems. So categorisation judgements can rely on either kind of 
information, depending on the nature of the task.

Conceptual representations in working memory are propositional in the 
strong sense identified in section 2.4. They can be operated on by content-general 
computational processes, processes which depend only on the content of broadly-
logical concepts like and, or, and not. Using these concepts in thought corre-
spondingly extends the range of thoughts which can drive suppositional 
scenarios. A concept’s having two ends is, however, a double-edged sword when it 
comes to solving logic problems. Content effects are always on hand to interfere 
with doing purely logical reasoning so as to obtain the answer dictated by the 
norms of deductive logic (De Neys 2012). That may explain why people are gen-
erally so bad at logic, especially when problems are presented verbally.
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Conceptual representations in working memory are also hierarchical. We 
can combine the concepts red, car, and tyre in different ways so as to think 
about the tyre on the red car or about the red tyre on the car. That may be 
important when we deliberately and explicitly use one relation to stand for 
another in inference (§4.6). Hierarchical combination and logical concepts 
also come into play in heterogeneous inferences, which involve external repre-
sentations in different formats (Barwise and Etchemendy 1996; Aguilera 2021) 
(perhaps also when a map is supplemented to represent negation or disjunction; 
Camp 2007).

Here is a highly metaphorical picture of this interaction. A large gathering of 
musicians has formed to make improvised music. There are many different 
instruments. A central conductor sends out instructions for different groups to 
produce different sounds: the cello to produce one effect, the flute another; then an 
oboe, a zither, a harp, and so on. The instrumentalists react to one another to build 
up a coherent sound. The conductor recombines the elements, subtracts and adds 
new elements to change the sound. What she does is affected by the unfolding 
sound picture. What the instrumentalists do is driven by the conductor as well as by 
one another. A group that has not received the conductor’s recent attention fades 
away and stops playing. The conductor can try recombining elements in any way 
she likes, but it is only in the unfolding sound picture, where each player is affected 
by every other, that the elements are integrated together and the overall sound pic-
ture is worked out. The conductor is a limited-capacity component driving the 
process, able to recombine elements freely and to try novel configurations. The 
product is an interconnected resonating sound picture, integrating different 
special-purpose components, components that adjust to one another to achieve 
some coherence, and change over time with their reactions to one another and 
the changing instructions of the conductor.

I have been fleshing out a picture where the constraints on a simulation come 
from informational models in special-purpose systems, as well as from concep-
tual thought. This means that a suppositional scenario can go beyond simply 
combining information retrieved via a collection of concepts. Constructing the 
scenario may involve filling in elements, including effects that are configural, 
depending on overall properties of the constructed scenario (e.g. Gestalt effects). 
In my chair example, I work out how the chair will fit in the car, but I go on to 
realise that the car would then be too full to fit the kids in. Spatial, temporal, and 
perhaps causal constraints within the suppositional scenario can lead to new fea-
tures being filled in. A special case of this is the process of ‘analogical completion’, 
when a thinker is working with an explicit analogy or trying to understand a met-
aphor, where a mapping between two relational domains suggests new features 
that can be filled in (Gentner and Jeziorski 1993; Camp 2006, 2019). The inter-
connectedness of the suppositional scenario has an impact on what is represented 
in the simulation.
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5.5  Shifting Information between Systems

So far I have argued that concepts act as an interface between general-purpose 
conceptual thought and special-purpose informational models. In this section I 
will show that they also allow us to transfer information between systems. Recall 
the different ways that information is encoded and computed with. Many special-
purpose systems use organized representations and structural representations. 
The computations performed over them are content-specific, operating with spe-
cific assumptions about their domain of application. Conceptual representations 
held in working memory use a general-purpose mode of combination. Reasoning 
processes take us from some conceptual representations to others. Some of these 
steps are non-content-specific (broadly-logical). Other steps in reasoning are 
content-specific. They rely on assumptions ‘built into’ a concept. We saw plausi-
ble examples of these direct-CS transitions in section 3.4: from x is a whale to x is 
a mammal; from y is a dog to y barks. Conceptual thought allows us to shift infor-
mation back and forth between these different forms of information storage.

We have seen that categorisation often depends on a content-specific disposi-
tion to move from perceptual representations to a concept. When I see a thing of 
a certain shape and size, with the texture of feathers and a particular way of mov-
ing, I categorise it under bird. My bird concept is applied to stimuli falling in a 
region of perceptual feature space. Of the two kinds of categorisation discussed in 
the last section, this is the automatic mode. (Birdwatchers speak of getting the 
‘jizz’ when automatic categorisation kicks in.) We can sometimes, however, make 
explicit the information encoded in automatic categorisation dispositions. I can 
see how I apply a concept, both to actual stimuli and to suppositional scenarios. 
By looking at how I am disposed to apply bird I could conclude that birds have 
bills. That might be something I had not before formulated as a conceptual 
thought. Having done so, I can store it as a semantic memory. The belief that birds 
have bills is now available to form the basis of reasoning. I can perform broadly-
logical inferences on it, for example. Learning that the Gentoo penguin is actually 
a bird, I recall that birds have bills and infer that the Gentoo has a bill of some kind.

I can do the same with information discovered through simulations over sup-
positional scenarios. To return to my chair example, having learned-through-
simulation that the Acme chair will fit in the car, I can store that conclusion as a 
conceptual belief. Next time I think about the matter, I don’t need to run the 
simulation again. I can simply recall that the Acme chair will fit in the car and 
reason from there.

Philosophical investigation by the method of cases is a way of shifting informa-
tion between systems. We ask ourselves how we would categorise actual and 
hypothetical cases. This might be a matter of applying concepts on the basis 
of  perceptual representations, as just discussed. Often, however, what we are 
interrogating are direct-CS transitions: the information that is implicit in our 
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dispositions to make transitions between conceptual representations in thought 
(Strevens 2019). This is especially the case when we are asking ourselves what 
inferences we would draw about actual and hypothetical cases. In practice, this 
kind of investigation may well be mixed, drawing on simulation as well as 
direct-CS transitions. But an important aspect is the ability to take information 
that is stored in direct-CS transitions and make it explicit. It can then be used as a 
self-standing premise in reasoning, including in broadly-logical reasoning.

Learning by rote moves us in the opposite direction. Learning multiplication 
tables, the student goes from an explicit representation that 7 × 8 = 56 to an auto-
matic disposition to respond with ‘56’ when queried with ‘7 × 8?’. Once learnt, we 
don’t answer the question by carrying out repeated addition, nor by recalling as 
an explicit premise that 7 × 8 = 56. Laborious training has given rise to a direct 
connection between conceptual representations. Susan Carey’s influential 
account of how children acquire concepts of natural number crucially depends 
on their acquiring a disposition to make direct-CS transitions between number 
concepts (Carey 2009). This example also serves to highlight the fact that very 
many of our direct-CS transitions are acquired socially—in the children’s case, it 
is by learning the counting numbers by rote. We pick up the assumptions and 
habits of mind of our social group. Our dispositions to make direct-CS inferences 
with our concepts are shaped accordingly.

We saw in Chapter 2 that replay of sequences in the hippocampal cognitive 
map can be used to choose actions. More generally, simulations driven by an 
informational model can be used to train a new model-free action policy (Kurth-
Nelson et al. 2023, p. 454). Similarly, an explicit conceptual representation can 
also be used to train up new connections to special-purpose systems, connections 
which can then underpin new mediated-CS transitions. The experiment of 
Barron et al. (2013), involving novel foodstuffs, showed the process at work (§4.3). 
Initially participants could only imagine a novel foodstuff like tea jelly by activat-
ing a sensory representation of tea and a sensory representation of jelly. However, 
after imagining a compound repeatedly during the experiment they acquired the 
ability to imagine the compound directly, without going via imagining the com-
ponents. They acquired a new content-specific disposition for moving back and 
forth between their tea jelly concept and a sensory-affective representation of 
the compound. They could then perform mediated-CS inferences about tea jelly, 
for example when asked whether they would prefer tea jelly to an avocado-
raspberry smoothie.

Logic has given us a tool that is well suited to explicitly representing the input-
output dependencies that content-specific dispositions execute, namely the if-
then conditional. Conditionals are a means for shifting information between 
systems: by being used to train up a new content-specific disposition, as we just 
saw; or by making information explicit that is implicit in direct- or mediated-CS 
dispositions. To return to my first example: I notice that the things I am disposed 



Models of Working Memory Labels  133

to categorise as birds all have bills. My categorisation disposition, moving from 
perceptual representations to application a concept, is not a conditional, but it 
implicitly encodes the information, if it is a bird, then it has a bill. In the concep-
tual system I can make that explicit using the concept if . . . then. That informa-
tion is then available to be used as a premise in reasoning. Before being made 
explicit, although it was informing the way I applied the concept, it was not infor-
mation I could use in reasoning. The same goes for direct-CS transitions between 
concepts. Suppose I am disposed to move from x is a whale to x is a mammal. 
I can notice the disposition and make it explicit in the representation if it is a whale 
then it is a mammal. This allows me to reason with this information, ask whether 
it is true, and perhaps reject it. Rejecting problematic direct-CS dispositions is a 
particular aim of conceptual engineering, when we find that our existing con-
cepts build in sexist, racist, or other objectionable assumptions (Haslanger 2000, 
pp. 230–1; Machery 2017).

Conditionals can also encode information that we have extracted from a 
simulation. I work with a suppositional scenario and see that, if I turn the chair 
on its side, it will fit in the car. That conclusion is something I can represent 
explicitly in conceptual thought. I have arrived at it by mediated-CS inference, 
but I don’t have to do that again. Next time I can use an explicit premise in my 
reasoning: if I rotate the Acme chair, then it will fit in my car. This also works in 
the other direction. Having learned that if p then q, I can use that to train up various 
content-specific dispositions. Conclusions that were reached through deliberate 
type 2 reasoning come to be automatic. The whale → mammal transition is probably 
like that. Our dispositions to move back and forth between conceptual thoughts 
and special-purpose representations can also be trained in this way, as we saw in 
the tea jelly experiment.

There is a huge philosophical literature on the semantics of conditionals. The 
point I want to make here is compatible with many different views. It just depends 
on the broad observation that conditionals are a way of encoding suppositional 
inferences. Thus, conditionals are one of the tools we have for shifting informa-
tion back and forth between special-purpose informational models and general-
purpose conceptual thought.

5.6  Models of Working Memory Labels

I have been talking loosely about a concept being ‘connected’ to characterizations 
in special-purpose representational systems. In this section I discuss computa-
tional models that offer some options for making this more precise. The models 
also serve to illustrate how it is that working memory representations facilitate 
the capacity for recombination which I appealed to in laying out the plug-and-
play framework (§5.3).
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A very general starting point is that there are ‘files’ in long-term memory which 
hold a collection of information about a given category or subject matter. This 
was the way of characterising concepts—in terms of storage—that I was at pains 
to separate from concepts as representational vehicles tokened in occurrent 
thinking. As mentioned above (§5.3), a stronger idea is that there is a dedicated 
mental representation—an index—which serves to connect together the informa-
tion in the file and provide access to it (Fodor 2008, pp. 94–6). François Recanati 
has developed a detailed philosophical account of mental files, linked to a psy-
chological account of how they work in cognition (Recanati 2012). In his theory 
the mental representation is an address for a store of linked information, a store 
from which representations can be retrieved to use in inference (Recanati 2012, 
p. 37). Lambon Ralph et al. (2017) argue that amodal semantic hubs in anterior 
temporal cortex play this role. My framework can embrace indexes, where they 
exist, but it is also compatible with their absence—with information in long-term 
memory being stored in a more distributed fashion. What my framework depends 
on is that some items of information are indeed stored together in long-term 
memory so that when a thinker accesses some information about a category they 
are thereby able to access further information about it. That is the functional 
reality to the claim that items of information are stored together in long-
term memory.

In either case what is stored is supposed to be something richer than bare asso-
ciations. It is information that is about or characterizes a referent. salt-savoury 
might be in, but salt-pepper is out. The mental file can comprise information of 
various different kinds, both encyclopaedic knowledge (semantic memories like 
Paris is the capital of France) and Camp’s broader characterizations (Camp 2015). 
There are many different proposals for the way information is stored: prototypes, 
exemplars, mini-theories, etc. This has been a major focus of experimental work 
on categorisation. For the issue we’re discussing here I can be inclusive about the 
kinds of information stored and remain neutral between various more specific 
theories. I am, however, committed to there being a form of deliberate thinking 
that involves concepts being tokened in working memory; and to a concept, so-
activated, providing access to a collection of information stored in memory—
perhaps in various different kinds of memory—with different items from the 
collection being retrieved on different occasions.

How is it that concepts can play this role? Here it is useful to look at specific 
models of working memory—without committing to their being the final true 
theory—to illustrate how working memory representations could succeed in 
playing the role required. I start with the model of declarative working memory 
in Oberauer (2009). A small number of representations, A, B, and C, are tokened 
and integrated in a structure, like the structure of a proposition. Each is tempo-
rarily bound to an item of information activated from long-term memory: con-
tents like objects, events, and words. The temporary bindings are arbitrary: any 
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of the A, B, and C can be bound to any item of information from long-term memory. 
The temporary representations are freely recombinable, enabling the thinker to 
formulate a very large number of different thoughts.

To flesh out this verbal model, we can turn to models of how the architecture 
could be implemented computationally. These notions of files, indexes, addresses, 
and binding derive from computer science, so computational models offer useful 
ways of understanding them. Gallistel and King (2009) emphasise a more specific 
device from computer science: pointers. A pointer is a representation of an 
address where some relevant information is stored. A university timetabling pro-
gram might contain a pointer to the number of students registered for the philos-
ophy of biology MA seminar, call it pg-phil-bio. Operations can be defined and 
carried out on pg-phil-bio without calling up the numerical value to which it 
points: divide by 15 and round up to get the number of seminar groups, add to all 
the other pg-phil- . . . pointers to get the total amount of philosophy postgraduate 
teaching, etc. When a concrete output is needed, the value pointed to (17, say) is 
retrieved from memory and entered into the computation.

Eliasmith (2013) has developed the pointer idea in a particular way in his 
‘semantic pointer architecture’. This is a biologically-inspired model of various 
aspects of cognition. Processing takes place between interconnected layers of an 
artificial neural network. Stimuli are initially represented in a high dimensional 
perceptual state space. These representations are compressed into more abstract 
representations in subsequent layers of the network. These more abstract repre-
sentations can be operated on in their own right, for example by using various 
vector operations to bind them into relational structures. They are pointers 
because the abstract representations can be ‘de-referenced’ so as to reconstruct 
the perceptual representations from which they were compressed. Since com-
pression is involved, the reconstructed representations are only an approxima-
tion of the original representations. The pointers are not simply addresses or 
neutral labels for the more specific perceptual information. They retain some of 
the structure of the perceptual space.

Kriete et al. (2013) put forward another biologically inspired model of point-
ing, differing from Eliasmith (2013) in one key respect. Their model has variables 
in prefrontal cortex that combine in compositional structures (as with our working 
memory representations). These variables are more like the classical pointers of 
Gallistel and King (2009) in that the connection to stored information is arbi-
trary (also as in Oberauer 2009). The pointers do not inherit anything of the 
nature of the material to which they point, in the way Eliasmith’s semantic 
pointers do.

That is also a feature of the best-developed philosophical application of the 
pointer idea to concepts (Quilty-Dunn 2021). Quilty-Dunn takes concepts to be 
unstructured symbols that do not in themselves encode any information, other 
than pointing to an address where information is stored. Concept combination 
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and logical inference take place over these unstructured ‘atoms’ independently of 
the information they point to. For other tasks, information at the pointed-to 
address is called up and used. Quilty-Dunn has a nice account of how this works 
in the context of understanding sentences containing polysemous words (see also 
Liu 2024; cf. Brody and Feiman 2023). In understanding a sentence like ‘the 
school burnt down’, the concept school retrieves information from the store to 
which it points. Interaction with the other words in the sentence ensures that it is 
building-related information that is retrieved (school as building, rather than 
school as organisation or institution, say).

For my account, I want to embrace one aspect of the pointer idea but resist 
others. It is crucial that there are representations that we use in reasoning that 
exhibit role-filler independence with respect to the special-purpose representa-
tions to which they are connected. This allows for the free recombinability that is 
characteristic of conceptual compositionality and facilitates computations that 
are non-content-specific. But we don’t need to assume that all information is so-
coded. I want to allow that concepts might encode some information in the form 
of direct-CS transitions: dispositions to move between conceptual representa-
tions within reasoning directly (§3.4). But unlike Eliasmith’s theory, these 
direct-CS transitions need not be an abstract version or compression of the 
special-purpose information pointed to by a concept. I also want a relation that is 
reciprocal: from special-purpose representations to a concept (as in categorisa-
tion) as well as from a concept to stored information. That is a feature of 
Eliasmith’s model, but not of the classical computer science idea nor of Quilty-
Dunn’s model. Furthermore, with a pointer in a computer, the information 
pointed to cannot be used where it is stored. It must be retrieved and brought to a 
central processor to be computed with. By contrast, representations in an infor-
mational model that are activated by a concept in working memory can be pro-
cessed in the special-purpose systems where they are stored, without being 
copied elsewhere.

To highlight the contrast, I have adopted the term ‘label’ instead of ‘pointer’. 
The concept-sized representations that recombine in conceptual thought are 
neutral with respect to the special-purpose representations to which they are 
connected. The label on a bottle stands in an arbitrary relation to the substance it 
labels. But, crucially, labels can also enter into structures that carry information 
in their own right. Memories stored in the form of explicit conceptual 
representations—semantic memories, like Paris is the capital of France, and 
concept-based informational models (§4.7)—act differently from other kinds of 
information connected to a concept (e.g. sensorimotor characterizations). 
Reasoning takes place over labels-in-compositional-structures. This can be per-
formed without drawing on characterizations in special-purpose systems. The 
label is tokened when a concept is held in working memory. It serves as a gateway 
to a collection of stored information. Connected information may be indexed by 
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structures in long-term memory, like semantic hubs in anterior temporal cortex 
(Lambon Ralph et al. 2017) or indexes in the hippocampus (Teyler and Rudy 
2007; Tanaka and McHugh 2018), or it may be stored in a more distributed fash-
ion in terms of patterns of connection between items in long-term memory.

In short, the hypothesis that concepts are plug-and-play devices fits nicely with 
the functional role of working memory labels: representations in working mem-
ory that are temporarily connected or bound to representations retrieved from 
long-term memory, that can be combined in general-purpose compositional 
structures, and that can be processed in content-general computations that are 
independent of the special-purpose representations to which they are connected. 
This broad framework is supported by a range of neural and psychological evidence 
and, while there are important differences between them, is consistent with a 
variety of plausible models of how the computations could be implemented.

5.7  Concept Individuation

The plug-and-play picture invites a clutch of questions about the individuation 
and metaphysics of concepts. If the concepts used in occurrent thinking are tem-
porary labels in working memory, how are concepts to be type-identified across 
different episodes of thinking? And across different thinkers? What determines 
their content? And does the reference of a concept change as the store of informa-
tion in long-term memory changes? I am not, in the book, attempting to tackle 
the question of content-determination. Getting a clearer picture of the way con-
ceptual thinking works is hard enough. That picture will be important for an 
empirically well-founded theory of the metaphysics of conceptual content, but 
that is not our task here. I do, however, need to say how concepts are individu-
ated, that is, type-identified across occasions. I also want to argue that my picture 
does not imply that concept reference needs to be holistic or fine-grained.

First off, how am I individuating concepts? What makes different instances of 
a mental representation count as tokens of the same concept-type? I have been 
operating with a vehicle-based way of individuating representations. A working 
memory label is a vehicle type, a temporary representation tokened in working 
memory. If the same working memory label is reactivated again later during the 
same episode of thinking, that counts as tokening the same concept again because 
it is a tokening of the same vehicle type. Here (and only here) the metaphor of a 
mental word is apt. The vehicle type is picked out in terms of non-semantic prop-
erties. What makes some non-semantic properties (like: which letters make up a 
word) an appropriate way of picking out a vehicle type is partly functional: they 
are non-semantic properties in virtue of which the vehicle will be processed the 
same way by the wider system (just as ‘dog’ and ‘dog’ are processed the same way 
by the language system). (See Shea 2018, pp. 38–40, for detailed discussion.) 



138  Concepts as an Interface

Different instances of the same working memory label tokened during an episode 
of thinking count as instances of the same content-bearing type because they 
share non-semantic properties in virtue of which computational processing treats 
them the same. For example, they may be distributed patterns of neural activa-
tion that are the same or sufficiently similar that they are processed in the 
same way.

That does not tell us how to identify concepts across different episodes of 
thinking. The labels deployed in working memory could be arbitrary as to their 
subject matter. The same label-vehicle might, on different occasions, be used to 
label different stores of information in long-term memory. The crucial thing is 
the way a working memory vehicle is connected to a body of stored information. 
Tokens deployed on different occasions that are used to label the same body of 
information thereby count as tokens of the same concept for that thinker.

This delivers a mental type that is a candidate for carrying content: a vehicle 
type that represents Xs, say. Notice that I am not individuating ‘the’ concept of Xs. 
It is an account of that individual thinker’s concept of Xs. (More carefully, of one 
of their concepts of Xs, since they may have redundant concepts: Millikan 2000.) 
This account depends on the view, which is shared by almost all theories of con-
cepts, that there is a functional reality underpinning the idea that items of infor-
mation are stored together in memory. It is the persistence over time of a store of 
information that allows us to type-identify different working memory labels 
tokened on different occasions as being instantiations, in that individual, of the 
same concept. We have seen that some theorists make a stronger claim: that 
information is stored together in long-term memory in virtue of an index—an 
index being a representation that serves to connect items of information together, 
and through which they are retrieved. If and to the extent that such indexes exist, 
same-index will also serve to type-identify labels across episodes. But indexes are 
not necessary. Storage in long-term memory may be distributed, with no single 
index. Accessing some parts of the network gives access to other parts. Even so, 
the functional fact that items of information are stored together is sufficient to 
allow us to type-identify labels. A given store of information will change as the 
thinker learns new facts and forgets others. Like Theseus’s ship, we can trace a 
given store of information over time even as it loses and gains individual pieces of 
information. Labels deployed on different occasions are instances of the same 
concept-type, in that thinker, just in case they are connected to the same store of 
information.

The same concept will be used to retrieve different facts and characterizations 
on different occasions. The plug-and-play framework is designed to accommo-
date the widespread empirical findings to that effect. Does this mean that it has 
different contents on different occasions? In one sense, yes: the thinker will be 
thinking different things about Xs on different occasions. In another sense, no, 
because the thinker is thinking about Xs each time they deploy tokens of the 
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concept—provided the reference of the content does not shift between occasions. 
It is tempting to think that it will, if we are in the grip of a picture where the refer-
ent is picked out by the way we think about it (e.g. it is the kind that is medium-
sized, hairy, and barks). But the idea that characterizations determine reference 
in this straightforward way is implausible. They are part of what gives the thinker 
a connection to the referent, so they could underpin an asymmetric dependence 
relation, for example, or be the causal basis of a representation–world connection 
figuring in a teleosemantic theory. Most externalist theories of content allow that 
reference can remain the same as stored information changes. For example, 
Millikan’s theory of concepts holds that the referent of a concept is the substance 
it is designed to track (Millikan 2000, 2017). This remains the same across radical 
changes in the conceptions the thinker has about Xs, many of which can be mis-
taken (and which can be completely different in different thinkers). So the refer-
ent of the concept need not change even as the body of stored information 
changes, and even though the information retrieved on different occasions may 
be very different.

Nor does the picture imply holism. If the content of a concept consisted of 
stored information, and the contents of the stored representations were individu-
ated in the same way, then the content of every representation would depend on 
its connections to every other. However, individuating concepts in terms of vehi-
cle types and reference has no such consequence. A concept is picked out in terms 
of a vehicle and its referent; items of stored information are representations, indi-
viduated in the same way. What the thinker thinks about Xs does indeed depend 
on what information they store, but the content of their concept is not individu-
ated in terms of that stored information; hence no holism.

What does follow is that the thinker has no guarantee that they have the same 
beliefs about Xs now as they had when they previously thought about Xs (ditto 
for other characterizations). The stored information changes over time as the 
thinker learns, forgets, and changes their mind. Since the information stored 
together could contain inconsistencies or even contradictions, the thinker can 
end up thinking contradictory things when thinking about Xs on different occa-
sions. Furthermore, with a large enough change—in the thinker or in the world—
there is a possibility that the referent of a concept could shift (on certain theories 
of content). So there is a potential for equivocation over time. Furthermore, a 
vehicle-based way of individuating concepts implies that the same thinker may 
have two concepts of the same referent without realising that they co-refer. That 
is a merit of the theory, allowing us to explain Frege-type cases (Millikan 2000; 
Sainsbury and Tye 2007; Fodor 2008; Recanati 2012). But it is a problem for the 
thinker. These are all real phenomena, so need to be accommodated by a theory 
of concepts. They are all things the rigorous thinker needs to guard against.

What about different thinkers? My vehicle-based way of individuating con-
cepts does not give us a way of type-identifying concepts between different 
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people. Concepts in different thinkers may share the same referent. That does 
not make them the same concept in any strong sense. They are no more the same 
concept as when two concepts within the same thinker share the same referent. 
Same reference across thinkers does not imply that the concepts will have the 
same informational significance: that the thinkers will have similar beliefs about, 
conceptions of, or characterizations of Xs. To the extent that thinkers live in 
shared environments and interact with Xs in similar ways, we would expect them 
to share many characterizations; even more so if they live in the same culture, 
since so much is acquired from people around us. But same concept in this refer-
ential sense does not imply shared conceptions.

There may, however, exist commonalities at the neo-Fregean level of sense: 
collections of interconnected characterizations that are shared by different 
thinkers. We might have one body of information connected to the public language 
term ‘Superman’ and another to ‘Clark Kent’ (albeit everyone knows that they are 
co-referential in the fiction). For a more realistic example, Susan Carey argues 
that, in relation to the mathematical concept of division, a small set of intercon-
nected beliefs come along together at the point when the child first understands 
that repeated division never reaches zero (Carey 2009). That body of beliefs, 
shared between children when they reach the stage of properly understanding 
division, is a good candidate for a sense. My project does not depend on taking a 
settled view on how concepts should be type-identified at the level of sense, 
if at all.

Another kind of structure is, however, relevant. The body of stored informa-
tion connected to a working memory label may contain further structure. For a 
friend who is also a well-known personality, I have one collection of information 
about their public profile and another about what they are like in person. I don’t 
need a positive theory of these within-collection structures, but I do need my 
picture to be compatible with their existence. They constrain how a simulation 
unfolds when we token a concept and draw on stored information to construct a 
suppositional scenario. For example, the characterizations we have for concepts 
of a particular subject matter—people, say—may be arranged around a specific 
perspective, that is a disposition to characterize people in certain ways (Camp 
2019). These additional structures are important in determining, amongst all the 
characterizations connected to a concept, which get taken up and integrated into 
the suppositional scenario currently being constructed in the global playground.

A final question: how does my proposal differ from Fodor’s atomism? I take 
from Fodor (and others) the insight that concepts display general-purpose com-
positionality and enter into content-general inferences. That is crucial to the spe-
cial power of conceptual thought. However, my picture is more driven by 
neuroscience, a more expansive palette of computational models, and insights 
about how computations are implemented in the brain (Frankland and Greene 
2020, make a nice case for this agenda). Couldn’t Fodor just adopt these insights? 
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Concepts are combinatorial atoms and the rest is a matter of the information 
stored with the atom. After all, he already has a distinction between the atom that 
enters into computations and the store of information to which it is connected. 
However, there are still many differences between these pictures, especially in the 
broad way I think about characterizations and in my more expansive conception 
of computation and inference. There is also an important difference in terms of 
individuation. For Fodor a concept is a mental word that serves to give access 
to  stored information. The same word, qua vehicle type, shows up on each 
occasion. This is to assume, I think, that the representation type which figures in 
occurrent thinking is also the representation that indexes the store of informa-
tion. My framework accommodates the fact that these things can be and often are 
separate. Indeed, my framework is compatible with there being no index—with 
information storage being distributed. So although the commonalities with 
Fodor’s atoms are playing a crucial role in my picture, the differences are also 
significant.

To sum up, I am taking a token concept to be a label in working memory, con-
nected to a rich, diverse, and potentially heterogeneous body of information, 
stored in both general-purpose and special-purpose informational models. 
Tokening the label provides access to the connected information, a very small 
subset of which ends up being processed on an occasion, some of it getting 
tokened in the global playground as part of an interconnected informa-
tional model.

5.8  The Simulation Combination Puzzle

Many theorists have emphasised the need for concept-driven thinking to achieve 
the generalised recombinability and role-filler independence of conceptual rea-
soning. At the same time, concepts need to be capable of the role-filler binding 
involved in formulating a thought on a particular occasion, tailored to a specific 
place, time, and situation. The problem is to achieve both independence and 
binding (Penn et al. 2008, p. 125; Kriete et al. 2013; Frankland and Greene 2020; 
Jackson et al. 2021). I follow the general form of the solution proposed by these 
theorists. Concepts are working memory labels that are connected to rich bodies 
of stored information, both further conceptually-structured representations 
(e.g.  semantic memories) and representations in special-purpose informational 
models. Different information is called up on different occasions. Although a large 
body of information may be potentiated when a concept is activated, only a small 
subset is used. Each constituent concept contributes a subset of its connected 
information, a part which coheres to some extent with the information contrib-
uted by the other concepts. For example, in thinking about a school fire, the 
interaction between fire and school calls up information from school 
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concerning typical school buildings, and information from fire concerning 
large-scale building fires (rather than a homely domestic fire, say).

We can think of each concept as a hook with a collection of odd-shaped objects 
dangling off it (Fig. 5.1, left panel). When it is hung up together with other hooks, 
the dangling objects selectively arrange themselves into a coherent picture (Fig. 5.1, 
right panel). As Frankland and Greene observe, ‘A full understanding of a particular 
combination must flexibly estimate the interactions between the component parts’ 
(2020, p. 281). The representational models built in special-purpose systems will 
carry much of the load here, selecting components that fit together coherently in 
the light of the world-knowledge encoded by the model. For example, simulating 
green leaf will select for shades of green consistent with natural foliage, simu-
lating green sea will select for different shades of green.

There is a deeper problem, however. A concept is a plug-and-play device that 
plugs into structures at both ends. As well as the structure of special-purpose rep-
resentational models, there is the combinatorial structure by which labels are 
combined in thought. That has a crucial effect on the simulation. We simulate 
something quite different for man bites dog than for the more mundane dog bites 
man (Fig. 5.1). We don’t simply call up the information labelled by dog, man, 
and  biting and arrange it together into a coherent scenario. The permissible 
arrangements are constrained by the mode of combination over concepts. What 
we simulate for dog depends on its role in the thought. Similarly with language: 
although hearers can often work out what is meant simply from a list of words, 
without grammatical cues, in a significant minority of cases grammatical cues are 
essential to work out what is meant (Mahowald et al. 2022). We understand the 
nominal compound ‘avocado green’ quite differently from ‘green avocado’. The 

Fig. 5.1  (Left) A label in working memory is connected to many different 
representations in special-purpose systems. (Right) Working memory labels combine 
to form a thought. The thought drives a simulation of an integrated scenario that 
reflects the other labels and their mode of combination. Images from  
http://clipart-library.com. Graphic copyright the author.

http://clipart-library.com
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compositional structure of thought—which may be hierarchical (§5.4)—con-
strains what is simulated.

As well as seeming obvious from experience, supporting evidence for this 
comes from experiments on sentence comprehension. There is considerable evi-
dence that understanding a sentence produces automatic sensorimotor activation 
(Bergen 2012). When a participant is required physically to move their finger 
away from their body to press a button in response to a stimulus, the response is 
slower if the just-read sentence implicates movement towards rather than away 
from the participant (Glenberg and Kaschak 2002). So, ‘Liz told you a story’ 
slows down the action compared with, ‘You told Liz a story’. The hearer is charac-
terizing themselves somewhat differently in the two simulations. The simulation 
is involved in comprehension of the sentence (Liu 2024). How then do the details 
of the simulation come to reflect the structure of the thought? For another exam-
ple, consider the wide collection of characterizations connected to my yacht 
concept. When I think, I am sailing a yacht, that calls up a perspective from the 
helm, producing a very different set of characterizations from those triggered by 
the thought, yachts racing across the bay.

Similarly, in the literature on simulation and learning-by-thinking it is assumed 
on all sides that the content of a simulated scenario reflects the mode of combina-
tion of the concepts which drive it. That is not an objection to those accounts, but 
it does leave us with a puzzle about how it is that a suppositional scenario comes 
to reflect the compositional structure of the thought that drives it. The solution is 
not automatic or straightforward. Just calling up the relevant information is not 
enough to ensure it will arrange itself in the appropriate way. For example, the 
text-to-image neural network model Dall-E, powerful as it is, mostly fails to gen-
erate images that appropriately reflect the relations in the text prompts, e.g. ‘the 
teacup is under the cylinder’ (Conwell and Ullman 2022).

Existing models capture the combinatorial structure over labels but do not 
illuminate how the material connected to a label is selected in a composition-
sensitive way. As Jackson et al. (2021) argue, concept-driven thinking (their ‘con-
trolled semantic cognition’) has to do two seemingly conflicting things at once. It 
needs to be able to combine concepts in a way that is independent of the informa-
tion they carry. As Frankland and Greene say, it needs to have ‘combinatorial 
procedures that are distinct from the contents over which they operate’ (2020, 
p.  295). But it also needs to connect up conceptual thought to special-purpose 
representations in a way that is suited to a particular context and task. Using 
neutral labels enables context-invariant composition. But that leaves the other 
half of the problem unresolved.

For example, Blouw et al. (2016) define a convolution operation which com-
bines semantic pointers (the device we saw in Eliasmith 2013). A vector for dog 
can be convolved with a vector for agent to produce a vector for dog-as-agent. 
The operation is reversible, so that the agent can be extracted from any convolved 
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vector by a deconvolution operation. This follows the tensor product architecture 
suggested by Smolensky (1995), with the difference that, since Blouw et al. use 
circular convolution (which compresses information), the components are only 
imperfectly recoverable. Blouw et al.’s model does not give us an account of how 
the content pointed to (the special-purpose representations pointed to by the 
dog pointer) is modulated to take account of the other pointers with which it is 
combined and the mode of combination. It does not tell us why a simulation of 
dog bites man will select a different subset of the information labelled by dog 
than that selected in a simulation of man bites dog.

Other models that are built to ensure ‘combinatorial procedures are distinct 
from the contents over which they operate’ have the same problem. Halford et al. 
(2010) use tensor products so that, in a representation of Sally loves John, the vec-
tors for Sally, John, and the relation Loves(x,y) are combined in such a way that 
none is modified by the others. Other models keep special-purpose representa-
tions separate. Graves et al. (2016) have a ‘controller’ that performs operations 
that are separate from the contents being processed. Knowlton et al. (2012) have a 
hybrid symbolic-connectionist architecture in which, in the symbolic system, 
there are dedicated individual units for each relational role and for each object 
being combined. Kriete et al. (2013) have a pointer architecture in which pointers 
for agent, verb, and patient are each stored separately (in different ‘stripes’ in pre-
frontal cortex). The model can be interrogated flexibly to look up the content 
pointed to by agent, verb, or patient, but that information is not modified by the 
mode of combination or by the other contents with which it is combined.

A different solution is to build into the model that the content called up by dog 
in the context of dog-as-agent differs from that for dog-as-patient. Frankland and 
Greene (2015) found in a human neuroimaging study that there was one region of 
left mid superior temporal cortex for dog-as-patient and another for dog-as-
agent.4 The region dealing with X-as-agent encodes different information about 
Xs than the region dealing with X-as-patient. That would explain why different 
contents are activated in the two cases, but it does not explain how these different 
contents derive from some invariant content, the shared content encoded by the 
dog concept. Frankland and Greene (2015, p. 11737) suggest that this shared 
content is housed somewhere else in the neocortex, but they do not say how it 
is  modulated into role-specific contents. Across all of these proposals, we are 
left without a model that conjoins a content-invariant mode of composition with 
a context- and composition-sensitive selection of information in the simulated 
scenario.

4  Schwartenbeck et al. (2023) found a similar result in a quite different paradigm. Participants 
learnt how to combine geometric visual building blocks into figures using one of two relations (on top 
of and beside). They found neural representations of a block-in-relation, for example of Block1 when 
and only when it was on top of another block.
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Here is a tentative solution, suggested as much to highlight the nature of the 
problem as to resolve it definitively. My solution takes up a suggestion in 
Frankland and Greene (2020) and extends it to the mode of combination. Return 
to our green leaf/green sea example. Green is a label for a region in a high dimen-
sional perceptual feature space. Leaf is a label for a different region. Simulating 
green in the context of leaf activates a part of the green region that coheres 
with the leaf region. Green sea would activate a different part of the region 
labelled by green. Each concept acts as a context for the other concepts, cutting 
down the regions of state space activated by each label. That gives us a picture of 
modulation-by-context.

To extend this to the dog-bites-man/man-bites-dog puzzle, first think about 
what happens during categorisation (rather than simulation). When we see a sit-
uation unfolding, there is something about it that makes us think, the man is bit-
ing the dog! rather than, the dog is biting the man. The same is true for language. 
There is something about the way we perceive the situation that makes us say 
‘man bites dog’ rather than ‘dog bites man’.5 Verbs come with an agent/patient 
distinction (Pinker 2007, pp. 31–3). Our knowledge of how to use the verb comes 
with knowledge of what makes one thing its agent and another thing its patient. 
Similarly, when categorising a situation under the concept bite, our dispositions 
for applying the concept must register what is the agent of the action and what is 
being bitten.

To transfer this to our simple feature space model, consider the relatively large 
region of perceptual feature space labelled by an individual’s concept dog. Only a 
subregion is compatible with dog-as-agent: regions where the dog is doing some-
thing. In the categorisation direction, we are disposed to think dog bites . . . only 
when the input is in the subregion of the dog feature space where the dog is 
doing something. The disposition to move from special-purpose representation 
to concept-label in an agent role only applies to a subregion of feature space. The 
subregion lies in a high dimensional feature space. It is not here picked out by 
some simple perceptual distinction (as it plausibly is for green leaf vs. green sea). 
But there is something about ways of representing dogs that makes just some of 
them candidates for being dogs playing an agent role.

Now recall my earlier argument that, unlike pointers, labels have a bi-
directional connection with special-purpose representations. We can, then, rely 
on the same move as we did in explicating green leaf vs. green sea. When simulating 
man in the context of man bites . . . , the label man indexes a region of state space 
which is cut down by its context. That context is bites and, in particular, man 
being the agent of bites. So the portion of state space that man contributes to the 
constructed scenario is the subregion in which the person is in an agent role, i.e. 

5  Thanks to Daniel Rothschild for this suggestion.



146  Concepts as an Interface

is doing something. Sun and Manohar (2023) show that this could be achieved in 
the brain through transient strengthening of synapses. Furthermore, the thing the 
man is doing has to overlap with the state space of the action bites; for example, 
he could be doing it with his teeth. Further interactions with the region con-
nected with dog results in an integrated scenario where the regions of state space 
activated by each label are adjusted to fit with one another and to respect their 
mode of combination. Each concept provides a context for retrieving informa-
tion from the others. What counts as similar within colour space may be different 
when the space is projected along the landscape dimension from when it is pro-
jected along the botanical dimension (Grand et al. 2022). The concepts them-
selves may be polyvalent: the information they encode may be suited to 
characterising predicates of different adicities or singular terms, depending on 
the combinatorial structure in which they are deployed.

My suggestion is that the compositional structure of a conceptual thought con-
strains the subregions of high dimensional state space that are activated by each 
constituent concept. Just as, during categorisation, relational concepts are applied 
in a way that is sensitive to which object is the agent and which is the patient of 
the relation; so also, moving in the other direction, when a relational concept 
drives a simulation, whether a concept is in the syntactic role of agent or patient 
provides a corresponding constraint on the scenarios that will be simulated. The 
syntactic structure into which working memory labels are combined furnishes 
content constraints on the type of scenarios that will be simulated. In Figure 5.1, 
the fact that dog is hooked into the compositional structure using an ‘agent’ hook 
cuts down the bits of dangling information that are candidates to feed into the 
simulation. Similarly, in understanding a metaphor, functional structure con-
strains the interpretation, whereas only open class terms are subject to metaphor-
ical elaboration (Glanzberg 2008).

This hypothesis applies, to conceptual thought, the theory from linguistics that 
the syntactic structure of a sentence contributes to its meaning. Syntactic struc-
ture specifies a semantic content, but only of a very general kind (Harris 2020). 
Vyvyan Evans calls it a ‘parametric content’, as opposed to the detailed analogue 
content of the cognitive model that is eventually constructed (Evans 2015; see 
also Paivio 1986). In the sentence, ‘Those boys are painting my railings’, the syn-
tactic structure alone specifies that the meaning has to be a scenario in which, 
those somethings are somethinging my somethings. The syntactic structure con-
strains the state space of possibilities within which a scenario can be constructed. 
Paul Pietroski has put forward a detailed model of sentence meaning that has the 
same effect (Pietroski 2018). In his account word meanings are coarse-grained 
and concepts are fine-grained (like the particular regions of state space activated 
in a particular simulation). Word meanings are instructions for how to access a 
concept. Which concept is fetched on an occasion depends on the syntactic 
structure and function words in the sentence. Syntactic structure is telling the 
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comprehension system what kinds of information to look up, for each word, in 
order to understand the sentence (cp. which kinds of information to retrieve, for 
each label, in order to simulate the situation).

In sum, although it is uncontroversial that a suppositional scenario constructed 
in a concept-driven simulation reflects the compositional structure of conceptual 
thought, there is a puzzle about how that works in cognitive or computational 
terms. Accounts that separate combinatorial procedures from stored contents are 
generally silent about the way that, when simulating aRb, the information labelled 
by each component (a, b, R) has an effect on which information labelled by the 
other components enters into the simulated scenario. Frankland and Greene 
(2020) is an important exception. Their empirically-based model does accommo-
date these contextual effects. It does not, however, explain how the mode of com-
bination affects what is simulated (the dog-bites-man/man-bites-dog problem). 
I have argued that their account can be extended in a natural way to provide a 
plausible answer. My suggestion is that compositional structure constrains which 
subset of the information labelled by each concept is a candidate to feed into the 
simulation, constraints that mirror the way that people are disposed to deploy 
conceptually structured thoughts in categorisation.

5.9  Bringing It All Together

Concept-driven thinking has given humans an especially powerful way of infer-
ring novel conclusions about the world. How so? The generality with which con-
cepts can be combined, irrespective of their subject matter, must be part of the 
answer. So too is the ability to carry out reasoning over syntactically structured 
conceptual thoughts. But we do much more with concepts than reasoning. Fodor 
(2000) famously argued that theorem-proving-type computations in the language 
of thought cannot account for abductive inference and relevance-based search 
(declaring this to be the great mystery of cognitive science). Part of the answer is 
that we can carry out inferences that depend on informational models in special-
purpose representational systems.

What makes concepts crucial in this is process is that they act as an interface. 
They serve to connect together, combine and rearrange information from special-
purpose informational models into a coherent suppositional scenario—an inter-
connected representation of a situation. A concept is a working memory label 
that can be combined and manipulated independently of the body of information 
to which it is connected. But a concept also acts as an interface to that informa-
tion. In a process akin to role-filler binding, a collection of labels held together in 
working memory activates a subset of the special-purpose information to which 
each is connected. It is this that allows us to build a rich interconnected represen-
tation of a situation.
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Much of the information that is activated may initially be incompatible and 
inconsistent. But when it is held together in working memory, in the service of 
working out what to do or what is the case (rather than free imagination), incon-
sistencies can be resolved into a more coherent picture.6 That is to say, concept-
driven thinking brings together, in the cognitive playground, information from 
different special-purpose systems, forming a rich informational model—a suppo-
sitional scenario in the cognitive playground. Running simulations with a suppo-
sitional scenario is a form of inference, drawing conclusions that can then be 
expressed in conceptual thought. Inference within this kind of coherent repre-
sentational model works quite differently from the theorem-proving that is char-
acteristic of reasoning. It relies on the informational models and content-specific 
computational dispositions encoded in special-purpose systems.

The ability to perform these kind of inferences with integrated suppositional 
scenarios depends on a general-purpose capacity for holding items in working 
memory, composing them, and computing with them. Concepts are the crucial 
interface between these general-purpose and special-purpose capacities. 
Concept-driven thinking is a combined operation that achieves more than the 
sum of the parts. Therein lies the special power of human conceptual thought.

Chapter Summary

5.1  Reaching Conclusions via Simulations

This chapter is about how conceptual thought arrives at concept-involving con-
clusions via informational models of other kinds. Simulation, prospection, and 
imagination are all ways of drawing on special-purpose systems in the service of 
forming new beliefs (examples). (p. 118)7 A given intention could be formed as a 
result of simulation or through reasoning (example).

Simulation can be relied on to reach an accurate conclusion where the relevant 
information cannot simply be retrieved from long-term memory or inferred by 
reasoning alone. (p. 119) Evidence of this process is found in experiments on 
mental rotation, and in results showing effects of sensorimotor processing in 
conceptual tasks. Simulation can allow the thinker to discover something new, 
without getting new evidence from the world, by bringing into thought information 
that is only encoded implicitly in the operation of special-purpose systems, or is 
encapsulated.

6  Cp. Carruthers (2011a, p. 439), who has a process of evaluation subsequent to an initial process 
of generation.

7  Each sentence of the summary corresponds to one paragraph. Page numbers indicate where the 
paragraphs begin.
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This chapter is about the role of concepts when running simulations in special-
purpose systems and constructing suppositional scenarios in the cognitive play-
ground. (p. 120) Sections.

5.2  Simulations Use Special-Purpose Informational Models

In focusing on either the domain-general aspects (Fodor) or domain-specific 
aspects (Barsalou) of conceptual thinking, theorists have underplayed the way 
concepts provide an interface between the two. (p. 121) A concept offers access to 
a rich body of information, both explicit conceptual representations (semantic 
memories) and wider characterizations. Much information is encoded in special-
purpose systems—which may or may not be domain-specific, and may employ 
modality-specific, supra-modal, or amodal representations. (p. 122) Simulation itself 
need not be driven by concept-involving deliberation—we are interested in the 
role of concepts in the process when it is.

5.3  Concepts as Plug-and-Play Devices

This section argues that the role of concepts in simulation-based inference is as 
‘plug-and-play’ devices. The archetype, which is not conceptual, is the way place 
cells are severed from their input-output connections and played with offline in 
trying out different possible routes. This is a widely-applicable trick. (p. 123) 
Reaching a conclusion via simulation involves playing with representations in 
special-purpose systems. A concept is a plug-and-play device with plugs at both 
ends: at one end, the informational models and content-specific computations of 
special-purpose systems; at the other end, the general-purpose compositionality 
and content-general reasoning of conscious deliberation.

A concept, it seems, gives us the capacity to use, offline, any of the representa-
tions to which it is connected. Recombining concepts drives the construction of 
novel suppositional scenarios, putting together special-purpose representations 
in new configurations. (p. 124) For example, thinking about what to prepare for 
dinner involves visuo-motor, olfactory, and gustatory simulation, affective-evaluative 
responses, a spatial map of locations in the environment, motoric knowledge of 
effort cost, and semantic knowledge of monetary costs.

There is much evidence in psychology and cognitive neuroscience for temporary 
task-dependent or working memory representations (often in prefrontal cortex). 
To token a concept is to token one of these working memory representations. 
(p. 125) We need to differentiate the representation that is combined and reasoned 
with in online processing from the body of information, stored in long-term 
memory, to which it gives access. There is evidence that the capacity liberally to 
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recombine concepts does indeed depend on working memory representations in 
prefrontal cortex, separate from the representations that are activated in simulations 
and language comprehension. (p. 126) Temporary representations in working 
memory are bound to ‘filler’ representations in special-purpose systems; operations 
of combination and broadly-logical reasoning exhibit role-filler independence. 
Further support derives from neuropsychology and the standard distinction 
between semantic dementia, which is an impairment in the storage of information 
about a category, and semantic aphasia, which is an impairment in the capacity to 
work with and integrate information about a category. (p. 127) This broadly supports 
our distinction between the way information about a category is stored and the way 
it is used in online thinking; storage may go via a single index or may be distributed.

Do concepts face an interface problem? Concepts interface with special-
purpose systems, but because the representations that are combined and pro-
cessed in reasoning are neutral labels, there is no problem with putting together 
concepts that concern different subject matter—no interface problem. (p. 128) A 
simulation in a special-purpose information model may be influenced by several 
of the concepts currently being entertained in working memory (§5.8), each 
operating in relevance-dependent ways as explored in section 6.3; and there are 
likely effects of coherence in the global playground, which is relied on but not 
explained here. The next section fleshes out the plug-and-play metaphor.

5.4  Mediating between Type 1 and Type 2 Processes

The metaphor of a concept as a two-ended plug-and-play device is supported by 
research on concept learning. Deliberate category learning involves inferring a 
rule for categorising items which is based on one or two distinguishing features; it 
is impaired by cognitive load. (p. 129) By contrast, multi-dimensional category 
learning has the signature of type 1 processing. These take place at opposite ‘ends’ 
of a concept: by reasoning amongst conceptual representations, or by carving 
out distinctions amongst representations in special-purpose systems. Conceptual 
combination can use logical concepts. (p. 130) Also hierarchical structure; both 
extend the range of thoughts that can drive suppositional scenarios.

A good metaphor here is a musical conductor: a limited-capacity component 
driving an integrated, coherent ensemble effect. Constructing the scenario 
involves filling in elements based on information and constraints found in 
special-purpose systems, and on the coherence of the overall scenario.

5.5  Shifting Information between Systems

(p. 131) Conceptual thinking allows us to shift information back and forth 
between special- and general-purpose systems, and between representing implicitly 
in  content-specific dispositions and representing explicitly. Information that is 
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merely implicit in a disposition to apply a concept to a certain region of percep-
tual feature space can be made explicit, reasoned with, and stored as a semantic 
memory. The same applies to conclusions reached through simulations over sup-
positional scenarios. Philosophical investigation by the method of cases is a way 
of making explicit information that is implicit in dispositions to categorise or to 
make direct-CS transitions between concepts. (p. 132) Learning by rote moves in 
the opposite direction, giving rise to new dispositions to make direct-CS transi-
tions. A conceptual representation can also serve to train up new connections to 
special-purpose systems, for example, the ability of participants in Barron et al.’s 
(2013) study to imagine the novel foodstuff tea jelly.

Conditionals offer us a way to make explicit, reason with, and endorse or reject 
information that is implicit in content-specific transitions. (p. 133) Conditionals 
can also be used to train up new automatic content-specific dispositions (e.g. with 
the whale → mammal transition, the explicit conditional probably comes first). 
This point about conditionals does not depend on a particular view about the 
semantics of conditionals, just on the more general claim that they serve to 
encode suppositional inferences.

5.6  Models of Working Memory Labels

In what way is a concept ‘connected’ to stored information? (p. 134) A general 
starting point is that a concept is connected to a file of information stored in long-
term memory (the existence of an index for the information is optional). The stored 
information includes both semantic memories and wider characterizations. I will 
look at some illustrative models to show how concepts can play this role; Oberauer 
(2009) has a small number of active representations integrated in a structure, each 
temporarily ‘bound’ to items of information activated from long-term memory.

(p. 135) A more specific device from computer science is a pointer. Eliasmith’s 
‘semantic pointer architecture’ has developed a particular version of pointers: 
representations on which operations can be performed in their own right, but which 
retain some of the structure of the representations to which they point. Kriete et al. 
(2013) have pointers—working memory representations that combine into composi-
tional structures—whose connection to stored information is arbitrary. Quilty-Dunn 
(2021) applies the pointer idea to concepts, in particular to explain comprehension 
of polysemous words. (p. 136) I want to embrace part of the pointer idea, namely 
free-recombinability and operations that are independent of the special-purpose 
information pointed to, but to allow: direct-CS transitions as well recall from the 
pointed-to information store; reciprocal connections; and operations on special-
purpose representations in the systems where they are stored, not requiring retrieval 
into central processing. I adopt the term ‘label’ for the representations that combine 
in working memory: a label can label something further but also encode informa-
tion in its own right. (p. 137) In short, the hypothesis that concepts are plug-and-play 
devices fits well with the functional role of working memory labels.
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In short, the hypothesis that concepts are plug-and-play devices fits nicely with 
the functional role of working memory labels, of which there are several plausi-
ble models.

5.7  Concept Individuation

This section says how different token representations should be type-identified as 
instances of the same concept; content-determination, however, is a question for 
another day. Different instances of a given working memory label tokened during 
an episode of thinking are tokens of the same concept; they are treated the same 
way in processing. (p. 138) Labels are type-identified across different episodes of 
thinking in terms of the store of information to which they are connected. This tells 
us how to pick out same-concept tokens, not across individuals, but in a given 
individual; and an individual may have more than one concept of a given referent X.

Although the thinker deploys different characterizations on different occasions, 
and the store of information changes, the referent will usually remain the same 
(as many theories of content imply). (p. 139) Nor does the picture imply holism, 
since stored information is individuated in terms of referential content. None of 
this rules out failings—problems that occur in practice: thinking contradictory 
things about Xs on different occasions, storing contradictory information, or 
unwittingly having two separate concepts of X.

This does not give us a way of type-individuating concepts between different 
thinkers, except at the level of reference, which does not imply shared conceptions. 
(p. 140) There may, however, be cases where concepts come along with stable pack-
ages of shared information. Whether or not that is true, the way an individual 
deploys stored information is often structured: it is organized around a perspec-
tive, namely a set of dispositions to characterize a particular subject matter in a 
particular way (like various perspectives we can take on people) (Camp 2019). 
My picture differs from Fodor’s atomism in that working memory labels are not 
names, i.e. a vehicle type which, across different episodes of thinking, stably pro-
vides access to the same body of information; my picture is compatible with there 
being no index for stored information, and if there is an index, it is not (or need 
not be) the index that figures in composition and reasoning in occurrent thought.

(p. 141) In short, a concept is a working memory label.

5.8  The Simulation Combination Puzzle

Formulating a thought on a particular occasion involves using a small subset 
of the information connected to each constituent concept, selected so as to cohere 
together. (p. 142) Informational models in special-purpose systems contribute 
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world-knowledge to how the information is integrated. Figure 5.1: a label in work-
ing memory is connected to many different representations in long-term mem-
ory, a small subset of which are integrated into a simulation that reflects the other 
labels and their mode of combination. A deeper problem is to explain how the mode 
of combination over concepts constrains what is simulated. (p. 143) Experimental 
evidence shows that simulations reflect the mode of combination. This is also 
assumed in the literature on learning-by-simulation; but an account of this is not 
automatic or straightforward.

At the same time as working with concept labels in a way that is independent 
of their contents, concept-driven thinking has to connect up conceptual thought 
with special-purpose representations in a way that is suited to a particular context 
and task. Blouw et al. (2016) have a nice model, but their method for combining 
semantic pointers does not modulate information to take account of the other 
pointers or the mode of combination. (p. 144) Models that separate combination 
and reasoning procedures from stored information generally face the same problem 
(examples). Frankland and Greene (2020) do find that there are different ways of 
representing dog-as-agent and dog-as-patient, but do not explain how these are 
created out of some shared dog content.

(p. 145) My tentative solution is based on Frankland and Greene’s idea that 
each label is connected to a state space, and that the simulation has to fall within 
a subregion of the state space connected to both labels. To extend this to the mode of 
combination, first notice that, in categorising a situation, features of what is per-
ceived make us think man bites dog rather than dog bites man. That is, only some 
regions of the perceptual feature space labelled by dog are compatible with dog-
as-agent. Since labels are bi-directional, there are corresponding constraints in 
the other direction: the way man is simulated is constrained to lie within the 
regions compatible with being an agent and, within these, with being an agent of 
biting. (p. 146) My suggestion, then, is that the compositional structure of a thought 
constrains the subregions of high dimensional state space that are activated by each 
constituent concept. This hypothesis applies, to conceptual thought, the theory 
from linguistics that the syntactic structure of a sentence contributes to its meaning. 
(p. 147) In sum, I have suggested that compositional structure constrains which 
subset of the information labelled by each concept is a candidate to feed into the 
simulation, constraints that mirror the way the same conceptually-structured 
thoughts are applied in categorisation.

5.9  Bringing It All Together

Concept-driven thinking is powerful, not just because of the generality with 
which concepts can be combined and processed, but also because they can be 
used to carry out inferences in special-purpose representational systems. What 
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makes concepts crucial is that they act as an interface: a collection of labels held 
in working memory activates a subset of the special-purpose information to 
which each is connected, thereby building up a rich interconnected representa-
tion of a situation. (p. 148) New conclusions can then be reached, both by reasoning, 
and via inferences that take place either within special-purpose systems, or over 
suppositional scenarios in the cognitive playground. Therein lies the special power 
of human conceptual thought.

Concepts at the Interface. Nicholas Shea, Oxford University Press. © Nicholas Shea 2024. 
DOI: 10.1093/9780191997167.003.0005
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6.1  The Frame Problem

The last chapter painted a picture of the way concepts act as an interface between 
special-purpose informational models and conceptual reasoning. This chapter 
argues that the picture presented there shows how it is that human cognition 
manages to solve the notorious frame problem (to the extent that it does). Part of 
the solution is to avoid the problem, as I will explain, but that throws up the 
lesser-known ‘if-then’ problem. Human cognition has a way to navigate its way, 
well enough, between these two problems, by relying on the plug-and-play char-
acter of concepts.

The frame problem we are concerned with here is the problem of relevance-
based search (Fodor 1987, 2000, 2008; Samuels 2010; Xu and Wang 2012; Antony 
and Rey 2016; Shanahan 2016). A person or computer carries out inferences in 
order to work out what is the case or what to do. How does the system select, in a 
way that is computationally tractable, which stored representations to perform 
inferences on? How do we take decisions on the basis of what is relevant without 
having to consider and reject all that is not relevant?

The problem arises because there is no simple rule to decide which informa-
tion is relevant to a given question or task. Relevance is ‘isotropic’—relevant con-
siderations can come from any direction (Fodor 1985; Chow 2013). I’m thinking 
about what to have for breakfast. It turns out that deforestation in Borneo is a 
relevant consideration. (Does the margarine contain unsustainable palm oil?) 
Unless potential relevance is constrained to a specifiable and tractable subset of 
everything I know and believe, it seems that, in order to assess which stored rep-
resentations are relevant, the system will have to check through all stored 
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representations and assess each for relevance. But the task of checking every 
piece of stored information for potential relevance is computationally intractable.

The frame problem arose long ago in artificial intelligence research.1 Cognitive 
and computational scientists building computer systems to perform complex 
tasks—tasks that display aspects of what in the human case we might call 
intelligence—found that the selection of relevant information from a large store 
of memories presented real practical problems. On the other hand, this seems to 
be something that humans do with some facility, perhaps giving an indication of 
a human cognitive competence that was not well modelled by classical computa-
tional systems.

A closely-related problem is the question of how to model abduction or infer-
ence to the best explanation. Here again the relevance of information is isotropic. 
Considerations that are potentially relevant to the goodness of an explanation 
can come from anywhere. In addition, inferring the best explanation seems to 
require an overall evaluation of a wide range of factors. It calls for a global assess-
ment of a collection of beliefs. For example, the conclusion that the post-industrial 
increase in the earth’s mean temperature is largely caused by human activity is 
well supported. It is the best explanation of a wide range of data and phenomena. 
However, reaching the conclusion that this is the best explanation is extremely 
complex, requiring a very wide range of information to be weighed and assessed 
(data, models, scientific arguments). One reaches a conclusion on this question 
by taking a global assessment of many different considerations, some central, 
other peripheral, not all pointing in the same direction. Even if we do not actually 
perform a genuinely global assessment of the import of everything we believe in 
order to answer this kind of question, the phenomenon suggests that some kind 
of non-local computational process may be involved (§1.3).

The frame problem is, in the first instance, a problem for those designing com-
putational systems. It presented itself as a major obstacle to feasible artificial 
intelligence when classical computational systems were the central tool of AI 
research. (With the rise of deep neural networks (DNNs), the frame problem 
faded into the background, as we shall see.) It is also a problem for those seeking 
to understand the mind computationally. This is why it is so significant philo-
sophically. Our most successful account of intelligent thought and action is the 
representational theory of mind (RTM). Representations are manipulated 
physically in ways that are faithful to their semantic content. What Fodor calls 
‘central cognition’ appears to be able to retrieve information according to rele-
vance, and to perform the non-local computations required for abduction. How 
is that achieved by the physical manipulation of representations, in a way that is 

1  The name comes from an earlier (related) computational problem about updating a scene with-
out having to specify a large number of ‘frame axioms’ about facts that will not change as the result of 
a given event (Sprevak 2005) (a problem that has largely been solved: Shanahan 2016).



computationally feasible? Fodor declared that the failure to answer that question 
makes the workings of central cognition the great mystery of cognitive science 
(Fodor 2000, pp. 23, 99; Xu and Wang 2012).

In section 6.2, I show how DNNs succeed in avoiding the frame problem, to a 
large extent. However, in doing so, they end up facing a problem of their own, 
which I label the ‘if-then’ problem. The if-then problem and the frame problem 
are in some ways complementary, but when a task is not susceptible to the if-then 
solution, and calls for broadly-logical reasoning from explicit representations, the 
frame problem still arises (§6.3): which representations should reasoning be per-
formed on? In section 6.4, I argue that the account of concept-driven thinking 
advanced in Chapter 5 offers a partial solution: special-purpose informational 
models can be used as a way of generating relevant information. With concepts 
acting as an interface between special-purpose informational models and general-
purpose reasoning, cognition can partly avoid, and partially, imperfectly, solve 
the frame problem (§6.5).

6.2  Avoiding the Frame Problem Leads to the If-Then Problem

Computational modelling offers insights about how human cognition might 
solve the frame problem. In recent years concern with the frame problem has 
subsided in computer science. In AI research, classical computation has been 
eclipsed in most areas by DNNs. The interest of DNNs is not that they are realis-
tic psychological models—they clearly differ in profound ways from human cog-
nitive competences—but because they show how certain problems can be solved 
in principle, and potentially offer partial models of particular aspects of human 
cognition. DNNs do not seem to face the frame problem—at least, relevance-
based search does not arise as a concrete issue that modellers are forced to grap-
ple with. As it has receded as a practical concern, theoretical work on the frame 
problem has also subsided. Nevertheless, the problem has not gone away. As we 
will see in this section, DNNs do not so much solve the frame problem as avoid it. 
In the following section (§6.3) we will see where the bump in the carpet has 
popped up now.

DNNs in effect build in assumptions of relevance. By having a huge number of 
free parameters (e.g. 1.7 trillion in the GPT-4 large language model), and by being 
given enormous amounts of data, DNNs can be trained to produce appropriate 
outputs in response to a wide range of different inputs. They store what they have 
learnt, not in the form of discrete memories of the data they were trained on, but 
in the entire pattern of weights distributed across their interconnected layers. 
When the system encounters a new input, it has no need to retrieve information 
stored during training on which to perform inference. It just proceeds to pro-
duce  the output that has been trained into it by experience. Each relevant past 
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experience has left its trace on the system’s processing dispositions through grad-
ual adjustments made, across many successive cycles of training, to the whole 
pattern of weights.

It was long thought that this approach was inadequate to deal with real-world 
tasks. Fodor attributed the inability of computational models to perform these 
tasks to their failure to solve the frame problem, declaring:

the failure of artificial intelligence to produce successful simulations of routine 
commonsense cognitive competences is notorious, not to say scandalous. We 
still don’t have the fabled machine that can . . . translate everyday English into 
everyday Italian; or the one that can summarize texts; or even the one that can 
learn anything much except statistical generalizations. (Fodor 2000, p. 37)

But now, of course, DNNs are actually doing quite well at performing these 
tasks. The breakthrough came in 2012 when a convolutional DNN broke all 
records for categorising pictures from the ImageNet data set (Krizhevsky et al. 
2012). (I vividly remember this result for the way it reinvigorated my undergradu-
ate lectures on connectionism that autumn.) Since then, DNNs have demon-
strated considerable facility at ‘summarizing texts’ (Yousefi-Azar and Hamey 
2017; Bubeck et al. 2023) and ‘translating everyday English into everyday Italian’ 
(Bahdanau, Cho, and Bengio 2014; Stahlberg 2020; Bubeck et al. 2023) (Google 
translate has transformed off-the-beaten-track travel); also many other tasks.

What these results show is that statistical generalisation is much more power-
ful than previously thought. Yes, all kinds of background information is poten-
tially relevant to translating a sentence. But it turns out that strikingly good results 
can be achieved by encoding input-output dispositions that implicitly encode 
particular assumptions of relevance. The pattern of weights reflects the way 
incoming information was relevant to producing the correct output for samples it 
was trained on. The perhaps surprising finding is that these assumptions allow 
the system to generalise effectively—to produce appropriate outputs in response 
to inputs that it has not previously encountered.

DNNs share with previous modular approaches to the frame problem an 
underlying limitation. The assumptions that are implicit in their operation only 
work well within a specific domain. Convolutional neural networks build in and 
learn assumptions about which features are important for categorising images. 
These assumptions are implicit in the content-specific dispositions they acquire 
as a means to solving the input-output problem on which they were trained 
(§3.2). Those dispositions are not suited to performing tasks in other domains.

This limitation may be circumvented by deploying multiple modules, each 
designed to deal with a different specific domain (Shanahan and Baars 2005). 
Image processing can be done by a trained ConvNet, language processing by a 
Transformer. Human cognition does involve multiple special-purpose informational 
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models, as we have seen (Chapter 4). Many of these depend on implementing a 
suite of content-specific dispositions. Extensive experience in a domain, through 
the course of evolution and individual learning, endows the system with a set of 
if-then dispositions appropriate to its domain. There remains the problem of how 
to decide which inputs go to which systems. Perhaps a competitive process can 
help here, especially for inputs that are sufficiently distinct that they make no 
sense when presented to the ‘wrong’ module (Shanahan and Baars 2005). A mod-
ule trained to process language will not settle on a specific output when presented 
with data from a visual image. A visual processing module presented with the 
same data will settle on the categorisation ‘elephant’ but would make no sense of 
linguistic data. On some views, the winning outputs are integrated together in a 
common working memory system (Shanahan and Baars 2005). On other views, 
all that’s needed is a collection of competing special-purpose modules—so called 
‘massive’ modularity (Carruthers 2003). We will return in the next section to the 
question of integration across different special-purpose systems.

A second criticism of the modular approach is that, even when we confine our 
attention to one special-purpose module, its behaviour will be insufficiently flexi-
ble to produce appropriate outputs. Often what is appropriate depends heavily on 
the context. Hearing ‘fire!’ shouted by the house manager in a theatre prompts 
quite different behaviour than when it is declaimed by an actor in the play; so too 
on a cold camping trip; or at a military training ground.

DNNs have shown that this problem is often surmountable. Context is some-
thing that the system can register as another aspect of the input. The appropriate 
output is not just a reaction to the currently-presented word or stimulus, but to a 
short history of information that the network has been fed. In Transformer-based 
large language models, the output is just the predicted next word, but the input is 
a long chain of text. What the system outputs next after the last word depends 
heavily on what came before. For example, given a joke, the PaLM model can 
output a string of words that explains the joke.2 But the input here is not just the 
joke, but a whole mini-essay that also gives the system two prior examples of 
jokes with explanations. With all that text as context, the assumptions of statisti-
cal relevance that have been trained into PaLM’s 540 billion parameters mean 
that the output that follows this long input is a text that amounts to the explana-
tion of a joke. If DNNs are trained to deal with inputs that consist of such long 
streams of data, they can be highly sensitive to context—just by being sensitive to 
different features of the input.

If context counts as just another input, then the system has to go into a differ-
ent state for each context it might encounter. Then, when the final element of the 

2  ‘The joke is that the speaker’s mother is trying to get them to go to their step dad’s poetry reading, 
but the speaker doesn’t want to go, so they are changing their flight to the day after the poetry reading’ 
(Chowdhery et al. 2022).
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input comes along (‘fire!’), it can output the response that is appropriate in that 
context. The system deals with the past by changing the state of the processor. 
Botvinick et al. (2019) give the example of a DNN that was trained on an array of 
different reinforcement learning problems. Different problems consist of differ-
ent stimuli with different stimulus-response-outcome probabilities, but all the 
problems share the same structure. The network does ‘meta-learning’, acquiring a 
set of weights that allows it to learn about a particular problem—a particular set 
of stimulus-response-outcome probabilities—on the fly, in its network dynamics. 
The context is a string of past inputs, and the system deals with the past by chang-
ing the state of the processor.

This raises a problem that C. R. Gallistel has long pressed as an objection to 
artificial neural networks (Gallistel 2008; Gallistel and King 2009). Suppose that, 
on the way home one evening, an agent observes that a certain tree has come into 
fruit. When, the next morning, they decide whether to turn left or right on leav-
ing their shelter, the observation the night before can act as part of the input on 
which their behaviour is conditioned. The observed state of the tree is an input, I1. 
Seeing the fork in the path the next morning is another input, In. All the observa-
tions they make in between count as further inputs, I2 to In-1. Their output OL, 
turning left, is a response to the (complex) input I1, I2, . . ., In. Had they instead 
observed that the tree was not in fruit the night before, that is a different input, I1’. 
The agent will behave adaptively if they are disposed to make a different output, 
OR (i.e. turn right), when presented with the (complex) input I1’, I2, . . ., In. To con-
dition its behaviour appropriately on the distant past, the system would have to 
have appropriate input-output dispositions with respect to extremely long chains 
of input. The DNN solution is to deal with the past by changing the state of the 
processor. That means it has to allocate dedicated processing resources to each 
potential input it might encounter. It was a significant discovery that a neural 
network could be trained to respond appropriately to so many different inputs, in 
a way that generalises accurately to other inputs of the same type. But this 
depends on the network model having an enormous number of free parameters. 
In the largest Transformer-based language models, the input—the prompt—can 
now be very long indeed. However, increasing the length of the prompt has a 
dramatic effect on how much computing power it takes to train the system and 
how many parameters are needed. This is a symptom of the weakness Gallistel 
pointed to. A system that has to devote dedicated processing resources to each 
chain of input it might encounter will eventually run up against the ‘infinitude of 
the possible’ (Gallistel and King 2009, pp. xi, xvi, 51, 136–48). It is a practical 
impossibility to encode a separate processing disposition for every potential 
input string to arbitrary depth into the past.

Botvinick et al. (2019) raise the same problem as a practical obstacle for DNN 
modellers. The meta-learning solution they demonstrated for reinforcement 
learning will only extend so far. Even very large language models like GPT-4, 
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which can take as their context an input thousands of words long, are poor at 
performing tasks that call for a longer term memory within the context of the 
task, for example to write a novel with a coherent overall narrative (Bubeck et al. 
2023). Botvinick et al. suggest a solution to the if-then problem, namely to store 
explicit memories of circumstances encountered and outcomes received. This 
echoes Gallistel and King’s argument that a practical computational system for 
solving real-world tasks must store and process explicit memories.

Taking stock, DNNs have shown that the if-then solution to the problem of 
relevance and context-sensitivity is much more effective than was ever imagined 
when modular architectures were originally touted as a solution to the frame 
problem. But the if-then way of taking account of context gives out eventually, as 
it encounters the ‘if-then problem’: the ‘infinitude of the possible’ and the need to 
devote dedicated processing resources to each long chain of input it might 
encounter. That obstacle can be overcome by remembering the past explicitly—
that is, not by changing the system’s input-output dispositions (e.g. weight 
matrix), but by storing explicit memories of circumstances it encounters.

6.3  A Compound Architecture Still Faces the Frame Problem

We have canvassed two different ways of dealing flexibly with variable context: 
learned if-then dispositions and inference from explicit memories. These 
approaches have complementary costs and benefits (Botvinick et al. 2019; Shea 
2023b). The if-then solution is learning-heavy and computation-light. It calls for a 
large amount of experience to acquire a range of useful input-output dispositions; 
but then it can produce an output rapidly in response to the current input. A sys-
tem that stores explicit memories can potentially learn what to do much faster, 
even after a single exposure, but calculating how to respond to the current input 
is typically more computationally demanding—it may involve a tree-search 
through a combinatorially large space of chains of possible states and outputs.

We have seen that human cognition deploys systems that work in each of these 
ways. Many special-purpose informational models rely on content-specific proc
essing dispositions. On the other hand, reasoning over conceptual representa-
tions can deal flexibly with stored explicit memories. Penn et al. (2008) argues 
that this kind of compound system is a good way to model human cognition. 
Researchers working on artificial intelligence also construct compound systems. 
Botvinick et al. (2019) discuss a compound model that uses a DNN to learn the 
problem space, and combines that with a gradually expanding memory record of 
every situation it has encountered (world state, action, reward) (Graves et al. 
2016). When encountering a new situation, the system works out what to do by 
comparing the new situation to the most similar situation stored in its episodic 
memory, picking the action that proved most rewarding in that situation in the 
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past. This means that the system can do one-shot learning, repeating what 
worked on a single occasion in the past without needing to have each experience 
painstakingly re-presented multiple times. Having once discovered what to do in 
response to a new situation, retrieval from episodic memory will tell it what to do 
when it encounters that situation, or one sufficiently similar, again.

Human cognition can perform content-general inferences on explicitly repre-
sented information retrieved from memory—both semantic memories and suit-
ably conceptualised episodic memories can enter into broadly-logical reasoning. 
But memories can also be subject to content-specific inferences, for example in 
special-purpose informational models. The same is true in AI architectures. Many 
teams are experimenting with using explicit memories to transcend the limita-
tions of a purely if-then solution, sometimes by processing those memories sim-
ply as further inputs to a trained DNN. Ryoo et al.’s (2022) model stores as explicit 
memory a summary of its whole history of inputs. The memory is read, written, 
and processed using a Transformer-based language model at each step. Park et al. 
(2023) simulate a group of agents living in a simple artificial world. The agents act 
and interact by receiving text as input and producing text as output. Each also 
has a memory of its own individual characteristics, circumstances, and prefer-
ences. Adding these memories as part of the input to the Transformer model 
means that each ‘agent’ produces outputs that reflect that individual’s character 
and situation.

When explicit memories act as inputs to a trained DNN, those inputs are just 
acting as further contextual cues to a trained if-then disposition. The system is 
still working within the range of behaviours it has been trained, end-to-end, to 
perform. It doesn’t take us beyond the if-then way of avoiding the frame problem. 
However, the capacity for content-general reasoning does offer the chance to go 
further. Given an explicit representation of a situation completely outside the 
range of situations on which its if-then dispositions were trained, a system 
endowed with the capacity for content-general reasoning can still do something 
sensible. It can perform broadly-logical reasoning to combine the things it knows 
and reach new conclusions. This gives the system something worthwhile to do 
with memories that fall outside the range of things it has been trained to have 
specific dispositions to respond to.

The same is true for generating novel thoughts. General-purpose composition-
ality means that concepts can be combined in new ways to formulate completely 
novel thoughts, representing situations that fall far outside the system’s experi-
ence. Einstein could formulate the idea of running at the speed of light to pursue 
a light beam (Einstein 1970, p. 53).3 The capacity for broadly-logical reasoning 
means the thinker can perform inferences on novel thoughts, even when their 

3  Interestingly, Einstein describes this in terms of the ‘free choice of such concepts’, not obstructed 
by being ‘immediately connected with the empirical material’ (Einstein 1970, p. 49).
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trained if-then dispositions are of no use. Einstein inferred that he should expect 
to see the beam of light as an electromagnetic field at rest and spatially oscillating. 
The capacity for content-general inference allows human thinkers to deal intelli-
gently with novelty: novel explicit memories or novel combinatorially-generated 
thoughts.

To take stock, the frame problem is avoided by systems that are trained to have 
sufficiently rich input-output dispositions, but that eventually runs into the if-
then problem. A solution to that is to store explicit memories and, in the human 
case at least, to compute with them in content-general ways. This is where the 
bump in the carpet re-emerges. Although the two solutions are in some ways 
complementary, a compound approach that relies partly on stored explicit mem-
ories will then face the problem of selecting which memories to compute with. It 
will still need to overcome the frame problem.

We see this in the AI systems that deploy a compound architecture that 
includes an explicit memory store. The system in Graves et al. (2016) stores 
explicit memories, as we just saw. It can work out what to do in the current situa-
tion by repeating the action that led to reward when the same or a similar situa-
tion was encountered in the past. But to retrieve memories of the same or similar 
situations, it has to perform an operation that takes all stored memories as input. 
Pritzel et al. (2017) build a reinforcement learning system that writes all experi-
ences to memory. Although they have a more efficient mechanism for calculating 
which past experiences are most relevant to the current context, doing that 
depends on first using (actually approximating) a time-consuming ‘k nearest 
neighbours’ search across its whole memory store (Yang et al. 2020, p. 129276). 
Park et al. (2023) store, for each virtual agent, a comprehensive record of every 
event experienced by that agent. A small subset of these memories are retrieved 
to act as part of the input at a given time-step. Memories are selected based on 
their recency, importance, and relevance to the current situation. Calculating rel-
evance, however, involves calculating the similarity between the current situation 
and every event stored in memory. In short, these compound models face the 
problem of relevance-based search and deal with it using operations that take 
account of the entire store of memories.

What these computational models suggest is that, although there are advan-
tages to a compound architecture that overcomes the if-then problem by storing 
explicit memories, the frame problem—the problem of how tractably to search 
the store of memories for relevance—then re-emerges.

6.4  A (Partial) Solution

I am going to suggest that the solution deployed in human cognition is not just a 
compound, but a hybrid—a hybrid, in that it can take advantage of the if-then 
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approach as a way of searching memory. The last chapter sketched the picture, 
with concepts mediating between general-purpose reasoning and special-
purpose informational models. This is imperfect: it is not a complete solution to 
the frame problem, but a way of approximating a solution. I will argue that it 
offers a good picture of how human cognition manages partly to avoid the frame 
problem and, when it does arise, to deploy a partial solution.

A suggestion in the literature on how human cognition deals with the frame 
problem is to use content-addressable memory. The idea is that only a small sub-
set of memories are retrieved as being potentially relevant in the current context. 
For example, the system could store information about a given individual or cate-
gory in a mental file (Chow 2013). Relevant information can be retrieved from 
memory by searching all the information in the mental file. Which files should 
be accessed? Carruthers suggests that, in the context of considering a linguistic 
statement, one should perform a content-based search of all the concepts 
expressed by the statement (Carruthers 2003). That would certainly generate 
some relevant information, but for an even moderately complex real-world prob-
lem, it would still involve searching through an enormous number of representa-
tions to check each for relevance. In considering, ‘should I have cereal, toast, or 
fruit for breakfast?’, does my decision-making system really need to check for rel-
evance everything I know or believe about breakfast cereals, toast, and fruit? 
Each of these concepts content-addresses a huge amount of information (not to 
mention my concept of myself). And even that wide-ranging approach would 
miss many relevant considerations, unless it were to expand outward and access 
information addressed by concepts used within the files (e.g. margarine in the 
toast file). So while content-addressable memory is surely part of the solution, 
we still need an account of how it can be implemented in a way that is not, on the 
one hand, too myopic to be useful or, on the other hand, too demanding to be 
feasible.

My suggestion is that this is achieved in our case, at least in part, by leveraging 
the assumptions of relevance found in special-purpose informational models, 
especially in their content-specific processing dispositions. Here I will consider 
two kinds: the direct-CS transitions that take place between conceptual represen-
tations (§3.4); and non-local transitions that take place through a form of parallel 
constraint satisfaction in a representational state space (§4.4). Most of our focus 
will be on the latter, but I start briefly with the former.

Recall from section 3.4 that there is evidence that content-specific transitions 
take place between conceptual representations directly. Just tokening an occur-
rent belief may dispose the thinker to token a consequent thought. For example, 
someone who thinks Moby is a whale may thereby be disposed to think Moby is a 
mammal (similarly if Moby is replaced with any other singular concept). The 
inferential disposition is ‘built into’ the concepts and does not require a general 
premise (i.e. all whales are mammals). This is quite unlike looking up all the 
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information in a mental file, since only a small number of transitions are potenti-
ated. These inferential dispositions in effect build in assumptions of relevance, 
not for a specific domain (as in the visual system), but for a specific concept. This 
is not a solution to the problem of searching a list of memories—there is no 
search and selection process operating—but these kinds of transitions are proba-
bly part of the way that cognition introduces relevant information into the stream 
of thought.

The second solution is to rely on similarity or proximity in a representational 
state space (Churchland 1998; Shea 2007; Kriegeskorte and Kievit 2013). As we 
saw in section 4.4, contents in special-purpose informational models are some-
times represented in a state space, on the basis of which people make judgements 
of similarity (Charest et al. 2014), or judgements about other relations (Nelli et al. 
2023). This can be deployed as a way of looking up relevant information: of 
retrieving memories that are similar to the current context.

These similarity spaces are found, not only within domain-specific systems 
like visual face processing, but also more widely. Huth et al. (2016) recorded 
fMRI data while participants listened to hours of radio stories. They modelled 
the meaning of words in the audio stream using word embeddings (where the 
vector for a word characterises which other words it tends to co-occur with) and 
used a regression model to predict voxel-by-voxel brain activity from the word 
vectors. They found that, using their regression model, they could predict activity 
in many cortical areas based on which word was being presented in the auditory 
stream. The weights in the regression model revealed activity organised along a 
number of semantic dimensions, for example a dimension with perceptual and 
physical categories at one end and human-related categories (social, emotional) 
at the other. The axes of variation in the neural signal separate words into catego-
ries like: tactile (‘fingers’), visual (‘yellow’), numeric (‘four’), locational (‘sta-
dium’), abstract (‘natural’), temporal (‘minute’), professional (‘meetings’), violent 
(‘lethal’), communal (‘schools’), mental (‘asleep’), emotional (‘despised’), and 
social (‘child’). Activity in diverse neural areas reflects variation along these 
semantic dimensions, particularly in superior temporal cortex (long associated 
with semantic processing), parietal cortex, and prefrontal cortex.

In short, there is now considerable neural as well as behavioural evidence for 
the kinds of representational spaces postulated by Churchland (1998, 2012). Both 
seeing images and understanding sentences generates representations that are 
organised into similarity spaces. These spaces need not be domain-specific. They 
encompass the kinds of abstract semantic dimensions found by Huth et al. (2016). 
What is interesting for our purposes is that making transitions within a semantic 
space offers a computationally tractable way to perform relevance-based search.

For example, when I am considering how to behave in relation to one person 
X, I can move to representations of similar individuals, Y and Z, and recall how I 
acted in relation to them in the same situation. Moving to nearby portions of 
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semantic space is a way of prompting relevant information. But this is not like 
looking up and searching through all the information in a mental file, checking 
each piece of information for relevance. The shape of the semantic space effec-
tively builds in certain assumptions of relevance. To this extent, it is a way of reus-
ing the if-then way of avoiding the frame problem as a (partial) solution to the 
frame problem.

Furthermore, semantic spaces offer a ready way to deal with context-sensitivity. 
Representations organised in a semantic space are related along several different 
semantic dimensions at once. For example, face stimuli are automatically organ-
ised along dimensions of trustworthiness and dominance (Oosterhof and 
Todorov 2008). Relevance can be assessed along just one of these dimensions, or 
any combination of them. For example, in a dynamic state space in prefrontal 
cortex that registers both colour and direction of motion, activity can be pro-
jected along the dimension—colour or motion—that is relevant to the current 
task (Mante et al. 2013). The dynamics of a network can be changed by ‘clamping’ 
one or more dimensions and considering only relations in the remaining sub-
space. In the last chapter (§5.8) we saw how the content of one concept can act as 
a contextual cue which constrains the processing taking place in a special-purpose 
system activated by another concept with which it is combined. That offers a 
model of how different dimensions of similarity (trustworthiness, dominance, 
etc.) are selected in different situations.

Grand et al. (2022) compared the way human participants and a DNN arrange 
objects along different dimensions (Fig. 6.1). For example, tiger and dolphin are 
judged as similar in respect of size but very different in respect of dangerousness. 
This is predicted by activation patterns in the trained DNN. Representations are 
close together in state space when projected along the size dimension but far 
apart along the dangerousness dimension. Applying this insight to a space repre-
senting people, when I represent an individual X in that space it should be 
straightforward to retrieve individuals who are similar with respect to domi-
nance. A contextual cue can thus act as a ‘clamp’ so that retrieval in a semantic 
space takes place along a contextually relevant dimension. The same space can be 
sampled along more than one dimension. This means that, when retrieving 
memories to use in inference on a given occasion, a single informational model 
can be sampled for relevance in more than one way.

Doesn’t this just push back the problem? Retrieval can rely on assumptions of 
relevance implicit in semantic state spaces, but how does the system learn the 
state spaces over which this occurs? The answer is that these spaces are learnt, 
laboriously, from experience, as we have seen. We have good empirical evidence 
that this is the case and plausible computational models of how it occurs. The 
frame problem is not the problem of how semantic spaces or categorical disposi-
tions could be acquired in the first place (important as that question is). State 
spaces may also figure in an account of how some concepts are acquired, namely 
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through alignment between partially incomplete state spaces (Aho, Roads, and 
Love 2023; see also Søgaard 2023).

Relevance-based search was challenging for RTM because it seems that the 
search for relevant information is non-local—it somehow takes into account a 
whole collection of information. As we saw in section 1.3, we do in fact have 
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computational models, consistent with RTM, where transitions effectively take 
account of a collection of information in parallel. Such computations are not 
mysterious if we don’t limit ourselves to step-by-step classical computations (as 
considered by Fodor in declaring the mystery). When proximity in the state space 
of a trained neural network is used to retrieve relevant information, that is a non-
local computation (of the kind highlighted in §1.3).

Assessing similarity is non-local in the sense that it involves weighing many 
different characteristics at once and calculating their resultant. How is that com-
putationally tractable? Within a semantic space it works because the geometry of 
the space reflects all these different features at once. The geometry of the space is 
trained into the network by experience. Once trained, closeness in similarity 
space reflects an overall assessment that integrates lots of features at once. Many 
different samples have been encountered and had an effect on the local gradients 
at each point in the space, each experience having more impact in some areas 
than in others. The moves then made in the trained similarity space are computa-
tionally undemanding, but reflect that wealth of experience. This is captured in 
the model by a step that takes account of a whole matrix of values at once. It 
occurs in real neural systems by a process that takes place across a whole array of 
neurons in parallel.

Here is an analogy. Consider a comet moving through the solar system. When 
it is at a certain point, we might ask how the comet calculates where to go next. Its 
next step will depend on its interaction with a huge array of objects, some close 
by, others distant. Large numbers of nearby asteroids will each have an impact. A 
really close asteroid could have a big effect. Much further away, the sun will have 
a large effect; also to some extent each of the planets. To parody the frame prob-
lem, it looks like, in order to work out where to go next, the comet has to calculate 
the effect of each of these other celestial bodies on its future trajectory. How does 
it make so many calculations in real time? Why isn’t it paralysed in one spot, 
working out where to go next?

The answer, of course, is that the comet does not need to interact separately 
and serially with all the other bodies. They all have an effect on the local gravita-
tional field and the comet reacts to that. The local gravitational field is the result
ant of the integration in parallel of a huge number of different forces. By reacting 
to the resultant force the comet’s behaviour reflects the parallel effects of a huge 
array of interactions all at once. Moves in semantic state space are like that in that 
the relevant representations are accessed by making moves in a space that reflects 
parallel constraint satisfaction across a whole collection of information.

Another example is a computation that proceeds by exploring a whole state 
space in parallel. We see examples in some computational models of route calcu-
lation in the hippocampus (mentioned briefly in §1.3). The calculation is based 
on a process that takes place in parallel across the whole array of place cells. This 
effectively sweeps through many different routes that trace back from a given goal 



to the location of the agent (Samsonovich and Ascoli 2005; Khajeh-Alijani et al. 
2015). The relevant computational property is unlikely to be simply a matter of 
activation, but instead a dynamical property like the phase offset between the 
activation at different locations during synchronous activity, activity like the 
sharp wave ripples observed electrophysiologically in the hippocampus. Recent 
work suggests that sharp wave ripples may be the basis for episodic memory 
recall in the hippocampus (Norman et al. 2019), in which case this would be 
clear-cut example of a global computation that performs relevance-based search 
and retrieval.

6.5  How Cognition Partly Avoids and Partially Solves 
the Frame Problem

I have sketched a way that a hybrid computational system can address the frame 
problem, partly by avoiding it with dedicated if-then computations, and partly by 
approximating a solution in areas where the limits of the if-then solution are 
reached. This picture offers us an account of how human cognition solves the 
frame problem, to the extent that it does. Content-general reasoning with con-
ceptual representations allows us to consider novel scenarios and sensibly proc
ess representations that transcend the experience on which our special-purpose 
informational models have been trained. However, since concepts act as an inter-
face to special-purpose informational models, those systems can be re-purposed 
offline, in simulation mode, to generate relevant considerations on which to per-
form inferences in thought. Doing this across multiple different built-in assump-
tions of relevance can approximate an isotropic search for relevance.

How does my suggestion differ from other proposed solutions to the frame 
problem? A first observation is that DNN models have shown that the if-then way 
of avoiding the frame problem is much more powerful than previously thought 
(for example when Fodor was writing about the frame problem in the 1980s and 
1990s). It turns out that you can get a long way with systems that build in implicit 
assumptions of relevance—provided the systems have enough exposure to expe-
rience in their evolutionary history, and especially in their learning history, to be 
able to realize a suite of complex input-output dispositions.

A second element of my proposal is the feature of conceptual thought that 
formed the centrepiece of the previous chapter. We reach conclusions in concep-
tual thought not just by reasoning from explicit memories, but also by running 
simulations in special-purpose systems. This is a way that conceptual thought can 
take advantage of the domain-specific assumptions of relevance that are built into 
special-purpose informational models. Concepts can act as mediators between a 
range of different special-purpose systems. Suppose I’m thinking about my 
extended family sitting around the living room on a social occasion. A great aunt 
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arrives. I can simulate what could happen next by relying on the implicit assump-
tions of my system of naïve physics; my system for tracking moving agents; and 
my system for tracking social hierarchy. I can see that the aunt is most likely to 
move towards the gap on the sofa, but I predict that this move will be disastrous 
because she will then be rude to the relative that she would sit next to. Trained if-
then modules each have their own assumptions of relevance, but conceptual 
thought can in effect rely on lots of different assumptions of relevance, of diverse 
kinds, mediating between them to generate potentially relevant considerations 
and evaluate them.

The combinatorial power of conceptual thought is important here. Its rele-
vance to the frame problem only becomes clear when we focus on the way con-
cepts allow us to rely on the assumptions of relevance contained in special-purpose 
informational models. Concept compositionality is then seen as a way of relying 
on and juxtaposing different kinds of assumptions of relevance from different 
domains. That is quite different from looking up all the information connected to 
a concept (all the entries in a mental file) and assessing each for relevance. Each 
special-purpose system just throws up the one or two considerations it takes to be 
most relevant. (It is obvious, as soon as I simulate the social hierarchy, that the 
great aunt’s sitting there would be disastrous.)

This way of retrieving relevant information on which to perform deliberate 
inference circumvents the need to do what the classic formulation of the frame 
problem asks us to do, namely to search through a large list of memories and 
select those that are potentially relevant on which to perform inference. Running 
a simulation in a special-purpose system need not involve searching a list of 
memories. The system has a disposition to token various representations in vari-
ous circumstances (both online, in response to input, and offline, in simulations). 
Those representations need not be stored explicitly anywhere. We have effectively 
re-cast the problem. The benefit of the capacity for reasoning with explicit rep-
resentations is the ability to deal with the past by reasoning with explicit 
memories, rather than having to treat the past as a further contextual cue, part 
of one long chain of inputs. One way to do that is store an explicit representa-
tion of each past situation (as in the Pritzel et al. (2017) model, say). Doing it 
that way throws up the problem of searching the list for relevance in a tractable 
way. But the benefits that accrue from reasoning with explicit representations of 
the past don’t require the memories to be stored that way. Information can be 
stored in the form of trained dispositions to token an explicit representation 
given certain inputs. Models of episodic memory based on pattern completion 
work like that (Teyler and Rudy 2007). I have been arguing that deliberate 
thinking can rely on memories generated by special-purpose systems in that 
way. This does not displace the question of how it is that relevant memories are 
generated. But it does show that search through a list of explicit memories is 
not the only option.
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We saw that representational state spaces provide a ready assumption of rele-
vance in their similarity structure. Projecting along different dimensions (e.g. size 
and dangerousness) allows the same representational space to be sampled for 
relevance in a number of different ways. My suggestion is that, when we are 
engaging in deliberate conscious thinking to work out what is the case or what to 
do, we can effectively retrieve a range of different relevant considerations by run-
ning simulations in different special-purpose informational models and, within a 
model, by sampling for similarity along a number of different dimensions. Taken 
individually, none is a comprehensive search of all relevant information; taken 
together, they can go some way to approximating an isotropic search, one in 
which relevant information can come from many different directions.

A further refinement is that deliberate thinking has access to representations 
about how to think, including tips for searching for relevance. Often we learn 
these socially. One set of strategies involves randomising in some way, to put one-
self in a new context: move to a new physical location, look up a random word in 
a dictionary, think of answers beginning with ‘T’, ask ‘who, what, where, when, 
why, how?’, etc. The new context provides a new way of probing special-purpose 
informational models for relevant information. Other socially-acquired strategies 
are more specific. For example, if you’re planning a mountaineering trip to a 
remote location, don’t forget to think about what type of cooking fuel you’ll 
be  able to get. In between randomising and very specific pieces of relevance-
searching advice there is a whole suite of tools for recall: tools that we learn 
socially. That we create and share these tools in itself suggests that the problem of 
relevance-based recall is a real practical problem faced by human cognition.4

Taken together, these tools and techniques give deliberate thought ways of 
finding information that is potentially relevant in diverse and heterogeneous 
respects. Once we generate a limited set of relevant information, conceptual 
thought adds the capacity to reason step-by-step with this information. That is 
how I get from contemplating breakfast to thoughts about the rainforest. 
Thoughts of foods and flavours generate some options. But I can locate those 
concepts in a semantic space that has quite abstract dimensions. I may, for 
instance, organise consumer goods by their environmental impact. (Not very 
accurately, to be sure, but perhaps with some crude evaluative feel.) That throws 
up a dimension of contrast between margarine on toast and sliced apple, say, and 
a dimension of relevance that brings to mind the palm oil plantations of Borneo. 
Some recent AI models have this hybrid character. Although large language 

4  Although outside the scope of the book, it is worth noting that social processes are also impor
tant for generating knowledge in their own right. For example, scientific discovery is a deeply collec-
tive process, based on the culture, norms, and institutions of science. That is another way of achieving 
relevance search. Even if no individual solves the frame problem, if they sample in different ways and 
transmit information culturally, the social process may approximate a collective isotropic search for 
relevance.
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models may not use broadly-logical reasoning in their internal processes (Traylor, 
Feiman, and Pavlick 2021), they can approximate or display the capacity for 
broadly-logical reasoning in their outputs, especially when appropriately 
prompted (Bubeck et al. 2023). This means the same underlying LLM can be 
alternately prompted in a hybrid way, first in a way that encourages it to rely on its 
learned content biases (i.e. assumptions of relevance), and then re-prompted to 
encourage it to perform logical inference on these representations (Creswell, 
Shanahan, and Higgins 2023). Moving back and forth between these two kinds of 
prompting improves the system’s performance. This exemplifies the kind of 
divide-and-conquer strategy I have been advocating.

When we are constructing a suppositional scenario in the cognitive play-
ground, that in itself may act as a prompt for relevance. As I build up a picture of 
my ideal breakfast-in-bed, I fill in bits that are obviously missing, like a teaspoon 
to go with the teacup, and also configural properties of the scenario, like the fact 
that I have imagined too many different items so that they won’t fit together on the 
tray. Representations filled in as a result of constructing the suppositional scenario 
can act as further contextual cues for retrieving relevant information from memory.

These ingredients do not amount to an exhaustive way of searching for rele-
vance. Relevant information can still be overlooked. Reasoning is a powerful 
domain-general way of reaching new conclusions, but it can lead the agent in 
quite the wrong direction if relevant and important information is not fed into 
the decision-making process. So the approach I have sketched is an imperfect 
solution. However, human decision-making is imperfect. We are sometimes 
myopic and overlook considerations whose relevance would be obvious, if only 
we had considered it. We are famously biased in the factors we take into consider-
ation; and the information that comes to mind can be powerfully primed by con-
text (Tversky and Marsh 2000; Azzopardi 2021). (That is the downside of relying 
on built-in dispositions about how context implies relevance.) We can be very 
effective in situations we have encountered many times before, but if we want to 
have a good chance of recalling information relevant to a novel situation, we 
often have to rely on explicit strategies and mnemonics.

Most of these elements have been discussed before in relation to the frame 
problem, in some guise. The role of concepts as mediators has not been empha-
sised in previous approaches. Carruthers suggests a similar role for sub-vocalised 
language (Carruthers 2003). But he thinks of language as a way of accessing a 
collection of content-addressed beliefs, not as a way of driving simulations in 
special-purpose systems. Nor does the complementarity between the frame prob-
lem and the lesser-known ‘if-then’ problem feature much in the previous litera-
ture. It is in the context of the recently-discovered power of DNN-based if-then 
approaches, and the fact that they nevertheless still face limits that call for the 
storage of explicit memories, that the trade-off between these two different styles 
of computation becomes clear (Botvinick et al. 2019; Shea 2023b). I also make 
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explicit the way that built-in assumptions of relevance in special-purpose systems 
can be relied on in memory retrieval, and add a model of how they can be polled 
for relevance in more than one way.

In short, the model of concept-driven thinking developed over the preceding 
chapters offers a way of avoiding and solving the frame problem. It is a realistic 
computational proposal for how representational processing can be configured to 
sail a middle course between the if-then problem and the frame problem, taking 
advantage of the complementary costs and benefits of each. Most importantly for 
our purposes, it is an empirically plausible hypothesis as to how human cognition 
manages to avoid and solve the frame problem, to the extent that we do.

Chapter Summary

6.1  The Frame Problem

This chapter is about how human cognition manages to solve the frame problem 
and the lesser-known ‘if-then’ problem. The frame problem is the problem of 
how cognition manages to select relevant information on which to perform infer-
ences. Relevant considerations can come from anywhere (isotropy), but checking 
every piece of stored information for relevance is computationally intractable. 
(p.  156)5 This was a practical problem for good old-fashioned artificial intelli-
gence, but it seems that humans solve it with some ease. Closely related is the 
problem of abduction, which furthermore seems to involve the non-local weigh-
ing of a range of different considerations at the same time. The frame problem is 
also a problem for theorists trying to understand the mind, Fodor’s great mystery 
of central cognition. (p. 157) Sections.

6.2  Avoiding the Frame Problem Leads to the If-Then Problem

With the rise of DNNs, the frame problem has receded as a practical issue for AI 
researchers, but DNNs do not so much solve the frame problem as avoid it. 
DNNs do not store explicit memories, but effectively build in assumptions of rel-
evance in their learned weights. (p. 158) It was long thought that this approach 
was inadequate to deal with real-world problems, a failing that Fodor attributed 
to the failure to solve the frame problem. But now they can. Surprisingly, given 
enough training, DNNs can learn processing dispositions that build in appropri-
ate assumptions of relevance, and which generalise effectively.

5  Each sentence of the summary corresponds to one paragraph. Page numbers indicate where the 
paragraphs begin.
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DNNs share a limitation with earlier modular approaches: their built-in 
assumptions only work within a specific domain. That can be circumvented to 
some extent by having a range of different domain-specific modules, but this calls 
for some way of deploying them selectively and integrating their outputs. (p. 159) 
And even a special-purpose system needs to be sufficiently flexible to produce 
different outputs in different contexts. DNNs treat context as just another aspect 
of the (very long) input. That is to deal with the past as a contextual input that 
changes the state of the processor. (p. 160) This raises a problem pressed by Gallistel: 
the system has to allocate dedicated processing resources to each potential input 
it might encounter. Botvinick et al. (2019) suggest a solution, which is to store 
explicit memories of the circumstances encountered and the outcomes received.

(p. 161) In short, although DNNs have shown that if-then dispositions are 
much more effective in avoiding the frame problem than previously thought, this 
solution gives out eventually; a suggested solution to this ‘if-then’ problem is to 
store explicit memories.

6.3  A Compound Architecture Still Faces the Frame Problem

Learned if-then dispositions and inference from explicit memories have comple-
mentary costs and benefits. Human cognition deploys both approaches; some AI 
models do the same. (p. 162) Stored memories can enter into content-general and 
content-specific inferences. If retrieved memories just act as further inputs to trained 
if-then dispositions, then the system has to have been trained on and dedicate 
resources to responding to each such input; by contrast, a capacity for content-
general reasoning can be applied to a representation of a situation wholly outside 
the system’s training experience. Content-general reasoning can also be applied to 
novel thoughts; general-purpose compositionality can generate such thoughts.

(p. 163) A compound architecture, while helpfully taking advantage of the 
complementary profiles of the two approaches, still faces the frame problem—the 
problem of selecting which memories to compute with. Compound AI models do 
face this problem (examples), and deal with it by performing operations on the 
entire store of memories. The frame problem has re-emerged, and exhaustive 
search, while feasible in the models, does not amount to a solution.

6.4  A (Partial) Solution

I argue here that the solution deployed in human cognition is a hybrid, with 
plug-and-play concepts taking advantage both of if-then dispositions and general-
purpose reasoning, and reusing the if-then approach as a way of retrieving rele-
vant memories.
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(p. 164) Content-addressable memory may be part of the solution but, without 
further constraints, looks to be either myopic or too wide-ranging. I suggest 
retrieval can rely on content-specific dispositions. Direct-CS transitions effec-
tively assume that certain contents are relevant, which they introduce into 
thought directly. (p. 165) A second way of introducing relevant information is to 
retrieve representations that are nearby in a representational state space. These 
similarity spaces are found widely, with representations organized along a num-
ber of semantically-relevant dimensions. Making transitions within a semantic 
state space offers a computationally tractable way to perform relevance-based 
search. The state space effectively builds in certain assumptions of relevance.

(p. 166) Semantic spaces offer a ready way to achieve context sensitivity. 
Relevance can be assessed along any one of several different dimensions, for 
example: colour or motion of a stimulus, dominance or trustworthiness of indi-
vidual people. A contextual cue can act as a ‘clamp’ so that retrieval takes place 
along a relevant dimension, as with the contextually-relative judgements of simi-
larity in the experiment by Grand et al. (2022). (p. 167) Acquisition of these state 
spaces is a different problem—learning laboriously from experience—of which 
we have plausible accounts. Figure 6.1: representations in a high-dimensional 
state space are arrayed differently when projected onto different semantically-
significant dimensions of the underlying space (e.g. size vs. dangerousness).

When proximity in the state space of a trained neural network is used to 
retrieve relevant information, that is a non-local computation, of a kind that 
would appear mysterious if we were limited to step-by-step classical computa-
tions. (p. 168) Similarity in state space is the resultant of taking account, in paral-
lel, of a large number of parameters at once. An analogy is the way a comet moves 
in the solar system. At any point it moves based on the resultant of the forces 
generated in parallel by a very large number of other celestial bodies at once. 
Another way non-local inferences could occur is illustrated by a computational 
model of route calculation in the hippocampus that involves a process that prop-
agates in parallel across the whole array of place cells at once.

6.5  How Cognition Partly Avoids and Partially Solves the 
Frame Problem

(p. 169) I have suggested that human concept-driven thinking relies on special-
purpose informational models to generate relevant considerations, using multiple 
contextual cues to retrieve information according to multiple built-in assump-
tions of relevance in order to approximate an isotropic search.

This differs from previous theories, first, in placing greater reliance on built-in 
assumptions of relevance, motivated by new DNN models demonstrating that 
the if-then way of avoiding the frame problem is more powerful than previously 
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thought. Second, the account of concepts in Chapter 5 shows how conceptual 
thought can rely on different assumptions of relevance in diverse if-then systems, 
and integrate their results. (p. 170) The combinatorial power of concepts is 
important here, each connecting into different assumptions of relevance in 
special-purpose informational models, in a way not previously emphasised. The 
picture of retrieval shows that, when memories are not stored as a list of explicit 
representations, there is no need to search a list to retrieve relevant information 
(retrieval works by pattern completion or some other dispositional process). 
(p. 171) Semantic state spaces show how it is possible to perform such retrieval in 
more than one way, by sampling along multiple different semantically-relevant 
dimensions.

A further refinement is to use deliberate strategies for searching for relevance, 
usually acquired socially. Human thinking can move back and forth between 
contextually-cued recall and step-by-step inference, so as to hit on relevant con-
siderations and reason with them; some hybrid LLMs do the same. (p. 172) Filling 
in a coherent scenario in the cognitive playground may itself suggest relevant 
considerations. My picture presents a solution which is partial and imperfect; but 
so is human cognition. Most of these elements have been discussed before in 
some guise, but my picture: emphasises the role of concepts as mediators, points 
to the power of the if-then way of avoiding the problem (while agreeing that this 
is not on its own a solution), and shows how this tactic can be re-purposed as a 
way of recalling information to use in reasoning, polling memory in multiple 
ways so as to approximate an isotropic search, albeit imperfectly.

(p. 173) In this way, the account of concept-driven thinking developed in the 
first half of the book has an important explanatory payoff: it shows how human 
cognition can dance around the frame problem, partly avoiding it and partially 
solving it.

Concepts at the Interface. Nicholas Shea, Oxford University Press. © Nicholas Shea 2024. 
DOI: 10.1093/9780191997167.003.0006
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7.1  Introduction

This chapter is about the way in which inferences depend on content. More 
carefully, it is about the way transitions between representations relate to the 
content of the representations involved. Meaning is an absolutely central 
aspect of our mental lives. As we engage in thinking, the contents of the repre-
sentations involved seem crucial to the way our thinking unfolds. RTM puts 
that under pressure with its commitment to capturing thought processes in 
terms of causal transitions between representational vehicles. This generates 
several philosophical puzzles about the role of content in cognition. I want to 
suggest that these debates, while being different, share an underlying assump-
tion. The assumption itself is hard to state, and will take some work to uncover 
but, roughly, it is the idea that transitions between representations draw on 
their content. I will argue that, consistently with RTM, we can vindicate the 
idea that transitions between representations draw on their content in a sub-
stantive way.

I start off by mentioning these different philosophical debates in order to bring 
the underlying assumption about content into sharper focus (§7.2). Then I present 
the standard account of the role of content in transitions between representa-
tions (§7.3). But that account is incomplete.  Section 7.4 recalls the distinction 
between content-specific and content-general transitions introduced in Chapter 3. 
The standard account covers only content-general transitions. With content-
specific transitions, content is involved in a different way. I argue that content-
specific transitions depend on the content of non-logical concepts in a way that 
content-general transitions do not. It may seem implausible that the thinker 
is  somehow drawing on meaning less when they infer with an explicit 
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representation than when the same information figures in thought only implic-
itly. Section 7.5 defends that conclusion.

7.2  The Phenomenon: Drawing on Meaning

The precise nature of the phenomenon I am targeting is hard to pin down. It is 
itself a matter of philosophical debate. At issue is the way semantic contents are 
involved in transitions between representations: that they are responsible for or 
explain a transition, or that there is some other kind of close dependence between 
a transition that takes place and the content of the representations involved. I am 
not here aiming to give an account of the metaphysics of that relation (whether it 
is metaphysical dependence, or some kind of explanatory or in-virtue-of connec-
tion). My concern is to argue that the evidence about how conceptual representa-
tions are involved in cognitive processing, laid out over the foregoing chapters, 
implies that there are two rather different kinds of involvement. (The various 
metaphysical options can be applied to both.) This section brings the phenome-
non into slightly sharper focus by laying out some of the philosophical debates in 
which it operates as an underlying assumption.

I start with an analogy. Linguistic processing exhibits a contrast between cases 
that involve processing meaning (the majority) and those that do not. We some-
times hear speech merely as a string of sounds. In most cases we also apprehend 
the meaning of the words and sentences (Moore 1953, p. 59, quoted by Bayne and 
Montague 2011, p. 6; Drożdżowicz 2019). In the latter case, the content of what is 
said comes to figure in our thought (Fricker 2003; Longworth 2016). Psychology 
and psycholinguistics make use of a distinction between semantic and non-
semantic processing (Kroll et al. 2010). For example, it has been argued that dys-
lexic children show a specific deficit in phonological processing whereas autistic 
children are impaired in reading for meaning (Frith and Snowling 1983). We can 
explain this difference in terms of whether or not mental representations corre-
sponding to the meaning of the sentences are accessed. (Linguists would say: 
whether semantic representations are accessed.) A string of speech sounds may 
be processed phonetically but not semantically, so no mental representation of 
the meaning of the sentence is produced (be these conceptual representations, or 
representations of other kinds, like sensory images).

We cannot make the same move at the level of thought. Thinking with a men-
tal representation cannot be a matter of comprehending or interpreting the rep-
resentation, as it is with language, on pain of launching a vicious regress. Nor can 
it be a matter of looking up the referent (Quine 1968). So the linguistic contrast 
presupposes that processing mental representations involves drawing on their 
semantic content, in a way that manipulating a public language sentence phonet-
ically or syntactically need not.



The Phenomenon: Drawing on Meaning  179

The idea that thinking draws on thought content figures prominently in theo-
rising about concepts. The meaning or content of a concept is supposed to 
explain the way the concept is used in categorisation and inference (Machery 
2009, pp. 9–12; Weiskopf 2009a; Hampton 2015; Vicente and Martínez Manrique 
2016), sometimes with different kinds of content (e.g. prototypes, theories, sen-
sory images) underpinning different kinds of cognitive role (Millikan 2000; 
Camp 2015; Strevens 2019, pp. 64–5; Margolis and Laurence 2019).

The debate about the causal efficacy or causal-explanatoriness of content is 
committed to the same underlying assumption. The objection is that the classical 
computational theory of mind undermines the role of semantic content (Block 
1990; Rescorla 2012, 2014), especially if contents are externalist (Fodor 1991; 
Figdor 2009). The assumption that semantic contents are closely involved in rep-
resentational transitions is shared by both sides in this debate. Even those who 
allow that contents are causally inefficacious argue that contents play an impor
tant explanatory role (Egan 1992; Peacocke 1993; Shagrir 2001; but cf. Stich 1983). 
The shared assumption is that there is some close dependence between the con-
tent of a representation and the transitions in which it figures. I am not here aim-
ing to takes sides in the debate about whether content is causally efficacious or 
causally explanatory. My focus is on elaborating the underlying assumption, 
namely that thinking draws on thought content in some way (I will say: in more 
than one way).

Ruth Millikan considers and rejects the argument that meaning externalism 
prevents thinkers from ‘knowing what they are thinking about’ (Millikan 2000, 
p. 95). She does think there is a challenge: to show how thinkers can know that 
their thoughts are not empty or equivocal. In Millikan (2000) she puts forward a 
comprehensive answer (see esp. pp. 95–108, building on Millikan 1984). The 
underlying assumption is that there is a commonsense phenomenon of ‘knowing 
what one means in making a judgement’ (Millikan 1984, p. 322) or ‘knowing 
what one is thinking of ’ (Millikan 2000, p. 95).

The more recent debate about the nature of understanding, and what it is to 
grasp a subject matter, make a similar assumption. In that debate, grasp of con-
tent is involved in the way thinkers make transitions between representations 
(Strevens 2008, 2010; Grimm 2012). Those in favour of cognitive phenomenology 
are also interested in thought content. They are usually concerned to show that 
differences in thought content show up as differences in phenomenal character 
(Bayne and Montague 2011, pp. 15–17, citing a suggestion in Kripke 1982, p. 41, cf. 
p. 43; Jorba and Vicente 2014). Thus they too presuppose that thought content 
plays a critical role in the way our thoughts unfold.

These are all cases involving thoughts at the object level, representations that 
are about the world outside the thinker. As soon as we reflect on the role of 
thought content in our mental life, however, it is natural to start thinking in terms 
of self-attribution (of beliefs, or of other contentful mental states). In debates 
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about self-knowledge, philosophers on all sides start from the assumption that 
the thinker can know the content of her beliefs (Brown 1995; McLaughlin and 
Tye 1998). Again, this is underpinned by the idea that inferences in thought draw 
on content: that self-ascription of a mental state draws on that state’s content 
(McKinsey 1991, p. 11; Wright 2000, p. 152).1

This whistle-stop tour has briefly highlighted a series of different debates. 
The issues are different in each, but they share the underlying assumption that 
content is intimately involved in the way transitions between representations 
unfold. The point of this chapter is to show that that phenomenon comes in two 
importantly different varieties. This observation will not by itself resolve any 
of the philosophical issues canvassed above. However, we have a better chance 
of doing so when we have a (psychologically well-grounded) understanding of 
how transitions relate to content—namely that inference patterns are related to 
representational content in two quite different ways (in the content-specific and 
content-general cases).

7.3  Semantic Inference and Syntactic Inference

As we have seen, the great insight of RTM is that processing can be so-arranged that 
vehicle-vehicle transitions respect the contents represented. For example, when a 
thinker is caused to move in thought from representing p and p→q to representing 
q, that transition respects content in a strong way: it produces outputs that are guar-
anteed to be true if the inputs are true. When perceptual processing transitions from 
a contrast map to a representation of the location of edges, the output, although not 
guaranteed to be correct, is very likely to be correct, in normal environments, if the 
inputs are correct. So this too is a useful transition to make. Both are cases where 
causal transitions between vehicles unfold so as to respect content.

This is quite unlike the way things work with familiar public representations, 
like spoken words or written sentences. Agents react appropriately to sentences 
because they interpret and understand them. With mental representations there 
is no need for an internal understander. The meaning or content of a representa-
tion usually depends on its relational properties, characteristically on some kind 
of complex relation to the objects and properties it represents. Similarly, the truth 
or falsity of a representation usually turns on facts that are extrinsic to it. But 
RTM does not call for an internal homunculus that interrogates these relations. 
Processing proceeds in virtue of vehicle properties. If R1 being tokened causes R2 

1  Even Carruthers (2011b), who contrary to 94 per cent of philosophers (p. 17) rejects the trans-
parency of belief self-ascription, has a view in which belief content is explanatory in the process of 
self-ascription (it orchestrates the process without figuring in experience).
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to be tokened, that would occur even if R1 had been false, and even if the rela-
tional properties of R1 and/or R2 had been different such that their contents were 
different. The insight of RTM is that a physically-driven engine can, if appropri-
ately configured, amount to a semantic engine.

RTM comes with a standard account of how thought processes are sensitive to 
content. Consider again the Socrates inference:

	 (1)	 All humans are mortal.
	 (2)	 Socrates is a human.

∴	 (3)	 Socrates is mortal.

The transition from (1) and (2) to (3) occurs because the premises have a certain 
form (all Fs are Gs, x is F). Representations have formal properties, properties 
which are local properties of representational vehicles (in the representational 
system). These properties cause processing to unfold in certain ways. Although 
they are not the whole story, formal properties are involved in fixing content. They 
determine the way the content of the complete thought is determined by (or related 
to) the contents of its constituents. Manipulating representations by formal 
properties is a mechanism by which thought processes are sensitive to content.

This is the insight that underlies most human-created computing machines 
(i.e. digital computers). It has proven to be enormously powerful. Nevertheless, I 
want to argue that it is only half the story. The inference (1)–(3) can be performed 
without drawing on the meaning of ‘Socrates’, ‘human’, or ‘mortal’. For 
instance, if one holds that grasp or understanding is important, the inference 
could be performed without grasping or understanding the meaning of these 
concepts. It is somewhat analogous to processing a sentence without apprehend-
ing its semantics, as discussed above.

Computational approaches to language processing draw a distinction between 
syntactic and semantic inference (Schubert 2019). Syntactic inference starts with 
the grammar of a sentence and performs processes such a transforming its sur-
face form into logical form. Semantic processing deals with the meaning of the 
words involved. Psycholinguistics makes a similar distinction. For example, bilin-
gual speakers who learn their second language late treat the two languages differ-
ently. A leading model appeals to an asymmetry in the way translation between 
the two languages occurs. Translating from their second language to their first is 
accomplished merely lexically, without accessing the meaning of the words. 
Translating from their first language to their second is necessarily semantically 
mediated (Kroll and Stewart 1994; Kroll et al. 2010).

A significant problem in computational linguistics is to account for the seman-
tic inferences people make between sentences, that is to say, the inferences that 
do not simply depend on syntax and logic (Pado and Dagan 2016); for example, 
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from ‘A hurricane hit Peter’s town’ to ‘Peter’s town was damaged’.2 The standard 
RTM account of the role of content in thought treats all transitions between rep-
resentations on the model of syntactic inference. That could have turned out to 
be right—it has been enormously powerful in computer science—but as we have 
seen, in human psychology there is also likely to be something going on that is 
more like semantic inference.

7.4  Content-Specific Transitions Draw on More Contents

Chapter 2 drew a graded distinction between content-specific and content-
general (i.e. non-content-specific) transitions. The Socrates inference is an exam-
ple of a content-general transition. The transition is faithful to content, a fortiori 
its being faithful to content depends on the content of the representations con-
nected by the transition; however, its faithfulness to content depends only on the 
content of the broadly-logical concepts involved. It does not depend on the spe-
cific contents of the non-broadly-logical concepts (human, mortal, Socrates).

Which conclusion is reached of course depends on the contents entered at 
input. If the first premise had concerned Aristotle rather than Socrates, the con-
clusion would have been different (it would have concerned Aristotle). But mak-
ing this inference does not demonstrate a grasp or understanding of the specific 
content of Socrates. It does not show that the thinker knows what she means in 
judging the conclusion (Millikan 1984, p. 322), or that she knows what she is 
thinking of (Millikan 2000, p. 95). It does not require her to draw on the meaning 
of her Socrates concept; nor is the content of Socrates needed to explain why 
she makes the transition. If she were making it in language, it could be a purely 
syntactic inference.

Contrast content-specific transitions. For example:

	 (4)	 Fido is a dog
∴	 (5)	 Fido barks

As argued in Chapter 3, if this transition is made without the benefit of an 
explicitly-represented general premise, then it is content-specific. Its faithfulness 
to content depends on its being about dogs and barking. By taking for granted 
that dogs bark—implicitly encoding the information that dogs bark—this 

2  Deep neural networks trained on huge bodies of linguistic data so as to be able to predict which 
words are likely to come next after any string of words or sentences given as input—large language 
models—now show considerable facility with semantic inference, but it is not yet clear how they 
achieve this feat (Bubeck et al. 2023).
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transition depends on the specific contents of these concepts, and reveals a grasp 
of those contents.

This is an example of a direct-CS transition. We saw that there are several psy-
chologically plausible examples (§3.4), including cases where transitions between 
thoughts take place in a high dimensional semantic state space. Equally impor
tant is the class of mediated-CS transitions. Chapter 5 discussed in detail how 
these work. One example is using sensorimotor simulation to work out whether a 
chair will fit in a car. Another example is relying on simulations in the hippocam-
pal cognitive map to work out how to get from the pub to the library. These kinds 
of inferences (recall that ‘inference’ is understood broadly) rely heavily on 
content-specific transitions: the transition from the concept chair to a sensory 
image; the transformation of that image under simulations of actions; and the 
categorisation of the resulting situation under fits or does not fit—all these 
involve content-specific transitions between representations.

Chapter 4 catalogues a large variety of informational models in which infor-
mation is encoded in ways such that inferences over the model involve content-
specific transitions. In all of these cases, the dispositions to transition between 
representations take for granted, or implicitly encode, information about specific 
referents. Those assumptions may be false (Machery 2017, p. 222). When they are 
correct, making the transition relies on a substantive fact about the referent. 
Making the transition demonstrates a grasp of the contents involved. It shows 
that the thinker knows, in some way, what it is that she is thinking of. This is a 
second way in which transitions between representations are sensitive to or 
explained by content. We can thereby, without making it mysterious, make sense 
of the idea that an inference—a transition between representations—draws on 
conceptual content.

What is this ‘intimate connection’ between contents and the disposition to 
make the transition? In many cases the thinker will have acquired the content-
specific disposition because of the meaning of the concepts. Consider a child who 
already has the concept dog and then learns that dogs bark. They may put this 
knowledge into practice so often that x is a dog → x barks becomes for them an 
automatic transition. The child is disposed to make that move in thought because 
dog means dog, barks means barks, and dogs do bark. The disposition is in place 
and the transition is made in virtue of the content of the concepts involved. 
Content-specific transitions are acquired and stabilised over time in virtue of 
content. Exercising the disposition, then, is a way of drawing on those contents.

There is also a stronger version of this thesis according to which the relevant 
transitions are part of what fixes content. We can extend that idea beyond 
broadly-logical concepts (Rescorla 2012, 2014) and apply it to the concepts that 
figure in content-specific transitions. The thesis would then be that a transition 
like x is a dog → x barks is part of what makes it the case that dog refers to dogs. 
That need not take us back to the old definitional theory—that the content has to 
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meet a definition specified by the role. Not all content-specific transitions need 
come out as faithful. On some views, contents are assigned so as to maximise 
truth preservation (a principle of charity). On other views, we look to occasions 
when relying on the disposition led systematically to survival and reproduction, 
or some other process that stabilises the disposition. It is transitions made on 
those occasions whose faithfulness-to-content plays a role in fixing content. (Shea 
2018 makes this argument in respect of subpersonal representations.)

On any of these views, content-specific transitions play a role in determining 
reference, and those which come out as correct, according to that content-
determination, draw substantively on meaning—either because the thinker 
makes the transition because of a prior grip on the content, or because the dispo-
sition to make the transition is part of what gives the concept its content. Thus, a 
correct content-specific transition draws on the content of the concept.

A merit of the standard RTM story about the causal role of content is that it 
captures a role for content while holding on to the central commitment of RTM: 
namely that there are vehicles of content, and that transitions between representa-
tions are causal transitions between those vehicles. The standard story gives us a 
good account of how content is involved in transitions, but only shows us how the 
contents of broadly-logical concepts are involved. Content-specific transitions 
have a different form, but in this section we have seen that we can still vindicate a 
tight connection between content and transition, and do so in a way that is just as 
compatible with the central commitment of RTM. In the case of content-specific 
transitions, making the transition draws on the content of the non-broadly-logical 
concepts involved.

7.5  Are Content-Specific Transitions Really So Different?

The existence of inferences in thought of a kind that I would classify as content-
specific is nothing new (Sellars 1953; Fodor et al. 1975). The types of representa-
tional structures, informational models, and computational processes I point to 
are also fairly widely accepted. What is not widely accepted is that contents are 
involved in representational transitions in two different ways. The difference 
turns on whether the information which underpins an inference—for example 
the fact that dogs bark—is explicitly represented or not. But is that really an 
important difference? And can it be that the thinker draws less on content when 
they represent information explicitly?

The difference is important, first, because it is important to have an empiri-
cally well-grounded account of the type of knowledge representations and 
cognitive-computational processes the mind actually uses. As I have argued, 
whether information is represented explicitly or is merely implicit in a processing 
disposition makes a big difference to how it figures in cognitive processing and in 
the mental life of the subject. The thinker can use explicit representations in a 
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range of ways that are simply not available when information is represented only 
implicitly. The distinction is also empirically tractable (although difficult, as is 
often the case with investigating representations).

Second, recognising the class of content-specific transitions widens the way we 
think about the database in which information connected to a concept is stored. 
As well as a store of explicit memories, important information is stored in 
direct-CS dispositions, and also in dispositions to make transitions between con-
ceptual and nonconceptual representations. In particular, it leaves space to 
encompass the rich class of what Camp calls ‘characterizations’: ways that we 
characterize the referent of a concept in sensory, motoric, evaluative, or affective 
terms (Camp 2015). Enlarging our theoretical perspective to include this wide 
range of ways in which people think about the things to which their concepts 
refer gives us a psychologically more plausible account. It also shows us that tran-
sitions between representations are often tied up with the content of the concepts 
out of which thoughts as structured (in addition to depending on their broadly-
logical form).

We have seen that information that is implicit in a content-specific disposition 
can be made explicit and stored in memory for later use (§5.5). This brings into 
sharp relief the difference between the two ways that transitions can rely on 
content. To return to the examples in Chapter 5, I could reflect on my direct-CS 
dispositions and reach the conclusion that birds have bills; or I could rely on 
mediated-CS dispositions to reach the conclusion that the chair will fit in the car. 
In both cases, I now have an additional explicit representation, an extra premise 
that I can use in reasoning. Having formulated the conclusion about the chair 
explicitly, I can perform some further reasoning on it about what to do next.

My claim has a seemingly paradoxical consequence. Can it really be that when 
information gets made explicit the thinker operates with less understanding? 
Surely they now know more than they did? Granted, having made the informa-
tion explicit (cf. Machery 2017, pp. 220–3), in one sense the thinker has a better 
understanding of the subject matter. They now know explicitly that birds have 
beaks, where as previously that was simply an implicit assumption of their dispo-
sitions to categorise things as birds. When they make an inference that has birds 
have beaks as a premise, they rely on this understanding (something that they 
know about birds, and about beaks). In this sense, they now know more about 
the subject matter.

Explicit representations can underpin further content-specific inferences, of 
course. But the explicit representation also makes possible broadly-logical infer-
ences about birds, inferences that do not depend on understanding the specific 
content of the concept bird. Explicit premises give us material on which to per-
form that extremely general and extremely powerful form of reasoning. It is when 
the concept bird figures in inferences of this kind that the thinker is no longer 
drawing on its content. Making information explicit has opened up the possibil-
ity of inferences that do not draw on specific content. What has happened is that 
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making content explicit has made reasoning less dependent on drawing on that 
content implicitly. The kind of grasp or understanding that exists in the content-
specific dispositions involving bird is not being relied on when the thinker makes 
the information explicit and reasons with it logically. It’s not that the thinker has 
lost this understanding—they still have the content-specific dispositions—it’s just 
that the content-general transition does not draw on or display them. It is not 
actually paradoxical that explicitness should make a thinker able to make some 
inferences with less understanding. It is in fact a virtue, since they are not then 
limited by the understanding that is exhibited by their content-specific dispositions.

7.6  Conclusion

This chapter aims to bring a central but somewhat enigmatic phenomenon into 
slightly sharper focus. It is an assumption of some psychological theorising, and 
of several philosophical debates, that transitions between representations depend 
on content. They draw on the meaning of the concepts involved. The framework 
developed in the book allows us to throw some light on this phenomenon. It is 
more articulated than is often realised. There are in fact two rather different ways 
in which transitions draw on content.

This does not give us a positive theory of the causal efficacy or causal explana-
toriness of content. But it does give us a more nuanced picture against which to 
build and assess such theories. Importantly, for present purposes, it shows how 
concept-driven thinking is deeply entwined with meaning. The standard RTM 
story about representational processing can seem anaemic. It feels as if all think-
ing is just logic chopping. The richness of the specific things we are thinking about 
seems to have been pushed off stage. The plug-and-play picture in Chapter 5 shows 
that much of deliberate thinking takes place in quite content-specific ways. 
In  addition to direct-CS transitions between conceptual thoughts themselves, 
concept-driven simulations rely heavily on content-specific transitions: from 
concepts to special-purpose informational models; within those informational 
models; and from special-purpose informational models back into conceptual 
thought. This is not only a more psychologically realistic and full-blooded picture of 
how concept-driven thinking takes us to new conclusions. It also delivers a more 
satisfying account of how transitions between representations draw on meaning.

Chapter Summary

7.1  Introduction

This chapter is about the way transitions between representations draw on con-
tent, in a way that is presupposed by several different debates about the role of 
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content in cognition. The standard account is incomplete: in the case of content-
specific transitions, content is involved in a different way.

7.2  The Phenomenon: Drawing on Meaning

(p. 178)3 This section brings into focus the claim that contents are involved in 
transitions between representations; it looks at some philosophical debates in 
which this operates as an underlying assumption.

An analogy is the contrast between processing a sentence semantically, accessing 
a mental representation of its meaning, or merely non-semantically, for example 
phonetically. We cannot make the same move at the level of thought, so the 
linguistic contrast presupposes that processing mental representations involves 
drawing on their semantic content, without having to look up their reference or 
access some further representation. (p. 179) Theorising about concepts also presup-
poses that thinking draws on the content of concept-involving thoughts. Both sides 
of the debate about the causal efficacy of mental content are committed to the same 
assumption, namely that there is some close (causal or explanatory) relation 
between the content of a representation and the transitions in which it figures.

Millikan’s account of how a thinker knows what it is they are thinking about 
assumes something similar, namely that what a representation means figures in 
the way thinking unfolds. More recent debates about understanding presuppose 
that grasp of content is involved in the way thinkers make transitions between 
representations. Similarly, debates about self-knowledge assume that self-
ascription of a mental state draws on that state’s content.

(p. 180) There are different issues in play in each of these debates, but they 
share the underlying assumption that content is intimately involved in the way 
transitions between representations unfold; this chapter shows that this occurs in 
two different ways.

7.3  Semantic Inference and Syntactic Inference

The insight of RTM is that processing can be arranged so that vehicle-vehicle tran-
sitions respect content in the sense that the output is sure to be to true or likely to be 
correct if the inputs are. This is so even though processing proceeds in virtue of 
vehicle properties, without interpreting the representations, or checking what they 
refer to or whether they are true. (p. 181) The formal properties of a complex repre-
sentation determine the way its content is determined by the contents of the con-
stituents; manipulating representations in accordance with form is thus a 
mechanism by which transitions are sensitive to content.

3  Each sentence of the summary corresponds to one paragraph. Page numbers indicate where the 
paragraphs begin.
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This is the insight that underlies human-created computing machines; how-
ever, it is only half the story; the Socrates inference could be made without draw-
ing on the meaning of human, mortal, or Socrates. Both computational 
approaches to language, and psycholinguistics, draw a similar distinction, that 
between syntactic and semantic inference. The standard RTM account of the role 
of content in thought treats all transitions on the model of syntactic inference; it 
has had difficulty modelling semantic inference.

7.4  Content-Specific Transitions Draw on More Contents

(p. 182) Recalling the distinction between content-general and content-specific 
transitions (§3.2), the faithfulness to content of a content-general transition does 
not depend on the specific contents of the non-broadly-logical concepts involved. 
The conclusion reached does depend on all the contents represented at input, e.g. 
Socrates rather than Aristotle, but the specific meaning of Socrates does not fig-
ure in any of the ways discussed in section 7.2.

Contrast the dogs/barks content-specific transition: by implicitly encoding 
that dogs bark, this transition depends on the specific contents of the non-
broadly-logical concepts involved. (p. 183) Both direct-CS and mediated-CS tran-
sitions (examples in Chapter 5) draw on the content of non-broadly-logical 
representations. These cases illustrate a way that transitions between representa-
tions draw upon conceptual content in a substantial sense.

There are several ways of making more precise the claim that there is an ‘inti-
mate connection’ between contents and the disposition to make a transition; first 
off, that the disposition was acquired in virtue of the contents of the concepts 
involved. A second, stronger thesis is that the transitions are part of what makes it 
the case that the concepts have the content they do. (p. 184) On both of these 
views it follows that a correct content-specific transition exemplifies the thinker’s 
understanding of, and draws on, the content of the concept. While my account 
here is different than the standard RTM story, it preserves the central commit-
ment of RTM, namely that transitions take place between representational vehi-
cles and are causally explicable in terms of vehicle properties.

7.5  Are Content-Specific Transitions Really So Different?

The existence of the types of inferences that I would classify as content-specific is 
nothing new, but the claim that contents are involved in transitions in two differ-
ent ways is. The difference turns on whether information is represented explicitly 
or is merely implicit; the difference is important, first, to be psychologically realistic. 
(p. 185) Second, because encompassing direct-CS and mediated-CS inferential 
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dispositions widens the class of characterizations we need to consider as encoded 
with a concept. The difference comes into relief when we see what it takes to 
make information which is implicit in content-specific transitions explicit, so that 
it can be used more flexibly. A seemingly paradoxical consequence is that when 
information gets made explicit the thinker operates with less understanding—
when, in another sense, they know more than they did. However, the thinker 
doesn’t lose the implicit understanding; what making explicit does is make avail-
able a form of inference, the broadly-logical, which is less dependent on under-
standing the content; it is only when operating that way that the thinker is 
drawing less on content.

7.6  Conclusion

(p. 186) The phenomenon of dependence on content, presupposed in several 
philosophical debates, is in fact achieved in two somewhat different ways. 
Whereas the standard RTM story seems to make representational processing 
rather anaemic, assimilating it all to logic chopping, the way content-specific 
transitions depend on content is more full-blooded, showing that meaning is 
deeply entwined in the way concepts operate in plug-and-play thinking.

Concepts at the Interface. Nicholas Shea, Oxford University Press. © Nicholas Shea 2024. 
DOI: 10.1093/9780191997167.003.0007
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8.1  Introduction

Our topic is deliberate conscious thinking. Conceptual thoughts orchestrate 
executive processes and are operated on by them. Deliberation unfolds step-by-step, 
with the signature of type 2 cognition, while drawing liberally on automatic 
processes, both between conceptual representations and beyond. This kind of 
thinking is performed by a person, rather than happening to them. Thinking at 
the personal level consists in the interaction of the capacities we have discussed. 
In a commonsense way, I can say that it is me doing the thinking.

Part of the commonsense picture is that the person doing the thinking appreci-
ates what is going on. To put it more psychologically, conceptual cognition is a 
sphere within which metacognition operates. Section 8.2 offers a very brief intro-
duction to the psychological literature on metacognition. Sections 8.3 to 8.5 then 
work through three types of metacognition that are especially relevant to think-
ing with concepts. First, thinkers have an appreciation of the reliability of a 
concept—its reliability as a tool for categorisation and inference (§8.3). Second, it 
seems likely that thinkers are furnished with a procedural indicator of the reli-
ability of the inferential transitions that occur in thought (§8.4). Third, it is plau-
sible that a set of representations assembled in the cognitive playground attracts 
an assessment of coherence (§8.5).

This is not a complete account of metacognition in deliberate thought. Far 
from it. However, it does show that the account presented in previous chapters 
can vindicate the important idea that the goings-on of concept-driven thinking 
are appreciated by the person doing the thinking.
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8.2  Metacognition

The book focuses on concept-involving processes at the personal level. We started 
with the idea that thinking with concepts is something the thinker does: it is an 
exercise of agency (philosophy), it engages executive functions (psychology). 
Dual systems theorists ascribe it to system 2. Whether or not one endorses a dual 
systems theory, deliberation with concepts does have many properties that are 
taken to be characteristic of type 2 cognitive processes. It proceeds step-by-step, 
effortfully, reflecting the person’s goals and intentions, and is susceptible to 
interference by concurrent cognitive load. Along with the idea of being agentive 
comes the assumption that the thinker knows what is going on in their thinking. 
Putting it vaguely to start with: they have some appreciation of their thoughts 
and of their thought processes. In this section I argue that one important 
aspect  of  this appreciation is well-captured by the psychological literature 
on metacognition.

As a preliminary, we should distinguish metacognition from another way that 
a thinker can be said to appreciate their mental states and processes—by those 
states and processes being conscious. Conscious states are part of a thinker’s 
mental life. Simply in virtue of being conscious, these states are in the mind, and 
processes involving them are processes taking place in the mind. That is not 
reflective or reflexive appreciation; but it is a substantial sense in which a person 
appreciates what they are thinking. When someone says that they are aware of ice 
on the driveway, for instance, that can simply mean that they have a conscious 
representation of ice on the driveway. Conscious states are states of awareness. 
Higher-order theorists of consciousness go further and argue that some second-
order state is involved. Leaving this higher-order claim to one side, all theorists 
allow that conscious states are states of subjective awareness. In this way, an epi-
sode of conscious deliberate thinking is, by that very fact, something of which the 
thinker is aware. They appreciate their thoughts and thought processing in the 
sense that those states and processes are conscious.

However, that is not all. When it comes to deliberate thought, higher-level cog-
nition is also involved: metacognition. Human cognition includes self-directed 
second-order (i.e. reflexive) representations that are formed through deliberation 
(i.e. are reflective). The strongest form of reflexive appreciation is reflective self-
attribution of mental states and processes. A thinker can explicitly represent 
I believe that p, and thereby come to know that they do. They can also explicitly 
and reflectively represent thought processes, for example thinking, I judged that 
he was unjust because I saw how he shared out the profits.

In experimental psychology, metacognition is usually defined as being a matter 
of monitoring and control (Nelson and Narens 1990). Monitoring is keeping 
track of psychological states, for example by metarepresenting their contents, or 
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keeping track of the way a psychological process operates, for example by repre-
senting the speed or fluency with which it unfolds. Control is a matter of using 
the result of monitoring to affect subsequent processing. In philosophy, Joëlle 
Proust influentially defines metacognition as ‘the set of capacities through which 
an operating subsystem is evaluated or represented by another subsystem in a 
context-sensitive way’ (Proust 2013, p. 4). These definitions are quite broad. 
Metacognition in this sense could extend to many psychological processes, 
including in special-purpose systems, encompassing the subpersonal. For exam-
ple, I have argued that the reward prediction error signals involved in model-free 
reinforcement learning, which are widespread in the animal kingdom, are a form 
of metarepresentation (Shea 2014c). Carruthers agrees that there are forms of 
what he calls ‘non-conceptual’ or ‘model-free’ metacognition (Carruthers 2021; 
Carruthers and Williams 2022).

However, that is outside the paradigm. Research on metacognition usually has 
a more restricted focus. It is organised around personal-level forms of monitoring 
and control. ‘Control’ here connotes executive functions and control by the 
person—that is, cognitive processes which operate in the type 2 way (what Shea 
et al. 2014 call ‘system 2 metacognition’). While special-purpose systems may 
include dedicated components for monitoring aspects of the circuit and affecting 
what happens next, it seems that we also have the capacity to monitor and control 
type 2 processes. We have already seen an example of the way metacognition 
operates in deliberation. We learn strategies for thinking and apply them deliber-
ately: how to recall information from memory; how to take a new perspective or 
randomise to generate new ideas for solving a problem. While some of our meta-
cognitive abilities are supported by mechanisms that are specific to a domain, like 
perceptual decision-making or memory recall, we may also have a general-
purpose capacity for metacognitive monitoring and control (Mazancieux et al. 
2020; Rouault, Lebreton, and Pessiglione 2023). Whether that is so remains an 
open empirical question.

As an aside, we can ask how there could be a general-purpose capacity for 
monitoring and control of deliberative processes. One plausible answer, with 
respect to monitoring, appeals to the general-purpose representational capacity 
of conceptual representation. The format of conceptual thought does not restrict 
the subject matter that concepts can represent. Being able to represent more-or-
less anything, concepts can represent other thoughts and thought processes. So 
children can learn, for example, concepts of belief and desire that they use to 
represent other people’s mental states in a reportable way (Wellman, Cross, and 
Watson 2001; Low and Perner 2012). These concepts seem to be acquired cultur-
ally, with variation across cultures in when and whether children come to repre-
sent others’ mental states (Heyes and Frith 2014). In the populations typically 
studied in experimental psychology (Henrich, Heine, and Norenzayan 2010), the 
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capacity is acquired by children between the ages of three and four years old.1 
When one has acquired concepts of mental states (e.g. belief ) and processes (e.g. 
remembering), these concepts are available for one to apply to oneself. They can 
then be a basis for exercising cognitive control. Control processes are available 
simply because deliberate cognition is a sphere where executive processes oper-
ate, doing so in the characteristic type 2 way (with capacity limits and interfer-
ence between tasks). Furthermore, since deliberate thinking takes place in the 
cognitive playground, control is exercised in a way that can reflect the thinker’s 
goals and intentions. In short, there are probably good reasons why deliberate 
thought is subject to metacognition in the strong sense of monitoring-by-concepts 
and personal-level agentive control.

Returning from that aside, the discussion in this chapter does not depend on 
how deliberation comes to be subject to explicit monitoring and control, just that 
it is. Deliberate thought processes are part of the thinker’s mental life in the sense 
of being states of conscious awareness and, furthermore, they are subject to 
reflexive and reflective appreciation. Explicit, conceptual self-attribution is reflec-
tive as well as reflexive. It is a form of what Joëlle Proust calls ‘analytic’ metacog-
nition (Proust 2010, 2012, 2013). This contrasts with ‘procedural’ metacognition: 
signals that monitor aspects of a cognitive process, for example its fluency, and 
play a downstream role, but without representing it conceptually. Many proce-
dural metacognitive signals are conscious, in the form of epistemic feelings. A 
familiar example is the tip-of-the-tongue phenomenon: the feeling that someone’s 
name, or the answer to a question, is on the tip of one’s tongue. People report 
feeling like they know the answer but can’t yet bring it to mind (Schwartz 1999). 
This feeling is a moderately reliable guide to whether they will eventually be able 
to recall the information.

A central example of an epistemic feeling is confidence. The confidence 
attached to a representation affects how much weight is given to it when integrat-
ing information and taking decisions (Ernst and Banks 2002; Bahrami et al. 2010; 
Donoso, Collins, and Koechlin 2014; Lee, Shimojo, and O’Doherty 2014; Meyniel 
and Dehaene 2017). Conceptual representations recalled from memory—
semantic memories—attract a measure of the reliability of the memory (Koriat, 
Lichtenstein, and Fischhoff 1980); perceptual representations and decisions come 
with measures of uncertainty and confidence (Fleming and Daw 2017); and con-
clusions reached through reasoning attract a measure of reliability in the form of 
a feeling of rightness (Thompson and Johnson 2014). (The usefulness of mea-
sures of confidence or reliability in weighing information may suggest that we 
should expect all representations in the cognitive playground to be accompanied 

1  Special-purpose systems may keep track of mental states from a much earlier age for dedicated 
tasks such as gaze following (Apperly and Butterfill 2009; but see Heyes 2014; Barone, Corradi, and 
Gomila 2019).
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by such signals: Shea and Frith 2019.) Procedural signals of confidence are gener-
ated automatically (Proust 2013). Their cognitive role depends on how we have 
learnt to interpret them (which may also become automatic). For example, when 
a fact is retrieved from memory the representation is accompanied by a feeling of 
certainty or uncertainty (Koriat, Ma’ayan, and Nussinson 2006), and this affects 
whether the thinker will go on to rely on that information (Koriat and Helstrup 
2007). It is likely that many of these dispositions are acquired culturally (Heyes 
et al. 2020).

The research that is most relevant for our purposes is the large body of work 
investigating metacognition of the accuracy of thoughts and thought processes. 
This is a rich field with lots of interesting details, but at the most general level it 
shows that people do keep track of the accuracy of their beliefs, in the form of 
judgements of truth, accuracy, or confidence in an answer they have just given 
(Schwarz 2015). These judgements show a moderate correlation with whether the 
belief really is likely to be true (metacognitive sensitivity), with some biases 
towards under- and over-confidence (metacognitive mis-calibration), both show-
ing variation across different types of task. Judgements are partly based on the 
thinker’s beliefs and other explicit information (analytic metacognition), and 
partly on experiential information or epistemic feelings (procedural metacog-
nition). Fluency is a particularly potent experiential cue. Fluent processing 
tends to boost every kind of metacognitive assessment, whereas disfluent pro-
cessing gives rise to doubts. For example, when answering a general knowledge 
question, disfluency causes the thinker to have less confidence in the answer 
they have given.

In a review paper, Schwarz (2015) lists the factors which have the largest effect 
on people’s assessments of truth or accuracy. These all reflect the way thinking 
operates as a cognitive process over a collection of information in the cognitive 
playground. The extent to which a belief is supported by evidence is important, 
as is its compatibility or incompatibility with the thinker’s other beliefs. Thinkers 
also take into account how well a belief fits into an overall narrative or other men-
tal model. Interpersonal aspects are important, like the credibility of the source of 
the belief, and especially the extent to which the belief is shared by others (con-
sensus). The overall picture in the literature is of factual representations being 
widely monitored for accuracy, with that happening in a variety of different ways.

Thus, metacognition in the cognitive playground, both analytic and proce-
dural, is likely to be an important determinant of how deliberate thinking 
works—of how processing unfolds. Psychological research does not yet give us a 
complete account of all of this. Nor is there scope here comprehensively to review 
the rich lines of research that exist. What I will do is to discuss three kinds of 
metacognition that are particularly relevant: of concepts (§8.3), inference (§8.4), 
and coherence in the cognitive playground (§8.5). These examples will serve to 
make the case that metacognition is a crucial aspect of the way deliberate 
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thinking works, thus vindicating the idea that the goings-on of concept-driven 
thinking are appreciated by the thinker.

8.3  Appraisal of Concepts

When theorising about the way metacognition applies to deliberate conceptual 
thought, an obvious first place to turn is to concepts themselves. Are concepts 
subject to metacognitive appraisals of any kind? A concept is a tool for thinking 
and so clearly could be appraised against the various uses to which it is put. 
Judgements are directed at forming correct representations and so can be 
appraised for accuracy; memory recall aimed at remembering all the items on a 
list can be appraised for exhaustiveness; and so on (Proust 2013). In what ways 
can a concept be appraised?

The use of a concept can be appraised relative to the various cognitive tasks for 
which it is deployed, for example categorisation, induction, and reasoning. For 
categorisation, we could ask how accurately the thinker is able to categorise new 
samples under the concept. Ruth Millikan argues that there are systems for 
checking whether a concept picks out the same thing when it is applied in differ-
ent ways, for example through the way a thing looks and by what it sounds like 
(Millikan 1984, pp. 142–5). She argues that where these generate a contradiction, 
we become less disposed to categorise in those ways. Another way to use a con-
cept is in induction. Relative to that use we can ask how reliably properties 
observed in a member of the category project to new instances, and how many 
properties are available for projection. We sometimes collectively assess concepts 
in the course of academic enquiry. For example, there is a debate in philosophy of 
biology about the usefulness of the concept of innateness for categorising traits 
and forming expectations about them.2 We are interested in whether something 
similar happens individually, within the cognitive life of a thinker.

The book is focused on the way conceptual representations are involved in 
working out what is the case and what to do. Relative to this activity the relevant 
metacognitive assessments will be broadly epistemic. We can divide ways of 
thinking about the reliability of a concept, qua cognitive tool, into two broad 
concerns. The first concern is with the tool itself: is it a useful way of dividing up 
things in the world, does it support reliable inductions, does it get on to a deep 
and widely-applicable distinction? These can be thought of, either as meta-level 
questions about the concept, or as object-level questions about the category to 
which it refers. Is this a good category for thinking and reasoning with? The 

2  Griffiths and Linquist (2022). I share the view that it is a bad concept for these purposes, espe-
cially in the cognitive sciences, albeit with an explicable inductive underlying basis outside of humans 
(Shea 2012).



Appraisal of Concepts  197

second concern is with the thinker’s individual perhaps idiosyncratic grasp of a 
concept. For a given concept C, I can ask myself things like: do I have a rich col-
lection of information stored with C, or only a thin grasp; is the information that 
I do represent likely to be accurate?

These suggestions are intuitively plausible but it is an empirical question 
whether people reliably appraise concepts in these ways. I collaborated in a series 
of experiments that have begun to investigate this question (Thorne et al. 2021, 
2022). The large body of work on metacognition in other areas suggested that this 
would be a promising area of investigation. There was prior work asking people 
to assess how well they would be able to categorise novel items under a recently-
learnt concept. This suggested that people would understand metacognitive 
questions specifically directed at concepts (Jacoby, Wahlheim, and Coane 2010).

We found that people do indeed reliably appraise concepts in both of the two 
broad ways mentioned above. As a tool, they appraise, for example, how reliable a 
concept is for induction: for projecting an observed property to other members 
of the category; and how informative it is: how much the concept tells you about 
what a thing is like. These appraisals are reliable in the sense that different people 
largely agree in their appraisals across a wide range of concepts. These assess-
ments are also integrated with some of the central ways people use concepts. For 
example, as we proceed down a conceptual hierarchy (e.g. mammal, dog, 
spaniel), from superordinate through basic to subordinate level, concepts are rated 
as progressively more informative and as being a more secure basis for induction.

Turning to questions about how well thinkers grasp a concept, we found that 
people do appraise how well they understand different concepts—for example, 
how much they know about the category and whether most of the things they 
believe about it are likely to be true. Here too there is broad intersubjective agree-
ment in how people appraise a diverse range of concepts along these dimensions. 
Four different ways of appraising how well understood a concept is in fact cor-
relate, as rated by different individuals across the same group of concepts. This 
suggests that we have a common underlying sense of how well understood each 
concept is—a sense of understanding. We went on to discover that concepts which 
rate highly on sense of understanding are a preferred basis for making inductive 
inferences.

These results suggest that the information that a concept gives us access to 
includes information about its reliability for various cognitive purposes. This 
metacognitive information forms part of the characterizations that are connected 
with a concept. That is a novel point: that characterizations go beyond object-
level information about the category and include meta-level information relevant 
to thinking with the concept. It is not yet clear whether this information takes the 
form of an explicit representation of reliability (analytic metacognition), or 
whether, alternatively or in addition, there are epistemic feelings generated by the 
use of a concept (procedural metacognition). In a far-from-exhaustive study we 
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found evidence for the former and not the latter (Thorne et al. 2022). It is likely, 
however, that processes in which conceptual representations are involved do gen-
erate forms of procedural metacognition—processes like inference, which we 
turn to next (§8.4).

The studies discussed in this section just scratch the surface of a potentially 
rich area of investigation. Experiments on metacognition about decision confi-
dence, reasoning, memory recall, and so on, made it highly plausible that other 
aspects of conceptual thought—when it also takes place deliberately, in the type 2 
way—would be subject to metacognitive appraisal. These results confirm that 
prediction and give us a preliminary indication of some forms which that 
appraisal takes. They fill in another part of the picture of how the thinker appreci-
ates what is going on when they are deliberating.

8.4  Reliability of Inference

We have seen that metacognitive evaluations attach to many of the mental states 
that are involved in conceptual thought: to explicit conceptual representations of 
facts (semantic memories), to percepts, and to concepts themselves. In this sec-
tion our attention turns from states to processes. Where procedural metacogni-
tion attaches to a recalled memory, that reflects aspects of the process that 
produced it (e.g. fluency). An inference is a mental process. We should therefore 
expect that conclusions reached through inference will be subject to metacogni-
tive monitoring. This is another way that the thinker appreciates what is going on 
in conceptual thought processes, as we will see in this section. Furthermore, in 
the case of inference, it is plausible that a metacognitive appraisal attaches, not 
just to the output, but to the pattern of inference itself (Shea forthcoming).

Experimental work on reasoning has found that conclusions reached in rea-
soning elicit a ‘feeling of rightness’—an epistemic feeling which reflects the 
thinker’s confidence in the conclusion (Thompson, Turner, and Pennycook 2011; 
Thompson, Evans, and Campbell 2013; Thompson and Johnson 2014). The feel-
ing of rightness can be probed directly by asking people to report how confident 
they are in the conclusion of a piece of reasoning and indirectly by looking at the 
skin conductance response as a measure of arousal (De Neys, Moyens, and 
Vansteenwegen 2010; De Neys, Cromheeke, and Osman 2011).

At the level of monitoring, the feeling of rightness reflects whether the conclu-
sion follows logically from the premises, and also whether the conclusion is 
plausible—whether it fits with the thinker’s background beliefs. For example, 
given a syllogism like the following, people tend say that the conclusion follows 
logically from the premises (when in fact it doesn’t). The fact that the conclusion 
does not follow logically is reflected in a reduced feeling of rightness (De Neys 
et al. 2011).
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All birds have wings.
Crows have wings.
Therefore, crows are birds.

a.  Conclusion follows logically
b.  Conclusion does NOT follow logically

At the level of control, the feeling or rightness affects what the thinker does 
next in their reasoning. A low feeling of rightness, for example when selecting the 
plausible but invalid conclusion (a) above, makes the thinker more likely to pause 
and reflect, bringing type 2 cognition to bear on the problem (Ackerman and 
Thompson 2017). This effect is observed in classic ‘thinking fast and slow’ exper-
iments where the intuitive, automatic answer to a problem is incorrect (De Neys 
2023).3 Thinkers who experience a low feeling of rightness are more likely to stop 
and check the answer.

In these studies, inferences are taking place between conceptual representa-
tions. They show another way in which the thinker appreciates what is going on 
in concept-involving thinking. They have varying levels of confidence in the 
conceptually-represented conclusions reached through inference, levels of confi-
dence that reflect both the plausibility of the conclusion and the nature of the 
inference pattern that produced it.

In addition, it is likely that patterns of inference are themselves subject to 
metacognitive assessment. Some patterns of inference feel reliable to the thinker, 
others less so. These epistemic feelings change over time as a result of the think-
er’s experience of the results performing inferences of that form. I have made an 
extended argument elsewhere for the existence of these ‘feelings of reliability’, and 
for the important epistemic role they play for the thinker (Shea forthcoming). 
Here I will simply highlight the way feelings of reliability constitute another way 
that the thinker appreciates what is going on in concept-involving thinking.

As we saw in Chapter 3, there are some forms of inference that the thinker is 
disposed to make simply in virtue of tokening premises of the right form. Modus 
ponens is one example. Simply tokening thoughts of the form if p then q, and p, 
disposes the thinker to token the thought q. There is no need for the thinker to 
entertain a further premise to the effect that the conclusion follows from the 
premises. On pain of regress, there must be some inferential transitions that the 
thinker is disposed to make without representing anything further (Carroll 1995). 
These transitions are representationally basic (or ‘primitively compelling’; 
Peacocke 1992). We saw several examples in Chapter 3: thinkers have dispositions 
to make a number of types of broadly-logical transition. My claim is that these 

3  E.g. ‘A bat and ball cost $1.10 together. The bat costs $1 more than the ball. How much does the 
ball cost?’ Frederick (2005). (The answer is not $0.10.)
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transitions are accompanied by a feeling of reliability, or in some cases unreliabil-
ity, when the disposition is activated.

These feelings change over time in a way that reflects the downstream conse-
quences of performing the inference. Those who teach logic will have observed 
changes like this in the logic class. Students arrive with a disposition to react to an 
if . . . then premise by affirming the consequent. That disposition becomes less pro-
nounced with experience. In the other direction, some patterns of inference that 
are valid but less intuitive, like modus tollens, become more fluid and feel more 
reliable with experience. Many simple, commonly-used patterns of reasoning 
with and, or, not, and if . . . then are logically valid, so we have a wealth of expe-
rience that using them does not lead to contradictions. By contrast, if we were to 
start using the putative logical connective tonk (Prior 1967), whose introduction 
and elimination rules allow the thinker to reach any conclusion whatsoever, we 
would soon run up against contradictions and confusion. So the putative infer-
ence pattern for tonk would be unable to build up a feeling of reliability.

My hypothesis is that feelings of reliability attach, not just to content-general, 
broadly-logical transitions, but also to content-specific transitions. For example, 
many people are disposed to infer with the following introduction rule for the 
concept set:

(1)	 Some things have property F.
(2)	 There is a set of all and only the things with property F.

Experience in philosophy, however, shows us that inferring with set in this way 
leads to contradictions. We become more tentative in using this pattern of infer-
ence. It is not that the disposition to infer from (1) to (2) disappears completely. 
But it comes accompanied by a lower feeling of reliability, so we are more likely to 
stop and check before endorsing the conclusion.

Research on other types of procedural metacognition makes it plausible that 
patterns of inference should generate a form of procedural metacognition in their 
own right, for example due to their fluency. That this should show up in the 
mental life of a thinker in the form of an epistemic feeling is suggested by a phe-
nomenon that has long exercised philosophers (Brewer 1995; Kornblith 2012; 
Boghossian 2014). The phenomenon is the contrast that we experience between 
trains of thought of two different kinds. Most of the time, when we reach a con-
clusion in inference, it seems to us that the conclusion follows from the premises. 
That is the default case and usually goes unremarked. In other cases we find our-
selves moved to a conclusion in thought but without its seeming to follow from 
what we were thinking before. Boghossian gives the example of an anxious 
depressive character who finds himself going from the thought, I’m having so 
much fun, to the thought, but there’s so much suffering in the world. They are 
disposed to make the transition. The second thought is not just some mental 
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intrusion—it is the content of the first thought that prompts the second. But it 
doesn’t seem to the thinker that the second thought follows from the first. A fac-
tor which is present, if unremarked-on, in most of our inferential transitions, is 
lacking in this case.

If a pattern of inference generates a feeling of reliability, that would explain the 
contrast between normal inferences and cases like the fun/suffering example. 
Some patterns of inference are such that, although the thinker is disposed to form 
the conclusion when the relevant premises are tokened, it doesn’t feel reliable in 
the way it does in the standard case. Another example would be the way philoso-
phers make the transition (1)–(2) involving set only tentatively, once they have 
been exposed to the paradoxes that can result.

As well as generating a phenomenological difference between the cases, the 
feeling of reliability can play an epistemic role for the thinker. It offers them an 
internal signal of whether the pattern of inference is likely to be reliable. (In the 
cases we are interested in, an inference pattern is reliable if the conclusion is likely 
to be true if the premises are true.) As with epistemic feelings of other kinds, the 
feeling of reliability will not be perfectly correlated with whether the inference is 
in fact reliable. However, if these feelings are affected by experience in the way 
I  have suggested, we can expect them to provide at least a rough guide to 
reliability—and a warning signal when a pattern of inference has led to trouble in 
the past (as it would with tonk).

Furthermore, this epistemic feeling can play an important diachronic role. We 
sometimes reflect on our inferential dispositions, not just in philosophy, but also 
in everyday life. This reflection can be individualistic but is often interpersonal. 
Either way, what happens when we conclude that a pattern of inference ought to 
be avoided? We might have noticed that affirming the consequent generates prob-
lems (unless reasoning abductively, and even then it has to be handled carefully). 
Or that using set in accordance with (1)–(2) needs caution. Other content-
specific cases cover social and political rather than epistemic concerns. For exam-
ple, it might be pointed out to me that I use the concept woman in a sexist way. 
Thinkers need not differentiate between the different reasons why they ought to 
be reluctant to use a certain inference pattern. But how does this realisation, 
reached by reflection, come to impact their inferential dispositions? If they have 
time to reflect the next time the premises are encountered, then they may well 
remember the problem and so remember not to draw the sexist conclusion. But 
often we don’t have time to reflect. We might be in the middle of a conversation, 
say. Won’t the inferential disposition still then be triggered? An episode of reflec-
tion is unlikely to be enough to retrain the thinker’s automatic inferential disposi-
tions. But it may well be enough to erode the feeling of reliability that accompanies 
the inference. This puts the thinker on the road to being more cautious about 
forming the conclusion. The feeling of reliability offers a route by which the con-
clusions we reach by reflecting on our reasoning can impact our inferential 
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dispositions into the future. That is a further important epistemic role that it 
can play.

My suggestion is that the feeling of reliability is acting as an internal indication 
for the thinker of whether a pattern of inference is likely to be reliable. Although 
the book is not about epistemology, and there is not scope to do justice to the 
issues here, I will briefly gesture in the direction of a potential epistemological 
implication of feelings of reliability. Patterns of inference are not just externalisti-
cally assessable for their reliability. The thinker has access, in the cognitive play-
ground, to an epistemic feeling which signals reliability versus unreliability (albeit 
imperfectly). Thus, there will be cases where the thinker takes the inference to be 
reliable, because of the feeling of reliability, and the inference pattern is in fact 
reliable. That offers an internalist sense in which the thinker is justified in relying 
on the inference pattern. Does the thinker also need to know whether or not the 
feeling of reliability is itself a good guide to reliability? My suggestion is that they 
do not. The appropriate standard for assessing the epistemic standing of the epi
stemic feeling is simply whether it tends to be reliable or not. Otherwise we would 
launch a regress of justification. This adopts a way of blocking the potential 
regress which is suggested by Ernest Sosa (1985, pp. 240–3). Sosa argues that, for 
reflective knowledge, we need the presence of a second-order element to establish 
justification. However, that second-order element need not itself count as reflec-
tive knowledge. It is held only to the standards of bare reliabilism. Similarly, pro-
vided the feeling of reliability is at least a rough guide to whether the pattern of 
inference to which it attaches is in fact reliable (as work on other epistemic feel-
ings would suggest), it can form the basis on which a thinker is internalistically 
justified in relying on that pattern of inference.

This fills in the picture of the way metacognition operates on the inferences 
performed in deliberate thought. Experimental work shows that conclusions 
reached through reasoning attract a feeling of rightness which affects what hap-
pens next in thought; and philosophical reflection suggests that inference pat-
terns themselves attract varying feelings of reliability and unreliability. This 
further elaborates the ways in which a thinker appreciates what is going on in 
concept-involving thinking, with these forms of appreciation affecting the way 
the thinker performs inferences.

8.5  Coherence in the Cognitive Playground

So far we have looked at how metacognition applies to component parts of delib-
eration: concepts, inferences, and the conclusions we draw. In this section I turn 
to the wider cognitive playground. In the course of the book we have seen that 
conceptual thought can drive the construction of a suppositional scenario in the 
cognitive playground: a model of an actual or postulated situation that includes 
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both conceptual representations and representations drawn from special-purpose 
systems (sensory, agentive, motoric, spatial, affective, evaluative, etc.). The 
thinker runs inferences over this model, simulating possibilities and their conse-
quences as a way to work out what to do (or to reach new conclusions about what 
is the case). These inferences can take place locally, step-by-step, from one con-
ceptual representation to another, but they can also be non-local, depending on 
many different factors in parallel and/or depending on the overall structural or 
configural properties of the model in the playground. These inferences are loosely 
analogous to model-theoretic inferences in logic: representations in the model set 
up restrictions on the way a world can be, and inferences in the playground fill in 
further possibilities, given the constraints and assumptions found in special-
purpose systems. This is a picture of non-local, broadly abductive inference over 
an entwined collection of representations in the cognitive playground.

A scenario in the cognitive playground typically contains many different repre-
sentational elements, both concepts, and representations drawn from special-
purpose systems. Working memory researchers distinguish between the 
collection of information that has been activated, forming a model of the envi-
ronment, and the focus of attention, which applies successively to small parts of 
this model at a time (§1.2; Cowan et al. 2021, pp. 47–9; Reuter-Lorenz and Iordan 
2021, p. 285). The cognitive playground corresponds to the activated model. 
Working memory involves the manipulation of these representations. Working 
memory acts through the focus of attention to add to, manipulate, and actively 
remove representations in the cognitive playground based on their relations to 
one another. Thus, the representational elements in the playground are 
interconnected.

How precisely to characterise this interconnectedness is a substantial topic, 
one on which there is no consensus. Representations in the playground can be in 
tension with one another—whilst it seems possible for there to be contradictory 
representations in the playground, the playground exerts some pressure in favour 
of coherence and consistency. We see that at work with binocular rivalry. 
Although people presented with different images in each eye transiently experi-
ence a mix of the conflicting information coming from the two eyes, conscious 
experience settles into a coherent representation (Haynes and Rees 2005). 
Fortunately, an imprecise characterisation of this phenomenon is sufficient for 
our purposes. The playground is a shared representational space. Relations of 
support and contradiction are somehow inherent in the way information is rep-
resented in the playground, so that incoherence and inconsistency are readily 
apparent. Contradictory representations are not impossible, but they are in ten-
sion with one another, in a way that representations tokened outside the play-
ground in separate special-purpose systems are not. This is related to the idea of 
the unity of consciousness: that co-conscious representations are interconnected 
and together form a single mental unity or gestalt (Bayne 2010). I have been 
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studiously avoiding putting any weight on consciousness as such in my theorising 
but, if construed merely functionally, the unity of consciousness is the same kind 
of property as that which I am claiming representations in the cognitive play-
ground exhibit.

In this section I want to argue that metacognitive appraisals apply to the over-
all model in the playground: that there is monitoring and control based on rela-
tions between representations in the playground, perhaps including due to its 
holistic, gestalt, or configural properties. A first line of evidence is the existence of 
so-called content effects in reasoning—belief bias, for instance. People are more 
likely to draw a conclusion that coheres with their background beliefs, and are 
reluctant to make an inference, even if it is deductively valid, if the conclusion 
conflicts with their other beliefs (De Neys 2012). These coherence effects gener-
ate metacognitive appraisals. For example, Koriat’s self-consistency model 
explains confidence in terms of whether the items of information recovered by 
the thinker cohere or conflict with one another (Koriat and Adiv 2015). This 
seems also to apply interpersonally. Sperber et al. (2010) argue that, in conversa-
tion, the listener is constantly monitoring what they hear to see if it conflicts with 
their own beliefs (they exercise ‘epistemic vigilance’). Relatedly, responses to a 
question that are consensual—endorsed by most people—tend to attract higher 
confidence (Koriat 2012a).

Coming at the issue from philosophy, we have seen that Millikan argues that 
judgements made in thought are constantly being tested for consistency (Millikan 
1984, pp. 142–5; 2000; 2017, p. 80). This is ultimately an empirical hypothesis, but 
one with some psychological support, in addition to its intuitive plausibility 
(Shea 2023a).4 Millikan’s motivation is the same as the one behind this chapter, 
namely to say how a thinker appreciates what is going on in their thinking. 
Millikan’s specific aim is to give an account of how the thinker ‘knows what they 
are thinking of ’ (Millikan 2000, pp. 95–6 and 177–92). The context is Bertrand 
Russell’s dictum that we cannot ‘make a judgement or entertain a supposition 
unless we know what it is we are judging or supposing about’ (Russell 1912, p. 58). 
That looks problematic for an externalist about meaning. Millikan disagrees with 
Gareth Evans’s account in terms of capacities to distinguish between things. Her 
alternative is that thinkers ensure they know what they are thinking about by test-
ing their judgements for consistency.

Millikan’s hypothesis is a more specific version of my broader claim about rela-
tions of support and inconsistency in the cognitive playground. Koriat’s self-
consistency model of confidence also depends on a process like this being in 

4  Millikan’s more specific proposal—that registering inconsistency makes the thinker less disposed 
to use the concepts involved and/or to apply them in those ways—although also plausible has not, so 
far as I am aware,  been tested empirically.



Conclusion  205

operation. Across a range of tasks, Koriat and his collaborators find that the 
answers which a person gives consistently are ones which attract higher confi-
dence than those which vary across trials (Koriat and Adiv 2015). (This may seem 
obvious, but many commonsense claims that we make about the operation of our 
own minds turn out not to stand up to rigorous investigation.) In Koriat’s model, 
the confidence people attach to retrieved memories (for example, the answer to a 
general knowledge question) is driven by how much coherence there is between 
the various items of information they consider before giving an answer (Koriat 
2012b). Taking more time and thus considering more items of information tends 
to decrease coherence and hence reduce confidence (Koriat 2012a). These results 
strongly suggest that representations in the cognitive playground are monitored 
for coherence and consistency in a way that affects the thinker’s subjective confi-
dence. I would argue that this is evidence of a metacognitive process operating on 
the cognitive playground as a whole.

In short, several lines of evidence and argument suggest that there are forms of 
metacognition which target aspects of the overall cognitive playground. That is a 
further way that the thinker appreciates what is going on in concept-driven thought.

8.6  Conclusion

I started with the idea that deliberation involves executive processes, including 
metacognitive monitoring and control. I have argued that thinking incorporates 
metacognitive appraisals of the concepts we use for thinking, the conclusions we 
draw in thought, and the patterns of inference by which we reach them. When 
conceptual thought drives simulations and the construction of suppositional sce-
narios in the cognitive playground, that model is assessed for coherence and con-
sistency, affecting the thinker’s confidence in what they are thinking. Confidence 
is an epistemic signal for the thinker of whether the model they are entertaining is 
internally coherent and consistent with the information that is recalled from 
memory or sampled from special-purpose systems. That deepens the sense in 
which the thinker appreciates what is going on in their thinking. As well as the 
representations and processes being conscious, they also have an appreciation of 
the overall coherence of the model which they are relying on to draw new conclu-
sions and take decisions. Part of the problematic motivating the book is that the 
cognitive playground integrates information drawn from a range of special-
purpose systems, as well as from conceptually represented memories, and uses it 
to reach new conclusions, including via non-local inferences. Metacognitive pro-
cesses operate on this integrated whole and affect how the thinking process 
unfolds. They are part of the way the thinker appreciates what is going on in their 
thinking.
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Chapter Summary

8.1  Introduction

Concept-involving deliberation is performed by the person and is subject to various 
executive processes. One aspect of this is metacognitive—that the person doing 
the thinking appreciates what is going on; this chapter considers three forms of 
metacognition that are especially relevant. The examples are illustrative, not 
exhaustive, but they serve to vindicate the idea that the goings-on of concept-
driven thinking are appreciated by the thinker.

8.2  Metacognition

(p. 192)5 One aspect of what it is for a thinker to appreciate what is going on in 
their thinking is well-captured by the psychological literature on metacognition. 
As a preliminary, I set aside a thinner sense in which a thinker appreciates what is 
going on, namely that conscious thoughts are states of awareness—the thinker is 
aware of their contents, in the first-order sense that their contents are part of his 
or her conscious mental life. Higher-level representations also feature; these are 
both reflective, i.e. formulated through deliberation, and reflexive, i.e. second-
order directed at the self.

In psychology, metacognition is usually defined as consisting of monitoring 
and control of cognitive processes; this is applicable broadly, including to the 
subpersonal. (p. 193) Paradigmatically, however, research on metacognition 
focuses on personal-level monitoring and executive functions (‘system 2 meta-
cognition’), which are capacities that thinkers seem to be able to apply to many 
different aspects of personal-level cognition. As an aside, a potential explanation 
of how we could have a general-purpose capacity for personal-level metacogni-
tion is the flexibility of the conceptual system, which places no strong restriction 
on what concepts can represent.

(p. 194) Explicit, conceptual self-attribution is both reflective and reflexive—it 
is a form of analytic metacognition; this contrasts with procedural metacognition 
(e.g. the tip-of-the-tongue feeling): signals that monitor aspects of a cognitive 
process without representing it conceptually. A central example of the latter is the 
feeling of confidence (an epistemic feeling) that accompanies, amongst other things: 
semantic memory recall, perceptual decisions, and conclusions reached through 
reasoning. (p. 195) Particularly relevant is the large body of work on judgements of 
truth, accuracy, or confidence, which are affected both by explicit beliefs and by 

5  Each sentence of the summary corresponds to one paragraph. Page numbers indicate where the 
paragraphs begin.
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epistemic feelings; fluency is a potent experiential cue. These assessments are 
affected by a collection of factors which reflect how a belief fits into the wider 
cognitive playground (listed). Thus, metacognition in the cognitive playground is 
an important determinant of how deliberate thinking unfolds; this chapter dis-
cusses three selective examples (§§8.3, 8.4. 8.5).

8.3  Appraisal of Concepts

(p. 196) An obvious first question is whether concepts themselves are appraised, 
and in what ways. A concept can be appraised for its reliability in categorisation 
or induction. For our purposes these appraisals will be broadly epistemic; they 
divide into concerns with the usefulness of the concept or category as a tool in 
cognition, and questions about the thinker’s own individual understanding of 
the concept.

(p. 197) I collaborated in a series of experiments that have begun to investigate 
how people metacognise their concepts. We found that people do reliably engage 
in concept appraisals of both kinds, and that these appraisals are reflected in 
other aspects of conceptual cognition, for example in the division of concepts 
into hierarchical levels (superordinate, subordinate, and basic). We discovered 
that there is a common underlying assessment of how well understood each con-
cept is: a sense of understanding; concepts rating high on sense of understanding 
are a preferred basis for making inductive inferences. This establishes that the 
characterizations connected to a concept go beyond object-level information and 
include meta-level information relevant to thinking with the concept. (p. 198) 
These results fill in part of the picture of how the thinker appreciates what is 
going on when engaged in deliberation.

8.4  Reliability of Inference

Just as epistemic feelings are generated by cognitive processes like memory recall, 
we should expect a form of procedural metacognition to attach to performing an 
inference.

Experimental work has found that conclusions reached through reasoning 
attract a ‘feeling of rightness’. This feeling is affected both by the plausibility of 
the conclusion and by whether it follows logically; when a plausible but non-
logical conclusion is endorsed that is reflected in an increased skin conduct
ance response and a reduced feeling of rightness. (p. 199) This affects 
downstream processes, like whether the thinker is disposed to engage in more 
reflection about the problem. This is another way that the thinker appreciates 
what is going on in deliberation.
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It is likely that, in addition, patterns of inference themselves are subject to 
metacognitive assessment, that they feel more or less reliable to the thinker. My 
claim is that forms of inference that the thinker is disposed to make simply in 
virtue of tokening premises of the right form, e.g. modus ponens, are accompa-
nied by a feeling of reliability (or sometimes unreliability). (p. 200) The feelings 
are titrated by whether the inference has worked well in the past or led to contra-
diction and confusion—compare increasing confidence using modus tollens with 
the manifest unreliability of Prior’s tonk. Feelings of reliability also attach to 
content-specific transitions, for example the low reliability philosophers come to 
associate with the introduction rule for the concept set.

If the inferential process itself generates a feeling of reliability, as other work on 
procedural metacognition suggests, that would explain the phenomenon, which 
has long exercised philosophers, that the thinker is usually not simply moved 
from premises to conclusion, but has a sense that the conclusion follows from the 
premises. (p. 201) Other inferences do not feel so reliable when the conclusion is 
drawn. The feeling of reliability can also play an epistemic role for the thinker, 
signalling when a pattern of inference is likely to be unreliable. Furthermore, it 
plays a diachronic role: when we decide by deliberate reflection that we ought to 
avoid a certain pattern of inference (involving set, say), a subsequent feeling of 
unreliability can affect whether we are disposed to draw the same conclusion 
again, in the future, when inferring automatically and unreflectively. (p. 202) 
Epistemically, the feeling of reliability offers the thinker an internalistically-
available indication of the reliability of an inference.

In short, thinkers appreciate what is going on in drawing inferences with con-
ceptual representations both through having a feeling of rightness in the conclu-
sion and through a feeling of the reliability of the inference.

8.5  Coherence in the Cognitive Playground

In this section I turn to processes taking place over suppositional scenarios that 
depend on characteristics of the cognitive playground. (p. 203) Representations 
in the playground are interconnected: working memory acts through the focus of 
attention to add to, manipulate, and actively remove representations in the cogni-
tive playground based on their relations to one another. How to characterise this 
interconnectedness is controversial, but I rely just on the idea that relations of 
support and inconsistency are somehow inherent in the way information is rep-
resented in the playground.

(p. 204) There is evidence that some metacognitive appraisals arise from 
properties of the overall model in the playground, for example the effects of 
consistency with background beliefs, coherence, and consensuality. Working from 
philosophical considerations, Ruth Millikan argues that judgements made in thought 
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are constantly being tested for consistency. Asher Koriat’s self-consistency model, 
and the evidence behind it, also supports the claim that representations in the 
cognitive playground are monitored for coherence and consistency in a way that 
affects the thinker’s confidence.

(p. 205) In short, several lines of evidence and argument suggest that there are 
forms of metacognition which target aspects of the overall cognitive playground; 
this is a further way that the thinker appreciates what is going on in concept-
driven thought.

8.6  Conclusion

This chapter fills out a way in which concept-driven thinking, as described in the 
book, is an executive process, carried out by the person: the thinker appreciates 
what is going on metacognitively and that affects how the process unfolds.

Concepts at the Interface. Nicholas Shea, Oxford University Press. © Nicholas Shea 2024. 
DOI: 10.1093/9780191997167.003.0008
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9.1  Deliberating with Concepts: The Picture

The aim of the book has been to paint a richer picture of concepts and their role 
in our cognitive life. Psychological research has concentrated on categorisation. 
While we now have a good idea about the various kinds of information that are 
involved in applying concepts to the world, there is much less work on how 
people use concepts offline. Offline thinking has always been firmly in the sights 
of philosophy, but the paradigm here is reasoning, moving from one conceptual 
representation to another step-by-step. There has been much less focus on the 
way deliberation draws on representations and computations in special-purpose 
systems. The dominant tradition takes all inferences involving concepts to be of 
the broadly-logical kind. These are undoubtedly important. Conceptual repre-
sentations are distinctive in that they are constructed using a general-purpose 
mode of combination and can be reasoned with in ways that are content-
general—transitions that do not depend on the specific content of the concepts 
involved. However, by focusing on the general-purpose aspects of conceptual 
thought theorists have tended to overlook the way conceptual thinking draws on 
special-purpose resources, like sensory, motoric, evaluative, and affective repre-
sentations. That is largely seen as an alternative theory of concepts, not a comple-
ment, and in any event forms a much smaller tradition (Barsalou 1999; Prinz 
2002; Pulvermüller 2013). Little work has attempted to bring both together in a 
unified framework.

I have tried to do just that. An obstacle to providing a unified account is the 
diversity of representational structures, informational models, and computa-
tional processes involved. My solution is that concepts act as an interface—a link 
between content-neutral concatenation and reasoning, on the one hand, and 
content-specific computations, models, and representational structures, on the 



212  Concluding Thoughts

other. The interface claim is hardly earth-shattering on its own, though. The hard 
work is to show how these diverse resources can be integrated.

According to my plug-and-play account, a substantial number of the deliberate 
inferences that we make are performed within special-purpose systems. A more 
traditional view would have it that information from special-purpose systems is 
re-represented in conceptual thought. For example, a thinker could visually rep-
resent that ducks have certain properties, on that basis conceptually represent 
that ducks have webbed feet and, using that as a premise and combining it with 
further background information, reason their way to the conclusion that ducks 
swim on water. In my picture, by contrast, some of the inferential processes actu-
ally take place between representations in special-purpose systems. The hippo-
campal cognitive map runs a simulation in order to work out how to get from 
A to B. We run a simulation in visuo-motor systems in order to work out whether 
a chair will fit in the car. The intermediate representations, domain-specific infor-
mation, and content-specific assumptions all remain special-purpose. They don’t 
need to be re-represented with concepts in order to be inferred with.

Some of these inferential steps take place in the cognitive playground, others 
outside it. Often the computations in special-purpose systems are opaque to the 
thinker. (They are not at the personal level.) While looking at a photograph, I can 
ask myself the names of the people in the picture. The names come to me as if by 
magic, unencumbered by any of the rich feature processing and complex statisti-
cal inferences that have taken place. Inferences in the cognitive spatial map are 
probably like that. When I ask myself how to get from here to the pub, the answer 
just pops into my mind (turn left out of the door, etc.). Replay simulations in the 
hippocampus (Liu et al. 2019, 2021) do not seem to show up in the cognitive 
playground—just the conclusion. By contrast, the inferences I make about the 
chair do take place within the cognitive playground.1 I rotate the chair in my 
mind’s eye to see if it will fit, and the various possibilities and intermediate states 
figure in the playground on the way to reaching the conclusion. When I see that 
the chair will fit, it is only the result of these inferences that is represented con-
ceptually (using my concepts chair, fit, and car), not the intermediate steps.

Suppositional scenarios in the playground are an informational model of a 
worldly situation or range of possibilities. Running a simulation is a way of mak-
ing inferences with this model. As we have seen, these inferences can be non-
local: taking into account many features in parallel, as with moves in a semantic 
space; or taking into account relational or configural aspects of the model, like 
the overall configuration of locations in space or the overall spatial arrangement 
of physical objects in a scene. At the same time, the playground does also support 
step-by-step reasoning. It was broadly-logical inferences that validated the very 

1   At least for most. Even in those who lack conscious imagery (Keogh and Pearson 2018), similar 
functional features may be present (Pounder et al. 2022).
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foundation of RTM—the idea that physical transitions between representational 
vehicles can be so-configured as to respect their semantic contents—so it is not 
surprising that these have been central to the philosophical understanding of the 
mind. Nevertheless, it has been a major omission not to enlarge our picture of 
deliberation so as to encompass processing over special-purpose informational 
models in the cognitive playground. That is what led Fodor to a picture of the 
mind where he felt forced to conclude that these kinds of inferences are deeply 
mysterious (Fodor 2000, pp. 23–39, 99).

Abductive, content-driven inference is completely integral to my framework. 
Deliberate thinking includes inferences between special-purpose representations 
forming informational models in the cognitive playground. The transitions 
between informational models are content-driven in the sense that many of the 
computational processes are content-specific (Chapter 3), thereby drawing on 
meaning in a substantial way (Chapter 7). The transitions are often non-local, 
depending on overall features of the current model.

Deliberate thinking overall is type 2, deploying directed attention and working 
memory to update and manipulate the current model. The transitions that hap-
pen in an inferential step are often, however, automatic. When the visuo-motor 
system is given an imagined chair and a simulated action as input, it produces a 
representation of the physically rotated chair automatically, based on the content-
specific processing dispositions that have been built into the system by experience. 
The disposition to move from the conceptual representation, that is a dog, to, 
it barks, is triggered automatically, simply in virtue of tokening the premise. The 
overall process of running simulations to learn about the world and plan an 
action is type 2 and load-dependent because it depends on directing attention 
and using working memory to marshal and manipulate aspects of the current 
model. Each step triggers a new suite of automatic processing dispositions. The 
type 2 process consists of a series of type 1 steps. Conceptual representations 
serve to structure the informational model that is constructed and to orchestrate 
the unfolding process.

This account shows why deliberation is model-based in all four of the senses 
discussed in Chapter 1 (§1.2). Most obviously, (i) it involves inferring with an 
informational model of the structure—often the causal and physical structure—of 
the environment. However, as we saw, that is barely a substantial requirement. 
There are many different ways of representing aspects of the structure of the 
world, from the very simple to the very complex, with complexities of different 
kinds and no simple scale (Chapter 4). However, inferences over informational 
models in the cognitive playground depend on working memory. They are 
offline, in the sense of, (ii) going beyond reacting to the current stimulus. Further, 
the thinker can plan into the future so as to, (iii) make choices that are stimulus-
independent. The interconnectedness of the cognitive playground (§1.1, §8.5) 
means that this whole process can be sensitive to the agent’s current goals and 
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reflective values. Thus, (iv) the decisions the thinker takes in this way can be 
immediately sensitive to a change in the value of an outcome, for example, to 
devaluation of one of the available rewards (unlike the values encoded in special-
purpose systems).

In short, deliberate thinking is a process in which conceptual representations 
structure and orchestrate inferences that take place over rich informational mod-
els in the cognitive playground. That dissipates the mystery of how it is that we 
perform abductive, content-driven inference. It also makes the account true to 
what deliberation is really like: it involves reasoning with concepts, but goes 
much wider.

9.2  Concepts Look Both Ways

Concepts are a tool by which these diverse resources are integrated in thought. 
A  concept acts as an interface between the general-purpose and the special-
purpose. It is a plug-and-play device, one that plugs into different kinds of struc-
ture at each end. Compositionality has long been held to be a key feature of 
conceptual thought. That is somewhat puzzling if compositionality just means 
the ability to combine representational constituents into a complex whole whose 
meaning is systematically related to the meaning of the parts. Compositionality of 
that kind is exhibited by many special-purpose representations (§2.2), like the 
hippocampal map of space, including cases where constituents are unsaturated 
and semantically bound, with different constituents making semantic contribu-
tions of different kinds (e.g. object vs. property).

We can now see that the compositionality of the conceptual thoughts that fig-
ure in deliberation is a richer phenomenon. It actually has three aspects. The first 
is the ability to hold in working memory a conceptual label—a representation 
that is linked to a body of stored information (both conceptually-represented 
facts and special-purpose characterizations). The second aspect is composition-
ality as standardly understood: the ability to concatenate a small number of 
working memory labels using a semantically-significant compositional device. 
The third aspect is distinctive of compositionality over conceptual labels: it is 
general-purpose, unlike the compositional principles of structural representa-
tions. It is language-like, obeying something like Evans’s generality constraint. It 
involves predication, or something even more general like Merge in natural lan-
guage (§2.4). Labels can be tokened in thought and combined in a way that is 
unconstrained by the stored information to which they are connected.

The combination brings conceptual compositionality to life. It is not just a 
matter of combining and recombining neutral labels. Labels held in working 
memory serve to retrieve information from long-term memory, representations 
which are fed into an informational model in the cognitive playground. When we 
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combine labels to form a novel thought, the content we have formulated concep-
tually is therefore something we can think about in a rich, multi-modal way. 
Conceptual labels drive the construction of a suppositional scenario, retrieving 
special-purpose information of different kinds, as well as conceptually-
represented memories, and using all that to fill in aspects of the model and draw 
new conclusions from it (Chapter 5). Conceptual compositionality feels special 
because it comes with the capacity to formulate a suppositional scenario driven 
by the thought.

Inferences in special-purpose informational models often take place online, 
taking current stimuli as input and producing categorisation or behaviour at 
output. Content-specific dispositions in visual processing are triggered by current 
visual input, categorising the objects the agent encounters, which then forms the 
basis of how they act. A conceptual label can use the same representations offline, 
holding them in working memory. Deliberate thinking can thereby make use of 
the information encoded, implicitly and explicitly, in special-purpose systems. 
However, the assumptions built into a special-purpose system are also limita-
tions, constraining which possibilities can be represented. An advantage of a con-
ceptual label is its content neutrality. The way it represents does not constrain 
what it represents. Because concepts act as an interface, deliberate thinking can 
make use of the rich contents represented in special-purpose informational mod-
els, doing so in a way that respects the general-purpose mode of combination by 
which conceptual labels are concatenated (the ‘dog bites man / man bites dog’ 
phenomenon: §5.7).

The fact that concepts represent in an arbitrary code gives conceptual thinking 
a distinctive flexibility. Special-purpose representations can represent many dif-
ferent kinds of contents, but there is a link between the content represented and 
the way it is represented. In a structural representation, the mode of combination 
has specific representational significance, as we saw (§2.3). For example, firing of 
place cells can represent relations between locations. The vehicles are combined 
by the relation of co-activation and that relation stands for spatial proximity. Even 
in a mere organized representational system, the systematic relation between 
vehicles and contents is a restriction (§2.3). Computational transitions are speci-
fied at the level of a determinable, applying in a systematic way to a range of 
vehicles. That is both a bonus—something that is exploited computationally—and 
a limitation—a restriction on what each vehicle can represent. Conceptual labels 
do not come with those kinds of restrictions on content.

A concept thus offers the agent a way to think about a relation abstractly. 
Consider representing the mother-of relation, for example. A chimpanzee might 
represent this relation perceptually, by imagining one individual standing in 
some physical relation to another (Penn et al. 2008). This way of representing 
that X is the mother of Y depends on representing X and Y in a particular way, 
using perceptual representations. Thinking about mother-of abstractly is a matter 
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of being able to represent the relation without having to represent anything spe-
cific about the relata between which it obtains. When a relation is represented 
with a concept, the concept does so abstractly, and exhibits role-filler independence. 
Indeed, a conceptual label can represent a relation on its own, without representing 
any relata between which it obtains. It is a means by which we can think about 
the relation as such. That in turn offers the possibility of representing higher-
order relations—relations that obtain between those relations (ditto for monadic 
properties).

The content-neutrality of working memory labels also underpins another, 
closely-related phenomenon: a general-purpose capacity for analogical inference. 
Reasoning by analogy is a matter of drawing a parallel between a relation in one 
system and a relation in another. We can map the spatial ordering of points on a 
line to the temporal ordering of events in time. We use physical relations on the 
line to draw conclusions about temporal relations between events (e.g. e1 is to the 
left of e6 on the line, so it happened first). Mapping the relation in a structural 
representation to a concept offers a completely general-purpose way of reasoning 
by analogy. It is not just a matter of lining up two representational systems that 
have some structural correspondence. Conceptual representations can be com-
bined in a way that is neutral as to what the relational concept picks out. So con-
cepts allow us to analogise anything to anything else (to a first approximation).

The same contents that are represented in special-purpose systems can also be 
represented conceptually. Linguists teach us concepts of phonemes, but people 
don’t need to have these concepts in order to hear different phonemes categorically. 
We all have concepts of many contents that we also perceive, for example 
properties of shapes and of spatial relations (in front, behind). Is there any 
deep difference between the conceptual representation and the not-conceptually 
compositional representation of the same content? One tactic is to deny that 
there are such cases, restricting special-purpose systems to modality-specific 
properties, like visual shape and visual occlusion. That is unlikely to be decisive, 
since many special-purpose systems deal in properties that seem to transcend any 
particular perceptual modality. Two examples are representing spatial locations 
and recognising object categories. Furthermore, even representations that are 
paradigmatically driven by one particular modality are probably better thought of 
as supra-modal (Calzavarini 2022).

There is a clear difference, however: conceptual labels admit of general-
purpose composition and can be processed in content-general ways. Many per-
ceptual representations are realized and processed in organized families. Similar 
contents are represented by similar vehicles and are processed in similar ways 
(§2.3). Well-studied examples include colour, spatial orientation, speed of motion, 
and numerosity. Concepts may in practice divide up possibility space somewhat 
differently (e.g. colour concepts are more coarse-grained than the perceptual rep-
resentation of colours). But even where the contents are identical, conceptual 
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labels in working memory are representing in a different way than the organized 
representations in special-purpose systems.2

9.3  Tokening a Concept

What is it, then, to token a concept? In Chapter 5 I argued that a concept, within 
a given thinker, should be type-identified using vehicle properties (§5.7): 
instances of the same working memory label used within an episode of thinking 
and, across episodes of thinking, working memory labels that are connected to 
the same body of stored information. I distinguished between a concept under-
stood as a representation a person thinks with occurrently and a concept as body 
of information stored together in long-term memory. I have been using ‘concept’ 
in the former sense, but the occurrent thought does include some of the stored 
information, representations that have been retrieved from memory on a particu-
lar occasion. Should these representations be counted as part of what tokens the 
concept on that occasion?

This offers us two ways to talk about tokening a concept. First, we could con-
sider it to be just a matter of tokening the working memory label—everything 
else would then count as tokening connected characterizations. Alternatively, we 
could take the label-plus-characterizations activated on an occasion to be a token-
ing of the concept on that occasion. I prefer the former, since it is less confusing 
given the way I type-identify concepts, but there is no deep issue here. Either 
treatment is fine, provided we are clear about what is meant in context. The latter 
treatment fits better with the idea that a concept is something stored in long-term 
memory—a collection of interconnected characterizations. To token a concept is 
then to token (some of the) information stored in long-term memory. Caution 
is needed, though: because only a small subset of the information in memory is 
tokened on each occasion, we cannot type-identify token concepts in terms of the 
information which is activated. So if we take the latter approach and treat the 
label-plus-retrieved-characterizations to be what tokens a concept, then we need 
to insist that different sets of retrieved characterizations will still count as token-
ings of the same concept. Type-identification must still be based on sameness of 

2   This offers one way to distinguish between supra-modal representations and amodal representa-
tions. (And to answer an objection: if perceptual representations are not modality-specific, why do 
they not count as amodal?) Supra-modal representations, while driven by more than one sensory 
modality, come in organized families, and the way they are organized reflects aspects of the way infor-
mation is collected by sensory systems. Amodal representations either have no semantically-
significant similarities (other than same-symbol/different-symbol: Shea 2023c) or, where they display 
organization, that organization does not reflect sensory processing. Concepts (labels in working 
memory) may be amodal in the latter sense, if they fall into a semantic state space, or in the former 
sense; amodal ‘semantic hubs’ in anterior temporal lobe (Lambon Ralph et al. 2017) probably fall into 
semantic state spaces.
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the label and store of connected information. Which associated characterizations 
are activated will change from occasion to occasion, and during an episode of 
thinking.

Either way, when we think with a concept, the inferences we make will depend on 
the information that is recalled from memory. Different characterizations will be 
retrieved on different occasions. So there is a sense in which a concept is realized in a 
context-dependent manner (Connell and Lynott 2014; Casasanto and Lupyan 2015). 
The psychological consequences of tokening the same concept will vary from occa-
sion to occasion. This is actually compatible with there being a default store of infor-
mation that is always retrieved quickly and automatically, as well as further 
context-dependent characterizations (Machery 2015). It is obviously also compatible 
with there being no such default (Smith and Samuelson 1997; Malt 2010). The latter 
fits well with results suggesting that language comprehension involves activating a 
contextually communicated meaning without first going via a common literal mean-
ing (Giora 2002). Either way, the representations which are eventually retrieved, and 
then guide inference, vary substantially from context to context.

There is a related debate between pluralism and hybridism about concepts. 
Hybridism argues that a concept is a hybrid of information stored in a variety of 
forms, in particular prototypes, exemplars, and mini-theories (Vicente and 
Martínez Manrique 2016). Pluralism argues that each of these ways of represent-
ing information about a category is a different concept (Weiskopf 2009b). A third 
position endorses the pluralism but goes further and argues that we should there-
fore eliminate the notion of concept from our theorising (Machery 2009, 2015). 
My approach sits naturally with hybridism. However, just as it is compatible with 
there being a core of information which is activated by default when tokening a 
given concept, it is also compatible with there being more than one such for a 
given category (pluralism). The question is an empirical one. If pluralism is right, 
then the different bodies of knowledge are not connected. So my vehicle-based 
way of individuating a concept would count them as different concept types 
(which in fact refer to the same referent). Where the different bodies of knowl-
edge are connected (Malt 2010), so that they are effectively stored together in 
memory, there will be a single concept with a hybrid character.

Whichever way the debate between hybridism and pluralism turns out empiri-
cally, the theoretical point remains. It is important not to elide two notions of 
concept: as a representation in occurrent thought, and as a collection of informa-
tion stored together in memory.

9.4  Doing in Thought

The book has been about the role of concepts in deliberation. The aim has been 
to give an account of concepts that makes sense of the way we use them in delib-
erate thinking. That was the motivation for a framework which unifies their role 
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in reasoning with their role in accessing and marshalling special-purpose 
representations. Throughout I have been treating this as an exercise of agency. 
A mental action is something the thinker does, as a whole agent or person, like 
deciding or calculating, rather than something that happens to them, like falling 
asleep or feeling an injury. I have carefully avoided positing a homunculus—an 
unexplained psychological component that does the crucial thinking and deciding. 
But I have also avoided giving a positive account of mental agency. And I won’t 
do so now. However, it is worth noting that my picture does contain many of the 
elements that will be needed to build an account of why thinking is an exercise of 
mental agency. That is what I briefly lay out in this section.

To avoid positing a homunculus, we can instead explain what the thinker does, 
as an agent, in terms of the operation of various psychological capacities. Many 
are the capacities that experimental psychologists study under the rubric of ‘exec-
utive functions’. The strategy is to show how the phenomena that are characteris-
tic of mental agency can emerge from the interaction of various capacities, each 
explicable in its own right. These are the capacities I have appealed to already in 
characterising conscious deliberation.

Deliberation with concepts has the properties that are taken to be characteris-
tic of type 2 cognitive processes. Particularly pertinent is that it is effortful. 
Deliberation can feel like hard work. It draws on working memory and is subject 
to interference by concurrent cognitive load. It calls for attention to be directed so 
as to disengage from current stimuli, including automatic behavioural responses, 
so as to think things through. Deliberate thinking uses attention to enter repre-
sentations into working memory, to actively erase them, and to screen out dis-
tracting information. As we have seen, variation in the capacity for attention to be 
directed in this way accounts for significant variation in standardised measures of 
fluid intelligence, which in turn predict educational outcomes and accurate per-
formance in many different tasks (§1.2). It is at the heart of personal-level thought 
processes. The way attention operates depends on the thinker’s current goals and 
values, and their occurrent beliefs. That is, it depends on what is being repre-
sented in the cognitive playground. Attention is a capacity driven by, and effective 
on, the contents of the playground. It is one of the capacities that operate within 
cognition. There is no need for a homunculus—something external determining 
how thoughts unfold.

Deliberate thinking marshals representations in the cognitive playground. 
This means that items of information are not processed separately, as in an encap-
sulated module, but in an integrated way. Inferential transitions can depend on 
overall features of the current informational model in the playground. 
Representations in the playground can also be integrated with the agent’s 
occurrently-represented goals and values. So decisions taken in this way are able 
to reflect those values; the content-specific dispositions of special-purpose sys-
tems need not. This is why inferences drawn from informational models in the 
playground are also ‘model-based’ in the sense of being immediately sensitive to 
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reward devaluation (i.e. ‘goal-directed’: Dickinson and Balleine 1994). Integration 
means that affective and motivational factors are part of the account of thinking, 
not just cognitive factors, and makes for a seamless link to the social.

Deliberate thinking is also an arena where the thinker appreciates what is 
going on. The representations are plausibly conscious. That is not central to my 
account, but I do rely on their having the functional features of being in a work-
space. They are connected or unified and operate at the level of the whole person. 
Further, many of the transitions draw on the meaning of the representations in a 
substantial way (Chapter 7). And deliberate thinking is subject to metacognitive 
monitoring and control—not by a homunculus (the inner eye watching mental 
life), but in the sense that processes occurring in deliberation generate epistemic 
feelings which have an effect on how subsequent processing unfolds (Chapter 8). 
The thinker gets a signal, for instance, that a judgement they have made is likely 
to be inaccurate. As a result, they stop and think about it some more. They have a 
sense of the comparative reliability of different concepts as tools for thinking and 
select them in part on that basis. Inferences generate signals which give the 
thinker an indication of whether a particular pattern of inference is reliable. By 
reflecting on whether they endorse or reject an inference the thinker can affect 
that sense of reliability and thereby do something to change their automatic infer-
ential dispositions into the future. They can come to align their thinking better 
with norms that they imbibe from their culture or choose for themselves. And the 
coherence of the overall situational scenario currently active in the playground is 
also probably something that registers with the thinker. In short, deliberate think-
ing is subject to monitoring and control by various psychological processes 
which, since they are not themselves a matter of deliberate reflection, do not 
launch an explanatory regress.

The strategy is to account for the agentive aspects of deliberation in terms of 
the interaction between all these components. The phenomena of mental agency 
can emerge from the operation of a suite of more basic psychological capacities 
interacting in the right way (‘emerge’ in the non-spooky sense that the complex 
can have capacities that are more than the sum of the capacities of the parts). 
Endogenous control is not a matter of an ex machina intervention, but consists in 
the operation of a complex psychological capacity of this sort. This is not the 
place to argue for such an account of mental agency, but it is notable that the pic-
ture I have offered here already contains many of the elements that will be needed.

9.5  The Unreasonable Power of Human Cognition

Why is the human species so special? Partly, no doubt, it’s a matter of their 
seeming special to us—because we’re human. Many of nature’s earth-shattering 
innovations are less salient from the human perspective: the invention of the 
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eukaryotic cell, or of photosynthesis, providing the very foundations for plant 
and animal life. But attempting to step away from our skewed point of view, it 
does still seem that humans stand out in the natural world. We have notably com-
plex technology, life-ways, and social arrangements. We have also had a regretta-
bly outsized impact on the environment. How has this hairless primate managed 
to do so much?

There might have been a magic ingredient, from which all else flows. But that 
now seems unlikely. Searching for the unique feature that sets us apart from all 
other animals has become a fool’s errand. But theorising about what makes 
humans special is more than just a parlour game. There are probably a small 
number of factors that are most important. Some good candidates include our 
powerful vision and manual dexterity, our socially interdependent way of life, 
and our accumulation of skills and technology through cultural inheritance; lin-
guistic communication too, of course—whether or not language is the basis of the 
general-purpose compositionality of concepts. I would argue that this small list 
should also include our capacity for thinking with concepts, in the way set out in 
the book. Deliberate concept-driven thinking is a source of the special power of 
human cognition.

Having representations is a clever trick in itself. Representing aspects of the 
world en route to producing behavioural outcomes is a way for organisms to 
achieve important outcomes—those that have been stabilised by evolution and/or 
learning—more robustly (Shea 2018). The capacity for representation is found 
across the animal kingdom, if not even more widely. It takes sophisticated forms 
in animals in a number of different clades, from mammals through birds to 
insects and molluscs. In primates, for example, complex representations and 
elaborate computations mediate between perceptual input and behaviour.

More sophisticated still is the capacity for planning: for thinking through or 
simulating the consequences of various possible actions before deciding what to 
do. Relatively sophisticated forms of planning are already found in some of our 
primate relatives (Passingham 2021; Tomasello 2022) and perhaps also in more 
distant clades (corvids, cephalopods). An animal doing planning can take offline 
what it can represent online, often learnt from experience, and use offline repre-
sentations to anticipate the consequences of the actions they could perform. This 
allows ‘our hypotheses to die in our stead’ (Dennett 2008, p. 88; quoting Popper 
1972, p. 248).

Planning is especially flexible when it is done with conceptual representations. 
As we have seen, concepts can be freely recombined using a general-purpose 
mode of combination, allowing an open-ended range of possibilities and out-
comes to be represented. The capacity for general-purpose representational 
combination—thinking in a language of thought, in one sense of that term—is 
especially highly developed in humans (Dehaene et al. 2022). For the purposes of 
planning with concepts, it is also crucial that humans have the capacity to deploy 
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substantial working memory, and to direct attention so as to disengage from cur-
rent input and think through chains of possibilities.

There is a question about the phylogenetic and ontogenetic source of these 
capacities. My account can remain relatively neutral about this. Learning is 
doubtless involved in the development of all of these abilities, but there are also 
likely to be aspects that are canalized in development, on the basis of adaptive 
information acquired through evolution by natural selection. I have also 
remained neutral about whether domain-general combination of concepts—
something like a language of thought—depends on natural language; or the con-
verse; or whether they are independent capacities. In any event, these capacities 
are doubtless elaborated by cultural evolution so that the particular thinking and 
reasoning skills an individual acquires depend very much on the culture they are 
brought up in. For example, the specific features of deductive reasoning look to 
be culturally explicable (Dutilh Novaes 2020). Deductive reasoning is, however, 
just one form of content-general or broadly-logical inference, a category which 
extends more widely. This broader capacity might also be a culturally-inherited 
cognitive gadget (Heyes 2018), or it may instead be a more universal and cana-
lized ability that goes along with having a type of representation—concepts—that 
can enter into general-purpose compositional structures. Many of the metacogni-
tive tools that we rely on to aid our thinking (Chapter 8) could also be culturally-
inherited cognitive gadgets (Heyes et al. 2020).

The ability to engage in broadly-logical reasoning over representations that 
display a general-purpose mode of combination is nevertheless not unique to 
humans. It is a capacity we share with computers—with the thinking machines 
we have created. They too can use symbols with a combinatorial syntax, compute 
with variables, and engage in long chains of reasoning. Computers can already 
perform a branching tree search many more steps into the future than humans 
can, allowing them to beat us at strategic games like chess and Go. Even so, not 
every task is best tackled that way. To decide using step-by-step forward planning 
takes time. For the types of task that an agent has to perform repeatedly, with the 
benefit of rich experience of what works (acquired through learning or canalized 
by evolution), it is more efficient to rely on if-then dispositions. These can involve 
complex information processing and multiple computational steps, as we have 
seen, but they do not require reasoning about future possibilities in a general-
purpose way. The if-then solution is learning heavy but computation light at deci-
sion time. Model-based planning is much more flexible and open-ended, dealing 
with novel situations and allowing one-shot learning, but it is more computation-
ally demanding at decision time.

Having access to both approaches, at least in some form, is also not unique to 
humans. Other species pursue the strategy of deploying each in its appropriate 
domain: act fast when the state is familiar or an immediate response is crucial; 
use an informational model to plan ahead when you can. What is special in 
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humans is our ability to plan in a general-purpose way, using reasoning over con-
cepts, and to deploy our special-purpose informational models flexibly in our 
planning, via the concepts to which they are connected. We have a domain-
general way of making use of special-purpose resources in our planning, combin-
ing the results into a coherent situation model in the cognitive playground and 
using that to work out the consequences of our actions.

The engine of that ability is conceptual thought. Concepts interface between a 
domain-general capacity for combination and reasoning and the many special-
purpose informational models to which they are connected. This is not just a 
matter of horses for courses—using the different approaches for different kinds of 
tasks. Concepts act as an interface that allows us to integrate the two approaches 
and rely on them together. Given these plug-and-play devices, with greater scope 
for general-purpose recombination, and the well-developed working memory 
capacity and executive functions to make use of them, human theoretical and 
practical inference can rely on both powerful content-general reasoning and the 
learnt experience of special-purpose informational models at the same time. It is 
not just the capacity for reasoning but the ability at the same time to go beyond 
reasoning that generates the special power of human cognition.

Special-purpose systems bring to the job of planning the information they 
have acquired through a wealth of experience. Using this offline gives us access 
to non-local processes, weighing many different considerations at once, or mak-
ing inferences by moving through a high dimensional semantic space. The 
general-purpose recombinability of concepts allows us to formulate entirely new 
possibilities. Content-general, broadly-logical reasoning allows us to perform 
useful inferences on novel representations, even when the possibility repre-
sented falls far outside the range of experience for which we have acquired 
content-specific dispositions. That is valuable when we encounter a novel situa-
tion. We can represent it, remember it, and plan with it. It is also helpful when 
planning in a familiar situation, because it allows us to formulate new plans of 
action that proceed through novel world states. The connection of concepts to 
special-purpose informational models allows us to attempt to make sense of a 
novel conceptual representation (e.g. pursuing a light beam at the speed of light) 
by constructing a suppositional scenario in the cognitive playground. Humans’ 
hybrid system gives us a practical way of taking good decisions. We can use a 
variety of perspectives to retrieve from memory considerations that may be 
important, and that are contextually relevant in different ways. We can use rea-
soning to work out the consequences of these factors: the likely outcomes of 
various actions we could take, how other people would react, and how the out-
comes strike us affectively. Finally, we can rely on systems that perform multiple-
constraint satisfaction to weigh these factors in parallel to produce an overall 
assessment or feeling about what to do, in a way that step-by-step reasoning 
cannot accomplish on its own.
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The capacity for content-general reasoning from stored memories brings in 
train the frame problem—the problem of retrieving a tractable set of relevant 
representations to reason with. Because concepts interface with special-purpose 
systems, conceptual thought can recycle the context-specific if-then dispositions 
of special-purpose informational models as a method to perform relevance-based 
retrieval. Thinking with concepts in this hybrid way thus throws up the frame 
problem but also contains a partial solution. It is this combination of features that 
makes human cognition so powerful. Or so I suggest.

So what exactly is the special ingredient? There isn’t one—it’s the way they’re 
combined. The picture is slightly complex, but let me oversimplify briefly for 
emphasis. What sets humans apart is not performing complex computations with 
organized representations and structured representations. Many other animals 
have special-purpose systems which do that. And in recent years we have seen that 
deep neural networks—given large computational resources and enormous 
amounts of training on huge databases of information—can use this computa-
tional principle to solve what were always thought to be really difficult tasks. 
Trained if-then dispositions are in one sense a simple solution, but they can pro-
duce behavioural performance that exceeds the skill of humans in many domains. 
Most deep neural networks do not yet engage in planning, but that doesn’t set 
humans apart either. As we have seen, several non-human animals can do prospec-
tion or model-based forward planning before deciding what to do. The capacity 
for general-purpose, broadly-logical reasoning may set us apart from other ani-
mals. Non-human animals either lack it entirely or have it in a less sophisticated 
form. However, this is not unique to us either. Computers have it in spades—it is 
the whole basis of classical computation. But they haven’t yet managed to match 
human flexible planning and fluid intelligence in a generally applicable way.

What sets us apart from all of these, both other animals, and computing 
machines (at least for now), is the ability to link up highly-flexible general-
purpose recombination and content-general reasoning with special-purpose 
informational models. Engaging in thinking in this hybrid way is plausibly a 
human speciality. Concepts are at the heart of it. Conceptual thinking is the 
engine of distinctively human cognition. Concepts are keys that unlock the 
mind’s resources.

Chapter Summary

9.1  Deliberating with Concepts: The Picture

Research on concepts has focused on categorisation; work on inference has 
focused on reasoning, taking place step-by-step between conceptual representa-
tions; the role of special-purpose resources has been to support an alternative 
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theory of concepts, which has not become central. The book aims to unify these, 
with concepts at the centre, linking content-neutral concatenation and reasoning 
with content-specific computations, models, and representational structures; the 
task is to show how these diverse resources can be integrated.

(p. 212)3 In my picture, information represented in special-purpose systems 
does not need to be re-represented with concepts in order to be inferred with in 
deliberation. Inferential steps take place outside (hippocampal spatial map) or 
inside (mental rotation) the cognitive playground, but with only the conclusion 
of the inference, not the intermediate steps, represented using concepts. The cog-
nitive playground supports both step-by-step reasoning, and non-local infer-
ences; the latter may take into account relational or configural aspects of the 
model, or may process many features in parallel; it is a major omission not to 
include the latter in our picture of deliberation. (p. 213) Abductive, content-driven 
inference is integral to my picture.

Deliberation overall is type 2, deploying directed attention and relying on 
working memory, and is made up of a series of automatic, type 1 steps. This 
account shows why deliberation is model-based (§1.2): (i) inferring with an infor-
mational model of the world, (ii) calculating over those representations in work-
ing memory, (iii) making choices that are stimulus-independent, (iv) exhibiting 
immediate sensitivity to a change in the value of outcomes. (p. 214) In short, 
deliberation involves reasoning with concepts but goes much wider, into special-
purpose systems and rich informational models in the cognitive playground; that 
dissipates the mystery of how we perform abductive, content-driven inferences.

9.2  Concepts Look Both Ways

Concepts integrate these diverse resources, interfacing between the special-
purpose and the general-purpose. Concept compositionality involves: an ability 
to hold in working memory labels that are connected to bodies of stored informa-
tion, to combine them compositionally, and to do so using general-purpose com-
positional principles, unconstrained by the stored information to which each is 
connected. This allows for the formulation of novel conceptual representations; 
what brings them to life is the ability of working memory labels to drive the con-
struction of suppositional scenarios and inferences over special-purpose infor-
mational models. (p. 215) This allows deliberate thinking to rely on information 
encoded explicitly or implicitly in special-purpose informational models, while 
also transcending their assumptions and limitations.

3   Each sentence of the summary corresponds to one paragraph. Page numbers indicate where the 
paragraphs begin.
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In special-purpose informational models using structural representations or 
organized representations, the structures that make them computationally useful 
also impose limitations on what they can represent; concepts are not so-restricted. 
Concepts allow us to think about a relation abstractly, without representing any-
thing about the relata between which it obtains. (p. 216) This allows us to formu-
late analogies between any two relations.

The same contents that are represented in special-purpose systems can also be 
represented by concepts. Concepts are, however, content neutral vehicles, thus 
representing in a different way from special-purpose representations that form 
organized families.

9.3  Tokening a Concept

(p. 217) Taking a concept to be an occurrent representation, rather than a stored 
body of information, what it is to token a concept is to token a working memory 
label, and thereby to retrieve and activate a small subset of the information to 
which the label is connected in long-term memory. We can think of the token 
concept as being just the working memory label, or the label plus retrieved infor-
mation; if the latter, type-identification proceeds at the level of the label, not the 
information retrieved. (p. 218) There is thus a sense in which a concept is realized 
in a context-dependent manner—the representations that are retrieved, and then 
guide inference, vary substantially from occasion to occasion. My approach sits 
naturally with concept hybridism; it is compatible with pluralism, if it turns out 
empirically that there are different bodies of stored information about a category 
that are not connected in memory. Either way, it is important not to elide the two 
notions of concept: as a representation in occurrent thought, and as a collection 
of information stored together in memory.

9.4  Doing in Thought

Using concepts in deliberation is something the thinker does; I have not offered 
a positive account of mental agency, but my picture does contain many of the 
elements that will be needed for a non-homuncular account. (p. 219) The strat-
egy is to show how the interaction of various psychological capacities, each 
explicable in its own right, gives rise to the phenomena that are characteristic of 
mental agency.

Deliberate thinking uses directed attention, shaped by the thinker’s goals and 
values, to disengage from current stimuli, and to maintain and manipulate repre-
sentations in working memory. Inferential processes in the cognitive playground 



Chapter Summary  227

can reflect the thinker’s current goals and values. (p. 220) Deliberate thinking 
takes place in an arena where the thinker appreciates what is going on, not just in 
the sense that it operates in part in consciousness (i.e. in an interconnected global 
workspace), but also in the sense that it is subject to metacognitive monitoring 
and control, allowing the agent better to align their thinking with norms, individ-
ual or social.

Thus, my picture already contains many of the elements that will be needed to 
formulate an account of endogenous control as consisting in the operation of a 
complex psychological capacity.

9.5  The Unreasonable Power of Human Cognition

Why is the human species so special? (p. 221) There is no magic ingredient, but 
there are probably only a small number of factors that are most important; this 
list should include our capacity for thinking with concepts. Having representa-
tions is a clever trick in itself, widespread in the animal kingdom. More sophisti-
cated still is the capacity for planning, which allows ‘our hypotheses to die in our 
stead’. Planning is especially flexible when it is done with conceptual representa-
tions, with their power of general-purpose recombination, when used with 
directed attention and substantial working memory capacity. (p. 222) I remain 
neutral on the phylogenetic and ontogenetic sources of these capacities; there is 
doubtless some mix of developmentally canalized outcomes based on gene-based 
evolution, culturally-inherited adaptations, and individual learning.

Computers can also engage in logical reasoning and step-by-step forward 
planning, and they can laboriously learn if-then solutions to repeatedly-presented 
problems. Some other animals have access to both approaches, deploying each in 
its appropriate domain: act fast when the state is familiar or an immediate 
response is crucial, use an informational model to plan ahead when you can; 
human cognition is not limited to switching between the two approaches, but can 
employ both together in a hybrid, since we have a domain-general way of making 
use of special-purpose resources in our planning. (p. 223) The engine of that abil-
ity is conceptual thought, which gives us both the capacity for reasoning and at 
the same time the ability to go beyond reasoning. We can represent an entirely 
novel possibility conceptually and then attempt to make sense of it by construct-
ing a suppositional scenario from special-purpose informational models; the 
hybrid architecture gives us a practical way to take good decisions. (p. 224) 
Content-general reasoning faces the frame problem; thinking with concepts in 
this hybrid way allows us to recycle the assumptions and constraints inherent in 
special-purpose informational models as a partial solution.
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What’s special to humans is not any individual ingredient—each is displayed 
by other animals and/or computing machines—but the way they’re combined. 
What sets us apart is the ability of concepts both to enable general-purpose 
recombinability and content-general reasoning, and to link up with special-
purpose informational models: concepts are the keys that unlock the mind’s 
resources and the engine of distinctively human cognition.

Concepts at the Interface. Nicholas Shea, Oxford University Press. © Nicholas Shea 2024. 
DOI: 10.1093/9780191997167.003.0009
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