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Preface

During my time as a data mining and machine learning researcher
at the IBM Research laboratory in Rüschlikon (Zurich), I heard that
Bob Bishop, formerly Chairman and CEO of Silicon Graphics, was
visiting the lab to present his vision for an International Centre for
Earth Simulation - ICES Foundation. Luckily, I was able to attend
the lecture, and was very impressed by the ICES mission of building
towards a holistic understanding of the Earth. The idea stuck in my
mind for several years, and generated many discussions with Bob Bishop,
which led to my joining the ICES Foundation as Chief Data Scientist
in 2018. ICES seeks to add value through the horizontal integration of
scientific disciplines, complementing the vertical specialized knowledge
that is generated in universities. Building bridges between disciplines
is thus key to our approach. An important step in this direction is to
gather experts from multiple disciplines, and challenge them to think
outside of their specializations, developing a common understanding and
language, which is the purpose of the ICES Biennial Workshops, the
seventh of which will be held in Geneva in October 2024. One thing that
all disciplines have in common is that Artificial Intelligence has arrived
fresh on the scene, offering a new and fast evolving set of powerful yet
quirky tools. It became clear that keeping track of AI advances, and
of their uses in science and technology, was an important and valuable
service that I could contribute. This book and its companion website
provide the reader with a compact presentation of AI fundamentals, as
well as with an overview of present and possible future applications of
AI, especially in the Earth sciences. We do not dwell on specific technical
or implementation details, but rather aim at an increased understanding
of the possibilities that AI opens up, as well as of some of its current
limitations and deep pitfalls, and possible future directions. The website
will be regularly updated as new developments arise, likely at an ever
accelerating rate if the past few years are any indication.

Nyon, Switzerland, June 2024
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Foreword

AI/ML has taken the world by storm and is causing disruption at all
levels of society and science. Fortunately, it comes as we transition into
the new era of data-intensive computing, and a corresponding retake of
computing architecture itself. Thus, there is the wonderful convergence of
possibilities – voluminous Earth Observation data, new systems hardware
choices, and powerful new software prediction tools.

Like all eras of rapid innovation, we can expect to see a hybrid world
of young and old blended systems as this global transition forges ahead.
But most of all, we need clear thinking, clean definitions, yet adaptability
and flexibility, as we lay down our roadmap of opportunity.

This book, Artificial Intelligence and Systems of the Earth, is a major
contribution to the road ahead. It is a clear and precise summary of
how these matters fit together at the fundamental level, and behaves as
an over-the-horizon radar so to speak, of what’s in store for both the
professional and the public at large.

Combining developments of the recent past with breakthroughs of the
present day, author Dr. Michel Speiser has built a bridge to our future –
a book with countless chapters yet to be written, thus the parallel online
version.

Emanating from work at the Geneva-based ICES Foundation, Dr. Speiser
craftily helps us achieve that all elusive holistic view of Planet Earth,
with its multitude of interacting and intersecting subsystems, co-existing
and co-evolving within Nature at the micro, meso, and macro levels.

The Symbiosis of Science, Society and Nature is at the heart of our
mission in the ICES Foundation, and we stand in awe of the immensity
of the challenge.

Within such complexity, how exactly do we achieve that perfect balance
and harmony on Earth for all life forms - that dynamic equilibrium and
confidence in the predictability of our future? No matter how you answer

xiii



xiv Foreword

such important questions, you will be amazed at the speed of progress
brought about by the convergence of capabilities and insights already
achieved by the AI/ML revolution that is now upon us. By means of this
book, help is truly at hand.

Bob Bishop
President & Founder
ICES Foundation
https://icesfoundation.org

April 2024

https://icesfoundation.org
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1
Introduction

Artificial intelligence, machine learning, and deep learning are terms
that many scientists have seen appear and grow in the practice of their
discipline, including those who work to understand the Earth and its
many systems and processes. The reasons for this AI ‘wave’ are numerous,
chief among them the fast progress in predictive ability achieved by deep
learning since the early 2010s, which can deal with images, text, as well
as numerical and other data types. This versatility also extends to the set
of problem domains; AI/ML techniques are almost as widely applicable
as computing itself, and wherever there is data to be learnt from, the
odds are that some deep learning model is learning from it. We cover key
concepts and definitions of these new technologies in Chapter 2. Much
like the rest of this book, the coverage is not meant to be comprehensive.
Rather, it aims to provide the reader with a sufficient vocabulary to
navigate the bestiary of models in current use, and to get a glimpse of
the avenues and opportunities that could open up as a result. The main
objective of the book is not to answer ‘how to’, but ‘what if’.

While broadly applicable, AI is antithetical to science in several respects.
Unlike a computer model built from first principles, an AI model can be
hard to interpret (often called a ‘black box’), which makes it difficult to
trust. It is also thoroughly unparsimonious in the number of parameters,
going against long-established scientific and statistical practice in this
aspect as well. Furthermore, it struggles to provide adequate uncertainty
quantification of its results, which is usually a scientific requirement. In
the face of such serious objections, why do scientists even consider it as
a potential tool in the scientific toolbox? The answer is simply that the
predictive capabilities of AI are so advanced, that dismissing it is hardly
an acceptable option.

Consequently, computer scientists are working diligently to smooth out
some of AI’s rough edges outlined above, and exploring how these new
tools can be applied in a sensible and productive manner. Machine

DOI: 10.1201/9781032710525-1 1
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2 1 Introduction

learning researchers in computer science have been proactive in seeking
useful solutions to address climate-related issues [1], and the domain
scientists themselves are equally energetically investigating questions
pertaining to their specialized fields of Earth science, as evidenced by
significant activity in the past few years. For instance, the US Department
of Energy conducted wide-ranging workshops 2021–2022 on the topic
of ‘artificial intelligence for Earth system predictability’1, to determine
how AI could best be used to obtain a substantial improvement in the
predictability of the Earth’s processes [2]. A new journal of the American
Meteorological Society, entitled ‘AI for the Earth Systems’, was launched
and its first issue appeared at the start of 2022 [3]. Its chief editor, Amy
McGovern, recently commented that in her observation, AI in general
was becoming accepted by scientists outside of computer science, as a
way to help augment their capabilities to do foundational science [4].
This sentiment is echoed by the US National Academies of Sciences,
Engineering, and Medicine, which organized a workshop on the topic
‘AI for Scientific Discovery’ in October 2023. Many current scientific
initiatives include a strong AI component, for instance the USMILE2

project aims to produce ML-assisted understanding and modeling of the
Earth system, to name just one project in Europe, and a lot of analogous
activity is taking place in many other jurisdictions, too. We will explore
some applications and challenges in Chapters 3 and 4.

In addition, AI and high-performance computing (HPC) are converging,
because both require large amounts of computational resources, and
scientific HPC simulation executions increasingly comprise AI workloads.
Among several examples, we may cite the MAELSTROM3 project, which
aims to build HPC AI for weather and climate forecasts. Hardware is a key
part of the equation, as AI increasingly requires computer architectures
that are able to deal with efficient data movement, beyond mere number
crunching. Therefore, it becomes relevant to understand the current state
of hardware, and possible directions in which hardware will evolve in the
future, to envision some possibilities that will open up in this new space.
Chapter 5 looks into such hardware questions, including the possible
contributions of quantum computing.

1https://www.ai4esp.org/
2https://www.usmile-erc.eu/
3https://www.maelstrom-eurohpc.eu/

https://www.ai4esp.org
https://www.usmile-erc.eu
https://www.maelstrom-eurohpc.eu
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To follow up on the computer hardware considerations, we reflect on
some fundamental questions in Chapter 6. Under which circumstances
can we trust AI, in what ways can it be a useful and reliable tool in the
scientific process, and which scientific rules of the road need to be revised
in consequence? AI will not replace the established pillars of science:
theory, experiments, and simulation. Yet, it can provide support to these
pillars, and possibly constitute a pillar of its own. We approach such
questions by comparing and contrasting AI models with conventional
computer models, which were similarly scrutinized at the end of the
twentieth century, when their use in science became widespread.

Chapter 7 explores ‘generative models’, a new breed of deep learning
models that is fast evolving in present times. The objective of generative
AI is to learn rich internal representations of datasets, which then enable
the generation of novel datapoints. The ability to generate high-quality
text has already burst onto the mainstream scene in the form of ChatGPT,
a so-called large language model that has been trained on a large fraction
of all text ever written. Similarly, image generation tools that produce
pictures based on the user’s input text are becoming more capable and
finding experimental usage, with video generation becoming the new
frontier. Although generative AI is still nascent, it offers interesting
capabilities for scientific research.

Finally, Chapter 8 covers a different branch of the AI tree, known as
causal models. Quite unlike deep learning, causal models are predicated
on delivering fully interpretable results. They are grounded in probability
theory, combined with causal hypotheses and logic, and they enable
so-called causal inference: computing effects from causes, and vice-versa.
We describe the main ingredients in causal models and discuss where
they have been demonstrated to provide useful insight into the causal
structure of Earth systems, e.g. in analyzing the surface pressure and
temperature anomalies in the Pacific Ocean.



2
AI refresher

This present chapter covers definitions and descriptions of some important
concepts in artificial intelligence (AI), machine learning (ML), and deep
learning (DL), with a focus on the latter of the three. It is best read
sequentially, since later entries can refer to earlier ones. We assume
some prior exposure to the central ideas and do not aim to provide
a comprehensive introduction. For a self-contained treatment of these
subjects, we refer readers to the following textbooks: Russel and Norvig
[5] for AI, Bishop [6] for ML, and Fleuret [7] and Goodfellow et al. [8]
for DL.

2.1 Artificial intelligence
A definition of artificial intelligence (AI) is challenging to come by. In
fact, we have no clear, universally accepted definition of intelligence in
general. Most dictionaries relate intelligence to the ability to learn or
acquire knowledge, and/or to apply knowledge judiciously in order to
achieve one’s objectives, but there are many variations on this theme, and
such definitions lean on other words which are themselves hard to define.
However, assuming that we have some definition of intelligence, AI can
be defined as the intelligence exhibited by a machine. That is, AI is often
interpreted as a contrasting term, to describe a type of intelligence which
differs from ‘natural intelligence’, which is intelligence as we perceive it in
humans (or animals). This is a fuzzy notion, especially because natural
intelligence has a tendency of being redefined, as machines progressively
acquire new capabilities. For example, the author recalls attending a
university lecture wherein it was claimed that the game of Go would
likely never be solved by AI, as it would require true intelligence. A
few years after AI’s victory over the best human players (more detail
in Section 2.13), the game of Go is already beginning to be referred
DOI: 10.1201/9781032710525-2 4
This chapter has been made available under a CC BY license.
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2.2 Machine learning 5

to as a relatively simple and low-dimensional game compared to newer
frontiers, such as the real-time strategy game Dota1. Alan Turing, who
contributed foundational ideas to computing and AI long before the
latter became a practical reality, eschewed an explicit definition of AI.
Instead, he proposed a test of intelligence; a machine could be deemed to
be intelligent if humans were unable to tell it apart from a human, based
on its written output.

In common parlance, the term ‘AI’ is most often used synonymously with
its latest, most successful subfield, which at the moment is deep learning.
In scholarly settings, AI designates an entire academic discipline, the
term having been coined by mathematician John McCarthy, at a seminal
workshop held at Dartmouth College in 1956. It refers to the branch of
knowledge which studies the use of computers in applications beyond
rote calculation and tabulation tasks. Over the years however, numerous
technical approaches have been pursued in the quest to make computers
intelligent, some of which are depicted in Figure 2.1. Many earlier AI
efforts attempted to build on formal logic and automated reasoning, and
are often referenced under the term of Expert Systems. Machine learning
is another subfield of AI.

2.2 Machine learning
Machine learning (ML) is a subfield of AI, aiming to create systems
which are able to learn from data. Typically, an ML model is trained
by iterating over data, updating the model’s parameters in order to
gradually improve its accuracy on a given task. We distinguish between
supervised and unsupervised learning. In supervised learning, the aim
is to learn a mapping from input data to output data, where both are
supplied to the algorithm. The desired outputs are referred to as labels.
A popular example of a supervised learning task is, given a picture of

1Dota stands for ‘Defense of the Ancients’, which is a user-modified version of the
online game Warcraft III: Reign of Chaos. The sequel, Dota 2, is among the most
popular online games, and is played in ‘e-sports’ tournaments involving millions of
US dollars in prize money, cf. https://en.wikipedia.org/wiki/Dota_2. It is deemed to
be highly complex because 1) the player has a very large number of possible moves,
2) the game is real-time rather than turn-based, and 3) each player has only partial
knowledge of the game state, rather than a view of the entire board.

https://en.wikipedia.org/wiki/Dota_2
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AI: Artificial
Intelligence

Expert
Systems

ML: Machine
Learning

Random
Forests

ANN: Artificial
Neural Networks

Single-Layer
Perceptrons

Multi-Layer
Perceptrons

DL: Deep
Learning

SVM: Support
Vector Machines

Evolutionary
Algorithms

FIGURE 2.1 Hierarchical representation of AI and its sub-categories.
This is non-exhaustive and is mainly intended to illustrate the place of
deep learning within it.

either a cat or a dog, output the label ‘cat’ if the picture contains a cat,
otherwise output the label ‘dog’. Note that a label does not need to be
text, it could also be a numerical value, or a picture, or of any other data
type.

In unsupervised learning, no labels are available. The goal in unsupervised
learning is often to produce a simplified description of the data. The
canonical example is that of clustering: dividing the input datapoints
into a certain number of groups, such that points within a group are
more similar than points across groups. When the goal is to learn the
internal structure of the data (such as next word prediction in text, as
done by large language models), it is often called self-supervised learning
because the labels are given by the data itself. An intermediate category
of ML between supervised and unsupervised learning is referred to as
semi-supervised learning, where we wish to learn a mapping from inputs
to outputs; however, only a fraction of the inputs is labeled.
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Mathematically, a supervised learning model can be described as:

ŷ = f (x, θ) (2.1)

The term model refers both to the function f and to the parameters θ.
We provide input data x (e.g. the pixels of an image) and obtain the
model’s predicted output ŷ (e.g. the label ‘cat’). The model learns to
produce good predictions, by being shown many pairs of examples (x, y)
of input with true output. Often, the function f is fixed, and the training
consists in finding values for θ such that predictions ŷ are as close as
possible to the given labels y, also called ground truth. For simple models,
such as in linear or logistic regression, the best values for θ can be found
using a single, closed-form expression. For more complex models, iterative
algorithms are usually employed, which are generally not guaranteed to
converge to an optimal solution.

2.3 Training data
In machine learning, the data is typically split into disjoint subsets,
called training set and test set. Often, there is also a third subset, called
validation set. The training set is used to fit the model, that is, the model
is allowed to ‘see’ the training data in full. The optional validation set
can be used to assess when to stop training the model, or to select one
among several competing models. The final model’s performance2 is then
estimated by applying it to the unseen test set.

A short note on the word data: although data is originally the plural
of datum (which is defined as a piece of information), most of the ML
literature uses data as a singular noun, and this book follows the same
convention.

2.4 Stochastic gradient descent (SGD)
The most commonly used algorithm in machine learning is stochastic
gradient descent (SGD). It proceeds by computing the gradient of the loss

2In machine learning, the performance of a model refers to its accuracy and
precision in fulfilling the task, rather than to its speed or efficiency.



8 2 AI refresher

function (to be minimized) at each optimization step, not unlike Newton’s
method. The loss function measures3 the difference between predicted
outputs ŷ and true labels y. The parameters are slightly modified in
the direction of the gradient, in order to slightly improve the accuracy
of the model. The ‘descent’ part of the name indicates that we follow
the gradient downwards, continually decreasing the loss/error. The word
‘stochastic’ refers to the fact that we only use part of the data at each step
of the algorithm, a small batch of randomly chosen data points. While
gradient-based methods can be applied to a large class of models, in the
case of neural networks, gradients are calculated using an efficient method
called backpropagation, which implements the chain rule for differentiation.
There exist several variations of SGD, called RMSProp [9], AdaGrad [10],
Adam [11], etc. Gradients can be calculated automatically for nearly any
given program, for example using the Autograd [12] reverse automatic
differentiation system for the Python programming language.

2.5 Overfitting
In ML, we fit a model to data, using an algorithm such as SGD. In the
supervised learning setting, this means that we search for parameter
values θ such that the predicted outputs ŷ are as close as possible to
the true labels y given by the data. In this process, we can end up in
the situation of overfitting, that is, we may find parameter values which
are too closely molded to our particular dataset, which can happen if
the function f has many degrees of freedom compared to the complexity
of the data. This is illustrated in Figure 2.2, where three models (three
different functions f) are fitted to the same data. In the leftmost panel,
the model has too few degrees of freedom to capture the shape of the
data, which is an underfitting situation. In the rightmost panel, we see the
overfitting situation; the model is powerful enough to capture the shape
of the data, but has in addition overzealously fitted small fluctuations
that are likely due to sampling noise. The middle panel depicts a proper
fit, which is the desired outcome in any ML application. Of course, in

3The loss function is usually a smooth version of the quantity that we wish to
optimize. For example, in a classification task, the standard loss function is called
cross-entropy, and it is used in place of the classification error rate because the
gradient of the latter is uninformative (mostly flat with large jumps).
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FIGURE 2.2 Illustration of the concept of overfitting. A given dataset of
(x, y) points, shown as black dots, is fit with three models of increasing
expressive power. Left: underfitting situation, the model is not expressive
enough to capture the data’s main shape. Middle: proper fit. Right:
overfitting situation, the model attempts to capture minutiae of the
dataset which are likely due to sampling noise.

general, a visual inspection of the fit is not feasible, especially when the
dataset is very large and/or high-dimensional. How, then, does one detect
when a model overfits? This can be achieved by observing how accurate
the model is on a validation set, which is a part of the dataset that has
been withheld from the training set, i.e. which was not used to train the
model (cf. Section 2.3). When the model keeps getting more accurate on
the training set, but starts getting increasingly worse on the validation
set, it is a sign that the model has begun to overfit.

There are several techniques to avoid overfitting. The obvious solution
would be to simply choose a function f that is appropriate for the
complexity of the dataset. However, this is a very difficult thing to do
in general, beyond simple situations. Several practical techniques are
described in this document.

2.6 Regularization
A common technique to avoid overfitting is called regularization. It
consists in adding a term to the loss function, to represent the degrees of
freedom used by the model’s parameters. Loosely speaking, the resulting
loss function penalizes the model if it uses too many degrees of freedom,
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following the principle of Occam’s razor4. This technique is broadly
applicable because it makes no strong assumptions about the type of ML
model being used; however, it can be difficult to select a good functional
form and weighting of the regularization term.

2.7 Artificial neural network (ANN)
An artificial neural network (ANN), often just called neural network, is
a very commonly used ML model. Its design is inspired by biological
neurons, which are connected together, and get triggered if their inputs
are sufficiently active. Mathematically, an artificial neuron is composed
of just two things: 1) a linear combination of inputs, and 2) a non-linear
function applied to this sum. This corresponds to the following expression:

output = activation

(
θ0 +

P∑
i=1

θi × inputi

)
(2.2)

where the neuron receives a fixed number of inputs, and associates with
each inputi a parameter (or weight) θi. Note that a neuron’s input can
come directly from data (e.g. a pixel value) or from the output of another
neuron. The term θ0 is referred to as the bias of the neuron.

The activation function is a non-linear function. Historically, the sigmoid
and tanh functions were predominantly used, but presently, piecewise
linear functions such as the rectified linear unit (ReLU) [13], [14] are the
most common, cf. Figure 2.3.

2.8 Deep learning (DL)
In a neural network, multiple neurons are connected together, the outputs
of one neuron being fed as input into others. Neurons can be arranged in
layers, such that the input data gets fed into the first layer, the outputs

4The possibly apocryphal Einstein quote, ‘Everything must be made as simple as
possible, but no simpler’, describes the principle of Occam’s razor, also known as the
law of parsimony. This will be discussed in Chapter 6.
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FIGURE 2.3 Non-linear activation functions commonly used in artificial
neural networks. Left: Sigmoid function. Right: Rectified Linear Unit
(ReLU).

of which get fed into the second layer, and so on, and the model output is
provided by the final layer. The term deep learning (DL) refers to ANNs
consisting of many layers. Such models were originally difficult to train
efficiently, but the increased computational power of GPUs and ASICs,
as well as algorithmic improvements, has made DL practical since the
early 2010s; GPUs are extremely well suited to perform computations
on matrices and tensors5 (more on this in Chapter 5). The depth of the
model is increased to enable the handling of complex data. For example,
in the context of image data, the layers are able to represent concepts of
increasing hierarchical aggregation. The first layer might capture basic
concepts like edges and contrasts, the second layer might combine those
concepts to capture simple shapes. These are in turn combined into more
complex shapes, until finally in later layers, the neurons are able to detect
a cat, or a dog. Such high-level ‘features’, such as cat or dog, emerge
by themselves, simply by training a deep learning model. Previously,
features were largely handcrafted in a labor-intensive process known as
feature engineering, but deep learning has automated this and made it
much more efficient.

5In this book, a tensor is an n-dimensional array of numbers. For example, a
matrix is a two-dimensional tensor. Tensors are essential building blocks of deep
learning, used to store both parameters/weights and data.
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The architecture of a DL model refers to the types of neural layers used
in the model, and to the topology in which they are interconnected.
Below we list several common architectures, such as the CNN and the
transformer.

2.9 Dropout
Dropout is an important overfitting avoidance technique in DL. It consists
in disabling a random subset of the neurons during each training step. This
forces the model to build in robustness and redundancy, and drastically
reduces overfitting, even in models with an immense number of parameters
(at the time of writing, the size of the largest models is crossing the trillion
parameter mark [15], and the trend is towards ever bigger models).

2.10 Convolutional neural network (CNN)
One of the most common DL architectures is the convolutional neural
network. The term refers to a specific way in which neurons in one layer
are connected to neurons in the subsequent layer(s) of the network. The
simplest architecture is called fully connected: the output of every neuron
in layer k is connected to the input of every neuron in layer k + 1. The
fully connected approach results in a very large number of parameters,
and does not make use of the fact that pixels which are close to each
other are more likely to be related. By contrast, in a CNN, a neuron in
layer k + 1 receives as input only a small ‘window’ of pixels from layer k.
In addition, the weights are the same for each window, which is referred
to as weight sharing. These two architectures are compared in Figure 2.4.
The convolutional concept can also be extended to higher dimensions;
in fact, the most common application of CNNs has been to process 2D
images since their inception [16], [17], cf. Figures 2.5 and 2.6. There are
many variations of convolution, including the addition of padding around
the input in order to obtain an equally sized output, or only applying the
filter at each n-th position of the input (n is then called the stride), etc.
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FIGURE 2.4 Two neural network architectures. Left: fully connected.
Every neuron in layer k feeds into every neuron in layer k + 1, and each
connection has its own specific weight parameter, represented by the
variety of colors. Right: convolutional (1D). Each neuron in layer k + 1
receives input only from a small neighborhood of neurons in layer k.
Moreover, the incoming set of weights is identical for each neuron in layer
k + 1.

FIGURE 2.5 Simplified illustration of a single two-dimensional convolu-
tional layer of depth one. The value of an element in the output tensor is
computed based on a small neighborhood of elements in the input tensor,
here using a window of size 3×3. A convolutional layer typically contains
many filters and the input tensor can be of arbitrary depth, as shown in
Figure 2.6.
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FIGURE 2.6 Illustration of the full computation performed by a 2D
convolutional layer. This layer has eight sets of weights (also referred
to as eight filters), numbered 1 to 8. The filters are size 3×3 and they
have the same depth as the input tensor. Each filter is used in turn,
in combination with the input tensor, to compute a slice of the output
tensor, as indicated by the colors. This image is a frame taken from an
animation, after filters 1 to 5 have already been applied, and filter 6 is
being processed. At this moment, the filter is being multiplied by the
highlighted section of the input tensor, and the nonlinearly transformed
sum of this calculation is stored in the highlighted element of the output
tensor. Once completed, the output tensor will have depth 8, the same
as the number of filters. The full animation, along with other excellent
deep learning animations created by Brad Klingensmith, can be viewed
at https://animatedai.github.io.

https://animatedai.github.io
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2.11 Recurrent neural network (RNN)
Typically, neural networks are connected in a feed-forward topology, one
layer being connected to the next, without ‘loops’ returning to a previous
layer. Networks which contain such loops are called recurrent neural
networks (RNN). Such networks are much more difficult to train than the
feed-forward kind, since the loops can lead to numerical challenges in the
learning process. Large gradients get even more amplified, while small
gradients quickly go to zero, both of which impede a smooth gradient de-
scent process. Despite this challenge, RNNs have seen significant research
interest, because of their capability to handle variable-length inputs and
outputs, as is the case for example in text translation from one language
to another; sentences can be of any length, and the length of a French
sentence is often not the same as that of its English equivalent. This class
of learning problems is often referred to as sequence-to-sequence problems.
recurrent neural networks using designs such as Long Short-Term Memory
(LSTM) were the most successful ML models for these tasks for several
years, but they have largely been displaced by alternative architectures
such as the transformer models.

2.12 Transformer
The term transformer refers to a neural network architecture that has
become highly prevalent in the past few years. Transformers were invented
in the context of sequence-to-sequence problems such as text translation
[18]. In particular, they are designed to overcome the limited training
efficiency of RNNs (they can make much better use of GPUs than RNNs
can). However, transformers are not limited to textual data, but are also
applicable to image processing (vision transformers (ViT)) [19], and in
fact they turn out to be strong competitors to the CNN models which
have been dominating that space for a decade. The mechanism at the
heart of transformers is called attention, for it mimics the human ability
to temporarily focus one’s attention to some specific thing while ignoring
others. In particular, it allows the model to fetch the pieces of information
that provide the most relevant context to the particular processing step
being performed, even if that information is not in the immediate vicinity
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of each other. In a typical English sentence, one or a few words carry
most of the important meaning, while the rest of the words act as support
and are much more predictable. Since the real information content is
concentrated in a few select locations, rather than uniformly spread out
over the entire sentence, it makes sense to pay particular attention to
those important locations, and the transformer integrates several such
‘attention heads’ in its design.

2.13 Reinforcement learning (RL)
Reinforcement learning (RL) is an area of machine learning where we
wish to learn a function based on data that is only sparsely labeled.
Typically, the objective is to learn an agent strategy involving a possibly
long and complex sequence of actions, to achieve a certain outcome. For
example, think of a game of chess, wherein one moves many pieces, in
response to the moves of one’s opponent, until ultimately arriving at the
game’s conclusion (win/loss/draw). Learning exactly which combination
of actions – or avoidance of actions – led to a certain outcome, can be very
difficult. A similar challenge arises when designing the control system of
a robot with many degrees of freedom, to perform tasks in a complex
environment. Reinforcement learning is the study of ML approaches in
settings such as these, and has been in the popular spotlight since the
company DeepMind used it in combination with deep learning, in a
series of highly successful game-playing algorithms, such as AlphaGo and
AlphaZero, which are able defeat the world’s best human players in the
game of Go. The word ‘reinforcement’ is borrowed from psychology, where
positive reinforcement refers to the rewarding of good behavior, such as
giving a treat to a dog for obeying a command. This same principle is
applied to learning a good strategy.

RL has been applied to large language models (LLMs) in order to make
them more conversational or otherwise appropriate. A model that was
previously trained on an enormous body of text in an unsupervised
fashion, is then fine-tuned using painstaking human annotations or scoring
for some of its raw outputs. In this context, the technique is referred to
as reinforcement learning from human feedback (RLHF) [20].
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2.14 Generative model
A generative model is a statistical or ML model that approximates the
joint probability distribution P (x, y) of inputs and outputs (or simply
the probability distribution P (x) of inputs), rather than the conditional
probability P (y|x) of output given the input. In the latter case, the
model is usually called a discriminative model. Once trained, a discrimi-
native model is able to tell us whether there is a bird in a given input
picture, whereas a generative model can allow us to sample from the
input distribution, in other words, to generate a (previously unseen) bird.
There are several approaches to creating generative models, including
Generative Adversarial Networks (GANs), Variational Auto-Encoders
(VAEs), diffusion models, etc. Generative models are a fast-evolving area
of research and development, and Chapter 7 is dedicated to discussing
their current state of the art and frontiers.

2.15 Diffusion model
A diffusion model is a generative model that is trained to progressively
‘de-noise’ a noisy image [21]. In this approach, it is very easy to obtain
copious amounts of training data, by simply taking a high-quality image
and gradually adding noise to it, cf. the sequence of images in Figure 2.7,
from left to right. The model is trained to achieve the transformation
in the opposite direction, i.e. from right to left. Ultimately, when the

FIGURE 2.7 Diffusion model illustration. An image is put through
successive additions of noise (left to right). The ML model is trained to
restore the image, which amounts to ’undoing’ the noise addition. Such
a model is then able to generate images from pure noise.
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model becomes proficient at this task, we are able to inject a purely
random signal, from which the model generates a plausible exemplar of
the input distribution (e.g. a bird). This process can take place in pixel
space, as in the illustration, or it can take place in a more abstract space.
A popular approach of the latter idea is called latent diffusion [22], where
the diffusion is performed in a low-dimensional latent space, allowing for
more efficient learning.

2.16 Transfer learning
Transfer learning is a widely applied method in deep learning. It consists
in repurposing a model for a different task than the one that it was
trained for. This capability of DL came as a surprise in the field of
machine learning, where beforehand, a model trained for one purpose
was considered to be largely unusable for another, in most cases.

Training a large model from scratch can require extensive computational
resources and infrastructure, and transfer learning enables the econo-
mizing of such resources, by leveraging prior training in a new context.
Another important motivation for transfer learning is that there may not
be a large labeled dataset available for learning the new task, and using
a pretrained model can strongly reduce the data requirements. Typically,
only a few layers of the deep neural network are significantly modified,
while leaving the other layers largely unchanged. Adapting a model to a
new task in this way is referred to as fine-tuning in the literature.

2.17 Causal model
All scientists are familiar with the adage, ‘correlation does not imply
causation’. We cannot establish a causal relationship between two variables
merely based on an observed statistical association (e.g. correlation)
between them. All of the machine learning techniques previously discussed
in this chapter are based on statistical association. A causal model is a
type of model that aims to capture causal relationships instead. They
are beginning to be used to infer causation from time series data in
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Earth system science [23]. Causal Models are a different branch of AI,
and interested readers are referred to Pearl and Mackenzie [24] for a
conceptual introduction, and to Peters et al. [25] for more technical depth.
This topic will be expanded on in Chapter 8.



3
Current and future applications of AI in
Earth-related sciences

In this chapter, we concern ourselves with some present day and possible
future use of AI in scientific disciplines, mostly relating to the Earth
system, including individual disciplines studying particular aspects of
the planet, such as the atmosphere, the hydrosphere, the biosphere, the
cryosphere, the lithosphere, etc., as well as Earth system science. However,
we also consider technical sciences, which produce the myriad Earth-
relevant datasets, obtained both through in situ observations and through
remote sensing, as well as other disciplines from which inspiration can
be gleaned concerning the productive use of AI.

3.1 Summarization and dimensionality reduction
Methods for summarization and dimensionality reduction have long been
used in the sciences in order to reduce a complex data landscape to a more
tractable level. This includes mathematical and statistical techniques
such as singular value decomposition (SVD), and principal component
analysis (PCA). AI and machine learning methods are increasingly being
applied in the pursuit of this same objective. For example, machine
learning has been used to produce a map of the ocean’s physical regimes.
A classical clustering algorithm known as k-means was applied to a
dataset of physical quantities characterizing sea water dynamics, such
as surface and bottom stress torque, bottom pressure torque, etc. This
produced five clusters, corresponding to geographical areas with distinct
physical regimes [26], [27]. Such a process allows researchers to distill
a complex dataset down to a handful of patterns, which can each be
studied in greater detail.

DOI: 10.1201/9781032710525-3 20
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FIGURE 3.1 Marine eco-provinces mapped with machine learning. Left:
t-SNE projection into a 3-dimensional space of the data set. Right: Spatial
representation of the clusters obtained through DBSCAN (color indicates
cluster ID) [30].

This use case is bound to continue and be built upon with newer ML
techniques. For instance, a more recent algorithm based on deep learning
can be applied towards the same end; the t-SNE [28] deep learning
technique, in combination with a data mining algorithm called DBSCAN,
was used to obtain a map of oceanic ecosystems [29], [30]. This two-step
methodology is illustrated in Figure 3.1.

As discussed throughout this book, the traditionally preferred approach
is to use a simple method whenever possible. In the context of identifying
clusters in data, the clusters are then more interpretable than if a black
box algorithm is used. However, in some cases, complex methods yield
better results, so the question is perhaps akin to the military question
of asking whether a map obtained from an enemy is preferable to no
map at all. Researchers must judge which tradeoff between utility and
interpretability is appropriate in each particular use case.

It should also be noted that AI can serve as scaffolding, to explore a
dataset, and eventually be replaced by a more principled analysis. This
could become an increasingly widespread modus operandi, as forays into
explainable and interpretable AI techniques generate useful and portable
tools. For example, consider the concept of saliency mapping, which allows
the user of a convolutional neural network (one of the most prevalent deep
learning variants in image processing, cf. Section 2.10) to inspect which
areas of an image were predominant in determining the model’s output.
The most common saliency mapping technique at the time of writing is
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FIGURE 3.2 Layer-wise relevance propagation (LRP) applied to
the image of a rooster (left). The neural network correctly classified
the image, and LRP (right) reveals which regions in the image were the
primary influences to arrive at this classification; telltale features like the
bird’s comb and wattle are highlighted. Original photograph by Simon
Waldherr (CC-BY), processed through http://heatmapping.org.

called layer-wise relevance propagation (LRP). The saliency map obtained
by LRP in the case of a generic image classification example is shown in
Figure 3.2. Although this technique is not fully robust (for example, it
is not immune to adversarial attacks with images doctored specifically
to deceive the model [31]), it can nevertheless provide some insight
into the model’s ‘thinking’, and thus provide the user with information
upon which to judge its validity. LRP has been used in the context of
investigating physical causes of climate change with ML. For instance,
two Stanford researchers set about detecting the circulation patterns
of extreme precipitation in images of 500 mb heights and of sea-level
pressure, using as labels the observed precipitation data from stations,
and PRISM precipitation data. They relied on LRP to get deeper insights
into their model’s mechanics [32].

http://heatmapping.org
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3.2 Compiling datasets
The most successful application of deep learning has long been in
the supervised learning setting (cf. Section 2.2), in particular for the
image classification task, or variants thereof. The task amounts to
determining the contents of an image. This is being applied to a
plethora of research problems, such as tracking layers of ice in icesheets
based on radar images [33], detecting the thawing of permafrost [34],
identifying storm-signaling cloud formations such as the Above Anvil
Cirrus Plume [35], or counting trees in the Sahel [36]. AI is indeed
becoming a widespread tool among scientists, and scientific organiza-
tions are taking steps to integrate it into their processes. For exam-
ple, NASA aims to increase the utilization of its image archive, by
implementing ‘search by image’ functionality. This could enable re-
searchers with a research question in mind, but initially having only
a small data sample available, to assemble a larger dataset for study.
Based on a relatively small set of exemplars supplied by the user,
the system is designed to comb through the image archive, and ex-
tract image patches that bear a sufficient resemblance to the exemplars
[37].

In each of these applications, AI acts as an identification mechanism
for phenomena of interest, to be studied further by the scientists. Like
an archaeologist’s shovel, it helps us unearth finds. However, it may
entice us to dig where the ground is softest, or allow us to mostly find
objects that are buried shallowest. In other words, it can introduce
biases. Understanding and handling such biases remains an important
open problem. There is active research on using methods with increased
explainability, such as Topological Data Analysis, applied e.g. for finding
atmospheric rivers [38].

On a related note, machine learning methods for ‘information fusion’ are
being explored very actively in the field of Earth observation, to merge
data originating from a wide variety of sensors, stations, and model
simulations [39]. Combining deep learning with process-based approaches
for Earth system science has been recognized as an important challenge
[40] and is an active area of research.
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3.3 Surrogate models
Many processes of the Earth are very expensive to simulate, especially
at fine resolutions. This is a crucial issue in climate modeling. Processes
such as cloud formation and dynamics have significant effects on the
warming of the tropical oceans; however, they occur at spatial scales that
are orders of magnitude smaller than the width of a grid cell in even the
most powerful climate models; on the largest supercomputers, the latter
only operate on a grid with a spacing measured in kilometers, whereas
the behavior of clouds requires going down to meter scale, or even much
smaller if cloud nucleation physics is considered – see Figure 3.3.

Assuming that computers keep improving at historical rates (more on
this in Chapter 5), we could see global climate models resolving low
clouds by the 2060s [41]. In the meantime, climate modeling makes use
of parametrizations for these subgrid processes. Rather than simulating
physical first principles, a parametrization provides an approximation
of the processes, fitted on empirical or simulated data. The same goes
for numerical weather prediction, where relevant processes that are often
parameterized include shallow and deep convection, latent and sensible

FIGURE 3.3 The grid of a global climate model is currently too coarse
to model important processes (e.g. involving clouds) from first principles.
Reprinted by permission from Springer Nature: Nature Climate Change,
‘Climate goals and computing the future of clouds’, Schneider et al. [41]
© 2017.
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heat flux, turbulent diffusion, wind waves, etc [42]. AI/ML models can be
used in this way, and are increasingly being modified so as to incorporate
physical constraints [43]. Accurately representing convective processes
in climate models while retaining interpretability, is an active area of
research, and some studies attempt to recover low dimensionality by
using encoder-decoder architectures, with a parameter bottleneck in the
mid-section of the model [44].

More generally, AI lends itself to surrogate modeling, when an outcome of
interest cannot be easily measured or calculated. This can be useful in the
case of parameter exploration – if a simulation is expensive to perform,
parameters should be carefully selected, which can be assisted by a much
cheaper surrogate model. Surrogate models are also seeing increased
interest in forecasting applications. The AI4ESP workshop mentioned in
Chapter 1 identified forecasting and understanding convective weather
hazards as promising application areas, such as in the case of tornadoes
[45], wind, hail, or lightning. Researchers from Nvidia, NERSC, and
Caltech report an energy efficiency gain of approximately four orders of
magnitude in their surrogate weather forecasting system FourCastNet,
compared to the baseline weather model (although with lower skill) [46].
Their implementation relies on neural operators that perform much of
the computational heavy lifting in the frequency domain, and make use
of fast Fourier transforms (FFTs). Similarly, Google/DeepMind released
a graph-based neural network (GNN) called GraphCast [47], and Huawei
published its Pangu-Weather model [48] based on a three-dimensional
transformer architecture, also showing remarkable predictive performance
on mid-range weather forecasts.

3.4 Model bias estimation
In the above, we discussed surrogate modeling, wherein part of the model’s
work was delegated to AI. Another level at which AI/ML can be applied is
on top of the physical model, post-processing or analyzing its outputs. A
good example of this is an approach to bias estimation/correction devised
by the European Centre for Medium-Range Weather Forecasts (ECMWF).
Their numerical weather prediction system uses a data assimilation system
called ‘4D-Var’, which performs interpolation in space and time between
a distribution of meteorological observations and the estimated model
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state. This data assimilation process results in some recognized biases,
which can be estimated using a deep learning model that was pretrained
on ERA5 reanalysis data1 before being fine-tuned (cf. Section 2.16) on the
computationally expensive integrated data assimilation system [49]. Their
results showed a reduction of the temperature bias in the stratosphere by
up to 50%. A related application of this idea can be found in studies of
dynamical systems, under the name ‘discrepancy modeling’. A nonlinear
system is partly modeled with physical equations and constraints, and
ML is used to deal with the residuals of this model with respect to
observed data [50]. A comprehensive discrepancy modeling framework
for learning missing physics and modeling systematic residuals, proposed
in 2024, incorporates neural network implementations [51].

3.5 Computational stepping stones
AI methods are applied to an increasing number of domains, to come up
with solutions that would take far too much time with conventional meth-
ods. For example, a DeepMind effort using a model named ‘AlphaFold’
has managed to produce a database of protein structures for over 200
million known proteins [52]. A protein’s final structure is the result of
protein folding, the physical process that translates a polypeptide chain
into its stable three-dimensional form, which is notoriously expensive
to simulate, and even more laborious to verify experimentally, such as
through the use of X-ray crystallography. The structural predictions pro-
duced by AlphaFold may not be accurate in every case, but the database
constitutes a rich resource for identifying interesting proteins, which
can then be investigated through other methods. Possibly, an analogous
approach could be used in the context of fluid dynamics, cloud formation,
etc.

Machine learning is also being used in investigations as fundamental
as determining the composition of subatomic particles. A recent study
produced computational evidence for ‘charm’ quarks in protons, whereas
the standard model only contains the ‘up’ and ‘down’ quark flavors, as
per Figure 3.4. This was achieved by fitting parton distribution functions2

1https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
2A parton distribution function gives the probability to find quarks and gluons in

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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FIGURE 3.4 The established model for the proton contains two ‘up’ (u)
quarks and one ‘down’ (d) quark, but no ‘charm’ quarks.

to thousands of experimental results, using neural networks [53]. In this
case again, AI is a workhorse tool to propel scientific computing forward.
Certain classes of problems encountered in the Earth systems may have
similar characteristics to those cited above, and could therefore benefit
from a similar approach.

For more in-depth coverage of deep learning applied to Earth Science,
and in particular to remote sensing, climate science, and the geosciences,
we refer the interested reader to the comprehensive book by Camps-Valls
and colleagues [54].

a hadron (composite subatomic particle made of quarks, held together by the strong
nuclear force) as a function of their percentage of the proton’s momentum.



4
AI and challenges in Earth-related sciences

Many phenomena under study in the Earth-related sciences demonstrate
aspects that we have come to describe as teleconnections, cross-talk, weak
signals, non-linear dynamics, phase changes, and chaos. In this chapter,
we outline how AI methods (in particular deep learning) are suitable for
dealing with these issues.

4.1 Correlations/teleconnections
Deep learning is very effective at finding correlations in data, which can
be harnessed to achieve high predictive power. Although correlations are
easiest to discover when the spatial or temporal gap between the correlated
signals is small, correlations can nevertheless be learned in the presence
of large gaps as well, such as in the context of teleconnections, when
predicting the regional water cycle based on the low-frequency climate
modes of variability of El Niño Southern Oscillation (ENSO) [55]. While
correlation does not equal causation, causation induces correlation, and
detecting correlation can put scientists on the path of uncovering causal
mechanisms. Increasingly, techniques are being developed which enable
scientists to locate and characterize the underlying sources of correlation.
Hence, while an ML model may not provide a causal explanation, it can
be used to generate leads for investigating underlying physical causes.
The correlation vs. causation question is examined in greater detail in
Chapter 8. However, in the context of ENSO, saliency maps (Section 3.1)
have been utilized to extract interpretable predictive signals from global
sea surface temperature and to discover dependence structure that is
relevant for quantitative prediction of river flows [56]. Machine learning
has also been used to study relationships among teleconnections on a
seasonal timescale, between the North Atlantic Oscillation, the Pacific
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North American Oscillation, the West Pacific Oscillation, and the Arctic
Oscillation [57].

4.2 Cross-talk and weak signals
When multiple phenomena are coupled in their underlying physical,
electro-magnetic, or chemical make-up, through a form of energy transfer,
these phenomena can be considered to act as a single system. We refer to
this energy transfer as cross-talk, and it can occur in many engineered and
natural settings. Two electrical circuits which are in close proximity can
exhibit cross-talk from radiative effects, as can wave trains in the ocean
that emanate from separate storms when they come close and interact. In
such situations, a common approach is to consider each phenomenon as a
subsystem. These subsystems are then assembled into a larger system by
explicitly linking them together through a mechanistic or otherwise well-
known scheme. By contrast, the typical DL approach is to consider the
entire dataset from the viewpoint of a single model, letting the learning
process itself figure out the dynamics of the full system. Alternatively,
outputs for individual subsystems can be provided alongside the full data,
so that the DL network can self-select any useful signals. Such approaches
are proving very effective in engineering, in particular for the removal of
crosstalk where it is typically undesired [58],[59]. In natural settings, the
focus is typically not on crosstalk removal; however, it remains important
to understand when and where it occurs. In biology, crosstalk refers to
the intercommunication between different signaling pathways or cellular
processes, involving the transfer of signals or molecules from one pathway
to another, with a possible effect on the overall cellular response. The
resolution of biological data having in some cases gone down to the single
cell level, deep learning has been applied in the analysis of the resulting
large datasets, with promising results across many topics, including in
single-cell genomics and transcriptomics [60]. The above applications may
provide inspiration to Earth Science practitioners and could be translated
to some ES contexts, in particular in Earth system science.

In numerous scientific investigations, we are faced with weak signals, that
is, signals which are largely or very nearly drowned out by noise, or are so
sparse that they are difficult to measure. For instance, gravitational waves
generated by black hole collisions, travelling across the cosmos, have only
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recently become measurable thanks to LIGO detectors. In addition to
bespoke instruments, such weak signals may need special processing to
become evident, which can take the form of ML and DL1 [62]. We may
also refer to weak signals in the context of scientific modeling, such as
when creating a mathematical model of a phenomenon where we have
discarded higher-order terms as being negligible, in order to make the
model more tractable and easier to study analytically. However, even if
those terms are small in comparison to the dominant ones, they may drive
a system behavior that turns out to be important, especially at different
spatiotemporal scales. In particular as the system approaches a tipping
point in its state of equilibrium, the interplay between small effects
can result in a non-negligible difference in outcome. The compounding
build-up of vorticity, turbulence and eddy currents from sub-micro level
origins into large-scale behavior patterns within the Earth’s oceans and
atmosphere is a commonly recognized process. Neural networks are
showing promise for predicting ocean surface currents accurately, as
compared to physical simulation models [63].

4.3 Non-linearity
As was mentioned earlier, the default preference in science lies with
simpler models, all else being equal. Linear models are among the simplest,
relating a dependent variable with one or more independent variables
through a linear combination. One of the most ubiquitous statistical
models of this kind is the linear regression,

yi = β0 +
p∑

j=1
βjxi,j + ϵi (4.1)

where (xi, yi) is the i-th data point, xi being a vector of size p. Fur-
thermore, βj is the j-th parameter of the model, and ϵi are the noise
terms, assumed to be independent identically distributed Gaussian

1In fact, deep learning can be so sensitive to weak signals that it is susceptible to
so-called ‘adversarial attacks’. There is a subfield of neural networks that examines
how to trick a model into outputting the wrong answer, by purposely making minute
changes to the input data [61] (and how neural networks performing in vulnerable
environments could be made more robust).
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random variables. This model is very popular, because its parameters
lend themselves to a relatively straightforward interpretation, and be-
cause it has a single, closed form solution. Many natural phenomena
involving numerous interacting and evolving processes on the other hand,
cannot be modeled accurately using a linear model. The linear regression
model can be generalized in various ways in order to deal with non-linear
relationships; however, the aforementioned advantages decrease or dis-
appear as models get more expressive, and choosing the correct type of
model for a problem requires a high degree of expertise. In some such
situations, deep learning can be a good alternative. Fitting a DL model
to a large dataset is likely to require less domain knowledge and modeling
proficiency than applying a tailored non-linear approach.

Differential equations constitute another very important scientific model-
ing tool, especially in the context of many Earth related disciplines. Here
again, we need to ‘switch gears’ when non-linearity is introduced. Indeed,
consider a dynamical system characterized by the equation,

ẋ = f(x, t) (4.2)

where x is a vector, and the right-hand side is a vector field that depends
on time t. If the function f is linear in x, the system is completely
characterized by the eigenvalues of f. However, non-linearity in the
function very often results in the absence of a closed-form solution,
making the analysis, simulation or prediction concerning this system
much more difficult. In many cases, in addition to being non-linear, f is
effectively unknown, and machine learning can be a helpful tool to learn
non-linear PDEs from data [64].

4.4 Feedback loops
In nature, we often encounter situations in which one phenomenon in-
creases (or decreases) the frequency or intensity of another phenomenon.
In many cases, this influence is bidirectional – the phenomena affect each
other. We then speak of feedback loops. In particular, if each phenomenon
has the effect of increasing the other in amplitude, the feedback is called
positive or self-reinforcing. As an example, consider the arctic sea-ice
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melting from a warming ocean, decreasing the albedo of the planet,
and causing the sea to absorb more energy from sunlight because of its
darker color than if ice covered, thereby heating the upper ocean layers
even higher, which in turn contributes to further sea-ice melting. Since
feedback loops give rise to correlations, DL will be able to incorporate
this signal for increased predictive power. However, a complex network
of interacting positive and negative feedback loops may be difficult for a
DL model to unravel, especially if it is not trained on a dataset which
covers most possible states, or at least a sufficient selection of states
such that interpolation between them leads to meaningful predictions. In
the absence of sufficiently complete data, explicit modeling of domain
knowledge is likely to be required, and in this regard the blending of
neural networks with physics-informed partial differential equations can
provide an answer [65].

4.5 Phase changes
The most familiar phase changes we encounter are those of water. When
the temperature of water drops to zero degrees Celsius, it freezes; its state
of matter changes from liquid to solid. Melting, vaporization and conden-
sation are also phase changes – physical processes of transition between
various states of matter, which occur when the pressure and temperature
cross certain boundaries, as illustrated in Figure 4.1. More generally, we
can think of a phase change as a qualitative shift in the basic structure
and behavior of a system. Machine learning can be applied to identify
when such shifts occur, which is especially useful when the physical pa-
rameters are not known in detail. Neural networks were used successfully
for the classification of phase changes and states of matter in highly
intricate settings, such as in quantum-mechanical systems [66]. Neural
networks were also applied in combination with atomistic simulations and
first-principles physics to generate phase diagrams for materials far from
equilibrium [67]. Specifically, deep learning was used to learn the Gibbs
free energy, and phase boundaries were determined using support vector
machines (SVM). The obtained ‘metastable’ phase diagrams allowed the
identification of relative stability and synthesizability of materials, and
the phase predictions were experimentally confirmed in the case of carbon
as a prototypical system. Phase diagrams are also of interest at much
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FIGURE 4.1 Phase diagram for water. When the system’s state crosses
a boundary (solid green line), a phase change occurs.

larger scales, such as in the context of the Earth’s climate. Consider
for example the schematic phase diagram shown in Figure 2 of Lessons
on Climate Sensitivity from Past Climate Changes [68], plotting the
planet’s global mean surface temperature versus the atmospheric carbon
dioxide concentration, featuring two disjoint branches: a ‘cold’ branch
for a climate with polar ice sheets, and a ‘warm’ branch for a climate
without them. Potentially, AI could assist in deriving such diagrams, but
in more detail.

4.6 Chaos
Many phenomena in nature exhibit chaotic behavior, making them very
hard to predict. In a chaotic system, the outcome is highly sensitive to
initial conditions, a property that is often referred to as the ‘butterfly
effect’. A tiny change at the start of the process can lead to dramatically
different final results. There is evidence that machine learning can be used
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FIGURE 4.2 Plot of a simulation run of the Kuramoto-Sivashinsky
flame equation. For each timestep on the horizontal axis, the flame front
is described as a vertical strip of colors. Image credit: Eviatar Bach
(Creative Commons CC0 1.0) using source code by Jonas Isensee.

to improve predictability even in such seemingly hopeless cases, as was
demonstrated in the context of the Kuramoto-Sivashinsky equation, also
called the ‘flame equation’ because it models the diffusive instabilities in
a laminar flame front, a simulation of which is shown in Figure 4.2. A
neural network model was trained to forecast the evolution of the system,
without the model having access to the equation itself. The research team
were able to achieve accurate predictions much further into the future
than was previously thought possible [69], [70].



5
AI hardware and quantum computing

Computer hardware is the substrate of AI, just as the biological brain
is thought to be the substrate of natural intelligence. Consequently,
hardware is a key factor determining the abilities and performance of
AI. According to one school of thought, AI is best pursued by imitating
what we observe in biology. Such approaches could include commercial
off-the-shelf (COTS) hardware, or may benefit from bespoke hardware.
We are currently heading down the path of hardware specialization,
although the wave of deep learning was launched on COTS hardware,
which serendipitously matched its computational needs to a tee.

Indeed, the revolutionary deep learning model ‘AlexNet’ [71] was a CNN-
based neural network (cf. Section 2.10), essentially a scaled-up version of
its precursor model proposed some 25 years earlier [72]. AlexNet was im-
plemented to run on Graphics Processing Units (GPUs), which were not
initially germane to AI at all. GPUs were specifically designed to process
and display graphical data, especially in 3D for the computer gaming
sector. They had been steadily growing in performance for two decades,
fueled by the public’s voracious demand for high-powered gaming experi-
ences. At their core, GPUs are built to perform matrix multiplications
at high speeds. As it happens, this is precisely the workhorse operation
underlying all of deep learning. Consequently, AI quickly added itself to
the list of GPU customers, alongside gamers and more recently cryptocur-
rency miners, and the AI use case has been growing ever since, gaining
official support from the major manufacturers. Many of today’s largest
supercomputers are equipped with hundreds or thousands of GPUs, and
deep learning has become a staple scientific workload running on these
machines.
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5.1 Data and compute power
The concept of artificial neural networks, as well as the main algorithm
for training them (cf. Section 2.4), has been around in some form since at
least the 1960s1. However, they remained impractical until fairly recently,
because two chief ingredients were not available in sufficient quantity:
data and compute power.

In order to train a deep learning model from scratch, one typically
requires a large dataset. The public availability of large datasets is a
relatively recent phenomenon, and building such a dataset to get started
was a significant hurdle which would have made this avenue of research
impractical for most researchers. In fact, the AlexNet breakthrough was
achieved in the form of an entry to the ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC) competition, using a subset of one of
the first publicly available large collections of annotated images – over 1
million images, ranging over 1000 image categories [71].

The second ingredient whose availability to the average researcher lagged
far behind the invention of neural networks is compute power, although
high-end computers were available to the defense sector. As was pre-
viously discussed, stochastic gradient descent is an iterative algorithm,
repeatedly cycling over the dataset’s entries, slightly improving the model
at every pass. This incremental training process is highly compute and
memory intensive, and training a model of sufficient size to obtain inter-
esting results would have been beyond the means of most major research
institutes, let alone that of individual researchers. Interestingly, the re-
search on neural networks had lain dormant for so many years, that
the ImageNet winning model was trained on consumer grade hardware,
rather than on a supercomputer.

In a prescient piece entitled ‘The unreasonable effectiveness of data’
[74], prominent Google researchers shared their observation that large
volumes of data, fed into a simple (but large) model, often leads to better
outcomes than spending one’s efforts on building a more intricate and
sophisticated model. They came to this conclusion while working on huge
swathes of textual data, but it turns out to be applicable to image data

1The exact attribution of the invention of backpropagation is not without debate,
but can be argued to date back to 1970 [73].
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as well, and will surely extend to further data modalities. Prominent AI
researcher Richard Sutton reached a similar conclusion and published
the ‘bitter lesson’ [75] that he learned over the course of many decades,
that computation trumps cleverness, because simple models are easier to
scale in the long run. Kaplan et al [76] provided a striking illustration of
this phenomenon in the context of large language models. They showed
smooth relationships between the test loss (i.e. the quality of the learned
model) and the amount of computation put into the training, the dataset
size in number of words/tokens, and the size of the model in number of
parameters. Based on those laws, it even became fairly predictable how
well a model would perform, given a certain compute budget, a training
set of a certain size, and a certain number of parameters. Such predictable
benefits have spurred huge investments in AI hardware, mainly in the
form of GPUs, as well as into custom AI hardware architectures. The
increased investment is highly visible in Figure 5.1, which shows a steep
uptick in computational resources spent on training state-of-the-art ML
models. Where the trend was slightly outpacing Moore’s law up until the
early 2010s, it has grown much more rapidly since then (Moore’s law is
described in Section 5.4).

5.2 Hardware co-evolution
The company Nvidia oriented itself to AI as an important application
early on, releasing their CUDA Deep Neural Network library (cuDNN) of
deep learning primitives in 2014, allowing AI developers to make optimal
use of their GPUs, and feeding the deep learning wave [78]. The rapid
successes of DL across a wide variety of tasks and domains have turned
from individual snowballs into a global avalanche, AI methods now fast
becoming mainstream tools, and accordingly requisitioning a considerable
share of the world’s computational resources. In fact, DL workloads are
now so widespread that they have begun to influence and shape the
development of computer hardware itself. During the Transforming AI
panel at 2024 Nvidia GTC conference, the authors of the transformer
neural network architecture argued that the history of deep learning has
been to ‘build an AI model that’s the shape of a GPU, and now the shape
of a supercomputer’, to which Nvidia’s CEO Jensen Huang replied, ‘we’re
building the supercomputer to the shape of the model’. Chips, circuits
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FIGURE 5.1 Floating-point operations (FLOP) necessary to train ma-
chine learning models, as a function of time. Each point represents a
notable ML system according to the Epoch database [77]. The vertical
dashed line splits the timeline into two segments, before and after the
ImageNet 2012 competition. A regression line is displayed for each seg-
ment. The rate of increase in the computational requirements for model
training has more than doubled since the advent of deep learning.

and systems are designed with AI use cases in mind, making AI a first
class citizen in hardware design considerations, where a decade prior it
was riding on the coattails of computer games. Today, entire datacenters
are built for the sole purpose of making AI more efficient.

Google was a trailblazer in this new industry, stating in early 2016 that
their Tensor Processing Unit (TPU) had been in use in their datacenters
for over one year. The TPU was specifically designed to support their
TensorFlow software framework for training and running deep learning
models. This was their initial design; the fifth generation of TPU, which
was announced in 2023, is orders of magnitude more capable. A host
of companies has joined the fray to produce machines that are highly
optimized for typical deep learning workloads. A key difficulty to overcome
in this respect is the scaling of ML training – how to train ever bigger
models?

Simply splitting the model training across multiple computers, linked
together through a network, introduces inefficiencies. Such a system
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is bottlenecked by bandwidth and latency, meaning that the heaps of
data can’t make their way to the processing elements quickly enough.
This situation has led the company Cerebras to design for maximizing
the amount of computation that can possibly be achieved on a single
semiconductor device. Indeed, their revolutionary concept is to use an
entire silicon wafer2 per unit, rather than follow the industry standard
method of splitting the wafer into hundreds or thousands of chips. The
processing elements on the wafer have the considerable advantage of
being directly connected to each other via sub-micron copper wires,
produced by extremely accurate lithographic processes. In the traditional
approach, transferring data between processing elements frequently means
moving data off one chip and onto another one, via a comparatively much
bulkier interconnect using up space and energy, as well as leading to
additional serialization/deserialization and caching components, whereas
the Cerebras unit is able to shuffle the data around the wafer on shorter
distances and using a flat memory hierarchy, which results in compounding
efficiency gains. In addition, it integrates optimizations in the presence
of sparsity of neural networks (many weights or activations are equal to
zero, resulting in unnecessary computations), which can otherwise be
remedied by additional (sometimes costly) procedures such as pruning
[79]. Indeed, sparsity is an aspect that can crop up in many areas of
AI/ML, modeling, and datasets. Efficiently handling this sparsity, in
particular by avoiding unnecessary computation on zero-valued or null
data, is likely to grow in importance as data sizes reach new heights, and
can be tackled through special treatment at the hardware level [80].

5.3 Training and inference
Thus far in this chapter, we have mainly discussed the training phase of
deep learning. This refers to the stage of creating a model, and teaching
it to perform well on a given task, such as detecting a pedestrian in
an image. The training phase is highly demanding in computational
resources, and is typically done in a centralized setting where resources
may be more abundant.

2Pure silicon for use in the semiconductor industry is usually prepared in a
cylindrical ingot called boule, and a round slice of this ingot is referred to as a wafer.
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Conversely, the inference phase of DL refers to the actual use of the
model, once the training of its parameters is complete, and it is deployed
in an operational setting. In certain cases, inference also takes place in a
centralized setting. A good example of this is the processing of billions
of queries to a large language model (LLM) such as ChatGPT. In many
cases, however, inference is done in a decentralized fashion, close to the
source of the input data. For instance, the pedestrian-detection model
mentioned above could be installed as a component in a car’s driver-
assistance system. This is referred to as edge AI, because it operates
somewhere at the edge of the internet, rather than at its center.

A central training facility requires hefty amounts of compute power,
memory and bandwidth, whereas an inference/edge AI system typically
performs much fewer calculations. However, it needs to be sufficiently
fast to reliably produce outputs for its intended purpose, and has to run
on a fairly small energy budget, so as to avoid draining the battery of the
edge device (mobile phone, electric car, satellite, etc). Because of these
key differences in requirements, the inference phase has also spawned a
significant number of IoT designs, both from established manufacturers
and from startup companies.

5.4 Quantum computing
Much like AI, Quantum Computing has made many headlines in re-
cent years, and the two are similar in that both are technologies with
tremendous potential and promise, although they are still undergoing
fundamental developments.

Quantum computing aims to harness the laws of quantum mechanics to
solve problems which are intractable for classical computers, in the sense
that they would require far too much time and/or energy to solve. The
key ingredient in quantum computing is the quantum entanglement of
its memory elements3, which allows them to work together as a single
entity, if it can be maintained for a sufficient amount of time. Roughly
speaking, this means that with every additional element, a quantum
computer doubles the complexity that it can handle; its capability grows

3In the most common formulation of quantum computing, the memory element is
called a qubit (short for quantum bit).
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exponentially as we add computing elements. This is in stark contrast
with classical computers, where adding a computing element (say, an
additional CPU) results in a roughly linear4 increase in capabilities.

This exponential possibility is what generates so much enthusiasm for
the pursuit of quantum computing. The semiconductor industry itself
has been accustomed to rapid exponential growth since its beginnings,
the number of transistors in a dense integrated circuit having doubled
approximately every two years for more than half a century, a phenomenon
which has been named Moore’s law, after Intel founder Gordon Moore
who predicted this trend in the 1960s and 1970s. However, physical, heat
dissipation and leakage current constraints are increasingly limiting our
ability to keep packing ever more transistors into the same 2D planar
area of silicon. While the industry is expanding this pursuit into the
third dimension [81], it is also increasingly keen to find a fundamentally
different approach to maintain – or even surpass – the exponential growth
in computing capabilities.

Within quantum computing there remain many issues to resolve. On the
physical side, it is extremely difficult to build a quantum computer that
is able to maintain its computing elements reliably entangled over any
significant length of time. This issue is known as maintaining coherence
among the quantum elements, in comparison to a deterioration into
decoherence, most often caused by stray electrical and magnetic noise
factors. Current designs struggle to achieve longer coherence, even with
the aid of cooling the system ambiance to near absolute zero, which means
that managing such a system is physically demanding and expensive.

On the conceptual side of quantum computing, many questions remain
open as well. A quantum computer cannot be programmed using the
same methods as a classical computer. Designing an algorithm for a
quantum computer boils down to composing just the right choreography5

of quantum interferences among the computing elements to achieve the
desired outcome, which is a fundamentally different way of programming,
closer in kind to analog computing, which predates digital computing.

4Normally the improvement is sub-linear due to overheads, although in certain
situations some amount of super-linearity can be achieved, depending on the overall
system architecture and the application at hand.

5This elegant description is taken from an instructive conversation between Scott
Aaronson and Lex Fridman [82].
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5.5 How will AI and quantum computing shake hands?
Since both AI and quantum computing are still rapidly evolving, it is
difficult to predict how the two will eventually interact; however, we
can offer some speculation on the topic. One question of interest would
be whether quantum computing can be useful for the computationally
intensive training phase of deep learning. Training a large neural network
requires vast amounts of data, and involves a large number of parameters,
while quantum computing excels at complex calculations which can be
compactly specified and parameterized, and the answer compactly read
out. Every additional parameter requires additional qubits, and every
data input decreases the computation’s isolation needed for maintaining
entanglement/coherence. Accordingly, we can venture the hypothesis that,
unless a large dataset can be very economically encoded in a quantum
computer, the latter will be of limited use for training large models,
going forward. There is also the significant issue that quantum computers
have a very limited output, so an application using a quantum computer
for AI inferences would need to retrieve answers in a highly compact
form. The size of the answer essentially needs to be at most as big as
the number of qubits in the system [83]. Nevertheless, using quantum
computers for machine learning (‘Quantum ML’) is an active field of
study, pursued among others by CERN in the context of its quantum
technology initiative6.

A second question of interest is whether AI will enable the future of
quantum computing. For one thing, it may help us write programs for
quantum computers. As discussed above, designing quantum algorithms
remains an art mastered by very few so far. Potentially, an AI model
can be trained to translate certain categories of classical programs to
the quantum domain. After all, translation problems of all stripes have
revealed themselves to be a strong suit of deep learning in particular,
ranging over natural language text, source code, audio and other data, so
qubits and quantum gates may also enter its vocabulary. On the hardware
side of things, the ability of AI to efficiently simulate quantum systems
[84], [85] could provide a helpful resource to advance research on how to
build a good quantum computer.

6https://quantum.cern/

https://quantum.cern
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There is also an aspect in which AI and quantum computing are in
competition with each other. Both technologies require very substantial
investments for research and development, and funds going to one are
not available to the other. It has been argued that AI’s fast progress is
detrimental to investment in quantum computing, because AI is able to
massively speed up and enhance classical computing, pushing out the
time horizon for quantum computing to achieve ‘supremacy’, or at least
economic feasibility, in any specific area [86].

Since AI and quantum computers have different strengths, it is likely that
they will complement each other in the future, by acting as components
in a larger system which can draw on both, according to the nature of
the task at hand, in a hybrid computer architecture.



6
Why believe AI? The role of machine learning
in science

Artificial intelligence has made significant inroads into science over the
past decade, especially under the machine learning variant called deep
learning. This chapter will examine the challenges and questions concern-
ing the role of AI in the scientific process. We proceed by building on
two articles by Naomi Oreskes, ‘Why Believe a Computer?’ [87] and ‘The
Role of Quantitative Models in Science’ [88], written at the turn of the
millennium. These articles critically examine the role that computers
should play in science. Computer simulation has since become widely
accepted as the ‘third pillar of science’ [89], alongside theory and physical
experimentation. While AI will not replace any of these paradigms, it
may enrich them, and perhaps be regarded as a fourth paradigm itself
[90]. With the benefit of two decades’ worth of hindsight, we revisit some
of Oreskes’ arguments and refurbish them for the era of AI.

6.1 Testability and complexity
As a historian of science, Oreskes [87] describes how scientific epistemology
has evolved across the centuries, with the aim of identifying the proper
place (if any) that should be granted to computers within it. A key
notion arising early on is that testing lies at the heart of science. Since at
least the 17th century, upon the case made by Sir Francis Bacon, many
scientists agree that a theory should be testable, and tested to be proven
correct. This notion was refined by Karl Popper in the 1930s. Popper
held that a theory should indeed be testable (or falsifiable), yet could
never be fully proven correct. It could only be shown to be in accord with
the available experimental data, but not proven to remain so with respect
to any future evidence. Pierre Duhem, in his 1906 publication ‘The Aim
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and Structure of Physical Theory’, did not reject the need for testability,
but argued that any theory could be modified and extended post hoc so
as to accommodate new findings, and the more complex the theory, the
easier it would be to extend. This argument adds justification for the
Occam’s razor principle widely embraced by science, according to which
a simple theory is preferable to a complex one if their explanatory powers
are similar; a simple theory is easier to test, and it is more obvious when
one attempts to modify it so as to accommodate incompatible evidence.

The dilemma1 that arises in the context of computer models is the
following: the more faithfully a computer model represents a complex
real-world system, the harder it is to test. Unfortunately, a complete
description of a natural process, if even possible, would be extremely
verbose and intricate. For instance, when expressed in a programming
language, the number of lines of computer code in a global climate model
can easily reach into the millions, which is at least one order of magnitude
longer than the complete works of William Shakespeare (albeit much less
pleasant to read), and it still only remains a rough approximation of the
underlying processes.

On one level of abstraction, deep learning is a much simpler program
than any Global Circulation Model. In fact, only a handful of basic math-
ematical functions are required for implementing even the largest deep
learning models. However, deep learning contains an enormous number of
parameters (millions or even trillions in latest trends), which all have an
influence on the model’s operation, so that the complexity is shifted from
the computer code to the parameter space. This abundance of parameters,
or degrees of freedom, seems to fly in the face of Occam’s razor, and
is one of the main points of contention concerning the admissibility of
deep learning in the scientific toolbox. A quote attributed to John von
Neumann reads, ‘with four parameters I can fit an elephant, with five I
can make him wiggle his trunk’, and this sentiment permeates much of
the scientific and statistical thinking which scientists and engineers will
have been imbued with throughout most of their education.

The danger which is being alluded to is that of severe overfitting (cf. Sec-
tion 2.5), that is, of having a model which is so plastic that it will contort
itself to accommodate any input data, without capturing any of its es-
sential characteristics, and consequently exhibiting poor generalization
capabilities: its accuracy given previously unseen input will be poor.

1Oreskes uses the term ‘paradox’
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Traditionally, the advised approach for avoiding overfitting has thus
steered statistical modeling strongly in the direction of using as few
parameters as possible. Since deep learning opts to maximize rather than
minimize the number of parameters in order to attain state-of-the-art
prediction accuracy in a continuously growing list of domains, how has
overfitting been resolved?

Information-theoretic studies of deep learning, going under the heading of
‘information bottleneck’ [91] suggest that the optimization procedure used
in deep learning, called stochastic gradient descent (cf. Section 2.4), may
be somewhat naturally immune to overfitting under certain assumptions
about the statistics of the data being used. All the same, additional
algorithmic techniques with the explicit aim of avoiding overfitting were
also introduced. One such technique, called dropout [92] (cf. Section
2.9), developed in the lab of Turing laureate Geoffrey Hinton, randomly
perturbs the model, and forces it to construct internal redundancy for
robustness. This technique turned out to be highly effective in avoiding
overfitting, and has been widely applied ever since the deep learning
model ‘AlexNet’ described in Chapter 5 won the ImageNet Large Scale
Visual Recognition Challenge in September 2012. This image classification
competition had up to that point been dominated by bespoke hand-
crafted models, and the surprise takeover arguably ignited the ongoing
deep learning revolution. From this perspective, Hinton’s dropout can be
seen as an alternative principle to Occam’s razor. But is it compatible
with science?

6.2 The purpose of science
This leads us to step back and ascertain which goals we are pursuing in
a given scientific endeavor. Oreskes [88] states that

the purpose of modeling in science must be congruent with the
purpose of science itself: to gain understanding of the natural
world.

Achieving understanding may be the purest driver of science, but there are
others. Obtaining reliable predictions without true understanding would
certainly rank as a more desirable scientific outcome than the absence
of both. Arguably, quantum mechanics is an example of a theory which
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provides extraordinary capabilities for prediction, without necessarily
delivering a deep understanding of the natural world. Deep learning, at
the time of writing, is certainly much better at delivering predictions
than understanding.

Besides prediction, informing policy is another necessary goal of science,
that is, providing sensible governance recommendations based on the
current body of knowledge, weighed against estimated risks and benefits.
In this area, deep learning may be less suitable for direct application,
since assessing risk and benefit typically requires context and common
sense, two dimensions in which AI still needs vast improvement. It may,
however, be usefully applied to produce predictions which inform such
recommendations.

Although other objectives exist, understanding definitely reigns supreme
among desired outcomes of the scientific process - even flawed understand-
ing may serve as a stepping stone. Understanding allows us to build upon,
to theorize further implications, thereby motivating new experiments
which may in turn reveal flaws in our (previously assumed) understanding,
driving progress as a result. In this area, deep learning has not made
many contributions2. Research into extracting understanding from deep
learning models does exist, going under such headings as explainable
AI (XAI) and interpretable AI, but these efforts are still in their early
stages.

Causal models (Section 2.17) are an alternative approach to AI and may
be more fundamental to science. They are championed, among others, by
Judea Pearl, also a Turing laureate, who holds that ‘all the impressive
achievements of deep learning amount to just curve fitting’ [94]. In other
words, deep learning is focused on finding statistical relationships in high-
dimensional data, without considering the causal relationships which give
rise to them. Human understanding is closely tied to causal interpretations
of the natural world, and hence our AI models ought to speak that same
causal language in order for us to learn something from them. Causal

2In some cases, deep learning has revealed new concepts. For example, the Go
playing model AlphaGo stunned experts by defeating the best human players, using
strategies which defied established wisdom (built up by the extensive scholarship of
the game of Go over centuries), thus providing new understanding and insight [93].
This could however be a lucky accident, in the sense that AlphaGo did not explicitly
describe this strategy to humans, but merely used it in its play, and the strategy
happened to be highly visible precisely because it violated simple principles that Go
players took as gospel.
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inference and causal discovery are highly active areas of research today,
although not nearly as active as deep learning. Building a causal model
for a given problem domain requires much more domain knowledge than
does deep learning, and the software packages for causal models are
mostly in research stages, whereas the deep learning software stack is now
industrial-strength. Additionally, the causal approach lags far behind
deep learning in the following fundamental aspect: it requires the modeler
to define what the variables are (and for best results, specify any partial
domain knowledge on the causal relationships between those variables).
In contrast, deep learning’s most significant productivity enhancer has
been to figure out all by itself what the variables are, from raw data,
eschewing the need for such ‘feature engineering’. Unfortunately, the
variables that deep learning comes up with don’t necessarily have a
causal interpretation. Perhaps, combining the best of both approaches
will supply an answer; however, this will still require major conceptual
breakthroughs.

6.3 High-dimensional output, low-dimensional internals
Returning to the concern of overfitting, the picture we may often im-
plicitly have in mind is that of a very high-dimensional input, combined
with a low-dimensional output. For instance, petabytes of physical mea-
surements across time and space as a source for tens or hundreds of
atmospheric, oceanic and other variables as input, and as output, the
global average surface temperature. In such a setting, overfitting is in-
deed an overwhelming concern. The situation is qualitatively different,
however, if the complexity of the output matches that of the input, for
instance if a model were to get the same petabytes of input as described
above, but now had to predict values for all those same variables for
subsequent timesteps and myriad physical locations, as its output. Pre-
dicting a billion values correctly, based on a fundamentally flawed model,
would be much more of a fluke than predicting just a single value or a
single time series.

For such balanced high-dimensional ambitions between input and output
to become practical, the availability of the required data can of course
be a limiting factor; however, Oreskes’ comment [87] that
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the availability of data from the natural world has not kept pace
with advances in theory and computation

is being potentially turned on its head. The data volumes from Earth
Observation programs do not yet match those generated by model sim-
ulations, but the challenge is shifting from data dearth to data deluge,
as in many other scientific arenas as well. For example, the Copernicus
data archive, hosting the satellite observations collected by the European
Space Agency’s Sentinel missions, is expected to grow from 34 to 80
petabytes within six years [95]. NASA’s Earth Science Data Systems
(ESDS) is expected to grow to approximately 250 petabytes by the year
2025 [96]. To get a sense of scale, imagine 250 petabytes of written text,
printed out on A4 paper sheets. The stack of paper would reach far past
the moon’s orbit, and cover nearly 10% of the distance from the Earth
to the sun.

A deep learning design pattern has emerged as a powerful way to improve
both the trainability and the interpretability of models: combining high-
dimensional input and high-dimensional output with a lower-dimensional
part in the middle. Some work along this vein has shown that manipu-
lating parameter values within this lower-dimensional mid-section can
have meaningful or intuitive effects on the output3, while manipulating
values in other layers typically results in more haphazard changes, which
indicates that the network is somehow distilling the task down to its
essence within the lowest-dimensional layers. Whether this representation
is in a language that we can truly understand remains an open question.

6.4 Data impedance mismatch and end-to-end DL
On the topic of data, Oreskes raises an important limitation of working
with computer models, which is that the data must typically first be
transformed in order to match the variables that were designed as inputs
to the models. This can be referred to as the data ingest problem. The
same applies on the output side of the process [87]:

3Some deep generative models such as variational autoencoders (VAEs) build on
this observation.
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The gap that exists between empirical input and model parameters
is mirrored by a gap between model output and the data that
could potentially confirm it.

In engineering terms, we could describe this as an impedance mismatch
between the data and the typical computer model. As it turns out, deep
learning has an ace up its sleeve in this respect, because it is able to
handle essentially any input and output we choose. The trend in many
areas where deep learning is applied to large datasets is to use an end-to-
end approach, from raw data directly to desired output. For instance, the
classical approach to the problem of speech recognition is to decompose
it into a sequence of sub-problems; first extract specific features from
audio data, then process those features to obtain phonemes/syllables,
then use these to construct words, and finally, assemble a full textual
transcript based on these words [97]. In contrast, the end-to-end deep
learning approach skips all these explicit intermediate representations,
and directly learns how to map raw audio to a transcript. One could
argue that this contributes to the black box aspect of deep learning.
However, since the use of a traditional model requires the production of
mappings from data to intelligible variables and from model output to
verification data, it should be noted that these same mappings would
also be available for the purposes of evaluating deep learning models.
Indeed, end-to-end thinking is being considered in scientific applications,
such as numerical weather prediction [98]. The related topic of generative
models is discussed in the upcoming Chapter 7.

Given the current uncertainties surrounding the future (and even present)
capabilities of deep learning, it is difficult to assign it a clear cut role
in the scientific process. On the one hand, the predictive capabilities
it provides are so useful that we may be compelled to rethink basic
principles in scientific thinking, such as Occam’s razor. On the other, it
may be that efforts in understanding and interpreting the internals of
deep learning models will produce the type of understanding that we
classically expect from scientific models, allowing us to have our cake
and eat it too. Later in Chapter 8, we will cover a different kind of AI
that is fully aligned with the current paradigms of the scientific process:
causal models.
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The deep learning revolution was largely sparked by successes in image
classification, epitomized by the victory of the convolutional neural net-
work AlexNet in the 2012 ImageNet competition. Decades of research
in handcrafted feature detectors were disrupted by this model, trained
on two consumer-grade GPUs, which radically changed the minds of
computer scientists concerning neural networks. Prior to this incontro-
vertible demonstration, the consensus view was that neural networks were
a subpar type of machine learning model. As far back as the 1960s, early
mathematical results had shown that single-layer neural networks had
severe limitations in the variety of functions that they could represent,
which likely discouraged further inquiries into their potential. In 1989,
it was mathematically proven that a neural network with just three
layers (including the input and output layers) and a non-linear activation
function is in fact a universal function approximator, meaning that given
enough neurons, the model can approximate (nearly) any function arbi-
trarily well [99], [100]. Despite the ensuing revival in scientific interest,
neural networks did not reach mainstream status at that time because
they were difficult and expensive to train compared to other models. As
discussed earlier in the book, the combination of abundant data and
cheap computation were key in finally propelling neural networks to the
fore.

Two limitations that beset machine learning up to that prior point have
undergone a significant reexamination as a result. Firstly, previous ML
models were task-specific; a model trained on a given task was essentially
useless when applied to a different, even highly related task. Secondly,
the output of an ML model was usually restricted to be low-dimensional,
compared to the input data. Deep learning started out in much the same
vein. The input to the AlexNet model is a 256×256 pixel color image, and
each pixel can take on 224 possible colors. This means that the number
of possible inputs is over 10473479, an astounding number given that the
number of atoms in the universe is commonly estimated to be about 1080.
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The model’s output, on the other hand, simply consists in one among
1000 object labels (such as ‘Persian cat’ or ‘volleyball’). This is a very
low-dimensional output as compared to the dimensionality of the input.
It is also highly specific to the particular dataset of images that was
compiled for the purposes of the ImageNet competition. In subsequent
years, deep learning research has shown that low-dimensional output and
task specificity were in fact not fundamental limitations, as we outline
below.

7.1 Transfer learning and fine-tuning
It came as a surprise that image classification models trained on one
task could in fact be repurposed for another, similar task, with modest
computational effort. For example, a model trained on the ILSVRC 2012
dataset can be adapted to distinguish between an image of an American
football and an image of a papaya, neither of which is a category in the
original training dataset. It turns out that the weights learned in the early
layers of the model are quite general-purpose feature detectors, which
can be used as building blocks to detect nearly any kind of object. Only
the last layers need to be retrained to adjust to a new object category.
This technique is known as transfer learning, and requires much less
computation and data than training the original model did. In the case
of AlexNet, millions of images were required to train the model, and each
image was ‘looked at’ 90 times over the course of the training (this is
referred to as 90 epochs). By contrast, adapting the model to two new
categories may require a few hundred additional images and a few epochs.
Once the last layers have been retrained, while keeping the early layers
frozen, one can also unfreeze the whole network and train a bit longer
with a low learning rate, in order to further improve the final accuracy.
This process is known as fine-tuning.

The success of early deep learning was thus achieved in supervised
learning (cf. Section 2.2), where each data point comes with a label -
the image category in the case of ImageNet. A drawback of supervised
data is that it is labor-intensive to compile. For each datapoint, a label
needs to be supplied, either by human annotation, or by some automatic
process which itself needs human verification. The ImageNet images were
labeled by enlisting tens of thousands of paid workers via crowdsourcing
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platforms [101], [102]. Because unlabeled data (in other words, simply
data) is much more prevalent in the world than labeled data is, the ability
to learn useful patterns from unlabeled data would obviously constitute
an enormous advantage.

7.2 Unsupervised learning and generative models
Learning from unlabeled data is referred to as unsupervised learning,
and it is the principal source of the power of generative deep learning
models. Where the typical supervised ML model aims to learn a good
mapping from X to Y, for example from images to category labels, an
unsupervised model instead learns the joint probability distribution of
X and Y, or simply the probability distribution of X if there are no
labels Y. If the model is generative, it has the ability to sample from that
learned distribution. In other words, it can generate new data points. If
the data is a collection of cat pictures, the trained model will be able to
produce a ‘new’ cat picture that was not part of the training data. Such
unsupervised generative AI models have hugely improved in the past
few years, and first gained prominence in the medium of text. The most
emblematic generative models at the time of writing are the GPT family
of large language models (LLMs) [103], [104], which are able to generate
highly plausible text on nearly any given subject. GPT is the acronym
for ‘generative pre-trained transformer’. The ‘transformer’ part of the
name refers to the transformer neural network architecture (cf. Section
2.12), and ‘pre-trained’ signifies that the model has been trained in an
unsupervised fashion, and hence on a large body of text. Finally, the
‘generative’ prefix indicates that the model is able to produce new data
from the distribution that it has learned, i.e. to generate new text. With
additional supervised fine-tuning of the pre-trained model, using for
instance reinforcement learning from human feedback, the model can be
adjusted so as to generate conversational responses to the user’s inputs,
while attempting to avoid offensive, harmful or otherwise inappropriate
output. The most famous such interface is known as ChatGPT, released
by OpenAI in late 2022, but other offerings of similar nature have rapidly
joined the market since then. In particular, several competitive open
source models have been released, such as the Llama models [105], [106] by
Meta, Gemma [107] by Google DeepMind, and BLOOM [108] through an
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initiative led by company HuggingFace. These models are being applied
to the generation of a wide variety of text, from poetry to book summaries
to programming source code. Some current limitations of such models
will be briefly discussed below.

Text is not the only medium in which generative deep learning has
made leaps of progress. Image generation has also come a very long way,
especially in the ‘text-to-image’ variety; the user supplies a short textual
prompt describing the image to generate, and the model creates one
or several images derived from that prompt. In this medium as well,
OpenAI has supplied the most popular interface, based on its DALL-E
family of models [109]–[111]. Some notable image generation models on
the open source front include Stable Diffusion and DeepFloyd IF [22]
by company Stability AI. Note that many of the new large models are
multimodal, meaning that they are able to deal with data from different
media at once. For example, GPT-4 can understand both text and images
as input, even though its generative capability is limited to text only.
The new frontier of generative models is video generation. Lumiere [112]
is a model released by Google in early 2024, which uses diffusion (see
Section 2.15) and a U-Net architecture which downsamples video in both
space and time, in order to generate new short videos based on input
text and/or an input still image. A few weeks later, OpenAI announced
its own video generation model called Sora [113], showing samples of
minute-long footage of a much higher temporal consistency and realism
than in the prior state of the art. Based on the pace at which generative
models are advancing, it is very likely that there will be several more
highly capable models released by the time this book is published.

7.3 Limitations
Generative models have a mass market appeal, and some of the models
discussed in this chapter have already been accessed by over a hundred
million users [114]. The curious public has been experimenting with this
new technology, attempting to figure out what it can do for them, and
to understand its strengths and limitations. We briefly go into several of
these limitations in this section.
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7.3.1 Hallucination

ChatGPT (and other LLMs) are most commonly accessed via a text
interface, enabling a written chat conversation with the AI. As such, users
initially expect it to behave similarly as their usual human conversation
partners. However, an LLM differs in at least several important aspects.
When speaking with a friend or colleague, we normally expect them
to be truthful. In addition to this, we assume that they will adjust
their level of confidence according to their knowledge of the subject
being discussed, indicating by verbal and non-verbal cues when they feel
competent to opine, and when they are less sure of themselves. Finally, we
can generally expect them to be able to explain why they hold a certain
belief, in particular by citing their sources of key pieces of information
relevant to the topic. As it turns out, LLMs presently fall short on these
expectations. An LLM will regularly generate textual statements that
are completely false. In fact, it will do this in a highly confident tone,
producing a mix of truthful and false statements with the aplomb of
a con man. This has been referred to as hallucination and sometimes
confabulation. When users realize that the model has invented something
in the course of their conversation, they can naturally take a dislike to
the technology, associating its response with a fabrication designed to
mislead.

Indeed, LLMs are trained on enormous text datasets, containing a signif-
icant portion of the web, including discussion forums of all kinds. Surely,
not all utterances on the web are truthful, and of course, much of the
text that exists in the world contradicts itself in part, reflecting the huge
diversity in human opinions and beliefs, along with their falsehoods and
biases. Consider also that some text may have been accurate when it
was written, but has become out of date, or is otherwise learned without
the necessary context. For example, novels and fiction in general account
for a sizeable chunk of published text, which should be distinguished
from newspapers, or scientific literature, or online discussion forums.
Therefore, even if the model was able to reproduce ‘the web’ with high
fidelity, the user could get very different outputs, depending on which
part of the web the model was tapping into. On top of this, an LLM only
learns an approximation of this enormous amount of text, which adds
another level of difficulty to the goal of keeping it truthful, and which
would remain even if one had fully vetted the entire body of text used for
training. Unfortunately, in its current design, an LLM is unable to trace
back from its choice of words in generated text, to the portions of the
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training data that would have had the largest influence on that choice.
Consequently, we can typically not determine why the model responds
in a certain way to a given prompt, without clever detective work. If we
ask it to explain itself, it will typically just hallucinate a response that
sounds plausible, or apologize (as a somewhat generic response added
by the service provider through fine-tuning or other means) and state
that the mistake may be due to incomplete data. Finally, one should
be aware that the process of generating text includes randomness. At
every stage of inference, the model samples a random word (or token)
based on a conditional probability distribution given the preceding words.
This means that the text provided as an answer to any prompt is partly
driven by rolls of numeric dice.

Where images are concerned, it appears that we have very different
expectations of a generative model than we do in the case of text. We
are aware that the model generates fictional images, which may contain
inaccuracies and counterfactual features. Even though it may be able to
depict familiar objects and famous persons, we are not surprised by hallu-
cination in this context. In fact, here it is arguably considered as a feature
rather than as a bug. Image generation services are seeing widespread
adoption for creative purposes, and inaccuracies are often humorous or
otherwise interesting. Of course, this also brings new potential for misuse,
such as in the case of deepfakes, which consist in applying a generative
model to produce an image or video using someone’s likeness. Political
commentators fear that deepfakes can be used to influence elections [115],
[116], and indeed if the technology reaches such a level of quality that
even forensic analysis is unable to differentiate between real and fake
images, we will need to rethink the very standing of photographic, video
and audio evidence in our epistemic processes. The ability to choose
between factual and invented content is certain to be an important re-
quirement in the future. Especially in a scientific application, models will
need to contain mechanisms to guarantee that important aspects of the
generated data are governed by applicable conservation laws or other
physical constraints.

7.3.2 Bias

As was alluded to in the section on hallucination, a generative model
learns to approximate the probability distribution of the dataset that it is
trained on. If the dataset contains inaccuracies, falsehoods, and biases, the
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model will inherit these aspects of the data, unless specific care is taken
to avoid them. For example, AI bias has been well documented in the
domain of face recognition. Identifying a person based on a photograph
of their face is a challenge that many research efforts have tackled. Since
the 1990s, models have consistently performed best on the combinations
of race and gender that were most represented in the training dataset
[117], sometimes resulting in extremely poor accuracy when attempting
to recognize a person with a racial minority background. The EU AI
act, which the European Union’s parliament and council have adopted
in March of 2024, explicitly bans ‘the use of real-time remote biometric
identification systems in publicly accessible spaces for the purpose of law
enforcement’, unless some stringent legal criteria are met [118]. The main
reason for this prohibition is based on considerations of fundamental
privacy rights of citizens. If innocent persons got tangled up in police
investigations simply because of a technological bias with respect to their
immutable characteristics, it would be a severe injustice. The problem of
bias1 permeates all types of ML models, including generative ones. If a
group is underrepresented in the training dataset, it is likely to be equally
underrepresented in the generated data, unless the training procedure
(or the downstream generative procedure) is adjusted to rebalance the
representation. On the topic of generative models, the EU AI act stipulates
that the use of generative models for producing deepfake image, audio
or video content, must be disclosed. Likewise, the use of generative
models for textual output must be disclosed if the text is published
with the purpose of informing the public on matters of public interest,
unless a natural or legal person reviews the material and holds editorial
responsibility for the published content [119].

7.3.3 Retaining copies and collapsing diversity

Several kinds of text-to-image generative models have been shown to
retain a nearly exact memory of a small subset of the training data. In
consequence, upon inputting the right text prompt, the model ‘generates’
an image that is nearly identical to one of the images in the training
dataset [120]. In most cases, this is an undesirable aspect of the model,
causing issues in terms of privacy, intellectual property rights, or lack of
creative ability. A similar phenomenon has been observed in the case of
LLMs. In particular, when asked to repeat a given word forever (as a

1To clarify: most neurons in a neural network have a parameter called the bias
term (cf. Section 2.7), which is unrelated to the notion of bias under discussion here.
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prompt), ChatGPT repeated that word many times, and then all of a
sudden, began outputting some of the text it had been pre-trained on,
verbatim [121]. These discoveries provide a clear indication that the way
in which deep generative models learn is not well understood yet.

Current generative models also seem to be unable to generate as much
diversity as is present in their training datasets. This was noticed when
using a dataset of images generated by a model to train a second model,
then in turn using the output of the latter to train a third, etc. Each
successive dataset obtained in this way tends to be less diverse than
the previous one. This has been referred to as ‘model collapse’ [122],
and has been observed in text [123] and images [124]. From a statistical
point of view, there is evidence that ‘rare’ features are discarded over
successive generations, thereby increasingly converging on average or
majority features. This would be akin to the model creating its own, ever
more narrow view of the world.

7.4 Implications for the Earth sciences
So far, generative models have not been broadly used in scientific applica-
tions, with a notable exception in numerical weather prediction (NWP).
Here, three deep learning weather models were published in close succes-
sion, within the span of one year. Nvidia built FourCastNet, a neural
network based on Fourier neural operators, doing much of its work in
the frequency space instead of in pixel space [46], [125]. Google released
its graph neural network model called GraphCast, which operates on a
graph composed of the vertices of a globe-spanning mesh [47]. Finally,
Huawei announced its Pangu-Weather model, built on a 3D Earth-specific
transformer neural architecture [48]. All three models used the ERA5
global atmospheric reanalysis dataset in their training procedure, and
were made to autoregressively predict the new state of global weather
from the previous state. They were compared to the best-in-class classi-
cal numerical weather prediction models, which operate by numerically
solving partial differential equations describing state transitions. Each
neural network model outperformed the classical ones in several important
metrics, disproving a recent assessment that a number of fundamental
breakthroughs were likely to be required before achieving this feat [98].
In particular, Pangu-Weather showed higher accuracy across the board,
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in predicting geopotential, temperature, specific humidity, and wind
speed, at the surface height level of 500 hPa. Nevertheless, a classical
physics-based model was employed for the reanalysis that allowed the
production of the training data, and therefore, classical models remain
a critical requirement for the success of AI/ML in NWP, as well as in
many other applications. It should also be noted that the three AI/ML
models did not perform well in predicting some important aspects of the
2023 storm Ciarán, such as the maximum wind speeds at 10 meter height
[126]. Generally speaking, AI/ML models will perform much better at
interpolation than at extrapolation. When faced with a situation that
lies far outside of their training data, they may predict with much lower
accuracy than a physics-based model would.

Generative models are also being pursued in remote sensing. Instead of
manipulating discrete language tokens, some research streams attempt
to use same technology on multispectral and multi-instrument satellite
observations. In this context, a token is a pixel with several layers, each
layer stemming from a specific band in a satellite image. The abundance
of such pixel data in the remote sensing archive is such that autoregressive
self-supervised approaches akin to those used in large language models
are feasible, and have led to promising predictive performance for several
downstream tasks, such as predicting future surface reflectances across
the 400-2300 nanometer range [127]. Another generative model archi-
tecture, called generative adversarial2 network (GAN), has previously
been applied to Earth observation tasks. For example, conditional GANs
(CGANs) were used to fill in voids in incomplete satellite observations,
such as mountain shadows in incomplete radar data, as well as for spatial
interpolation and image pansharpening [128].

7.5 Outlook
The potential of generative models is still being explored with much
excitement, especially given their success in the language modeling space.

2The word adversarial alludes to the fact that a GAN is trained as a pair of
adversaries playing a game against each other: the generator and the discriminator.
The generator produces a sample (e.g. an image), and the discriminator needs to
distinguish between generated samples and actual datapoints. Both of these parts
are trained in tandem, helping each other improve.
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Some voices argue that they are a red herring. Yann LeCun, the deep
learning pioneer who shared the 2018 Turing award with Geoffrey Hinton
and Joshua Bengio, believes that generative models as they are currently
designed, especially for image sequences, do not have the right approach
to succeed in the long run. The strategy thus far has been to degrade
the input by adding noise or occluding parts of it, and then learning to
reconstruct all of the pixels. However, in many situations this is not a
good objective, because there is not enough information to reconstruct
the entire image exactly. According to LeCun, instead of focusing on the
input distribution, one should aim to achieve high-quality reconstruction
in an abstract space [129]. The JEPA proposal from his group is to
produce a joint embedding of an image and of a noisy version of that
image, and to learn to reconstruct the latent representation of the original
image from the latent representation of the noisy one [130].

It is very much an open question as to what extent neural network
based systems will be able to perform complex reasoning. DeepMind’s
AlphaGeometry model [131] is reported to have achieved top-ranking
performance in geometry problems, solving 25 out of 30 Olympiad-
level geometry test problems, which is nearly as good as the average
of gold medalists of the International Mathematical Olympiad. It is a
neuro-symbolic system, using a neural language model, and a symbolic
deduction engine, working in concert. Essentially, the neural network
generates possible geometric constructions, and the symbolic deduction
engine attempts to use them to obtain the desired outcome. The model
produces human-readable proofs, that is, it is able to ‘show its work’.
Nevertheless, the deduction part is still done in a rather ‘brute force’
fashion, unlike how a human would go about the task, using intuition to
guide the flow of the proof as well. Causal thinking is very much part of
our intuitive thinking, and thus the ability to consider causal relationships
while reasoning is likely to be an important milestone on the way to
more advanced levels of intelligence. A workshop of causal researchers has
found evidence that large language models were not consistently able to
perform causal reasoning, and suggested the term ‘causal parrots’ [132]
to describe them, building on an earlier critique that LLMs can behave
like ‘stochastic parrots’, haphazardly stitching together linguistic forms
they’ve observed in their training data [133]. In the next chapter, we
provide an introduction to causal models: a branch of AI that aims to
stay grounded in causal reasoning.
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Causal models: AI that asks ‘why’ and ‘what if’

As deep learning scales up at a steep exponential rate, in both industry
and academia, another branch of AI is currently much less prevalent,
yet it may be just as fruitful in the long run, if not more so. The
paradigm goes under the umbrella term of causal models, and has been
championed among others by Judea Pearl, who won the 2011 ACM Turing
award for ‘fundamental contributions to artificial intelligence through
the development of a calculus for probabilistic and causal reasoning’.
This chapter describes some fundamental concepts of causal models, and
highlights some of its uses in studying Earth systems.

8.1 Causation vs correlation
The fundamental distinction between standard machine learning and
causal modeling is that the former is based on correlation, while the
latter focuses on causes and effects. Correlation refers to a statistical
association between two variables, and students worldwide are taught
that correlation does not imply causation. When we notice that two
variables X and Y move in tandem, we know that this may be due to
a number of reasons. It could be that X has a causal effect on Y. It
could also be that Y has a causal effect on X. Likewise, it may be that a
common cause W has a causal effect on both X and Y. In this case, W
is often called a confounder. More subtly, it could be that the dataset
under study has a selection bias, which can arise when its datapoints are
selected according to a common effect Z of X and Y. Such a selection bias
can distort the statistical relationship between X and Y. For example, if
we wished to analyze the causal effect of sprint training on leg muscle
mass, then using a dataset containing only Olympic sprinters would be a
poor choice; that dataset has a strong selection bias, as it focuses on the
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individuals with the world’s very fastest running speeds, and running
speed is causally influenced by both sprint training and leg muscle mass.

This is an example of what is referred to as a spurious correlation in the
causality literature: a statistical association between variables that does
not coincide with the causal relationship between these variables. Note
that a correlation could also be accidental, which is popularly referred to
as a spurious correlation as well, although its meaning differs from the
one outlined above. An example of such a correlation is the one observed
between the volume of Google searches for ‘zombie’ and the number of
real estate agents in North Dakota, for the years 2004-2022, shown in
Figure 8.1. This correlation would very likely disappear if we used a larger
dataset. In the rest of this chapter, we will assume that sample sizes are
large, in order to focus on the main concepts of causal models. However,
it should be kept in mind that any limitations of classical statistical
methods, when used on small samples, would also apply in the case of
causal models.

Many researchers argue that standard machine learning models learn the
statistical patterns present in the data, but do not have a concept of the
causal underpinnings that gave rise to the data. Due to their black box
design and large size, it is difficult to check whether deep learning models
build internal representations of causal concepts or not. For example,
large language models do manifest some level of apparent causal reasoning
ability. However, they are still comparatively weak at such reasoning
tasks, so it is plausible that the bit of causal reasoning they do exhibit,
simply mimics similar or analogous text in the training data. Indeed, as
was previously mentioned, there are reasons to suspect that they are just
‘causal parrots’ [132]. Causal models, on the other hand, are built on a
completely different premise. They are explicitly designed to incorporate
causal knowledge and assumptions, and to answer causal questions.

8.2 Causal graphs
Causal methods were developed within multiple different disciplines,
from econometrics to epidemiology to computer science, and therefore
they come in many variations. One practice that has found widespread



8.2 Causal graphs 63

FIGURE 8.1 Example of a spurious correlation in the ‘accidental’ sense.
The relative volume of Google searches for ‘zombies’ is highly correlated
with the number of real estate agents in North Dakota (data sources:
Google Trends, US Bureau of Labor Statistics), with an r value of
0.936. This correlation, and a sizeable collection of others like it, were
obtained by data dredging a large database of time series: testing many
possible pairwise combinations of time series, over many time segments
and intervals. When one does this without adjusting the threshold for
statistical significance (e.g. using the Bonferroni correction [134], [135]),
many false positives can result. This is also referred to as p-hacking in
some contexts. The collection of humorous correlations is curated by
Tyler Vigen at http://www.tylervigen.com/spurious-correlations.

adoption is the use of causal graphs1, also referred to as causal diagrams.
A causal graph is a graph in which nodes represent variables, and edges
represent causal influences. If there is an edge from node X to node
Y, it signifies that X causally affects Y, in the sense that if we were to
surgically change X, then Y would change in response. Pearl describes
this by stating that ‘Y listens to X’ [24]. For example, consider the
causal graph in Figure 8.2. It describes causal relationships between
the insolation I a tree receives from the sun, the tree’s growth G, and

1The material on causal graphs presented here mainly derives from the approach
known as structural causal models (SCM). Although SCMs are not presented in
this book, an SCM always implies a causal graph. For a comprehensive treatment of
SCMs, the reader can consult references [25], [136]. Likewise, the main alternative
approach to causality, called potential outcomes [137], is not covered in this book.

http://www.tylervigen.com/spurious-correlations
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Iinsolation G tree growth

C

clouds

FIGURE 8.2 Example of a causal graph. According to this graph,
insolation I has a causal effect on tree growth G, and clouds C have a
causal effect on I.

the presence of clouds C. Specifically, it posits that insolation causally
affects growth, and that clouds causally affect insolation.

The graph can be used as a means to communicate a hypothesis, which
is readily understood by humans, and can serve to make questions and
assumptions explicit. For instance, a colleague may point out that in
order to model the situation more accurately, a direct edge from C to
G is also needed, because sufficient water is necessary for tree growth,
and clouds are necessary for rain. In other words, they may propose the
causal graph in Figure 8.3 as an alternative hypothesis. Of course, one
could add more variables, such as rain and soil moisture, in order to
provide a causal description that is appropriate for the research question
at hand, especially if data for these variables is also available.

Iinsolation G tree growth

C

clouds

FIGURE 8.3 Alternative causal graph to Figure 8.2, in which a direct
edge from clouds C to tree growth G is added, in order to model the
effect of rain.
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8.3 Causal inference
In addition to being human-readable, a causal graph is also machine-
readable. It can be provided as a hypothesis to a causal inference engine,
together with data. The engine is then able to check whether the graph
is plausible with respect to the data, or whether the graph must be
rejected. Furthermore, the engine can use the data and the graph to fit
a quantitative model, which can then be used to answer queries about
the system. In this instance, an example query could be, ‘if we decrease
insolation by 10%, what change will we see in tree growth?’ An important
point here is that this query can in general not be answered simply by
looking at the conditional distribution of tree growth given insolation.
There is a key difference between G given that we observe I, and G
given that we impose I (i.e., that we intervene so as to force I to take
on a certain value or distribution). For instance, suppose we intervened
on insolation I in Figure 8.3, by blocking off the sunlight to the tree
with a large screen or wall, and shining a large electric light on the tree,
with an equivalent light spectrum, but using an intensity of our choosing.
With this setup, we could now set the intensity so that it ‘replays’ the
insolation observed during the previous week. The tree growth occurring
with this chosen artificial insolation may be quite different from the tree
growth that was observed for the previous week, because the causal effect
of clouds on tree growth still remains, and we have not intervened on
this variable C. Effectively, by intervening on insolation I, we transform
the causal graph into what is shown in Figure 8.4, where the edge from
clouds to insolation has been removed. Indeed, we’ve severed this causal
influence, freely choosing the insolation.

The do-calculus is an important mathematical formalism for handling the
distinction between observational and interventional probabilities. Its key
innovation is the addition of the do-operator, which allows one to express
an intervention. For example, do(I = i) corresponds to the intervention
of setting insolation I to the value i. The expected value of tree growth
G under this intervention can be written as E[G|do(I = i)], and as
discussed, it is not the same as E[G|I = i] in general. The do-calculus
provides a complete set of rules for converting between causal quantities
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Iinsolation G tree growth

C

clouds

FIGURE 8.4 Modified causal graph from Figure 8.3, where we’ve in-
tervened on insolation I. Since there is no longer a causal influence of
clouds on insolation, the edge from C to I is removed.

and statistical quantities. For example, based on the graph in Figure 8.3,
the statistical quantity obtained through do-calculus is the following2:

E[G|do(I = i)] = EC [E[G|I = i, C]]. (8.1)

Remarkably, in this case, we are able to answer a causal query using only
observational data. If we have good reason to believe that the causal
graph is correct, then we need not perform an experiment requiring the
expenses of a large wall and a gigantic floodlight. Of course, the result is
only as valid as the causal assumptions.

8.4 Assumptions and limitations
Assumptions are a cornerstone of causal inference. Some of these as-
sumptions are testable, others are not. For instance, assumptions in the
form of a causal graph are usually testable, if appropriate observational
or experimental/interventional datasets are provided. Other assump-
tions can be difficult or impossible to test. For example, an assumption
that is frequently made in causal inference is that there are no hidden
confounders, i.e. that the causal graph captures all variables that are
causally relevant to the question being posed, also known as the causal

2This specific formula is called the backdoor adjustment, because it adjusts for
the non-causal association leaving through the ‘backdoor’ of I, reaching G via C.
The adjustment is obtained by conditioning on the confounder C.



8.5 Causal discovery 67

Xt

Yt

Xt+1

Yt+1

FIGURE 8.5 Causal graph containing a feedback loop between X and
Y, even though the graph is acyclic. Xt represents the value of X at
discrete time t, and equivalently for Yt and Y. In this example, there is an
instantaneous causal effect of Xt on Yt, and a lagged causal effect from Yt

on Xt+1. Here each variable also causally influences its own future value.

sufficiency assumption. Another common assumption is that there is a
one-to-one correspondence between the causal graph’s structure and the
conditional independencies that exist in the joint distribution over all its
variables (technically called the Markov and faithfulness assumptions).
The stronger the assumptions, the further the inference engine can leap,
but the more justification needs to be supplied as to why the assumptions
are reasonable in the context of what is being modeled. In this sense,
there is a tradeoff between the strength of the assumptions, and the
believability of the conclusions.

In many causal methods, one assumes that the causal graph is acyclic,
i.e. contains no directed cycles, in the sense that walking the graph from
node to node along the edges, in the direction of the arrows, never leads
to revisiting a previously visited node. This seems like a strong limitation
in the context of Earth systems, where feedback loops abound (cf. Section
4.4). However, methods for the causal analysis of time series can deal
with this by using time indices for each relevant variable. See for example
Figure 8.5, where a simple feedback loop between two variables X and
Y is depicted. Even though the graph itself contains no cycles, it is able
to represent a mutual causal dependence between X and Y across time.

8.5 Causal discovery
A part of causal research is aimed at ‘causal discovery’: ferreting out
the causal graph from data. This can require a lot of data, and it is not
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always possible to obtain the full graph. For instance, causal discovery
methods that are based on detecting conditional independence can only
discover a set of graphs, called a Markov equivalence class, which in
some cases could contain just a single graph, and in other cases contain
multiple possible graphs that disagree on the direction of some of the
edges. Many discovery methods are also unable to detect some subtle
types of dependence. For example, if variables X, Y and Z are statistically
dependent on each other, however they are pairwise independent (that
is, X is independent of Y, X is independent of Z, and Y is independent
of Z)3, then most methods would prematurely and incorrectly conclude
that there is no causal link between X, Y and Z. Of course, if we are
able to obtain interventional data, e.g. by performing an experiment that
intervenes on some of the system’s variables, our possibilities of causal
discovery are increased.

As discussed in the previous section, making additional assumptions al-
lows for more powerful causal inference, as long as those assumptions are
justified. This also applies to causal discovery, where assumptions about
the functional form of dependendance between the variables, as well as
about the statistical distributions of noise, are very helpful. The linear
Gaussian setting is the worst case for causal discovery, which may come as
a surprise, since it is one of the simplest cases from a statistical modeling
perspective. However, non-linear causal relationships between variables
are often easier to detect than linear ones, as the non-linearities allow more
aspects of the data-generating mechanisms to be identified [138]. Similarly,
in a linear setting, if we have good reason to assume that the noise distri-
butions are non-Gaussian, then causal discovery can be achieved where it
is otherwise not feasible, e.g. using a linear non-Gaussian acyclic model
(LiNGAM) [139]. Causal discovery is seeing an increasing number of ap-
plications in the Earth sciences, for instance in analyzing climatological
time series. In particular, applying the PCMCI causal discovery algorithm
[140] to surface pressure anomalies in the West Pacific and to surface air
temperature anomalies in the Central Pacific and East Pacific yields a
causal graph that identifies the well understood Walker circulation. A sim-
ilar technique used for the Arctic climate detects that Barents and Kara
sea ice concentrations are important drivers of mid-latitude circulation,

3For example, consider the case when X and Y are independent coin flips
(heads/tails), and Z is true if the total number of heads equals 1, and false otherwise.
The variables are pairwise independent, but each variable is fully defined given the
two others.
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influencing the winter Arctic Oscillation through multiple causal path-
ways. Readers are referred to Runge et al [23] for a comparison of several
causal discovery approaches for time series in Earth system science.

8.6 Interactions with machine learning and deep learning
For the time being, there is only limited interaction between causal
research and the mainstream machine learning efforts focused on deep
learning. For example, at Nvidia’s GTC conference in March 2024, out
of a total of 337 online sessions, 261 matched the search term ‘AI’, and
130 matched ‘generative’, whereas searching for ‘causal’, ‘caused’ and
‘causality’ yielded one, one and zero results, respectively. Although causal
models and deep learning are often not straightforward to combine4,
achieving a synergy between the two would be highly valuable. They are
somewhat akin to Kahneman’s fast and slow modes of thought [142]. Deep
learning resembles our fast and instinctive ‘System 1’, with its remarkable
abilities, but also replete with faulty shortcuts and biases. Causal models
are closer to the slow and methodical ‘System 2’, using logic and careful
deliberation based on facts and hypotheses. The combination of ‘System 1’
and ‘System 2’ is inarguably very useful to us humans, and quite possibly,
a fusion between deep learning and causal models would represent a
significant advance in AI.

While the two approaches have not yet been assembled into a holistic
framework, there are some efforts to use deep learning and other ML
techniques for the purposes of causal inference, causal discovery and
discovery of equations from data. For instance, a technique known as
‘double machine learning’ can be used to adjust for confounding [143]. In
the context of the example in Figure 8.3, this would amount to using ML
to learn to predict I from C, and separately to learn G from C. Finally,
an additional ML model then learns to predict (G − Ĝ) from (I − Î),
where Ĝ and Î are the predicted values of G and I, respectively, obtained
in the previous step. Combining these pieces allows us to remove the
confounding effect of C, and therefore to obtain an unbiased estimate of
the causal effect of I on G.

4The meta-learners framework [141] provides a possible approach to combine deep
learning and causal models, allowing the use of deep learning as base models.
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On the research front of discovering invariants and equations from data,
an approach called symbolic regression is used to search a space of
mathematical expressions in order to find an equation or formula that
describes the data accurately. Deep learning and reinforcement learning
in various forms can make this search more efficient. For example, a
recurrent neural network can be used to generate the expressions, in a
framework called deep symbolic regression [144]. This approach can be
further optimized by ensuring that only physically meaningful expressions
are evaluated, as guided by the physical units of the variables [145].
The subfield of discovering equations from data has received significant
attention of late, and the interested reader is referred to a recent review
article [146].



9
Conclusion

As this book attempts to convey, artificial intelligence is evolving very
quickly, and in many directions all at once. Despite its flaws and shortcom-
ings, it is plain to see that AI provides previously unavailable capabilities.
The judicious and innovative use of these capabilities has the potential to
transform a wide range of workflows in business, in the arts, and in the
sciences. Therefore, it is advisable to stay well informed on the evolution
of AI in all its forms. The online version of this book, accessible at the
URL https://book.aiml.earth, aims to provide readers with updates on
important or promising developments in this space.

Future additions to the website will include coverage of the concept of
artificial general intelligence (AGI), which describes a hypothetical AI
that reaches a level of cognition comparable to that of humans, across a
broad range of tasks. We will also cover the ongoing legal question as to
whether the training of models on copyrighted material constitutes an
infringement of that copyright, which will have far-reaching implications,
in particular in the space of generative AI. Both the online version and
the back matter of this book contain a collection of resources, pointing
to programming tools/frameworks and datasets that facilitate getting
started with machine learning, or exploring a new facet of AI.
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Data is a key resource for creating successful machine learning applica-
tions. In particular, benchmark datasets are necessary, which is being
addressed in the Earth sciences [147]. The availability of open source
models and source code is also very helpful, to learn about previous ef-
forts, and avoid reinventing the wheel. Finally, it is important to interact
with a community of fellow practitioners, to find advice and potential
partnerships.

Some helpful resources in these regards are listed below, in alphabetical
order.

Climate Change AI
Web page: https://www.climatechange.ai/

Climate Change AI is an initiative that aims to catalyze impactful work,
at the intersection of AI (especially machine learning) and climate change.
In a recently refreshed version of the open access paper ‘Tackling climate
change with machine learning’ [1], the authors collectively catalog and
rank many concrete opportunities for ML to make a tangible difference
in the quest for climate change mitigation and adaption, in electricity
systems, transportation, buildings and cities, industry, farms and forests,
carbon dioxide removal, and other domains.

ClimateSet
Web page: https://climateset.github.io

Climate models are important tools for analyzing climate change, and
73
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predicting its future impacts. ClimateSet [148] assembles a collection
of inputs and outputs from 36 climate models from Input4MIPs and
CMIP6, and makes them available in a conveniently preprocessed form for
large-scale ML applications. It includes inputs and outputs for five SSP
scenarios, four forcing agents, and two climatic variables: temperature
and precipitation.

Earth on AWS
Web page: https://aws.amazon.com/earth/

Amazon Web Services (AWS) is a very large cloud computing platform,
which provides computational resources of many different kinds. The
platform hosts copies of several important Open Data datasets, includ-
ing data from the Sentinel and Landsat satellite missions. In addition,
Amazon has an open Call for Proposals for research using the Earth on
AWS datasets for building scientific applications, and successful proposal
can be granted cloud usage credits.

Earth System Science Data
Web page: https://www.earth-system-science-data.net/

Earth System Science Data (ESSD) is an international journal for the
publication of articles on original and high-quality, well-documented
research data, with a clear emphasis on open access [149]. ESSD also
supports a ‘living data’ process to support evolving datasets, which are
subject to regular updates or extensions.

Google Earth Engine
Web page: https://earthengine.google.com/

Google Earth Engine is an online platform for geospatial analysis and
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computations, which is provided free of charge for academic and research
use. It contains several petabytes of curated datasets, including satellite
data from USGS/NASA and ESA, all accessible through a common API.
The portal contains a development environment in which source code
and interactive maps are displayed side-by-side.

Hugging Face
Web page: https://huggingface.co/

Hugging Face fosters an AI community, which builds, trains and deploys
state of the art models, using open source tools in machine learning. The
portal contains a repository of models, a collection of datasets, a set of
demonstration apps, and a suite of collaboration tools.

Kaggle
Web page: https://www.kaggle.com/

Kaggle is an online platform for hosting machine learning competitions,
which has built a large community of data scientists and ML practitioners.
It is open to any type of data, and contains many Earth-related entries,
such as the ‘Understanding Clouds from Satellite Images’ competition,
by the Max Planck Institute for Meteorology, the ‘LANL Earthquake
EDA and Prediction’ competition, by Los Alamos National Laboratory,
and others. It is also a place where datasets are catalogued, so as to be
found more easily by the community. For instance, it hosts the ‘Climate
Change: Earth Surface Temperature Data’ from Berkeley Earth.

ML4Earth
Web page: https://ml4earth.de

Machine Learning for Earth observation (ML4Earth) is a German national

https://huggingface.co
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center of excellence, led by the Technical University of Munich. Among its
activities, ML4Earth maintains a collection of benchmark data products,
which consist in pre-labeled EO datasets and baseline/pre-trained AI
models. This enables a researcher get up and running more quickly, when
tackling a new EO task. The EarthNets platform [150] maintained by
ML4Earth contains a categorization of over 400 EO datasets.

Pangeo
Web page: https://pangeo.io

Pangeo is a community working collaboratively to develop software and
infrastructure, in order to facilitate research in Big Data geoscience. The
shared objective is to build an ecosystem of mutually compatible, open
source geoscience software packages, following established best practices
in the scientific python community.

Radiant MLHub
Web page: https://mlhub.earth/

The Radiant Earth Foundation is a non-profit foundation, whose goal is
to increase the positive impact of Earth Observation through machine
learning. The Radiant MLHub brings together training data, models,
and a community of participants with backgrounds in EO, geospatial
data, and machine learning.

Sentinel Hub
Web page: https://www.sentinel-hub.com/

Satellite data from many Earth Observation programs, such as the Sen-
tinel missions (ESA/Copernicus) and Landsat missions (NASA/USGS),
are available at Sentinel Hub under a unified API. The website also
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contains a graphical ‘EO Browser’ which allows a visual exploration of
datasets that are available for a given time span and geographical extent.

SpaceML
Web page: https://spaceml.org/

SpaceML is a machine learning toolbox, and a developer community that
builds open science AI apps, for space science and exploration. It is part
of the Frontier Development Lab (FDL), supported by NASA, DOE, and
ESA.

WeatherBench 2
Web page: https://sites.research.google/weatherbench

In order to facilitate global weather forecasting with ML, in particular for
the medium-range timeframe (1-14 days), Google Research has published
the WeatherBench framework (now version 2). The framework enables
the evaluation and comparison of various weather forecasting models,
using open-source evaluation code. It also contains ground-truth and
baseline datasets [151].
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