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Preface

This book offers an easy-to-understand introduction to the electrical
properties of semiconductors and electronic components fabricated
from semiconductors, commonly known as semiconductor devices or
simply devices. Our focus in this book is primarily on the latter. Given
the abundance of excellent books on the subject, we will try to shed
fresh light on some aspects of semiconductor devices that are not cov-
ered by ordinary books or that we struggled to understand. We assume
that readers have a basic knowledge of mathematics, physics, and elec-
tric circuits at the level of a first- or second-year college student. Read-
ers may or may not intend to specialize in semiconductor electronics in
the future. We, therefore, have incorporated some cross-disciplinary
viewpoints.

Acknowledging the ever-evolving nature of semiconductor tech-
nology, we have tried to focus on fundamentals that are not likely
to become obsolete anytime soon, rather than trying to include the
“latest topics” that are guaranteed to become outdated very quickly.
We wrote this book hoping that readers will be able to achieve the
following:

● To understand the functions of semiconductor devices as compo-
nents of circuits.

● To recognize that wave phenomena in periodic structures underlie
the electrical properties of crystals.

● To acquire the skill to interpret energy band diagrams of semicon-
ductor devices.

● To understand the physics of the basic operation of p-n junction
diodes and MOS transistors (MOSFETs).

To view semiconductor devices as components that provide certain
functions is to view them from a circuit designer’s perspective. Inte-
grated circuit design is another subdiscipline of semiconductor elec-
tronics that we would like readers to be aware of. Designers are the

xiv
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users of semiconductor devices. It is always good to know about your
users or customers.

Given the fact that we do not assume that readers have a knowl-
edge of quantum mechanics, we will be looking at “wave phenom-
ena in periodic structures” using periodic circuits. Although periodic
circuits and solid crystals are governed by different laws of physics
(circuit theory vs. quantum mechanics), there are striking similarities
between them for a good reason. We take advantage of this fact.

So-called energy band diagrams are presented in almost all books
on semiconductor devices. However, there are often no in-depth
explanations as to why such diagrams are drawn and why they are so
important. Actually, not all energy band diagrams are as informative
and useful as they can be. We came to realize that quasi-Fermi levels
(also known as imrefs) must be drawn in energy band diagrams for
the latter to be able to display useful information about device physics.
Quasi-Fermi levels are somewhat underappreciated and are often not
covered by introductory books. Even in advanced books, it is difficult
to find an explanation that really makes good sense. In fact, the inven-
tor of quasi-Fermi levels, William Shockley, himself wrote that imref
concepts were “hard to comprehend” and ”sometimes hard to teach”
[28]. However, a good grasp of imrefs is crucially important for an
intuitive understanding of device operation and a mastery of read-
ing energy band diagrams. Naturally, we will be discussing imrefs in
great, possibly unprecedented, detail.

The p-n junction can be a device (i.e., diode) by itself, but it is also
a fundamentally important structure contained in nearly all semicon-
ductor devices. The MOS transistor is the most commonly used type
of transistor today. It also contains another very important structure,
the metal-oxide-semiconductor (MOS) structure. We will use these
devices and structures as the platform for applying the basic principles
that readers will learn.

Following “Introduction: Semiconductor Basics” as Chapter 1,
Chapter 2, titled “Semiconductor Devices from a Circuit Theoretic
Standpoint,” describes the circuit-operational functions and other
aspects of semiconductor devices from the standpoint of a circuit
engineer. Note that it is possible to separate the function of a device
in a circuit from how the function is actually realized using certain
materials, structures, and fabrication techniques. As readers may be
aware, device functions that were once realized with vacuum tubes are
now achieved with semiconductor devices. While almost all electron
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devices are now implemented with semiconductors, there is still plenty
of room for the development of new materials and device structures.
When looking into possible new devices and/or materials, it might be
a good practice to ask if there are benefits that circuit engineers will
appreciate.

Chapter 3, titled “Waves in Periodic Structures,” attempts to
explain the formation of energy bands without assuming knowledge
of quantum mechanics. The essentials of band theory are discussed
using circuit theory, making it easily understandable to readers with-
out a background in solid-state physics. In his famous book [27],
Shockley briefly discussed the connection between solid crystals and
periodic circuits. Our approach was motivated by it. The essence of
the emergence of energy band structures lies in the periodic structure,
and therefore band structures are not unique to solid crystals. If you
are already familiar with energy bands, you can skip this chapter.

Chapter 4, titled “Physics of Semiconductors in Equilibrium,” is
where this book becomes somewhat ordinary compared with previ-
ous chapters. It looks at the carrier statistics of semiconductors. The
chemical potential is explained and the physical meaning of the Fermi
level is described. The connection of these concepts with the energy
band diagram is emphasized throughout. It is important to under-
stand that the Fermi level and the equilibrium carrier density are two
sides of the same coin. The Fermi level can be drawn in energy band
diagrams, so such diagrams provide you with information about the
other side of the coin.

In Chapter 5, titled “Carrier Dynamics in Semiconductors,” we
move on to nonequilibrium conditions where steady current flows.
The presentation goes along the “ordinary” lines of Chapter 4, but the
extensive discussion of imrefs, including their crucial roles in energy
band diagrams, might make this chapter somewhat out of the ordi-
nary. As a steady current flows, the Fermi level, which is an equi-
librium quantity, cannot be defined, necessitating the introduction of
imrefs for electrons and holes separately. Just like the Fermi level,
quasi-Fermi levels can be drawn in energy band diagrams. Such dia-
grams offer information about electron and hole densities and much
more. Quasi-Fermi levels and energy band diagrams are key to the
intuitive understanding of the operation of semiconductor devices.

Chapter 6, titled “p-n Junctions,” focuses on the rectification char-
acteristics of p-n junction diodes and their physics. It involves inter-
preting energy band diagrams, in which imrefs are drawn. Some of the
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energy band diagrams shown in this chapter are quantitative because
they were drawn using semiconductor device simulation (also known
as technology computer-aided design or TCAD). Surprisingly, this
seems to be a new approach to semiconductor device teaching. TCAD
is widely used today for analyzing various semiconductor devices.
However, most TCAD users focus only on the current-voltage char-
acteristics of their devices and do not use TCAD to draw energy band
diagrams, although they might plot electrostatic potential and car-
rier densities on separate graphs. This is a pity because all these and
more can be read from a single energy band diagram. Calculations
without comprehending the true nature of device physics might not
contribute to new knowledge. To design new device structures and
improve performance, it is essential to recognize the physics behind
current-voltage characteristics. In this chapter, we will also see that a
standard assumption made in developing the theory of p-n junctions
might not be physically correct.

In Chapter 7, titled “MOS Transistors,” the basics of MOS capaci-
tors and MOSFETs are described, and the characteristics of MOSFETs
as four-terminal devices are derived. MOSFETs are the workhorses
of today’s digital world and are continuously evolving in structure
and performance. But we will focus on planar, long-channel MOS-
FETs for reasons mentioned earlier. The presentation of this chapter is
modeled on Tsividis’ highly acclaimed book [33] and, importantly, is
also consistent with our decision to make extensive use of quasi-Fermi
levels. This approach starts from the analysis of the MOS capacitor
and leads naturally to the proper treatment of the semiconductor sub-
strate, or equivalently, the back gate—the fourth terminal, if any, of
the MOSFET. Recent advanced MOSFETs might not have a back gate
terminal that is accessible by the circuit designer, but that does not
mean a region corresponding to the substrate does not exist within
the device. The derivation of equations is quite long, and novice read-
ers might find it quite difficult. However, we believe going through
it is necessary for a solid understanding of the MOSFET operation.
Based on our findings in Chapter 6, we also make minor reservations
about the accepted theory for describing MOSFETs in the hope that
some readers will look at it in the future.

The book is interspersed with a number of boxed columns. Some
of these address questions that may naturally arise during the study
of semiconductors but are hardly discussed. While this book may
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not serve as a replacement for conventional books due to its uncon-
ventional approaches, we hope that it will fill some gaps still left
unattended. For those aspiring to specialize in semiconductor devices,
we recommend that, after finishing reading this book, they graduate
to more comprehensive, standard books on the subject. For readers
already acquainted with semiconductor devices, this book’s untra-
ditional approach might offer moments of enjoyment. Specifically,
we hope that those engineers utilizing TCAD for device analysis and
development will discover the joy of reading energy band diagrams
with imrefs.

When reading a book like this, readers are required to jump
between pages to refer to equations and figures scattered across the
book. To make it easier to do so, page numbers are given together
with equation or figure numbers in cross references. The Symbol Index
serves a similar purpose, where readers can look up mathematical
symbols and find their definitions.

This book was derived from our book titled Denshi bussei to
debaisu (Elementary Solid-State Device Physics), written in Japanese
and published by Corona Publishing Co. Ltd. in 2020 [20]. The feed-
back we received from its readers was essential in producing this book.
Akira Matsuzawa and Shinichi Takagi were among them and also
kindly provided helpful feedback on a draft of this book. We thank
Kosuke Otsuru for drawing the book cover illustration, which shows
an energy band diagram of a p-n junction. This work was supported in
part by the MEXT Initiative for Establishing Next-Generation Novel
Integrated Circuits Centers (X-NICS), Grant Number JPJ011438. We
are indebted to Atsushi Hori, Kazuaki Sawada, Akinobu Teramoto,
Hitoshi Wakabayashi, and Junichiro Yoshikawa for their support.
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𝜑th Thermal voltage V  236
𝜑W,A Work function of A (in volts) V, eV 170 
𝜑W,B Work function of B (in volts) V, eV  170
𝜒 Electron affinity (in volts) V, eV  171
𝜓 Electrostatic potential V 97
𝜓A Electrostatic potential of A V 169 
𝜓B Electrostatic potential of B V  169
𝜓F Fermi potential V 97
𝜓n Quasi-Fermi potential for elec-

trons
V 123
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𝜓p Quasi-Fermi potential for holes V 123
𝜓s Surface potential V  225
𝜓sT Approximate surface potential

under strong inversion
V  236

𝜔 Angular frequency rad/s 31
𝜔 (𝛽) Dispersion relation of transmis-

sion line
rad/s 75

𝜔c Cut-off angular frequency rad/s 58
𝜔c Carrier angular frequency rad/s 75
𝜔s Signal angular frequency rad/s 75
a Lattice constant m, Å 80
a Acceleration N/kg 138
A (1, 1) element of ABCD matrix – 269
Å angstrom. 1 Å equals 1×10−10 m – 26
ai Traveling-wave phasor incident

on port i
V⋅Ω−1/2 271

B (1, 2) element of ABCD matrix Ω 269
B Magnitude of 𝐁 Wb/m2 159
𝐁 Magnetic flux density vector Wb/m2 159
bi Outgoing traveling-wave pha-

sor at port i
V⋅Ω−1/2 271

C Capacitance F  30
C Per-unit-length capacitance of

transmission line
F/m 51

C (2, 1) element of ABCD matrix S 270
Cch Chord capacitance F 37
Cd Per-unit-area depletion capaci-

tance
F/m2 188 

Cgate Gate capacitance F  258
Cinc Incremental (or small-signal)

capacitance
F 37

Cox Per-unit-area gate oxide capaci-
tance

F/m2 220  

d Differential symbol, used in the
form dx

– 30

d Distance between conductors m 61
D (2, 2) element of ABCD matrix S 270
𝜕 Partial differential symbol – 44
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D+
A Coefficient in wave function

(region A)
– 71

D−
A Coefficient in wave function

(region A)
– 71

db Depletion layer thickness in
MOS structure

m 229 

D+
B Coefficient in wave function

(region B)
– 71

D−
B Coefficient in wave function

(region B)
– 71

ddep Depletion layer thickness m  186
Dg Diffusion coefficient for gas m2/s 143
Dn Diffusion coefficient for elec-

trons
m2/s 140

Dp Diffusion coefficient for holes m2/s 141
e = exp (1) ≃ 2.718⋯ – 63
E Electron energy J, eV 11
𝐄 Electric field vector V/m 159
ℰ Electrostatic field; electric field V/m 14
E (k) E-k dispersion relation of solid J, eV 79
EA Acceptor energy level J, eV 22
Ec Conduction band bottom

energy
J, eV 12

ED Donor energy level J, eV 20
EF Fermi energy J, eV 91
Eg Energy gap J, eV 12
Ei Intrinsic Fermi level J, eV 96
ℰm Magnitude of maximum electric

field
V/m 184 

ℰs Normal electric field at the sub-
strate surface

V/m 238 

Ev Valence band top energy J, eV 12
ℰx x component of electric field V/m  249
ℰy y component of electric field V/m  249
f Frequency Hz 60
F Force N 118
𝐅 ABCD matrix (or F matrix) See p. 270 269
f (E) Distribution function for elec-

trons
– 89
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fc Cut-off frequency Hz 69
fc (E) Distribution function for con-

duction band states
– 125

fclk Clock frequency Hz  258
fh (E) Distribution function for holes – 93
𝐅L Lorentz force vector N 159
fv (E) Distribution function for con-

duction band states
– 125

g Acceleration of gravity m/s2 111
G Conductance S 29
Gch Chord conductance S 34
gds Drain conductance S 44
Ginc Incremental (or small-signal)

conductance
S 34

gm Transconductance S 42
gn Electron generation rate s−1m−3, s−1cm−3 148
gn0 Electron generation rate in equi-

librium
s−1m−3, s−1cm−3 150

gp Electron generation rate s−1m−3, s−1cm−3 148
gp0 Hole generation rate in equilib-

rium
s−1m−3, s−1cm−3 151

h Planck constant (≡ 6.62607015×
10−34 J⋅s)

J⋅s 59

h Height m 111
ℏ = h/2𝜋. Reduced Planck con-

stant
J⋅s/rad 59

i Imaginary unit, i2 = −1 – 73
i Current A 62
i Positive integer; Port number – 271
I Current A  29
ℑ (z) Imaginary part, y, of complex

number z = x + jy
– 55

I+ Forward current-traveling-
wave phasor

A 64

I− Backward current-traveling-
wave phasor

A 64

I1 Current flowing into port 1 A 42
I2 Current flowing into port 2 A 42
IB Current flowing into back gate A 249 
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ID Current flowing into drain A 249 
IDS Drain-to-source current A  220
IDS0 Drain-to-source current at

threshold
A 260 

IDSsat Saturated drain-to-source cur-
rent

A  220

IG Current flowing into gate A  249
IS Current flowing into source A  249
j Imaginary unit, j2 = −1 – 72
j Positive integer – xxix
J Magnitude of 𝐉 A/m2 161
𝐉 Current density vector A/m2 159
Jdrift Drift current density A/m2 139
Jn Electron current density A/m2 130
Jn,drift Electron drift current density A/m2 138
Jp Hole current density A/m2 130
Jp,drift Hole drift current density A/m2 138
Js Reverse saturation current den-

sity
A/m2  191

k Boltzmann constant (k ≃ 1.38 ×
10−23 J/K)

J/K 26

k Spring constant N/m 51
k Wave number rad/m 63
𝐤 Wave number vector rad/m 63
kA Wave number in region A rad/m 71
kB Wave number in region B rad/m 71
kx x-component of 𝐤 rad/m 63
ky y-component of 𝐤 rad/m 63
kz z-component of 𝐤 rad/m 63
ℓ Length of transmission line m 68
ℓA Length of transmission line A m 68
ℓB Length of transmission line B m 68
L Inductance H  32
L Per-unit-length inductance of

transmission line
H/m 61

L Channel (or gate) length of
MOSFET

m, nm, µm  20

L′ Effective channel (or gate)
length of MOSFET

m, nm, µm 253 



Symbol Index ∎ xxvii

Lch Chord inductance H 39
LD Debye length m 158
le Electron mean free path m 135
Linc Incremental (or small-signal)

inductance
H 39

Ln Electron diffusion length (as
minority carriers)

m, µm 194  

Lp Hole diffusion length (as minor-
ity carriers)

m, µm  194

m Mass kg 111
m0 Rest mass of electron (≃ 9.1 ×

10−31 kg)
kg 27

mc Density-of-states effective mass
of electron

kg 88

me Effective mass of electron kg 80
mh Effective mass of hole kg 136
mv Density-of-states effective mass

of hole
kg 88

n Conduction electron density m−3, cm−3 8
n Positive integer – 76
n Gate-control efficiency factor – 267 
N Number of repetitions – 66
N Number of electrons – 134
Δn Difference between electron and

hole densities
m−3, cm−3 99

Δn Excess electron density. Δn ≷ 0 m−3, cm−3 149
n1 Carrier density of layer 1 m−3, cm−3 165
n12 Apparent carrier density of two

layers
m−3, cm−3 165

n2 Carrier density of layer 2 m−3, cm−3 165
N (E) Density-of-states function J−1m−3, eV−1cm−3 89
NA Acceptor density m−3, cm−3 99
N−

A Acceptor ion density m−3, cm−3 99
N−′

A Effective acceptor ion density m−3, cm−3 99
Nc Effective density of states of

conduction band
m−3, cm−3 93

ND Donor density m−3, cm−3 99
N+

D Donor ion density m−3, cm−3 99
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N−′
D Effective donor ion density m−3, cm−3 99

ng Density of gas m−3 142
Ng Reference density of gas m−3 142
ni Intrinsic carrier density m−3, cm−3 8
n′

i Effective intrinsic carrier den-
sity

m−3, cm−3 124

nN Electron density of n-type semi-
conductor

m−3, cm−3 150

nN0 Equilibrium electron density of
uniform n-type

m−3, cm−3 151

nP Electron density of p-type semi-
conductor

m−3, cm−3 149

nP0 Equilibrium electron density of
uniform p-type

m−3, cm−3 149

ns Surface electron density m−3, cm−3 228 
nv Electron density of valence band m−3, cm−3 288
Nv Effective density of states of

valence band
m−3, cm−3 94

p Momentum kg⋅m/s 51
p Hole density m−3, cm−3 7
Δp Excess hole density. Δp ≷ 0 m−3, cm−3 149
pN Hole density of n-type semicon-

ductor
m−3, cm−3 150

pN0 Equilibrium hole density of uni-
form n-type

m−3, cm−3 150

pP Hole density of p-type semicon-
ductor

m−3, cm−3 149

pP0 Equilibrium hole density of uni-
form p-type

m−3, cm−3 149

ps Surface hole density m−3, cm−3  228
q Elementary charge (≃ 1.6 ×

10−12 C). Electron charge is −q
C 12

Q Charge stored in capacitor C  29
Q0 Initial charge stored in capacitor C 30
Qb Per-unit-area depletion charge

of MOS capacitor
C/m2 235 

Qd Per-unit-area fixed charge
(unsigned) in depletion layer

C/m2 184 

QG Per-unit-area gate charge C/m2  224
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ΔQG Change in QG C/m2 225 
Qgi Per-unit-area induced charge in

the substrate of a MOS capaci-
tor

C/m2 224  

ΔQgi Change in Qgi C/m2  225
Qinv Per-unit-area inversion charge

of MOS capacitor
C/m2 235  

Qo Per-unit-area interface charge
between oxide and substrate

C/m2 224  

r Radius m 276
R Resistance Ω 29 
ℜ (z) Real part, x, of complex number

z = x + jy
– 55

rB Bohr radius (≃ 5.3 × 10−11 m) m, Å 276
Rch Chord resistance Ω 33
rH Hall factor – 161
RH Hall coefficient m3/C 161
RH12 Apparent Hall coefficient of two

layers
m3/C 165

RH2 Hall coefficient of layer 2 m3/C 166
Rinc Incremental resistance Ω 33
rm Transresistance Ω 42
rn Electron recombination rate s−1m−3, s−1cm−3 148
rn0 Electron recombination rate in

equilibrium
s−1m−3, s−1cm−3 150

Ron On resistance of MOSFET Ω  258
rp Hole recombination rate s−1m−3, s−1cm−3 148
rp0 Hole recombination rate in

equilibrium
s−1m−3, s−1cm−3 151

Rref Reference resistance Ω 272
𝐒 S-matrix – 272
S Subthreshold swing mV/dec  267
Sji (j, i)-element of S-matrix – 271
t Time s 29 
T Absolute temperature K 26
t0 Initial time s 30
t1 Thickness of layer 1 m 165
t12 Thickness, t12 = t1 + t2 m 165
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t2 Thickness of layer 2 m 165
tox Thickness of gate oxide m, nm 258 
U Scaling factor (U > 1) –  258
U (x) Potential energy function J, eV 70
UA Potential energy in region A J, eV 70
UB Potential energy in region B J, eV 70
Un Electron generation-

recombination rate
s−1m−3, s−1cm−3 148

UN (x) Chebyshev polynomial of the
second kind

– 274

Up Hole generation-recombination
rate

s−1m−3, s−1cm−3 148

v Voltage V 61
v Magnitude of 𝐯 m/s 160
𝐯 Velocity vector m/s 160
V Voltage V  29
V′ Voltage V 37
ΔV Voltage difference V 111
V+ Voltage-traveling-wave phasor

traveling in a positive direction
V 63

V− Voltage-traveling-wave phasor
traveling in a negative direction

V 63

V0 Voltage amplitude V 31
V1 Voltage of port 1 V 41
V2 Voltage of port 2 V 41
V+

A Forward voltage-traveling-
wave phasor (line A)

V 71

V−
A Backward voltage-traveling-

wave phasor (line A)
V 71

V+
B Forward voltage-traveling-

wave phasor (line B)
V 71

V−
B Backward voltage-traveling-

wave phasor (line B)
V 71

VBS Back gate-source voltage V  256
VCB Channel potential (back gate-

referenced)
V 242  

VDB Drain-back gate voltage V  248
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Vdd Supply voltage for MOSFET V 257 
vdrift Drift velocity m/s 121
VDS Drain-source voltage V 220  
Vfb Flat-band voltage V  224
vg Group velocity m/s 75
VGB Gate-back gate voltage V 225  
V(1)

GB Gate-back gate voltage (deple-
tion)

V 294

V(2)
GB Gate-back gate voltage (weak

inversion)
V 295

V(3)
GB Gate-back gate voltage (onset of

strong inversion)
V 295

V(4)
GB Gate-back gate voltage (strong

inversion)
V 295

V(a)
GB Gate-back gate voltage (accu-

mulation)
V 294

VGS Gate-source voltage V  220
VH Hall voltage V 161
vn Electron velocity m/s 130
𝐯n Electron velocity vector m/s 160
vn,drift Electron drift velocity m/s 135
vp Hole velocity m/s 130
VP Pinch-off voltage V  245
𝐯p Hole velocity vector m/s 160
vp,drift Hole drift velocity m/s 136
vph Phase velocity m/s 75
VSB Source-back gate voltage V 248 
VT Threshold voltage of MOSFET V  219
VT0 Threshold voltage of MOS

capacitor
V 237 

VTB Threshold voltage of 3-terminal
MOS (back gate-referenced)

V 244 

VTC Threshold voltage of 3-terminal
MOS (channel-referenced)

V  247

vth Thermal velocity m/s 134
W Width m 160
W Channel or gate width of MOS-

FET
m, µm 220 
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Wm Magnetic energy J 39
Ws Electrostatic energy J 39
x Mixture ratio (0 < x < 1) – 4
x x coordinate m 14
x Real number; Real part of com-

plex number
– 78

Δx Infinitesimal section in x direc-
tion

m 61

xN Depletion layer thickness in n-
type region

m 183 

xP Depletion layer thickness in p-
type region

m  183

y y coordinate m 153
y Real number; Imaginary part of

complex number
– 78

Y Admittance S 56
yC Channel depth or thickness of

inversion layer
m, nm  251

z z coordinate m 153
Z Impedance Ω 56
Z0 Characteristic impedance of

transmission line
Ω 64

Z0A Characteristic impedance of
transmission line A

Ω 67

Z0B Characteristic impedance of
transmission line B

Ω 67

Zin Input impedance Ω 56
Z′

in Input impedance Ω 58



C H A P T E R 1

Introduction
Semiconductor Basics

What is the most abundant artifact (artificial object) on Earth? In this
chapter, we will go over the basics of semiconductors and consider
this question.

1.1 WHAT ARE SEMICONDUCTOR DEVICES?

The word “device” has various meanings. In this book, devices are
considered circuit elements that constitute an electronic circuit. There
are various types of circuit elements, but the ones discussed in this
book are semiconductor devices or electron devices. These two terms
are often used interchangeably, although only the latter includes
vacuum tubes.

Semiconductor devices are devices made of materials classified as
semiconductors. Examples include two-terminal diodes with a rec-
tifying action and three-terminal transistors with an amplifying or
switching action. Semiconductor devices also include light-emitting
devices that emit light and light-receiving devices that sense light. Solar
cells and image sensors are also light-receiving devices.

Then, what are semiconductors?

1.2 CLASSIFICATION OF SOLIDS

Before we get into semiconductors, let’s start with a more general dis-
cussion of solids. There are many possible ways to classify solids. They
could be classified, for example, according to:

● Resistivity or conductivity

● Arrangement of atoms (crystalline or noncrystalline)
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TABLE 1.1 Classification of Solids According to Resistivity (After [22])

Name Resistivity Electron density Examples

Conductor 10−6 ∼ 10−5Ω ⋅ cm 1022 ∼ 1023 cm−3 copper,
   aluminum, gold
Semiconductor 10−2 ∼ 109Ω ⋅ cm 106 ∼ 1017 cm−3 silicon,
   germanium,
   gallium arsenide
Insulator 1014 ∼ 1022Ω ⋅ cm 1 ∼ 10 cm−3 diamond, glass,
   rubber

● Purity (pure material or mixed with impurities)

These are not independent of one another; both the atomic arrange-
ment and purity affect electrical properties.

Table 1.1 shows a rough classification of solids based on resistiv-
ity. Resistivity is the reciprocal of conductivity. Since conductivity is
related to the conduction electron density, it is also given in Table
1.1. There are also materials with intermediate resistivities not listed
in Table 1.1 and materials that become superconductors at cryogenic
temperatures.

Most conductors, which conduct electricity very well, are met-
als. In silicon integrated circuits, where many devices are integrated
on a silicon chip and interconnected, copper and aluminum are
mainly used as materials for interconnects. Gold is often used as an
interconnect material in compound semiconductor (p. 4) integrated
circuits.

Insulators do not conduct electricity. There are various types of
insulators. Diamonds are crystals, so their atoms are arranged reg-
ularly, while glass is amorphous, so its atoms are not arranged reg-
ularly. Rubber is an organic polymer. The name “insulator” comes
from the fact that current hardly flows through it. An insulator is also
called a dielectric when the focus is on its capacity to accommodate
electric lines of force. The dielectric constant or permittivity is the
material parameter related to it. It is an important technical issue in
integrated circuits to reduce the parasitic capacitance between inter-
connects by minimizing the dielectric constants of the dielectrics that
fill the space between the interconnects. Conversely, dielectrics with
high permittivity are required for the insulator (gate dielectric film)
used in the MOS transistor, which is described in Chapter 7.



Introduction: Semiconductor Basics ∎ 3

Semiconductors are literally materials whose conductivities are
somewhere between those of conductors and insulators. However,
simply stating that a material having an electrical conductivity some-
where between that of a conductor and an insulator fails to capture the
remarkable characteristics of semiconductors. Semiconductors have
the following features:

● By adding appropriate impurities, the polarity of the charged
particles responsible for electrical conduction can be selected,
and the conductivity can be changed dramatically—by orders of
magnitude.

● By combining the addition of impurities and appropriate struc-
tures, it is possible to select the polarity of the charged particles
and achieve a significant change in conductivity by electrical
means (e.g., by applying a voltage).

The second point can be considered a description of semiconduc-
tor devices. The ability to change conductivity by many orders of
magnitude suggests that something like a switch could be made. Fur-
thermore, by making good use of the existence of positive and negative
mobile charges, a variety of semiconductor devices have been invented
and utilized.

Changing conductivity by many orders of magnitude is usually not
possible with metals or insulators. It is, therefore, not possible to use
metals or insulators to make devices that operate by manipulating the
conductivity of the material itself. As is well known, switches made
of metals and insulators (including air) change the resistance of the
path through which a current flows (or tries to flow but cannot) by
mechanical operation. The same is true for relays, which combine
electromagnets with mechanical switches to enable electrical on/off.

Vacuum tubes, which function similarly to transistors, are made of
metals and insulators but use electric discharges in a vacuum to con-
trol the current. However, it is difficult to create a good off state with
negligible leakage current.

It should be clear from the above that semiconductors are of over-
whelming importance when discussing the properties of solids in rela-
tion to device applications. Some typical semiconductor materials are
listed in Table 1.2.

Silicon is the most widely used semiconductor material. We will
also use the chemical formula, Si, to refer to silicon. Note that sili-
cone is a word similar to silicon, but it refers to a completely different
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TABLE 1.2 Typical Semiconductor Materials

Chemical formula Name Description or application

Si Silicon Most widely used
  semiconductor; VLSI
Ge Germanium First transistor was made
  of germanium
SiC Silicon carbide High-voltage devices
GaAs Gallium arsenide Optical devices,
  low-noise transistors
GaN Gallium nitride Optical devices,
  high-power transistors
InP Indium phosphide Optical devices,
  high-frequency transistors
Si1−xGex Silicon germanium Semiconductor alloy;
  bipolar transistors

substance group (see Problem 1.1 on p. 26). Silicon is a key semicon-
ductor material for integrated circuits and power electronics. It is also
used for solar cells and displays that require a large area because of
its low cost. Table 1.3 shows some material parameters of silicon for
reference. Since the values vary somewhat from literature to litera-
ture, they are rounded to two significant digits.1 The meaning of each
parameter will be explained later.

Like silicon, germanium is an elemental semiconductor—a semi-
conductor composed of a single element. It was a material extensively
studied in the early days of semiconductor devices, and the first tran-
sistor was made of germanium. Although it is more difficult to handle
than silicon as a material, it has some superior electrical properties.

Compound semiconductors are composed of multiple elements
and there are a variety of materials. Gallium arsenide is more expen-
sive than silicon, but it has excellent light-receiving and light-emitting
capabilities and low noise. It is used for optical devices and low-noise
transistors. Some material parameters of gallium arsenide are listed in
Table 1.3. The chemical formula of gallium arsenide is GaAs.

Silicon germanium in Table 1.2 is special in that, unlike SiC, GaAs,
GaN, and InP in the same table, the ratio of silicon to germanium
does not need to be a fixed integer. Therefore, it is considered to be a
homogeneous mixture of two solids, mixed at the atomic level, rather
than a compound semiconductor. This type of semiconductor is called

1 This does not mean that the values vary from the third digit onward.
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TABLE 1.3 Material Parameters of Silicon and Gallium Arsenide at Room Temper-
ature (After [30])

 Si GaAs

Relative permittivity 12 13
Energy gap Eg (eV) 1.1 1.4
Electron affinity 𝜒 (eV) 4.0 4.0
Lattice constant a (Å) 5.4 5.6
Atom density (cm−3) 5.0 × 1022 4.4 × 1022

Intrinsic carrier density ni (cm−3) 1.0 × 1010 2.1 × 106

Conduction band effective density of states Nc (cm−3) 2.8 × 1019 4.7 × 1017

Valence band effective density of states Nv (cm−3) 2.6 × 1019 7.0 × 1018

Electron effective mass* me/m0 0.98 0.063
 0.19  
Hole effective mass** mh/m0 0.16 0.076
 0.49 0.5
Electron mobility 𝜇n (cm ⋅ V−1s−1) 1.5 × 103 8.0 × 103

Hole mobility 𝜇p (cm ⋅ V−1s−1) 5.0 × 102 4.0 × 102

* There are two effective masses depending on the direction of movement in a crystal.
** There actually are two types holes: heavy holes and light holes.

a semiconductor alloy. Since the properties of semiconductor alloys
depend on the mixing ratio, the ratio is chosen to achieve the desired
properties. Silicon germanium is often abbreviated as “SiGe,” but this
is not its chemical formula. Another example of a semiconductor alloy
is aluminum gallium arsenide, AIxGa1−x As, which is an alloy between
GaAs and aluminum arsenide (AlAs).

When the semiconductor materials in Table 1.2 are compared with
the periodic table of elements, we notice that all the elements belong
to one of the few groups of elements. Table 1.4 shows the relevant
part of the periodic table. First, the elemental semiconductors Si and
Ge are both group 14 elements. SiC and SiGe are also composed only
of elements of group 14. The other materials in Table 1.2 are all com-
pounds composed of equal numbers of elements from group 13 and
group 15. The above suggests that the properties of semiconductors
are related to valence electrons. We will come back to this point in
§1.3. In the field of semiconductor devices, groups of elements are
often designated by Roman numerals (see Table 1.4). Following this
convention, Si and Ge are group IV semiconductors and GaAs is a
III–V semiconductor.
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TABLE 1.4 Partial Periodic Table Related to Semiconductors

Group name 13 14 15
Old group name III IV V

 B C N
 Al Si P
 Ga Ge As
 In Sn Sb

1.3 PROPERTIES OF SEMICONDUCTORS

The goal of this section is to provide a quick overview of the properties
of semiconductors without using too many mathematical formulas.
More in-depth explanations will be provided in Chapter 4 onward.

1.3.1 Arrangement of Atoms

Most semiconductors used in devices are single crystals grown by
sophisticated growth technology. When we simply say “crystals,” we
usually mean single crystals. Crystalline semiconductors have excel-
lent electrical properties. Since defects in crystals adversely affect elec-
trical properties, it is important to grow crystals with as few crystalline
defects as possible.

Polycrystalline silicon (poly-Si) is often used for solar cells and dis-
play devices that require large areas. Polycrystal is an agglomeration
of many fine crystal grains with different orientations. Polycrystalline
semiconductors are inferior to crystalline semiconductors in terms
of electrical performance, but they can be fabricated into large-area
devices more easily and inexpensively than single crystals. Poly-Si is
often used as a material for the gate electrode of MOS transistors
(Chapter 7).

Unlike crystals, some semiconductors do not have a regular
arrangement of atoms and are called amorphous semiconductors.
Although their performance is even lower than that of polycrystalline
semiconductors, they are easier to produce and are used in situations
where high performance is not required.

Hereafter, semiconductors are assumed to be crystals unless other-
wise specified.
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n-type semiconductor

Electrons Holes

p-type semiconductor

FIGURE 1.1 n-Type and p-type semiconductors. Black-filled circles (●) rep-
resent electrons. Open circles (○) represent holes.

1.3.2 Intrinsic and Doped Semiconductors

As mentioned in §1.2, semiconductors used in devices usually have
their electrical characteristics manipulated by adding a small amount
of certain carefully chosen impurities (not just any impurities). In con-
trast, pure semiconductors with no intentionally added impurities are
called intrinsic semiconductors. Impure semiconductors doped with
appropriate impurities are called extrinsic semiconductors or doped
semiconductors.

Doped semiconductors are divided into two types: n-type and p-
type semiconductors. In n-type semiconductors, negatively charged
electrons are responsible for electrical conduction (Fig. 1.1). In con-
trast, positively charged particles called positive holes or simply holes
are responsible for electrical conduction in p-type semiconductors.
Electrons and holes are collectively called mobile charge carriers or
carriers.

1.3.3 Carriers in Intrinsic Semiconductors

An intrinsic semiconductor is a pure semiconductor that has no impu-
rities added to make it n- or p-type. An intrinsic semiconductor con-
tains equal numbers of electrons and holes. When discussing solid
materials including semiconductors, it is more convenient to consider
the number of carriers per unit volume, i.e., the density or concentra-
tion of carriers, instead of discussing the absolute number of carriers.
So let n and p, respectively, denote the electron and hole densities
contributing to electrical conduction. Then, the electron and hole
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Si4+

FIGURE 1.2 The silicon atom has four valence electrons.

densities of intrinsic semiconductors can be written as

n = p = ni, (Carrier densities of intrinsic semiconductor) (1.1)

where ni is called the intrinsic carrier density. Note, however, that
(1.1) does not hold at all times in all intrinsic semiconductors. Specif-
ically, (1.1) may not hold in those parts of an intrinsic semiconductor
that have “bent energy bands” (Chapter 6). Numerical examples of ni
are given in Table 1.3 (p. 5). Intrinsic semiconductors are semiconduc-
tors, but their conductivities at room temperature are not very high.
They are more like insulators and are sometimes described as being
semi-insulating. The three symbols n, p, and ni in (1.1) are universally
used in the semiconductor literature, not only in this book.

In order to make the following discussion more concrete, we will
consider intrinsic silicon as an example of an intrinsic semiconductor.
Since silicon is an element of group 14 (or group IV), a silicon atom
has four valence electrons. The atomic number of silicon is 14, so the
total number of electrons is 14. But we can think of it as having four
electrons around a tetravalent cation. The cartoon in Fig. 1.2 shows
this situation.

Silicon atoms share valence electrons to form a covalent crystal.
The crystal structure is the so-called diamond structure (see Problem
1.2 on p. 26). A pair of valence electrons can be thought of as being
shared by two atoms, as shown in the cartoon in Fig. 1.3.

1.3.4 Energy Band Formation

In the cartoon of Fig. 1.3, it seems as if two valence electrons
are trapped or localized between two neighboring atoms, but the
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Si4+ Si4+ Si4+

Si4+ Si4+ Si4+

Si4+ Si4+ Si4+

FIGURE 1.3 A model of silicon crystal.

actual situation is somewhat different. To understand this, let us first
consider how valence electrons reside in a single silicon atom.

Considering by analogy with Bohr’s hydrogen-like atom model, an
atom has a number of orbitals that accommodate electrons. Each elec-
tron in an orbital then has certain energy associated with the orbital.
Electrons in orbitals near the nucleus have lower energy, whereas
valence electrons that are far from the nucleus and are involved in
the formation of chemical bonds and chemical reactions have higher
energy. These energies associated with orbitals are called energy levels.
Based on the above discussion, Fig. 1.4 shows a very rough conceptual
drawing, with the curves representing an electrostatic potential due to
the positively charged nucleus. Rigorous treatment of atoms requires
quantum chemistry, which is far beyond our scope, but an important
point here is that the atomic energy levels are discrete and countable.

Next, suppose we have a very large number of silicon atoms. In
order to direct our discussion toward crystals, let us assume that
these atoms are arranged regularly with equal spacing. If the atoms
were spaced more than a few centimeters apart, they could be consid-
ered independent of each other and the energy levels of the orbitals in
which electrons reside would be the same as in Fig. 1.4.
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Si4+

Electron energy

Energy levels

FIGURE 1.4 Energy levels of an isolated atom.

What would happen if we made the distance between atoms smaller
and smaller? When the atomic spacing becomes very small, the pres-
ence of other atoms can no longer be ignored. What would happen
then to the orbitals of each atom? The “shape” of each orbital would
change, but the total number of orbitals contributed by participating
atoms would be maintained. However, the orbitals from each atom
cannot stay at the same energy levels. They would assume different
energy levels that do not overlap with each other. Fig. 1.5 depicts this
situation, with the horizontal axis representing the atomic spacing and
the vertical axis representing the electron energy. As atomic spacing
decreases, energy levels spread with very small energy spacing, form-
ing bands of densely distributed energy levels. In fact, when silicon
atoms are arranged regularly, a silicon crystal should form, and the
atomic spacing cannot be changed arbitrarily. The known crystal lat-
tice spacing (or lattice constant) of silicon is the atomic spacing that
can actually be realized.

If the number of atoms is very large, there will be a virtually contin-
uous distribution of energy levels on the energy axis. In this situation,
individual electrons do not belong to any particular atom but to a
mass of atoms or the crystal. That is, the electrons that were origi-
nally localized to atoms become delocalized throughout the crystal. A
set of energy levels densely distributed on the energy axis is called an
energy band. The region in Fig. 1.5 where there are no energy levels
is called the forbidden band, energy gap, energy band gap, or sim-
ply bandgap. The energy bands are also called the allowed bands in
contrast to the forbidden bands.
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Electron energy
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Forbidden band
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FIGURE 1.5 Relation between atomic spacing and energy levels.

In general, solids may have multiple allowed and forbidden bands,
but it is usually sufficient to consider only two allowed bands and the
forbidden band sandwiched between them when discussing semicon-
ductors. The allowed band that lies above the forbidden band is called
the conduction band, and the other allowed band that lies below the
forbidden band is called the valence band.

The reason why energy band formation occurs as a result of the
regular arrangement of indistinguishable identical objects (atoms in
this case) has to do with the symmetry of the structure (regularity
of atomic arrangement) and can be discussed mathematically. We
will discuss energy band formation further in Chapter 3 using circuit
theory.

1.3.5 Properties of Intrinsic Semiconductors

As mentioned in §1.3.4, there are two allowed bands in semiconduc-
tors. Orbitals in the valence band are almost completely filled with
electrons at room temperature, but a small number of orbitals near
the top of the band are vacant. Fig. 1.6 illustrates this situation. The
conduction band is almost empty, but a small number of orbitals near
the bottom of the band are filled with electrons. The vertical axis in
Fig. 1.6 is the electron energy E. The shaded area indicates the pres-
ence of electrons. The horizontal axis is a spatial coordinate (e.g.,



12 ∎ Elementary Semiconductor Device Physics

Conduction band

Valence band

Forbidden band

FIGURE 1.6 An energy band diagram of an intrinsic semiconductor (E-x
diagram).

x-coordinate), but this is not specified at this time because a spatially
uniform crystal is assumed. Such a diagram is called an energy band
diagram, or band diagram for short.

As shown in Fig. 1.6, the electron energy at the top of the valence
band is denoted by Ev, the bottom of the conduction band is denoted
by Ec, and the magnitude of the energy gap (or bandgap energy) is
denoted by Eg. These three symbols are widely used in the

The source of the small number of electrons near the bottom of the
conduction band of an intrinsic semiconductor is the valence band.
These electrons were originally occupying orbitals near the top of the
valence band but were thermally excited and settled into orbitals near
the bottom of the conduction band, as shown in Fig. 1.7. Therefore,
empty orbitals are left near the top of the valence band. In fact, these
“holes” near the top of the valence band behave as positively charged
particles—known as positive holes, or simply holes. If the electron
charge is −q, the hole charge is +q. From the above, (1.1) on p. 8
holds for the electron and hole densities in intrinsic semiconductors.

The “small number” of electrons and holes per unit volume is

ni ≃ 1 × 1010cm−3 (Intrinsic carrier density of silicon) (1.2)

for intrinsic silicon at room temperature (see Table 1.3 on p. 5). It
may not be so obvious whether the value in (1.2) can be called “a
small number” or “low density,” but the atomic density of crystalline
silicon is about 5 × 1022 cm−3 (see Table 1.3). The number of carriers,
therefore, is smaller than the number of atoms by ten orders of magni-
tude, and in this sense, the number of carriers can be regarded as small.
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FIGURE 1.7 Electrons in a conduction band of an intrinsic semiconductor
originate from the valence band.

In contrast, the conduction electron density of metals is comparable
to the atomic density.

The magnitude of intrinsic carrier density ni is related to the ease
with which thermal excitation of electrons from the valence band to
the conduction band occurs. The larger the energy gap

Eg = Ec − Ev, (Energy gap) (1.3)

the less likely thermal excitation is to occur, and hence the smaller
intrinsic carrier density ni (§4.2.3). The value of Eg depends on the
material. According to Table 1.3, Eg ≃ 1.1 eV (electron volts) for sil-
icon. Compare this with thermal energy kT ≃ 26 meV (millielectron
volts) corresponding to room temperature, T = 300 K (see Problem 1.3
on p. 26). We see that Eg ≫ kT, and therefore thermal excitation of
valence band electrons into the conduction band does not occur eas-
ily at room temperature (§5.6.1). This is the reason why the carrier
density of intrinsic silicon is so small.

1.3.6 Energy Band Diagrams

An energy band diagram is a diagram in which the vertical axis is the
electron energy E and the horizontal axis is a spatial coordinate, as
shown in Figs. 1.6 and 1.7, where quantities like the conduction band
bottom energy Ec and the valence band top energy Ev are plotted.
Note that shading (as in Figs. 1.6 and 1.7) and drawing of particles
(as in Fig. 1.7) are not always done. Electrons in the conduction band
have higher energy than those in the valence band. As considered in
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FIGURE 1.8 An energy band diagram of a semiconductor in an external
electrostatic field (E-x diagram).

connection with Fig. 1.4 (p. 10), this energy is related to the electro-
static potential. Since holes are positively charged, the energy of a hole
increases as it goes down the vertical axis.

Charged particles in an electrostatic field have potential energy
that depends on their location. Therefore, if a semiconductor piece is
placed in an electrostatic field, the energy of the carriers in the semi-
conductor will also depend on their positions in it. As shown in Fig.
1.8, when a DC voltage V is applied to a semiconductor piece of length
L in the x-direction, the electrostatic field ℰ in the semiconductor is
considered to be given by

ℰ = V
L . (1.4)

Note that we used different typefaces to distinguish between the
electron energy E and the electrostatic field ℰ. Therefore, there is a dif-
ference, qV, in the potential energy of an electron (or a hole) between
the right and left ends of the semiconductor piece in Fig. 1.8. The
further to the right in the energy band diagram, the smaller the poten-
tial energy of an electron due to the electrostatic field ℰ, so the band
diagram is downward sloping toward the right as shown.

Since an electrostatic force qℰ acts on electrons in a rightward (→)
direction, electrons in the conduction band can be interpreted as try-
ing to roll down the slope of Ec in the energy band diagram. Similarly,
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a leftward (←) force qℰ acts on holes. Considered upside down, holes
in the valence band can be interpreted as trying to go down the slope
of Ev. Thus, if we have an energy band diagram, we can read the direc-
tions of the electrostatic force acting on carriers from the slope of Ec
or Ev.

There is a reason we wrote “we can read the directions of the force
acting on carriers” and not “we can see the directions in which carri-
ers move.” In some cases, carriers may move in the opposite direction
to the force acting on them. You might recall a common situation
in which a ball thrown upward temporarily moves upward against
gravity due to inertia. However, in semiconductor devices, another
mechanism allows carriers to flow steadily in the opposite direction
to the force acting on them. We will come across such an example in
6. And the example is not a special, contrived one, but a p-n junction
diode, one of the simplest semiconductor devices. Understanding the
physics of carriers in connection with energy band diagrams is among
the most important goals of this book.

Now, as you can infer from Fig. 1.8 (p. 14), Ec and Ev in the energy
band diagram are related to the electrostatic potential 𝜓 (x) as follows:

Ec (x) = −q𝜓 (x) + const., (1.5)

Ev (x) = −q𝜓 (x) − Eg + const., (1.6)

where “const.” in (1.5) and (1.6) represents a constant term. Also,
(1.3) on p. 13 was assumed to hold regardless of the value of x. It
does not hold if the material changes depending on x. The values of
the constant terms in (1.5) and (1.6) are the same in both equations.

TWO KINDS OF ENERGY BAND DIAGRAMS

The term “energy band diagram” is used to refer to two different
kinds of diagrams.

Fig. 1.6 (p. 12) and Fig. 1.8 (p. 14) correspond to what are
known as the E-x diagrams [22]. The E-x diagram has a spatial
coordinate (or x-coordinate) on the abscissa and is used when Ec
and Ev vary spatially. Since Ec and Ev of semiconductor devices
may vary spatially due to changes in materials, impurity doping
(§1.3.7), and external fields, E-x diagrams are an indispensable
tool for studying semiconductor devices. When semiconductor
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device engineers refer to “energy band diagrams,” they usually
mean E-x diagrams.

The other kind of energy band diagram is the E-k diagram
[22], where k is the angular wave number (or wave number for
short) when electrons in a solid are treated as waves in the quan-
tum mechanical sense. E-k diagrams are also sometimes called
dispersion curves (§3.3). E-k diagrams are used to present the
properties of solid materials, including semiconductors. When
material scientists refer to “energy band diagrams,” they usually
mean E-k diagrams.

Not surprisingly, E-x and E-k diagrams are related to each
other. The E-x diagram depicts the position dependence of a cer-
tain point (typically a maximum or minimum point) in the E-k
diagram (see Fig. 3.21 (p. 80)).

Energy band diagrams in this book are E-x diagrams unless
otherwise stated.

Energy band diagrams are often used to study semiconductor
devices. From (1.5) and (1.6), we can also read the electrostatic poten-
tial (within a constant) from Ec (x) or Ev (x) in an energy band diagram.
The quantities plotted on the energy band diagram are not limited to
Ec (x) and Ev (x). If they were, we would not be able to tell the direc-
tion in which carriers are actually moving! At this point, it may not
be so clear why we should want to draw such diagrams, but their
importance will become clearer as we proceed to later chapters.

1.3.7 n-Type and p-Type Semiconductors

As already mentioned in §1.3.2, the electrical properties of semicon-
ductors depend very sensitively on the content of certain impurities.
When an intrinsic semiconductor is doped with a certain impurity, its
properties change significantly (see Problem 1.4 on p. 26).

1.3.7.1 n-Type Semiconductors

Let us consider the addition of a very small amount of phosphorus,
an element of group 15 (or group V), to intrinsic silicon (see Table 1.4
on p. 6). The phosphorus (P) atom has five valence electrons as shown
in Fig. 1.9.
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P5+

FIGURE 1.9 A model of a phosphorus atom.

When a phosphorus atom fits into a lattice point of a silicon crys-
tal, as shown in Fig. 1.10, four valence electrons are used to form
covalent bonds with surrounding silicon atoms, leaving one valence
electron unused. This excess electron is freed as a conduction electron
that can move freely in the crystal (see Problem 1.5 on p. 27 for a pos-
sible problem with the cartoon in Fig. 1.10). The phosphorus becomes
positively charged as a univalent cation. Roughly speaking, the silicon
crystal is provided with nearly as many conduction electrons as the
number of phosphorus atoms added. As a result, the electron density
n exceeds the hole density p by many orders of magnitude (n ≫ p) and
the silicon becomes n-type. The majority carriers in n-type semicon-
ductors are electrons, and the minority carriers are holes. Fig. 1.11
depicts this situation on an energy band diagram.

Impurities of group 15 (group V) that ionize in semiconductors to
provide electrons, such as phosphorus in this example (see Table 1.4
on p. 6), are called donors. Typical donors added to silicon are phos-
phorus (P) and arsenic (As). Be careful not to confuse the polarity
of majority carriers with the polarity of impurity ions. Donor ions
are positively charged cations. Note that donor ions are fixed charges
and cannot move about because they are embedded in the crystal lat-
tice. Since the number of conduction electrons supplied by donors
is equal to the number of resulting donor ions, a uniform n-type
semiconductor is, in general, electrically neutral.

As mentioned earlier, donor atoms in semiconductors fit into crys-
tal lattice points and are part of the crystal. At temperatures much
lower than room temperature, an electron is loosely bound to a donor
nucleus, as shown in Fig. 1.12. This can be thought of as a hydrogen-
like atom with very low binding energy. At room temperature, the
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Si4+ Si4+ Si4+

Si4+ P5+ Si4+

Si4+ Si4+ Si4+

FIGURE 1.10 A model of n-type silicon doped with phosphorus.

FIGURE 1.11 Carriers in conduction and valence bands of n-type semicon-
ductor.

electron is free to move around in the crystal, shaking off the binding
of the donor ion. This means that the ionization energy of the donor
is at most comparable to the thermal energy of room temperature
(26 meV at T = 300 K).

Based on this, the donor level ED can be written in an energy band
diagram as shown in Fig. 1.13. Note that the orbital belonging to a
donor is not delocalized throughout the crystal like those belonging
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P+
-q

FIGURE 1.12 Phosphorus ion in silicon crystal.

to the conduction or valence band. Fig. 1.13 shows two donor lev-
els at the same energy at two different locations. In Fig. 1.13, filled
circles (●) represent electrons and open circles (○) represent holes (p.
7 onward). The neutral donor atom has an electron and a hole in it
and the donor ion has a hole. It may seem strange to have a hole in
a neutral donor or a donor ion, but electrically, there is no problem
with these representations of the two states of a donor. More impor-
tantly, it is also consistent with the more general entity known as the
donor-type trap (p. 143), which not only emits/captures an electron
to/from the conduction band but can also emit/capture a hole to/from
the valence band. We will see in §5.6.2 that the donor is in fact a kind
of donor-type trap. For silicon, Eg ≃ 1.1 eV (see Table 1.3 on p. 5),
whereas Ec − ED is typically only several tens of millielectron volts,
comparable to the thermal energy at room temperature (see Problem
1.5 on p. 26).

1.3.7.2 p-Type Semiconductors

Let us now consider the addition of a small amount of boron (B), an
element of group 13 (group III), to intrinsic silicon. The boron atom
has three valence electrons as shown in Fig. 1.14. When a boron atom
fits into a lattice point of a silicon crystal as shown in Fig. 1.15, cova-
lent bonds are formed with surrounding silicon atoms. Each covalent
bond needs two electrons, so the formation of four covalent bonds
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FIGURE 1.13 Donor levels in the forbidden band.

B3+

FIGURE 1.14 A model of a boron atom.

implies that the participating atoms are one electron short. The result
is a positively charged hole, which can move freely through the crys-
tal. Then, the boron becomes a monovalent anion. The silicon crystal
is supplied with roughly as many holes as the number of boron atoms
added. As a result, the hole density p exceeds the electron density n by
many orders of magnitude (p ≫ n), and the silicon becomes p-type.
Therefore, the majority carriers in a p-type semiconductor are holes,
and the minority carriers are electrons. Fig. 1.16 depicts this situation
on an energy band diagram.

Group 13 (group III) impurities, such as boron, that ionize in semi-
conductors to provide holes, are called acceptors (see Table 1.4).
Boron is a typical acceptor added to silicon. Acceptor ions in semicon-
ductors are negatively charged anions. Acceptor ions are also embed-
ded in crystals and are immobile, fixed charges. Since the number of
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Si4+ Si4+ Si4+

Si4+ B3+ Si4+

Si4+ Si4+ Si4+

FIGURE 1.15 A model of p-type silicon doped with boron.

FIGURE 1.16 Carriers in conduction and valence bands of a p-type semi-
conductor.

holes supplied by acceptors is equal to the number of resulting accep-
tor ions, a uniform p-type semiconductor is, in general, electrically
neutral.

An acceptor nucleus loosely binds a hole at much lower tempera-
tures than room temperature, as shown in Fig. 1.17. At room tem-
perature, holes are free to move through the crystal, free from the
acceptor ions. The acceptor level EA is located slightly above Ev in the
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FIGURE 1.17 A boron ion in silicon crystal.
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FIGURE 1.18 Acceptor levels in the forbidden band.

forbidden band, as shown in Fig. 1.18. Typically, EA − Ev is several
tens of millielectron volts.

1.3.7.3 Impurities versus Dopants

Here are some notes on terms related to impurity doping. First,
donors and acceptors are also collectively called dopants. If we sim-
ply say “impurities,” it is not clear whether they are intentionally
added donors and/or acceptors or unintentional contaminants. But
if we say “dopants,” then we know that they are donors or acceptors
that are intentionally “doped” [24]. This is also the reason we use
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the term “doped semiconductors” in this book rather than “impure
semiconductors.”

IMPURITY DOPING IN SEMICONDUCTORS

We discussed “adding” impurities or dopants to semiconduc-
tors, but semiconductors are basically solids. It should be quite
different from dissolving salt in water or adding silicone as a
food additive to cooking oil or coffee. How would we actually
dope a semiconductor with donors or acceptors?

There are two basic approaches. One is to mix dopants when
growing semiconductor crystals. There are various methods of
crystal growth, and the liquid-phase growth method may be
somewhat similar to dissolving sugar in water and then freez-
ing it. This method does not allow fine control of the spatial
distribution of dopant density.

The other is to add dopants to a semiconductor crystal after
crystal growth while fabricating a device, typically by a method
called zion implantation. In this method, dopant atoms are ion-
ized and accelerated in a high electric field and shot into the
semiconductor. The type and density of dopants can be changed
locally. Impurity atoms cannot be just injected and left as they
are, they must be annealed to fit into crystal lattice points so that
they become part of the crystal and function as dopants.

1.4 WHAT IS THE MOST ABUNDANT ARTIFACT ON EARTH?

What is the most abundant artifact (or artificial object) on Earth? The
fact that there are so many of them means that they cannot be large.
They must be very small. And there should be more constituent parts
that make something up than those that are made up of multiple parts.

Probably the most abundant artifact on Earth is the metal-oxide-
semiconductor (MOS) transistor, a semiconductor device that makes
up today’s integrated circuits (ICs). How many MOS transistors are
there on Earth? The number of shipments per year well exceeded
the number of ants (see Table 1.5) before the end of the 1990s [18].
Shipments have continued to increase year after year. Of course, the
cumulative number of transistors exceeds the number of shipments
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TABLE 1.5 Big Numbers around Us

Population of Earth 8 × 109

Number of ants on Earth 1016 ∼ 1017

Age of the Universe 5 × 1017 s
1 mole 6 × 1023

Number of MOS transistors on Earth ?

per year. How many MOS transistors do you think exist on Earth
when you read this book (Problem 1.7 on p. 27)?

Incidentally, why are there so many MOS transistors?
First, MOS transistors are tiny. To give an example, the length of

one side of a MOS transistor may be about 0.1 µm = 0.0001 mm. The
thickness of a hair is about 0.1 mm. So 106 transistors can, in principle,
be put on the cross-sectional area of a hair.

MOS transistors are inexpensive. The price of a MOS transistor
can be incredibly low. The main material of MOS transistors is sil-
icon (Si). Since silicon is a major constituent of rock and sand, it is
virtually inexhaustible. Silicon is therefore very cheap as a material.
The lower limit of cost reduction for a given product is determined
by the price of raw materials. If the main material were gold (Au),
for example, no matter how much you cut processing costs, trans-
portation costs, labor costs, and various other expenses, the price of
gold itself (expensive!) remains and cannot be reduced any further.
But silicon is cheap. Therefore, MOS transistors can be made cheaper
in terms of raw material prices, and in fact, they are inexpensive.

MOS transistors can be made tiny. Silicon integrated circuits con-
sisting of numerous MOS transistors are actually not assembled from
individually manufactured MOS transistors. A large number of tran-
sistors are manufactured into a single-crystal silicon substrate at once,
and several layers of wiring that connect the transistors are built
on top. Manufacturing techniques similar to printing technology are
used. In the traditional way of making electronic circuits, circuits were
assembled by soldering individual components on a printed circuit
board (PCB). The new method puts as many different circuit blocks
as possible on a single IC chip. Then, the finished integrated circuits
and large circuit components that are difficult to integrate into an IC
are arranged on a PCB.

Then, why did we miniaturize MOS transistors so much? As we
will discuss in §7.5, this was because it was known that the smaller
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the MOS transistor, the higher the performance, especially its oper-
ation speed. Importantly, even if many smaller MOS transistors are
packed into an IC, the power consumption of the entire circuit does
not increase very much. In contrast, bipolar transistors (p. 45), which
may also be made of silicon, outperform MOS transistors, but they
consume more power and generate more heat, so the level of integra-
tion could not be increased beyond a certain level. By using many
small, high-performance MOS transistors and increasing the level
of integration, we can create higher-performance circuits, especially
computers. These ICs are the building blocks of the hardware side of
today’s advanced information society.

The degree of integration of ICs has grown rapidly since its infancy.
Gordon Moore, a co-founder of semiconductor manufacturer Intel,
projected in 1965 that the number of components on an integrated cir-
cuit would double every year. Later, this was slightly modified, and the
number of transistors on an integrated circuit was projected to double
every two years (1975). Leaving aside specific ways of phrasing it, the
key point is that the number of transistors and circuit performance
increase exponentially over the years. This is known as Moore’s law.
The technical background of Moore’s law is the scaling law for MOS
transistors, discussed in §7.5. Moore’s law was initially a future pro-
jection. However, as semiconductor technology progressed and the
industry prospered, nearly according to the “law,” it became the guid-
ing principle for the semiconductor industry. In other words, Moore’s
law has come to serve as a self-fulfilling prophecy.

The social impact of Moore’s law has been dramatic. The cost of
information processing by computers has dropped exponentially. The
amount of information that can be processed has increased exponen-
tially. In tandem with these, the capacity of magnetic storage devices
has increased exponentially, and the speed of communication has
also increased exponentially. Semiconductor devices, the subject of
this book, lie at the heart of the hardware technology that made this
possible.

1.5 SUMMARY

In this chapter, we gave a quick overview of semiconductors.

● Solids can be classified into conductors, semiconductors, and
insulators based on conductivity.
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● The conductivity of a semiconductor can be changed by many
orders of magnitude by appropriate impurity doping and/or
electrical means.

● Devices in this book refer to circuit elements, and those made of
semiconductors are called semiconductor devices.

● The majority of carriers in an n-type semiconductor, doped with
donors, are electrons, whereas the majority of carriers in a p-type
semiconductor, doped with acceptors, are holes.

● The rapid progress of semiconductor devices integrated circuits
composed of semiconductor devices provided the hardware basis
for the rise of information technology.

1.6 PROBLEMS

1.1 Find out what kind of substance silicone (not silicon) is. Use search
engines as appropriate. Does it contain silicon?

1.2 The crystal structure of silicon is a diamond structure. Find out
what kind of three-dimensional structure this is.

1.3 Show that the thermal energy of room temperature, T = 300 K, is
about 26 meV (millielectron volts). Let the Boltzmann constant be
k = 1.38×10−23 J/K and the elementary charge be q = 1.6×10−19 C.

1.4 The amount of dopant added to doped semiconductors is very
small. As an example, suppose that boron atoms are added at a
ratio of one boron atom for every 105 silicon atoms. Refer to Table
1.3 (p. 5) and find the acceptor (boron) density in this case. If the
hole density of the resulting p-type silicon is equal to the accep-
tor density, how many times is the hole density greater than the
intrinsic carrier density?

1.5 Let’s model a donor after Bohr’s hydrogen-like atom (see Fig. 1.12
on p. 19). Assume that there is a donor in silicon and that the
space between the donor nucleus and an electron bound to it
has the permittivity of silicon (see Table 1.3 on p. 5) First, cal-
culate the ratio of the radius of the ground-state electron orbital
to the Bohr radius rB ≃ 0.53 Å). Then, find the ionization energy
from the ground state. The donor level is considered to be located
this much below the conduction band bottom energy, Ec. How
many times greater is this value than the ionization energy of the
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ground-state hydrogen atom, 13.6 eV? Let the permittivity of the
vacuum be 𝜖0 = 8.85 × 10−12 F/m, the effective mass of the elec-
tron in silicon (p. 80) be me = 0.98m0, the mass of the electron be
m0 = 9.1 × 10−31 kg, the elementary charge be q = 1.6 × 10−19 C,
and the Planck constant be h = 6.6 × 10−34 J⋅s.

1.6 In n-type semiconductors, n > p holds for electron density n and
hole density p. It should also be obvious that n > ni. Then, what
about the relationship between p and the intrinsic carrier density
ni? Make a guess based on what you have learned in this chapter.

1.7 Make a very rough estimate of the number of MOSFETs on Earth
in Table 1.5 (p. 24).



C H A P T E R 2

Semiconductor Devices
from a Circuit-Theoretic
Standpoint

In this chapter, we classify circuit elements and consider what semi-
conductor devices are in terms of circuit theory. Here, we will start
with a review of circuit elements in linear circuit theory. As we pro-
ceed, semiconductor devices are shown to be classified as nonlin-
ear circuit elements. However, not all nonlinear elements are made
of semiconductors. The reason for going through the trouble of
explaining in this somewhat unusual manner is to separate the func-
tions of semiconductor devices as circuit elements from the impact
resulting from the use of semiconductors for implementing nonlinear
circuit elements. The distinction between linear and nonlinear ele-
ments also turns out to be relevant when considering the physics of
semiconductors.

2.1 LINEAR CIRCUIT ELEMENTS

“Circuit theory” taught in the first year of college engineering courses
is basically linear circuit theory. Most of the circuit elements that
appear there are linear two-terminal elements. A circuit consisting of
linear circuit elements and voltage and/or current sources is a linear
circuit. As will be explained later, sources are generally not linear cir-
cuit elements. The characteristics of a linear two-terminal device are
mathematically represented by “a straight line passing through the
origin” in a two-dimensional plane. The type of circuit element (resis-
tor, capacitor, inductor, etc.) is determined by the pair of coordinate
axes that span the plane.
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FIGURE 2.1 An element whose characteristics are given by a single straight
line passing through the origin in the I-V plane is a linear resistor.

2.1.1 Linear Resistors

At time t, the current I (t) through a linear resistor and the voltage
V (t) across its terminals satisfy the following constitutive relation:

V (t) = RI (t) . (Constitutive relation for linear resistor) (2.1)

This represents the so-called Ohm’s law. If (2.1) is plotted on a
plane with I on the horizontal axis and V on the vertical axis, it
becomes a straight line passing through the origin, as shown in Fig.
2.1. The slope, R, of this line is the resistance in ohms (Ω). Note that
(2.1) holds for any voltage waveform V (t) and current waveform I (t),
not just for DC. Conversely, a two-terminal element whose charac-
teristics are given by “a straight line passing through the origin in the
I-V plane” may be defined as a linear resistor. In this book, we use the
zigzag schematic symbol, shown in Fig. 2.1, for resistors.

If we swap the vertical and horizontal axes and consider the plane
with I on the vertical axis and V on the horizontal axis, the slope of
the line, G = 1/R, is the conductance, in units of siemens (S).

2.1.2 Linear Capacitors

At time t, the charge Q (t) stored in a linear capacitor and the voltage
V (t) across its terminals satisfy the following constitutive relation:

Q (t) = CV (t) . (Constitutive relation for linear capacitor) (2.2)

If (2.2) is plotted on a plane with V on the horizontal axis and Q on
the vertical axis, it becomes a straight line passing through the origin,
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FIGURE 2.2 An element whose characteristics are given by a single straight
line passing through the origin in the V-Q plane is a linear capacitor.

as shown in Fig. 2.2. The slope, C, of this line is the capacitance in
units of farads (F). Conversely, an element whose characteristics are
given by “a straight line passing through the origin in the V-Q plane”
may be defined as a linear capacitor.

Let us also check the relationship between (2.2) and the current
I (t). Since the charge is the integral of the current over time, Q (t) is
given by

Q (t) = Q0 + ∫
t

t0
I (𝜏) d𝜏, (2.3)

where Q0 is the charge stored at some time t0. By differentiating (2.3)
by t, we obtain the following familiar relationship between the current
and the voltage:

I (t) = dQ (t)
dt

= C
dV (t)

dt
. (2.4)

However, if the point (I (t) ,V (t)) is plotted on an I-V plane, the
locus will be complicated depending on the current and voltage wave-
forms. This makes it practically impossible to define a linear capac-
itor using a locus in the I-V plane. In contrast, the locus of a point
(V (t) ,Q (t)) lies on the line given by (2.2), passing through the origin,
shown in Fig. 2.2, regardless of the current and voltage waveforms.
This indicates that the constitutive relation (2.2) is, indeed, a more
fundamental relation than (2.4).
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FIGURE 2.3 Loci on the I-V plane of a linear capacitor driven by a sinusoidal
voltage source.

Example: Locus of Linear Capacitor in the I-V Plane

Assume that a linear capacitor of capacitance C is connected to an AC
voltage source of voltage V (t) = V0 cos𝜔t. Consider the locus of the
point (I (t) ,V (t)), where 𝜔 is the angular frequency. Using (2.4), the
current is given by I (t) = −𝜔CV0 sin𝜔t. The point on the I-V plane,
therefore, is given by (I (t) ,V (t)) = (−𝜔CV0 sin𝜔t,V0 cos𝜔t). Using
the trigonometric identity sin2𝜔t + cos2𝜔t = 1, the equation for the
locus is given by

[ I (t)
𝜔CV0

]
2

+ [V (t)
V0

]
2

= 1. (2.5)

Equation (2.5) represents an ellipse in the I-V plane. However,
(2.5) includes parameters V0 and 𝜔 that are not attributes of the
linear capacitor. That is, the locus on the I-V plane depends on the
waveform, as shown in Fig. 2.3.

In this example, the voltage waveform was a sine wave, so the locus
on the I-V plane could be found analytically. However, in general,
the equation of the locus cannot be found analytically. In contrast,
the locus on the V-Q plane is always the straight line shown in Fig.
2.2, regardless of the waveform. The equation of the locus can be
expressed using only the circuit element value, C, as in (2.2). ■
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FIGURE 2.4 An element whose characteristics are given by a single straight
line passing through the origin in the I-Φ plane is a linear inductor.

2.1.3 Linear Inductors

At time t, the magnetic flux Φ (t) penetrating a linear inductor and
the current I (t) through the inductor satisfy the following constitutive
relation:

Φ (t) = LI (t) . (Constitutive relation for linear inductor) (2.6)

If (2.6) is plotted on a plane with I on the horizontal axis and Φ on
the vertical axis, it becomes a straight line passing through the origin,
as shown in Fig. 2.4. The slope, L, of the line is the inductance in units
of henries (H). Conversely, an element whose characteristics are given
by “a straight line passing through the origin in the I-Φ plane” may
be defined as a linear inductor.

The magnetic flux Φ (t) and the voltage V (t) satisfy a dual relation-
ship to (2.3) as follows:

Φ (t) = Φ0 + ∫
t

t0
V (𝜏) d𝜏, (2.7)

where Φ0 is the magnetic flux at time t0. By differentiating (2.7) with
respect to t, we obtain the following relationship between the voltage
and the current:

V (t) = dΦ (t)
dt

= L
dI (t)

dt
. (2.8)

2.2 NONLINEAR CIRCUIT ELEMENTS

We saw in §2.1 that linear circuit elements are all represented by
a single straight line passing through the origin in a plane spanned
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by certain variables. The characteristics of nonlinear circuit elements
are similarly considered on an appropriate plane, but the locus repre-
senting the characteristics is not “a straight line passing through the
origin.”

2.2.1 Nonlinear Resistors

The characteristics of a two-terminal nonlinear resistor are repre-
sented by a single, usually curved, line on a plane with I on the
horizontal axis and V on the vertical axis. This line does not need
to pass through the origin. This line may also be a single straight line
or consist of straight line segments.

Example: A Nonlinear Resistor Represented by a Single-Valued
Function

Fig. 2.5 shows the current-voltage characteristics of a nonlinear resis-
tor and its schematic symbol [8]. The schematic symbol allows one to
distinguish the two terminals, which is necessary when the I-V curve is
not point-symmetric about the origin. The horizontal axis is I and the
vertical axis is V in Fig. 2.5 as before, but it is more common to put
V on the horizontal axis and I on the vertical axis. This is probably
because the power supply used in experiments is usually more like a
voltage source—it is more natural to consider V as the independent
variable. From here on, we will also use graphs with the vertical and
horizontal axes interchanged. ■

If the voltage V is given by a single-valued function V (I) of the
current I as in Fig. 2.5, then

Rinc (I) ≡ dV (I)
dI

(Incremental resistance) (2.9)

is the slope of the tangent line to the I-V curve and is called the incre-
mental resistance, small-signal resistance, or differential resistance.
On the other hand, the slope of the line connecting a point on the
I-V curve and the origin is given by

Rch (I) ≡ V (I)
I (Chord resistance) (2.10)

and is called the chord resistance [6, 35]. Chord is a mathematical
term that refers to a straight line segment connecting two points on a
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FIGURE 2.5 An element whose characteristics are given by a single (usually
curved) line in the I-V plane is a nonlinear resistor.

curve. Rch (I) represents the resistance of a line segment strung from the
origin like a string (or chord) of a stringed musical instrument. Note,
however, that if the I-V curve does not pass through the origin, the
line segment is not a chord in the mathematical sense. Although chord
resistance is not a very widely used term, we use it in this book to clar-
ify the distinction from incremental resistance. Note that in nonlinear
resistors, the term “resistance” only has a qualitative meaning.

In Fig. 2.5, since the current I is also a single-valued function of the
voltage V, it is possible to write it as

I (V) = V−1 (V) , (2.11)

where V−1 (V) is the inverse function of V (I). The incremental conduc-
tance Ginc (V) and the chord conductance Gch (V) are defined similarly
to (2.9) and (2.10), respectively.

Example: Ideal Rectifier

An ideal rectifier is a circuit element that conducts current in only one
direction. It is also called the ideal diode. Its I-V characteristics are
shown in Fig. 2.6. There is no voltage drop across an ideal rectifier
when current flows through it. This defines the forward direction of
the current. The voltage across it is zero (V = 0) when the nonzero
current, I > 0, is flowing, regardless of the value of I. Conversely,
when a voltage is applied in the reverse direction (V < 0), the current
is constantly zero (I = 0).
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FIGURE 2.6 I-V plane characteristics of an ideal rectifier.

FIGURE 2.7 I-V plane characteristics of a p-n junction diode.

Fig. 2.6 shows a piecewise linear line (consisting of two straight
line segments) on the I-V plane. It is not “a straight line that goes
through the origin,” so the ideal rectifier is a nonlinear resistor. The
incremental and chord resistances of an ideal rectifier take the same
value. ■

Example: p-n Junction Diodes

p-n junction diodes are two-terminal semiconductor devices with rec-
tifying action, composed of p-type and n-type semiconductors. They
are quite often called just “diodes.” I-V characteristics of a p-n junc-
tion diode, shown in Fig. 2.7, indicate that it is a nonlinear resistor.
We will discuss the physics of p-n junction diodes in Chapter 6. ■

Example: DC Voltage Source

As shown in Fig. 2.8, characteristics of a DC voltage source are rep-
resented by “a straight horizontal line on the I-V plane that does not
pass through the origin” (it passes through the origin only when the
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FIGURE 2.8 I-V plane characteristics of a DC voltage source.

output voltage is 0 V). The DC voltage source, therefore, is a non-
linear resistor. The incremental resistance of the DC voltage source
is Rinc = 0 regardless of the value of I, but the value of the chord
resistance depends on I. Usually, the internal resistance of the volt-
age source is said to be 0. Obviously, this resistance is not the chord
resistance but the incremental resistance.

You might have thought that the current flowing through the volt-
age source in Fig. 2.8 is reversed, but in general, the current flowing
through a circuit element is defined to have a positive value when
the current flows into the “positive terminal,” so Fig. 2.8 is correct.
According to this definition, known as the associated reference direc-
tion, the value of the current flowing through a voltage source is
usually negative (I < 0). ■

Example: DC Current Source

The DC current source is also a type of nonlinear resistor, as shown
by the voltage-current characteristics in Fig. 2.9. The incremental con-
ductance of the DC current source is given by Ginc = 0 regardless of
the value of V, but the value of the chord conductance varies with
V. According to the associated reference direction, the current and
voltage are defined as in Fig. 2.9, so that V < 0. ■

2.2.2 Nonlinear Capacitors and Inductors

The definitions of a nonlinear capacitor and nonlinear inductor
should be obvious by analogy to the nonlinear resistor.
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FIGURE 2.9 V-I plane characteristics of a DC current source.

A nonlinear capacitor is a circuit element whose characteristics
are given by a single (typically curved) line in the V-Q plane. If the
charge Q is given by a single-valued function Q (V) of voltage V, the
incremental capacitance (aka small-signal capacitance or differential
capacitance) can be written as

Cinc (V) ≡ dQ (V)
dV

. (Incremental capacitance) (2.12)

The chord capacitance is given by

Cch (V) ≡ Q (V)
V . (Chord capacitance) (2.13)

Equation (2.3) on p. 30 holds for the charge Q of a nonlinear
capacitor, too. Note, however, that (2.4), which involves a voltage-
independent capacitance C, does not hold. Using the incremental
capacitance Cinc (V), Q (V) can be written as follows.

Q (V) = Q0 + ∫
V

0
Cinc (V′) dV′, (2.14)

where Q0 is the charge when V = 0. By differentiating (2.14) with
respect to time t, we obtain

I (t) = dQ (t)
dt

= dQ (V)
dV

dV (t)
dt

= Cinc (V) dV (t)
dt

. (2.15)



38 ∎ Elementary Semiconductor Device Physics

THE FOURTH BASIC CIRCUIT ELEMENT

Dr. Masamitu Kawakami, who served as President of the Tokyo
Institute of Technology and Nagaoka University of Technology,
presented in his book on electric circuits [13] a chart that nicely
summarized the relationship between physical quantities related
to circuits and linear two-terminal circuit elements (Fig. 2.10).
He called it the OK chart (“O” for Omoto, Yoshikazu and “K”
for Kawakami, Masamitu).

Incidentally, you might have noticed that there is no circuit
element that directly connects the charge Q and the magnetic flux
Φ at the bottom. Can we think of a circuit element defined by
“a line on the Q-Φ plane”? For linear capacitors, the constitutive
relation is (2.2) on p. 29, from which follows C = Q/V. Likewise,
for linear inductors, L = Φ/I follows from (2.6) on p. 32. Now,
assuming linear elements, the ratio of Q to Φ is Q/Φ = LI/CV.
L/C has the dimensions of the square of resistance (see (3.30) on
p. 64), and I/V has the dimensions of the reciprocal of resistance.
So, the linear circuit element that connects Φ and Q is the linear
resistor.

However, if we extend the discussion to the nonlinear case,
the conclusion changes. L. O. Chua noticed that there was no
circuit element that connected Q and Φ, and by considering
the nonlinear case as well, he discovered a new nonlinear cir-
cuit element—memristor [7]. A memristor is a circuit element
whose characteristics are given by “a curve on the Q-Φ plane.”
A memristor is a nonlinear resistor with memory and is different
from the usual nonlinear resistor defined by “a curve on the I-V
plane” (§2.2.1). Memristors did not win widespread acceptance
for decades after their discovery, but they came into the lime-
light when it was recognized that memory devices now known
as “resistance change memories” were memristors.
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FIGURE 2.10 OK chart.

Today, it is known that there are, in theory, infinitely many
possible nonlinear circuit element types other than the memris-
tor. The memcapacitor and the meminductor are among those
that have been named. As for linear elements, it is known that
elements called frequency-dependent negative resistors (FDNRs)
can be considered [5].

Equation (2.15) looks similar to (2.4), but the same form of equa-
tion does not hold if Cinc (V) is replaced with Cch (V). The distinction
between the incremental capacitance and the chord capacitance is
critically important.

Similarly, a nonlinear inductor is a circuit element whose charac-
teristics are given by a single (typically curved) line in the I-Φ plane.
Equation (2.7) on p. 32 holds for the magnetic flux Φ of a nonlin-
ear inuctor, too. If Φ is given by a single-valued function Φ (I) of
current I, the incremental inductance (aka small-signal inductance or
differential inductance) can be written as

Linc (I) ≡ dΦ (I)
dI

. (2.16)

The chord inductance is given by

Lch (I) ≡ Φ (I)
I . (2.17)
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FIGURE 2.11 I-V plane characteristics of an ideal switch.

2.3 TIME-INVARIANT AND TIME-VARYING CIRCUIT
ELEMENTS

The circuit elements we have considered so far are all time-invariant
circuit elements whose characteristics do not change with time. In
contrast, circuit elements whose characteristics change in a time-
dependent manner are called time-varying circuit elements.

Example: Time-Invariant Linear Resistor

The linear resistor defined by (2.1) on p. 40 is a linear time-invariant
(LTI) circuit element because the resistance R does not depend on time
t. ■

Example: Ideal Switch

An ideal switch is a circuit element whose characteristics can be
switched between the on and off states at appropriate times. As is
clear from Fig. 2.11 (p. 40), at a given instant, the characteristics of
the switch are represented by “a straight line passing through the ori-
gin in the I-V plane,” so the switch can be regarded as a variable linear
resistor or a linear time-varying (LTV) resistor. ■

Although a linear time-varying element is a linear element, it can
also play the role of a nonlinear element, depending on how its charac-
teristics are varied over time. Such a circuit includes the FET resistive
mixer [19], which is a kind of frequency mixing circuit. “FET” stands
for field-effect transistor (p. 44).
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FIGURE 2.12 Voltage-controlled voltage source.

2.4 MULTITERMINAL ELEMENTS AND CONTROLLED
SOURCES

A circuit element with three or more terminals is called a multitermi-
nal circuit element. Since the general theory of multiterminal elements
is very difficult, we will only discuss a type of three-terminal element,
known as controlled sources or dependent sources. Controlled sources
are basically voltage or current sources, as the name suggests, but
their output voltage or current depends on the input to the control
terminal. Since sources are a kind of nonlinear resistor, as we saw
in §2.2.1, controlled sources can be regarded as three-terminal vari-
able nonlinear resistors. Controlled sources are often used to describe
or model the characteristics of semiconductor devices, such as transis-
tors. They are, therefore, important circuit elements when considering
semiconductor devices.

Example: Voltage-Controlled Voltage Source

The voltage-controlled voltage source (VCVS), shown in Fig. 2.12,
outputs a voltage V2 proportional to the input voltage V1. The
proportionality coefficient 𝜇 = V2/V1 is called the voltage gain. ■

Example: Current-Controlled Current Source

The current-controlled current source (CCCS), shown in Fig. 2.13,
outputs a current I2 proportional to the input current I1. The propor-
tionality coefficient 𝛼 = I2/I1 is called the current gain. ■
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FIGURE 2.13 Current-controlled current source.

FIGURE 2.14 Current-controlled voltage source.

Example: Current-Controlled Voltage Source

The current-controlled voltage source (CCVS), shown in Fig. 2.14,
outputs a voltage V2 proportional to the input current I1. The propor-
tionality coefficient rm = V2/I1 has the dimensions of resistance and
is called the transresistance. The subscript “m” comes from “mutual”
as in the “mutual inductance” of a transformer. ■

Example: Voltage-Controlled Current Source

The voltage-controlled current source (VCCS), shown in Fig. 2.15,
outputs a current I2 proportional to the input voltage V1. The pro-
portionality coefficient gm = I2/V1 has the dimensions of conductance
and is called the transconductance.

The V2-I2 characteristics of the VCCS for several values of the
control voltage V1 are shown in Fig. 2.16. ■
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FIGURE 2.15 Voltage-controlled current source.

FIGURE 2.16 V2-I2 characteristics of a voltage-controlled current source.

If a DC voltage or current is given as an input to a controlled source,
the output is just a DC voltage or current. In general, an input that
varies with time is often given to a controlled source. In such a case, the
controlled source can be regarded as a time-varying circuit element.

2.5 TRANSISTORS

We saw in §2.2.1 that the p-n junction diode, shown in Fig. 2.7 (p. 35),
is a real element that approximates the ideal rectifier, shown in Fig.
2.6 (p. 35). Similarly, the controlled sources discussed in §2.4 are ideal
elements. The corresponding real elements are three-terminal vari-
able nonlinear resistors whose characteristics can be varied according
to the input applied to the control terminal. Of such variable resis-
tors, those made of semiconductors are called transistors. This is the
circuit-theoretic definition of the transistor.

The word “transistor” is said to be derived from “transresistance,”
a name that suggests a connection with the CCVS (Fig. 2.14 on p. 42).
However, their actual characteristics are more like those of the VCCS
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FIGURE 2.17 Schematic symbols of an nMOSFET and a pMOSFET. Other
symbols are also in use.

(Fig. 2.15 on p. 43), which suggests that they could have been called
“transductors.” But history did not unfold that way.

Example: MOSFETs

MOS transistors or MOSFETs (metal-oxide-semiconductor field-
effect transistors) are the most widely used transistors today. Metal-
oxide-semiconductor (MOS) comes from their structure (§7.1). MOS-
FETs are classified as a type of transistor called the field-effect transis-
tor (FET). As shown in Fig. 2.17, there are two types of MOSFETs—
nMOSFET and pMOSFET. The arrows in the schematic symbols
represent the direction of current flow. In nMOSFETs, electrons
carry the current. In pMOSFETs, holes carry the current. nMOSFETs
and pMOSFETs are often used in a CMOS (complementary MOS)
configuration that combines both types of MOSFETs.

Between the drain and source terminals of a FET is a variable
nonlinear resistor. The gate is the control terminal. Approximate
current-voltage characteristics of nMOSFET are shown in Fig. 2.18.
IDS is the current that flows from the drain to the source (or drain-
source current). VGS is the voltage between the gate and the source
(or gate-source voltage), and VDS is the voltage between the drain
and the source (or drain-source voltage). Shown in Fig. 2.18 are the
transconductance

gm = 𝜕IDS

𝜕VGS
(Transconductance) (2.18)

and the drain-source conductance

gds = 𝜕IDS

𝜕VDS
. (Drain-source conductance) (2.19)
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FIGURE 2.18 Characteristics of an nMOSFET.

Since IDS depends both on VGS and VDS as is clear from Fig. 2.18,
(2.18) and (2.19) are partial derivatives. In the region where gds is
close to 0, the characteristics of the nMOSFET are similar to those of
the VCCS (Fig. 2.16 on p. 43). ■

Example: Bipolar Transistors

Bipolar transistors had been the mainstay of transistors before MOS-
FETs took over. In the past, the word “transistor” referred to a bipolar
transistor. Low power consumption and large-scale integration are
more difficult to achieve with bipolar transistors than with MOSFETs,
so they are no longer used as much as the latter in integrated circuits.
However, they are superior to MOSFETs in terms of gain, noise, and
high-frequency performance, and are used in situations where these
are important. Between the collector and emitter electrodes is the vari-
able nonlinear resistor of a bipolar transistor. The base is the control
terminal. The word “bipolar” refers to the fact that both electrons
and holes are involved in the operation of these transistors. As shown
in Fig. 2.19, there are two types of bipolar transistors, npn and pnp,
which are made by combining n-type and p-type semiconductors. The
arrows in the schematic symbols represent the direction of current
flow. Current-voltage characteristics of bipolar transistors are similar
to those of MOSFETs. ■
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FIGURE 2.19 Schematic symbols and structures of npn and pnp bipolar
transistors.

2.6 CIRCUIT-THEORETIC POSITIONING OF
SEMICONDUCTOR DEVICES

The semiconductor devices mentioned so far are limited to p-n junc-
tion diodes, MOSFETs, and bipolar transistors. These and all other
semiconductor devices are nonlinear circuit elements. In other words,
semiconductor devices are nonlinear circuit elements made of semi-
conductors.

Not all nonlinear elements need to be made from semiconductors,
as far as their functions in a circuit are concerned. In fact, devices with
characteristics similar to those of semiconductor devices can be made
as vacuum tubes and the like. However, the use of semiconductors
as materials for nonlinear circuit elements has resulted in tremen-
dous advances in both the devices themselves and the resulting circuits
(§1.4).

Compared with vacuum tubes made of metal and glass (and vac-
uum), semiconductor devices have the following remarkable charac-
teristics:

● Sizes of devices and circuits: Semiconductor devices can be made
very small and overall circuit dimensions can also be very small.

● Ease of manufacturing: Printing-based manufacturing technol-
ogy makes it easy to manufacture ICs consisting of a large
number of devices.

● Operating voltage: Vacuum tubes require tens of volts, but
semiconductor devices can operate at one to several volts.
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● Performance: Small means that it takes less time for a signal to
pass through a device or a circuit, so it can operate faster and
perform better.

● Power consumption: Small size and low supply voltage mean
lower current flow and lower power consumption.

● Price: For very small transistors, the price per transistor is
very low, which could also make ICs low cost. Note, however,
that some optical devices for optical communications and large
devices for power electronics are quite expensive.

If some novel material is discovered, it may be worthwhile to consider
whether it has the above advantages.

LINEAR CIRCUIT ELEMENTS MADE OF
SEMICONDUCTORS

We explained that a semiconductor device is a “nonlinear cir-
cuit element made of semiconductor.” Then, are there any linear
circuit elements made of semiconductors?

In silicon ICs, use is often made of resistors made of polycrys-
talline silicon (§1.3.1). These are meant as linear circuit elements
made of semiconductors, but not many people bother to call
them semiconductor devices. However, if we want to investi-
gate their characteristics in detail, we would have to treat them
as semiconductor devices. As a matter of fact, resistors of this
kind show some nonlinearity. So strictly, they too are nonlinear
circuit elements after all.

2.7 SUMMARY

In this chapter, we considered what semiconductor devices are from
a circuit-theoretic viewpoint.

● Introductory courses in “circuit theory” mainly cover linear
circuit theory.

● “Incremental resistance” and “chord resistance” must be con-
sidered for the quantitative discussion of nonlinear resistors.

● Voltage and current sources are nonlinear circuit elements.

● Controlled sources are nonlinear, nonreciprocal circuit elements.
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● Diodes are nonlinear resistors with rectifying action.
● Transistors are three-terminal variable nonlinear resistors made

of semiconductors.
● Semiconductor devices are nonlinear circuit elements made of

semiconductors.

CLASSIFICATION OF CIRCUIT ELEMENTS

In the above, we classified circuit elements from the following
perspectives:

● Linear versus nonlinear

● Time-invariant versus time-varying

● Two-terminal versus multiterminal

Other perspectives include:

● Passive versus active

A passive circuit element is a circuit element that may consume
part or all of the power it receives from a circuit. If elements that
consume no power at all and those that consume at least some
power are to be distinguished, passive elements can be classified
further:

● Lossless versus lossy

Capacitors and inductors are lossless elements. Both of them
are also reactive elements. Reactive elements can store energy
received from a circuit. All reactive elements are lossless, but
not all lossless elements are reactive. A three- or four-terminal
element known as the gyrator is known to be lossless but is not
reactive.
An active circuit element is a circuit element that may supply
power to a circuit. The simplest examples are voltage and current
sources. A more complicated example is the transistor. Typically,
a transistor is powered by DC, and a portion of that power is
used to amplify an AC signal applied to it. The transistor con-
sumes net power as it amplifies AC components of the received
signal, but if the DC component is ignored, it appears as if the
transistor were supplying AC power to the circuit. Transistors
are usually regarded as active elements in this sense.
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The term “active” is sometimes used even when a transistor is
performing purely passive operation, that is, dissipating power.
For example, when a transistor is used as a load resistor in an
amplifier circuit, it is sometimes called an “active load.” How-
ever, this is essentially a misnomer and should really be called a
“nonlinear” or “variable” load.
Multiterminal circuits can be classified according to:

● Reciprocal versus nonreciprocal

The gyrator is a lossless nonreciprocal element. Reciprocal
elements can be composed of two-terminal elements, whereas
nonreciprocal elements cannot be composed of two-terminal ele-
ments. In this sense, only nonreciprocal elements are genuine
multiterminal elements. Controlled sources and transistors are
nonreciprocal elements.

2.8 PROBLEMS

2.1 Draw the characteristics of an ideal rectifier on a plane with cur-
rent I on the horizontal axis and voltage V on the vertical axis.
Give the formula of the incremental conductance Ginc (V).

2.2 The magnetic flux penetrating a nonlinear inductor is given by a
single-valued function Φ (I) of current I. Find an equation relating
the voltage V (t) to the current I (t) corresponding to (2.8) on p.
32 for a linear inductor. Hint: See (2.15) on p. 37.

2.3 Which of the following are applicable to nonlinear circuits?

● Synthesis formulas for series- and parallel-connected
impedances and admittances

● Principle of superposition
● Equivalent source theorems (Thévenin’s theorem and Norton’s

theorem)
● Reciprocity theorem
● Laplace transform
● Kirchhoff’s voltage law (KVL)
● Kirchhoff’s current law (KCL)
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Waves in Periodic
Structures

Electrons are regarded as particles in elementary physics. In this book,
we present the physics of semiconductor devices adopting such a view.
However, many of the physical properties of crystals are explained as
a result of the interaction between electrons as waves and periodi-
cally arranged atoms. Treating electrons as waves requires quantum
mechanics, on which modern solid-state physics is built. Since quan-
tum mechanics is beyond the scope of this book, this chapter instead
uses circuit theory to study the properties of periodic structures and
the formation of energy bands, already mentioned in Chapter 1.
This is because the formation of energy bands is not a phenomenon
unique to quantum mechanics but a universal phenomenon that can
be observed in electromagnetism and circuit theory, too, as long as
there is a periodic structure.

3.1 ANALOGIES IN PHYSICS

3.1.1 Commonality of Mathematical Structures

Many problems that appear in science and engineering have a com-
mon or similar mathematical structure. For example, the motion of
a weight hanging from a spring and the behavior of an LC resonator
(Fig. 3.1) are described by equations of exactly the same form. If we
can solve the problem of oscillations of the weight, we can obtain the
answer for the LC resonator by replacing variables according to Table
3.1, and vice versa. As an example, the momentum for the mechanical
system shown in Fig. 3.1 is p = mẋ, whereas the corresponding equiv-
alent “momentum” for the electrical system is Q = CΦ̇ (the superscript
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(a) (b)

FIGURE 3.1 (a) A weight hanging from a spring. (b) An LC resonator.

TABLE 3.1 Correspondence between Mechanical and Electrical Oscillations

  Spring   Angular
 Mass constant Coordinate Momentum Frequency

Sprung mass point m k x p √k/m
LC resonator C 1/L Φ Q 1/√LC

TABLE 3.2 Forms of Differential Equation

  Spatial Time
Field Equation derivative derivative

Distributed circuits Wave equation 2nd order 2nd order
Electromagnetism Wave equation 2nd order 2nd order
Thermal physics Diffusion/heat equation 2nd order 1st order
Quantum mechanics Schrödinger equation 2nd order 1st order

dot denotes the time derivative d/dt). The latter equation might appear
unfamiliar, but from (2.7) on p. 32, Φ̇ = V is the voltage.

The methodology of treating seemingly different systems in a uni-
fied fashion has been systematized in physics and engineering [26,
36]. Correspondence relationships, as in Table 3.1, have been studied
extensively and put to practical use. For example, problems in elec-
tromechanical systems could be transformed into problems in electric
circuits and be solved by using circuit simulators.

In some cases, perfect correspondence may not be found, but still
some similarity could be found between equations describing differ-
ent systems. As an example, Table 3.2 shows the forms of differential
equations that appear in different fields.

The differential equations in Table 3.2 all reduce to a differential
equation with a second-order spatial derivative in the steady state,
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Transmission line

Si Si Si

Reactive element

Si

FIGURE 3.2 Similarity between one-dimensional crystals and the periodi-
cally loaded transmission line.

in which the time derivative equals zero. As a result, the following
becomes possible, for example:

● Consider the properties of crystalline solids by looking at peri-
odic networks as shown in Fig. 3.2.

● Solve problems in quantum mechanics as particle diffusion prob-
lems. In this case, the time derivative does not have to be
zero.

3.1.2 Overview of the Chapter

In this chapter, we will look at energy band formation, an impor-
tant concept in solid-state physics, by using the analogy described
above. Although the band theory of solids is constructed using quan-
tum mechanics, this book does not assume that the reader has learned
quantum mechanics. Therefore, we investigate band formation using
linear circuit theory (especially AC circuit theory), which the reader
should have already learned. From §3.2.3 onward, transmission line
theory or distributed circuit theory is also used. A basic explanation
of transmission lines is included as well. It should be emphasized that
this analogy is backed by equations having the same form. It should
also be noted, however, that circuits do not enable us to understand
every aspect of solid-state physics other than band formation.

Most solid crystals are three-dimensional, but for simplicity, we
consider only one-dimensional periodic networks in this chapter (Fig.
3.2). This is because if you understand energy bands in one dimen-
sion, three-dimensional crystals are conceptually not much different
(although mathematically much more complicated).
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In Chapter 1, we saw that the electron energy E has ranges of
allowed values (i.e., allowed bands) and a range of disallowed val-
ues (i.e., the forbidden band) as shown in Fig. 1.6 (p. 12). In the same
way, in this chapter, we will see that periodic networks have frequency
ranges in which wave propagation is allowed (passband) and fre-
quency ranges in which it is not allowed (stopband). Since frequency
is related to energy, we see a connection to solid-state physics.

In what follows, we will first learn that the periodic networks called
the LC ladder and the CL ladder have the characteristics shown
in Figs. 3.3(a) and (b)—one forbidden band and one allowed band
(§3.2.2). In the figure, 𝜔c is the angular frequency at the boundary
between the stopband and the passband. At a certain limit, the LC
ladder becomes a lossless transmission line and 𝜔c →∞, as shown in
Fig. 3.3(c) (§3.2.3). However, by introducing a new periodic structure
to the lossless transmission line, as shown in Fig. 3.2, the character-
istics shown in Figs. 3.3(d) and (e) emerge. The combination of “an
allowed band on top of a forbidden band on top of another allowed
band” in Figs. 3.3(d) and (e) corresponds to Fig. 1.6 (p. 12).

Incidentally, when we speak of “periodic structures and waves” in
a narrow—or even ordinary—sense, we usually consider the case in
which periodicity is introduced into a uniform medium (in this chap-
ter, a lossless transmission line), taking the existence of such media for
granted. The resulting band structures are shown in Figs. 3.3(d) and
(e). However, in elementary circuit theory (i.e., lumped circuit theory),
on which this chapter is initially based, the existence of a medium in
which waves can propagate spatially is not obvious, given the fact that
lumped circuits are spatially zero-dimensional. We, therefore, start by
building a uniform one-dimensional medium by periodically arrang-
ing lumped circuit elements (§3.2.1 and §3.2.2). The resulting band
structures are shown in Figs. 3.3(a) and (b). The physical origin of
the forbidden bands in Figs. 3.3(a) and (b) may therefore be different
from the origin of the forbidden bands in Figs. 3.3(d) and (e) (§3.5).

Furthermore, even in the cases of Figs. 3.3(d) and (e), what is
happening physically is different between the cases in which

(wavelength) ≲ (period) (3.1)

and the cases in which

(wavelength) ≫ (period). (3.2)

In the former, Bragg diffraction occurs (§3.5). What plays an
important role here is the “reduction of translational symmetry” due
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to the introduction of periodicity into a uniform medium. In the lat-
ter, on the other hand, the periodicity is not directly visible from the
wave’s point of view because the period is much smaller than the wave-
length. However, this, of course, does not mean that nothing happens.
The latter is related to the fact that macroscopic material parameters
such as permittivity and magnetic permeability can be considered on
a length scale (or for electromagnetic wavelengths) much larger than
the distance between neighboring atoms in a crystal. On a subatomic
scale, however, the space between the nucleus of an atom and the
electrons surrounding it is a vacuum. In short, even when we are dis-
cussing seemingly the same thing for periodic structures, there can be
different things happening physically.

3.2 PROPERTIES OF PERIODIC NETWORKS

In elementary solid-state physics, energy bands of infinitely large crys-
tals are usually considered. There are actually two possible ways to
look at the properties of a periodic one-dimensional (1D) network.

● Consider an infinitely long periodic network.

● Consider a periodic network consisting of N(= 1, 2, 3,⋯) unit cells,
and make N large.

In both cases, it turns out that (asN becomes large) frequency region(s)
in which waves can propagate and frequency region(s) in which waves
cannot propagate appear.

3.2.1 Infinitely Long Ladder Networks

As a start to investigate the properties of periodic networks, let us
examine the input impedance Zin of a (semi-)infinitely long ladder net-
work, shown in Fig. 3.4. Note that both Z and Y are passive, and hence
the real parts of the impedance Z and the admittance Y are assumed
to be nonnegative.

ℜ (Z) ≥ 0, (3.3)

ℜ (Y) ≥ 0. (3.4)

Note that ℜ (Z) denotes the real part of the complex number Z, and
ℑ (Z) is its imaginary part.
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FIGURE 3.4 A ladder network consisting of series impedance Z and shunt
admittance Y.

FIGURE 3.5 Shunt Y and series Z are added to the left of the ladder network
in Fig. 3.4.

To find Zin, note that when an L-shaped network consisting of Y
and Z is added, as shown in Fig. 3.5, to the left of the infinite ladder
network in Fig. 3.4, the input impedance Zin remains unchanged. This
situation can be expressed as the following recurrence formula:

Zin = Z + ( 1
Y ∥ Zin) = Z + Zin/Y

1/Y + Zin
, (Recurrence formula) (3.5)

where ∥ represents parallel connection. From (3.5), Zin is found to be

Zin = Z ± √Z2 + 4Z/Y
2

= Z
2 (1 ± √1 + 4

ZY) . (Iterative impedance of L-network)

(3.6)

By the passivity assumptions (3.3) and (3.4), the solution with
ℜ (Zin) ≥ 0 must be chosen. Equation (3.6) is known as the left-hand-
side iterative impedance or Bloch impedance [9] of the L-network.1

1 The right-hand-side iterative impedance of the L-network in Fig. 3.5 would be the input
impedance looking leftward into the ladder network from its right end.



Waves in Periodic Structures ∎ 57

FIGURE 3.6 The leftmost Z in the ladder network in Fig. 3.4 is split into
Z/2 + Z/2.

FIGURE 3.7 Symmetric T-network.

Before making the series impedance Z and the shunt admittance Y
more specific, let us explain why the term Z/2 appears in (3.6). The
network in Fig. 3.4 can be rewritten as shown in Fig. 3.6 by splitting
the leftmost Z into two series-connected Z/2. The first term of (3.6)
corresponds to the leftmost Z/2 in Fig. 3.6, and it can be regarded as
an extra element.

If the symmetric T-network shown in Fig. 3.7 had been infinitely
cascaded, Z/2 in (3.6) would not have appeared. The essential term
originating from the infinite periodic network, therefore, is only the
second term of (3.6). Thus, let us consider from here on

Z′
in ≡ Zin − Z

2 , (Iterative impedance of symmetric T-network)

(3.7)

shown in Fig. 3.6.

3.2.2 Infinitely Long LC Ladders

Let us consider more concretely the input impedance Z′
in of the

semi-infinitely long ladder network (Fig. 3.6), assuming that the
series elements are linear inductors and the shunt elements are linear
capacitors, as shown in Fig. 3.8.
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FIGURE 3.8 Infinitely long LC ladder.

By making the substitutions Z = j𝜔L and Y = j𝜔C in (3.7) and (3.6),
we obtain

Z′
in = ± j𝜔L

2 √1 − 4
𝜔2LC

. (3.8)

Let the angular frequency at which the inside of the square root in
(3.8) equals 0 be 𝜔c. From 1 − 4/ (𝜔2

cLC) = 0,

𝜔c = 2
√LC

. (Cutoff angular frequency of LC ladder) (3.9)

𝜔c is called the cutoff angular frequency. Equation (3.8) can be
rewritten using 𝜔c as follows.

Z′
in = ± j𝜔L

2 √1 − (𝜔c

𝜔 )
2
. (3.10)

Since an imaginary unit j appears in (3.10), Z′
in is purely imaginary if

the inside of the square root is positive.

ℜ (Z′
in) = 0 (|𝜔| > 𝜔c) . (3.11)

Conversely, if inside the square root of (3.10) is negative, Z′
in is real.

As was noted below (3.6), a sign must be chosen from the double sign
± such that ℜ (Z′

in) ≥ 0,

ℜ (Z′
in) > 0 and ℑ (Z′

in) = 0 (−𝜔c < 𝜔 < 𝜔c) . (3.12)

Here, we did not exclude the possibility of 𝜔 < 0 in (3.11) and
(3.12). In communication engineering and signal processing, both pos-
itive and negative frequencies are considered. However, we can forget
about 𝜔 < 0 in this book.

Let us now consider what (3.11) and (3.12) mean from the view-
point of waves in periodic structures. Impedance in AC circuit theory
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FIGURE 3.9 Frequency characteristics of an infinite LC ladder.

represents how difficult it is for the sinusoidal AC current of angular
frequency 𝜔 to flow. Z′

in being purely imaginary, as in (3.11), implies
that the LC ladder shown in Fig. 3.8 appears reactive and lossless
like an inductor or a capacitor (see the Box on p. 48). This may seem
obvious because the LC ladder consists of inductors and capacitors.
A reactive circuit element receives and emits energy from/to a circuit
during a sinusoidal period but does not consume any energy. It only
stores energy temporarily. The fact that Z′

in is reactive suggests that
no energy flows steadily into the semi-infinitely long LC ladder (Fig.
3.8). If a traveling wave with frequency 𝜔 > 𝜔c is incident on the left
end of the ladder, it will be completely reflected back. In other words,
waves with 𝜔 > 𝜔c cannot propagate along the LC ladder (Fig. 3.9).

In the frequency range given in (3.12), Z′
in is positive real. Curi-

ously, Z′
in can actually have a nonzero real part, given the fact that

the LC ladder consists only of inductors and capacitors. As a matter
of fact, it is known to be impossible to produce an impedance with
a nonzero real part from a finite number of reactive elements. The
reason ℜ (Z′

in) > 0 in (3.12) is that the LC ladder in Fig. 3.8 consists
of infinitely many reactive elements. Although none of the inductors
and capacitors consume energy, a sinusoidal wave with a frequency
(0 <)𝜔 < 𝜔c, impinging on the left end of the LC ladder, will enter the
ladder and travel rightward indefinitely (Fig. 3.9). The energy associ-
ated with the wave is also carried away from the entrance, deep into
the LC ladder. As a result, the input impedance of a semi-infinitely
long LC ladder becomes Z′

in = ℜ (Z′
in) > 0, as if the ladder were a lin-

ear resistor. Since only waves with 𝜔 < 𝜔c can propagate, LC ladders
are said to have low-pass characteristics. See also Fig. 3.3(a) (p. 54).

According to the quantum theory of electromagnetic fields, an elec-
tromagnetic wave of frequency 𝜈 consists of photons, each having
energy h𝜈, where h ≡ 6.62607015 × 10−34 J/Hz is the Planck con-
stant. In quantum theory, h divided by 2𝜋 rad (ℏ ≡ h/2𝜋) is called
the reduced Planck constant or Dirac constant. ℏ is used more often
than h. The relationship between h and ℏ is the same as that between
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angular frequency 𝜔 and frequency 𝜈 = f ≡ 𝜔/2𝜋. The photon energy
can, therefore, be written as

h𝜈 = ℏ𝜔. (Photon energy) (3.13)

Voltage and current waves in electric circuits can be regarded as
a form of electromagnetic waves. Rephrasing (3.11) and (3.12) in
energy terms, waves that can propagate along an infinite LC ladder
are only those consisting of photons with energy ℏ𝜔 < ℏ𝜔c.

In any periodic network, only waves of a certain frequency or
energy range(s) can propagate. In the same way, electrons as waves
can exist steadily in a crystal only if they have a certain range(s) of
energy. Corresponding to the energy ranges in which electron waves
can exist are the allowed bands (valence and conduction bands) men-
tioned in §1.3.4. However, the existence of an electron wave of a
certain energy does not necessarily mean that electrons of that energy
contribute to electrical conduction. The reasons for this are beyond
the scope of this book, but most of the electrons in the valence band
do not contribute to electrical conduction.

3.2.3 Lossless Transmission Lines

Those readers who are familiar with transmission lines should have
noticed that the discussion in §3.2.2 was closely related to the lossless
transmission line. For readers who have not yet studied transmission
lines, a transmission line is simply a wiring consisting of two con-
ducting wires in pairs. It is called a transmission line when the wiring
length is not negligible compared with the wavelength. If the wave-
form is not sinusoidal and it is difficult to think of a wavelength, then
if the time it takes for any wave front to pass through the wiring is
not negligible in the sense that the two ends of the wiring may have
different voltages or currents simultaneously (with a preferred time
resolution), then the wiring must be considered a transmission line.

Circuit theoretic treatment of transmission lines in transmission line
theory is also known as distributed circuit theory. The ordinary ele-
mentary circuit theory is also known as lumped circuit theory. In a
lumped circuit, every conductor is considered to have an equipoten-
tial surface and, therefore, is treated as a single node. The dimensions
of any node in a lumped circuit are assumed infinitesimal. In con-
trast, since a transmission line has a length not negligible compared
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FIGURE 3.10 Model of a short section, Δx, of lossless transmission line.

with the wavelength, the surface of each of the conducting wires
constituting the line is not necessarily equipotential. Thus, the volt-
age difference between the two conducting wires that constitute a
transmission line may depend on the position. Kirchhoff’s laws can
be applied to lumped circuits, but these are generally not applicable
to distributed circuits, including transmission lines. In the following,
we will derive the differential equations that govern the waves on a
lossless transmission line.

An ordinary lossless transmission line can be modeled as an LC
ladder as shown in Fig. 3.10. Note that L and C in Fig. 3.10 are per-
unit-length inductance and capacitance, respectively. LΔx and CΔx are
the series inductance and the shunt capacitance for the short section
of length Δx. Let us suppose the short section in Fig. 3.10 is so small
in size that it can be regarded as a lumped circuit, and therefore that
Kirchhoff’s laws are applicable.

Applying Kirchhoff’s voltage law to the circuit in Fig. 3.10, we
obtain

v(x, t) − LΔx𝜕i(x, t)
𝜕t − v(x + Δx, t) = 0. (3.14)

This can be rearranged as follows:

v(x + Δx, t) − v(x, t)
Δx = −L

𝜕i(x, t)
𝜕t . (3.15)
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Similarly, applying Kirchhoff’s current law, we obtain

i(x, t) − CΔx𝜕v(x + Δx, t)
𝜕t − i(x + Δx, t) = 0. (3.16)

Rearrangement gives

i(x + Δx, t) − i(x, t)
Δx = −C

𝜕v(x + Δx, t)
𝜕t . (3.17)

Taking the limit of Δx → 0 in (3.15) and (3.17), the following
simultaneous differential equations are obtained.

𝜕v(x, t)
𝜕x = −L

𝜕i(x, t)
𝜕t , (3.18)

𝜕i(x, t)
𝜕x = −C

𝜕v(x, t)
𝜕t . (3.19)

Equations (3.18) and (3.19), taken together, are known as telegra-
pher’s equations. Both v(x, t) and i(x, t) appear in (3.18) and (3.19),
and these differential equations are not convenient as they are. It is,
actually, possible to derive separate differential equations for v(x, t)
and i(x, t) as follows (see Problem 3.2 on p. 85):

𝜕2v(x, t)
𝜕x2 = LC

𝜕2v(x, t)
𝜕t2 , (Wave equation for voltage) (3.20)

𝜕2i(x, t)
𝜕x2 = LC

𝜕2i(x, t)
𝜕t2 . (Wave equation for current) (3.21)

Equations (3.20) and (3.21) are the wave equations for voltage
v(x, t)and current i(x, t), respectively (see Table 3.2 on p. 51).

All the equations above are time-domain equations. These equa-
tions are applicable regardless of the waveform. However, if the wave-
form is limited to a sinusoid, then we can derive frequency-domain
equations by simply replacing the time derivative 𝜕/𝜕t with j𝜔. Let us
use capital letters V and I to represent frequency-domain voltage and
current phasors, respectively. Note that phasors are complex-valued.
The frequency-domain telegrapher’s equations are given by

dV (x)
dx

= −j𝜔LI (x) , (3.22)
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dI (x)
dx

= −j𝜔CV (x) . (3.23)

There are no longer are any partial differential operators in (3.22)
and (3.23) because t disappeared. Noting that 𝜕2/𝜕t2 in (3.20) and
(3.21) are to be replaced with (j𝜔)2, the frequency-domain wave
equations are

d2V (x)
dx2 = 𝛽2V (x) , (Wave equation for voltage) (3.24)

d2I (x)
dx2 = 𝛽2I (x) , (Wave equation for current) (3.25)

where

𝛽 ≡ 𝜔√LC (Phase constant) (3.26)

is the phase constant. We will see shortly that 𝛽 represents the phase
rotation per unit length of a sinusoid of angular frequency 𝜔. 𝛽 is
related to wavelength 𝜆 as follows.

𝜆 = 2𝜋
𝛽 = 2𝜋

𝜔√LC
. (Wavelength) (3.27)

In physics, per-unit-length phase rotation is called thewave number
or angular wave number and is usually denoted by k (= 2𝜋/𝜆), instead
of 𝛽. The difference between the wave number and the phase constant
is that the former may be a vector: 𝐤 = (kx, ky, kz).

The wave equations (3.24) and (3.25), respectively, have solutions
of the form

V (x) = V+e−j𝛽x + V−ej𝛽x, (3.28)

I (x) = V+

Z0
e−j𝛽x − V−

Z0
ej𝛽x. (3.29)

The first term of (3.28) represents a voltage traveling wave phasor
propagating in the direction of positive x (rightward in Fig. 3.10). The
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second term of (3.28) represents a voltage traveling wave phasor prop-
agating in the opposite direction. V+ represents the amplitude phasor
of the rightward voltage traveling wave and V− represents that of the
leftward voltage traveling wave.2 V+ and V− are independent of the
position x.

In (3.29),

Z0 = √
L
C (Characteristic impedance of lossless line) (3.30)

is called the characteristic impedance. The first term of (3.29) is a cur-
rent traveling wave phasor propagating in the positive direction of x,
and I+ ≡ V+/Z0 is its position-independent amplitude. The second
term of (3.29) is a current traveling wave phasor propagating in the
opposite direction and I− ≡ −V−/Z0 is its position-independent ampli-
tude. Note that V± and I± are complex-valued phasors, although their
arguments, ∠V± and ∠I±, may well be 0.

Taking the ratios of voltage and current traveling wave phasors
from (3.28) and (3.29) propagating in the same direction, we see

Z0 ≡ V+

I+ = −V−

I− . (Characteristic impedance) (3.31)

Equation (3.31) indicates that the characteristic impedance Z0 rep-
resents the input impedance of a semi-infinitely long transmission line.
In other words, Z0 equals the iterative impedance of a section of the
transmission line. In spite of the term “impedance” in its name, the
characteristic impedance Z0 in (3.30) is a positive real number. This is
similar to the situation where the input impedance Z′

in of an LC ladder
((3.10) on p. 58) assumed a positive real value as in (3.12). It follows
that the voltage and current traveling wave phasors propagating in the
same direction on a lossless transmission line have the same phase.3

Thus, a lossless transmission line is a one-dimensional medium that
can support the propagation of sinusoidal waves without attenuation.

2 Here we defined V± as amplitude phasors rather than rms (root-mean-square) phasors, but it
is also permissible to define V± as rms phasors, provided necessary modifications are made to
some equations.
3 In general, the characteristic impedance of a lossy transmission line, defined by (3.31), is
complex-valued, and the voltage and current traveling wave phasors propagating in the same
direction have a phase difference.
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Now let us consider the relationship between the LC ladder in
§3.2.2 and the lossless transmission line. Replacing L and C of (3.10)
on p. 58 with LΔx and CΔx, respectively, we get

Z′
in = ± j𝜔LΔx

2 √1 − 4
𝜔2LΔx ⋅ CΔx = ±√( j𝜔LΔx

2 )
2

+ L
C . (3.32)

From the condition of the inside the square root of (3.32) becoming
0, the cutoff angular frequency is given by

𝜔c = 2
√LCΔx

. (3.33)

Equation (3.33) is the cutoff angular frequency of an LC ladder
where the unit cell is as shown in Fig. 3.10 (p. 61). Taking the limit of
Δx → 0 in (3.32),

lim
Δx→0

Z′
in = Z0. (3.34)

That is to say, the input impedance of a semi-infinite lossless trans-
mission line equals the characteristic impedance Z0. Likewise, taking
the limit of Δx → 0 in (3.33), the cutoff angular frequency of a lossless
transmission line is

lim
Δx→0

𝜔c = ∞. (3.35)

An ideal lossless transmission line, therefore, has no cutoff fre-
quency (see Fig. 3.3(c) (p. 54).

HIDDEN ASSUMPTIONS IN TRANSMISSION LINE
THEORY

Contrary to the conclusion (3.35) about the cutoff angular fre-
quency, actual transmission lines have upper-frequency limits of
operation. The smaller the cross-sectional dimensions of a given
transmission line, the higher its highest usable frequency. We
will not discuss in detail how such upper-frequency limits come
about, but it is worth pointing out the sloppiness in the above
standard development of transmission line theory.

It is probably not valid to take the limit Δx → 0, which we did
on p. 62 to derive the telegrapher’s equations (3.18) and (3.19),



66 ∎ Elementary Semiconductor Device Physics

and in (3.34) and (3.35). In Fig. 3.10 (p. 61), d denotes the dis-
tance between the two wires. When we applied Kirchhoff’s laws
to the short section Δx, it was necessary that Δx ≪ 𝜆. But at the
same time, we also implicitly assumed that d ≪ 𝜆. Otherwise,
Kirchhoff’s laws would not have held.

As the frequency becomes higher, the wavelength 𝜆 becomes
shorter, and d ≪ 𝜆 may not hold if the frequency is too high.
Then, the development based on Kirchhoff’s laws becomes ques-
tionable, however small Δx might be. Thus, d ≪ 𝜆 must hold
to begin with, and the lower limit of Δx should be compara-
ble to d. This also explains why we referred to a short sec-
tion Δx on p. 61, not an infinitesimal section. If (3.35) is to
hold, d must also become smaller such that d ≤ Δx as Δx
approaches 0.

3.2.4 Periodic Networks with a Finite Number of Repetitions

The ladder networks and transmission lines we considered above were
infinitely long. In this section, let us start over in a different way. Let us
consider what happens when a unit two-port4 is on its own, cascaded
twice, three times, ⋯, and N times, as shown in Fig. 3.11.

The matrix representation of a two-port suitable for cascade con-
nection is the ABCD-matrix (see §A.1.1):

𝐅 = [ A B
C D ] . (3.36)

If the characteristics of a unit two-port are given by (3.36), the char-
acteristics of a periodic network built by cascading N unit two-ports
(Fig. 3.11) are given by 𝐅N. The common method of calculating the
N-th power of a square matrix is to diagonalize it. Here we use an
alternative method that is applicable when the determinant of F sat-
isfies det𝐅 = 1. The details are given in §A.2. Using (A.16) on p. 273,

𝐅N = 𝐅UN−1 (𝜉) − 12UN−2 (𝜉) (N ≥ 2) , (3.37)

4 See §A.1.1 for what port and two-port are.
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FIGURE 3.11 N-times cascade of unit two-ports.

where, from (A.37), (A.20), and (A.24),

UN (𝜉) = sin [(N + 1) arccos𝜉]
sin (arccos𝜉) , (3.38)

𝜉 ≡ A + D
2 , (3.39)

12 ≡ [ 1 0
0 1 ] . (2 × 2 identity matrix) (3.40)

In (3.38), “arccos” (arc cosine) is the inverse function of “cos”
(cosine).

Example: Alternating Transmission Lines

Let us look at the two-port shown in Fig. 3.12, consisting of two types
of lossless transmission lines. Their phase constants are 𝛽A and 𝛽B,
respectively, and the characteristic impedances are Z0A and Z0B. Let
the lengths be ℓA = ℓB = 0.5 mm.
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FIGURE 3.12 Unit two-port consisting of type A and type B lossless
transmission lines.

TABLE 3.3 Specifications of Type A and Type B Transmission Lines

 L C Z0 𝜔/𝛽 ℓ

Type A 0.4 nH/mm 1 pF/mm 20 Ω 0.5 × 108 m/s 0.5 mm
Type B 0.5 nH/mm 0.2 pF/mm 50 Ω 1 × 108 m/s 0.5 mm

The ABCD-matrix of a length, ℓ, of a lossless transmission line is
given by

[ cos 𝛽ℓ Z0sin 𝛽ℓ
Z−1

0 sin 𝛽ℓ cos 𝛽ℓ ] (ABCD-matrix of lossless line), (3.41)

where 𝛽 is given by (3.26) (p. 63), and Z0 by (3.30) (p. 64). Using
(3.41), the ABCD-matrix of the unit two-port (Fig. 3.12) is given by

𝐅 = [
cos 𝛽AℓA

2
Z0Asin 𝛽AℓA

2
Z−1

0Asin 𝛽AℓA

2
cos 𝛽AℓA

2

] [ cos 𝛽BℓB Z0Bsin 𝛽BℓB
Z−1

0B sin 𝛽BℓB cos 𝛽BℓB
]

× [
cos 𝛽AℓA

2
Z0Asin 𝛽AℓA

2
Z−1

0Asin 𝛽AℓA

2
cos 𝛽AℓA

2

] . (3.42)

Since the determinant of (3.41) equals unity (∵sin2𝛽ℓ+cos2𝛽ℓ = 1),
𝐅 given by (3.2.4) also satisfies det𝐅 = 1. Thus, we can apply (3.37)
to calculate the N-th power of F. Specifications of the type A and type
B transmission lines are given in Table 3.3.

Fig. 3.13 shows the magnitude of the transmission coefficient S21
(see §A.1.2) for different values of repetition count (1 ≤ N ≤ 32)
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FIGURE 3.13 The transmission coefficient of N unit two-ports, shown in Fig.
3.12, in cascade (1 ≤ N ≤ 32).

up to 100 GHz, with the reference resistance being 50 Ω. The verti-
cal axis of Fig. 3.13 is in decibels (dB), meaning that 10 log10|S21|2 is
plotted. Low-attenuation passbands and high-attenuation stopbands
can clearly be seen to appear in turn (see Fig. 3.3(d) on p. 54) even
for small values of N. It should be clear what happens when N → ∞.
The passbands correspond to the allowed bands in solid-state physics,
and stopbands correspond to forbidden bands. Usually, in elementary
solid-state physics, only infinitely large crystals are considered, and it
is not so clear how to handle crystals of finite size. However, Fig.
3.13 suggests that small crystals should have quite similar properties
to large crystals. ■

3.2.5 Kronig–Penney Model

Many introductory solid-state physics books discuss the Kronig–
Penneymodel, which explains energy band formation—the emergence
of allowed and forbidden bands—due to a periodic potential field for
electrons. The periodic “battlements” potential, U (x), of the Kronig–
Penney model is shown in Fig. 3.14. The meaning of U (x) is that an
electron at a position x will have potential energy U (x). In quantum
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FIGURE 3.14 Battlements potential for electrons.

mechanics, an electron exhibiting wave nature is described by a math-
ematical function, 𝜙 (x), known as thewave function. It is a solution of
the governing differential equation called the Schrödinger equation.

𝜙 (x) can be written in the following form for the potential given in
Fig. 3.14:

𝜙 (x) = { D+
AeikAx + D−

Ae−ikAx (in regions whereU (x) = UA)
D+

B eikBx + D−
B e−ikBx (in regions whereU (x) = UB)

(3.43)

where kA and kB are wave numbers, and D±
A and D±

B are constants that
are to be determined so that boundary conditions are satisfied.

Actually, the “alternating transmission lines” example that we con-
sidered on p. 67 can be regarded as a transmission line version of
the Kronig–Penney model. This follows from the fact that in a steady
state (or more precisely in this case, a periodic steady state; see Fig.
5.1 on p. 116), the wave equation, (3.24) on p. 63, for voltage and
the one-dimensional time-independent Schrödinger equation have the
same form (see Table 3.2 on p. 51). Fig. 3.15 (p. 71) contrasts trans-
mission line and quantum mechanical versions of the Kronig–Penney
model. Note that j denotes the imaginary unit in electrical engineering,
whereas i does so in physics (see the Box on p. 72 for further discus-
sion). The battlements are given by U (x) in the quantum mechanical
version, whereas they are given by alternating, piecewise-constant per-
unit-length inductance L (x) and capacitance C (x) in the transmission
line version (Table 3.3 on p. 68). The only marked distinction between
the two versions is the shapes of the dispersion curves (see §3.3):
piecewise-linear 𝛽 (𝜔) versus parabolic k (E). The bottom left graph
in Fig. 3.15 is an E-k diagram mentioned in the Box on p. 15.
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FIGURE 3.15 Transmission line and quantum mechanical versions of the
Kronig–Penney model.

3.3 DISPERSION RELATION AND PHASE AND GROUP
VELOCITIES

3.3.1 Dispersion Relation

As is clear from (3.26) (p. 63), the phase constant 𝛽 of a transmission
line depends on the frequency. The relation between 𝛽 and 𝜔 is called
the dispersion relation and is often plotted on a graph as shown in
Fig. 3.16 (p. 72), with angular frequency as the vertical axis and phase
constant as the horizontal axis. 𝛽 < 0 corresponds to propagation in
the direction of −x. In the case of a lossless transmission line, the 𝜔-𝛽
diagram exhibits a piecewise-linear dispersion curve, as shown in Fig.
3.16 (p. 72).

More generally, the dispersion relation is the frequency dependence
of wave number (may be a vector; see p. 63) or of phase velocity
(§3.3.2). The abscissa of a dispersion diagram may be wave number,
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FIGURE 3.16 The dispersion relation of a lossless transmission line.

which is the per-unit-length phase rotation, or phase rotation itself.
The ordinate may be angular frequency 𝜔 or energy (ℏ𝜔 or E).

If the dispersion relation of a given medium satisfies

𝜔
𝛽 = ±const. (Dispersion relation of nondispersive medium)

(3.44)

as in Fig. 3.16 (p. 72), the medium is said to be nondispersive. Lossless
transmission lines are nondispersive.

If (3.43) on p. 70 does not hold, the medium is said to be disper-
sive. Fig. 3.17 (p. 74) shows an example of a dispersion relation of
a dispersive medium. A stopband is seen in Fig. 3.17, wherein waves
cannot propagate (see Fig. 3.3(d) on p. 54). The range of the horizon-
tal axis is limited to ±𝜋/ℓ in Fig. 3.17. Although the absolute value of
𝛽 can be arbitrarily large, 𝛽 is usually passed to a trigonometric func-
tion as an angle in a form like 𝛽ℓ or 𝛽x, as we saw in (3.41) (p. 68)
and Fig. 3.15 (p. 71) (see also (3.44) on p. 72). Since an angle “rotates
back” every 2𝜋 rad, Fig. 3.17 limits the horizontal axis range so that
the corresponding angle is limited to ±𝜋 rad. As a result, 𝜔 (𝛽) in Fig.
3.17 is multi-valued. This format of showing the dispersion relation
𝜔 (𝛽) is known as the reduced zone scheme. A different format can be
found in Fig. 3.20 (p. 77).

IMAGINARY UNIT IN ELECTRICAL ENGINEERING
AND PHYSICS

In mathematics and physics, “i” denotes the imaginary unit. In
electrical engineering, “j” denotes the imaginary unit, presum-
ably to avoid possible confusion with i, denoting electrical cur-
rent. But the difference is not just the choice of symbol, although
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both of them, of course, satisfy j2 = i2 = −1. j and i are usually
used in subtly different ways in the respective fields.
In electrical engineering, sinusoidal time dependence is often
expressed, using an exponential function, as ej𝜔t. This really
means that the sinusoidal time dependence is given by the real
part (or at times the imaginary part, but this is not recommended
as discussed below) of

ej𝜔t = cos𝜔t + j sin 𝜔t. (Euler’s formula) (3.45)

At the heart of electrical engineering is lumped circuit the-
ory. Since a lumped circuit has no spatial extent, there is no
need to consider spatial coordinates. Moving on to distributed
circuit theory, we need to add position dependence to mathe-
matical formulas. At a given time instant t, the phase of our
sinusoidal wave at a distance x from the origin is (𝜔t − 𝛽x),
because there is a phase lag at x (and hence the minus sign before
𝛽x). The wave front at the origin will reach x after a duration of
𝛽x/𝜔. Therefore, the time- and position-dependence is written as
ej(𝜔t−𝛽x).

On the other hand, physicists presumably began with x-
dependence (because there is no time in statics) and wrote a
sinusoid, using an exponential function, as eikx. Recall that the
wave number k is the same thing as the phase constant 𝛽 in one-
dimensional space (p. 63). If we add time dependence to eikx, the
result will be ei(kx−𝜔t). Since we fix the position x first and then
consider a time instant after a duration t has passed, the 𝜔t term
in the exponent needs a minus sign. The wave front at x was a
distance 𝜔t/k away at t = 0. The real part of

e−i𝜔t = cos𝜔t − i sin 𝜔t (Euler’s formula) (3.46)

gives the time dependence. Note that ℜ (ej𝜔t) = ℜ (e−i𝜔t). We
also see that it does not seem like a very good idea to take the
imaginary part because ℑ (ej𝜔t) ≠ ℑ (e−i𝜔t).

To switch between the two notational conventions, replacing j
with −i or vice versa will do. Stratton pointed it out in the preface
of his famous book on electromagnetism as follows [29]:

The use of the factor e−i𝜔t instead of e+i𝜔t is another point of mild
controversy. This has been done because the time factor is invari-
ably discarded, and it is somewhat more convenient to retain the
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positive exponent e+ikR for a positive traveling wave. To recon-
cile any formula with its engineering counterpart, one need only
replace −i by +j.

IMAGINARY UNIT IN ELECTRICAL ENGINEERING
AND PHYSICS (CONT.)

So the impedance of an inductor, for example, is j𝜔L in elec-
trical engineering and −i𝜔L in physics. Unfortunately, not all
authors adhere to this established convention, thereby caus-
ing confusion, especially when dissipative components, such as
lossy transmission lines or complex permittivity (with a nonzero
imaginary part), are involved [11]. A dissipative system can end
up erroneously exhibiting exponential divergence, rather than
exponential decay, in the time domain.

The choice between i and j is yours, but we ask the reader
to follow the convention that the time dependence is e−i𝜔t and
ej𝜔t, respectively.

3.3.2 Phase Velocity and Group Velocity

For a given medium, important information that can be read from
dispersion curves (𝜔-𝛽 diagrams) like Fig. 3.16 (p. 72) and Fig. 3.17

FIGURE 3.17 Example of a dispersion relation of a dispersive medium.
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is the phase velocity, given by

vph ≡ 𝜔 (𝛽)
𝛽 . (Phase velocity) (3.47)

On the right-hand side of (3.46), the angular frequency 𝜔 is
regarded as a function of the phase constant 𝛽 and is written as 𝜔 (𝛽).
Equation (3.46) has the same form as the expression of the chord
resistance, (2.10) (p. 33). The phase velocity vph at a given value of
𝜔 equals the slope of a straight line joining a point on the dispersion
curve and the origin. It represents the (signed) velocity of propagation
of a wave front of a sinusoid of angular frequency 𝜔. Table 3.3 (p. 68)
gave phase velocities of type A and type B transmission lines.

Another important quantity that can be read from an 𝜔-𝛽 diagram
is the group velocity5. It is given as the local slope of a dispersion curve
as follows:

vg ≡ d𝜔 (𝛽)
d𝛽 . (Group velocity) (3.48)

Equation (3.47) has the same form as the expression of the incre-
mental resistance, (2.10) (p. 33). The group velocity represents the
(signed) velocity of propagation of the envelope of a waveform made
up by the superposition of multiple sinusoids. For example, if the wave
form is an amplitude-modulated carrier wave (Fig. 3.18) given by

v (t) = vs (t) cos𝜔ct, (Amplitude-modulated carrier wave) (3.49)

vs (t) = V0sin𝜔s (𝜔s ≪ 𝜔c) , (Modulating signal or envelope)
(3.50)

where 𝜔c is the carrier angular frequency, and 𝜔s is the signal angular
frequency, the group velocity represents the velocity of a wave front
of vs (t).

Fig. 3.16 (p. 72) shows the dispersion relation of a nondispersive
medium, and therefore vph = vg holds. However, this is a special case.
In general, phase velocity and group velocity have different values, as
is clear from Fig. 3.17 (p. 74). This is analogous to the fact that the
chord resistance Rch and the incremental resistance Rinc of a resistor
coincide only if the resistor is a linear resistor.

5 For a more detailed account of the group velocity, see [4].
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FIGURE 3.18 Amplitude-modulated carrier wave and its envelope.

FIGURE 3.19 An infinite cascade of phase-shifting unit two-ports.

3.3.3 Calculation of the Dispersion Relation

Let us consider an infinitely long cascade of lossless unit two-ports,
as shown in Fig. 3.19. Let us suppose further that the unit two-port
affects only the phase of the wave that passes through it and does
not affect the amplitude. Such a network is called a phase shifter. The
dispersion relation of the one-dimensional periodic network can be
calculated as follows.

Let the ABCD-matrix of the unit two-port be

𝐅 = [ A (𝜔) B (𝜔)
C (𝜔) D (𝜔) ] . (3.51)
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FIGURE 3.20 f-𝜅 diagram of an infinite cascade of a unit two-port shown in
Fig. 3.12 (p. 68).

Let us suppose that the unit two-port is reciprocal (see the Box on
p. 48) and therefore satisfies (p. 273)

det𝐅 = A (𝜔)D (𝜔) − B (𝜔)C (𝜔) = 1. (3.52)

The left and right port voltages and currents of the n-th unit
two-port are related to each other by

[ Vn
In

] = 𝐅 [ Vn+1
In+1

] = [ A B
C D ] [ Vn+1

In+1
] . (3.53)

Since the unit two-port, by assumption, only introduces phase
rotation, (3.52) can also be written as follows:

[ Vn
In

] = [ A B
C D ] [ Vn+1

In+1
] = [ Vn+1ej𝜅

In+1ej𝜅 ] , (3.54)

where 𝜅 is the phase rotation. The right-hand side of (3.53) can be
rewritten as

[ Vn+1ej𝜅

In+1ej𝜅 ] = [ ej𝜅 0
0 ej𝜅 ] [ Vn+1

In+1
] . (3.55)

By subtracting (3.54) from (3.52), we obtain

[ A − ej𝜅 B
C D − ej𝜅 ] [ Vn+1

In+1
] = [ 0

0 ] . (3.56)
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For the equality (3.55) to hold, the determinant of the matrix on
the left-hand side must be 0:

(A − ej𝜅) (D − ej𝜅) − BC = AD + e2j𝜅 − (A + D) ej𝜅 − BC = 0. (3.57)

Using (3.51), (3.56) simplifies to

1 + e2j𝜅 − (A + D) ej𝜅 = 0. (3.58)

Dividing both sides of (3.57) by ej𝜅 and rearranging leads to

ej𝜅 + e−j𝜅 = 2cosh (j𝜅) = 2cos𝜅 = A + D, (3.59)

where we used the following relation:

cosh (x + jy) = cosh x cos y + j sinh x sin y. (3.60)

From (3.58), the dispersion relation is given by

cos𝜅 (𝜔) = A (𝜔) + D (𝜔)
2 , (3.61)

or equivalently,

𝜅 (𝜔) = arccos
A (𝜔) + D (𝜔)

2 . (3.62)

An 𝜔-𝜅 diagram could be plotted by sweeping 𝜔. If the horizontal
axis needs to be the wave number k (or 𝛽) instead of 𝜅, then let the
length of the unit two-port be ℓ, and k = 𝜅/ℓ can be the horizontal
axis.

Example: Dispersion Relation for the Kronig–Penney Model

Draw a dispersion diagram for the transmission line version of the
Kronig–Penney model shown in Fig. 3.12 (p. 68). Use the values given
in Table 3.3, (p. 68), the ABCD-matrix of the unit two-port (3.42) (p.
68), and the dispersion relation (3.61).

A result is shown in Fig. 3.20. Note that the vertical axis is the fre-
quency f = 𝜔/2𝜋. Fig. 3.20 does not limit the range of the horizontal
axis to ±𝜋. This format of displaying the dispersion relation is known
as the extended zone scheme. If the range is limited to ±𝜋 by hori-
zontally shifting inward the curves lying outside this range by ±2n𝜋
with n being an integer, we will get a similar plot to Fig. 3.17 (p. 74).
Check that Fig. 3.20 is consistent with Fig. 3.13 (p. 69). ■
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LUMPED VERSUS DISTRIBUTED, FINITE VERSUS
INFINITE

In §3.2.3, we explained that the distributed circuit theory is the
theory for transmission lines. We might have given the impres-
sion that a distributed circuit is a circuit that is nonnegligible in
size compared to the wavelength.

However, there are some distributed circuits that are not
quite comparable with the wavelength. The infinite LC ladder
in §3.2.2 (Fig. 3.8 on p. 58) was such an example. We may as
well say that we simply forgot to mention the dimensions of the
inductors and the capacitors constituting the LC ladder, so we
cannot compare it with the wavelength. However, circuit theory
draws a line between lumped and distributed circuits based on
the number of elements. A circuit consisting of a finite number
of lumped circuit elements is a lumped circuit. A circuit consist-
ing of infinitely many lumped circuit elements is a distributed
circuit.

As we have noted on p. 59, it is possible to synthesize an
impedance with a positive real part if infinitely many reactive ele-
ments are available. There is a fundamental difference between
a finite number and infinity. Problem 3.3 (p. 85) also gives such
an example.

3.4 DISPERSION RELATION AND PROPERTIES OF
SEMICONDUCTORS

In solid-state physics, the dispersion relation for electron waves in a
solid is plotted with the electron energy E as the vertical axis and the
wave number k as the horizontal axis. Such an “E-k diagram” is also
called an energy band diagram (see the box on p. 15). The dispersion
relation of a semiconductor typically looks like Fig. 3.21. The energy
gap Eg is the distance between “the bottom of the dispersion curve
for the conduction band” and “the top of the dispersion curve for the
valence band.”

In solid-state physics, the group velocity vg that can be read from
the dispersion relation E (k) is interpreted as the velocity of electrons.
In other words, the velocity of the envelope of the wave function is
associated with the motion of electrons.
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FIGURE 3.21 Sketch of an E-k diagram of a semiconductor. a is the spacing
between adjacent atoms.

From (3.47) (p. 75),

vg = d𝜔
dk

= d (ℏ𝜔)
d (ℏk) = 1

ℏ
dE (k)

dk
, (3.63)

where we used the relationship E (k) = ℏ𝜔 between energy and angu-
lar frequency. If (3.62) gives the electron velocity, its time deriva-
tive ̇vg = dvg/dt should represent acceleration. If force F acts on an
electron, the equation of motion is

me ̇vg = F, (3.64)

where me is called the effective mass and assumes a different value
from the electron rest mass, m0, in free space. If F is known, me is
given by

me = F
̇vg

. (3.65)

The electron effective mass depends on the material and crystal ori-
entation. Its value is typically between a hundredth of and several
times the free space rest mass m0. It can be shown that me is inversely
proportional to the second derivative of E (k) as follows.

1
me

∝ d2E (k)
dk2 . (3.66)
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FIGURE 3.22 Transmission line loaded with a high-pass two-port.

From the shape of the dispersion curves in Fig. 3.21, we see that
me > 0 near the bottom of the conduction band, and me < 0 near the
top of the valence band. Electrons with negative effective mass have
to do with holes (see the Box on p. 136).

Incidentally, Fig. 3.21 looks quite different from the dispersion rela-
tion for the Kronig–Penney model, shown in Fig. 3.20 or Fig. 3.17
(p. 74). In Fig. 3.17, the bottommost allowed band has the small-
est energy at the center, but the bottommost allowed band in Fig.
3.21 peaks at the center. Similarly, the second allowed bands from
the bottom look like upside-down versions of each other. The quan-
tum mechanical versions of the Kronig–Penney model are essentially
the same in this regard. The only difference from the transmission
line version is that the dispersion curve is not sharp-cornered as in
Fig. 3.20.

One way to reconcile the discrepancy is to consider that the middle
band in Fig. 3.20 corresponds to the valence band in Fig. 3.21 and that
the top band in Fig. 3.20 corresponds to the conduction band in Fig.
3.21. Another possibility is to consider a unit two-port that exhibits
a different dispersion relation than that in Fig. 3.20. In the following
example, the bottom two allowed bands exhibit a semiconductor-like
dispersion relation.

Example: Periodically High-Pass Loaded Transmission Line

The unit two-port shown in Fig. 3.22 consists of a lumped reactive
network sandwiched between transmission line sections. Let us find
the dispersion relation of a one-dimensional periodic network built of
it. Unlike the unit two-port for the Kronig–Penney model (Fig. 3.12
on p. 68), this two-port has high-pass characteristics and blocks DC
voltage and current.
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FIGURE 3.23 f-𝜅 diagram of the one-dimensional periodic network com-
posed of the unit two-port shown in Fig. 3.22.

Let the inductance be L = 0.5 nH, the capacitance be C = 0.2 pF,
and the length be ℓA = 0.5 mm. Suppose that the characteristics
of the transmission line are given by Table 3.3 (p. 68). The result-
ing f-𝜅 diagram is shown in Fig. 3.23. The lower two bands look
semiconductor-like as in Fig. 3.21. See also Fig. 3.3(e) (p. 54). ■

LIMITATIONS OF CLASSICAL ANALOGUES OF
QUANTUM THEORY

The analogy shown in Fig. 3.15 (p. 71) between the time-
independent Schrödinger equation and the frequency-domain
wave equation for the transmission line is powerful. The
quantum mechanical tunneling effect (p. 174), which is often
described as “peculiar to quantum mechanics,” can also be
described by the transmission line or electromagnetic wave equa-
tion. In electromagnetism, the wave corresponding to the tunnel-
ing effect is named an evanescent wave, and in microwave engi-
neering, the equivalent phenomenon is at times used in attenu-
ators. The above correspondence between quantum theory and
transmission line theory holds only in periodic steady states (p.
115). If one wants to track the temporal evolution of a system,
the diffusion equation could be used (see Table 3.2 on p. 51).
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However, not all quantum mechanical phenomena can be
described or understood by using classical analogues. A perfect
example is the quantum computer. Some computational prob-
lems are known to be practically intractable for any classical
computer but are, in principle, solvable by quantum computers
with sufficient computational capacity, although there are not
so many problems that fall into this category of computational
complexity. Many other difficult problems are intractable even
for quantum computers. Anyway, the speed-up originates intrin-
sically from the properties of quantum mechanics. This is where
the peculiarity of quantum mechanics reveals itself. It is gener-
ally believed that no classical system (or analogue) can emulate
a quantum computer efficiently. Note that inefficient emulation
gives no speed-up. If it were possible to emulate a quantum com-
puter efficiently by a classical analogue, then there would be no
point in trying to implement a quantum computer.

Then, where is the boundary between cases where classical
analogues exist and cases where they do not? In this book, we
do not deprive the reader of the pleasure of finding the answer
to this intriguing question.

3.5 BRAGG REFLECTION

The reader might have some knowledge of X-ray diffraction in
crystals, including the Bragg condition, under which diffracted X-
rays add up constructively. If X-rays impinge on a cleavage plane
perpendicularly, the rays are just reflected under the Bragg condition.

Consider X-rays with wavelength 𝜆, incident from the left on a one-
dimensional crystal, as shown in Fig. 3.24 (p. 84). Ignore the ampli-
tude in Fig. 3.24, and focus only on the phase relationship. Assume
that the wavelength does not change inside or outside the crystal. The
crystal lattice spacing is a. The wave traveling in the crystal is par-
tially reflected by each atom as it travels through the crystal. If the
Bragg condition, 𝜆 = 2a, is satisfied, reflected waves are in phase with
each other as shown in Fig. 3.24, resulting in strong outgoing reflected
waves. This is the Bragg reflection.

The above was the case of a wave entering the crystal from the out-
side. If the one-dimensional crystal were infinitely long, what would
happen if we tried to excite a wave with wavelength 𝜆 = 2a inside
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FIGURE 3.24 The Bragg reflection is due to an array of atoms.

the crystal? Since reflections by atoms occur for waves traveling in
either direction, waves propagating in either direction are canceled
out by the Bragg reflection, and waves of this wavelength cannot exist
persistently in the crystal.

In Fig. 3.17 (p. 74) and Fig. 3.21 (p. 80), k = ±2𝜋/𝜆 = ±𝜋/ℓ or
k = ±2𝜋/𝜆 = ±𝜋/a holds on the left and right edges. These are equiv-
alent to the Bragg condition 𝜆 = 2nℓ or 𝜆 = 2na with n (≠ 0) being an
integer. In Fig. 3.17, two dispersion curves come closer to each other
but flatten out at k = ±𝜋/ℓ. An interpretation of this is that the wave
with an angular frequency corresponding to the center of the stopband
has a wavelength 𝜆 = 2nℓ and, therefore, cannot exist persistently in
the periodic network. The center frequency of the stopband is known
as the Bragg (angular) frequency and the corresponding wavelength is
called the Bragg wavelength.

The first example that we considered in this chapter was the infinite
LC ladder shown in Fig. 3.8 (p. 58). The infinitely long LC lad-
der and CL ladder (Problem 3.1 on p. 85) have one passband and
one stopband, as shown in Figs. 3.3(a) and (b) (p. 54). It does not
seem possible to think of “the center frequency of the stopband.”
This might imply that the origin of the stopband in these ladder net-
works is not the Bragg reflection (§3.1.2). We started our discussion
with the infinite LC ladder because it is more elementary and easier
to understand.
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FIGURE 3.25  Infinite CL ladder.

3.6 SUMMARY

Quantum mechanics and band theory are quite difficult for beginners.
In this chapter, instead of dealing squarely with band theory in solid-
state physics, which requires quantum mechanics, we investigated
energy band formation using circuit theory.

● The frequency-domain wave equations for a transmission line
and the time-independent Schrödinger equation describing an
electron have the same mathematical form.

● In a periodic structure, only waves with a certain range of energy
(or frequency) can exist persistently.

● The Kronig–Penney model can be formulated as both a quan-
tum mechanics problem and a transmission line problem, and
the results are almost the same.

● The energy band formation in periodic structures is a universal
phenomenon common to various systems that can support wave
propagation and is not exclusive to quantum mechanics.

3.7 PROBLEMS

3.1 Consider the infinite CL ladder, shown in Fig. 3.25, which is in
a dual relationship to the infinite LC ladder that we discussed
in §3.2.2. Find its cutoff angular frequency 𝜔c and the input
impedance Z′

in.

3.2 Derive the wave equations (3.20) and (3.21) on p. 62 from the
telegrapher’s equations (3.18) and (3.19).

3.3 Plot the magnitudes of the reflection coefficient S11 and the trans-
mission coefficient S21 (see §A.1.2) of an LC ladder (Fig. 3.8, p.
58) composed of N unit two-ports versus the frequency. Number
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of repetitions: 1 ≤ N ≤ 32. Series inductance: L = 0.5 nH. Parallel
capacitance: C = 0.2 pF. Reference resistance: Rref = 50 Ω. Use a
computer, etc. for plotting as appropriate.

3.4 Do a search on phase velocity and group velocity to better
understand them.

3.5 Examples of applications of periodic structures described by
the wave equation for electromagnetic waves (Table 3.2, p. 51)
include “photonic crystals” for visible light, “electromagnetic
bandgap (EBG) structures” in the microwave band, and “meta-
materials” related to both light and microwaves. Do a search on
these.



C H A P T E R 4

Physics of Semiconductors
in Equilibrium

We have already briefly discussed the properties of semiconductors in
Chapter 1, but the discussion was largely qualitative. In this chapter,
we will look at the physics of semiconductors in more detail, using
mathematical formulas as well. The contents of this chapter are the
basis for the discussion of electrical conduction and the analysis of
semiconductor devices in the following chapters. This chapter deals
only with the equilibrium states of spatially uniform semiconductors.
Nonequilibrium states, including net current flow, and cases where the
equilibrium state is not spatially uniform are considered in Chapter 5
and thereafter.

4.1 DENSITY OF STATES IN ENERGY BAND AND
DISTRIBUTION FUNCTION

As mentioned in §1.3.4, the valence and conduction bands of semicon-
ductors consist of densely distributed orbitals that electrons may pop-
ulate (Fig. 4.1). The orbitals in the conduction band are almost empty,
but orbitals near the bottom of the band are filled with electrons.
These electrons are responsible for electrical conduction. The orbitals
in the valence band are mostly filled with electrons, but there are
some unoccupied orbitals near the top of the band. These unoccupied
orbitals contribute to electrical conduction as holes

What we have called “orbitals” are more often referred to as states
in solid-state physics, so we will follow the convention from here on.
Let the energy of an electron be E as before (§1.3.5). The number
of states per unit energy range per unit volume is called the density of
states. The density of states as a function of E, written asN (E), is called
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FIGURE 4.1 Allowed bands consist of a dense collection of electron orbitals.

the density-of-states function. The number of states in an infinitesimal
energy interval dE is N (E) dE per unit volume.

Here is a concrete form of the density-of-states function for the con-
duction band of a three-dimensional semiconductor crystal, although
we will leave its derivation to solid-state physics books [24, 30]:

N (E) = 1
𝜋2

mc√2mc

ℏ3 (E − Ec)1/2, (4.1)

where mc is called the density-of-states effective mass of an electron.
mc is somewhat different in value and meaning from the effective
mass on p. 80. N (E) has a parabolic functional form. Similarly, the
density-of-states function for the valence band of a three-dimensional
semiconductor crystal is given by

N (E) = 1
𝜋2

mv√2mv

ℏ3 |E − Ev|1/2, (4.2)

where mv is the density-of-states effective mass of a hole. Note that in
the valence band E < Ev.

Incidentally, you might have thought it is strange to treat the num-
ber of states as if it were a continuous quantity, as in (4.1) and (4.2).
Since the number of states is an integer and E is inherently discrete
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(see Fig. 1.4 on p. 10 and Fig. 1.5 on p. 11), such a question is valid.
If the number of atoms in the crystal under consideration is small, the
treatment assuming such a continuous quantity is not correct. How-
ever, crystals we deal with usually contain a huge number of atoms
and states, so in such cases, the above treatment is a very good approx-
imation. In the derivations of (4.1) and (4.2), the discrete quantities
are approximated as continuous quantities on this basis.

Now, the number of states in an infinitesimal energy interval dE is
N (E) dE, but the conduction band states are not fully filled except near
the bottom of the band, and the valence band states have vacant states
near the top of the band (p. 11). Thus, the number of states actually
occupied by electrons is smaller than N (E) dE. We, therefore, bring in
a function f (E) such that 0 ≤ f (E) ≤ 1 and express the number of states
per unit volume actually occupied by electrons as

N (E) f (E) dE. (Electron density within dE) (4.3)

f (E) represents the probability that an electron actually occupies a
state with energy E and is called the distribution function. The func-
tional form of the distribution function depends on the system under
consideration. The distribution function for the conduction band and
valence band states is called the Fermi–Dirac distribution function:

f (E) = 1
1 + exp (E−𝜁

kT
)

, (Fermi-Dirac distribution function) (4.4)

where k is the Boltzmann constant, and T is the absolute tempera-
ture. 𝜁 is called the Fermi level and has the dimensions of energy.
The Fermi level is the electrochemical potential of electrons in solid-
state physics, but this statement may not make much sense at this
point. Electrochemical potential is an extremely important concept in
understanding the physics of semiconductor devices and is discussed
in detail in §4.4.

The value of 𝜁 depends on impurity doping, but it often falls
roughly within the following range:

Ev ≲ 𝜁 ≲ Ec, (Range of Fermi level) (4.5)

where the symbol “≲” means that the inequality sign is approximately
satisfied. In words, (4.5) says “Fermi level 𝜁 of a semiconductor often
falls within the forbidden band, but it may at times step into the
conduction or valence band.”
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FIGURE 4.2 Fermi−Dirac distribution function (4.4) with (E − 𝜁) on the
horizontal axis.

Fig. 4.2 (p. 90) plots the Fermi–Dirac distribution function (4.4)
with (E − 𝜁) on the horizontal axis. The shape of the curve depends
on temperature T, but always f (E) = 1/2 at E = 𝜁. At T = 0 K, f (E)
looks like a left-right reversed unit step function as follows:

f (E) =
⎧⎪
⎨⎪
⎩

1 (E < 𝜁)
1/2 (E = 𝜁)
0 (E > 𝜁)

(Fermi-Dirac function atT = 0K) (4.6)

Although it is not clear from Fig. 4.2 because the horizontal axis is
(E − 𝜁), the Fermi level 𝜁 itself depends on the temperature (Problem
4.1 on p. 112). The Fermi level at absolute zero is called the Fermi
energy [3, 14].

Some authors use the term “Fermi energy” synonymously with
“Fermi level.” In fact, the Fermi level of room temperature metals
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FIGURE 4.3 Energy band structures of metal, semiconductor, and insulator.

is almost equal to the Fermi energy. f (E) for room temperature met-
als is almost like a reversed step function, (4.6). We can also assume,
for most practical purposes, that metals do not have the forbidden
band, that there are many electrons in the allowed band correspond-
ing to the conduction band, and that the Fermi energy is located in the
allowed band. Therefore, almost all states below the Fermi energy are
filled with electrons (Fig. 4.3 on p. 91). This makes the Fermi energy
so important in the physics of metals. The value of the Fermi energy
EF is also important when considering the properties of metals.

On the other hand, as can be inferred from (4.5), the Fermi energy
of a semiconductor lies in the forbidden band where no state exists,
so it is not the boundary between occupied and unoccupied states [3].
Also, the value of the Fermi energy or the Fermi level itself is rarely
an issue. Usually, we consider only relative values such as (Ec − 𝜁)
and (𝜁 − Ev). The significance and importance of the Fermi level in
semiconductors is discussed further in §4.4.

4.2 CARRIER DENSITIES OF NONDEGENERATE
SEMICONDUCTORS

4.2.1 Electron Density

As we saw in (4.3) on p. 89, the electron density per energy inter-
val dE is N (E) f (E) dE, so integrating it over E gives the number of
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electrons per unit volume. The electron density in the conduction band
is given by

n = ∫
∞

Ec

N (E) f (E) dE. (Electron density) (4.7)

The upper end of the integral in (4.7) should really be the top of
the conduction band, but considering the form of f (E) given in (4.4)
and Fig. 4.2, the result of integration will not change if the upper end
is above a certain level, so it is replaced by ∞.

The integral in (4.7) is called the Fermi–Dirac integral of one-half
order and is difficult to evaluate analytically. We make the following
approximations. Noting that e3 ≃ 20 ≫ 1, the Fermi–Dirac distribu-
tion function can be approximated as follows, provided (E − 𝜁) /kT ≳
3:1

f (E) = 1
1 + exp (E−𝜁

kT
)

≈ 1
exp (E−𝜁

kT
)

= exp (−E − 𝜁
kT ) (≪ 1) . (4.8)

Considering the fact that the range of integration of (4.7) is E ≥ Ec
(i.e., within the conduction band) and that the range of the Fermi
level 𝜁 is given by (4.5) on p. 89, the condition (E − 𝜁) /kT ≳ 3
implies 𝜁 ≲ Ec − 3kT. The exponential distribution function in (4.8) is
called theMaxwell–Boltzmann distribution function. Semiconductors
to which this approximation can be applied are called nondegenerate
semiconductors. Simply put, a nondegenerate semiconductor is one
in which the doping density is not very high and, consequently, the
majority carrier density is not very high. Electrons and holes in nonde-
generate semiconductors can be regarded as ideal gases. Conversely, a
semiconductor with a very high doping density and a very high major-
ity carrier density is called a degenerate semiconductor (§4.3.2). We
will consider nondegenerate semiconductors from here onward unless
otherwise specified.

If f (E) in (4.7) is given by the Maxwell–Boltzmann distribution
(4.8), then the integral can be performed analytically. The result is

1 3 here is a rough guide.
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(see Problem 4.2 on p. 113)

n = Nc exp (−Ec − 𝜁
kT ) , (Nondegenerate electron density) (4.9)

where Nc is called the effective density of states of the conduction
band, and Ec is the electron energy at the bottom of the conduction
band (Fig. 4.1 on p. 88). The effective density of states is a constant
determined for each material. Numerical examples are given in Table
1.3. (p. 5).

The exponential factor in (4.9) can be written as f (Ec) using the
Maxwell–Boltzmann distribution function, (4.8). The inequality in
(4.8) holds for the energy range for electrons in the conduction band,
that is, for E ≥ Ec, because f (E) is to be used within the range of
integration of (4.7). Thus,

f (Ec) = exp (−Ec − 𝜁
kT ) ≪ 1 (4.10)

holds for the exponential factor in (4.9), too. From the above, the
electron density of a nondegenerate semiconductor satisfies n ≪ Nc.
To be more specific, if n is not greater than about a tenth of Nc, the
semiconductor can be regarded as nondegenerate.

The meaning of the term “effective density of states” is that, if all
the states (Nc per unit volume) were concentrated at the bottom of the
conduction band (E = Ec), then only f (Ec) (≪ 1) times that amount
would actually be occupied by electrons, as suggested by (4.9). That
is to say, Nc is the number of states per unit volume if the states in the
conduction band were considered to be concentrated at the bottom
of the conduction band, and (4.10) is the occupancy of those states.
Note also that Nc has the same dimensions as the electron density.

4.2.2 Hole Density

The hole density can be found in basically the same way as for elec-
trons, but note that “the probability that a hole occupies a state”
equals “the probability that an electron does not occupy a state.”
Thus, using (4.4) on p. 89, the distribution function fh (E) for holes
is given by

fh (E) ≡ 1 − f (E) = 1
exp ( 𝜁−E

kT
) + 1

. (4.11)
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Using the density-of-states function (4.2) on p. 88, the hole density
in the valence band is given by

p = ∫
−∞

Ev

N (E) fh (E) dE. (4.12)

The upper end of the integral range in (4.12) should really be the
bottom of the valence band, but it is replaced with −∞.

If (𝜁 − E) /kT ≳ 3 is satisfied, that is, if the semiconductor is
nondegenerate, (4.11) can be approximated as

fh (E) = 1
exp ( 𝜁−E

kT
) + 1

≈ 1
exp ( 𝜁−E

kT
)

= exp (−𝜁 − E
kT ) (≪ 1) . (4.13)

This is the Maxwell–Boltzmann distribution function for holes.
Considering the facts that the range of integration of (4.12) is E ≤ Ev
(i.e., within the valence band) and that the range of the Fermi level
𝜁 is given by (4.5), (𝜁 − E) /kT ≳ 3 implies 𝜁 ≳ Ev + 3kT. Note that
this inequality can hold concurrently with the inequality 𝜁 ≲ Ec − 3kT
considered below (4.8) on p. 92. Those semiconductors in which these
inequalities hold are degenerate semiconductors.

The hole density is given by

p = Nv exp (−𝜁 − Ev

kT ) , (Nondegenerate hole density) (4.14)

where Nv is the effective density of states of the valence band, and
Ev is the electron energy at the top of the valence band (Fig. 4.1 on p.
88). By the same argument as for the electron density, it can be shown
that p ≪ Nv for nondegenerate semiconductors. More specifically, if
p is not greater than about a tenth of Nv, the semiconductor can be
regarded as nondegenerate.

4.2.3 Product of Hole and Electron Densities

Based on the above discussion, we can summarize the range of the
Fermi level 𝜁 for nondegenerate semiconductors as follows:

Ev + 3kT ≲ 𝜁 ≲ Ec − 3kT. (4.15)
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Again, the factor 3 in (4.15) is a rough guide.
Since both electron density n and hole density p are equal to the

intrinsic carrier density ni in intrinsic semiconductors (p. 7), np = n2
i

clearly holds. In fact, this is a more general relationship that holds in
uniform nondegenerate semiconductors in equilibrium. This can be
confirmed by multiplying (4.9) and (4.14) as follows:

pn = NcNv exp (−
Eg

kT) = n2
i . (Equilibrium pnproduct) (4.16)

If you have any doubts about the second equality in (4.16), try
to find the pn product using (4.24) on p. 98 and (4.25), which
will be derived later. Note that (4.16) does not hold in degenerate
semiconductors.

From (4.16), the intrinsic carrier density can be written as

ni = √NcNv exp (−
Eg

2kT) . (Intrinsic carrier density) (4.17)

It can be seen from (4.17) that the larger the energy gap Eg, the
smaller the intrinsic carrier density ni. ni depends also on the effective
densities of states, Nc and Nv, but the exponential dependence on Eg
has a bigger impact. Table 1.3 (p. 5) shows that GaAs with Eg = 1.4 eV
has a smaller value of intrinsic carrier density (ni = 2.1 × 106) than Si
with Eg = 1.1 eV and ni = 1.0 × 1010 (see Problem 4.3 on p. 113).

4.2.4 Insulators

Let us now discuss the difference between semiconductors and insula-
tors. Insulators can be considered as materials with a very large energy
gap. For example, the Eg of silicon dioxide (SiO2) is as high as 8 to
9 eV. If the Eg is very large, ni becomes very small by (4.17). As a
result, carriers can hardly exist in the allowed bands above and below
the energy gap, resulting in extremely large resistivity (§5.4.2).

Fig. 4.3 summarizes the energy band structures of metals (p. 91),
semiconductors, and insulators. The rectangles in Fig. 4.3 represent
allowed bands, and the shaded regions indicate the states that are actu-
ally occupied by electrons. Note that the drawings are not to scale.
Specifically, the energy gap Eg of the insulator in Fig. 4.3 is drawn
much smaller than it actually is. Completely empty allowed bands,
such as in the right band diagram in Fig. 4.3, do not contribute to
electrical conduction. Allowed bands that are completely filled with
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electrons, such as those in the left and right band diagrams in Fig. 4.3,
do not contribute to electrical conduction either. For an allowed band
to contribute to electrical conduction, unoccupied states are required.
The Fermi level of insulators, like that of semiconductors, is located in
the forbidden band, but it is not shown in Fig. 4.3 because it is usually
unnecessary to consider it explicitly.

4.2.5 Fermi Level of Intrinsic Semiconductors

So far, we have postponed the discussion of how the value of the Fermi
level 𝜁 is determined. As mentioned in §1.3.7, uniform semiconductor
crystals are usually electrically neutral. The value of 𝜁 is determined
such that the charge neutrality condition is satisfied. Here we use (4.9)
on p. 93 for the electron density and (4.14) on p. 94 for the density to
find an expression for the Fermi level of an intrinsic semiconductor,
also known as the intrinsic Fermi level Ei.

Intrinsic semiconductors are undoped, and there are no donor or
acceptor ions in them. The charge neutrality condition can be written
as n = p, which is the same as (1.1) on p. 8. Equating (4.9) on p. 93
and (4.14) on p. 94, we obtain

Nc exp (−Ec − 𝜁
kT ) = Nv exp (−𝜁 − Ev

kT ) . (4.18)

Solving (4.18) for 𝜁, the intrinsic Fermi level, 𝜁 = Ei, is given as
follows (see Problem 4.4 on p. 113):

Ei = Ec + Ev

2 − kT
2 ln (Nc

Nv
) , (Intrinsic Fermi level) (4.19)

where ln is the natural logarithm (loge). The first term of (4.19) repre-
sents the middle of the energy gap (or midgap), and the second term
represents the deviation from the middle.

Example: Deviation of Ei from the Midgap

Let us look at a numerical example to see how far the intrinsic Fermi
level Ei gets from the middle of the forbidden band. First, note that
at room temperature T = 300 K, kT ≃ 26 meV (see Problem 1.3 on
p. 26). According to Table 1.3 (p. 5), the effective densities of states
of silicon are Nc ≃ 2.8 × 1019 cm−3 and Nv ≃ 2.6 × 1019 cm−3. Since
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FIGURE 4.4 Intrinsic Fermi level Ei lies almost in the middle of the energy
gap.

Nc/Nv ≃ 1, ln (Nc/Nv) should be close to 0. Actual calculations show
that Ei lies only about 1 meV below the midgap. ■

In general, the intrinsic Fermi level Ei lies almost in the middle of
the forbidden band, as shown in Fig. 4.4 (see Problem 4.5 on p. 113).
Similar to (1.5) and (1.6) on p. 15, Ei is related to the electrostatic
potential 𝜓 as follows:

Ei (x) = −q𝜓 (x) + const. (4.20)

Note that the constant term in (1.5) and (1.6) and that in (4.20)
differs by about Eg/2. In this connection, Fermi level 𝜁 can also be
expressed as follows:

𝜁 = −q𝜓F + const., (4.21)

where 𝜓F is called the Fermi potential.

4.2.6 Carrier Density in Terms of Intrinsic Carrier Density

Equation (4.9) on p. 93 for electron density expresses n as “an expo-
nential factor times Nc.” That is to say, the conduction band effective
density of states, Nc, serves as the reference density in (4.9). Likewise,
equation (4.14) on p. 94 for hole density expresses p as “an exponen-
tial factor times the reference density Nv.” In the following, we will
show that it is possible to express n and p using the intrinsic carrier
density, ni, as the reference density in place of Nc or Nv.
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Let us first consider the electron density n. In an intrinsic semicon-
ductor, the electron density is given by n = ni and the Fermi level is
given by 𝜁 = Ei. Putting these in (4.9), we obtain

ni = Nc exp (−Ec − Ei

kT ) . (4.22)

Solving (4.22) for Nc, we get

Nc = ni exp (Ec − Ei

kT ) . (4.23)

Nc has now been written in terms of ni. Nc in (4.9) can be eliminated
by using (4.23):

n = ni exp (𝜁 − Ei

kT ) . (Electron density in terms of ni) (4.24)

This is the new expression of the electron density n we were looking
for.

Similarly, the following equation can be derived from (4.14) on p.
94 for the hole density p (see Problem 4.6 on p. 113):

p = ni exp (Ei − 𝜁
kT ) . (Hole density in terms ofni) (4.25)

4.3 FERMI LEVEL OF DOPED SEMICONDUCTORS

Doped semiconductors share the same distribution functions (§4.1)
and carrier density expressions (§4.2.1, §4.2.2, §4.2.6) with intrinsic
semiconductors. However, the value of the Fermi level 𝜁 is not equal
to the intrinsic Fermi level (𝜁 ≠ Ei). In this section, we investigate what
happens to the Fermi level of doped semiconductors. The Fermi level
𝜁 is determined based on the charge neutrality condition, just as in the
case of intrinsic semiconductors (§4.2.5).

4.3.1 Nondegenerately Doped Semiconductors

4.3.1.1 Dopant Density and Carrier Density

The charge neutrality condition for a doped semiconductor in equi-
librium can be written as

n + N−
A = p + N+

D , (Charge neutrality condition) (4.26)
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where N−
A is the ionized acceptor density, and N+

D is the ionized donor
density. N−

A and N+
D are lower than the acceptor density NA and the

donor density ND, respectively. That is, N−
A < NA and N+

D < ND.
However, since the ionization rate of dopants is quite high at room
temperature, ionized dopant densities are often approximated to be
equal to dopant densities: N−

A ≈ NA and N+
D ≈ ND. In this book, we

use N−
A and N+

D to emphasize the facts that acceptor ions are anions
and donor ions are cations.

Let us define Δn as the difference between the electron density and
the hole density:

Δn ≡ n − p. (4.27)

Δn represents the “signed net carrier density” corresponding to the
“net carrier charge density” −q (n − p). Δn = 0 in an intrinsic semi-
conductor and Δn ≠ 0 in a doped semiconductor. Let us investigate the
carrier density of a doped semiconductor using Δn and then consider
what happens to the Fermi level 𝜁. Equation (4.26) can be rewritten
using Δn as follows:

Δn = N+
D − N−

A . (Charge neutrality condition) (4.28)

Equation (4.28) says that the net carrier density (left-hand side) is
determined by the net ionized dopant density (right-hand side).

Incidentally, it was implicitly assumed in §1.3.7 that a doped semi-
conductor is only doped with either donors or acceptors. However,
it is, of course, possible to dope a semiconductor with both donors
and acceptors, in which case whichever is doped more determines the
polarity of the semiconductor (n-type or p-type). That is the mean-
ing of (4.28). The polarity of an n- or p-type semiconductor can be
reversed by injecting dopants of the opposite polarity. This operation
is called compensation. Depending on Δn ≷ 0, the right-hand side of
(4.28) may be written as N+′

D (effective ionized donor density) or N−′
A

(effective ionized acceptor density). These may further be simplified
to N+

D or N−
A , without a prime.

Now, let us substitute (4.27) for p in (4.16) on p. 95.

n (n − Δn) = n2
i ,

n2 − nΔn − n2
i = 0. (4.29)
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From this quadratic equation, the electron density is found to be

n =
Δn + √Δn2 + 4n2

i

2 . (4.30)

The hole density is given by

p = n − Δn =
−Δn + √Δn2 + 4n2

i

2 . (4.31)

Note that we used the facts that n > 0 and p > 0 to get (4.30) and
(4.31).

Usually, doped semiconductors are doped such that |Δn| ≫ ni (p.
16). So let us apply the following approximate formula:

(1 + x)1/2 ≈ 1 + x
2 (for |x| ≪ 1) (4.32)

to the square root terms in (4.30) and (4.31). Then,

√Δn2 + 4n2
i = |Δn| [1 + (2ni

Δn )
2
]

1/2

≈ |Δn| (1 +
2n2

i

|Δn|2 )

= |Δn| +
2n2

i

|Δn| . (4.33)

Substitute this result into (4.30) and (4.31).
Since Δn = |Δn| > 0 holds in an n-type semiconductor, we obtain

nN ≈ Δn +
n2

i

Δn ≈ Δn, (Electron density in n-type) (4.34)

pN ≈
n2

i

Δn (≪ ni). (Hole density in n-type) (4.35)

The subscript “N” in (4.34) and (4.35) indicates that the quantity
is that in an n-type semiconductor. From (4.34) and (4.28), we see
that the majority carrier (electron) density nN is determined by the net
ionized impurity density, (4.28). The minority carrier density can be
found from the pn product (4.16) on p. 95. From (4.35), the following
inequality holds in an n-type semiconductor:

nN > ni > pN. (4.36)
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This was actually implied by (4.16), too. Note, however, that (4.36)
is only for equilibrium and uniform n-type semiconductors without
band bending. We will see cases in which (4.36) does not hold in
Chapter 5 onward.

Since Δn = − |Δn| < 0 in a p-type semiconductor, we get from
(4.31) and (4.33)

pP ≈ |Δn| +
n2

i

|Δn| ≈ |Δn| , (Hole density in p-type) (4.37)

nP ≈
n2

i

|Δn| (≪ ni). (Electron density in p-type) (4.38)

The subscript “P” in (4.37) and (4.38) indicates that the quantity
is that in a p-type semiconductor. The following inequality holds in a
p-type semiconductor:

pP > ni > nP. (4.39)

Equation (4.39) too, is for equilibrium and uniform p-type semi-
conductors without band bending.

4.3.1.2 Fermi Level

Let us derive the Fermi level 𝜁. First, let us consider n-type semicon-
ductors. Solving (4.9) on p. 93 for 𝜁, we obtain

𝜁 = Ec − kT ln (Nc

n ) (Fermi level of n-type relative toEc) (4.40)

≈ Ec − kT ln (Nc

Δn) ≈ Ec − kT ln ( Nc

N+
D

) . (4.41)

Equation (4.33) was used for the first approximation in (4.41).
Equation (4.28) and the fact that N+

D ≫ N−
A in n-type semiconductors

were used in the last approximation. Recall that n ≪ Nc in nonde-
generate semiconductors (p. 94), and therefore the logarithm in the
second term of (4.40) is positive. So (4.40) says that the Fermi level
𝜁 of a nondegenerate n-type semiconductor is below the conduction
band bottom, Ec. This was already seen in (4.15) on p. 94.
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FIGURE 4.5 Fermi level of an n-type semiconductor lies between Ec and Ei.

Let us derive yet another expression that will tell us a little more
about the n-type Fermi level. Solving (4.24) on p. 98 for 𝜁, we get

𝜁 = Ei + kT ln ( n
ni

) (Fermi level of n-type relative toEi) (4.42)

≈ Ei + kT ln (
N+

D

ni
) . (4.43)

Equation (4.42) says that the Fermi level 𝜁 of a nondegenerate n-type
semiconductor is above Ei. This is new information that could not be
read from (4.15) on p. 94. From the above, the range of the Fermi
level of the nondegenerate n-type semiconductor is given by

Ei < 𝜁 ≲ Ec − 3kT. (4.44)

This situation is shown in the band diagram in Fig. 4.5.
The Fermi level of p-type semiconductors can be considered in the

same way. Solving (4.14) on p. 94 for 𝜁 gives

𝜁 = Ev + kT ln (Nv

p ) (Fermi level of p-type relative toEv) (4.45)

≈ Ev + kT ln ( Nv

|Δn|) ≈ Ev + kT ln ( Nv

N−
A

) . (4.46)

N−
A ≫ N+

D in p-type semiconductors was used in (4.46). Equa-
tion (4.45) says that the Fermi level 𝜁 of a nondegenerate p-type
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FIGURE 4.6 Fermi level of a p-type semiconductor lies between Ev and Ei.

semiconductor is above Ev. By solving (4.25) on p. 98 for 𝜁, we
obtain

𝜁 = Ei − kT ln ( p
ni

) (Fermi level of p-type relative toEi) (4.47)

≈ Ei − kT ln (
N−

A

ni
) . (4.48)

Equation (4.47) says that the Fermi level 𝜁 of a nondegenerate
p-type semiconductor is below Ei. From the above and (4.15) on
p. 94, the range of the Fermi level of the nondegenerate p-type
semiconductor is given by

Ev + 3kT ≲ 𝜁 < Ei. (4.49)

This situation is shown in the band diagram in Fig. 4.6.

Example: Nondegenerate Doping Density

Let us look at a numerical example. As noted on p. 92, nondegen-
erate semiconductors are semiconductors with low doping density.
From (4.34) and (4.37) on p. 100, the majority carrier density equals
the ionized dopant density (after compensation), N+′

D or N−′
A . In n-type

semiconductors, this means

N+′
D ≪ Nc. (Condition for nondegenerate n-type doping) (4.50)

In p-type semiconductors,

N−′
A ≪ Nv. (Condition for nondegenerate p-type doping) (4.51)
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Typical doping densities for nondegenerate silicon are 1016 to
1018 cm−3. A comparison of these values with the values of Nc and
Nv given in Table 1.3 (p. 5) shows that (4.50) and (4.51) are satisfied.
■

4.3.2 Degenerate Semiconductors

Nondegenerate semiconductors include intrinsic semiconductors, but
degenerate semiconductors are always heavily doped. The previously
derived equations (4.9) and (4.24) for electron density and (4.14)
and (4.25) for hole density are not applicable to degenerate semi-
conductors, making analytical treatment of these materials difficult.
Qualitatively, when the Fermi level 𝜁 goes outside the nondegenerate
range (4.15) on p. 94, the increase in majority carrier density becomes
slower than is suggested by a nondegenerate expression, (4.24) or
(4.25). When the doping density is high, it is not enough to simply
perform the numerical integration in (4.7) on p. 92 or (4.12) on p.
94 to obtain the carrier density. As the dopant density increases, the
ionization rate of the dopants decreases, and the presence of many
dopants in a crystal (a kind of periodic structure) results in the for-
mation of the so-called “impurity bands,” which, in effect, reduces
the energy gap. In short, rigorous theoretical treatment of degenerate
semiconductors is cumbersome.

However, it is possible to infer the general properties of degener-
ate semiconductors by carrying over the theory for nondegenerate
semiconductors. In degenerate n-type semiconductors, (4.50) does not
hold, and hence N+

D ≈ Nc. From (4.41) on p. 101,

𝜁 ≈ Ec. (Fermi level of degenerate n-type semiconductor) (4.52)

The above derivation using (4.41) intended for nondegenerate semi-
conductors is, of course, suspect, but (4.52) is often used as a rough
estimate for the Fermi level of degenerate n-type semiconductors.
Equation (4.52) also appears in (4.5) on p. 89. Substituting (4.52)
into (4.9) yields

n ≈ Nc. (4.53)

Similarly, since (4.51) does not hold in degenerate p-type semicon-
ductors, from N−

A ≈ Nv and (4.46),

𝜁 ≈ Ev. (Fermi level of degenerate p-type semiconductor) (4.54)
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Substituting (4.54) into (4.14) yields

p ≈ Nv. (4.55)

The above results were obtained by applying the equations for non-
degenerate semiconductors to degenerate semiconductors. This is the
crudest approximate treatment of degenerate semiconductors. The
next level of approximation will involve similar formulas with some
corrections for degenerate semiconductors.

CHICKEN-AND-EGG QUESTION: CARRIER DENSITY
AND FERMI LEVEL

The expressions (4.9) on p. 93 and (4.24) on p. 98 for the elec-
tron density n are written in the form n (𝜁), as a function of the
Fermi level 𝜁 (likewise for the hole density expressions). Equa-
tion (4.7) on p. 92, from which these equations were derived,
also contained 𝜁 via the distribution function. So, it might appear
that some physical (possibly quantum-mechanical) mechanism
first determines 𝜁, which in turn determines n. But in the dis-
cussion of §4.3.1, (4.40) on p. 101, for example, shows that
𝜁 is a function, 𝜁 (n), of n. Astute readers might have wondered
which really is determined first—the Fermi level 𝜁 or the electron
density n.

To make a long story short, carrier density and Fermi level
are determined simultaneously. n and 𝜁 are, actually, two ways
of expressing essentially the same thing. The equations for the
electron density, (4.9) and (4.24), and those for the Fermi level,
(4.40) and (4.42), are conversion equations for converting n and
𝜁 into each other. This fact is closely related to the importance
of the energy band diagram (§5.2.4).

When performing numerical calculations, the Poisson equa-
tion and the continuity equations are solved simultaneously,
often using the electron and hole densities (as well as the elec-
trostatic potential) as the unknowns (§5.7). The results (n and
p) are used to determine the Fermi level (or more precisely,
the quasi-Fermi levels, 𝜁n and 𝜁p (see §5.2)) via the conversion
equation. However, it is, in principle, perfectly fine to calculate
the (quasi)-Fermi level as an unknown, and then determine the
carrier densities.
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4.4 FERMI LEVEL AND CHEMICAL POTENTIAL

In §4.1, we introduced a quantity called the Fermi level, but we have
postponed a detailed explanation of its meaning. The Fermi level 𝜁 is
often described as the value of electron energy E at which the value
of the Fermi–Dirac distribution function f (E), given in (4.4) on p. 89,
equals 1/2. This statement is technically correct, as is clear from Fig.
4.2 on p. 88, except that it is of little help in understanding the oper-
ation of semiconductor devices. Given the fact that the Fermi level of
nondegenerate semiconductors lies in the forbidden band (see (4.15)
on p. 94) where there are no states, it does not make much sense to
say that the probability of the state at E = 𝜁 being occupied is 1/2,
does it? Then, how can we make sense of the Fermi level in a way
conducive to understanding electrical conduction and device physics?
The answer is to recognize that the Fermi level is the (electro)chemical
potential of conduction electrons. Let us take a look at what exactly
chemical potential is.

4.4.1 Properties of Chemical Potential

The chemical potential is a quantity defined for freely moving parti-
cles that make up a gas. From this point on, a system in this section
refers to a box containing such gas particles, as shown in Fig. 4.7. For
example, a small piece of semiconductor containing many conduction
electrons is an example of such a system. The particles we are consid-
ering here are microscopic gas particles in thermal motion (§5.4.1),
not like marbles that can stay still in a box. Electrons and holes in
solids can be considered gases (p. 92).

Chemical potential is a quantity that is mathematically formulated
in statistical mechanics or thermodynamics. But for the sake of sim-
plicity, we will try to explain it without using mathematical expres-
sions as much as possible. The chemical potential has the following
properties:

(i) Chemical potential 𝜁 is a quantity with the dimensions of energy.

(ii) Chemical potential is a quantity defined only in equilibrium (p.
115).

(iii) In a system in equilibrium, 𝜁 takes a constant value throughout
the system.

(iv) 𝜁 is the energy or work required to add one additional particle to
a system kept at a constant temperature and volume.
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FIGURE 4.7 Conduction electrons in a semiconductor can be regarded as a
gas.

FIGURE 4.8 Two systems with different values of chemical potential.

(v) A larger 𝜁 means that the particles have a stronger tendency to
leave the system.

(vi) Thus, if two systems (system 1 and system 2) contain the same
kind of particles and 𝜁1 < 𝜁2 (Fig. 4.8), then particles will tend to
go from system 2 to system 1.

(vii) The work required to move one particle from system 1 to system
2 equals 𝜁2 − 𝜁1.
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FIGURE 4.9  Chemical potentials for two kinds of gases.

(viii) When the two systems with 𝜁1 < 𝜁2 are brought into contact and
are allowed to exchange particles for a long time until equilib-
rium is reached, the overall chemical potential will eventually be
𝜁3, where 𝜁1 < 𝜁3 < 𝜁2.

(ix) 𝜁 is related to the density of particles; the higher the density, the
larger the value of 𝜁 (Fig. 4.8).

(x) Chemical potential is an intensive quantity.

(xi) If there is more than one particle species, the chemical potential is
defined for each particle species (Fig. 4.9).

(xii) If an external force (electromagnetic force, gravity, etc.) is acting
on particles, the chemical potential (in the broad sense) is also
related to the external force.

“Intensive” in (x) means that the value does not change when the size
of the system is changed. Such a quantity is called an intensive quan-
tity or intensive variable. Temperature, for example, is an intensive
quantity. The antonym is the extensive quantity or extensive variable,
which is a variable related to the quantity or amount of something. For
example, the number of particles and volume are extensive quantities.

From the above, we can see that the chemical potential is related
to particle density, and from (iii), (vi), and (viii), we can also see that
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it is somewhat similar to temperature. Of course, in the case of tem-
perature, it is not particles that move between systems, but thermal
energy.

Point (xi) becomes relevant when considering electrons and holes
(§5.2.2).

From (v) through (viii), the chemical potential is related to the
inclination of particles to diffuse, so if an external force, such as elec-
trostatic or gravitational force, is acting on particles, it should also
affect the chemical potential. This is what (xii) suggests. We will dis-
cuss the chemical potential in a broad sense in the presence of external
force in §4.4.2.

4.4.2 Chemical Potential in the Presence of an External Force

When an external force is acting on particles, the total chemical poten-
tial, 𝜁tot, which includes the effect of the external force, is given by
[15]:

𝜁tot = 𝜁int + 𝜁ext, (Total chemical potential) (4.56)

where 𝜁int is the internal chemical potential, which is the chemical
potential that does not depend on external force. 𝜁ext is the external
chemical potential, which accounts for the effect of the external force,
as mentioned in (xii) on p. 108. If the force is a conservative force such
as electrostatic force or gravity, then 𝜁ext equals the potential energy
per particle due to the conservative field. If the particles under con-
sideration are charged particles and also if an electrostatic field exists,
the total chemical potential is called the electrochemical potential. In
solid-state physics, the electrochemical potential of electrons is also
called the Fermi level.

Example: Fermi Levels of Two Metals

Consider two dissimilar metal pieces. There is no electrostatic poten-
tial gradient (𝜁ext gradient) inside either piece of metal. As shown in
Fig. 4.10, the initial Fermi levels of the metal pieces are assumed to
be different (𝜁1,initial < 𝜁2,initial). However, both metal pieces contain
cations that neutralize the negative charge of electrons, so they are
electrically neutral. If the two metal pieces were connected by a con-
ductor, electrons would flow from right to left (current would flow
from left to right) due to (vi) on p. 107.
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FIGURE 4.10 Two dissimilar metal pieces with electrons.

Next, choose a voltage ΔV so that qΔV = 𝜁2,initial −𝜁1,initial (> 0), and
connect a voltage source as shown in Fig. 4.11. The voltage source
is connected so that the Fermi level of the metal piece on the right is
lowered. The result is 𝜁2,final = 𝜁1,final. Since the incremental resistance
of the voltage source is 0, electrons are allowed to move between
the two metal pieces in the state shown in Fig. 4.11. Nevertheless,
there is no net flow of electrons. That is, the two metal pieces are in
diffusive equilibrium (Problem 4.9 on p. 114).■

Internal chemical potential does not include the effects of external
force. Thus, if a system is in equilibrium with an external force acting
and if there is no net flow of particles, there may be a gradient in par-
ticle density, and 𝜁int will not necessarily be constant in the system.
This means that the 𝜁 in (iii) on p. 106 is not the internal chemical
potential 𝜁int but the total chemical potential 𝜁tot.

Example: Atmosphere on Earth’s Surface

Gravity is a force that acts on all particles with mass, whether or not
they are charged. Earth’s atmosphere is in thermal motion and tends
to diffuse into space (vacuum). Earth’s gravity acts on the atmosphere
and counters its attempt to escape. The density or the existence of the
atmosphere on a celestial body is determined by the balance between
diffusion due to the thermal motion of gas particles and gravity.
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FIGURE 4.11 Two metal pieces are connected via a voltage source.

Gravity depends on the distance from Earth’s center of gravity, but
for simplicity, let us consider the region near the Earth’s surface where
the gravitational field can be assumed uniform with the acceleration
of gravity, g. Suppose there is a gas particle of mass m at height h. The
potential energy (i.e., external chemical potential) of this gas particle
is given by

𝜁ext = mgh. (Potential energy of gas particle) (4.57)

In equilibrium,

𝜁tot = const. (4.58)

holds, and therefore the internal chemical potential is given by

𝜁int = 𝜁tot − 𝜁ext = −mgh + const. (4.59)

This is depicted in Fig. 4.12.
Needless to say, the real atmosphere is not in equilibrium. ■
Chapter 5 extends the concept of chemical potential to nonequilib-

rium states and links it to the operation of semiconductor devices.
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FIGURE 4.12 Chemical potential of the atmosphere near the ground surface.

4.5 SUMMARY

In this chapter, we discussed the physics of spatially uniform semicon-
ductors in equilibrium.

● Electron orbitals in an atom have discrete energy levels, whereas
those in a large crystal are band-like with continuously dis-
tributed energy levels.

● Electron and hole densities of semiconductors are determined
by the effective densities of states, Nc and Nv, which are mate-
rial constants, and the Fermi level 𝜁, which depends on impurity
doping.

● The Fermi level Ei of an intrinsic semiconductor is located
around the middle of the forbidden band. For n-type semicon-
ductors, 𝜁 > Ei, and for p-type semiconductors, 𝜁 < Ei.

● The Fermi level is the electrochemical potential of conduction
electrons in solids.

● The electrochemical potential is determined by the density of
charged gas particles and the electrostatic field acting on them.

4.6 PROBLEMS

4.1 If the Fermi energy is EF and the Fermi level at a finite temperature
is 𝜁, then EF ≠ 𝜁 in general (§4.1). Now, which of the following
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holds, EF > 𝜁 or EF < 𝜁? Consider the fact that the Fermi level is
the electrochemical potential of electrons (§4.4) as a clue.

4.2 Substitute the Maxwell–Boltzmann distribution function (4.8)
into the expression (4.7) on p. 92 for the electron density
expressed as an integral, and derive the equation (4.9) for the
electron density of a nondegenerate semiconductor. Also, find the
expression for the effective density of states, Nc, of the conduction
band. Note that

∫
∞

0
x1/2e−xdx = Γ (3/2) = √𝜋

2 , (4.60)

where Γ (x) is a special function called the gamma function.

4.3 Search the Internet for lattice constants and energy band gaps of
group IV and III–V semiconductors. Does any trend in the rela-
tionship between lattice constants and energy band gaps exist? If
so, discuss qualitatively why such trends exist.

4.4 Derive (4.19) on p. 96 for the intrinsic Fermi level.

4.5 Using the effective densities of states, Nc and Nv, of GaAs in Table
1.3 (p. 5), find how far the intrinsic Fermi level Ei is from the
middle of the forbidden band at room temperature.

4.6 From the hole density expression (4.14) on p. 94 in terms of Nv,
derive the other hole density expression (4.25) on p. 98 in terms
of the intrinsic carrier density ni.

4.7 Let us consider the temperature dependence of the Fermi level of
a doped semiconductor. Plot the Fermi level as a function of the
absolute temperature. Show that, in the case of an n-type semi-
conductor, the Fermi level goes to the midpoint between the con-
duction band bottom Ec, and the donor level ED (see Fig. 1.13 on
p. 20) at the low-temperature limit, as schematically shown in Fig.
4.13. What does this mean physically? On the other hand, at the
high-temperature limit, the Fermi level approaches the midgap.
Why? Also plot the logarithm of the majority carrier density as a
function of the inverse temperature, 1/T, for a few different dopant
densities. The result for one dopant density should look roughly
like Fig. 4.14. Show that the dopant level (ED or EA) can be found
from the slope at low temperatures.

4.8 The energy band diagrams in Fig. 4.5 on p. 102 and Fig. 4.6 on
p. 103 do not show dopant atoms. Draw an energy band diagram
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FIGURE 4.13 Temperature dependence of the Fermi level of an n-type
semiconductor.

Intrinsic range

Extrinsic range

Deionization range

FIGURE 4.14 Approximate log carrier density versus inverse tempera-
ture. Three temperature ranges can be identified: intrinsic temperature
range, intrinsic temperature range (also known as saturation range), and
deionization temperature range (also known as freeze-out range).

including electrons, holes, and dopant atoms (both ionized and
non-ionized).

4.9 Is the orientation of the voltage source in Fig. 4.11 (p. 93) correct?
Explain in simple terms why it is correct (or wrong).



C H A P T E R 5

Carrier Dynamics in
Semiconductors

In Chapter 4, we learned about semiconductors that are in equilibrium
and have no net current flow in them. In this chapter, we consider elec-
trical conduction and related phenomena. The presence of detectable
current flow means there is net carrier transfer, and the state is a
nonequilibrium state. The generation and recombination of carriers,
phenomena closely related to electrical conduction, are also discussed.

5.1 EQUILIBRIUM AND NONEQUILIBRIUM STATES,
STEADY AND NONSTEADY STATES

We have used the terms equilibrium (state) and nonequilibrium (state)
without any particular explanation. There are also two similar terms,
steady state and nonsteady state, and it may be difficult to distinguish
between equilibrium state and steady state and between nonequilib-
rium state and nonsteady state. Fig. 5.1 summarizes the relationship
between these terms.

An equilibrium state is a state in which temperature does not
change in time or space (i.e., thermal equilibrium), there is no net
flow of particles (i.e., diffusive equilibrium), and chemical reactions
in the broad sense are balanced (i.e., chemical equilibrium). Chemi-
cal reactions include, for example, the ionization of neutral dopants
and the reverse processes. Thermodynamics and elementary statistical
mechanics deal with relations between equilibrium states. Neverthe-
less, thermodynamics, in particular, yields a variety of conclusions of
practical importance because transitions between states may occur via
nonequilibrium states.
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Equilibrium Nonequilibrium

No net time 
dependence 
(zero current)

Steady state
Nonsteady state

Constant time 
dependence 
(dc current)

Time-dependent 
(time-varying 

current)

Periodic steady 
state

Sinusoidal 
steady state

Switching 
steady state

FIGURE 5.1 Equilibrium versus nonequilibrium, steady state versus non-
steady state.

States that are not in equilibrium are nonequilibrium states, but
these can be classified into some subcategories. A steady state corre-
sponds to a state in which there is a temperature gradient or a net flow
of particles, but it does not change with time. For example, if a DC
current is flowing through a device and its temperature is not chang-
ing, the device is in a steady state. Note that in this book we will not
consider temperature gradients. Steady states can often be treated in
a way similar to equilibrium.

States that are not steady states are nonsteady states, and these can
also be divided into some subclasses. If the time variation of the sys-
tem is periodic, it is called a periodic steady state or a cyclostationary
state. In particular, if the periodic change is sinusoidal, it is called a
sinusoidal steady state, and it can be easily handled in the frequency
domain; that is, it can be treated like a steady state (p. 63). The AC
circuit theory is a theory for sinusoidal steady states with angular fre-
quency 𝜔. Even if the time variation is not necessarily periodic, it is
possible to consider the statistical average behavior over a long period.
If the average behavior does not change with time, then we can regard
the state as a kind of steady state. For example, it is possible to con-
sider the average behavior of a transistor that is repeatedly turned on
and off, seemingly randomly, in a digital circuit. A state like this may
be called a switching steady state. The switching may be periodic or
aperiodic.
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Actually, there are two more relevant terms, as suggested by
the term “cyclostationary state”: stationary states and nonstation-
ary states. The term “stationary state” may refer to an equilibrium
state or a steady state, depending on the context. And, of course,
nonstationary states are states that are not stationary.

In this book, we will mainly consider equilibrium states, steady
states (at a fixed temperature), and sinusoidal steady states.

Example: Differential Equations for Periodic State States

The frequency-domain wave equation for lossless transmission lines
and the time-independent Schrödinger equation, both shown in Fig.
3.15 (p. 71), are, mathematically, differential equations for periodic
steady states.

Note, however, that in quantum mechanics, sinusoidally oscillat-
ing quantum states, called energy eigenstates, are not regarded as
changing with time. Rather, sinusoidally oscillating quantum states
are considered to be (and called) stationary states for reasons beyond
the scope of this book. ■

5.2 QUASI-FERMI LEVELS AND CARRIER DENSITIES

The Fermi level discussed in §4.4 can only be defined in equilibrium
(see (ii) on p. 106). Therefore, it is not possible to consider the Fermi
level in situations where a net current is flowing, even if it is a DC
current. In nonequilibrium states, quasi-Fermi levels are introduced
and used as substitutes for the Fermi level.

5.2.1 Quasi-Chemical Potential

As mentioned in §4.4.1, the chemical potential is a quantity that can
only be defined for equilibrium states. However, given that the dif-
ference between the chemical potentials of two systems with particles
indicates which way the particles want to move, it seems convenient if
we can define a similar quantity even when there is a flow of particles,
that is, in nonequilibrium states.

Let us consider it more concretely using the example of a gas par-
ticle near the surface of the earth, shown in Fig. 5.2(a). The potential
energy of the particle is given by (4.60) on p. 113. Since gravity is
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(a) (b)

FIGURE 5.2 (a) A particle in uniform gravitational field. (b) Gravity acts on
the particle such that it is pulled down the slope of 𝜁ext.

a conservative force, the force acting on this particle is given by the
derivative of the potential energy as follows:

F = −d𝜁ext

dh
= −mg, (Force acting on particle) (5.1)

where h is the height of the particle, m is its mass, and g is the accelera-
tion of gravity. The minus sign before the derivative in (5.1) indicates
that the force is directed toward a smaller value of the potential energy
𝜁ext. In other words, as shown in Fig. 5.2(b), the particle tries to go
down the “slope” of 𝜁ext.

So far we have considered a single gas particle, but if we have an
ensemble of particles of the same kind in thermal motion, and if we
can define a quantity similar to the total chemical potential 𝜁tot (p.
112) even in nonequilibrium, we expect that the effective force acting
on each particle can be expressed in the same form as (5.1).

F = −d𝜁′
tot

dh
= − (d𝜁ext

dh
+

d𝜁′
int

dh
) , (Effective force) (5.2)

where 𝜁′
tot and 𝜁′

int are the nonequilibrium counterparts of 𝜁tot and
𝜁int, respectively. The effective force F in (5.2) includes the component
originating from the external force (first term) and the component
originating from the density gradient of the particles (second term)
(see Fig. 4.12 on p. 112). The implications of (5.2) are that

● If there is a gradient in 𝜁′
tot, then a net flow of gas particles exists.

● Conversely, if 𝜁′
tot is constant, there is no net flow of gas particles.

That is, the system is in equilibrium.
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● The steeper the gradient of 𝜁′
tot, the stronger the effective force

will be, so the gas particles will have a stronger tendency to go
down the slope of 𝜁′

tot.

The “chemical potential counterpart of a (weak) nonequilibrium
state” introduced on the basis of the above ideas is called the quasi-
chemical potential [3]. The electrochemical potential extended to a
weak nonequilibrium state is called the quasi-electrochemical poten-
tial. Naturally, if there is no net flow of particles (i.e., in equilib-
rium), the total quasi-chemical potential 𝜁′

tot matches the normal total
chemical potential.

If F ≠ 0, at least one of the signs of the first and second terms on
the right-hand side of (5.2) must match the sign of the left-hand side.
If the first and second terms on the right-hand side of (5.2) have dif-
ferent signs, then the term with the same sign as the left-hand side has
a larger absolute value and is dominant.

5.2.2 Electron and Hole Quasi-Fermi Levels

The Fermi level is the electrochemical potential of electrons in solid-
state physics (§4.4.2). Similarly, the quasi-Fermi level is the Fermi
level counterpart in weak nonequilibrium. Note, however, that there
is a significant difference between the Fermi level and the quasi-Fermi
level. Although it was not explicitly stated in Chapter 4, it is sufficient
to consider only the electron Fermi level, 𝜁, and there is no need to
consider the hole Fermi level. If the latter were needed, −𝜁 could be
regarded as the hole Fermi level. This is also evident in the carrier den-
sity equations (4.27) and (4.28) on p. 99, or in the pn product (4.19)
on p. 96. That is, in equilibrium, if either the electron density n or
the hole density p is known, the other is also known. In contrast, for
nonequilibrium states, it is necessary to consider the quasi-Fermi lev-
els for electrons and holes separately. Let us consider why this is so in
the following.

First, in an equilibrium semiconductor, both electrons and holes
are in equilibrium. Specifically, the following (and other, see §5.6)
“chemical reactions” of carrier generation and recombination are all
in equilibrium:

(covalent bond) ⇌ (electron) + (hole) (Fig. 1.7 (p. 13)) (5.3)
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(neutral donor) ⇌ (donor ion) + (electron) (Fig. 1.13 (p. 20))
(5.4)

(neutral acceptor) ⇌ (acceptor ion) + (hole) (Fig. 1.18 (p. 22))
(5.5)

In equilibrium, rightward and leftward reactions occur at the same
rate, and it appears as if no reaction is occurring.

It might seem to contradict (xi) on p. 108 that a single electro-
chemical potential 𝜁 is sufficient for both electrons and holes, which
are clearly different particles. The reason only one electrochemical
potential is sufficient is because all of the above chemical reactions
have reached chemical equilibrium. In such a state, pn = n2

i , given
in (4.19), holds, and if we know the electron Fermi level 𝜁, we know
the hole density immediately from (4.17) on p. 95 or (4.28) on p. 99.
So (xi) on p. 108 applies to particle species that are independent of
each other. Electrons and holes in equilibrium are interdependent as
in (5.3) through (5.5).

However, when the system is in a nonequilibrium state, the equality
pn = n2

i no longer holds (§5.2.3). This means that even if n is known,
p is not. The physical reason for this is related to a couple of time
constants involved in the dynamics of carriers in semiconductors.

Let us consider a p-type semiconductor as an example. Suppose
that equilibrium is disturbed by some cause, such as a current flow,
and that pn ≠ n2

i results in a small region of the semiconductor. What
can disturb the equilibrium condition, pn = n2

i , with a small change
should be the deviation, Δn, of the minority carrier (electron) den-
sity n from the equilibrium value.1 If the electron density increases
and becomes Δn > 0, the excess electrons can recombine with holes—
the majority carriers—and disappear (§5.6). Such recombination pro-
cesses occur and try to bring the system back to equilibrium. The
leftward reaction in (5.3) is an example of a recombination process.
The approximate time that it takes for the excess carrier density Δn
to decrease appreciably is the time constant 𝜏n, called the electron
lifetime (§5.6.4).

1 This Δn is different from the net carrier density in (4.30) on p. 100. Δn here is the excess
electron density in (5.79) on p. 149. Δn = 0 in equilibrium.
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TABLE 5.1 Correspondence between Drift of Electrons Due to Electric Field and
Drift of Gas Due to Gravity

 Conduction electrons Atmospheric gas

External field Electric field ℰ Acceleration of gravity g
Force acting on particles F −qℰ −mg
Drift velocity |vdrift| 𝜇nℰ 𝜏gg
Transport coefficient Mobility 𝜇n Mean free time 𝜏g
Einstein’s relation Dn/𝜇n = kT/q Dg/𝜏g = kT/m

But recombination is not the only process triggered by Δn > 0.
Immediately after becoming Δn > 0, that small region may well be
negatively charged (i.e., breakdown of the charge neutrality condi-
tion). Then, holes will be attracted to the negatively charged region,
which eventually will neutralize the region. The phenomenon of
majority carriers gathering around and neutralizing opposite charges
is called dielectric relaxation, and the associated time constant, 𝜏drp,
is called the dielectric relaxation time (§5.8).

Now the question is the relation between the electron (or minor-
ity carrier) lifetime 𝜏n and the dielectric relaxation time 𝜏drp. What
actually happens depends on which time constant is shorter. If 𝜏n ≪
𝜏drp, then the excess electrons disappear by recombination before the
dielectric relaxation occurs. But at the same time, an equal number of
holes disappear (Δp = −Δn, where Δp is the excess hole density), so
this region is still negatively charged (the charge conservation law).
Then, holes are supplied from the surroundings to compensate for the
recombined and vanished holes (dielectric relaxation). In this scenario,
if 𝜏n is sufficiently small, Δn goes to zero (Δn → 0) instantaneously,
and since the majority carrier density p is huge, we can safely assume
that |Δp| /p = 0 at all times. Therefore, pn = n2

i , too, continues to hold
all the time.

But in reality, it is known that 𝜏n ≫ 𝜏drp (see Table 5.2 on p.
122), and majority carriers spatially redistribute (i.e., dielectric relax-
ation) before recombination occurs. As a result, neutralization of the
charged region occurs very quickly, but the nonequilibrium condition
manifested by pn ≠ n2

i persists. Consequently, electrons and holes
become practically independent particles. Then, even if one of n and
p is known, the other is not.

If, however, the degree of deviation from the equilibrium state is
small (i.e., weak nonequilibrium), the electrons can be considered to
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TABLE 5.2 Time Constants Related to Carriers in Silicon [31]

Name Symbol Typical value Page

Mean free time 𝜏e, 𝜏h 10−13 ∼ 10−12 s 135
Minority carrier lifetime 𝜏n, 𝜏p 10−9 ∼ 10−4 s 149
Dielectric relaxation time 𝜏drn, 𝜏drp 10−12 s 155

FIGURE 5.3 Directions of movement of electrons and holes with respect to
quasi-Fermi level gradients.

be locally close to equilibrium by themselves, without involvement of
holes via (5.3) through (5.5). Similarly, we may consider holes to be
locally close to equilibrium by themselves. Being close to equilibrium,
we can expect the functional form of the carrier density equation to
remain the same as in the equilibrium case (§5.2.3). Now we need sep-
arate quasi-electrochemical potentials for electrons and holes, accord-
ing to (xi) on p. 108. So we introduce electron quasi-Fermi level 𝜁n and
hole quasi-Fermi level 𝜁p at each location in the semiconductor. The
quasi-Fermi levels, 𝜁n and 𝜁p, should be drawn in energy band dia-
grams for nonequilibrium semiconductors instead of the Fermi level
𝜁. Since holes flow from the smaller value of 𝜁p to the larger value of
𝜁p as shown in Fig. 5.3, the electrochemical potential for holes would
be −𝜁p (p. 119).

In equilibrium, the following equality holds.

𝜁n = 𝜁p = 𝜁. (Quasi Fermi levels in equilibrium) (5.6)

We will consider how the values of 𝜁n and 𝜁p are determined in
nonequilibrium states in §5.7.

The quasi-Fermi level is sometimes called the imref, coming from
“Fermi” spelled backward. William Shockley, the inventor of the
quasi-Fermi level, told Fermi that “quasi-Fermi level” was too long
and asked if there was a shorter alternative. Then Fermi suggested
“imref” [28].



Carrier Dynamics in Semiconductors ∎ 123

Quasi-Fermi levels have the dimensions of energy. But if one
wants to consider them in the dimensions of voltage or electrostatic
potential, we can use the quasi-Fermi potentials defined as follows:

𝜓n ≡ 𝜁n

−q + const. (Electron quasi Fermi potential) (5.7)

𝜓p ≡
𝜁p

−q + const. (Hole quasi Fermi potential) (5.8)

The constant terms in (5.7) and (5.8) may be determined as
appropriate for convenience.

5.2.3 Nonequilibrium Carrier Densities

The previous section suggested that, given the electron quasi-Fermi
level 𝜁n, the equations for the electron density are obtained by replac-
ing 𝜁 with 𝜁n in the equilibrium electron density equations (4.12) on
p. 94 and (4.27) on p. 99.

n = Nc exp (−Ec − 𝜁n

kT ) (Nc-referenced electron density) (5.9)

= ni exp (𝜁n − Ei

kT ) (ni-referenced electron density) (5.10)

Ec − 𝜁n in (5.9) and 𝜁n − Ei in (5.10) are “lengths” that can be read
from an energy band diagram. By reading either of these lengths from
an energy band diagram, we can tell the electron density. If any of
the relevant quantities depend on the position x as 𝜁n (x), Ec (x), and
Ei (x), we can also see the gradient of the electron density by following
Ec (x) − 𝜁n (x) or 𝜁n (x) − Ei (x) as a function of x.

Likewise, if the hole quasi-Fermi level 𝜁p is given, the equations for
the hole density are obtained by replacing 𝜁 with 𝜁p in the equilibrium
hole density equations (4.17) on p. 95 and (4.28) on p. 99.

p = Nv exp (−
𝜁p − Ev

kT ) (Nv-referenced hole density) (5.11)

= ni exp (
Ei − 𝜁p

kT ) (ni-referenced hole density) (5.12)
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𝜁p − Ev in (5.11) and Ei − 𝜁p in (5.12) are also “lengths” that can be
read from an energy band diagram. The hole density can be found by
reading either of these. x-dependent 𝜁p (x) − Ev (x) and Ei (x) − 𝜁p (x)
provide information about the gradient of hole density, too.

Example: Translating “Vertical Length” in Band Diagram into
Carrier Density

Let us check a numerical example of the relationship between the
“vertical lengths” on the energy band diagram and carrier densities
for silicon. The Fermi level 𝜁 of the nondegenerate semiconductor
falls within the range given by (4.18) on p. 96. The electron and
hole quasi-Fermi levels, 𝜁n and 𝜁p, can also be assumed to fall within
the same range. From the values of the effective densities of states in
Table 1.3 (p. 5), the majority carrier density of nondegenerate sili-
con is nN ≃ 1018 cm−3 when 𝜁 lies near the upper end of (4.18) (the
silicon is n-type), and pP ≃ 1018 cm−3 when 𝜁 lies near the lower
end of (4.18) (the silicon is p-type). Using the intrinsic carrier density
ni ≃ 1010 cm−3 in Table 1.3 and the pn product expression (4.19) on
p. 96, the corresponding minority carrier densities are pN ≃ 102 cm−3

and nP ≃ 102 cm−3, respectively. So if the Fermi level 𝜁 shifts by about
1 eV on a band diagram, which is a little smaller than the bandgap
energy Eg ≃ 1.1 eV, the electron and hole densities change by about 16
orders of magnitude. Even if we restrict the range of change of 𝜁 to
the n-type range ((4.47) on p. 103) or the p-type range ((4.52) on p.
104), the carrier densities change by eight orders of magnitude. ■

Now, multiplying (5.10) and (5.12) together gives

pn = n2
i exp (

𝜁n − 𝜁p

kT ) . (Non equilibrium pnproduct) (5.13)

This is the nonequilibrium pn product. The extent of splitting of elec-
tron and hole quasi-Fermi levels, ||𝜁n − 𝜁p||, can be interpreted as indi-
cating the degree of deviation from equilibrium (see Problem 5.1 on
p. 164). This can also be read from an energy band diagram.

Taking the square root of (5.13),

n′
i ≡ ni exp (

𝜁n − 𝜁p

2kT ) (Effective intrinsic carrier density) (5.14)

can be regarded as the effective intrinsic carrier density in nonequilib-
rium states. Depending on 𝜁n − 𝜁p ≷ 0, n′

i may be larger or smaller
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than the intrinsic carrier density ni, that is, n′
i ≷ ni. If n′

i > ni, then at
least one of the carrier densities, n and p (actually, almost always the
minority carrier density), is larger than at equilibrium, and vice versa
(the minority carrier density is smaller than at equilibrium) if n′

i < ni.
We will see specific examples where 𝜁n ≠ 𝜁p in Chapter 6 onward. As
will be explained in §5.6, the sign of 𝜁n − 𝜁p tells us whether carrier
generation or recombination is dominant.

The Fermi level 𝜁 has the property that the value of the Fermi–Dirac
distribution function (4.4) on p. 89 at E = 𝜁 is invariably f (𝜁) = 1/2,
but the quasi-Fermi levels 𝜁n and 𝜁p have no such property. Since (4.4)
is a monotonically decreasing function, if 𝜁n ≠ 𝜁p, then both f (𝜁n) and
f (𝜁p) cannot be equal to 1/2. In the first place, we cannot define the
Fermi level 𝜁 contained in (4.4) in nonequilibrium.

However, it is possible to consider the occupation probability in
nonequilibrium states, too. For example, since the exponential factor
of (4.12) for the electron density n on p. 93 represents the occupancy
of Nc states per unit volume in the conduction band, the exponential
factor of (5.9) on p. 123 can also be considered to represent the occu-
pancy of conduction band states at nonequilibrium. The exponential
factor in (5.11) on p. 123 can likewise be regarded as the occupancy
of valence band states at nonequilibrium. In other words, separate
distribution functions are required for the conduction band and the
valence band at nonequilibrium. If one prefers to avoid the use of
the effective densities of states, we can use the following distribution
functions, which have the same form as the Fermi–Dirac distribution
function, (4.4) (see Problem 5.2 on p. 164):

fc (E) = 1
1 + exp (E−𝜁n

kT
)

(E ≥ Ec) (5.15)

fv (E) = 1
1 + exp (E−𝜁p

kT
)

(E ≤ Ev) (5.16)

5.2.4 Logarithmic Transform of Carrier Densities

Solving the electron density expression (5.9) on p. 123 for 𝜁n yields

𝜁n = Ec − kT ln (Nc

n ) . (Electron quasi Fermi level) (5.17)
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By the discussion in §4.4.2 (p. 109), 𝜁n on the left-hand side corre-
sponds to the total chemical potential 𝜁tot in (4.59) on p. 111, and for
the right-hand side, the correspondence is as follows:

𝜁ext = Ec, 𝜁int = kT ln ( n
Nc

) . (5.18)

Similarly, solving (5.10) on p. 123 for 𝜁n, we obtain

𝜁n = Ei + kT ln ( n
ni

) . (Electron quasi Fermi level) (5.19)

In this case, external and internal chemical potentials are shifted by
a constant (≃ Eg/2, see §4.2.5) compared to (5.18) as follows:

𝜁ext = Ei, 𝜁int = kT ln ( n
ni

) . (5.20)

The quasi-Fermi level 𝜁n on the left-hand side of (5.17) and (5.19)
is a quantity that can be plotted on an energy band diagram. All the
quantities on the right-hand side other than the electron density n
can be regarded as constants (at a given position x). Therefore, (5.17)
and (5.19) can be regarded as logarithmic transforms of the electron
density. Put differently, (5.17) and (5.19) are “change of variables”
from n to 𝜁n (see the Box on p. 15). Since Nc > n in nondegenerate
semiconductors, (5.17) implies 𝜁n < Ec. Also, since n > ni in n-type
semiconductors and n < ni in p-type semiconductors, (5.19) implies
that 𝜁n > Ei in n-type and 𝜁n < Ei in p-type. The above discussion
is mostly a repetition of the discussion on p. 101, but the position of
𝜁n may be different from the position of the equilibrium Fermi level
𝜁. Equations (5.9) and (5.10) on p. 123 can be understood as expres-
sions for reading the electron density n from the relative position of
𝜁n (measured from Ec or Ei) in the energy band diagram.

Basically, the same is true for the hole density. Solving the hole
density expressions (5.11) and (5.12) for 𝜁p, we obtain

𝜁p = Ev + kT ln (Nv

p ) , (Hole quasi Fermi level) (5.21)

𝜁p = Ei − kT ln ( p
ni

) . (Hole quasi Fermi level) (5.22)

Equations (5.21) and (5.22) transform the hole density p into 𝜁p,
which can be plotted on an energy band diagram. As a result, by using
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(5.11) or (5.12), we can read the hole density p from the relative posi-
tion of 𝜁p (measured from Ev or Ei) on the energy band diagram. From
(5.22), we see that 𝜁p < Ei in p-type semiconductors and 𝜁p > Ei in
n-type semiconductors.

In Chapter 6 onward, we will see cases where 𝜁n > Ei (i.e., n > ni)
in p-type semiconductors and 𝜁p < Ei (i.e., p > ni) in n-type semicon-
ductors. In semiconductor devices, such situations can also be realized
by electrical means (p. 3).

Note that the change of variables from carrier density to quasi-
Fermi level is a logarithmic transform, which makes it easier to plot
carrier densities that may change by many orders of magnitude on
an energy band diagram. However, as a result, a small difference in
carrier density becomes difficult to discern.

THE JOY OF READING ENERGY BAND DIAGRAMS

Herbert Kroemer, who was awarded the Nobel Prize in Physics
in 2000 for his research on semiconductor heterostructures,
stated the following about energy band diagrams in his Lecture
[16].

Kroemer’s Lemma of Proven Ignorance If, in discussing a
semiconductor problem, you cannot draw an energy band
diagram, this shows that you don’t know what you are talk-
ing about, with the corollary: If you can draw one, but don’t,
your audience won’t know what you are talking about.The
“energy band diagram” here is the E-x diagram (see the Box
on p. 15). It seems very important that we draw energy band
diagrams!

It should, however, be noted that it is often quite difficult to
draw energy band diagrams including the quasi-Fermi levels
by hand. This is because determining the electrostatic potential
and quasi-Fermi levels of a device, which inevitably is spatially
nonuniform, generally requires numerical simulation (§5.7). We,
therefore, propose that the reader first try to develop the ability
to properly read energy band diagrams that are drawn using a
device simulator (also known as “TCAD,” see p. 154). Even if
you have an energy band diagram of a device, nicely drawn using
a simulator, it is useless unless you can read physics from it. We
hope that you will discover and experience the joy of reading
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energy band diagrams, especially TCAD-drawn ones, by going
through this book.

5.2.5 General Form of Nondegenerate Carrier Density Expressions

The expressions of electron density, both (5.9) and (5.10) on p. 123,
had the following form:

n = (reference density) × (exponential factor)

= (reference density) × exp [𝜁n − (reference energy)
kT ] . (5.23)

In (5.23), the “exponential factor” becomes 1 when

𝜁n = (reference energy) , (5.24)

which, in turn, makes

n = (reference density) . (5.25)

For example, in (5.9), Nc is the “reference density” and Ec is the
“reference energy.” In (5.10), ni is the “reference density” and Ei is
the “reference energy.”

A finer point here is that the above “reference energy” is not “a cer-
tain fixed value on the E-axis” but “a relative energy, usually within
the forbidden band, measured from Ec, Ev, or Ei.” The distinction is
irrelevant when Ec, Ev, and Ei do not depend on the position x, but
it becomes important when they are x-dependent (see Fig. 6.19 on p.
184, for example). If, for example, the “reference energy” is Ec, then
the “reference energy” really is Ec (x) at a given position x, even if there
is band bending. This is because carrier densities are determined by the
relative values of 𝜁n and 𝜁p in the energy gap, and not by their abso-
lute (as opposed to relative) values on the E-axis. Recall that usually
only relative values of Fermi level are considered for semiconductors
(p. 91).

In general, the electron density of nondegenerate semiconductors
can be variously expressed in the form of (5.23). “Reference den-
sity” and “reference energy” can be chosen for convenience. The
energy band diagram also turns out useful in selecting or reading the
“reference density” and “reference energy.”
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As an example, compare (5.9) and (5.10) on p. 123, or equivalently,
(4.12) on p. 94 and (4.27) on p. 99, with Fig. 4.5 (p. 102). Equations
(4.25) and (4.26), which appeared when we derived (4.27), are also
expressions for electron density under certain conditions in the form
of (5.23). To be more specific, in (4.25), Ei is substituted for 𝜁n, and
the “reference energy” is Ec. In (4.25) and (4.26), Nc and ni are related
to each other via the “vertical length” Ec−Ei in Fig. 4.5. By reading the
reference densities and the corresponding reference energy difference,
converting a carrier density expression into another is easy (with some
practice) (see Problem 5.3 on p. 164). This is the beauty and power
of the theory of nondegenerate semiconductors. Basically the same
derivation or manipulation of the carrier density is also done in §6.8
when deriving the current-voltage characteristics of the p-n junction
(p. 195).

Now, of course, a parallel argument applies to the hole density.
The hole density expression for nondegenerate semiconductors has
the following form:

p = (reference density) × exp [
(reference energy) − 𝜁p

kT ] . (5.26)

Equations (5.11) and (5.12) on p. 123 have the same form as (5.26).

5.3 QUASI-FERMI LEVELS AND CURRENT DENSITY

5.3.1 Carrier Flux Density and Current Density

The current that flows due to the movement of carriers is called the
conduction current. Another type of current that can flow in semicon-
ductors is the displacement current. The current that flows through
an insulator between the electrodes of a capacitor is usually the dis-
placement current.2 In this book, the term “current” refers to the
conduction current unless otherwise stated.

To prepare for finding the conduction current density, let us con-
sider the carrier flux density, which is the number of particles passing

2 Another possible current that might flow through a very thin insulator is the tunnel current
(p. 174). Of course, a breakdown current may flow even if the insulator is not so thin when one
applies a very large voltage.
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FIGURE 5.4 Carrier flux density equals the number of carriers crossing a
unit area per unit time.

through a unit cross-sectional area (perpendicularly to the area) per
unit time (Fig. 5.4).

If an ensemble of electrons with number density n is moving collec-
tively with velocity vn in the x direction, then the electron flux density
Φn is given by

Φn ≡ nvn. (Electron flux density) (5.27)

Similarly, the hole flux density Φp is given by

Φp ≡ pvp, (Hole flux density) (5.28)

where p is the hole density, and vp is the hole velocity.
The current density Jn due to electron conduction can be written

using the electron flux density Φn as follows:

Jn = −qΦn, (Electron current density in terms of flux density)
(5.29)

where −q is the electron charge. Electron current flows in the opposite
direction to the flux density. Likewise, the hole current density can be
written as

Jp = qΦp, (Hole current density in terms of flux density) (5.30)

where q is the hole charge. Hole current flows in the same direction
as the flux density. Equations (5.29) and (5.30) are highly general
expressions that can be used regardless of the mechanism of carrier
flux generation.
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5.3.2 Quasi-Fermi Level Gradient and Current Density

Recalling the meaning of the quasi-Fermi level suggested by (5.2) on
p. 118 and Fig. 5.3 on p. 122, we can infer that, if the gradient of
the quasi-Fermi level is not too steep, the following proportionality
relations should hold for the current density and the flux density:

Φn ∝ n × (−d𝜁n

dx
) , (5.31)

Φp ∝ p × [−
d (−𝜁p)

dx
] . (5.32)

The proportionality comes from the fact that an I-V curve that goes
through the origin can be approximated by a straight line around the
origin (§2.2.1). Note that (−𝜁p) in (5.32) is the electrochemical poten-
tial for holes (p. 123). Let us introduce proportionality coefficients,
𝜇n and 𝜇p, to express the current densities (5.29) and (5.30) using the
right-hand sides of (5.31) and (5.32), respectively.

Jn = 𝜇nn
d𝜁n

dx
, (5.33)

Jp = 𝜇pp
d𝜁p

dx
. (5.34)

𝜇n and 𝜇p are called the mobilities of electrons and holes, respec-
tively. Inserting the electron flux density (5.27) into the current density
expression (5.29) and comparing it with (5.33), we find the following
relationship for the electron velocity vn:

vn = −𝜇n

q
d𝜁n

dx
= 𝜇n

d𝜓n

dx
, (Velocity of ensemble of electrons)

(5.35)

where 𝜓n is the electron quasi-Fermi potential defined in (5.7) on p.
123. Likewise, from (5.28), (5.30), (5.34), and (5.8), we find

vp =
𝜇p

q
d𝜁p

dx
= −𝜇p

d𝜓p

dx
. (Velocity of ensemble of holes) (5.36)

From (5.35) and (5.36), it can be seen that mobility is a pro-
portionality coefficient that links velocity and a quantity having the
dimensions of the electric field.
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With regard to (5.33) and (5.34), there are a few more important
things worth pointing out. First, the existence (or not) and the direc-
tion of the electron current can be read from the gradient of 𝜁n in an
energy band diagram. Also from the gradient of 𝜁p, the existence (or
not) and the direction of the hole current can be read. These were actu-
ally already shown in Fig. 5.3 (p. 122). Equations (5.33) and (5.34)
are the reasons why carriers may move in the opposite direction to
the electrostatic force, which was mentioned on p. 15. If the “gradi-
ent of 𝜁n” and the “gradient of Ec” have unlike signs, then electrons
may move in the opposite direction from the electrostatic force (see
the discussion on p. 119). In addition, the magnitude of current den-
sity can also be read from the energy band diagram. This is because
the current density is given by the product of the carrier density and
the quasi-Fermi level gradient as in (5.33) and (5.34), both of which
can be read off from the energy band diagram. The current density
is determined mainly by the carrier density. The reason is that d𝜁n/dx
and d𝜁p/dx do not change that much in magnitude (as long as the
slopes are clearly visible on a band diagram), whereas n and p can
change by orders of magnitude (see the Example on p. 124).

5.3.3 Drift and Diffusion of Carriers

Let us look further at the gradients of the quasi-Fermi levels in (5.33)
and (5.34). First, differentiate the quasi-Fermi level expression (5.17)
on p. 125 by x and insert the result into (5.33) (see Problem 5.4 on p.
164).

Jn = 𝜇nn (dEc

dx
+ kT d

dx
lnn) = 𝜇nn (dEc

dx
+ kT

n
dn
dx

)

= 𝜇nn
dEc

dx
+ 𝜇nkT

dn
dx

. (Electron current density) (5.37)

In the above, we used the fact that Nc does not depend on x, assum-
ing that we are dealing with a single semiconductor material. The first
term of (5.37) comes from the gradient of the conduction band bottom
Ec, and is called the drift term. Using (1.5) on p. 15,

dEc

dx
= d

dx
(−q𝜓) = qℰ, (5.38)

and therefore the drift term arises from the electrostatic field ℰ. We
will consider the drift term again in §5.4. The second term of (5.37)
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is proportional to the gradient of the electron density n and is called
the diffusion term. We will consider it further in §5.5.

Let us take a look at the hole current density. Differentiating the
hole quasi-Fermi level (5.21) on p. 126 by x and inserting the result
into (5.34), we obtain

Jp = 𝜇pp (dEv

dx
+ kT d

dx
lnp) = 𝜇pp (dEv

dx
− kT

p
dp
dx

)

= 𝜇pp
dEv

dx
− 𝜇pkT

dp
dx

. (Hole current density) (5.39)

The first term of (5.39) is the drift term, and the second term is the
diffusion term. From (1.6) on p. 15,

dEv

dx
= d

dx
(−q𝜓) = qℰ. (5.40)

Considering also (4.23) on p. 98, the electrostatic field can be read
from the gradient of Ec, Ev, or Ei in an energy band diagram. Compar-
ison of (5.37) and (5.39) shows that the signs of the diffusion terms
are different (§5.5). This is because electrons and holes have opposite
polarities. The carrier density gradient, which determines the sign of
the diffusion term, can also be read from an energy band diagram (p.
123).

5.4 ELECTRIC CONDUCTION DUE TO ELECTRIC FIELD

This section describes the theory of electrical conduction based on
the kinetic theory of gases. This theory was originally developed to
explain electrical conduction in metals, but it is also applicable to
semiconductors.

5.4.1 Drift of Carriers

As before, we consider a nondegenerate semiconductor and regard
conduction electrons as an ideal gas (p. 92). Electrons are charged
and should repel each other, but since there are usually cations (donor
ions) around, and also the electron density of nondegenerate semi-
conductor is not that high, we will ignore the Coulomb interaction
between electrons. Under these assumptions, we consider that elec-
trons are in thermal motion, repeatedly colliding with the atoms and
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ions that constitute the crystal. In silicon, the thermal velocityvth, at
which individual electrons move about, is about 107 cm/s [31].

Let us consider the equation of motion for the i-th electron among
many electrons in the presence of an external electric field ℰ. The force
acting on the electron between its collision with an atom and the next
collision with another atom can be considered to be only the electric
force due to ℰ. The equation of motion is given by

me
dvi
dt

= −qℰ, (Equation of motion in the absence of collisions)

(5.41)

where me is the effective mass of the electron (p. 80), vi is the velocity
of the i-th electron, and −q is the electron charge. Let us assume for
simplicity that the external field is uniform and does not depend on
the position.

If there are N electrons, the statistical mean of the velocities of
individual electrons is given by

⟨v⟩ = 1
N

N

∑
i=1

vi. (Average velocity of electrons) (5.42)

The electron velocity vn in (5.27) on p. 130 was actually this aver-
age electron velocity, although no assumption was made there about
the cause of the collective movement of electrons.

The effect of ℰ on individual electrons is described by (5.41), but
simply replacing vi by ⟨v⟩ would not give the correct equation of
motion describing the time development of ⟨v⟩ because then elec-
trons would be accelerated indefinitely. In reality, collisions between
electrons and atoms are taking place all the time, so we need to incor-
porate the effect of these collisions into the equation of motion. It is
not easy to consider the collision or scattering of individual electrons,
but from a macroscopic point of view, the scattering of electrons by
atoms can be thought of as a kind of friction acting on collectively
flowing electrons. The higher the average electron velocity, the higher
the frequency of scattering and hence the stronger the friction, so let
us assume that the friction force proportional to ⟨v⟩ acts in the oppo-
site direction to ⟨v⟩. Then, the average momentum, me⟨v⟩, of electrons
is governed by the following equation of motion:

me
d⟨v⟩
dt

= −qℰ − me⟨v⟩
𝜏e

, (Equation of collective motion) (5.43)
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where 𝜏e is the mean free time between collisions for electrons, mean-
ing that each electron is scattered, on average, every 𝜏e and its momen-
tum is initialized randomly. 1/𝜏e is the average frequency of scattering.
The distance, le, an electron travels during mean free time is called the
mean free path.

le = vth𝜏e. (Electron mean free path) (5.44)

Solving the differential equation (5.43) with the initial condition
⟨v⟩ = 0 at time t = 0 yields (see Problem 5.5 on p. 164)

⟨v⟩ (t) = −qℰ𝜏e

me
(1 − e−t/𝜏e) . (5.45)

In (5.45), 𝜏e is the time constant of the exponential relaxation, so it
is sometimes called the “relaxation time.” But this kind of relaxation
phenomenon can be seen in many other situations, too. To avoid con-
fusion with the dielectric relaxation time (§5.2.2, §5.8) we refer to 𝜏e
as the mean free time [27]. From (5.45), the terminal velocity is given
by

⟨v⟩ (∞) = lim
t→∞

⟨v⟩ (t) = −q𝜏e

me
ℰ. (5.46)

Equation (5.46) has a minus sign because the direction of motion
of electrons is opposite to the direction of the electric field ℰ due to
the negative charge of electrons. The right-hand side of (5.46) actu-
ally does not depend on the initial condition. It can also be obtained
by simply assuming that the time derivative on the left-hand side of
(5.43) equals 0.

The phenomenon in which gas particles flow collectively due to
force exerted by an external field is called drift. The left-hand side of
(5.46) is the “average velocity,” but the right-hand side was derived
under the condition that electrons drifted due to an external force, so
we call this velocity the electron drift velocity and rewrite it as vn,drift:

vn,drift = −q𝜏e

me
ℰ = −𝜇nℰ, (Electron drift velocity) (5.47)

where the proportionality coefficient

𝜇n = q𝜏e

me
, (Electron mobility) (5.48)
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introduced in (5.47), is the electron mobility that appeared earlier in
(5.35) on p. 131. Mobility expresses how easily carriers respond to
an electric field. The longer the mean free time 𝜏e, the fewer scattering
events there are, so electrons can move more easily. That is why 𝜇n
is proportional to 𝜏e. The smaller the electron effective mass me, the
lighter and more mobile conduction electrons are. That is why 𝜇n is
inversely proportional to me.

A parallel development applies to holes. Since holes are positively
charged, they drift in the same direction as that of the electric field ℰ.
The drift velocity of holes is given by

vp,drift = q𝜏h

mh
ℰ = 𝜇pℰ, (Hole drift velocity) (5.49)

where the proportionality coefficient

𝜇p = q𝜏h

mh
(Hole mobility) (5.50)

is the hole mobility that appeared in (5.36). 𝜏h is the mean free time
for holes, and mh is the hole effective mass.

The mean free time of carriers in metals and semiconductors is very
short, for example, 10−13 ∼ 10−12 s for silicon (see Table 5.2 on p.
122). This means that when an external electric field is applied, the
average carrier velocity quickly reaches the drift velocity.

Incidentally, Table 1.3 (p. 159) shows that 𝜇n > 𝜇p for both silicon
(Si) and gallium arsenide (GaAs). In general, the mobility of electrons
is larger than that of holes. This is because the electron effective mass
me is generally smaller than the hole effective mass mh.

INTUITIVE PICTURES OF MOTION OF HOLES

Consider a piece of semiconductor subjected to an external elec-
tric field ℰ as shown in Fig. 1.8 (p. 14). The motion of holes
in semiconductors is often explained as shown in the cartoon
of Fig. 5.5(a). The valence band is almost completely filled with
electrons, but there are some vacancies (or holes) here and there.
One such hole is shown in Fig. 5.5(a). Then, the electron to the
left of the hole moves to the right, and as a result, the hole moves
to the left. If processes like this occur repeatedly, the hole will
move more and more to the left. Since this is analogous to the
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motion of a bubble in a liquid, let us call it the “bubble model”
of hole conduction.

FIGURE 5.5 Two models of hole conduction.

Actually, the bubble model has a serious flaw. In spite of the
presence of the external field ℰ, almost all electrons stay still, in
contradiction to the discussion in §5.4. At least, it seems neces-
sary to explain why the electrons do not drift despite the electric
force due to ℰ.

Next, let us look at the “punch hole model” shown in Fig.
5.5(b). In this model, a hole is considered to be like a hole
punched in a piece of paper. Then, as you move the piece of
paper to the left, the hole also moves leftward. In this model, all
electrons drift as they should, but an obvious flaw is that they
drift in the wrong direction, in the same direction as the electric
field. Since electrons are negatively charged, they ought to move
in the opposite direction from ℰ. Now what can we do?
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INTUITIVE PICTURES OF MOTION OF HOLES (CONT.)

Recalling Fig. 3.21 (p. 80) and (3.77) for the effective mass, the
electrons around the hole (i.e., electrons in the valence band)
have negative effective mass. The effective mass being negative
(me < 0) in the equation of motion mea = F means that the
acceleration a is in the opposite direction to the exerted force
F = −qℰ. That is, electrons in the valence band are subjected to
a force (−qℰ) in the opposite direction to the electric field ℰ, and
nevertheless, accelerated in the same direction as ℰ! Thus, from
the viewpoint of carrier drift, the punch hole model is superior.

Just to be clear, the punch hole model, improved with nega-
tive effective mass, is yet another poor man’s analogy. It fails to
explain some other things (see Problem 5.6 on p. 164). Actually,
the two models share the same traits: they are flat-out inconsis-
tent with the accepted theoretical description of holes. Interested
readers are encouraged to study solid-state physics [3, 14] and
see for themselves what the theory has to say about the motion
of holes [14]. Can you picture it in words or drawings?

5.4.2 Relationship between Mobility and Conductivity

The conduction current that flows due to the drift of carriers is called
drift current, and the corresponding current density is called drift cur-
rent density. The drift terms of (5.37) and (5.39) on p. 133 give the
drift current densities. The electron drift current density can be written
as

Jn,drift = qn𝜇nℰ = 𝜎nℰ, (Electron drift current density) (5.51)

where the proportionality coefficient

𝜎n ≡ qn𝜇n (Conductivity due to electron conduction) (5.52)

is the conductivity associated with the conduction of electrons. Its
inverse, 𝜌n = 1/𝜎n, is the resistivity.

The hole drift current density is given by the first term of (5.39) on
p. 133 and can be written as

Jp,drift = qp𝜇pℰ = 𝜎pℰ, (Hole drift current density) (5.53)
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where the proportionality coefficient

𝜎p ≡ qp𝜇p (Conductivity due to hole conduction) (5.54)

is the conductivity associated with the conduction of holes. Its inverse,
𝜌p = 1/𝜎p, is the resistivity.

Naturally, both the electron drift current (5.51) and the hole drift
current (5.53) flow in the same direction as the electric field ℰ. If
electrons and holes coexist, the total drift current density is given by

Jdrift = Jn,drift + Jp,drift. (Total drift current density) (5.55)

The associated conductivity, therefore, is given by

𝜎 ≡ 𝜎n + 𝜎p = q(n𝜇n + p𝜇p). (Conductivity) (5.56)

Since the resistivity is the inverse of conductivity,

𝜌 ≡ 1
𝜎 = 1

q (n𝜇n + p𝜇p)
= 1

𝜌−1
n + 𝜌−1

p
. (Resistivity) (5.57)

Note that both electrons and holes coexist in semiconductors, but
usually, the majority carrier density is orders of magnitude greater
than the minority carrier density due to (5.13) on p. 124. Therefore,
only one of the terms of the right-hand side of (5.55) is dominant.

5.5 ELECTRIC CONDUCTION DUE TO CARRIER DIFFUSION

External forces are not the only mechanism by which gas particles
flow. When the density of gas particles is not spatially uniform, they
diffuse to eliminate the density gradient (see (vi) and (viii) on p. 107).
Diffusion is a phenomenon that occurs spontaneously even when
there is no force acting on the particles.

LIMITATIONS OF THE MOBILITY-BASED
DESCRIPTION OF CARRIER VELOCITY

You might be under the impression that the proportionality
relation between drift velocity and electric field as in (5.47)
and (5.49) on p. 135 (i.e., equations for a straight line pass-
ing through the origin of the ℰ-v plane) is “correct” because
it is derived from the differential equation (5.43). But (5.43) is
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derived by assuming that the friction force is proportional to ⟨v⟩
and that 𝜏e is constant, and we do not know (or this book does
not discuss) whether or to what extent these assumptions are
correct. As a matter of fact, it is known that the proportionality
relations (5.47) and (5.49) hold when the electric field is suffi-
ciently weak, but do not hold when the field becomes intense (p.
261).

We already saw similar cases in Chapter 2. For example, R
in (2.1) on p. 29 represents the resistance of a linear resistor,
but as mentioned in §2.2.1, “resistance” has only a qualitative
meaning in nonlinear resistors, and for quantitative discussions,
incremental resistance and/or chord resistance have to be used.
This implies that if we want to discuss carrier velocity using a
quantity with the dimensions of mobility when (5.47) and (5.49)
do not hold, we have to consider “incremental mobility” and
“chord mobility.” Alternatively, we can forget about mobility
and use a nonlinear function vdrift = vdrift (ℰ), just as we consid-
ered a nonlinear function V (I) in §2.2.1. The same can be said
for conductivity and resistivity.

In this book, we assume that (5.47) and (5.49) hold unless
otherwise stated. A response of a system as in (5.47) and (5.49),
proportional to the exerted external force, is called a linear
response. Most systems respond linearly as long as the exerted
force is weak. The mobilities that appear in (5.48) and (5.50)
are also called low-field mobilities.

5.5.1 Diffusion Current

A mathematical description of particle diffusion is known as Fick’s
law. Let us consider again electrons as a gas and neglect interaction
between electrons. The electron flux density, Φn, due to diffusion is
expressed by using a proportionality factor Dn as follows:

Φn = −Dn
dn
dx

, (Fick’s law for electrons) (5.58)

where Dn (> 0) is called the diffusion coefficient for electrons. The
minus sign in (5.58) indicates that the electrons diffuse in the direction
opposite to the increase in electron density. According to the cur-
rent density equation (5.29) on p. 130, the electron diffusion current
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density is given by

Jn,diff = −qΦn = qDn
dn
dx

. (Electron diffusion current density) (5.59)

The electron diffusion current flows in the direction of increasing
electron density.

The diffusion coefficient Dp is likewise defined for holes, and Fick’s
law can be written as follows:

Φp = −Dp
dp
dx

. (Fick’s law for holes) (5.60)

Using (5.30) on p. 130, the hole diffusion current density is given
by

Jp,diff = qΦp = −qDp
dp
dx

. (Hole diffusion current density) (5.61)

The hole diffusion current flows in the direction of decreasing hole
density.

5.5.2 Einstein’s Relation

The diffusion term of the electron current density expression (5.37) on
p. 132 is the electron diffusion current density, given also by (5.59).
Equating the two expressions for the diffusion current density, we
find the following relationship between the mobility and the diffusion
coefficient.

Dn

𝜇n
= kT

q . (Einstein’s relation for electrons) (5.62)

This is known as Einstein’s relation. If the mobility is known
from measurement, for example, the diffusion coefficient can be
determined, and vice versa.

Similarly, the diffusion term of the hole current density expression
(5.39) on p. 133 is the hole diffusion current density, also given by
(5.61). Einstein’s relation for holes is given by

Dp

𝜇p
= kT

q . (Einstein’s relation for holes) (5.63)

Note that (5.62) and (5.63) hold for nondegenerate semiconductors
but not as-is for degenerate semiconductors, as can be seen by going
through the derivation.
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Now, what is the physical significance of Einstein’s relation? Mobil-
ity is a coefficient that expresses how carriers respond to an electric
field. The diffusion coefficient, on the other hand, describes a sponta-
neous phenomenon that eliminates carrier density gradient. Einstein’s
relation shows that these different physical phenomena are related
to each other. Both processes involve interactions between carriers
and the crystal lattice, and it is natural that they are related. Ein-
stein’s relation is an example of a more general result known as the
fluctuation-dissipation theorem in statistical mechanics.

EINSTEIN’S RELATION FOR THE ATMOSPHERE NEAR
EARTH’S SURFACE

Is Einstein’s relation only for charged particles such as electrons
and holes? Gravity is a force that also acts on neutral gas par-
ticles and is quite similar to the electrostatic force acting on
electrons. We can expect a relationship similar to (5.62) and
(5.63) on p. 141, to exist between the diffusion coefficient for
gas particles and the proportionality coefficient corresponding
to mobility.

Although Earth’s gravity depends on the altitude, for simplic-
ity, let us use the acceleration of gravity g near the surface, as
shown in Fig. 4.12 (p. 112). A dimensional analysis shows that
the coefficient of proportionality (also known as transport coef-
ficient) linking the drift velocity, vdrift, of gas particles and the
external field g has a dimension of time. Let this time constant
be 𝜏g, that is, vdrift = 𝜏gg. Recalling the discussion in §5.4.1,
it seems reasonable to consider 𝜏g as the mean free time of the
atmospheric gas, given that 𝜇n ∝ 𝜏e in the mobility expression
(5.48) on p. 135. However, the collisions here must be against
surrounding gas particles.

Although we skip the derivation, the density of atmospheric
gases at the surface can also be written in the same form as
(5.23) on p. 128 [15]. Also using the external chemical poten-
tial (4.60) on p. 113, the total chemical potential is given by a
similar expression to the electron quasi-Fermi level expression
(5.19) on p. 126:

𝜁tot = mgh + kT ln (
ng

Ng
) , (5.64)
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where ng is the gas density, and Ng is the reference density
(§5.2.5).

Einstein’s relation for electrons and holes states that the ratio
of the diffusion coefficient to the mobility, which represents
a linear response to an external field, is a constant. A similar
derivation for the surface atmosphere yields Dg/𝜏g = kT/m. This
is Einstein’s relation for the atmosphere near the Earth’s surface.
The results are summarized in Table 5.1 on p. 121. 

5.6 CARRIER GENERATION AND RECOMBINATION

The electron density n and hole density p can change at a certain
location in a semiconductor without carrier transfer (i.e., conduction
current). The process of the creation of electrons and holes is called
carrier generation or simply generation. The reverse process, namely
the annihilation of electrons and holes is called carrier recombination
or simply recombination. For example, all electrons and holes in an
intrinsic semiconductor exist as a result of pairwise generation of elec-
trons and holes (see Fig. 1.7 on p. 13). Note that the conservation of
charge always holds even when carriers are created or annihilated. No
electron or hole is created or annihilated without the accompanying
creation or annihilation of an opposite charge. Energy and momen-
tum are also conserved before and after generation or recombination.
The conservation of energy and momentum are also relevant to light
emission and reception by semiconductors, although these are not
discussed in this book.

5.6.1 Direct Generation and Recombination

As shown in Fig. 5.6(a) (p. 144), the process in which an electron-
hole pair is formed by the direct transition of an electron in the valence
band to the conduction band is called direct generation. The process in
which an electron-hole pair is annihilated by a direct transition of an
electron in the conduction band to the valence band, as shown in Fig.
5.6(b), is called direct recombination. These processes are collectively
called direct generation-recombination.

The direct generation-recombination was written in the form of a
chemical reaction formula in (5.3) on p. 119 (reproduced below).

(covalent bond) ⇌ (electron) + (hole) (Direct generation-recombination)
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FIGURE 5.6 (a) Direct generation. (b) Direct recombination. A black-filled
circle (●) represents the electron, and an open circle (○) represents the hole.
The states before the transition occurs are shown.

The energy difference between the two sides of this chemical reac-
tion formula is given by the energy gap Eg. At room temperature
T = 300 K, the thermal energy kT is 26 meV (see Problem 1.3 on
p. 26). For silicon, Eg ≃ 1.1 eV (see Table 1.3 on p. 5), and is
much greater than the thermal energy. Therefore, direct generation-
recombination is unlikely to occur very much at room temperature.
The dominant generation-recombination process in silicon is indirect
generation-recombination, which will be explained in §5.6.2.

5.6.2 Indirect Generation and Recombination

Often, there are what are called generation-recombination centers in
the forbidden band that mediate generation-recombination, as shown
in Fig. 5.7. They are also known as carrier traps or more simply
as traps. Physically, these are impurities or crystal defects. Carrier
generation and recombination mediated by traps are called indirect
generation-recombination or Shockley–Read–Hall processes. Indirect
generation-recombination is much more likely to occur than direct
generation-recombination. At times, traps are deliberately introduced
to semiconductors to control device characteristics (more specifically,
minority carrier lifetime, p. 149).

Traps can be classified into acceptor-type traps and donor-type
traps. Acceptor-type traps can, just like acceptors, assume one of
the two states: neutral or negatively charged. Donor-type traps can,
just like donors, assume one of the two states: neutral or positively
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(a) (b) (c) (d) (e) (f) (g) (h)

+ +

Acceptor-type trap Donor-type trap

FIGURE 5.7 Eight elementary processes of indirect generation-
recombination. A square (◻) represents a trap. A black filled circle (●)
represents an electron. An open circle (○) represents a hole. The states before
the transition occurs are shown.

charged. Acceptor-type traps are usually located around the middle
of the forbidden band or above. Donor-type traps are usually located
around the middle of the forbidden band or below. In this connection,
an acceptor can be understood as an “acceptor-type trap” located
just above the valence band top, Ev (see Fig. 1.18 on p. 22). Simi-
larly, a donor can be understood as a “donor-type trap” located just
below the conduction band bottom, Ec (see Fig. 1.13 on p. 20). Since
charged traps are spatially fixed charges, they appear in the equation
of the charge neutrality condition and the charge term of the Poisson
equation (p. 153). There are eight elementary processes of indirect
generation-recombination, as shown in Fig. 5.7. Fig. 5.7(a) to (d) are
the elementary processes involving an acceptor-type trap, and Fig.
5.7(e) to (h) are the elementary processes involving a donor-type trap.

(a) A negatively charged acceptor-type trap emits an electron into the
conduction band and becomes neutral.

(b) A neutral acceptor-type trap emits a hole into the valence band
and becomes negatively charged.

(c) A negatively charged acceptor-type trap captures a hole from the
valence band and becomes neutral.

(d) A neutral acceptor-type trap captures an electron from the con-
duction band and becomes negatively charged.

(e) A neutral donor-type trap emits an electron into the conduction
band and becomes positively charged.
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(f) A positively charged donor-type trap emits a hole into the valence
band and becomes neutral.

(g) A neutral donor-type trap captures a hole from the valence band
and becomes positively charged.

(h) A positively charged donor-type trap captures an electron from
the conduction band and becomes neutral.

These can be expressed in chemical reaction formulas as follows:

(neutral acceptor-type trap) + (electron)
(d)
⇌
(a)

(negative acceptor-type trap),

(5.65)

(neutral acceptor-type trap)
(b)
⇌
(c)

(negative acceptor-type trap) + (hole),

(5.66)

(neutral donor-type trap)
(e)
⇌
(h)

(positive donor-type trap) + (electron),

(5.67)

(neutral donor-type trap) + (hole)
(g)
⇌
(f)

(positive donor-type trap).

(5.68)

Generation of an electron-hole pair can occur via the following
combinations of the elementary processes.

(a) → (b) or (b) → (a) (5.69)

(e) → (f) or (f) → (e) (5.70)

Annihilation of an electron-hole pair or equivalently, electron-
hole recombination, can occur via the following combinations of the
elementary processes.

(c) → (d) or (d) → (c) (5.71)
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(g) → (h) or (h) → (g) (5.72)

Note that in all cases the total amount of charge is conserved. In
order for charge conservation to hold, it is essential to consider the
charge of the traps, too. The following processes, known as electron
trapping and detrapping can also occur via traps.

(d) → (a) → (d) → (a) → ⋯ (5.73)

(h) → (e) → (h) → (e) → ⋯ (5.74)

One might think that a trap that has captured an electron would
become negatively charged, but that is not necessarily the case. A
donor-type trap captures an electron and becomes neutral, as shown in
Fig. 5.7(h). Likewise, the following are hole trapping and detrapping
processes.

(c) → (b) → (c) → (b) → ⋯ (5.75)

(g) → (f) → (g) → (f) → ⋯ (5.76)

Only donor-type traps become positively charged by capturing a
hole (Fig. 5.7(g)). Acceptor-type traps become neutral when they cap-
ture a hole (Fig. 5.7(c)). In general, whether a trap is positively or
negatively charged on average is determined solely by the trap type
(donor-type or acceptor-type). In Fig. 5.7, the trap levels are located
at the midgap. The amount of energy change before and after any
transition involving a trap depends on where the trap level is actu-
ally located in the forbidden band. What is more likely to happen
(generation-recombination or trapping-detrapping) also depends on
the location of the trap level. If the trap level is located near the
midgap, carrier generation-recombination is more likely to occur.
Conversely, if the trap level is located near an edge of the forbidden
band, Ec or Ev, trapping-detrapping is more likely to occur. The chem-
ical reaction formula (5.5) for donors on p. 120 corresponds to the
electron trapping-detrapping, (5.74). The reason why donors are not
involved in generation-recombination so much is that the donor level
is located near the bottom of the conduction band Ec. In the case of
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donors, as long as the donor density is low and the Fermi level is
not too close to Ec, the rightward reaction in (5.5) is dominant, and
the ionization rate is high. Similarly, the chemical reaction formula
(5.4) involving acceptors corresponds to the hole trapping-detrapping,
(5.75). Apart from the location of the trap level within the energy
gap, the presence or absence of a Coulomb interaction between the
trap and carriers deserves attention. For example, both Figs. 5.7(d)
and (h) are processes in which an electron in the conduction band is
captured. But in Fig. 5.7(h), a positively charged donor-type trap cap-
tures an electron, and thus a Coulomb attraction between the positive
and negative charges takes place. In contrast, in Fig. 5.7(d), there is
no Coulomb interaction because a neutral acceptor-type trap captures
an electron. In the case of Fig. 5.7(h), there is a Coulomb interaction
between the positively charged trap and nearby electrons, even if none
of them are captured. That is, electrons undergo Coulomb scattering
(see Problem 5.7 on p. 164). A parallel argument applies to holes.

5.6.3 Carrier Generation-Recombination Rates

Suppose that gn electrons are generated per unit time in a unit volume,
directly or indirectly. Then gn is called the electron generation rate.
Similarly, suppose that rn electrons are annihilated per unit time in a
unit volume by recombination. Then rn is called the electron recom-
bination rate or annihilation rate. The generation and recombination
of electrons always occur simultaneously, albeit not necessarily at the
same rate. The net generation-recombination rate of electrons is given
by

Un ≡ gn − rn. (Net electron generation-recombination rate)
(5.77)

Un can be positive or negative. If Un > 0, net electron generation is
taking place, and if Un < 0, net electron annihilation is taking place. In
equilibrium, generation and recombination are balanced and Un = 0.
Note, however, that the two terms of (5.77) individually satisfy gn > 0
and rn > 0. Similarly for holes, we can consider the generation rate gp
and the recombination rate rp. The net generation-recombination rate
of holes is given by

Up ≡ gp − rp. (Net hole generation-recombination rate) (5.78)

Carrier generation and recombination usually occur as the gener-
ation and annihilation of electron-hole pairs (p. 146), in which case
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gn = gp and rn = rp. It is, however, also possible for electrons, for
example, to be generated without the generation of the same num-
ber of holes. For example, when an n-type semiconductor is formed
by adding donors to an intrinsic semiconductor, electrons are gener-
ated by the rightward process in (5.4) on p. 120. However, this only
occurs for a very short period of time. Processes like this do not usually
continue indefinitely. Steady generation and recombination of carriers
occur as the generation and annihilation of electron-hole pairs.

5.6.4 Minority Carrier Lifetime

In semiconductor devices, minority carriers often play an important
role. Using a p-type semiconductor as an example, let us consider how
electrons, which are minority carriers in this case, behave in connec-
tion with generation-recombination. Let pP and nP denote hole and
electron densities in a p-type semiconductor, respectively. Suppose
that the carrier densities, pP and nP, deviate from pP0 and nP0, which
are the carrier densities at equilibrium when there is no band bend-
ing. That is, pP0 is the equilibrium hole density in a uniform p-type
semiconductor, and nP0 is the corresponding electron density. Suppose
further that the deviation occurs uniformly in the entire p-type semi-
conductor. No current flows because of the uniformity. From (4.19)
on p. 96, pP0nP0 = n2

i , and since we are considering a p-type semi-
conductor, pP0 ≫ nP0. The nonequilibrium electron and hole densities
can be written as

nP = nP0 + Δn, (Electron density in nonequilibrium p-type)
(5.79)

pP = pP0 + Δp ≃ pP0, (Hole density in nonequilibrium p-type)
(5.80)

where Δn is the excess electron density and Δp is the excess hole den-
sity. Δn and Δp may assume positive and negative values. In order to
make it easier to write down equations, let us assume that Δn > 0.
The differential equation describing the time variation of the den-
sity of minority carriers (i.e., electrons) can be written using the net
generation-recombination rate Un, given by (5.77), as

dnP

dt
= dΔn

dt
= Un = gn − nP

𝜏n
, (5.81)
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where we used the fact that nP0 does not depend on time. The second
term of (5.81) is the electron recombination rate.

rn ≡ nP

𝜏n
. (Electron recombination rate) (5.82)

It represents the effect of trying to pull the electron density back to
its equilibrium value, nP0. This term is similar to the second term of
(5.43) on p. 134. The constant 𝜏n has the dimensions of time and is
called the electron lifetime. Since the time derivative of the left-hand
side of (5.81) equals zero at equilibrium, the right-hand side shows
that the equilibrium electron generation rate gn0 and the equilibrium
electron density nP0 satisfy the following relationship.

gn0 = rn0 ≡ nP0

𝜏n
. (Electron generation rate at equilibrium)

(5.83)

Let us return to a nonequilibrium state with Δn > 0. If the devi-
ation from the equilibrium state is not very significant, then we can
consider the following equation to hold.

gn ≃ gn0 = nP0

𝜏n
. (Electron generation rate) (5.84)

Inserting this into (5.81) and eliminating gn, we obtain

dΔn
dt

= Un = nP0 − nP

𝜏n
= −Δn

𝜏n
. (5.85)

This differential equation can be solved in the same way as (5.43)
on p. 134, and we see that the excess electron density Δn decreases
exponentially with the time constant 𝜏n toward 0. In the above, we
assumed that Δn > 0. If Δn < 0, the roles of generation and recombi-
nation are interchanged, and generation takes the role of pulling the
state back to equilibrium. Basically the same is true for holes in n-type
semiconductors. Let pN and nN, respectively, denote hole and electron
densities in the n-type semiconductor. The hole density can be written
as

pN = pN0 + Δp, (Hole density in nonequilibrium n-type) (5.86)

where pN0 is the equilibrium hole density in a uniform n-type semi-
conductor. The electron density can be written as

nN = nN0 + Δn ≃ nN0, (Electron density in nonequilibrium n-type)
(5.87)
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where nN0 is the equilibrium electron density in a uniform n-type semi-
conductor. The governing differential equation for the excess hole
density Δp is given by

dΔp
dt

= Up = pN0 − pN

𝜏p
= −Δp

𝜏p
. (5.88)

The lifetime, 𝜏p, of holes as minority carriers satisfies the following
relation:

gp ≃ gp0 = rp0 ≡ pN0

𝜏p
. (5.89)

To put it loosely, the minority carrier lifetime is the “waiting time”
before carriers move vertically in an energy band diagram, as shown
in Fig. 5.7 (p. 145). As noted on p. 120, generation and recombina-
tion try to pull the nonequilibrium state back to equilibrium. Whether
generation is dominant or recombination is dominant depends on
whether the effective intrinsic carrier density n′

i , given by (5.14) on
p. 124, is greater than the intrinsic carrier density ni (n′

i > ni) or
not (n′

i < ni). If n′
i > ni, the pn product, (5.13), is greater than the

equilibrium value n2
i , and therefore recombination becomes dominant

(Un < 0, Up < 0). Conversely, if n′
i < ni, generation becomes dominant

(Un > 0, Up > 0). n′
i ≷ ni corresponds to 𝜁n − 𝜁p ≷ 0. So whether gen-

eration is dominant (𝜁n < 𝜁p) or recombination is dominant (𝜁n > 𝜁p)
can be read from an energy band diagram, provided quasi-Fermi lev-
els are drawn. The minority carrier lifetime is highly dependent on
the quality of the crystal. The more crystal defects and impurities,
including dopants, there are, or to put it another way, the more traps
there are, the shorter the minority carrier lifetime. Typical values of
minority carrier lifetime in silicon are given in Table 5.2 on p. 122.

5.7 BASIC EQUATIONS FOR SEMICONDUCTOR DEVICES

In §5.6.4, we made the somewhat bizarre assumption that the minor-
ity carrier density uniformly deviates from the equilibrium value (Δn ≷
0 or Δp ≷ 0) throughout a given piece of semiconductor. In prac-
tice, the occurrence of excess minority carriers is usually localized to
a small region, and the localized excess minority carriers are accom-
panied by a current. In some cases, current flow leads to localized
excess minority carriers in a certain region, while in other cases, the
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excess minority carriers are generated first (due, for instance, to a high
electric field or light irradiation), and as a result, a current flows. The
differential equations that describe carrier generation-recombination
and electron and hole currents are the continuity equations for charge
and current. The continuity equations can be considered to be expres-
sions of charge conservation, taking into account both the conduction
current and the generation-recombination of carriers. Up to now, we
have not made the position- and time-dependence of physical quan-
tities such as carrier densities explicit; that is, we wrote the electron
density as n instead of n(x, t), for example. But in this section, we will
make the dependence on position x and time t explicit. The time varia-
tion of the electron density n(x, t) and the hole density p(x, t)at a point
in a semiconductor is described as follows:

𝜕n(x, t)
𝜕t = 1

q
𝜕Jn(x, t)

𝜕x + Un(x, t), (Continuity equation for electrons)

(5.90)

𝜕p(x, t)
𝜕t = −1

q
𝜕Jp(x, t)

𝜕x + Up(x, t). (Continuity equation for holes)

(5.91)

The first terms of (5.90) and (5.91) represent the increase or
decrease in carrier density due to conduction current, Jn(x, t) or Jp(x, t).
The signs of the first terms are different because electrons and holes
have opposite charges. The generation-recombination rates, Un(x, t)
and Up(x, t), are given by (5.85) and (5.88), respectively. The current
densities, Jn(x, t) and Jp(x, t), are given by (5.37) and (5.39) on p. 132,
respectively. By using (5.38) and (5.40), we can rewrite the expres-
sions for current densities using the electrostatic potential 𝜓(x, t) as
follows:

Jn(x, t) = −q𝜇n (x) n(x, t)𝜕𝜓(x, t)
𝜕x + 𝜇n (x) kT𝜕n(x, t)

𝜕x (5.92)

Jp(x, t) = −q𝜇p (x) p(x, t)𝜕𝜓(x, t)
𝜕x − 𝜇p (x) kT𝜕p(x, t)

𝜕x (5.93)

Since (5.92) and (5.93) involve 𝜓 (x), the Poisson equationmust also
be solved simultaneously to solve the continuity equations. The Pois-
son equation can be derived from Gauss’ law. The Poisson equation
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written as a differential equation for 𝜓 (x) is given by

d2𝜓(x, t)
dx2 = −

q [p(x, t) − n(x, t) + N+
D(x, t) − N−

A (x, t)] + 𝜌t(x, t)
𝜖 (x) ,

(5.94)

where 𝜖 (x) is the permittivity, and 𝜌t(x, t) is the trap charge density,
which may be positive or negative. Since the Poisson equation is an
equation for an electrostatic field, strictly speaking, it cannot be used
when the electromagnetic field changes with time. Magnetic fields are
not taken into consideration, either. To take these into account, one
must solve the Maxwell equations, which consist of several differen-
tial equations. Thus, both time-varying electromagnetic fields and cur-
rents are correctly taken into account. Actually, the Poisson equation
and the continuity equations are both subsets of Maxwell equations.
However, for many devices, it has been found that a good approxi-
mation is to neglect the magnetic field and use the Poisson equation to
find 𝜓 (x), including cases where voltages and currents vary with time.
The simultaneous partial differential equations consisting of the con-
tinuity equations, (5.90) and (5.91), and the Poisson equation (5.94)
are the basic equations for semiconductor devices when the magnetic
field can be neglected. These equations are also known as the Shock-
ley equations [22]. Let us assume for simplicity that the dopant and
trap ionization rates are independent of t and bias conditions. Then
the three unknowns of the Shockley equations are the electron den-
sity n(x, t), the hole density p(x, t), and the electrostatic potential 𝜓(x, t)
(see the box on p. 105). In the above, we considered only one spatial
dimension (x-axis) explicitly. But this does not mean that the y- and
z-axes do not exist. We implicitly assumed that the carrier densities
and the electrostatic potential do not change in the y- and z-directions.
Systems that are truly one- or two-dimensional have different density-
of-state functions [24] (p. 88) and must be treated quite differently. As
a reminder, the continuity equations (5.90) and (5.91) and the Poisson
equation (5.94) can be used for both nondegenerate and degenerate
semiconductors. However, the current density formulas (5.92) and
(5.93) can only be used for nondegenerate semiconductors that exhibit
a linear response (see the Box on p. 139). In order to correctly han-
dle nonlinear responses and degenerate semiconductors, the current
density equations need to be modified.
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DEVICE SIMULATOR

Device simulator or device simulation is also often referred to
as TCAD, which stands for technology computer-aided design.
“Technology” here refers specifically to technology related to
semiconductor devices or integrated circuit fabrication or man-
ufacturing.

Device simulators are indispensable tools for the design and
analysis of semiconductor devices. Of course, a good under-
standing of device physics is essential to do anything meaningful
with a device simulator.

Writing a one-dimensional device simulator program, which
assumes y- and z-directions are spatially uniform (p. 153), may
be relatively easy. Full-featured device simulators are commer-
cially available from specialized software vendors.

One of the authors (K.M.) once had a student write a device
simulator to analyze the low-temperature operation of semicon-
ductor devices. But calculations did not converge and we had
a hard time trying to fix it. It turned out to be due to a lack
of the number of significant digits in the calculation. Although
this problem can be alleviated somewhat by writing the program
carefully, the only fundamental fix is to increase the number of
significant digits used in the computation. However, it is not so
trivial to increase the number of significant digits beyond what
is offered by the typical computer hardware. Today’s number-
crunching processors typically offer 15 significant digits when
converted to the decimal number system. This is often insuffi-
cient for handling problems in electrical and electronic engineer-
ing (see the example on p. 124). The use of numbers with a larger
number of significant digits is possible by software but is much
much slower than processing by hardware.

If the time derivatives of (5.90) and (5.91) are set to 0, the equations
become steady-state equations, which are much simpler. However,
they are still simultaneous differential equations, and, in general, they
can be solved only numerically. A computer program that numerically
solves the Shockley equations is called a device simulator. It can, of
course, also be used to draw energy band diagrams.
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5.8 DIELECTRIC RELAXATION

As an example of applying the continuity equations from §5.7, we
consider in this section the response of majority carriers. When we dis-
cussed the diffusion of carriers that occurs due to the density gradient
of carriers in §5.5, we forgot that the carriers are charged particles,
except in the calculation of the current density. However, if carriers
are distributed spatially nonuniformly, an electric field should also be
generated (unless the nonuniform carrier charges are exactly neutral-
ized by ions or carriers of opposite polarity). Then, a drift current
should also flow due to the electric field. Since the drift terms of the
current density equations (5.92) and (5.93) are proportional to the
carrier density, the drift current that flows in this case should be dom-
inated by the majority carrier current. This drift current flows in the
direction of reducing the carrier density gradient and the potential
gradient due to the nonuniform carrier distribution, and thus the sys-
tem evolves toward the charge neutrality condition. This phenomenon
is called dielectric relaxation [29]. In dielectric relaxation, an elec-
tric force acts on carriers, so the relaxation process should proceed
faster than with purely spontaneous diffusion. The time constant of
dielectric relaxation is called the dielectric relaxation time ormajority-
carrier response time. In the case of n-type semiconductors, it is given
by

𝜏drn ≡ 𝜌n𝜖s = 𝜖s

𝜎n
, (Dielectric relaxation time in n-type) (5.95)

where 𝜖s is the permittivity of the given n-type semiconductor, and
𝜌n = 1/𝜎n is its resistivity (see (5.52) on p. 138). The higher the resis-
tivity, the harder it is for the current to flow, and thus the longer it
takes to relax into the final state.

Example: Derivation of Dielectric Relaxation Time

Let us derive (5.95). Suppose that in n-type silicon, the density of elec-
trons, which are the majority carriers, becomes locally excessive at a
certain position x (it is, admittedly, unnatural to consider this in one
spatial dimension (p. 153)). Assuming that only the excess electron
density, Δn (p. 153), breaks the charge neutrality condition, inserting
Δn into the Poisson equation (5.94) on p. 153 yields

d2𝜓
dx2 = −dℰ

dx
= qΔn

𝜖Si
, (Poisson equation) (5.96)
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where 𝜖Si is the permittivity of silicon. Neglecting the diffusion term
in the electron current density equation (5.92) and using the conduc-
tivity 𝜎n in (5.52) on p. 138, we obtain (see Problem 5.8 on p. 164)

Jn = −𝜎n
d𝜓
dx

. (Electron drift current density) (5.97)

Inserting this into the continuity equation (5.90) on p. 152 and
neglecting the generation-recombination term Un, we get

𝜕n
𝜕t = 𝜕Δn

𝜕t = −𝜎n

q
𝜕2𝜓
𝜕x2 = − Δn

𝜌n𝜖Si
, (Continuity equation) (5.98)

where we used (5.96). We saw differential equations of this form in
(5.43) on p. 134 and (5.85) on p. 150. From the above, the time con-
stant of the relaxation process that makes Δn → 0 is 𝜏drn = 𝜌n𝜖Si
(Problem 5.9 on p. 165). ■

Loosely put, the dielectric relaxation time is the “waiting time”
before carriers move sideways in an energy band diagram by drift.
Using the conductivity formula (5.52) on p. 138 and the mobility
formula (5.48) on p. 135 in (5.95), we obtain

𝜏drn = 𝜖s

qn𝜇n
= 𝜖sme

q2n𝜏e
. (Dielectric relaxation time in n-type)

(5.99)

Equation (5.99) indicates that the dielectric relaxation time is
inversely proportional to the majority carrier density n and the mean
free time 𝜏e. Table 5.2 summarizes typical values of the time constants
related to carriers in silicon. Typically, the dielectric relaxation time
is orders of magnitude shorter than the lifetime of minority carriers:

(dielectric relaxation time) ≪ (minority carrier lifetime). (5.100)

Charge neutralization by dielectric relaxation (sideways movement
of carriers in band diagram) precedes the disappearance of excess
minority carriers due to carrier generation-recombination (vertical
movement of carriers in band diagram (p. 151)). As mentioned in
§5.2.2 (p. 119), this big difference in the time scales is the reason
for having to define separate quasi-Fermi levels for electrons and
holes in nonequilibrium states. Also, the long lifetime, 𝜏n, justifies the
neglect of the generation-recombination term Un in (5.98) (see (5.85)
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on p. 150). Equation (5.99) suggests that the dielectric relaxation
time varies considerably depending on the majority carrier density,
but since the authors do not know the specific values, Table 5.2 only
quotes a value from [31] (see Problem 5.10 on p. 165).

5.9 DEBYE LENGTH

In §5.8, we derived an important time scale, the dielectric relaxation
time. In the process, we ignored the diffusion term when we obtained
(5.97). Ignoring diffusion is normal in metals, but in semiconductors,
carrier densities can change by many orders of magnitude, so diffu-
sion must usually be taken into account as well. An important length
scale appears when the diffusion term is also considered in the dielec-
tric relaxation. Assuming n-type silicon again, and this time with-
out neglecting the diffusion term, we obtain the following equation
instead of (5.97):

Jn = −𝜎n
d𝜓
dx

+ 𝜇nkT
dΔn
dx

. (Electron current density) (5.101)

Inserting this into the continuity equation (5.90) on p. 152 with
ignoring the generation-recombination term Un yields

𝜕Δn
𝜕t = − Δn

𝜌n𝜖Si
+ 𝜇nkT

q
𝜕2Δn
𝜕x2 . (5.102)

This is a spatially second order and temporally first order partial
differential equation (see Table 3.2 on p. 51). In a steady state, the
time derivative on the left-hand side equals zero. In this case, (5.102)
reduces to

d2Δn
dx2 = qΔn

𝜇nkT𝜌n𝜖Si
. (5.103)

Using (5.52) on p. 138 for the relationship between mobility and
conductivity, we have

𝜇n = 1
qn𝜌n

. (5.104)

Putting this in (5.103), we obtain

d2Δn
dx2 = q2n

kT𝜖Si
Δn. (5.105)
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This differential equation has the same form as the wave equation
for transmission line (p. 62) and the time-independent Schrödinger
equation shown in Fig. 3.15 on p. 71. Equation (5.105) says that the
second derivative of Δn equals Δn multiplied by q2n/ (kT𝜖Si). So the
solution to (5.105) should have the following form:

Δn (x) ∝ exp (− x
LD

) , (5.106)

where

LD ≡
√

kT𝜖Si

q2nN0
=

√
kT𝜖Si

q2N+
D

, (Debye length in n-type silicon)

(5.107)

is called the Debye length. Note that in (5.107) we used (5.113) on p.
161 for n-type semiconductors, and approximated n to nN0 (n ≃ nN0).
Equation (5.106) shows that the electron density cannot change spa-
tially abruptly due to diffusion and that some distance is required for
the change. The Debye length gives an estimate of this. To be more
specific, LD is the length required for the carrier density to change by
a factor of e ≃ 2.7 or 1/e ≃ 0.37. If the ratio of the carrier densities of
two regions is larger than e (or smaller than 1/e), the length required
for the transition3 is longer than the Debye length. In semiconduc-
tor devices, impurity doping is finely controlled, but no matter how
steeply the impurity density is changed, it is impossible to change the
carrier densities, Ec, and Ev on a scale shorter than the Debye length.
Therefore, the Debye length is also related to the limit of device minia-
turization. The Debye length in p-type silicon is also given by the same
form as in (5.107).

LD ≡
√

kT𝜖Si

q2pP0
=

√
kT𝜖Si

q2N−
A

(Debye length in p-type silicon)

(5.108)

Table 5.3 shows numerical examples of the Debye length of silicon
obtained using (5.107).

3 The region of transition may be the depletion layer (p. 186).
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TABLE 5.3 Debye Length in Silicon

Ionized dopant density (cm−3) Debye length (nm)
1015 129
1016 41
1017 13
1018 4
1019 1

5.10 HALL EFFECT

In §1.3, we explained that there are positively charged carriers called
holes in semiconductors, but we did not explain how this was found
out. In §4.1, we explained that holes are unoccupied states near the
top of the valence band, whereas elsewhere in this book we have
basically treated holes as positively charged particles. However, there
seems to be a considerable gap between the pictures of “holes,” as con-
sidered in the Box on p. 136, and the picture of “positively charged
particles.” That holes are indeed positively charged particles has been
experimentally confirmed by a phenomenon known as the Hall effect,
named after Edwin Herbert Hall. As shown in Fig. 5.8, an electric field
𝐄 is applied to the semiconductor strip, which is connected to a DC
power supply (not shown), and a DC current 𝐉 flows through it. Note
that 𝐄 and 𝐉 are vectors. A uniform magnetic field 𝐁 is applied from
bottom to top. Then, the Lorentz force acts on carriers moving in the
magnetic field according to Fleming’s left-hand rule. This causes car-
riers to move in a circular motion (i.e., cyclotron motion). However,
for the sake of simplicity, let us forget about this and consider only
in which direction the Lorentz force 𝐅L is exerted by the magnetic
flux density vector 𝐁 when the charged particle starts to move in the
direction of the current density vector 𝐉.

When the majority carriers are electrons, they flow in the opposite
direction to 𝐉 as shown in Fig. 5.8(a). If a magnetic field 𝐁 is applied,
the Lorentz force 𝐅L acts on electrons in the direction as shown. As
a result, a potential gradient is generated in the direction orthogonal
to 𝐉 so that the left front side has a lower potential. On the other
hand, when the majority carriers are holes as shown in Fig. 5.8(b),
they flow in the same direction as 𝐉. If a magnetic field 𝐁 is applied, the
Lorentz force 𝐅L acts on holes in the same direction as in Fig. 5.8(a).
However, since the polarity of the carriers is opposite, the resulting
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FIGURE 5.8 (a) Hall effect in n-type semiconductor. (b) Hall effect in p-type
semiconductor.

potential gradient orthogonal to 𝐉 is opposite (the potential on the
left front side is higher). Thus, by examining the potential gradient in
the direction orthogonal to 𝐉, the polarity of the majority carriers can
be determined. The Hall effect is an example that cannot be properly
described by the Shockley equations in §5.7 because a magnetic field
is involved. Moreover, three-dimensional space and cyclotron motion
must also be considered, so its in-depth treatment is quite advanced.
Hall effect experiments are also conducted to measure carrier mobil-
ity. The voltage VH measured by the voltmeter in Fig. 5.8 is called the
Hall voltage. In a steady state, the Lorentz force 𝐅L = ∓q𝐯 × 𝐁, origi-
nating from the external magnetic field acting on individual carriers,
is balanced by the electric force ∓q𝐄, originating from the electric field
resulting from the carriers being pressed against the side wall. Here,
𝐯 is the velocity vector of the carrier. Specifically, 𝐯 = 𝐯n for electrons
and 𝐯 = 𝐯p for holes. The equation for the balance of these forces can
be written as

qvB = qℰ, (5.109)

where ℰ = |𝐄|, v = |𝐯|, and B = |𝐁|. If the width of the semiconductor
strip is W, the Hall voltage can be written as

VH = Wℰ = WvB. (5.110)
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v on the right-hand side can be expressed in terms of the current
density J = |𝐉| using (5.27) and (5.29) on p. 130 and the like.

VH =
⎧⎪
⎨⎪
⎩

WBJ
−qn

(Hall voltage for electron conduction)

WBJ
qp

(Hall voltage for hole conduction)
(5.111)

Equation (5.111) can be rewritten as

VH = RHWBJ, (Hall voltage) (5.112)

where RH is called the Hall coefficient. The polarity of majority carri-
ers can be found from the sign of RH. Note, however, that (5.111) is
known not to hold as is in general. To take this into account, the Hall
factor in (5.112) is written as

RH =
⎧⎪
⎨⎪
⎩

− rH
qn

(< 0) (Hall coefficient for electron conduction)

rH
qp

(> 0) (Hall coefficient for hole conduction)

(5.113)

where rH (≠ 1) is a positive coefficient known as the Hall factor.

POLARITY OF CARRIERS IN METALS

We learn at school that electrons are responsible for electrical
conduction in metals. The majority carriers in semiconductors
can be electrons or holes, depending on the doping. But the pos-
sibility of carrier polarity being positive or negative is not unique
to semiconductors. In the case of metals, too, depending on the
material and conditions, majority carriers can be holes. One of
the authors (K.M.) once performed Hall measurements on a few
metals with his student and confirmed that majority carriers can
be holes. Fig. 5.9 shows that the Hall coefficient of molybdenum
(Mo) is positive, meaning that the majority carriers are holes.
Note that the unit of the vertical axis is wrong. The correct unit
should be m3/C.
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FIGURE 5.9 Temperature dependence of the Hall coefficient of
molybdenum films of different thicknesses [38].

5.11 SUMMARY

In this chapter, we discussed electrical conduction and related phe-
nomena in semiconductors.

● An equilibrium state is a state in which the temperature is con-
stant throughout the system and there is no net particle flow or
chemical reactions. A steady state is a nonequilibrium state that
does not change with time.

● Sinusoidal steady states can be treated in a similar manner to
steady states by the replacement d/dt → j𝜔 in the governing
differential equation.

● In equilibrium, the electron and hole densities can be expressed
in terms of the Fermi level, but in nonequilibrium, we need to
consider separate quasi-Fermi levels for electrons and holes.



Carrier Dynamics in Semiconductors ∎ 163

● The electron quasi-Fermi level, 𝜁n, is the nonequilibrium electron
density converted into a quantity that can be drawn on an energy
band diagram. The hole quasi-Fermi level, 𝜁p, is the nonequilib-
rium hole density converted into a quantity that can be drawn
on an energy band diagram.

● The conduction current density is proportional to the carrier
density and the gradient of the quasi-Fermi level, as long as the
gradient is not too steep. The constant of proportionality is the
mobility.

● The conduction current consists of two components. One is the
drift current that flows due to external forces acting on carriers
and the other is the diffusion current that flows spontaneously
due to the density gradient of carriers.

● Drift and diffusion are related to each other by Einstein’s rela-
tion.

● There are two types of carrier generation-recombination:
direct generation-recombination and indirect generation-
recombination. The latter is dominant in most
semiconductors.

● The minority carrier lifetime is the time constant associated with
the generation-recombination processes.

● From an energy band diagram with quasi-Fermi levels for elec-
trons and holes, one can read the gradient of the electrostatic
potential, carrier densities and their gradients, the direction and
the magnitude of the current, which of drift and diffusion is
the dominant current component, and which of generation and
recombination is dominant.

● The basic equations for semiconductor devices, also known as
the Shockley equations, consist of the continuity equations for
charge and current and the Poisson equation for the electrostatic
field.

● The dielectric relaxation time is the time constant associated
with charge neutralization by the drift of majority carriers. It
is usually much shorter than the lifetime.

● The Debye length is an important length scale that characterizes
the limit to spatial carrier density manipulation by doping.
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5.12 PROBLEMS

5.1 The difference between the electron and hole quasi-Fermi levels,
||𝜁n − 𝜁p||, represents the degree of deviation from equilibrium (p.
124). How would the value of ||𝜁n − 𝜁p|| change if you somehow
shortened the lifetime of minority carriers?

5.2 Although we stated on p. 106 that there are no states in the forbid-
den band, there are, in fact, spatially localized energy levels such
as dopant levels and trap levels in the forbidden band. In equilib-
rium, the occupancy of these states is described by a distribution
function that looks similar to the Fermi–Dirac distribution func-
tion (4.4) on p. 89. Now, how should we consider the occupancy
of these states at nonequilibrium?

5.3 Let us try to understand the expression (4.26) on p. 98 of the effec-
tive density of states Nc for the conduction band as an example of
the general form of the carrier density expression, (5.23) on p.
128. Answer what corresponds to 𝜁n and the “reference energy”
in (4.26).

5.4 Just as in (4.59) on p. 111 for the total chemical potential, sup-
pose we have split the electron quasi-Fermi level into two terms as
𝜁n = 𝜁n,ext + 𝜁n,int (p. 126). From the electron current density
expression (5.37) on p. 132, find the terms corresponding to
d𝜁n,ext/dx and d𝜁n,int/dx.

5.5 Solve the differential equation (5.43) on p. 134 for the average
velocity ⟨v⟩ of electrons with the initial condition ⟨v⟩ (0) = 0 and
derive the expression (5.45) for the time variation of the average
velocity.

5.6 Give an example of something that cannot be well explained by
the “punch hole model” of hole conduction in Fig. 5.5(b) (p. 137).

5.7 Classify the eight elementary processes of indirect generation and
recombination shown in Fig. 5.7 (p. 145) into those involving
Coulomb interaction between the trap and the carrier and those
not involving Coulomb interaction. Coulomb interaction involv-
ing a nonuniform electric field originating from a charged trap can
be considered as a form of carrier scattering, discussed in §5.4.1,
and shortens the mean free time.

5.8 When we derived (5.97) on p. 156, we treated the conductivity
𝜎n as a constant. However, since 𝜎n = qn𝜇n, a diffusion term
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FIGURE 5.10 Two-layer structure.

proportional to dn/dx should also appear. Work out the ensuing
derivation considering the diffusion term.

5.9 In the derivation of the dielectric relaxation time in n-type semi-
conductors on p. 156, we considered the excess or deficiency, Δn,
of electrons, which are the majority carriers. However, the dis-
cussion on p. 121 and p. 151 focused rather on the excess or
deficiency of minority carriers. Assume that the excess density of
holes (minority carriers) is given by Δp and modify the discussion
of dielectric relaxation.

5.10 Table 5.2 (p. 122) gives only a single value for the dielectric relax-
ation time, but its possible range can easily be estimated using
(5.95) on p. 155. When the dopant density in silicon goes from
1016 cm−3 to 1019 cm−3, the resistivity goes from about 100Ω⋅cm
to 10−2Ω⋅cm [30]. Use 𝜖0 ≃ 8.85×10−12 F/m for the permittivity of
vacuum, and refer to Table 1.3 (p. 5) for the relative permittivity
of silicon, and estimate the corresponding range of the dielectric
relaxation time.

5.11 Consider the structure shown in Fig. 5.10 on p. 165, composed
of two layers of thin films with thicknesses t1 and t2. The con-
ductivity, mobility, and carrier density of layer i are 𝜎i, 𝜇i, and ni
(i = 1, 2), respectively. Express the overall apparent conductivity
𝜎12, mobility 𝜇12, and carrier density n12 of the two-layer structure
in terms of 𝜎i, 𝜇i, and ni, assuming that a current uniformly flows
in the vertical direction.

5.12 Another setup of more practical interest than the above problem.
The conductivity of a thin film can be found from current-voltage
characteristics and the Hall coefficient from Hall measurement.
Suppose that the apparent conductivity 𝜎12 and the apparent Hall
coefficient RH12 of a two-layer structure, shown in Fig. 5.11(a),
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(a)
(b)

FIGURE 5.11  (a) Two-layer structure. (b) Upper layer is etched out.

have been measured. Now, suppose that the upper layer with the
thickness t1 is etched out, and that the conductivity 𝜎2 and the
Hall coefficient RH2 of the lower layer is measured (Fig. 5.11(b)).
Express 𝜎1, 𝜇1, and n1 in terms of 𝜎12, RH12, 𝜎2, and RH2.



C H A P T E R 6

p-n Junctions

In this chapter, we will look at p-n junctions, which are extremely
important building blocks of semiconductor devices. A p-n junction
diode is a device that consists of a p-n junction itself. First, a qualita-
tive understanding of the physics of p-n junctions will be attempted.
Then the depletion layer and DC current-voltage characteristics will
be discussed using mathematical equations.

6.1 WHAT IS A P-N JUNCTION?

On p. 35, we mentioned p-n junction diodes as an example of non-
linear resistors made of semiconductors. The basic structure of a p-n
junction diode is shown in Fig. 6.1. It consists of a p-type region and
an n-type region. The electrode attached to the p-type region is some-
times called the anode, and the electrode attached to the n-type region
is called the cathode. These terms come from vacuum tubes.

The structure formed by contacting a p-type semiconductor and
an n-type semiconductor is called a p-n junction. The p-n junction
is a basic and extremely important structure found in almost all
semiconductor devices.

For an applied bias voltage V shown in Fig. 6.1, V > 0 is called
a forward bias, and V < 0 is called a reverse bias. As shown in Fig.
6.2, the p-n junction has a rectifying action, and the triangle in the
schematic symbol in Fig. 6.1 indicates the direction of the forward
current.

The goals of this chapter are:

● to gain a qualitative understanding of the reason for the nonlin-
ear current-voltage characteristic as in Fig. 6.2,
● to understand the basic physics of p-n junctions,
● and to derive the equation for the current-voltage characteristic

under certain simplifying assumptions.
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p-type n-type

anode cathode

FIGURE 6.1 A schematic drawing and a circuit diagram of a biased p-n
junction diode.

High incremental 
resistance

Low incremental 
resistance

FIGURE 6.2 Current-voltage characteristics of a p-n junction.

From physical considerations, it turns out that the p-n junction is not
just a nonlinear resistor, but also has a capacitive component.

6.2 CONTACT POTENTIAL

6.2.1 What Is Contact Potential?

Let us start our study of the physics of p-n junctions with the concept
of contact potential. In general, when two solid substances with dif-
ferent properties are brought into contact with each other and reach
an equilibrium state, a potential difference (i.e., difference in electro-
static potential 𝜓) is generated between them. This potential difference
is called the contact potential.
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A B A B

(a) (b)

FIGURE 6.3 (a) Two conductive solid substances, A and B, not in contact.
(b) After being brought into contact. 𝜓 is the electrostatic potential.

Let us consider bringing two different conductive solid substances,
A and B, into contact. Before bringing them into contact, as shown
in Fig. 6.3(a), both A and B are electrically neutral. Since the electron
densities in A and B are different before contact, their respective Fermi
levels do not coincide (𝜁A ≠ 𝜁B). Since the electron densities are dif-
ferent, when A and B are brought into contact, electrons (and holes)
diffuse from one to the other. The one that accepts electrons becomes
negatively charged. The other one that emitted the electrons is left
with cations, so it becomes positively charged. As a result, an electric
field is generated between A and B, and an electric force acts to pre-
vent carrier diffusion. In theory, a drift current component appears
in the opposite direction to the diffusion current, albeit smaller in
magnitude than the latter. When the (quasi)-Fermi level becomes flat
throughout, the diffusion and drift currents are balanced, and there is
no net carrier transfer. In the example shown in Fig. 6.3(b), A is posi-
tively charged and B is negatively charged, and there is an electrostatic
potential difference between them.

The contact potential between A and B is given by

𝜑AB = 𝜓A − 𝜓B (B-referenced contact potential between A and B)
(6.1)

or

𝜑BA = 𝜓B − 𝜓A. (A-referenced contact potential between A and B)
(6.2)

Incidentally, in (6.1) and (6.2), the Greek letters 𝜓 and 𝜑 are
used. In this book, electrostatic potentials measured from an absolute
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Vacuum level

Metal A Metal B

FIGURE 6.4 Work functions of metals A and B.

reference (not always explicitly specified) are denoted by 𝜓 (with sub-
scripts), and quantities defined as the difference between electrostatic
potentials are denoted by 𝜑 (with subscripts).

6.2.2 Work Function and Electron Affinity

The contact potential between two solid substances is related to the
physical properties of the given solids.

6.2.2.1 Work Function

Thework function (mainly of metals) is the energy required to emit an
electron at the Fermi level to the free space (assumed to be a vacuum)
outside the solid. Fig. 6.4 shows the work functions of two metals,
A and B, on an energy band diagram. The lowest energy level of an
electron that has been freed from binding by a solid is called the vac-
uum level or free-electron level [32]. The energy difference between
the vacuum level and the Fermi level is the work function. The work
function of a metal is a material-specific constant. If metals A and B
in Fig. 6.4 are brought into contact, the contact potential is given by
(see Problem 6.1 on p. 212)

q𝜑AB = −q (𝜑W,A − 𝜑W,B) (6.3)

Thus, the contact potential is determined by the work function
difference. Equation (6.3) holds even when A and B are not metals.

6.2.2.2 Electron Affinity

For semiconductors, too, the work function can be considered the
energy difference between the vacuum level and the Fermi level.
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FIGURE 6.5 The work function and electron affinity of a semiconductor.

However, since the Fermi level of a semiconductor depends on impu-
rity doping (§4.3), the work function of a semiconductor is not a
material-specific constant. In addition, since the Fermi level of a semi-
conductor is usually located in the forbidden band (see (4.5) on p. 89),
it is not the electrons at the Fermi level but those in the conduction
band that will be emitted when the semiconductor is irradiated with
electromagnetic rays. Therefore, the work function and Fermi level of
semiconductors are not as important as they are for metals (see p. 91).

In semiconductors, the electron affinity, q𝜒—the difference between
the vacuum level and the bottom of the conduction band, Ec—is a
material-specific constant (Fig. 6.5).

6.2.2.3 Semiconductor Fermi Level and Contact Potential

Let us denote the difference between the Fermi level 𝜁 and the intrinsic
Fermi level Ei by the symbol 𝜑B, which has the dimensions of voltage.

𝜑B ≡ 𝜁 − Ei

−q (Bulk potential) (6.4)

We refer to 𝜑B as the bulk potential. “Bulk” here implies that 𝜑B is
to be defined at a position far enough from any interface or band bend-
ing. As such, 𝜑B correctly represents the amount of separation between
the Fermi level and the intrinsic Fermi level only at equilibrium and
where the band is not bent. We will encounter cases where the band
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may be bent on p. 175 onward. The bulk potential 𝜑B is essentially the
same as the Fermi potential 𝜓F defined in (4.24) on p. 98, but the value
of the constant term is explicitly specified to eliminate arbitrariness in
(4.24).

For an n-type semiconductor, we see from (4.47) on p. 103 that
𝜑B = 𝜑B,N < 0, and for a p-type semiconductor, 𝜑B = 𝜑B,P > 0
from (4.52). The subscript “N” indicates that the quantity is that in
the n-type semiconductor, “P” indicates that the quantity is that in
the p-type semiconductor. −𝜑B,N is the contact potential of an n-type
semiconductor with respect to an intrinsic semiconductor. Similarly,
−𝜑B,P is the contact potential of a p-type semiconductor with respect
to an intrinsic semiconductor.

The electron density, nN0, of an n-type semiconductor in equilib-
rium without band bending can be written as follows using (4.27) on
p. 99:

nN0 = ni exp (𝜁 − Ei

kT ) = ni exp (−
q𝜑B,N
kT ) . (6.5)

Solving this equation for 𝜑B,N leads to

𝜑B,N = −kT
q ln (nN0

ni
) ≈ −kT

q ln (
N+

D

ni
) (< 0) . (6.6)

As can be seen from (6.6), the n-type bulk potential 𝜑B,N is
determined by the ionized donor density.

Similarly, the hole density pP0 of a p-type semiconductor in equilib-
rium without band bending can be written as follows using the hole
density equation (4.28) on p. 99:

pP0 = ni exp (Ei − 𝜁
kT ) = ni exp (

q𝜑B,P
kT ) . (6.7)

Solving this equation for 𝜑B,P yields

𝜑B,P = kT
q ln (pP0

ni
) ≈ kT

q ln (
N−

A

ni
) (> 0) . (6.8)

Clearly, the p-type bulk potential 𝜑B,P is determined by the ionized
acceptor density.
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FIGURE 6.6 A loop structure composed of several materials.

Intrinsic SiSilver

GoldGold

FIGURE 6.7 Loop consisting of silver, intrinsic silicon, and a voltmeter.

6.2.3 Properties of Contact Potential

Suppose that several conductive materials are combined to make a
loop structure, as shown in Fig. 6.6. Since the sum of the contact
potentials around the loop equals zero, we can express it as follows:

𝜑1,2 + 𝜑2,3 + 𝜑3,4 +⋯ + 𝜑N,1 = 0. (6.9)

This could be thought of as Kirchhoff’s voltage law (KVL).
Let us now incorporate an ideal voltmeter in the loop. As a con-

crete example, let us suppose that we measure the potential difference
between silver (Ag) and intrinsic silicon (Si) using a voltmeter with
its electrodes made of gold (Au), as shown in Fig. 6.7. The contact
potentials between the materials are shown.

Fig. 6.7 is only an example, but according to (6.9), the voltmeter
shows 0 V regardless of the combination of the two materials under
test. In other words, the contact potential between materials cannot
be measured with an ordinary voltmeter. A different method is needed
to measure the contact potential.

The question then arises as to what exactly is the quantity that
the voltmeter measures. As is clear from the above discussion, it is
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FIGURE 6.8 Energy band diagrams of p-type and n-type semiconductors not
in contact.

not the electrostatic potential difference that the voltmeter measures.
The voltmeter measures the (quasi-)Fermi level difference, that is, the
motive force for the conduction current to flow [27] (see (5.33) and
(5.34) on p. 131). If a loop structure as in Fig. 6.6 or Fig. 6.7 is made
without a power supply, the Fermi level will be constant everywhere,
so it is natural that the voltmeter shows 0 V.

6.3 FORMATION OF A P-N JUNCTION

6.3.1 Contact between p-Type and n-Type Semiconductors

This is basically the same as in Fig. 6.3 on p. 169, but let us consider
a thought experiment in which p-type and n-type semiconductors are
brought into contact. Fig. 6.8 shows the energy band diagrams of two
semiconductors before being brought into contact.

When the two are brought close to each other, holes start to flow
from the p-type region to the n-type region, and electrons start to flow
from the n-type region to the p-type region by diffusion just before the
actual contact, as shown in Fig. 6.9, due to the carrier density gradient.1

The current that flows through such a very thin insulating layer (or
a vacuum) is called the tunnel current. When the two actually make
contact, a larger diffusion current flows. As a result, the p-type region
is negatively charged due to electrons and acceptor ions, whereas the

1 Note that there is no electrostatic potential difference between the two neutral semiconduc-
tors.
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FIGURE 6.9 p-type and n-type semiconductors brought in close proximity.

n-type region is positively charged due to holes and donor ions. Then,
a leftward (←) electric field is generated, and it operates to prevent
further carrier diffusion. Eventually, carrier diffusion stops at a point
where it is balanced by this electric field. Thus, an equilibrium p-n
junction is formed. Note that the above is a thought experiment, and
the actual procedure for making p-n junctions is quite different.

6.3.2 p-n Junctions in Equilibrium

Let us take a closer look at p-n junctions in equilibrium. In the fol-
lowing example, the pictures are drawn assuming that the acceptor ion
density in the p-type region is lower than the donor ion density in the
n-type region. This assumption affects the depletion layer thickness,
described below (p. 186).

The leftward electric field mentioned at the end of §6.3.1 does not
exist uniformly throughout the structure. For an electric field to exist,
there must be positive charges, which are the sources of lines of elec-
tric force, and negative charges, which terminate the lines of electric
force. The distribution of positive and negative charges is shown in
Fig. 6.10(a). There are almost no carriers near the interface between
the p-type and n-type regions, and the negative charges of the acceptor
ions and the positive charges of the donor ions are exposed without
being neutralized by carriers. This region, depleted of carriers, is called
the depletion layer (because the region is a thin layer) or the space-
charge region. “Space charge” here refers to fixed charges that are
spatially distributed in a certain volume. The region beyond a certain
distance from the junction interface is almost the same as the state
before contact (Fig. 6.8) and is electrically neutral (except for the very
thin transition regions next to the depletion layer), and is called the
neutral region or the quasi-neutral region. The reason why “quasi-” is
sometimes prepended is that there is no clear boundary between the
depletion layer and the neutral region (§5.9), and the transition region
is somewhat charged.
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FIGURE 6.10 A p-n junction in equilibrium. (a) Structure. (b) Electrostatic
potential. (c) Energy band diagram.
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FIGURE 6.11 Short-circuited p-n junction.

As a result of the charge distribution described above, the position
dependence of the electrostatic potential 𝜓 is as shown in Fig. 6.10(b).
The potential gradient (i.e., the electrostatic field) exists only in the
depletion layer. 𝜑bi in Fig. 6.10(b) is the contact potential of the p-n
junction and is called the built-in potential, built-in voltage, or diffu-
sion potential. The corresponding energy band diagram is shown in
Fig. 6.10(c). Naturally, the Fermi level 𝜁 has a constant value through-
out. Reading the carrier densities from this band diagram (§5.2.4), we
see that a depletion layer is indeed formed as shown in Fig. 6.10(a).
Since this state is an equilibrium state and no current is flowing, noth-
ing should happen, even if electrodes are attached to both ends and
short-circuited with a conducting lead as shown in Fig. 6.11.
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The built-in potential can be expressed as follows using the bulk
potential equations (6.8) and (6.6):

𝜑bi = 𝜑B,P − 𝜑B,N = kT
q ln (pP0

ni
) + kT

q ln (nN0

ni
)

≈ kT
q ln (

N−
AN

+
D

n2
i

) . (Built-in potential) (6.10)

In a nondegenerate silicon p-n junction, 𝜑bi is often slightly less than
1 V (see Problem 6.3 on p. 213).

6.3.3 Biased p-n Junctions

As mentioned on p. 174, the potential difference in the circuit-
theoretic sense measured by a voltmeter corresponds to the (quasi-
)Fermi level difference. Therefore, when a bias voltage is applied to
a p-n junction, the applied voltage appears in the energy band dia-
gram as the difference between the quasi-Fermi levels of the majority
carriers2 in each region.

Fig. 6.12 shows a forward-biased p-n junction. The bias voltage V
here is assumed to be smaller than the built-in potential 𝜑bi, that is,
0 < V < 𝜑bi. Then, the following equality holds.

𝜁nN − 𝜁pP = qV (> 0) (6.11)

Again, the subscript “N” indicates a quantity in the n-type region,
and the subscript “P” indicates a quantity in the p-type region. The
difference in electrostatic potential between the p-type and the n-type
regions is 𝜑bi−V, which is smaller than that at zero bias. The depletion
layer becomes thinner than at zero bias. Note that in the band diagram
in Fig. 6.12, the quasi-Fermi levels for electrons and holes in the deple-
tion layer are not drawn properly. We will see energy band diagrams
with quasi-Fermi levels in the depletion layer properly drawn in §6.4
onward.

The reverse-biased case (V < 0) is shown in Fig. 6.13. Just as in the
forward-biased case,

2 We refer only to majority carriers here in view of the discussions on p. 125 and p. 150, which
basically pointed out that the nonequilibrium majority carrier density is almost equal to the
equilibrium value, whereas the nonequilibrium minority carrier density may be very different
from the equilibrium value.
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FIGURE 6.12 Forward-biased p-n junction.

P N

−

−

−

−

+

+

+

+

−

−

−

−

−

−

−

−

+

+

+

+

+

+

+

+

FIGURE 6.13 Reverse-biased p-n junction.

𝜁nN − 𝜁pP = qV (< 0) (6.12)

holds. The difference in electrostatic potential between the p-type and
n-type regions is 𝜑bi + |V| and the depletion layer becomes thicker
than at zero bias. The quasi-Fermi levels in the depletion layer are not
drawn in Fig. 6.13, either.

6.4 QUALITATIVE DESCRIPTION OF RECTIFICATION

Let us consider qualitatively why the p-n junction shows the rectifying
action, as shown in Fig. 6.1 on p. 168, using energy band diagrams.
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FIGURE 6.14 Energy band diagram of a forward-biased p-n junction with
quasi-Fermi levels.

At zero bias (V = 0), carrier drift and diffusion are balanced (p.
175), and no net current flows. Under forward bias (V > 0), the poten-
tial barriers to carriers attempting to diffuse to the opposite region
become lower for larger values of V, as we saw in Fig. 6.12. As a
result, diffusion becomes dominant, and as shown in Fig. 6.14, the
majority carriers in each region overcome the potential barrier and
diffuse into the opposite region due to the density gradient. That is,
the forward current through the depletion layer is the diffusion cur-
rent. What happens then to the carriers that reach the opposite region?
Since the electrons that have flowed into the p-type region by diffu-
sion become minority carriers, they gradually recombine (§5.6) with
majority carriers (i.e., holes) and disappear as they move deeper into
the p-type region. Similarly, holes that have entered the n-type region
are minority carriers, so they gradually recombine with electrons and
disappear. Since recombination produces a gradient in minority car-
rier density, the diffusion current that flows is sometimes referred to
as the recombination current.

Incidentally, since the band diagram cartoon in Fig. 6.14 shows
electrons with ● and holes with ○, you might have easily accepted
the above explanation that “diffusion is dominant.” But what if these
● and ○ were not drawn? It is not surprising that you would find it
difficult to accept the explanation that electrons and holes climb up
the slopes of Ec and Ev against the potential gradient. However, if
we remember that it is the gradient of the quasi-Fermi level, not the
potential gradient, that determines the direction of carrier motion (p.
131), we should be able to see the directions of carrier motion from
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the slopes of the quasi-Fermi levels in Fig. 6.14, even if ● and ○ were
not drawn. In the depletion layer, both 𝜁n and 𝜁p appear to be almost
flat, but this is due to the logarithmic transform of carrier densities
(§5.2.4), and in fact, there is a slight slope. Electrons go down the
slope of 𝜁n in Fig. 6.14, and the holes “go down” the slope of 𝜁p when
viewed upside-down.

What about electron and hole densities? Recalling the discussion
on p. 123, if the quasi-Fermi levels are drawn on an energy band dia-
gram, we can read the carrier densities (even if ● and ○ are not drawn).
Ec (x) − 𝜁n (x) in Fig. 6.14 shows that the electron density in the p-type
side of the depletion layer and its vicinity is considerably higher than
that at equilibrium. Similarly, 𝜁p (x) − Ev (x) in Fig. 6.14 shows that
the hole density is much higher than at equilibrium in the n-type side
of the depletion layer and its vicinity. The forward current density is
determined by these minority carrier densities, which are higher than
at equilibrium (§6.8.2). However, the minority carrier densities are
still significantly lower than the majority carrier densities. The injec-
tion of minority carriers in such a way is said to be low injection. We
were able to read the above from Fig. 6.14 because the quasi-Fermi
levels 𝜁n (x) and 𝜁p (x) were drawn in the energy band diagram. In
contrast, it is difficult to read the desired information from an energy
band diagram like that in Fig. 6.12. It is very important for the under-
standing of device operation that the quasi-Fermi levels are drawn in
energy band diagrams.

The response of a p-n junction to a reverse bias (V < 0) is completely
different from that to a forward bias. Drift becomes dominant in the
depletion layer, and minority carriers drift to the opposite region, as
shown in Fig. 6.15. So, the reverse current through the depletion layer
is the drift current.3 However, this reverse current is orders of magni-
tude smaller than the forward current. This is because, in the depletion
layer, 𝜁n < 𝜁p in the expression for the effective intrinsic carrier den-
sity, given by (5.14) on p. 124 (see Fig. 6.15), and the minority carrier
density is smaller than at equilibrium. Since current density is primar-
ily governed by the carrier density (p. 131), the reverse current density
is very small despite the steep potential gradient in the depletion layer.

From the above, the p-n junction is a nonlinear resistor with
rectifying action, as shown in Fig. 6.1.

3 The current in the neutral regions is the diffusion current.
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FIGURE 6.15 Energy band diagram of a reverse-biased p-n junction with
quasi-Fermi levels.
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Dopant charge density

FIGURE 6.16 Ionized dopant charge density distribution in an abrupt
junction.

6.5 ANALYSIS OF ABRUPT JUNCTIONS

In the previous sections, we have tried to explain the physics of p-n
junctions as qualitatively as possible, using only the formulas derived
up to Chapter 5. From this section onward, we will perform a detailed
analysis of p-n junctions in which the ionized acceptor density in the p-
type region and the ionized donor density in the n-type region are both
constant, and the ionized dopant charge density changes abruptly at
the junction interface, as shown in Fig. 6.16.

6.5.1 Zero-Bias Abrupt Junctions

A p-n junction with the ionized dopant charge density distribution,
as shown in Fig. 6.16, is called a step junction or an abrupt junc-
tion. The actual charge density distribution of ionized dopants in a p-n
junction is a little more complicated, but assuming an abrupt junction
greatly simplifies the analysis, and various equations can be derived
analytically.
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First, let us write the Poisson equation (p. 153) for the zero-bias
case.

d2𝜓 (x)
dx2 = −𝜌 (x)

𝜖Si
, (One-dimensional Poisson equation) (6.13)

where the semiconductor is assumed to be silicon. The charges in sil-
icon are holes, electrons, and donor and acceptor ions. The charge
density distribution, 𝜌 (x), is therefore given by

𝜌 (x) = q [p (x) − n (x) + N+
D (x) − N−

A (x)] . (6.14)

If the ionized dopant charge density, N+
D (x) or N−

A (x), changes spa-
tially, it takes a distance longer than the Debye length (p. 158) for the
carrier density to follow the change. In other words, the carrier den-
sity varies gently. However, the Debye length itself is usually shorter
compared with device dimensions and depletion layer thicknesses (see
Table 5.3 on p. 159 for numerical examples). Therefore, we apply
the depletion approximation to (6.14), which assumes that the car-
rier density is negligible in the region where the band is bent near the
junction interface. As a result, the charge density distribution becomes
as shown in Fig. 6.17(a), with the (quasi-)neutral region being com-
pletely neutral and the depletion layer being charged with the ionized
dopant charges. In Fig. 6.17, the p-n junction interface is assumed to
be located at x = 0, and the edges of the depletion layer are at −xP
and xN. Note that −xP and xN are unknowns at this point. We will
determine their values later (p. 185).

If we write down the charge density distribution (6.14) in accor-
dance with Fig. 6.17(a), we find

𝜌 (x) =
⎧⎪
⎨⎪
⎩

0 (x ≤ −xP)
−qN−

A (−xP ≤ x ≤ 0)
qN+

D (0 ≤ x ≤ xN)
0 (xN ≤ x)

. (Charge density distribution)

(6.15)

Inserting (6.15) into the Poisson equation (6.13) yields

−d2𝜓 (x)
dx2 =

⎧⎪
⎨⎪
⎩

0 (x ≤ −xP)
− qN−

A

𝜖Si
(−xP ≤ x ≤ 0)

qN+
D

𝜖Si
(0 ≤ x ≤ xN)

0 (xN ≤ x)

. (Poisson equation) (6.16)
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FIGURE 6.17 (a) Charge distribution of an abrupt junction. (b) Electric field.
(c) Electrostatic potential.

Integrating (6.16) with x yields the electric field:

ℰ (x) = −d𝜓 (x)
dx

. (6.17)

The constant of integration is determined so that the charge neu-
trality condition is satisfied. Specifically, according to Gauss’ law, if
ℰ (x) = 0 for x ≤ −xP and xN ≤ x, then the p-n junction is electrically
neutral. The result of the integration is

ℰ (x) = ∫
x 𝜌 (x′)

𝜖Si
dx′ =

⎧
⎪
⎨
⎪
⎩

0 (x ≤ −xP)
− qN−

A

𝜖Si
(x + xP) (−xP ≤ x ≤ 0)

qN+
D

𝜖Si
(x − xN) (0 ≤ x ≤ xN)

0 (xN ≤ x)

. (6.18)
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This is the electric field distribution. A plot of ℰ (x) is shown in Fig.
6.17(b). The maximum magnitude of the electric field, ℰm, is given by

ℰm = |ℰ (0)| =
qN−

AxP

𝜖Si
=

qN+
DxN

𝜖Si
(6.19)

= Qd

𝜖Si
, (Maximum magnitude of electric field) (6.20)

where

Qd ≡ qN−
AxP = qN+

DxN (6.21)

is the magnitude of the depletion charge per unit area on one side of
the junction.

Since integrating the electric field and reversing the sign yields the
electrostatic potential, we integrate sign-reversed (6.18) with x. There
is arbitrariness in the value of the constant of integration (the refer-
ence point for the electrostatic potential). Here we choose it such that
𝜓 (0) = 0.

𝜓 (x) = −∫
x

ℰ (x′) dx′ =

⎧
⎪⎪
⎨
⎪⎪
⎩

− qN−
A

2𝜖Si
x2

P (x ≤ −xP)
qN−

A

2𝜖Si
(x2 + 2xPx) (−xP ≤ x ≤ 0)

− qN+
D

2𝜖Si
(x2 − 2xNx) (0 ≤ x ≤ xN)
qN+

D

2𝜖Si
x2

N (xN ≤ x)

. (6.22)

Equation (6.22) gives the electrostatic potential distribution of the
abrupt junction and is shown in Fig. 6.17(c).

From (6.22), the values of the electrostatic potential at the edges of
the depletion layer are

𝜓 (−xP) = −
qN−

A

2𝜖Si
x2

P, (6.23)

𝜓 (xN) =
qN+

D

2𝜖Si
x2

N. (6.24)

Using these results, the built-in potential can be written as

𝜑bi = 𝜓 (xN) − 𝜓 (−xP) (Built-in potential) (6.25)



p-n Junctions ∎ 185

=
Q2

d

2q𝜖Si
( 1
N+

D

+ 1
N−

A
) , (6.26)

where (6.21) was used to derive (6.26). 𝜑bi can also be written as
follows:

𝜑bi = −∫
xN

−xP

ℰ (x) dx = ℰm (xP + xN)
2 . (6.27)

The right-hand side of (6.27) represents the area of the triangle in
Fig. 6.17(b) on p. 183. 𝜑bi was already obtained in (6.10) on p. 177,
but here we expressed it in relation to the depletion layer of the abrupt
junction.

So far, we have written many equations using the coordinates of
the depletion layer edges, −xP and xN, but xP and xN can also be writ-
ten in terms of the ionized dopant densities, N−

A and N+
D, as we did in

(6.10) on p. 177. To do so, first solve (6.26) for Qd.

Qd =
√√√
√

2q𝜖Si𝜑bi

N−
AN

+
D

N−
A + N+

D

. (6.28)

Inserting (6.28) into (6.20) and solving for xP and xN using (6.19),
we obtain

xP =
√

2𝜖Si𝜑bi

qN−
A

√√√
√

N+
D

N−
A + N+

D

, (6.29)

xN =
√

2𝜖Si𝜑bi

qN+
D

√√
√

N−
A

N−
A + N+

D

. (6.30)

Equations (6.29) and (6.30) involve 𝜑bi, but since 𝜑bi can be written
as in (6.10) in terms of dopant densities, we have, in effect, written xP
and xN in terms of dopant densities, too. From (6.29) and (6.30), we
get

xP

xN
=

N+
D

N−
A

=
1/N−

A

1/N+
D

. (6.31)
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Equation (6.31) shows that the depletion layer thickness on each
side is inversely proportional to the ionized dopant density. From
(6.29) and (6.30), the total depletion layer thickness is given by (see
Problem 6.4 on p. 213)

ddep = xP + xN =
√√√
√

2𝜖Si (N−
A + N+

D) 𝜑bi

qN−
AN

+
D

. (6.32)

Of the built-in potential (6.25), the potential drop on each side is
given by

𝜓 (xN) =
N−

A

N−
A + N+

D

𝜑bi, (6.33)

𝜓 (−xP) =
N−

D

N−
A + N+

D

𝜑bi. (6.34)

Similarly to (6.31), the potential drop across each side of the
depletion layer is inversely proportional to the ionized dopant density.

6.5.2 Biased Abrupt Junctions

As explained in §6.4, a current flows when a bias voltage is applied to
a p-n junction. When a current flows, there should be a voltage drop
(or change in quasi-Fermi levels) in the neutral regions, too, because
they have finite resistance. However, let us assume that the magni-
tude of the voltage drop there is negligibly small compared with the
voltage drop across the depletion layer. This assumption is justified
by the fact that there are almost no carriers in the depletion layer.
Since the resistivity (p. 139) is inversely proportional to the carrier
density, the resistivity of the depletion layer is large, whereas that of
the neutral regions with a large number of carriers is much smaller. If
the same current flows throughout, the voltage drop is proportional
to the resistivity, so the voltage drop in the neutral region is negligi-
ble. This assumption was also reflected in Fig. 6.12 (p. 178) and Fig.
6.13 (p. 178). The voltage drop occurs almost entirely in the deple-
tion layer, and the basic physics is similar to the zero-bias case. Strictly
speaking, the presence of the conduction current in the depletion layer
contradicts the depletion approximation, which assumes that there are
no carriers in the depletion layer. The important point here is that in
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the low injection condition, the low electron and hole densities in the
depletion layer contribute nonzero but orders of magnitude smaller
charges to the right-hand side of the Poisson equation (5.106) on p.
158 or (6.16) on p. 182, compared with the ionized dopant densities.
So the approximation is quite accurate.

With a bias voltage V applied, the built-in potential 𝜑bi in each of
the equations derived in §6.5.1 should be replaced with (𝜑bi − V) (see
Fig. 6.12 on p. 178). Note that the bias voltage V must be lower than
the built-in potential (V < 𝜑bi) because we derived all equations under
that assumption. Now, for example, the depletion charge formula
(6.28) is modified as follows:

Qd =
√√√
√

2q𝜖Si (𝜑bi − V)
N−

AN
+
D

N−
A + N+

D

. (6.35)

The depletion layer thickness formula (6.32) is modified as follows:

ddep =
√√√
√

2𝜖Si (N−
A + N+

D) (𝜑bi − V)
qN−

AN
+
D

. (6.36)

From (6.29) and (6.30), we obtain

xP =
√

2𝜖Si (𝜑bi − V)
qN−

A

√√√
√

N+
D

N−
A + N+

D

, (6.37)

xN =
√

2𝜖Si (𝜑bi − V)
qN+

D

√√
√

N−
A

N−
A + N+

D

. (6.38)

From (6.36) to (6.38), we can see that the depletion layer becomes
thinner for V > 0 (forward bias) and thicker for V < 0 (reverse bias).
These equations also suggest that the depletion layer disappears at
V = 𝜑bi. The electrostatic potentials at the edges of the depletion layer
are, from (6.33) and (6.34), given by

𝜓 (xN) =
N−

A

N−
A + N+

D

(𝜑bi − V) , (6.39)

𝜓 (−xP) =
N−

D

N−
A + N+

D

(𝜑bi − V) . (6.40)
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6.6 CAPACITANCE OF P-N JUNCTIONS

6.6.1 Depletion Capacitance

Let us look again at the charge density distribution of the p-n junction
in Fig. 6.17(a) (p. 183). Since there is a charge of −Qd per unit area on
the p-type side of the depletion layer and +Qd on the n-type side, the
p-n junction can be regarded as a kind of capacitor in which a charge
Qd is stored per unit area. The incremental capacitance of this capac-
itor is called the depletion capacitance. The depletion capacitance per
unit area of the abrupt junction can be found by differentiating the
depletion charge (6.35) by the applied voltage and is given by

Cd ≡ dQd

d (−V) = dQd

d (𝜑bi − V) (6.41)

=
√√√
√

q𝜖SiN−
AN

+
D

2 (N−
A + N+

D)
1

√𝜑bi − V
. (6.42)

Here we assumed 𝜑bi − V > 0 (see §6.5.2). In (6.41), we differen-
tiated Qd by −V so that the capacitance is positive (Cd > 0). From
(6.42), we can see that the depletion capacitance increases under a
forward bias and decreases under a reverse bias.

Comparing the depletion layer thickness equation (6.36) with the
depletion capacitance equation (6.42), we see that the following
equality holds.

Cd = 𝜖Si

ddep
. (Depletion capacitance per unit area) (6.43)

Equation (6.43) has the same form as the expression for capacitance
per unit area of a parallel-plate capacitor with dielectric constant 𝜖Si
and thickness ddep.

It is clear from the depletion capacitance equation (6.42) that
Qd ≠ Cd |V|, so the depletion layer is a nonlinear capacitor (see §2.2.2).
Nonlinear capacitors are also called varactors (= variable capacitors),
and p-n junction diodes used as capacitors are called varactor diodes.

To summarize, the p-n junction is not a pure nonlinear resistor but
has a nonlinear capacitor connected in parallel.
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6.6.2 Diffusion Capacitance

Forward-biased p-n junctions have a large capacitance component in
addition to the depletion capacitance. This capacitance is known as
the diffusion capacitance, and it increases rapidly with the bias volt-
ageV. Under a forward bias, majority carriers diffuse into the opposite
regions, and a large number of minority carriers build up, as can be
read from Fig. 6.14 (p. 179). These minority carriers are the charge
stored in the diffusion capacitance.

The diffusion capacitance has a significant impact on the transient
response of the p-n junction. In particular, when switching suddenly
from forward bias to reverse bias, the current does not immediately
become nearly zero as expected from Fig. 6.2 (p. 168), but a large
reverse current flows for a short time. This is due to the discharging
of the stored minority carriers. It is, therefore, practically important
to consider the diffusion capacitance.

6.7 ONE-SIDED ABRUPT JUNCTIONS

A p-n junction in which one of the p-type and n-type regions is degen-
erately doped and the other is lowly doped is called a one-sided junc-
tion. The one-sided junction is a practically important structure found
in various semiconductor devices such as MOSFETs, which will be
discussed in Chapter 7. For a one-sided abrupt junction, approximate
analytical treatment is possible by using the results of the analysis of
the abrupt junction discussed in §6.5.

As an example, let us consider a one-sided abrupt junction whose
n-type region is degenerately doped. In this case, N+

D ≫ N−
A holds for

the ionized dopant densities. From (6.29) and (6.30) on p. 185 for
the depletion layer thickness on each side, we see that xP ≫ xN. In
other words, the depletion layer thickness is basically determined by
the lowly doped p-type side, and the energy band on the degenerately
doped side hardly bends. The depletion layer is formed practically
only on the p-type side. From (6.32) on p. 186, the total depletion
layer thickness is given approximately by

ddep ≈ xP =
√

2𝜖Si (𝜑bi − V)
qN−

A

, (6.44)

where 𝜑bi is given by (6.10) on p. 177. A numerical example of ddep
for a zero-biased silicon one-sided abrupt junction is shown in Fig.
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FIGURE 6.18 Depletion layer thickness and Debye length of a silicon
one-sided abrupt junction.

6.18. The ionized donor density in the n-type region is assumed to be
N+

D = 1020 cm−3. In Fig. 6.18, the Debye length ((5.108) on p. 158)
is also plotted for reference. The Debye length is about an order of
magnitude shorter than the zero-bias depletion layer thickness (see
Problem 6.5 on p. 213).

From (6.21) on p. 184 and (6.37) on p. 187, the depletion charge
of a one-sided junction per unit area is given by

Qd = qN−
AxP = √2q𝜖SiN−

A (𝜑bi − V). (6.45)

6.8 CURRENT-VOLTAGE CHARACTERISTICS OF P-N
JUNCTIONS

6.8.1 Equation of Current-Voltage Characteristics

In §6.8, we derive the DC current-voltage characteristics of the abrupt
p-n junction. Since the derivation is a lengthy process, we give the
resulting equation first. The current density under a voltage bias V is
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given by

J = Js [ exp (qVkT ) − 1] (V < 𝜑bi) . (6.46)

Equation (6.46) is, in essence, the expression for an exponential
function translated such that it goes through the origin of the V-I
plane. At a forward bias lower than the built-in potential 𝜑bi, the cur-
rent density increases exponentially with V. Js in (6.46) is the absolute
value of the current density when V is negative (reverse bias) and the
exponential term is negligible (i.e., qV/kT ≲ −3), and is called the
reverse saturation current density.

Js = q (Dn

Ln
nP0 +

Dp

Lp
pN0) . (6.47)

Symbols that appear in (6.47) are as follows:

Ln : Electron diffusion length (p. 194)
Lp : Hole diffusion length (p. 194)

Dn : Electron diffusion coefficient (p. 140)
Dp : Hole diffusion coefficient (p. 141)

nP0 : Electron density in p-type neutral region (p. 149)
pN0 : Hole density in n-type neutral region (p. 150)

6.8.2 Derivation of Current-Voltage Characteristics

The analytical derivation of the equation for current-voltage charac-
teristics requires various assumptions. The assumptions of the analysis
are listed below.

1. The p-n junction to be considered is an abrupt junction.

2. The applied bias voltage V is assumed to be lower than the built-in
potential 𝜑bi, that is, V < 𝜑bi.

3. Voltage drops in the neutral regions are assumed to be negligible.

4. The depletion approximation is to be applied. In other words, the
carrier densities in the depletion layer are assumed to be negligibly
small compared with the ionized dopant density.

5. Consistent with 1, assume the low injection condition (p. 180).
That is to say, the minority carrier density flowing into the neu-
tral region from the depletion layer is assumed to be significantly
lower than the majority carrier density in the neutral region.
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6. Both the p-type and n-type regions are assumed to be sufficiently
thick (long enough in the x direction) compared with the diffusion
length (see p. 194).

7. The amount of change in the quasi-Fermi levels in the depletion
layer is small compared with the thermal energy kT.

8. Carrier generation and recombination in the depletion layer are
assumed to be negligible.

With Assumptions 1 to 4, the results of §6.5 can be used. Assump-
tion 5 allows us to use the results of §5.6.4 regarding the behavior
of minority carriers. We will try to find the DC current density at the
edges of the neutral regions (x = −xP and x = xN). In the depletion
layer, there is a drift current due to the potential gradient, as well as
a diffusion current, making it difficult to analyze. In contrast, in the
neutral region, only a diffusion current exists due to Assumption 3,
which simplifies the analysis. Assumption 7 says that the quasi-Fermi
levels do not change in the depletion layer,4 but if they really do not
change at all, the current would be zero (see (5.33) and (5.34) on p.
131), so it says that there are small changes. Since we have Assump-
tion 8, if we find the DC current density somewhere, that is the current
density that flows through the whole system. To obtain the diffusion
current density in the neutral regions, we find the x-dependence of the
carrier densities in those regions. This is the outline of the analysis.

From here on, we will apply the continuity equations for charge and
current, (5.102) and (5.103) on p. 157, to minority carriers. Rewrit-
ing the generation and recombination rates, Un and Up, using (5.97)
and (5.100) on p. 156, respectively, we obtain

𝜕pN

𝜕t = −pN − pN0

𝜏p
− 1

q
𝜕Jp
𝜕x , (Continuity equation for electrons)

(6.48)

𝜕nP

𝜕t = −nP − nP0

𝜏n
+ 1

q
𝜕Jn
𝜕x . (Continuity equation for holes)

(6.49)

Thus, we have rewritten the equations using the electron and hole
lifetimes, 𝜏n and 𝜏p, respectively.

4 This assumption is also known as the quasi-equilibrium assumption [12].
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By Assumption 3, the bands are flat in the neutral regions (x ≤ −xP
and x ≥ xN), so drift current is zero and only diffusion currents exist.
Therefore, from the current density equations (5.61) and (5.59) on p.
141, we obtain

Jp = −qDp
dpN

dx
, (Hole diffusion current density in n-type)

(6.50)

Jn = qDn
dnP

dx
. (Electron diffusion current density in p-type)

(6.51)

Putting these equations in the continuity equations (6.48) and
(6.49) yields

𝜕pN

𝜕t = −pN − pN0

𝜏p
+ Dp

𝜕2pN

𝜕x2 , (6.52)

𝜕nP

𝜕t = −nP − nP0

𝜏n
+ Dn

𝜕2nP

𝜕x2 . (6.53)

Since 𝜕pN/𝜕t = 0 and 𝜕nP/𝜕t = 0 in a steady state, the continuity
equations become

d2pN

dx2 = pN − pN0

Dp𝜏p
, (6.54)

d2nP

dx2 = nP − nP0

Dn𝜏n
. (6.55)

These differential equations are of the same form as the wave equa-
tion in (5.105) on p. 157. The solutions of these differential equations
have the following form:

Δp = pN − pN0 = c1 exp (− x
Lp

) + c2 exp ( x
Lp

) , (6.56)

Δn = nP − nP0 = c3 exp (− x
Ln

) + c4 exp ( x
Ln

) , (6.57)
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where c1 through c4 are unknown constants that are to be determined
using boundary conditions, discussed shortly. Lp and Ln are called the
diffusion lengths and can be written as follows:

Lp ≡ √Dp𝜏p, (Hole diffusion length) (6.58)

Ln ≡ √Dn𝜏n, (Electron diffusion length) (6.59)

where Dp and Dn are the diffusion coefficients (p. 140), and 𝜏p and
𝜏n are the minority carrier lifetimes (p. 149). Equations (6.56) and
(6.57) indicate that the densities of excess minority carriers diffusing
into the neutral regions vary (decrease) exponentially as functions of
x. As discussed in §5.6.4, minority carriers recombine and disappear
after a while.

The first set of boundary conditions for determining the unknown
constants are that the excess minority carrier densities must go to zero
at a sufficient distance from the junction interface:

Δp (+∞) → 0, (Boundary condition at far right) (6.60)

Δn(−∞) → 0. (Boundary condition at far left) (6.61)

These come from Assumption 6 on p. 192. Of course, the actual
values of coordinate x at which the excess minority carrier density is
practically zero do not have to be ±∞. That is to say, “long enough
in the x direction” in Assumption 6 means long enough in the sense
that Δp → 0 and Δn → 0 hold at certain points. From the above, we
immediately obtain c2 = 0 and c3 = 0. Thus, the equations for the
excess minority carrier densities, (6.56) and (6.57), are simplified as
follows.

Δp = pN − pN0 = c1 exp (− x
Lp

) (x ≥ xN) , (6.62)

Δn = nP − nP0 = c4 exp ( x
Ln

) (x ≤ −xP) . (6.63)

The second set of boundary conditions required to determine c1
and c4 are less obvious. These are needed to write down the minority
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FIGURE 6.19 Quasi-Fermi levels in a forward-biased p-n junction.

carrier densities at the depletion layer edges (x = −xP and x = xN)5.
Specifically, we postulate the following:

● The hole quasi-Fermi level 𝜁p in the entire depletion layer takes
on nearly the same value as in the p-type neutral region, where
holes are the majority carriers.

● The electron quasi-Fermi level 𝜁n in the entire depletion layer
takes on nearly the same value as in the n-type neutral region,
where electrons are the majority carriers.

These are Assumption 7 on p. 192. Fig. 6.19 visualizes these in an
energy band diagram.

Under Assumption 7, the quasi-Fermi levels in the depletion layer
satisfy

𝜁n − 𝜁p ≈ qV. (Vertical quasi Fermi level opening) (6.64)

See also (5.13) on p. 124 and Fig. 6.15 (p. 181). The latter shows
the reverse-biased case. Equation (6.64) says that the vertical opening
between 𝜁n and 𝜁p is determined by the applied bias voltage, V. Inci-
dentally, the horizontal opening is determined by the minority carrier
lifetimes or diffusion lengths.

The boundary condition at x = xN can be written as follows:

pN (xN) ≈ pP0 exp [−q (𝜑bi − V)
kT ] = pN0 exp (qVkT ) . (6.65)

Equation (6.65) is the condition for the minority carrier (i.e., hole)
density at the depletion layer edge in the n-type region. To write

5 These are also the edges of the neutral regions.
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down (6.65), we used the fact that the hole density can be variously
expressed in the form of (5.26) on p. 129. To be more specific, to
derive the middle equation in (6.65), we set the “reference density”
in (5.26) to be the hole density pP0 in the p-type neutral region. The
“reference energy” is the “relative energy” of 𝜁pP in the p-type neutral
region (see p. 128). Then for x ≤ −xP, the exponent of (5.26) becomes
0, and the hole density is given by pP (x) = pP0. Considering now the
hole density at x = xN, since the band is bent down by q (𝜑bi − V),
the “reference energy” position is also bent down parallel to Ev by the
same amount. 𝜁pN at x = −xP, therefore, is quite far from the “ref-
erence energy,” and the hole density becomes correspondingly low.
This explains why the hole density at x = xN is given by the middle
equation in (6.65). The right-hand side of (6.65) rewrites the same
quantity with the “reference density” being the hole density pN0 in
the n-type neutral region. In this case, the “reference energy” is the
“relative energy” of 𝜁pN in the n-type neutral region. At x = xN, 𝜁pN
deviates from the “reference energy” by qV, so the exponential factor
on the right-hand side of (6.65) is needed.

Similarly, the boundary condition at x = −xP can be written as

nP (−xP) ≈ nN0 exp [−q (𝜑bi − V)
kT ] = nP0 exp (qVkT ) . (6.66)

This is the condition for the minority carrier (i.e., electron) den-
sity at the depletion layer edge in the p-type region. The derivation
of (6.66) is similar to the derivation of (6.65) (see Problem 6.6 on p.
213).

Inserting x = xN and (6.65) into (6.62) yields

Δp (xN) = pN0 exp (qVkT ) − pN0 = c1 exp (−xN

Lp
) . (6.67)

Equation (6.67) can be solved for c1 as follows:

c1 = pN0 [ exp (qVkT ) − 1] exp (xN

Lp
) . (6.68)

Putting c1 in (6.62) on p. 194, the excess hole density distribution
in the n-type region is finally found to be

Δp (x) = pN0 [ exp (qVkT ) − 1] exp (−x − xN

Lp
) (x ≥ xN) . (6.69)
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Likewise, to find the excess electron density distribution in the
p-type region, insert x = −xP and (6.66) into (6.63): on p. 194.

nP0 exp (qVkT ) − nP0 = c4 exp (−xP

Ln
) . (6.70)

Solving this equation for c4 gives

c4 = nP0 [ exp (qVkT ) − 1] exp (xP

Ln
) . (6.71)

Putting c4 into (6.63) finally yields

Δn (x) = nP0 [ exp (qVkT ) − 1] exp [x − (−xP)
Ln

] (x ≤ −xP) . (6.72)

This is the excess electron density distribution in the p-type region.
We derived (6.69) and (6.72) to find the DC current density. Noting

that 𝜕pN0/𝜕x = 0 (§5.1), insert (6.69) into the current density expres-
sion (6.50) on p. 193. The hole current density in the n-type neutral
region is thus found to be

Jp (x) = −qDp
dpN (x)

dx
= −qDp

dΔp (x)
dx

= q
Dp

Lp
pN0 [ exp (qVkT ) − 1] exp (−x − xN

Lp
) (x ≥ xN) . (6.73)

Equation (6.73) shows that the hole current density decreases
exponentially toward the right.

Similarly, insert (6.72) in (6.51) on p. 193, noting that 𝜕nP0/𝜕x = 0.
The electron current density in the p-type neutral region is found to
be

Jn (x) = qDn
dnP (x)

dx
= qDn

dΔn (x)
dx

= q
Dn

Ln
nP0 [ exp (qVkT ) − 1] exp [x − (−xP)

Ln
] (x ≤ −xP) .

(6.74)

Equation (6.74) shows that the electron current density decreases
exponentially toward the left.

Both electron and hole currents contribute to the total current that
flows in a p-n junction. So, it would be desirable for the current density
at x to be written as

J (x) = Jp (x) + Jn (x) , (6.75)
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but (6.73) and (6.74) only cover different ranges of x. Now we can
invoke Assumption 8 on p. 192, which says that neither the hole cur-
rent density nor the electron current density changes in the depletion
layer. Thanks to this assumption, for the hole current density, the
value at x = xN can be adopted, and for the electron current density,
the value at x = −xP can be adopted. Since we are considering DC
current here, the sum in (6.75) is constant regardless of the value of
x. The total current density, therefore, is given by

J = Jp (xN) + Jn(−xP). (Current density of abrupt junction)
(6.76)

Substituting (6.73) and (6.74) for the first and second terms of
(6.76), respectively, we finally obtain

J = q (Dn

Ln
nP0 +

Dp

Lp
pN0) [ exp (qVkT ) − 1]

= Js [ exp (qVkT ) − 1] (V < 𝜑bi) . (6.77)

This completes the derivation of the DC current-voltage charac-
teristics (6.46) on p. 191 and the reverse saturation current density
(6.47).

SHOCKLEY’S P-N JUNCTION THEORY

The theory for the current-voltage characteristics of p-n junc-
tions described in this section was developed by William Shock-
ley, one of the founders of the field of semiconductor devices and
the inventor of the bipolar transistor [27]. In the above deriva-
tion, the most puzzling and seemingly unwarranted assumption
would be Assumption 7 on p. 192. and the boundary conditions
(6.65) and (6.66), which embody this assumption. In fact, it is
not so easy to justify equations (6.65) and (6.66) theoretically.
A lengthy discussion is required to do so [31]. Moreover, when
the magnitude of the reverse bias voltage, |V|, is about 0.1 V or
higher, it is known that these equations do not hold [31]! Never-
theless, thanks to the bold assumption, we were able to derive the
equation (6.77) for the current density. Geniuses do tricks like
this that would not occur to those who can think only logically
(see Problem 6.7 on p. 213). Such a bold move has undoubtedly
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helped the development of semiconductor electronics in the early
days.

6.8.3 Additional Notes on p-n Junctions

6.8.3.1 Length Scales

First, let us summarize length scales relevant to semiconductor
devices. The diffusion lengths are given by (6.58) and (6.59) on p.
194. To see how long diffusion lengths actually are, we estimated the
electron diffusion length Ln and hole diffusion length Lp by referring
to the mobilities in Table 1.3 (p. 5) and the minority carrier lifetimes
given in Table 5.2 (p. 122). Einstein’s relations (5.62) and (5.63) on p.
141 were used to express the diffusion coefficient in terms of mobility.
The results are shown in Table 6.1 for several different lifetimes. Note
that the number of significant digits in the table should be considered
to be about one.

The depletion layer thickness in silicon is usually less than 1 µm,
as we saw in the depletion layer thickness graph (Fig. 6.18) on p.
190. The diffusion lengths in Table 6.1 are generally longer than the
depletion layer thickness. That is, the following inequality holds:

(diffusion length) ≳ (depletion layer thickness) > (Debye length).
(6.78)

If Assumption 6 on p. 192 is satisfied and therefore the excess
minority carrier densities go to zero at the left and right ends of the p-
n junction diode (as in (6.60) and (6.61) on p. 194), the lengths of the

TABLE 6.1 Diffusion Lengths in Silicon

Minority carrier lifetime (s) Ln (µm) Lp (µm)

10−10 0.62 0.36
10−9 2.0 1.1
10−8 6.2 3.6
10−7 20 11
10−6 62 36
10−5 196 113
10−4 621 358
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p-type and n-type regions must be at least be about an order of mag-
nitude longer than the diffusion length. This is because the diffusion
length is the length at which the minority carrier density is 1/e ≃ 0.37
times the excess minority carrier density, whereas the minority carrier
density must decrease by several orders of magnitude for the excess
minority carrier density to become negligible. Therefore, the depletion
layer is usually negligibly thin compared with the total length of the p-
n junction diode. In other words, p-n junction pictures in most books,
including this one, either exaggerate the depletion layer thickness or
draw the lengths of the p-type and n-type regions too short.

Note that it is not at all true that actual p-n junctions must be long
enough so that Assumption 6 on p. 192 is satisfied. It is common in
real devices for the p-type and n-type regions to be much shorter than
the diffusion length. For example, the base region of a bipolar tran-
sistor (p. 46) is made as short as possible compared with the diffusion
length. In such a case, the boundary conditions change, and we have
c2 ≠ 0 and c3 ≠ 0 in (6.56) and (6.57). Then, a different form of the
current-voltage characteristics equation is derived than (6.77) on p.
198.

6.8.3.2 Carrier Generation-Recombination in the Depletion Layer

Regarding Assumption 8 on p. 192, in actual silicon p-n junctions,
it is known that generation and recombination in the depletion layer
cannot be neglected, and Assumption 8 does not hold in practice. As
a result, the current-voltage characteristic is somewhat different from
that expressed by (6.77) (see Fig. 6.20 on p. 201).

6.8.3.3 High Forward Bias

If Assumption 2 on p. 191 regarding the bias voltage V does not hold
and V ≥ 𝜑bi, the depletion layer disappears and the entire band of the
p-n junction diode slopes. In this case, the p-type and n-type regions
behave like conductive solids with a certain resistivity, and the voltage
drop occurs across the entire structure. This requires a completely dif-
ferent treatment from that in §6.8.2. We will see numerical examples
covering V ≥ 𝜑bi in §6.8.3.4 and §6.9.1.
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FIGURE 6.20 An example of numerical analysis of current-voltage charac-
teristics of a p-n junction.

6.8.3.4 Example of Numerical Analysis

Fig. 6.20 shows an example of current-voltage characteristics
obtained by numerical analysis (i.e., device simulation or “TCAD”),
including generation-recombination and the bias conditions for V ≥
𝜑bi, which were not covered in our analysis. The vertical axis of Fig.
6.20(a) uses a linear scale, and that of Fig. 6.20(b) uses a logarithmic
scale. The conditions for the device simulation are shown in Table 6.2.
The lengths of the p-type and n-type regions are 5 µm each. The dop-
ing densities are kept quite low to make the depletion layer relatively
thick and easy to see in the energy band diagram. In order to limit
the diffusion lengths, the minority carrier lifetimes are made quite
short. But still, Assumption 6 on p. 191 and Δp (right end) → 0 and
Δn (left end) → 0, corresponding to (6.60) and (6.61) on p. 194, do
not hold. Indirect generation and recombination are allowed to occur
throughout the structure, including in the depletion layer, accord-
ing to the specified lifetimes. Therefore, Assumption 8 does not hold
either. Thus, we do not intend here to reproduce or verify what we
did in §6.8.2. The built-in potential is 𝜑bi ≃ 0.7 V.

Fig. 6.20(a), where the vertical axis uses a linear scale, shows that
there appears to be almost no current flow at V ≲ 𝜑bi. To see the expo-
nential characteristic described by the current-voltage characteristic
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TABLE 6.2 Conditions for Device Simulation of a p-n Junction

Material Silicon
Length of p-type region 5 µm
Length of n-type region 5 µm

Acceptor ion density N−
A in p-type region 1 × 1016 cm−3

Donor ion density N+
D in n-type region 2 × 1016 cm−3

Electron lifetime 𝜏n 10−9 s
Hole lifetime 𝜏p 10−9 s
Electron mobility 𝜇n 1450 cm2/(V⋅s)
Hole mobility 𝜇n 500 cm2/(V⋅s)

equation (6.46) on p. 191, the vertical axis must be set to a logarithmic
scale, as shown in Fig. 6.20(b).

According to (6.46), if the vertical axis is a logarithmic scale, a
straight line should appear at low forward bias (0 < V < 𝜑bi ≃ 0.7 V).
However, in Fig. 6.20(b), two slopes are observed below 0.7 V.6 The
gentler slope seen at 0.1 ≲ V ≲ 0.4 V is related to the exponential
factor exp (qV/2kT) of (5.14) for the effective intrinsic carrier den-
sity7n′

i on p. 124 and recombination in the depletion layer (see p.
200). Fig. 6.20 also has other features different from (6.46), but a
detailed description is beyond the scope of this book. However, as
long as V < 𝜑bi, it should be fair to say that (6.46) captures the most
important features of the p-n junction—the rectifying action and the
exponential variation of the current density.

6.8.3.5 Breakdown

As the reverse bias voltage |V| is made larger beyond a certain point,
the current increases rapidly, as shown in Fig. 6.21. This phenomenon
is known as breakdown. The breakdown voltage depends on the for-
bidden bandwidth Eg of the material as well as the doping densities.
The larger Eg is, the larger the absolute value of the breakdown volt-
age. Because of this, materials with large Eg, such as silicon carbide
(SiC) and gallium nitride (GaN), are often used in high-voltage devices
(see Problem 4.3 on p. 113).

6 The slope seen at 0 < V ≲ 0.1 V is due to the fact that (6.46) passes through the origin and
should be ignored.
7 Note that (6.64) on p. 195 was used.
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FIGURE 6.21 I-V curve of a p-n junction showing breakdown.

6.9 READING ENERGY BAND DIAGRAMS OF P-N
JUNCTIONS

We already read carrier densities and rectifying action from p-n junc-
tion energy band diagrams in §6.4. In this section, as a more practical
exercise, we will read energy band diagrams of the p-n junction diode
obtained by numerical analysis using a device simulator (§5.7).

6.9.1 Bias Voltage Dependence

The conditions for device simulation are the same as in Fig. 6.20 (p.
201) and are shown in Table 6.2 (p. 202). The interface between the
p-type and n-type regions is at x = 5 µm.

Fig. 6.22 shows the band diagram at zero bias (V = 0 V). The p-
type depletion layer is slightly thicker than the n-type depletion layer
because the p-type side is doped at a lower concentration (see (6.29)
and (6.30) on p. 185 and Table 6.2 on p. 202). Since both quasi-Fermi
levels 𝜁n and 𝜁p are flat, no current flows.

Next, let us look at band diagrams at reverse bias. First, Fig. 6.23 (p.
204) shows a band diagram at a low reverse bias voltage, V = −0.1 V.
For the electron quasi-Fermi level 𝜁n at the right end (x = 10 µm) and
the hole quasi-Fermi level 𝜁p at the left end (x = 0 µm),

𝜁n (10µm) − 𝜁p (0µm) = qV (< 0) (6.79)

holds (see also (6.12) on p. 178). This equation is imposed by the
device simulator as a boundary condition. In and around the depletion
layer, 𝜁n and 𝜁p are split in and around the depletion layer, indicating
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FIGURE 6.22 A TCAD-drawn energy band diagram of a p-n junction diode.
Lifetimes: 𝜏n = 𝜏p = 10−9 s, Voltage bias: V = 0 V.
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FIGURE 6.23 A TCAD-drawn energy band diagram of a p-n junction diode.
Lifetimes: 𝜏n = 𝜏p = 10−9 s, Voltage bias: V = −0.1 V.

a larger deviation from equilibrium (see p. 124) than in the neutral
regions, where 𝜁n ≃ 𝜁p. Since 𝜁n < 𝜁p in the depletion layer, the effec-
tive intrinsic carrier density is greater than the intrinsic carrier density
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(n′
i < ni), and therefore carrier generation is dominant over recombi-

nation (see p. 151). In Fig. 6.23, it appears that the vertical opening
of quasi-Fermi levels is given, indeed, by (6.64) on p. 195. However,
if we check 𝜁n and 𝜁p at the edges of the depletion layer carefully, it
seems that Assumption 7 on p. 192 does not hold completely.

The direction of carrier motion is determined by the gradient of the
corresponding quasi-Fermi level (see Fig. 5.3 (p. 122) and (5.31) and
(5.32) on p. 131). Electrons move rightward as they descend the slope
of 𝜁n in Fig. 6.23 (p. 204). Holes move leftward as they descend the
upside-down slope of 𝜁p. The carriers generated in the depletion layer
also contribute to the current. This current is sometimes called the
generation current. To determine the magnitude of the current density,
one can look at the corresponding carrier density (electron density for
a slope of 𝜁n or hole density for a slope of 𝜁p) at a position where the
gradient of the quasi-Fermi level is steep (see p. 131). We can see that
at such positions in Fig. 6.23, both electron density and hole density
are extremely small (which is natural, since n′

i < ni). Therefore, we
can conclude that the current density is very small.

When the reverse bias voltage is set to V = −0.5 V, the energy band
diagram is as shown in Fig. 6.24 (p. 206). Now it is no longer clear
that the expression (6.64) for the vertical opening of the quasi-Fermi
levels on p. 195 holds in the depletion layer. Obviously, Assumption
7 on p. 192 does not hold (see the Box on p. 198). Therefore, the
boundary conditions (6.65) and (6.66) on p. 195 do not hold either.
For (6.65) and (6.66) to hold, 𝜁p must go into the conduction band of
the n-type region and 𝜁n must go into the valence band of the p-type
region (see Problem 6.7 on p. 213). Since the slopes of Ec and Ev and
the slopes of 𝜁n and 𝜁p have the same sign in the depletion layer, it is
clear that the drift current is dominant over the diffusion current (see
p. 119). In §6.8.2, we calculated the current through the p-n junction
only from the diffusion current at the edges of neutral regions. In the
reverse-biased case, however, a drift current flows first due to the steep
potential gradient in the depletion layer, resulting in a decrease in the
minority carrier densities at the edges of the neutral regions, which,
in turn, is compensated for by the diffusion currents in the neutral
regions. Basically, the same thing is happening in Fig. 6.25 (p. 206),
where the reverse bias is increased in magnitude to V = −1 V.

The band diagram for a forward bias voltage of V = 0.5 V is shown
in Fig. 6.26 (p. 207). At forward bias, (6.11) on p. 177 holds for the
hole quasi-Fermi level 𝜁p at the left end (x = 0 µm) and the electron
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FIGURE 6.24 TCAD-drawn energy band diagram of a p-n junction diode.
Lifetimes: 𝜏n = 𝜏p = 10−9 s, Voltage bias: V = −0.5 V.
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FIGURE 6.25 TCAD-drawn energy band diagram of a p-n junction diode.
Lifetimes: 𝜏n = 𝜏p = 10−9 s, Voltage bias: V = −1 V.

quasi-Fermi level 𝜁n at the right end (x = 10 µm). 𝜁n and 𝜁p are split
over the entire structure due to the relatively long diffusion length.
This is a different situation from Assumption 6 on p. 192, but it is
quite common in real devices. Since 𝜁n > 𝜁p, n′

i > ni holds (see p.
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FIGURE 6.26 TCAD-drawn energy band diagram of a p-n junction diode.
Lifetimes: 𝜏n = 𝜏p = 10−9 s, Voltage bias: V = 0.5 V.

151), carrier recombination is dominant (see p. 179). Since 𝜁n > Ei in
the p-type region of Fig. 6.26, the electron (minority carrier) density is
higher than the intrinsic carrier density ni as if it were an n-type semi-
conductor.8 Similarly, since 𝜁p < Ei in most parts of the n-type region,
the hole (minority carrier) density is higher than ni as if it were a p-type
semiconductor.9

The current density is by far greater than at reverse bias (see Fig.
6.20 on p. 201) because much higher densities of minority carriers
contribute to the current density. Since the electron quasi-Fermi level
𝜁n slopes down toward the left, electrons diffuse leftward against the
potential gradient in the depletion layer. Since the hole quasi-Fermi
level 𝜁p slopes up toward the right, holes diffuse rightward also against
the potential gradient in the depletion layer. At both ends (x = 0 µm
and x = 10 µm), in addition to (6.79) on p. 203, the boundary con-
dition that the quasi-Fermi levels for electrons and holes coincide is
imposed:

𝜁n (0µm) = 𝜁p (0µm) , (6.80)

8 The hole (majority carrier) density is still higher than the electron density.
9 The electron (majority carrier) density is still higher than the hole density.
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FIGURE 6.27 TCAD-drawn energy band diagram of a p-n junction diode.
Lifetimes: 𝜏n = 𝜏p = 10−9 s, Voltage bias: V = 1 V.

𝜁n (10µm) = 𝜁p (10µm) . (6.81)

This is the reason for the (barely visible) sudden changes in minority
carrier quasi-Fermi levels at the edges.

Fig. 6.27 (p. 208) shows the results for forward bias V = 1 V. Since
V > 𝜑bi ≃ 0.7 V, it goes beyond the scope of the discussion in §6.8.
Gradients of electrostatic potential, electron quasi-Fermi level, and
hole quasi-Fermi level can be seen in the entire region. In addition,
both electron and hole densities are high throughout. This is because
the long diffusion lengths (or equivalently, the long minority carrier
lifetimes) make the carriers drift away before recombination takes
place.

6.9.2 Lifetime Dependence

Now, according to the discussion on p. 121, the reason why quasi-
Fermi levels must be defined separately for electrons and holes is
because of the following relationship:

(minority carrier lifetime) ≫ (dielectric relaxation time). (6.82)
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Generation and recombination work to bring electrons and holes
into equilibrium (n′

i → ni), but if minority carriers have a long life-
time, the effectiveness of generation-recombination will be poor. Con-
versely, if we somehow shorten the minority carrier lifetime (by, for
example, introducing traps), the system should get closer to equilib-
rium (see Problem 5.1 on p. 164). The separation between electron
and hole quasi-Fermi levels, ||𝜁n − 𝜁p||, represents the degree of devia-
tion from equilibrium (see (5.13) on p. 124), and the generation or
recombination becomes dominant depending on 𝜁n ≶ 𝜁p (p. 151).

Let us take a look at the results of analyzing the same structure
with 𝜏n = 𝜏p = 10−7 s or 𝜏n = 𝜏p = 10−11 s, longer or shorter than
the minority carrier lifetime given in Table 6.2 (𝜏n = 𝜏p = 10−9 s). Fig.
6.28 and Fig. 6.29 are the results for reverse bias V = −0.5 V, and
Fig. 6.30 and Fig. 6.31 are the results for forward bias V = 0.5 V.
In all cases, the opening of quasi-Fermi levels is larger when the
lifetime is longer and smaller when the lifetime is shorter. When
𝜏n = 𝜏p = 10−11 s, the diffusion lengths are sufficiently short, so that
in Fig. 6.31 exponential decreases in minority carrier densities (linear
changes in quasi-Fermi levels) are observed just as in (6.69) and (6.72)
on p. 196. As minority carriers move along the gradients of 𝜁n and 𝜁p,
the minority carrier densities are decreasing rapidly due to recombina-
tion. When net generation or recombination is occurring at a high rate
as in Fig. 6.29 and Fig. 6.31, the electron current density and the hole
current density are not separately conserved,10and the current density
is somewhat more difficult to read from an energy band diagram.

Incidentally, such large changes in minority carrier lifetime will, of
course, affect the current-voltage characteristics. Fig. 6.32 shows the
corresponding current-voltage characteristics of the p-n junction (see
Problem 6.9 on p. 214).

P-N JUNCTIONS THAT DO NOT RECTIFY

In this chapter, we looked at the rectifying action of the p-n junc-
tion diode. However, it is not always the case that p-n junctions
in semiconductor devices exhibit rectifying action.

For example, the bipolar transistor in Fig. 2.19 (p. 46) has an
n-p-n or p-n-p structure. One of the two p-n junctions can have

10 The sum of the two current densities, (6.75) on p. 197, is conserved when considering a DC
current.
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FIGURE 6.28 TCAD-drawn energy band diagram of a p-n junction diode.
Lifetimes: 𝜏n = 𝜏p = 10−7 s, Voltage bias: V = −0.5 V.

a large reverse current flow. The reason is related to the fact
that the base region is made thinner than the diffusion length,
and therefore the boundary conditions are different from those
in §6.8.2. This can be understood by looking at the energy band
diagram of a bipolar transistor.

Another example is the MOSFET. The nMOS transistor also
has an n-p-n structure as shown in Fig. 7.3 (p. 217). By a mech-
anism different from that in bipolar transistors, a large reverse
current can flow from the degenerately doped n-type drain to the
p-type region just below the gate oxide film.

6.10 SUMMARY

In this chapter, we considered the physics and characteristics of the
p-n junction.

● The difference in electrostatic potential between solid substances
of different properties, when they are brought into contact with
each other, is called the contact potential.
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● The contact potential between the p-type and n-type regions of
a p-n junction is called the built-in potential.
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FIGURE 6.29 TCAD-drawn energy band diagram of a p-n junction diode.
Lifetimes: 𝜏n = 𝜏p = 10−11 s, Voltage bias: V = −0.5 V.
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FIGURE 6.30 TCAD-drawn energy band diagram of a p-n junction diode.
Lifetimes: 𝜏n = 𝜏p = 10−7 s, Voltage bias: V = 0.5 V.
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● A depletion layer with very few carriers is formed around the p-n
junction interface, and it has associated depletion capacitance.

● The p-n junction diode has a rectifying effect.

● Properties of the one-sided junction are determined by the lowly
doped side.

● The DC current-voltage characteristics and the reverse satura-
tion current of the abrupt junction can be derived analytically
under several assumptions.

● (Diffusion length) ≳ (Depletion layer thickness) > (Debye
length).

● The physics of p-n junctions can be understood to a large extent
from energy band diagrams with quasi-Fermi levels.

6.11 PROBLEMS

6.1 Why is (6.3) on p. 170 not q𝜑AB = q (𝜑W,A − 𝜑W,B)?
6.2 The energy band diagram in Fig. 6.10(c) for a zero-biased p-n

junction on p. 176 does not depict electrons, holes, or dopant
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FIGURE 6.31 TCAD-drawn energy band diagram of a p-n junction diode.
Lifetimes: 𝜏n = 𝜏p = 10−11 s, Voltage bias: V = 0.5 V.
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FIGURE 6.32 Lifetime dependence of p-n junction current-voltage
characteristics.

atoms. Draw an energy band diagram including electrons, holes,
and dopant atoms (both ionized and non-ionized ones).

6.3 The built-in potential of a p-n junction made of silicon is often
somewhat below 1 V (see p. 177). Explain why, referring to Table
1.3.

6.4 Derive the depletion layer thickness equation (6.32) on p. 186 for
a zero-biased p-n junction.

6.5 Comparing equation (6.44) on p. 189 for the depletion layer thick-
ness ddep of a one-sided abrupt junction with the Debye length
equation (5.108) on p. 158, the Debye length is equal to ddep when
𝜑bi − V = kT/q. On this basis, how can we understand the Debye
length?

6.6 Read the energy band diagram shown in Fig. 6.19 on p. 195 and
explain (or derive) the boundary condition (6.66) on p. 196.

6.7 An energy band diagram of a p-n junction with a relatively
high reverse bias (more than a few hundred millivolts), satisfy-
ing Assumption 7 on p. 192 and the boundary conditions (6.65)
on p. 195 and (6.66) at the edges of the depletion layer, is shown
in Fig. 6.33 (see also Fig. 6.15 (p. 181), Box on p. 198, and Fig.
6.24 (p. 206)). Band diagrams looking similar to Fig. 6.33 can be
found in several books [22, 25, 30, 31]. However, there actually is
something qualitatively wrong with this band diagram. Read this
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FIGURE 6.33 Energy band diagram of a reverse-biased p-n junction satisfy-
ing (6.65) and (6.66).

energy band diagram and consider what is wrong. Hints: p. 15, p.
119, and pp. 178–181.

6.8 Looking at Fig. 6.19 (p. 195) and Fig. 6.31 (p. 212), which are
energy band diagrams at forward bias, the lengths of the slopes of
𝜁n and 𝜁p are different (i.e., the slope of 𝜁p is steeper and shorter).
Explain the reason.

6.9 Looking at the lifetime dependence of the current-voltage charac-
teristics of the p-n junction diode (Fig. 6.32 on p. 213), the shorter
the lifetime, the larger the current density at reverse bias. Read the
corresponding energy band diagrams (Fig. 6.28 (p. 210) and Fig.
6.29 (p. 211)) and explain the reason.
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MOS Transistors

MOS transistors contain a metal-oxide-semiconductor structure
(MOS structure), which is a basic structure with a p-n junction.
In this chapter, the physics of MOS transistors is studied and DC
current-voltage characteristics are derived.

7.1 MOSFET STRUCTURE AND BASIC CHARACTERISTICS

7.1.1 Structure of MOSFETs

When we mentioned MOS transistors or MOSFETs (metal-oxide-
semiconductor field-effect transistors) on p. 44, we described them
as three-terminal devices. However, traditional MOSFETs, commonly
known as planar bulk MOSFETs, are four-terminal devices as shown
in Fig. 7.1. The back gate terminal may sometimes be omitted from
the schematic symbol, as shown in Fig. 2.17 on p. 44. If it is omitted,
the back gate of the nMOS transistor is connected to ground, and the
back gate of the pMOS transistor is connected to a supply voltage.

Fig. 7.2 shows examples of MOSFET schematic symbols. Various
other symbols are also used. Between the drain and the source is a
nonlinear variable resistor, and the gate is the control terminal. In
the middle symbol in Fig. 7.2, the source has an arrow indicating the
direction of the current flow. Somewhat strangely, the left and the
right symbols in Fig. 7.2 do not distinguish between drain and source
per se, but drain and source are marked as such. Structurally, the drain
and the source of a MOSFET for digital circuits are often fabricated
exactly the same, and this fact is reflected in those symbols. Usually,
connections to a power supply and a ground determine which is the
drain and which is the source. In an nMOS transistor (nMOSFET), the
DC current flows into the drain and exits from the source. In a pMOS
transistor (pMOSFET), the DC current flows into the source and exits
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FIGURE 7.1 Structure of a planar bulk MOSFET.
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FIGURE 7.2 Schematic symbols of pMOSFET and nMOSFET. (a) Often
used by analog circuit designers. (b) The back gate terminal is not drawn. (c)
Often used by digital circuit designers.

from the drain. The schematic symbols in Fig. 7.2 are drawn on the
assumption that the DC current passes from top to bottom. Actual
circuit schematics are often drawn in such a way.

The term “MOS” comes from the metal-oxide-semiconductor
structure contained in a MOSFET. Of these three materials, the mate-
rial of the semiconductor substrate is usually silicon (Si). Regard-
ing the oxide, silicon dioxide (SiO2), with a relative permittivity of
about 3.9, had long been the only material used. But today, insula-
tors (not necessarily oxides) with higher permittivities are also used.
Therefore, it is technically more accurate to call it a metal-insulator-
semiconductor (MIS) structure. The gate is made of metal mate-
rial, but instead of metal, degenerately doped polycrystalline silicon
(polysilicon), which exhibits properties similar to metal, is also used.
It is common to use the term “MOS structure” even when the gate
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FIGURE 7.3 Structure of an nMOSFET.

insulator is not SiO2 and/or when the gate material is not metal.
Fig. 7.1 shows the simplest type of planar MOSFET, but there are
planar MOSFETs with more complex structures and also nonplanar
MOSFETs.

The difference between an nMOSFET and a pMOSFET is the polar-
ity of doping. In the nMOSFET, as shown in Fig. 7.3, two degenerate
n-type regions are formed on a p-type silicon substrate and used as the
source and drain. In the nMOSFET in an on state (p. 218), there is
a high density of electrons just below the gate insulator, even though
it is a p-type region, and these electrons are responsible for electri-
cal conduction. This current path consisting of high-density carriers
is called a channel. The current in an nMOSFET flows from drain
to source. The black elongated triangle labeled as “Electrons” in Fig.
7.3 indicates that the density of electrons is high near the source and
decreases toward the drain. On the other hand, the channel thickness
is thin near the source and thickens as it approaches the drain [37].

A pMOSFET is the opposite, with two degenerate p-type regions
formed in a wide n-type region as a source and drain, as shown in Fig.
7.4. The reason why we referred to the “wide n-type region” and not
an “n-type substrate” is that this n-type region (or n-well) is usually
formed in a p-type substrate. This allows nMOSFETs and pMOSFETs
to coexist in a CMOS (complementary MOS) configuration (p. 44).
A detailed discussion of device structures is beyond the scope of this
book, so we will not go into it further. The channel is formed in the
n-type region just below the gate insulator, and the current is car-
ried by holes (in spite of being in the n-type region). The current in a
pMOSFET flows from source to drain.
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FIGURE 7.4 Structure of a pMOSFET.

The terms “source” and “drain” come from the fact that the for-
mer provides carriers to the channel and the latter serves as the drain
of carriers. The arrows in the left schematic symbols in Fig. 7.2 (p.
216) indicate the direction of the forward current in the p-n junc-
tion formed between the substrate (or n-well) and the source (and
drain) regions [22]. In fact, the same is true for the arrow in the middle
schematic symbols in Fig. 7.2.

7.1.2 Basic Characteristics of MOSFETs

7.1.2.1 nMOSFETs

Fig. 7.5 shows how MOSFETs are usually biased. Fig. 2.18 (p. 45)
showed the rough sketch of current-voltage characteristics of the
nMOSFET. Its IDS-VDS characteristics are shown in Fig. 7.6. The
region where the drain current IDS increases nearly linearly with the
drain-source voltage VDS is called the linear region, triode region, or
nonsaturation region. The region where IDS does not depend on VDS
is called the pentode region or saturation region (see Problem 7.1 on
p. 264).

Fig. 7.7 shows the IDS-VGS characteristics of nMOSFET when VDS
is chosen to be in the saturation region. The value of VGS, which is
the boundary between the on state where current flows and the off
state where little current flows, is called the threshold voltage of the
MOSFET. Here, the threshold voltage is denoted by VT. Note that the
concept of threshold voltage is somewhat sloppy because some leak-
age current, also known as subthreshold current, flows even when the
VGS is applied below the threshold value. The corresponding region
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FIGURE 7.5 Biasing nMOSFET and pMOSFET.

high

SaturationNon-saturation

low

FIGURE 7.6 IDS-VDS characteristics of nMOSFETs.

Subthreshold
region

FIGURE 7.7 IDS-VGS characteristics of nMOSFETs.

of operation is called the subthreshold region. To see the subthreshold
currents, the vertical axis must be set to a log scale (see Problem 7.11
on p. 267).

Normal nMOSFETs are made so that the threshold voltage is pos-
itive (VT > 0). A field-effect transistor (FET, p. 44) like this, which
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can be turned off by setting VGS = 0, is called a normally-off FET.
Conversely, a FET with a negative threshold voltage (VT < 0) that
remains on when VGS = 0 is called a normally-on FET. Normally off
MOSFETs are essential for implementing low-power digital circuits.
Whether a FET is normally-off or normally-on (i.e., the sign of VT) is
related to the work function difference between the material used for
the gate and the semiconductor substrate (§7.4).

The DC current-voltage characteristics in the nonsaturation region
in Fig. 7.6 can be written as

IDS = 𝜇nWCox

L [(VGS − VT)VDS − 1
2V

2
DS] (0 ≤ VDS ≤ VGS − VT) ,

(7.1)

where 𝜇n is the electron mobility (§5.3.2). Actually, the value of 𝜇n in
(7.1) is considerably smaller than that given in Table 1.3 (p. 5)—the
bulk mobility. The reason is that the current flows at the surface of the
substrate (interface with the gate insulator), where there is more car-
rier scattering due to surface roughness. This results in lower mobility
than in the crystal far from the interface (i.e., bulk). W in (7.1), shown
in Fig. 7.1 (p. 216), is called the gate width or channel width. L, also
shown in Fig. 7.1, is called the gate length or channel length. The
symbols W and L are universally used in this field as symbols for the
MOSFET gate width and gate length. Cox in (7.1) is the capacitance
per unit area of the gate oxide. Since (7.1) is a quadratic function with
respect to VDS, the characteristics of the nonsaturation region in Fig.
7.6 (p. 219) are parabolic. A goal of this chapter is to understand the
process of deriving (7.1) and the associated device physics.

The equation for the saturation region characteristic where the
drain voltage is VDS ≥ VGS − VT is given by (Problem 7.2 on p. 265)

IDSsat = 𝜇nWCox

2L (VGS − VT)2 (VDS ≥ VGS − VT) . (7.2)

The current in the saturation region (saturated drain current) IDSsat
is independent of VDS (see Fig. 7.6).

7.1.2.2 pMOSFETs

The current and voltage of a pMOSFET are customarily defined to be
negative as shown in Fig. 7.5 (p. 219). Actual current flows upward
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from source to drain. By defining the voltage and current of pMOS-
FETs in this way, their current-voltage characteristics are like Fig.
7.6 (p. 219) and Fig. 7.7 (p. 219) rotated 180○ around the origin.
However, even if the values of W and L are the same as those of
an nMOSFET, the current in a pMOSFET is smaller than that in an
nMOSFET because hole mobility is smaller than electron mobility (p.
136). This often necessitates that pMOS gate width W be made larger
than nMOS gate width (see (7.2)).

From now on, we will mainly consider nMOSFETs.

7.1.3 Outline of Analyzing MOSFETs

Analysis of the MOSFET operation is more difficult than commonly
perceived. Modeling upon the lucid approach developed by [33, 34],
we will first look at a simpler structure—the MOS capacitor—and
increase the complexity in the following order.

1. Two-terminal MOS structure (MOS capacitor). Terminals: Gate
and back gate.

2. Three-terminal MOS structure (Gated diode). Terminals: Gate,
back gate, and drain.

3. Four-terminal MOSFET. Terminals: Gate, back gate, drain, and
source.

7.2 MOS CAPACITOR

7.2.1 Structure of MOS Capacitors

A structure consisting of only the gate and the back gate of a MOS-
FET, as shown in Fig. 7.8, is called a MOS capacitor or MOS diode.
“Diode” here means a two-terminal element. As noted in §7.1.1, the
gate material may be metal or degenerately doped polycrystalline sili-
con (poly-Si), but hereafter it will be simply referred to as “metal” for
simplicity. We will also refer to the gate insulator as the “gate oxide”
or simply “oxide” regardless of the actual material type. The back
side of the silicon substrate (opposite the gate) is assumed to be cov-
ered with the same metal as the gate, serving as an electrode. Since we
want to analyze an nMOSFET, the silicon substrate is assumed to be
p-type.
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FIGURE 7.8 Structure of a MOS capacitor.
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FIGURE 7.9 (a) A MOS capacitor built of a p-type silicon gate and a
substrate. (b) A MOS capacitor built of a metal gate and a p-type silicon
substrate.

7.2.2 Analysis of MOS Capacitors

7.2.2.1 A MOS Capacitor under Zero Bias

First, as a simpler structure than that in Fig. 7.8, consider the case
where the gate is also made of p-type silicon with the same dopant
density as the substrate, as shown in Fig. 7.9(a). In this cartoon, a
loop structure (p. 173) is formed using a conducting wire, and the
entire structure is in thermal and diffusive equilibrium. Since the gate
and substrate materials are the same, the contact potential between
them is, of course, 0.
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FIGURE 7.10 (a) When the gate voltage is increased by 𝜑SM, the charge stored
in the MOS capacitor becomes zero. (b) In practice, the capacitor charge may
not become zero due to the fixed charge Qo in the oxide or at the interface
between the substrate and the oxide.

Let us now go back to the original structure (Fig. 7.8). Since the
gate and substrate materials are different, a nonzero contact potential
𝜑SM (≠ 0)is generated as shown in Fig. 7.9(b) (the subscript “SM” is
from semiconductor-metal). Positive and negative charges then appear
on one and the other side of the oxide layer, respectively. In other
words, some charge is stored in the MOS capacitor. The gate and back
gate electrodes are short-circuited by a conducting wire, but since two
different materials form the capacitor, charge is stored due to the dif-
ference in the work functions of the two materials (see also Fig. 4.10
(p. 110) and Fig. 4.11 (p. 111)). The sign of 𝜑SM and the polarity of
charge stored on each side depend on the combination of materials.
Fig. 7.9(b) is a cartoon for 𝜑SM > 0.

7.2.2.2 Flat-Band Condition

Next, let us consider canceling the charges that appeared on both sides
of the gate oxide in Fig. 7.9(b). This can be done by connecting a volt-
age source and raising the gate voltage by 𝜑SM (p. 111). Fig. 7.10(a)
shows this situation.

In practice, the voltage required to cancel the charge stored in the
MOS capacitor may deviate slightly from 𝜑SM. The reasons may be as
follows:

● Fixed charge in the gate oxide.
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FIGURE 7.11 (a) The gate voltage at which the charge stored in the MOS
capacitor just cancels out is the flat-band voltage Vfb. (b) A biased MOS
capacitor.

● Charge trapped and fixed at the interface between the oxide and
the silicon substrate (p. 144).

Assuming that all fixed charges are at the interface between the oxide
and the substrate, let Qo be the amount of charge per unit area (the
subscript “o” is from the offset charge). Fig. 7.10(b) shows a drawing
with the assumption that Qo > 0. Due to the charge neutrality con-
dition of the system, a negative charge, −Qo, is induced around the
substrate surface, including the bottom surface of the gate. Let 𝜑o be
the voltage (electrostatic potential difference) across the oxide in this
state.

𝜑o = − Qo

Cox
. (Voltage across gate oxide due toQo) (7.3)

Equation (7.3) has a minus sign on the right-hand side because the
voltage here is substrate-referenced. To cancel Qo, the bias voltage
must be changed from 𝜑SM. The gate voltage required to cancel, as
shown in Fig. 7.11(a), both the contact potential 𝜑SM and the potential
difference 𝜑o due to the fixed charge is called the flat-band voltageVfb.

Vfb ≡ 𝜑SM + 𝜑o = 𝜑SM − Qo

Cox
. (Flat-band voltage) (7.4)
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7.2.2.3 A MOS capacitor under General Gate Bias

Suppose now that a certain gate voltage VGB is applied without limit-
ing it to a specific value. This situation is depicted in Fig. 7.11(b). In
this cartoon, VGB > Vfb is assumed, and the charge stored in the gate
(per unit area), QG, is drawn as being positive. Qgi in the cartoon is
the charge per unit area (depletion charge, etc.) induced in the silicon
substrate by the gate voltage (the subscript “gi” is from gate-induced).

From the charge neutrality condition of the system, we have

QG + Qo + Qgi = 0. (Charge neutrality condition) (7.5)

Also, since the sum of the electrostatic potential differences (i.e.,
contact potentials) around a loop is zero (p. 173),

VGB = 𝜑ox + 𝜓s + 𝜑SM (Potential balance equation) (7.6)

holds, where 𝜓s is the surface potential, that is, the electrostatic poten-
tial at the surface of the silicon substrate. 𝜑ox is the voltage (i.e.,
electrostatic potential) across the oxide. The datum point for the elec-
trostatic potential is the region deep in the silicon substrate that is
neutral and has no potential gradient. In other words, it is the region
below the starting point of the arrow showing 𝜓s in Fig. 7.11(b).

If Qo takes a fixed value independent of the gate voltage VGB, then
the following equation holds for the changes in QG and Qgi, that is,
ΔQG and ΔQgi:

ΔQG + ΔQgi = 0. (7.7)

Therefore, when VGB is varied, ΔQG and ΔQgi change by the same
absolute value with opposite signs. In other words, the gate voltage
can be used to control the amount of charge induced near the surface
of the silicon substrate.

7.2.3 Classification of Surface Conditions of MOS Capacitors

The surface condition of the silicon substrate of the MOS capaci-
tor depends on the applied gate voltage VGB. In the following, we
will classify the conditions of the substrate surface using energy band
diagrams. However, for the purpose of simplifying the energy band
diagrams, we assume that there is no work function difference (or
contact potential difference) between the gate metal and the silicon
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FIGURE 7.12 A MOS capacitor in a flat-band condition.

substrate (𝜑SM = 0) and that no fixed charge exists on the oxide sur-
face (Qo = 0). Then, the Fermi level 𝜁G of the gate metal coincides
with the Fermi level 𝜁 of the silicon substrate. From (7.4) we obtain
Vfb = 0. However, since the purpose is to make the band diagram
simple and easy to read, we will not assume 𝜑SM = 0 and Qo = 0 in
equations, and Vfb will be left as it is (see Problem 7.4 on p. 265).

7.2.3.1 Flat Band

The state realized when the gate voltage VGB equals the flat-band volt-
age Vfb, given by (7.4) on p. 224, is called the flat-band condition
or simply flat band. In this condition, there is no induced charge in
the semiconductor (Qgi = 0) as shown in Fig. 7.12, and therefore, by
Gauss’ law, the energy band is completely flat (no band bending).

𝜑B in the energy band diagram of Fig. 7.12 is the bulk potential
of (6.4) on p. 226. Since the oxide is an insulator, only the top of
the forbidden band is drawn in the band diagram for it (see Fig. 4.3
on p. 91). Note, however, that for the convenience of drawing, this
energy is written at a much lower position than it should be. Let us
set the constant term of (4.23) on p. 98 to 0, and map Ei to 𝜓. In Fig.
7.12, 𝜓 = 0 at the right end of the band diagram. Let ps and ns denote
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the hole density and the electron density at the surface of the silicon
substrate, respectively.

Qgi = 0 (Induced charge in flat band) (7.8)

𝜓s = 0 (Surface potential in flat band) (7.9)

ps = pP0 ≫ ni (Surface hole density in flat band) (7.10)

ns = nP0 ≪ ni (Surface electron density in flat band) (7.11)

Here pP0 is the hole density in equilibrium p-type semiconductors
without band bending, and nP0 is the electron density in equilibrium
p-type semiconductors without band bending.

7.2.3.2 Accumulation

When the gate voltage is lower than the flat-band voltage (VGB < Vfb),
the gate is negatively charged, and more majority carriers (holes in this
case) accumulate on the p-type silicon substrate surface than in the
flat-band condition, as shown in Fig. 7.13. Such a condition, where
majority carriers have accumulated more than in the flat-band condi-
tion, is called accumulation. As can be seen from the band diagram in
Fig. 7.13, the surface hole density increases as Ev approaches 𝜁 at the
substrate surface (see (4.17) on p. 95). The surface hole density in this
case can be written as (7.14). The lines of electric force emitted from
the holes on the substrate surface are terminated by negative charges
in the gate. In the cartoon on the left of Fig. 7.13, the negative charges
on the gate and the positive charges in the silicon substrate are equal
in number, representing the charge neutrality condition (likewise in
Figs. 7.14−7.16).

Qgi > 0 (Induced charge in accumulation) (7.12)

𝜓s < 0 (Surface potential in accumulation) (7.13)
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FIGURE 7.13 A MOS capacitor in an accumulation condition.

ps > pP0 (Surface hole density in accumulation) (7.14)

ns =
n2

i

ps
< nP0 (Surface electron density in accumulation) (7.15)

The reason why Qgi > 0 in (7.12) is that there are more holes at the
substrate surface than in the flat-band condition. Equations (7.14) and
(7.15) can be confirmed by reading the surface carrier densities from
the band diagram in Fig. 7.13 (see p. 228).

7.2.3.3 Depletion

When the gate voltage is set higher than the flat-band voltage (VGB >
Vfb), the gate is positively charged, and as shown in Fig. 7.14, major-
ity carriers (holes) on the substrate surface are driven away, creating
a depletion layer. This condition is called depletion. The surface hole
density is reduced because Ev has gone far away from the Fermi level
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FIGURE 7.14 A MOS capacitor in a depletion condition.

𝜁 at the substrate surface. The lines of electric force emitted from
the positive charges on the gate surface are terminated by depletion
charges (acceptor ions) in the substrate. The formula for surface hole
density, from which the name “depletion” is derived, is (7.18). In the
cartoon of Fig. 7.14, the depletion layer thickness is denoted by db
(the subscript “b” is from body, which means substrate).

Qgi < 0 (Induced charge in depletion) (7.16)

0 < 𝜓s ≤ 𝜑B (Surface potential in depletion) (7.17)

ni < ps < pP0 (Surface hole density in depletion) (7.18)

ns =
n2

i

ps
> nP0 (Surface electron density in depletion) (7.19)

The negative charge in (7.16) is due to acceptor ions, which are
now exposed because of the absence of holes near the substrate sur-
face. Read the band diagram in Fig. 7.14 and confirm that the surface
carrier densities are as given by (7.18) and (7.19).
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FIGURE 7.15 MOS capacitor in the weak inversion condition.

7.2.3.4 Weak Inversion

VGB > Vfb as in depletion, but at higher gate voltages, the gate is
more strongly positively charged. This not only strongly bends the
band near the substrate surface downwards, driving away holes and
expanding the depletion layer, but also induces electrons, so that the
surface electron density ns exceeds the intrinsic carrier density ni. As
shown in the energy band diagram in Fig. 7.15, the substrate surface is
effectively n-type because 𝜁 > Ei at the substrate surface (see (4.99) on
p. 99). This is the condition called weak inversion. The lines of elec-
tric force from the positive charges on the gate surface are terminated
in the depletion charges and electrons in the substrate. The surface
electron density, from which the name “weak inversion” is derived, is
given by (7.23).

Qgi < 0 (Induced charge in weak inversion) (7.20)

𝜑B ≤ 𝜓s ≤ 2𝜑B (Surface potential in weak inversion) (7.21)

ps < ni (Surface hole density in weak inversion) (7.22)
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ns =
n2

i

ps
> ni (Surface electron density in weak inversion) (7.23)

The negative charge in (7.20) is due to the acceptor ions and elec-
trons. Read and check the surface carrier densities (7.22) and (7.23)
from the band diagram in Fig. 7.15.

In the traditional treatment, weak inversion was included in deple-
tion, but later it was recognized that weak inversion was important
for understanding the subthreshold characteristics of MOSFETs (p.
219), and it is now treated separately from depletion.

7.2.3.5 Strong Inversion

If the gate voltage is increased beyond that in the weak inversion
condition, strong inversion is reached, as shown in Fig. 7.16. The
surface electron density ns at strong inversion even exceeds the major-
ity carrier density (i.e., hole density) pP0 deep in the substrate where
the energy band is flat. The surface electron density can be written
as (7.27). A very thin minority-carrier layer formed at the substrate
surface by strong inversion is called an inversion layer. The lines of
electric force emitted from the positive charges on the gate surface are
terminated by the depletion charges in the substrate and the electrons
constituting the inversion layer. Once strong inversion is reached, a
further increase in VGB does not affect the band bending very much.
This is because a further increase in VGB only induces further inver-
sion charges (i.e., electrons) at the substrate surface, and not many
more depletion charges deeper in the substrate. Thus, the depletion
layer thickness db no longer depends very much on the gate voltage
VGB (see Problem 7.3 on p. 265).

Qgi < 0 (Induced charge in strong inversion) (7.24)

2𝜑B ≤ 𝜓s (Surface potential in strong inversion) (7.25)

ps ≤ nP0 ≪ ni (Surface hole density in strong inversion) (7.26)
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FIGURE 7.16 A MOS capacitor in a strong inversion condition.

ns =
n2

i

ps
≥ pP0 ≫ ni (Surface electron density in strong inversion)

(7.27)

In the traditional treatment, strong inversion was simply called
inversion. Fig. 7.17 shows the relationship between surface elec-
tron density ns and surface potential 𝜓s. In the parentheses are the
traditional terms. ns = ps = ni when 𝜓s = 𝜑B.

7.2.4 Surface Electron Density and Surface Potential

Here we discuss the surface conditions of MOS capacitors considered
in §7.2.3 in relation to the general form of carrier density expressions
discussed in §5.2.5. The channel of a MOSFET is an inversion layer
formed at the substrate surface of the MOS capacitor. So, here we
write the surface electron density ns of a p-type MOS capacitor in the
form of (5.23) on p. 128.

Using the bulk potential 𝜑B defined in (6.4) on p. 170 instead of
the Fermi level 𝜁, the surface electron density ns can be expressed in
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FIGURE 7.17 The surface electron density of a MOS capacitor with a p-type
substrate.

different ways as follows:

ns = nP0 exp (q𝜓s

kT ) (Flat-band referenced) (7.28)

= ni exp [q (𝜓s − 𝜑B)
kT ] (Weak-inversion-onset referenced) (7.29)

= pP0 exp [q (𝜓s − 2𝜑B)
kT ] (Strong-inversion-onset referenced)

(7.30)

In the flat-band condition, 𝜓s = 0 from (7.9) on p. 227, so (7.28) fol-
lows immediately from (7.11). Equation (7.29), which is based on the
condition of the onset of weak inversion (the left equality in (7.21) on
p. 230 holds), is the same as (4.27) on p. 99. Putting the surface poten-
tial at the onset of strong inversion (the equality in (7.25) holds) into
(7.30), we obtain the surface electron density at the onset of strong
inversion (the equality in (7.27) holds). The above should be under-
stood in conjunction with Table 7.1, which summarizes the results of
§7.2.3. In Table 7.1, the “boxed” entries indicate the “boundaries”
where the values of the exponents in (7.28) through (7.30) become 0
when the equality in the table holds.
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TABLE 7.1 Surface Potential and Surface Carrier Densities of a MOS Capacitor
with a p-Type Substrate

 Accumu. Flat-band Depletion Weak inv. Strong inv.
 < 0 =0 > 0 > 0 > 0
Surface potential 𝜓s < 𝜑B < 𝜑B ≤ 𝜑B ≥ 𝜑B (> 0) > 𝜑B

 < 2𝜑B < 2𝜑B < 2𝜑B ≤ 2𝜑B ≥ 2𝜑B

 > pP0 = pP0 < pP0 < pP0 < pP0

Surface hole density
ps

> ni > ni ≥ ni ≤ ni < ni

 > nP0 > nP0 > nP0 ≥ nP0 ≤ nP0

 < nP0 = nP0 > nP0 > nP0 > nP0

Surface electron
density. ns

< ni < ni ≤ ni ≥ ni > ni

 < pP0 < pP0 < pP0 ≤ pP0 ≥ pP0

7.2.5 Relation between Gate Voltage and Inversion Charge

Since inversion charge (electrons in nMOS and holes in pMOS) is
responsible for electrical conduction in MOSFETs, let us look at the
relationship between the gate voltage VGB, which is the control volt-
age, and inversion charge density. If the surface conditions to be con-
sidered are limited to weak inversion and strong inversion, the charge
Qgi induced on the silicon substrate surface consists of the inversion
charge Qinv and the depletion charge Qb (the subscript “b” is from
body, which means substrate).

Qgi = Qinv + Qb. (Per-unit-area induced charge at the surface)
(7.31)

Therefore, the goal here is to find the relationship between Qinv and
VGB.

First, the per-unit-area gate charge QG can be written using 𝜑ox in
Fig. 7.11(b) (p. 224) as follows:

QG = Cox𝜑ox. (Per-unit-area gate charge) (7.32)

Putting (7.32) into (7.5) on p. 225 yields

Cox𝜑ox + Qo + Qgi = 0. (7.33)

Eliminating 𝜑ox using equation (7.6) yields

Cox (VGB − 𝜓s − 𝜑SM) + Qo + Qgi = 0. (7.34)
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Rewriting (7.34) using the flat-band voltage Vfb defined in (7.4) on
p. 224, we obtain

Cox (VGB − 𝜓s − Vfb) + Qgi = 0. (7.35)

Putting (7.31) into (7.35) and solving for Qinv yields

Qinv = −Cox (VGB − Vfb − 𝜓s + Qb

Cox
) . (7.36)

This is the relationship between inversion charge Qinv and the gate
voltage VGB.

We will now apply the depletion approximation (p. 182) to write
down the equation for the depletion charge Qb. Then the depletion
layer thickness at the p-type substrate surface is given by

db =
√

2𝜖Si𝜓s

qN−
A

. (7.37)

Equation (7.37) can be derived in the same way as we considered
the depletion layer of the abrupt junction in Fig. 6.17 (p. 183). Equa-
tion (7.37) is also similar to the depletion layer thickness equation,
(6.44) on p. 189, for a one-sided abrupt junction. Using (7.37), the
depletion charge per unit area can be written as

Qb = −qN−
Adb = −√2q𝜖SiN−

A 𝜓s. (7.38)

Eliminating Qb in (7.36) using (7.38), we obtain

Qinv = −Cox

⎛
⎜⎜
⎝
VGB − Vfb − 𝜓s − √2q𝜖SiN−

A 𝜓s

Cox

⎞
⎟⎟
⎠

(7.39)

= −Cox (VGB − Vfb − 𝜓s − 𝛾√𝜓s) , (7.40)

where we introduced the body-effect coefficient 𝛾.

𝛾 ≡ √2q𝜖SiN−
A

Cox
. (Body-effect coefficient) (7.41)
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Here, “body” refers to the silicon substrate, and specifically, “body
effect” refers to the effect originating from the dopant ions in the sub-
strate (acceptor ions, in this p-type substrate case). Thus, if we know
the surface potential 𝜓s when the gate voltage VGB is given, then we
can find the inversion charge Qinv from (7.40). So, we next need to
find 𝜓s from VGB.

7.2.6 Relation between Gate Voltage and Surface Potential

7.2.6.1 Approximation for strong Inversion

As mentioned on p. 231, the depletion layer thickness depends only
weakly on the gate voltage and takes a nearly fixed value in the
strong inversion condition, so the surface potential takes a nearly fixed
value as well. Therefore, we can approximate the surface potential as
follows in strong inversion:

𝜓s ≃ 𝜓sT, (Fixed-value approximation of surface potential) (7.42)

where

𝜓sT ≡ 2𝜑B + 3𝜑th, (Approximate surface potential) (7.43)

and

𝜑th ≡ kT
q (Thermal voltage) (7.44)

≃ 26mV (Thermal voltage atT = 300 K) (7.45)

is the thermal voltage (see Problem 1.3 on p. 26). Equation (7.43) has
a slightly larger value than the condition for the onset of strong inver-
sion in (7.25) on p. 231. Coefficient 3 in the second term of (7.43)
is an approximate value, so an appropriate value should be chosen
depending on the situation.

Under this approximation, the inversion charge equation (7.40)
becomes

Qinv =
⎧⎪
⎨⎪
⎩

−Cox (VGB − VT0) (VGB ≥ VT0)
0 (VGB < VT0) , (7.46)
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where VT0 is the threshold voltage of the MOS capacitor.

VT0 ≡ Vfb + 𝜓sT + 𝛾√𝜓sT. (MOS capacitor threshold voltage)
(7.47)

VT0 is somewhat different from the threshold voltage VT that
appeared in Fig. 7.7 (p. 219). Note that (7.46) assumes that Qinv = 0
at the threshold (around the boundary between strong inversion and
weak inversion), and electrons in the weak inversion condition are
neglected due to the second line of (7.46).

7.2.6.2 General case

The surface potential 𝜓s cannot be obtained analytically for the gen-
eral case, not limited to strong inversion. However, it is possible to
derive an equation (not a differential or integral equation) that can be
used to obtain 𝜓s numerically using a computer. The starting point
for the derivation is the Poisson equation (p. 153). Suppose that the
y-axis is oriented toward the depth of the substrate (Fig. 7.12 on p.
226) and that there are no donors. Then the Poisson equation is given
by

d2𝜓 (y)
dy2 = − q

𝜖Si
[p (y) − n (y) − N−

A ]. (Poisson equation) (7.48)

Note that the acceptor ions are assumed to be uniformly distributed
in the substrate. The carrier densities at depth y are given by

p (y) = pP0 exp [−q𝜓 (y)
kT ] , (Hole density) (7.49)

n (y) = nP0 exp [
q𝜓 (y)
kT ] =

n2
i

pP0
exp [

q𝜓 (y)
kT ] . (Electron density)

(7.50)

Equation (7.50) is the same as (7.28) on p. 233. Equation (7.49) can
also be understood in a similar manner. Also, using the charge neu-
trality condition deep in the substrate (or in the flat-band condition),
the acceptor ion density can be written as

N−
A = pP0 − nP0 = pP0 −

n2
i

pP0
. (Acceptor ion density) (7.51)



238 ∎ Elementary Semiconductor Device Physics

The Poisson equation (7.48) can be rewritten using (7.49) through
(7.51) as follows.

d2𝜓
dy2 = − q

𝜖Si
(pP0e−q𝜓/kT −

n2
i

pP0
eq𝜓/kT − pP0 +

n2
i

pP0
)

= − q
𝜖Si

[pP0 (e−q𝜓/kT − 1) −
n2

i

pP0
(eq𝜓/kT − 1)]

≈ − q
𝜖Si

[N−
A (e−q𝜓/kT − 1) −

n2
i

N−
A

(eq𝜓/kT − 1)] . (7.52)

This differential equation can be analytically integrated once by
transforming the variables using the electrostatic field ℰ = −d𝜓/dy
as follows:

d2𝜓
dy2 = d

dy
d𝜓
dy

= ( d
d𝜓

d𝜓
dy

) d𝜓
dy

= d (−ℰ)
d𝜓 (−ℰ) = ℰ dℰ

d𝜓 (7.53)

Putting (7.53) into (7.52), the variable of integration on the left-
hand side changes to ℰ and that on the right-hand side to 𝜓. Then, we
can integrate the resulting equation from a point deep in the substrate
(y = ∞, 𝜓 = 0) to the surface of the substrate (y = 0, 𝜓 = 𝜓s) as
follows:

∫
ℰs

0
ℰdℰ = − q

𝜖Si
∫

𝜓s

0
[N−

A (e−q𝜓/kT − 1) −
n2

i

N−
A

(eq𝜓/kT − 1)] d𝜓, (7.54)

where ℰs is the electric field at the substrate surface. The result of the
integration is as follows.

ℰ2
s

2 = −
qN−

A

𝜖Si
[ − kT

q (e−q𝜓s/kT − 1) − 𝜓s

− ( ni

N−
A

)
2 kT
q (eq𝜓s/kT − 1 − q𝜓s

kT
)]

=
kTN−

A

𝜖Si
[(e−q𝜓s/kT − 1 + q𝜓s

kT
)

+ ( ni

N−
A

)
2
(eq𝜓s/kT − 1 − q𝜓s

kT
)]. (7.55)

We now apply Gauss’ law to the induced charge Qgi at the substrate
surface (Fig. 7.11(b) on p. 224). Since there is no transverse electric
field (perpendicular to the y axis), we only need to integrate over the
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upper and lower planes. The electric field at the surface (y = 0) is ℰs,
and that deep in the substrate (y = ∞) is 0. Thus, the induced charge
is given by

Qgi = −𝜖Siℰs (Per-unit-area induced charge)

= ±√2𝜖SikTN−
A [ (e−q𝜓s/kT − 1 + q𝜓s

kT )

+ ( ni

N−
A

)
2

(eq𝜓s/kT − 1 − q𝜓s

kT ) ]
1/2

. (7.56)

The minus sign of the double sign in (7.56) corresponds to deple-
tion and inversion, and the plus sign to accumulation. Putting this Qgi
in (7.35) on p. 235 gives the equation for numerically finding 𝜓s for
a given VGB (see Problem 7.5 on p. 266).1 Putting the surface poten-
tial 𝜓s thus obtained into (7.40) on p. 235, we can finally obtain the
inversion charge Qinv.

We have explained the flow of the calculation of the surface poten-
tial 𝜓s and the inversion charge Qinv, but it might have been difficult
to understand what was being done because of the mathematical
technicalities involved. Let us take a look back at what we did.

The Poisson equation (7.48) is a second-order differential equation,
and finding its solution means that the electrostatic potential 𝜓 (y) is
obtained as a function of y. However, here we actually did not need
𝜓 (y). What we needed was only 𝜓 (0) = 𝜓s. So we changed the vari-
ables of integration using (7.53), evaluated integrals, and obtained the
equation for finding 𝜓s. Thus, we did not solve the Poisson equation
in the literal sense. We obtained the information we needed without
solving the given differential equation.

METAL-SEMICONDUCTOR CONTACTS

One important topic that should have been covered but
is omitted from this book is metal-semiconductor con-
tacts. Metal-semiconductor junctions usually exhibit nonlinear
characteristics—especially rectifying action. When the nonlin-
earity is weak and the resistance is small, the contact is called
an ohmic contact. Fig. 1.8 (p. 14), Fig. 6.1 (p. 168), Fig. 7.1

1 Typically, the Newton–Raphson method is used to numerically find 𝜓s.
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(p. 216), and so on included metal-semiconductor junctions,
but we either ignored the details or implicitly assumed that
they were very low-resistance ohmic contacts. A contact that
is not ohmic is called a Schottky contact. Schottky contacts
that exhibit marked rectifying action are sometimes used as
diodes and are called Schottky-barrier diodes. Since only major-
ity carriers are involved in the operation of Schottky barrier-
diodes, their responses are much faster than those of p-n junc-
tion diodes. Therefore, Schottky-barrier diodes are often used in
radio-frequency (RF) circuits.

The metal-semiconductor contact can be regarded as the
extreme limit of a MOS capacitor with its oxide thinned to an
infinitesimal thickness. If the oxide is very thin, a large tunnel
current can flow. If any charge is stored in the MOS capacitor for
some reason (the fixed chargeQo in Fig. 7.10 (p. 223) can be such
charge), the potential drop across this negligibly thin oxide is not
zero no matter how thin it is, so the electrostatic potential should
change abruptly at the metal-(oxide-)semiconductor interface.
On the other hand, since current flows through the infinitesi-
mally thin oxide, the quasi-Fermi levels do not change across
the oxide. This is the difference from the real MOS capacitor.

It is, in theory, possible to predict whether a metal-
semiconductor contact is ohmic or Schottky based on the work
function of the metal and the doping of the semiconductor.
However, in practice, this simplistic theoretical prediction often
fails. This does make it difficult to cover metal-semiconductor
contacts in introductory books, such as this one. The main rea-
son for the failure of the theory is considered to be the pres-
ence of traps on the semiconductor surface (corresponding to
Qo in Fig. 7.10). To achieve an ohmic contact, the semiconduc-
tor should be highly doped, but this is not always sufficient.
Ohmic contacts are often quite difficult to achieve. Realizing
good ohmic contacts is an important research subject in the
development of new semiconductor materials.

7.3 THREE-TERMINAL MOS STRUCTURES

A three-terminal MOS structure might sound like a MOSFET without
a back gate. But what we consider here is a structure in which a region
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FIGURE 7.18 Three-terminal MOS structure.

corresponding to the drain (or source) is added to the substrate of a
MOS capacitor.

7.3.1 Back-Gate-Referenced Analysis

A degenerate n-type region is added to the left end of the substrate sur-
face, as shown in Fig. 7.18. Since an inversion layer is formed under
an appropriate gate bias, and it becomes the channel of the MOSFET,
let the terminal name be C. As a result, a one-sided p-n junction (p.
189) is formed between the p-type substrate and the degenerate n-type
region. Therefore, this structure is also called a gated diode. If termi-
nal C is directly connected to the back gate (terminal B) as shown in
Fig. 7.18, the system remains in equilibrium, so the behavior of that
part of the MOS capacitor, which is at a sufficient distance from the
p-n junction, should be the same as in the two-terminal case.

7.3.1.1 Effect of Biasing the Channel

Up to this point, we have only discussed the structure, and we did not
say much about the value of the gate voltage VGB. Next, let us con-
sider the case where VGB = Vfb, as shown in Fig. 7.19. Since the MOS
capacitor is in the flat-band condition, no charge is stored. Since the p-
n junction is zero-biased, the electrostatic potential difference between
the p-type and n-type regions equals the built-in potential 𝜑bi (p. 177).
Since it is a one-sided junction, a depletion layer is formed only on the
p-type side (p. 189).

Next, let us set VGB > Vfb and bring the MOS capacitor into strong
inversion. Let us assume for convenience that the value of the surface
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FIGURE 7.19 Three-terminal MOS structure in a flat-band condition.
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FIGURE 7.20 Three-terminal MOS structure in a strong inversion condition.

potential equals 𝜓sT in (7.43) on p. 236. Then, let us increase the volt-
age VCB at terminal C as shown in Fig. 7.20. VCB is called the channel
potential.

Since the p-n junction is now reverse biased, the system is in a
nonequilibrium state. Specifically, as shown in Fig. 6.15 (p. 181),
𝜁nP < 𝜁pP at the substrate surface near the p-n junction. Because of
VCB > 0, electrons are attracted to the degenerate n-type region, so the
degree of inversion of the MOS capacitor substrate surface is reduced.
Since 𝜁nP < 𝜁pP, the surface electron density is lower than at equilib-
rium (VCB = 0), as discussed on p. 124. Since the channel is formed
from a large number of electrons and has lower resistance than the
rest of the silicon substrate, the entire channel can be considered to
remain equipotential.

In order to keep the degree of inversion at the substrate surface the
same as it was at VCB = 0, the surface potential must be increased
from 𝜓sT to 𝜓sT + VCB by increasing VGB. So the expression for the
surface electron density for VCB ≠ 0 can be written by replacing 𝜓s in
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equations (7.28) through (7.30) on p. 233 with 𝜓s − VCB as

ns = nP0 exp [q (𝜓s − VCB)
kT ] (Flat-band referenced) (7.57)

= ni exp [q (𝜓s − VCB − 𝜑B)
kT ] (Weak-inversion-onset referenced)

(7.58)

= pP0 exp [q (𝜓s − VCB − 2𝜑B)
kT ] . (Strong-inversion-onset ref.)

(7.59)

The value of 𝜓s in (7.59), for example, must be larger than that in
the two-terminal MOS capacitor case by VCB so that ns = pP0 holds.
That is why VCB in (7.59) has a minus sign.

The above derivation is similar to that in the analysis of p-n junc-
tions in Chapter 6, where the zero-bias case was first examined
(§6.5.1), and then the equation for the biased case was derived by
variable substitution (§6.5.2). This is no coincidence because Fig. 7.20
includes a reverse-biased p-n junction.

7.3.1.2 Approximation for Strong Inversion

In the case of strong inversion, the surface potential 𝜓s on the left-
hand side of (7.42) on p. 236 can be replaced by 𝜓s − VCB to obtain
the following approximation.

𝜓s ≃ 𝜓sT + VCB. (Fixed-value approximation) (7.60)

Substituting equation (7.60) into the depletion layer thickness
equation (7.37) on p. 235 yields

db =
√

2𝜖Si (𝜓sT + VCB)
qN−

A

. (Depletion layer thickness) (7.61)

Equation (7.61) indicates that if VCB > 0, the depletion layer at
the substrate surface is thicker than in the two-terminal case. This is
natural because a higher gate voltage is applied.
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Likewise, putting (7.60) in (7.38) on p. 235 gives the approximate
depletion charge in strong inversion.

Qb = −qN−
Adb = −√2q𝜖SiN−

A (𝜓sT + VCB). (Depletion charge)

(7.62)

Replacing 𝜓sT in (7.47) on p. 237 for the two-terminal MOS
capacitor threshold voltage with 𝜓sT + VCB, we obtain

VTB (VCB) ≡ Vfb + 𝜓sT + VCB + 𝛾√𝜓sT + VCB. (7.63)

This is the threshold voltage of the three-terminal MOS structure.
The left-hand side of (7.63) explicitly shows that VTB is a function of
the channel potential VCB. If VCB > 0, the threshold becomes higher
and it becomes more difficult to strongly invert the channel. The inver-
sion charge can be expressed using the threshold voltage (7.63) as
follows:

Qinv = { −Cox (VGB − VTB) (VGB ≥ VTB)
0 (VGB < VTB) (7.64)

= { −Cox (VGB − Vfb − 𝜓sT − VCB − 𝛾√𝜓sT + VCB) (VGB ≥ VTB)
0 (VGB < VTB) .

(7.65)

The concept of “threshold voltage” is based on the idea that the
inversion charge Qinv is controlled by the gate voltage VGB. This
is shown in Fig. 7.21. When VGB exceeds the threshold voltage
VTB, |Qinv| increases linearly. Actually, VTB depends on the channel
potential VCB as well, according to (7.63), so it is more appropri-
ate to express the inversion charge as a function of VGB and VCB as
Qinv(VGB,VCB).

7.3.1.3 Pinch-Off Voltage

When a certain gate voltage VGB is given, the value of VCB at which
the inversion charge becomes Qinv ≃ 0 (the boundary between strong
inversion and weak inversion) is called the pinch-off voltage and is
denoted by VP. Inserting Qinv = 0 and VCB = VP into (7.65) according
to this definition, we obtain

0 = −Cox (VGB − Vfb − 𝜓sT − VP − 𝛾√𝜓sT + VP) . (7.66)
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Slope:

FIGURE 7.21 Controlling the inversion charge Qinv by the gate voltage VGB.

FIGURE 7.22 Controlling the inversion charge Qinv by the channel potential
VCB.

Solving (7.66) for VP results in (Problem 7.6 on p. 266)

VP (VGB) = (−𝛾
2 + √

𝛾2

4 + VGB − Vfb)
2

− 𝜓sT. (Pinch-off voltage)

(7.67)

The left-hand side of (7.67) states that VP is a function of VGB.
A graph similar to Fig. 7.21, with VCB on the horizontal axis, is

shown in Fig. 7.22. Both the threshold voltage and the pinch-off volt-
age are defined as the point where (strong) inversion begins/ends on
the respective axes. The pinch-off voltage can be interpreted as a kind
of “threshold voltage” when the inversion charge Qinv is considered
to be controlled by the channel potential VCB.
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FIGURE 7.23 Dependence of the absolute value of inversion charge, |Qinv|,
on VGB and VCB.

In short, the inversion charge Qinv(VGB,VCB) can be controlled by
either the gate voltage VGB or the channel potential VCB, both of which
are involved in the MOSFET operation. The two graphs in Figs. 7.21
and 7.22 can be combined into a single graph as in Fig. 7.23 (the point
of intersection of the horizontal axes is not the “origin”).

7.3.1.4 Cases Other than Strong Inversion

The above discussion was for the case of strong inversion, but to
include other cases than strong inversion, the surface potential 𝜓s can
be found numerically by replacing 𝜓s in (7.56) on p. 239 with 𝜓s−VCB.
The inversion charge Qinv can then be found from (7.40) on p. 235.

7.3.2 Channel-Terminal-Referenced Analysis

Here we will rewrite the equations we derived using terminal C (cor-
responding to the source of the MOSFET) as the datum node or
reference node. The biasing is as shown in Fig. 7.24, and the following
equality holds:

VGB = VGC + VCB. (7.68)

The approximate expression for the inversion charge in the strong
inversion condition can be obtained by putting (7.68) into (7.64) on
p. 244.

Qinv = { −Cox (VGC − VTC) (VGC ≥ VTC)
0 (VGC < VTC) , (7.69)



MOS Transistors ∎ 247

B

GC

FIGURE 7.24 Channel-terminal-referenced three-terminal MOS structure.

where we introduced yet another threshold voltage, VTC.

VTC ≡ VTB − VCB

= Vfb + 𝜓sT + 𝛾√𝜓sT + VCB. (7.70)

This is the channel-terminal-referenced threshold voltage. We will
use this result when we consider the MOSFET threshold voltage (p.
257).

C-V CHARACTERISTICS OF MOS CAPACITORS

Even though we are dealing with a structure called a “MOS
capacitor,” we have not discussed its capacitance, except that we
referred to the per-unit-area gate oxide capacitance, Cox. This is
certainly not because the capacitance is unimportant.

MOS capacitors are clearly not linear capacitors. Differentiat-
ing the gate charge QG by the gate voltage VGB, the incremental
capacitance of the MOS capacitor is obtained. A graph plotting
the incremental capacitance on the vertical axis and the gate volt-
age on the horizontal axis is called the “C-V curve” of the MOS
capacitor. “C-V measurement” is performed by applying a small
sinusoidal signal on top of a DC bias to the gate [23]. Thus,
this is a measurement of a sinusoidal steady state (p. 116). This
incremental capacitance depends on the frequency of the super-
imposed sine wave, reflecting the lifetime of minority carriers
and other factors at the substrate surface. The capacitance com-
ponent due to the inversion charge and that due to the depletion
charge can be measured separately by using a MOS structure
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FIGURE 7.25 Back-gate-referenced four-terminal nMOSFET.

with three or more terminals (split C-V measurement). C-V mea-
surement is an important tool for investigating the condition and
quality of substrate surfaces.

7.4 FOUR-TERMINAL MOSFET

Let us finally add the other degenerate n-type region and analyze
the four-terminal MOSFET. Traditionally, the terminal voltages of a
MOSFET are measured with respect to its source, but using the back
gate as the datum node makes the equations more symmetrical and
much easier to understand [34].

7.4.1 Back-Gate-Referenced Analysis

7.4.1.1 Four-Terminal MOSFET Structure

Let us add a degenerate n-type region, similar to the one added in
Fig. 7.18 (p. 241), on the right side as shown in Fig. 7.25. As before,
we will proceed with the discussion using the back gate terminal
as the voltage reference. This kind of treatment is also said to be
body-referenced or bulk-referenced.

7.4.1.2 Assumptions of the Analysis

The assumptions of the analysis are listed below.
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1. Since we consider an nMOSFET here, the drain voltage VDB is
assumed to be higher than the source voltage VSB (see Fig. 7.5 on
p. 219). More specifically, we assume the following inequality to
hold:

0 ≤ VSB < VDB. (7.71)

The source voltage is usually VSB = 0 (Fig. 7.5). Under this con-
dition, current flows from the drain to the source. Also, channel
potential VCB and the degree of inversion depend on the position
x in the channel.

VSB ≤ VCB (x) ≤ VDB. (7.72)

2. The gradual-channel approximation is to be applied. The gate
voltage VGB creates a y-direction electric field ℰy in the channel.
There also exists an x-direction electric field ℰx due to the biasing
stipulated in Assumption 1. Since |VGB| and |VDB − VSB| are usu-
ally comparable, if the oxide thickness tox (Fig. 7.25) is sufficiently
thinner than the channel length L, then |ℰx| ≪ ||ℰy|| holds. Based on
this observation, the approximation that ignores ℰx is the gradual-
channel approximation. MOSFETs for which this approximation
is valid are called long-channel MOSFETs.

3. Gate and back gate currents are assumed to be zero. First, because
of the insulating gate oxide, no DC current flows into the gate. The
p-n junction diode between the substrate and the drain is reverse
biased according to (7.71). Since the reverse current is very small,
we can ignore it. In equations,

IG = 0 (Current flowing into gate) (7.73)

IB = 0 (Current flowing into back gate) (7.74)

ID = −IS = IDS (Drain current) (7.75)

4. Carrier generation and recombination are assumed to be negligi-
ble.

5. The electron mobility 𝜇n is assumed to be constant, independent of
the position x in the channel. In reality, the mobility may depend
on x, but we ignore this for simplicity.
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6. Approximation for strong inversion is to be used. We consider
only the cases where the surface potential can be considered to
take the following form from (7.60) on p. 243 with x-dependence.

𝜓s (x) = 𝜓sT + VCB (x) , (Approximate surface potential) (7.76)

where 𝜓sT is given by (7.43) on p. 236. The range of VCB (x) is
as given in (7.72). Under this assumption, we can directly con-
sider only the nonsaturation region of the on state. The current
in the saturation region can be derived from it, but the off-state
(subthreshold characteristics) cannot be treated.

7. The current is assumed to be carried only by electrons in the
inversion layer. The equations for inversion charge and thresh-
old voltage are also modified from (7.64) and (7.63) on p. 244 to
account for x-dependence as follows.

Qinv (x) = { −Cox [VGB − VTB (x)] (VGB ≥ VTB)
0 (VGB < VTB) , (7.77)

VTB (x) = Vfb + 𝜓sT + VCB (x) + 𝛾√𝜓sT + VCB (x). (7.78)

7.4.1.3 Channel Potential and Quasi-Fermi Levels

The substrate in Fig. 7.25 (p. 248) is p-type, and the drain and the
source are degenerate n-type, so one-sided p-n junctions are formed
between the substrate and the drain/source. According to the discus-
sion in §6.8.2 (especially Assumption 7 on p. 192), the hole quasi-
Fermi level in the depletion layer of a p-n junction equals that in the
p-type neutral region, and the electron quasi-Fermi level in the deple-
tion layer equals that in the n-type neutral region (see Fig. 6.19 on
p. 195). The voltage in the circuit-theoretic sense corresponds to the
quasi-Fermi potential of majority carriers (§6.3.3). If so, then the hole
quasi-Fermi potential 𝜓p just below the gate oxide in Fig. 7.25 (p. 248)
is determined by the deep part of the p-type substrate (i.e., back gate).
The electron quasi-Fermi potential 𝜓n (x) is determined by VSB at the
source end (x = 0) of the channel and by VDB at the drain end (x = L):

𝜓n (0) = VSB, (Electron quasi Fermi potential at source end)
(7.79)
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𝜓n(L) = VDB. (Electron quasi Fermi potential at drain end)
(7.80)

From the above, the channel potential at position x in the channel
is given approximately by

VCB (x) ≈ 𝜓n (x) − 𝜓p =
𝜁n (x) − 𝜁p

−q . (Channel potential) (7.81)

This equation corresponds to (6.64) on p. 195. In words, (7.81)
is saying that the channel potential VCB (x) is the quasi-Fermi poten-
tial 𝜓n (x) for the inversion charge, measured with respect to the hole
quasi-Fermi potential 𝜓p of the substrate.

Actually, (7.81) is quite a questionable expression. This is because
Assumption 7 on p. 192 is not valid for reverse-biased p-n junctions
(unless the reverse bias is very small), as already discussed in the Box
on p. 198, §6.9, and Problem 6.7 on p. 213. However, in the deriva-
tion of the current-voltage characteristics of the p-n junction diode,
we used Assumption 7 because we could not move forward without
it. The situation is basically the same. After all, our MOSFET is also
a “gated diode” (p. 241). So although we know it is questionable, we
will use (7.81) in the following.

7.4.1.4 Channel Potential and Current

Consider the current IDS flowing through an infinitesimal channel sec-
tion Δx at position x. Note that IDS flows in the left (−x) direction.
Since the steady-state drain current IDS is independent of x according
to Assumption 4 on p. 249, the current is obtained by integrating the
current density at a certain x in the y-direction and multiplying it by
the channel width W. Thus,

IDS = −W∫
yC

0
𝜇nn(x, y)Δ𝜁n (x)

Δx dy (7.82)

= −W𝜇n
Qinv (x)

−q
Δ𝜁n (x)

Δx = −W𝜇nQinv (x) ΔVCB (x)
Δx . (7.83)

In (7.82), we used (5.33) on p. 131 for the electron current density.
The upper end of the integral in (7.82), yC, is the depth of the channel
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or the thickness of the inversion layer, which itself depends on x (p.
217). In (7.83), use was made of (7.81). From the above, we obtain

IDSΔx = −W𝜇nQinv (x) ΔVCB (x) . (7.84)

Integrate both sides of (7.84) from the source end (x = 0, VCB =
VSB) to the drain end (x = L, VCB = VDB).

(Left-hand side) = ∫
L

0
IDSdx = IDS∫

L

0
dx = IDSL, (7.85)

(Right-hand side) = −W𝜇n∫
VDB

VSB

Qinv (VCB) dVCB, (7.86)

where Assumption 5 on p. 249 was used. From the above, the drain
current is given by

IDS = −W
L 𝜇n∫

VDB

VSB

Qinv (VCB) dVCB. (General form of drain current)

(7.87)

We have not yet used the strong inversion approximation in our
derivation so far.

7.4.1.5 Drain Current in Strong Inversion (Nonsaturation Region)

We now use Assumptions 6 and 7 on p. 250 to give the inversion
charge by (7.77) on p. 250. Putting (7.77) in (7.87) and integrating,
we obtain the following expression for the drain current (Problem 7.7
on p. 266).

IDS = 𝜇nWCox

L {(VGB − Vfb − 𝜓sT)(VDB − VSB) − 1
2(V2

DB − V2
SB)

− 2
3𝛾[(𝜓sT + VDB)3/2 − (𝜓sT + VSB)3/2]}. (7.88)

Note that the drain voltage VDB needs to be limited so that the entire
channel is strongly inverted. Recalling the pinch-off argument from p.
255, VDB must satisfy

0 ≤ VSB < VDB ≤ VP, (Strong inversion and nonsaturation)
(7.89)
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Saturation
region

Nonsaturation
region

FIGURE 7.26 The IDS-VDB characteristic of an nMOSFET.

which is more restrictive than (7.71) on p. 249 (see also Fig. 7.22 on p.
245). Equation (7.89) can be regarded as the definition of the nonsat-
uration region. A plot of IDS with VDB on the horizontal axis is shown
in Fig. 7.26.

7.4.1.6 Drain Current in the Saturation Region

The region where the drain voltage VDB satisfies

VDB ≥ VP (Saturation region) (7.90)

is the saturation region. When VDB = VP, pinch-off occurs exactly
at the drain end (x = L). When VDB > VP, the pinch-off onset point
moves to a position x = L′ (< L), where VCB (L′) = VP holds. The
larger VDB is, the smaller L′ is. This phenomenon, in which the effec-
tive channel length L′ changes depending on the applied drain voltage,
is called channel-length modulation. The range L′ ≤ x ≤ L is weakly
inverted. In this case, it is known that the current remains approxi-
mately the same as whenVDB = VP in (7.88) and is almost independent
of VDB − VSB, provided the channel length L is sufficiently long. The
current in this saturation region is given by

IDSsat = 𝜇nWCox

L {(VGB − Vfb − 𝜓sT)(VP − VSB) − 1
2(V2

P − V2
SB)

− 2
3𝛾[(𝜓sT + VP)3/2 − (𝜓sT + VSB)3/2]}. (7.91)

The drain current that is independent of VDB − VSB is convenient
and important for realizing amplifier circuits.
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FIGURE 7.27 The slope of surface potential 𝜓s at the source end (x = 0) does
not change significantly due to channel-length modulation.

The qualitative reason why the saturation drain current (7.91) does
not depend on VDB − VSB is as follows. In the pinched-off region
(L′ ≤ x ≤ L), the inversion charge is drastically reduced, so its resis-
tance increases according to the conductivity equation (5.52) on p.
138. As a result, the voltage VDB −VP applied beyond VP mostly drops
across the pinched-off region. Then, the pinched-off region will also
have a larger electric field in the x-direction, and the gradual-channel
approximation will no longer hold in that part of the channel. How-
ever, it can be shown that the electric field intensity at the source end
does not change very much by increasing VDB beyond VP (Fig. 7.27).
Recall that the DC drain current IDS is independent of the position x
(p. 251). The insensitivity of the electric field at the source end to VDB
dictates the almost constant drain current in the saturation region [2]
(Fig. 7.26). The current is approximately determined by the region
0 ≤ x ≤ L′ where the gradual-channel approximation holds. The satu-
ration drain current is given by (7.91) with L replaced by the effective
channel length L′ (< L). But as long as L is large and L′/L is close to
unity, (7.91) can be used as is.

7.4.1.7 Approximation That Neglects Depletion Charge

Although the formula for the back-gate-referenced drain current has
been derived, the depletion charge is sometimes neglected to simplify
the formula. This corresponds to setting the body-effect coefficient (p.
235) to 𝛾 → 0 in previous equations. The theoretical basis for doing
so is tenuous (unless the substrate is undoped), but the equations
do become very simple. Simplifying the equations has the important
advantage of making the concept of pinch-off easier to understand by
looking at the equations.
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Let us look at some equations in detail. When 𝛾 = 0, from (7.67)
on p. 245, the pinch-off voltage is

VP = VGB − Vfb − 𝜓sT. (Pinch-off voltage ignoring body effect)
(7.92)

Equation (7.92) says that increasing the gate voltage increases VP
and makes it harder to pinch off the channel (see Fig. 7.22 on p. 245).
The threshold voltage VTB is, from (7.78) on p. 250,

VTB (x) = Vfb + 𝜓sT + VCB (x) . (7.93)

The inversion charge can be written using (7.77) on p. 250 as

Qinv (x) = { −Cox [VGB − VTB (x)] (VGB ≥ VTB)
0 (VGB < VTB) (VGB-controlled) (7.94)

= { −Cox [VGB − Vfb − 𝜓sT − VCB (x)] (VGB ≥ VTB)
0 (VGB < VTB)

= { −Cox [VP − VCB (x)] (VCB ≤ VP)
0 (VCB < VP) . (VCB-controlled) (7.95)

Equations (7.94) and (7.95) are similar in form, which corresponds
to the similarity between Fig. 7.21 on p. 245 and Fig. 7.22 on p. 245.

The drain current equation also becomes simpler and easier to
grasp. Assuming 𝛾 = 0 in (7.88) on p. 252 for the current in the
nonsaturation region, we get

IDS = 𝜇nWCox

L [(VGB − Vfb − 𝜓sT) (VDB − VSB) − 1
2 (V2

DB − V2
SB)]
(7.96)

= 𝜇nWCox

L [VP (VDB − VSB) − 1
2 (V2

DB − V2
SB)]

= 𝜇nWCox

2L [(VP − VSB)2 − (VP − VDB)2] . (Nonsaturation)

(7.97)

We used the pinch-off voltage equation (7.92) on p. 255 to arrive at
the second line. If it is difficult to see how to go from the second line
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B

GS D

FIGURE 7.28 A source-referenced four-terminal nMOSFET.

to the third line (7.97), you can expand the latter to get the equation
in the second line. In (7.97), the effect of gate voltage is incorporated
into VP via (7.92). Equation (7.97) is highly symmetric with respect to
the swapping of VDB and VSB (only the sign changes because the direc-
tion of the current reverses when they are swapped), and the relation
to (7.95) for the inversion charge can be easily seen.

Setting 𝛾 = 0 in the saturation drain current equation (7.91) on p.
253 yields

IDSsat = 𝜇nWCox

2L (VP − VSB)2. (Saturation drain current) (7.98)

From (7.90) on p. 253, the boundary between nonsaturation and
saturation regions is VDB = VP, so the relation between (7.97) and
(7.98) should also be clear.

7.4.2 Source-Referenced Analysis

Here, we will rewrite equations using source-referenced terminal volt-
ages as shown in Fig. 7.28 on p. 256. This is the traditional treatment.
This is more convenient when considering the correspondence with
actual circuits, but the symmetry of the equations is broken, and the
resulting equations are not as insightful as the back-gate-referenced
case.

From Fig. 7.28, the equations needed for transforming the back-
gate-referenced representation to the source-referenced representation
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are as follows:

⎧⎪
⎨⎪
⎩

VGB = VGS + VSB,
VDB = VDS + VSB,
VSB = −VBS.

(7.99)

This situation is similar2 to the three-terminal MOS structure we
considered in Fig. 7.24 on p. 247, where the terminal C was the datum
node. With this in mind, set 𝛾 = 0 in (7.70) on p. 247 for VTC, and let
the result be the threshold voltage VT (see Fig. 7.6 on p. 219).

VT ≡ Vfb + 𝜓sT, (Threshold voltage ignoring body effect) (7.100)

where the flat-band voltage Vfb is given by (7.4) on p. 224 and 𝜓sT by
(7.43) on p. 236. In (7.100), the x-dependence of the threshold volt-
age due to the fact that VDB > VSB is obscured. Thus, the MOSFET
threshold voltage is a convenient but rather ambiguous quantity.

Assuming VSB = 0 in (7.96) for the drain current in the nonsatura-
tion region (Fig. 7.5 on p. 219), since VDB = VDS (Fig. 7.28), we can
then use (7.100) to obtain (7.1) on p. 220 for the drain current.

7.5 SCALING AND SHORT-CHANNEL MOSFETS

7.5.1 MOSFET Scaling

In §1.4, it was mentioned that the smaller the MOSFET, the better
the performance. Here, we will investigate how the characteristics
of MOSFETs depend on their dimensions and the supply voltage.
Changing device dimensions or supply voltage is called scaling.

Since the basic usage of MOSFETs is to operate them in the satu-
ration region, we will use the saturation drain current equation (7.2)
on p. 220. Inserting VGS = Vdd (supply voltage) into (7.2) leads to

IDSsat = 𝜇nWCox

2L (Vdd − VT)2. (Saturation drain current) (7.101)

Based on this equation, let us consider what happens if we change
the parameters that can be manipulated (i.e., L, W, tox, Vdd, etc. in Fig.
7.29).

The scaling scenarios we consider are as follows:

2 Not exactly the same unless VDB = VSB.
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FIGURE 7.29 Scaling parameters of MOSFET.

TABLE 7.2 MOSFET Scaling Law

 Constant- Constant- Dimensions 1/𝜅
Parameters field voltage Voltage 1/U

 (U = 𝜅) (U = 1)  
Dimensions (L, W, tox) 1/𝜅 1/𝜅 1/𝜅
Supply voltage Vdd 1/𝜅 1 1/U
Doping density 𝜅 𝜅2 𝜅2/U
Gate area LW 1/𝜅2 1/𝜅2 1/𝜅2

Gate oxide capacitance per area Cox 𝜅 𝜅 𝜅
Gate capacitance Cgate = LWCox 1/𝜅 1/𝜅 1/𝜅
Saturation drain current IDSsat 1/𝜅 𝜅 𝜅/U2

On resistance Ron = Vdd/IDSsat 1 1/𝜅 U/𝜅
Delay 𝜏 = RonCgate 1/𝜅 1/𝜅2 U/𝜅2

Clock frequency fclk∝ 1/𝜏 𝜅 𝜅2 𝜅2/U
Switching energy CgateV2

dd
1/𝜅3 1/𝜅2 1/𝜅U2

Switching power fclkCgateV2
dd

1/𝜅2 1 𝜅/U3

Devices per area (∝ 1/ (LW)) 𝜅2 𝜅2 𝜅2

Power consumption per area 1 𝜅2 𝜅3/U3

1. Constant-electric-field scaling. Parameters are scaled such that the
electric field intensity in the device stays constant. If device dimen-
sions are multiplied by a factor of 1/𝜅 (𝜅 > 1), the supply voltage
must also be multiplied by 1/𝜅.

2. Constant-voltage scaling. The supply voltage is kept constant and
dimensions are multiplied by 1/𝜅.

3. Generalized scaling. Dimensions are multiplied by 1/𝜅, and the
supply voltage is multiplied by 1/U (U > 1).

Table 7.2 summarizes the results of the calculations based on (7.101).
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Let us examine the contents of the table. Here we need to consider
how to scale the doping density. When the device dimensions are mul-
tiplied by a factor of 1/𝜅, we want the depletion layer thickness to
also be multiplied by a factor of 1/𝜅. Looking at expression (7.37) on
p. 235 for the depletion layer thickness db, we see that for constant-
electric-field scaling, 𝜓s is a quantity that should become 1/𝜅 times.
To make db → db/𝜅, the acceptor ion density N−

A should be multiplied
by 𝜅. Noting that Cox ∝ 1/tox, with constant-electric-field scaling, the
gate capacitance Cgate and current become smaller (×1/𝜅), but the on
resistance remains constant. Therefore, the delay, which is determined
by the RC time constant, becomes 1/𝜅 times. So the clock frequency
fclk, which determines the speed of digital circuits, can be multiplied
by 𝜅. Alternatively, digital circuits can be made lower-power by keep-
ing fclk constant. Since the number of MOSFETs per unit area can be
made 𝜅2 times, more complex circuits can be made in the same area.
When fclk is multiplied by 𝜅, the power consumption per unit area is
the same as before scaling. This means that we can expect to create
circuits with higher performance at the same power consumption by
applying constant-electric-field scaling.

In the case of constant-voltage scaling, the power density increases,
and it makes it difficult for the circuit to dissipate all the heat gen-
erated. The performance improvement brought about by constant-
electric-field scaling motivated the miniaturization of MOSFETs and
the higher levels of integration, and it became the guiding principle
for the development of integrated circuits (§1.4). In practice, gener-
alized scaling with 𝜅 > U ≥ 1 is more realistic because it is difficult
to lower the supply voltage proportionally to the reduction of device
dimensions.

One thing that Table 7.2 does not properly take into account is
the scaling of the threshold voltage VT. In Table 7.2, it is implicitly
assumed that VT is scaled in the same way as the supply voltage.
However, (7.100) on p. 257 and (7.4) on p. 224 indicate that VT
is not directly related to the supply voltage, but is determined by
things like the work functions of materials. Therefore, the threshold
voltage does not obey the scaling law. There are various nonideal fac-
tors of this kind, and various innovations are required for MOSFET
miniaturization.
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FIGURE 7.30 Channel-length modulation seen in IDS-VDS characteristics.

7.5.2 Short-Channel Effects

As the MOSFET dimensions are reduced more and more, the channel
length L becomes too small to apply the gradual-channel approxi-
mation (p. 249). Such MOSFETs are called short-channel MOSFETs.
Various characteristic degradations occur in short-channel MOSFETs.
This is called the short-channel effect in a broad sense. In a narrow
sense, the ”short-channel effect” refers to the phenomenon in which
the threshold voltage decreases as the channel length becomes shorter.
Minimizing the degradation of characteristics of short-channel MOS-
FETs is an important issue in MOSFET research and development.
There are a myriad of specific topics related to the degradation of
short-channel MOSFET characteristics, but it is beyond the scope of
this book to discuss them in detail. In the following, only two topics
related to those already mentioned earlier will be discussed.

7.5.2.1 Channel-Length Modulation

As the channel length L becomes shorter, the effective channel length
L′ (< L) (p. 253) cannot be regarded as sufficiently close to L (i.e.,
L′/L ≃ 1), and channel-length modulation becomes significant. As a
result, the drain current in the saturation region becomes dependent
on the drain voltage VDS as shown in Fig. 7.30. Channel-length mod-
ulation leads to a reduction in circuit performance (e.g., reduction in
the gain of amplifier circuits).

Gradual-channel approximation considers only the one-
dimensional Poisson equation in the y-direction. When channel-length
modulation is significant, the x-direction electric field cannot be
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FIGURE 7.31 Carrier drift velocity versus electric field exhibiting velocity
saturation.

ignored in the region L′ ≤ x ≤ L. Therefore, a two-dimensional Pois-
son equation must be considered. This makes analytical treatment
difficult.

7.5.2.2 Carrier Velocity Saturation

When a MOSFET is miniaturized, the electric field in it becomes very
large because constant-electric-field scaling is not possible. Carrier
scattering then becomes so intense that the proportional relationship
between the carrier drift velocity and the electric field in (5.47) and
(5.49) on p. 136 no longer holds. As the electric field ℰ increases,
the drift velocity saturates vdrift at a constant value as shown in Fig.
7.31. This phenomenon is the carrier velocity saturation. If vdrift ∝ ℰ
does not hold, then all results derived using linear response mobility
are not correct, as described in the Box on p. 139. Instead, equations
must be derived using (5.27) through (5.30) on p. 130. The scaling
law in Table 7.2 was also derived using mobility, so the results will be
somewhat different when velocity saturation occurs.

It is safe to assume that velocity saturation always occurs in today’s
small MOSFETs. Moreover, around p. 251, we developed a rather
dubious argument related to the channel potential, and on p. 248, we
made various (not necessarily correct) assumptions. Therefore, there
is not much point in trying to memorize the equations that appeared
earlier and the results in Table 7.2.

Rather, what is more important is to acquire the ability to derive
various results based on basic principles and make physical sense of
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TCAD simulation data. To this end, we focused on the fundamen-
tals and explained the meaning of the quasi-Fermi levels and how to
read energy band diagrams in great detail (Chapter 5). As an applica-
tion example of the basic principles, we also revisited the conventional
assumptions of p-n junction analysis (Chapter 6), which can be said to
be the origin of the somewhat “questionable” development above. As
a result, we had to say some things that are different from the expla-
nations in existing books. We hope that this book will help readers
recognize the importance of fundamentals.

MOSFET SCALING LAW

As for the scaling law in Table 7.2 (p. 258), it might seem that
the parameters were determined arbitrarily. However, the Pois-
son equation was used by Dennard, Gaensslen, and others to
derive constant-electric-field scaling [10]. The dimensions and
doping levels were determined so that the Poisson equation is
conserved as much as possible before and after scaling.

Let us consider once again what the scaling law is. It gives
guidelines on how to determine the channel length, oxide thick-
ness, and doping density of the substrate to obtain the saturation
characteristics when the channel length is shortened, assuming
that the long-channel MOSFET to start with has ideal current-
voltage characteristics (see Fig. 7.6 on p. 219). The current-
voltage characteristics are maintained before and after scaling.
This means that if the characteristics of the device before scal-
ing are poor, the characteristics of the device after scaling (i.e.,
miniaturization) will remain poor. In scaling, only bad chil-
dren are born from bad parent devices. However, in practice,
good parent devices do not automatically produce good children
by simple scaling—this is the short-channel effect. So various
measures are needed to maintain good device characteristics.

If we try to generalize the scaling law, we need to consider
three factors.

1. What we want to scale. (In ordinary device scaling, it is
primarily the device dimensions that we want to scale.)

2. On what basis do we do it. (The basis is the Poisson
equation.)
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3. What is maintained before and after scaling? (Electric field
distribution is preserved.)

Thinking along these lines, parameters other than dimensions
and supply voltage, such as device operating temperature, can
also be considered scalable. To reduce the operating temperature
from 300 K (room temperature) to 77 K (liquid nitrogen temper-
ature), we can derive a scaling law for the operating temperature
based on the Fermi−Dirac distribution function while keeping
the carrier distribution constant [39]. The author (Masu) first
considered this temperature scaling theory in the late 1980s, but
the need for MOSFETs operating at cryogenic temperatures is
arising much more at the time of writing than it was then, espe-
cially due to the rapid development of quantum computers (see
Problem 7.12 on p. 267). Table 7.2 may seem like just a list of
parameters, but we hope you will see that it is based on physical
phenomena and that there are other possibilities beyond those
shown in this table.

7.6 SUMMARY

In this chapter, the structure and characteristics of MOSFETs are
reviewed, and the DC current-voltage characteristics of planar long-
channel MOSFETs are derived by considering the device physics of
MOS capacitors, three-terminal MOS structures (i.e., gated diodes),
and four-terminal MOSFETs.

● A standard planar MOSFET has four terminals: gate, back gate,
drain, and source.

● The surface conditions on the semiconductor side of a MOS
capacitor are classified as accumulation, flat band, depletion,
weak inversion, and strong inversion.

● The channel of a MOSFET is an inversion layer formed on
the surface of the semiconductor substrate by applying a gate
voltage.

● The degree of inversion at the substrate surface increases as
the gate voltage is increased, whereas the degree of inversion
decreases as the channel potential is increased.
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● In the nonsaturation region, the entire channel between the
source and drain is strongly inverted, but in the saturation
region, the channel near the drain is pinched off and weakly
inverted.

● The MOSFET scaling law served as a powerful guiding principle
for the development of MOSFETs and integrated circuits.

7.7 PROBLEMS

7.1 The “saturation region” in the transistor current-voltage charac-
teristics has very different meanings for MOSFETs (Fig. 7.6 on p.
219) and bipolar transistors (p. 46). Search the Internet and find
out the difference.

FIGURE 7.32 A TCAD-drawn 3D energy band diagram of an nMOSFET
biased into the saturation region. Channel length is 1 µm. The channel is
formed on the near side. The source is on the left-hand side and the drain is
on the right-hand side.
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FIGURE 7.33 A TCAD-drawn 3D energy band diagram of an nMOSFET
biased into the saturation region viewed from a different angle.

7.2 The drain voltage at the boundary between the nonsaturation and
saturation regions in Fig. 7.6 on p. 219 is given by VDS = VGS−VT.
Derive this equation from (7.1) on p. 220 for the drain current in
the nonsaturation region.

7.3 The energy band diagrams for a MOS capacitor in Fig. 7.12 (p.
226) to Fig. 7.16 (p. 232) do not include electrons, holes, and
dopant atoms. Draw energy band diagrams including electrons,
holes, and dopant atoms (both ionized and nonionized). Also,
draw an energy band diagram for the case where the gate voltage
is higher than in Fig. 7.16.

7.4 The energy band diagrams for a MOS capacitor in Fig. 7.12 (p.
226) to Fig. 7.16 (p. 232) are drawn as if there were no work
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FIGURE 7.34 A TCAD-drawn 3D energy band diagram of an nMOSFET
biased into the saturation region viewed from yet another angle.

function difference between the gate metal and the silicon sub-
strate (p. 225). Redraw band diagrams for the cases where 𝜑SM >
0 and 𝜑SM < 0.

7.5 Use equations (7.56) on p. 239 and (7.35) on p. 235 to numeri-
cally find the surface potential 𝜓s as a function of the gate voltage
VGB. Plot 𝜓s and the induced charge Qgi as functions of VGB.

7.6 Derive (7.67) on p. 245 for the pinch-off voltage.

7.7 Derive (7.88) on p. 252 for the drain current in the nonsaturation
region.

7.8 The back gate is sometimes used as a second control terminal of
the MOSFET. If the source-referenced back gate voltage VBS is
raised or lowered (assuming |VBS| ≪ VDS), how will the drain cur-
rent change? Consider it using (7.96) on p. 255 and (7.88) on p.
252 in turn.

7.9 Figs. 7.32 through 7.34 show TCAD-drawn 3D energy band dia-
grams of an nMOSFET biased into the saturation region. If you
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have already gone through other books on semiconductor devices,
you might have come across a somewhat similar-looking band dia-
gram, which probably is Fig. 1(d) of [21]. It is reproduced in [30]
as Fig. 8 of Chapter 6. Honestly, we had difficulty making good
sense of this famous energy band diagram (see also Problem 6.7
on p. 213). Try taking a look at this famous band diagram and
see if you can make sense of it. If you are like us, and if you have
access to a device simulator, try drawing energy band diagrams
like Figs. 7.32 through 7.34, and see if they make any better sense.
Do the quasi-Fermi levels behave as assumed in §7.4.1.3? We are
interested to hear how it turns out.

7.10 Use (7.57) through (7.59) on p. 243 and modify equation (7.56)
on p. 239 for the induced charge Qgi so that the latter can be used
for the four-terminal MOSFET. The result can be used to find the
IDS-VGS characteristics in all regions of operation, including the
subthreshold region (see Fig. 7.7 (p. 219)).

7.11 The subthreshold current of an nMOSFET can be approximated
as

IDS = IDS0eq(VGS−VT)/nkT (VGS < VT) , (7.102)

where IDS0 and n ≃ dVGS/d𝜓s (≥ 1) are constants.

S = 𝜕VGS

𝜕 logIDS
(VGS < VT) (7.103)

is called the subthreshold swing (in millivolts per decade
(mV/dec)). Ideally, S is about 60 mV/dec at room temperature
(with n = 1), but in practice, S is about 80 mV/dec or larger. Try
plotting a logIDS-VGS curve using (7.102) for VGS < VT and (7.1)
on p. 220 for VGS > VT. Does it go smoothly?

7.12 Consider the current-voltage characteristics of an nMOSFET at
cryogenic temperatures. How does the drain current change com-
pared to higher temperatures? How about the threshold voltage
and the subthreshold current?

7.13 The contact potential 𝜑SM between the gate metal and the silicon
substrate (Fig. 7.9(b) on p. 222) is encoded in the flat-band volt-
age (7.4) on p. 224. The contact potential cannot be measured
directly using a voltmeter (p. 6.7). Is there a way to somehow find
𝜑SM via measurements of appropriately prepared MOS capacitor
samples?
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Appendix

A.1 MATRIX REPRESENTATIONS OF A TWO-PORT

A.1.1 ABCD-Matrix

Let us define the ABCD-matrix of the two-port network1 shown in
Fig. A.1. A port is a terminal pair satisfying certain conditions.2 An
ABCD-matrix is also known as an F-matrix, chain matrix, or trans-
mission matrix. Normally, the port current is defined as the current
flowing into the positive terminal (and flowing out of the negative ter-
minal), but the current I2 at port 2 in Fig. A.1 is defined as the current
flowing out from the positive terminal. 

The ABCD-matrix 𝐅 is a matrix that relates the voltage and current
at port 1 (V1 and I1) to the voltage and current at port 2 (V2 and I2),
as given in (A.1).

[ V1
I1

] = 𝐅 [ V2
I2

] = [ A B
C D ] [ V2

I2
] . (A.1)

The elements of an ABCD-matrix are called ABCD-parameters.
Note that the elements of 𝐅 have different dimensions.

A = V1
V2

|
|
|I2=0

(Dimensionless) (A.2)

B = V1
I2

|
|
|V2=0

(Dimensions of resistance) (A.3)

1 A “two-port network” is also abbreviated as a “two-port.”
2 A pair of terminals can be regarded as a port if (i) the current flowing into one of the terminals
is equal to the current flowing out of the other terminal, and (ii) the two terminals are located
close to each other compared with the wavelength.

269
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FIGURE A.1 Definitions of port voltages and port currents for an ABCD
matrix.

FIGURE A.2 Definitions of port voltages and port currents for cascaded
two-ports.

C = I1
V2

|
|
|I2=0

(Dimensions of conductance) (A.4)

D = I1
I2

|
|
|V2=0

(Dimensionless) (A.5)

The ABCD-matrix is useful for calculating the characteristics of
two-ports in a cascade connection as shown in Fig. A.2. Suppose that
the ABCD-matrix of the left two-port is 𝐅1 and that of the right two-
port is 𝐅2. Then the ABCD-matrix of the cascaded two-ports is given
by the product of the two ABCD-matrices as follows:

[ V1
I1

] = 𝐅1 [ V2
I2

] = 𝐅1𝐅2 [ V3
I3

] . (A.6)

Fig. A.3 shows some examples of ABCD-matrices.

A.1.2 S-Matrix

Quantum mechanics, which is the basis of the band theory of solids,
considers quantities such as the reflection coefficient and the transmis-
sion coefficient of electrons behaving as waves. To obtain the corre-
sponding quantity in circuit theory, let us consider a matrix called the
scattering matrix or S-matrix.
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FIGURE A.3 Examples of ABCD matrices. Z is impedance. Y is admittance.
(a) Series impedance. (b) Parallel admittance. (c) T-network.

FIGURE A.4 S-matrix relates incoming traveling wave phasors, ai, to outgo-
ing traveling wave phasors, bi.

Unlike most matrix representations of a two-port, including the
ABCD-matrix, the input and output variables of the S-matrix are not
the voltage and current at each port. Instead, the S-matrix uses as
variables the voltage traveling waves flowing into and out of each
port. The traveling wave entering port i of a two-port is customarily
denoted by ai, and the traveling wave flowing out of port i is denoted
by bi, as shown in Fig. A.4.

[ b1
b2

] = 𝐒 [ a1
a2

] = [ S11 S12
S21 S22

] [ a1
a2

] . (A.7)

The elements of an S-matrix are called S-parameters.
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Since we are considering the frequency domain, both ai and bi are
phasors. Note, however, that ai and bi are not exactly the voltage
traveling wave phasors as in V± in (3.28) on p. 63, but are cus-
tomarily defined as the voltage traveling wave phasors divided by
√Rref, a quantity that has the dimensions of the square root of resis-
tance. Rref is called the reference resistance [1], and it is customary
to set Rref = 50 Ω. The value of Rref is related to the characteristic
impedance of the transmission line connected to the device whose S-
parameters are to be measured. The diagonal elements S11 and S22
of (A.7) are reflection coefficients, and the off-diagonal elements S21
and S12 are transmission coefficients. Since these are ratios between
phasors, S-parameters are complex-valued. The reflection and trans-
mission coefficients of electrons as waves, mentioned earlier, are real
numbers and correspond to |S11|2 and |S21|2.

An ABCD-matrix can be converted to an S-matrix by the following
formula.

𝐒 = 1
ARref + B + CR2

ref
+ DRref

× [ ARref + B − CR2
ref

− DRref 2 (AD − BC)Rref

2Rref −ARref + B − CR2
ref

+ DRref
] .

(A.8)

A.2 NTH POWER OF UNIMODULAR MATRIX

For a 2 × 2 matrix

𝐅 = [ A B
C D ] (A.9)

let 𝜉 be

𝜉 ≡ A + D
2 . (A.10)

By the Cayley–Hamilton theorem, the following equality holds:

𝐅2 − 2𝜉𝐅 + det𝐅 ⋅ 𝟏2 = 𝐅2 − (A + D) 𝐅 + (AD − BC) 𝟏2 = 𝟎2, (A.11)
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where

𝟏2 ≡ [ 1 0
0 1 ] , (2 × 2 identity matrix) (A.12)

𝟎2 ≡ [ 0 0
0 0 ] . (2 × 2 zero matrix) (A.13)

Let us assume now that the determinant of 𝐅 equals unity as
follows.

det𝐅 = AD − BC = 1 (A.14)

The F-matrix of a reciprocal two-port (see the Box on p. 48) is
known to satisfy (A.14). A matrix with a unity determinant is called
a unimodular matrix. Putting (A.14) in (A.11), we get

𝐅2 = 2𝜉𝐅 − 𝟏2. (A.15)

Since the right-hand side of (A.15) contains only the first power of
𝐅, we can use (A.15) repeatedly to lower the order of higher powers
of 𝐅. 𝐅N can, therefore, be expressed as

𝐅N = 𝐅UN−1 (𝜉) − 𝟏2UN−2 (𝜉) , (A.16)

where UN (𝜉) is a certain function. Equation (A.15) corresponds to the
case where N = 2 in (A.16), with U1 (𝜉) = 2𝜉 and U0 (𝜉) = 1. If we
can find the function UN (𝜉), then we have, in effect, computed 𝐅N. So
we will look further into UN (𝜉) in the following.

First, multiplying (A.16) by 𝐅 yields

𝐅N+1 = 𝐅2UN−1 (𝜉) − 𝐅UN−2 (𝜉) . (A.17)

Putting (A.15) into the right-hand side of (A.17) and lowering the
order of the first term yields

𝐅N+1 = (2𝜉𝐅 − 𝟏2)UN−1 (𝜉) − 𝐅UN−2 (𝜉) . (A.18)

Next, with the substitution N → N + 1 in (A.16), we have

𝐅N+1 = 𝐅UN (𝜉) − 𝟏2UN−1 (𝜉) . (A.19)

Since the left-hand sides of (A.18) and (A.19) are equal, so are the
right-hand sides. Thus,

(2𝜉𝐅 − 𝟏2)UN−1 (𝜉) − 𝐅UN−2 (𝜉) = 𝐅UN (𝜉) − 𝟏2UN−1 (𝜉) (A.20)
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2𝜉𝐅UN−1 (𝜉) − 𝐅UN−2 (𝜉) = 𝐅UN (𝜉) . (A.21)

Focusing only on the coefficients of 𝐅 and replacing N with N + 2,
we obtain the following recurrence formula:

UN+2 (𝜉) − 2𝜉UN+1 (𝜉) + UN (𝜉) = 0.(N = 1, 2,⋯) (A.22)

At this point, we need to invoke a known mathematical fact that,
unfortunately, does not logically follow from the above derivation:
the function UN (𝜉) that satisfies (A.22) is a special function known as
the Chebyshev polynomial of the second kind.

UN (𝜉) =
sin [(N + 1) cos−1𝜉]

sin (cos−1𝜉) . (A.23)

We can now use (A.23) in (A.16) to compute 𝐅N.



Solutions to Selected
Problems

A.3.1 CHAPTER 1

1.1 (p. 26) Left to the reader.

1.2 (p. 26) Left to the reader.

1.3 (p. 26) 1 eV is the kinetic energy obtained by accelerating an ele-
mentary charge q by a potential difference of 1 V and is equal to
1.6×10−19 J. Therefore, an energy value in joules can be converted
to that in electron volts by dividing the former by q. Thus,

kT
q ≃ 0.026 eV = 26 meV. (A.24)

See also (7.44) on p. 236.

1.4 (p. 26) According to Table 1.3 (p. 5), 1 cm3 of crystalline silicon
contains 5 × 1022 silicon atoms. So the boron atomic density is
found by dividing this number by 105 to be 5 × 1017 cm−3. This
is a typical value for the dopant density of nondegenerate silicon.
Since the hole density is p = 5 × 1017 cm−3 and the intrinsic car-
rier density is ni = 1 × 1010 cm−3, the hole density has become
p/ni = 5 × 107 times after acceptor doping. According to (5.54) on
p. 139, the conductivity due to hole conduction is proportional to
the hole density p, so such a small amount of doping dramatically
changes the conductivity. However, in reality, as doping density
increases, Coulomb scattering by dopant ions increases (see Prob-
lem 5.7 on p. 164), and the mean free time (p. 135) becomes
shorter. As a result, the mobility decreases. Also, as the doping
density increases, the ionization rate of dopants decreases. So in
practice, the conductivity does not increase proportionally to the
doping density.

275
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1.5 (p. 26) The equation for the balance between the Coulomb force
and the centrifugal force acting on an electron orbiting a donor
ion nucleus is given by

q2

4𝜋𝜖Sir2 = mer𝜔2, (A.25)

where r is the radius of the orbit, and 𝜔 is the angular frequency.
From Table 1.3 (p. 5), the dielectric constant of silicon is 𝜖Si =
12𝜖0. Bohr’s quantization condition can be written as

mer2𝜔 = nh
2𝜋 (A.26)

where n is a positive integer. Eliminating 𝜔 from (A.25) and
(A.26), we obtain

r = 𝜖Sin2h2

q2me𝜋 (A.27)

This is (𝜖Si/𝜖0) (m0/me) n2 times the Bohr radius, rB, of the hydro-
gen atom.

rB = 𝜖0h2

q2m0𝜋 ≃ 0.53Å. (A.28)

When n = 1, (𝜖Si/𝜖0) (m0/me) ≃ 12 and r ≃ 6.4 Å.
The lattice constant of the silicon crystal is about 5.43 Å, and

the nearest-neighbor atomic spacing is about 2.3 Å. Therefore, in
Fig. 1.10 (p. 18, the conduction electron, which should be free
from donor binding, is drawn too close to the donor ion.

Now, the potential energy of the electron in the ground state is
given by

− q2

4𝜋𝜖Sir
. (A.29)

The kinetic energy of the electron in the ground state is given by

mer2𝜔2

2 = mer𝜔2 r
2 = q2

4𝜋𝜖Sir2
r
2 = q2

8𝜋𝜖Sir
, (A.30)

where we used (A.25). The sum of (A.29) and (A.30) is
−q2/ (8𝜋𝜖Sir), and therefore, the ionization energy is

q2

8𝜋𝜖Sir
. (A.31)
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Since the ionization energy of the ground-state hydrogen atom is

q2

8𝜋𝜖0rB
≃ 13.6 eV, (A.32)

the ionization energy of the donor is

q2

8𝜋𝜖Sir
= q2

8𝜋𝜖0rB
𝜖0rB
𝜖Sir

≃ 13.6 × 1
122 ≃ 0.09 eV. (A.33)

This result is roughly consistent with the statement on p. 19 that
the donor level is several tens of millielectron volts (meV) below
Ec. Since r ≃ 6.4 Å is not very much larger than the atomic
spacing, it is questionable whether it is appropriate to use the
dielectric constant of silicon in the calculation, but the result is
quite reasonable. In other semiconductors (or even in silicon,
depending on the crystal orientation), the effective mass of the
electron is often much smaller, so the radius of the orbital is
much larger.

1.6 (p. 27) The hole and electron densities of an intrinsic semiconduc-
tor, before adding any donors, are equal to the intrinsic carrier
density (p. 8). When the intrinsic semiconductor is doped with
donors, electrons are supplied by them, so the electron density
becomes n > ni. However, since there is no supply of holes, one
might think that p = ni would persist. However, it turns out in
§4.3.1 that that is not the case and p < ni.

1.7 (p. 27) The authors do not know the correct answer, and it should
also depend on when the reader is trying to solve this problem.
You should be able to find the yearly shipments of semiconductor
integrated circuits and memory by searching.

As an example of a rough estimate, how about estimat-
ing how many MOSFETs there are by estimating the num-
ber of MOSFETs you have (infer from the product specifica-
tions of your electronic equipment), multiplying it by Earth’s
population, and then multiplying it by some “correction fac-
tor,” considering penetration rates of such equipment? Has the
number of MOSFETs you have had increased exponentially
over the years?

This type of quick and rough estimation problem is sometimes
called “Fermi estimation.”
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FIGURE A.5 Current-voltage characteristics of the ideal rectifier.

A.3.2 CHAPTER 2

2.1 (p. 49) The graph is shown in Fig. A.5. The incremental conduc-
tance is given by

Ginc (V) = { 0 (V < 0)
∞ (V = 0) . (A.34)

2.2 (p. 49)

V (t) = dΦ (t)
dt

= dΦ (I)
dI

dI (t)
dt

= Linc (I) dI (t)
dt

. (A.35)

2.3 (p. 49) Since the superposition principle does not hold for non-
linear circuits, all theorems derived from it cannot be applied to
nonlinear circuits. Only Kirchhoff’s voltage and current laws are
applicable to nonlinear lumped circuits. Therefore, nonlinear cir-
cuit simulators rely on Kirchhoff’s laws. However, it is not that
theorems for linear circuits are completely useless for nonlinear
circuits. In analog circuits, small-signal responses of nonlinear cir-
cuits are often considered. In such a case, a nonlinear circuit is
linearized around a bias point and the response of the resulting
linear circuit is used.
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A.3.3 CHAPTER 3

3.1 (p. 85) Notice that the infinite CL ladder shown in Fig. 3.25 (p.
85) obviously blocks DC voltage and current. Putting Z = (j𝜔C)−1

and Y = (j𝜔L)−1 in (3.7) on p. 57, we obtain

Z′
in = ±√1 − 4𝜔2LC

2j𝜔C . (A.36)

Since 1 − 4𝜔2
cLC = 0 holds at the cutoff angular frequency 𝜔c, it is

given by

𝜔c = 1
2√LC

. (Cutoff angular frequency of CL ladder) (A.37)

The input impedance Z′
in of an infinitely long CL ladder can be

rewritten using 𝜔c as follows.

Z′
in = ± 1

2j𝜔C√1 − ( 𝜔
𝜔c

)
2
. (A.38)

The solution with ℜ (Z′
in) ≥ 0 must be chosen. Z′

in is purely imag-
inary when |𝜔| < 𝜔c and real when |𝜔| ≥ 𝜔c. In other words, the
CL ladder has high-pass characteristics.

3.2 (p. 85) Differentiate the telegrapher’s equation (3.18) on p. 62 by
x and insert (3.19).

𝜕2v(x, t)
𝜕x2 = −L 𝜕

𝜕x
𝜕i(x, t)

𝜕t = −L 𝜕
𝜕t

𝜕i(x, t)
𝜕x

= LC 𝜕
𝜕t

𝜕v(x, t)
𝜕t = LC

𝜕2v(x, t)
𝜕t2 . (A.39)

This is the wave equation (3.20).
Next, differentiate (3.19) by x and insert (3.18).

𝜕2i(x, t)
𝜕x2 = −C 𝜕

𝜕x
𝜕v(x, t)

𝜕t = −C 𝜕
𝜕t

𝜕v(x, t)
𝜕x

= LC 𝜕
𝜕t

𝜕i(x, t)
𝜕t = LC

𝜕2i(x, t)
𝜕t2 . (A.40)
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FIGURE A.6 Reflection coefficient S11 for N = 1, 2, 4.

This is the wave equation (3.21).

3.3 (p. 85) From the expression (3.9) on p. 58 for the cutoff angular
frequency 𝜔c, the cutoff frequency for N → ∞ is fc = 𝜔c/ (2𝜋) ≃
31.8 GHz. Therefore, the frequency should be calculated up to a
frequency sufficiently higher than this fc. In (3.36) on p. 66 for
𝐅, let Z = j𝜔L and Y = j𝜔C, and use (3.37) on p. 66 to find 𝐅N

numerically using a computer. Then, put the result into (A.16) on
p. 273 to obtain the reflection coefficient S11 and the transmission
coefficient S21. Some results are shown in Figs. A.6 through A.9.

Looking at these graphs, it seems that no matter how large N
becomes, the “bumpy” pattern seen at frequencies below fc does
not disappear. In fact, the “bumpiness” does not disappear as
long as N is finite. Mathematically, if N →∞, the bumpiness goes
away. To understand this properly, it is necessary to consider the
nature of the convergence of something called a distribution or
hyperfunction, which is far beyond the scope of this book.

3.4 (p. 86) Left to the reader.

3.5 (p. 86) Investigate each of them by yourself. Photonic crystals
and EBGs are often used under the condition (3.1) on p. 53. In
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FIGURE A.7 Transmission coefficient S21 for N = 1, 2, 4.

contrast, metamaterials are usually made so that (3.2) is satis-
fied. As a result, the “effective dielectric constant” and “effective
permeability” can be manipulated.

A.3.4 CHAPTER 4

4.1 (p. 112) At finite temperatures (T > 0 K), there are vacant states
below the Fermi level 𝜁 (see Fig. 4.2 on p. 90). This means that
electrons can flow into those vacant states at E < 𝜁 due to (vi)
on p. 107. In contrast, at absolute zero, only the states at E > EF
are vacant, so electrons can only flow into those states. From the
above, 𝜁 < EF.

4.2 (p. 113) Substituting the Maxwell−Boltzmann distribution func-
tion (4.8) into (4.7) on p. 92, which gives the electron density, we
obtain

n = 1
𝜋2

mc√2mc

ℏ3 ∫
∞

Ec

(E − Ec)1/2 exp (−E − 𝜁
kT ) dE. (A.41)

Let x ≡ (E − Ec) /kT, and then dx = dE/kT. Using these, we get
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FIGURE A.8 Reflection coefficient S11 and transmission coefficient S21 for
N = 8.

n = 1
𝜋2

mc√2mc

ℏ3 (kT)3/2 exp (𝜁 − Ec

kT ) ∫
∞

0
x1/2e−xdx

= 1
𝜋2

mc√2mc

ℏ3 (kT)3/2 exp (𝜁 − Ec

kT ) √𝜋
2

= 1
√2

(mckT
𝜋ℏ2 )

3/2
exp (−Ec − 𝜁

kT ) . (A.42)

Introducing

Nc ≡ 1
√2

(mckT
𝜋ℏ2 )

3/2
, (A.43)

we obtain (4.12) on p. 94.

4.3 (p. 113) Left to the reader.

4.4 (p. 113) From (4.21) on p. 97,

Nc

Nv
= exp (Ec − 𝜁

kT ) exp (−𝜁 − Ev

kT ) = exp (Ec + Ev − 2𝜁
kT ) .

(A.44)
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FIGURE A.9 Reflection coefficient S11 and transmission coefficient S21 for
N = 32.

Taking the natural logarithm of both sides,

ln (Nc

Nv
) = Ec + Ev − 2𝜁

kT
, (A.45)

2𝜁 = Ec + Ev − kT ln (Nc

Nv
) . (A.46)

From the above, we obtain equation (4.22) for the intrinsic Fermi
level.

4.5 (p. 113) According to Table 1.3 (p. 5), the effective densities
of states of gallium arsenide are Nc ≃ 4.7 × 1017    cm−3 and
Nv ≃ 7.0 × 1018 cm−3. From these, the second term of (4.22) on
p. 98 is

−kT
2 ln (Nc

Nv
) ≃ 35 meV. (A.47)

Therefore, Ei is about 35 meV above the midgap. This deviation
from the midgap is much smaller than Eg ≃ 1.4 eV (Table 1.3).
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4.6 (p. 113) The hole density of an intrinsic semiconductor is p = ni
and the Fermi level is 𝜁 = Ei. Putting these in the hole density
expression (4.17) on p. 95, we get

ni = Nv exp (−Ei − Ev

kT ) . (A.48)

Solving this equation for Nv, the effective density of states in terms
of ni is given by

Nv = ni exp (Ei − Ev

kT ) . (A.49)

Substituting the right-hand side for Nv in (4.17) yields (4.28) on
p. 99.

4.7 (p. 113) Left to the reader.

4.8 (p. 113) Fig. A.10(a) and A.10(b) on p. 285 show n-type and p-
type semiconductors, respectively. The charge neutrality condition
for Fig. A.10(a) is given by (p. 98) N

D+ + p = n. (A.50)

Likewise, the charge neutrality condition for Fig. A.10(b) is given
by

p = N−
A + n. (A.51)

As a supplementary note, as shown on p. 20 and in Problem 1.5,
the donor level (Ec − ED in Fig. A.10(a)) and the acceptor level
(EA − Ev in Fig. A.10(b)) are several tens of millielectron volts
(meV) in silicon. Given that Eg = 1.1 eV (see Table 1.3), ED and
EA are drawn too far from the band edges Ec and Ev, respectively.

4.9 (p. 114) First, comparing Figs. 4.10 and 4.11 on p. 110, the elec-
tron densities of the left and right metal pieces are unchanged.
Therefore, what we want to do is not to move any electrons even
if the left and right metals are connected via a voltage source. In
other words, we want to match the left and right electrochemical
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FIGURE A.10 Energy band diagrams of semiconductors. (a) n-type. (b)
p-type.

potentials (i.e., Fermi levels) without changing the left and right
internal chemical potentials. To do so, it is necessary to manipu-
late the external chemical potential (i.e., the potential energy of
electrons).

As a preparation, let us consider what would happen if the left
and right metals were brought into direct contact with each other.
When in contact, electrons diffuse from right to left, and when
equilibrium is reached, the metal on the left is negatively charged
and the metal on the right is positively charged. That is, the volt-
age (or electrostatic potential) of the metal on the right becomes
higher relative to the metal on the left. And even if more electrons
try to leave the metal on the right, electrostatic force prevents them
from doing so. The situation is like Fig. 6.3(b) on p. 169 flipped
horizontally.

Now, in order to connect the left and right metals via a voltage
source and still prevent electrons from moving to the other metal,
we need a potential energy difference that prevents electrons from
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moving, just as we considered above. Since it can become confus-
ing if we think about what is going on inside the voltage source,
we only consider the positive and negative electrodes on its sur-
face. The role of the voltage source is as shown in Fig. 2.8 on
p. 36, where the potential difference between the positive and
negative electrodes is maintained at a constant value. In the equi-
librium state reached after the direct connection between the left
and right metals considered above as preparation, the voltage of
the right metal was higher, which prevented further electron trans-
fer. Therefore, to prevent the diffusion of electrons out of the right
metal in Fig. 4.10, the external chemical potential of the right
metal must be lowered, or equivalently, the voltage of the right
metal must be raised. To that end, the positive electrode of the volt-
age source must be connected to the right metal and the negative
electrode to the left metal, as correctly shown in Fig. 4.11.

The setup for this thought experiment is not defined in precise
detail. For more in-depth consideration, it is necessary to refine
the setup (what the material of the electrodes of the voltage source
is, how they are connected to the metals, etc.). As a result, some
modifications to the discussion might become necessary.

A.3.5 CHAPTER 5

5.1 (p. 164) According to the discussion on p. 122, we must define
separate quasi-Fermi levels, 𝜁n and 𝜁p, for electrons and holes in
nonequilibrium. The reason for 𝜁n ≠ 𝜁p in nonequilibrium is the
inequality

(Minority carrier lifetime) ≫ (Dielectric relaxation time). (A.52)

Therefore, if the minority carrier lifetime becomes shorter and
approaches the dielectric relaxation time, the value of ||𝜁n − 𝜁p|| is
expected to become smaller. Numerical examples demonstrating
this can be found in §6.9.2.

5.2 (p. 164) This is a difficult question. Dopants and traps can
exchange carriers with both conduction and valence bands (see
Fig. 5.7 on p. 145). It does not seem possible to describe the
occupancy of these states by some distribution function written in
terms of 𝜁n or 𝜁p, as in (5.15) or (5.16) on p. 125, because it is not
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clear which of the quasi-Fermi levels to use, 𝜁n or 𝜁p. On second
thought, (125) is the “distribution function for conduction band
states” and (5.16) is the “distribution function for valence band
states.” One possibility would be to introduce a new “quasi-Fermi
level” for each type of dopant or trap and use it to introduce a cor-
responding distribution function [17], which may be of a different
form from the Fermi-Dirac distribution function. In view of this,
maybe we should call 𝜁n the “quasi-Fermi level for the conduction
band” and 𝜁p the “quasi-Fermi level for the valence band.”

5.3 (p. 164) In (4.26) on p. 98, 𝜁n = Ec and the “reference energy” is
Ei. See also the discussions in §4.3.2.

5.4 (p. 164) Comparing (5.33) on p. 131 with the first line of (5.37) on

p. 132, we see that dEc

dx
corresponds to

d𝜁n,ext

dx
and kT

n
dn
dx

corresponds

to
d𝜁n,int

dx
.

5.5 (p. 164) From (5.43) on p. 134,

d⟨v⟩ (t)
dt

= −⟨v⟩ (t)
𝜏e

− qℰ
me

. (A.53)

If ⟨v⟩ (t) is differentiated by t, ⟨v⟩ (t) is multiplied by a factor −1/𝜏e,
so the solution can be written as

⟨v⟩ (t) = A exp (−t/𝜏e) + B, (A.54)

where A and B are constants. The given initial condition is ⟨v⟩ (0) =
0 = A + B. From (A.53),

d⟨v⟩ (0)
dt

= −qℰ
me

= − A
𝜏e

. (A.55)

Thus, A = qℰ𝜏e/me and B = −A = −qℰ𝜏e/me. From these, we
obtain (5.45).

5.6 (p. 164) When the current density is calculated based on the
motion of electrons in the “punch hole model” shown in Fig.
5.5(b) (p. 137), the direction of current flow is to the right, oppo-
site to the electric field ℰ, and the magnitude would be given
by
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|Jn| = qnv𝜇nℰ, (A.56)

where nv is the electron density of the valence band.
The current should actually flow rightward, with only the hole

density p contributing to it (one hole in Fig. 5.5). Therefore, the
“bubble model” seems to be better as far as current density is
concerned. However, the “bubble model” also has the problem
described in the Box on p. 136. In short, both of these models are
just poor man’s models and cannot be said to be correct.

The correct theoretical description of hole conduction is free
from the above problems. The pictures offered by the “bubble
model” and the “punch hole model” do not faithfully represent
what the theory and associated mathematical equations say.

5.7 (p. 164) Coulomb interaction is involved in the processes (b), (c),
(e), and (h). Coulomb interaction is not involved in (a), (d), (f), and
(g). In (c) and (h), a carrier with the opposite charge is attracted to
the charged trap. In (b) and (e), the trap gets charged as a result of
a carrier leaving the trap, so again Coulomb attraction acts on the
carrier. In contrast, in (a), (d), (f), and (g), there is no Coulomb
interaction with the carrier because the traps are neutral in these
cases. The presence of Coulomb interactions significantly affects
the generation-recombination rate in the presence of an external
electric field. This phenomenon is known as field-enhanced barrier
lowering.

5.8 (p. 164) Left to the reader.

5.9 (p. 165) If only the excess hole density Δp violates the charge
neutrality condition, the situation is equivalent to a shortage of
electrons by Δn = −Δp. The rest can be considered the same as on
p. 155.

5.10 (p. 165) Substituting the numerical values into (5.107) on p. 158,
the dielectric relaxation time corresponding to a resistivity of
100Ω⋅cm (10−2Ω⋅m) is about 10−12 s, and that corresponding to
a resistivity of 10−2Ω⋅cm (10−4Ω⋅m) is about 10−14 s. Therefore,
the representative value of 10−12 s given in Table 5.2 (p. 122) seems
OK.

5.11 (p. 165) Left to the reader.

5.12 (p. 165) Left to the reader.
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FIGURE A.11 Energy band diagram of zero-biased p-n junction.

A.3.6 CHAPTER 6

6.1 (p. 212) In Fig. 6.4 (p. 170), since 𝜁A > 𝜁B, electrons flow
from A to B when they make contact, and A becomes positively
charged. In other words, this example is the case where 𝜑AB > 0
as in Fig. 6.3(b) (p. 169). Since 𝜑W,A < 𝜑W,B in Fig. 6.4, 𝜑AB =
− (𝜑W,A − 𝜑W,B) (> 0).

6.2 (p. 212) See Fig. A.11. For simplicity, the band bends are drawn
using straight line segments in this figure, rather than as quadratic
curves.

6.3 (p. 213) The built-in potential of the p-n junction is the contact
potential between the p-type and n-type regions (p. 176), and
is determined by the work function difference between the two
regions according to (6.3) on p. 170. The values of the Fermi level
𝜁 of nondegenerate semiconductors are in the range of (4.47) on
p. 103 for n-type semiconductors and (4.52) on p. 104 for p-type
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semiconductors. According to Table 1.3 (p. 5), the energy gap of
silicon is Eg = 1.1 eV, so the built-in potential of the silicon p-n
junction is somewhat below 1 V.

6.4 (p. 213) Put (6.29) and (6.30) in (6.32).

ddep = xP + xN =
√

2𝜖Si𝜑bi

q (N−
A + N+

D)
(

√√
√

N+
D

N−
A

+
√√
√

N−
A

N+
D

)

=
√

2𝜖Si𝜑bi

q (N−
A + N+

D)
N−

A + N+
D

√N−
AN

+
D

=
√√√
√

2𝜖Si (N−
A + N+

D) 𝜑bi

qN−
AN

+
D

. (A.57)

6.5 (p. 213) First, suppose that the bias voltage is V = 𝜑bi, and
there is no electrostatic potential difference between the p-type
and n-type regions. Next, lower V so that the electrostatic poten-
tial difference between the two regions equals the thermal voltage
𝜑th = kT/q ≃ 26 mV ((7.44) on p. 236). Equations (6.44) on p.189
and (5.108) on p. 158 imply that the depletion layer thickness on
the lowly doped (p-type) side in this condition is the Debye length.

6.6 (p. 213) First, let nN0 be the “reference density” and express
nP (−xP) in the form of (5.23) on p. 128. In Fig. 6.19 (p. 195), the
“reference energy” corresponding to nN0 is the “relative energy”
of 𝜁nN in the n-type neutral region. This “relative energy” is shifted
up, parallel to Ec, by q (𝜑bi − V) at x = −xP. Thus, we obtain the
middle formula of (6.66) on p. 196. Next, let us express nP (−xP)
in terms of nP0. Fig. 6.19 shows that the “reference energy” corre-
sponding to nP0 is the “relative energy” of 𝜁nP at the far left of the
p-type neutral region. Since the value of 𝜁nP at x = −xP that makes
the exponent of (5.23) 0 is higher by qV, the right-hand side of
(6.66) is obtained.

6.7 (p. 213) In a zero-biased p-n junction, diffusion and drift are bal-
anced and no net current flows (p. 175). Under a forward bias,
diffusion becomes dominant and current flows against the elec-
tric field in the depletion layer (p. 179). Then, drift should be
dominant in the depletion layer under a reverse bias. Note that
diffusion cannot be dominant in both cases (positive and nega-
tive biases) because it contradicts the fact that drift and diffusion
are in balance under zero bias. For the drift current to be domi-
nant, the quasi-Fermi levels, 𝜁n and 𝜁p, and the band edge energies,
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Ec and Ev, must slope down in the same direction (see p. 119, p.
132, and Problem 5.4 on p. 164). In Fig. 6.33, however, 𝜁n and 𝜁p
are flat where Ec and Ev are sloping. This produces carrier density
gradients, but there is no place where the drift current is dominant.

In contrast, in Fig. 6.15 (p. 181) and Fig. 6.24 (p. 206), 𝜁n and
𝜁p have the same direction of slopes where Ec and Ev have slopes.
Drift current is dominant in that region. In short, Assumption 7
on p. 192 (the assumption of quasi-equilibrium [12]) was saying
that drift current cannot become dominant in the depletion layer,
which is physically impossible.

Moreover, when the magnitude of the reverse bias is greater
than a few hundred millivolts, the slopes of 𝜁n and 𝜁p are almost
the same as the slopes of Ec and Ev (see Figs. 6.24 (p. 206), 6.25
(p. 206), 6.28 (p. 210), and 6.29 (p. 211)). To see why, note that,
from (5.33) on p. 131 and (5.37) on p. 132, the electron current
density, for example, is given by

𝜇nn
d𝜁n

dx
= 𝜇nn

dEc

dx
+ 𝜇nkT

dn
dx

. (A.58)

Under the reverse-bias condition, the absolute value of the second
term on the right-hand side (the diffusion term) is much smaller
than the absolute value of the first term (the drift term). Therefore,
the following approximate equality holds.

d𝜁n

dx
≃ dEc

dx
. (A.59)

And likewise for holes. Energy band diagrams in which drift is
dominant in the depletion layer but do not satisfy (A.59) are also
found in the literature. Note that the fact that the quasi-Fermi lev-
els penetrate into allowed bands is not in itself a problem (see Figs.
7.32–7.34).

The fact that TCAD-drawn energy band diagrams of a reverse-
biased p-n junction do not look like those found in authoritative
books was pointed out by Yang and Schroder [37], too, without
discussion of physics.

6.8 (p. 214) The lengths of these slopes are related to diffusion lengths.
The diffusion lengths are given by (6.58) and (6.59) on p. 194 and
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are proportional to the square root of the diffusion coefficient.
The diffusion coefficient is proportional to the mobility according
to Einstein’s relation (5.62) and (5.63) on p. 141. Since electron
mobility is greater than hole mobility (p. 136), Ln > Lp if the
lifetimes of electrons and holes are the same (Table 6.1 on p. 199).

6.9 (p. 214) A comparison of Fig. 6.28 (𝜏n = 𝜏p = 10−7 s) and Fig. 6.29
(𝜏n = 𝜏p = 10−11 s) shows that in the region around the depletion
layer where 𝜁p > 𝜁n and hence carrier generation is dominant (p.
151), Fig. 6.29 shows a smaller value of 𝜁p − 𝜁n. This means that
the minority carrier density contributing to the current is higher in
Fig. 6.29 (read the minority carrier densities from Figs. 6.28 and
6.29). This is a reason for the larger reverse current density for
shorter lifetimes.

A.3.7 CHAPTER 7

7.1 (p. 264) The “saturation region” of the ICE-VCE characteristic of
a bipolar transistor corresponds to the “nonsaturation region” of
the IDS-VDS characteristic of a MOSFET (Fig. 7.6 on p. 219). Be
careful not to mix these up.

7.2 (p. 265) In Fig. 7.6, the boundary between the nonsaturation and
saturation regions is the vertex of the parabola, given by (7.1), so
we “complete the square” so that the coordinates of the vertex
can be found.

IDS

𝜇nCoxW/L = (VGS − VT)VDS − 1
2V

2
DS

= −1
2 [V2

DS − 2 (VGS − VT)VDS]

= −1
2 {[VDS − (VGS − VT)]2 − (VGS − VT)2} . (A.60)

Thus, the abscissa of the vertex of the parabola is VDS = VGS −VT.

7.3 (p. 265) The energy band diagram for the flat-band condition, cor-
responding to Fig. 7.12 (p. 226), is shown in Fig. A.12. The num-
bers of ionized acceptors (negatively charged) and holes (positively
charged) are the same, and the system as a whole satisfies the
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i

E
c

Holes

Oxide
Metal p-type silicon

FIGURE A.12 Flat band.

charge neutrality condition. In Fig. A.12, electrons in the conduc-
tion band, which are minority carriers of the p-type substrate, are
neglected because their density is very low. In the following fig-
ures, too, minority carriers (electrons) in the conduction band of
the neutral region of the p-type substrate are not drawn. In the
accumulation condition shown in Fig. A.13 (p. 294), holes are
induced at the substrate surface, and electrons are induced on the
metal surface, as was also shown on the left-hand side of Fig. 7.13
(p. 228). If the gate material is an ideal monovalent metal (a metal
with one conduction electron per atom), conduction electrons of
the metal are induced on the gate metal surface (more precisely,
on the metal side of the metal-oxide interface).

Figs. A.14 (p. 294) through A.17 (p. 296) show the band bend-
ing 𝜑(j)

s (j = 1, 2, 3, 4) and the potential difference 𝜑(j)
ox (j = 1, 2, 3, 4)

across the oxide. 𝜑(j)
s in the figures has the same meaning as the sur-

face potential 𝜓s, but the datum point for measuring the potential
is not the same as for 𝜓s.

In the depletion condition shown in Fig. A.14 (p. 294), there
are almost no electrons at the substrate surface (they are pushed
to the right due to the electric field at the surface), and the negative
charges of the ionized acceptor atoms appear as space charges, as
shown on the left-hand side of Fig. 7.14 (p. 229). Correspond-
ingly, the gate metal surface becomes positively charged. Inciden-
tally, how do the positive charges appear on the metal surface?
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Holes accumulate at surface

E
v

E
i

E
c

Electrons 

accumulate 

at surface

Oxide

Metal p-type silicon

FIGURE A.13 Accumulation.

Depletion layer
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c

Positive charges 

appear at surface

FIGURE A.14 Depletion.

These are the metal cations that appear as a result of conduction
electrons being displaced. Note that 𝜑B > 𝜑(1)

s > 0.
In the weak inversion condition shown in Fig. A.15 on p. 295

(corresponding to Fig. 7.15 on p. 230), inversion electrons are
induced in the conduction band at the substrate surface. Note that
the amount of negative charges due to acceptor ions in the deple-
tion layer and electrons in the inversion layer is the same as the
amount of positive charges induced on the gate metal surface.



Solutions to Selected Problems ∎ 295
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FIGURE A.15 Weak inversion.
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c

FIGURE A.16 Strong inversion.

In the strong inversion condition shown in Fig. A.16 on p. 295
(corresponding to Fig. 7.16 on p. 232), 𝜑(3)

s = 2𝜑B (the second term
of (7.43) on p. 236 is ignored). Just as in Fig. A.15, the amount
of negative charges due to acceptor ions and inversion layer elec-
trons is the same as the amount of positive charges induced on the
gate metal surface. Note that, as shown in Fig. 7.17 (p. 233), the
number of electrons induced in the inversion layer in the strong
inversion condition is orders of magnitude larger than in the weak
inversion condition (Fig. A.15).
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FIGURE A.17 Stronger inversion.

Fig. A.17 (p. 296) shows the energy band diagram when a larger
gate voltage (V(4)

GB > V(3)
GB) is applied than in Fig. A.16. The band

bending in the semiconductor is almost the same as in the pre-
vious case of Fig. A.16 (𝜑(4)

s = 𝜑(3)
s = 2𝜑B). So the extra gate

voltage applied relative to the previous case is applied to the gate
oxide: V(4)

GB − V(3)
GB = 𝜑(4)

ox − 𝜑(3)
ox . V(j)

GB > 𝜑(j)
s + 𝜑(j)

ox holds in Figs.
A.14 through A.17. Note that all these figures are drawn as such.
Strictly speaking, 𝜑(4)

s > 𝜑(3)
s , rather than 𝜑(4)

s = 𝜑(3)
s , but when the

gate voltage changes, the amount of positive charge induced on the
gate metal surface changes linearly. On the other hand, since the
inversion electron density changes exponentially (∝ exp (𝜑s/kT))
as 𝜑s changes, it is safe to approximate that 𝜑s does not change.

7.4 (p. 265) Left to the reader.

7.5 (p. 266) Left to the reader.

7.6 (p. 266) From (7.70) on p. 247,

𝜓sT + VP + 𝛾√𝜓sT + VP − VGB + Vfb = 0,

√VP + 𝜓sT

2
+ 𝛾√VP + 𝜓sT − (VGB − Vfb) = 0. (A.61)

Since this is a quadratic equation for √VP + 𝜓sT, the roots are
given by
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√VP + 𝜓sT = −𝛾
2 ± √

𝛾2

4 + VGB − Vfb. (A.62)

Since 𝛾 > 0 from the body-effect coefficient equation (7.41) on p.
235, the plus sign should be taken. Thus (7.71) is obtained.

7.7 (p. 266) Put (7.83) on p. 251 in (7.93) and integrate.

IDS = − 𝜇nW
L ∫

VDB

VSB

Qinv (VCB) dVCB

= 𝜇nWCox

L ∫
VDB

VSB

(VGB − Vfb − 𝜓sT − VCB − 𝛾√𝜓sT + VCB) dVCB

= 𝜇nWCox

L [(VGB − Vfb − 𝜓sT)VCB − 1
2V

2
CB − 2

3 𝛾(𝜓sT + VCB)3/2]
|
|
|

VDB

VSB

= 𝜇nWCox

L {(VGB − Vfb − 𝜓sT)(VDB − VSB) − 1
2 (V2

DB − V2
SB)

− 2
3 𝛾 [(𝜓sT + VDB)3/2 − (𝜓sT + VSB)3/2] }. (A.63)

7.8 (p. 266) First, substitute (7.99) on p. 257 into (7.96) and use
(7.100).

IDS = 𝜇nWCox

L [(VGS − VBS − VT)VDS − 1
2 [(VDS − VBS)2 − V2

BS]]

= 𝜇nWCox

L [(VGS − VBS − VT)VDS − 1
2 (V2

DS − 2VDSVBS)]

= 𝜇nWCox

L [(VGS − VT)VDS − 1
2V

2
DS] . (A.64)

The dependence on the back gate voltage VBS has disappeared.
This is the same formula as (7.1) on p. 220. If we want to know
the effect of the back gate voltage, it seems inappropriate to set
𝛾 = 0.

Next, let us try to do the same using (7.94) on p. 255. Since
only a term containing 𝛾 needs to be added to (A.64),

IDS = 𝜇nWCox

L {(VGS − VT)VDS − 1
2V

2
DS

− 2
3𝛾 [(𝜓sT + VDS − VBS)3/2 − (𝜓sT − VBS)3/2] }. (A.65)
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Although it is a little difficult to figure out what happens when
VBS becomes nonzero from the form of the equation alone, IDS
increases if VBS > 0, and decreases if VBS < 0. This is known as
the body-bias effect or substrate-bias effect. This is analogous to
the increase in IDS when VGS is increased and the decrease in IDS
when VGS is decreased.

7.9 (p. 266) Some observations on Figs. 7.32 through 7.34:

● Ec is sloped downward toward the drain not only in the
channel (the near side of Fig. 7.32) but also on the far side.
● Ec and 𝜁n very nearly overlap with each other throughout the

channel, and therefore the channel is strongly inverted.
● 𝜁n < Ei on the far side of Fig. 7.32, and therefore that part

of the substrate is not inverted.
● 𝜁p at the substrate surface (the near side of Fig. 7.32)

goes into the conduction band but runs parallel to Ec in a
significant part of the channel.
● On the far side of Fig. 7.32, 𝜁p > Ei in some parts, so that

part of the substrate is strongly depleted of holes.
● 𝜁p and 𝜁n are sloped downward from the far side toward the

near side.

Are these reasonable?

7.10 (p. 267) Left to the reader.

7.11 (p. 267) Left to the reader.

7.12 (p. 267) Left to the reader.

7.13 (p. 267) Left to the reader.
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𝜔 − 𝛽 diagram, 71, 75
𝜔 − 𝜅 diagram, 78

A

(angstrom), 26
ABCD-matrix, 66, 76, 269–272
ABCD-parameter, 269
Abrupt junction, 181, 183, 184, 188,

191, 212, 235
biased, 186
current density of, 198
one-sided, 189–190, 235
zero-bias, 181

Absolute temperature,
see Temperature

Absolute zero, 281
Acceleration, 80
Acceleration of gravity, 111, 118, 142
Acceptor, 20, 23, 26, 99, 148

density, 26, 99
effective ionized, 99
ionized, 99, 172, 181

ion, 20–21, 96, 99, 120, 174, 175,
182, 202, 231, 236, 237,
294

density, 175, 202, 237, 259
ionized, 292
level, 21, 22, 284
neutral, 120
nucleus, 21

Acceptor-type trap, see Trap
AC circuit theory, 116
Accumulation, 227, 228, 234, 239,

263, 293, 294
AC signal, 48
Active load, 49

Admittance, 49, 271
parallel, 271
shunt, 56, 57

Ag, see Silver
Air, 3
Allowed band, 10, 11, 53, 60, 69, 81,

88, 91, 95–96
Altitude, 142
Aluminum, 2

arsenide, 5
gallium arsenide, 5

Amorphous, 2
semiconductor, 6

Amplifier circuit, 253, 260
Amplifying action, 1
Amplitude, 64

modulation, 75
phasor, 64

Analog circuit, 278
Analog circuit designer, 216
Analogy, 36, 52, 82

poor man’s, 138
Anderson, B.-L., 299
Anderson, R., 299
Angle, 72
Angular frequency, see Frequency
Angular wave number, see Wave

number
Anion, 20, 99

monovalent, 20
Anneal, 23
Annihilation, 143

of electron-hole pair, 143, 146
net electron, 148
rate, 148

Anode, 167, 168
Ant, 23, 24

303
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Approximation, 235, 236, 243, 254
Arc cosine, 67
Argument, xix, 64
Arsenic, 17
Artifact, 1, 22
As, see Arsenic
Ashcroft, N. W., 299
Associated reference direction, 36
Atmosphere, 110, 111, 142
Atmospheric gas, 142
Atom, 8, 9, 55, 89, 112, 133, 134

array of, 84
density, 5
hydrogen-like, see Hydrogen-like

atom
number of, 12

Atomic density, 12, 13
Atomic energy level, 9
Atomic number, 8
Atomic spacing, 10, 11, 276, 277
Atom model

Hydrogen-like, 9
Attenuation, 64
Attenuator, 82
Au, see Gold

B, see Boron

Back gate, xvii, 215, 221, 240, 241,
248, 263, 266

current, 249
electrode, 221
terminal, xvii, 215, 216, 248
voltage, 297

source-referenced, 266
Back-gate-referenced analysis, 241,

248
Ball, 15
Band, 11

bend, 289
bending, 101, 128, 149, 171, 226,

227, 231, 293, 296
diagram, see Energy band diagram
edge, 291
formation, see Energy band

formation
theory, xvi, 52, 270

Bandgap, 10

Bandgap energy, 124; see also Energy
gap

Base, 200
region, 210

Basic equations for semiconductor
devices, 153, 163

Bassous, E., 299
Battlements potential, 69, 70
Bias

DC, 247
forward, 167, 187, 290–291
point, 278
reverse, 167, 187
voltage, 167, 177, 186–189, 191,

195, 200, 203, 224
zero, 224

Biasing, 246
Binding energy, 17
Bipolar, 45

current-voltage characteristic of,
45

inventor of, 198
npn, 46
pnp, 46
schematic symbol of, 46
transistor, 4, 25, 45, 46, 198, 200,

264, 292
Bloch impedance, see Iterative

impedance
Body, 229, 234
Body-bias effect, 298
Body effect, 235, 236, 254, 255
Body-effect coefficient, 235, 254, 297
Body-referenced, 248
Bohr, N., 8, 26
Bohr’s quantization condition, 276
Bohr radius, 26, 276
Boltzmann constant, 26, 89
Boron, 19–21, 275

atom, 19, 20, 26
ion, 22

Boundary condition, 70, 194–196,
205, 207

Boxed column, xvii
Bragg condition, 83
Bragg diffraction, 53
Bragg frequency, 84
Bragg reflection, 83, 84
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Bragg wavelength, 85
Breakdown, 202, 203

current, 129
voltage, 202

Brillouin, L., 299
Bruton, L. T., 299
Bubble model, 137, 288
Built-in potential, 176, 177, 185–187,

191, 201, 211, 213, 241,
289

Built-in voltage, 176
Bulk, 220

mobility, 220
potential, 171, 172, 177, 226, 232

n-type, 172
p-type, 172

Bulk-referenced, 248
Bumpiness, 280

Capacitance, 30, 31, 188, 220, 247
chord, 37, 39

depletion, see Depletion capaci-
tance

differential, 37
diffusion, see Diffusion

capacitance
gate oxide, 247
incremental, 37, 39, 188, 247
parasitic, 2
per-unit-length, 61, 70
shunt, 61
small-signal, 37
voltage-independent, 37

Capacitive component, 168
Capacitor, 29, 48, 59, 129, 188

charge, 223
linear, 29–32, 38, 57, 247
nonlinear, 36, 37, 188
parallel-plate, 188

Carrier/s, 121, 129, 147, 159, 163,
186, 218

concentration, see Carrier density
density, see Carrier density
density gradient of, 155
distribution, 263

nonuniform, 155
dynamics, xvi, 115
dynamics of, 120

flux, 130
flux density, see Flux density
generation, see Generation
mobile charge, 7
motion, 205
polarity, 161
recombination, 143
scattering, 164, 220, 261
sideways movement of, 156
transfer, 143
trap, see Trap
velocity, 139–140

average, 135
velocity saturation, see Velocity

saturation
vertical movement of, 156
wave, 75, 76

Carrier density, xvi, 8, 98, 104, 105,
123, 132, 149, 151, 158,
163, 165, 176, 180, 182,
186, 191, 192, 203

apparent, 165
equilibrium, xvi
excess, 120
expression, 129

general form of, 128, 164, 232
gradient, 133, 142, 155, 174
gradient of, 155
intrinsic, see Intrinsic carrier

density
logarithmic transform of, 180
net, 99, 120
nonequilibrium, 123
surface, 228, 231, 234

Cascade, 66, 76
connection, 66, 270
infinite, 76, 77
N-time, 67

Cathode, 167
Cation, 17, 99, 109, 133, 169

metal, 293, 294
tetravalent, 8
univalent, 17

Cayley-Hamilton theorem, 272
CCCS, 41
CCVS, 42, 43
Celestial body, 110
Centrifugal force, 276
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Chain matrix, 269
Change of variables, 126, 127
Channel, 217, 218, 241, 242, 244,

249, 263, 264, 298
depth of, 252
effective, 253, 260
length, 220, 249, 253, 260, 262
potential, 242, 244–246, 249, 250,

261, 263
thickness, 217
width, 220, 251

Channel-length modulation, 253,
254, 260

Channel-terminal-referenced
analysis, 246

Characteristic impedance, 64, 67, 272
Charge, 29, 37, 38, 147, 152, 163,

223
conservation of, 143, 147, 152

law, 121
density distribution, 181, 182
distribution, 176, 183
distribution of, 175
fixed, 175, 223, 224
mobile, 3
negative, 175
neutrality condition, 96, 98, 121,

145, 155, 183, 224, 225,
227, 237, 284, 288, 293

neutralization, 156, 163
offset, 224
positive, 175
trapped, 224

Charged particle, see Particle
Chebyshev polynomial of the second

kind, 274
Chemical potential, xvi, 106–108,

111, 117
bond, 9
electro, see Electrochemical poten-

tial
equilibrium, 115, 120
external, 109, 111, 126, 285, 286
formula, 3–5
internal, 109, 111, 126, 285
quasi, see Quasi chemical potential
reaction formula, 9, 119, 142, 143,

146, 147, 162

total, 109, 118, 126, 164
Chicken-and-egg question, 105
Chord, 34

resistance, see Resistance
Chua, L. O., 38
Circle

filled (●), 7, 19, 144, 145, 179
open (○), 7, 19, 144, 145, 179

Circuit
analog, 278
designer, xiv, xvii

analog, 216
digital, 216

distributed, 51
electronic, 1, 24
engineer, xv
performance, 25, 260
simulator, 51

nonlinear, 278
Circuit element, 1, 26, 28

active, 48
classification of, 48
four-terminal, 48
fourth, 38
linear, 28, 38, 39, 48
linear time-invariant (LTI), 40
linear time-varying (LTV), 40
linear two-terminal, 28, 38
lossless, 48, 59
lossy, 48
lumped, 53, 79
made of semiconductor, 46, 47
missing, 299
multiterminal, 41, 48
nonlinear, 28, 32, 38, 46, 48
nonreciprocal, 47
passive, 48
reactive, 48, 52, 59, 79
reciprocal, 49
three-terminal, 41, 48
time-invariant, 41, 48
time-varying, 41, 43, 48
two-terminal, 48, 221
type, 39

Circuit-operational function, xv
Circuit theory, xv, xvi, 28, 47, 50, 85,

270
AC, 52, 59, 116
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distributed, 52, 60, 73, 79
elementary, 53
linear, 28, 47, 52
lumped, 53, 60, 73

Classical analogue, 83
Classical system, 83
CL ladder, 53, 279

infinite, 85, 279
input impedance of infinitely long,

279
Clock frequency, 258
CMOS, 44, 217
Coffee, 23
Coin, xvi
Collective motion, 134
Collector, 45
Collin, R. E., 299
Collision, 134, 135, 142
Communication, 25

engineering, 58
Compensation, 99, 103
Complementary MOS, 217
Complete the square, 292
Complex number, xxv, xxix, 55

argument of, xix
Compound, 4

semiconductor, 2, 4
semiconductor integrated circuit, 2

Computational complexity, 83
Computer, 25

classical, 83
quantum, 83

Conductance, 29, 270
chord, 34
incremental, 34, 36, 278

Conduction band, 11–14, 19, 60, 80,
87, 92, 143, 145, 171, 205,
287, 298

bottom, 101, 113, 132, 145
bottom energy, 13, 26
bottom of, 12, 93, 147, 171
current, 129, 138, 143, 152, 163,

174, 186
density, 129

electron, 17, 106, 107, 133, 293
electron density, see Electron den-

sity
state, 89, 125, 287

top of, 92
Conductive material, 173
Conductivity, 1–4, 7, 25, 138, 140,

156, 157, 164, 165, 275
apparent, 165
change in, 3

Conductor, 2, 3, 25, 109
Conservative field, 109
Conservative force, 109, 118
Constant term, 15, 97, 123
Constitutive relation, 29–32, 38
Contact, 168, 169

direct, 285
metal-semiconductor, 239
ohmic, 239–240
potential, 168–173, 176, 210, 222,

225, 267
difference, 225

Schottky, 240
Contaminant, 22
Continuity equation, 105, 152–157,

163, 192, 193
Controlled source, 41–43, 47, 49
Control terminal, 215, 266
Control voltage, 42, 234
Convergence, 280
Conversion equation, 105
Cooking oil, 23
Coordinate, 51
Copper, 2
Cosh, 78
Cosine, 67
Cost, 4
Coulomb attraction, 148, 288
Coulomb force, 276
Coulomb interaction, 133, 148, 164,

288
Coulomb scattering, 148, 275
Covalent bond, 17, 19, 119, 143
Covalent crystal, 8
Creation, 143
Crystal, xv, 2, 6, 9, 10, 17, 50, 55, 83,

112, 134
covalent, 8
defect, 144, 151
of finite size, 69
growth, 23
infinitely large, 69
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lattice, 17, 142
one-dimensional, 52, 83
orientation, 80, 277
quality of, 151
silicon, 10, 275
single, 6
solid, xv, xvi, 52
spatially uniform, 12
structure, 8, 26
three-dimensional, 52, 88

Crystalline, 1
defect, 6
semiconductor, 6

Current, 28, 29, 32, 60, 62, 74, 109,
151, 163, 186, 203, 215,
217, 220–221, 249, 251

breakdown, 129
conduction, 129, 138, 152, 163,

186
DC, 81, 115, 116, 159
displacement, 129
electron, 130
flow, 120
gain, 41
hole, 130
magnitude of, 163
net, 87, 116, 179
net, 115
port, see Port current
source, 28, 41, 47, 48

current-controlled, see CCCS
DC, 36, 37
voltage-controlled, 43

steady, xvi
time-varying, 116, 153
traveling wave phasor, see Travel-

ing wave phasor
tunnel, 129, 174
zero, 116

Current density, 130–132, 153, 155,
161, 190, 191, 205, 287,
288

conduction, 129, 163
DC, 192, 197
drift, 138, 139, 156
electron, 153, 156
equation, 193
exponential variation of, 202

forward, 180
hole, 153
vector, 159

Current-voltage characteristic, xvii,
33, 168, 191, 198–201, 209,
214, 264, 267

DC, 167, 190, 198, 212, 215, 220,
263

lifetime dependence of, 213
Customer, xv
Cutoff angular frequency, 58, 65, 85,

279, 280
Cutoff frequency, 65, 280
C-V characteristic, 247
C-V curve, 247
C-V measurement, 247

split, 247
Cyclostationary state, 116, 117
Cyclotron motion, 159, 160

Datum node, 246, 248, 257
point, 125, 293

DB, see Decibel
DC, 29, 48

current, 43, 81, 116, 159, 209,
249, 279

power supply, 159
voltage, 43, 81, 279

Debye length, 158, 159, 163, 182,
190, 199, 212, 290

Decibel, 69
Decimal number system, 154
Defect, 6, 144

crystalline, 6
Degenerately doped, 189, 216
Degenerate n-type semiconductor,

104
Degenerate p-type semiconductor,

104
Degenerate semiconductor, 92, 94,

104, 141, 153
Deionization temperature range, 114
Delay, 258
Dennard, R. H., 262, 299
Density, 108

gradient, 118, 139, 142, 155, 163
of states, 87
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effective, see Effective density
of states

Density-of-states effective mass, see
Effective mass

Density-of-states function, 88, 94,
153

Dependent source, see Controlled
source

Depletion, 228, 229, 234, 239, 263,
292, 294

approximation, 182, 186, 191,
235

capacitance, 188, 212
charge, 184, 187–190, 225, 230,

231, 234, 235, 244, 247,
254

edge, 185, 195, 196
edge of, 182, 184, 187
layer, 158, 167, 175–178, 180,

182–184, 186–189, 191,
195, 198–203, 205, 207,
212, 228, 229, 241, 243,
250, 290–292, 294

layer thickness, 175, 182, 186–
190, 199, 212, 229, 231,
235, 243, 259

thickness, 290
Derivative
spatial, 51
time, xix, 51, 52, 62, 80, 135, 150,

157
Desoer, C. A., 299
Determinant, 66, 68, 78, 273
Detrapping, 147
Device, xiv, 1, 25, 127

dimensions, 182, 257, 258
display, 6
electron, see Electron device
four-terminal, xvii, 215
function, xv
high-voltage, 4, 202
large-area, 6
light-emitting, 1
light-receiving, 1
magnetic storage, 25
miniaturization, 158
operation, xv, 180
optical, 4

parent, 262
physics, xv, 220
simulation, xvii, 201, 203
simulator, 127, 154, 203, 267

one-dimensional, 154
size of, 46
structure, xvi, xvii, 217
three-terminal, 215
Diamond, 2
structure, 8, 26
Dielectric, 2
constant, 2, 188, 276, 277
effective, 281
relaxation, 121, 155, 156

time, 121, 155, 156, 163, 165,
208, 286, 288

Differential equation, 51, 61, 62, 70,
117, 135, 139, 149–153,
156, 157, 162, 164, 193,
238

partial, 151
second-order, 239
simultaneous, 62, 154
simultaneous partial, 153

Diffuse, 169, 285
Diffusion, 110, 139, 155, 157, 158,

163, 169, 174, 179, 290
capacitance, 189
carrier, 139, 175
coefficient, 140–142, 191, 194,

199, 292
current, 163, 169, 174, 179, 192,

193, 205
electron, 139
hole, 141

current density, 141, 192, 193
electron, 139
hole, 141

equation, 51, 82
length, 191–195, 199, 200, 206,

208–210, 212, 291
particle, 52, 139
potential, 176
term, 132, 133, 141, 156, 157, 291

sign of, 133
Diffusive equilibrium, 115
Digital circuit, 259

designer, 216
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low-power, 220
Dimension, 93, 106, 258, 269
Dimensionless, 269, 270
Diode, xvi, 1, 35, 48

gated, 221, 241, 251
ideal, 34
MOS, 221
p-n junction, see p-n junction

diode
Schottky-barrier, 240
varactor, 188

Dirac constant, 59
Direct generation, see Generation
Direct generation-recombination, see

Generation recombination
Direction of movement, 159
Direct recombination, see Recombi-

nation
Discharge, 3
Dispersion curve, 70, 71, 74, 79, 84
Dispersion diagram, 71, 78
Dispersion relation, 71–75, 78, 79

semiconductor-like, 81
Dispersive, 72
Display, 4
Display device, 6
Dissipative component, 74
Dissipative system, 74
Distributed circuit, 51, 60, 79
Distributed circuit theory, see Circuit

theory
Distribution, 280

function, 89, 98, 105, 125, 164,
286–287

for holes, 93
Donor, 17, 18, 22, 26, 99, 147

atom, 17
binding, 276
density, 99

effective ionized, 99
ionized, 99, 172, 189

ion, 17–19, 96, 99, 120, 133, 175,
182, 276

density, 175, 202
nucleus, 276

ionization energy of, 17, 276–277
level, 18, 20, 26, 113, 277, 284
neutral, 19, 120

nucleus, 17
Donor-type trap, see Trap
Dopant, 23, 26, 99, 151, 286

atom, 113, 212, 213, 265
charge

ionized, 182
charge density

ionized, 181, 182
density, 23, 98, 104, 113, 164,

185, 275
ionized, 99, 103, 159, 185, 187,

189, 191
net ionized, 99

ion, 236, 275
ionization rate, 153
ionization rate of, 275
ionized, 181
level, 113, 164
neutral, 115
polarity of, 99

Doped semiconductor, 7, 23, 26, 98,
99, 113

nondegenerately, 98
Doping, 161, 163, 217, 240

acceptor, 275
density, 92, 103, 201, 202, 258,

259, 262, 275
nondegenerate, 102

impurity, 112, 158
Dot, 51
Double sign, 58
Drain, 44, 215–218, 220, 241, 249,

263, 264, 298
current, 218, 249–253, 257, 260,

265
current equation, 256
DC, 254
general form of, 252
saturated, 220
saturation, 253, 256–258
voltage, 249, 252, 260, 265

Drain-source conductance, 44
Drain-source current, 44
Drain-source voltage, 44
Drain-source voltage, 218
Draw energy band diagram, 154
Drift, 135–138, 156, 163, 179, 180,

290
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current, 138, 155, 163, 169, 180,
192, 193, 205, 290

current density, 138, 156
total, 139

term, 132, 133, 155, 291
velocity, 135, 139, 142, 261

electron, 135
hole, 135

Dual, 32, 85

Earth, 1, 23, 110, 117
surface, 110, 111, 142

EBG, 280; see Electromagnetic
bandgap

Effective channel length, see Channel
length

Effective density of states, 5, 93–94,
97, 113, 124, 283, 284

Effective force, 118, 119
Effective intrinsic carrier density, see

Intrinsic carrier density
Effective ionized acceptor density, 99
Effective ionized donor density, 99
Effective mass, 5, 80, 88, 134, 138,

277
density-of-states, 87
electron, 27, 136
hole, 136
negative, 80, 138

Einstein’s relation, 141–143, 163, 292
E-k diagram, 16, 70, 79, 80
Electrical conduction, 7, 60, 87, 96,

115, 133
Electrical engineering, 70
Electrical system, 50
Electric circuit, circuit, 60
Electric conduction, 139
Electric discharge, 3
Electric field, 23, 121, 131, 135,

139–142, 152, 155, 159,
160, 169, 175, 183–184,
238, 249, 254, 258, 260,
290

distribution, 183, 262
external, 134, 136, 288
intensity, 254
nonuniform, 164
quasi-, 300

transverse, 238
Electric force, 134, 137, 155, 160,

169
lines of, 175

Electric line of force, 2
Electrochemical potential, 89, 106,

109, 112, 119, 131,
284–285

of electrons, 109
quasi, 119

Electrode, 129, 167, 221
Electromagnet, 3
Electromagnetic bandgap, 86
Electromagnetic field, 153
time-varying, 153
Electromagnetic ray, 171
Electromagnetic wave, 60, 86
Electromagnetic wavelength, 55
Electromagnetism, 50, 51, 73, 82
Electromechanical system, 51
Electron, 7, 9, 11, 14, 19, 26, 44, 50,

70, 94, 105, 109, 119, 140,
142, 143, 145, 159, 161,
169, 170, 174, 179, 182,
205, 212, 217,
230–231, 234, 249, 265

affinity, 5, 170, 171
behaving as wave, 270
charge, xxviii, 12, 130, 134
collective movement of, 134
conduction, 130
conduction, conduction electron,

121
current, 130, 197

direction of, 132
current density, 132, 197, 198,

209, 291
delocalized, 10
device, 1
effective mass of, 80, 81
energy, 12–14, 53, 93, 94, 106
excess, 120
lifetime, see Lifetime
localized, 10
orbital, 112
rest mass of, 80
valence, see Valence electron
velocity, 134
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average, 134
velocity of, 79
volt, 13, 275

milli, 277, 284
wave, 60
as wave, 272

Electron density, 7, 12, 16, 19, 26,
91–93, 96–101, 104, 105,
112, 113, 119, 120, 123,
126, 128, 140, 143, 153,
158, 162, 179, 196, 205,
208, 227, 237

conduction, 2
density distribution

excess, 197
excess, 120, 149, 155, 160, 194
gradient of, 123, 132
inversion, 295
logarithmic transform of, 125
of metal, 13
Nc-referenced, 123
ni-referenced, 123
nonequilibrium, 149, 150
surface, 227–234, 242
of valence band, 288

Electron-hole pair, 143, 149
generation of, 146

Electronic circuit, 1, 24
Electronic component, xiv
Electrostatic field, 14, 109, 112, 132,

133, 153, 163, 176, 238
external, 15

Electrostatic force, 14, 109, 132, 142,
285

Electrostatic potential, xvii, 14–16,
97, 105, 109, 116, 123, 152,
153, 163, 184, 187, 208,
210, 225, 239–241, 285

difference, 163, 168, 169, 210,
225, 241

difference between, 164
difference in, 164, 168, 169, 210
distribution, 176
gradient, 109

Element, 4
Elementary charge, 27–29, 275
Elementary process, 145, 146, 164
Emitter, 45

Emulation, 83
Energy, 60, 69, 79, 109, 112, 136

axis, 130
band, xv, 10, 50, 210
band formation, 8–14, 52, 69, 85,

86
band gap, 10, 113
band structure, xvi, 54, 91, 95
band theory, 71
bent, 8
conservation of, 121
eigenstate, 117
formation of, 53
gap, 5, 12–13, 79, 95, 96, 106,

128, 144, 290
middle of, 96

level, 9, 10, 165
atomic, 109
continuously distributed, 112
discrete, 112
spatially localized, 164

potential, 110
structure, 85
thermal, 109

Energy band diagram, xiv–xvi,
13–18, 20, 79, 105, 113,
114, 121–123, 127, 128,
132, 151, 154, 156, 163,
170, 174, 176, 177, 203–
205, 210, 211, 214, 225,
226, 262, 264–265, 267

joy of reading, xviii, 127
read, 123
TCAD-drawn, 128, 206, 207,

210–211, 264–265, 291
TCAD-drawn 3D, 264
two kinds of, 15–19

Ensemble, 118, 130
Envelope, 75, 76, 79
Episkopou, E., 299
Equation of collective motion, 134
Equation of motion, 80, 134, 138
Equilibrium, xvi, 87, 95, 98, 101,

106, 108, 110–112, 115,
116, 147–151, 162–164,
175, 180, 203, 208–209,
241, 242, 285
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chemical, see Chemical
equilibrium

deviation from, 164
diffusive, 110, 222; see also

Diffusive equilibrium
quantity, xvi
quasi-, 192, 291
state, 115–117, 121, 162–163,

176, 286
thermal, 125, 223; see also Ther-

mal equilibrium
Equipotential surface, 61
Equivalent source theorems, 49
Euler’s formula, 73
eV, see Electron volt
Excess electron density, see Electron

density
Excess hole density, 288 see also Hole

density
E-x diagram, 12, 14, 15, 27
Exponent, 196, 233
Exponential characteristic, 201
Exponential decay, 75
Exponential divergence, 75
Exponential factor, 93, 125, 128,

196, 202
Exponential function, 73, 191
Extended zone scheme, 78
Extensive variable, 108
External chemical potential, see

Chemical potential
External field, 142
External force, 109, 118, 139–140,

163
Extrinsic semiconductor, 79
Extrinsic temperature range, 114

farad, 30
FDNR, 39
Fermi, E., 122
Fermi-Dirac, see Fermi-Dirac distri-

bution function
Fermi-Dirac distribution function, 90,

91, 106, 125, 164, 263, 287
Fermi-Dirac integral, 92
Fermi energy, 90, 112
Fermi estimation, 277

Fermi level, xv, xvi, 90, 92–98, 119,
121–124, 126, 128, 132,
142, 147, 169–172, 176,
225, 228–229, 233, 281,
284, 289

difference, 173, 177
electron, 119
hole, 119
intrinsic, see Intrinsic Fermi level
n-type, 102
of n-type semiconductor, 102
of p-type semiconductor, 103
quasi, see Quasi Fermi level
range of, 90, 95, 102, 103
relative value of, 90, 128
temperature dependence of, 128,

129
Fermi potential, 97, 172

quasi, see Quasi Fermi potential
FET, 44, 218

normally-off, 218
normally-on, 218

FET resistive mixer, 40
Fick’s law, 140
Field-effect transistor, 44, 218
Field-enhanced barrier lowering, 288
Finite number, 79
Fixed charge, 17, 20, 145, 223, 224
f-k diagram, 77, 80
Flat band, 226, 227, 232–234, 294

condition, 223, 226–228, 237,
241, 293

voltage, 224–228, 241, 257, 267
Fleming’s left-hand rule, 159
Flow, 117

net, 117–120
Fluctuation-dissipation theorem, 142
Flux

carrier, 130
density, 130

carrier, 129
electron, 129, 130, 140
hole, 129

F-matrix, see ABCD-matrix
Forbidden band, 14, 20, 53, 69, 70,

89, 96, 106, 112, 128, 145,
147, 164, 171

bandwidth, 202
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middle of, 96
middle of, 97, 112
top of, 226

Force, 79, 134, 138
conservative, 109, 117
effective, 117
electric, see Electric force
electrostatic, see Electrostatic force
external, see External force
friction, 134
gravitational, 109
motive, 174

Forward bias, 167, 177, 180, 187,
188, 202, 208, 209, 214,
290

high, 200
voltage, 205

Forward current, 149, 169, 180
density, 180

Forward direction, 34
Free-electron level, 171
Free space, 79
Freeze-out range, 114
Frequency, 53, 59, 60, 65, 71, 78

angular, 31, 51, 60, 62, 71, 72, 79
domain, 62, 116, 272
mixing, 40
negative, 59

Frequency-dependent negative resis-
tor, 39

Frequency-domain wave equation,
116

Friction, 134
force, 134, 140

Function
monotonically decreasing, 125
single-valued, 33, 34, 37, 40

GaAs, see Gallium arsenide
Gaensslen, F. H., 262, 299
Gain, 45, 260
Gallium arsenide (GaAs), 2–5, 113,

134, 136, 283
Gallium nitride, 3, 5, 202
Gamma function, 113
GaN, see Gallium nitride
Gas, 106–108, 140

atmospheric, 142

charged, 112
density, 142
ideal, see Ideal gas
kinetic theory of, 134
net flow of, 117, 119
neutral, 142
particle, 106, 110, 111, 117, 119,

136, 140
Gate, 215, 221, 222, 224, 232, 247,

248
area, 258
back, see Back gate
bias, 224
capacitance, 258, 259
charge, 234, 247
current, 248
dielectric film, 2
electrode, 6, 222
insulator, 216–218, 222
length, 218
material, 216, 221, 222
metal, 223, 226, 265, 267
metal surface, 293–296
oxide, 210, 221–223, 248, 251,

296
oxide capacitance, 247, 258
silicon, 223
surface, 229
voltage, 223–229, 231, 232, 234,

241, 244, 245, 247, 248,
255, 264–267, 296

width, 218
nMOS, 221
pMOS, 221

Gated diode, 221, 232, 241, 251
Gate-source voltage, 44
Gauss’ law, 153, 183, 226, 239
Gap, v, xviii
Ge, see Germanium
Generation, 115, 119, 125, 142,

149–151, 163, 192, 200,
205, 208, 209, 248

carrier, 142, 293
current, 205
direct, 142
electron-hole pair, 146, 149
indirect, 200
net electron, 147
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rate, 147
electron, 150

Generation-recombination, 147, 149,
151, 156, 163, 200

carrier, 163
center, 145
direct, 142, 163
effectiveness of, 208–209
elementary process of indirect,

145, 164
indirect, 145, 163
net, 147, 149
rate, 288
term, 149, 156

Genius, 198
Germanium, 2–5
Glass, 2, 46
Gold, 2, 24, 173, 174
Goldstein, Jr., M. H., 300
Gradual-channel approximation,

248, 254, 259, 260
Gravitational field

uniform, 117
Gravitational force, 109
Gravity, 15, 109, 111, 117, 142

acceleration of, 111
Ground, 215

state, 26, 276
Group 15, 5, 19

impurity, 8, 19
group III, 19

impurity, 19
Group IV, 8
Group IV semiconductor, 6, 113
Group name, 6

old, 6
Group of elements, 5, 6
Group v

impurity of, 17
Group velocity, 75, 79, 86, 299
Grove, A. S., 299
Guiding principle, 263
Gyrator, 49

Hair, 24
Hall, E. H., 159
Hall coefficient, 161–162, 165, 300

apparent, 165

temperature dependence of, 162
Hall effect, 159, 161
Hall factor, 163
Hall measurement, 162, 165
Hall voltage, 161
Hardware, 154
Heat, 259
Heat equation, 51
Height, 111
Henry, 29
High-frequency performance, 45
High-frequency transistor, 4
High-pass characteristic, 81, 279
High-power transistor, 4
High-voltage device, 4, 202
Hole, 7, 12, 14, 19, 26, 44, 68, 106,

109, 119, 136, 142, 145,
147, 159, 161, 162, 169,
173, 180, 182, 205, 214,
217, 229, 234,
264–267, 293

bubble model of, 136
charge, 12, 130
conduction, 276, 288
current, 130, 197

direction of, 132
current density, 130–134, 197,

209
density, 7, 12, 17, 19, 26, 93–94,

96–100, 106, 113, 119, 124,
125, 128, 130, 140, 142,
153, 163, 164, 180, 194,
205, 208, 227, 231, 237,
276, 284

density distribution
excess, 197

energy, 14
excess, 149, 150, 193, 194
gradient of, 124
motion of, 136, 138
ni-referenced, 124
nonequilibrium, 149, 150
Nv-referenced, 124
positive, 7
punch hole model of, 136, 138,

164
surface, 227–231, 234

Hori, A., xviii
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Hydrogen atom, 26, 276
ground-state, 276

Hydrogen-like atom, 18, 26
Bohr’s, 26
model, 9

Hyperfunction, 279

IC, 46; see also Integrated circuit
ICE-VCE characteristic, 293
Ideal gas, 77, 134
Ideal rectifier, see Rectifier
Identity matrix, 65, 273
IDS-VDB characteristic, 254
IDS-VDS characteristic, 218, 293
IDS-VGS characteristic, 218,

264–267
I-F plane, 29, 40
III-V semiconductor, 6, 113, 299
Image sensor, 1
Imaginary

part, xxv, 55, 73, 75
purely, 279
unit, 59, 71, 73

Impedance, 49, 59, 64, 272
Bloch, see Iterative impedance
characteristic, see Characteristic

impedance
input, 55, 57, 59, 64, 65, 86, 279
iterative, see Iterative impedance
purely imaginary, 59
series, 55, 56, 272

Impure semiconductor, see
Semiconductor

Impurity, 1, 2, 7, 17, 23, 145, 151
atom, 23
doping, 15, 23, 25, 89, 113, 158
group 15, 19
group III, 19
ion, 17

Imref, xv–xvi, 122
Incremental resistance, see Resistance
Independent variable, 33
Indirect generation-recombination,

see Generation
recombination

Indium phosphide, 3, 5
Induced charge, 227–231, 234, 239,

264–267

Inductance, 29
chord, 40
differential, 40
incremental, 40
mutual, 42
per-unit-length, 61, 71
series, 61
small-signal, 40

Inductor, 23, 49, 59
impedance of, 75
linear, 29, 39, 57
nonlinear, 37, 40

Inertia, 15
Infinity, 79
Information processing, 25
Initial condition, 134, 136, 164, 287
InP, see Indium phosphide
Input current, 42
Input impedance, see Impedance
Input resistance, see Resistance
Input voltage, 41, 42
Insulating layer, 173
Insulator/s, 2, 3, 8, 25, 79, 96, 129,

216, 226
very thin, 129

Integrated circuit, 2, 3, 24–26, 45, 46,
154, 259, 264–267, 276

compound semiconductor, see
Compound semiconductor
integrated circuit

design, xiii
silicon, 1, 24

Integration
degree of, 25
level of, 25
variable of, 237

Intel, 25
Intensive, 109

quantity, 109
variable, 109

Interconnect, 1, 2
Interface, 171, 174, 205, 218

metal-oxide, 293
Internal chemical potential, see

Chemical potential
Intrinsic carrier density, 5, 7, 12, 13,

26, 79, 97, 113, 124, 151,
205, 276
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effective, 125, 151, 202, 205
Intrinsic Fermi level, 82, 113, 171,

283
Intrinsic semiconductor, 7, 8, 12, 13,

17, 95, 97, 98, 106, 113,
142, 171, 276, 284

Intrinsic silicon, see Silicon
Intrinsic temperature range, 114
Inverse function, 34, 69
Inversion, 231, 239

charge, 231, 234–237, 239,
244–255

charge density, 234
degree of, 232, 242, 248
electron, 295
layer, 231, 232, 233, 239, 248,

296
thickness of, 252

strong, 207, 231–237, 241–, 248,
252, 295, 296

strong-approximation, 252
stronger, 297
weak, 229, 230, 232, 233, 234,

237, 244, 295, 296
Ion, 134, 154

acceptor, see Acceptor ion
donor, see Donor ion
implantation, 23

Ionization, 115
energy, 18, 26, 276
rate, 106, 147, 276

Iterative impedance, 56, 57, 64
I-V characteristic, 34
I-V curve, 33, 34, 205
I-V plane, 27–29, 34, 35, 40

Joule, 275
Junction interface, 175, 181, 182,

194

Kawakami, M., 39, 299
KCL, 49
Kinetic energy, 275, 276
Kirchhoff’s current law, 49, 61, 277
Kirchhoff’s laws, 60, 61, 65, 277
Kirchhoff’s voltage law, 49, 61, 174,

277
Kittel, C., 299

Kroemer, H., 127, 299
Kronig-Penney model, 70, 81, 86

quantum mechanical version of,
72, 79

transmission-line version of, 71,
72, 78, 79

Kuh, E. S., 299
KVL, 49, 174

Ladder network, 55, 56, 65
infinitely long, 55
semi-infinitely long, 55, 57

Landsberg, P. T., 299
Laplace transform, 49
Large-area device, 6
Lattice constant, 5, 9, 113, 276
Lattice point, 17–19, 23
Lattice spacing, 9, 80
LC ladder, 53, 59, 61, 64

infinite, 59, 60, 79, 81, 86
infinitely long, 57

LC resonator, 51
Leakage current, 218
LeBlanc, A. R., 299
Lee, T. H., 299
Length scale, 55, 156, 163, 198
Li, Y., 300
Lifetime, 156, 164, 192, 193, 200,

203, 204, 208–211, 214,
293

dependence, 208
electron, 120, 150, 200
hole, 150, 200
minority carrier, 120, 149–151,

156, 163, 194, 198–200,
208–209, 287

Light, 1, 86, 151
emission of, 142
reception of, 142

Light-emitting device, 1
Light-receiving device, 1
Linear capacitor, see Capacitor
Linear circuit, 28–29, 277

theorems for, 277
theory, 28–29

Linear region, 218
Linear response, 140, 153
Linear scale, 200
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Lines of electric force, 228, 230, 231
Liquid, 136
L-network, 56
Locus, 30, 31
Logarithm (ln)

natural, 96, 283
Logarithmic scale, 200
Logarithmic transform, 125, 127, 180
Log scale, 218
Loop, 173, 226

structure, 173, 174
Lorentz force, 159, 161
Lossless, 64; see circuit element
Low injection, 180

condition, 187, 192
Low-noise transistor, 3, 5
Low-pass characteristic, 59
Low-temperature operation, 154
LTI, see Circuit element
LTV, see Circuit element
Lucyszyn, S., 299
Lumped circuit, 55, 60, 61, 73, 79
Lumped circuit theory, see Circuit

theory
Lumped element, see Circuit element

Maas, S. A., 299
Magnetic field, 153, 159, 161
Magnetic flux, 29, 39, 40
Magnetic flux density vector, 159
Magnetic permeability, see Permeabil-

ity
Magnetic storage device, 25
Majority carrier, 17, 19, 26, 149, 161,

162, 164, 178, 179, 188,
194, 227, 241

current, 154
density, 92, 100, 105, 106, 113,

124, 140, 150, 180, 205,
231

nonequilibrium, 177
polarity of, 161
quasi fermi level of, 177
response of, 154
response time, 149

Mass, 51, 109, 111
effective, see Effective mass
point, 51

Masu, K., 263, 299, 300
Material, xiv, 1, 2, 79

conductive, 174
parameter, 2–5, 55, 299
scientist, 15

Material-specific constant, 171
Mathematical form, 86
Mathematics, 73
Matrix, xvii

identity, 273
square, 65

diagonalize, 65
power of, 65

unimodular, 273
zero, 273

Maxwell-Boltzmann distribution, 92
Maxwell-Boltzmann distribution

function, 92, 93, 113, 283
Maxwell-Boltzmann, see

Maxwell-Boltzmann distri-
bution function

Maxwell equations, 153
McAndrew, C., 300
Mean, xvii

free path, 134
free time, 134, 136, 142, 150, 164,

276
statistical, xvii

Mechanical system, 51
Medium, 72, 75

dispersive, 72
nondispersive, 72
one-dimensional, 55, 64
uniform, 53, 55

Memcapacitor, 39
Meminductor, 39
Memory, 39, 276

device, 39
resistance change, 39
resistance switching, 299

Memristor, 39, 299
Mermin, N. D., 299
Metal, 1, 3, 46, 89, 94, 96, 109, 134,

136, 150, 162, 170, 216,
221

cation, 294
electrical conduction in, 162
monovalent, 293
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work function of, 171
Metal-insulator-semiconductor, 216
Metal-oxide interface, 293
Metal-oxide-semiconductor, see MOS
Metal-oxide-semiconductor field-

effect transistor, see
MOSFET

Metal-semiconductor contact, 241
Metamaterial, 86, 279
meV, see Electron volt
Microwave band, 86
Microwave engineering, 82
Midgap, 96, 97, 113, 147, 284
Mikoshiba, N., 300
Miniaturization, 259, 263
Minority carrier, 17, 19, 149, 150,

164, 179, 180, 188, 192,
293

density, 100, 120, 124, 125, 140,
151, 180, 194, 195, 205,
293

excess, 193, 194, 200
exponential decrease in, 209
gradient in, 179
nonequilibrium, 177

excess, 150, 151, 193
lifetime, 145

MIS, 216
Mixer

FET resistive, 40
Mixture, 5
Mo, see Molybdenum
Mobile charge carrier, 7
Mobility, 5, 130, 132, 136, 140–142,

149, 158, 161, 163, 165,
198, 276, 290

apparent, 165
bulk, 218
chord, 140
electron, 136, 200, 218, 221, 248,

293
hole, 136, 200, 221, 293
incremental, 140
linear response, 260
low-field, 140

Mole, 24
Molybdenum, 162
Momentum, 50, 134

average, 134
conservation of, 142

Moore, G., 25
Moore’s law, 25
MOS, 44, 215, 216

capacitor/s, xv, 221–224,
227–234, 239–241, 247,
264–267

biased, 224
p-type, 233
structure of, 222
surface condition of, 226, 233
threshold voltage of, see

Threshold voltage
two-terminal, 242

diode, 221
structure, xiv, 215, 216, 247

three-terminal, 221, 232, 239,
241, 242, 244, 255

two-terminal, 221
transistor, xiv–xv, 2, 6, 24, 25, 215

MOSFET, xiv, xvii, 44–46, 190, 210,
215, 216, 218, 221, 233,
234, 239, 245, 246, 257–
260, 264–267, 276, 293

advanced, xiv
dimensions, 259
four-terminal, 221, 232, 247, 264–

267
fourth terminal of, xiv
long-channel, xiv, 248, 263
nonplanar, 216
normally-off, 218
number of on Earth, 26
number of per unit area, 259
operation, 221
operation, xiv
planar, 216
planar bulk, 215
planar long-channel, 232
schematic symbol, 215
short-channel, 257, 259
threshold voltage of, see Threshold

voltage
traditional, 215

Motive force, 174
Multi-valued function, 72
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Mutual inductance, 42

Nagaoka University of Technology,
39

natural logarithm, see Logarithm
Negative charge, 293
Net carrier charge density, 101
Net carrier density, 101, 120
Net current flow, 115
Net ionized dopant density, 102
Network

L-, 56
L-shaped, 55
periodic, see Periodic network
reactive, 81
symmetric T-, 57

Neutral, 18, 20, 96
donor atom, 19
electrically, 109
region, 176, 180, 182, 183, 185,

187, 190–194, 205
n-type, 194–197, 289
p-type, 194–197, 290
quasi-, 176, 182

Newton-Raphson method, 239
Ng, K. K., 300
Ning, T. H., 300
nMOS, 234

transistor, 210, 215, 216
nMOSFET, 44, 45, 216, 218–222,

254, 264–267
back-gate-referenced, 247
biasing, 218
current-voltage characteristic of,

44, 218
schematic symbol of, 44, 216
source-referenced, 255, 257
structure of, 217

Nobel Prize in Physics, 127
Node, 60

datum, 245
reference, 245

Noise, 45
Noncrystalline, 1
Nondegenerate, 92, 124

doping density, 105
n-type doping, 105
n-type semiconductor, 105

p-type doping, 105
p-type semiconductor, 104, 105
semiconductor, 96–100, 105, 106,

113, 125, 128, 134, 142,
153, 288

silicon, 105, 276
Nondegenerately doped semiconduc-

tor, 101
Nondispersive, 72
Nonequilibrium, 89, 115, 117, 125,

163, 164, 287
condition, xvi, 120
semiconductor, 122
state, 111, 115–117, 120, 150,

151, 163, 241
weak, 119, 120

Nonlinear characteristic, 241
Nonlinear circuit, 49, 277

element, 46
simulator, 277
small-signal response of, 277

Nonlinear lumped circuit, 277
Nonlinear nonreciprocal circuit ele-

ment, 46
Nonlinear resistor, 33, 46
Nonlinear response, 153
Nonreciprocal, 49
Nonsaturation region, 218–221, 248,

252, 255, 257, 263–267,
293

Nonstationary state, 116
Nonsteady state, 115, 116
Normally-off FET, 218
Normally-off MOSFET, 218
Normally-on FET, 218
Norton’s theorem, 49
n-p-n structure, 210
npn transistor, see Bipolar transistor
np product, see pn product
n-type, 17, 124, 125, 167, 285

degenerate, 208, 216, 239, 241,
243

region, 173, 174, 177, 181, 190,
192, 200, 205, 210, 217,
288

semiconductor, 7, 18, 26, 100,
113, 125, 127, 149, 150,
159, 164, 171, 284, 288
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degenerate, 106
nondegenerate, 104

Nucleus, 9, 55
Number-crunching processor, 154
Number of particles, 109
Numerical analysis, 200
Numerical simulation, 127
n-well, 217, 218

Occupancy, 93, 125, 164
Occupation probability, 125
Offset charge, 224
Off state, 3, 218, 250
Ohm, 29
Ohm’s law, 29
Ohmic contact, 239–240
Oil

cooking, 23
OK chart, 38–39
Omoto, Y, 38
One-dimensional system, 153
One-sided abrupt junction, 189, 190,

235
One-sided junction, 189, 212, 241
Opening

horizontal, 195
vertical, 195

Operating voltage, 46
Optical communication, 47
Optical device, 4, 47
Orbital, 9, 11, 18, 87, 112

electron, 88
radius of, 277
unoccupied, 87

Organic polymer, 2
Origin, 28, 73
Oscillation, 50

electrical, 51
mechanical, 51

Otter, W. J., 300
Oxide, 221, 223, 225, 240

layer, 223
thickness, 249, 262

P, see Phosphorus
Pao, H. C., 300
Papantonis, S., 299
Parabola, 292

Parallel admittance, 271
Parallel connection, 56
Parasitic capacitance, 2
Parent device, 262
Partial derivative, 45
Partial differential operator, 63
Particle, 13, 50, 106, 109, 117

charged, 3, 14, 142
density, 108, 110
flow, 162
flow of, 116–117, 119
freely moving, 106
positively charged, 7, 12, 159

Passband, 53, 69, 84
Passive, 55

operation, 49
Passivity assumption, 56
PCB, see Printed circuit board
Pentode region, 218
Performance, xvii, 25, 47

circuit, 24
Period, 55
Periodic circuit, xv, xvi
Periodic network, 52–55, 60, 66, 76,

81, 84
one-dimensional, 55

Periodic steady state, see Steady state
Periodic structure, xiv, xvi, 50, 53, 58,

85
Periodic table, 5, 6
Permeability, 55

effective, 281
Permittivity, 2, 26, 55, 153, 155, 165

complex, 74
relative, 5, 165, 216

Phase, 64, 73
constant, 63, 67, 71, 73
difference, 64
lag, 73
rotation, 63, 72, 77

per-unit-length, 63
shifter, 76
velocity, 71, 74, 86

Phasor, 62, 63, 271
Phosphorus, 16, 17

atom, 17
ion, 19

Photon, 59
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energy, 60
Photonic crystal, 86, 280
Physical quantity, 38
Physicist, 73
Physics, 63, 70, 72

read, 127
Piecewise linear, 35
Pinch-off, 252–254

onset point, 253
region, 254
voltage, 244, 245, 255, 266

Planck constant, 27, 59
reduced, 59

pMOS, 234
transistor, 215

pMOSFET, 44, 216, 217, 220
biasing, 219
schematic symbol of, 46, 216
structure of, 218

p-n junction diode, xiv, xvi, 15, 35,
43, 46, 167, 188, 200,
203–205, 208–212, 240,
249, 251

biased, 167
p-n junction, xv, xvi, 167, 168, 175,

176, 178, 180, 181, 183,
186, 188, 189, 191, 197–
202, 209, 211, 215, 240,
242, 250, 262

abrupt, 189; see also Abrupt junc-
tion

capacitance of, 188
energy band diagram of, xviii, 212
forward-biased, 177–178, 189,

195
one-sided, 241, 250
physics of, 212
reverse-biased, 178, 181, 214,

243, 251
short-circuited, 176
silicon, 177, 182
transient response of, 189
zero-biased, 212, 289, 290

pn product, 95, 100, 124
equilibrium, 95
nonequilibrium, 124

p-n-p structure, 209
pnp transistor, see Bipolar transistor

Poisson equation, 105, 145, 152, 155,
163, 182, 187, 237–239,
262

one-dimensional, 260
two-dimensional, 261

Polarity, 3, 133
Polycrystal, 6
Polycrystalline semiconductor, 6
Polymer

organic, 2
Poly-si, 6, 221
Polysilicon, 216
Population, 24

earth’s, 277
Port, 66, 269, 270

current, 269, 270
voltage, 270

Position, 69, 73, 123, 126
Positive charge, 294

hole, see Hole
Positively charged particle, see

Particle
Potential

balance equation, 225
barrier, 179
chemical, see Chemical potential
electrostatic, see Electrostatic

potential
energy, 14, 69, 109, 111, 118, 276

difference, 285
of electrons, 285

field
periodic, 69

gradient, 155, 159, 176, 179, 192,
205, 207, 225

Power consumption, 25, 45, 258, 259
Power electronics, 4, 47
Power supply, 215

DC, 159
Price, 47
Printed circuit board, 24
Printing-based manufacturing tech-

nology, 46
Printing technology, 24
Propagation, 53, 64, 71
Proportionality coefficient, 41–42,

131, 135, 138, 142
Proportionality relation, 131
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p-type, 16, 19, 124, 126, 167, 222,
285

region, 174, 175, 178, 181, 192,
200, 202, 203, 205, 210,
217, 289

degenerate, 216
semiconductor, 7, 21, 26, 101,

102, 126, 127, 149, 160,
172, 284, 289–290

degenerate, 104
equilibrium, 227
nondegenerate, 102, 103

silicon, 21, 26
Punch hole model, 137, 138, 164,

287, 288
Pure semiconductor, see

Semiconductor
Purity, 2

Quadratic curve, 289
Quadratic equation, 100, 296
Quadratic function, 220
Quantum chemistry, 9
Quantum computer, 263
Quantum mechanics, xv, xvi, 50, 51,

70, 82–85, 117, 270
Quantum state

sinusoidally oscillating, 117
Quantum theory, 59, 82

of electromagnetic fields, 59
Quasi chemical potential, 117, 119

total, 119
Quasi electrochemical potential, 119,

122
Quasi Fermi level, xv–xvi, 105, 117,

119, 122–127, 131, 151,
156, 162, 164, 169,
177–181, 192, 195, 203,
207, 212, 240, 250, 262,
267, 286

for conduction band, 287
difference, 173, 177
electron, 122, 123, 125, 162, 164,

205, 250
for electrons, 119
gradient, 122
gradient of, 131, 132, 163, 205,

206

hole, 122, 123, 133, 162, 205, 250
for holes, 119
inventor of, 122
linear change in, 209
minority carrier, 208
opening of, 209
relative value of, 128
separation between, 209
splitting of, 124
for valence band, 286
vertical opening, 195, 205

Quasi Fermi potential, 123, 250
electron, 131
hole, 250

ℜ, 55
Radio-frequency (RF) circuit, 240
Radio-frequency circuit, 240
Reaction

leftward, 120
rightward, 120

Reactive, see Circuit element
Reactive element, see Circuit element
Real, 58, 279

number, 272
positive, 64

part, xxix, 55, 73
Reciprocal, 49, 77, 273
Reciprocity theorem, 49
Recombination, 115, 119, 120, 125,

143, 147–151, 163, 179,
192, 200, 202, 205,
207–209, 249

current, 179
direct, 143
electron-hole, 146
indirect, 201
rate

electron, 148, 150
Recombine, 179, 194
Rectification, 178

characteristic, xvi
Rectifier

ideal, 34, 35, 43, 49, 278
Rectifying action, 1, 35, 48, 167, 178,

202, 203, 209, 239
Rectifying effect, 212
Recurrence formula, 56, 274
Reduced zone scheme, 72
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Reference density, 97, 128, 143, 196,
290

Reference energy, 128, 196, 287, 290
Reference node, 246
Reference resistance, 69, 86, 272
Reflection, 83

coefficient, 85, 270, 272, 280,
282–283

Relative energy, 196, 290
Relative permittivity, 5
Relaxation

exponential, 135
process, 155
time, 135

Relay, 3
Repetition count, 68
On resistance, 259
Resistance, 29, 33, 38, 140, 186, 269

change memory, 38
chord, 33–35, 47, 75, 140
differential, 33
incremental, 33–34, 36, 47, 75,

110, 140, 168
input, 41–43
internal, 36
output incremental, 36, 41–43
reference, see Reference resistance
small-signal, 33

Resistivity, 1, 2, 95, 138–140, 155,
165, 186, 200, 288

Resistor, 28
frequency-dependent negative, 39
linear, 28, 29, 38, 59, 75, 140
linear time-varying (LTV), 40
nonlinear, 33–35, 38, 41, 167,

168, 180, 188
nonlinear variable, 215
three-terminal variable nonlinear,

41, 43, 48
variable, 43
variable linear, 40
variable nonlinear, 41, 43

Resonator
LC, 50

Reverse bias, 167, 177, 178, 188, 189,
191, 195, 203, 205, 209,
213, 242, 290

voltage, 198, 202, 205

Reverse current, 180, 210, 249
density, 180

Reverse direction, 34
Reverse saturation current, 212

density, 191, 198
Rideout, V. L., 299
Rms phasors, 64
Roman numeral, 5
Room temperature, 96
Rubber, 2

Sah, C.-T., 300
Salt, 23
Saturated drain current, 220
Saturation characteristic, 262
Saturation drain current, 254, 256,

257
Saturation range, 114
Saturation region, 218, 220, 250,

253, 254, 257, 260,
264–266

Sawada, K., xviii
Scalar, xix
Scaling, 257

constant-electric-field, 258–259,
261, 262

constant-voltage, 258, 259
generalized, 258, 259
law, 25, 261

MOSFET, 258, 263
ordinary device, 265
parameter, 258
temperature, 263

Scattering, 134
by atoms, 134
average frequency of, 135
carrier, 164, 220, 261
Coulomb, 148, 275
event, 136
frequency of, 134
matrix, 270
parameters, 299

Schematic
circuit, 216
symbol, 29, 33, 44–46, 167, 215,

216, 218
MOSFET, 215

Schottky-barrier diode, 240
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Schottky contact, 240
Schr¨odinger equation, 51, 70, 82

time-independent, 70, 85, 116,
117, 158

Schroder, D. K., 300, 301
Schubert, E. F., 300
Search engine, 26
Seeger, K., 300
Seely, S., 300
Self-fulfilling prophecy, 25
Semiconductor device, xiv–xvii, 2, 15,

25, 28, 41, 46, 47, 87, 127,
149, 154, 158, 167, 189,
209

basic equations for, 153, 163
engineer, 15–16
function of, 28
operation of, 106, 111
pioneers of, v
teaching, xvii
two-terminal, 35

Semiconductor-metal contact, see
Metal-semiconductor
contact

Semiconductor, xiv, xvi, 1–3, 6, 25,
28, 47, 89, 94, 96, 106, 136,
161, 240

alloy, 4, 5
amorphous, see Amorphous semi-

conductor
compound, see Compound semi-

conductor
crystal

uniform, 96
crystalline, 6
doped, 22, 98, 99; see also Doped

semiconductor
electronics, 199
elemental, 5, 43
equilibrium, 119
fabrication, 154
group IV, 5, 113
heterostructure, 127
III-V, 5, 113
impure, 23; see also Doped semi-

conductor
intrinsic, 95; see also Intrinsic

semiconductor

literature, 8
manufacturing, 154
material, 3, 132, 240
most widely used, 3
neutral, 174
nondegenerate, 94
nonequilibrium, 122
n-type, 35, 45; see also n-type

semiconductor
physics of, 28
polarity of, 99
polycrystalline, 6
p-type, 35, 45; see also p-type

semiconductor
pure, 7
spatially uniform, 112
substrate, 216, 220, 263
technology, xiv
uniform, 87
work function of, 171

Semi-insulating, 8
Series connection, 49
Series impedance, 271
Shockley, W., xvi, 122, 198
Shockley equations, 153, 154, 160,

163
Shockley-Read-Hall process, 144
Short-channel effect, 260, 262

in a broad sense, 260
in a narrow sense, 260

Si, see Silicon
SiC, see Silicon carbide
Siemens, 29
SiGe, 5
Signal, 47, 75

modulating, 75
processing, 58

Significant digit
number of, 154, 199

Silicon, 2–4, 12, 16, 19, 22, 24–26,
95, 96, 123, 136, 144, 151,
155, 156, 159, 165, 182,
190, 199, 202, 213, 216,
284, 290

atom, 8–10, 26, 275
carbide, 4, 202
chip, 2
crystal, 9, 10, 17, 19, 22, 276
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crystalline, 275
dielectric constant of, 276, 277
dioxide, 95, 216
germanium, 2, 4
intrinsic, 8, 13, 16, 19, 173
nondegenerate, 103, 275
n-type, 17, 157
polycrystalline, 6, 47, 216, 221
p-type, 26, 158
substrate, 24, 221–222

p-type, 217
Silicone, 3, 23, 26
Silver, 173
Simulation

numerical, 127
Sine wave, 247
Single crystal, 6
Single-valued function, 49
Sinusoid, 62
Sinusoidal signal, 247
Sinusoidal steady state, 116; see also

Steady state
SiO2; see Silicon dioxide
Slope, 118, 202, 291
Small-signal resistance, see Resistance
S-matrix, 270–272
Software, 154
Solar cell, 1, 4, 6
Solid, 1, 23, 25, 79, 106, 169, 270

classification of, 1, 2
conductive, 200
crystalline, 52
material, 7
substance, 168, 169, 210

conductive, 169
Solid-state physics, xvi, 50, 52, 69, 79,

85, 87, 89, 109, 119, 138
Source, 42, 215–218, 221, 241, 246,

248, 263, 264
controlled, 42, 43
voltage, 249

Source-referenced analysis, 256
Source-referenced terminal voltage,

256
Space

charge, 293
three-dimensional, 160

Space-charge region, 175

S-parameter, 229, 271
Spatial coordinate, 11, 13, 73
Spatial derivative, 51
Spatial extent, 73
Special function, 113, 174
Spring, 50

constant, 51
Square, (□), 145

complete the, 292
matrix, see Matrix

root, 58, 65, 100, 124
On state, 217, 218, 250
State, 87, 89, 124, 159

conduction band, 88, 287
number of, 88
unoccupied, 87
vacant, 281
valence band, 88, 287

Statics, 73
Stationary state, 116
Statistical average behavior, 116
Statistical mean, xix, 134
Statistical mechanics, 106, 115, 142
Steady state, 51, 70, 115, 117, 160,

162, 193
periodic, 70, 82, 116, 117
sinusoidal, 116, 117, 162, 247
switching, 116

Steady-state equation, 154
Step function, 90

unit, 90
Step junction, see Abrupt junction
Stopband, 53, 67, 72, 84

center frequency of, 84
Stratton, J. A., 73
string, 34
Stringed musical instrument, 34
Strong inversion, see Inversion
Subatomic scale, 55
Substrate, xvii, 218, 222, 229–231,

236–238, 249, 250, 254,
262, 293

material, 222
p-type, 217, 233–235, 241, 293
semiconductor, xvii, 216, 220, 263
silicon, 222, 224–227, 234, 242,

266, 267
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surface, 227–232, 238, 242, 247,
263, 293, 294, 298

p-type, 235
silicon, 234

surface of, 238
Substrate-bias effect, 298
Subthreshold characteristic, 231, 250
Subthreshold current, 218, 267
Subthreshold region, 219, 267
Subthreshold swing, 267
Sugar, 23
Superconductor, 2
Superposition

principle of, 49, 278
Supply voltage, 47, 215, 257–258,

263
Surface

bottomof gate, 224
roughness, 220
substrate, see Substrate

Surface potential, 225, 227, 229–234,
236, 239, 241, 242, 250,
254, 266, 293

approximate, 236, 250
fixed-value approximation of, 236,

243
Switch, 3

ideal, 40
mechanical, 3

Switching action, 1
Switching energy, 258
Switching power, 258
Switching steady state, 116
Symmetry, 11
System, 106–108, 225
Sze, S. M., 301

Taur, Y., 301
TCAD, xvii, xviii, 127, 154, 201, 262,

266, 291
user, xiii

Technology, 154
computer-aided design, see TCAD

Telegrapher’s equations, 62, 85, 279
frequency-domain, 62

Temperature, 89, 106, 108, 115, 162
absolute, 89, 113
cryogenic, 2, 263, 267

device operating, 263
finite, 112, 281
fixed, 117
gradient, 116
high limit, 113
inverse, 113
liquid nitrogen, 263
low, 113
low-limit, 113
low-operation, 154
room, 5, 8, 11, 12, 17, 18, 21, 26,

96, 99, 113, 144, 263, 267
scaling, 263

Temperature-scaling theory, 301
Teramoto, A., xviii
Terminal, 36, 240

control, 40, 43, 45
negative, 269
pair, 269
positive, 36, 269
velocity, 135
voltage, 248

Thermal energy, 13, 18, 19, 26, 109,
144

Thermal equilibrium, 115
Thermal excitation, 13
Thermal motion, 106, 110, 118, 133
Thermal velocity, 134
Thermal voltage, 236, 290
Thermodynamics, 106, 115
Thévenin’s theorem, 49
Thin film, 165
Thought experiment, 175, 286
Three-dimensional space, 160
Three-terminal MOS structure

channel-terminal-referenced, 247
threshold voltage of, 244

Threshold, 199
voltage, 218, 244, 245, 247, 250,

255, 257, 259, 267
channel-terminal-referenced,

247
of MOS capacitor, 237
of MOSFET, 219
MOSFET, 247, 256, 257

Time, 40, 142, 153
constant, 120, 142, 150, 155, 156,

163
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RC, 259
dependence, 73, 74

constant, 116
no net, 115

derivative, xix; see also Derivative
domain, 62, 74
scale, 156; see also Time constant

Time-dependent, 116
T-network, 57, 271

symmetric, 57
Tohoku University, 301
Tokyo Institute of Technology, 38
Total chemical potential, 119, 120;

see also Chemical potential
Total quasi chemical potential, 119
Transconductance, 42, 44
Transductor, 44
Transformer, 42
Transistor, xv, 1, 3, 41, 43, 47, 48

bipolar, 4; see also Bipolar
transistor

definition of, 43
first, 4
high-frequency, 4
high-power, 4
junction, 301
low-noise, 4
MOS, see MOSFET

Transition, 144, 145, 147
region, 175

Translational symmetry, 53
Transmission coefficient, 68, 69, 85,

270, 272, 280–282
Transmission line, 52, 60, 65, 70, 74,

81, 85, 272
cross sectional dimensions of, 65
highest usable frequency of, 65
lossless, 53, 60, 61, 64, 65, 72, 117

ABCD-matrix of, 68
alternating, 67, 70

lossy, 64, 74
semi-infinitely long, 64
theory, 52, 65, 82

hidden assumption in, 65
Transmission matrix, 269
Transport coefficient, 142
Transresistance, 42, 43
Trap, 144, 145, 151, 209, 240, 286

acceptor-type, 144–148
charged, 144, 164, 288
charge density, 153
charge of, 147
donor-type, 19, 144–148
ionization rate, 153
level, 147, 164

Trapping, 147
Trapping-detrapping, 147, 148
Traveling wave, 52, 74

phasor, 63, 272
current, 64
voltage, 63, 272

voltage, 271
Trigonometric identity, 31
Triode region, 218
Tsividis, Y., xv
Tsubouchi, K., 301
Tunnel current, 174, 240
Two-dimensional system, 153
Two-layer structure, 165
Two-port, 269, 270

cascaded, 270
high-pass, 81
matrix representation of, 271
network, 269
reciprocal, 273
unit, 65–69, 76–78, 81, 85

Two-terminal element, see Circuit
element

Typeface, xix, 14

Undoped, 96
Unimodular matrix, 272
Unit, 161

cell, 55, 65
step function, 90
two-port, 78, 81

Universe, 24
User, xv

Vacancy, 136
Vacuum, 3, 46, 55, 165, 170, 174

level, 170
tube, xv, 1, 3, 46, 167
Valence band, 11–13, 19, 60, 81, 87,

89, 94, 136, 143, 145, 205,
286
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bottom of, 93
electron, 5, 8, 17, 19
state, 74, 104, 241
top, 144
top energy, 13
top of, 11, 94, 159

Varactor, 188
diode, 188

Variable
change of, see Change of variables

VCCS, 42, 44–45
VCVS, 41
Vector, xix, 159
Velocity, 131, 134

average, 134, 164
electron, 130
group, see Group velocity
hole, 130
phase, see Phase velocity
saturation, 261
terminal, see Terminal velocity
vector, 160

Vertex, 292
V-I plane, 191
Visible light, see Light
VLSI, 4
Volt, 46
Voltage, 28, 29, 51, 60, 62, 123, 160,

171, 224, 225, 250, 284,
285

applied, 188
bias, 167, 177
bias, 190, 204, 206–208, 210
DC, 81
drop, 186
gain, 41
reference, 248
supply, 258

Voltage source, 28, 33, 41, 47, 48,
110, 111, 114, 223, 284,
285

AC, 31
current-controlled, 41
DC, 35, 36
voltage-controlled, see VCVS

Voltage traveling wave phasor, see
Traveling wave phasor

Voltmeter, 160, 173, 177, 267

Volume, 106
V-Q plane, 30, 31, 37

Waiting time, 125, 129
Wakabayashi, H., xviii
Wang, F. Z., 301
Water, 23
Wave, 270

equation, 51, 62, 63, 70, 85, 158,
193, 279

electromagnetic, 82
frequency-domain, 62, 82, 85,

117
solution of, 63
transmission-line, 82
voltage, 71

front, 60, 73, 75
function, 70, 79
number, 16, 63, 70, 71, 73, 78

angular, 16
phenomena, xiv
propagation, 85

Waveform, 29, 30, 60, 62
Wavelength, 53, 60, 63, 66, 79, 83,

84, 269
electromagnetic, 55

Weak inversion, see Inversion
Weight, 50
Well

n-, 217, 218
Wells, D. A., 301
Wiring, 24, 60
Work, 106

function, 170, 240, 259
difference, 170, 220, 225, 266
difference in, 223
of metal, 170
of semiconductor, 171

X-ray, 83
X-ray diffraction, 83

Yang, X., 301
Yi, Y.-W., 301
Yoshikawa, J., xviii
Yu, H.-N., 299

Zero bias, 177, 178, 182, 203, 241
Zero matrix, 273
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