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Foreword 

Imagine this setting: A workshop at the Massachusetts Institute of Technology in 
September 2002. A man standing at the blackboard, surrounded by a group of 
economists, holding forth on some new idea. Ideas are flying as much as the chalk 
dust. It was difficult for me not to get drawn in. This was how I first met Tom Hertel. 
He was the man at the chalkboard. I am a global environmental scientist and was 
possibly the only noneconomist in the group; whatever Tom was saying went over 
my head, but it was clearly exciting to the group. Tom noticed me at some point and 
said something along the lines of “Navin, this is where your data would come in and 
be most useful.” This has been the story of our relationship since: Tom sees 
connections that few others—including myself—identify. 

Since that first meeting more than two decades ago, Tom Hertel and I have 
collaborated on multiple papers and projects. I am trained as an earth and environ-
mental scientist. I used to work on the global climate problem, but these days I focus 
on the sustainability of land use and food systems. Tom Hertel is an economist 
whose work has focused on the intersections of trade, environment, and develop-
ment; he is particularly prominent for his work in global economic modeling. Our 
long-term collaboration has built on our mutual interest in global problems, our 
commitment to strongly empirical work, our deep respect for each other’s intellect 
and integrity, and our desire to develop new insights from leveraging the power of 
economic thinking to addressing global sustainability challenges. I learned nearly 
everything I know of economic theory from working with Tom. 

This book is another example of Tom’s ability to see the big picture and seize 
opportunities for advancing the field. The book is fundamentally about the challenge 
of scale: How one can represent and analyze processes that interact between scales? 
For example, global models are great at capturing interactions between different 
countries and regions of the world but are very poor at representing local-scale 
processes. Local models are excellent at representing local processes in great detail 
but not how they influence, or are influenced by, other locations nor how they may 
influence the globe. This challenge of representing cross-scale interactions plagues
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nearly all academic disciplines. This book presents a modeling framework for 
representing and simulating such cross-scale interactions in the realm of global 
sustainability challenges. 

viii Foreword

But how did Tom get here? His pioneering work has been at the global scale, 
especially with the GTAP (Global Trade Analysis Project) model. GTAP is a model 
of the world’s economy that represents global interactions among countries, sectors, 
and factors of production and has been used to analyze the economic and welfare 
implications of different policy interventions. But over time, Tom was drawn to 
address our pressing global environmental and sustainability challenges. His 2010 
presidential address to the Agricultural and Applied Economics Association 
discussed the multiple pressures on the global agricultural resource base, including 
feeding the world’s growing population, environmental sustainability, and capacity 
to withstand shocks from extreme weather events or governmental interventions. 

Over the last decade, Tom’s focus has shifted to addressing the role of global 
agricultural land use in achieving the United Nations Sustainable Development 
Goals. In 2013, Tom developed a much simpler version of GTAP, a model appro-
priately called SIMPLE, that allowed one to make much faster calculations than 
GTAP and that was also more transparent and accessible to noneconomists. SIMPLE 
allowed one to include richer representations of the environmental system and to run 
many more simulations than ever before. While SIMPLE was simple, it was still 
coarse, considering seven world regions and their interactions. While it was possible 
to increase the number of regions, doing so still didn’t capture granularity at the local 
scale. A conversation between Tom and I at a meeting of the American Geophysical 
Union led to the “A-ha!” moment for Tom—SIMPLE is in fact simple enough that 
we can do the economics on the grid, at the local scale! Voilà—SIMPLE-G! 

SIMPLE-G is a gridded, meaning geographically disaggregated, version of 
SIMPLE that can consider local biophysical characteristics and institutions. With 
SIMPLE-G, one can simulate how global policies will influence local land-use 
decision-making and responses and how these local responses will aggregate up 
and feed back to the global scale, what Tom calls the global-to-local-to-global 
framework. This book presents SIMPLE-G, including the economic theory (Part 
II), the nuts and bolts (Part III), and several illustrative applications (Part IV). The 
book illustrates how SIMPLE-G could be used to investigate policy interventions to 
address different UN Sustainable Development Goals and evaluate potential spill-
overs and trade-offs. 

As one example of the power of SIMPLE-G, take the case of nitrate pollution in 
the US Mississippi Basin as a result of excessive fertilizer application in this 
agricultural region. Liu and coauthors (Chap. 14) consider four interventions to 
address this problem—a national tax on nitrogen losses, improving nitrogen use 
efficiency, drainage water management, and wetland restoration. They find that 
spatially targeted policies (drainage management, wetland restoration) are the most 
effective but result in spatial spillovers; that is, the increased crop prices and lower 
fertilizer prices resulting from the policies cause farmers in neighboring (nontarget) 
regions to increase crop production. The novel insight is that policies that may seem



most effective at first blush may not be once cross-scale interactions are considered; 
ultimately, a mix of synergistic targeted and across-the-board policies are most 
effective. Part IV of this book is full of such interesting and insightful examples: 
addressing other environmental issues such as climate change and groundwater 
depletion, the role of different policy interventions such as investment in agricultural 
R&D or limiting environmentally harmful agricultural land use practices, multiple 
stressors such as climate change and the pandemic, and investigating the influence of 
critical meso-level mediators such as labor mobility. 

Foreword ix

So why should you read this book? First, if you are an environmental scientist 
interested in bringing economic insights into your work, this is a great place to start. 
SIMPLE-G might just be the tool you’ve been looking for. You can also have the 
confidence that this tool has been developed by one of the world’s leading agricul-
tural economists and his team. This book will also be useful to those economists who 
are interested in tailoring their work to address the world’s environmental sustain-
ability challenges. While the economic theory may be old hat for you, I am sure you 
will find the applications in Part IV enlightening. 

The holy grail for global change research evolves over time. Decades ago, after 
the first models of the global atmospheric circulation were developed, the challenge 
was to couple different parts of the biophysical Earth system, including the oceans, 
the cryosphere, and terrestrial vegetation. Enormous progress has been made on 
those fronts in recent decades. The holy grail now is to represent human behavior in 
these biophysical models. Tom Hertel’s efforts with GTAP, SIMPLE, and now 
SIMPLE-G allow us to better represent human responses, even if economic theory 
is only one framework for representing human behavior. Another holy grail, as I 
mentioned earlier, is scale, to represent the suite of processes between the local and 
the global and their interactions. This book presents a global-to-local-to-global 
modeling framework that addresses this scale challenge as well. The last chapter 
of the book (Part V) presents a comprehensive and thoughtful discussion of future 
directions for this type of work. As an earth and environmental scientist, I am excited 
to see how far we get in the coming decades to fully representing humans in Earth 
system models. We do live in interesting times. 

Canada Research Chair in Data Science 
for Sustainable Global Food Systems, 
Professor and Director, Institute for 
Resources, Environment and 
Sustainability, Professor, School of 
Public Policy and Global Affairs, 
University of British Columbia, 
Vancouver, Canada 

Navin Ramankutty



Preface 

The genesis of this book goes back to a conversation between one of the co-authors 
(Hertel) and Navin Ramankutty, his long-time friend and collaborator, while attend-
ing the meetings of the American Geophysical Union (AGU) in San Francisco. 
Hertel and Ramankutty had collaborated on a global land use database for use in 
conjunction with the Global Trade Analysis Project (GTAP) model, and the ensuing 
Agro-Ecological-Zones framework (GTAP-AEZ) was being widely used to analyze 
land-based climate mitigation policies as well as the indirect land use impacts of 
biofuels. However, it was frustrating to aggregate the rich, gridded data developed 
by Ramankutty and colleagues to match the aggregate regions used in the economic 
models rather than using it directly at the grid cell level. This aggregation greatly 
diluted the connection to the rich biophysical heterogeneity required for credible 
analysis of issues ranging from biodiversity to terrestrial carbon storage, water 
scarcity, and pollution. As a result, we found that physical scientists tended to lose 
interest when analyses were conducted at the regional or country level using models 
like the GTAP framework. 

About this time, Hertel, Ramankutty, and Purdue University colleague Uris 
Baldos were collaborating on a paper revisiting the question of how advances in 
agricultural technology affect land use. Instead of using the economywide, GTAP 
framework for the analysis, the authors opted to use SIMPLE (a Simplified Interna-
tional Model of Prices Land use and the Environment), which Hertel and Uris Baldos 
had developed for use in the classroom. Unlike GTAP, which seeks to cover the 
entire economy, SIMPLE is a partial equilibrium model that focuses on a single 
sector or commodity, which facilitates its use in interdisciplinary graduate courses; 
the simplified structure greatly facilitates analysis and interpretation of results. In 
their paper, Hertel, Ramankutty, and Baldos were able to explain their novel findings 
about the impact of a prospective African Green Revolution on land use and 
terrestrial carbon emissions using simple graphical analysis in conjunction with 
analytical expressions derived from a condensed version of SIMPLE. This allowed 
them to clearly reconcile what had previously appeared to be irreconcilable positions 
of two groups of researchers: those arguing, along with Borlaug, that improved 
technology would be land-sparing, and those appealing to Jevons’ Paradox, which
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suggests that improved technology would simply result in more land being devoted 
to agriculture. As demonstrated in their 2014 paper, both groups had ground to 
stand on: The correct answer depends on the underlying data and parameters. 

xii Preface

Following this success, Hertel and Ramankutty looked for the next potential 
collaboration. They also concluded it was time to stop aggregating the biophysical 
data. At this point, Hertel realized that the equations in SIMPLE were simple 
enough, and the data and parameter requirements sufficiently modest, to permit 
implementation at the level of individual grid cells. Rather than determining com-
modity supply via national-level equations, these could be determined at the local 
level, with national-level outcomes determined by summation across grid cells 
within a particular market. This concept was subsequently implemented by Uris 
Baldos, and the first published application was led by another Purdue collaborator, 
Jing Liu, working with a group of global hydrologists. The success of SIMPLE-G 
can be attributed in large part to Iman Haqiqi's contributions, bringing new economic 
perspectives, enabling large model computations, improving parameter estimation, 
and implementing the first comprehensive model validation. Iman Haqiqi further 
developed the SIMPLE-G framework, and the SIMPLE-G model was officially 
christened with a short course in 2019 and a publication in 2020. 

SIMPLE-G has formed a core element of several large interdisciplinary grants 
from the US Department of Agriculture, the National Science Foundation, and the 
Department of Energy. It is also playing an integral role in GLASSNET (glassnet. 
net), an NSF-funded network of networks aimed at promoting global-local-global 
analysis of sustainability. The theme of GLASSNET is that, while sustainability 
analyses focusing on land and water resources are inherently local, it is also 
important to connect these local analyses with the global changes that drive many 
of these stresses. Furthermore, responses to local stresses can spill over to other 
locations and have global impacts. This global-local-global theme is explored in 
depth in a special issue of the interdisciplinary journal, Environmental Research 
Letters. Several contributions to this special issue used the SIMPLE-G framework, 
and we have included them in the applications section of this book (Part IV). 

By keeping the economics simple, we have found far greater scope for transdis-
ciplinary collaboration. Throughout our work with SIMPLE and SIMPLE-G, we 
have found that the simplicity of these models allows for far richer collaborations, as 
noneconomist collaborators can readily grasp the key economic concepts. This 
permits them to engage with the research in a meaningful way and identify new 
avenues for enriching the analysis and parameterization of SIMPLE-G. The structure 
of this book is informed by the example of the so-called GTAP Book, published in 
1997 and edited by Tom Hertel, one of the co-authors of this book, and cited over 
5,000 times, at the time of this publication, according to Google Scholar. The design 
of that book was similar, with theory, data, and parameters preceding a set of 
applications of the model authored by a variety of contributors. These applications 
formed the basis for the first several annual offerings of the GTAP short course. We 
are following a similar path with SIMPLE-G. Much of the material in this book was 
developed in the context of the first two SIMPLE-G courses, during which we 
refined our approach to teaching SIMPLE-G to economists as well as noneconomists

https://glassnet.net
https://glassnet.net


seeking to address the world’s land and water sustainability challenges (https:// 
mygeohub.org/groups/glassnet/learning-hub/courses_page/simpleg). 

Preface xiii

As with the GTAP example, wherein the book and database gave rise to a 
remarkably large network of researchers and decision-makers (at publication, more 
than 28,000 members, spread across more than 175 countries: www.gtap.org), we 
hope that this new book will facilitate the development of a community producing 
many new versions of SIMPLE-G. These may include new focus regions (e.g., 
SIMPLE-G-EU) or a different sectoral focus (e.g., SIMPLE-G-Livestock), or it may 
even involve the integration of SIMPLE-G and GTAP. Eventually, we hope to 
provide a common global repository for model files, data, parameters, and model 
specifications to which the community can contribute and from which collaborators 
can draw to address new sustainability policies. 

West Lafayette, IN, USA Thomas W. Hertel 
Iman Haqiqi

https://mygeohub.org/groups/glassnet/learning-hub/courses_page/simpleg
https://mygeohub.org/groups/glassnet/learning-hub/courses_page/simpleg
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Chapter 1 
Introduction 

Thomas W. Hertel 

The world faces significant sustainability challenges in the decades ahead (United 
Nations 2019). Of the 17 UN Sustainable Development Goals, nine bear directly on 
the world’s land and water resources (Fig. 1.1). These goals cannot be attained 
without prudent management of these natural resources, yet growing populations 
and rising incomes place unprecedented stress on them. Of the four planetary 
boundaries identified as being at risk, three—genetic diversity, land system change, 
and nitrogen and phosphorous flows—are directly linked to land use—and the 
fourth—climate change—is also substantially driven by developments in global 
land use (Steffen et al. 2015). The challenge posed in assessing potential sustain-
ability solutions is that these stresses do not respect disciplinary boundaries. And 
while stresses are often highly localized, the drivers of these stresses are often global 
(e.g., Haqiqi et al. 2023), and local responses can influence national and international 
outcomes. For this reason, underlying risks, as well as solutions, are typically 
assessed using a suite of models with increasingly complex approaches. Unfortu-
nately, this complexity often renders replication and use by researchers outside the 
core group impossible (Obersteiner et al. 2016; Springmann et al. 2018). 

To date, only a few open-source, bottom-up, economic-environmental modeling 
frameworks have been capable of analyzing global sustainability at the resolution of 
individual grid cells (Lotze-Campen et al. 2008; Valin et al. 2013). There is clearly a 
trade-off between complexity and accessibility. Models used in teaching and
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academic research are generally simpler than those developed by national and 
international laboratories and research institutions. A relatively simple, global, 
grid-resolving sustainability framework that could also be run “in-cloud” would 
allow wider participation in sustainability discussions and facilitate more 
crowdsourcing of new ideas, data, and parameters to enrich the representation of 
local stresses, policies, and adaptations. This book documents one such modeling 
framework: SIMPLE-G, a Simplified International Model of agricultural Prices, 
Land use, and the Environment, Gridded version.

4 T. W. Hertel

Fig. 1.1 United Nations Sustainable Development Goals, representing a blueprint for a better 
future. Of the 17 goals, nine are related to food, water, and land – the focus of this book. Image 
source:  United  Nations  Sustainable  Development  Goals  (https://www.un.org/  
sustainabledevelopment/). The content of this publication has not been approved by the United 
Nations and does not reflect the views of the United Nations or its officials or Member States. 

The SIMPLE-G framework allows researchers to analyze the interplay between 
economic and environmental systems. In doing so, it accounts for the actions of local 
agricultural producers with respect to land and water use within the context of 
regional and global commodity markets. This model integrates economic theories 
with environmental sciences to analyze the biophysical and economic impacts at 
different geospatial scales. The model’s economic supply of land and water accounts 
for information about local institutions, biophysical characteristics, sustainability 
criteria, and physical availability. Consequently, heterogeneous local constraints 
lead to different rates of change in land and water use. On the demand side, growth 
in income and population lead to changes in food consumption baskets and changes 
in agricultural trade patterns. 

Integrating human and earth system analysis within a single global economic 
framework is a challenging task and often focuses on one-way linkages, such as 
those used in downscaling regional results to a grid cell level (Reilly et al. 2012). It
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has also been common practice to extrapolate from sophisticated grid-level analyses 
to the national scale, assuming that the share of grids in national aggregate of 
production or land use are unchanging (Schlenker and Roberts 2009). Bridging 
local, national, and global scales within a single, integrated framework is essential 
if we wish to consider the influence of local decision makers’ behavior on global 
sustainability outcomes. In the SIMPLE-G framework, these local decisions are 
endogenous to the model and account for local biophysical characteristics and 
institutions as well as the simultaneous determination of local input prices and 
globally determined commodity prices. 

1 Introduction 5

This book features eight applications of the SIMPLE-G framework to illustrate its 
versatility in sustainability analyses. Chapter 10 introduces the reader to the SIMPLE 
model (nongridded) through an exploration of the role of agricultural productivity 
growth in ensuring both environmental sustainability and food security. Chapter 11 
builds on Chap. 10 by introducing the simplest possible representation of economic 
and biophysical processes, dubbed SIMPLE-G1-US: two inputs (land and nonland), 
with just one region (i.e., the United States) represented at a fine scale. Subsequent 
applications gradually introduce greater complexity, including groundwater and 
surface water withdrawals (Chap. 12), labor markets (Chap. 13), and nitrogen 
fertilizer applications (Chap. 14), represented at a fine scale. Some examples of 
sustainability challenges that have been assessed using these versions of SIMPLE-G 
range from the implications of public research and development for agricultural 
productivity and greenhouse gas emissions (Chap. 10) to the consequences of 
groundwater conservation policies for employment, production, and trade 
(Chap. 16). Another application (Chap. 14) focuses on mitigating agricultural 
nonpoint source water pollution and one other (Chap. 15) focuses on the spatial 
environmental impacts of infrastructure development (i.e., road and rail construc-
tion) in Brazil. A final application (Chap. 17) aims to understand the global interplay 
between future pandemics and adverse climate shocks. In short, this book offers a 
rich array of SIMPLE-G applications for the reader to replicate and build upon in 
their own future research. All of the files required for replication are available at 
https://gtap.agecon.purdue.edu/simple-g/. 

To take full advantage of the SIMPLE-G framework and resources, readers need 
deeper insights into the theory, data, parameters, and analysis tools underpinning 
these models. In Part II, we review the economic theory underlying the SIMPLE-G 
model. Using this theory, we can obtain important insights about the likely conse-
quences of sustainability policies (e.g., changes in agricultural productivity or the 
withdrawal of natural resources for conservation purposes). We encourage model 
users to go beyond simply reporting results and instead provide in-depth analysis of 
the channels through which these external shocks to food and environmental systems 
affect key social and environmental outcomes. The analytical results developed in 
Part II also highlight the critical parameters that drive these findings, which are 
typically obtained from statistical studies or from transfer functions developed 
through simulations of biophysical systems models, as described in Part III. These 
parameters are inherently uncertain; understanding how parameter uncertainty

https://gtap.agecon.purdue.edu/simple-g/


translates into uncertainty in key metrics is an important part of any SIMPLE-G 
analysis. Part IV illustrates these principles in a series of applications. 
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An important and novel innovation documented in this book is the use of what we 
refer to as minimodels, which we have developed to address the challenge of 
understanding the critical drivers of local responses in a clear and transparent 
manner. This concept represents our effort to take the reader beyond the maps that 
are typically used to report results from global gridded models. Of course, the 
problem with in-depth analysis of any individual grid cell/activity lies in the fact 
that it is connected, in some way, to all the other grid cells in this type of bottom-up, 
multiscale analysis. The trick is to find a way to isolate the grid cell from its 
neighbors to permit a more in-depth analysis of local changes. 

The benefit of the minimodel concept comes into play once the user has identified 
certain grid cells that respond in an extreme or perhaps even counterintuitive 
manner. These grid cells can be extracted for deeper analysis: This extracted 
minimodel consists of all the data, parameters, and equations describing behavior 
in a given grid cell. The minimodel also includes the solution values for all 
communicating variables for the focus grid cell, solved using the full model. The 
communicating variables are those variables that are determined in concert with the 
other grid cells and other world regions. In the simplest application (SIMPLE-G1-
US), this is just the crop commodity price. In that model—illustrated in Chap. 11— 
the crop price is a sufficient statistic summarizing all of the developments in the 
national and global markets. In the minimodel, this price is treated as an exogenous 
variable and is shocked by the solution value of said variable, emerging from the full 
model simulation. When this communicating variable is shocked, along with any 
other grid-specific exogenous variables being perturbed in the full model simulation 
(e.g., total factor productivity in the case of Chap. 11), the user should obtain 
identical solutions from both the minimodel and the full SIMPLE-G model simula-
tions. In this manner, a pared-down minimodel opens a way into in-depth analysis of 
behavioral responses in a particular grid cell. 

More complex applications of the model contain more communicating variables 
across grid cells. The other applications in Part IV include wage changes determined 
within a commuting zone, national fertilizer prices, and natural resource shadow 
prices, among others. Therefore, the structure of the minimodel will vary across the 
applications. Once the particular minimodel is obtained and the equivalence of the 
two solutions is verified, the user can employ the powerful AnalyseGE software, 
embedded in the GEMPACK software suite, to analyze grid cell behavior, focusing 
on one equation at a time. This allows the user to isolate the source of unexpected or 
counterintuitive results as well as the key parameters driving these outcomes. Upon 
identifying the source of the surprising result, the researcher can scrutinize the reason 
for this outcome—possibly reevaluating the underlying data or parameters—or 
simply register this as a new finding. 

To enhance the reader’s experience and provide further motivation and insights 
into the SIMPLE-G framework, all of the chapters in this book are accompanied by 
voice-over PowerPoint presentations available here: https://gtap.agecon.purdue.edu/ 
simple-g/. Readers may wish to view these short lectures before reading the
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associated chapter. These presentations also facilitate the use of this book as a text 
for courses utilizing SIMPLE-G. 

1 Introduction 7

We believe that this book will facilitate widespread use of the SIMPLE-G 
framework. By discussing the issues of database construction and model parame-
terization as well as model implementation and validation (Part III) in detail, along 
with providing a range of diverse applications for readers to replicate, we anticipate 
the construction of many new versions of SIMPLE-G. As this work develops, we 
plan to assemble a common global repository for data, parameters, and model 
specifications. This repository will allow researchers to draw on previous work to 
develop their own variants of SIMPLE-G or to use existing versions in new ways to 
assess the sustainability dimension of policies bearing on the world’s land and water 
resources. Further discussion of these future directions for SIMPLE-G may be found 
in Chap. 18. 

1 Summary 

The SIMPLE-G framework represents a significant step forward in the computa-
tional modeling of human and environmental systems. This model incorporates 
market-mediated effects and feedback from human systems to natural systems and 
informs spatially heterogeneous economic decisions. It provides a framework for 
measuring spillover effects transmitted from one location to another location through 
markets and accounts for telecoupled distant regions, enabling analysis of 
interregional dependencies at a global scale. The model is particularly useful for 
evaluating the potential impacts of changes in government policies, technological 
improvements, and climate change on food production, consumption, and prices. 
With its ability to address the spatial distribution of activities and explicitly model 
the spatial heterogeneity associated with biophysical and socioeconomic systems, 
SIMPLE-G offers a valuable tool for designing effective conservation strategies and 
sustainability policies. 
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Chapter 2 
SIMPLE Economic Theory 

Thomas W. Hertel 

The SIMPLE modeling framework is firmly grounded in economic theory. As such, 
it is useful to review the foundational concepts before moving into the specification 
of the model itself, which is the subject of Part III of this book. This chapter 
introduces the theory of global land use change in the SIMPLE (global, 
non-gridded) framework, while Chap. 3 introduces the theory behind the gridded 
modeling. This economic theory part of the book is written for an interdisciplinary 
audience with an eye to making it broadly accessible. However, readers eager to get 
into the applications of SIMPLE-G are free to jump ahead, returning to this section 
as needed to understand the underlying theory, which will be referenced in many of 
the applications. Reading this chapter and Chap. 3 will enhance the readers’ under-
standing of the economic mechanisms at work in SIMPLE-G. 

1 One-Region Model: The Global Food System in a Nutshell 

In the spirit of starting with the simplest possible economic model of global land use, 
we begin with a unified global agricultural economy (Fig. 2.1). We focus on 
cropland expansion in response to growth in demand for agricultural commodities 
(due to, e.g., growth in population, income, and biofuels). In this context, it seems 
intuitive that, if demand were to increase by 10% and farming techniques remained

Sections 1, 2, and 3 draw heavily on Hertel, Thomas W. 2018. Economic perspectives on land use 
change and leakage. Environmental Research Letters 13: 075012. https://doi.org/10.1088/1748-
9326/aad2a4. 
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unaltered, the world would need 10% more land—of equivalent average quality—to 
meet the additional demand. However, historical data show that global production 
increased nearly fivefold over the five decades from 1961 to 2011, while the extent 
of global cropland increased only modestly (Fuglie et al. 2019). A large part of this 
difference can be explained by agricultural technologies, which experienced tremen-
dous advancements over the same period. Among other things, many parts of the 
world have experienced the Green Revolution: Crop yields increased considerably 
through the introduction of new seed varieties and more intensive use of fertilizers 
and irrigation (Evenson and Gollin 2003). The intensity with which existing lands 
were cropped also increased significantly through double and even triple cropping 
(Bruinsma 2009). The modest net increase in cropland extent over this period is 
therefore an indication that, in the global footrace between growing demand and 
rising productivity, demand appears to have dominated. Although advances in 
technology have nearly kept pace with growing demand from an ever-richer global 
population.
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Fig. 2.1 The unified global economy. Red outlines denote demand factors while green outlines 
denote the supply side of the economy. Epsilon denotes elasticities while delta denotes shocks, or 
perturbations to the system 

The preceding narrative has abstracted from any economic factors. For example, 
we have not considered the response of consumers and producers to changes in the 
scarcity of cropland or food. As will be shown, these economic responses can be



important in shaping the long-run evolution of land use. To see how these economic 
forces interact with biophysical factors (e.g., cropland extent, population growth, 
crop yield), consider Fig. 2.1, which introduces economic considerations (parame-
ters shown in gray-shaded boxes and denoted with the epsilon symbol) into this 
discussion. On the demand side, it has been well documented that people tend to 
initially consume more food as their incomes rise from low levels. The parameter 
εDY(y) captures this effect and is known to economists as the income elasticity of 
demand for food. In addition, as incomes rise, consumers also tend to shift their 
consumption patterns toward more livestock-based products (Pingali 2007), with 
important consequences for land use. Livestock—particularly cattle—are relatively 
poor converters of land into food (Eshel et al. 2014). In addition to responding to 
changing incomes, consumer demand is also price responsive. The absolute value of 
price responsiveness—also called the price elasticity of food demand, εDP(y)—tends 
to diminish as consumers become wealthier (Muhammad et al. 2011). This is 
reflected in the fact that the price elasticity is itself a function of per capita income. 
High-income consumers can largely ignore rising prices of a commodity (e.g., rice), 
which accounts for just a small share of their total budget, whereas low-income 
consumers must adjust by either consuming less food or switching to food sources 
that are cheaper per calorie provided. 
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Economic factors also play a role in the supply side of the global food economy, 
as illustrated in the lower half of Fig. 2.1. As land becomes increasingly scarce in the 
face of growing demand, land prices (and farmland rental prices) rise. During boom 
periods, these land rental responses can be very large (Henderson et al. 2011), and 
they send signals to farmers to conserve land by intensifying production. This 
response is captured by εSI, referred to as the price elasticity of supply at the 
intensive margin (i.e., the price responsiveness of crop yields). In the long run, 
research and development and the adoption of agricultural technologies have also 
been shown to respond to relative prices (Ruttan 1977), with the effect of further 
increasing the value of εSI. 

The potential for intensification of crop production depends on a variety of 
agronomic and economic factors and on the current level of intensification. It is 
expected that a favorable development in prices (e.g., higher output prices or lower 
input prices) could induce a significant supply response at this intensive margin in 
parts of the world with very low levels of commercial inputs. This has been found to 
be the case in Malawi, where significant fertilizer subsidies were introduced to 
increase maize production (Ricker-Gilbert et al. 2011). However, the magnitude of 
this response has been vigorously debated and clearly depends on a variety of other 
local factors, including the extent of soil degradation (Messina et al. 2017). This 
raises broader questions about the extent to which biophysical and socioeconomic 
constraints might alter producers’ ability to respond to higher prices at the intensive 
margin. 

Location is clearly a critical factor in environmental policy analysis, but many 
global economic models of land use change do not differentiate yield response by 
location. The greater the yield response to scarcity, the less the need to convert 
natural lands to cropland in the face of shocks (e.g., the US biofuels boom). Golub
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and Hertel (2012) show that when yield responses in non-US regions are allowed to 
depart from US-based estimates in the widely used GTAP-BIO model, dramatically 
different estimates of global land use and terrestrial carbon emissions as a result of 
the US biofuels mandates are obtained. They conclude that more geographically 
specific estimates of the endogenous intensification parameter, εSI, are required to 
accurately estimate cropland expansion. Havlik et al. (2013) have sought to intro-
duce regional heterogeneity into their global model (GLOBIOM) by explicitly 
modeling the biophysical and economic systems at the grid cell level and then 
aggregating these systems at the national and global levels. Their linear program-
ming approach is an important starting point; however, there is little doubt that much 
more research is required to accurately estimate location-specific intensive margins 
of supply response across the globe. 
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The final piece of this economic puzzle is the responsiveness of cropland supply 
to increased returns in farming. This parameter, εSX, called the price elasticity of 
supply at the extensive margin, is shown at the bottom of Fig. 2.1. In this simplified, 
long-run, partial equilibrium framework, we assume that nonland inputs are in 
“perfectly elastic” supply. This means that the nonland input prices are unaffected 
by developments in the farm sector and are instead determined by developments in 
the rest of the economy. We will relax this assumption in Chap. 3, showing that the 
responsiveness of the price of other inputs, such as labor, to developments in the 
farm sector can be very important for sustainability and equity outcomes. 

The economic elements introduced above can be combined to allow for an 
analytical, partial equilibrium solution to this unified agricultural model. The 
resulting analytical solution (Eq. 2.1) expresses the long-run change in cropland, 
q*L, as being dependent on the exogenous shocks to demand, ΔD; exogenous trends in 
yields due to improvements in agricultural technology, ΔL, and the three economic 
margins (elasticities) of response to price: 

q*L = ΔD -ΔLð Þ= 1 þ εSI=εSX þ εDP=εSXð 2:1Þ 

Equation (2.1) reveals several important points about long-run global cropland 
change. First, since all price elasticities are defined as positive, their presence in the 
denominator of Eq. (2.1) serves as a shock absorber to global land use changes in 
response to changes in net demand for cropland (ΔD- ΔL). If the world finds itself in 
a period in which demand for cropland is outstripping yield-improving innovations, 
then prices will rise, households will curb consumption or shift to less land-intensive 
diets (e.g., less beef), and farmers will intensify production. All these responses will 
lead to a moderation in the amount of additional land actually brought under 
cultivation. 

A second point to note from Eq. (2.1) is that what matters for land conversion is 
not the absolute size of the price elasticities of demand and supply but rather the 
relative size of the demand and intensive (yield response) supply elasticities com-
pared to the extensive (area response) supply response. There are many examples of 
biophysical models of global cropland change that do not incorporate the demand
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and intensive supply margins into their long-run projections. Historically, the 
GCAM (Wise and Calvin 2011), IMAGE (PBL Netherlands Environmental Assess-
ment Agency 2015), and PIK models (Lotze-Campen et al. 2008) all fell into this 
category, although more recent versions have sought to remedy this limitation in 
various ways. In Eq. (2.1), ignoring these demand and supply intensive margins is 
equivalent to assuming that εSI = εDP = 0. In this case, when net demand rises by 
10%, (productivity-adjusted) global cropland must also rise by 10%. 
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Baldos and Hertel (2013) explore the implications of ignoring these economic 
margins of response in the context of the 1961–2006 period for the global food 
economy (1961 is when the FAO data series begins, and 2006 is the year before a 
major global food price crisis). They first introduce the SIMPLE model (a Simplified 
International Model of Prices, Land use, and the Environment) and validate it against 
global data over this period. SIMPLE is a numerical implementation of the frame-
work shown in Fig. 2.1 (see Part III for more details). Supply and demand in 
SIMPLE are developed at the level of geographic regions, and growth in population, 
income, and productivity are specified exogenously. The authors find that, when 
they run the model over this historical period with the demand and intensive supply 
margins eliminated (i.e., εSI = εDP = 0), the model overpredicts historical land use 
change nearly threefold. This illustrates the point, already evident from Eq. (2.1), 
that purely biophysical models will overstate cropland changes in response to 
exogenous shocks. This follows directly from the missing adjustments in consumer 
demand and producer yields in response to higher prices. It also helps to explain why 
some of the most prominent Integrated Assessment Models predict considerable 
expansion in cropland over the twenty-first century (Schmitz et al. 2014) despite 
slowing population growth (UN) and robust growth in agricultural productivity 
(Fuglie 2010). In short, land use change scientists ignore economic responses to 
scarcity at their peril when undertaking long-run projections of land use change. 

One of the important conservation policies that we will consider in this book 
involves the withdrawal of land and/or water from agriculture, in favor of environ-
mental uses. In our stylized framework, this introduces a backward shift in cropland 
supply, represented by ΔS. This results in a modified version of Eq. (2.1): 

q*L = ΔD þ ΔS -ΔLð Þ= 1 þ εSI=εSX þ εDP=εSXðf -ΔS ð2:2Þ 

In the absence of any demand or intensive margin response (i.e., εSI = εDP = 0), 
this new term cancels out and does not influence the total land use outcome. In other 
words, if land is withdrawn in one location, it must expand somewhere else in order 
to satisfy a fixed level of global food demand. However, if the economic margins of 
demand and supply are price responsive, then this conservation policy will have a 
more nuanced impact, making land scarcer and raising prices. For example, if all 
three price elasticities were equal in absolute magnitude, then only one-third of 
the land set-aside would be replaced by expansion elsewhere. In this context, the 
conservation policy is more effective, as it now has a chance to operate on the 
intensive margin of supply as well as on the demand margin. In the—admittedly



naïve—case of equal elasticities, two-thirds of the land conservation target would be 
effectively achieved—in equal parts—by reductions in demand and expansion in 
yields. Clearly, the success of environmental policies aiming to remove sensitive 
natural resources from agricultural production depends on economic responses to the 
conservation measures. 
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2 Two-Region Model: International Trade Creates 
Opportunities for Land Use Spillovers to Other Regions 

Thus far in our model of global land use change, we have abstracted from interna-
tional trade by assuming a unified global economy in which any shock (e.g., an 
improvement in technology or a conservation policy) applies worldwide. However, 
most of the empirical literature on land use spillovers and leakage focuses on cases in 
which producers in one region are “treated” with technological change or conserva-
tion set-asides and the remainder of the global economy is “untreated” (Angelsen 
and Kaimowitz 2001; Gasparri et al. 2016; le Polain de Waroux et al. 2019). Here, 
economic theory can again provide useful insights by shedding light on the condi-
tions under which improvements in agricultural technology will lead to land expan-
sion in the treated region. 

In this analysis, we start with the simplest case—again, admittedly naïve—in 
which world markets for agricultural products are fully integrated. This 
specification—which might be termed trade economist nirvana—reflects a global 
economy in which the farm commodity can be purchased for the same price 
regardless of country or region. Therefore, we are abstracting from all trade frictions, 
such as transport costs, tariffs, and other government policies aimed at insulating 
domestic producers and/or consumers from developments in world markets. The 
three-panel diagram in Fig. 2.2 depicts this situation. The left-hand panel portrays an 
increase in agricultural commodity supply, for any given price, in innovating 
Region A, via an outward shift in the supply curve. The supply curve in the

Fig. 2.2 Impact of a technological improvement in Region A on the world market and on the rest of 
the world



non-innovating rest of the world (RoW) remains unchanged, as shown in the 
righthand panel. The middle panel portrays global market equilibrium under inte-
grated markets, where Region A’s supply is added to that from the RoW to obtain a 
global supply curve. The intersection of global supply and demand determines world 
price, which naturally falls in response to the increased product supply coming from 
Region A.
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The productivity gain shifts the supply curve in Region A—and hence the 
world—to the right, thereby depressing the world price and, as a consequence, 
production in other regions. 

In this framework, the sufficient statistic for determining the direction of land use 
change in a region in response to an improvement in agricultural technology is the 
absolute value of the price elasticity of excess demand facing producers in the 
technology-advancing region (Hertel et al. 2014). This elasticity is denoted εT DP, 
where superscript T denotes its association with the technically innovating region. It 
is governed by the slope of the demand curve facing producers in the innovating 
region (dashed line, labeled EDA in Fig. 2.2). The expression for εT DP is given by 
Eq. (2.3), which shows that the excess demand elasticity depends not only on global 
demand conditions (εW 

DP ) but also on the responsiveness of RoW producers 
εRoW 
SI þ εRoW 

SX to price changes emanating from the innovating region. 

εT DP = εW 
DP þ 1- αð Þ  εRoW 

SI þ εRoW 
SX =α ð2:3Þ 

When εT DP is large, producers in Region A can expand production without 
significantly affecting the world price for the crop in question. When εT DP is small, 
the expansion drives prices down and limits the incentive for further expansion. 

The share of global supply provided by the innovating region, denoted α, also 
plays a critical role. The smaller this share is, the larger the excess demand elasticity 
will be. As shown in Hertel et al. (2014), the critical value for determining the 
direction of land use change in the innovating region is εT DP = 1. When εT DP > 1, 
improvements in productivity will lead to cropland expansion in the innovating 
region. When εT DP < 1, the price-depressing effect of output expansion will curb 
production (i.e., the efficiency gains of the new technology will outweigh the effect 
of increased output) and land use in the innovating region will contract. 

This analytical framework is extremely useful for sorting out the literature that 
has emerged from the Borlaug–Jevons debate on the land use impacts of agricultural 
technology change (Hertel et al. 2014). First, it is clear from Eq. (2.3) that, contrary 
to assertions in much of the early literature on this topic (Angelsen and Kaimowitz 
2001), the question cannot be answered simply by observing global demand condi-
tions for the innovated product; the supply response in the rest of the world is also 
critically important. Second, given the important role of α in Eq. (2.3), if an 
innovating region has only a small share of the global market, it is more likely that 
εT DP > 1 and land expansion will occur in the innovating region. This highlights the 
importance of being a small producer in the world market. Under these conditions, 
land use expansion in the innovating region becomes more likely. Villoria (2019)



provides an empirical analysis, of the impact of national productivity improvements 
on domestic farmland expansion. He finds that technological improvements in most 
countries in the world lead to national land use expansion in the innovating region. 
However, in a few large and/or relatively closed economies (e.g., China and India), 
he finds that domestic productivity improvements have led to land conservation in 
that country. 
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To this point, we have not yet addressed the fundamental question of global land 
use, which was at the heart of Borlaug’s (2007) assertion that the Green Revolution 
had spared land worldwide. Determining the conditions under which improved 
technology in one region will spare land globally is more complex than determining 
land use change in the innovating region alone. Economic theory dictates that with a 
lower world price, output and land use will fall in the non-innovating regions in the 
wake of the new technology, assuming that this is the only change occurring in the 
global economy. However, the decline in land use overseas could be offset by a rise 
in land use in the innovating region. Ultimately, Borlaug’s hypothesis requires 
testing in an empirical context. However, if we assume that the supply elasticities 
are equal in both regions, we can derive Eq. (2.4) to highlight the critical role of 
relative yields in this debate. This equation states that Borlaug’s hypothesis will be 
overturned when the price elasticity of world demand for the crop in question 
exceeds a weighted combination of relative yields in the innovating region versus 
globally (YA /YW ) and the globally uniform total supply response to price (εW 

S ) under 
the condition of equal supply elasticities: 

εW 
DP > YA =YW εW 

S þ 1 - εW 
S ) rejectBorlaug ð2:4Þ 

It is easy to see from Eq. (2.4) that the terms involving the supply elasticity would 
cancel if yields were the same between the treated and untreated regions. In this case, 
the critical value required for Borlaug’s assertion to hold is that the global price 
elasticity of demand for the crop in question be less than 1. Since this is true for most 
staple foods in most regions (Muhammad et al. 2011), given the Green Revolution’s 
emphasis on staple grains, Borlaug would seem to be strongly supported by the 
condition in Eq. (2.4). 

However, what if yields in the two regions were unequal? In particular, what if 
yields in the innovating region are far lower than the world average (i.e., YA / 
YW ≪ 1)? This opens the possibility of Jevons’ paradox applying at global scale. 
Hertel et al. (2014) explore this possibility in greater detail using the SIMPLE model 
developed in Chap. 4 of this book and relax the restrictive assumptions about equal 
supply responses in the two regions. They find that, while the historical Green 
Revolution did indeed spare land globally, a prospective African Green Revolution 
might not have the same benefit due to very low relative crop yields in in 
sub-Saharan Africa. This is particularly likely if global markets were fully inte-
grated, such that each commodity had a uniform price worldwide.
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3 Segmented Markets: Product Differentiation Blunts 
the Cross-Border Transmission of Price Signals 

The (increasingly challenged) efforts of the World Trade Organization (WTO) 
notwithstanding, the world is a long way from the stylized model of perfectly 
integrated global markets postulated in the foregoing analysis. This is particularly 
true for agricultural products for which government interventions remain pervasive. 
Indeed, agriculture is one of the primary reasons why the Doha Round of WTO trade 
negotiations was inconclusive (WTO 2018). In some regions—most notably parts of 
sub-Saharan Africa (SSA)—there is the added challenge of physical access to 
markets. Producers and consumers are isolated, not only from international markets 
but also from their own national markets (Porteous 2015). We adopt the term market 
segmentation to refer to a situation in which markets are not fully connected and 
international prices are imperfectly transmitted into national and local markets, due 
either to government policies or to poor infrastructure and weak logistics. This has 
the effect of reducing the excess demand elasticity in Eq. (2.3), thereby increasing 
the likelihood that an improvement in locally employed agricultural technology will 
reduce the extent of local cropland. 

Regardless of the extent of market integration, we already know that if the 
technological innovation in the innovating region is the only perturbation to the 
system, then cropland in the rest of the world must fall (or at least not rise, relative to 
baseline) due to the expected decline in world prices. Therefore, a simultaneous 
decline in land use in the innovating region is a sufficient condition to satisfy the 
Borlaug hypothesis. By reducing the excess demand elasticity facing producers in 
the innovating region, market segmentation reinforces the Borlaug intuition. Hertel 
et al. (2014) confirm this point empirically by examining the impact of a prospective 
African Green Revolution in the presence of historically segmented agricultural 
markets. They conclude that, under this historical trade regime, such a future 
Green Revolution would indeed be land sparing, in contrast to the ambiguous 
outcome when markets are perfectly integrated. In summary, the extent of market 
integration is a key determinant of the sustainability of agricultural innovations as 
well as many other interventions in the global food system. 

4 Summary 

The one-region model of the global food system provides a simplified framework to 
understand the economic relationship between demand and supply factors and their 
impacts on land use. While the model abstracts from the complexities of the real 
world, it highlights the importance of technological change in increasing agricultural 
productivity and the role of economic responses to scarcity in shaping land use 
patterns. The model also suggests that intensification of crop production can be a 
viable strategy to meet growing demand, but its potential is constrained by a range of



agronomic, environmental, and economic considerations. Understanding these fac-
tors is crucial for designing effective policies that promote sustainable land use and 
food security in the face of global challenges such as population growth, climate 
change, and resource scarcity. The two-region conceptual framework highlights the 
interplay between market developments in one part of the world and the conse-
quences for outcomes elsewhere, as well as global environmental impacts. This 
framework highlights the role of market integration in determining the sustainability 
of agricultural innovations in the global food system. 
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Chapter 3 
Grid-Level Analysis Using SIMPLE-G 

Srabashi Ray and Thomas W. Hertel 

While it is instructive to engage in aggregate market analysis of the sort discussed 
above, in the end, most sustainability issues are local in nature and depend on local 
biophysical conditions (e.g., climate, soils, hydrology, and land cover) and socio-
economic circumstances (e.g., local governance, household characteristics, and 
choice of technology). To incorporate these sources of heterogeneity into a global 
sustainability analysis, a finer spatial resolution is necessary. Typically, physical 
scientists characterize fine scales using grid cells, which are spatial units of equal 
length and width, with the area varying according to the latitude of the grid cell 
(larger at the equator and smaller moving toward the poles). The resolution of grid 
cells in SIMPLE-G and the construction of the underlying data are the subject of Part 
III of this book. At this point, it is sufficient to note that the grid cells in SIMPLE-G 
are small enough to allow the incorporation of available heterogeneity in data and 
parameters and small enough to not influence commodity prices, so they can be 
treated exogenously. In the SIMPLE-G-US model, for example, approximately 
75,000 grid cells are involved in US crop production. 

Taking global and national drivers of market outcomes as exogenously given 
allows us to focus on relationships within the grid cell. This approach greatly 
simplifies our gridded analysis and allows us to reach some important conclusions 
about the likely impact of a global change in commodity prices on local land and
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water use as well as labor demand. Of course, since every grid cell will likely 
respond to any global changes and may compete for common inputs (e.g., labor 
and fertilizer), we cannot understand the full impact of these market developments 
without considering all grid cells simultaneously. Since the combined responses of 
all the grid cells influence global supply and hence world prices, this model must 
ultimately be solved as a multiscale system. This will be discussed at length in 
Part III.
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The specific design of the crop production functions in SIMPLE-G is also 
discussed at length in Part III. In general, design will vary by application. SIM-
PLE-G is a framework, not a single model. In this section, we illustrate the 
framework with a two-input specification. In the two-input case, we continue to 
group the natural resource-related inputs (e.g., land) into one aggregate, which will 
be termed “resources” and indexed with R. Resources include all inputs required for 
agricultural production that are sourced from nature, including cropland, groundwa-
ter, and surface water. In practice, we also include irrigation equipment in the 
resources category since it refers to investments needed to augment natural inputs 
and make them suitable for crop production. In the two-input case, the second 
aggregate of production factors encompasses all remaining inputs, including 
human labor and manufactured inputs (e.g., seeds, chemicals and fertilizers, and 
capital), and is indexed with H. As we will see, the economic distinction between 
these two input categories rests upon the underlying factor supply elasticities (i.e., 
how responsive these input supplies are to price changes). Given the geographic 
immobility of resources, we generally expect the factor supply elasticity for resource 
inputs to be lower than that for human and manufactured inputs, which we expect to 
be mobile across geographic locations. 

Box 3.1 outlines the basic two-input, gridded model (Ray and Hertel 2023). The 
model uses a two-input CES production function, which allows for factor-neutral 
technical changes.1 Since we are interested in studying changes in input use, input 
prices, and crop production as a result of an exogenous shock, Equations. 3.1–3.9 in 
Box 3.1 are presented in terms of percentage change in the corresponding variable. 
Equations 3.1–3.3 form the crux of the analytical framework for the two-input 
model. Equation 3.1, i.e., the conditional demand for either input, is derived from 
the usual producers’ cost minimization problem (Gohin and Hertel 2003). Equation 
3.2 is the constant price elasticity input supply equation for either inputs. It also 
includes a policy lever. For example, in case of resources, a positive value for the 
policy lever implies a backward shift in resource supply that can be implemented to 
model conservation policies that restrict the availability of resources. Equation 3.3 
represents the zero-profit equation that enforces the free entry and exit assumption in

1 The factor-neutral technical change parameter is useful in studying the impacts of improvements in 
total factor productivity on input use, input price, and total production. This is studied in depth in 
Chaps. 10 and 11.



j, k
þð Þ

q = p* þ að Þ vR ΓR -ϕ Γϕ: ð3:6Þ

the agricultural sector that ensures a competitive market structure, where any 
changes in crop price are attributed to both inputs in inverse proportion of their 
cost share.
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Box 3.1: A Partial Equilibrium Two-Input Theoretical Model 
for Agricultural Production: Assessing the Impact of Conservation 
Policies 
Agricultural production (Q) is a constant elasticity of substitution (CES) 
function of two inputs, natural resources (QR) and manufactured or human 
inputs (QH), augmented by any changes in total factor productivity (a), in a 
relevant spatial unit. 

Percentage change in conditional demand of input j: 

qD j = q- að Þ- σ pj - pþ að Þ  for j=RorH ð3:1Þ 

Percentage change in supply of input j with supply shifters: 

qS j = vjpj -ϕj ð3:2Þ 

Zero-profit condition in terms of percentage change: 

p þ a= 
j=R,H 

θjpj, where 
j=R,H 

θj = 1 ð3:3Þ 

Percentage change in optimized agricultural supply: 

qS - a= pþ að Þε-ΓRϕR, ð3:4Þ 

where ε= 1 
θR 

vRþσþ θH vHþσ

- σ , ΓR = θR vHþσð Þ  
denom and 

denom= θj vk σ , j, k=R,H. 

Using Eqs. 3.1–3.4, the equilibrium changes in input use and output for a 
given p = p* follow: 

Percentage change in input H use (QH): 

qH = vR 
p* þ að Þ  
θR 

ΓH þ σ p
* þ að Þ  
θR 

ΓH -ϕRΓH : ð3:5Þ 

Percentage change in input R use (QR): 

R θR R 

(continued)
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Box 3.1 (continued)

Percentage change in price of input H (PH): 

pH = 
p* þ a 
θH 

1-ΓRð Þ- θRϕR 

denom 
: ð3:7Þ 

Percentage change in price of input R (PR): 

pR = 
p* þ a 
θR 

ΓR þ θHϕR 

denom 
: ð3:8Þ 

Percentage change in production (Q): 

q= aþ p* þ að Þ  vR 
θR 

ΓR þ p* þ að Þ σθH 
θR 

Γσ -ϕRΓR, ð3:9Þ 

where ΓH = θRvH 
denom, Γϕ = θR vHþσð ÞþθHσ 

denom , Γσ = θR vH - vRð Þ  
denom for vR < vH, 

0 < Γσ < ΓH < ΓR < 1. 

Notation: All price and quantity variables are denoted with lowercase 
representing percentage changes in the underlying indices. 

σ ≥ 0: Elasticity of substitution between two inputs. 
vj ≥ 0, θj ≥ 0: Elasticity of supply to agriculture and cost share of input j. 
ϕH = 0, ϕR > 0: Backward supply shifter for input R due to, for example, a 

conservation policy 
Source: Ray and Hertel (2023). 

Setting input demand equal to supply to clear the input markets (i.e., 
Eq. 3.1 = Eq. 3.2) and using Eq. 3.3, we arrive at Eq. 3.4, which is the change in 
optimized output supply (Ray and Hertel 2023). Changes in output supply could be 
due to changes in crop price, depending on the output supply elasticity (ε) and any 
policy shock that restricts the availability of resources. The supply elasticity is itself 
a function of the input supply response, cost shares, and input substitution param-
eters and therefore is endogenous to the model. The degree of responsiveness of 
changes in production to changes in output price depends on the fundamental 
parameters of the input markets and production function. Finally, Eqs. 3.5–3.8 
show the changes in use and price of both inputs, and Eq. 3.9 gives the change in 
crop production. 

Despite all the simplifying assumptions (i.e., a single composite crop, exogenous 
crop price, only two inputs), we see that the impact of a change in crop price ( p)  or  a  
conservation policy, modeled as a backward shift in the resource supply curve (ϕR), 
can nonetheless be rather complex. Fortunately, we can manipulate and interpret 
these expressions to generate valuable insights using more complex versions of 
SIMPLE-G, developed in Part III and applied in Part IV of this book. In the
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remainder of this section, we discuss the impacts of an exogenous crop price change 
and a conservation policy shock on resource and augmented human input use, input 
prices, and crop production within this relatively simple production structure. 
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1 The Case of Perfectly Elastic Human and Manufactured 
Input Supplies 

To begin with, we make the simplifying assumption that labor and manufactured 
inputs are available with perfectly elastic supply to producers in the grid cell.2 The 
actual supply elasticity of manufactured inputs is likely to be high in the medium run 
since inputs such as seeds, fertilizer, and chemicals can be transported relatively 
easily over long distances. While the assumption of perfectly elastic supply is clearly 
an oversimplification in the case of agricultural labor, this assumption is commonly 
used to simplify analyses. To highlight the importance of explicit modelling of 
agricultural labor markets, we begin with this assumption and then contrast our 
findings with the case of inelastically supplied labor. The perfectly elastic supply of 
human inputs implies that additional workers, if required, can be hired at the current 
wage rate. It also implies that workers can move long distances in search of work at 
the going wage rate. 

Taking the output price and wages as exogenous, we can solve for the grid cell 
output response under the perfect mobility scenario, obtaining Eq. 3.9 (see Box 3.1). 
Note that the scaling terms, ΓR and Γσ, are all equal to 1 in the special case of 
perfectly elastic human and manufactured input supply. The first term on the 
righthand side of Eq. 3.9 reflects the impact of an increase in Total Factor Produc-
tivity (TFP) in the grid cell. Holding all else constant, a 10% increase in TFP 
generates a 10% increase in output. The second term on the righthand side of 
Eq. 3.9 refers to the extensive margin of supply response in the face of an output 
price change. A rise in output price encourages producers to bring more resources 
into crop production. The responsiveness of resource use to an output price change 

depends on the percentage change in land rents, p*þa 
θR 

, as well as the resource 

supply elasticity, vR. The fact that the crop price is “magnified” as it is translated into 

resource rents, 1 
θR 

> 1 , stems from the fact that wages do not change. This means 

that the increase in revenue is entirely capitalized into resource values. We expect 
both the cost share of resources and the resource supply elasticity to vary greatly by 
location, determined by both biophysical and socioeconomic factors. For example, 
in farmland areas adjacent to suburban and urban centers, we expect the cost share of 
resources to be high and the resource supply elasticity to be low, driven by the high

2 Box 3.1 shows the analytical results when both inputs are inelastically supplied. The reader can 
derive the results when human inputs are perfectly elastically supplied by considering Eqs. 3.5–3.9 
under the assumption that νH → . When νH → , each of the gamma terms tends to 1.



rental value of land and relatively lesser availability of previously uncultivated land 
that can be brought under production in such areas. When combined, these factors 
result in a small extensive margin of supply in areas adjacent to urban centers. The 
opposite will be true in more remote locations where competition for land is more 
limited.
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Fig. 3.1 Cropland area response under varying land supply conditions 

Figure 3.1 illustrates the differential responses of these two land supply situations 
in the face of increased crop demand. In the case of a remote location with a high 
land supply elasticity, an outward shift in demand translates mostly into cropland 
expansion, with only a minor impact on land returns. However, in regions where the 
land supply response is highly constrained, an outward shift in demand is primarily 
reflected in higher land prices. 

The third term in Eq. 3.9 refers to the intensive margin of supply response to the 

output price change, p* þ að Þ σθH θR 
. Once again, the magnification effect, 1 

θR 
> 1 , 

plays a role, as it translates the change in commodity prices into land prices. When 
human inputs are dominant, such that θH is large and θR is small, then this intensi-
fication effect will be more pronounced. 

The elasticity of substitution between natural and human inputs, σ, also plays a 
key role in the intensive margin of supply in this model. A larger substitution 
elasticity indicates more potential for increasing crop yields in the face of heightened 
resource scarcity. Figure 3.2 illustrates the role of input substitutability in this 
framework in the context of a decline in human input prices facing producers in a 
given grid cell. When it is possible to vary the input mix (panel A), farmers’ response 
to this price decline is to increase human inputs per hectare of land. The extent to 
which such substitution occurs—and hence the yield response to the price shock— 
depends on the curvature of the isoquant in panel A. The closer the isoquant is to a 
straight line, the higher the elasticity of substitution between resource and human 
inputs and the greater the impact on crop yields. Panel B illustrates the case where it 
is not possible to substitute human inputs for resource inputs; thus, yields do not 
change and resource and human inputs continue to be used in the same proportion.



Of course, input usage still rises, as farming has become more profitable in the case 
of the human input price decline. 
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Fig. 3.2 Input substitution determines the magnitude of the intensive margin of supply 

The final term in Eq. 3.9 relates to the effect of a conservation policy in which 
land is set aside, ϕR> 0, to make room for nature and the delivery of other ecosystem 
services. In the absence of any impact on price, resource rents cannot change; with 
wages exogenously given (i.e., ΓR → 1), this translates into an equiproportionate 
decline in output. In reality, prices and resource rents will be affected, which will 
have consequences for potential “policy slippage,” rendering the conservation policy 
less effective than initially expected for due to market-mediated responses by the 
affected producers. 

The direction of change in human (Eq. 3.5) and resource (Eq. 3.6) input use 
depends on the total (extensive + intensive) supply response to the output price 
change (first term) net of the conservation policy shock (second term). If the 

conservation policy shock is dominant, p* þ að Þ vRþσ 
θR 

<ϕR , then the total supply 

response only partially offsets job losses due to the conservation policy shock 
leading to a fall in employment and resource use. In contrast, if the total supply 

response is dominant, p* þ að Þ vRþσ 
θR 

>ϕR , then there is an increase in employment 

and resource use in the grid (Ray and Hertel 2023). While wages remain constant by 
assumption in this first case, resource rental values increase unambiguously since 
scarcity in resources drives up their price. 

2 The Case of Inelastically Supplied Human 
and Manufactured Inputs 

When human inputs are also in less than perfectly elastic supply, the impacts of a 
commodity price increase and/or a conservation policy can be quite different from 
those of the preceding case. Here there is a possibility that workers might suffer a



decline in wages, for example, in the context of a conservation policy. It also means 
that the magnification effect that boosted land rents so strongly in the context of a 
commodity price hike will no longer be so pronounced. In general, all the grid cell 
responses—extensive and intensive responses to output prices and the consequences 
of a conservation policy—are now more muted. This may be seen from Box 3.1 by 
the fact that the multiplicative scaling factors in Eqs. 3.1–3.5 (i.e., ΓR, ΓH, Γσ, and 
Γϕ) lie between 0 and 1 as long as the resource input has the smaller supply 
response—an assertion that draws intuition from the fact that land is geographically 
immobile. 
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Under relatively inelastic labor market conditions, the factor supply elasticity 
determines the degree to which the production response to the conservation policy is 
dampened. This is because in a relatively tight labor market, it is more expensive to 
hire workers to manage the resources under production. Therefore, there is a smaller 
increase in resource use and employment when labor is inelastically supplied. 

Further examination of the scaling terms reveals the role that labor supply 
elasticity plays in governing local responses to a commodity price boom (or bust). 
The difference in factor supply elasticities is clearly critical: If they are equal in 
value, then Γσ = 0, and there will be no incentive to intensify production in response 
to the commodity price hike. The rationale is that if both labor and the natural 
resource input are equally responsive to their respective factor prices, then these 
prices will respond symmetrically to the commodity price shock, increasing at the 
same rate. Since there is no incentive to substitute labor for resources, input use will 
also rise in lockstep with change in production. 

Finally, if we consider the impact of a conservation policy on grid cell production, 
employment, and land use, we see that (holding output prices fixed) a policy reaches 
its maximum impact when labor is perfectly mobile since the conservation policy 
shock is premultiplied by the scaling factors. This is because the scaling factors reach 
their maximum value of 1 when labor is perfectly mobile. Therefore, as labor 
becomes less mobile, we expect that the impacts of a conservation policy, 
implemented as a shift in land supply, will become less effective. 

3 Summary 

The gridded theory provides a framework for understanding the complex relation-
ships between market outcomes, land and water use, and labor demand at a local 
level. Given national drivers, the theory allows us to focus on relationships within 
individual grid cells. The two-input, gridded model uses a two-input production 
function, allowing for factor-neutral technical change. The economic distinction 
between the two input categories (resources and human/manufactured inputs) rests 
upon their availability to the agricultural sector, as captured by the underlying 
economic supply elasticities. These theoretical results highlight the fact that the 
impact of a change in crop price or a conservation policy can be complex, and a firm 
grasp of the underlying parameters is required to assess these impacts. This is as far



as economic theory can take us. To say more about the potential impacts of a 
conservation policy, we need a quantitative model that can be parameterized and 
simulated in the face of a specific policy. Part III outlines the SIMPLE-G modeling 
framework as it is implemented numerically on a computer in order to assess the 
impacts of specific policies in specific contexts. 
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Chapter 4 
Equilibrium Conditions and General 
Assumptions for a Quantitative Geospatial 
Economic Model 

Iman Haqiqi 

In this chapter, we introduce the general conditions for mathematical representation 
of the model theory. This theory draws heavily on the methods underpinning many 
computable general equilibrium models, including the widely used GTAP (Global 
Trade Analysis Project) model initially developed by Hertel (1997), one of the 
authors of this book. The innovation in SIMPLE-G comes in implementing this 
theory at the grid-cell level and developing a structure that can readily incorporate 
the biophysical information typically available at this level. The spatial resolution 
ranges from 30 arcmin (Liu et al. 2017) to 5 arcmin (Haqiqi et al. 2023). We start 
with the production side of the model, where grid-cell resolution comes into play, 
then move to consumer demand and trade. The latter elements are unchanged from 
those of the (nongridded) SIMPLE model (Baldos and Hertel 2013). 

1 Introduction 

SIMPLE-G is a computational model that links human and environmental systems. 
It connects changes in global food demand to the dynamics of local land and water 
resources used in agricultural production. This model is designed for “what if” 
(counterfactual) analyses to evaluate the impacts of environmental shocks, global 
socioeconomic changes, and local and global policies on different components of the 
system. Counterfactual analysis involves asking “what if” questions to explore the 
possible outcomes of different events or decisions. It is frequently used to evaluate 
the potential impacts of changes in government policies, technological advancements, 
and climate change on food production, consumption, and prices. For instance, what
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effect would a major grain-producing country choosing to regulate fertilizer applica-
tions have on global food prices? Or, what impact would adopting a new agricultural 
technology have on food production and land use? Alternatively, if a government were 
to provide subsidies for locally grown fruits and vegetables, how would that affect 
consumer behavior and diets? These are the kinds of questions being asked in the 
context of achieving the United Nations Sustainable Development Goals that relate to 
the food system and associated environmental changes (see Fig. 1.1).
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Figure 4.1 illustrates the major components of the SIMPLE-G model using a 
partial equilibrium modeling framework that characterizes demand for, and supply 
of, various food commodities and associated production factors. The major elements 
of this framework are regional food consumption, regional production, global trade, 
and nutrition. 

The model has three main features. First, it considers human systems’ responses 
to environmental changes. This includes changes in decisions about food consump-
tion, agricultural production, land use, and water withdrawals informed by new 
market prices. Second, it provides a framework for measuring spillover effects 
transmitted from one location to another location through markets. The main advan-
tage of SIMPLE-G over traditional biophysical models is the inclusion of market-
mediated effects and feedback from human systems to natural systems. Including 
these effects and feedback is critical for designing effective conservation and 
sustainability policies. By simulating international trade, SIMPLE-G accounts for 
telecoupled distant regions, enabling analysis of interregional dependencies at a 
global scale. Third, SIMPLE-G incorporates rich information from the biophysical 
sciences to inform spatially heterogeneous economic decisions. The ability to 
address the spatial distribution of activities and explicitly model the spatial hetero-
geneity associated with biophysical and socioeconomic systems is a significant 
advance over more aggregated economic models. This feature is critical when 
analyzing environmental changes or conservation policies that have spatially het-
erogeneous implications. 

1.1 Socioeconomic Determinants of Food Demand 

For all the SIMPLE-G specifications that follow, the demand system follows the 
same SIMPLE (nongridded) regional model. At the regional scale, the consumption 
of different commodities is a function of population, income, prices, and biofuel 
demand. Prices are determined endogenously as a function of supply and demand, 
while population and income changes are exogenous to the model, with increases in 
per capita income driving diet changes. Within this framework, global food and 
agricultural markets link changes in population, income, and diet to gridded crop 
production and associated stresses on land and water resources. 

Global food demand is linked to local land use through the derived demand for 
crops. Total demand for crops in each region comes from four sources. Direct crop 
demand (i.e., crops consumed directly without processing, including fresh fruits and 
vegetables and household consumption of grains and oils) is obtained by multiplying



per capita demand for direct crop consumption by population in each region. The 
three additional components of total demand for crops are indirect demands by the 
livestock, food processing, and biofuel sectors. Demand for crops in biofuel pro-
duction is assumed to be exogenously determined by government mandates, but the 
other demands are a function of income and prices. 
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Fig. 4.1 Overview of the SIMPLE-G model 
The crop production boxes are in green, the gridded input markets are in blue, and the demand side 
boxes are in red. The dashed shapes are information and models that provide input to SIMPLE-G. 
The SIMPLE-G model determines the changes in prices and quantities of agricultural inputs (i.e., 
land, water, fertilizer, labor, and others) and agricultural outputs considering the demand and supply 
forces
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The price and income responses of food demand are governed by the regional 
income elasticities of demand and the regional price elasticities of demand. These 
factors vary by type of demand (e.g., livestock versus processed foods) and by 
income level. Food demand generally becomes more inelastic as incomes rise (i.e., 
wealthier households are less inclined to alter their food consumption in response to 
higher prices or income changes). 

International trade is handled in the same manner as it is in most computable 
general equilibrium (CGE) models, by differentiating between domestic and foreign 
goods following Armington’s (1969) approach. This imperfect substitution between 
locally produced food commodities and those imported from global markets is 
governed by the Armington elasticity of substitution, which permits the model to 
be calibrated to observed import demand responses. Transformation of local pro-
duction to exports is also imperfect, reflecting the fact that some producers cannot 
easily access global markets, thereby allowing the model to mimic observed export 
supply elasticities. 

The nongridded version of SIMPLE (Baldos and Hertel 2013) has just one 
regional production function, and land use is not disaggregated below the regional 
level. However, in the SIMPLE-G framework, production is modeled at the grid-cell 
level; the size of agricultural production units can vary from 50 to 10,000 hectares, 
depending on the model’s resolution. For example, one popular version of SIMPLE-
G for the United States (see Chap. 12) disaggregates crop production to the level of 
5 arcminutes resulting in more than 75,000 crop production units (grid cells) of about 
55–77 km2 in the continental United States. In SIMPLE-G-US, the other world 
regions are not disaggregated, allowing for applications focused on the United 
States, even as the background responses of other regions are accounted for. Of 
course, such a regional focus is not always desirable, and two applications in Part IV 
utilize a global-gridded version of SIMPLE-G (Chaps. 16 and 17). 

The production functions in SIMPLE-G determine crop outputs as well as local 
demand for agricultural inputs (i.e., land, water, fertilizer, labor, and other inputs) for 
any given set of policies and climate regime (i.e., weather). In some versions of 
SIMPLE-G, we disaggregate rainfed and irrigated crop production, resulting in two 
distinct production functions in each grid cell, each competing for irrigable land, 
which allows us to estimate local demand for irrigation water. This approach is 
important when modeling the impacts of, for example, groundwater sustainability 
policies as well as adaptation to climate change, which has sharply different impacts 
on irrigated and nonirrigated crops due to differing responses to heat and water 
stress. 

1.2 Local to Global Supply Linkages 

Figure 4.2 illustrates the local-to-global supply of crops. The composition of crop 
production at the grid-cell level—the most granular level for understanding crop 
production patterns—is expected to vary by location due to agroecological
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Fig. 4.2 Schematic representation of local-to-global supply linkages in SIMPLE-G 
The boxes on the lefthand side describe the activity occurring in the “tree structure” of this figure. At 
the bottom are the inputs used in crop production at each grid cell (g). The resulting outputs are 
aggregated to the country level (c) via a CES (constant elasticity of substitution) function. Each 
region (r) contains multiple countries, and the outputs of these countries are also aggregated using a 
CES function. The disposition of sales between domestic and export markets is determined at the 
regional level via a constant elasticity of transformation (CET) function. Exports enter the global 
market, where supply must equal demand, with global prices adjusting to assure this equilibrium 
condition. Domestic sales are available for purchase by the four sources of final demand. Domestic 
and imported goods substitute imperfectly in use according to a CES function



conditions. These diverse commodities differentiated by location can be aggregated 
at the national or regional level based on assumptions about product differentiation. 
The greater the variety of crops grown within a region is, the smaller the elasticity of 
substitution between these gridded crop outputs.
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Regional crop production can either be exported or supplied domestically (i.e., 
consumed within the country where they are produced). The decision to export or 
supply domestically a crop is based on several factors, including the relative price of 
crops informed by production costs. 

1.3 All Grid Cells Are Connected: Leakage and Spillovers 

Leakage and spatial spillover effects are two important concepts in the context of 
conservation, sustainability, and climate change. Leakage refers to the displacement 
of environmental problems from one location to another as a result of conservation 
or sustainability policies (Meyfroidt et al. 2020). For example, a policy implemented 
to reduce deforestation in one area may lead to increased deforestation in other areas, 
as loggers and farmers move to new locations. Spatial spillover effects refer to the 
environmental impacts of conservation or sustainability policies that extend beyond 
the boundaries of the policy area (Johnson et al. 2023). For example, the creation of a 
protected area may lead to increased economic activity in surrounding areas. These 
environmental impacts can be both positive and negative, depending on the nature of 
the economic activity. Leakage and spatial spillover effects can be important con-
siderations for policy makers when designing and implementing conservation, 
sustainability, and climate change policies. Understanding how these effects may 
play out is important for designing effective and efficient policies. 

This book and the closely related literature contain many examples of leakage and 
spatial spillover effects in the context of conservation, sustainability, and climate 
change. Figure 4.3 illustrates how changes in one location can affect close and 
remote farms. A policy that reduces the use of fertilizer in one area may lead to 
increased fertilizer use in other areas as farmers and growers seek to maintain their 
yields (Chap. 14). A policy that reduces deforestation in one country may lead to 
increased deforestation in other countries as agriculture and industries relocate 
(Meyfroidt et al. 2010). The development of a renewable energy project (e.g., 
biofuels or co-firing of coal power plants with biomass) may increase land-use 
change in surrounding areas as development spreads to new areas (Sun et al. 
2020). A groundwater sustainability policy in the Western United States can cause 
an increase in land use and fertilizer application in Florida (Chap. 16) and affect 
labor markets, both locally and elsewhere in the country (Ray et al. 2023). By 
design, SIMPLE-G captures unintended consequences, spillover effects, and leak-
ages stemming from policy interventions. 

Leakage and spatial spillover effects can be complex and difficult to predict. 
There is no one-size-fits-all solution for addressing these effects; the best approach 
will vary depending on context. However, SIMPLE-G can shed light on the
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Fig. 4.3 Spillover effects (a) to similar crop-producing locations, (b) across subregions, and (c) 
across countries 
Leakage and spillover effects depend on the degree of mobility of inputs and the degree of product 
differentiation. Unfavorable conditions in in the US Northern Great Plains can cause an increase in 
production in neighboring locations. A decline in agricultural activity in the US Prairie Gateway 
region may lead to changes in agricultural production in other regions of the United States. Here, 
labor migration can play a critical role. Telecoupled changes in the United States, China, and Brazil 
may have implications for all three regions. For example, growth in demand from China can cause 
an increase crop production in the United States and Brazil



magnitude and direction of these effects, helping policy makers design policies that 
are comprehensive and coordinated across a variety of scales (Johnson et al. 2023). It 
can also serve as a foundation for developing new models and quantitative 
approaches to investigate leakage and spatial spillover effects.

42 I. Haqiqi

2 Equilibrium Conditions 

At its heart, any SIMPLE-G model is a model of economic equilibrium. Thus, the 
main equations in the model serve to determine the demand and supply of food 
commodities and agricultural inputs. Demand is written as a mathematical function 
that shows the relationships between the quantity demanded and other determinants 
of demand. It is negatively related to commodity price but positively related to 
income and scale of production. Similarly, supply is written as a mathematical 
function that shows the relationship between the quantity supplied and other eco-
nomic and biophysical determinants of supply. A higher relative price for the 
commodity being produced motivates greater supply. Price is the equilibrating 
variable in this system. If an adverse climate shock in one location reduces supply, 
then a price increase will curb demand and induce additional supplies from other 
locations, thereby restoring equilibrium. Market equilibrium is defined as the price 
level at which the quantity of a commodity supplied by sellers (producers) is equal to 
the quantity demanded by buyers (consumers). In other words, there is no shortage 
or surplus. As such, this is not a short-run model. Rather, the time frame is long 
enough such that, if no other shocks were to occur, equilibrium would be restored 
following the shock or policy being implemented. 

2.1 Global Crop Market Equilibrium 

Global crop market equilibrium is the state of the market in which the total quantity 
of crops exported by all countries is equal to the total quantity of crops imported by 
all countries. This equilibrium is determined by a complex interplay of factors, 
including the relative prices of crops, the cost of production in each region, and 
policies. Equation 4.1 represents global crop market equilibrium: 

r 

QGSc,r 

Total exports 

= 
r b 

QGDc,r,b 

Total imports 

, ð4:1Þ 

where QGSc, r is the total quantity of global supply of crop c exported by region r and 
QGDc, r, b is the total quantity of global demand for crop category c imported by 
buyer type b in region r. The base version of SIMPLE-G employed in this book



includes 17 global regions (r), one composite crop category (c), and four types of 
buyers (b): direct consumers and the livestock, processed food, and biofuels sectors. 
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Equation 4.1 states that, in long-run equilibrium, the total quantity of crops 
exported must be equal to the total quantity of crops imported. If there were more 
crops exported than importers demanded, then the global market would experience a 
surplus of crops, which would drive prices down until equilibrium was restored. 
Conversely, if there were more demand for crops to be imported than were actually 
exported, then the global market would experience a shortage of crops, driving 
prices up, thereby restoring equilibrium. 

2.2 Regional Crop Market Equilibrium 

Regional crop market equilibrium is the state of the market in which the total 
quantity of crops supplied domestically in a region is equal to the total quantity 
of domestic crops purchased in the region by buyers, including the total quantity of 
crops used for biofuel production. This equilibrium is determined by an interplay of 
factors, including the relative prices of crops, the costs of production, and biofuel 
policies. For each crop category, Eq. 4.2 represents the regional crop market 
equilibrium: 

QLSc,r = 
b 

QLDc,r,b , ð4:2Þ 

where QLSc, r is the total quantity of locally supplied crops (domestically produced 
and supplied to domestic consumers) in the region, and QLDc, r, b is the quantity of 
local demand for regionally produced crops that are purchased by each buyer in the 
region. Total regional crop production, QTSc, r, is the sum of gridded production in 
each region, which is equal to exports plus domestic sales: 

QGSc,r þ QLSc,r 
Total regional supply 

=QTSc,r = 
g2r 

Qc,g 

Total gridded production 

: ð4:3Þ 

2.3 Local Input Market Equilibrium (Immobile Inputs) 

For agricultural inputs tied to a specific location (e.g., land), the gridded quantity of 
the factor demanded should be equal to the gridded quantity supplied at the equi-
librium price for each location. For example, for each immobile factor i in each grid 
cell g, we can write
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QSi,g =QDi,g =Qi,g , ð4:4Þ 

where QSi, g is the total quantity supply of input i in grid cell g and QDi, g is the total 
quantity of gridded demand for input i in grid cell g. 

2.4 Subregional Input Market Equilibrium (Mobile Inputs) 

For mobile factors (e.g., labor, capital, and fertilizer), the quantity of the factor 
demanded should be equal to the quantity supplied at the equilibrium price of the 
marketshed shown by index s. Here, the marketshed is defined as a neighborhood of 
grid cells within which the factor can commute or move. This could be the com-
muting zone for labor or a regional market for capital or purchased inputs. 

QSj,s =QDj,s = 
g2s 

Qj,g ð4:5Þ 

The main difference between the agricultural input market equilibrium conditions 
for mobile (Eq. 4.4) and immobile (Eq. 4.5) factors of production is that the 
equilibrium price for mobile factors of production will be equalized across all grid 
cells, while the equilibrium price for immobile factors of production will vary by 
grid cell. This is because mobile factors of production can move freely between grid 
cells in response to differences in prices and wages. As a result, if the price of a 
mobile factor of production is higher in one location than in another, then mobile 
factors of production will flow from the lower-price grid cell to the higher-price 
location until the prices are equalized. On the other hand, immobile factors of 
production cannot move between grid cells. As a result, the equilibrium price for 
an immobile factor of production will vary by grid cell depending on local supply 
and demand for that factor. This is reflected in the evidence that labor wages move 
together within a commuting zone, but land rents are highly spatially heterogeneous. 

3 Behavioral Assumptions 

Overall, the SIMPLE-G model accounts for a variety of factors that influence the 
human and environmental systems. The model’s assumptions are based on empirical 
evidence, but it is important to note that the model is still a significant simplification 
of the real world (hence its name, SIMPLE!). Here, we review these assumptions and 
their empirical bases. 

On the demand side of food markets, the SIMPLE-G model considers estimated 
price and income elasticities empirically; that is, the quantity of a product demanded 
is assumed to be sensitive to changes in its price and consumers’ income. Clements



and Si (2018) and Gouel and Guimbard (2019) nicely summarize the extensive 
literature on food demand that has evolved over the past century (Working 1925). 
The overall conclusion of this literature is that demand for food changes as income 
increases. At lower income levels, consumers derive the bulk of their calories from 
cereals and other carbohydrates, with proteins coming from plant-based sources. As 
incomes rise, consumers add more livestock products (which tend to be more 
expensive) as well as fresh fruits and vegetables, oils and fats, and sweeteners. 
Rising incomes translate into more overall consumption as well as more diverse 
diets. Recent research on the cost of diets across the world suggests that households 
require an income of roughly US$3/person/day to be able to afford a healthy diet 
(Bai et al. 2021). However, reaching this threshold does not mean that they will 
consume a healthy diet. Recent research suggests that the emerging “triple burden” 
of malnutrition includes households consuming excessive calories but still not 
attaining a healthy diet (Gómez et al. 2013). 
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Another important aspect of food demand that has recently received increasing 
attention is food waste. From a resource point of view, there is little difference 
between food purchased and consumed and food that is purchased and later 
discarded. (Food waste generally goes to landfills, where it can contribute to 
methane gas emissions, Krause et al. 2023.) There is evidence that global food 
waste is positively correlated with per capita income. Lopez Barrera and Hertel 
(2020) estimate an S-shaped curve: food waste is very low at the lowest per capita 
income levels but then increases rapidly in middle income countries (e.g., China over 
the past two decades) before leveling off at the highest income levels. To date, most 
international studies of food demand have been unable to distinguish food intake 
from food waste; therefore, our estimated income elasticities will combine these two 
sources of demand. 

The other important characteristic of food demand is its responsiveness to price. 
At low-income levels, this price response tends to be quite strong. After all, 
low-income households have little choice but to curb consumption when food prices 
increase sharply since food comprises a large share of their total income. However, 
the price responsiveness of food demand diminishes as incomes rise (Muhammad 
et al. 2011), Capturing this change is important for any long-run projections as it 
reflects the fact that consumers’ overall willingness to curb consumption in response 
to scarcity will diminish with economic growth, leading to increased price volatility. 

Our assumptions on the producer side of the food system are conventional for 
economic models. First, we assume that producers choose inputs to minimize their 
production costs. This hypothesis is testable and has been subjected to statistical 
testing with mixed results at the level of individual farms (Zereyesus and 
Featherstone 2017). While not all producers are economically rational in this way, 
we are not modeling individuals but rather groups of producers (albeit within a given 
grid cell), and the cost-minimization hypothesis is more likely to hold in groups of 
producers, where competitive pressures cause irrational producers to downsize or 
exit the market (Hertel et al. 1996). We assume that, at the margin, producers that are 
not making an economic profit will eventually cede their land to other, more 
profitable producers. This is indeed what has been observed over time: The size of



individual farms has tended to increase with consolidation (MacDonald 2020). The 
form of the SIMPLE-G production functions follows the well-established tradition in 
CGE modeling of nested CES (constant elasticity of substitution) functional forms. 
This means that the production of crops depends on a combination of different 
inputs, such as land–water, labor–capital, or a composite of remaining inputs. By 
carefully specifying the elasticity of substitution between individual inputs or groups 
of inputs, we are able to mimic observed economic and biophysical responses to 
changing relative prices. For example, the elasticity of substitution between nitrogen 
fertilizer and land can be calibrated to reproduce the observed yield response to 
fertilizer applications (Chap. 14). 
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On the international trade front, the model assumes that imports are governed by 
an Armington function. When countries import crops, they consider not only relative 
prices but also unobserved factors including product variety and other desirable 
qualities (e.g., taste, transportation restrictions, regulations). Capturing this product 
differentiation is important for modeling trade in SIMPLE-G, as it determines the 
degree of connectedness between domestic and international markets in the model. 
This is handled using Armington (1969) elasticities, which have been the subject of 
extensive empirical investigation (Hillberry and Hummels 2013); we rely on these 
estimates to parameterize the model. There is a symmetric Armington elasticity on 
the export side, where a constant elasticity of transformation (CET) function allo-
cates produced crops between global and local markets. This allows the strength of 
export supply response from a region to be specified by the model developer. 

Finally, for land use, the model assumes grid-cell-specific land supply functions. 
This means that the model accounts for the various characteristics of land in different 
locations when determining how much land will be used for agricultural production. 
Locations will differ in their responses to changes and policies, with implications of 
the spatial patterns of agricultural production and land use. 

Each element of the model (variable) has an assigned value and quantity. The 
quantity of the variable can be shown as an index (i.e., US$ at constant prices) or as a 
physical quantity (e.g., tons of crops, hectares of land, cubic meters of water, or 
kilograms of fertilizer). The model includes equations that describe food demand as 
well as food production linked to natural resources. There are also parameters that 
describe behavioral responses or other biophysical dynamics of the system. The 
model is written as a system of simultaneous equations that determines the decisions 
on land and water use endogenously along with market prices for food and agricul-
tural inputs. Tables 4.1 and 4.2 summarize the major conditions and functional forms 
used in SIMPLE-G. 

To capture the dynamics necessary to analyze sustainability and food security, the 
model of the supply side of the economy includes four sets of equations: First, the 
equations that illustrate the supply of agricultural inputs. Second, the equations that 
Determine the demand for agricultural inputs. Third, the equations that illustrate the 
price and expenditure indices to ensure zero profit conditions. Fourth, the equations 
that determine the spatial allocations of inputs in case of imperfect mobility. The 
combination of these equations provides the basis for assessing spillover effects. 
This is a significant feature of SIMPLE-G, and it is important in explicitly modeling



b

g2s

the spatial reallocation of production in response to socioeconomic and environ-
mental shocks. Overall, the model equations are derived based on multiple assump-
tions. Table 4.2 summarizes some of these assumptions. 
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Table 4.1 Market equilibrium conditions in the SIMPLE-G model 

Description Condition Equation 

Global market clearing QGSc,r = QGDc,r,b 
r r b

Total exports Total imports

Eq. (4.1) 

Domestic market clearing QLSc,r = QLDc,r,b Eq. (4.2) 

Total regional supply QGSc,r þ QLSc,r =QTSc,r = Qc,g 
g

Total regional supply
2r

Total gridded production

Eq. (4.3) 

Immobile input gridded market 
clearing 

QSi, g = QDi, g = Qi, g Eq. (4.4) 

Mobile input subregional or 
regional market clearing 

QSj,s =QDj,s = Qj,g Eq. (4.5) 

Table 4.2 Major assumptions in the SIMPLE-G model 

Assumption and functional forms Reference 

Food 
demand 

Based on empirically estimated price and income 
elasticities 

Muhammad et al. 
(2011) 

Production 
structure 

Composite output based on nested CES (constant elas-
ticity of substitution) inputs 

Dixon et al. (1982) 

Imports Using Armington CES: Imperfect substitution between 
imports and domestic crops 

Hertel et al. (2007) 

Exports Using CET (constant elasticity of transformation) for 
allocation of local production to global and domestic 
markets 

van der Mensbrugghe 
(2019) 

Land use CET representation of land supply response Ahmed et al. (2008) 

Input 
supply 

Estimated fixed supply elasticities and CET for spatial 
allocation 

Baldos et al. (2020) and 
Ray et al. (2023) 

Relocation Subregional Armington and product differentiation Haqiqi et al. (2022) 

4 Summary 

The SIMPLE-G modeling framework requires multiscale market equilibrium for 
global, regional, and local markets. At each scale, total demand of a commodity or 
production input should be equal to total supply. Prices will adjust to eliminate any 
excess supply or demand. Production and consumption are linked through markets 
and international trade, where prices provide signals about changes in production 
costs and consumer preferences due to changes in environmental or human systems.



The findings and conclusions presented in this chapter are those of the authors and should not be

The SIMPLE-G models often employ functional forms that are widely tested and 
used in many economic studies. Leveraging well-established functional forms with 
strong empirical grounding, SIMPLE-G is a robust and comprehensive analytical 
tool for understanding the complex interactions within human and environmental 
systems. 
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Chapter 5 
SIMPLE-G Model Specification: 
Mathematical Equations in a Multiscale 
Market Equilibrium Model 

Iman Haqiqi 

Understanding the complex link between land, water, and environmental systems is 
required for addressing sustainability challenges. Earth observation provides valu-
able insights into these systems. Traditional earth analysis methods often rely on 
one-dimensional approaches, focusing on individual components like land cover, 
hydrology, or biogeochemical processes. However, real-world environmental chal-
lenges like climate change, water scarcity, and biodiversity loss necessitate a more 
holistic understanding that integrates these components with human system. Effec-
tive analyses require flexible and adaptable models that incorporate human decisions 
and responses. This chapter introduces the mathematical representation of SIMPLE-
G framework, Simplified International Model of agricultural Prices, Land use, and 
the Environment- Gridded version. This framework can be applied on different grid 
cell sizes, from very fine resolution to coarse resolutions, and in multiscale analy-
sis. SIMPLE-G addresses the need for a traceable and comprehensive framework by 
offering a modular and customizable framework that combines various geospatial 
data sources and modeling techniques. This allows researchers to tailor the model to 
specific research questions and environmental contexts, with a deeper understanding 
of the complex dynamics shaping our planet. 

This chapter introduces five successively more complex model specifications of 
SIMPLE-G. Each model is designed for specific research purposes but can be 
applied to a wide range of questions. Each successive model has new features and 
new data requirements. Table 5.1 summarizes the diverse models discussed in this 
chapter. We start with the simplest model, then explain how to add new dimensions, 
such as new assumptions, new agricultural inputs, or new production technologies. 
However, new inputs may differ in the degree of spatial mobility or their implica-
tions for the spatial scope of their markets. Therefore, new market-clearing
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conditions and new marketsheds must also be introduced. For example, fertilizer 
markets are typically spatially connected, while labor markets may be less well 
connected at the regional level. New parameters will also be added for each new 
feature, which may require new information to inform the model. For example, 
introducing fertilizer to a model may require information about yield response to 
fertilizer, which must be used to inform the new behavioral parameters.
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Table 5.1 SIMPLE-G models in Part III 

Agricultural inputs New information New features Potential application 

1 Land, other Intensive and extensive 
margins 

Regional and 
local markets 

Deforestation, 
biodiversity 

2 Land, water, other Yield response to water Subregional 
markets 

Nonland changes 

3 Land, water, fertilizer, 
other 

Yield response to 
fertilizer 

Market 
rigidity 

Nitrogen policies 

4 Land, water, fertilizer, 
other 

Land conversion, yield 
response to fertilizer by 
technology 

Multiple 
activities, 
land 
allocation 

Water stress, yield, 
water quality, fertil-
izer policies 

5 Land, surface water, 
groundwater, equipment, 
fertilizer, other 

Water resources substi-
tutions, irrigation 
technology 

Product 
differentiation 

Water scarcity, 
water management 

1 Model 1: The Basic Two-Input Model 

This section describes the simplest of the gridded models, SIMPLE-G1; each grid 
cell has one production practice, two agricultural inputs (R for natural resources and 
H for manufactured inputs and human services), and one composite crop commod-
ity. Table 5.2 summarizes the equations of the production part of this model. For the 
demand side, we follow nongridded SIMPLE equations, which are common across 
all the models described in this chapter (see Table 5.2). 

1.1 Production Structure 

In SIMPLE-G, we adopt a nested constant elasticity of substitution (CES) structure, 
which can accommodate varied types of technological information about production 
processes. Figure 5.1 represents the production structure of the basic model, the local 
market for the natural resource input, and the regional market for the augmented 
human input. Here, R is a composite of agricultural inputs provided by natural and 
environmental system (e.g., land and water), and H is a composite of agricultural 
inputs provided by human systems (e.g., labor, capital, and fertilizer). The natural



input markets are geographically separate, assuming that they are not directly linked; 
therefore, the natural input is not mobile. That is, land does not move from one grid 
cell to another grid cell. However, the human input market is aggregated, reflecting 
the fact that the grid cells compete for human input. Additional, human input can 
move among locations, which causes prices for the human input to move together 
across grid cells. 
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Table 5.2 Summary of gridded equations for SIMPLE-G-1.2.1 

Variablea Equation Description 

Natural resources input market 

qR g qR g þ aR g = qg - ag - σg pR g - aR g - pg - ag 
Agricultural demand for natural 
resources 

pR g qR g = ηR g p
R 
g þ sR g Economic supply of natural 

resources 

Human services and manufactured input markets 

qH g qH g þ aH g = qg - ag - σg pH g - aH g - pg - ag Demand for human and 
manufactured input 

pH g pH g = pH r Price of human and manufactured 
input 

pH r qH r = ηH r p
H 
r þ sH r Supply of human and manufactured 

input 

qH r QH 
r = 

g2r 
QH 

g 

b Total subregional/regional input 
supply 

Crop markets 

qg qg - ag = θH g qH g þ aH g þ θR g qR g þ aR g Gridded zero profits 

pg pg = pr Gridded price of crops 

qr = f( pr) Qr = 
g2r 

Qg 
b Total regional crop supply 

a This column shows matching variables that are determined by each equation (usually price or 
quantity) with the matching dimension 
b These equations are written in levels, not as percentage change 

The single-nest Constant Elasticity of Substitution (CES) gridded production 
function in Fig. 5.1 comprises three key behavioral equations that are obtained 
from microeconomic theory based on assumptions of cost minimization, coupled 
with free entry and exit from these activities. 

1.2 Input Demand Equations 

In keeping with the analytical approach, model condensation and nonlinear solution 
strategy described in Chap. 8, we write these equations in linearized (percentage 
change) form (Dixon 1982). The cost shares are updated over the course of the 
nonlinear model solution. The following three equations pertain to the top-level nest,



in which natural resources (R) and other inputs (H ) are combined, in variable 
proportions, to produce aggregate crop output: 
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Fig. 5.1 Basic gridded production structure of a simple two-input model and associated markets 

qR g þ aR g = qg - ag - σg p
R 
g - aR g - pg - ag : demand for natural input, ð5:1Þ 

qH g þ aH g = qg - ag - σg p
H 
g - aH g - pg - ag : demand for human input, ð5:2Þ 

pg þ ag = θH g pH g - aH g þ θR g pR g - aR g : zero profits, ð5:3Þ 

where lowercase variables denote percentage changes in the corresponding upper-
case, “levels” variables (i.e., p = 100(dP/P) is the percentage change in crop price 
and a = 100(dA/A) is the percentage change in total factor productivity). The 
variables pg, qg, and ag denote the percentage changes in gridded crop price, gridded 
crop production, and overall crop productivity, respectively. Similarly, pj g, q

j 
g, and a

j 
g 

denote the percentage changes in input price, input demand, and factor-augmenting 
productivity, respectively. Finally, θg is the share of each input in total crop 
production costs. 

The zero-profit equation is the consequence of our assumption of unrestricted 
entry and exit from the crop sector. If the output price rises, given unchanged 
technology and input prices, then the sector will experience excess profits. This 
will attract new entrants or encourage the expansion of existing producers, which



will drive up input prices and drive down output prices until zero pure economic 
profits are restored. Manipulation of these equations yields the following, equivalent, 
quantity-based expression of this condition, which we use in the model to facilitate 
our condensation strategy: 
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qg - ag = θH g qH g þ aH g þ θR g qR g þ aR g : ð5:4Þ 

Thus, the percentage change in demand for natural resources depends on changes 
in technology (a, aR ), total crop output (q), and the price of natural resources ( pR ) 
relative to an index of all input costs ( p). Equation 5.1 shows that the demand for 
natural resources, qR g , will increase with increasing crop production, qg. As the 
substitution elasticity is a positive parameter, the demand for natural resources will 
also increase with a reduction in input price (or cost) of natural resources, pR g . Finally, 
the demand for natural resources will increase with an increase in crop prices. The 
impact of productivity improvement on factor prices depends on the magnitude of 
the substitution elasticity and price responses. Holding the input prices constant, an 
increase in productivity will generally increase both output level and demand for 
both inputs. 

In Chap. 7, we will discuss how the elasticity of substitution, σ, can be calibrated 
to reproduce grid-cell- and practice-specific agronomic characteristics of crop pro-
duction. It is evident that a large substitution elasticity will result in a much greater 
response to, for example, a tax on natural resource use in crop production. Therefore, 
σ is a key parameter in sustainability analysis. 

1.3 Natural Resource Input Supply Equations 

Input supply functions are written as mathematical equations that show the relation-
ship between the price of agricultural inputs and the quantity of the input that is 
supplied to the market by the seller. The supply function for the natural resource 
inputs is typically written for each grid cell in the following linearized form: 

qR g = ηR g p
R 
g þ sR g , ð5:5Þ 

where q is the percentage change in quantity supplied, p is the percentage change in 
price, η is the supply elasticity in the linearized supply function, and s is the shifter of 
the supply curve. The supply elasticity is a fixed parameter and defined as the 
percentage change in the quantity supplied divided by the percentage change in 
the price, holding everything else constant. The parameter of supply elasticity is 
positive, which means that the quantity supplied increases as the price increases.
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1.4 Human and Produced Input Supply Equations 

The supply function for human-produced inputs (e.g., labor, capital, fertilizer) is 
typically written in the following linearized form: 

qH r = ηH r p
H 
r þ sH r , ð5:6Þ 

where r is an index for regions. Equation 5.6 shows that the total supply of human 
input in each region depends on regional prices (e.g., wages) and regional supply 
elasticities. Additionally, a shift in supply at the regional level (sr) can affect the 
input market. Note that Eq. 5.6 can be specified for subregions depending on the 
application, indicating less mobility among human inputs. 

1.5 Market Equilibrium Equations 

For a natural resource input, the market-clearing condition implies that the gridded 
economic supply of the natural resource input should be equal to the gridded 
agricultural economic demand for natural resource input at the equilibrium price. 
For a human input, the market-clearing condition holds at the regional level. 
Table 5.2 summarizes the production side equations for Model 1 (SIMPLE-G-1.2.1). 

Box 5.1 describes an application of Model 1 in SIMPLE-G-Mini that is designed 
for understanding the determinants of local responses and decisions about resources. 

Box 5.1 SIMPLE-G Mini and AnalyseGE: The Minimodel 
for Understanding Gridded Production and Gridded Markets 
Before moving on to more complex models, it is useful to pause and reflect on 
what can be learned from working solely with the supply side of the model. 
(The theory behind this gridded analysis was introduced in Part II.) If the 
market prices of outputs and variable inputs are known, then the outcome in 
each grid cell can be treated as an independent solution to a problem in which 
the market prices and grid-cell-specific policies (e.g., groundwater sustainabil-
ity policies) are treated as exogenous shocks and we can solve the model for 
the local prices and quantities. We dub this the “minimodel” since it can be 
readily solved and analyzed in depth on a grid cell by grid cell basis. Of course, 
to know what the market price changes are for any comprehensive policy, one 
must first solve the “maxi-model” (i.e., the full-blown SIMPLE-G model with 
consumption, trade, and production in the rest of the world). This is therefore a 
sequential exercise. 

The great advantage of working with the minimodel is that we have access 
to theoretical and numerical results that can facilitate insights and help us

(continued)



identify key parameters in the model and behavioral assumptions governing 
the outcomes (recall Part II.2). Thus, for example, referring to Eq. 3.9 of Box 
3.1 (reproduced in a simplified form that assumes a = 0), we can see that the 
change in production in a given grid depends on three components: the 
extensive margin, the intensive margin, and the conservation policy (see also 
Ray et al. 2023). Each of these components hinges on grid cell parameters and 

data. % change in production (Q): q= p* νR 
θR 

ΓR þ p* σθH 
θR 

Γσ -ϕRΓR: 
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Box 5.1 (continued)

Therefore, any surprising outcome at the grid-cell level can be traced back 
to the underlying parameter and data combinations, drawing our attention back 
to the foundational work of estimating these parameter values and data: Are 
these values sound? If so, we may have uncovered an important finding. If not, 
then we need to revisit our data and/or parameters, which, in turn, will alter the 
grid-cell outcome. 

To facilitate analysis with the minimodel, we use the GEMPACK software 
“AnalyseGE,” which allows the user to load the solution, database, and 
parameter values into the algebraic representation of the model in order to 
quickly evaluate every component of an equation, such as that shown above, 
so that the analyst can quickly identify which term and which parameter is 
driving the unusual outcome. The concept of a minimodel is original to 
SIMPLE-G modeling, and this novel invention is important step forward in 
global-to-local sustainability analysis. It is developed in more detail in the 
application in Chap. 11. 

2 Model 2: Introducing Subregional Input Markets 

Model 2 introduces subregional markets and multiple inputs, which requires slightly 
different production functions and a slightly different supply structure. The produc-
tion function is written in a nested CES form, a CES function of multiple composite 
inputs. In a nested CES function, the inputs to a production process are grouped into 
different nests that reflect the multiple stages of a cost-minimizing producer’s 
decision making. For example, in Fig. 5.2, the farmer first decides how much 
irrigation water to apply to a field, after which they then decide how much of the 
human inputs to apply. The land–water composite input will have a price index and a 
quantity index (usually weighted based on values). Then, the composite land–water 
input is included in the top nest, where it is combined with human inputs. 

In a nested CES function, demand for each individual input is written as a 
function of the demand for the composite input, which is linked to the scale of 
production. More output requires additional composite input. Here, the demand for 
the composite land–water input can be expressed as
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Fig. 5.2 Basic production structure of a SIMPLE-G model with three-input nested CES 
The presence of two natural resource inputs, land and water, allows for different availability of these 
two critical inputs 

qLW 
g = qg - ag - σg p

LW 
g - pg - ag , ð5:7Þ 

where LW is the land–water composite, q is percentage change in quantity, and p is 
the percentage change in price. The structure of Eq. 5.7 is similar to the demand for 
natural resources in Model 1: The demand for land–water composite depends on the 

production scale effect, qg - ag, and the substitution effect, - σg pLW 
g - pg - ag . 

The demand for individual land and water inputs is derived under the assumption 
of cost minimization, subject to the CES functional form: 

qL g þ aL g = qLW 
g - σLW 

g pL g - aL g - pLW 
g ð5:8Þ 

qW 
g þ aW 

g = qLW 
g - σLW 

g pW 
g - aW 

g - pLW 
g ð5:9Þ 

pLW 
g = βL gp

L 
g þ βW 

g p
W 
g ð5:10Þ 

Equation 5.10 introduces a price index for the land–water composite, which is a 
weighted average of percentage changes in land rent and value of water. The cost 
shares sum to 1 and are shown by β, which represents the value shares in the land– 
water composite. This is different from θ, which was introduced in Model 1 to 
represent the input cost shares in total costs.
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In a subregional market for inputs, the constant elasticity supply function for the 
human inputs (e.g., labor, capital, and fertilizer) is typically written in the following 
linearized form: 

qH z = ηzp
H 
z þ sH z , ð5:11Þ 

where z is an index that denotes the scope of the human-produced input markets, 
ranging from the grid-cell to the regional level. Depending on factor mobility, there 
are three potential relationships between gridded prices and regional prices for the 
human inputs: 

Equilibrium : 

pH g = pH z = pH r if z= r, and perfect mobility 

pH g = pH z ≠ pH r if z⊂ r, and perfect mobility 

pH g ≠ pH z ≠ pH r if z⊂ r, and imperfect mobility 

: ð5:12Þ 

Depending on the size of grid cells and assumptions about mobility, index z can 
show one of the following:

. All the grid cells in a region are paid a uniform input price (or move at the same 
rate) as a result of perfect mobility of inputs. There is no mobility across regions.

. A subset of grid cells in a region faces a uniform input price for the subregion and 
perfect mobility of inputs within the subregion, but there is no mobility across 
subregions. Input prices are equal for all grid cells in a subregion but not for all 
grid cells in a region.

. An individual grid cell: Assuming no mobility and heterogeneous unrelated 
markets for inputs. There is no mobility across grid cells. Input prices can vary 
for grid cells in a subregion and in a region. 

Table 5.3 summarizes the equations for Model 2 (SIMPLE-G-1.3.1). 

2.1 Factor Mobility 

The economic production factors (e.g., land, water, and human inputs) can be 
broadly categorized into mobile and immobile factors. In SIMPLE-G, this corre-
sponds to spatial mobility (i.e., the ability of production factors to move freely 
among geographical locations). This mobility is essential for efficient resource 
allocation. For an efficient outcome, the marginal productivity of a given input 
must be equalized across locations and activities. Since cost-minimizing producers 
equate the value of marginal productivity for each input to its price, an efficient 
allocation of the input is achieved when the changes in input prices are equal in all 
grid cells. This also reduces spatial income inequality and promotes social mobility. 
Capital in the form of machinery can be mobile because it can be moved or used in



different locations. Technology is typically also mobile within a region because it 
can be transferred from one location to another. Examples of immobile factors of 
production include land, natural resources, and infrastructure. Land, natural 
resources, and infrastructure are considered immobile due to their nature and high 
cost of moving them. Of course, there can be interactions. For example, the con-
struction of canals can facilitate the movement of water from one location to another. 
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Table 5.3 Gridded equations for SIMPLE-G-1.3.1 with three inputs 

Variablea Equation Description 

pH z qH z = ηzp
H 
z þ sH z Subregional supply of 

human input 

pW 
g qW 

g = ηW 
g p

W 
g þ sW 

g Gridded supply of 
water input 

pL g qL g = ηL gp
L 
g þ sL g Gridded supply of 

land input 

qH g qH g þ aH g = qg - ag - σg pH g - aH g - pg - ag 
Gridded demand for 
human input 

qW 
g qW 

g þ aW 
g = qLW 

g - σLW 
g pW 

g - aW 
g - pLW 

g 
Gridded demand for 
water input 

qL g qL g þ aL g = qLW 
g - σLW 

g pL g - aL g - pLW 
g 

Gridded demand for 
land input 

qLW 
g qLW 

g = qg - ag - σg pLW 
g - pg - ag 

Gridded demand for 
land–water composite 
(LW) input 

pLW 
g pLW 

g = βL gp
L 
g þ βW 

g p
W 
g

Gridded price for LW 

qg qg - ag = θL g q
L 
g þ aL g þ θW 

g qW 
g þ aW 

g þ θH g qH g þ aH g Gridded zero profits 

qr = f( pr) Qr = 
g2r 

Qg 
b Total regional crop 

supply 

qH z QH 
z = 

g2z 
QH 

g 
b Total subregional 

input supply 

pH g pH g = pH z Gridded price of 
mobile input 

pg pg = pr Gridded price of crops 
a This column shows matching variables that is determined by each equation (usually price or 
quantity) with matching dimension 
b These equations are written in levels not the percentage change 

For immobile factors, demand and supply must be in equilibrium in each indi-
vidual grid cell. The prices of immobile factors can vary significantly by location, 
and they are not directly related. For mobile factors, farmers compete across a wide 
geographical range and synchronize mobile input prices across space. For example, 
fertilizer prices are usually very similar across locations; but land rents are usually 
different.



þ ð ÞqN r = ηN r p
N 
r sN r , 5:15 

þ ð ÞqH z = ηzp
H 
z sH z , 5:16 
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2.2 Marketsheds 

A marketshed is a geographical area that represents the catchment area for a 
particular market. It is the area from which a market draws its supplies and demands. 
The size and shape of a marketshed can vary depending on the type of market, the 
market’s location, and transportation infrastructure in the area. 

For some research questions, it is necessary to determine the scope of factor 
mobility. For example, while the labor can typically move freely from one grid cell 
to neighbor grid cells or other locations within a certain distance, it is not easy to 
move across national borders. The concept of a labor-market commuting zone is 
related to the concept of a marketshed in that it defines a geographical area from 
which workers commute to a particular location. This information can be used to 
estimate the size of the potential labor force for a particular location. This topic 
comes up in the application documented in Chap. 13. 

3 Model 3: Introducing Factor Market Rigidity 

In Model 3, we introduce fertilizer as a distinct agricultural input for the purposes of 
analyzing sustainability related to water quality and food security. We also introduce 
factor market rigidity. Figure 5.3 illustrates the production tree structure and 
markets. 

In this system, nitrogen (N) fertilizer use is determined endogenously in the 
model by considering relative prices, technology, substitution possibilities, and 
overall output level. The potential for nitrogen–land substitution is grid-cell- and 
activity-specific and is obtained from agronomic yield functions. The price of N 
fertilizer is determined at the regional level through a market-clearing condition 
wherein regional supply equals demand, which is in turn determined by aggregating 
N use across all grid cells and practices. 

The four-input model has four input supply functions, each of which depends on 
the elasticities and shifter variables at the relevant scale. These functions can be 
expressed as 

qL g = ηL gp
L 
g þ sL g , ð5:13Þ 

qW 
g = ηW 

g p
W 
g þ sW 

g , ð5:14Þ 

where L, W, N, H are land, water, N fertilizer, and other human-produced inputs, 
respectively; g, z, and r are indices for the grid cells, marketsheds, and regional 
scopes; q is the percentage in quantity supplied; η is the supply elasticity; p is the



percentage change in market price; and s is the percentage change due to exogenous 
shifters. 
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Fig. 5.3 Basic production structure with four inputs 
The addition of fertilizer at the top of the production tree allows for the incorporation of information 
about the responsiveness of crop output to additional fertilizer applications. The leaching function 
varies by grid cell 

The demand for each composite and individual input is derived following the 
nested CES structure summarized in Table 5.4. 

Explicitly modeling market rigidity in gridded economic models is important for 
several reasons. First, it allows researchers to better understand the geographical 
impact of conservation and sustainability policies, which often lead to leakage and 
other unanticipated effects. Second, it provides a framework for better understanding 
the market-mediated effects. Third, it allows policy makers to design more effective 
policies to address market rigidity and its implications for conservation policies. 

To introduce rigidity in markets, we use a constant elasticity of transformation 
(CET) function, which is analogous to the CES function; rather than determining 
demands, it governs supply response to changing relative prices. In linearized form, 
it is expressed as 

qH g = qH z - τH z pH g - pH z , ð5:17Þ
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Table 5.4 Gridded equations for SIMPLE-G-1.4.1 multiscale markets 

Variablea Equation Description 

pL g qL g = ηL gp
L 
g þ sL g Supply of land input 

pW 
g qW 

g = ηW 
g p

W 
g þ sW 

g Supply of water input 

pN r qN r = ηN r p
N 
r þ sN r Supply of fertilizer input 

pH z qH z = ηzp
H 
z þ sH z Supply of other inputs 

qL g qL g þ aL g = qLW 
g - σLW 

g pL g - aL g - pLW 
g 

Demand for land input 

qW 
g qW 

g þ aW 
g = qLW 

g - σLW 
g pW 

g - aW 
g - pLW 

g 
Demand for water input 

qN g qN g þ aN g = qg - ag - σg pN g - aN g - pg - ag 
Demand for fertilizer input 

qH g qH g þ aH g = qHLW 
g - σHLW 

g pH g - aH g - pHLW 
g 

Demand for other inputs 

qLW 
g qLW 

g þ aLW 
g = qHLW 

g - σHLW 
g pLW 

g - aLW 
g - pHLW 

g 
Demand for land–water compos-
ite (LW) 

qHLW 
g qHLW 

g = qg - ag - σg pHLW 
g - pg - ag Demand for composite HLW 

pLW 
g pLW 

g = βL gp
L 
g þ βW 

g p
W 
g 

Price for LW 

pHLW 
g pHLW 

g = βH g p
H 
g þ βLW 

g pLW 
g

Price for composite HLW 

qg qg - ag = θL g q
L 
g þ aL g þ θW 

g qW 
g þ aW 

g 

þθN g qN g þ aN g þ θH g qH g þ aH g 

Zero profits 

qr Qr = 
g2r 

Qg 
b Total crop supply 

qH z QH 
z = 

g2z 
QH 

g 
b Total input supply 

pH g qH g = qH z - τH z pH g - pH z 
Supply of other inputs 

pN g pN g = pN z Price of nitrogen fertilizer 

pg pg = pr Price of crops 
a This column shows matching variables that are determined by each equation (usually price or 
quantity) with matching dimension 
b These equations are written in levels, not in percentage change 

where qH g is the percentage change in supply of input to grid cell g; qH z is the 
percentage change in total supply in marketshed z; τH z ≤ 0 is the transformation 
elasticity parameter determining the responsiveness of transformation in the supply 
function; pH g is the factor price (wage) in location g; and pH z is the marketshed 
average factor price. Equation 5.17 shows that the supply of an input to one location 
depends on the factor price (wage) in other locations in addition to the local price. 
However, as long as the transformation elasticity is not infinite, factor prices can 
differ across grid cells within the marketshed.
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3.1 Market Rigidity 

Market rigidity refers to the inability of market quantities to adjust to changes in 
spatially disaggregated supply and demand conditions. Spatial market rigidity is 
important in global-gridded economic modeling because it can have a significant 
impact on a variety of economic outcomes, including wages, employment, land use, 
and agricultural production patterns. In the case of farmworkers, labor market 
rigidity refers to the fact that workers are not perfectly mobile across jobs and 
locations. In the case of capital, market rigidity can arise from the inability to 
move agricultural capital to another location. This typically depends on the share 
of immobile installed capital and infrastructure. Farm capital in the form of machin-
ery is easier to move to another location than buildings and irrigation canals are. 
Factor immobility gives rise to spatially heterogeneous prices for the same input, 
with prices being (weakly) related. 

Labor market immobility within a marketshed is an important rigidity explored in 
Chap. 13. This immobility can stem from market forces, institutions, or individual 
preferences. For example, labor market rigidity can arise due to geographical 
barriers, employment contracts, local attachments, social/cultural differences, lan-
guage barriers, or simply lack of information on job opportunities and wage differ-
entials. This can make it difficult for employers and employees to adjust to changes 
in demand or supply and can lead to farmworker wage disparities across locations, as 
those in high-yield areas can ask for higher compensations. 

The CET function outlined above is an adaptable tool used in SIMPLE-G to 
model a variety of types of factor market rigidity. By including the difference in 
degree of mobility between different locations, economists can gain insights into the 
impacts of global and local changes on the spatial reallocation of resources and 
agricultural production. 

4 Model 4: Multiple Activities and Land Allocation 

Thus far, we have defined only one production function for each grid cell. Here, we 
introduce two activities in each grid cell, with different production functions, cost 
structures, input usages, yields, and revenue streams in each. Most of the applica-
tions in Part IV distinguish between irrigated and rainfed production, although this 
approach could also be used to explore other differences (e.g., traditional and 
commercial production). Figure 5.4 divides cropland area into rainfed and irrigated 
practices, and the different land rents for these two activities are endogenously 
determined in the model. Land rents are also grid-cell-specific and depend on local 
biophysical characteristics, irrigation yield gaps, prices, and the technologies avail-
able to each production unit. The allocation of land to rainfed and irrigated produc-
tion in response to a policy shock is determined by their relative returns (i.e., land 
rental rates), which are determined endogenously for each grid cell on the basis of



movement between land uses determined by a constant elasticity of transformation 
function (Ahmed et al. 2008). The key parameter in this function is the elasticity of 
transformation between irrigated and rainfed cropland. This elasticity measures the 
responsiveness of the rainfed–irrigated crop mix ratio to changes in relative returns 
to the two activities. A larger absolute value of this elasticity indicates an easier 
transformation of cropland between irrigated and rainfed categories. The conversion 
of land from rainfed to irrigated cropping is heavily influenced by institutional and 
biophysical constraints. In the United States, these constraints depend critically on 
state and local water laws, which vary greatly by region. 
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Fig. 5.4 Basic production structure with land allocation 
The presence of two different practices in each grid cell allows for cropland for to be converted from 
one use to another based on the CET (constant elasticity of transformation) parameter 

We use a quantity-preserving CET function for this particular application (van der 
Mensbrugghe and Peters 2020). A QCET function is a function that can be used to



allocate land to different land cover types (e.g., agriculture, forestry, urban devel-
opment) or agricultural practices (e.g., irrigated and rainfed land). This function 
allows us to account for the different characteristics of land, such as yield. In the 
context of land allocation, the CET function is used to model the conversion of 
various land uses. The QCET function is important because it preserves the total 
quantity of land. The traditional CET does not have this feature. Instead, it imposes a 
constraint on the overall economic value of the land. This quantity-preserving 
feature is important when tracking total physical units of land area is of central 
importance. 
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The multiactivity model introduces a new index for each variable. Here, we 
introduce l for land types, and the demand for land type l is written as follows: 

qL g,l þ aL g,l = qLW 
g,l - σLW 

g,l pL g,l - aL g,l - pLW 
g,l : ð5:18Þ 

Equation 5.18 is similar to the land demand in Model 3, with the addition of the 
land type index. We also introduce new composite inputs: qLW 

g,l , which is a land and 
water composite, and qHLW 

g,l , which a composite of human input, land, and water. The 
default model has two land types: irrigated and rainfed. To allocate land to different 
land types, we need to introduce three new equations: 

qL g,l = qL g - τL g p
L 
g,l - p{

L 
g , ð5:19Þ 

p{
L 
g = 

l 

θ{
L 
g,lp

L 
g,l, ð5:20Þ 

pL g þ qL g = 
l 

θL g,l p
L 
g,l þ qL g,l , ð5:21Þ 

iwhere qL g,l is the percentage change in supply of land to different land types; s the 

transformation elasticity representing the flexibility in land conversion; p{
L 
g is the 

weighted average change in land rents, where the weights are defined as quantity 
shares; θ{

L 
g,l is the quantity share; and θ

L 
g,l is the value share in the land allocation 

structure. Together, Eqs. 5.19–5.21 comprise the QCET supply system. 

4.1 The Advantage of Splitting Rainfed and Irrigated 
Production 

Irrigation water is another focal point of SIMPLE-G. Irrigation water supply and 
demand are endogenously determined for each grid cell, but they are linked to 
exogenous environmental factors. For example, heat stress may increase the water 
requirements of crops grown in a grid cell, or a drought may reduce the



environmental supply of water. Hydrological dynamics are not directly modeled and 
are treated exogenously. However, SIMPLE-G can be readily paired with a hydro-
logical model to shed light on, for example, the economic consequences of changing 
basin-level water scarcity or interbasin transfers of water (Liu et al. 2017; Woo et al. 
2022). 
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Water withdrawals are endogenously determined through the interaction of 
supply constraints and irrigation demand for crop production. Demand for water 
depends on the irrigation area, production levels, technology, and relative prices. 
This includes likely adaptation channels and adjustment mechanisms. We consider 
change in irrigation extent (Haqiqi and Hertel 2019), crop production location, 
change in irrigation technology, change in water intensity, and trade (Haqiqi and 
Hertel 2016). 

4.2 Using the QCET to Govern Cropland Supply 

Just as cropland is allocated across irrigated and rainfed production, the allocation of 
total land area between cropland and other uses (e.g., pastureland, forests, and other 
land cover types) can also be governed by a quantity-preserving CET (QCET) 
function. Cropland supply is a function of the CET parameter and the share of 
cropland in the grid cell and varies with the cropland rental rate relative to the returns 
to other uses. In SIMPLE-G, the other land uses are not explicitly modeled, so those 
land rental rates are deemed exogenous. However, they may be shocked to simulate 
the impact of intensified competition for land. An important feature of the QCET 
function is that as cropland expands and covers more of the available land in the grid 
cell, the cropland supply response diminishes and eventually falls to zero when the 
entire grid cell is devoted to crop production. The CET parameter can be calibrated 
to estimated elasticities of current cropland supply (see Chap. 7). In some of the 
applications featured in Part IV, the QCET function is replaced by a simple cropland 
supply elasticity, which does not explicitly account for the origin of this cropland or 
the use to which unused cropland might revert. Table 5.5 summarizes the 
production-side equations for Model 4 (SIMPLE-G-2.4.1). 

5 Model 5: Introducing Product Differentiation 

In economics, product differentiation refers to the existence of different varieties of a 
product that are perceived by consumers as being imperfect substitutes, due to a 
variety of factors including physical attributes, brand reputation, or quality. Product 
differentiation opens the possibility of commodity prices varying by product origin 
and composition, with significant implications for gridded modeling in the output 
market and input markets. This approach is widely used in international trade 
(Armington 1969), and it has proven effective for modeling the flows of goods
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Table 5.5 Gridded equations for SIMPLE-G-2.4.1 

Variablea Equation Description 

pL g qL g = ηL gp
L 
g þ sL g Gridded supply of land input 

pW 
g qW 

g = ηW 
g p

W 
g þ sW 

g Gridded supply of water input 

pN r qN r = ηN r p
N 
r þ sN r Regional supply of fertilizer 

input 

pH z qH z = ηzp
H 
z þ sH z Supply of human input 

qL g,l qL g,l þ aL g,l = qLW 
g,l - σLW 

g,l pL g,l - aL g,l - pLW 
g,l 

Gridded demand for land 
input 

qW 
g,l qW 

g,l þ aW 
g,l = qLW 

g,l - σLW 
g,l pW 

g,l - aW 
g,l - pLW 

g,l 
Gridded demand for water 
input 

qN g,l qN g,l þ aN g,l = qg,l - ag,l - σg,l pN g,l - aN g,l - pg,l - ag,l 
Gridded demand for fertilizer 
input 

qH g,l qH g,l þ aH g,l = qHLW 
g,l - σHLW 

g,l pH g,l - aH g,l - pHLW 
g,l 

Gridded demand for other 
inputs 

qLW 
g,l qLW 

g þ aLW 
g,l = qHLW 

g,l - σHLW 
g,l pLW 

g,l - aLW 
g,l - pHLW 

g,l 
Gridded demand for land– 
water composite (LW) 

qHLW 
g,l qHLW 

g,l = qg,l - ag,l - σg,l pHLW 
g,l - pg,l - ag,l 

Gridded demand for compos-
ite HLW 

pLW 
g,l pLW 

g,l = βL g,lp
L 
g,l þ βW 

g,lp
W 
g,l 

Gridded price for LW 

pHLW 
g,l pHLW 

g,l = βH g,lp
H 
g,l þ βLW 

g,l p
LW 
g,l Gridded price for composite 

HLW 

qg, l qg,l - ag,l = θL g,l q
L 
g,l þ aL g,l þ θW 

g,l q
W 
g,l þ aW 

g,l 

þθN g,l q
N 
g,l þ aN g,l þ θH g,l qH g,l þ aH g,l 

Gridded zero profits 

pL g,l qL g,l = qL g - τL g p
L 
g,l - p{

L 
g 

QCET land allocation 

p{
L 
g p{

L 
g = 

l 
θ{

L 
g,lp

L 
g,l 

QCET price index 

qL g pL g þ qL g = 
l 
θL g,l p

L 
g,l þ qL g,l Ensure revenue fully 

exhausted 

qH z QH 
z = 

g2z l 
QH 

g,l 
b Total subregional input supply 

qN r QN 
r = 

g2r l 
QN 

g,l 
b Total subregional input supply 

qr Qr = 
g2r l 

Qg,l 
b Total regional crop supply 

pH g,l pH g,l = pH z Gridded price of mobile input 

pN g,l pN g,l = pN r Gridded price of fertilizer 

pg, l pg, l = pr Gridded price of crops 
a This column shows matching variables that are determined by each equation (usually price or 
quantity) with matching dimension 
b These equations are written in levels, not in percentage change



ð Þ ð Þqs = qr - κr ps - pr , 5:23 

between countries and regions (Tinbergen 1962; Anderson 1979; Hillberry and 
Hummels 2003, 2008; Chaney 2008, 2018; Hillberry and Hummels 2013).
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In SIMPLE-G, the composite crop output from any given grid cell is likely unique 
in its product composition. While we call them all “crops” and assume that their 
returns move in tandem over the long run, they do in fact differ. Indeed, the Food and 
Agriculture Organization of the United Nations (FAO) identifies 175 different 
crop categories; even at this fine level of detail, there are still some composite crop 
types. In short, it is not possible—particularly in a SIMPLE model—to distinguish 
all the different crop types. However, many of these differences are likely to matter 
for consumers. For example, within the product category of wheat, hard red winter 
wheat is used for baking purposes and durum wheat is used to make pasta. Both are 
listed as wheat, but they are, in fact, different products in the eyes of food manu-
facturers and consumers, generally grown in different locations. For this reason, the 
SIMPLE model allows the prices of crops from different locations to differ. In some 
versions (e.g., Models 1–4), this differentiation is applied only at the regional level 
and therefore governs international trade. However, Model 5 also applies this 
differentiation regionally to capture differences in product composition across grid 
cells and individual countries (Haqiqi et al. 2022, 2023). 

5.1 Modeling Product Differentiation 

The equilibration of supply and demand for crops occurs at the level of market 
regions. Within the market regions in SIMPLE, crop demands are an aggregate of 
four end uses: direct consumption, food processing, livestock demand, and biofuels. 
Demands may be satisfied from either domestic or global markets, depending on 
relative prices, following the method suggested by Armington (1969), which results 
in imperfect substitution between domestic and foreign products. Symmetrically, on 
the supply side, producers “transform” their products imperfectly between domestic 
and global markets. They do not shift completely from the domestic to the foreign 
market when a small price difference emerges. This permits us to calibrate the model 
to observed data in which similar products are both imported and exported from the 
same country. 

Accommodating product differentiation in the crop market requires four new 
equations. The main subregional Armington equations are expressed as 

qg = qs -φs pg - ps , ð5:22Þ 

where qg is the demand for crops produced in grid cell g; qs is the demand for all the 
crops produced in subregion s; φs is the substitution elasticity parameter that 
determines the substitutability based on preferences; qr is total demand for crops 
produced in region r; and κr is a parameter that determines the substitutability



between subregional crop composites. For example, in Fig. 4.2, the parameter φ 
determines the degree of similarity of crops within each subregion. In Fig. 4.2, the 
parameter κ illustrates the imperfect substitutability across subregions and between 
products coming out of subregions. 
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5.2 Modeling Differentiated Inputs 

Model 5 also introduces differentiated inputs, particularly for irrigation water, 
reflecting the fact that groundwater and surface water have different physical and 
economic characteristics. Differences in physical characteristics (e.g., salinity and 
mineral content) can affect their suitability for different uses. For example, ground-
water is often preferred for drinking water because it is typically cleaner than surface 
water. However, surface water is often preferred for irrigation because it may be 
more readily available. In addition to their physical characteristics, groundwater and 
surface water also have different economic characteristics. Groundwater extraction 
is typically more expensive than surface water extraction, but it is also more reliable. 
Surface water is typically less expensive to extract than groundwater, but it is also 
more susceptible to contamination and drought. The different physical and economic 
characteristics of groundwater and surface water lead to product differentiation in the 
market for water. Model 5 captures this differentiation by introducing the two 
distinct sources of irrigation water and treating them as imperfect substitutes 
(Fig. 5.5). 

5.3 Nested CES Production Function for Model 5 

Figure 5.5 presents the two nested CES production functions for each grid cell in 
Model 5. As in Model 4, we distinguish between rainfed and irrigated activities, and 
the top nest determines the yield response to fertilizer applications. The “other 
inputs” are a composite of water, land, and the remaining variable inputs. This is 
followed by a CES nest combining land and irrigation water. If crop output is strictly 
proportional to the amount of irrigation water delivered, then the elasticity of 
substitution between land and irrigation water is zero (i.e., no deficit irrigation). 
On the other hand, if a reduction in water delivered to the crop is not accompanied by 
a proportionate reduction in output, then this elasticity is greater than zero and it 
captures the potential for deficit irrigation (i.e., achieving the same output level with 
less water but more land). The next CES nest in Fig. 5.5 combines irrigation water 
with equipment. The associated elasticity of substitution at the bottom of this 
production tree reflects the potential for conserving irrigation water through invest-
ments in, for example, drip irrigation to replace sprinkler or canal-based irrigation 
capital. This is a key sustainability parameter discussed in Chap. 7.
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Irrigated Crop 
Supply 

Rainfed Crop 
Supply 

σ σ 

σH 
σH 

σWL 

σWK 

σSG 

Nitrogen 
Fertilizer 

(N) 

Nitrogen 
Fertilizer 

(N) 

Surface 
Water (SW) 

Ground-
water (GW) 

Irrigation 
Equipment (KW) 

Land 
(Li) 

Land 
(Lr) 

Other 
Inputs (H)Other 

Inputs (H) 

Market clearing: 
Crops: Differentiated heterogeneous price. 
Land: Gridded market 
Water: Gridded markets 
Fertilizer: Regional markets, uniform price 

Fig. 5.5 Structure of crop production at each grid cell 
Elasticities of substitution are denoted by σ. The equilibrium quantity and price of land and water 
are determined at the grid-cell level. Irrigated and rainfed practices compete for land. Land supply 
depends on total cropland supply and the elasticity of transformation between irrigated and 
rainfed land 

The final CES nest in Fig. 5.5 combines surface and groundwater to create an 
irrigation water composite. The rationale for this nesting is that surface and ground-
water extractions often coexist in a given grid cell, despite differences in cost. As 
previously noted, the two sources of water offer farmers different characteristics. 
Groundwater, for example, is available on demand and is largely independent of 
current weather conditions. Surface water must be delivered to the farm, often by 
infrastructure that is out of the farmer’s control. The equations in Table 5.6 describe 
the substitution possibilities at each level in the production “tree.” 

Crop production is the result of representative producers’ profits maximization, 
subject to technology, prices, policies, and resource constraints. The crop production 
technologies (both rainfed and irrigated production) in each grid cell allow for 
substitution between N fertilizer, water, land, and other inputs (an aggregate of 
capital, labor, other chemicals, and energy). The particular mix of inputs employed



in a grid cell depends on relative prices, government policies, and production 
possibilities. Output levels expand or contract to ensure zero pure economic profits 
over the long run. Thus, unlike downscaling approaches to the gridded analysis of 
land use, the spatial pattern of production is endogenously determined. Crop pro-
ducers within a given grid cell are price takers, as they are assumed to have no 
market power. 
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Table 5.6 Gridded equations for SIMPLE-G-2.6.1 

Equation Description 

Old equations 

pW 
g qW 

g = ηW 
g p

W 
g þ sW 

g Gridded supply of water input 

pg, l Qr = 
g2r l 

Qg,l 
b 

pg, l = pr 

Regional crop markets and price index 

New water 

pGW 
g qGW 

g = ηGW 
g pGW 

g þ sGW 
g Supply of groundwater 

pSW 
g qSW 

g = ηSW 
g p

SW 
g þ sSW 

g Supply of surface water 

pKW 
z qKW 

z = ηKW 
z pKW 

z þ sKW 
z Supply of irrigation equipment and inputs 

pW 
g pW 

g = βSW 
g p

SW 
g þ βGW 

g pGW 
g þ βKW 

g pKW 
g 

Irrigation price index 

qSW 
g qSW 

g = qSG g - σSG g pSW 
g - pSG g 

Demand for surface water 

qGW 
g qGW 

g = qSG g - σSG g pGW 
g - pSG g 

Demand for groundwater 

qKW 
g qKW 

g = qW 
g - σW 

g pKW 
g - pW 

g 
Demand for irrigation inputs 

qSG g qSG g = qW 
g - σW 

g pSG g - pW 
g 

Demand for total surface water and groundwater 

qKW 
z QKW 

z = 
g2z 

QKW 
g Market clearing for irrigation inputs 

pKW 
g pKW 

g = pKW 
r Price index for irrigation inputs 

New product differentiation 

qg qg = qs - φs( pg - ps) Subregional Armington (bottom layer) 

qs qs = qr - κr( ps - pr) Subregional Armington (top layer) 

ps ps = 
g2s l 

θg,lpg,l Subregional crop price index 

pr pr = 
s2r 

θsps Regional crop price index 

Table 5.6 summarizes the equations that introduce product differentiation and 
differentiated water sources. The equations for supply and demand for irrigation 
inputs follow an approach similar to that introduced earlier. The substitution elas-
ticities are key parameters in demand and are derived from the nested CES functions; 
supply elasticities are also key parameters in supply functions. Here, GW, SW, and 
KW represent groundwater, surface water, and irrigation equipment, respectively. 
While supply of GW and SW are grid-cell-specific, the supply of KW occurs at the 
regional level, assuming that irrigation capital is a mobile factor of production.
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6 Consumer Demand and Trade 

The one common module across all of the SIMPLE-G specifications in Models 1–5 
is the demand system, which follows the (nongridded) SIMPLE model (Baldos and 
Hertel. 2013; Hertel and Baldos 2016). This section describes the relevant equations 
taken from the SIMPLE regional model. We have modified the notation slightly but 
kept the demand structure intact. Table 5.7 summarizes these equations for quick 
reference. 

6.1 Equations for Socioeconomic Determinants of Food 
Demand 

At the regional scale, consumer demand for different commodities is a function of 
population, income, and prices. Equilibrium prices are determined endogenously as 
a function of supply and demand, while population and income changes are exog-
enous to the model, with increases in per capita income driving diet changes. Total 
demand for crops in a given region comes from four sources. The direct crop demand 
is calculated by multiplying per capita demand for crop consumption by population 
in each region. Then, we sum the total direct demand for crops in final consumption 
with the indirect (derived) demands in the livestock, food processing, and biofuel 
sectors. The demand for crops in biofuel production is assumed to be exogenously 
determined by government mandates. The livestock and food processing sectors’ 
demands for crops are endogenous and modeled using CES production functions

Table 5.7 Major equations for the demand side of SIMPLE-G 

Equation Description 

q p 
r,f = εf pr,f þ εy f yr,f 

εy y 
r,f = αy r,f 
p 

þ βr,f ln Yr** 

εr,f = αp r,f þ βp r,f ln Yr** 

Consumer demand for food and 
its elasticities 

qcV V 
r þ acr = qoV r - aoV V 

r - σV r pcV r - acV V 
r - pr - aor 

pV r = θV r pc
V 
r þ 1- θV r pnV r 

Livestock (V ) demand for crops as feed 

qcF F 
r þ acr = qoF r - aoF F 

r - σF r pc
F 
r - acF F 

r - pr - aor 
pF r = θF r pc

F 
r þ 1- θF r pn

F 
r 

Processed food (F) demand for crops 

qmr, b = qcr, b - ωr(pmr - pcr) 
qdr, b = qcr, b - ωr(pdr - pcr) 
pcr = θm r pmr þ θd r pdr 
pmr = pw 

Demand for imported and domestic 
crops 

qxr = qr - ψ r(pxr - pr) 
qdr = qr - ψ r(pdr - pr) 
pr = θx rpxr þ θs rpdr 
pxr = pw 

Exports and domestic supply



þ ð Þεp i = αp i βp i ln Y : 5:25 

þ ð ÞpV r = θV r pc
V 
r 1- θV r pnV r 5:28

that combine the raw crop input with other inputs used in livestock or processed food 
production.
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One of the best-understood patterns of economic development is Engel’s Law, 
which states that as per capita income rises, the share of income devoted to food will 
decrease (Clements and Chen 1996). The SIMPLE framework captures this rela-
tionship by allowing the income elasticity of demand for food (εy i , the propensity to 
spend incremental income on food) to evolve with per capita income (Y) based on 
the estimated parameters αy i and β

y 
i . The price elasticity of food demand (εp i ) is  

derived similarly. In a general form, 

εy i = αy i þ βy i ln Y ; ð5:24Þ 

Equations 5.24 and 5.25 are indexed by food type (i). SIMPLE distinguishes 
between direct consumption of crops and indirect consumption through either 
livestock product consumption or processed food consumption. This results in the 
following equations describing the evolution of per capita demand for each type of 
food product: 

qi = εp i pi þ εy i y: ð5:26Þ 

Specifically, for each region r and commodity i, we can write consumption 
demand as 

qconsr,i = εp r,ipr,i þ εy r,iyr, ð5:27Þ 

where qcons shows the demand for commodities that include crops, livestock, 
processed food, and nonfood. While the income elasticity of demand for food is 
typically positive (i.e., the demand for food increases as income increases), it can 
also be negative, showing a dietary shift with income growth. The price elasticity of 
demand for food is negative, which means that the demand for food decreases as the 
price of food increases. 

For each food commodity, we introduce a production function to show different 
uses of crops in the food sectors. For each use (activity), the production function 
combines crops as one input with other inputs and supplies a food commodity to the 
final consumer. In each food sector, demand for crops is determined assuming a CES 
function. The linearized form of demand can be written as 

qcV r þ acV r = qoV r - aoV r - σV r pcV r - acV r - pV r - aoV r 



þqcF r acF r = qoF r - aoF r - σF r pc
F 
r - acF r - pF r - aoF r 

þpF r = θF r pc
F 
r 1- θF r pn

F 
r 
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where qc is the percentage change in crop demand for use in processed food (F) or  
livestock (V) production region r; ac is related to partial factor productivity; qo is the 
percentage change in activity output; ao is the total factor productivity in activity i; σ 
is the substitution elasticity, which differ by region and use; pc is the regional crop 
price index; and p is the regional food commodity price index. The equilibrium 
condition is that the commodity supplied from each activity should be the quantity 
demanded, given the absence of trade for these processed products in this model: 

qof r = qconsr,f : ð5:29Þ 

6.2 Equations for Global Trade Flows 

As with consumer demand, SIMPLE-G follows the SIMPLE model in its specifica-
tion of international trade. It relies on product differentiation by origin (Armington 
1969), identifying domestic and international goods separately. Heterogeneous 
consumers are assumed to choose between domestic and imported goods, based 
on relative prices and preferences; when aggregated, the demand for imports and 
domestic goods follows a CES function (Anderson et al. 1989). The more homoge-
neous consumers are (both in preferences and market access), the greater the 
elasticity of substitution and the more readily that aggregate demand shifts between 
imported and domestic crop products. Producers are also assumed to be heteroge-
neous, with different access to international markets. Analogous to what occurs 
among consumers, this results in a CET market supply function for domestic and 
export markets. In addition to the elasticities of substitution and transformation 
between domestic and international goods, the initial penetration of exports and 
imports into any given market will play a key role in determining the extent of price 
transmission from global to domestic markets. This can differ between consumers 
and producers. Finally, it is important to note that SIMPLE-G does not model 
international trade in livestock or processed food products. These commodities are 
more lightly traded than are crops, with much of the food processing occurring 
locally, often facilitated by foreign direct investment. Nonetheless, this remains an 
important limitation of SIMPLE-G. A proposal for relaxing this is explored in Part V 
of this book, where SIMPLE-G is nested with a general equilibrium model in which 
all commodities are traded. 

The demand for imports depends on the prices of domestically produced crops 
and import prices, as well as the Armington elasticity of substitution:



ð Þ ð Þqdr,b = qcr,b -ωr pdr - pcr , 5:31 

þ ð Þpcr = θm r pmr θd r pdr, 5:32 

ð Þpmr = pw, 5:33 

ð Þ ð Þqdr = qr -ψ r pdr - pr , 5:35 

þ ð Þpr = θx rpxr θs rpdr, 5:36 

ð Þpxr = pw, 5:37 
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qmr,b = qcr,b -ωr pmr - pcrð Þ, ð5:30Þ 

where m is imports and d is domestic markets; qm is the percentage change in 
demand for imported crops; qd is percentage change in demand for domestic crops; 
qc is total demand for crops by buyer; pc is average buyers’ price index; pm is the 
imports price index; pw is the global average price index of all crops; θ is the value 
share in price index; and ω is the Armington substitution elasticity parameter. 

Imports are obtained from the global market for crops, which is fulfilled through 
exports. Producers in each region face a choice between selling their goods within 
their country or exporting them to the global market. This decision involves a trade-
off, which is captured by the (negative-valued) CET parameter. This parameter 
indicates how easily producers can switch between domestic and global markets. 
A higher absolute value for this elasticity shows that producers are more responsive 
to price changes, (i.e., they are more likely to focus on exporting their goods when 
foreign prices are comparatively attractive). In contrast, a lower absolute value for 
this elasticity suggests that producers have less access to global markets and are 
therefore less affected by the price differentials that may emerge between domestic 
and global markets: 

qxr = qr -ψ r pxr - prð Þ, ð5:34Þ 

where x is exports and d is domestic markets; qx is the percentage change in supply 
for exports to global markets; qd is percentage change in supply to domestic markets; 
q is total regional supply of crops; p is average producer price index; px is the exports 
price index; pw is the global average price index of all crops; θ is the value share in 
price index; and ψ is the (negative) CET transformation elasticity parameter. 

7 Summary 

This chapter presented mathematical equations for five specifications of the 
SIMPLE-G gridded production and markets. In Model 1, agricultural production is 
a function of human and environmental inputs with different degrees of mobility 
across space. This framework is useful for understanding the tradeoffs and synergies



between food security and environmental sustainability as well as evaluating spill-
over effects. In Model 2, land and water inputs are explicitly introduced, enabling 
detailed modeling of land and water use at each grid cell. Model 3 adds fertilizer 
inputs and their markets to enable water quality assessments. In Model 4, multiple 
local activities are introduced at each grid cell, showing competition over local land 
and water resources. Finally, in Model 5, groundwater and surface water resources 
are separated, enabling analysis of specific groundwater sustainability policies. 
These models are examples of the SIMPLE-G framework. While they provide a 
solid foundation for sustainability analysis, it is important to keep in mind that 
additional dimensions may need to be introduced to ensure a comprehensive anal-
ysis, depending on the research question. By doing so, we can enhance our under-
standing and arrive at more accurate conclusions. The models introduced in this 
chapter are both flexible and scalable. With appropriate data preparation, they can be 
applied to various grid cell sizes, ranging from very fine to coarse resolutions, as 
needed for multiscale analysis. As you learn more about data preparation and 
parameter selection in the upcoming chapters, we invite you to consider how these 
tools can be harnessed to uncover new insights and drive meaningful discoveries in 
your research. 
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Chapter 6 
Benchmark Data: Integrating Biophysical 
and Economic Information in a Consistent 
Geospatial Dataset 

Iman Haqiqi and Uris Lantz C. Baldos 

Existing environmental databases often suffer from fragmentation, inconsistencies, 
and limited spatial representation. In addition, economic representation at the 
geospatial level is often limited. However, the SIMPLE-G dataset aims to overcome 
these limitations by providing a unified platform for exploring the interactions 
between land, water, and the environment. Each data point within the dataset is 
geographically referenced with details about economic values and biophysical vari-
ables, enabling researchers to conduct spatial analyses and uncover crucial insights 
into localized resource use, economic patterns, and sustainability challenges. Fur-
thermore, the dataset’s comprehensive scope, which encompasses both production 
and consumption aspects of the agri-food system, fosters a holistic understanding of 
resource flows and economic dependencies. This data resource empowers 
researchers to tackle complex environmental questions and propose data-driven 
solutions for promoting sustainable land and water management practices. While 
the chapter concentrates on the SIMPLE-G-US dataset (Baldos et al. 2020; Haqiqi 
et al. 2023), a similar approach is taken for other global and regional models (Liu 
et al. 2017; Haqiqi et al. 2022). 

The SIMPLE-G model uses two types of information: benchmark data and 
behavioral parameters. Benchmark data include information describing the equilib-
rium conditions of input use, agricultural production, trade, and food consumption in 
the reference year. The values of the variables are expected to change and are 
updated to reflect the new economic conditions following a SIMPLE-G simulation. 
The benchmark data are collected from various sources, including international 
databases, satellite imagery, climate and hydrological data, and national censuses. 
These data must be processed and made consistent to produce gridded data that can 
be used in the model. 
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Behavioral parameters refer to information that describes how the model 
responds to changes in various factors (e.g., prices and income). These parameters 
are based on independent estimates of consumer and producer behavior. They 
govern consumers’ and producers’ responses to changes in the economic, climatic, 
and environmental conditions of agricultural production. By definition, these param-
eters are fixed over the course of the simulation. 

Before describing the gridded data, we explain how the regional (non-gridded) 
SIMPLE database is constructed. 

1 Non-gridded Data 

The non-gridded SIMPLE database includes information on macroeconomic vari-
ables, commodity consumption, regional trade for crops, and regional production of 
crops, livestock, and processed food. Additional data on input and output carbon 
emissions for each commodity (Aguiar et al. 2019), land-use change emissions 
(West et al. 2010), and food security metrics (FAO 2020) are also available for 
model versions with environmental and food security modules. A publicly available 
version of the non-gridded database and compatible model version has detailed 
information for 150+ countries for the year 2017 (Baldos 2023). 

1.1 Regional Production and Trade 

The regional crop production database in SIMPLE-G is constructed using country-
level economic and agricultural data taken from several sources. Crop production, 
producer crop price, and cropland area data are sourced from the United Nations 
Food and Agricultural Organization’s FAOSTAT database (FAO 2020). Global 
prices are computed for each crop and are used to convert quantity of crop produc-
tion into corn-equivalent production using the ratio of each crop’s global price and 
the global price of corn. The value of crop production is also calculated using these 
data. Since we assume that the benchmark dataset represents a long-run equilibrium, 
we impose zero profit conditions in the crop sector. Therefore, the annual flow of 
land and nonland input costs in each region can be calculated using the value of crop 
production and the input cost shares from the GTAP database (Aguiar et al. 2019). 
The crop sale shares across the domestic and international markets are taken from the 
GTAP database (Aguiar et al. 2019). 

1.2 Regional Consumption 

On the demand side, the benchmark data include the value and quantity of crops used 
in direct food consumption, for feed in the livestock sectors, as raw inputs in the



processed food industries, and as feedstocks in the biofuel sector. The amount of 
crop feedstock used by the biofuel sector in each region is calculated using the sales 
shares of the crop sector in the bioenergy sectors from the GTAP-BIO V.9 database 
(Taheripour et al. 2017). Remaining crop quantities are allocated to food, feed, and 
processed food input use using crop purchase shares in the local and global markets 
using share data from the GTAP database (Aguiar et al. 2019). 

6 Benchmark Data: Integrating Biophysical and Economic Information. . . 83

Consumer demand data in the model are mainly driven by population and per 
capita income. Population and real gross domestic product (GDP) data are taken 
from FAOSTAT (FAO 2020), and these are used to calculate the per capita income 
in each region. The food security module in SIMPLE includes food security metrics 
based on average food consumption in each region (Baldos and Hertel 2014). 
Following Neiken (2003), each region has a unique distribution of average caloric 
consumption and a minimum daily dietary energy intake which delineates the 
fraction of the distribution below this minimum threshold. The nutrition data include 
the prevalence of caloric undernutrition and the undernutrition headcount for each 
region. This distribution shifts depending on changes in average dietary energy 
consumed. The module also captures shifts in the caloric composition of food by 
linking food caloric content to per capita income levels (Baldos and Hertel 2013). 
Food security data from FAOSTAT (FAO 2020) are used to initialize the nutritional 
information for each region. 

1.3 Food Processing and Livestock Production 

The value of consumption for livestock and processed food commodities is equal to 
the total value of output for these sectors, given the assumption that total revenue is 
equal to total consumption expenditure for each commodity. Under zero-profit 
conditions, the total value of output is equal to the total production costs. The total 
cost of crop inputs in the livestock and processed food sectors is calculated using the 
crop prices and crop use quantities. The values of non-crop inputs are then computed 
from the total cost of crop inputs and input cost shares. The input cost shares for 
livestock and processed food commodities are taken from the GTAP database 
(Aguiar et al. 2019). 

1.4 Agricultural Greenhouse Gas Emissions 

Some model versions (e.g., Chap. 10) report changes in agricultural greenhouse gas 
(GHG) emissions, specifically emissions from crop, livestock, and processed food 
production as well as land-use change emissions due to cropland expansion. Data on 
GHG emissions from agricultural production are based on the GTAP database 
(Aguiar et al. 2019), which reports CO2 emissions from fossil fuel combustion 
using detailed energy volume data from the International Energy Agency and



combustion factors from the Revised 1996 IPCC Guidelines for National Green-
house Gas Inventories (IPCC/OECD/IEA 1997). GHG emissions from methane, 
nitrous oxide and fluorinated, gases are based on the non-CO2 GTAP database 
(Chepeliev 2023), which uses FAOSTAT data (FAO 2020) for agricultural emis-
sions. Land-use change emissions from converting natural land into cropland rely on 
the global carbon stocks calculated by West et al. (2010). These carbon stocks are 
constructed using spatially explicit datasets on potential vegetation and soil carbon. 
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2 Benchmark Gridded Data: US Example 

SIMPLE-G requires benchmark gridded data for key economic and biophysical 
variables describing the initial equilibrium of the crop economy. The preferred 
gridded data sources vary by region. Table 6.1 lists the variables and underlying 
data sources for the United States. Comparable data sources have been compiled for 
several other regions (see the applications in Part IV). Each model includes a gridded 
dataset that includes cropland use, crop production, nitrate leaching, and water use. 

Given the centrality of the gridded database to the use and credibility of 
SIMPLE-G, this section provides a brief overview of how to construct a SIMPLE-
G dataset. Figure 6.1 describes the workflow for constructing the benchmark data 
and behavioral parameters for a US-focused version of SIMPLE-G, utilizing gridded

Table 6.1 Gridded data for SIMPLE-G-US 

Data Source Description of process 

Cropland 
area 

USDA CDL, USGS 
MIrAD 

The share of cropland area in each grid cell is cal-
culated from 30 m resolution. The share of irrigated 
area from cropland is calculated from 25 m 
resolution 

Value of 
land 

USDA Census of 
Agriculture 

Land area is multiplied by rent in USD per ha 
assuming uniform rent within a county 

Value of 
crops 
produced 

USDA Census of Agri-
culture, GCWM by crop 

The value of crops sold by county is distributed to 
grid cells within a county based on gridded pattern 
from GCWM and irrigated yield gap 

Quantity 
index of 
crops 

Estimated The quantity index follows the value of crops sold 
divided by reference crop price to create a price 
adjusted corn-equivalent index 

Value of 
irrigation 

USGS and USDA Irrigation cost shares are estimated based on county-
specific data on share of sprinkler, drip irrigation, 
surface water, and groundwater 

Volume of 
water 

USGS Water volume follows land multiplied by water 
intensity in m3 /ha 

Quantity of 
N fertilizer 

Cao et al. (2018), Agro-
IBIS 

Total fertilizer application follows land multiplied by 
kg/ha 

Value of N 
fertilizer 

Estimated Value of fertilizer follows quantities multiplied by 
price USD per kg
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MIrAD-
US 

Agro-IBIS 

GCWM 

USGS 
Water Use 

FAO 
AQUASTAT 

N Use 
Rate 

Yield 
Response 

N Leaching 

N 
Substitution 

Elasticity 

Value of 
Crops Sold 
by County 

Cash Rents 
by County 

SRF Water 
Withdrawal 

GRD Water 
Withdrawal 

GTAP 
Water 

Production 
Expenses by 

County 

Water 
Supply 

Elasticity 

Aggregate 
and 

Control 

CDL 

USDA-QS 

Irrigated 
Land 

Total 
Cropland 

Aggregate 
Yield by 

Grid 
Irrigation 
Yield Gap 

Water Per 
Acre by 
County 

Land CET 
Parameter 

Irrigation 
Area by 
County 

Irrigation 
Rent Gap 

Rainfed 
Area 

Irrigated 
Area 

Share of 
Water 

Share of 
Land 

Share of N 

Yield 
Irrigated 

Yield 
Rainfed 

EST 

GEN 

EST 

GEN 

GEN 

Water Per 
Acre by 
Region 

Fig. 6.1 Overview of main data and parameter processing method for SIMPLE-G-US. “GEN” 
represents a computation that does not involve statistical regressions; “EST” is a process that 
includes statistical estimation. Other versions, (gridded World, gridded China, and gridded Brazil) 
follow similar flows but employ rich global and national data sources.



data for the United States and employing regional information for other parts of the 
world. Other versions (e.g., SIMPLE-G-China, SIMPLE-G-Brazil) follow similar 
flows but employ the best available national data sources from those countries. In 
addition to the primary source data, there are two types of methodologies for 
generating the gridded data: “GEN” represents a computation that does not involve 
statistical regressions, and “EST” is a process that includes statistical estimation.
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Although resolution is not a constraint for SIMPLE-G (see computational section 
for examples with millions of grid cells), current versions work with crop production 
at the level of georeferenced grid-cell units at 5 arcmin resolution (squares with sides 
of 9.26 km at the equator). Most of our collaborators in the biophysical sciences use 
this resolution. We have added gridded information for US crop production covering 
both irrigated and nonirrigated practices and including the value and quantity of crop 
output, land use, N fertilizer input, water, and other aggregated inputs. 

2.1 Cropland Area: Rainfed and Irrigated 

Cropland area data were obtained from the USDA Cropland Data Layer (Han et al. 
2012) at a resolution of 30 meters and aggregated to 5 arcmin. Irrigated cropland data 
were obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) 
Irrigated Agriculture Dataset for the United States (MIrAD-US) provided by the US 
Geologic Survey (USGS) at a resolution of 250 m (Brown and Pervez 2014), 
aggregated to 5 arcmin. These data determine the distribution of irrigated and 
nonirrigated cropland in the United States. 

2.2 Crop Production: Price-Adjusted Quantity Index 

Aggregated output for each grid cell is recorded as the corn-equivalent total crop 
output, calculated as the sum of the value the crops sold divided by the price of corn 
in the base year, yielding “corn-equivalent tons of output.” We take the value of 
crops sold per acre from USDA National Agricultural Statistics Service by county 
(USDA-NASS 2019) and use simulated yields from the Global Crop Water Model 
(GCWM) (Siebert and Döll 2010) to generate gridded yield for the grid cells in each 
county. The GCWM data are aggregated over all crops using USDA/FAO actual 
prices to calculate the corn-equivalent crop output for each grid cell. 

We split the base data into irrigated and rainfed crop production using various 
satellite datasets and county-level information from the USDA and USGS, as well as 
the simulated yield of irrigated and nonirrigated crops. For yield estimation, we 
assume that grid cell aggregated yield per hectare is equal to the county average in 
which the grid cell is located. We split the gridded total production into irrigated and 
nonirrigated components using total, irrigated, and nonirrigated land as obtained 
from MIrAD-US and the cropland data layer (CDL) and the ratio of rainfed to



irrigated yields in a given grid cell as estimated by Siebert and Döll (2010) for 
29 crop categories and aggregated to all crops according to production value 
weights. Total cropland area from the CDL is matched with USDA county-level 
cropland to ensure consistency of yield and area at the county level. 
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2.3 Nitrogen Fertilizer Applications 

Nitrogen (N) fertilizer application rates per hectare per year for each grid cell were 
obtained from Cao et al. (2018) for all crops at 5 km and from Agro-IBIS (the 
agricultural version of the Integrated Biosphere Simulator) for rainfed and irrigated 
production of major crops (Lark et al. 2022). This product provided high-resolution 
(8 arcsecond) land cover and nutrient application maps across the continental United 
States for the period of 1750 to 2017, accounting for the nutrient legacies of 
historical land use/cover. The Agro-IBIS land cover categories are based on vege-
tation type simulations. This product is also consistent with our landcover data, 
which is based on several gridded land cover datasets and historical county-level 
USDA Census of Agriculture data. Irrigation maps from Agro-IBIS were created 
using the MIrAD-US and historical data from the USDA Census of Agriculture. 
With its rich set of information on gridded economic activity, the agroecological 
Agro-IBIS model helped us estimate irrigated versus nonirrigated fertilizer applica-
tion rates. 

2.4 Volume of Water Withdrawals 

Irrigation water withdrawal rates are estimated using county-level USGS water use 
data (Maupin et al. 2014). We calculate total water withdrawal per irrigated hectare 
and allocate it to groundwater and surface water using county-level USGS water use 
data by source. For some version of SIMPLE-G a quantity index is introduced for 
water which requires conversion to m3 to show the level of variables. 

2.5 Value of Crop Production 

Calculating the value of crops produced at the grid-cell level requires several steps. 
First, satellite data with sufficient resolution are acquired to identify cropland within 
each grid cell. These data are combined with gridded maps of irrigated areas to 
separate irrigated and rainfed areas in each grid cell. To avoid the computational 
issues that arise when extremely small pieces of cropland are modeled, we assign a 
minimum area to each grid cell in the model if it is cultivated. Next, utilizing the 
agronomic GCWM data, crop yields and areas are estimated by crop at the grid-cell



level. Agronomic models incorporate factors such as weather, soil conditions, and 
crop management practices to simulate crop growth and predict yields by irrigation 
technology. The combination of land area and yield provides information on pro-
duction by crop. Next, information on the average prices of crops at the national 
level is collected from FAOSTAT. For each grid cell, crop-specific values are 
calculated from the agronomic model by multiplying production by the 
corresponding crop price, considering the crop area data layer derived from the 
satellite data. This will provide an estimate of the total value of crops produced 
within that grid cell by irrigation technology. Since our goal is to match the USDA 
census data by county, we apply the gridded patterns of production value to the 
USDA county-level data on the value of crops produced in each county to obtain 
census-consistent, gridded estimates of the value of crop production. 
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This approach provides a comprehensive and spatially explicit assessment of crop 
production values, providing granular insights into agricultural productivity and 
economic contributions. 

2.6 Value of Land 

The annual payment to land, also known as land rent, is a crucial component of the 
economic model. It represents the compensation that landowners receive for the use 
of their land in agricultural production. We assume that these same landowners 
consider alternative uses, where feasible; therefore, each grid cell has an upward-
sloping land supply curve, reflecting the opportunity cost of crop land. We consider 
explicit payments from rental lands to landowners as well as implicit self-payment of 
landowner farmers. The value of water is calculated based on irrigated and rainfed 
cash rents by county in the United States. 

In SIMPLE-G, total annual payments to land play a key role in constructing the 
database. At the grid-cell level, the calculation of land rent typically involves two 
key factors: land area and rental rates by irrigation type. While land area information 
can be obtained from various sources (e.g., satellite imagery), information about land 
rent requires surveys or census data. Land rents represent the per unit payment, 
typically expressed in terms of dollars per hectare (or per acre) per year, and vary 
depending on several factors, including soil quality, proximity to markets, access to 
irrigation, crop mix, and overall demand for land in the county. Understanding these 
factors and their influence on land rents is crucial for understanding spatial hetero-
geneity in cost structures across a region. 

To calculate the total payment to land in a grid cell, the gridded land area is 
multiplied by the average county-level rental rate, as reported by the USDA. This 
calculation provides an estimate of the overall compensation that landowners 
receive, implicitly and explicitly, for the use of their land for agricultural purposes. 
It is important to note that this calculation represents an average and may not 
accurately reflect the specific rental payments in a given grid cell.
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2.7 Value of Irrigation 

The central challenge with regard to valuing water is that there is usually no market 
for water. Only a small portion of irrigation water is traded in markets. Even where 
they exist, market prices for water rarely reflect the true value added of irrigation 
water in agriculture. Thus, we developed an alternative approach to estimate the 
value of water. We start from the land rent. The cost share (θ) for cropland (L) for 
each grid-cell (g) is defined as 

θL g,l =QLg,lPLg,l=QYg,lPYg,l ð6:1Þ 

where QY and QL are production level and land area, and PY and PL are price index 
and land rents, respectively. As noted, much of the cropland is owned by the 
enterprise or individual farming the land. Thus, the true value added of land is not 
observed. Therefore, we infer rental rates from average cash rents reported by other 
farms in the neighborhood. In combination of CDL cropland data, we then calculate 
the total rental costs land. We have constructed an empirical model to estimate the 
cost shares of water inputs for groundwater, surface water, and irrigation input. We 
assume that the distribution of cost shares is driven by the volume share of water 
extracted from groundwater (XGW) and surface water (XSW), extent of area 
irrigated by each source (LGW and LSW, respectively), and shares of area equipped 
with higher efficiency irrigation technology such as microdrip irrigation (XMIC) and 
sprinklers (XSPR). The cost shares for groundwater, surface water, and irrigation 
equipment inputs are estimated using the following equations from Haqiqi (2023): 

θGW 
l,g = αG 0 þ αG 1 XGWl,g þ αG 1 LGWl,g 

θSW 
l,g = αS 0 þ αS 1XSWl,g þ αS 1LSWl,g 

θKW 
l,g = αK 0 þ αK 1 XMICg þ αK 2 XSPRg 

ð6:2Þ 

Equation (6.2) considers the associated costs of irrigation, including the labor, 
fuel, and other inputs required for water withdrawal, transport, and application. 
Therefore, we can empirically estimate the irrigation costs using the observed vari-
ables at the county level. In a statistical framework, we partially attribute the spatial 
differences in fuel, labor, and other nonland material to irrigation. Specifically, 
county-level nonland costs are estimated as a function of irrigated areas in acres, 
surface water withdrawals in gallons per acre, groundwater withdrawals in gallons 
per acre, share of area with sprinkler irrigation, and share of area with microdrip 
irrigation. We differentiate the marginal costs of groundwater and surface water 
irrigation. County-level expense data are obtained from USDA Census of Agricul-
ture for total costs and input costs, including fuel, labor, fertilizer, seeds, chemicals, 
and other inputs for 2002, 2007, 2012, and 2017. Information on physical area and 
volume of water (IR-WGWFr, IR-WSWFr, IR-IrSpr, and IR-IrMic) is obtained from 
USGS Estimated Use of Water in the United States County-Level Data for 2005, 
2010, and 2015.
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3 Summary 

The SIMPLE-G benchmark data include a consistent geospatial dataset that provides 
information on both economic values and biophysical variables for a reference year. 
At the regional level, this dataset includes exports, imports, income, and consumer 
expenditures on different food and non-food categories. At the grid-cell level, this 
includes the value of crop sales and production costs such as land, water, and labor 
expenses. The biophysical information includes cropland area, volume of water 
withdrawals, fertilizer applications, crop yields, and different land uses. These rich 
data enable researchers to conduct in-depth geospatial economic and sustainability 
analyses related to agriculture, land, water, and environment. 
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Chapter 7 
Behavioral Parameters: Capturing 
Geospatial Heterogeneity in Economic 
Decisions and Responses 

Iman Haqiqi 

Tackling fundamental environmental and societal challenges requires a comprehen-
sive geospatial understanding of the interactions among food, agriculture, land, 
water, and environmental systems. However, this understanding must be achieved 
with a keen eye on spatial heterogeneity, as environmental responses to economic 
and policy interventions, resource availability, and climate change are rarely uniform 
across landscapes. Failure to consider spatial variation can lead to flawed models, 
misguided policies, and unintended consequences. 

To address this challenge, this chapter introduces a geospatial dataset that 
includes economic behavioral parameters. This dataset is specifically designed for 
spatially heterogeneous analyses within gridded economic modeling focused on 
land, water, and environmental sustainability. The dataset incorporates key param-
eters such as land supply elasticity, water supply elasticity, land conversion possi-
bilities, and substitution elasticity, offering detail and resolution for capturing the 
spatial responses of production systems to economic and environmental drivers. 

Economic parameters are rarely available at gridded scales, yet they are essential 
for modeling how different regions within a landscape will respond to changes. By 
integrating these parameters with readily available environmental and economic 
data, researchers can unlock new avenues for analyzing and predicting spatially 
differentiated land-use change, water resource allocation, and agricultural produc-
tion under various sustainability scenarios. 

This chapter describes the construction of the SIMPLE-G-US dataset with all 
crops composite, highlighting its specific advantages and unique aspects in spatially 
heterogeneous analysis. Through examples, the application of the dataset is show-
cased in Part IV, demonstrating its potential to contribute to gridded economic 
modeling. Other internally consistent SIMPLE-G datasets include the global dataset
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(Haqiqi et al. 2022), the corn–soy dataset (Sun et al. 2020, Liu et al. 2023), and the 
Brazil dataset (Wang et al. 2022, 2024).
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Parameters in the model represent behavior leading to the dynamics of the 
SIMPLE-G system. The model parameters in each simulation are fixed and are 
usually obtained from other studies or empirical estimations. Table 7.1 summarizes 
the main parameters used in the model. We describe some of these parameters in the 
following sections. 

1 Regional Parameters 

This section introduces the data sources for regional parameters that determine how 
price changes and income growth influence food selection, how consumers choose 
between domestic and imported goods, and how livestock and processed food 
sectors adjust their inputs in response to changing prices. 

1.1 Consumer Demand 

Consumer demand elasticities, which govern how consumers react to food price 
changes and income growth, are based on the work of Muhammad et al. (2011), who 
use cross-section international data to estimate food demand systems spanning the 
full range of national per capita incomes. To capture the impacts of dietary upgrading 
in the model, equations relating the price and income elasticities of food demand to 
the log of per capita incomes are embedded in the model. The estimation of these 
linkages is described in Hertel and Baldos (2016). 

1.2 Spatial Reallocation and Trade Elasticities 

Armington-type elasticity parameters are important components of the model. 
Armington substitution elasticities measure the degree of substitutability between 
imported and domestic goods or between goods from different sources of origin. 
Hertel et al. (2007) estimate the Armington substitution elasticities for GTAP sectors 
based on bilateral transport costs among a subset of countries. The average elasticity 
for crops is around 3. However, these estimates are subject to uncertainty and 
sensitivity. It is advisable to use a range of values or conduct sensitivity analyses 
when applying these elasticities in trade models. We also assume a symmetric value 
of 3 on the export side.
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Table 7.1 Parameters in the gridded model 

Parameter Description Source 

Supply elasticities 

ηL Cropland supply elasticity Empirical estimations (Villoria et al. 
2023) 

ηGW Groundwater supply elasticity Empirical estimations (Haqiqi et al. 
2023) 

ηSW Surface water supply elasticity Empirical estimations (Haqiqi et al. 
2023) 

ηN N fertilizer supply elasticity Uniform value (Baldos et al. 2020) 

ηH Other agricultural inputs supply elasticity Uniform value (Baldos et al. 2020) 

QCET land allocation parameters 

τ QCET transformation elasticity parame-
ter for land allocation 

Empirical estimations for each class of 
water rights* 

Substitution elasticities 

σ Substitution elasticity between fertilizer 
and other inputs composite 

Based on yield response to fertilizer 
from Agro-IBIS (Liu et al. 2023) 

σHLW Substitution elasticity between water-
land composite and other inputs 
composite 

Empirical estimations of intensive 
margin* 

σLW Substitution elasticity between water and 
land 

Based on yield response to deficit 
irrigation* 

σW Substitution elasticity between water and 
other irrigation inputs 

Based on irrigation technology and 
crop mix* 

σSG Substitution elasticity between ground-
water and surface water 

Uniform value (Baldos et al. 2020) 

Subregional Armington parameters 

φ Substitution possibility between varieties 
of aggregated crop outputs of grid cells 

International trade literature (Hertel 
et al. 2007) 

κ Substitution possibility between varieties 
of aggregated crop outputs of subregions 

International trade literature (Hertel 
et al. 2007) 

Consumer and trade elasticities 

ω Imports substitution elasticity International trade literature (Hertel 
et al. 2007) 

ψ Export transformation elasticity Symmetric to imports 

α Demand elasticity parameter Muhammad et al. (2011) 

β Demand elasticity parameter Muhammad et al. (2011) 

σV Substitution elasticity in livestock pro-
duction sector 

Calibrated to target historical changes 
in feed use (see Baldos and Hertel 
2012) 

σF Substitution elasticity in processed food 
sector 

Zero value (i.e., fixed proportion in 
production) 

Other parameters 

Multiple 
parameters 

Water quality and nitrogen leaching Based on leaching response to fertilizer 
from Agra-IBIS (Liu et al. 2023) 

Multiple 
parameters 

Greenhouse gas emissions factors Based on GTAP and other sources 
(Aguiar et al. 2019) 

Multiple 
parameters 

Nutrition and food security parameters Following Neiken (2003) (Baldos and 
Hertel 2013) 

(Note: * shows the work in progress)
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1.3 Input Substitution Elasticities for Livestock 
and Processed Food Sectors 

The input substitution elasticity for the livestock sector is based on the historical 
calibration documented in Baldos and Hertel (2012) over the period from 
2001 to 2006. Feed use consumption, taken from FAOSTAT, for high income 
regions is targeted by adjusting the input substitution elasticity. Processed food 
sectors assume the Leontief production function given zero values for these substi-
tution elasticities. 

2 Gridded Parameters 

This section describes the data sources for parameters that determine the spatially 
heterogeneous agricultural decisions. They include parameters related to supply of 
agricultural inputs (land and water) and demand of inputs derived from agricultural 
production from Constant Elasticity of Substitution (CES) functions. 

2.1 Cropland Supply Parameters 

The cropland supply function determines the willingness to supply cropland at a 
given level of land rents. The main parameter in this function is the supply elasticity, 
which represents the percentage change in cropland supply as a response to a 1% 
change in average cropland rent. Regional cropland supply elasticities are taken from 
the SIMPLE model, and gridded land supply elasticities for the United States are 
based on the statistical model developed by Villoria and Liu (2018) using gridded 
data from the Americas. This elasticity was estimated based on the propensity of land 
to be converted to crop cultivation from other uses (including pasture and forestry) 
conditional on the profitability of land while controlling for agroecological condi-
tions. In the model, this parameter ranges from 0 to 0.755. A larger value indicates a 
greater likelihood of switching to cropland from other uses for a given increase in 
cropland rents. 

2.2 Cropland Conversion (Transformation) Parameters 

A quantity-preserving constant elasticity of transformation (QCET) function deter-
mines the allocation of land to irrigated and rainfed activities. The transformation 
elasticity parameter determines the percentage change in the ratio of each land type 
in response to a 1% change in relative rents to the two activities. This parameter



shows the flexibility of converting cropland to irrigated or rainfed production. In the 
United States, this parameter is estimated following Jame et al. (2017) based on local 
water rights law. Different water rights can restrict the extension or intensity of 
irrigation at one location. For this estimation, we employ county level information 
from the USDA, including cash rents for irrigated and nonirrigated cropland as well 
as total irrigated and nonirrigated cropland area by county. We assume that all the 
grid cells in a county follow the estimated parameter for that county. 
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2.3 Water Supply Parameters 

The water supply elasticity determines how the economic supply of water will 
change in response to changes in the price or value of water. Without observing 
market price behavior, it is difficult to estimate this parameter. Thus, we use 
hydrological information to create a database of water supply elasticities based on 
availability and current withdrawals. We assume that water supply at each grid cell is 
limited by hydrological constraints. Figure 7.1 illustrates two examples. This form of 
water supply function is slowly increasing at the beginning (up to A) and then 
rapidly increasing (after B) when approaching the asymptote (C). With adverse 
changes in hydroclimatic conditions, the cost schedule may shift to S2 (depending 
on the natural supply of water). 

Withdrawal of water is constrained by the maximum amount of water available in 
each grid cell after subtracting nonagricultural water use. We assume that the supply 
elasticity of water varies by grid cell and depends on the ratio of water extracted 
relative to the sustainable extraction level (R). We assume a three-parameter Fréchet 
function for water supply with calibrated parameters ω0, ω1, ω2, ω3: 

εg =ω0 þ ω1 

ω2 þ Rg 
ω3 
, ð7:1Þ 

where R is calculated as the ratio of annual withdrawal to annual groundwater 
recharge or as the ratio of annual withdrawal to annual available surface water. 
We calibrate this supply function separately for surface water and groundwater at 
each grid cell based on economic and hydrologic information, including annual 
water withdrawal for crop irrigation, the sustainable extraction level of water by 
source, and the estimated value of water, as described previously. 

Haqiqi et al. (2023) have calibrated the gridded water supply schedules for the 
continental United States to the benchmark year 2010 based on the ratio of ground-
water withdrawal to groundwater recharge (Gleeson et al. 2016; Reitz et al. 2017). 
For the US grid cells, the water supply elasticity is calculated using the withdrawal-
to-recharge ratio and the empirically estimated parameters ω0, ω1, ω2, and ω3. These 
values are estimated using water withdrawal data from the USGS for 2010 and the



98 I. Haqiqi

PW 

A B  

(b) 

(a) 

C QW  

S1 

S2 

Fig. 7.1 (a) Economic supply for water with maximum availability determined by asymptote 
C. (b) Estimated groundwater elasticities in the continental United States



estimated value of water (Haqiqi et al. 2016). In this version, ω1 is 0.50, ω2 is 0.30, 
ω3 is 0.45, and ω0 is 0 for groundwater and-0.05 for surface water. Then, we apply 
the estimated function to all the grid cells to determine the unique water supply 
elasticity for each grid cell. The information about groundwater recharge is taken 
from the Annual Estimate of Recharge (Reitz et al. 2017). Figure 7.1b shows the 
supply elasticity based on the ratio of groundwater withdrawal to local recharge 
around the year 2010. The red color shows the locations with a very rapid depletion 
of groundwater which are mostly in California and the Ogallala Aquifer. For some 
locations, more groundwater is withdrawn in 1 year than flows in as over 10 years. 
The High Plains Aquifer, the Central Valley of California, the Snake River Basin, 
and western Washington show dramatic levels of unsustainability based on this 
index.
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Using previous versions of SIMPLE-G, researchers have taken other approaches 
for estimating these elasticities. Haqiqi et al. (2018) consider variable water supply 
elasticity (i.e., the elasticity would adjust depending on the distance to the asymp-
tote). These authors calculate the maximum surface water available at each grid cell 
after subtracting nonagricultural water use from locally generated runoff (Wolock 
2003) while maximum available groundwater available was determined with 
groundwater stock (Gleeson et al. 2016; Befus et al. 2017). 

2.4 Elasticities of Substitution in Crop Production 

The substitution elasticity between N fertilizer and other inputs is an important 
parameter in the model. This elasticity determines the likely changes in N applica-
tion rate in response to change in relative price of N fertilizer. We estimate this 
parameter for each grid cell, following Liu et al. (2023) to establish a framework for 
estimating this parameter. We begin by obtaining the yield response functions from 
Agro-IBIS, then combine this response function with estimated yields of irrigated 
and nonirrigated crops to find the substitution elasticity for irrigated and rainfed crop 
production (Liu et al. 2023). 

2.5 Other Parameters 

Liu et al. (2018) have estimated leaching parameters from Agro-IBIS to construct a 
nutrient-leaching module for all the grid cells in SIMPLE-G-US. This nonlinear 
leaching function shows that nutrient leaching will increase quadratically when N 
application rate increases. The parameters are specific to the unique biophysical 
characteristics of each grid cell, including soil type, irrigation, and land cover (Liu 
et al. 2023).
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3 Summary 

Considering geospatially heterogeneous behavioral parameters is important for 
understanding the interactions among agriculture, land, water, and environmental 
systems. We introduced a geospatial dataset of economic parameters specifically 
designed for analysis within gridded economic modeling. This dataset includes key 
parameters—such as land supply elasticity, water supply elasticity, land conversion 
possibilities, and substitution elasticity—that allow researchers to capture the spatial 
responses of production systems to economic and environmental drivers. 

The chapter described the construction and sources of the SIMPLE-G-US dataset, 
which encompasses all crops in a composite commodity. The regional parameters 
determine how price changes and income growth influence the production and 
consumption of goods and services in different regions. The gridded parameters 
determine local decisions and economic responses to policies and shocks. This 
dataset is an example of how to employ biophysical information to calibrate and 
estimate parameters required in analyzing and predicting spatially differentiated 
decisions. We encourage researchers to consider the spatial variation in economic 
parameters and to incorporate this knowledge into their analyses to address the 
complex challenges associated with food, agriculture, land, water, and environmen-
tal systems. 
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Chapter 8 
Computation and Baseline: Efficient 
Methods for Solving a Large System 
of Equations for Projection and Scenario 
Analysis 

Iman Haqiqi and Uris Lantz C. Baldos 

The use of quantitative models is critical for sustainability studies because they 
provide geospatial insights and enable the analysis of the impact of climate extremes 
and conservation policies on food security and environmental sustainability. Tradi-
tional regional models may provide national-level insights, but they miss out on the 
crucial details that can be identified by using a geospatial approach. Explicit model-
ing of spatial outcomes enables targeted interventions and fosters more equitable 
solutions for creating a sustainable future. Additionally, these models can offer 
valuable insights into resource management and potential trade-offs between eco-
nomic growth and environmental sustainability by explicitly incorporating land and 
water constraints. 

However, the development and implementation of such models comes with 
significant computational hurdles. The large amount of data involved—coupled 
with the complex interactions between diverse economic, land, and water systems— 
creates a demanding challenge. These models may consist of a system of simulta-
neous equations with millions of unknowns with limited parallel computation 
possibilities. Traditional computational approaches often fail to efficiently handle 
the calculations required to solve these simulations. 

To overcome these difficulties, the SIMPLE-G model offers a scalable and 
effective approach. This chapter introduces the key features and advantages of the 
SIMPLE-G computational approach and demonstrates how it can significantly 
contribute to gridded quantitative economic analysis. The chapter introduces and 
explains the key features and advantages of the SIMPLE-G computation and show-
cases how SIMPLE-G can contribute to advancing sustainability research and policy
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analysis, then discusses how the baseline and scenarios can be defined and 
implemented.
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1 Computer Implementation 

The SIMPLE-G database and model are prepared and solved with the GEMPACK 
modeling suite (Horridge et al. 2018). This software package is specifically designed 
to solve large-scale economic equilibrium models with numerous markets and agents 
and is used by economists to simulate the impacts of a wide range of policy issues, 
including trade, taxation, environmental regulation, and development. It is also used 
for dynamic projections of the economy. GEMPACK offers several advantages, 
including a user-friendly algebraic notation that is easy to learn and use, which 
makes it accessible even to users without a strong programming background. The 
database files can also readily store multiscale and multidimensional variables. Other 
attractive features of this software are discussed below, but the unique advantage of 
GEMPACK in the context of multiscale modeling is its ability to condense the 
model and later backsolve for key endogenous variables. This makes it a computa-
tionally efficient software package for solving SIMPLE-G models. 

1.1 Condensation 

Solution times can be substantial for an equilibrium model with many equations and 
with complex interconnections among the unknown variables (e.g., the market 
responds to farmer decisions even as the farmers respond to market outcomes).1 A 
typical global SIMPLE-G application might include two million grid cells and 
17 regions. A system of about 20 equations (recall Chap. 5) determines crop output 
for each of those grid cells, given grid-level exogenous settings and the endogenous 
price of output (which is the same for all cells in a given region), for a total of 
approximately 40 million grid-level equations. For each region, up to 100 other 
equations add up the grid-cell outputs to obtain total crop supply or interrelate 
region-level prices and quantities. The overwhelming majority of equations are 
clearly at the grid-cell level. A nonlinear system of 20 million equations would be 
impossibly slow to solve and might require enormous amounts of computer mem-
ory. We can greatly reduce the number of equations by substitution (i.e.,

1 Researchers have designed multiple algorithms to reduce solution time. Most algorithms iterate 
between two phases: a linear algebra phase that solves a first-order approximation to the nonlinear 
equation system and a “formula” phase that updates variable values and recomputes coefficients of 
the linear system. In GEMPACK, solution time for the linear phase rises with the square or cube of 
the number of equations, while time for the formula phase tends to increase only linearly.



condensation). For example, we can write the fertilizer demand equation as follows 
(the grid index is omitted here):
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qN = q- a- aN - σ pN - aN - p- að Þ: ð8:1Þ 

Then, we could replace each occurrence of qN in other equations by the righthand 
side of Eq. 8.1, 

q- a- aN - σ pN - aN - p- að Þ, ð8:2Þ 

thereby dropping the first equation (8.1) from the system. By condensing out the 
grid-cell-specific variables, we can dramatically reduce the size of the model to be 
solved. After the system is solved, we can use the above equation to recover 
(or backsolve for) values of qN. 

Economic modelers often use such techniques, manually performing such sub-
stitutions in their model specification files. The drawback is that the necessary 
algebra is difficult, and the remaining equations become extremely complicated 
and nontransparent, especially when a large number of substitutions are performed. 
The GEMPACK software is able to solve the algebra to perform such substitutions 
(and their backsolves) automatically, reaping a performance gain while leaving the 
model specification (TABLO) file in its original, simpler, uncondensed form. 

For SIMPLE-G, all grid-level equations are substituted out, leaving a regional-
level system (for 17 regions) of modest size: 1700 equations. Such a system takes 
very little time to solve. However, the coefficients of the system involve grid-level 
calculations; the time taken to solve these is proportional to the number of grid cells. 
Hence, the solution time increases only linearly as a function of the number of grid 
cells (see Fig. 8.1). 

1.2 Linearization 

GEMPACK can automatically translate the original equation system into a linear-
ized system (reformulated as a system of first-order partial differential equations). 
Alternatively, modelers can themselves specify conveniently interpretable linearized 
forms of the underlying behavioral equations. In this case, the modeler must also 
supply the requisite update formulas to ensure that all relevant variables are properly 
updated over the course of the nonlinear solution of this linear system. Clever 
representation of the model can facilitate condensation as well as a more rapid 
solution of the model. In SIMPLE-G, all of the cross-grid-cell interactions are 
transmitted through regional market prices, allowing us to substitute out all of the 
variables with a grid-cell index. Once we know the regional crop, fertilizer, irrigation 
capital, and other input prices, we can backsolve for crop output, input use, land 
prices, and the shadow price of irrigation water in each grid cell independently.
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Fig. 8.1 Linear relationship between solution time for SIMPLE-G-US and number of grid cells 
Condensation allows users to solve a SIMPLE-G system of equations with 1 million grid cells (~10 
million endogenous variables) on a laptop in a few minutes. CPU = core i5-7500, RAM = 16 GB 

Since the model is nonlinear, the cost shares, price, and quantity variables must be 
updated at each step in the solution process. Consequently, the model is solved by 
multistep methods such as the Euler method or Gragg’s modified midpoint method 
(Pearson 1991). The large system of linear equations is solved using sparse matrix 
techniques (Schiffmann and Jerie 2019). Richardson extrapolation is used to 
improve accuracy (Pearson 1991). This linearized approach has proven capable of 
accurately solving very large, nonlinear models (e.g., model in Fig. 8.1 contains 
eight million grid cells). 

1.3 Decomposition 

In addition to these features, GEMPACK has other extensions that prove invaluable 
in SIMPLE-G applications (see Part IV). It provides a way to formulate inequality 
constraints or nondifferentiable equations as complementarities (Bach and Pearson 
1996), which can be important in sustainability analyses. It also offers a technique to 
decompose changes in model variables due to several shocks into components due to 
each individual shock (Harrison et al. 2000). We will illustrate this technique in 
Chap. 12.
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1.4 Computation “In the Cloud” 

The web application version of SIMPLE-G permits users to simulate, explore, and 
visualize the results of SIMPLE-G without installing the GEMPACK program or 
any visualization software. It works based on “containers” and Linux versions of 
GEMPACK programs run on the GeoHub server (https://mygeohub.org/groups/ 
glassnet/res/tools). The web application also includes presolved experiments and 
demonstrations on how to run the model and analyze results based on the policy 
briefs presented at the 2018 Conference on Long Run Sustainability of US Agricul-
ture (Haqiqi et al. 2018; Liu et al. 2018). 

The latest version of the web application allows users to run their own experi-
ments, which could range from global projections of food production and food 
demand to grid-level analysis. Users need to provide a GEMPACK header array 
(HAR) data file that includes the values for gridded shocks or growth rates and a 
GEMPACK command (CMF) text file that includes the configuration details. The 
tool can be used to explore the impacts of different scenarios of climate change, 
water scarcity, population growth, income growth, and biofuel mandates on food 
production, water resources, and land use. Ongoing improvements to the tool will 
make it more user friendly and easy to use. Figure 8.2 illustrates an example of 
SIMPLE-G results visualized on MyGeoHub. 

It is also possible to link SIMPLE-G to models and data from different domains 
(e.g., hydrology, crop science, climate science, and ecology). This enables 
researchers to address complex, real-world grand challenge problems that require

Fig. 8.2 Sample window from the SIMPLE-G web application at https://mygeohub.org/tools/ 
simpleus

https://mygeohub.org/groups/glassnet/res/tools
https://mygeohub.org/groups/glassnet/res/tools
https://mygeohub.org/tools/simpleus
https://mygeohub.org/tools/simpleus


in-depth collaboration among researchers from multiple disciplines. Such linkages 
often involve harnessing multiscale and multidimensional data and models with 
unidirectional connections. For example, Agro-IBIS provides information to 
SIMPLE-G through the simulated yield response to N fertilizer. SIMPLE-G can 
also provide information on economically motivated changes in N application rates 
as inputs to Agro-IBIS to estimate N leaching under different scenarios.
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It is also possible to couple SIMPLE-G with other models, which—in general— 
faces two major problems. First, it is difficult for collaborators to understand each 
other’s data/models, a precondition for effective collaboration. Second, the infra-
structure is usually unavailable to run the coupled systems. To address these 
challenges, Woo et al. (2022) designed C3F, a Collaborative Container-Based 
Model Coupling Framework, which can accelerate model integration and linking 
efforts by leveraging advanced cyberinfrastructures (e.g., high-performance com-
puting and virtual containers). This framework is used to couple the Water Balance 
Model (WBM) and SIMPLE-G (Baldos et al. 2020; Grogan et al. 2022; Woo et al. 
2022). While land-use decisions are exogenous in WBM and hydrologic water 
supply is exogenous in SIMPLE-G, they are used as bridges between the models. 
To address the differences in temporal and spatial resolutions, additional post-
processing tools are developed to transfer the information at consistent scales. 

2 Building a Baseline 

Developing a baseline is critical for evaluating model outcomes and it serves as a 
point of reference for assessing the impact of policy interventions and/or different 
assumptions in model parameters. A comparison of baseline simulation results with 
a simulation based on different parameters or shocks and provides insights into the 
robustness of model predictions. 

For counterfactual (what-if) analysis, a baseline is a reference point against which 
the simulation results of a scenario can be compared. By comparing the results of a 
model simulation to a baseline, it is possible to assess the impacts of different policy 
interventions, technological innovations, and climate change on the food system and 
agricultural water and land use. 

Typically, the SIMPLE baseline captures changes in global food production and 
resource use given a trend in macroeconomic variables such as population and 
income growth as well as technological change. A baseline usually includes different 
regional rates for the drivers of global change. For example, it can include region-
specific population growth rates as well as differentiated rates of income and 
technology growth. 

There are many ways to define a model baseline. One typical baseline is the 
business-as-usual scenario, in which current trends in population, income, and 
technology are assumed to continue into the future. A baseline scenario could be 
based on historical data, projections of future trends, or a combination of both. The 
specific approach used will depend on the research question being addressed.
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2.1 Historical Baseline 

In the context of model validation, a historical baseline replicates the observed state 
of the system over a historical period. This baseline serves as a reference point for 
comparing model predictions with observations to assess the accuracy and reliability 
of the model. For SIMPLE, the historical baseline involves simulating the observed 
changes in crop production, cropland, and prices, given observed changes in the key 
drivers of food supply and demand. 

2.2 Future Baseline 

In SIMPLE and SIMPLE-G, the future baseline scenario typically requires inputs on 
population and per capita incomes, feedstock demand for biofuel use, and produc-
tivity growth trends for the crops, livestock, and processed food sectors. Other 
drivers can include future impacts of climate change on crop productivity as well 
as cropland supply shifters due to urbanization or regional demands for ecosystem 
services. 

Constructing a future baseline involves gathering data from various sources to 
project future trends and dynamics within the system. Population, income, and 
biofuel production can be specified to follow long-run growth scenarios such as 
the Shared Socioeconomic Pathways (O’Neill et al. 2014) or other global economic 
projections. 

2.3 Policies and Scenarios 

The baseline serves as a foundation for analyzing the potential impacts of future 
technological advancements and climate change on the food system. Another use of 
the baseline is to assess the impacts of future sustainability policies, trade policies, or 
agricultural protection policies. 

Constructing future baselines and alternative scenarios requires convergence 
science and multidisciplinary collaborations. For example, hydrological model sim-
ulations may be used to inform SIMPLE-G about the future availability of water or 
possible water sustainability policies. Agronomic crop model simulations may be 
used to inform SIMPLE-G about future yield trends for irrigated and rainfed crops. 
Additionally, population dynamic models can inform about future changes in food 
demand and the labor force. For some examples of baseline construction, see 
Chap. 10; Chap. 12 develops a groundwater sustainability scenario.
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3 Summary 

The process of going from complex ideas and theories to practical and useful 
conclusions is filled with difficulties and obstacles. This requires highly non-linear 
computable models of linked human and environmental systems. The high dimen-
sionality of these models, large data requirements, and computational hurdles 
necessitate careful trade-offs between realism, tractability, and policy relevance. A 
theoretically simplified yet spatially detailed model like SIMPLE-G offers promising 
computational prospects for understanding relationships within environmental and 
human systems. In addition, SIMPLE-G computational method demonstrates the 
potential to overcome computational barriers of solving large-scale multi-system 
geospatial models. 

The feasibility and efficiency of SIMPLE-G computation relies on condensation 
and linearization, two important techniques used in GEMPACK to reduce the 
complexity and size of the model equations and to solve them efficiently. Conden-
sation involves simplifying the model by eliminating some equations and variables 
through substitution, which reduces the number of equations and variables that need 
to be solved. This makes the model more manageable and faster to run. On the other 
hand, linearization involves reformulating the model equations as a system of first-
order partial differential equations that are linear in percentage changes or changes in 
variables. This allows for the use of a solution method which calculates the move-
ments in the endogenous variables away from their initial values in response to 
movements in exogenous variables away from their initial values. These two tech-
niques improve the computational efficiency and accuracy of the model solution. 

Moving forward, continued research efforts focused on developing efficient 
solution algorithms, harnessing new data sources, and enhancing model interpret-
ability are key to bridging the gap between the inherent complexity of these models 
and their practical utility in tackling sustainability challenges. Ultimately, we can 
harness the power of multi-scale multi-system models to better understand the 
interactions between economy, environment, and society, enabling informed and 
sustainable decision-making at all levels. 

Acknowledgment and Competing Interests The authors acknowledge support 
from the U.S. Department of Energy, Office of Science, Biological and Environ-
mental Research Program, Earth and Environmental Systems Modeling, MultiSector 
Dynamics under Cooperative Agreement DE-SC0022141; the National Science 
Foundation award #2118329: “NSF Institute for Geospatial Understanding through 
an Integrative Discovery Environment (I-GUIDE),” the United States Department of 
Agriculture AFRI grant #2019-67023-29679, “Economic Foundations of Long Run 
Agricultural Sustainability,” and the National Science Foundation INFEWS award 
#1855937, “Identifying Sustainability Solutions Through Global-Local-Global 
Analysis of a Coupled Water-Agriculture-Bioenergy System.” 

The findings and conclusions presented in this chapter are those of the authors 
and should not be construed to represent any official determination or policy of the 
US Department of Agriculture (USDA), the US government, the Department of 
Energy (DOE), or the National Science Foundation (NSF). Furthermore, we declare 
that there is no conflict of interest related to this work.



8 Computation and Baseline: Efficient Methods for Solving a Large System. . . 111

References 

Bach, Christian Friis, and Ken Pearson. 1996. Implementing quotas in GTAP using GEMPACK or 
how to linearize an inequality. Technical Paper 4. Department of Agricultural Economics, 
Purdue University, West Lafayette: Global Trade Analysis Project (GTAP). https://doi.org/10. 
21642/GTAP.TP04. 

Baldos, Uris Lantz C., Iman Haqiqi, Thomas W. Hertel, Mark Horridge, and J. Liu. 2020. SIMPLE-
G: A multiscale framework for integration of economic and biophysical determinants of 
sustainability. Environmental Modelling & Software 133: 104805. https://doi.org/10.1016/j. 
envsoft.2020.104805. 

Grogan, Danielle S., Shan Zuidema, Alex Prusevich, Wilfred M. Wollheim, Stanley Glidden, and 
Richard B. Lammers. 2022. Water balance model (WBM) v.1.0.0: A scalable gridded global 
hydrologic model with water-tracking functionality. Geoscientific Model Development 15: 
7287–7323. https://doi.org/10.5194/gmd-15-7287-2022. 

Haqiqi, Iman, Laura C. Bowling, Sadia A. Jame, Thomas W. Hertel, Uris Baldos, and Jing Liu. 
2018. Global drivers of land and water sustainability stresses at mid-century. Purdue Policy 
Research Institute (PPRI) Policy Briefs 4: 7. 

Harrison, W. Jill, J. Mark Horridge, and K.R. Pearson. 2000. Decomposing simulation results with 
respect to exogenous shocks. Computational Economics 15: 227–249. https://doi.org/10.1023/ 
A:1008739609685. 

Horridge, J.M., Michael Jerie, Dean Mustakinov, and Florian Schiffmann. 2018. GEMPACK 
manual. Victoria University, Centre of Policy Studies/IMPACT Centre. 

Liu, Jing, Thomas W. Hertel, Laura Bowling, Sadia Jame, Christopher Kucharik, and Navin 
Ramankutty. 2018. Evaluating alternative options for managing nitrogen losses from corn 
production. Purdue Policy Research Institute (PPRI) Policy Briefs 4: 9. 

O’Neill, Brian C., Elmar Kriegler, Keywan Riahi, Kristie L. Ebi, Stephane Hallegatte, Timothy 
R. Carter, Ritu Mathur, and Detlef P. van Vuuren. 2014. A new scenario framework for climate 
change research: The concept of shared socioeconomic pathways. Climatic Change 122: 
387–400. https://doi.org/10.1007/s10584-013-0905-2. 

Pearson, K.R. 1991. Solving nonlinear economic models accurately via a linear representation. 
Preliminary Impact Paper IP-55. Parkville: University of Melbourne Impact Research Centre. 
https://doi.org/10.22004/ag.econ.295068. 

Schiffmann, Florian, and Michael Jerie. 2019. Improving the performance of sparse LU decompo-
sition in GEMPACK. In Warsaw, Poland. 

Woo, Jungha, Lan Zhao, Danielle S. Grogan, Iman Haqiqi, Richard Lammers, and Carol X. Song. 
2022. C3F: Collaborative container-based model coupling framework. In PEARC ‘22: Practice 
and experience in advanced research computing. Boston: Association for Computing Machin-
ery. https://doi.org/10.1145/3491418.3530298. 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

https://doi.org/10.21642/GTAP.TP04
https://doi.org/10.21642/GTAP.TP04
https://doi.org/10.1016/j.envsoft.2020.104805
https://doi.org/10.1016/j.envsoft.2020.104805
https://doi.org/10.5194/gmd-15-7287-2022
https://doi.org/10.1023/A:1008739609685
https://doi.org/10.1023/A:1008739609685
https://doi.org/10.1007/s10584-013-0905-2
https://doi.org/10.22004/ag.econ.295068
https://doi.org/10.1145/3491418.3530298
https://doi.org/10.1145/3491418.3530298


https://doi.org/10.1007/978-3-031-68054-0_9

Chapter 9 
Model Validation: Comparing Gridded 
and Regional Simulations to Observations 

Iman Haqiqi, Zhan Wang, and Uris Lantz C. Baldos 

Model validation is important to ensure that a model is accurate and reliable. The 
general goal of validation is to compare a model’s predictions or projections to actual 
data to check whether the model can simulate the conditions that are observed 
independently of the model and its input data. Since it is generally not possible to 
validate all aspects of a high-dimensional, multi-scale model, such validation exer-
cises generally have a focus area that depends on the purpose for which it will be 
used. This varies by application. 

Each discipline has a different approach to validation depending on the research 
purpose and complexity of the processes being modeled (Hansen and Heckman 
1996; Rykiel 1996; Oreskes 1998; Biondi et al. 2012; Ngo and See 2012; 
Kersebaum et al. 2015; van Vliet et al. 2016). For example, climate models seek 
to explain underlying physical processes and make predictions and projections about 
a changing climate. In agronomic models, validation often involves estimating out-
of-sample yields and biophysical processes. In hydrological models, validation may 
focus on replicating observed streamflow and river discharge at another location or at 
another point in time. Economic models aim to explain economic decisions and 
provide policy insights and evaluate the impacts of future changes. They typically 
exhibit greater uncertainty due to the confounding effects of human behavior, which 
does not follow the laws of physics, biology, or chemistry. These economic models 
generally include many parameters and lean heavily on theoretical structures 
obtained from microeconomic theoretical foundations. 
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1 Validation Challenge When Multiple Drivers Interact 
Across Multiple Scales 

The SIMPLE-G model involves economic decisions about land use and water 
withdrawals at the grid-cell level. Here, the focus is on geospatial validation of 
economic decisions about cropland and water withdrawals. However, land-use 
changes are the result of many mutually influential local, regional, and global drivers 
that together shape the global cropland patterns. Thus, the model must be able to 
simulate complex processes in order to represent the richness in observed changes in 
land-use patterns. Unfortunately, few of these models are validated: Advances in 
model validation techniques have been much slower than new model developments 
(van Vliet et al. 2016). Accordingly, there is no agreed-upon set of methods for 
assessing the results of integrated agricultural, economic, water, and land-use models 
(Razavi and Gupta 2015; Razavi et al. 2021). Here, we draw on validation methods 
from economics, sociohydrology, and land-use modeling. 

There are several possible ways to validate a geospatial economic model like 
SIMPLE-G. However, the initial step is benchmark replication or calibration. Com-
paring the results of a model to a set of observed data will ensure that the model can 
replicate a base reference condition. To perform benchmark replication, the model is 
first calibrated to the benchmark data (e.g., 2010). The model’s predictions should 
match the benchmark data. Backcasting. another validation method, employs the 
model to make predictions about observed past events and then compares the 
model’s predictions to actual observed outcomes from independent data sources 
not used in the calibration process. If the predictions are accurate according to 
predefined criteria, then it is likely that the model will be accurate in the future or 
for unobserved conditions. This ensures that the structural processes that can explain 
changes in the system are modeled correctly. Please note that we use the terms 
‘prediction’ and ‘projection’ interchangeably. 

A complementary approach to economic model validation is to use a sensitivity 
analysis, which involves varying the model’s assumptions, parameters, and drivers 
to investigate how the predictions change. This helps identify the assumptions and 
parameters of the model that are most important in determining outcomes. Sensitiv-
ity analyses are also important for ensuring the robustness of the model 
findings (Haqiqi et al. 2023). 

While economists try to explain the observations, there are inevitably prediction 
errors and unobservable variables. This challenge is even more daunting for a 
geospatial economic model with numerous unobservable local variables. Uncer-
tainty quantification and characterization can help uncover sources of uncertainty 
in the results and reveal their implications for the major conclusions of each study.
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Fig. 9.1 SIMPLE model global validation. SIMPLE is capable of partitioning the actual tripling of 
crop output ( first blue bar) into area and yield changes (second and third blue bars) while also 
reproducing the historical change in crop price over the period 1961–2006 (Hertel et al. 2014) 
The green bars are model predictions, and the red bars represent a counterfactual experiment 
exploring the impact of eliminating gains from the Green Revolution, which was a focal point of 
this chapter (Hertel et al. 2014, p. 13800) 

2 Validation at the Global Level 

SIMPLE-G is nested within the broader SIMPLE model, which is a global model of 
crop production, land use, and the environment. In general, the process of model 
validation requires four steps. First step involves selecting a period wherein the 
model outcomes will be compared to actual data. In this case, previous work has 
validated the SIMPLE model against observations from 1961—the start of the 
FAOSTAT data series for global agriculture—to 2006, just prior to the global 
food and energy crisis that began in 2007. The second step in general model 
validation is to project the model backward in time to generate a historical database 
using actual changes in key model drivers (e.g., 2006–1961). At this point it is 
possible to compare the model’s performance to observed changes. However, 
forward-looking simulations are often easier to apply; therefore, it is common to 
follow with the third and the fourth steps, projecting the model forward to the 
current period using the historical database and then comparing projected with 
observed changes over the historical period. The key model drivers include popula-
tion, per capita income growth, and productivity growth for the crop, livestock, and 
processed food sectors. Figures 9.1 and 9.2 are taken from Hertel et al. (2014) and 
Hertel and Baldos (2016) to compare the performance of the SIMPLE model in 
predicting changes in global production, prices, and yields as well as regional crop 
production over this 45-year period. 

At the global level, the SIMPLE model is capable of capturing the direction of 
historical changes in crop production, cropland use, and crop prices. However, 
regional historical changes in crop output and cropland use are more difficult to 
replicate due to region-specific drivers, which are omitted from this historical 
simulation. Explicit government policies could shape regional patterns of agricul-
tural production, as was in the case for Brazil, where agriculture was initially heavily



subsidized through rural credit and price support mechanisms. However, market 
reforms introduced during the early 1990s reduced trade barriers in commodity 
markets (Chaddad and Jank 2006). There are also barriers to international trade in 
agricultural products, including poor quality domestic transport infrastructure, bur-
densome customs procedures, and poorly developed port facilities. These barriers to 
trade loom particularly large in Sub-Saharan Africa (Wilson et al. 2004) and have 
limited that region’s engagement in the global trading system. 
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Fig. 9.2 SIMPLE model regional validation. The model is largely capable of reproducing the 
regional pattern of output growth over the period 1961–2006 (Hertel and Baldos 2016, p. 198) 
Market segmentation follows Armington (1969) such that there is imperfect substitution between 
foreign and domestic goods in each region. The most problematic region is Latin America and the 
Caribbean, where the model does not capture Brazil’s dramatic output growth 

3 Validation at the Regional Level: The Case of Brazil 

By focusing the validation exercise on a single region, it is possible to dig more 
deeply into region-specific data sources and policies. This section reports on the 
work of validating a region-specific model focused on gridded agriculture, land use, 
and the environment against region-level observations in Brazil (SIMPLE-G-Brazil, 
see Chap. 16 for additional details). After developing the initial version of SIMPLE-
G-Brazil, we begin by hindcasting the model from its baseline (2017) to the year 
2000 to compare the simulated crop output (converted to crop-equivalent and



aggregated) and cropland area with observed data from FAOSTAT for Brazil. (Note 
that this validation exercise is backward-looking, in contrast to the forward-looking 
validation reported in Figs. 9.1 and 9.2.) Socioeconomic drivers used in the initial 
step of hindcasting include population and per capita GDP, calculated from popu-
lation and GDP (in constant dollars) data from the World Bank (3-year averages are 
used to remove short-term volatility); total factor productivity (TFP), calculated from 
TFP growth rates (Fuglie 2022) for the crop, livestock (Ludena et al. 2007), and 
processed food (Griffith et al. 2004) sectors. The percentage change in demand for 
crops by the biofuel sector is calculated with the ratio of global biofuel demand in the 
transportation sector (representing biodiesel and ethanol from crops) between 2017 
and 2000 from the World Energy Outlook 2018 (IEA 2018). 
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Fig. 9.3 Validation of crop output and cropland for Brazil 
Model simulations (blue) are compared with observations reported by the United Nations Food and 
Agriculture Organization (green) 

As is shown in the first bar of each grouping in Fig. 9.3, the initial version of the 
model underestimates the reduction in crop output (-44.0% in simulation versus -
48.3% observed) and cropland area (-3.4% in simulation versus -13.0% observed) 
in Brazil. To identify potential issues that affect the performance of SIMPLE-G-
Brazil, we apply a stepwise strategy to check dimensions of the model that may 
cause mismatches between simulations and observations. 

According to the structure of SIMPLE-G (Fig. 4.1), demand for crop output can 
be divided into three categories: exogenous demand for biofuel production, endog-
enous demand for domestic consumption, and endogenous demand for foreign 
countries. First, we checked data sources on biofuel demand in the initial version 
and found that these data are based on the crop sales share for biofuel from GTAP-
Bio database Version 6, with 2006 as the baseline. These data did not capture the



rapid growth of biofuel production in Brazil during the 2000–2017 hindcasting 
period. To fix this problem, we update the biofuel demand data with the sales 
share from GTAP-Bio database Version 9 (with 2011 serving as the baseline). As 
a result, the validation outcomes (i.e., the “updated biofuel data” category in Fig. 9.3) 
show that the simulated change in crop output from 2017 to 2000 (-47.0%) 
becomes closer to the observed change (-48.3%), but the model still underestimates 
the (backward-looking) reduction of cropland area (-6.2% in simulation versus -
13.0% in observation). A smaller backward-looking reduction in area means that the 
model is not picking up all of the growth in cropland area from 2000 to 2017. 
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Fig. 9.4 Crop supply by market in Brazil, calculated using market share from GTAP database 

Second, we compared the simulated crop supply pattern (sales to domestic versus 
international markets) with the crop supply patterns calculated using the domestic 
and international market shares of crop supply from the GTAP version 10 database, 
with the baseline years of 2004 and 2014, respectively (Fig. 9.4).1 We found that, 
compared with 2014, the GTAP database indicated that the crop supply in 2004 
should have had a much greater reduction for the global market (-79%) than in the 
domestic market (-15%), indicating strong export growth over the 2004–2014 
period. However, under the “updated biofuel data” category, the simulated reduction 
in crop supply (variable QSCROPr) was-60% for the global market and- 42% for 
the domestic market, which appears to greatly underestimate the role of export 
growth over this historical period. Given that the global crop price is simulated 
endogenously with socioeconomic drivers in this step, these findings indicate that 
there are some uncontrolled impacts on the global crop price, possibly from other 
regions, that cause mismatches in crop supply patterns. 

1 Although our simulation is between 2017 and 2000, GTAP version 10 database does not provide 
data on these two years, so we used the year closest to these two years to show the general patten of 
crop supply change.
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Fig. 9.5 Grain price index and its linear regression model 

To control for potential bias originating from our modeling of the global crop 
market, we added another socioeconomic driver to the hindcast—the observed 
global crop price change over this historical period—to isolate Brazil from 
uncontrolled impacts emanating from non-Brazil regions via the global crop market. 
This allows us to focus more sharply on the response of crop production and land use 
within Brazil. The shock to the change in global crop prices was calculated with the 
annual indices for grains based on World Bank commodity price data (Fig. 9.5). We 
used the grain price index from 2000–2017 to fit a linear model between the grain 
price index and time and use the fitted value from the model between 2017 and 2000 
to calculate the percentage shock for global grain price in order to smooth short-term 
variation in the data. 

The simulation results with both socioeconomic drivers and additional global 
price shocks are reported under the “exogenous global price” category in Fig. 9.3. 
Although this simulation overestimates the reduction in both cropland and crop 
output, the simulated change in global crop supply is close to observations. The 
results suggest a 91% reduction of supply to the global market and a 59% decline in 
supply to the domestic market, which more closely mimics the observed crop supply 
pattern reported in the GTAP database. This result indicates that the global crop price 
is a partial source of the mismatch and that Brazil is overresponsive to global crop 
price changes in the current model. 

To address the problem of overresponsiveness to global price changes, we further 
calibrated two key parameters in the Armington trade structure: the elasticity of 
substitution between crops demanded from domestic and international markets and 
the elasticity of transformation between crops supplied to domestic and international 
markets. The calibration was conducted by gradually changing these two parameters 
by the same amount and finding the parameter value (0.7) that produces the 
simulated results (both cropland and crop output) that most closely match the 
observations as reported in FAOSTAT. After calibration, the results are shown in



Fig. 9.3 as the group “exogenous global price & trade parameter calibration”; these 
results are not only more accurate than the initial validation results, but also exhibit 
more similar changes in the crop supply pattern (-73% to global market and -44% 
to domestic market) with the data from the GTAP database. This exercise highlights 
several useful strategies in model validation. It is important to break down the 
problem based on the theoretical foundation of this model, which can lead to fruitful 
scrutiny of the data and parameters used in the model. Proceeding in a stepwise 
fashion is important, as shown in Fig. 9.3. 
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4 Validation of Gridded Model for the United States 

As above, we use backcasting as the main validation strategy for SIMPLE-
G-US. This approach also provides insights into the strengths and weaknesses of a 
model in a specific application. In the case of the gridded model, the main challenge 
is obtaining accurate geospatial data as a reference for comparison and accurate 
geospatial data for drivers of the model. Here, we ask whether the model can 
replicate a movement to a new state of the agricultural economic systems from the 
period 2001–2002 to 2016–2017, an analysis that requires controlling many social, 
political, and economic variables. 

4.1 Precision Assessment, 2001–2002 to 2016–2017 

Here, we study the performance of the SIMPLE-G-US model in predicting cropland 
area and its changes in the continental United States over the long run using 
independently collected reference data. The validation results are reported first for 
the entire continental United States followed by tables for the USDA Farm Resource 
Regions. Given data availability, we draw on cropland reference data for 2001 and 
2016 from the USGS National Land Cover Database (NLCD) and economic drivers 
for 2002 and 2017 from the USDA Census of Agriculture. Figure 9.6 illustrates the 
validation steps of SIMPLE-G-US. 

Reference for Comparison Advances in satellite imagery over the past 2 decades 
have allowed researchers to compile new datasets with improved detail and 
geospatial accuracy. We draw on the National Land Cover Database (NLCD) for 
2001–2016, a valuable resource for US land cover, as the reference dataset for this 
validation exercise. The NLCD is a collection of datasets created by the United 
States Geological Survey (USGS) that provides information on US land cover at a 
resolution of 30 meter. The maps are created by classifying USGS/NASA Landsat 
satellite imagery into different land cover categories. Here, we take cropland area 
from class #82 “Cultivated Crops,” which includes annual crops and perennial 
woody crops. We aggregate these data to the SIMPLE-G model spatial resolution 
(5 arcmin) and then to the US county level, the level at which key USDA census data
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Fig. 9.6 Steps in the validation of the SIMPLE-G-US-Allcrops model, 2001–2002 to 2016–2017 
When deployed in SIMPLE-G-US, the socioeconomic drivers of cropland change (lefthand col-
umn) result in gridded and regional outcomes (center column). For model validation, we compare 
simulated cropland area in 2016–2017 to observed area in 2016 (righthand column) 

Fig. 9.7 Share of cropland in total grid cell area calculated from the National Land Cover 
Database, 2016



Global and Local Drivers of Land-Use Change from 2001–2002 to 2016–2017 -

are reported. Fig. 9.7 illustrates the cropland share in total grid cell area calculated 
based on NLCD for the year 2016.
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Historical validation is complicated when multiple biophysical and socioeconomic 
drivers interact at multiple scales. Hydroclimatic, agricultural, and economic sys-
tems are interconnected, and it would be impossible to factor in all the drivers of 
change in these systems. However, we find that including the most significant drivers 
in a well-structured model can give us a good representation of reality. The first step 
is the identification of these critical drivers. During the study period, four major 
changes are observed. First, population and income increased. We track these 
changes at the regional level. These increases lead to more demand for food and 
more demand for agricultural inputs, along with demand for land and water usage. 
Second, the United States mandated a sharp increase in ethanol production over this 
period, causing an increase in the production of corn. Third, enrollment in Conser-
vation Reserve Programs declined significantly, such that more land became avail-
able for reversion to cropland. In addition, there has been a change in the rate of 
fallow/idle cropland, with significant implications for cropland supply curves. 
Finally, growth in agricultural productivity continued to be a dominant factor 
contributing to an increase in production in the United States (Clancy et al. 2016; 
Wang et al. 2020; Fuglie et al. 2022). We consider these drivers in the historical 
validation exercise. The drivers of the model are obtained from the USDA Census of 
Agriculture and FAO annual statistics, described below. The supply-side economic 
drivers are changes in county-level Hicks-neutral agricultural productivity for irri-
gated and rainfed crop production and county-level changes in the economic supply 
of cropland. The demand-side economic drivers are county-level changes in crop 
demand for biofuels and changes in global population and income. 

Demand Drivers: Regional Population and Income The population and per 
capita income in 2001–2002 and 2016–2017 are obtained from the World Bank 
for each country and then aggregated to 16 SIMPLE regions (see Table 9.1). In this 
period, global population increased by 19.8% while per capita income increased by 
around 57.7%. 

Demand Drivers: Crop Demand for Biofuels The biofuel boom has had impor-
tant implications for corn-producing regions. However, the current SIMPLE-G 
model includes an aggregated measure of all crops produced. To accurately model 
the biofuel boom, we incorporate the increase in crop demand for biofuel for corn-
producing subregions according to their share of corn in total crop production. For 
each county, the increase in demand is calculated using the following equation: 

bj = θcorn,jbr, ð9:1Þ 

where bj is the percentage change in the demand for all crops produced in county j, 
θcorn, j is the share of corn in county j’s crop output, and br is the regional percentage



change in corn demand due to biofuel demand observed in the 2002–2017 period 
reported by the USDA (Chen et al. 2011). 
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Table 9.1 Global drivers of land-use change, 2002–2017 

Population Income 

2002 2017 
Growth 
(%) 2002 2017 

Growth 
(%) 

Eastern Europe 284,796 282,095 -0.9 4,678 7,842 66.0 

North Africa 148,197 191,427 29.2 3,103 3,647 51.8 

Sub Saharan Africa 648,302 985,597 52.0 929 1,378 125.5 

South America 179,870 213,451 18.7 6,379 8,942 66.3 

Australia, 
New Zealand 

23,365 29,287 25.3 42,100 51,418 53.1 

Europe 472,201 498,457 5.6 31,031 36,235 23.3 

South Asia 1,419,749 1,755,775 23.7 832 1,778 164.2 

Central America 354,091 420,080 18.6 6,958 8,400 43.2 

South Africa 53,958 66,098 22.5 4,462 5,593 53.5 

Southeast Asia 542,834 652,564 20.2 2,042 3,689 117.2 

Canada 31,178 36,732 17.8 39,117 44,109 32.8 

United States 287,279 325,085 13.2 49,184 58,330 34.2 

China 1,336,765 1,452,625 8.7 2,600 8,901 272.0 

Middle East 243,072 329,399 35.5 7,390 10,566 93.7 

Japan, Korea 199,232 204,029 2.4 24,384 29,772 25.0 

Central Asia 66,504 92,197 38.6 933 1,988 195.4 

World 6,293,395 7,536,915 19.8 7,899 10,405 57.7 

Supply Drivers: Economic Supply of Cropland The cropland supply curve may 
shift with changes in the regulatory environment (e.g., conservation policy) or the 
relative return to alternative land use (e.g., pastureland rents decline). Here, the 
supply shifters (called “slack variables” in our model) are calculated based on 
changes in the average share of harvested cropland to total cropland (i.e., harvest 
rate) for each location: 

Hg =ΨgLg 

hg =ψg þ lg, ð9:2Þ 

where H is the harvested area,Ψ is the harvest rate, and L is the cropland area defined 
for each grid cell g. Percentage changes are shown with lowercase letters. These data 
are taken from the USDA Census of Agriculture at the county level. Total cropland 
area includes harvested cropland, pastured cropland, idle cropland, and 
fallowed land. 

Supply Drivers: Hicks-Neutral Agricultural Productivity TFP growth has been 
the major driver of US crop production in recent decades (Wang et al. 2020). Here, 
the productivity variables are represented by capital letter A (lowercase letter a for



the percentage change). Hicks-neutral agricultural productivity is an economic term 
reflecting an increase in crop production using the same levels of land and nonland 
inputs. If we show the production volume by Q and the composite inputs by X, the 
percentage change in TFP can be shown as follows: 
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a= q- x: ð9:3Þ 

Assuming no change in the production technology (input mixes), TFP growth can 
be approximated by changes in average yields. We estimate the changes in average 
yields using the following relationship: 

V = L:Y:P 

v= lþ yþ p 

y= v- l- p, 

ð9:4Þ 

where V is the value of crop sales; L is the cropland harvested area; Y is the average 
corn-equivalent yield; and P is the average crop price. For the validation exercise, 
P is calculated based on the average crop price index from the FAO for Farm 
Resource Regions. We obtain V and L from the USDA Census of Agriculture for 
2002 and 2017 at the county level. Then, y is calculated for all counties using 
Eq. 9.4. Uniform values for productivity growth are assigned to all grid cells within 
a county. 

Supply Drivers: Economic Supply of Water and Crop Water Demand Crop 
production is sensitive to water availability. Thus, changes in water conditions can 
affect the extent of cropland. In SIMPLE-G, the irrigation water supply curve may 
shift with changes in weather conditions (e.g., lower surface water availability) and 
changes in irrigation costs and expenditures (e.g., groundwater pumping costs). 
Ideally, we would calculate the shift in surface water supply for each grid cell. 
While the USGS reports the water conditions for each 5-year interval, it is not 
possible to decompose the demand drivers and supply drivers of changes in water 
withdrawal from those reports. As no other observational dataset is available, data 
collection can rely on outputs of a hydrologic model (e.g., the Water Balance 
Model). An additional complication is that measuring changes in groundwater 
supply requires converting changes in the groundwater table to equivalent changes 
in the supply shifter at each 5 arcmin grid cell in SIMPLE-G. However, as running a 
hydrology model requires multidisciplinary collaborations, we validate the model 
while excluding the supply shifters related to water. This may lead to less accurate 
cropland projections in highly irrigated areas where significant changes in water 
conditions have been observed (e.g., 2012 and 2015 drought and heat stress).
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4.2 Agreement Between Observation (Satellite) 
and Simulation (SIMPLE-G) 

At the national level, SIMPLE-G projects 128.68 million ha of cropland in the 
continental United States for 2016–2017. According to the NLCD, this number 
was actually 129.30 million ha for 2016. But how is this area distributed? For that, 
we focus on observations and simulation outcomes at the administrative units given 
by counties and states within the continental United States as well as the USDA 
Farm Resource Regions. 

Agreement at the County Level Figure 9.8 illustrates projected cropland area 
(SIMPLE-G) and reference cropland area (NLCD) for 2016–2017 by county. Over-
all, the projected area is close to the reference data (R = 0.98). 

Agreement at the State Level Figure 9.9 illustrates the cropland area projected by 
SIMPLE-G versus NLCD cropland area for major farming states around 2016–2017. 
Overall, SIMPLE-G can simulate total cropland area with only minor differences. 
However, in the case of Montana the difference is noticeable. Further investigation is 
required to explore the possible causes of this discrepancy. 

Agreement at Farm Resource Regions Figure 9.10 illustrates the cropland area 
projected by SIMPLE-G versus NLCD cropland area for USDA Farm Resource 
Regions around 2016–2017. Visual inspection indicates that SIMPLE-G accurately 
simulates the total cropland area. 

Fig. 9.8 Observed and simulated cropland area in the United States in 2016–2017 based external 
drivers, 2001–2002 to 2016–2017
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Fig. 9.9 Observed and simulated cropland area by major farming states, 2016–2017 

Fig. 9.10 Observed and simulated cropland area by USDA Farm Resource Regions in 2016–2017 

To evaluate the significance of different drivers of cropland changes, Fig. 9.11 
illustrates the role of supply (i.e., productivity and land supply) and demand drivers 
(i.e., global population, global income, local biofuels) by USDA Farm Resource 
Region. The results show that the supply and demand drivers are working in 
opposite directions in the Fruitful Rim and Basin and Range regions. This means 
that the final net change is sensitive to the magnitude of these drivers. 

Kolmogorov–Smirnov Test The Kolmogorov–Smirnov test is a nonparametric 
test used to compare two continuous distributions. It is calculated as the maximum



absolute difference between the cumulative distribution function of the reference 
distribution and the cumulative distribution function of a sample, estimated param-
eters, or simulated output: 
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Fig. 9.11 Supply and demand drivers of change in cropland area by USDA Farm Resource 
Regions, 2016–2017 

D= max
x 

FSMPL xð Þ-FNLCD xð Þj j: ð9:5Þ 

Figure 9.12 illustrates the cumulative distributions of cropland changes in the 
NLCD (reference) and SIMPLE-G. Overall, the distributions of changes are in 
agreement. 

4.3 Discussion: Causes of Disagreement 

Because the underlying human decisions that drive local changes in land use are 
rarely deterministic, these results can never be expected to be perfect when compared 
to empirical data. Additionally, many land-use changes are not the result of one 
simple process but rather a combination of biophysical and socioeconomic drivers 
that are mutually influential. Here, we review some of the most important 
confounding factors. 

Government Policies Capturing changes in agricultural-related policies in the 
model can potentially improve the agreement between SIMPLE-G projections and 
NLCD data. Overall, government policies can introduce a significant amount of 
disagreement into coupled economic and environmental models, making it difficult 
to predict future outcomes. Local and national policies can change farmers’



incentives and their decisions on the extent and intensity of farming. For example, 
policies that promote wetlands and improve water quality may increase the oppor-
tunity costs of cropland use and may increase the application of fertilizer on 
cropland, which will lead to changes in production patterns and application rates. 
Capturing these changes makes it difficult to accurately predict local conditions. This 
is important as some of these policies may have a significant local impact on 
economic and environmental outcomes and thus are necessary to be included in 
validation. In addition, the decision environment or policies can change over time. 
Farmers account for uncertainty about the future direction of policies in their land 
and water use decisions. However, government policies can be complex and difficult 
to implement. For example, many of the Conservation Reserve Programs (CRP) 
have multiple components and complicated details that may require different 
approaches for each location and program. Overall, acreage enrolled in CRPs 
declined from around 33 million acres in 2002 to around 24 million acres in 2017. 
Another example of policies with implications for land use is the Sustainable 
Groundwater Management Act, which requires local agencies to “form groundwater 
sustainability agencies (GSAs) for the high and medium priority basins.” Prior 
expectations about such a policy might have implications for farmers’ decisions 
about irrigation even before the act is passed. 
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Fig. 9.12 Cumulative distribution of change in cropland (ha) by grid cell, 
2001–2002 to 2016–2017 

Local Water Conditions We suspect that a major cause of disagreement between 
SIMPLE-G projections and NLCD data is related to changes in weather and water 
conditions between 2002 and 2017. One major determinant of the extent of irrigated 
cropland is hydroclimatic conditions. Higher temperatures increase irrigation 
requirements, and lower precipitation may reduce the availability of water resources. 
While SIMPLE-G does not include a hydrological model, it does contain an



economic model for long-run economic demand and supply for water. Any changes 
to hydroclimatic conditions should be translated to economic demand and supply 
before entering the model as input. Obtaining gridded information on changes in 
water availability and water requirements is computationally expensive but can be 
done in the future with improved availability of these data. 
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Unobserved Local, Regional, and Global Drivers Many other factors related to 
agriculture can be sources of disagreement between SIMPLE-G and NLCD. These 
include, for example, the US–China trade war, which had significant implications for 
farmers in 2017 (Marchant and Wang 2018) and can be a negative demand driver for 
soy-producing grid cells. Additionally, the increase in energy prices observed in 
2007–2008 led to increases in fertilizer prices and reductions in demand (Beckman 
and Riche 2015). This increase was a supply-side driver that affected production 
expenses. The grid cells with high-cost shares of commercial fertilizer will be more 
affected than other grid cells. Finally, the increasing trend in nonfarm investment in 
farmland has caused increases in land values and cropland rental rates (Burns et al. 
2018). Overall, it is important to note that numerous external factors like trade wars, 
energy prices, and farmland investment create discrepancies between SIMPLE-G 
and NLCD’s agricultural predictions. While it is impossible to consider all the 
changes, users need to consider the most important drivers. 

Remote Sensing Accuracy While the overall accuracy of the NLCD 2019 data 
product is relatively high (90.3% ± 0.7%), the user accuracy and producer accuracy 
for forest loss and grass gain were > 70% and generally <50% for all other change 
themes (Wickham et al. 2021, 2023a, b), which means that we may be comparing 
model results to inaccurate observations. Therefore, caution should be exercised 
when directly comparing our model results to these observations. While this high-
lights the challenges of comparing model outputs to imperfect observations, it also 
underlines the importance of ongoing efforts to improve land cover change data 
collection and analysis methods. 

5 Summary 

Understanding the connections between food, trade, agriculture, land use, and water 
resources requires reliable quantitative insights. Gridded quantitative economic 
models can provide better insights into these relationships. However, validating 
these models is challenging because of the complex interactions, unprecedented 
changes, and uncertainties in human decisions. This chapter is about validating such 
gridded economic models by comparing their predictions to real-world data. It 
employs SIMPLE-G, a new economic model that can analyze land-use change, 
water management, and agricultural production. The goal is to demonstrate the 
potential of gridded economic models for understanding food systems, land use, 
and water management in sustainable development frameworks.



The findings and conclusions presented in this chapter are those of the authors and should not be
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In this chapter, we draw on methods from different disciplines to validate the 
SIMPLE-G model. We first perform benchmark replication or calibration by com-
paring the results of the model to a set of observed data to ensure that the model can 
replicate a base reference condition. We then use backcasting to employ the model to 
make predictions about observed past events and compare them to actual observed 
outcomes from independent data sources not used in the calibration process. This 
helps ensure that the structural processes that can explain changes in the system are 
modeled correctly. We also call to use sensitivity analysis to vary the model’s 
assumptions, parameters, and drivers to investigate how the predictions 
change (Haqiqi et al. 2023). This helps identify the assumptions and parameters of 
the model that are most important in determining outcomes and ensures the robust-
ness of the model findings. Finally, we use uncertainty quantification and character-
ization to uncover sources of uncertainty in the results and reveal their implications 
for the major conclusions of each study. This approach to model validation can be 
applied to other geospatial economic models and can help uncover sources of 
uncertainty in the results and reveal their implications for the major conclusions of 
each study. 
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Chapter 10 
The R&D Cost of Climate Mitigation 
in Agriculture 

Keith Fuglie, Srabashi Ray, Uris Lantz C. Baldos, and Thomas W. Hertel 

1 Introduction 

According to the International Panel on Climate Change (IPCC 2014), agriculture is 
responsible for about one-quarter of total global emissions of greenhouse gases 
(GHGs). According to FAOSTAT (FAO 2020), agriculture accounted for 7.21 Gt 
CO2e of emissions at the farmgate (i.e., from ongoing production and energy use) 
and another 3.50 Gt CO2e in net emissions from land-use changes in 2019.1 

Supply-side approaches for reducing agricultural emissions include investing in 
emissions-saving technological change and protecting carbon-rich natural lands 
from conversion. While technological and productivity improvements can reduce 
emissions intensity (GHG per unit of output) and save land overall, it could also lead 
to increased land conversion in some areas through competitiveness effects (Villoria 
2019). If these local areas held large carbon sinks, then net emissions from land-use 
conversion could remain large even if the amount of agricultural land held globally

This chapter is a slightly revised version of a paper originally published as Fuglie, Keith, Srabashi 
Ray, Uris Lantz C Baldos, and Thomas W. Hertel. 2022. The R&D cost of climate mitigation in 
agriculture. Applied Economic Perspectives and Policy 44: 1955–1974. https://doi.org/10.1002/ 
aepp.13245. 

Data availability statement: The files needed to replicate this application are available at https://gtap. 
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1 1 Gt CO2e = 109 or one billion metric tons of CO2 equivalents (CO2e). 
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remained unchanged or declined. Environmental policies can target and protect 
carbon-rich areas from conversion. However, the drawbacks of these policies 
include cost (assuming that landowners are compensated for forgone income from 
other land uses), lack of permanence, higher food prices, and possibly worsening 
global food insecurity (Baquedano et al. 2022).

136 K. Fuglie et al.

This study uses a global economic model of the agri-food system (the Simplified 
International Model of agricultural Prices, Land use and the Environment, or 
SIMPLE) to compare outcomes from productivity policies in the form of higher 
agricultural research and development (R&D) spending and environmental policies 
that restrict agricultural land supply in the carbon-rich land most at risk to land-use 
change. Lobell et al. (2013) use SIMPLE model simulations to conclude that an 
additional US$225 billion in agricultural R&D might save 15 Gt CO2e from avoided 
land-use change by 2050. However, they used a simplified framework to link R&D 
to productivity growth and did not include the effects of agricultural productivity 
growth on farmgate emissions. Our model linking R&D spending to productivity 
growth also takes into account time lags between R&D spending and the adoption of 
new technology by farmers, variation in the marginal response of productivity to 
R&D spending in different regions of the world, and possibilities for international 
technology spillovers, as informed by empirical studies (Fuglie 2018). This frame-
work has been used to explore the R&D costs of adapting agriculture to climate 
change (Baldos et al. 2020) and potential gains from liberalizing trade in agricultural 
commodities and technology to improve global food security (Hertel et al. 2020). 

For our policy simulations, the outcomes of interest are changes in global 
agricultural GHG emissions, land use, agricultural production, food prices, and the 
prevalence of undernutrition relative to policy cost. Simulations of the world agri-
cultural economy over 2017–2050 are run for a set of policy scenarios involving 
R&D spending and land-use restrictions that compensate landowners for forgone 
income from avoided land-use change. We consider scenarios that target actions in 
less developed countries as well as some that include developed countries. In 
particular, we examine how more stringent environmental restrictions on agriculture 
envisioned by the European Union (EU) Green Deal could affect global outcomes 
and how unintended outcomes might be offset through accelerated R&D spending 
by EU countries.2 We find that more R&D spending to accelerate productivity 
growth reduces GHG emissions from land-use change less effectively than targeted 
environmental policies. However, accelerated productivity growth also reduces the 
cost of environmental policies (by effectively making land less scarce and therefore 
compensation cheaper). Moreover, higher levels of productivity permanently lower 
farmgate GHG emission intensity and, by lowering global food prices, generally 
improve global nutrition and food security. 

2 The European Green Deal lays out specific targets for fertilizer and pesticide reductions in EU 
agriculture by 2030. Beckman et al. (2020) examine the productivity and market impacts of these 
input reductions but do not quantify how much R&D spending might be needed to offset anticipated 
productivity losses.
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2 Agricultural Production, Productivity, and GHG 
Emissions Since 1990 

Before presenting our model formulation and results, we first describe global and 
regional patterns of agricultural GHG emissions and output growth over the past 
three decades. Two types of GHG emissions are associated with agriculture: 
(1) GHGs released when forests are cut down, peatlands drained, or grasslands 
plowed to make way for more agricultural land and (2) direct “farmgate” emissions 
from existing agricultural production (e.g., methane from livestock and rice paddies, 
nitrous oxide from fertilizer applications, carbon dioxide from decomposition or 
burning of crop residues, and use of fossil fuels to power machinery and to light, 
heat, and cool farm buildings). 

Figure 10.1 shows agricultural GHG emissions and outputs in 1990 and 2019 for 
major world regions. Sources of GHG emissions include land-use change and crop-
related and animal-related production (Fig. 10.1a and c). Agricultural output is 
composed of crops, animal products, and products from aquaculture (Fig. 10.1b 
and d). Between 1990 and 2019, agricultural emissions intensity (i.e., kilograms of 
emissions per dollar of output) fell in all regions, but the total amount of emissions 
increased in Sub-Saharan Africa (SSA), South Asia, Northeast Asia, and Central and 
West Asia and North Africa (CWANA), while decreasing in Latin America (LAC), 
Southeast Asia, Europe, and other developed countries (other DC). Globally, emis-
sions per unit of output (at constant prices) fell by nearly half between 1990 and 
2019, as total emissions remained about constant while world agricultural output 
increased by 92%. This decline in global agricultural emission intensity was due to 
slowing rates of deforestation, a slowing rate of growth in emission-intensive factor 
inputs, and possibly to general improvements in agricultural total factor productivity 
(TFP). In this chapter, agricultural TFP is defined as the ratio of aggregate agricul-
tural output to aggregate factor inputs (i.e., land, labor, capital, and intermediate 
inputs) as measured by the US Department of Agriculture Economic Research 
Service (USDA-ERS 2021). 

The level and intensity of emissions from agriculture vary widely across the 
global landscape. GHG emissions per unit of output are exceptionally high in 
regions where forestland is being converted to agriculture (Sub-Saharan Africa, 
Latin America, and Southeast Asia). In Latin America, agricultural GHG emissions 
declined by nearly 20% between 1990 and 2019 (due to a decline in the rate of land-
use change), even as output more than doubled. In Sub-Saharan Africa, both output 
and emissions increased, driven by an increase in land-use change. Remarkably, 
Northeast Asia was able to nearly triple agricultural output while increasing emis-
sions by only 9%. The dramatic fall in emissions intensity of agricultural output in 
Northeast Asia was accompanied by rapid growth in TFP and a relatively small share 
of emission-intensive inputs—such as ruminant livestock—in production. 

In developed country (DC) regions (i.e., Europe and other developed countries, 
including North America, Oceania, Japan, and South Korea), ruminant livestock 
account for the bulk of GHG emissions from agriculture. In Europe, there has been



Fig. 10.1 Agricultural greenhouse gas emissions and output in world regions, 1990 and 2019 
SSA, Sub-Saharan Africa; LAC, Latin America and Caribbean; CWANA, Central, West Asia, and 
North Africa; NE Asia, China, Mongolia, and North Korea; Europe includes all of Europe, the 
Russian Federation, and Kazakhstan; Other DC, North America, Oceania, Japan, and South Korea; 
and LUC GHG, GHG emissions from land-use change. Crop-related GHG emissions include 
emissions from rice cultivation, drained organic soils, fertilizer use, crop residue decomposition 
and the burning of crop residues; animal-related GHG emissions include emissions from enteric 
fermentation in ruminant livestock, manure, and savanna fires
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Fig. 10.1 (continued)



very little change in agricultural output over the past three decades, but productivity 
improvement has led to fewer inputs in the sector and less GHG emissions from 
agriculture. In other DC regions, total emissions (and total factor inputs) have 
remained roughly constant, while productivity improvement has expanded output. 
Thus, in both Europe and other developed countries, increases in TFP have led to 
reductions in GHG emissions intensity from agriculture.
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Table 10.1 Population and income growth assumptions (2017–2050) 

Region 
Population growth 
(% per year) 

Income growth 
(% per year) 

Eastern Europe -0.16 2.59 

North Africa 0.77 3.34 

Sub-Saharan Africa 1.83 4.00 

South America 0.59 2.47 

Brazil 0.36 2.11 

Australia + New Zealand 1.07 1.20 

European Union 0.19 1.40 

South Asia 0.82 4.01 

Central America + Caribbean 0.57 2.32 

South Africa 0.52 2.64 

Southeast Asia 0.52 3.71 

Canada 0.80 1.09 

United States 0.62 1.07 

China -0.25 3.79 

Middle East 1.13 2.05 

Japan + Korea -0.37 1.56 

Central Asia 0.40 4.23 

Growth is shown as compounded annual growth rates 
Source: Middle-of-the-road shared socioeconomic pathway (SSP 2) projections, SSP database v2.0 
(Riahi et al. 2017) 

The trends depicted in Fig. 10.1 strongly suggest that agricultural TFP growth has 
reduced agricultural GHG emission intensity. In existing agricultural areas, TFP 
growth reduces emissions intensity because fewer factor inputs are required to 
produce a given level of output. The relationship between agricultural TFP growth 
and land-use change is more nuanced. At the global level, TFP growth in agriculture 
almost certainly curtails land expansion into agriculture, but at the local level, it 
could increase incentives to expand agricultural land if local TFP growth improves 
trade competitiveness. This land expansion may arise in countries that achieve high 
TFP growth (relative to the global average) and are integrated into global markets so 
that their production costs fall relative to global commodity prices (Villoria 2019). 
But agricultural TFP is hardly the sole determinant of deforestation. National 
environmental policies also have a strong influence on land use, and recent policy 
changes in countries like Brazil and Indonesia may account for a significant part of 
those countries’ reductions in GHG emissions from land-use change over the last 
three decades. Finally, consumer demand for agricultural products exerts an



influence on emissions. The growing demand for meat and milk as populations and 
per capita incomes rise may shift the agricultural product mix toward more 
emissions-intensive ruminant livestock production. 
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3 Version of SIMPLE Used in This Application 

To simulate how R&D and environmental policies could influence future GHG 
emissions from agriculture, we employ a nongridded version of the SIMPLE 
model (recall Part III).3 The version of SIMPLE used here has a base year of 
2017. Population and income growth to 2050 are assumed to follow the middle-
of-the-road shared socioeconomic pathway (SSP 2) assumptions developed for 
integrated assessments of climate change (Riahi et al. 2017). Table 10.1 provides 
details on the population and income growth assumptions by global region used for 
this analysis. Based on estimated behavioral parameters, consumers in wealthy 
regions are assumed to be less responsive to price and income changes than those 
residing in low-income regions. Aggregated food commodities in SIMPLE include 
crops, livestock products, and processed foods, and consumption patterns evolve to 
reflect observed shifts in dietary preferences—moving away from crops toward 
livestock and processed foods as incomes rise. Population-wide caloric distributions 
(characterized by a lognormal distribution) in each region are calibrated to data from 
the Food and Agriculture Organization of the United Nations (FAO 2020) and shift 
over time based on prices and per capita incomes. The estimates of caloric con-
sumption levels for different segments of a population permit us to estimate the 
proportion of a region’s population that remains undernourished (i.e., minimum 
daily caloric intake of 1700–2000 kcal/day/person, depending on the age and gender 
structure of the population). 

In this study, we pay attention to the effects of climate mitigation policies on both 
food and environmental security. By tracking impacts on food prices, we are able to 
estimate changes in the adequacy of dietary energy consumption in a given region 
(Baldos and Hertel 2014). Per capita food consumption is converted to caloric 
consumption equivalents. By applying minimum daily dietary energy requirements, 
it is possible to calculate hunger in terms of the average shortfall in caloric con-
sumption among the undernourished population, given food prices and per capita 
income (FAO 2020). Lower food prices (resulting from greater R&D investment in 
response to climate change) reduce this shortfall and provide a food security benefit. 

Environmental benefits are measured as avoided cropland expansion and carbon 
stock losses associated with the conversion of natural lands into cropland and

3 Alternatively, a general equilibrium model could be used, which would give more explicit 
attention to how agricultural growth affects the rest of the economy. See Sands and Suttles 
(2022) for a recent example that explores questions similar to our own. A partial equilibrium 
approach is generally more tractable, however, and in this application gives similar results.



reduced emissions intensity from agricultural production. We rely on the global 
carbon stocks calculated by West et al. (2010) to quantify GHG emissions when 
cropland expands into natural lands. West et al. (2010) estimate these carbon stocks 
using spatially explicit datasets on potential vegetative and soil carbon. These are 
considered as one-time carbon emissions associated with bringing that land into crop 
production. The data on GHG emissions from agricultural production is based on the 
GTAP v.10 standard database (Aguiar et al. 2019), which reports CO2 emissions 
from fossil fuel combustion and non-CO2 GHG emissions, which rely on FAO 
(2020) for methane and nitrous oxide agricultural emissions (Chepeliev 2020).
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4 Experimental Design 

We turn now to the experimental design of this application of the SIMPLE model. 
This entails the construction of alternative future scenarios for R&D investments, the 
ensuing productivity growth, and policies aimed at achieving sustainability. 

4.1 Constructing R&D Scenarios for Projections of Future 
Productivity Growth 

R&D policy is modeled as the amount of government spending on agricultural R&D. 
This generates new technologies that, once adopted by farmers, raise agricultural 
TFP (Wang et al. 2022). As informed by past empirical studies (Fuglie 2018), the 
efficiency with which R&D generates TFP growth varies by region. In addition, 
R&D in developed countries may generate international technology spillovers— 
mostly to other developed countries but also to less developed countries—although 
this has historically been rather limited due to ecological and institutional con-
straints. The model also incorporates the effects of private sector R&D on TFP 
growth, although the growth rate in private R&D spending is held constant in the 
policy simulations. 

Spending on agricultural R&D is assumed to affect agricultural TFP. We incor-
porate a lag to account for technology development and diffusion, with effects 
persisting for several years before eventually depreciating through technological 
obsolescence (Alene 2010; Alston et al. 2011; Andersen and Song 2013; Jin and 
Huffman 2016). We use historical R&D spending and capital stock estimates from 
Fuglie (2018), who assembles data on public and private agricultural R&D expen-
ditures starting from the 1960s. We then project these spending pathways forward to 
2050 under various R&D policy scenarios. The historical patterns of agricultural 
R&D spending show a sustained shift in the global total from developed to less 
developed countries and from the public to the private sector (Pardey et al. 2016). 
Since 2000, public agricultural R&D spending in high-income countries as a whole



ð
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ð

has been essentially flat in real terms (Heisey and Fuglie 2018), while it has 
continued to grow in less developed countries (LDC). 
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In this framework, growth in a region’s agricultural TFP comes from technologies 
developed from four independent R&D sources (designated by the subscript s in 
Eqs. 10.1–10.3): public agricultural R&D by countries within a region, private 
R&D, R&D by the CGIAR (Consultative Group on International Agricultural 
Research), and technology spill-ins from public R&D done in other regions. Equa-
tions 10.1–10.3 summarize the key linkages under this framework: 

RDSTOCKs,t = 
L 

i= 0 

βi RDEXPENDs,t-ið Þ 10:1Þ 

βi = 
iþ 1ð Þδ= 1-δð Þλi 

L 
i= 0 i 1 δ= 1-δð Þλi 

, where 
L 

i= 0 

βi = 1 ð10:2Þ 

%ΔTFPt = 
S 

s= 1 

αs %ΔRDSTOCKs,tð Þ 10:3Þ 

Starting with Eq. 10.1, the stock of R&D from source s at time t (RDSTOCKs, t) is  
built up from the past L years of annual R&D expenditures (RDEXPENDs, t), where 
βi is the R&D lag weight at period i and total lag length L is the number of years in 
which R&D contributes to productivity until the R&D capital stock has fully 
depreciated. Equation 10.2 specifies a gamma distribution for the structure of the 
R&D lag weights (Alston et al. 2010). According to this distribution, R&D spending 
at time t initially contributes little to new R&D capital stock or TFP growth, but its 
effect builds over time as technology arising from that research is developed and 
disseminated to farmers. Eventually, the effects peak when technology is fully 
disseminated and then diminish due to technology obsolescence. We utilize separate 
R&D lag distributions for DC and LDC regions. For public R&D in developed 
countries, we impose an R&D lag structure of 50 years. The peak impacts of R&D 
spending on knowledge stocks (and productivity) occur after 26 years (δ, 
λ = (0.90, 0.70) in Eq. 10.2). For R&D by less developed countries, the private 
sector, and the CGIAR, a total lag length of 35 years is imposed, with peak effects 
occurring at year 10 (δ, λ = (0.80, 0.75) in Eq. 10.2). The longer lag structure for 
public R&D in developed countries reflects a greater focus on discovery R&D to 
push the science and technology frontier. The shorter lag length for less developed 
countries and private R&D reflects a greater emphasis on adaptive R&D, borrowing 
from global knowledge capital to close existing yield gaps. 

Once the R&D capital stock is constructed from historical and projected future 
R&D spending by each R&D source, we link these stocks to future growth in 
agricultural TFP growth via elasticities (αs) that describe the percentage rise in 
TFP given a 1% increase in R&D capital stock from source s (Eq. 10.3). The 
estimates of αs are based on Fuglie’s  (2018) review of more than 40 studies that 
empirically estimated αs from historical R&D spending and agricultural TFP growth



Region

in various countries and regions, mostly using data since 1980 (see Table 10.2). The 
estimates vary by R&D source and by region, and the values of these elasticities are 
generally lower for LDC regions than for DC regions. Public R&D in DC regions is 
also more likely to generate international technology spillovers, but mainly to other 
developed countries. 
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Table 10.2 Elasticities of agricultural research and development (R&D) capital stock, by region 
and technology provider (Fuglie 2018) 

Technology provider 

Total—R&D from 
all sources 

National 
public R&D 

Private 
R&D 

CGIAR 
R&D 

Spill-ins from 
DC regions 

Developed 
countries (DC) 

0.67 0.27 0.20 0.21 

Transition 
economies 

0.07 0.07 

Less developed countries 

Latin America 0.77 0.23 0.13 0.05 0.36 

East and South 
Asia 

0.30 0.21 0.01 0.08 

West Asia & 
North Africa 

0.19 0.15 0.04 

Sub-Saharan 
Africa 

0.17 0.13 0.04 

Elasticities give the percentage change in agricultural total factor productivity (TFP) resulting from 
a 1% change in R&D capital stock 

4.2 Environment Policy 

For this analysis, environmental policies are defined as land policies that restrict land 
areas rich in carbon stocks from agricultural use. The cost of this environmental 
policy is the amount of compensation paid to landowners to replace forgone income 
from agricultural uses of the land. We call this a land set-aside payment; it is 
equivalent to an annual rental payment for agricultural land. Environmental policy 
is modeled as a backward shift in the land supply function in regions where there is 
considerable potential for agriculture to expand into carbon-rich natural areas (i.e., 
forests and grasslands). These areas are identified from global grid cells of areas 
(1) in the top 80th percentile of carbon intensity (West et al. 2010) and (2) in which 
less than 70% of the area is currently in cropland. This scheme assures that land 
restriction policies are imposed in areas with high carbon sinks near agricultural 
frontiers. The policy removes a specified share of land from agricultural production 
in these areas.
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4.3 Policy Scenarios 

Table 10.3 describes a set of R&D and environmental policy scenarios for reducing 
GHG emissions from agriculture that form the basis for the SIMPLE model simu-
lations of the global agricultural economy from 2017 to 2050. Scenario S1 is the 
business-as-usual (BAU) case and assumes that public and private spending on 
agricultural R&D will continue at the same (real) annual growth rate over 
2017–2050 as it did in 2000–2017. For DC regions as a whole, the growth rate in 
public agricultural R&D was virtually zero (Heisey and Fuglie 2018), while the 
annual growth in public R&D spending in less developed countries averaged 4.6%, 
ranging from 2.1% in Sub-Saharan Africa to 9.1% in China (Fuglie 2018). The BAU 
case assumes that these rates will continue into the future except for in China, which 
is scaled down to 3% annual growth in R&D spending, since it is unlikely to 
continue at such a high rate indefinitely. In the BAU case, R&D spending in less 
developed countries would more than double over the simulation period and would 
increase as a percentage of gross agricultural output from 1.0% to 1.5%. R&D 
spending by the private sector is assumed to grow at 4% per year, and CGIAR 
spending is assumed to grow by 5.8% per year (reflecting their respective 
2000–2017 average growth rates). 

Scenario S2:ENV adds an environmental policy that places limits on agricultural 
land use in frontier areas where forests, peatlands, and grasslands provide carbon-
rich sinks. In this scenario, we target a 5% reduction in cropland in areas with high 
potential to serve as carbon sinks and provide compensation to landowners for 
forgone income from agricultural uses of this land. Compensation costs are esti-
mated from regional average agricultural land rental rates derived from SIMPLE. 
Most of the set-aside area lies on the agriculture–forest fringe in less developed 
countries but also includes some areas in developed countries, such as the south-
eastern United States (Fig. 10.2). 

Under scenarios S3, S4, and S5, growth in public agricultural R&D spending is 
accelerated beyond that in the BAU case for the 2017–2040 period. Due to lags 
between R&D spending and TFP growth, higher spending during 2017–2040 will 
begin to nudge TFP growth rates upward in the late 2020s, with effects persisting for 
several decades; however, R&D spending beyond 2040 will not have much effect on 
TFP growth before midcentury, so only R&D costs between 2017 and 2040 are 
considered. Under Scenario S3:LDC, agricultural R&D spending is assumed to grow 
uniformly in all LDC regions by 6.3% per year but is held at BAU levels (zero 
growth) in DC regions. At this aggressive rate of growth, R&D spending in less 
developed countries would grow from US$28.0 billion per year in 2020 to US$126.1 
billion per year by 2040 (or to 3.2% of the projected value of agricultural output, 
compared to 1.5% of the output in the BAU case). Scenario S4:ENV-LDC combines 
this R&D growth path with the environmental policy under S2:ENV, which protects 
carbon-rich land from conversion to cropland. Finally, under scenario S5:GLOBAL, 
R&D spending is accelerated in both LDC and DC regions but for the same global 
total as S3 and S4. For S5:GLOBAL, we assume that R&D spending in LDC regions
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grows by 5.4% per year, while R&D spending in DC regions grows by 3.1% per 
year. Public R&D as a percentage of agricultural output would reach 3.6% in 
developed countries and 2.8% in less developed countries by 2040. This scenario 
exploits the greater efficiency of R&D systems in developed countries to push out 
the science and technology frontier and produce international R&D spillovers. In all 
the scenarios, private R&D grows at a constant rate of 4.1% per year (the BAU rate), 
while under scenarios S2 through S5, CGIAR spending is assumed to grow at the 
same rate as LDC public R&D.
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Fig. 10.2 Areas targeted for cropland restrictions in the policy simulations (5% of global cropland 
area) 
Red grid cells lie on or above the 80th percentile in carbon intensity and presently have 70% or less 
area in cropland 

Finally, scenario S6:EU considers policies that seek to reduce the environmental 
footprint of agriculture in a developed region. Modeled loosely on the EU Green 
Deal and its agricultural Farm to Fork Strategy, scenario S6A:EU-ENV deintensifies 
agricultural production in the European Union by imposing a 20% reduction in the 
use of nonland inputs.4 Scenario S6B:EU-RD adds additional R&D spending to 
offset production losses from the input-use restriction. While we are not able to 
present the full cost of these policies (in Table 10.3 we show only R&D cost and not 
the environmental policy cost), scenario 6 is nonetheless useful for exploring the 
effects of regional policies on global environmental and food security outcomes. 

4 The EU Green Deal policy (European Commission 2020) lays out specific goals for agricultural 
input use reduction by 2030: reduce pesticide use by 50%, fertilizer use by 20%, sales of 
antimicrobials in farmed animals and aquaculture by 50%, and place 25% of total farmland under 
organic farming. Given that nonland inputs account for about 90% of total agricultural costs and 
material inputs about half of nonland costs (Ball et al. 2010; Fuglie 2015), it is reasonable to assume 
that these restrictions might mean a 20% overall reduction in nonland inputs. The EU Green Deal 
policy also commits €10 billion to research and innovation related to food, bioeconomy, natural 
resources, agriculture, fisheries, aquaculture, and environment. However, our policy scenarios are 
not directly comparable to the EU Green Deal since our scenarios envision agriculture supplying 
global demand in 2050 rather than 2030. Given R&D lags, our scenarios also give a more 
reasonable timeframe for modeling the effects of new R&D spending on productivity growth.
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5 Results 

Table 10.4 summarizes the implications of the policy scenarios for global agricul-
tural production and prices, GHG emissions from agriculture and land-use change, 
and the number of undernourished people. Under scenario S1:BAU, the projected 
growth in agricultural TFP over 2017–2050 is 42.3% (for an average annual rate of 
1.07%), and global agricultural output rises by 51.6%. Our finding that output will 
grow more than TFP indicates that the use of agricultural (land and nonland) inputs 
also increased. The increase in TFP causes average global crop prices to fall by an 
average of 21.6% (but regional price changes vary due to market segmentation, as 
seen in Fig. 10.3). Global cropland expands by 6%, or by about 95 million hectares. 
This land-use change causes a release of 31.8 Gt CO2e of terrestrial GHGs into the 
atmosphere. At the same time, farmgate GHG emissions rise to 8.3 Gt CO2e per 
year, an increase of nearly 3.0 Gt CO2e over 2017 farmgate emissions. Exogenous 
growth in per capita income and the fall in crop prices reduce the undernourished 
population by 146 million compared to 2017 levels. 

Under Scenario S2:ENV, imposing an environmental policy that protects carbon-
rich land from agricultural use reduces the increase in global cropland from 6% to 
just 1.4%. Net GHG emissions from land-use change are only 2.9 Gt CO2e (com-
pared to 31.8 Gt CO2e under S1:BAU). The increase in global cropland masks a 
larger shift in cropland from areas with high carbon sink potential to other parts of 
the world. Even though there is no extra gain in productivity compared with S1: 
BAU, the projected farmgate GHG emissions in 2050 are cut from 8.3 to 7.4 Gt 
CO2e. A major contributing factor to the reduction in farmgate emissions is the 
avoidance of crop production in former peatlands, which continue to emit GHG 
emissions from peat decomposition as they are farmed. Imposing land-use restric-
tions without adding productivity growth, however, exacerbates global food inse-
curity: There are four million more undernourished people compared with the S1: 
BAU scenario (i.e., the number of undernourished people falls by 142 million under 
S2:ENV compared to 146 million under S1:BAU). 

Increasing R&D spending in less developed countries (scenario S3:LDC) above 
BAU levels accelerates global growth in agricultural TFP and output while further 
lowering crop prices. Global cropland expansion falls by nearly half (from 6.0% to 
3.4%), but not by as much as the environmental policy under S2:ENV (1.6%). GHG 
emissions per unit of output are lower under S3:LDC than S2:ENV (see Fig. 10.4); 
however, total farmgate emissions are higher under S3:LDC than under S2:ENV 
because output is larger. Lower crop prices under S3:LDC have major benefits for 
global food security: The prevalence of undernutrition falls by 208 million people by 
2050. 

Scenario S4:ENV-LDC, which combines increased R&D spending with environ-
mental policies that protect carbon-rich land, has the largest impact among these 
scenarios at curtailing GHG emissions from agriculture while preserving gains in 
global food security. In fact, global cropland declines by 1.2% under this scenario. 
This represents a reduction of 18 million hectares of cropland from 2017 levels and
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113 million hectares less cropland in 2050 than under S1:BAU projections. The 
reduction in cropland (and the accompanying expansion of forest area) sequesters 
6.8 Gt CO2e. A further advantage of S4:ENV-LDC is that it lowers the cost of the 
environmental policy. Because faster productivity growth reduces commodity 
prices, which in turn reduces land rents, compensation to landowners for forgone 
earnings from agricultural land use also falls (from US$1113 billion to US$1041 
billion over the 2017–2050 period, see Table 10.3). Under S4:ENV-LDC, farmgate 
emissions are also considerably lower compared with those under other scenarios 
due both to the rise in productivity of existing farmland and the prevention of 
agricultural expansion into environmentally sensitive peatlands, which continue to 
emit GHGs for decades following land-use change.
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Fig. 10.3 Effect of research and development and land policy scenarios on farmgate greenhouse 
gas emissions intensity (kg CO2e per constant 2017 USD) 
Results for S1:BAU, S2:ENV, S3:LDC, S4:ENV-LDC, and S5:GLOBAL are displayed left to right 
in the bar graphs 

Scenario S5:GLOBAL illustrates the efficiency gains that could be achieved 
under an R&D strategy that includes additional investments in both DC and LDC 
regions. Using the same global R&D spending as S3:LDC, this scenario demon-
strates that shifting some of this spending from less developed to developed
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Fig. 10.4 Change in (a) crop prices, (b) undernutrition, and (c) cropland use as a result of global 
policy scenarios: differences between 2017 and 2050, by region



countries achieves more rapid gains in global agricultural TFP and output. This 
further reduces food prices, GHG emissions, and undernutrition. Even without the 
environmental policy, global cropland expands by only 1.9%. The higher return on 
R&D in DC regions stems from the assumption, based on historical evidence, that 
these R&D systems generate more technological breakthroughs with potential for 
international spillovers.
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Figure 10.4 illustrates the regional implications of policy scenarios S1–S5 for 
crop prices, undernutrition, and cropland use. In all policy scenarios, crop prices and 
undernutrition are projected to decline between 2017 and 2050 except in Africa, 
especially sub-Saharan Africa (SSA). SSA is the region least integrated into global 
agricultural markets; as a result of slow agricultural productivity growth coupled 
with rapidly rising population, the model projects that food prices, cropland use, and 
the total number of undernourished people in this region will increase even as they 
fall in other parts of the world. In all regions, the policy scenarios that increase R&D 
spending (S3:LDC, S4:ENV-LDC, and S5:GLOBAL) have the largest impact on 
reducing crop prices and undernutrition, while the scenarios with environmental 
policies (S2:ENV and S4:ENV-LDC) have the largest impact on reducing cropland 
and therefore avoiding GHG emissions from land-use change. Not shown in 
Fig. 10.3 are impacts on developed countries. Under BAU productivity gains, 
cropland is projected to fall in Europe and rise in North America and Oceania. 
With accelerated R&D in developed countries, cropland is projected to decline in all 
DC regions except the United States, where cropland is projected to remain 
unchanged. 

The estimates of policy costs and GHG emissions in Tables 10.3 and 10.4 can be 
used to approximate the marginal cost of GHG abatement. Table 10.5 shows the 
estimated total costs of R&D and environmental policies incurred over the 33 years 
from 2017 to 2050, in constant 2017 (undiscounted) dollars, and total agricultural 
GHG emissions over the same period. Marginal abatement costs are found by 
comparing the differences in emissions and policy costs with those under the BAU 
scenario (S1). The ratio of the increase in policy cost to the reduction in emissions 
then gives an approximate marginal abatement cost in USD per metric ton of CO2e 
emissions averted. These estimates are approximate because they do not account for 
the time path of policy costs and environmental benefits but simply make a static 
comparison of total costs (in constant dollars) and emissions changes over 
2017–2050. They also ignore post-2050 benefits from productivity gains due to 
R&D spending in 2017–2040. The results suggest abatement costs of US$19–US 
$22 per ton of CO2e for policies S2:ENV, S3:LDC, and S4:ENV-LDC and a 
substantially lower abatement cost of US$14 per ton for S5:GLOBAL due to the 
efficiency gains from shifting some R&D spending from LDC to DC regions. By 
comparison, Lobell et al. (2013) estimate that using greater agricultural R&D 
spending to mitigate GHG emissions from land-use change would cost about US 
$15 per ton of CO2e. Our results consider not only emissions saving from avoided 
land conversion but also changes in farmgate emissions. We also use a more refined 
model of R&D spending in which the lag between investments and productivity 
realizations is taken into account. Nonetheless, our results are quite similar to those 
of Lobell et al. (2013).
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Table 10.6 Effects of regional European Union (EU) policy scenarios on agricultural productivity, 
cropland, and greenhouse gas (GHG) emissions 

Policy 
scenario 

Agricultural 
total factor 
productivity, 
2050 
(Index, 
2017 = 100) 

Change in 
cropland, 

Agricultural 
GHG emissions, 
2017–2050 
(million tons 

Accelerate public agricul-
tural R&D spending in both 
less developed and devel-
oped countries 

S5 plus EU imposes reduc-

EU 

164.6 

164.6 

Global 

164.6 

164.8 

EU 

(1.3) 

(1.3) 

Global 

1.9 

2.2 

EU 

15,544 

15,232 

Global 

245,703 

246,798 

S5: 
GLOBAL 

S6A:EU-
ENV tion of nonland agricultural 

inputs by 20% 

S6B:EU-
RD 

S6A plus additional increase 
in EU R&D spending 

195.5 171.1 (0.9) `0.9 14,938 239,280 

Finally, Table 10.6 reports the implications of policy scenarios that focus on 
developed countries. Here, we consider a policy imposed on EU countries that 
deintensifies the use of nonland inputs to reduce emissions and other environmental 
costs from agriculture. Using the productivity growth assumed under scenario S5: 
GLOBAL, scenario S6A:EU-ENV adds a mandate to reduce nonland inputs in EU 
agriculture by 20%. This reduces EU GHG emissions but also reduces output and 
raises global prices (see Table 10.4). More cropland enters agriculture in other parts 
of the world and total global GHG emissions increase. However, additional R&D 
spending by the European Union (scenario S6B:EU-RD) could offset these adverse 
global outcomes. This would raise EU agricultural production and keep more area in 
cropland in the European Union while reducing the growth in cropland area in the 
rest of the world. Higher R&D spending by the European Union would also raise 
agricultural productivity in other parts of the world due to international technology 
spillovers. 

6 Discussion 

This chapter has investigated the role of productivity investment policies in reducing 
GHG emissions from agriculture and compares these outcomes with those obtained 
through environmental policies that restrict agricultural land and input use. Using the 
SIMPLE partial equilibrium model of the global agri-food economy, we carried out a 
series of simulations of world agricultural supply and demand to 2050 that included 
various combinations of R&D spending and environmental restrictions on agricul-
ture in LDC and DC regions. Our baseline, or business-as-usual (BAU), scenario 
assumes that R&D spending patterns continue on their present trajectory and that



world population and income grow according to SSP 2 middle-of-the-road assump-
tions. Under the BAU scenario, global cropland increases by 6% (about 95 million 
hectares) from 2017 levels and agriculture releases a total of 272.5 Gt CO2e from 
land-use change and farmgate production. A simulation of an environmental policy 
that reduces agricultural cropland by 5% in carbon-rich areas reduces overall 
agricultural emissions by 29.7 Gt CO2e but causes food prices to rise and malnutri-
tion to increase. It is also costly: We estimate that compensation to landowners for 
forgone income will total US$1.11 trillion over 2017–2050 (and continue indefi-
nitely after that). A simulation with a productivity policy scenario that adds US$0.61 
trillion to R&D spending in LDC regions over 2017–2050 results in lower food 
prices and reduces the number of undernourished people worldwide but is only 
about 60% as effective as the environmental policy in reducing emissions. A 
simulation that combines these approaches cuts global agricultural emissions by 
46.7 Gt CO2e and preserves the reduction in undernutrition at a cost of US$1.65 
trillion. Higher productivity results in lower land rents (because output prices are 
lower) which reduce the cost of the environmental policy by about US$100 billion. 
All three policy options imply roughly the same marginal abatement cost of US$19– 
US$22 per ton of CO2e. 
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A further scenario considers a variation in productivity policy that shifts part of 
the US$0.61 trillion increase in R&D spending from LDC to DC regions. Because 
R&D systems in DC regions are assumed, based on historical evidence, to be more 
efficient at generating international technology spillovers, this scenario achieves 
more rapid gains in global agricultural productivity and reduces total GHG emis-
sions from agriculture by 27 Gt CO2e, for a unit abatement cost of US$14 per ton 
CO2e. This scenario also achieves a greater reduction in the size of the undernour-
ished population. A final scenario imposes more stringent environmental restrictions 
on developed countries—in this case, it targets a 20% reduction in the use of nonland 
inputs in EU agriculture (roughly what the EU Green Deal envisions). While this 
reduces GHG emissions in the European Union, it slightly raises agricultural emis-
sions worldwide because lower agricultural outputs in the European Union raise 
world prices and cause agriculture to expand in the rest of the world. However, an 
aggressive EU policy of R&D spending could offset those effects by further increas-
ing agricultural productivity not only in the European Union but also in other 
countries through international technology spillovers. 

It is important to note that none of the policy scenarios considered in this chapter 
resulted in an actual reduction in global GHG emissions from agriculture by 2050. 
Rather, they curbed the growth in emissions as agricultural output expanded to better 
nourish the growing world population. Another aspect of our modeling approach is 
that improvements in productivity are assumed to be factor neutral, meaning that 
they reduce the amount of all factor inputs (e.g., land, labor, capital) required to 
produce a unit of output in equal proportions. Because it unambiguously reduces unit 
costs of production, factor-neutral technical change is profitable for farmers and thus 
can be expected to face few hurdles to widespread adoption. A suggestion for future



work is to consider factor-biased technical change, wherein technologies are 
designed to save the production factors most closely associated with GHG emis-
sions. Factor-biased technologies that target emissions reductions may require fewer 
R&D expenditures than factor-neutral technologies for similar savings in farmgate 
emissions intensity. However, factor-biased technical change may increase the use 
of other inputs and may not be profitable for farmers to adopt without additional 
incentives. 
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Generally, it appears that productivity and environmental policies to curb GHG 
emissions from agriculture are likely to complement each other. As Stevenson et al. 
(2013) note, higher agricultural productivity by itself is likely to be too blunt an 
instrument for protecting environmentally sensitive land from conversion to crop-
land. However, environmental policies that protect such land from agricultural use 
may be difficult to monitor and enforce, lack permanence, and exacerbate hunger. 
Combining these policies may better achieve the dual societal goals of climate 
change mitigation and global food security. 
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Chapter 11 
Gridded Implications of Total Factor 
Productivity Growth 

Elizabeth A. Fraysse, Thomas W. Hertel, and Srabashi Ray 

This chapter introduces novel techniques for undertaking gridded analyses within 
the Simplified International Model of agricultural Prices, Land use, and the Envi-
ronment (SIMPLE)-G framework. It builds on the baseline experiment developed in 
Chap. 10, which projected the global economy from 2017 to 2050 using the 
nongridded SIMPLE model. In this chapter, we replace the single, national produc-
tion function in SIMPLE with a gridded representation of US agriculture, following 
the methodology laid out in Chaps. 3 and 5 and using SIMPLE-G1, a version of 
SIMPLE-G that does not distinguish between rainfed and irrigated agriculture. It 
also follows Chap. 10 in having only two inputs: land (natural resources) and 
nonland (human and produced) inputs. We begin by exploring the impacts of a 
marginal perturbation in US total factor productivity (TFP) growth, demonstrating 
that the model results mirror the results obtained by using the theoretical equations 
from Chap. 3. We then run the same global baseline scenario as in Chap. 10 and 
show that the equivalent gridded results can be obtained from a “minimodel,” which 
takes as its inputs the US crop price change and exogenous grid-level shocks (in this 
case, TFP). This minimodel is highly amenable to in-depth analysis, one grid cell at a 
time. The chapter concludes by demonstrating how to attribute local grid-cell out-
comes to global change drivers—including income, population, and technology—in 
non-US regions. 
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1 Introduction 

In Chap. 10, which utilized the (nongridded) SIMPLE, the authors analyzed the 
impacts of environmental policies at a regional level (i.e., groups of countries). This 
approach allowed them to evaluate how national and regional investments in agri-
cultural research and development (R&D) interact with environmental policies to 
achieve the dual goals of restricting harmful greenhouse gas emissions while 
minimizing adverse impacts on food affordability. The regional-scale SIMPLE 
model is well positioned for this analysis as it allows for complex regional interac-
tions via food markets and spillover effects from technological advances. However, 
using SIMPLE at the regional level lacks the nuances of geographic specificity in the 
policy impacts that are determined by local-level biophysical and socioeconomic 
factors. For example, the conservation policies implemented in the previous chapter 
aim to conserve terrestrial carbon and biodiversity, yet these features of the land-
scape vary widely within each SIMPLE region. This calls for analysis at a more 
granular scale. This chapter employs the simplest possible version of the SIMPLE-G 
model developed in Part III, called SIMPLE-G1. Furthermore, we introduce the 
SIMPLE-G “minimodel” approach to gridded analysis—previously discussed in 
Chap. 3—which will allow us to focus on specific grids of interest to understand 
the determinants of individual grid-cell-level outcomes. This level of economic 
analysis has been missing from the integrated assessment models that are currently 
used to evaluate regional and global-scale environmental and conservation policies. 

2 SIMPLE-G Version Employed 

To highlight the benefits of the minimodel approach, we build on Chap. 10 and 
replicate the economic growth and TFP shocks from that chapter, using the gridded 
SIMPLE-G1 model. As a prelude to the next few chapters, we focus on the United 
States as the gridded region of interest. Our goal is to demonstrate how we can use 
the minimodel approach to delve into grid-cell-level results, relating these outcomes 
back to key economic and biophysical parameters. 

As with the SIMPLE model utilized in the previous chapter, SIMPLE-G1 is based 
on two aggregated inputs: natural resources, a category that includes land and water 
inputs, and human resources, which includes all manufactured inputs and human 
labor. This two-input approach allows us to leverage the foundational economic 
theory laid out in Chap. 3 to understand the model results. After running the TFP 
shocks in the SIMPLE-G1-US model, we explain the model results and how they 
relate to the foundational theory, data, and parameters in the SIMPLE-G1 model. 
This deeper understanding of the SIMPLE-G1-US model provides the reader with a 
strong basis for exploring the more complex versions of the SIMPLE-G model 
featured in subsequent applications.
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3 Experimental Design 

Many factors can induce shifts in TFP, but one of the biggest contributors to changes 
in TFP is an investment in agricultural R&D. As in Chap. 10, R&D-induced TFP 
growth is assumed to uniformly affect the productivity of all inputs in all grid cells 
and is represented in this model by the variable p _ AOCROP, which is the 
percentage change in a productivity index. With an increase in TFP 
(p _ AOCROPr > 0), the amount of each input required in region r to produce a 
given amount of output decreases. Therefore, to produce the same amount of food, 
producers need fewer human and resource inputs. However, if the region where TFP 
improvement occurs becomes more competitive, input use might increase due to an 
overall expansion in output level. In Chap. 2, we referred to this as Jevons’ paradox 
and discussed the conditions under which this phenomenon will arise. 

In this chapter, we consider three experiments. The first, which we use for 
illustrative purposes, simulates a 1% improvement in TFP in US grid cells. This 
marginal perturbation of the model allows us to use the analytical equations from 
Box 3.1 in Chap. 3 to explore in more depth the model theory, data, and parameters 
that drive the observed changes in both resource and human input use. In the second 
experiment, we implement the full set of population, income, TFP, and biofuel 
shocks, as implemented in the baseline R&D scenario in Chap. 10. Finally, we 
show how the exact same gridded outcomes can be obtained in a two-step simula-
tion. In this case, we shock only the TFP in the US grid cells. However, we 
accompany this TFP shock with a market price shock that carries all the necessary 
information about global demands and supplies. We show that the US market price is 
a “sufficient statistic” embodying the boundary conditions facing any given grid cell 
in the United States. In other words, it is a complete summary of market develop-
ments elsewhere in the global economy. Once producers in a grid cell know this 
price, they do not need any other information to make informed economic decisions 
about production practices on their farms. We leverage this knowledge to facilitate 
grid-by-grid analysis of the results. 

4 Selected Grids 

For the minimodel analysis, we selected 12 grids to represent the range of important 
SIMPLE-G1 parameters (i.e., the land supply elasticity, cost share of land, and land– 
nonland input substitution elasticity). Table 11.1 lists the values of these parameters, 
and Fig. 11.1 shows the grid cells’ location in the United States. In some grid cells— 
such as grid I04106 in the state of Washington (WA)—resource supply is largely 
unresponsive to price (i.e., it is inelastic); in others—such as grid I06314 in the state 
of Montana (MT)—resource supply is considerably more responsive to price. In 
contrast, the supply elasticity of human inputs is elastic and assigned a uniform 
value, given the lack of grid-cell-specific estimates of this parameter. The value of



the elasticity of substitution varies greatly across grid cells, implying that some grid 
cells have significant potential for boosting production at the intensive margin (i.e., 
substituting nonland for land inputs). For example, the elasticity of substitution is 
greater than 0.6 in Nevada (NV) and Idaho (ID) but much smaller in Indiana (IN) and 
Alabama (AL). A small value suggests that the application of more variable inputs 
(e.g., fertilizer) will not greatly increase yields. In Chap. 7, we discussed further 
details about how this parameter is calculated. Note also that the grid-cell-level share
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Table 11.1 SIMPLE parameters for 12 selected grid cells for in-depth analysis of model results 

Grid ID 
Land supply 
elasticity 

Nonland supply 
elasticity 

Land cost 
share 

Substitution 
elasticity 

WA: I04106 0.003 1.340 0.2906 1.00 

NV: I04259 0.003 1.340 0.1179 1.00 

ID: I06003 0.102 1.340 0.2424 0.86 

MT: I06314 0.255 1.340 0.0971 0.20 

OK: I24220 0.111 1.340 0.1300 1.00 

TX (1): 
I27726 

0.326 1.340 0.1243 1.00 

MN: I33495 0.004 1.340 0.2623 0.22 

TX (2): 
I36312 

0.350 1.340 0.2475 1.00 

WV: I51326 0.368 1.340 0.2542 0.18 

IN: I56025 0.129 1.340 0.2796 0.22 

AL: I58595 0.144 1.340 0.1090 0.18 

PA: I68537 0.300 1.340 0.0956 0.20 

Fig. 11.1 Map of selected grid cells used in this chapter



of land rents in total production costs is also quite variable, ranging between 10% 
and 30%. This will prove to be important in driving the results.
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5 Results 

For expository purposes, we begin with a simple 1% perturbation of TFP in the 
United States and examine how this plays out at the level of individual grid cells. 
This is a good opportunity to utilize the grid-cell-level theory developed in Chap. 3. 
We then analyze the impacts of the full baseline scenario from the preceding chapter. 
This approach allows us to explore the gridded impacts of this forward-looking 
baseline within the continental United States. Finally, we show how the minimodel 
can be used to replicate the results from the full model and explore them more 
deeply. 

5.1 SIMPLE-G1 with a 1% TFP Shock in the United States 

A 1% increase in TFP in the United States leads to a 1.3% increase in crop 
production with a 0.6% reduction in crop price. The improvement in TFP in the 
United States makes crops produced in the United States more competitive in the 
national and international markets and leads to an increase in overall production, 
which dominates the resource-conserving aspect of the TFP improvement. In con-
trast, the TFP boost in the United States is resource-conserving in the rest of the 
world (ROW): Production declines by 0.01–0.22% in the other 16 SIMPLE regions. 

We present the results of the 1% US TFP shock for the 12 focus grids in the 
United States in Table 11.2. Columns 2–4 show the impacts of the 1% TFP shock on 
input use and crop production. Columns 5–7 show the same results calculated using 
the theoretical equations developed in Box 3.1. (We have omitted the calculations of 
input price changes, which can be explored using Eqs. 3.7 and 3.8.) By comparing 
these two sets of columns in Table 11.2, we show that the simulation model results 
can be replicated (for a marginal perturbation of the model) with our analytical 
model using the relevant parameter values. Note that, for larger (nonmarginal) 
changes, the analytical formulae may yield different results as these formulae are 
based on a local linearization of the underlying nonlinear model. 

In the following, we reproduce the relevant equations from the foundational 
two-input analytical model presented in Box 3.1 to calculate the impacts of a 1% 
TFP change in the system. Recall that the change in TFP is captured with the 
a parameter, which refers to factor-neutral technical change in the production 
function. As the US crop price is also changing, we need to include the change in 
p as well. However, we omit the conservation policy shock (ϕR = 0) that was the 
focus of discussion in Chap. 3. 

Percentage change in input H use when ϕR = 0:
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Table 11.2 Simulated and calculated impacts of a 1% TFP shock to 12 selected grids in SIMPLE-
G1 

Grid ID 

Simulated results for 1% 
AOCROPg shock 

Calculated results for a = 1 using Eqs. 11.1, 11.2, 
and 11.5 

Nonland 
input 

(2) 

Land 
input 

(3) 

Output 

(4) 

Nonland input 
(Eq. 11.1) 

(5) 

Land input 
(Eq. 11.2) 

(6) 

Output 
(Eq. 11.5) 

(7)(1) 

WA: 0.37 0.002 1.27 0.38 0.002 1.27 
I04106 

NV: I04259 0.45 0.002 1.4 0.45 0.002 1.40 

ID: I06003 0.40 0.069 1.32 0.40 0.069 1.32 

MT: I06314 0.31 0.004 1.29 0.42 0.002 1.41 

OK: I24220 0.45 0.079 1.41 0.46 0.080 1.41 

TX (1): 
I27726 

0.47 0.203 1.44 0.48 0.205 1.44 

MN: 
I33495 

0.20 0.004 1.15 0.20 0.004 1.15 

TX (2): 
I36312 

0.44 0.199 1.38 0.44 0.200 1.38 

WV: 
I51326 

0.36 0.272 1.34 0.36 0.274 1.34 

IN: I56025 0.26 0.113 1.22 0.27 0.114 1.22 

AL: I58595 0.37 0.186 1.35 0.37 0.188 1.35 

PA: I68537 0.43 0.298 1.42 0.44 0.301 1.42 

qH = vR 
p* þ að Þ  
θR 

ΓH þ σ p
* þ að Þ  
θR 

ΓH ; ð11:1Þ 

Percentage change in input R use when ϕR = 0: 

qR = p* þ að Þ  vR 
θR 

ΓR; ð11:2Þ 

Percentage change in price of input H when ϕR = 0: 

pH = 
p* þ a 
θH 

1-ΓRð Þ; ð11:3Þ 

Percentage change in price of input R when ϕR = 0: 

pR = 
p* þ a 
θR 

ΓR; ð11:4Þ 

Percentage change in production when ϕR = 0:



j, k
þð Þ
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Table 11.3 Decomposition of total change in crop production as a percentage change 

Grid ID 

Total change in 
crop production 
Result of 
Eq. 11.5. 

Direct impact 
of TFP 
increase 
First element 
of Eq. 11.5 

Extensive margin 
response to price 
change 
Second element of 
Eq. 11.5 

Intensive margin 
response to price 
change 
Third element of 
Eq. 11.5 

(1) (2) (3) (4) (5) 

WA: 
I04106 

1.27 1 0.002 0.266 

NV: I04259 1.40 1 0.002 0.396 

ID: I06003 1.32 1 0.069 0.249 

MT: I06314 1.14 1 0.002 0.136 

OK: I24220 1.41 1 0.080 0.328 

TX (1): 
I27726 

1.44 1 0.205 0.238 

MN: 
I33495 

1.15 1 0.004 0.147 

TX (2): 
I36312 

1.38 1 0.200 0.182 

WV: 
I51326 

1.34 1 0.274 0.064 

IN: I56025 1.22 1 0.114 0.109 

AL: I58595 1.35 1 0.188 0.165 

PA: I68537 1.42 1 0.301 0.122 

q= aþ p* þ að Þ  vR 
θR 

ΓR þ p* þ að Þ σθH 
θR 

Γσ , ð11:5Þ 

where ΓH = θRvH denom, Γϕ = θR vHþσð ÞþθHσ 
denom , Γσ = θR vH - vRð Þ  

denom , and denom= 

θj vk σ , j, k =H,R for vR < vH. 

It is clear from Eqs. 11.1, 11.2, 11.3, 11.4, and 11.5 and the results in Table 11.3 
that SIMPLE-G results are firmly underpinned by economic theory. This is impor-
tant, as it allows for a thorough explanation of the model results, and the results can 
be related back to key parameters. In addition, the theory allows us to decompose the 
simulation results to understand the biophysical and socioeconomic grid-cell char-
acteristics that drive those results. For example, using Eq. 11.5, we can explore the 
elements that contribute to the total change in crop production due to a change in 
TFP. Table 11.3 decomposes the total change in crop production into the direct 
impact of a 1% increase in TFP (first element of Eq. 11.5) and the supply response to 
the ensuing price change, which comprises both an extensive margin (second 
element of Eq. 11.5) and an intensive margin (third element of Eq. 11.5) of the 
supply response. Column 4 of Table 11.4 shows that the extensive margin response



to the price change closely follows the magnitude of the price elasticity of resource 
supply reported in Table 11.1. In grids like that in Washington, where the supply 
elasticity is very small (0.003), the extensive margin response is also negligible 
(0.002). However, in West Virginia, the supply elasticity of resources is 0.37, 
leading to the largest extensive margin supply response in this table (0.27). Simi-
larly, in grids where the substitution elasticity between the two inputs is large (e.g., 
1), such as in Nevada, the intensive margin supply response is much larger. In 
Nevada, this parameter reaches its largest value in this table: 0.396. 
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Table 11.4 Minimodel analysis of grid-cell impacts of the baseline scenario, incorporating 
population, income, biofuels, and technology growth worldwide, 2017–2050 

Grid cells Baseline 

Minimodel 

Total Market price Own-TFP 

(1) (2) (3) (4) (5) 

Panel A. Cropland change by grid cell (QLAND) 

WA: I04106 0.08 0.08 -0.08 0.17 

NV: I04259 0.10 0.10 -0.10 0.20 

ID: I06003 2.98 2.99 -2.91 5.90 

MT: I06314 0.14 0.14 -0.13 0.27 

OK: I24220 3.45 3.45 -3.36 6.81 

TX (1): I27726 9.10 9.10 -8.92 18.02 

MN: I33495 0.17 0.17 -0.16 0.33 

TX (2): I36312 8.88 8.89 -8.71 17.59 

WV: I51326 12.12 12.12 -11.87 23.99 

IN: I56025 4.77 4.78 -4.64 9.41 

AL: I58595 7.92 7.92 -7.70 15.62 

PA: I68537 13.37 13.37 -13.11 26.48 

Panel B. Crop output by grid cell (QCROP) 

WA: I04106 55.42 55.43 -14.24 69.66 

NV: I04259 64.31 64.32 -21.94 86.26 

ID: I06003 58.72 58.73 -17.07 75.80 

MT: I06314 54.57 54.57 -13.15 67.72 

OK: I24220 64.95 64.96 -22.50 87.46 

TX (1): I27726 67.46 67.47 -24.69 92.16 

MN: I33495 47.00 47.00 -6.87 53.87 

TX (2): I36312 63.18 63.19 -20.95 84.14 

WV: I51326 59.63 59.63 -17.78 77.41 

IN: I56025 51.72 51.72 -10.93 62.65 

AL: I58595 59.80 59.81 -17.80 77.61 

PA: I68537 65.39 65.40 -22.77 88.17 

These impacts are conveyed to grid cells via the US market price for crops combined with the local 
change in technology. This approach allows for accurate prediction of local impacts as derived from 
the full model
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5.2 SIMPLE-G1 with a Complete Baseline 

In this section, we repeat the baseline experiment from Chap. 10, shocking not only 
the supply side (i.e., TFP in the United States and TFP in other world regions) but 
also the demand side, including population, income, and changes in demand for 
biofuels for 2017–2050. This experiment generates regional outcomes similar to 
those in Chap. 10, but it also allows us to explore the impacts of demand and supply 
side shocks in the ROW on individual grid cells across the United States. The United 
States is a major producer of food consumed across the world. This implies that both 
changes in the productivity of the agricultural sector and changes in food demand in 
the ROW have a substantial impact on the US agricultural sector. To better inves-
tigate this phenomenon, we replicate the set of shocks from Chap. 10 using the 
SIMPLE-G1 model while utilizing the subtotal feature of GEMPACK to further 
decompose the impacts of those shocks into ten groups of drivers: 

1. Change in population in ROW. 
2. Change in income in ROW. 
3. Change in biofuel demand in ROW. 
4. Change in crop TFP in ROW. 
5. Change in TFP in the crop-using sectors (livestock and processed foods) 

in ROW. 
6. Change in population in the United States. 
7. Change in income in the United States. 
8. Change in biofuel demand in the United States. 
9. Change in crop TFP in the United States. 

10. Change in TFP in the Crop-Using Sectors (Livestock and Processed Foods) in 
the United States 

We further show that all the information about these developments across the global 
economy is conveyed to US producers locally through changes in crop prices. 
Therefore, changes in grid-cell-level production can be replicated by simply 
implementing a US crop price shock along with any local-level TFP changes 
affecting individual producers. 

5.2.1 Impact of Baseline Scenario on US Crop Price 

Under this baseline scenario for 2017–2050, growth in global supplies outpaces 
growth in global demands, and the crop price declines globally and in the United 
States where it falls by 14.90%. However, TFP grows—hence unit costs fall. The 
cost decrease is greater than the fall in prices, so there are benefits to be gained at the 
farm level. A large share of these gains is captured by the inelastically supplied 
natural resource input, the rents of which increase by 55.44%. However, returns to 
human and manufactured inputs (the more elastically supplied input) increase by a 
relatively smaller amount, 9.87%.
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Fig. 11.2 Decomposition of changes in US crop price by ten sources of change, 2017–2050 

Figure 11.2 utilizes the subtotal feature of GEMPACK to decompose the total 
change in US food prices into the ten sources of global change drivers identified 
above. The main factor that leads to the reduction in crop prices in the United States 
is the technological improvements in crop productivity due to agricultural R&D 
investments in the United States and the ROW. Improved productivity in crop-using 
sectors (i.e., livestock and processed foods) also generates a small amount of 
downward pressure on prices. Increases in global population and income lead to 
increased demand and therefore put upward pressure on crop prices. Demand for 
crops from the US biofuel sector is also a major contributor to upward pressures on 
US crop prices. 

5.3 SIMPLE-G1-Mini 

The SIMPLE-G1-Mini model is designed to replicate individual grid-level results 
produced by a SIMPLE-G1 model considering only the equilibrium price changes 
from SIMPLE-G1. This is possible because the price changes carry all the relevant 
market information determined by the global model. The SIMPLE-G1-Mini model 
can be run on a few selected grids (e.g., the 12 grids discussed above). These grid 
cells are typically selected due to their (perhaps surprising) outcomes as well as their 
potential relevance to local policymakers. Of course, any local policy or technology



changes must also be communicated to the gridded model. Therefore, in the case of 
this SIMPLE-G1 experiment, each grid cell will be shocked by both the crop price 
(which is deemed exogenous to local producers) and the TFP improvement experi-
enced by local producers. 
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Column 2 in Table 11.4 (baseline) reports the gridded impacts from the baseline 
scenario, run with the full set of shocks to population, income, biofuels, and 
technology around the world in a model with thousands of grid cells. Columns 
3–5 report the results from the minimodel, which is run for individual grid cells by 
shocking the market price as well as grid-cell-level technology (own-TFP). Note that 
the total impact agrees with the baseline results to the first decimal point. We have 
successfully transferred global supply and demand information to the grid cells via 
the crop price signal. The impact of this change in market conditions is reported in 
column 4. If producers in the WA grid cell do not experience a TFP improvement 
over the 2017–2050 time horizon, they will reduce cropland (QLAND = - 0.08) 
and output (QCROP = - 14.24). However, this model assumes that producers 
experience the average rate of TFP growth in the entire US region. As a conse-
quence, their costs fall, and they end up expanding cropland cover as well as output. 
The remaining entries in this table report the market price and own-TFP impacts on 
cropland and output for the other 11 grid cells illustrated in Fig. 11.1. Note that the 
responses vary widely due to the widely varying grid-cell-level parameter values 
reported in Table 11.1. 

We see that the grid cell labeled TX (1) has the largest increase in crop produc-
tion, 67.46%, driven by the relatively high supply elasticity of land (0.326) and 
substitution elasticity (1) as shown by the parameters in Table 11.1. Both of these 
factors ensure that the producers in the grid cell can respond to the TFP shock with 
more flexibility. On the contrary, the grid cell labeled MN has a combination of 
parameters (small land supply elasticity and small elasticity of substitution between 
human and natural resource inputs) that limits producers’ ability to respond to the 
TFP shock; it therefore reports the smallest increase in crop production. 

The grid cell labeled PA shows the largest increase in cropland area, the result of a 
large increase in the price of land. The magnitude of this price increase is inversely 
proportional to the cost share of land (recall Eq. 11.4). The reason is that as unit costs 
fall due to the TFP shock, the associated benefits that are not passed forward to 
consumers in lower prices are passed backward to input suppliers, with the relatively 
inelastic input (land, in this case) garnering more of the gains. As the land resources 
currently account for only a small share of total costs (less than 10% in the case of the 
PA grid cell), the resulting increase in percentage returns must be very large. This 
increase in land returns operates on the land supply elasticity, which is also relatively 
large (0.3, see Table 11.1), resulting in an increase of more than 13% in cropland 
area. In short, each grid cell has its own story, even though they all face the same 
changes in national price and TFP. Their outcomes are varied, reflecting the interplay 
of cost shares, factor supply elasticities, and input substitution possibilities as seen in 
Eqs. 11.1, 11.2, 11.3, 11.4, and 11.5.
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5.4 A Global-Local-Global Analysis for Selected Grid Cells 

With this minimodel in hand, we can also quantify the impact of diverse global 
change drivers on local outcomes in individual grid cells. Figure 11.3 illustrates this 
global-to-local linkage in the case of crop output growth in the WA grid cell. 
Table 11.4 reports the growth in output (Grid Total) in the WA grid cell as 55.4%. 
How much of this is due to economic developments in the non-US, ROW regions? 
By combining the results in Fig. 11.2 with those in Table 11.4, we can calculate a full 
attribution of local output changes to the underlying global drivers. Figure 11.3 
reports these results. Crop productivity growth—both in the United States and in the 
ROW—depresses prices and discourages output in the WA grid cell. However, 
biofuel production, income, and population growth boost prices and hence output. 
The net impact of these market price effects on crop output is negative (Table 11.4). 
However, when combined with the own-TFP impacts, which lower producer costs, 
output in the WA grid cell is predicted to rise. 

These findings are obtained by combining results from Fig. 11.2 with those from 
Table 11.4.
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Market effects 
depressing output 

Own TFP Total Grid Output 

%
 

Total Price 
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Fig. 11.3 Decomposing the global and local drivers of crop output in grid WA
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6 Conclusions 

This chapter is key for those who wish to evaluate the critical drivers and processes 
in sustainability analyses using SIMPLE-G. The SIMPLE-G1 and minimodel are 
useful tools when a deeper analysis is required to understand—and explain— 
spatially heterogeneous results. As has been shown here, to understand what is 
behind a given set of results, it is essential to refer back to the underlying parameters 
and explore the connection to regional and global markets. 

The tools introduced in this chapter are also helpful for uncertainty analyses and 
robustness checks. It is worthwhile to conduct a systematic sensitivity analysis of 
model results with respect to the uncertainty in the underlying parameters and 
drivers. Building meaningful confidence intervals around the results is an important 
part of the scientific endeavor. 

The beauty of these SIMPLE-G tools is that they allow researchers to improve 
transparency and traceability of global economic analysis of food security and 
environmental sustainability while also drawing out the implications of these global 
developments for local outcomes. Exploring the links among global drivers, local 
stresses and responses, and feedback at the global level is a central theme of 
this book. 
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Chapter 12 
Local Groundwater Sustainability Policies 
and Global Spillovers 

Iman Haqiqi, Laura Bowling, Sadia Jame, Uris Lantz C. Baldos, Jing Liu, 
and Thomas W. Hertel 

1 Introduction 

The Simplified International Model of agricultural Prices, Land useLand use, and the 
Environment-Gridded version (SIMPLE-G) is a quantitative framework that allows 
for global-to-local-to-global (GLG) analysis of a broad range of environmental 
research topics. The philosophy of this multiscale, GLG approach is to evaluate 
the long-run implications of global changes for local environmental stresses and 
assess the implications of local responses for global conditions through global and 
regional agricultural markets. In this chapter, we focus on groundwater sustainability 
as an application of this GLG framework. First, we look at the local changes in water 
withdrawal caused by global drivers using a decomposition approach, which allows 
us to quantify the separate contribution of global economic changes to growth in 
irrigation water withdrawal in the United States. We look at population and income
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as demand-side drivers and growth in total factor productivity (TFP, the ratio of 
outputs to inputs) as a supply-side driver. Second, we quantify changes in crop 
production and agricultural water and land use around the world in response to local 
groundwater sustainability policies in the United States. This research highlights the 
trade-offs between economic production and sustainability as well as the unintended 
consequences of local sustainability policies, including the associated spillover 
effects. This multiscale framework can better inform local environmental policy by 
providing a holistic evaluation.
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1.1 Motivation 

Groundwater is a crucial resource for many communities worldwide, supplying 
water for drinking, irrigation, and industry. In recent decades, rapid economic 
growth has intensified the impacts of human systems on natural ecosystems, with 
degraded land and water resources creating a global crisis (Jury and Vaux Jr. 2007; 
Hanjra and Ejaz Qureshi 2010; Srinivasan et al. 2012; Famiglietti 2014). Rapid 
groundwater depletion is among the most challenging of these environmental prob-
lems (Changming et al. 2001; Qureshi et al. 2010; Karami et al. 2012; Konikow 
2013; Voss et al. 2013; Castle et al. 2014; Liesch and Ohmer 2016; Dalin et al. 2017; 
Nabavi 2018). The pressure on farmers to produce more output has led to 
unsustainable use of water resources in many locations (Seckler et al. 1999; Faunt 
2009; McGuire 2017; Reitz et al. 2017; Russo and Lall 2017; Rodell et al. 2018). 

Groundwater overexploitation can result in several challenges, including 
increased pumping costs because of declining groundwater levels. This can lead to 
a rise in costs for farmers, households, and businesses. Moreover, overexploitation 
can cause water quality degradation due to saltwater intrusion and other issues, 
which can increase the costs of treating water for drinking and other purposes. Land 
subsidence, which is another problem that can arise due to groundwater 
overexploitation, can cause damage to infrastructure and reduce property values 
and the availability of water for ecosystems, leading to a loss of ecosystem services 
(e.g., water filtration and flood control). In extreme cases, if groundwater wells 
become completely depleted, it may be necessary to explore options such as 
relocating individuals, farmers, and businesses or implementing water transfer 
initiatives. 

In addition, reductions in groundwater storage threaten many regions’ ability to 
meet future water needs (Cook et al. 2015). Groundwater demand is likely to be 
particularly strong in the coming decades, as irrigation becomes a more important 
element of agricultural adaptation in a warming climate (Perry et al. 2009; Schlenker 
and Roberts 2009; Nepal and Shrestha 2015; Pathak et al. 2017; Haqiqi 2018; Haqiqi 
et al. 2019, 2021).
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1.2 Other Studies 

Given the importance of future groundwater sustainability, a variety of different 
approaches have been employed to study the interactions between hydrological and 
human systems. The growing literature in sociohydrology involves using increas-
ingly complex models to address challenges involving water quality, groundwater 
depletion, flood risk, drought, and conflicting demands (Ertsen et al. 2014; Ghosh 
et al. 2014; Van Emmerik et al. 2014; Fernald et al. 2015; Blair and Buytaert 2016; 
Giuliani et al. 2016; Di Baldassarre et al. 2019). The literature on telecoupling and 
virtual water trade has also explored the connections between human systems and 
land–water systems (Dalin et al. 2012; Bruckner et al. 2015; Wichelns 2015; 
Chaudhary and Kastner 2016; Hertel 2018; D’Odorico et al. 2019). However, the 
significance of global drivers of local sustainability stresses (e.g., changes in 
groundwater withdrawals) has not previously been quantified in a multiscale, eco-
nomic equilibrium framework. 

1.3 SIMPLE-G Contribution: Spillovers 

Effective water sustainability policies require an understanding of the critical inter-
actions between environmental and human systems. Decisions and policies in the 
human system can affect the environment, but changes in the environment can also 
affect people and their decisions. Solutions and strategies ignoring these responses 
may fail. For example, improving irrigation efficiency can result in increased 
irrigation demand motivated by lower costs (Perry et al. 2017; Grafton and Wheeler 
2018; Perry 2019; Pérez-Blanco et al. 2020). Groundwater policies and changes in 
the groundwater table can have spillover effects, either positive or negative, and can 
impact a diverse group of stakeholders. It is crucial to consider the potential spillover 
effects of these policies and changes in the groundwater table when making deci-
sions related to groundwater resource management. 

While food security issues are typically studied at the global and country levels, 
resource sustainability stresses are usually felt at the local level (e.g., abandoned 
villages, dying wells, drying lakes and subbasins, and land subsidence). The over-
arching goal of this chapter is to measure how economic changes in one region can 
affect environmental sustainability in another region of the world as well as how the 
implementation of local sustainability policies can export environmental stresses to 
other regions. Such connections in the global food system can have important 
implications for global environmental justice as rising incomes in some regions 
support increasingly rich and specialized diets, resulting in significant environmental 
costs elsewhere (e.g., Harrison 2011; Marston et al. 2015). 

This study also contributes to the literature on international trade in virtual water 
and virtual land by quantifying the impacts of population changes on remote water



and land resources (Hoekstra and Mekonnen 2012; Hoekstra and Wiedmann 2014; 
Ramankutty et al. 2018). 
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The model of this study is built on previous economic studies with valuable 
insights on commodity trade (Armington 1969), food security (Hertel and Baldos 
2016), water and food (Liu et al. 2014), water and trade (Liu et al. 2017), land 
allocation (Ahmed et al. 2008), irrigation demand (Haqiqi and Hertel 2016), value of 
water (Haqiqi 2023), water rights (Jame and Bowling 2020), water stress (Roath 
2013), and groundwater (Befus et al. 2017). This study extends the previous 
modeling work of Baldos et al. (2020) by incorporating a new land allocation 
framework to improve the modeling of land-use changes at each location (Zhao 
et al. 2020). 

1.4 Limitations 

To focus on the decomposition of the impacts of global changes, we do not consider 
changes in water and heat stress due to climate change. We are aware that this 
simplification is likely to result in the underestimation of future water stress in many 
regions by midcentury. However, this simplification allows us to focus more sharply 
on the main messages of the study, namely, the importance of global–local–global 
linkages in the context of land and water sustainability. 

2 SIMPLE-G Version Employed for This Application 

In this application, we focus on the groundwater module of SIMPLE-G (Fig. 12.1) to  
analyze economic decisions about groundwater withdrawals for irrigated cropland 
and its responses to global and local changes. These withdrawals are defined as the 
amount of water extracted from groundwater resources; this amount is usually 
greater than crop groundwater consumption, with the difference recharging ground-
water or running off into streams. 

2.1 Determinants of Groundwater Withdrawal 

The variables affecting withdrawal decisions vary and include surface water avail-
ability and costs, groundwater availability and costs, irrigation extent, irrigation rent 
gaps, irrigation infrastructure (equipment and technology), crop prices, and crop 
production technology. When modeling groundwater withdrawals, hydrological 
models usually consider crop water requirements, irrigation extent, and irrigation 
efficiency while ignoring economic decisions.
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Fig. 12.1 Structure of crop production at each grid cell 
Shocks and policy variables are defined for surface water, groundwater, irrigation equipment, land, 
nitrogen fertilizer, and overall crop production 

In SIMPLE-G, both the economic and hydrologic components of water resources 
are considered. While hydroclimatic sources are exogenous drivers of the changes, 
the economic forces are endogenously modeled. In this framework, the availability 
and cost of surface water play determining roles, as farmers tend to withdraw less 
groundwater if surface water is readily available and less expensive. The cost of 
pumping groundwater is another factor influenced by the depth of the aquifer, the 
type of pumping equipment used, and energy costs. The extent of irrigation is 
endogenously determined in SIMPLE-G and affects the economic demand for 
water, while irrigation rent gaps and irrigation yield gaps can incentivize farmers 
to expand irrigated areas. In SIMPLE-G, using efficient irrigation equipment and 
technology can help reduce groundwater withdrawals. Crop prices and production 
technology are other variables that can impact groundwater withdrawals. Govern-
ment policies, climate change, population growth, and economic development can 
also affect groundwater withdrawals in the model. Groundwater management regu-
lations are one example of government policy that can influence groundwater



withdrawals; others include energy, agriculture, or trade policy. Climate change 
affects groundwater resources in various ways. It can result in changes in rainfall 
patterns that affect hydrological supply (i.e., availability), and changes in tempera-
ture will alter agronomic crop water demand, which can result in increased ground-
water withdrawals and decreased surface water availability. Population growth and 
economic development also increase demand for water resources through increases 
in food demand. 
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2.2 Decomposition 

The significance of these factors varies based on the specific circumstances of each 
region. Therefore, it is essential to consider all these factors when developing 
policies for sustainable groundwater resource management. A key feature of our 
analysis is decomposition, which we provide with respect to the exogenous drivers 
of sustainability stresses. We follow the numerical integration approach developed 
by Harrison et al. (2000) to decompose the contribution of each exogenous variable 
to changes in output variables. Exogenous variables include global population 
growth, economic developments, technological progress, weather, and policies. 

2.3 Land Allocation 

In this application, we incorporate the quantity-preserving land allocation frame-
work to improve the modeling of land-use changes at each location (Zhao et al. 
2020), as described in Model 4 (see Chap. 5). This framework is particularly 
appropriate because we expect to see cropland converted from irrigated to rainfed 
uses, and vice versa when demand for groundwater is altered. The new approach 
ensures that we preserve the physical area as opposed to the economic volume. 

2.4 Product Differentiation 

Additionally, we employ product differentiation or the subregional relocation mod-
ule to improve the modeling of changes in patterns of agricultural activity across grid 
cells and crop production zones defined by the USDA Farm Resource Regions 
(FRR), treating crop commodities from each FRR as differentiated commodities. 
This allows us to capture the tendency of crops to shift, first and foremost, within the 
same FRR (e.g., the Fruitful Rim).
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2.5 SIMPLE-G Database Version 

This application utilizes a comprehensive gridded dataset based on the reference 
year of 2010. To ensure consistency with SIMPLE-G, we aggregate all crops into 
one composite category by weighting crop outputs by relative prices. The resulting 
database contains detailed information regarding agricultural production and input 
costs for approximately 75,000 grid cells throughout the United States. This 
approach allows us to capture a greater level of detail regarding agricultural produc-
tion and input costs and account for regional and local variations. Compared to 
national- or state-level models, this gridded dataset provides a more accurate and 
comprehensive understanding of agricultural production and input cost distributions 
in the United States, which is essential for effective policy-making and resource 
allocation. 

3 Experimental Design 

Two experiments are considered here. First, we integrate relevant factors anticipated 
to shape the future of land and water use, such as evolving population dynamics, 
shifting income, and technical growth (Baldos and Hertel, 2013). Second, we 
introduce a specific policy intervention that serves as the focal point of our sustain-
ability analysis, allowing us to assess the impacts on agriculture. 

3.1 Global Change Scenarios 

Table 12.1 presents key elements of our global change scenario. In this scenario, we 
consider changes in population and income, as in Baldos and Hertel (2014), based on 
the business-as-usual shared socioeconomic pathway 2 (SSP2) from 2010 to 2050. 
Regarding productivity, we assume that the historical rates of productivity growth 
persist to midcentury (Fuglie 2012) and apply uniform cumulative TFP growth in the 
processed food sector. Here, TFP growth shows how much more production is 
possible using the same volume of inputs. 

The purpose of this exercise is not to provide comprehensive future projections 
but rather to disentangle the significance of global drivers of local stresses within a 
GLG framework. The change in income, population, and TFP provides a regionally 
heterogeneous pattern of demand and supply shocks. Given different values of 
behavioral parameters, the outcome of these shocks can be quite complicated. 
Thus, we perform a decomposition to evaluate the significance of each driver 
considering GLG linkages.
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Table 12.1 Projected percentage changes in population, income, and productivity, 2010–2050 

Region Population Income per capita Crop TFP Livestock TFP 

Eastern Europe -12.7 239.5 17.6 50.0 

North Africa 44.0 224.7 42.2 17.7 

Sub-Saharan Africa 139.4 401.0 17.9 17.7 

South America 31.1 176.3 132.8 157.0 

Australia 33.8 70.7 64.2 17.7 

Europe 0.0 66.3 78.6 17.7 

South Asia 40.8 640.6 83.3 96.0 

Central America 41.2 154.6 115.4 157.0 

South Africa 16.0 239.5 26.8 17.7 

Southeast Asia 32.1 363.6 47.0 157.0 

Canada 25.8 56.4 71.1 17.7 

United States 25.0 58.6 71.1 17.7 

China -6.3 606.7 121.7 157.0 

Middle East 65.2 102.6 41.5 17.7 

Japan + Korea -14.5 97.6 75.0 17.7 

Central Asia 52.3 394.2 25.2 50.0 

Productivity is measured by growth in TFP 
Sources: Percentage changes in population and income are obtained from Baldos and Hertel (2014) 
aggregated to 16 regions from country-level information based on SSP2 (O’Neill et al. 2014). The 
changes in productivity are calculated based on Fuglie (2012). The cumulative rate of productivity 
growth in the processed food sector is 42% worldwide 

3.2 Local Sustainability Scenarios 

In addition to the global-to-local analysis, we also evaluate the global impacts of a 
sustainable groundwater policy for the United States (i.e., the local-to-global link-
ages). Here, the sustainability policy is defined as restricting groundwater with-
drawals to the rate of groundwater recharge in unsustainable grid cells across the 
United States. The data on extraction and recharge rates used in this study are 
obtained from the US Geological Survey (Reitz et al. 2017). We first constructed a 
ratio of groundwater extraction to recharge at each location circa 2010. As the year 
2010 was a relatively wet year with abnormally high recharge rates, the 2010 ratio 
likely underestimates the long-run sustainability stress. Therefore, we use a 5-year 
average over 2007–2012 to calculate the ratio of groundwater extraction relative to 
local groundwater recharge by 5 arcmin grid cells circa 2010. We base the shocks to 
the groundwater supply module on this ratio (Haqiqi, 2023). 

The appropriate experimental design for any given study will benefit from 
multidisciplinary collaboration and discussions. To design a groundwater sustain-
ability policy, a multidisciplinary scientific collaboration mechanism should 
include—at minimum—economists, agronomists, and hydrologists. Economists 
can provide insights into the economic aspects and likely impacts of groundwater 
conservation policy, while hydrologists can offer insights into the required intensity 
of sustainability restrictions considering groundwater aquifers’ physical



characteristics, the hydrological impacts of changes in withdrawals, and the potential 
for recharge. Agronomists can assess the impact of restricting water availability 
throughout the growing season. Policymakers and scientists from other disciplines 
can provide additional insights into the applicability or acceptability of proposed 
conservation scenarios. 
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The goal of this application is to provide insights into the unintended conse-
quences of possible groundwater conservation policies. The SIMPLE-G framework 
can provide a more comprehensive and informed understanding of the spillover 
effects of local groundwater sustainability solutions. To construct a comprehensive 
scenario, it is necessary to engage with a wider range of stakeholders. This approach 
can help to ensure that the policy design process is more spatially inclusive and that 
the ensuing adverse impacts do not exceed the policy’s benefits. 

4 Results 

This section presents the findings of our investigation into the potential impacts of 
the two scenarios, utilizing the SIMPLE-G-US model solved in GEMPACK as our 
modeling framework. Focusing on two key metrics—agricultural production and 
groundwater withdrawals—we analyze plausible future conditions to assess their 
impact on water resource sustainability. The results reveal how production levels and 
groundwater use might shift based on policies and assumptions about population 
growth, economic development, and technological change, offering valuable 
insights for water management strategies. 

4.1 Global to Local Analysis of Groundwater Demands 

The global change scenario includes changes in income per capita, population, and 
TFP along a business-as-usual pathway from 2010 to 2050 for which key drivers are 
shown in Table 12.1. 

4.1.1 Global Decomposition 

The results of this scenario suggest that the changes in income and population, taken 
on their own, boost equilibrium crop production and input use (i.e., land, water, and 
fertilizer). However, global TFP plays a critical role in offsetting a major portion of 
the pressure from income and population growth on agricultural inputs. For exam-
ple, changes in population and income alone would increase global cropland by 
around 29.91% (13.27% + 16.64%), while TFP is projected to reduce global 
cropland by 22.99%, leading to a far more modest 7.14% final increase in cropland



in this scenario. This reveals the significance of TFP as a tool for reducing stress on 
global land and water resources (recall the discussion of TFP in Chap. 10). 
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4.1.2 Regional Decomposition 

Figure 12.2a shows the major drivers of production change by region. It also 
decomposes the projected contribution of each driver to this aggregate outcome. In 
the United States, production is projected to rise by nearly 50% or roughly 0.4 billion 
corn-equivalent metric tons, valued at US$97 billion (in 2010 prices), over this four-
decade period. The drivers of US crop output growth are relatively evenly divided 
between both domestic and foreign (red bar) increases in population, rising per 
capita incomes around the world (green bar), and improved productivity in global 
crop production (blue bar). In Eastern Europe and China—regions with little 
projected population growth (red bar)—income is the main driver of crop production 
(green bar). Income growth is also a key driver of output growth in South Asia, while 
population growth is the most important food demand driver in Africa. Note that 
global productivity growth has a negative impact on output in Central Asia, 
South Africa, Sub-Saharan Africa, and Eastern Europe. This is mainly caused by a 
loss in competitiveness due to low productivity growth in these regions compared 
with the rest of the world. 

Although productivity growth leads to higher yields and therefore moderates the 
demand for land, the impact of population and income growth on land use is 
dominant in all regions except for Europe. Sub-Saharan Africa (+120 Mha) and 
South Asia (+36 Mha) are projected to experience the largest increases in cropland 
due to strong domestic demand growth in those two regions. Our analysis indicates 
that growth in income and population outside the United States is far more important 
in driving US crop production (contributing to a 22.3% increase) than income and 
population growth within the United States (contributing just a 6.6% increase). This 
is due to higher income growth rates in developing and emerging economies and 
higher rates of population growth in Africa and other low-income regions. For 
details on the regional decomposition of the global drivers of changes in water, 
land, and fertilizer inputs, see Haqiqi et al. (2023). 

Figure 12.2b illustrates the drivers of change in US groundwater withdrawals in 
more detail. The greatest impacts on US groundwater are from population increases 
in the United States, South Asia, and Sub-Saharan Africa as well as income growth 
in Sub-Saharan Africa, China, and South Asia. US TFP growth—makes US agri-
culture more competitive—also contributes to increased US groundwater with-
drawals. However, global TFP growth offsets the impacts of increased income and 
population.
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Fig. 12.2 Change in (a) crop production by region and (b) US groundwater withdrawals, 
2010–2050 
(a) Decomposition of changes in regional crop production from 2010 to 2050 due to the combined 
effect of changes in per capita income, population, and technology, around the world, as well as
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4.1.3 Local Decomposition 

Figure 12.3 illustrates the pattern of changes in groundwater withdrawals and 
irrigated areas across the United States due to a population increase of one million 
people in each world region. These changes are calculated by dividing the computed 
contribution of population change in each global region by the population change 
headcount in that region. For example, if the model calculates that an increase of 
Y people in region r has caused an X hectare change in irrigated area in subregion z, 
then the average impact of a change in population in region r on irrigated area in 
subregion z is equal to Xz/Yr. We perform similar calculations for cubic meters of 
water. The general finding is that normalized population changes in Canada and 
Europe will have greater contributions to changes in water withdrawal and irrigation 
contraction—four times greater than those in China—for a given size of population 
change. Note that the population change in any region has a direct relationship with 
water and irrigation in the United States. Thus, a decline in population, in China, for 
example, means less stress on land and water resources in the United States. Another 
general finding is that most of the changes occur in the Fruitful Rim and Basin and 
Range in the Western United States. Finally, a one-million-person increase in world 
population can increase irrigated area in the United States by 100–400 ha depending 
on the source of population growth. 

There are two major observations at the grid-cell level. First, the most rapid 
irrigation expansion (in percentage terms) is expected to occur in the Eastern United 
States. This finding is in line with current observations showing rapid irrigation 
expansion in the East and declines in the West during the 1997–2017 period (USDA 
2019; Xie et al. 2021). Second, foreign demand drivers of groundwater withdrawals 
are more important than US demand drivers. SIMPLE-G can also be employed to 
provide economic insights into the likely impacts of changes and unintended 
consequences of policies for water and land resources—a topic to which we 
next turn. 

4.2 Local-to-Global Analysis of US Groundwater 
Sustainability Policies 

We implement the sustainability policy by reducing groundwater withdrawals to the 
rate of recharge (for details, see Haqiqi et al. 2023). To achieve this, we apply a 
shifter to the groundwater supply curve. This is accomplished by shocking the

⁄➤

Fig. 12.2 (continued) growth in biofuels demand. (b) Decomposition of drivers of changes in US 
groundwater withdrawals from 2010 to 2050 as computed by SIMPLE-G-US-Allcrops, based on 
SSP2 (Shared Socioeconomic Pathways, middle of the road) in the absence of climate change. 
Improvement in global productivity can completely offset the impacts of increased population and 
income, conditional to sufficient investments. Also, the rebound effect causes an increase in 
groundwater withdrawals
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Fig. 12.3 Change in (a) US irrigated land and (b) US groundwater withdrawals in response to a 
population increase of one million, by region 
Uniform population increases/decreases in Europe, Canada, Japan, and Korea have larger impacts 
on water and land resources in the United States than population increases/decreases elsewhere. A 
decline in the population of these regions can cause a bigger decline in cropland in the United 
States. In general, impacts on the western regions (Fruitful Rim, Basin, and Range) are largest



appropriate slack variable in the model code. The size of this shock indicates the 
amount of reduction required from 2010 levels to ensure that the rate of withdrawal 
does not exceed the recharge rates. If a grid cell is extracting groundwater at a rate 
higher than the recharge rate, it must reduce withdrawals. To ease the implementa-
tion of these shocks, we truncated them at -90%, so we do not wholly eliminate 
groundwater use in any grid cells.
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Out of the approximately 75,000 grid cells, this policy will have a direct impact 
on 10%, all of which are located in the Western United States. These grid cells face a 
significant reduction in groundwater availability, ranging from-1% to-90%. More 
than half of these cells will experience a reduction of more than 80%. The strict 
policy will cause some agricultural activities to relocate to other parts of the country 
that have abundant water resources and that are already major agricultural producers. 
However, these regions may not be able to accommodate all of the agricultural 
activities displaced from the Western United States, leading to increased production 
overseas. 

4.2.1 Local Impacts and Spillovers 

At the local level, the first response to this policy is a reduction in groundwater 
withdrawals. Figure 12.4a shows the resulting change in groundwater withdrawals 
by grid cell. Green areas require groundwater withdrawal reductions of more than 
50%. This change induces an increase in groundwater withdrawals elsewhere in the 
United States. The greatest increase in groundwater withdrawals occurs in the 
southern and eastern parts of the Fruitful Rim region, which includes Texas and 
Florida, which have appropriate agroecological conditions for producing crops 
similar to those produced in California (the targeted regions). 

The groundwater restriction scenario is expected to increase the shadow price 
(marginal value of water to the producer) of water by more than 50% in the targeted 
regions. This raises the average crop production cost by 9–15%. Figure 12.4b shows 
the projected change in the equilibrium price (value) of groundwater in the United 
States. For the targeted regions, this increasing scarcity value is mainly due to a 
lower supply of water. However, for other parts of the United States, the increase in 
the groundwater shadow price is due to changes in the demand for irrigation. 

Another potential local response to this groundwater sustainability scenario is to 
increase the use of surface water, as this approach offers a potential substitute— 
albeit an imperfect one—for groundwater. It is not considered a perfect substitute: 
The regulations and the extraction methods are different, and farmers may not have 
the same control over the timing of water availability. Figure 12.5a shows the 
estimated change in US gridded surface water withdrawal in the wake of the 
groundwater sustainability policy. Depending on water availability and institutions, 
surface water withdrawals might increase from 5% to more than 25% in nontargeted 
parts of the United States. The surface water withdrawal is projected to decline in the 
restricted grid cells due to large reductions in the irrigated area (Fig. 12.5b). While 
the global response is small, the base over which this applies is large, so if the US



cropland area declines by 1 million hectares, the global cropland area increases by 
2.3–2.5 million hectares in response to US groundwater restrictions. This reflects the 
extremely high yields on US irrigated croplands which must be replaced by produc-
tion elsewhere to meet global food demands, which are only slightly reduced in the 
face of higher prices. 
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Fig. 12.4 Percentage change in (a) groundwater withdrawals and (b) value (shadow price) of 
groundwater to producers by 5 arcmin grid cells in response to a policy restricting groundwater 
withdrawals to the level of average annual recharge 
Areas in white are not cultivated 

4.2.2 Global Impacts 

Figure 12.6a reports the estimated percentage change in global cropland area—less 
than 1% in each region—due to US groundwater sustainability restrictions. This



experiment shows that local sustainability solutions may be viewed less favorably in 
a global context. The unintended consequences include possible deforestation 
(increase in cropland) and water quality issues (higher fertilizer applications) in 
nontargeted areas. This shows why we need to take a global approach to evaluating 
water policies to consider significant feedback from the human system to natural 
resource use when designing effective and efficient sustainability policies (Biswas 
2008). 
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Fig. 12.5 Percentage change in (a) irrigation surface water withdrawals and (b) total cropland area 
by 5 arcmin grid cells in response to groundwater restrictions 
Areas in white are not cultivated 

Table 12.2 depicts the impacts of US groundwater sustainability restrictions on 
the world and the United States. It is projected that this local groundwater sustain-
ability policy may lead to a 0.1% increase in global cropland area (1.7 million 
hectares) and a 0.3% increase in fertilizer application worldwide. In the United
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Fig. 12.6 Percentage change in (a) global production and (b) land use in response to a US 
groundwater sustainability constraint in 2050



States, the irrigated area declines by 4.7%, leading to a 16.4% reduction in irrigated 
production (50.9 million tons corn-equivalent). The responses within the United 
States are estimated to increase rainfed areas (extensive margins) and fertilizer 
application in rainfed areas (intensive margins). This is mainly due to a 9.4% 
increase in local crop prices in Fruitful Rim, which will motivate other farmers to 
increase their production and new farmers to enter the market. A model closure 
with low local production flexibility could increase the non-US cropland area by up 
to 20 million hectares. For detailed analysis, see the chapter application files for 
simpleg_leon scenario.
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Table 12.2 Projected changes in cropland area, water withdrawal, fertilizer applications, and crop 
productions in response to US groundwater restriction 

World US 

Irrigated Rainfed Total Irrigated Rainfed Total 

% 

Crop production (%) -1.03 0.61 -0.06 -16.39 5.37 -2.98 

Cropland area (%) -0.35 0.23 0.11 -4.68 1.18 0.13 

Surface water withdrawal (%) 1.36 na 1.36 4.19 na 4.19 

Groundwater withdrawal (%) -9.25 na -9.25* -61.70 na -61.70 

Fertilizer application (%) -0.32 0.39 0.25 -11.01 4.50 1.46 

Δ
Crop production (m ton) -46.07 39.32 -6.77 -50.91 28.97 -21.93* 

Cropland area (m ha) -1.12 2.82 1.70 -1.33 1.54 0.21 

(* See application files for more details) 

5 Discussion 

There have been several attempts to project future water withdrawals based on 
gridded models (Herbert and Döll 2019), county-level analysis (Roy et al. 2012), 
Hydrologic Unit Codes (Brown et al. 2019), or at global scales (Boretti and Rosa 
2019). However, most current studies have ignored the role of technological pro-
gress (measured here as TFP). We show that productivity improvements in crop 
production, the livestock sector, and processed food activities can offset the pressure 
on water resources over the coming decades. However, investments in research and 
development (R&D) are required to achieve the suggested productivity improve-
ments (see Chap. 10 as well as Baldos et al. 2018; Baldos and Hertel 2018). 
Continued improvements in productivity—which have followed investments in 
R&D over the past—are essential to avoid increasing stress on water resources. 
Although improvements in irrigation efficiency are expected to increase water use 
(Perry et al. 2017; Grafton and Wheeler 2018; Perry 2019), growth in productivity 
can reduce the stress on water resources by offsetting demand pressures. Given the 
uncertainty in TFP calculations, future studies should explore the consequences of 
alternative R&D and TFP trajectories (Fuglie et al. 2022).
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Over the last few decades, policy discussions around groundwater sustainability 
have evolved from a legal and economic definition of safe yield (i.e., the amount of 
water that can be withdrawn before it is no longer economically feasible) to a more 
socially and environmentally based definition of sustainability that can provide a 
long-term balance between withdrawals and impacts (Alley et al. 1999; Alley and 
Leake 2004). Even a withdrawal amount that is replenished each year can lead to a 
decrease in natural discharge and cause harm to ecosystems that rely on groundwater 
contributions; in many locations, the sustainable yield is substantially less than the 
natural recharge rate (Sophocleous 2000). The sustainability scenario undertaken 
here, therefore, provides a conservative estimate of the economic impacts of a 
sustainable groundwater policy. In some cases, restricting groundwater withdrawals 
to estimated annual rates of recharge allows for extraction far above sustainable 
yields. 

Aeschbach-Hertig and Gleeson (2012) and Piemontese et al. (2020) call for a 
more comprehensive socioeconomic strategy and more attention to the significance 
of local population and equity in sustainability studies. This study contributes to the 
growing body of evidence on the importance of the global–local–global approach for 
sustainable agriculture (Hertel et al. 2019, 2023; Haqiqi et al. 2022; Ray et al. 2023). 
While global costs of sustainability might be small due to economic responses and 
reallocation of resources, the local benefits of sustainability and local costs of 
ignoring it are significant. 

Gleeson et al. (2012) argue that groundwater sustainability is a values-driven 
process involving social, economic, and environmental factors that cannot be 
defined in terms of a given withdrawal target and that sustainability planning for 
groundwater must utilize a long time horizon (50–100 years); involve local, adaptive 
input; and utilize models capable of backcasting from desired outcomes to policy 
options that can support them. This work utilizes a publicly available, multiscale 
modeling tool (SIMPLE-G) that can be incorporated into regional community 
planning efforts to examine the socioeconomic impacts of various management 
strategies over long time horizons. However, we would argue that, in addition to a 
local, physically based analysis to inform policy options, given linkages to the global 
food system, community-level planning for groundwater sustainability options must 
also include a broader perspective, considering the role of global economic drivers. 

Another benefit of the multiscale modeling framework is its ability to capture the 
interactions of different countries’ policies and their local impacts. Disaggregating 
production in the United States while keeping other regions ungridded in the 
background permits us to consider the market responses of US trade partners, even 
as we explore US domestic policies in detail. These global market developments are 
potentially important when they are implemented by major trade partners and food-
producing countries. One outstanding example is China, which has been aggres-
sively pursuing national policies to achieve sustainable agricultural development 
during the past decade. The National Sustainable Agricultural Development Plan 
(2015–2030), released in 2015, continues to emphasize the contributions of agricul-
tural science and technology (more than 60% to total output growth), cropland 
protection (no less than 120 million hectares of cropland), and efficient irrigation



(capped national irrigation water use at 700 billion m3 by 2030 and an irrigation 
efficiency index no lower than 0.60). It is important to be able to factor such major 
developments into the analysis of US agriculture and sustainability policies at the 
national and local levels. 
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This study shows that SIMPLE-G is a useful tool that can provide insights into the 
spatial distribution of solutions to environmental problems on cultivated land. This 
information can be used by policymakers to identify the areas most affected by 
environmental problems, allowing them to focus their efforts on resolving these 
problems in the most efficient way possible. It is also helpful when evaluating the 
effectiveness of environmental policies and understanding the unintended conse-
quences that may arise. As shown in this chapter, as well as in other applications in 
this book, the SIMPLE-G framework can be used to assess the market-mediated 
impacts of environmental policies by analyzing the bidirectional feedback between 
distant locations through crop markets, labor markets, and fertilizer markets. 

6 Conclusion 

With limited technological progress, increasing stresses on water and land resources 
are projected to emerge because of anticipated growth in demand for food. Specif-
ically, groundwater withdrawals in some locations are expected to increase by more 
than 50%. The underlying drivers of these stresses are global in nature, with demand 
growth in South Asia and China alone accounting for roughly one-quarter of US 
irrigated cropland expansion. However, strong productivity growth can offset the 
pressure from global changes in population and growth. Unfortunately, groundwater 
pumping for irrigation and other uses now exceeds annual recharge rates by more 
than 10 times in parts of the Central Valley of California, the High Plains Aquifer, 
and the Snake River Basin of the United States. This situation is expected to further 
deteriorate in the absence of regulation. 

We find that local water policies can have unanticipated spillover effects, thereby 
exacerbating water stresses in other parts of the world. Furthermore, any attempt to 
restrict water for irrigation will result in the reallocation of cropping activity to other 
parts of the country and the world. Given the increase in water and land use in other 
parts of the world in the wake of the US sustainability policy (around 20 million 
hectares), the global net environmental benefit of such a policy may be limited or 
even negative due to spillover effects. Cropland expansion in other parts of the world 
can cause more biodiversity loss, deforestation, and water pollution. Addressing this 
sustainability challenge will require global coordination of resource governance as 
well as institutional reforms. The global–local–global framework here offers a 
practical means for analyzing the consequences of such policy proposals as they 
emerge. 

The relationships among groundwater policy, land use, and its spillover effects 
reveal challenges and opportunities. SIMPLE-G has illuminated the pathways 
through which local water conservation resonates across borders, potentially ampli-
fying environmental pressures elsewhere. The questions it provokes—about labor



The findings and conclusions presented in this chapter are those of the authors and should not be

market dynamics, global food security, and the cascading impacts of sustainability 
strategies—remain central threads in the ongoing dialog about managing our pre-
cious, shared aquifer resources. Further research and policy evaluations are crucial 
for ensuring groundwater sustainability not just within localized contexts but also as 
a keystone for the health of our planet and its diverse inhabitants. 
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Chapter 13 
The Role of Labor Markets in Determining 
the Efficacy and Distributional Impact 
of Sustainability Policies 

Srabashi Ray, Iman Haqiqi, Alexandra E. Hill, J. Edward Taylor, 
and Thomas W. Hertel 

1 Introduction 

Labor is a critical input in agriculture and an important determinant of rural house-
hold and community welfare in the wake of policies directed at the farm sector. In 
2017, labor accounted for more than 30% of production costs in the agricultural 
sector globally and close to 60% in Sub-Saharan Africa (Aguiar et al. 2019). In the 
United States, average labor cost as a share of gross farm income (2017–2019) 
ranges from 25% to 35% for the production of fruits, nuts, vegetables, and other 
specialty crops (US Department of Agriculture (USDA) 2021). Thus, agriculture 
brings not only land and water resources but also human resources into the food 
system. 

This chapter is a slightly revised version of a paper originally published as Ray, Srabashi, Iman 
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Agricultural labour markets operate at a “meso” level that can shape the impacts 
of conservation policies (e.g., groundwater conservation) at the local level and feed 
back into national-level changes.1 Several global modeling frameworks resolve 
processes with high spatial resolution (i.e., individual grid cells) (Lotze-Campen 
et al. 2008; Valin et al. 2013; Shin et al. 2016; Baldos et al. 2020). However, the 
meso level is also important when analyzing sustainability challenges (Johnson et al. 
2023). 

In this chapter, we highlight the critical role of labor markets in governing the 
effectiveness and distributional impacts of global food price shocks and local 
sustainability policies targeting land and water use in agriculture. We begin by 
reviewing the empirical literature on agricultural labor markets. We then offer 
insights from economic theory regarding the link between the functioning of labor 
markets and agricultural outcomes. Finally, we build these components into the 
SIMPLE-G model of US agriculture developed in Chap. 12 and demonstrate how 
labor market responses alter the impacts of global price shocks and local sustain-
ability policies on agricultural production, employment, and land use. 

Agricultural labor markets in the United States are complex, involving different 
types of labor with unique characteristics. In the United States, field crops such as 
maize, soy, and wheat are largely grown in the Midwest and Great Plains, where 
mechanization has permitted many farms to operate with small labor forces 
consisting primarily of family labor, supplemented by hired labor from local com-
munities (USDA 2022). In contrast, in the Fruitful Rim, where the bulk of US fruit, 
vegetable, and horticultural (FVH) farms operate, immigrant labor—particularly 
from Mexico—is the main source of hired labor. The labor requirements for the 
FVH sector are highly seasonal. Follow-the-crop migration has traditionally facili-
tated agricultural production by redistributing agricultural workers across localities 
and seasons. However, farmworker mobility has decreased significantly over time 
(Fan et al. 2015), while the overall supply of farm workers from Mexico has declined 
(Charlton and Taylor 2016). Farms have therefore become more reliant on workers 
who have settled in nearby localities, and they are more likely to compete with 
nearby nonfarm businesses for scarce labor. These trends highlight the importance of 
representing labor markets in a global–local–global framework. 

The growing reluctance of workers to relocate to new regions of the country 
means that wage differentials can emerge and persist across regions. This was 
evident in nonagricultural labor markets after China’s accession to the World 
Trade Organization (WTO) and rapid growth in Chinese exports over the past two 
decades (Autor et al. 2016, 2021). Trade economists analyzing the impacts of WTO 
accession have paid little attention to labor markets (Bhattasali et al. 2004). As a 
result, few anticipated the slow adjustment of the US manufacturing sector and the 
depressed regional labor markets that emerged (Autor et al. 2021). 

1 The meso level refers to an intermediate scale arising between the aggregated global (or macro) 
scale and the local (or micro) scale.
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We bring these recent labor market insights into the SIMPLE-G framework by 
explicitly accounting for agricultural workers’ mobility. We illustrate the importance 
of labor market responsiveness by assessing the impacts of the recent commodity 
price boom and local conservation policies that withdraw overexploited resources 
from farming. The emphasis is on how labor market rigidities shape the responses to 
global and local shocks. While the focus here is on the United States, these issues are 
also relevant in developing countries, where agriculture is more labor intensive and 
labor market rigidities are prevalent (Campos and Nugent 2018; Konte et al. 2022). 

2 Agricultural Labor Markets in the United States 

Labor is a key input for planting, weeding, harvesting, and postharvest activities in 
agriculture. People’s willingness to perform farm work at prevailing wages and to 
engage in follow-the-crop migration determines the availability of labor at particular 
geographic locations and seasons and thus are key determinants of agricultural 
production. Environmental stressors and economic conditions affect agricultural 
labor markets. For example, Jessoe et al. (2018) and Feng et al. (2012) show that 
environmental shocks on crop yields (i.e., rising temperatures and declining precip-
itation) cause out-migration from rural areas and decrease farm employment. Fan 
et al. (2016) show that agricultural wages rise during recessions due to a leftward 
shift in labor supply from decreased migration and an inelastic farm labor demand 
(because people must eat). This contrasts with labor market conditions in other 
industries with high proportions of immigrant workers (e.g., construction), in 
which both supply and demand are likely to decline during recessions. In the wake 
of new conservation policies, the optimal behavior of agricultural producers might 
be to contract and relocate production. However, producers’ ability to make these 
changes depends on workers’ mobility. 

Historically, the US agricultural workforce has been characterized by a large 
number of migrant workers willing to travel long distances for employment. Today, 
fewer individuals are willing to work in agriculture, and those in the labor pool are 
more settled (Fan et al. 2015; Martin 2017). A variety of factors have contributed to 
the decline in farm labor supply. These include increases in immigration enforce-
ment (Kostandini et al. 2014; Charlton and Taylor 2016), growing employment 
opportunities in nonfarm sectors (Richards and Patterson 1998; Martin 2017), and 
relative changes in economic conditions in the United States and Mexico (Taylor 
et al. 2012). These factors have contributed to the overall decline in labor supply 
from Mexico and a reduced willingness to work in US agriculture. 

Migrant agricultural workers follow seasonal paths of crop production across 
large geographic regions. These paths are typically circular: Workers begin in the 
south early in the year, move northward, and then head south again, following the 
crop and weather patterns that dictate harvest times (Taylor 1937; Arnedo et al.



2011).2 In recent years, however, agricultural workers have become less mobile (Fan 
et al. 2015). More people report being settled in a particular location and working 
nearby (Martin 2017). The specific causes of this transition to a more settled 
workforce are not immediately obvious, but the trend correlates with increases in 
immigration enforcement, which limits historic cross-border migration patterns and 
increases in the number of workers with families in the United States. It is also linked 
to the aging of the farm workforce (a consequence of decreasing immigration of 
young workers from Mexico); growing employment opportunities in nonfarm sec-
tors, which reduce the need to move for employment (Martin 2017); and possibly to 
welfare policies (Green et al. 2003). 
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Combined, the decline in agricultural labor supply and reduced intra-US migra-
tion have led to a relative scarcity of agricultural labor and widespread reports of 
worker shortages (Hertz and Zahniser 2013; Bronars 2015; Richards 2018). The 
implications for US agricultural production are vast. In the short run, agricultural 
producers seeking to move or expand their production area might be unable to do so 
if their operations are not located near where many workers live. Moreover, to attract 
a sufficient workforce in the long run, job opportunities (e.g., wages, hours, and 
desired skills) must be enticing enough for workers to remain settled in the area. 

In sum, employers face stickier labor markets and can no longer rely on having an 
elastic migrant workforce that arrives at the farm gate when and where they desire. 
Models that assume that the agricultural labor supply is highly (or perfectly) elastic 
are likely to present a biased picture of local and global agricultural and environ-
mental impacts of policy interventions. 

3 Insights About Labor Market Rigidities from Economic 
Theory 

In Part II, we developed the two-input theoretical framework underlying the SIM-
PLE framework. Eqs. 3.5, 3.6, 3.7, 3.8, and 3.9 in Box 3.1 show the changes in input 
use, input prices, and overall production due to any exogenous shock. We can use 
these equations to understand how the impacts of a policy can vary under different 
assumptions about agricultural labor markets. 

Agricultural labor is subsumed under human inputs in the two-input framework. 
When agricultural labor markets are assumed to be perfectly elastic, then vH → 1. 
Under this condition, we can rewrite the changes in natural resource use (Eq. 13.1), 
human input use (Eq. 13.2), and total production (Eq. 13.3) as follows: 

2 In one historic route, West Coast agricultural laborers began in California’s Imperial Valley, next 
to the Mexican border, harvesting truck crops in the winter, moved to the Los Angeles or San 
Bernardino County areas in the spring, then spent most of the summer and fall in central California 
near Bakersfield and Fresno (Taylor and Rowell 1938).
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A comparison of these sets of equations shows that if we ignore labor markets, we 
are foregoing significant richness in our analysis. If we reintroduce labor market 
rigidities to Eq. 13.3 (i.e., the change in total production), we observe that both the 
extensive (vR) and intensive (θHσ) margin responses are modified by the terms ΓR 
and Γσ in Eq. 3.9 in Box 3.1. Both the modifying terms are less than 1, indicating that 
labor market rigidities diminish the grid cell’s responsiveness to commodity price 
changes. The “stickier” the labor market is, the smaller ΓR and Γσ are, leading to a 
diminished production response. Intuitively, it is more expensive to hire workers in 
the relatively tight labor market required to manage the resources under production. 

Further examination of the terms ΓR and Γσ reveals the crucial role that the labor 
supply elasticity, vH, plays in governing local responses to a commodity price boom, 
particularly the size of this elasticity relative to the supply response of natural inputs, 
vR. Given the geographic immobility of natural resources, we expect vR to be lower 
than the labor supply response; therefore, vH > vR. The greater the difference in the 
supply elasticities of the two inputs, the larger the intensification component of the 
supply response. If the factor supply elasticities are equal (i.e., vH = vR), there is no 
incentive to intensify production in response to the commodity price hike. In this 
case, both input demands will rise proportionately with output. 

When commodity prices increase, the returns to both inputs increase. We expect 
land and water resources to capture a greater share of the increase in crop prices (i.e., 
pH < pR) because producers are willing to pay a higher price for the relatively scarce 
input. Thus, the relative price elasticity of supply for labor versus natural resources 
determines the distribution of gains from a higher crop price between the two inputs. 
In the extreme case of perfect labor mobility—as assumed in most integrated 
assessment models (IAMs)—labor supply is perfectly elastic, and wages are con-
stant despite increased production. In this case, all of the gains accrue to landowners. 

In the case of the groundwater policy shock, as with the commodity market boom, 
the presence of inelastic labor markets mediates the production impact of this 
resource conservation policy. Eq. 13.3 shows that the maximum impact of the policy 
would be realized under perfect labor mobility (ΓH → 1  as  vH → 1). We saw that 
the production impact of the crop price boom is smaller when labor market rigidities 
are introduced. However, in the case of a groundwater conservation policy, the 
ramifications of ignoring imperfect labor mobility are ambiguous. The direct impact 
of the policy shock on production is negative (i.e., land and water are forced out of 
production in targeted grid cells), but the spillover effects are positive (i.e., labor 
moves from targeted to untargeted cells). Both these effects are overestimated when 
we ignore labor market rigidities. Therefore, whether ignoring labor market rigidities



causes the aggregate effect of the groundwater policy to be over- or underestimated 
varies by grid cell, depending on the grid-level parameters. 
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From the theoretical model, it is clear that we need to explicitly model agricultural 
labor markets to accurately capture the policy impacts, distributional consequences, 
and—importantly—the effectiveness of the policy in terms of the resources con-
served. In the SIMPLE-G-CZ model, we address this problem by considering a 
range of long-run labor supply elasticity estimates that are supported by the literature 
(Hill et al. 2021). Shifting migration patterns are also pivotal elements in agricultural 
labor markets’ role in mediating farms’ ability to respond to stressors. We expect the 
decline in the mobility of the agricultural workforce to alter the optimal producer 
response to crop price shocks and groundwater sustainability policies. The extent to 
which producers expand or relocate production in response to these shocks will be 
mediated by the availability of workers at specific locations. Thus, models that 
assume perfect labor mobility are likely to be biased. Informed by studies of 
agricultural labor-supply elasticity (Hill et al. 2021), we geographically restrict 
labor mobility to areas, or laborsheds, in which modern farmworkers are willing to 
work and compare the results with those under an assumption of perfect labor 
mobility.3 

4 SIMPLE-G Version Employed for This Study 

In this chapter, we use the SIMPLE-G-CZ (Ray et al. 2023) model (Fig. 13.1), which 
builds on the foundation of the SIMPLE-G framework outlined in Part III of this 
book and incorporates rigidities in agricultural labor markets. Specifically, the model 
in Fig. 13.1 elaborates on the version of SIMPLE-G used in the previous chapter of 
this book (Chap. 12) by disaggregating the agricultural labor input and introducing 
geographically limited “laborsheds.” 

There are multiple empirical and conceptual challenges to defining the geo-
graphic extent of agricultural labor markets. The three most widely used geographic 
delineations of US labor markets are the Office of Management and Budget’s core-
based statistical areas (CBSAs), the USDA Economic Research Service’s commut-
ing zones (CZs), and the Bureau of Economic Analysis’s economic areas (EAs). 
Fowler and Jensen (2020) compare these methods on the extent to which labor 
markets represent core EAs, the degree of economic connectivity within areas, and 
the degree to which individuals live and work within the same areas. They conclude 
that no existing labor market delineation is adequate; geographic delineations must 
be tailored to the problem at hand. 

3 One can think of agricultural labor markets as “laborsheds” in much the same way as hydrologists 
think about watersheds. Watersheds are shaped by geological features; laborsheds are shaped by 
farm workers’ willingness to move from one place to another in response to changing labor 
demands.
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Fig. 13.1 Structure of crop production in SIMPLE-G-CZ 
The SIMPLE-G-CZ model is based on SIMPLE-G-US (Baldos et al. 2020). In SIMPLE-G-CZ, 
“other Inputs” are split into human labor inputs (H ) and nonhuman inputs (K ), which comprise 
capital and other production inputs (e.g., seeds and chemicals). Human labor refers to all types of 
labor, including hired, migrant, and family labor. The SIMPLE-G-CZ model introduces spatially 
explicit markets for the labor input using the concept of commuting zones (CZs) (Fowler et al. 
2016). Each CZ has a labor supply curve parameterized based on the extensive margin labor supply 
elasticity reported by Hill et al. (2021). Labor demand is determined by profit-maximizing pro-
ducers in each grid cell. The allocation of labor within a CZ is determined by a quantity-preserving 
CET function, which determines the equilibrium wages at local laborsheds (i.e., commuting zones). 
The elasticity of substitution parameters is shown by σ, indexed by the relevant inputs 

The SIMPLE-G-CZ model employed in this chapter builds on the literature on 
CZs (Fowler et al. 2016; Fowler and Jensen 2020). The SIMPLE-G-CZ model 
incorporates labor market rigidities in the SIMPLE-G framework using estimates 
of agricultural labor supply elasticity from Hill et al. (2021). In the SIMPLE-G-CZ 
model, labor markets are clear and wages are determined at the CZ level. We also 
incorporate within-CZ frictions across grid cells. 

We use CZs as the geographical areas over which we delineate the pool of 
available workers because, among existing labor market delineations, they are



most consistent with our research objectives. The CZ methodology, which was first 
developed by Tolbert and Sizer (1996), is based on central place theory, which 
assigns counties to nodes based on a hierarchical cluster algorithm that groups 
counties with strong commuting ties (Carpenter et al. 2022). CZs are widely used 
in population and labor economic analyses of areas sharing a common labor market 
as an alternative to counties (which are problematic because they are largely arbitrary 
political units) and metropolitan statistical areas or CBSAs (which by definition 
exclude nonmetropolitan places and do not span the entire United States). Agricul-
tural workers often cross county and state lines, and the CZ approach is well suited to 
address this mobility. 
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5 Experimental Design: Global Change Scenarios 

Our experiments consider two cases that allow us to highlight the significance of 
labor markets in a multiscale, integrated socioeconomic–biophysical framework. 
The first case examines a global commodity price boom. The second case considers 
a local sustainable groundwater policy. We simulate the impacts of these two shocks 
on both local and national production, wages, and employment. For each case, we 
consider two labor market scenarios: (1) perfect labor mobility across the United 
States, in keeping with traditional IAMs, and (2) restricted mobility, as discussed in 
Sect. 2. 

5.1 Global Commodity Boom 

Agricultural commodity prices are notably volatile, and crop producers must con-
tinually form expectations about prices prior to harvest. Commodity prices began to 
rise sharply at the onset of the Ukraine conflict in early 2022. This was particularly 
notable for wheat and oilseeds, for which Ukraine and Russia account for a large 
share of global exports. Due to substitutability in use as well as in production, crop 
commodities tend to move in tandem, and the prices of other crops also rose during 
this period. While they have subsequently declined, agricultural commodity prices 
remain above the level forecast prior to the conflict, and the future for agricultural 
prices is uncertain. Similar shocks to the global food system occurred in the 
2006–2013 period when a combination of rapid growth in biofuel demand, low 
commodity stocks, and adverse weather events resulted in a series of commodity 
price spikes (Abbott et al. 2008). Of course, the price that matters for producer profits 
is the one prevailing at the time of sale, but this price is unknown at the time of 
planting, hence the importance of expectations. For longer-term decision-making, 
prices in subsequent years are also relevant. For example, the price of maize 
prevailing in the spring of 2022 was 19% higher than it had been in the spring of 
2021 (World Bank 2022). Price increases vary by crop, and it is unclear whether



farmers understood these increases to signal persistently higher prices. For this 
reason, we study the effect of a commodity price boom using a stylized 10% 
price hike. 
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5.2 Sustainable Groundwater Policy in the Western United 
States 

In this chapter, we implement the same groundwater sustainability shock discussed 
in Chap. 12. Water scarcity is one of the major challenges facing states in the 
Western United States, where there is widespread unsustainable use of groundwater. 
As in Chap. 12, we implement a groundwater sustainability policy that restricts 
groundwater extraction rates to average recharge rates in each grid cell. This policy 
ensures that the groundwater table does not decline further over the long run. Viewed 
from a local perspective, the implications of this policy are dramatic, implying up to 
a 90% reduction in groundwater pumping in some locations. In total, the policy 
imposes a 66.7% reduction in total groundwater withdrawals in the United States 
(Haqiqi et al. 2023). Restrictions on groundwater extraction have local and regional 
economic impacts, and labor markets may play a critical role in transmitting impacts 
across grid cells. We quantify the consequences of such policies for agricultural 
production, employment, and land use at local and regional scales. 

6 Results 

In the cases of both policy shocks, we assume that the perturbation to the system is 
permanent, as the model is designed to elicit long-run equilibrium responses to 
shocks. Thus, producers assume that the groundwater sustainability policy will not 
be reversed, despite the political pressures that inevitably emerge following such 
policies. In the case of the commodity price boom, we assume that there are 
structural features causing prices to be persistently higher relative to baseline 
expectations so that farmers adjust their land, water, and labor usage accordingly. 
If the commodity price boom is perceived as temporary (as is typical for commodity 
booms), then the supply response will be smaller than that shown here. 

6.1 Impacts of an Agricultural Commodity Price Boom 

The price boom has an expansionary effect on national crop output and on all 
underlying inputs used (Table 13.1). However, the extent of the expansionary effect 
is starkly different depending on agricultural labor mobility. When labor is perfectly



mobile, the 10% crop price increase leads to a 35.3% increase in total crop produc-
tion and a 12.7% increase in employment in the United States. The local-level 
increase in employment ranges from 12% to 25% across the West and Midwestern 
United States and rises to more than 25% in the South and Southeastern United 
States (Fig. 13.2). This supply response to a 10% global price shock is implausibly 
large, considering estimates in the literature (Lee and Helmberger 1985; Keeney and 
Hertel 2009). In contrast, total crop production and employment increase by 9.2% 
and 4.8%, respectively, when labor market rigidities are included in the model. 
Local-level increases in employment range from 2% to 12% (Fig. 13.2). 
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Table 13.1 National change (%) in crop production, employment, wages, land use, groundwater 
use, and crop price in the United States 

Percentage change in 
Perfect labor mobility 
(SIMPLE-G model) 

Restricted labor markets 
(SIMPLE-G-CZ) 

Crop price boom 

Crop production 35.3 9.2 

Employment 12.7 4.8 

Wages 0 18.6 

Land use 1.9 1.3 

Groundwater use 9.1 6.4 

Sustainable groundwater policy 

Crop production -2.9 -2.7 

Employment -3.7 0.9 

Wages 0 -0.26 

Land use 0.3 0.2 

Groundwater use -41.9 -41.5 

Crop price 2.2 2.1 

Under the imperfect labor mobility scenario, land use expands along the margins 
of the Corn Belt as well as parts of the Southern and Eastern United States, where 
agriculture is less reliant on scarce groundwater than in the Western United States 
(Fig. 13.2f). This is consistent with recent observations in the wake of the biofuel 
boom (Lark et al. 2015). In contrast, there is almost no change in cropland use in the 
Western United States. 

Under restricted labor mobility, the smaller increase in land use in response to the 
commodity price hike is associated with a smaller increase in groundwater use: 
6.4%, compared with 9.1% under perfect labor mobility (Fig. 13.3). Differences in 
land use between the two labor market scenarios are small compared with differ-
ences in production and employment because—based on empirical estimates—both 
models limit the mobility of land across uses (Villoria and Liu 2018). 

Agricultural labor markets mediate the regional impacts of the global crop price 
boom on agricultural workers. With perfect labor mobility, agricultural wages do not 
change, whereas wage increases are evident given more realistic, sticky labor market 
assumptions. In the presence of sticky labor markets, national agricultural wages 
increase by 18.6%. However, the CZs in the Corn Belt that respond to the global



price shock with the strongest increases in crop production experience a wage 
increase of 20–30% (Fig. 13.4). The structure of agricultural labor markets plays a 
significant role in determining the impacts of global shocks on local-level 
farmworkers. 
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Adding labor market rigidities by limiting movement of agricultural labor across labor-sheds 

Fig. 13.2 Grid-cell level response to a permanent 10% price hike as a percentage change in (a) 
production, (b) employment, and (c) land use under a perfectly elastic labor market contrasted with 
responses in (d) production, (e) employment, and (f) land use under restricted labor mobility 

Fig. 13.3 Changes in groundwater use due to a global price shock in (a) perfectly elastic and (b) 
“sticky” labor markets 

6.2 Impacts of a Sustainable Groundwater Conservation 
Policy 

The sustainable groundwater policy affects primarily the Western United States, 
where irrigated agriculture relies on severely overexploited groundwater resources. 
The aggregate impacts of the policy in terms of reduction in crop production



(2.7–2.9%) and the change in land use (an increase of less than 1%) are comparable 
across the two assumptions about the structure of agricultural labor markets. How-
ever, if we ignore labor market rigidities, the national-level reduction in employment 
is overestimated: 3.7% compared with 0.9% (Table 13.1). 
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Fig. 13.4 Impact of crop price shock on wages at the commuting zone level (restricted labor 
mobility model) 
Note that the change in wages is concentrated in the Corn Belt, with a relatively smaller impact in 
the western United States, where agriculture is relatively more reliant on overexploited groundwater 

Due to the reduction in national crop production following the groundwater 
conservation policy, US crop prices increase by roughly 2% under both policies. 
This increase affects all producers, leading to spillover effects in grids that are not 
directly targeted by the policy. These spillover effects could contribute to the 
overexploitation of groundwater resources in the nontargeted regions. (We do not 
explore this overexploitation here.) The national impact of this policy on ground-
water use under both labor market scenarios is a 42% reduction in national ground-
water use. While the simulation reduces groundwater withdrawals by 66.7% in the 
directly affected cells, the increase in national crop prices stimulates an increase in 
groundwater use in locations not targeted by the policy. Thus, the net reduction in 
groundwater use, accounting for the spillover effects, is lower: just 42%. 

As in the case of the global price shock, the local impacts of a groundwater 
conservation policy can vary significantly from what appears to be small impacts at 
the national level. In the directly affected regions of the Central Valley of California, 
crop production falls by up to 50% and employment decreases significantly 
(Fig. 13.5). The magnitude of the policy impact on employment depends on the 
structure of the local agricultural labor markets. Under perfect labor mobility, the fall 
in employment closely matches the corresponding fall in grid-level production. 
However, under restricted labor mobility, employment falls by up to 15% in 
California’s Central Valley (Fig. 13.5). 

The spillover effects, on both production and employment, in the indirectly 
affected grid cells are also overestimated under the assumption of perfect labor



mobility. Grids that are not directly targeted by the groundwater policy in a CZ 
expand production due to the higher crop prices. These increases in production also 
lead to an increase in employment. When we consider labor market rigidities, the 
spillover effects on employment generate up to a 5% increase in employment in most 
grids (Fig. 13.5). This effect is estimated to reach 20% under perfect labor mobility. 
The spillover effects of a conservation policy give farmworkers the opportunity to 
find employment in neighboring grid cells. If farmworkers’ mobility is restricted, the 
spillover effects are also limited. 
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a: National change = -2.9% b: National change = 0% c: National change = -3.7% 

d: National change = -2.7% e: National change = -2.9% f: National change = -1.6% 
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Fig. 13.5 Impact of US sustainable groundwater policy shock as a percentage change in (a) crop 
production, (b) employment, and (c) wages in the western United States under perfect mobility 
versus impact on (d) crop production, (e) employment, and (f) wages under restricted labor mobility 
Figure b is blank because there is no change in wages in this scenario. Borders within the wage 
change maps show the commuting zone delineations across the western United States 

By assumption, the perfect labor mobility case completely overlooks the potential 
wage impacts (Fig. 13.5b) of conservation policies. Figure 13.5e shows that agri-
cultural wages decrease by 7–50% in the Central Valley and parts of the Snake River 
Basin, where the groundwater conservation policy is targeted. Farmworkers who 
lose their jobs when unsustainable use of natural resources is restricted are likely to 
absorb wage cuts if alternative opportunities for employment are limited.
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7 Discussion 

This chapter documents an important first step toward integrating labor markets into 
multiscale sustainability analyses. We detail conceptually why agricultural labor 
markets are increasingly likely to influence agriculture’s ability to respond to a 
variety of factors, including changes in global commodity prices and local conser-
vation policies. In recent years, US agricultural workers have become less mobile, 
contributing to geographically smaller and more contained laborsheds. Our simula-
tions demonstrate how assumptions about labor market mobility shape the impacts 
of market and policy changes. Labor markets can be crucial determinants of how 
agricultural production changes over time and across space in response to economy-
wide, sectoral, or regional shocks. 

Incorporating labor market responses can improve the accuracy and utility of 
multiscale models of the economy and environment (e.g., SIMPLE-G). However, 
challenges remain, and future research should be directed toward addressing them. A 
top priority is to develop better estimates of the underlying parameters used in the 
model. Given the importance of factor supply responses within this framework, 
estimating the agricultural labor supply response within and across laborsheds is a 
priority for future research. There are few reliable agricultural labor-supply elasticity 
estimates (Hill et al. 2021), and land and groundwater supply elasticities can also be 
improved. Work is currently underway to estimate cropland supply elasticities at the 
grid cell level and use those elasticities to validate the model’s predictions over a 
historical period (Villoria et al. 2022). This will be an important advance. 

An important adaptation to groundwater restrictions involves changes in crop mix 
that imply changes in the labor intensity of production. Although incorporating 
dozens of crops into a gridded model of agriculture would be appealing, the absence 
of necessary data and parameters would pose major challenges to such an endeavor. 
However, the proposed framework approximates the interplay between multiple 
crop types with different water needs by estimating an aggregate relationship 
between the water intensity of all crops grown in a given region and water avail-
ability. Crop mix also plays a role on the demand side of this analysis, where we 
have assumed a single, national crop price. Chap. 5 and other chapters of this book 
develop an approach that allows for the differentiation of the composite crop by the 
USDA production region. This is also an important advance. 

There are potential limitations to using CZs as geographical restrictions on labor 
mobility. The CZ methodology is based on commuting patterns for the general US 
population, the majority of whom do not regularly move for employment throughout 
the year. Most workers commute from their homes to nearby workplaces (e.g., living 
in a suburb and commuting to a city center). The CZ methodology is not designed to 
depict the movements of follow-the-crop migrants. While this type of worker 
movement has become less common in recent years, follow-the-crop migrants still 
represent an important subset of the agricultural workforce and are crucial for 
ensuring a sufficient labor supply when and where it is needed. One emerging 
solution to the decline in migrant workers is the H-2A visa program for temporary



The findings and conclusions presented in this chapter are those of the authors and should not be

agricultural workers. H-2A visa holders are beholden to specific agricultural 
employers for a duration that is agreed upon prior to the workers’ arrival. As these 
workers cannot move from employer to employer, we omit them from our current 
analysis; in effect, their labor market area encompasses the home country and a 
single US employer (usually a farmer or farmer association, but in some cases a labor 
contractor). All of these constraints point to the need for future work to build on our 
framework and explore the implications of richer delineations of agricultural labor 
markets. 
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In summary, we believe that there is great potential for the explicit modeling of 
agricultural labor markets to contribute to our understanding of the impacts of global 
food price shocks as well as current debates over the agriculture–environment 
interface and the equity implications of conservation policies. The results of this 
study show that the assumption of a less than perfectly elastic labor supply can 
significantly alter conclusions from multiscale sustainability modeling regarding the 
effectiveness and distributional consequences of global shocks as well as local 
conservation policies. We see this work as a first step toward understanding how 
labor markets mediate between local and global economies, thereby enabling the 
refinement of integrated assessment models with richer representations of labor 
markets. 

Acknowledgments and Competing Interests The authors acknowledge support from USDA-
AFRI grants #NIFA-2022-67023-36403, “Labor Markets and the Impacts of Environmental 
Stresses and Conservation Policies on US Agriculture,” and #2019-67023-29679, “Economic 
Foundations of Long Run Agricultural Sustainability,” and the National Science Foundation 
INFEWS award #1855937, “Identifying Sustainability Solutions through Global-Local-Global 
Analysis of a Coupled Water-Agriculture-Bioenergy System.” 

construed to represent any official determination or policy of the US Department of Agriculture 
(USDA), or the National Science Foundation (NSF). Furthermore, we declare that there is no 
conflict of interest related to this work. 

References 

Abbott, Philip C., Christopher Hurt, and Wallace E. Tyner. 2008. What’s driving food prices? Issue 
report 37951. Farm Foundation. https://doi.org/10.22004/ag.econ.37951. 

Aguiar, Angel, Maksym Chepeliev, Erwin L. Corong, Robert McDougall, and Dominique van der 
Mensbrugghe. 2019. The GTAP data base: Version 10. Journal of Global Economic Analysis 4: 
1–27. https://doi.org/10.21642/JGEA.040101AF. 

Arnedo, A, S Rose, and M Borges. 2011. Mapping migration. Mexican Migration and Apple 
Mosaic. https://blogs.dickinson.edu/latinomosaic/history-of-the-apple/. Accessed 4 Feb 2024. 

Autor, David H., David Dorn, and Gordon H. Hanson. 2016. The China shock: Learning from 
labor-market adjustment to large changes in trade. Annual Review of Economics 8: 205–240. 
https://doi.org/10.1146/annurev-economics-080315-015041. 

Autor, David, David Dorn, and Gordon Hanson. 2021. On the persistence of the China shock. 
Brookings Papers on Economic Activity Fall: 381–447.

https://doi.org/10.22004/ag.econ.37951
https://doi.org/10.21642/JGEA.040101AF
https://blogs.dickinson.edu/latinomosaic/history-of-the-apple/
https://doi.org/10.1146/annurev-economics-080315-015041


214 S. Ray et al.

Baldos, Uris Lantz C., Iman Haqiqi, Thomas W. Hertel, Mark Horridge, and J. Liu. 2020. SIMPLE-
G: A multiscale framework for integration of economic and biophysical determinants of 
sustainability. Environmental Modelling & Software 133: 104805. https://doi.org/10.1016/j. 
envsoft.2020.104805. 

Bhattasali, Deepak, Shantong Li, and William J. Martin. 2004. China and the WTO: Accession, 
policy reform, and poverty reduction strategies. Washington, DC: World Bank. https://doi.org/ 
10.1596/0-8213-5667-4. 

Bronars, Stephen G. 2015. A vanishing breed: How the decline in U.S. farm laborers over the last 
decade has hurt the U.S. economy and slowed production on American farms. New York: 
Partnership for a New American Economy. 

Campos, Nauro F., and Jeffrey B. Nugent. 2018. The dynamics of the regulation of labour in 
developing and developed countries since 1960. In The political economy of structural reforms 
in Europe, ed. Nauro F. Campos, Paul De Grauwe, and Yuemei Ji, 75–88. Oxford University 
Press. https://doi.org/10.1093/oso/9780198821878.003.0003. 

Carpenter, Craig Wesley, Michael C. Lotspeich-Yadao, and Charles M. Tolbert. 2022. When to use 
commuting zones? An empirical description of spatial autocorrelation in U.S. counties versus 
commuting zones. PLoS One 17: e0270303. https://doi.org/10.1371/journal.pone.0270303. 

Charlton, Diane, and J. Edward Taylor. 2016. A declining farm workforce: Analysis of panel data 
from rural Mexico. American Journal of Agricultural Economics 98: 1158–1180. https://doi. 
org/10.1093/ajae/aaw018. 

Fan, Maoyong, Susan Gabbard, Anita Alves Pena, and Jeffrey M. Perloff. 2015. Why do fewer 
agricultural workers migrate now? American Journal of Agricultural Economics 97: 665–679. 
https://doi.org/10.1093/ajae/aau115. 

Fan, Maoyong, Anita Alves Pena, and Jeffrey M. Perloff. 2016. Effects of the great recession on the 
U.S. agricultural labor market. American Journal of Agricultural Economics 98: 1146–1157. 
https://doi.org/10.1093/ajae/aaw023. 

Feng, Shuaizhang, Michael Oppenheimer, and Wolfram Schlenker. 2012. Climate change, crop 
yields, and internal migration in the United States, w17734. Cambridge, MA: National Bureau 
of Economic Research. https://doi.org/10.3386/w17734. 

Fowler, Christopher S., and Leif Jensen. 2020. Bridging the gap between geographic concept and 
the data we have: The case of labor markets in the USA. Environment and Planning A: Economy 
and Space 52: 1395–1414. https://doi.org/10.1177/0308518X20906154. 

Fowler, Christopher S., Danielle C. Rhubart, and Leif Jensen. 2016. Reassessing and revising 
commuting zones for 2010: History, assessment, and updates for U.S. “labor-sheds” 
1990–2010. Population Research and Policy Review 35: 263–286. https://doi.org/10.1007/ 
s11113-016-9386-0. 

Green, Richard D., Philip L. Martin, and J. Edward Taylor, ed. 2003. Welfare reform in agricultural 
California. Journal of Agricultural and Resource Economics 28: 169–183. https://doi.org/10. 
22004/ag.econ.30715. 

Haqiqi, Iman, Laura Bowling, Sadia Jame, Uris Baldos, Jing Liu, and Thomas Hertel. 2023. Global 
drivers of local water stresses and global responses to local water policies in the United States. 
Environmental Research Letters 18: 065007. https://doi.org/10.1088/1748-9326/acd269. 

Hertz, Tom, and Steven Zahniser. 2013. Is there a farm labor shortage? American Journal of 
Agricultural Economics 95: 476–481. https://doi.org/10.1093/ajae/aas090. 

Hill, Alexandra E., Izaac Ornelas, and J. Edward Taylor. 2021. Agricultural labor supply. Annual 
Review of Resource Economics 13: 39–64. https://doi.org/10.1146/annurev-resource-
101620-080426. 

Jessoe, Katrina, Dale T. Manning, and J. Edward Taylor. 2018. Climate change and labour 
allocation in rural Mexico: Evidence from annual fluctuations in weather. The Economic 
Journal 128: 230–261. https://doi.org/10.1111/ecoj.12448. 

Johnson, Justin Andrew, Molly E. Brown, Erwin Corong, Jan Philipp Dietrich, Roslyn C. Henry, 
Patrick José von Jeetze, David Leclère, Alexander Popp, Sumil K. Thakrar, and David 
R. Williams. 2023. The meso scale as a frontier in interdisciplinary modeling of sustainability

https://doi.org/10.1016/j.envsoft.2020.104805
https://doi.org/10.1016/j.envsoft.2020.104805
https://doi.org/10.1596/0-8213-5667-4
https://doi.org/10.1596/0-8213-5667-4
https://doi.org/10.1093/oso/9780198821878.003.0003
https://doi.org/10.1371/journal.pone.0270303
https://doi.org/10.1093/ajae/aaw018
https://doi.org/10.1093/ajae/aaw018
https://doi.org/10.1093/ajae/aau115
https://doi.org/10.1093/ajae/aaw023
https://doi.org/10.3386/w17734
https://doi.org/10.1177/0308518X20906154
https://doi.org/10.1007/s11113-016-9386-0
https://doi.org/10.1007/s11113-016-9386-0
https://doi.org/10.22004/ag.econ.30715
https://doi.org/10.22004/ag.econ.30715
https://doi.org/10.1088/1748-9326/acd269
https://doi.org/10.1093/ajae/aas090
https://doi.org/10.1146/annurev-resource-101620-080426
https://doi.org/10.1146/annurev-resource-101620-080426
https://doi.org/10.1111/ecoj.12448


from local to global scales. Environmental Research Letters 18: 025007. https://doi.org/10. 
1088/1748-9326/acb503. 

13 The Role of Labor Markets in Determining the Efficacy. . . 215

Keeney, Roman, and Thomas W. Hertel. 2009. The indirect land use impacts of United States 
biofuel policies: The importance of acreage, yield, and bilateral trade responses. American 
Journal of Agricultural Economics 91: 895–909. https://doi.org/10.1111/j.1467-8276.2009. 
01308.x. 

Konte, Maty, Wilfried A. Kouamé, and Emmanuel B. Mensah. 2022. Structural reforms and labor 
productivity growth in developing countries: Intra or inter-reallocation channel? The World 
Bank Economic Review 36: 646–669. https://doi.org/10.1093/wber/lhac002. 

Kostandini, Genti, Elton Mykerezi, and Cesar Escalante. 2014. The impact of immigration enforce-
ment on the U.S. farming sector. American Journal of Agricultural Economics 96: 172–192. 
https://doi.org/10.1093/ajae/aat081. 

Lark, Tyler J., J. Meghan Salmon, and Holly K. Gibbs. 2015. Cropland expansion outpaces 
agricultural and biofuel policies in the United States. Environmental Research Letters 10: 
044003. https://doi.org/10.1088/1748-9326/10/4/044003. 

Lee, David R., and Peter G. Helmberger. 1985. Estimating supply response in the presence of farm 
programs. American Journal of Agricultural Economics 67: 193–203. https://doi.org/10.2307/ 
1240670. 

Lotze-Campen, Hermann, Christoph Müller, Alberte Bondeau, Stefanie Rost, Alexander Popp, and 
Wolfgang Lucht. 2008. Global food demand, productivity growth, and the scarcity of land and 
water resources: A spatially explicit mathematical programming approach. Agricultural Eco-
nomics 39: 325–338. https://doi.org/10.1111/j.1574-0862.2008.00336.x. 

Martin, Philip L. 2017. Immigration and farm labor: Challenges and opportunities. Berkeley: 
Giannini Foundation of Agricultural Economics. 

Ray, Srabashi, Iman Haqiqi, Alexandra E. Hill, J. Edward Taylor, and Thomas W. Hertel. 2023. 
Labor markets: A critical link between global-local shocks and their impact on agriculture. 
Environmental Research Letters 18: 035007. https://doi.org/10.1088/1748-9326/acb1c9. 

Richards, Timothy J. 2018. Immigration reform and farm labor markets. American Journal of 
Agricultural Economics 100: 1050–1071. https://doi.org/10.1093/ajae/aay027. 

Richards, Timothy J., and Paul M. Patterson. 1998. Hysteresis and the shortage of agricultural labor. 
American Journal of Agricultural Economics 80: 683–695. https://doi.org/10.2307/1244056. 

Shin, Jaewoo, Christoph Müller, and Joshua Elliot. 2016. Global gridded crop model evaluation 
tool. https://mygeohub.org/resources/ggcmevaluation. Accessed 26 Mar 2018. 

Taylor, Paul S. 1937. Migratory farm labor in the United States. Monthly Labor Review 44: 
537–549. 

Taylor, Paul S., and Edward J. Rowell. 1938. Patterns of agricultural labor migration within 
California. Monthly Labor Review 47: 980–990. 

Taylor, J. Edward, Diane Charlton, and Antonio Yúnez-Naude. 2012. The end of farm labor 
abundance. Applied Economic Perspectives and Policy 34: 587–598. https://doi.org/10.1093/ 
aepp/pps036. 

Tolbert, Charles M., and Molly Sizer. 1996. U.S. commuting zones and labor market areas: A 1990 
update, Staff Paper 9614. Washington, DC: US Department of Agriculture, Economic Research 
Service. https://doi.org/10.22004/ag.econ.278812. 

USDA-ERS. 2021. Labor cost share of total gross revenues. Washington, DC: US Department of 
Agriculture, Economic Research Service. https://www.ers.usda.gov/topics/farm-economy/ 
farm-labor/#laborcostshare. Accessed 4 Feb 2024. 

———. 2022. Farm labor. Washington, DC: US Department of Agriculture, Economic Research 
Service. https://www.ers.usda.gov/topics/farm-economy/farm-labor.aspx. Accessed 
4 Feb 2024. 

Valin, Hugo, Petr Havlík, Niklas Forsell, Stefan Frank, Aline Mosnier, Daan Peters, Carlo 
Hemlinck, Matthis Spöttle, and Maarten van den Berg. 2013. Description of the GLOBIOM 
(IIASA) model and comparison with the MIRAGE-BioF (IFPRI) model. Laxenburg: Interna-
tional Institute for Applied Systems Analysis.

https://doi.org/10.1088/1748-9326/acb503
https://doi.org/10.1088/1748-9326/acb503
https://doi.org/10.1111/j.1467-8276.2009.01308.x
https://doi.org/10.1111/j.1467-8276.2009.01308.x
https://doi.org/10.1093/wber/lhac002
https://doi.org/10.1093/ajae/aat081
https://doi.org/10.1088/1748-9326/10/4/044003
https://doi.org/10.2307/1240670
https://doi.org/10.2307/1240670
https://doi.org/10.1111/j.1574-0862.2008.00336.x
https://doi.org/10.1088/1748-9326/acb1c9
https://doi.org/10.1093/ajae/aay027
https://doi.org/10.2307/1244056
https://mygeohub.org/resources/ggcmevaluation
https://doi.org/10.1093/aepp/pps036
https://doi.org/10.1093/aepp/pps036
https://doi.org/10.22004/ag.econ.278812
https://www.ers.usda.gov/topics/farm-economy/farm-labor/#laborcostshare
https://www.ers.usda.gov/topics/farm-economy/farm-labor/#laborcostshare
https://www.ers.usda.gov/topics/farm-economy/farm-labor.aspx


216 S. Ray et al.

Villoria, Nelson B., and Jing Liu. 2018. Using continental grids to improve understanding of global 
land supply responses: Implications for policy-driven land use changes in the Americas. Land 
Use Policy 75: 411–419. https://doi.org/10.1016/j.landusepol.2018.04.010. 

Villoria, Nelson B., Alfredo Cisneros-Pineda, Iman Haqiqi, Shourish Chakravarty, Michael 
Delgado, and Thomas W. Hertel, ed. 2022. Heterogeneous land supply responses in U.-
S. agriculture: Exploring changes in land use from reductions in biofuel mandates. In Annual 
Meeting. Anaheim: Agricultural and Applied Economics Association. https://doi.org/10.22004/ 
ag.econ.322315. 

World Bank. 2022. World Bank commodities price data (The Pink Sheet). https://thedocs. 
worldbank.org/en/doc/5d903e848db1d1b83e0ec8f744e55570-0350012021/related/CMO-
Pink-Sheet-August-2022.pdf. Accessed 4 Feb 2024. 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

https://doi.org/10.1016/j.landusepol.2018.04.010
https://doi.org/10.22004/ag.econ.322315
https://doi.org/10.22004/ag.econ.322315
https://thedocs.worldbank.org/en/doc/5d903e848db1d1b83e0ec8f744e55570-0350012021/related/CMO-Pink-Sheet-August-2022.pdf
https://thedocs.worldbank.org/en/doc/5d903e848db1d1b83e0ec8f744e55570-0350012021/related/CMO-Pink-Sheet-August-2022.pdf
https://thedocs.worldbank.org/en/doc/5d903e848db1d1b83e0ec8f744e55570-0350012021/related/CMO-Pink-Sheet-August-2022.pdf
https://doi.org/10.22004/ag.econ.322315


1 Introduction

Widespread and intensive agricultural activity has resulted in the loss of large
amounts of nitrogen (N) from soils (Goolsby et al. ; Turner et al. ).
Elevated N levels in streams and rivers cause a spectrum of challenging problems,
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including biodiversity loss and threatened human health (Vitousek et al. 1997). 
Nutrients transported through the Mississippi River Basin (MRB) have been blamed 
for what are referred to as “dead zones” (i.e., hypoxic or low-oxygen water) that have 
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largest hypoxic zone measured since 1985 was 22,730 km2 (8776 square miles) in 

level by 2035 will require a reduction of 48% in total nitrogen and phosphorus load 
(Fennel and Laurent 2018; US EPA 2023). 

It is widely recognized that there is no silver bullet for resolving the “wicked” 
problem of nonpoint source water pollution in the Mississippi watershed (Shortle 
and Horan 2017; McLellan et al. 2018). To achieve the 48% nutrient reduction goal, 
in-field nutrient management must be combined with edge-of-field measures as well 
as downstream nutrient removal practices (Schilling and Wolter 2009; Iowa Nutrient 
Reduction Strategy 2013; McLellan et al. 2015, 2018). While agronomic and 
environmental management techniques to control and remove lost N have advanced, 
there is limited evidence that existing policies effectively facilitate the adoption of 
these techniques (Shortle et al. 2012; McLellan et al. 2015; Roy et al. 2021). 

to be largely inefficient, as the incremental cost of water quality protection has 
exceeded the incremental benefits (Olmstead 2010; Laukkanen and Nauges 2014; 
Savage and Ribaudo 2016). This low efficiency is often attributed to a failure to 
identify the proper value of N effluent mitigation (Shortle et al. 2012; Biffi et al. 
2021; Fleming et al. 2022). The uniform value assumed in the current policy design 
does not reflect the spatially varying marginal cost of mitigating water quality 
damages (Shortle and Horan 2017). Quantifying this cost is challenging in practice 
because nonpoint source pollution is often not measurable. Without knowing the 
site-specific biophysical and ecological characteristics of N loss, economic instru-
ments cannot be efficiently deployed. 

This chapter introduces a special version of the SIMPLE-G model, called SIM-
PLE-G-US-CS, that overcomes these problems by estimating and embedding key 
biophysical relationships in an economic model. Using this integrated multiscale 
analytic tool, we compare the effectiveness of various policies in reducing nitrate 
loading in the MRB and the spatial patterns of mitigation. 

S. Jame 
Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, 
IN, USA
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2 SIMPLE-G Version Employed for This Study 

The version of the model that we created for this application is called SIMPLE-G-
US-CS, where CS stands for “corn–soy.” Instead of aggregating production across 
all crops, this model focuses on the two dominant crops in the Midwest: corn and 
soybeans. Corn is a very N-intensive crop that is often rotated with soybeans. 
According to the 2017 Census of Agriculture (USDA NASS), these two crops 
account for 77% of the annual harvested area in the MRB watershed, and 42% of 
basin-wide N fertilizer use was attributed to the production of corn. The corn–soy 
model advances the general SIMPLE-G framework by introducing grid-cell-level N 
loss and crop yield response parameters estimated from the Agro-IBIS model 
(Kucharik 2003; Donner and Kucharik 2008; Kucharik et al. 2013), as shown in 
Fig. 14.1. Specifically, the yield responses to N simulated by Agro-IBIS are used to 
compute the elasticity of substitution (σ) between N fertilizer and augmented land by 
grid cell and irrigation type. The N loss processes simulated by Agro-IBIS translate 
the economic equilibrium level of N application into N loss. More information about 
the two models, validation, and coupling of the two can be found in the supplemental 
information of Liu et al. (2023). 

3 Experimental Design 

Our experimental design considers four strategies individually and in combination to 
study the impacts of different conservation options, as highlighted in Fig. 14.2. The 
first strategy is an N loss tax that increases the cost of N fertilizer application in 
proportion to the estimated N loss rate for a given practice in that grid cell. N loss 
refers to the N fertilizer nutrient that is applied but not taken up by the crop and 
subsequently leaves the root zone. The final cost is determined by the nationally 
uniform N fertilizer price (US$/kg of N applied)1 and the product of a nationwide tax 
rate of US$1/kg of N loss and the N loss intensity (kg of N loss/kg of N application), 
which varies by location and practice. After being adjusted by the N loss intensity, 
the tax imposes the highest penalty on the heavy polluters, whose profit margin will 
be affected directly by the tax and indirectly by the adverse yield impacts of less N 
fertilizer application. 

Unlike the N loss tax, which reduces N use and nitrate loss via higher input costs, 
our second strategy achieves the same goal by applying less fertilizer but using it 
more efficiently. We select two relatively easy—and therefore more likely to be

1 The N loss tax is a hypothetical nationwide policy that is expected to yield comparable mitigation 
outcomes as the other nationwide policy—split N application. The base tax rate is set uniformly 
nationwide for the sake of practical necessity. It is further adjusted by the N loss intensity to create 
the site-specific N loss tax rate such that the final rate is higher for the locations with higher N loss 
intensity. See Section B of the SI in Liu et al. (2023) for more information.



adopted—practices: split N and side-dressing.2 According to the Iowa Nutrient 
Reduction Strategy (2013), moving from fall to spring pre-planting application 
and side-dressing application reduce nitrate-N loss by an average of 6% and 4%, 
respectively. These improved practices are implemented in the model by increasing
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Fig. 14.1 Schematic of the SIMPLE-G-US-CS model 
SIMPLE-G-US-CS is a modification of the standard SIMPLE-G model (Fig. 4.1). Key modifica-
tions include the interaction between Agro-IBIS and SIMPLE-G and accounting for nitrogen 
(N) loss resulting from N input use 

2 Split N means that growers make two or more N fertilizer applications during the growing season 
rather than supplying all of the crop’s N requirements with a single treatment prior to or at planting. 
Side-dressing refers to applying fertilizers in a shallow furrow or band along the side of row crops.



the productivity of N fertilizer to reduce N loss by 10% while keeping the baseline 
crop output unchanged.
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Fig. 14.2 Connections between Agro-IBIS and SIMPLE-G-US-CS and nitrogen (N) loss mitiga-
tion policies 
Yield (N) and N loss (N) are univariate transfer functions (with respect to N) through which 
biophysical characteristics are embedded into the economic model. The N loss tax and split N 
affect N application rates and therefore N loading through the transfer functions. Controlled 
drainage and wetland restoration affect nitrate loads mainly through post-application nitrate 
removal 

The other two mitigation strategies focus on locally feasible nutrient management 
practices: controlled drainage3 and wetland restoration.4 Both practices yield spa-
tially varying N loss removal rates that are determined by local conditions (e.g., 
water runoff, subsurface-drained area, and soil and vegetation characteristics). These 
strategies do not affect N fertilizer application directly but remove pollutants after 
application before they enter a stream. Additional information for each conservation 
effort can be found in the supplemental information of Liu et al. (2023). 

4 Results 

We implement the four policies individually as well as together in the SIMPLE-G-
US-CS and explore the results, both at the grid cell level and at more aggregate 
levels, including states and over the entire Mississippi Basin. 

3 Controlled drainage uses a water control structure to adjust the depth of the subsurface drainage 
outlet in order to control water in the field. 
4 Wetlands in this paper refer to constructed integrated systems that use the natural functions of 
vegetation, soil, and microorganisms as well as the environment to improve water quality.
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Table 14.1 Nitrogen (N) loss reduction outcomes, impacts on crop output and price, and mitiga-
tion efficiency across management strategies 

Policy 

N 
application 

Crop 
output 

Crop 
price 

Million 
tons

-0.65 

Million 
tons

-9.98 

US$/ton 

4.16 

Million 
tons

-0.34 

US$/ 
kg N 

10.09 

kg N/ 
ha 

5.30N loss tax 
(-5.91%) (-2.08%) (+1.84%) (-9.02%) 

Split N -0.75 
(-6.80%) 

0.00 
(0.00%) 

0.00 
(0.00%)

-0.42 
(-11.18%) 

3.57 6.57 

Controlled drainage -0.02 
(-0.17%)

-0.88 
(-0.18%) 

0.36 
(+0.16%)

-0.46 
(-12.15%) 

0.79 31.70 

Wetlands -0.05 
(-0.47%)

-2.38 
(-0.55%) 

1.18 
(+0.48%)

-0.58 
(-15.41%) 

1.81 27.26 

Tax + Split N -1.35 
(-12.19%)

-8.99 
(-1.87%) 

3.74 
(+1.65%)

-0.71 
(-18.86%) 

6.94 11.1 

Tax + Split N + Con-
trolled drainage

-1.28 
(-11.63%)

-4.78 
(-1.00%) 

1.97 
(+0.87%)

-1.04 
(-27.66%) 

5.08 16.3 

Tax + Split N + Wetlands -1.36 
(-12.30%)

-9.64 
(-2.01%) 

4.01 
(+1.78%)

-1.17 
(-31.00%) 

5.12 18.2 

Mitigation efficiency, measured in US$/kg, indicates the economic efficiency in terms of the direct 
cost incurred to reduce 1 unit of N loss. Note that this measure abstracts from the potential uses of 
the tax revenues. The efficiency, measured in kg/ha, indicates the biophysical efficiency regarding 
the potential for N loss removal per cropland area 

4.1 Combining N Loss Tax, Split N Fertilizer Application, 
and Wetland Restoration Has the Potential to Reduce N 
Loss from Corn Production by over 30% 

Among the four strategies explored, wetland restoration appears to be the most 
effective single strategy, reducing N loss from corn production by 15%, followed 
by controlled drainage (12%) (Table 14.1). When combined, wetland restoration— 
along with the N loss tax and split N application—can raise the reduction potential to 
31%. An N loss tax of US$1/kg of N loss boosts the average cost of N fertilizer to 
corn farms by 28.9% and reduces N fertilizer use by 6% and total N loss by 9%.5 

National crop yields are barely affected by the rate reduction, falling slightly from 
7.48 to 7.39 corn-equivalent tons per hectare. However, the local effects are more 
significant. Figure S2 in Liu et al. (2023) shows that the potential crop yield declines

5 Results of different tax rates from US$0.1–1/kg of N loss are reported in Section G of the 
supplemental information of Liu et al. (2023). The N loss charge (in US$/kg of N application) is 
computed as the product of a charge rate (in US$/kg of N loss) and nitrate-N loss rate (kg of N loss/ 
kg of N application). For example, if a farm loses 30% of the N fertilizer applied, the actual cost of 
applying 1 kg of N fertilizer increases from the base price of US$1/kg to US$1.3/kg, which includes 
the US$0.3/kg N loss charge. The 28.9% simply represents the aggregated N loss rate at the national 
level.



most around the edges of the MRB, where there is a higher dependence on supple-
mentary fertilization is higher. Farms located in the Great Plains are least affected by 
the tax because of their relatively lower N loss intensity.
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At the aggregate level, postapplication treatments such as controlled drainage and 
wetland construction result in much larger N loss reductions (31 and 27 kg of N/ha, 
respectively) than split N application and the N loss tax (7 and 5 kg of N/ha, 
respectively).6 Removing 1 kg of N loss costs US$1.80 when accomplished via 
wetlands and US$0.80 when using controlled drainage.7 It is more costly (US$3.60) 
to mitigate N loss through the adoption of side-dressing and split N application and 
even more costly (US$10) by imposing a pollution tax, which is calculated by 
dividing the total N loss tax collected through N fertilizer sales by the amount of 
N loss reduced. It is important to note that this economic accounting differs from the 
implementation costs associated with other practices and must be interpreted with 
caution should readers wish to compare costs across practices. In addition, the tax 
revenue can be recycled to support pollution abatement, which could lower the 
actual cost of the policy. The outcomes of alternative tax recycling schemes (e.g., 
cutting the existing tax on capital income or subsidizing additional programs to 
further enhance the mitigation effect) have been more extensively studied in the 
context of carbon taxation (Timilsina 2018). This work has yet to be done for 
nutrient management. More information about how each cost is calculated can be 
found in Liu et al. (2023, supplement Section F). 

Crop output falls in almost all cases, albeit modestly, due to the higher input costs 
associated with the rising N fertilizer price, infrastructure installation and mainte-
nance, or forgone cropland (relevant to wetlands only). The composite corn–soy 
price increases by no more than 2%, regardless of the scenario, given the modest 
change in crop output. The sum of the individual scenarios’ output and price effects 
is greater than when they are implemented in concert, indicating the presence of 
complementarities among the policies. 

4.2 The Most Effective Nitrate Loss Mitigation Policy Varies 
by Location 

While total mitigation across the four individual strategies is comparable, the spatial 
pattern of the N loss reductions varies remarkably (Fig. 14.3). The amount of 
mitigation is relatively consistent across the US Corn Belt for N loss tax and split

6 These results are generally comparable to those recorded in the CEAP regional reports, although a 
straight comparison between the two may not be reasonable given the difference of the actions 
considered in each study. 
7 This number accounts only the cost for the control system but not the installation of the subsurface-
drains itself due to lack of information. The cost of the latter varies depending on the spacing and 
depth of the drainage pipes.



N application, as these are not tied to specific locations. This finding stands in 
marked contrast to the patterns associated with strategies that are contingent on 
local conditions. Controlled drainage is only possible in locations where subsurface 
drainage is installed. Wetland restoration in our analysis is limited to locations where 
hydric soils and subsurface drainage are present. Results show that N loss mitigation 
per grid cell is much higher in the heart of the Corn Belt, where controlled drainage 
and wetland restoration are more prevalent. Compared to N loss tax and split N 
application, these two strategies also lead to much higher N removal rates.
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Fig. 14.3 Changes in nitrogen (N) loss under (a) an N loss tax, (b) split N application, (c) 
controlled drainage, (d) wetland restoration, and (e) combined strategies of tax, split N, and wetland 
restoration 
Units are tons of N loss per 5 arcmin grid cells. A negative value indicates N loss reduction. Figure f 
shows the most effective single strategy at each grid cell. The maps include only the grid cells where 
corn and soybeans are grown in the United States 

The gridded results reported in Fig. 14.3a–d allow us to identify the single 
practice among the four that exhibits the largest N loss reduction (in terms of tons 
N per grid cell) at each location (Fig. 14.3f). Controlled drainage and wetland 
restoration dominate the Corn Belt as the most effective practices, except at the 
western edge, where split N is more effective. Outside of the Corn Belt, the N loss 
tax stands out as the most effective strategy, especially in the Eastern United States, 
under the current setting of the experiments (e.g., tax rate, the extent of N fertilizer 
productivity being increased, and the spatial extent of controlled drainage and 
restorable wetlands). This stems from a combination of factors, including relatively 
high N loss intensity and marginal productivity of N applications, as well as the 
reduced prevalence of subsurface drainage and restorable wetlands in this region. 

4.3 Pairing Nationwide Strategies with Site-Specific 
Conservation Practices Can Remedy Counterproductive 
Policy Spillovers 

Conservation systems such as controlled drainage and wetland restoration incur an 
additional cost of US$10–US$20 per acre. Despite being a small share of the US 
$450/acre nonland cost of producing corn (e.g., in Central Illinois circa 2010,



Schnitkey et al. 2021), it could still reduce profitability and curb output on adopting 
farms. By removing land from production, wetland restoration could be more costly, 
although some lands are intentionally retired due to their low productivity. Consid-
ering both factors, output on adopting farms and demand for N fertilizer are likely to 
fall. When aggregated to the national level, the local effect could boost the corn price 
while curbing the price of N fertilizer due to the weakened demand for fertilizer. In 
the long run, the elevated corn price will induce production expansion and additional 
N application elsewhere. 

14 Tackling Policy Leakage and Targeting Hot Spots Could Be Key. . . 225

Figure 14.3c, d clearly show this spatial spillover effect: N loss around the fringes 
of the Corn Belt rises in response to higher corn prices. Because there is little 
subsurface drainage in these fringe areas (Valayamkunnath et al. 2020), less of the 
increased N loss will contribute directly to the hypoxia problem in the Gulf of 
Mexico, but it could result in groundwater contamination. 

To quantify the accumulated spillover effects, we decompose the overall change 
in N loss into two components: mitigation (a decrease in N loss) and spillovers 
(an increase in N loss). Although the magnitude of spillover effect is relatively small 
compared to the mitigation potential, the additional N applications driven by spill-
overs are more environmentally harmful. This extra N application leads to higher N 
loss intensity regardless of the measurement method. For example, on average, 41% 
of the additional N applied to the untreated cropland area is lost, compared to a 33% 
N loss rate on the same land before wetland restoration is introduced. Both N losses 
per hectare of cropland and per ton of crop output increase significantly. However, 
these spillovers are sharply reduced when policies are combined (Fig. 14.3e), as the 
uniform coverage greatly limits market-mediated leakage. 

4.4 Targeting N Loss Hot Spots Would Make Conservation 
Efforts More Efficient and Cost-Effective 

Substantial reductions in N loss are spatially concentrated in areas with extensive 
corn acreage, intensive N fertilizer use, and/or effective conservation practices. We 
find that, across the four practices studied, less than 10% of the total 48,317 grid cells 
contribute 50% of the mitigation, with only a small reduction in crop output (5% or 
less) (Fig. 14.4). These top-mitigating grid cells shown in Fig. S11 of Liu et al. 
(2023) account for 39.4% of the corn–soy area and 38.8% of US corn–soy output. 
They also use 42.5% of N fertilizer and produce 46.7% of N loss in US corn–soy 
production. Implementing a combined strategy of tax, split N, and wetland restora-
tion to reduce N loss by 30% would cost US$6 billion annually, or approximately 
US$38/acre/year. Focusing on this 10% of the grid cells that contribute half of the 
30% N loss reduction would reduce costs to US$2.4 billion/year, while removing the 
other half of the 30% would cost more (US$3.6 billion/year) due to lower N removal 
efficiency. At higher adoption rates, reducing an additional unit of N costs more—



and N removal per hectare also declines—because more “expensive” locations are 
included, where either the N loss intensity is low, the marginal product of N is high, 
or both. 
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Since environmental policies are typically set at the state or federal level rather 
than by individual grid cells, we also report state-level mitigation potentials in 
Fig. 14.4. Collectively, these nine selected states produce 80% of US corn and soy 
output and use 83% of the N fertilizer applied to corn production. These states also 
account for 80–85% of total N loss reduction under the tax and split N strategies, and 
almost all the reduction under the controlled drainage and wetland scenarios. 
Controlled drainage is especially effective for Iowa, Illinois, Indiana, Minnesota, 
and Ohio, where subsurface drainage is widely used (Valayamkunnath et al. 2020). 
Wetland restoration is also effective across most of the Corn Belt. However, due to 
spillover effects, these policies may increase N loss in states lacking controlled 
drainage and wetland systems. Not surprisingly, policy combinations can 
outperform individual policies, and this difference is particularly pronounced in 
Iowa, Illinois, and Minnesota. 

Fig. 14.4 N loss reduction by (a) state and mitigation strategy and (b) accumulated percentage 
In Fig. b, mitigation at the grid-cell level is first sorted in descending order and then accumulated. 
Therefore, the order of the grid cells varies by policy. The light gray, dotted horizontal line indicates 
a 50% reduction in total nitrate load
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Fig. 14.4 (continued) 

5 Discussion 

There are several limitations to this study that warrant further investigation. First, we 
focus only on N loss through water and do not consider nitrous oxide emissions. 
Therefore, we have not comprehensively evaluated the effectiveness of these con-
servation policies. A recent study suggests that policies targeting water quality 
also provide substantial co-benefits by reducing nitrous oxide emissions (Weng 
et al. 2024). Second, our estimation of the area feasible for controlled drainage and 
restorable wetlands focus on regions with high potential but does not cover the entire 
continental United States due to limited data at the time of analysis. Alternative data 
sources, such as AgTile-US (Valayamkunnath et al. 2020) and Potentially Restor-
able Wetlands on Agricultural Land provided by EPA EnviroAtlas, could help 
estimate feasibility in future studies. Third, the N loss reported in our study differs 
from the amount of nitrate that reaches the Gulf of Mexico, and we do not consider N 
legacy (Van Meter et al. 2016, 2018; Basu et al. 2022). Both will depend on local 
hydrological and biogeochemical processes, which will affect the amount of nitrate 
ultimately reaching the Gulf (Masuda et al. 2021). In future work, it will be valuable



to integrate our multiscale analytical framework with hydroecological models to 
track nutrient movement through ecosystems. 
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Our study contributes several advancements to the literature. The wider impact of 
local decisions, or the spillover effect, is the most intriguing result we would like to 
emphasize. When some—but not all—farms are targeted, the comparative advantage 
of farms is altered, and the change is transmitted by prices in input and output 
markets across different scales, leading to unintended displacement of crop produc-
tion and pollution. Similar “leakage effects” associated with spatially targeted 
environmental policy intervention have been well recognized in the deployment of 
climate (Hertel and Tyner 2013; Dou et al. 2018) and air pollution (Fang et al. 2019) 
policies, but the relevant literature is sparse in the context of water pollution except 
for a few economic studies (Turner et al. 1999; Xu et al. 2022). A growing concern 
about governance is that the hidden external cost outside of the target area could 
offset direct gains (Rajagopal and Zilberman 2013; Dou et al. 2018). However, the 
spillover phenomenon in policy-making remains poorly understood (Bastos Lima 
et al. 2019). The coupling of SIMPLE-G-US-CS with Agro-IBIS helps unravel this 
mechanism by explicitly characterizing production technologies and biophysical 
characteristics across locations. We find that the spillover effects depend on the 
cost burden of conservation on farmers. The higher the farmers’ burden, the larger 
the ensuing output reduction and market-mediated spillovers. The magnitude of the 
spillover depends on the specifics of the policy implementation, including forgone 
production value, copayments required of farmers, and adoption rates. In our case, 
leakage is still strongly outweighed by the mitigation efforts but could hinder 
conservation goals and raise equity and efficiency concerns. 

This caveat, however, should not deter the targeting of policy interventions that 
have been linked to efficiency gains and extensively recommended by the literature 
(Babcock et al. 1997; van der Horst 2007). Our model’s ability to identify areas with 
high mitigation efficiency provides an empirical foundation for shaping policies that 
enhance the effectiveness of these interventions (van der Horst 2007). The finding 
that the leakage effect can be mitigated by combining nationwide and regional 
strategies offers fresh insights for future policy design. Additionally, our 
agroecosystem-supported economic model can be used to explore differentiated 
taxes or subsidies that discourage excessive fertilizer application and compensate 
farmers for behaviorial changes. While numerous studies have confirmed the effec-
tiveness of conservation practices in improving water quality, much less evidence 
supports the idea that existing conservation programs succeed in enrolling low-cost 
adopters or achieve wide adoption of these practices. One possible reason why 
undifferentiated policies fail is the mismatch between the policy-authorized payment 
and farmers’ expectations, particularly when there are potential negative impacts 
on yields. And this concern is not unfounded. Roy et al. (2021) show that N 
application rates in many Midwest counties remain below the N input break point, 
beyond which crop yield plateaus or declines. Our grid-cell-based analysis also finds 
locations where nutrient deficiencies could limit crop yields. Assessing this concern



The findings and conclusions presented in this chapter are those of the authors and should not be

requires a thorough understanding of site-specific N balance, the uncertainties 
associated with climate, production technologies, and the prices of crops and inputs 
(especially N fertilizer). 
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6 Conclusion 

By integrating a version of SIMPLE-G with the agroecosystem model Agro-IBIS, 
we evaluate the effectiveness of four conservation strategies—N loss tax, split N 
application, controlled drainage, and wetland restoration, both individually and in 
combination—to manage nitrate-N loss from U.S. corn production. Collectively, 
these practices could reduce N loss from US corn production by 30%, at an estimated 
annual cost of US$6 billion. Several studies (Rabotyagov et al. 2010, 2014; Tallis 
et al. 2019; Xu et al. 2022) have reported similar levels of expenditure to achieve 
comparable mitigation goals.8 The mitigation effect of each practice varies signifi-
cantly across regions, highlighting the importance of spatial targeting for both the 
selection of practices and locations to improve the cost-effectiveness. This aligns 
with findings from a growing body of research on this topic (Kurkalova 2015; 
Lintern et al. 2020; Hansen et al. 2021). A successful transition from research to 
policy and practice requires innovative policy design. Future policies should 
also consider regulating fertilizer products as a complement to voluntary, farmer-
oriented conservation programs. For example, Kanter and Searchinger (2018) pro-
pose a municipal minimum sales share of enhanced efficiency fertilizers, akin to 
how Corporate Average Fuel Economy Standards regulate auto manufacturers to 
improve fuel efficiency rather than trying to regulate millions of individual drivers. 
Our modeling framework can be extended to evaluate and test these alternative pol-
icy options. 
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8 These include the US$1.4 billion/year to reduce N loading in the Upper MRB by 30% through 
in-field and edge-of-field practices and retirement of land (Rabotyagov et al. 2010), US$2.6 billion/ 
year through market and regulatory instruments to reduce N flows in the Ohio River Basin and 
Upper MRB by 25% (Tallis et al. 2019), US$2.7 billion/year to reduce the hypoxic zone in the Gulf 
of Mexico to 5000 km2 through cropland conservation and fertilizer management practices 
(Rabotyagov et al. 2014), and US$6 billion/year in opportunity costs in terms of the value of 
forgone crop production by changing N fertilizer intensification and crop acreage in order to reduce 
N runoff from crop production to the Gulf by 45% (Xu et al. 2022).
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Chapter 15 
The Role of Transportation Infrastructure 
Expansion in the Transmission of Global 
Crop Price Shocks to the Brazilian 
Agriculture 

Zhan Wang 

1 Introduction 

The high logistics cost from farm to port is a major factor that hinders the export 
competitiveness of Brazilian agriculture (Tiller and Thill 2017; Fliehr et al. 2019; 
Mendes Dos Reis et al. 2020; Valdes 2022), especially for its inland Cerrado biome. 
Nonetheless, the Cerrado has experienced rapid expansion of both cropland and crop 
production in the last three decades (Bicudo Da Silva et al. 2020; Souza et al. 2020). 
For example, Meade et al. (2016) compare the crop prices at destinations and their 
decomposition (farm-gate crop price, inland transportation and handling cost, and 
ocean transportation cost) between two crop-producing sites—Sorriso in the Mato 
Grosso state (MT) to represent the Cerrado biome and Campo Mourão in Paraná 
state (PR) to represent the south/southeast region, which is better connected to global 
markets. Figure 15.1 illustrates these data, showing that the Cerrado biome is more 
disadvantaged in inland transportation than the south/southeast region, not only 
because the former is further from crop exporting ports but also because of its 
sparser transportation network, especially the railway network. As a result, although 
Sorriso faces similar or lower farm-gate crop prices for corn and soybean production, 
its inland transportation cost is about three times that of Campo Mourão. Thus, crops 
produced in Sorriso are more expensive for importers and less competitive in 
international markets (Fig. 15.1b). 

Data availability statement: The files needed to replicate this application are available at https://gtap. 
agecon.purdue.edu/simple-g/. 

Z. Wang (✉) 
Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, 
West Lafayette, IN, USA 
e-mail: zhanwang@purdue.edu 

© The Author(s) 2025 
I. Haqiqi, T. W. Hertel (eds.), SIMPLE-G,

235

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-68054-0_15&domain=pdf
https://gtap.agecon.purdue.edu/simple-g/
https://gtap.agecon.purdue.edu/simple-g/
mailto:zhanwang@purdue.edu
https://doi.org/10.1007/978-3-031-68054-0_15#DOI


236 Z. Wang

Fig. 15.1 Role of logistics costs in Brazilian crop exports. (a) Locations of two representative crop 
production sites for the Cerrado biome (red boundary) and south/southeast region, respectively 
(Sorriso in the Mato Grosso (MT) state and Campo Mourão in Paraná (PR) state) and the 
distribution of road, railway, and crop exporting ports in 2017. (b) The decomposition of destina-
tion prices from Sorriso (MT) and Campo Mourão (PR) on corn exports to Japan and soybean trade 
to China. (Data are obtained from Meade et al. (2016)) 

In 2021, Brazil launched the 2035 National Logistics Plan (PNL2035), which 
aims to expand domestic transportation infrastructure to improve the connectivity of 
inland regions to coastal regions and eventually to the global market. According to 
the Ministry of Infrastructure of Brazil (2022), PNL2035 will expand the railway 
network length by up to 90.56% upon its completion, while the expected expansion 
of the already developed road network would be slight (<1%). How will this large-
scale infrastructure expansion plan influence the export competitiveness of crops 
produced from inland Brazil? To analyze the comprehensive impacts of PNL2035 
on crop export competitiveness, it is necessary to capture the interactive effects 
between global-level crop price changes and the spatial heterogeneity of transporta-
tion cost reductions from infrastructure expansion and to consider the spillover 
effects among regions in Brazil. The SIMPLE-G model introduced in this book, 
with its global–local–global philosophy, provides an appropriate tool for this 
research question. 

In this chapter, we use a specially designed version of SIMPLE-G to simulate the 
interactive impacts of global crop price change and domestic transportation infra-
structure expansion on crop production, land use, and carbon balance. Brazil is the 
focus region (hence SIMPLE-G-Brazil), and the PNL2035 provides the policy 
background. Of course, the methodology described in this chapter can be general-
ized to other regions of the world where transportation costs are of considerable 
importance. First, we provide a simplified economic framework to qualitatively 
demonstrate the impact of a global crop price increase and domestic transportation 
cost reduction on both subregional and regional crop supplies. Second, we introduce 
SIMPLE-G-Brazil, the regional variant of SIMPLE-G developed to research gridded 
agricultural and environmental impacts within Brazil. In particular, we discuss the 
two new modules that differentiate SIMPLE-G-Brazil in this application from the 
fundamental SIMPLE-G framework introduced in Part III: the transportation cost



and cropland supply modules. Following Wang et al. (2024), the transportation cost 
module connects the expansion of transportation infrastructure with the reduction in 
monetary transportation costs at the grid cell level, which represents the role of 
transportation infrastructure in local farm-gate crop prices. The cropland supply 
module extends the factor supply system of cropland in the basic SIMPLE-G 
framework to capture the impacts of conservation policy on cropland expansion 
potential. For example, Brazil requires that a certain share of land (depending on the 
biome) on each farm cannot be used as cropland to prevent deforestation from 
overcultivation (Metzger et al. 2019). The cropland supply module can automati-
cally prevent cropland expansion on all grid cells that have reached or exceeded this 
policy constraint. Additionally, the cropland supply module allows us to conduct a 
sensitivity analysis with respect to the cropland supply elasticity parameters. Third, 
we describe the experimental design for quantitatively simulating the impacts of a 
global crop price change and transportation cost reduction. Finally, we report and 
discuss simulation results covering three aspects: the global-to-local transmission of 
crop prices, the corresponding response of crop production and cropland use, and, 
consequently, the implications for terrestrial carbon fluxes. 
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2 Economic Framework 

In this section, we conceptually demonstrate how international crop price changes 
and domestic transportation cost reductions interact and influence crop production, 
illustrated in Fig. 15.2. In this framework, Brazil consists of two regions: coastal and 
inland. For simplicity, we assume that the coastal region has already fully benefited

Fig. 15.2 Economic framework of national and subnational responses to a world price shock 
(dotted line) and transportation infrastructure expansion (dashed line). Solid lines show the supply– 
demand equilibrium without external shocks. An increase in global demand for Brazilian produc-
tion shifts the national demand curve outward, resulting in an increase in the border price that 
producers receive for crops in both regions. They expand production to QC2 and QI2, respectively. 
The introduction of new transportation infrastructure boosts farm-gate returns in the inland region 
and acts as a supply shifter, resulting in output level QI3. With the expansion of inland production, 
mobile input costs may increase; thus, some coastal production is displaced, as shown by the 
backward supply shift, resulting in production at QC3



from existing transportation infrastructure; thus, expansion of the domestic trans-
portation network will only reduce transportation costs in the inland region. Without 
external shocks, the national crop supply and crop demand (including both domestic 
and export demand) interact, resulting in equilibrium crop price P1 and crop quantity 
Q1. At the subnational level, the coastal and inland regions face the same free-on-
board (FOB) price and produce crops QC1 and QI1, respectively, where 
Q1 = QC1 + QI1.

1

238 Z. Wang

First, we assume an increase in Brazilian crop export demand from the global 
market, which is represented as the outward shifting of the demand curve (solid to 
dotted line) on the national level. Both the new equilibrium price, P2, and crop 
quantity, Q2, increase from the previous equilibrium. On the subnational level, 
without further shocks to local supply, a higher FOB price, P2, causes local crop 
production (QC2, QI2) to increase in both regions. 

In addition to the international demand shock, we consider the reduction in 
transportation costs for the inland region. As the farm-gate crop price equals the 
difference between the FOB crop price and transportation cost, a decrease in 
transportation costs raises the farm-gate price received by producers from the inland 
region and the average farm-gate price received at the national level, which is 
equivalent to a subsidy in production. As a result, the supply curves in both the 
inland region and at the national level shift rightward (solid to dashed lines). 
Although reductions in transportation costs do not directly influence farm-gate 
crop prices in the coastal region, both coastal and inland regions use factors supplied 
at the national level in crop production. Therefore, the reduction in transportation 
costs in the inland region makes it more competitive in attracting mobile factors, 
which reduces the availability of production factors for the coastal region and 
increases the cost of crop production there, resulting in an upward shift in the supply 
curve. The interactive effects of the increase in crop export demand and reduction in 
inland transportation costs cause a smaller magnitude of increase in national crop 
price P3 (P1 < P3 < P2) and further growth in national crop production Q3 

(Q1 < Q2 < Q3). At the subnational level, we expect the reduction in transportation 
costs to further promote local crop production in the inland region (QI1< QI2< QI3), 
but its spillover effect reduces crop production in the coastal region 
(QC3 < QC1 < QC2). 

The analysis with the simplified two-region framework provides us with the 
economic intuition with respect to the interactive impacts of a global crop price 
shock and a reduction in domestic transportation costs as well as a series of expected 
outcomes to be further tested as hypotheses. However, this simplified framework 
cannot capture the more complex agricultural production systems or rich spatial 
information on a fine-scale level; further analysis with the computable multiscale 
economic model SIMPLE-G-Brazil is needed. 

1 For simplicity, here we do not consider the transport cost between farmers and domestic con-
sumers and instead assume that all domestic consumers face the same crop price as the FOB price. 
Given that the most densely populated regions in Brazil are located along its coast (IBGE 2010), this 
assumption is reasonable for our application.
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Fig. 15.3 Overview of the SIMPLE-G-Brazil model for the transportation infrastructure applica-
tion. (Adapted from Wang et al. (2024)) 

3 SIMPLE-G-Brazil for the Transportation Application 

This section takes us under the hood of the SIMPLE-G-Brazil model, showcasing 
key data sources and introducing two major upgrades: a nuanced land supply module 
to capture finer details of land use restrictions and a new transportation cost module 
that adds another layer of realism to the model. 

3.1 Model and Data 

SIMPLE-G-Brazil is constructed from the basic version of SIMPLE-G described in 
Part III. SIMPLE-G-Brazil divides the world into 17 regions and further disaggre-
gates Brazil’s cropland into 50,598 grid cells, each with a spatial resolution of 
5 arcminutes (around 7000–8500 hectares in area, depending on latitude). Fig-
ure 15.3 summarizes the model structure of SIMPLE-G-Brazil for the transportation



application. We incorporate a transportation cost module that links the Brazilian 
(port) crop price obtained from the national crop supply and demand equilibrium 
with the gridded farm-gate crop price. Furthermore, we modify the supply system of 
gridded cropland, which allows us to conduct a systematic sensitivity analysis (SSA) 
with respect to uncertainties from cropland supply parameter estimation and to 
control for conservation policies. 
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We selected 2017 as the baseline year for the model databases, and this model has 
been validated with historical observational data from 2000 to 2017 (for detailed 
information on model validation, please refer to Chap. 9). This study leverages a 
diverse mosaic of datasets to build a comprehensive picture of the Brazilian agri-
cultural landscape. At the spatial level, detailed cropland area maps from 
MapBiomas (2020) are combined with yield data from Portmann et al. (2010) and 
further refined with microregional adjustments from the Brazilian Institute of Geog-
raphy and Statistics (IBGE) (Prado Siqueira 2022). Irrigation status is estimated 
based on municipality-level irrigation ratios from the IBGE (2019) agricultural 
census. The transportation network is defined using data from the Ministry of 
Infrastructure of Brazil (2022), while crop exporting port locations are pinpointed 
via Victoria et al. (2021). Carbon stock factors from Novaes et al. (2017) are adjusted 
with tillage status data from Fuentes-Llanillo et al. (2021) to provide a nuanced 
picture of carbon storage, and vehicle carbon emission factors are drawn from Sims 
et al. (2014). On the aggregated level, the study draws upon FAOSTAT (FAO 2021) 
data for cropland area, crop output and price and World Bank open data (World 
Bank 2020) for population and per capita gross domestic product (GDP). Finally, 
GTAP database v.10 (Aguiar et al. 2019) provides insights into crop demand, while 
input cost shares are from Hertel and Baldos (2016). This rich tapestry of data 
sources fuels the intricate analyses presented in this chapter, enabling us to explore 
the complex interactions within the Brazilian agricultural system. Note that 
Table 15.1 summarizes the data sources for SIMPLE-G-Brazil and its transportation 
application. The simulation results from SIMPLE-G-Brazil are obtained using the 
GEMPACK economic modeling software (v.12) (Horridge et al. 2018). 

3.2 Transportation Cost Module 

To capture the role of transportation cost as the price wedge between FOB and farm-
gate crop prices, this application attaches a transportation cost module to the basic 
SIMPLE-G model. In the basic structure, the gridded farm-gate crop price equals the 
national crop price (FOB price), so the transportation cost is not incorporated. In the 
transportation cost module, we replace the relationship between farm-gate and FOB 
crop prices with the following equation:
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Table 15.1 Data sources for SIMPLE-G-Brazil transportation application 

Variable Data source 

Spatial level 

Cropland area MapBiomas (2020) 

Crop yield Portmann et al. (2010), adjusted with crop yield at the microregion level 
from the Brazilian Institute of Geography and Statistics (IBGE) (Prado 
Siqueira 2022) 

Irrigation status Calculated based on municipality-level irrigation ratio from the agricul-
tural census (IBGE 2019) 

Transportation 
network 

Ministry of Infrastructure of Brazil (2022) 

Crop exporting port 
location 

Victoria et al. (2021) 

Carbon stock factor Novaes et al. (2017), adjusted with tillage status from Fuentes-Llanillo 
et al. (2021) 

Vehicle emission 
factor 

Sims et al. (2014) 

Aggregated level 

Cropland area FAOSTAT (FAO 2021) 

Crop output FAOSTAT (FAO 2021) 

Crop price FAOSTAT (FAO 2021) 

Population World Bank open data (World Bank 2020) 

Per Capita GDP World Bank open data (World Bank 2020) 

Crop demand GTAP v.10 (Aguiar et al. 2019) 

Input cost share Hertel and Baldos (2016) 

PFOB =PFG 
i þ PTC 

i , ð15:1Þ 

where PFOB is the FOB price at the national level, PTC 
i is the transportation cost (i.e., 

the least cost to transport crops from a farm to any export port) of grid cell i (the 
estimation of PTC 

i is described in Sect. 4), and PFG 
i is the farm-gate crop price for 

farmers in grid cell i. This representation is similar to modeling the margin of 
transportation in the general equilibrium literature. 

As discussed in Chap. 5, SIMPLE-G consists of linearized equations with 
percentage-change form variables, so Eq. 15.1 is also linearized as follows2 : 

pFG i = 1þ θið ÞpFOB - θip
TC 
i , ð15:2Þ 

where pFOB , pTC i , and pFG i refer to the percentage changes in FOB price, gridded 
transportation cost, and farm-gate crop price, respectively, and θi represents the share 
of transportation cost relative to the total FOB price in the baseline dataset. Equation

2 Recall that we use uppercase letters to represent variables in level form and lowercase letters to 
represent variables in linearized form.



15.2 provides an updated relationship between farm-gate crop price, FOB crop price, 
and transportation cost. With the transportation cost module, the farm-gate price 
increases with the FOB crop price (positive pFOB ) and with a reduction in transpor-
tation costs (negative pTC i ), while the magnitude of those impacts now depends not 
only on changes in pFOB or pTC i but also on the share of transportation cost in crop 
price decomposition. This representation is essential for research questions when the 
change in transportation costs is spatially heterogeneous, and an explicit consider-
ation of transportation costs therefore provides a more precise analysis.
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3.3 Cropland Supply Module for SSA and Conservation 
Policy 

In addition to the module of transportation cost, we also update the cropland supply 
module in SIMPLE-G-Brazil for two purposes: applying the restriction of cropland 
expansion from conservation policies and allowing researchers to conduct a SSA 
with respect to the parameters in cropland supply elasticity estimation. 

In the basic SIMPLE-G structure, the gridded cropland supply is depicted with 
the following equation: 

qLand i = ηLand i pLand i þ sLand i , ð15:3Þ 

where qLand i and pLand i are the percentage changes in the quantity and rent of cropland 
in grid cell i, respectively; ηLand i is the supply elasticity of cropland in grid cell i; and 
sLand i is an exogenous slack variable. When the cropland supply module is not 
introduced, ηLand i is estimated with the following equation from Haqiqi et al. 
(2023) and read into the model as a constant: 

ηLand i = α Precipi þ βLandshri Precipi þ λ, ð15:4Þ 

where Precipi is the average annual precipitation (mm/year), Landshri is the share of 
cropland in the total area of grid cell i at baseline, and α, β, and λ are parameters 
estimated from regression (λ is fixed at 0 in estimation). This simple formula gives a 
narrow range from 0 to slightly above 1 for the land supply elasticity. 

However, this basic land supply function faces two challenges. First, land supply 
in Brazil is controlled not only by cropland rent, pLand i , precipitation, Precipi, and the 
current cropland occupancy, Landshri, but also by the policy constraint of the natural 
vegetation protection law (Metzger et al. 2019). If a grid cell’s current cropland 
occupancy has reached or exceeded the maximum of cropland share from the policy 
constraint, further expansion is prohibited. Such policy impacts should be captured 
in the cropland supply system. Second, the estimation of α and β from regression 
provides not only their value but also the uncertainty of estimation as the confidence 
intervals, and we wish to understand the extent to which our simulation results from



Þ
Þ

Þ
j

SIMPLE-G-Brazil are sensitive to the estimation of cropland supply elasticity 
parameters α and β. 
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To overcome these two challenges, we embed the cropland supply module in 
SIMPLE-G-Brazil, which allows the cropland supply elasticity, ηLand i , to be calcu-
lated as 

ηLand i = 
max Maxlandshri -Landshrið Þ, 0ð  
max Maxlandshri -Landshrij j, tinyð

x α Precipi þ βLandshri Precipi þ λ, ð15:5Þ 

where Maxlandshri is the maximum of cropland share allowed by the conservation 
policy and tiny refers to a sufficiently small positive value (this application uses tiny 
= 0.000001). In Eq. 15.5, if the current cropland share has reached or exceeded the 
maximum allowed share (i.e., Landshri ≥ Maxlandshri), we have max 
((Maxlandshri - Landshri), 0) = 0, but max(|Maxlandshri - Landshri|, tiny) = tiny, 
so max Maxlandshri -Landshrið Þ, 0ð Þ  

max Maxlandshri -Landshrij j, tinyð Þ  = 0 and ηLand i = 0: Otherwise, when 

Landshri < Maxlandshri, then 
max Maxlandshri -Landshrið Þ, 0ð Þ  
max Maxlandshri -Landshrij j, tinyð Þ  = Maxlandshri -Landshrið  

Maxlandshri -Landshrij = 1 

and Eq. 15.5 converts to Eq. 15.4, so the cropland supply elasticity will be calculated 
using the basic approach. Thus, Eq. 15.5 provides an automatic control for external 
policy restrictions. 

Furthermore, calculating the cropland supply elasticity within the model allows 
us to conduct a SSA with respect to the uncertainties in parameters α and β with the 
help of the RunGEM software. RunGEM is a component of the GEMPACK 
software package that facilitates the running of SIMPLE-G models and provides 
tools (“Tools – SSA wrt parameters”) for conducting sensitivity analyses given the 
mean and range of parameters. In this study, we apply triangular distributions of α 
and β with their estimated values as means and their 95% confidence intervals as 
ranges to estimate the 95% confidence intervals of the simulation results, which are 
reported as the error bar in Sect. 5.3 For detailed instructions on using RunGEM to 
conduct an SSA, please refer to the application’s “Readme Use RunGEM for SSA” 
folder. 

4 Experimental Design 

In this study, we designed three scenarios to be estimated with SIMPLE-G-Brazil. In 
all three scenarios, we apply the shock of a global crop price increase of 10%, while 
the three scenarios differ from each other with respect to the domestic transportation 
costs. 

3 For detailed information on SSA and other SSA approaches, please refer to Wang et al. (2024).
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Business-as-usual (BAU) In this scenario, we consider a counterfactual scenario in 
which the PNL2035 policy has not been implemented and the transportation infra-
structure and costs remain at baseline (2017) levels. In other words, this scenario 
contains the pure effects of a global crop price change. 

Infrastructure Expansion at a Low Level Here, we define a low-level infrastruc-
ture expansion scenario (thereby referred to as the “low scenario”) as the case in 
which all expansions that were under construction by the time when PNL2035 was 
launched are completed, but no new projects are implemented. The associated 
transportation cost reduction will be incorporated into the experiment together 
with the global crop price change. 

Infrastructure Expansion at a High Level In contrast with the low scenario, we 
define a high-level infrastructure expansion scenario (thereby referred to as the “high 
scenario”) as the case in which all the infrastructure expansion proposed in 
PNL2035, regardless of construction status, will be completed. Under the high 
scenario, further transportation cost reduction is expected on the basis of the low 
scenario, and the interactive effects between domestic transportation cost reduction 
and global crop price change are also greater. 

As PNL2035 focuses on the expansion of the railway network, Fig. 15.4 illus-
trates the railway network at baseline and at its expected expansion under the low 
and high scenarios, respectively (Fig. 15.4a). The transportation cost and its reduc-
tion due to infrastructure expansion under the low and high scenarios (Fig. 15.4b–d), 
calculated based on Wang et al. (2024), are incorporated into the transportation cost 
module in order to simulate the interactive effects on farm-gate crop price and 
corresponding responses of crop supply, the extensive margin (cropland expansion), 
and the intensive margin (yield growth or multicropping). Finally, to assess the 
environmental impacts of transportation and agricultural production, we further 
simulate the impacts on carbon balance, measured as the change in CO2 in million 
metric tons (Mt). We consider two drivers of carbon balance change: direct emis-
sions of greenhouse gases from road and railway vehicles and indirect emissions 
from the loss of carbon stock when land with natural vegetation is converted to 
cropland. All simulation results are represented as the percentage changes or level 
changes with respect to the 2017 baseline. 

5 Results and Discussion 

This section briefly describes the findings of these three scenarios, both extracting 
expected aggregate insights and illuminating the fertile ground for future research 
revealed by this gridded analysis. While the aggregated results provide robust 
validation of theoretical frameworks, the spatial heterogeneity unveiled by the 
gridded results demands further exploration.



15 The Role of Transportation Infrastructure Expansion in the Transmission. . . 245

Fig. 15.4 Railway extension plan from PNL2035 and its contribution to reducing transportation 
costs. (a) The railway network in 2017 (gray lines) and the expansions planned in the PNL2035 low 
(blue lines) and high (both blue and green lines) scenarios. (b) Calculated transportation cost from 
microregion to exporting ports at the 2017 baseline. (c) Reduction in transportation costs under the 
PNL2035 low scenario. (d) Reduction in transportation costs under the PNL2035 high scenario. 
(Adapted and modified from Wang et al. (2024)) 

5.1 Global-to-Local Interactive Effects on Farm-Gate 
Crop Price 

When the global crop price shock and the domestic transportation cost reduction 
shocks are applied in SIMPLE-G Brazil, their direct impact is an increase in the 
farm-gate crop price. At the national level, the crop price in Brazil increases due to 
the increase in the global crop price but decreases with the reduction in



transportation costs and the subsequent increase in supply (Fig. 15.5a). The reduc-
tion in transportation costs increases the profitability of farmers, encouraging them to 
expand crop production at the margin. Consequently, national crop production rises, 
resulting in higher equilibrium crop production but lower equilibrium crop prices, 
consistent with our graphical analysis (Fig. 15.2). 
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Fig. 15.5 (a) Percentage change in national crop price levels under the business-as-usual (BAU), 
low, and high transportation expansion scenarios. Gridded farm-gate crop price received under (b) 
the BAU scenario, (c) the low scenario, and (d) the high scenario. Error bars show the 95% 
confidence intervals from land supply elasticity estimation. The red boundary refers to the Cerrado 
biome and the black boundaries indicate state boundaries 

At the grid cell level, the interactive impacts of these two shocks cause spatially 
heterogeneous changes in local farm-gate crop prices, as shown in Fig. 15.5b–d. 
When only the global crop price shock is implemented under the BAU scenario, all 
grid cells in Brazil experience a slight increase in the farm-gate crop price received, 
similar to the change in the national crop price. However, when the reduction in 
transportation costs is incorporated, states in the Cerrado biome benefit from a much 
higher increase in farm-gate crop prices (10–25%), while the increase in farm-gate



crop prices in the south/southeast becomes even smaller compared with the BAU 
scenario. That is, whereas an increase in the global crop price brings an almost 
uniform stimulus to all of Brazil, the reduction in domestic transportation costs 
mainly improves the profitability of farming in the Cerrado region but does little to 
benefit farming in the south/southeast region. This change in relative spatial profit-
ability causes a shift in the pattern of national crop production and land use. 
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5.2 Spillover Effects on Crop Production and Land Use 

Figure 15.6 illustrates the simulated percentage change in state-level crop output and 
its decomposition by the extensive margin (change in cropland area), intensive 
margin (change in crop yield due to intensive nonland input use or multicropping), 
and their interactions. Figure 15.6 highlights the results from the top eight crop-
producing states in Brazil. These eight states accounted for 81% of the national 
cropland area and 92% of national crop production in 2017, so they capture the 
overall pattern of agricultural impacts. The first group of states is located in the 
south/southeast region: São Paulo (SP), Paraná (PR), Rio Grande do Sul (RS), and 
Minas Gerais (MG)4 ; the second group is located in the core region of the inland 
Cerrado biome: Mato Grosso (MT), Goiás (GO), Mato Grosso do Sul (MS), and 
Bahia (BA). Within each group, states are ranked by their baseline crop production 
in descending order. Results from the remaining states (aggregated as “Rest of Brazil 
(ROB)”) and the entire country are also reported. 

Figure 15.6 reveals state-level responses and spillover effects on crop production 
and land use. Under the BAU scenario, all states show a moderate increase in crop 
production, driven by both extensive and intensive margins (Fig. 15.6a). However, 
results under the low scenario show that as the Cerrado biome gains a relative 
advantage in farming due to the increase in farm-gate crop prices, farmers in Cerrado 
further expand crop production both by cultivating more cropland and, more impor-
tantly, by attracting more mobile inputs (e.g., fertilizer, labor, and capital) 
(Fig. 15.6b). On the other hand, although the south/southeast region also experiences 
an increase in farm-gate crop prices, the magnitude of the price increase is much 
lower than that in the Cerrado region, making the south/southeast region relatively 
disadvantaged in farming and less competitive in attracting mobile inputs. States in 
the south/southeast region exhibit reductions in crop output across both the intensive 
and extensive margins, which indicates that the expansion of transportation infra-
structure will not only improve the connectivity of the Cerrado biome and benefit its 
agricultural production, but also cause spillover effects in the south/southeast region. 
Furthermore, the increase in crop production in Brazil is greater in the low scenario 
than in the BAU scenario, indicating that the gains from Cerrado overwhelm the

4 While SP and MG belong to the southeast region of Brazil, they also partially overlap with the 
Cerrado biome.



losses in the south/southeast region, also consistent with the graphical analysis 
(Fig. 15.2). Finally, the simulation results under the high scenario are similar to 
those under the low scenario but with greater magnitudes, which is due to the fact 
that transportation infrastructure under the high scenario includes all constructions 
under low scenario, with further expansion.
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Fig. 15.6 Simulated changes in crop production and the decomposition by extensive margins, 
intensive margins, and their interactions at the state and national level under (a) the BAU scenario, 
(b) the low scenario, and (c) the high scenario. Error bars show 95% confidence intervals from the 
land supply elasticity estimation, as obtained by using the SSA feature of RunGEM
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Fig. 15.7 Simulated changes in greenhouse gas emissions and the decomposition by drivers. Error 
bars show 95% confidence intervals from the land supply elasticity estimation. We further aggre-
gate the first group of states in Fig. 15.6 into the “south/southeast”(SE-South) subnational region 
and aggregate the second group of states into the “Cerrado” subnational region 

5.3 Environmental Impacts on Carbon Balance 

In addition to the impacts on crop price, crop production, and land use, the global 
crop price and transportation infrastructure have considerable direct and indirect 
impacts on carbon emissions in Brazil. Figure 15.7 reports the net changes in 
greenhouse gas emissions at the national and subnational levels (Cerrado, south/ 
southeast, ROB); their decomposition by direct emission from vehicles (for road and 
rail transportation); and indirect emissions from the loss of carbon stock due to 
cropland expansion. Under the BAU scenario, since all states in Brazil experience 
crop production growth and cropland expansion (Fig. 15.6a), the global crop price 
shocks cause a net increase in CO2 emissions, mainly from the carbon stock loss 
from cropland replacing natural vegetation. When the expansion of transportation 
infrastructure is also incorporated into the simulation under the low and high 
scenarios, a considerable amount of the national crop production pattern shifts 
from the south/southeast region to the Cerrado biome (Fig. 15.6b and c), which 
causes carbon emissions from land use change in the Cerrado to become more than 
double of the amount under BAU scenario, while the land use-related carbon 
emissions in the south/southeast region are overturned and become negative. More-
over, as PNL2035 markedly extends the railway network but barely improves the 
roadway network, more crops are transported over more cost-efficient and carbon-



efficient railways instead of roadways. As a result, under the low and high scenarios, 
CO2 emissions from railway transportation increase in the Cerrado biome, but this 
effect is fully countered by the much higher reduction of CO2 emissions from 
roadways. In total, national CO2 emissions decrease from 84.9 Mt under the BAU 
scenario to 60.6 Mt under the low scenario and 54.9 Mt under the high scenario. The 
implication of this carbon balance analysis is that an increase in global crop prices 
would boost crop production in Brazil, but it also threatens deforestation and 
increases carbon emissions. The expansion of transportation infrastructure would 
exacerbate local carbon emissions in the Cerrado biome, but this impact could be 
offset by the reduction of cropland demand in the south/southeast region due to the 
spillover effect. Thus, the expanded infrastructure facilitates Brazil’s crop supply to 
the global level in a more carbon-efficient way. 
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This research has significant implications for policymakers and stakeholders 
striving to balance economic vitality and environmental responsibility. By under-
standing the intricate dance between global markets, domestic infrastructure, and 
carbon emissions, we can design policies that unlock the economic potential of 
Brazilian agriculture while safeguarding the country’s precious natural heritage. 

5.4 Limitations and Future Directions 

Several avenues for future research emerge from the limitations encountered in this 
chapter’s analysis. To fully unpack the complexities explored in this chapter, it is 
crucial to acknowledge and address the following limitations. First, the expansion of 
transportation infrastructure would reduce transportation costs not only for crops but 
also for mobile inputs such as fertilizers, machinery, labor, and other capital inputs. 
However, this analysis does not include the role of infrastructure expansion in 
reducing farm input costs. In Wang et al. (2024), we extend the analysis with 
additional scenarios on the impact of transportation infrastructure on factor mobility 
and find that when the impacts of infrastructure on factor mobility are considered, 
our conclusions do not change qualitatively, but the magnitude of the results is 
strengthened quantitatively with better factor mobility. Additionally, farm-gate crop 
prices can be influenced by factors other than global crop prices and the expansion of 
infrastructure networks, including the market power of transporters, road status, and 
congestion. In this chapter, we consider only the global price and transportation 
infrastructure shocks to illustrate the capacity of SIMPLE-G for studying the inter-
action between global and local level shocks. We encourage interested readers to 
build on this framework and further extend this analysis or generalize it to similar 
research questions. 
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Chapter 16 
Global Groundwater Sustainability 
and Virtual Water Trade 

Iman Haqiqi, Chris J. Perry, and Thomas W. Hertel 

1 Introduction 

The overexploitation of open-access resources is a significant issue in many loca-
tions across the world, and it is caused mainly by the fact that the cost of agricultural 
production does not include the negative environmental externalities of resource use. 
One way to reduce these externalities is by imposing regulatory restrictions on the 
use of natural resources in agriculture. However, these regulations can reduce the 
competitiveness of the local agricultural sector. This may, in turn, induce new 
sustainability pressures on distant land and water resources. Therefore, policymakers 
need to carefully consider the consequences of conservation policies before under-
taking them at broad scale. 

Sustainability policies can have a significant impact on how agricultural produc-
tion is distributed across different regions. One way of achieving sustainability is by 
encouraging the cultivation of water-intensive crops in areas with abundant sustain-
able water resources, thereby increasing agricultural activity in those regions that can 
best support it. However, the effect of sustainability policies on the spatial
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distribution of agricultural production also depends on the possibility of input 
substitution. For instance, sustainability policies that incentivize farmers to use 
less water can lead to agricultural production that makes more intensive use of 
capital and other agricultural inputs by encouraging the adoption of new agricultural 
technologies. For instance, cultivating new drought-resistant crop varieties can be 
economically viable, even if doing so results in higher production costs, as it helps 
minimize the reduction in production.
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In contrast to Chap. 12, which focuses on the Western United States, here we 
focus on groundwater withdrawals at the global level. Local groundwater restrictions 
can alter patterns of global production, thereby altering trade patterns and inducing 
changes in virtual water trade. SIMPLE-G provides an ideal framework for studying 
these relationships. The next section introduces the concept of virtual water, which 
was originally introduced by J. A. “Tony” Allan (2011). 

1.1 Virtual Water 

Allan’s seminal insight, captured in the phrase “virtual water,” was that trade in 
agricultural commodities was effectively the transfer of huge quantities of water 
from producing countries to consuming countries. For example, producing 1 kg of 
wheat or rice involves the transpiration of about 1000 kg of water, so the location of 
this production can have a significant impact on groundwater abstraction. Thus, the 
virtual water trade refers to the implicit flow of embodied water within traded goods 
and services. Allan’s main interest was in the consequences of these transfers: the 
extent to which political stability is preserved in countries that rely on imported 
“virtual water” to ensure food security. This linkage has two dimensions: First, the 
avoidance of “water wars” as the import of virtual water makes it unnecessary to 
“capture” the underlying natural resource itself, and second, enhanced food security 
as a direct consequence of this trade. Few rulers of fragile democracies—and 
nondemocracies—could survive long when the shops have no bread (Dizard 2022). 

1.2 Contribution 

In this chapter, we explore another perspective on virtual water: Many food-
exporting countries also “export” large quantities of groundwater that are “mined” 
from their aquifers. Stated bluntly, these nations are exporting their environment, 
free of charge, to food-importing countries. Applying this insight to policy evalua-
tions by raising concerns about food security as a result of water sustainability 
policies will have consequences; through a set of models and calculations within a 
multiscale framework, we explore the impacts of a “best case” scenario in which 
groundwater consumption is constrained to a “sustainable” equilibrium by prudent 
management. What changes are likely in the local and global patterns of commodity



production, and what changes in prices can be expected as a consequence of such 
“good governance”? SIMPLE-G offers the opportunity for a holistic approach to 
incorporating these spillover effects of market-mediated land and water conservation 
policies. This approach can provide a more accurate reflection of the impact of 
groundwater policies on production and land use and promote the sustainable use of 
resources within a comprehensive framework. 
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1.3 Sustainable Groundwater Use: Some Definitions 

What does sustainability mean for groundwater? Groundwater systems are often 
highly complex, comprising multiple layers that are sometimes directly linked, 
sometimes partially linked, and sometimes completely independent; these layers 
are affected by the nature of the medium(s) through which, and in which, ground-
water is stored, surface topology, land cover, lakes, rivers, and artificial interventions 
such as irrigation systems. Here, the objective is not to address these physical 
variables in detail—although in any specific case, they are fundamentally important. 

The commonly adopted definition of sustainable groundwater use is that abstrac-
tion should not exceed recharge. This apparently logical formulation is at best 
misleading (Bredehoeft 2002); useful analysis of the status of a groundwater 
system—and the consequences of overabstraction—requires a rather more careful 
specification of the scenario being evaluated. 

A groundwater system is in equilibrium when inflows are equal to outflows. 
Inflows include natural recharge from rainfall, additional infiltration of water 
imported via surface irrigation systems, return flows from local groundwater abstrac-
tions, and lateral inflow from surrounding hills or aquifer systems. Outflows include 
evaporation from wet surfaces and capillary rise, transpiration by plants, lateral flows 
toward streams or surrounding aquifers, and pumping. When these two sets of flows 
are equal, the water table remains essentially constant when observed over a period 
of years, with seasonal and annual variations due to, for example, actual rainfall 
patterns, and associated pumping rates. Yet even from this simple formulation, we 
immediately see that any increase in net abstraction from an aquifer (e.g., by 
introducing a new tube well) must have implications for one or more of the outflows. 
The water table must reach a new equilibrium at a lower level at which one or more 
outflows are reduced—lateral outflows to streams, water consumption by natural 
vegetation, flows to surrounding aquifers, or evaporation from waterlogged soil. 
When this has happened, inflows and outflows again equate, and stability is 
reestablished. 

Already, the definition of “sustainable” becomes more complicated than is 
implied by the simple rule that abstraction should be less than recharge. (Indeed, if 
abstraction is less than recharge, the water table will rise over time.) In the example 
just described, equilibrium is restored after an increase in abstraction; again, the 
observed status of the groundwater system will remain constant over a period of 
years. Yet the impacts of the reduced outflows to vegetation and local streams may



cause damage to downstream wetlands or aspects of the natural landscape that were 
previously supported. Environmentalists might well argue that these are not “envi-
ronmentally sustainable” outcomes, as generally interpreted; rather, they are a new, 
less desirable, equilibrium. Downstream users (e.g., irrigators, fishermen, and ferry 
operators) will have similarly negative views of the new “sustainable” scenario. 
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As the process of increased groundwater demand for irrigation and other sectors 
unfolds, we pass through a continuum of equilibria, each of which meets the stability 
test where inflows are equal to outflows (see, e.g., Chinnasamy and Agoramoorthy 
2016). Eventually, all the natural outflows fall to zero, and incremental abstraction is 
supported by a continuous reduction in aquifer storage—a scenario that is literally 
“unsustainable” because eventually the aquifer will be depleted, salinized, or other-
wise rendered unfit for use. During this stage, there are no points of equilibrium. The 
water table continues to fall until the final equilibrium eventually arrives: The aquifer 
is depleted to the point at which use is restricted to whatever recharge still, sporad-
ically and unpredictably, reaches the saturated zone. The “mining” element, in this 
scenario, necessarily reduces to zero. 

Why is this more complex perspective on “sustainable” groundwater use impor-
tant? It is commonplace to report that because measured abstraction is less than 
recharge there is “net availability” of groundwater for development (see, e.g., 
Chatterjee and Ray 2016). This position is apparently based on the assumption 
that the “available” resource is currently disappearing somewhere; such a conclusion 
is rarely (never?) associated with a reportedly rising water table. Alternatively, it 
might be assumed that the outflows that are impacted by further abstraction have no 
value. In this phase of development, the properly evaluated “sustainable” yield is or 
should be a political decision based on trade-offs among alternative water allocation 
regimes; as such, it is an issue of governance to which information (e.g., measure-
ments, observations, and modeling) contributes to political decisions that determine 
allocations. Here, we include in the spectrum of possible political interventions the 
decision to do nothing, thereby allowing the tragedy of the commons (Hardin) to 
unfold. To our knowledge, this policy has never been made explicit, but this scenario 
is not rare. Before 2014, California’s aquifers were being used excessively and 
without regulation. However, following the introduction of the Groundwater Sus-
tainability Act, the Groundwater Sustainability Agencies were required to take up 
local control. They gradually implemented regulations, bringing 98% of 
Californians under their umbrella. Despite challenges, this has been a significant 
step toward securing California’s groundwater resources. 

In fact, all water resource development (e.g., diversion from rivers, construction 
of dams, water harvesting, deforestation, reforestation, and conversion to new 
irrigation technologies) involves some degree of reallocation of water among users 
and uses. Food security and rural employment increase when irrigation water is 
diverted from estuaries and wetlands. While such developments have vastly 
increased food production and hence have benefited society generally, they are not 
without costs; it is the role of governments, through political processes, to evaluate 
the underlying trade-offs and intervene appropriately.
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In sum, groundwater development has four stages: (1) the natural state of 
precipitation, vegetation, and runoff; (2) progressive human interventions that 
expand use (e.g., agriculture and domestic water supply) at the expense of other 
outflows while maintaining equilibrium between inflows and outflows; (3) ground-
water mining, where outflows exceed inflows and the aquifer is progressively 
depleted; and (4) effective depletion of the aquifer, often associated with 
(a) subsidence of the land surface, which in many areas is already ongoing and 
substantial (Galloway and Burbey 2011); (b) soil compaction, such that infiltration is 
restricted and storage of soil moisture in the profile is reduced; and (c) extended time 
for any infiltration to reach the saturated zone, due to a combination of soil 
compaction and the ever-increasing depth to the water table. Unfortunately, many 
aquifers around the world are in the third stage of progressive depletion; in the 
absence of interventions by the relevant authorities, they will automatically progress 
to the fourth stage, effective depletion, and irreparable damage. 

In this chapter, we assess the impacts of restricting groundwater abstraction to 
sustainable levels—halting the “mining” of groundwater and returning to stage 
2, maintaining equilibrium between inflows and outflows. This intervention results 
in the redistribution of production and trade and associated local and global price 
changes. Achieving this goal would constitute improved governance, requiring 
interventions by the relevant authorities to reduce groundwater abstraction in 
many areas by defining allocation policies, introducing laws that reflect those 
policies, and providing institutional arrangements to enforce those laws. 

These interventions will be politically challenging, and some countries will fail. 
In the following analysis, we attempt to evaluate the local and global economic costs 
associated with this move to “good governance.” Such governance would allow for 
continued, controlled use of aquifers as temporary buffer storage and preservation of 
resources that can be assigned to priority uses during periods of severe drought. The 
alternative of allowing aquifer depletion and loss of buffer function will undoubtedly 
be far more costly—an issue to be addressed in a further study. 

1.4 The State of the World’s Groundwater 

Various analysts have assembled data and models to assess groundwater status 
globally and for major regions (Siebert and Döll 2008, 2010; Wada et al. 2012, 
2014; Famiglietti 2014). While estimates vary depending on the methodology and 
the time period analyzed, there is consistency among all analysts that current 
irrigation in major agricultural areas is dependent on groundwater abstraction rates 
that deplete the underlying aquifers. 

In addition to these concerns, the rate of increase is remarkable. According to 
Wada et al. (2014,  p.  14),  “the current degree of non-sustainable use may compro-
mise the future livelihoods of millions of people and their living standards”: Global 
aquifer depletion almost tripled between 1960 and 2010 and is projected to almost 
double again by 2099 (although whether these quantities of water actually exist must



be questioned). Among individual countries, the increased rate of depletion between 
1960 and 2010 was most pronounced in India (almost tripling) and the United States, 
China, and Pakistan (roughly doubling). In Saudi Arabia, fortunately, an outlier, 
consumption increased sixfold—mostly due to the now-abandoned policy of pursu-
ing self-sufficiency in wheat, but abstraction is still driven by substantial production 
of irrigated fodder. According to Famiglietti (2014, p. 948), “vanishing groundwater 
will translate into major declines in agricultural productivity and energy production, 
with the potential for skyrocketing food prices and profound economic and political 
ramifications.” The next sections address the likely impacts—locally and globally— 
of the reductions in water supply that would stabilize aquifers. 
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2 SIMPLE-G Version Employed in This Chapter 

To capture the local, national, and global impacts of and responses to sustainability 
groundwater restrictions, we employ a globally gridded version of SIMPLE-G that 
contains around 1.3 million grid cells at a resolution of 5 arcmin, comprising squares 
with a width of 9.26 km at the equator. As in the SIMPLE-G-US model used in 
Chap. 12, each grid cell represents a distinct unit of agricultural production on which 
competition for land and water resources plays out within and between rainfed and 
irrigated crop production. It also includes differentiated markets at subregional and 
grid-cell levels. In the face of groundwater sustainability restrictions, the model 
solves for the gridded equilibrium level of irrigated and nonirrigated land as well as 
for the extraction of groundwater and surface water for crop production. It also 
determines the new equilibrium for local, national, and global crop prices and for 
domestic use and international trade in crops. 

The production at each grid cell follows a nested Constant Elasticity of Substi-
tution functional form as detailed in Fig. 16.1. This figure illustrates how various 
agricultural inputs are combined, reflecting the imperfect substitutability between 
them. Specifically, groundwater, surface water, and irrigation equipment are first 
combined into a composite “water input.” This composite water input is then 
combined with land to form “augmented land.” Finally, all remaining inputs are 
grouped into a single category, with a distinct representation of labor demand. 

2.1 Product Differentiation 

The SIMPLE-G model does not model individual farmers’ behavior but rather 
depicts the outcome at the aggregate level in each grid cell for all crops aggregated 
into a single composite commodity. The crop output of each grid cell is differenti-
ated from that of other grid cells, reflecting differences in crop composition. This 
product differentiation applies at both the national and regional levels. The SIMPLE-
G model used here has 17 consumption regions (derived from SIMPLE, see Part III)



and 136 subregions, of which 120 are individual countries. In any given grid cell, 
yield, water use, and nitrogen fertilizer use in crop production are weighted averages 
over all crops. However, we distinguish between rainfed and irrigated crop produc-
tion within each grid cell. 
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Fig. 16.1 Overall gridded production structure of the SIMPLE-G model The model determines the 
equilibrium local prices, land use, water use, and agricultural demand and supply for other inputs, 
including labor 

2.2 Virtual Water Trade 

This version of SIMPLE-G introduces virtual water trade to represent the water 
embedded in the international trade of agricultural commodities. There is a rich body 
of literature around the concept, applications, and modeling of virtual water trade 
(Allan 1997, 2003, 2011; Dalin et al. 2017; Rosa et al. 2019). Here, changes in 
virtual water trade are distinguished by source, and these changes follow the 
corresponding changes in local production and regional exports (Haqiqi et al. 2022).
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2.3 Labor Market Outcomes 

In light of the findings in Chap. 13, we add labor market outcomes to this version of 
SIMPLE-G. It is crucial to consider the effects of sustainability policies on the labor 
market, especially for farm workers. Sustainability policies can have a range of 
impacts on the labor market. Certain sustainability policies, such as those that target 
labor-intensive agricultural activities, can result in job loss. Farmworkers are partic-
ularly susceptible to this because the agricultural sector already relies heavily on 
mechanization and new technologies. On the other hand, some sustainability policies 
can create new jobs. However, farm workers may not have the skills or resources to 
make the sectoral or geographic transition to these new jobs. Here, we add a simple 
model of labor employment in crop production without explicitly modeling move-
ment across economic sectors. In this version, the labor market follows the compos-
ite of human system inputs. The mobility and rigidity of the farm labor force are 
spatially heterogeneous and informed by travel time datasets. 

3 Experiment Design 

To focus our analysis on the impact of groundwater sustainability restrictions, we 
assume no changes in regional population, income, or biofuel demands. However, 
the demand responses to changes in food prices are captured in the interaction of 
demand and supply in the regional and global markets. Additionally, we assume no 
change in local climate conditions; this assumption allows us to assess the impact of 
groundwater restrictions taken on their own. 

3.1 Groundwater Restriction Scenario 

To permit a unified analysis of groundwater sustainability policies, we pair infor-
mation from a hydrological model with the SIMPLE-G-Global model (Fig. 16.2). 
Several studies have successfully linked these two models (e.g., Woo et al. 2022), 
shedding light on the impacts of surface water scarcity (Liu et al. 2017) and the yield 
impacts of compound hydroclimatic extremes (Haqiqi et al. 2023). Here, we follow 
Grogan et al. (2017a, b) and employ the outputs of the water balance model (WBM), 
a validated and widely used macroscale hydrological model (Wisser et al. 2010; 
Grogan 2016; Grogan et al. 2022). Consumptive water requirements are calculated 
by crop and growth stage based on soil moisture, temperature, and irrigation status. 
The sources of irrigation in the WBM can include reservoirs, rivers, shallow 
groundwater, and nonrenewable groundwater if available. The model also considers 
nonbeneficial consumption and return flows through irrigation runoff, baseflow 
between groundwater and surface water, and percolation of irrigation return flows



to shallow groundwater. The multiscale nature of this model, which builds from the 
grid cell to global hydrology, makes it appropriate for this study. 
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Fig. 16.2 Employing hydroclimatic information to inform the economic model about irrigation 
water availability and nonrenewable groundwater irrigation The water balance model (WBM) is a 
global gridded framework for modeling water mass balance for each grid cell. It simulates the 
vertical water exchange between the atmosphere and land as well as the horizontal flow of water 
through river networks, baseflow, and runoff. Daily precipitation and temperature data from climate 
products and information regarding agriculture and water demand at each location are used as inputs 
for the WBM. The simulated changes in surface water and groundwater volumes are fed into the 
SIMPLE-G model, which models decisions about land and water use. The regional outcomes are 
determined via the interaction of gridded crop outputs and regional and global market responses 

We follow Grogan et al. (2016, 2017a, b) to determine the sustainable level of 
groundwater abstraction, determining the maximum allowable level of groundwater 
use such that there is zero nonrenewable groundwater use, thereby ensuring a stable 
equilibrium level of groundwater. For each grid cell, we calculate the required 
reduction in abstractions to achieve this objective. This level is calculated by running 
the WBM over the period from 1980 to 2009, while not allowing abstraction from 
nonrenewable resources. The sustainable level of abstraction varies each year 
depending on weather conditions. To avoid excessive complexity and in order to 
focus on long-run conditions, we take the 30-year long-term average as the basis for 
determining the sustainable level of abstraction. We utilize historical global obser-
vational climate products based on ERA-interim (European Centre for Medium-



Range Weather Forecasts-reanalysis, Dee et al. 2011), MERRA (Modern-Era Ret-
rospective Analysis for Research and Applications, Rienecker et al. 2011), NCEP 
(National Centers for Environmental Prediction, Saha et al. 2014), and UDEL 
(University of Delaware, Willmott and Matsuura 2001). The 30-year average sus-
tainable level of abstraction is used to inform the economic model about long-run 
groundwater availability. There are other possible definitions of sustainability, and 
we will discuss the implications of this choice below. 

262 I. Haqiqi et al.

3.2 Interoperability and Consistency 

Interoperability refers to the ability of different models to communicate and 
exchange data with each other. In multisystem analyses of agriculture that involve 
hydrology and climate, interoperability is important because it enables researchers to 
combine different datasets and model insights, resulting in more comprehensive and 
realistic simulations of the complex interactions among agriculture, climate, and 
other systems. It is crucial to ensure temporal and spatial consistency of the 
exchanged information, and this is often challenging when it comes to combining 
economic and biophysical models. 

One challenge we face is that SIMPLE-G-Global is constructed based on eco-
nomic and agricultural information circa 2017. In other words, crop production, 
cropped area, yields, and prices reflect more recent market conditions than are 
reflected in historical weather data. In addition, the size of SIMPLE-G grid cells is 
5 arcmin, while the historic WBM runs are for global 30 arcmin grid cells. Having 
determined the long-run historic sustainable level of groundwater withdrawal by grid 
cell, we take the current conditions of water resources based on recent WBM runs 
from 2012 to 2018 based on GLEAM v3 (Global Land Evaporation Amsterdam 
Model, Martens et al. 2017), which uses 5 arcmin grid cells. This allows for 
consistency with the 2017-based economic model. We assume that all the smaller 
(5 arcmin) grid cells follow their underlying larger grid cells in terms of 
nonrenewable groundwater rates. For this study, we reconstruct the SIMPLE-G 
global model based on the WBM land use and land cover dataset. 

Table 16.1 summarizes the current situation for a set of major groundwater users 
in the world. Overall, 27% of total irrigation water consumption is linked to 
nonrenewable resources. However, this is substantially higher in some regions— 
62% in Iran and 39% in India. Compared with total global crop water demand, the 
nonrenewable groundwater contribution is around 6% (although this figure is 43% 
for Iran and 23% for India). The outputs of the WBM in terms of groundwater and 
surface water use in crop production are in line with those of other studies (Siebert 
and Döll 2010; Chapagain and Hoekstra 2011; Gleeson et al. 2012; Bierkens and 
Wada 2019; Mekonnen and Hoekstra 2020). 

Figure 16.3 shows the distribution of the cropped areas that rely on irrigation 
groundwater around the year 2017. “Green” water is that provided to crops by 
rainfall; “blue” water comprises irrigation water from surface and groundwater.
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Table 16.1 Total crop water demand and contribution of nonrenewable resources for major 
groundwater users circa 2017 

Total crop water 
demand 

Green water 
contribution 

Blue water 
contribution 

Nonrenewable 
groundwater 

(km3 year-1 ) 

493 

(km3 year-1 ) 

203 

% 

41 

(km3 year-1) 

289 

% 

59 

(km3 year-1 

112 23India 

China 438 223 51 215 49 64 15 

Pakistan 101 2 2 98 98 21 21 

US 428 374 87 55 13 13 3 

Iran 6 2 31 4 69 3 43 

Mexico 48 36 76 12 24 3 5 

World 3,848 2,934 76 915 24 244 6 

Source: Outputs of the global water balance model based on GLEAM v3. Aggregated from 5 arcmin 
grid cells. Authors’ calculations are based on Grogan (2016) and Grogan et al. (2017a, b, 2022). The 
percentage values show the share of total crop water consumption 

Share of blue water in total irrigated crop water use (%) 

Fig. 16.3 Spatial distribution of irrigation showing the share of blue water in total gridded crop 
water consumption around the year 2017 Red indicates that little green water is available to crops. 
Therefore, if there is crop production in these locations, the area must be irrigated 

Figure 16.4 shows groundwater hotspots across the globe. These are most 
prominent in the United States, China, India, Pakistan, and the Middle East, where 
crop water demand in some grid cells is obtained almost entirely from nonrenewable 
resources. As seen here, the problem of nonrenewable groundwater abstraction tends 
to be quite concentrated.
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Share of unsustainable groundwater in groundwater use (%) 

Fig. 16.4 Spatial distribution of unsustainable groundwater illustrating the share of unsustainable 
groundwater in total gridded irrigation water consumption around the year 2017 Red indicates that 
crop production relies mainly on unsustainable groundwater. Gray indicates areas not irrigated 

3.3 Implementing Groundwater Restrictions 
in the SIMPLE-G Model 

As discussed previously, the groundwater sustainability limits are calculated by the 
WBM considering the hydrological relationships and connections within and across 
grid cells. To allow for a deeper understanding of the distinct forces at work when 
groundwater sustainability restrictions are imposed, we first run the SIMPLE-G 
model assuming no change in surface water use, irrigation intensity, or irrigation 
extent. This restricted scenario generates the largest possible impacts on food prices 
and food consumption. 

While informative, this simplified scenario does not capture adaptation to the 
sustainability policy, nor does it capture spillover effects. Therefore, we consider 
additional scenarios in which the system responds to these direct impacts. The first 
line of response involves a change in the composition of irrigation water resources. 
Depending on availability and relative costs, the model measures the change in 
surface water withdrawals as cost-minimizing producers attempt to reduce the 
impacts of groundwater restrictions on production. Then, the model considers 
changes in irrigation intensity in terms of the water supplied and used by crops. At 
the level of a grid cell, this can be due to a change in the composition of crops within 
the grid cell or it can reflect a shift to a different deficit irrigation strategy that is not 
explicitly modeled. All these changes can affect the rate of groundwater recharge 
and thus alter the initial sustainability limit. These changes also have implications for 
downstream surface water availability. To capture the downstream effects, we



include another sustainability scenario with iterations between the SIMPLE-G 
economic model and the WBM hydrological model. In this scenario, decisions 
regarding surface water, irrigation intensity, and irrigation extent are transferred to 
the WBM, which then provides implications for surface water availability down-
stream and a revised required change in groundwater restrictions. We will show why 
these return flows are important for determining the spatial pattern of production at 
the local level. 
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4 Results 

Restricting groundwater consumption alters global agricultural production. If there 
are no other sources of water, which is the case for many hotspots of unsustainable 
groundwater abstraction, the immediate direct impact is a fall in production. 
According to our calculations, the consequence of this “first round” of responses 
to the groundwater sustainability restriction is a 12.3% reduction in global crop 
production (around two billion tons of corn-equivalent crops). Despite comprising 
only 6% of global water consumption, the proportionate reduction in production is 
twice as large due to the relatively high productivity of groundwater. However, as 
the food system responds to this groundwater constraint, the final impact on global 
crop production is greatly moderated and limited to only -0.2% corresponding to a 
change of -28.4 million tons in corn-equivalent crop production. 

Figure 16.5 decomposes the change in global crop production due to groundwater 
sustainability restrictions. We label them as follows: “no adaptation” (the direct 
effects), “substitution” of surface water, “rainfed conversion,”  “relocation,” and 
“global trade.” The initial margin of adjustment involves substituting surface water 
for groundwater, where feasible, and utilizing other farm inputs more intensively 
(bar b). This adaptation results in a 3.5% moderation in the global crop output 
decline. The next farm-level response considered is the conversion of irrigated land 
to dryland crop production, where rainfall is adequate. Despite rainfed production 
having a lower yield (or simply not being possible in some locations), in the 
aggregate, these results suggest that rainfed substitution can offset one-third of the 
damage at the global level (a 3.18% increase in Fig. 16.5, bar c). The consequences 
of conversion from irrigated to rainfed crop production depend on the relative yields, 
changes in local land rents, and the demand for alternative land uses. The next 
margin of response in Fig. 16.5 (bar d) is due to the national relocation of production. 
Rising prices in countries where groundwater is restricted motivate the expansion of 
production in other suitable locations, especially in regions with strong, price-
inelastic, domestic demand (e.g., South Africa, India, and China). The extent of 
expansion in other grid cells depends on biophysical and economic conditions in 
each grid cell, but at a global level, these adjustments offset about one-sixth of the 
direct impact (2.1% increase in Fig. 16.5, bar d). Similarly, international trade in 
agricultural production offsets the initial fall in production through exports and 
imports and the ensuing trade in “virtual water.” (Bar e offsets 3.3% of the global



production decline). Depending on and product similarity and trade flexibility, 
the contribution of relocation can increase to 4.5% while trade contribution 
may decline to 1.9%. See the application files for different closures. Columns 
2 and 4 in Table 16.4 provide more detail on the change in virtual water trade due 
to the groundwater sustainability policy. 

266 I. Haqiqi et al.

(a) 
Immediate 

impact 

(b) 
Substitutions 

(c) 
Rainfed 

conversion 

(d) 
Relocation 

total 

(e) 
Global trade 

Fig. 16.5 Decomposition of global crop response to global groundwater sustainability 
restrictionsThe leftmost (red) bar shows the immediate/direct impact prior to adaptation. The 
subsequent bars incorporate successive market-mediated adaptations: (b) substitution of surface 
for groundwater as well as other economic responses by farmers, (c) conversion of irrigated to 
rainfed area, (d) expansion of domestic production in response to higher prices, and (e) price-
induced expansion in other regions 

At the global level, implementing the sustainability policy implies a 27% reduc-
tion in groundwater consumption (244 km3 ), corresponding to a 6% fall in total 
water consumption in agriculture from all sources (rainfall, surface water, and 
groundwater). Due to multiscale responses, the long-run impact on crop prices is 
quite modest (0.4%). However, the price increases are much larger in some local 
markets. The analysis projects a long-run increase in global surface water with-
drawal of 3.42%. On the other hand, despite the fact that global irrigated production 
has declined by 1.03% (-68 million tons), rainfed production has increased by 
0.42% (+39 million tons). This nearly offsets half of the global reduction in irrigated 
output. This is also reflected in the cropped area: changes of around -0.43% in the 
irrigated area (-1.4 million ha) and + 0.21% in the rainfed area (+2.6 million ha), 
leading to an increase in the global cropped area of 0.08% or + 1.2 million ha 
(Table 16.3, columns 2–8). 

The long-run production impacts are small at the country level, as similar 
adaptations can occur within a country. The findings suggest that in China, India,



the United States, Pakistan, and Iran, the total annual production will decline by -
12.5, -6.0, -3.0, -2.6, and -2.1 million tons of corn-equivalent crops, respec-
tively. Additionally, the overall long-run employment impacts are positive for many 
countries. According to the model output, China, India, Indonesia, Bangladesh, and 
Turkey will experience 296.6, 236.9, 66.7, 57.5, and 34.6 thousand new agricultural 
jobs, respectively, due to spillovers and expansions in croplands. The largest nega-
tive employment effects are in Pakistan and Vietnam, where crop employment falls 
by -36.0 and -24.8 thousand jobs, respectively. 
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4.1 Spatial Distribution of the Impacts 

This section illustrates the final changes in the equilibrium levels of input demand 
and crop supply in response to the global enforcement of sustainable groundwater 
use. These are equilibrium outcomes of the model and reflect interactions between 
local and global agricultural markets. The spatial heterogeneity of the impacts is due 
to both heterogeneity in the magnitude of the reduction in groundwater and bio-
physical differences across locations. The findings suggest a significant change in 
the pattern of irrigated production, water consumption, irrigated cropped area, and 
employment in irrigated agriculture as a consequence of the sustainable groundwater 
policy. 

4.1.1 Impact on Cropped Area 

Figure 16.6 shows the spatial distribution of the impact on cropped areas. Red and 
yellow indicate contraction, and green indicates expansion as a percentage change. 
The grid cells with a high dependency on unsustainable groundwater would face a 
sharp reduction in irrigated cropped area, coupled with an increase in rainfed 
cropland. The net change for such areas—which include California’s Central Valley, 
the US Ogallala Aquifer, the Mississippi River Basin, parts of India and Pakistan, 
parts of China, North Africa, and the Middle East—is a decline in cropped area. The 
analysis projects a slight increase in both irrigated and nonirrigated areas for the rest 
of the world. 

4.1.2 Impact on Surface Water 

Figure 16.7 shows the spatial distribution of the impact of the groundwater conser-
vation policy on surface water irrigation as a percentage change. Surface water 
irrigation increases in almost all irrigated areas, with the greatest increases occurring 
in the hotspots of nonrenewable groundwater use. As this is a percentage change, the 
magnitude of the change in surface water irrigation depends on availability and 
current uses. The increase in surface water irrigation reflects the substitution of



groundwater or a change in the location and scale of production. These changes can 
be decomposed into a “substitution effect” and a “scale effect.” If the substitution 
effect is dominant, the percentage change in surface water use in the targeted areas is 
positive and more than compensates for the decline in irrigated areas. If the scale

268 I. Haqiqi et al.

Change in rainfed cropland area (%) 

Change in irrigated cropland area (%) 

(a) 

(b) 

Fig. 16.6 Percentage change in (a) irrigated and (b) rainfed cropped areas in response to global 
groundwater sustainability restrictions produced by the water balance model



effect is dominant (i.e., less irrigated area overall), then the change in surface water 
use in the targeted area is negative. (Haqiqi et al. (2022) explore the extreme case in 
which the expansion of surface water irrigation is restricted in targeted areas.)
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Change in surface water use in crop production (%) 

Fig. 16.7 Global changes in surface water irrigation in response to global groundwater sustain-
ability restrictions The map shows the percentage change in surface water use in irrigation. The 
impact on surface water can be decomposed into a “substitution effect” and a “scale effect.” If the 
substitution effect is dominant, the change in surface water use in targeted areas is positive and 
compensates for the decline in irrigated areas. If the scale effect is dominant (less irrigated area), the 
change in surface water use in the targeted area is negative. Dark green indicates an increase in 
surface water use with a dominant substitution effect, and light green indicates the locations with an 
increase in surface water irrigation due to a positive scale effect, absent the substitution effect 

The maps illustrate the conversion to rainfed production in targeted locations: A 
clear increase in rainfed areas is projected for most of the grid cells, with large 
reductions in irrigated areas. Both maps show a moderate increase in irrigated and 
rainfed areas (light green). The expansion in global cropland area and conversion to 
rainfed production are important channels of adjustment and economic responses to 
groundwater sustainability policy. 

4.1.3 Impact on Production 

Figure 16.8 illustrates the impact of enforcing sustainable groundwater use on 
equilibrium irrigated and rainfed crop production. These changes are the conse-
quences of the changes in water use, land conversion, employment, local rents, crop 
prices, farm revenues, and other local and global changes. In general, irrigated 
production declines in hotspots with unsustainable groundwater use, while rainfed 
production increases. The increase in surface water use in some dry locations may
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Change in irrigated crop production (%) 

Change in rainfed crop production (%) 

(a) 

(b) 

Fig. 16.8 Percentage change in (a) irrigated and (b) rainfed crop production in response to global 
groundwater sustainability restrictions Red and yellow areas indicate a reduction in production and 
green areas indicate an increase in production. While irrigated production in the unsustainable 
groundwater hotspots is substantially reduced, these hotspots also show the biggest percentage 
increase in rainfed production. This conversion to rainfed agriculture compensates for some of the 
immediate impacts on irrigated production. In addition, light green on the irrigated and rainfed 
maps indicates an expansion of crop production in nontargeted locations. While the patterns are 
similar to changes in the cropped area, the percentage change in production is smaller because 
rainfed crops have lower yields



cause an increase in irrigated production next to the targeted areas or may not be 
enough to recover irrigation production (e.g., in the Middle East).
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4.2 Regional Outcomes 

Restricting groundwater irrigation has diverse implications for regional crop pro-
duction, land use, and food prices. Table 16.2a reports the long-run results at the 
regional scale, and Table 16.2b reports the absolute changes. In terms of percentage 
changes, the largest price increases arise in the Middle East, North Africa, and 
South Africa. In general, rainfed production increases, while irrigated production 
declines. In countries facing less severe restrictions, conversion to rainfed and 
surface water-fed cropping (driven by higher local prices) can fully offset the decline 
in irrigated production. 

In absolute terms, the biggest declines in crop production are predicted in China, 
India, the Middle East, and North Africa, where crop production will decrease by -
12.5, -8.8, -3.6, and -2.5 million tons, respectively. 

4.3 Implications for Virtual Water Trade 

Groundwater restrictions are expected to alter agricultural trade patterns (Table 16.3). 
The biggest percentage change in agricultural trade flows is expected for North 
Africa, South Africa, and the Middle East, where production is sharply reduced and 
imports rise. The model suggests that trade will play an important role in meeting the 
demand for food in these regions. (Table A6 in Haqiqi et al. (2022) reports country-
level results.) The largest percentage declines in production are estimated to occur in 
Saudi Arabia, Jordan, South Africa, Oman, and Iran, where production drops by 
19.0%, 10.5%, 7.6%, 4.8%, and 2.8%, respectively (see Haqiqi et al. 2022, 
Table A6). In these countries, there is little possibility of using surface water as a 
substitute for groundwater (indeed, rivers in these areas are often overabstracted), 
and there is little room for expanding rainfed agriculture at competitive production 
costs. On the contrary, production is expected to increase in Turkey by 1.7%, as 
access to more land and water is less challenging. In larger countries such as India, 
China, and the United States, the relocation occurs predominantly within the country 
(Fig. 16.6). 

Table 16.4 shows the impacts of groundwater sustainability restrictions on virtual 
trade in blue water. For all the regions listed in this table, exports of virtual blue 
water decrease, with the biggest declines occurring in the United States and South 
Asia. Note that this is largely due to the expansion of rainfed agriculture, both 
through conversion from irrigation and from cropped area expansion. Expanding 
rainfed crop production likely leads to a rise in virtual trade in green water, which we 
have not quantified in this study. In summary, the blue water (groundwater and



Region change)

Region

(1000 MT) Change in cropped area (1000 ha)

9 43

1 56

3 4

3 16
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Table 16.2 Long-term regional impacts of restricting groundwater irrigation to renewable resources 

Panel A. Percentage change in crop price, production, and area, by region 

Crop price (% Crop production (% change) Cropped area (% change) 

Total Irrigated Rainfed Total Irrigated Rainfed 

East Europe 0.23 0.12 -0.71 0.21 0.07 -0.29 0.09 

North Africa 1.10 -0.72 -1.21 0.91 0.19 -0.41 0.43 

Sub-Saharan 
Africa 

0.13 0.06 -0.46 0.11 0.06 -0.14 0.06 

South America 0.29 0.10 -0.50 0.28 0.11 -0.18 0.14 

Brazil 0.28 0.12 -1.37 0.33 0.12 -0.77 0.20 

Australia and 
New Zealand 

0.34 0.09 -0.90 0.35 0.11 -0.37 0.15 

Europe 0.34 0 -1.46 0.35 0.09 -0.62 0.18 

South Asia 0.80 -0.40 -1.20 0.74 0.04 -0.54 0.55 

Central America 0.38 -0.15 -0.94 0.35 0.09 -0.36 0.24 

South Africa 0.63 -1.53 -3.95 0.58 0.11 -1.61 0.32 

Southeast Asia 0.24 -0.01 -0.71 0.21 0.06 -0.35 0.16 

Canada 0.32 0.36 -0.24 0.37 0.14 -0.13 0.15 

United States 0.43 -0.26 -1.45 0.43 0.09 -0.69 0.25 

China 0.64 -0.27 -0.91 0.65 0.07 -0.32 0.46 

Middle East 1.00 -0.58 -1.19 0.76 0.14 -0.30 0.43 

Japan and Korea 0.10 0.01 -0.11 0.11 0.02 -0.08 0.09 

Central Asia 0.40 -0.14 -0.36 0.29 0.07 -0.07 0.11 

World 0.4 -0.2 -1.1 0.4 0.1 -0.5 0.2 

Panel B. Actual change in crop price, production, and area, by region 

Change in crop production 

Total Irrigated Rainfed Total Irrigated Rainfed 

East Europe 889 -549 1,390 146 -38 183 

North Africa -2,497 -3,241 738 53 -34 87 

Sub-Saharan Africa 783 -568 1,331 130 -13 143 

South America 591 -747 1,285 78 -16 95 

Brazil 1,108 -1,628 2,709 76 -40 117 

Australia and New Zealand 129 -286 400 34 -
Europe 39 -3,303 3,328 96 -80 176 

South Asia -8,820 -15,781 6,576 87 -541 628 

Central America -620 -1,484 869 38 -37 74 

South Africa -1,266 -1,381 276 16 -25 40 

Southeast Asia -80 -2,506 2,381 69 -91 161 

Canada 635 -20 617 55 -
United States -2,983 -6,100 3,189 137 -190 327 

China -12,522 -24,971 11,874 98 -217 315 

Middle East -3,581 -4,992 1,469 81 -67 148 

Japan and Korea 11 -87 97 1 -
Central Asia -193 -326 128 13 -
World -28,374 -67,968 38,655 1,209 -1,404 2,613
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Table 16.3 Trade impacts of restricting groundwater irrigation (percentage change in supply to the 
domestic market, exports, and imports) 

Region 

% Change in supply % Change in demand 

Domestic Exports Imports 

East Europe 0.02 0.54 -0.45 

North Africa -0.56 -2.83 1.96 

Sub-Saharan Africa 0.01 0.78 -0.75 

South America -0.01 0.34 -0.28 

Brazil 0.01 0.38 -0.29 

Australia and New Zealand -0.01 0.18 -0.10 

Europe -0.05 0.10 -0.11 

South Asia -0.35 -1.66 1.09 

Central America -0.14 -0.18 -0.02 

South Africa -0.99 -2.29 0.76 

Southeast Asia -0.05 0.40 -0.45 

Canada 0.09 0.52 -0.16 

United States -0.16 -0.43 0.12 

China -0.27 -1.07 0.72 

Middle East -0.42 -2.43 1.78 

Japan and Korea -0.01 0.83 -0.82 

Central Asia -0.14 -0.21 -0.02 

Table 16.4 Impact of groundwater sustainability policy on virtual blue water exports by source 
6 m3 

Surface water Groundwater Surface water Groundwater 

East Europe 1.41 -11.90 59 -152 

North Africa 4.87 -48.39 103 -249 

Sub-Saharan Africa 1.42 -8.96 25 -74 

South America 2.12 -14.26 144 -431 

Brazil 2.84 -17.61 152 -551 

Australia and New Zealand 1.99 -18.02 52 -170 

Europe 2.29 -23.14 238 -928 

South Asia 5.26 -26.74 779 -2,984 

Central America 3.23 -21.42 239 -647 

South Africa 6.30 -28.41 88 -141 

Southeast Asia 3.47 -23.54 246 -845 

Canada 1.25 -10.30 10 -25 

United States 3.62 -27.65 885 -2,935 

China 3.54 -21.20 65 -228 

Middle East 4.39 -31.38 138 -299 

Japan and Korea 0.76 -5.40 2 -6 

Central Asia 1.48 -14.71 48 -171 

World 3.35 -23.48 3271 -10,835



surface water) virtual trade declines by 10.8 billion m3 in the wake of this sustain-
ability policy.
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4.4 Implications for Employment 

The change in employment is calculated assuming a gridded labor market with no 
explicit modeling of labor mobility across grid cells. Labor is part of the nonland 
composite input assuming a fixed proportions production process (recall Fig. 16.1). 
Thus, the demand for labor input follows the changes in demand for the nonland 
composite input due to changes in intensification. Figure 16.9 illustrates the spatial 
pattern of change in employment. The pattern is different from that of changes in 
cropped area and production due to the varying contributions of nonland factors of 
production by country. The initial numbers for gridded employment were obtained 
from subregional rates of labor per hectare of cropland. Haqiqi et al. (2022) provide 
more information on the average number of workers per hectare and per ton of corn-
equivalent output in rainfed and irrigated agriculture. 

Table 16.5 provides the model results for the aggregated impacts on employment 
in crop production activities around the world. The findings suggest that employ-
ment in irrigated agriculture will decline by about 1.5 million jobs globally. How-
ever, employment is expected to increase by 2.5 million jobs in areas with more 
extensive rainfed agriculture, creating a net gain of one million new jobs globally. 
Overall, these results suggest an increase of more than half a million jobs in China 
and South Asia, where domestic cropping area increases with the move to more 
rainfed production. This is due to the expansion of more extensive rainfed crop 
production, which requires more labor to work the increased land area. Finally, note 
that the average worker per hectare of land will be different for the marginal land 
endogenously added or removed from crop production due to substitutions between 
the nonland and land–water composites. As the land–water composite becomes 
scarcer and more costly, an intensification is expected, increasing the average 
number of workers per hectare of land. 

4.5 Sensitivity to Adaptation Margins 

Assessing the sensitivity of these findings to key parameter values reveals an 
interesting finding. The strength of any given individual margin of adaptation is 
dependent on the other margins. For example, when surface water substitution is 
limited, there is a stronger price response, and we observe larger adaptation 
responses from trade and relocation. Alternatively, when substitution in trade is 
less possible or conversion to rainfed is not feasible, the global irrigated cropped area 
tends to respond more strongly and there are bigger responses in surface water use. 
As a consequence, while the component parts of Fig. 16.5 are quite sensitive to
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Change in employment in irrigated crop production (%) 

Change in employment in rainfed crop production (%) 

(a) 

(b) 

Fig. 16.9 Global changes in agricultural employment in (a) irrigated and (b) rainfed crop produc-
tion (%) in response to global groundwater sustainability restrictions Red and yellow areas indicate a 
reduction in employment and green indicates increases in employment. While the patterns of 
change are similar to those of changes in cropped area and production, the reductions in employ-
ment are generally smaller, while the increases in employment are larger than the percentage change 
in cropped area



model parameters, the final impact on global production of eliminating individual 
margins of adaptation is less than 1%, and the increase in price for more rigid 
assumptions is also less than 1%. Haqiqi et al. (2022) provide details about these 
sensitivity analyses and the interactions among the various adaptation margins.
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Table 16.5 Impact of groundwater sustainability policy on employment in crop production by 
practice and region 

% Change Change in number of jobs 

Total Irrigated Rainfed Total Irrigated Rainfed 

East Europe 0.16 -0.40 0.25 6,107 -1,979 8,086 

North Africa 0.28 -0.26 1.03 28,500 -15,631 44,131 

Sub-Saharan Africa 0.12 -0.04 0.12 154,544 -1,790 156,336 

South America 0.18 -0.15 0.34 7,979 -2,246 10,226 

Brazil 0.23 -0.96 0.34 32,697 -11,238 43,935 

Australia and New Zealand 0.32 -0.24 0.37 582 -38 620 

Europe 0.22 -0.45 0.36 13,417 -4,827 18,244 

South Asia 0.11 -0.69 0.83 289,680 -858,248 1,147,920 

Central America 0.20 -0.44 0.39 14,867 -7,281 22,148 

South Africa 0.31 -1.73 0.55 2,885 -1,654 4,538 

Southeast Asia 0.09 -0.40 0.24 83,296 -83,868 167,200 

Canada 0.37 0.01 0.38 690 1 690 

United States 0.23 -0.83 0.45 4,233 -2,626 6,863 

China 0.14 -0.41 0.69 296,608 -425,672 722,272 

Middle East 0.52 -0.16 0.88 46,601 -4,980 51,581 

Japan and Korea 0.06 -0.01 0.11 662 -52 714 

Central Asia 0.17 -0.09 0.36 10,355 -2,271 12,626 

World 0.13 -0.52 0.50 993,701 -1,424,400 2,418,129 

5 Discussion and Conclusion 

Stress on groundwater is expected to increase due to income and population growth, 
and global warming is expected to increase agronomic water requirements. The 
rising number of drying wells and increasing instances of land subsidence around the 
world have led to increased attention being given to sustainable groundwater use 
(Befus et al. 2017; Jasechko and Perrone 2020, 2021; Klasic et al. 2022). However, 
little is known about the local and global implications of restricting groundwater use 
to sustainable levels. This study sheds light on the implications of such a scenario on 
land use and agricultural production. 

Recent studies evaluating the impact of restricting groundwater irrigation on 
agriculture are either geographically limited (United States) or limited in their 
treatment of global impacts (Baldos et al. 2020; Graham et al. 2021). This study 
demonstrates that the global impacts of groundwater restrictions on global food



availability are largely ameliorated in the long run due to local, regional, and global 
adaptations. We have also added to this literature by expanding the analysis to 
include virtual water trade and employment impacts of groundwater governance. 
The decline in unsustainable groundwater irrigation is accompanied by a decline in 
virtual trade in blue water, while employment in agriculture increases in the wake of 
expanding rainfed production. However, even in the long run, local impacts can be 
very significant for locations with a high dependency on unsustainable groundwater. 
In some locations, production and employment decline by up to 90%. In locations 
without alternative sources of employment and food supply, this would have signif-
icant local impacts, leading to more than one million jobs lost and likely more than 
one million families affected. These local impacts will have adverse impacts on the 
broader economy, a point that our partial equilibrium analysis ignores by holding 
income constant. Addressing these economy-wide impacts of sustainability policies 
requires a general equilibrium model, which would typically be implemented at the 
national level (Calzadilla et al. 2010; Golub and Hertel 2012; Liu et al. 2014). 
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Our findings suggest that restricting groundwater irrigation could have a signif-
icant impact on local irrigated production in hotspots of nonrenewable groundwater 
irrigation. This directly causes a substantial reduction in agricultural production and 
employment for these communities. However, the impact of global groundwater 
sustainability policies is likely to be overestimated if the dynamic responses to 
restricted groundwater consumption are ignored. We show that these responses at 
the local and global levels will lessen the negative impact on food prices and 
production at the regional and global levels. Changes in relative prices at different 
scales will motivate changes in decisions and market outcomes, including compo-
sitional effects at the local level and changes in surface water irrigation, the location 
of crop production, irrigation extent and intensity, and the international trade in food 
commodities. Of course, these adjustments are costly and can cause further envi-
ronmental issues. Overall, our findings suggest that the land-use and deforestation 
implications of a global groundwater sustainability policy are small and that the 
long-run impact on food production is less than 1% at the global level. The long-run 
change in global cropland is also limited to +0.1%, corresponding to +1.2 million 
hectares of cropland. Expansion as a result of deforestation and cropping of marginal 
lands could lead to environmental degradation. In addition, as rainfed zones tend to 
be richer in carbon and biodiversity (Taheripour et al. 2013), other environmental 
implications of this policy should be studied more carefully, with ecological con-
cerns in mind. This is a critical finding when comparing the likely benefits and costs 
of such a policy. 

Our decomposition framework highlights the possible adaptation mechanisms 
and demonstrates why ignoring market-mediated responses may lead to the 
overestimation of the costs of adopting sustainability policies. In addition, the 
findings are important for understanding the implications of sustainable groundwater 
use for the virtual trade of blue water. Because of the likely changes in farmers’ 
decisions and economic responses, it is necessary to consider wider market 
responses when evaluating the impacts of conservation policies. Global environ-
mental and agricultural models that neglect the economic modeling of international



trade may overestimate the losses by not accounting for changes in exports and 
imports based on economic decisions. 
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Considering the socioeconomic responses in the studies involving impact ana-
lyses of sustainability policy will face another key challenge. While sustainability 
issues are typically very localized and thus require high-resolution land- and water-
use models, analyzing the social responses and economic decisions at a fine scale is 
difficult due to lack of information. Unfortunately, to the best of our knowledge, few 
global models are capable of high-resolution economic modeling. For example, the 
GLOBIOM model from the International Institute for Applied Systems Analysis 
(Valin et al. 2013) is a recursive-dynamic optimization model. However, due to its 
large size and complexity, the model is not resolved at the level of individual grid 
cells; rather, it is applied to representative groupings of grid cells, making analysis of 
local responses to sustainability restrictions more challenging. Similarly, the Global 
Change Analysis Model (GCAM) provides a framework for modeling groundwater 
resources and land use, deploying a range of supply- and demand-driven adaptive 
responses (Turner et al. 2019a, b), but it is implemented at the river-basin level. 
However, high-resolution analysis is important due to the heterogeneity of land and 
water use among grid cells within aquifers (e.g., the sustainability restrictions and 
responses would be different between the Northern Plains and southern regions of 
the Ogallala Aquifer in the United States). Here, SIMPLE-G introduces one of the 
first frameworks capable of modeling land use and water use decisions at the grid-
cell level while also considering grid-cell-specific responses within local, regional, 
and global markets. This was possible thanks to close collaboration with hydrolo-
gists in the Water Systems Analysis Group of the University of New Hampshire. 
Further research is required to improve the ability of global models to integrate 
economic and environmental sciences considering cross-system feedback. 

The reliance on virtual water trade carries the risk that many countries will not 
intervene to restore groundwater stability but rather will avoid the political and 
administrative challenges of regulation, safe in the knowledge (or more likely, 
hope) that virtual water will continue to compensate for reduced local production. 
This route will eventually generate far more severe local (and global) consequences. 
Intervening to restore stability, which we have endeavored to model in this study, 
reduces the average water available from groundwater but crucially preserves the 
flexibility and emergency buffer resources that renewable groundwater provides. If 
mining continues, that function will disappear because aquifers will effectively run 
dry, salinizing or becoming so deep that recharge no longer reaches the saturated 
zone in a useful timeframe or the cost of abstraction becomes prohibitive. The 
reduction in water availability implied in that scenario—a loss of both volume and 
flexibility—will have far more profound consequences locally and globally. The 
implication of this is that while introducing governance “now” is relatively cheap, 
failure to do so will be very expensive. 

With increasing risks of megadroughts in the future, groundwater resources play 
an important role by acting as a buffer in times of extreme drought when there is no 
surface water available. They provide a temporary source for essential needs 
(including drinking water). By incurring modest production losses today, nations
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can reserve their groundwater resources for a future time when they will be more 
valuable. This intertemporal substitution is an important topic for future exploration. 
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In closing, this study has provided insights into the long-run costs and benefits of 
groundwater sustainability policy. However, we did not model the transition costs 
and long-run benefits of sustainable groundwater use. During the transition period— 
and while farmers adjust their decisions based on market outcomes—there can be a 
high reduction in local production, employment, and farm income. We find that 
aggregate employment will increase in the long run, ensuring that communities that 
use water sustainably will avoid the risk of running out of groundwater when it is 
most needed. However, there are still uncertainties about the actual ramifications of 
ambitious global sustainability policies. How big are the unintended consequences 
that might occur from local water conservation, potentially spurring deforestation 
and excess fertilizer use in distant corners of the world? Can rigidities within the 
labor market reduce the effectiveness of even the most well-intentioned policy 
efforts? These questions call for future research to shed light on the different benefits 
and costs of sustainability policies and on the synergies and trade-offs between 
sustainability goals within planetary boundaries. 
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Chapter 17 
Interplay Between the Pandemic 
and Environmental Stressors 

Iman Haqiqi, Danielle S. Grogan, Marziyeh Bahalou, Jing Liu, 
Uris Lantz C. Baldos, Richard Lammers, and Thomas W. Hertel 

1 Introduction 

In this chapter, we aim to provide an introduction to multisystem dynamics. Our 
primary focus is to demonstrate how SIMPLE-G can be integrated with Earth system 
models to generate more accurate and holistic evaluations of the impacts of multiple 
shocks on agriculture. We look at the case of a compound pandemic–weather 
extreme event. Through this example, we showcase how Earth system models can 
offer multiple inputs to SIMPLE-G, including changes in crop yields and water 
availability. We also demonstrate how SIMPLE-G can calculate the amount of 
greenhouse gas (GHG) emissions released by the food system, which is crucial for 
assessing climate change. Moreover, we delve into how SIMPLE-G can connect the 
dynamics of hydroclimatic systems to food security outcomes. By examining the 
relationship between hydroclimatic conditions and crop growth and incorporating
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market connections, we can better understand how changes in weather patterns can 
impact food security and identify potential adaptation strategies.
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Short-term extreme events can threaten global food security through negative 
impacts on food production, food purchasing power, and agricultural economic 
activity. While the impacts of weather-based extremes such as droughts and floods 
have been well studied (Konapala et al. 2020; Pokhrel et al. 2021), societal disasters 
like pandemics are only more recently being evaluated (Diffenbaugh et al. 2020; 
Mishra et al. 2021; McDermott and Swinnen 2022; Vos et al. 2022). The potential 
for additional global pandemics, along with the increasing frequency of weather 
extremes (Pokhrel et al. 2021), also requires us to consider the impacts of compound 
pandemic–weather events and potential adaptation options. 

The COVID-19 pandemic posed remarkable challenges to food security, 
impacting local, regional, and global food security through several mechanisms. 
Under- and unemployment-induced income losses led to reduced food purchasing 
power for many households, decreases in agricultural production were caused by 
restricted population movements, and supply chain disruptions resulted in losses to 
global economic production (Diffenbaugh et al. 2020; World Bank 2020; Haqiqi and 
Horeh 2021). 

Widespread weather-based impacts on crop yields can also reduce food produc-
tion and agricultural economic activity (Boyer et al. 2013; Kim et al. 2019). 
Droughts have a particularly negative impact on food security in developing coun-
tries (Morton 2007; Cooper et al. 2019) and have been linked not only to increased 
malnourishment in those countries but also to conflicts and social instability (Hsiang 
et al. 2013; Gleick 2014; Cooper et al. 2019). 

From a food security perspective, the world was fortunate that weather outcomes 
during the COVID-stressed year of 2020 were largely favorable to food production. 
But what if the pandemic had coincided with global-scale water stress events? There 
have been studies of individual shocks to human and environmental systems on food 
security (Fujimori et al. 2018; Mora et al. 2018; Chateau et al. 2020; De Lima et al. 
2021; Haqiqi et al. 2021), but very few studies have examined the interaction and 
compound impacts of multiple, simultaneous shocks to food security and environ-
mental outcomes (Chateau et al. 2020; Mishra et al. 2021; Smith et al. 2021). 

Here, we evaluate the impacts of compound stresses resulting from a pandemic 
such as COVID-19 coinciding with widespread drought and heat waves. We further 
quantify the role of interdependent local, regional, and global adaptation options in 
response to these compound stresses. This is accomplished through the lens of 
SIMPLE-G, linked to hydrologic and crop yield models, which are in turn driven 
by climate model outputs (Fig. 17.1). We build on the global gridded model from 
Chap. 16 and extend it to incorporate additional systems. Using this framework, we 
look at both undernourishment outcomes and GHG emissions for the compound 
disaster scenario and adaptation options. 

The multimodel structure includes climate data (gray), hydrologic modeling 
(blue), crop yield modeling (green), and economic modeling (yellow and peach). 
Daily weather data allow the hydrologic model to simulate changes in agricultural 
water requirements and availability; the crop yield model uses these same weather



data, along with outputs from the hydrologic model, to simulate weather-induced 
changes in crop yields. The economic model uses pandemic-based shocks to income, 
along with the water supply and crop yield changes from the other two models, as 
inputs to a coupled fine-scale gridded (yellow) and regional (peach) equilibrium 
supply–demand system. The full modeling system produces the key metrics 
evaluated here: changes in food sector greenhouse gas (GHG) emissions and under-
nutrition as a result of the combined pandemic and weather shocks. Asterisks 
(*) indicate exogenous inputs to the system. 
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Fig. 17.1 Method overview 

2 SIMPLE-G Model Used in This Chapter 

In this chapter, we introduce a new version of SIMPLE-G that is more appropriate 
for short-run analyses. We employ two sets of SIMPLE-G-Global models (Haqiqi 
et al. 2022) that are designed to evaluate the impact of multiple shocks. The first 
model is that used in Chap. 16, which incorporates local production and resource use 
decisions that respond to market prices. This means that the model considers the 
market dynamics of land, water, and other inputs for both irrigated and rainfed 
production. The second model, called SIMPLE-G-Global-Climate, is a new version 
of SIMPLE-G that provides a short-run evaluation of the impact of multiple shocks. 
In this model, a critical assumption is that local land and water use decisions have 
already been made in the short run, and local production is affected by weather 
conditions through yield and water availability. This model considers the environ-
mental factors that influence agricultural production, such as weather extremes, to 
provide a more accurate assessment of the short-run impact of shocks. 

We evaluate key outputs from this multimodel system: changes in GHG emis-
sions from the food sector and changes in undernourished populations in developing



countries. Undernourished population is defined as the number of people who do not 
consume the minimum caloric requirement, as defined by the Food and Agriculture 
Organization of the United Nations (FAO 2021). GHG emissions are computed as 
the sum of all emissions from different stages of production in the food system and 
include CO2, N2O, and CH4. We further evaluate multiscale endogenous adaptation 
responses to reduce negative food security impacts, as detailed in Haqiqi 
et al. (2023). 
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The SIMPLE-G framework is particularly well suited to this multisystem analysis 
of compound extremes since the economic decisions play out at a fine scale but are 
also spatially connected through regional and global markets. This distinguishes 
SIMPLE-G from most economic equilibrium models, which operate at the regional 
level. Because SIMPLE-G offers a combined gridded and regional economic model 
framework, it is well-positioned to make the best use of the fine-scale gridded results 
coming from the hydrologic and crop yield models. These gridded results are 
important to include in economic modeling because impacts on water supply and 
crop yields can vary greatly within a single region. Averaging these grid-cell-level 
biophysical model results prior to economic modeling would fail to capture changes 
in the spatial patterns of agricultural production that rely on local natural resources 
and are impacted by fine-scale weather events. 

The SIMPLE-G-Global model used in this study determines crop production, 
land use, and irrigation water demand for each of the 1.3 million grid cells (recall 
Chap. 16). These grid cells are connected through agricultural markets and their 
relative production costs and land and water availability determine the scale of 
production at each location. We also use the nutrition module within SIMPLE 
which was developed by Baldos and Hertel (2014) based on Neiken (2003). In 
addition, we use a GHG emission module to estimate changes in emissions from the 
food system (CO2, N2O, and CH4) based on the GTAP Power Data Base (Aguiar 
et al. 2019; Chepeliev 2020). 

3 Experiment Design 

To evaluate the impacts of the compound disaster posed by a co-occurring global 
pandemic and a global low-yield agricultural year, we need to connect the biophys-
ical agricultural system with the global economic system. To do this, we use a 
coupled model framework that integrates gridded physical models from hydrology 
and agronomy with equilibrium models from economics (Fig. 17.1). These models 
are (1) a process-based gridded hydrologic model that simulates changes in agricul-
tural water requirements and availability based on daily weather inputs, (2) a gridded 
crop yield model emulator that simulates changes in irrigated and rainfed crop yields 
based on both daily weather and hydrologic model output, and (3) a 
gridded-regional economic model that integrates both the pandemic-related shocks 
to income and the agricultural shocks from weather as simulated by the other two 
models.
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3.1 Hydrologic Model 

The hydrologic model used here is the water balance model (WBM), a global 
gridded hydrological model that simulates the land surface component of the water 
cycle based on daily weather inputs (Grogan et al. 2022). The WBM has been used 
and validated globally (Wisser et al. 2010; Grogan et al. 2017), including in 
multimodel systems coupled with economic models (Zaveri et al. 2016; Liu et al. 
2017; Haqiqi et al. 2021). The WBM simulates both the vertical exchange of water 
between groundwater, surface soil moisture, and the atmosphere as well as the 
horizontal transport of water through runoff and stream networks. The WBM 
represents many anthropogenic interactions with the hydrological cycle, including 
irrigation (Wisser et al. 2010) and agricultural land use (Grogan et al. 2017). Here, 
the WBM is used to simulate changes in water supply and changes in crop water 
requirements. 

3.2 Crop Yield Model 

This chapter examines the interactions between multiple, punctuated extreme shocks 
(e.g., pandemics, short-term droughts, and heat stress). Note that we are not looking 
at long-term climate changes and regime shifts that can permanently move human 
and environmental systems to a new state. To simulate yearly changes in crop yields 
due to weather impacts, we develop an emulator from the crop yield component of 
the Global Crop Water Model (Siebert and Döll 2010), which we call the Global 
Crop Water Model General Emulator (GCWM-GE). The yields are estimated based 
on beneficial degree days between 10 °C and 30 °C and harmful degree days above 
30 °C as well as evaporative stress for five climate zones. While this tool does not 
capture yield damage due to frost, extreme winds, flooding, pests, or disease, it has 
the great advantage of eliminating the need for a crop-by-crop calculation of yield 
while modeling the relative pattern of crop yields in a statistical framework. Overall, 
GCWM-GE is capable of explaining around 50% of yield variation circa 2000 
(Haqiqi et al. 2023). 

3.3 Scenario Design 

To simulate a compound pandemic and weather crisis, we construct three shocks that 
are simultaneous inputs to the economic modeling system. These shocks comprise 
changes to key values within the economic framework that cause the system to fall 
out of equilibrium, triggering multiple adjustments in the global economy. 
Table 17.1 lists all shock values at the regional level, and Fig. 17.2 shows the global, 
weather-based crop yield shocks at the grid-cell level.
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Table 17.1 Pandemic and weather shock scenario design 

Region 

Pandemic shocks Weather shocks Other shocks 

Gross domestic 
product (GDP) shock 
(%) 

Water 
resources 
shocka (%) 

Crop yield 
shockb (%) 

Additional shock to 
crop yieldsc (%) 

East Europe -5.35 -0.36 -5.02 4.89 

North Africa -6.30 -3.52 -1.22 13.87 

Sub-Saharan 
Africa

-5.58 -1.69 -8.94 10.78 

South America -8.78 0.46 5.47 -0.45 

Brazil -8.78 -2.23 6.17 -1.76 

Australia and 
New Zealand

-6.51 -5.28 4.80 -5.93 

Europe -7.76 -3.00 -11.10 8.59 

South Asia -8.94 1.94 5.15 -8.42 

Central 
America

-8.78 -0.73 -0.68 1.96 

South Africa -5.58 -14.39 -12.57 6.54 

Southeast Asia -5.70 -7.86 -1.32 5.67 

Canada -5.00 -1.06 -4.78 9.74 

United States -5.00 1.11 0.50 -1.41 

China 1.17 -2.84 5.22 1.32 

Middle East -6.30 5.66 1.26 7.76 

Japan and 
Korea

-4.73 -2.55 -1.14 -4.95 

Central Asia -5.35 18.94 1.69 -0.16 
a These shocks are applied at the grid-cell level. Regional aggregate values are reported in this table 
for the purpose of describing the shock scenario. See Fig. 17.2 for the grid-cell shock to rainfed crop 
yields 
b Crop yield shocks are estimated by the crop model at the grid-cell level. 
c Other yield shock is the portion of the change in reported regional average yield that is not 
captured by the crop model. This shock is applied at the country level 

3.3.1 Pandemic Shocks 

The economic shocks from a pandemic are represented here as changes in regional 
income due to lockdowns and changes in productivity due to supply chain disrup-
tions. We use the estimated impacts of the COVID-19 pandemic in 2020 on income 
and production from the World Bank (2020) Global Economic Prospects report as 
inputs to the regional economic model. We believe that this is indicative of the global 
economic impact that a future pandemic might have.
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Fig. 17.2 Grid cell shock to (a) rainfed crop yields and (b) surface water supply due to weather 
impacts The gridded yield shocks are calculated using the global yield emulator model, while the 
shock on surface water is based on the outputs of the water balance model 

3.3.2 Weather Shocks 

While there is interannual variability in global agricultural production, 2015 was a 
particularly poor year for crop production compared with the recent past (2000s and 
2010s), largely due to concurrent droughts in key breadbasket regions that year, 
according to the World Bank (2020) crop production index. To simulate this weather 
shock, both the hydrologic model and the crop yield model were used to simulate 
outcomes over 2012–2018 based on daily input weather data. The shocks to water 
resources and crop yields are computed as the difference between the model output 
for 2015 and the average output over the 7-year simulation period. These shocks are 
applied at the grid-cell level and are assumed to represent the kind of adverse 
weather events that could exacerbate the impacts of a pandemic.
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3.3.3 Additional Crop Yield Shocks 

Weather extremes explain only a portion of the variation in crop yield anomalies 
(Ray et al. 2015; Vogel et al. 2019). In addition to heat and water stress, there are 
many other factors affecting food production that are not captured in the GCWM-GE 
or the WBM, including human system components (e.g., political changes, eco-
nomic policies, labor strikes, conflicts, migration, technology, growth, and reces-
sion) and environmental factors (e.g., frost, flooding, pests, and disease). We use 
annual reported agricultural production and yields from the World Bank by country 
to produce a residual change in crop yields. These observed outcomes from 2015, 
which lie outside the predictions of the crop yield model, are treated as an additional 
yield shock. 

3.3.4 Adaptations to Shocks 

The SIMPLE-G gridded economic model encompasses the equilibrium adaptation 
responses considered in this study at the local (irrigation), regional (production 
pattern), and global levels. Specifically, these adaptation options include surface 
water and groundwater substitution for irrigation on existing irrigated cropland, 
changes in the amount of water applied to land, rainfed-to-irrigated (or irrigated-
to-rainfed) land conversions, expansion or contraction of cropland, relocation of 
cropland, input substitutions in the livestock and processed food sectors, consumer 
responses to price changes, dietary changes, and international trade. Water, land, and 
fertilizer inputs are treated as exogenous and unchanging in the no-adaptation 
scenario. 

3.4 Decomposition Methods 

We use the GEMPACK software utility to decompose the results in two ways. First, 
we utilize GEMPACK’s “subtotal” feature (Harrison and Pearson 1996; Harrison 
et al. 2000) to identify the relative importance of the pandemic, weather, and other 
shocks on each of our outcome metrics. Second, we decompose the relative influence 
of local water, regional land, and global trade adaptation options on undernutrition 
metric outcomes by successively turning these options off in the model simulations. 

4 Results 

We assess the impact of compound events for adaptation and no-adaptation scenar-
ios. Comparing the two scenarios highlights the value of global adaptation channels 
(e.g., changes in international trade) and local adaptation measures (e.g., irrigation).
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4.1 Change in GHG Emissions in the Absence of Adaptation 

Globally, the compound pandemic and weather shocks lower GHG emissions from 
the food sector by 11.5%, with the largest changes occurring in South Africa and 
Europe (Fig. 17.3a). These reductions are due to relatively larger negative shocks, 
lower agricultural production levels, and reduced food transportation. This finding is 
consistent with observations made during the first year of the COVID-19 pandemic 
(Diffenbaugh et al. 2020). However, GHG emissions from the food sector increase 
slightly in the Middle East, China, and Central Asia. These increases are caused by 
higher crop production and transportation occurring in regions with the capacity to 
produce more food under the combined shock scenario. In all three of the regions 
showing increases in GHGs, total shocks to crop yields (weather and additional 
shocks) are positive, allowing them to become key suppliers in the short run. 

Fig. 17.3 Percentage change in (a) greenhouse gas emissions from the agricultural sector and (b) 
undernourished populations in developing nations due to the compound shocks, with and without 
adaptations The magnitude of the impacts on both emissions and food security varies regionally, 
although most regions experience a decline in emissions and an increase in the undernourished 
population. Comparing the adaptation (blue) to the no-adaptation (yellow) scenarios shows that 
adaptations reduce the impact of the compound disaster in all cases. In Table 2 and Fig. S3, Haqiqi 
et al. (2023) report results for the undernourished population in units of millions of people. Note that 
wealthier regions have no estimate of the change in undernourished population as the FAO 
methodology is only appropriate for low-income regions; these omitted regions are the United 
States, South Africa, Japan, Korea, Europe, Canada, Australia, and New Zealand
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4.2 Change in Food Security in the Absence of Adaptation 

Without adaptations, global food security declines significantly. The number of 
undernourished people in developing countries increases by 12.51%, from 426 mil-
lion to 479 million people (Table 17.2). Notably, there are changes in both directions 
due to regional variations; we arrive at the net change of 53 million people through 
an increase of 66 million people in negatively affected regions and a decrease of 
13 million people in positively affected regions (Table 17.2). The regional variation 
is considerable, with changes of up to ±20%. Decomposition of the shocks’ relative 
impacts on nutritional outcomes (Fig. 17.4a) shows that all three shocks (pandemic, 
weather, and additional) contribute to a decline in the number of undernourished 
people in China. For all eight regions with increases in undernourished populations, 
the pandemic shock (red bar) is the largest contributor to the food security crisis 
(Fig. 17.4a). 

Table 17.2 Undernourished population by region in the initial condition (no disaster) and change 
in undernourished population due to the compound disaster with and without adaptation 

Initial 
undernourished 
population 
(million people) 

Compound disaster 
impact, no 
adaptation (million 
people) 

Compound disaster 
impact, with 
adaptation (million 
people) 

Change due to 
adaptation 
(million 
people) 

Sub-Saha-
ran Africa 

119.58 4.16 3.40 -0.77 

Southeast 
Asia 

39.88 2.12 2.02 -0.10 

South 
Asia 

148.85 51.19 24.49 -26.70 

South 
America 

9.43 1.32 0.72 -0.60 

North 
Africa 

2.34 -0.56 -0.02 0.54 

Middle 
East 

15.97 -1.25 0.14 1.38 

East 
Europe 

6.50 1.66 0.72 -0.94 

China 50.16 -11.45 -2.44 9.00 

Central 
Asia 

9.29 0.90 0.80 -0.10 

Central 
America 

14.84 3.04 1.20 -1.84 

Brazil 9.18 2.17 1.20 -0.97 

Total 426.01 53.30 32.21 -21.09
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Fig. 17.4 Decomposition of the drivers of change in undernourished populations under the (a) 
no-adaptation scenario and (b) adaptation scenario The top row shows undernourished population 
changes in units of millions of people, and the bottom panel shows results as percentage changes. 
For each region, the impact of component shocks on the final outcome is shown; individual impacts 
can be positive or negative. The total resulting outcome is shown with a black dot. Note that 
developed regions have no estimates of change in undernourished population; these regions are the 
United States, South Africa, Japan, Korea, Europe, Canada, Australia, and New Zealand 

4.3 Changes in GHG Emissions Under Adaptation 

When adaptations are included, GHG emissions from the agricultural sector decline 
by 1.8% globally in the compound disaster scenario. This is a smaller decline than 
that under the no-adaptation scenario, as the adaptations help reduce the shocks’ 
negative impacts on agricultural production through higher volumes of international 
trade and transportation. There are two exceptions: Central Asia and the Middle East, 
where declines in GHG emissions from the no-adaptation scenario switch to 
increases in GHG emissions when adaptation options are allowed to play out 
(Fig. 17.3).
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4.4 Changes in Food Security Under Adaptation 

In the scenario of a combined shock including adaptations, there is a 7.6% increase 
in the undernourished population in developing nations. While an increase of 
~32 million people is an adverse development, it is an improvement over the 
increase of 53.3 million people that occurred in the no-adaptation scenario 
(Table 17.2). Adaptations prevent the compound disaster from causing undernour-
ishment for approximately 21 million people in developing nations, with most of the 
change occurring in South Asia (Figs. 17.3b and 17.4). Adaptations have significant 
impacts on reducing undernourishment and mitigating the adverse consequences of 
compound disasters within and across regions. 

The reduced impact and spatial distribution of undernourished populations in this 
scenario, compared with those in the no-adaptation scenario, arise from factors at the 
global, regional, and local levels. With global international trade, farmers with 
relatively more favorable weather conditions can benefit from higher prices in 
local and global markets, earning higher profits while simultaneously producing 
more food for the global market (thus pushing down prices) and reducing the 
malnourishment caused by high food prices. Local irrigated farms will also benefit 
from higher yields for irrigated crops compared with rainfed crops, especially under 
heat stress. Farmers with access to groundwater may benefit more when responding 
to surface water scarcity and higher local prices. Additionally, consumers in regions 
that experience large reductions in domestic production can buffer against high 
increases in local prices by importing food from overseas. 

In the three regions where food security improves under the no-adaptation 
scenario, the outcome is less favorable under adaptation: In the Middle East, 
where undernourishment fell by -8% under no adaptations but increased by +1% 
with adaptations, North Africa (-24% to -1%), and China (-23% to -5%). While 
all three adaptations contribute to this reversal, the largest driver is global trade 
(Fig. 17.5). As an example of one of the few regions with positive shocks to crop 
yields, the Middle East (mostly Türkiye) is able to produce more food in both the 
no-adaptation and adaptation scenarios; even without any adaptations, the positive 
crop yield shock causes higher food production. Under the no-adaptation scenario, 
the produced food could only be supplied domestically (within the Middle East). 
With adaptations, this extra food was exported from Türkiye in the Middle East 
region to take advantage of the higher global crop prices. (Global crop prices 
increase by 8.84% in the adaptation scenario.) This price rise leads farmers in the 
Middle East to benefit financially from exports but causes regional consumers to 
suffer from the price increase, boosting undernourishment. 

Positive values indicate that the adaptations increase the undernourished popula-
tion relative to the no-adaptation scenario; negative values show that adaptations 
lead to improvements in food security by reducing the number of undernourished 
people. Each adaptation can cause positive or negative changes; the net change in 
each region is shown with a black dot. Note that developed regions have no estimate



of change in undernourished population; these regions are the United States, 
South Africa, Japan, Korea, Europe, Canada, Australia, and New Zealand. 
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Fig. 17.5 Decomposition of adaptation contributions to changing undernourished populations 
compared with the no-adaptation scenario in (a) percentage change and (b) millions of people 

Overall, global trade adaptations have the largest impact on changes in the 
undernourished population (Fig. 17.5), accounting for 57% of the improvement in 
food security when compared with the no-adaptation scenario. In total, global trade 
reduced undernourished populations by approximately 12 million people compared 
with numbers under the no-adaptation scenario, and regional variation shows that 
this net change is due to an increase of around six million and a decrease of around 
18 million in the number of undernourished people (Fig. 17.5). The next largest 
adaptation impact is from land adaptation at the regional level, which accounts for 
36% of the total adaptation impact; local water adaptation accounts for the 
remaining 7%. 

5 Discussion 

The COVID-19 pandemic and climate change are two major threats facing human-
ity. Extreme weather events such as droughts, floods, heat waves, and storms can 
have devastating effects on food security, water availability, infrastructure, and 
ecosystems. When these events happen alongside a pandemic, they create compound 
weather–pandemic stresses that can overpower the ability of individuals, communi-
ties, and nations to cope with them. This section discusses the likely impacts of this 
compound stress and evaluates its implications for global and local food security.
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5.1 Model Limitations 

This study uses a linked modeling framework; each model has its own limitations, 
uncertainties, and biases. A general discussion of these limitations can be found in 
the model-specific literature of the hydrologic model (Wisser et al. 2010; Zuidema 
et al. 2020; Grogan et al. 2022), the global crop water model (Siebert and Döll 2010; 
Haqiqi et al. 2023), and the SIMPLE-G model (see Part III) and related applications 
(Baldos et al. 2023; Haqiqi 2023; Liu et al. 2023; Ray et al. 2023). 

The most important model limitation to discuss here is the assumptions about the 
distribution of undernourished population. It is likely that this model underestimates 
the food security outcomes from the combined pandemic and weather events. We 
believe this to be the case because of our assumptions that the income shock is 
homogeneous across the entire population and that within-country income distribu-
tions do not change. In reality, individuals living in poverty tend to suffer greater 
impacts under both pandemic-type income shocks and all types of food price 
increases (Hoogeveen and Lopez-Acevedo 2021; World Bank 2022). This suggests 
that a compound pandemic–weather shock would disproportionately impact people 
in the lower range of the income distribution and that this income distribution would 
shift so that a larger share of the population would occupy the lower range. 

The modeling framework used here provides novel insights into some key 
impacts of the combined shock implemented. However, no model can capture all 
social, economic, and environmental impacts, the combined shock evaluated here 
would inevitably have impacts on parts of the system not captured by our modeling 
framework. These impacts include—but are certainly not limited to—health metrics 
other than undernourishment, migration spurred by changing socioeconomic condi-
tions, economic impacts on the nonagricultural sectors of the global economy, and 
changing ecosystem services and their economic impacts as patterns of crop pro-
duction change. 

5.2 Adaptation Codependencies 

We simulated three adaptations here: changes to local water use, changes to regional 
cropland use, and changes in global trade. These options span the local-to-global 
scales at which agricultural activity and the global food market adjust to shocks, and 
it may seem that such disparate scales operate separately; however, this modeling 
framework was built because each scale interacts with the others, aggregating local 
changes up to global level and global changes in turn impacting local action. While 
we decompose the relative impacts of each of these adaptations, it is important to 
note that implementing any of these impacts independently within the modeling 
framework would not result in the changes reported by the decomposition, because 
they interact with one another. Increased exports to the global market are driven in 
part by increased production; this extra production will not occur unless regional



and/or local adaptations provide greater inputs of land and/or water. Conversely, 
local adaptations aimed at increasing production will only occur if global food prices 
make such extra investments in land and water profitable. 
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5.3 Compound Shock Interactions 

The compound shock scenario evaluated here was designed to stress multiple 
interacting components of the human–earth system. While we decompose the 
relative importance of each of the two hazards (Fig. 17.4), this decomposition 
does not tell us the impact of each hazard alone, nor does it show whether the 
interaction of the two hazards reduces or increases the impacts. To test whether the 
interaction effect is synergistic or additive, we have calculated the magnitude of this 
effect (Haqiqi et al. 2023). Isolating individual stressors and regions reveals that the 
interaction effects can be synergistic (e.g., when looking at prices) or antagonistic 
(e.g., when looking at undernourishment), as shown in Fig. 17.6. However, this is 
not a general rule: Rather, the direction and magnitude of the interaction effect 
depend on location-specific elasticity parameters. Food price elasticities are impor-
tant in responses to supply-side shocks (weather-driven) and demand shifts 
(pandemic-driven). For more details, refer to Haqiqi et al. (2023). 

Figure 17.6 illustrates the interaction effect if we isolate only one region, SSA 
(Sub-Saharan Africa), and two shocks (pandemic or weather). The scenarios show a 
reduction in gross domestic product (GDP) (5% or 10%) and/or crop yields (10%) 
only in SSA. (a) A indicates the magnitude of the impact of the weather-only shock 
and B indicates the interaction effect. (b) C indicates the magnitude of the impact of 
the weather-only shock and D indicates the interaction effect. 

5.4 Environmental Impacts 

There has been discussion in the literature about the potential for the pandemic to 
reduce negative anthropogenic impacts on the environment, especially GHG emis-
sions (Diffenbaugh et al. 2020; Khan et al. 2021; Smith et al. 2021; Kumar et al. 
2022). Our findings show that GHG emission reductions from the agricultural sector 
are modest in the face of combined pandemic and weather shocks. Under the 
no-adaptation scenario, we find an 11.5% reduction in GHG emissions from the 
agriculture sector. As this sector accounts for approximately 30% of annual GHG 
emissions, this represents a reduction of 3–4% in total global GHG emissions. 
Forward-looking economic studies suggest that the short-term declines in GHG 
emissions, even when considering larger emissions reductions from the transporta-
tion sector, will quickly return to pre-COVID levels and potentially even exceed 
those levels as countries relax emissions policies in an attempt to reverse economic 
losses (Smith et al. 2021), while others point to the dramatic short-term changes in



GHG emissions and other pollutants as evidence that anthropogenic impacts can be 
reversed (Le et al. 2020; Khan et al. 2021). We add to this discussion the point that 
GHG emissions are not independent of adaptations. These adaptations are critical for 
reducing food security impacts on an annual time scale, and both the environment 
and food security should be evaluated in a cohesive framework. Echoing recent 
literature that considers both the economy and weather extremes together, more 
aggressive policy interventions will be required to maintain decreases in GHG 
emissions while recovering economically from the pandemic (Cheng et al. 2021; 
D’Orazio 2021; Smith et al. 2021), as pandemics and weather are short-term shocks 
while climate change occurs on decadal (approximately 30-year) time scales. Fur-
thermore, while there has been a focus on how the pandemic has altered environ-
mental indicators like GHG emissions, we argue that it is also important to consider 
the reverse: Protecting the environment and natural resources like land and water 
during nonstress years can make a difference in our ability to quickly adapt to short-
term stresses. For example, one component of the water adaptation simulated here is 
the ability to switch from surface water to groundwater for irrigation. This is only
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Fig. 17.6 The interaction effect of weather and pandemic on (a) crop prices and (b) undernour-
ishment outcomes in Sub-Saharan Africa



possible if aquifer resources are protected against depletion during nonstressed years 
(recall Chap. 16) and if policies that enable annual-scale investment in infrastructure 
like groundwater wells and pumps are enacted.
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6 Conclusions 

The COVID-19 pandemic did not coincide with major weather shocks affecting food 
production. However, with increasing weather extremes, it is possible that such a 
global economic shock could coincide with severe environmental stresses. To 
investigate the potential consequences for food security and sustainability, we 
employ a global gridded biophysical-economic framework that permits us to explore 
the interactions between economic and nature-induced stresses on the global food 
system. The results illustrate the significance of adaptation options in the case of a 
pandemic combined with environmental stresses. Employing this modeling frame-
work, we can identify hotspots of food insecurity vulnerable to compound shocks. 

We find that, of the three adaptations implemented, global trade has the largest 
beneficial impact on food security. While irrigation is also important at the local 
level, international trade can buffer the impact of future rainfall and irrigation 
shortfalls (Liu et al. 2014). While global trade was the largest driver of food security 
improvements between the no-adaptation and adaptation scenarios, increased trade 
could not have occurred if there had been no adaptation in demand and supply 
capacity. Effective adaptation requires adaptations across scales, from local to 
global. 

Even with adaptation, there will be a significant increase in the number of 
undernourished people in South Asia, Sub-Saharan Africa, and Central and South 
America in the presence of such a compound pandemic–weather event. These results 
are relevant to policy, as they highlight the significance of economic and financial 
relief to combat hunger and undernutrition caused by compound short-term stresses. 
Given the likelihood of environmental stressors and future pandemics, we can 
decrease the future costs of such compound events by mitigating climate change 
and ensuring that resources like land and water—along with the investments and the 
infrastructure (Lobell et al. 2013; Baldos et al. 2020a, b) required to make full use of 
those resources—are available. Finally, the adverse effects of pandemics and envi-
ronmental shocks can be mitigated through global trade most effectively when 
paired with adaptive local and regional resource use. 

We have explored the complex relationship between compound pandemic–envi-
ronment extremes and their significant impact on food security and emissions. 
However, many intriguing questions need further investigation. For instance, what 
are the effects of changes in food loss and waste combined with a pandemic on a 
global scale? What about the human element? Will rising temperatures slow the 
productivity of agricultural labor? Finally, can sustainable groundwater governance 
act as a resilient buffer, supporting our food systems against future extreme shocks? 
These fascinating questions, which are still unanswered, are an invitation to the next



The findings and conclusions presented in this chapter are those of the authors and should not be

chapter of future directions. It is clear that as we continue to explore the intricate 
linkage between environmental pressures and food security, we need both rigorous 
analyses and measurements of adaptation. Through continued research and innova-
tive policies, we hope to create a more sustainable future where food security thrives 
and the environment is protected by sustainable practices. 
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Alfredo Cisneros-Pineda, and Jing Liu 

This concluding chapter looks ahead to the future of the SIMPLE-G framework, 
exploring its potential for further development, policy applications, and wider 
adoption. Having applied the flexible theoretical framework to a wide range of 
applications, we hope that the reader can now appreciate how this powerful tool 
can contribute to our understanding of land and water sustainability challenges. By 
integrating economic and biophysical data and methods at a high spatial resolution, 
SIMPLE-G provides an ideal platform for analyzing complex interactions among 
human and natural systems. In addition, this framework can lead to important policy 
insights by quantifying unintended consequences and market-mediated spillover 
effects within a comprehensive global framework. This is a critical missing piece 
of many previous sustainability policy evaluations and impact assessments. 

We hope that this introduction to the SIMPLE-G framework will be the beginning 
of your journey through research to a brighter and more sustainable future. 

1 Policy Applications and Impact Assessment 

Effective policies are at the heart of achieving sustainable development goals. We 
believe that the widespread adoption of SIMPLE-G will allow for novel policy 
applications and impact assessments related to food security and environmental 
sustainability. This includes policies and regulations to improve air and water 
quality, increase food security, reduce food loss and waste, promote research and 
development for sustainable agriculture, increase resilience, improve infrastructure,
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and encourage dietary shifts and related policy combinations. Here we look at 
several possible extensions and novel policy applications.
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1.1 Inform Policy Decisions with Spatially Explicit 
Information 

Most decision-making about the allocation of scarce land and water resources is 
performed at the local level. This approach is appropriate given the localized nature 
of the underlying physical and socioeconomic systems and the critical importance 
that local governance plays in guiding natural resource use. However, these deci-
sions are rarely informed by broader “boundary conditions” that characterize the 
ways in which higher-level governance (e.g., state and national) and the global 
economy are likely to impinge on local resource demands. However, SIMPLE-G, 
with its integrative, multiscale, gridded representation of local, national, and global 
activity, can provide local decision-makers with a consistent set of boundary condi-
tions to inform their decision-making. These conditions might include anticipated 
local cropland demand, groundwater withdrawals and depth, surface water avail-
ability, commodity prices, fertilizer costs, and labor market conditions. These 
boundary conditions are likely to vary depending on higher-level governance deci-
sions and the global scenarios being considered, thereby providing useful ingredi-
ents for local planning exercises. 

For example, SIMPLE-G can be used to identify policy options for promoting 
sustainable land and water management or reducing deforestation. This type of 
analysis can include rich spatial information about land types, cropland areas, yields, 
water requirements, and market connections. This framework can assist in the design 
of targeted interventions to improve water quality and fertilizer applications in areas 
at risk of water quality issues. It is also an appropriate framework for evaluating the 
effect of agricultural subsidies and taxes on environmental sustainability. By pro-
viding geospatial insights and understanding about complex interactions, SIMPLE-
G can help identify actionable policies to transform ideals into reality. 

1.2 Market-Mediated Spillover Effects 

Another area in which SIMPLE-G can offer novel policy guidance relates to the 
spillover effects of local policies (Cisneros-Pineda et al. 2023). As shown in 
Chaps. 12 and 13, among others, localized policies are likely to generate market-
mediated spillovers. That is, when output is curtailed—or enhanced—in one locality 
due to a policy intervention, prices increase (or decrease), and this market informa-
tion is conveyed to other localities, where producers can be expected to respond



accordingly. In general, these spillover effects will be stronger when policy inter-
ventions are more aggressive and the targeted region is more extensive. 
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We expect that these spillover effects will often moderate the gains from direct 
policy intervention. Thus, in the case of wetland restoration in the Midwestern 
United States, aimed at improving water quality, the ensuing price increase results 
in farmers elsewhere expanding production, partially offsetting direct gains 
(Chap. 14). When excessive groundwater pumping is curtailed to preserve an 
aquifer’s long-run sustainability, the reduction in crop output results in expansion 
elsewhere, with potentially adverse environmental consequences (Chap. 12). 
SIMPLE-G can assist policymakers by anticipating these spillovers and allowing 
for the analysis of countervailing policies that have a broader spatial scope (e.g., the 
nitrogen fertilizer tax considered in Chap. 14). 

Spillover effects are not restricted to market-driven effects. They may also be 
ecological in nature and relate to the surrounding spatial characteristics of the grid 
cell. Conservation actions in specific grid cells influence neighboring grid cells via 
species movement or ecosystem connections. For example, honeybees may take 
refuge in protected areas and then pollinate nearby cropland. A good example of 
neighboring spillover effects is the US Conservation Reserve Program, which 
creates conservation buffers around retired land that prevent runoff from polluting 
nearby water bodies. Grass filters and riparian buffers intercept contaminants before 
they can enter waterways. The disaggregation of SIMPLE-G into grid cells is useful 
not only for determining the market-mediated impacts of policies but also for 
assessing the social benefits deriving from the positive externalities of conservation 
actions. 

1.3 Distributional Impacts 

SIMPLE-G also enables users to evaluate the distributional impact of local conser-
vation policies. By design, most conservation policies aim to take natural resources 
out of production, conserving them for nature and the enjoyment of future genera-
tions. However, doing so has a direct, and sometimes significant, impact on local 
economic activity. By disaggregating these impacts both spatially and by factors of 
production, SIMPLE-G can allow for robust analysis of the distributional impacts of 
conservation policies. In Chap. 13, Ray et al. show that a policy targeting excessive 
groundwater withdrawals can have significant impacts on local labor markets, 
depressing employment and wages. A particularly important point made by the 
authors is that the effectiveness of conservation policies is also likely to be 
influenced by the functioning of the labor market. If households and workers are 
reluctant to leave the region due to strong local ties to family and geography, then the 
attempted withdrawal of natural resources from market activity is likely to prove 
more challenging. Providing quantitative insights about equity implications of 
policies and shocks paves the way to design fair and just transformative strategies 
toward a sustainable future.
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1.4 Assessing the Impact of Policies and Shocks on Food 
Security 

SIMPLE-G is a powerful tool for assessing the impact of policies on food security. 
Baseline projections for the food sector draw out the implications of expected 
changes in population, income, and technology. By simulating changes in food 
production, prices, and trade flows arising from policy interventions (e.g., subsidies, 
tariffs, and land-use regulations), the model can identify vulnerable regions and 
populations susceptible to disruptions in the food system. These changes can stem 
from market-based policies (e.g., subsidies or taxes), land-use regulations (e.g., 
conservation programs or wetland restoration), climate effects (e.g., heat stress or 
water stress), or unprecedented events (e.g., pandemics or conflicts). This allows 
policymakers to evaluate the effectiveness of interventions designed to improve food 
security at the national and regional levels, ensuring targeted support for those most 
in need. 

Recent research has also extended the SIMPLE framework to examine the double 
burden of caloric malnourishment, which refers to the fact that undernourishment 
and obesity coexist in many countries, localities, and even households. Lopez 
Barrera and Hertel (2023) incorporate both metrics using the SIMPLE framework 
and examine the implications of future scenarios and alternative sustainability 
policies for undernourishment, obesity, and related health burdens. 

1.5 Assessing the Impact of the Food System 
on Environmental Sustainability 

The SIMPLE-G framework is a valuable tool for analyzing the environmental 
consequences of agricultural policies and allows researchers to identify synergies 
and tradeoffs between sustainability goals by evaluating the impact of sustainability 
policies on food security. By quantifying changes in land use, water consumption, 
and greenhouse gas emissions triggered by food consumption decisions, the model 
can assess the impact of food system changes on land, water, biodiversity, and 
ecosystem services. These changes can be prompted by changes in all or part of the 
food supply chain (e.g., reduction in postharvest loss, consumer food waste, trans-
portation, or storage). This type of analysis enables policymakers to identify policy 
options that promote sustainable agricultural practices, thereby minimizing environ-
mental damage and safeguarding ecological integrity while ensuring food security. 
The contribution of SIMPLE-G to this literature can be through measuring the 
spillover effects and feedback between environmental and human systems, which 
is difficult to capture without a spatially resolved economic model.
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1.6 Linkages from/to Other Models 

The capabilities of SIMPLE-G can be further amplified through one-way linkages 
with other models, both as a recipient of inputs and as a provider of outputs, allowing 
researchers to leverage the strengths of each model to address complex sustainability 
challenges. For example, SIMPLE-G can benefit from the detailed hydrological 
insights provided by the water balance model (WBM), as described in Chap. 17. 
By incorporating WBM water availability estimates as an input, SIMPLE-G can 
produce more accurate simulations of agricultural production and land-use change 
responses to climate change and related policies. Similarly, integrating the outputs of 
Agro-IBIS, a process-based agroecological model, into SIMPLE-G can enhance its 
ability to capture the nuances of yield response to fertilizer application and leaching 
to aquatic systems (see Chap. 14). Agro-IBIS’s detailed simulations of biophysical 
processes also contribute to a more realistic representation of substitution elasticities 
in SIMPLE-G. Alternatively, linking SIMPLE-G to the Environmental Impact and 
Sustainability Applied General Equilibrium (ENVISAGE) model unlocks new ave-
nues for analysis. The ENVISAGE model can evaluate the economic impact of 
policy interventions, including carbon taxes. By including ENVISAGE data on the 
economic consequences of carbon taxes on fertilizer and energy prices, SIMPLE-G 
can incorporate the resulting changes in fertilizer prices and availability into its 
simulations, providing insights into the water quality co-benefits of climate policy 
(Zuidema et al. 2023). 

One-way linkages to other models are an attractive way to provide a more 
complete picture of the impacts of policy interventions aimed at achieving the 
UN’s Sustainable Development Goals related to food security, hunger eradication, 
and sustainable land management. By integrating geospatial economic models with 
other disciplines (e.g., environmental science, health, and energy), we gain a holistic 
understanding of critical interactions of these complex systems. These interdisci-
plinary connections allow us to address sustainability challenges more 
comprehensively. 

1.7 Multiresolution and Multiscale 

The resolution of production units in the SIMPLE-G framework can vary from grid 
cells (e.g., 250 meter, 5 arcmin, 15 arcmin, and 30 arcmin) to subregional, national, 
and aggregate regional production units. The versatility of this multiscale and 
multiresolution approach enables researchers to tailor the model to specific research 
questions and investigate scenarios with varying levels of detail. The critical rule for 
determining the optimal resolution is to capture the right amount of spatial hetero-
geneity required for the analysis. Excessive detail will result in challenging param-
eterization and potentially more difficult analysis. Insufficient detail for a given 
policy will limit the value of the ensuing analysis.
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2 Model Extensions 

SIMPLE-G can be extended in multiple ways. For example, authors can zoom in on 
specific regions by breaking them out from the global model. This unlocks local 
nuances and lets researchers tailor policies, pinpoint vulnerable populations, and 
assess impacts with greater accuracy. Exploring bilateral trade flows is another 
exciting frontier. Merging Global Trade Analysis Project (GTAP) data with 
SIMPLE-G could allow researchers to analyze specific trade partners and shocks, 
like the US-China soybean trade. Furthermore, livestock systems and diverse pro-
duction factors (e.g., labor) have the potential for expansion. Finally, while 
SIMPLE-G aggregates crops, modeling multiple outputs within a grid cell is on 
the horizon. These extensions pave the way for even deeper dives into sustainability 
and food security challenges at local and global scales. 

2.1 Extension to Other Regions 

A natural way to extend the work presented in this book is to break out new regions. 
SIMPLE-G is designed with this possibility in mind and offers two avenues for 
doing so. One avenue would involve starting with a global version of SIMPLE-G, 
drawing on Chap. 17, for example, and further refining the global groundwater data, 
parameters, and policies for a particular country. However, in our experience, this is 
not the best approach. Using the full global gridded model in the context of a region-
specific application is inefficient and, absent a global policy scenario, does not add 
value to the study. Rather, our preferred approach is to start with the aggregate 
regions in SIMPLE and break out the focus country. This is the approach taken in the 
applications focusing on the United States and Brazil in Part IV. In this way, 
researchers can preserve the global behavior in SIMPLE while focusing attention 
on the region of interest. The model is much faster to run and includes far less scope 
for computational problems. 

Using a country-specific rather than a global dataset has several advantages when 
analyzing complex issues (e.g., food security and environmental sustainability) at 
regional scales. First, this approach increases accuracy and reliability: Country-
specific datasets capture nuances and local variations that global datasets often 
miss. These nuances can impact food production and environmental pressures. In 
addition, country-specific data often undergo rigorous local validation and quality 
control processes, ensuring their accuracy and relevance to the specific context. This 
eliminates potential biases and inaccuracies inherent in global datasets aggregated 
from diverse sources and with less local validation. Second, the country-specific 
approach enables a deeper understanding of the specific dynamics within a particular 
region. This approach facilitates the identification of hotspots and populations most 
susceptible to food insecurity and environmental degradation. It allows for targeted 
policy interventions and strategies that address the region’s unique needs and



vulnerabilities effectively. By tracking policies and changes within a specific coun-
try or region, researchers can evaluate policies’ effectiveness with greater accuracy. 
This facilitates evidence-based decision-making and informs future policy adjust-
ments to ensure their effectiveness and impact. 
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The SIMPLE-G code is designed to facilitate this type of region-focused break-
out. The only thing that changes is the mapping file that maps grid cells to regions. 
Open-source scripts are available for converting gridded data in raster format to 
GEMPACK-readable SIMPLE-G input files. This approach facilitates the construc-
tion of consistent gridded datasets and shocks for use in SIMPLE-G. We have also 
made advances in the development of country-specific databases in SIMPLE, which 
are publicly available (https://gtap.agecon.purdue.edu/simple-g/). Using this tool, 
users can change regional aggregation as well as assumptions about data and 
parameters to fit their own research work. In the future, we plan to link this regional 
dataset to the SIMPLE-G database workflow so that users can easily disaggregate 
regions into grid cells to facilitate their own global-local-global analysis. 

2.2 Extension to Bilateral Trade Flows 

In Part III of this book, we noted that the current SIMPLE-G framework includes a 
pooled global market for crop exports and imports (assuming that all crop exports 
enter the global market and that all crop imports come from the global market). This 
setting simplifies the international trade system and is the most suitable approach for 
modeling international trade in the long run, over which the bilateral geography of 
trade is less dominant. However, in the near term, empirical evidence suggests that 
current bilateral trade patterns are quite persistent. For example, the United States 
trades disproportionately with Canada, Mexico, China, and Europe. For this reason, 
it is important to offer users the option of modeling bilateral trade patterns explicitly 
(as is the case for the GTAP model mentioned previously). This can also have 
important policy implications. For example, during the US-China trade war, China 
imposed a retaliatory tariff on soybean imports from the United States in response to 
the US tariffs on Chinese imports. This sharply reduced US-China soybean trade but 
raised soybean imports from Brazil, China’s other main soybean supplier. These 
bilateral relationships are not well captured when modeling trade via a global pool of 
commodities. 

Given the need to analyze bilateral trade flows, an important future direction for 
extending SIMPLE-G is to combine its gridded supply system with a bilateral trade 
system. Given the ready availability of reconciled trade and tariff data from GTAP 
(Aguiar et al. 2019, 2022), we propose merging the bilateral trade in the GTAP crop 
database with the SIMPLE-G model. This extension will retain the advantages of 
SIMPLE-G for capturing the spatial heterogeneity of crop production and spillover 
effects at the local level and incorporate detailed GTAP data on regional-level trade 
in order to analyze more specific shocks and responses by trade partners.

https://gtap.agecon.purdue.edu/simple-g/
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2.3 Extension to Other Production Systems 

The SIMPLE-G framework outlined in this book focuses on cropping systems as the 
gridded economic activity. However, it is entirely possible to add additional systems, 
provided that the necessary data can be obtained. Perhaps the most obvious are 
livestock systems, particularly those relying on pastureland. A large share of the 
world’s agricultural lands comprises pasture, the demand for which is linked to 
ruminant livestock systems. Incorporating a gridded representation of ruminant 
livestock would allow users to explore issues involving the conversion of pastures 
to cropland and vice versa. Gridded data on ruminant and non-ruminant livestock are 
available (Gilbert et al. 2018). Incorporating these data would also allow users to 
explore environmental issues related to ruminant livestock production, including 
greenhouse gas emissions and water pollution, at a fine scale. To relate regional 
livestock production to pasture at the gridded level, one possible direction is to 
introduce the land allocation module from the GTAP-Agro-ecological Zone (GTAP-
AEZ) model (Hertel et al. 2009, 2010), which presents the revenue-maximizing 
land-use decisions for crops, pasture, and forest. This modeling approach—together 
with gridded land-use datasets—would allow researchers to simulate the competi-
tion of land between crop and livestock production, which is necessary for 
researching questions on, for example, diet change or nutrition. 

A further step would involve disaggregating confinement animal feeding opera-
tions from the regional level to the gridded level in order to better capture related air 
and water pollution. Given data limitations, it is unlikely that modelers will be able 
to track the movement of crop production from specific locations to these facilities. 
Rather, the feedstuffs would draw on a more aggregated regional supply pool for 
crop inputs. 

2.4 Extension to Other Factors of Crop Production 

As shown in Chap. 13, identifying key factors of production—in this case, labor— 
can be critical for understanding system behavior and the distributional conse-
quences of sustainability policies. In that application, labor market rigidities are 
shown to limit the effectiveness of the conservation policy and generate significant 
losses for workers. However, labor is an extremely heterogeneous input, with 
significant differences in both labor supply and demand characteristics between, 
for example, family labor, hired labor, and migrant labor. Further disaggregation of 
this factor of production will be important for some applications. In general, further 
disaggregation of production factors is warranted when: (1) supply and demand 
characteristics vary significantly across factors of production, (2) there is empirical 
evidence supporting the specification of these supply/demand responses, and (3) the 
production factor in question plays a significant role in the policy under 
consideration.
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2.5 Extension to Multiple Crops 

Another challenge comes from SIMPLE-G’s crop aggregation approach. In the 
current SIMPLE-G model, we first aggregate all crops to a single commodity (e.g., 
corn-equivalent output) with price-based weights and use the single crop to represent 
the response of crop production to shocks, assuming that the crop composition in this 
aggregate does not change much. While this approach simulates the general response 
of crop production to various policies, it is difficult to model the shock and response 
to a specific crop or the change in crop composition in the face of new socioeco-
nomic drivers. Considering the example of soybean trade from above, another factor 
that influences China’s soybean import in addition to the tariff shock is the domestic 
consumption of cooking oil and livestock production (the latter uses soy meal as a 
major input). These drivers will cause crop-specific shocks to the model and change 
the crop composition that was imposed in the initial aggregation stage. For these 
reasons, disaggregating crops will be important in some cases. However, in keeping 
with the SIMPLE philosophy, we believe that this should be done in a parsimonious 
way. Our goal is not to replicate the detailed, complex models of agricultural 
commodity markets that have been developed over the past decades. Rather, we 
would seek to find an intermediate ground in which important sustainability chal-
lenges can be addressed without making the framework too demanding to allow 
parameterization, replication, and validation. 

There are different approaches for modeling multiple crops in SIMPLE-G while 
using the most reliable data sources and keeping the model simple enough to 
facilitate analysis and provide policy insights. One issue in modeling multicrop 
production is the low accuracy of satellite imagery in determining the type of 
crops grown. While the USDA provides high-resolution cropland data layer prod-
ucts, information for much of the rest of the world is less reliable. For example, 
Brazil’s MapBiomas, an important collaborative network of more than 70 organiza-
tions that produces annual maps of land cover and land use in Brazil, does not report 
maize cropland. According to the MapBiomas Brasil website, it does not have a 
maize category because maize is included in the broader class of “other temporary 
crops.” Maize is one of the most important temporary crops in Brazil, accounting for 
about 17% of the total harvested area in 2022. However, it is not distinguished from 
other temporary crops because of the limitations of satellite imagery and the classi-
fication methods used by MapBiomas. 

The path forward that we propose for multicrop versions of SIMPLE-G involves 
specifying multiple output production functions at the grid-cell level. In this way, we 
do not require separate inputs for each individual crop, which can be difficult to 
obtain at a fine spatial scale. These crops can be exported or may compete with 
imports from other regions. Following the aggregation of domestic and imported 
crop commodities, these different categories of crops substitute for one another in 
the same three demand categories used in the standard SIMPLE model (recall 
Chap. 4): direct consumption, food processing, and livestock consumption 
(Fig. 18.1).
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Fig. 18.1 Nesting SIMPLE-G within the GTAP-AEZ framework. Livestock and forestry demand 
for land are derived from a national production function, while crop production is modeled at the 
grid-cell level 

2.6 Integration into GTAP-AEZ 

Once a version of SIMPLE-G has been extended to handle bilateral trade and 
multiple crops, it is a relatively short step to embed this gridded framework in a 
general equilibrium model such as the GTAP model. Why might one wish to do so? 
Doesn’t this violate the principle of simplicity? We believe that this should be done 
only when it is necessary to place this fine-scale economic analysis in a broader 
context. In a sense, this is really just an extension of the GTAP-AEZ model (Hertel 
et al. 2009, 2010), which is widely used to look at land-based sustainability policies 
(e.g., renewable fuels standards and other climate mitigation strategies) in an 
economy-wide context. More recently, the GTAP-AEZ model has been paired 
with fine-scale ecological modeling to uncover the macroeconomic benefits of 
local conservation policies (Johnson et al. 2023). A key limitation of previous 
work is the need to downscale economic results from the AEZs to the local level. 
By embedding SIMPLE-G in the GTAP model, the economic responses to conser-
vation policies could be incorporated at the local level. Alternatively, for some



purposes, it may be sufficient to link SIMPLE-G with the fine-scale ecological 
models. 

18 Future Directions: Policy Implications, Model Extensions,. . . 317

Figure 18.1 provides an overview of how this embedding might be accomplished. 
As with the GTAP-AEZ model, the demand for land is derived from the forest, 
livestock, and crop sectors. In the case of forestry and ruminant livestock, the 
production functions are modeled at the national level, with demand for land services 
by AEZ treated as a constant elasticity of substitution nest within the national 
production function. This approach captures the spatial pattern of land competition 
across uses without modeling the full production functions for forestry and livestock 
at the AEZ level. These national sectors now demand land services at a finer scale 
(the grid cell), but nothing else has changed. However, in the case of crop produc-
tion, we model the full production function at the grid cell, including the competition 
between rainfed and irrigated production. This analysis is more demanding, in terms 
of data requirements and computation, but it allows us to address the type of 
sustainability challenges highlighted above. 

2.7 Beyond Integration: Collaborative Research 
for Understanding Human–Environment Linkages 

Multidisciplinary research—where experts from diverse fields collaborate on a 
common problem—is crucial for addressing complex challenges such as food 
security and environmental sustainability. While each field possesses unique exper-
tise, attempting to tackle these intricate issues within single disciplines often leads to 
incomplete solutions and missed opportunities. Given the importance of natural 
resources and the environment in SIMPLE-G, some users might consider extending 
SIMPLE-G to directly incorporate detailed hydrology or agroecology relationships. 
However, here we draw the line. We prefer not to make SIMPLE into COMPLEX! 
Rather, we suggest linking SIMPLE-G to a compatible hydrologic model, such as 
WBM, as shown in Chap. 17, or to an agroecological model, such as Agro-IBIS, as 
described in Chap. 14. This approach allows each field to contribute its specific 
knowledge and expertise, leading to a more comprehensive and robust understand-
ing of the interconnected systems. This collaborative approach not only leverages 
the strengths of each field but also avoids the dilution of expertise that can occur 
when one discipline attempts to encompass the entirety of a complex modeling 
challenge. By working together, researchers can achieve greater depth and breadth in 
their analysis, ultimately leading to more effective and sustainable solutions for the 
interconnected challenges of our world. 

Significant challenges must be overcome to achieve seamless collaboration. One 
major obstacle lies in the inherent differences between disciplinary approaches and 
the models themselves. Temporal and spatial resolutions differ, with hydrological 
and ecological models often operating at finer scales and shorter timeframes than 
economic models. This disparity requires careful data aggregation and interpolation



to ensure compatibility across models. Furthermore, the computational software 
used to develop and run different models can be incompatible, hindering communi-
cation and data exchange. Additionally, conflicting definitions and terminology 
across disciplines can lead to misinterpretations and inconsistencies when attempting 
to link models. Finally, the computational demands of running large-scale linked 
models can be immense, requiring access to high-performance computing (HPC) 
resources. The lack of readily available HPC resources for many researchers can 
limit the feasibility of collaborative modeling approaches. 
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The C3F framework (Woo et al. 2022) offers a promising solution for overcom-
ing the challenges of collaborative linkages between human and environmental 
models. The authors apply the C3F framework to link SIMPLE-G to WBM for the 
United States. By leveraging container technology, C3F enables researchers to 
independently develop and package their models with their specific software and 
data dependencies. This modular approach facilitates communication and data 
exchange between models while avoiding potential conflicts due to incompatible 
software environments. Furthermore, containerization facilitates the standardization 
of temporal and spatial dimensions across models, allowing researchers to define and 
configure consistent timeframes and spatial resolutions within each container, 
regardless of the models’ inherent differences. This eliminates the need for complex 
data manipulation and interpolation, ensuring smooth communication and data 
exchange between models operating at different scales. 

The unique feature of C3F is that it breaks away from the traditional model-
coupling approach that seeks convergence between models, which is a time-
consuming and often computationally expensive process. Instead, it leverages the 
concept of adaptive expectations. This allows each model to learn from the outputs 
of other models and adjust its own inputs accordingly, creating a dynamic and 
iterative process in much the same way as is done by real economic decision-
makers. C3F facilitates this by running models consecutively, where each model 
receives and integrates the latest outputs from other models before making its own 
runs. In other words, in SIMPLE-G, farmers in each grid cell make decisions based 
on past WBM simulations of climate and weather and then make decisions about the 
extent and intensity of irrigation. Then, the WBM generates water balances consid-
ering the farmers’ decisions at the beginning of the season. This eliminates the need 
for a single, unified solution, allowing the models to adapt and evolve in real time, 
reflecting the dynamic nature of the coupled human–environment system. This 
adaptive approach significantly reduces the computational burden compared with 
traditional convergence methods, making collaborative modeling more accessible 
and efficient. This approach also allows for a more flexible and realistic representa-
tion of the system, where model predictions are continuously updated based on the 
latest information, reflecting the dynamic interplay between human and environ-
mental processes.
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2.8 SIMPLE-S: A Tool for Model Development, Calibration, 
and Education 

While the applications in Part IV demonstrate the importance of incorporating spatial 
heterogeneity of shocks and responses at the gridded level in SIMPLE-G, one may 
wonder whether it is always better to develop and work with the gridded version than 
with a more aggregated version. Let us consider the following circumstances under 
which an alternative formulation (SIMPLE-Subregion or SIMPLE-S) might be 
relevant: 

Model Development and Testing At the model development stage, researchers 
may initially seek “reasonable” results—responses that are consistent with economic 
theory and real-world observations in direction and relative magnitude—as opposed 
to obtaining more precise results with considerably greater time costs. Although 
favored by model users, the gridded feature of SIMPLE-G can render it unnecessar-
ily bulky for model developers, especially when the model needs to be solved 
repeatedly for testing purposes. 

Parameter Calibration SIMPLE-G requires parameters defined at multiple scales 
(regional, subregional, and gridded). When researchers are interested in calibrating 
certain parameters (or iteratively narrowing the range of initial values for further 
calibration), it may be more efficient to work with the model aggregated to a specific 
level of interest (e.g., county, province, state, and region). 

Education On the basis of our teaching experience, we find that using the gridded 
version for educational purposes faces three challenges. First, it is usually more 
difficult to interpret simulation results at the grid level, which are highly dependent 
on grid-specific parameters and baseline data; therefore, we have to aggregate these 
results further to the state or subregional level to allow for ready interpretation. In 
addition, the powerful AnalyseGE software, which enables detailed analysis of 
model outcomes on an equation-by-equation basis (recall Chap. 11), is not very 
functional when there are more than 20 grid cells in a region—hence the use of a 
mini model (Chap. 11). Second, solving SIMPLE-G at the grid level usually requires 
8–15 min, depending on the computer and experiment, which may delay the 
teaching activity. Finally, for education and training purposes, students usually use 
a free-trial version of GEMPACK to learn the model. However, the size of the 
SIMPLE-G model (i.e., the number of endogenous variables and equations) is too 
large to be solved with this free-trial version. 

Considering these three areas of need, we conclude that, in addition to the 
aggregated version (SIMPLE) and the gridded version (SIMPLE-G), it is also 
helpful to develop a version of intermediate size, which we name SIMPLE-S. 
SIMPLE-S may be developed based on an existing SIMPLE-G model; it maintains 
the same model and data structure as SIMPLE-G but aggregates grids to subregional 
levels. For example, in SIMPLE-S-US, the 76,651 5-arcmin grids of the United 
States are aggregated to nine USDA Farm Resource Regions (subregions) by



summing the value and quantity data and calculating a weighted average of gridded 
parameters, while the rest of the world remains at the regional level. The conversion 
from SIMPLE-G to SIMPLE-S is conducted with R script, which fully automates the 
development of the subregional version. 
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Table 18.1 Gridded (SIMPLE-G) and subregional (SIMPLE-S) versions in the case of the 
US-focused model from Chap. 12 

SIMPLE-G-US SIMPLE-S-US 

Grids 76,651 (US) + 15 (non-US regions) 9 (US) + 15 (non-US regions) 

Model size 1,893,828 endogenous variables 2658 endogenous variables 

Time cost 8 min 52 s 4 s 

GEMPACK License Formal (purchased) license Free trial license 

Table 18.1 briefly compares the SIMPLE-G-US model from Chap. 12 and its 
subregion version. By aggregating US grids into subregions, SIMPLE-S reduces the 
model size and allows the model to be solved almost instantaneously. SIMPLE-S 
also preserves all the equations and database structure from SIMPLE-G-US. From a 
research development perspective, SIMPLE-S can be used as a “wind tunnel model” 
for SIMPLE-G. Much as model planes are tested in a wind tunnel prior to building 
full-scale versions, researchers can use SIMPLE-S to test new functional forms and 
modules, or calibrate regional or subregional parameters, much more efficiently. 
Progress made in SIMPLE-S is readily transmissible to SIMPLE-G. For educational 
purposes, SIMPLE-S also serves as a “training manikin” version of the gridded 
version. Much as medical students learn their trade by first operating on manikins, 
students of SIMPLE-G can explore the model with various experiments and get 
immediate feedback before embarking on the full-scale model. Additionally, the 
results at the subregional level are often easier to interpret and compare to readily 
accessible statistics. Once familiar with SIMPLE-S, students can readily transfer 
their skills and experience to SIMPLE-G for further research. 

3 Vision for a SIMPLE-G Community 

In addition to the SIMPLE-G framework extensions discussed above, an important 
step toward its continuous development and application is to establish a SIMPLE-G 
community that brings together research capacities and interests from a broader 
range of individuals to address the serious sustainability challenges facing the world 
today. In our vision, the SIMPLE-G community can be summarized with a reinter-
pretation of the global–local–global approach to research (Hertel et al. 2023). We 
envision the SIMPLE-G community as one that connects global researchers, edu-
cators, and students who are interested in developing and applying SIMPLE-G 
models; encourages them to share local data, knowledge, and ideas for integrative 
research; and enhances research impacts on global audience and stakeholders.
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3.1 Global Network 

From its origin at Purdue University, SIMPLE-G has been introduced to researchers 
from multiple domestic and international universities and research institutes. Cur-
rently, the most important platform for SIMPLE-G training for external researchers 
is the SIMPLE-G short course, held biennially at Purdue since 2019. The course 
consists of 3 weeks of online training on the background knowledge of the 
non-gridded SIMPLE model and 1 week of on-site training that focuses on 
SIMPLE-G applications and underlying economic theory. This short course is not 
restricted to passive learning: During the on-site section, participants have an 
opportunity to collaborate with others on a group project, laying the foundation for 
future research projects and long-term collaboration. Based on the basic 4-week 
training schedule, we have also developed a workshop version of the short course 
that can be taught over 2 days. This abbreviated version has been successfully 
implemented as part of the NSF-I-GUIDE summer school (Boulder, Colorado, 
United States) and the China Energy Modeling Forum’s model Capacity Building 
Workshop (Beijing, China). By November 2023, more than 60 researchers had 
completed SIMPLE-G training, bringing the model from Purdue to more than 
40 institutes in five countries. 

The group of SIMPLE-G short course participants, together with researchers and 
students from Purdue’s Center for Global Trade Analysis, now forms the foundation 
for a broader global community of SIMPLE-G users and contributors. One major 
challenge is that, given the requirements of time commitment and cost, as well as 
capacity restrictions on the number of participants, the biennial short course and 
occasional in-person workshops cannot satisfy the increasing interest in SIMPLE-G. 
This is particularly true for researchers from developing countries who may be 
precluded from joining the on-site short courses for budgetary reasons. With these 
limitations in mind, this book and its accompanying lectures and files are our attempt 
to provide accessible teaching and training materials for SIMPLE-G to global 
researchers. We welcome you, readers of the book, to join the SIMPLE-G commu-
nity for broader and long-term collaboration. 

3.2 Local Expertise 

From our experience developing region-specific models, we have learned that 
building a high-quality spatially explicit model depends on strong participation 
from research partners with local expertise, providing data inputs, local knowledge, 
and research ideas. Local researchers are often aware of additional data sources that 
are not widely recognized by their international colleagues or are less frequently 
used due to language barriers. By offering these data sources, they can make 
important contributions to establishing gridded databases for region-specific ver-
sions of SIMPLE-G. Even if the data are already available at the global level, local



knowledge can also help researchers judge whether the data correctly represent real-
world situations. For example, when we developed the region-specific version of 
SIMPLE-G for Brazil (Chap. 15), our local collaborators indicated that an important 
feature of Brazilian agriculture is the rotation between crops and grazing within the 
same year on certain croplands. However, this land-use pattern is not accurately 
classified or measured by global land cover datasets. We followed the suggestion of 
local collaborators and used a Brazilian land cover dataset, which improved the 
accuracy of land-use data at the grid level. Finally, and most importantly, researchers 
with local expertise invariably have a better understanding of the current research 
and policy questions faced by decision-makers; they also have a better understand-
ing of the political, social, and cultural factors that are critical to analyzing those 
questions with SIMPLE-G. 
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3.3 Global Impacts 

Fueled by global researchers and local expertise, the SIMPLE-G community will 
serve as an incubator for future studies that address global and local sustainability 
challenges. Improving the exposure and influence of SIMPLE-G models and appli-
cations has been a continuous focus of the Purdue research team. We have organized 
SIMPLE-G track sessions and workshops at various academic conferences—includ-
ing the annual meetings of the Agricultural and Applied Economics Association, 
American Geographical Union, and GTAP—and presented SIMPLE-G studies in 
GLASSNET and I-GUIDE webinars. These events have attracted attention from the 
research community, which has been particularly interested in the ease with which 
SIMPLE-G can facilitate multidisciplinary studies. In the future, we will continue 
organizing relevant sessions and workshops at academic conferences, to provide 
additional opportunities for members of the SIMPLE-G community to present their 
work to a broad audience. We will also invite representatives from global policy-
making agencies, think tanks, and local stakeholders to join the SIMPLE-G com-
munity and communicate with researchers, which will promote the integration of 
innovative research methodology with solutions to real-world challenges. 

3.4 SIMPLE-G as a Component of GLASSNET 

Given the breadth of the sustainability challenges facing the world, SIMPLE-G is 
just one of many tools needed to inform the public debate. In an effort to mobilize a 
wider range of databases, tools, and interdisciplinary collaborations needed to 
inform the UN Sustainable Development Goals, Hertel and colleagues have initiated 
GLASSNET—a network of networks supported by the US National Science Foun-
dation and focused on sustainable management of the world’s land and freshwater 
resources (https://mygeohub.org/groups/glassnet/). The purpose of GLASSNET is

https://mygeohub.org/groups/glassnet/


to facilitate global–local–global analyses, and a wide range of disciplines and 
researchers are involved. In addition to the project leadership, GLASSNET has a 
Science Council and a Stakeholder Advisory Board drawing on a diverse set of 
scientists, policy advisors, and decision-makers. This network of networks can play 
an important role in guiding analysts and policy advisors to appropriate tools for 
addressing the diverse challenges posed by the UN Sustainable Development Goals. 
By documenting the SIMPLE-G model and pairing it with teaching materials, we 
hope that this framework can be employed by users from a wide range of disciplines 
and geographies. Readers are invited to join GLASSNET to engage with the broader 
community of practice seeking to address the global challenges to land and water 
sustainability in the coming decades. 
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