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Foreword

Maybe every generation says or feels like this, but this seems a time of multiple
breakthroughs in astrophysics and cosmology. Of course, new, better equipment
delivers new, better data. Some of it is as expected, but some startling, contra-
dicting assumptions we have, unwittingly perhaps, made. The opening of new
windows, such as the detection of gravitational radiation, may confirm what some
of us (a few of us!) already believed to be there and observable, but in turn reveal
unexpected things. These unexpected things may be physical entities, or may be
new angles on old theories, or even confirmation of what some had come to suspect
that our beloved theories were in need of an extension or serious modification.

Learning new things can be tough, but for practising scientists it is accepted as
an essential part of life. Note, I do not say of ‘normal life’, as with hindsight this
is often seen to be a turning point, a place where mentally spinning on the spot
opens new avenues, new lines of enquiry, and new understanding. Many of us can
likely point to such instances where a window, or a gulf, opened.

This collection of essays will stimulate, reveal, provoke thought, and maybe
even surprise and amaze. All these are the starting points of new ideas, new the-
ories, and new understanding. May it also provoke out-of-the-box thinking, and
new branches bearing new fruit.

April 2023 Jocelyn Bell Burnell
University of Oxford

Oxford, UK
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Preface

During the COVID-19 pandemic, online seminars and conferences became increas-
ingly popular. Using this opportunity, we established an online London-Oldenburg
Relativity Seminar series that runs to this day on a weekly basis.

From the beginning, our aim has been two-fold: (a) providing advanced under-
graduate and postgraduate students with introductory talks on recent and exciting
developments in gravity as well as (b) making the work of women in this area of
research more visible. Ever since the seminar series started we have been success-
ful in recruiting excellent female speakers. From this sprang the idea to collect
written versions of these often very pedagogical and insightful seminars and make
them available to a larger audience.

This book is authored solely by women and highlights some of the highly topi-
cal contributions of female scientists to research in Cosmology, Astrophysics, and
Gravity.

London, UK
Oldenburg, Germany
July 2023

Betti Hartmann
Jutta Kunz

The original version of this book was previously published without open access. A correction to
this book is available at https://doi.org/10.1007/978-3-031-42096-2_13
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QuasinormalModes of Static
Ellis-BronnikovWormholes

Bahareh Azad

Abstract

Quasinormal modes represent characteristic features of compact objects, since
they entail their reaction to perturbations. While black holes and neutron stars
in general relativity have been extensively studied and their quasinormal modes
are well-known, the complete set of quasinormal modes for wormholes was only
recently obtained. Here we discuss how to determine these quasinormal modes of
Ellis-Bronnikov wormholes. These wormholes are static spherically symmetric
solutions of general relativity coupled to a phantom scalar field. We obtain the
axial and polar quasinormal modes and show, that for the massless wormhole a
threefold degeneracy of the modes arises, i.e., there is isospectrality of the modes.

1 Introduction

The theory ofwormholes, also known as Einstein-Rosen bridges, is a fascinating con-
cept in theoretical physics that stems from the theory of general relativity. Originally
introduced by Einstein and Rosen [29], wormholes represent hypothetical structures
in spacetime that could provide shortcuts or connections between distant regions,
allowing for space travel.

In the classical formulation, wormholes were considered non-traversable and
encumbered by event horizons [54]. However, subsequent investigations have
explored the possibility of traversable wormholes by incorporating exotic matter
or non-standard scalar fields. Ellis [30,31] and Bronnikov [21] demonstrated that
wormhole solutions could be obtained by employing phantomfields, which are scalar
fields with negative energy densities. These fields violate the energy conditions of
classical general relativity, allowing for the existence of traversable wormholes.
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Alternative theories of gravity, such as Einstein-scalar-Gauss-Bonnet theories
[7,41,42], have also been explored as frameworks that can accommodate worm-
holes without the need for exotic matter. In these theories, the violation of the energy
conditions is achieved through the gravitational degrees of freedom alone. Further-
more, quantum degrees of freedom, including Dirac particles [17–19,51] and 3-form
fields as well [13,20], have been investigated as potential sources for violating the
energy conditions and enabling the formation of traversable wormholes.

The theoretical interest in wormholes extends beyond their existence and proper-
ties. Detecting and characterizing these structures is a topic of great interest. Various
detection methods have been proposed, including the observation of gravitational
lensing effects [4,12,25,52,55,56,59,61,64–67], the search for wormhole shadows
[12,20,36,37,57,58,62], and the study of accretion disks and associated radiation
[11,27,28,38,39,53,70], etc.

An alternative fascinating option to identify wormholes and differentiate them
from black holes may emerge through investigations of how a scalar field scatters.
Lately, mathematical formulations have been derived for the transmission and reflec-
tion amplitudes of the relevant effective potential, as well as the absorption cross
section of wormholes. These calculations have demonstrated that, whether the field
is massless or has mass, an observer positioned at infinity can readily distinguish
between a wormhole and a Schwarzschild black hole by analyzing the scattering
information of the scalar field [9].

But the detecting of gravitational waves in Ligo-Virgo opened a new window to
study compact objects. Currently, gravitational wave astrophysics [1–3] is giving us
a new potential approach to observe wormholes through their damping modes called
quasinormal modes (see e.g. [14,44,47]).

Quasinormal modes are characteristic modes of freely oscillating spacetime.
When a compact object such as a black hole, a neutron star, or a wormhole undergoes
oscillations, the system is open, and gravitational waves gradually lose energy and
decay over time. Hence, these modes are referred to as quasinormal modes. They
are described by a complex frequency ω = ωR + iωI , where ωR is the real part and
ωI is the imaginary part. The real part determines the frequency of the oscillations,
while the imaginary part represents the damping rate of the oscillations [44,47].

The investigation of quasinormal modes of wormholes has been previously
explored in various contexts [6,16,24,35,40,43,45,46,48–50,69]. There is an inter-
esting aspect when we look at the inverse problem, which corresponds to determin-
ing the shape of a wormhole from the knowledge of its quasinormal modes [49,69].
(However in black holes a family of effective potentials produces the same quasi-
normal mode spectrum [23].) Quasinormal modes have been utilized to reconstruct
the metric near the throat in the case of symmetric Ellis-Bronnikov wormholes, pro-
viding a specific example [49]. The quasinormal modes of the general family of
Ellis-Bronnikov wormholes have been investigated completely now [10,16,43,45].
A systematic analysis of the scalar, axial, and radial perturbations has been performed
first [16], and a complete set of modes of the polar perturbations has been provided
recently [10].
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In this chapter,we derive a complete set of quasinormalmodes for Ellis-Bronnikov
wormholes. Section 2 introduces the concept of Ellis-Bronnikov wormholes. In Sect.
3 we examine scalar perturbations as a toy model and explain the theoretical and
numerical calculations for determining the quasinormal modes. Then, in Sect. 4, we
apply the same method to study the full set of metric and scalar perturbations and
explore the spectrum of modes. Finally, we conclude in Sect. 5.

2 The Ellis-BronnikovWormhole Spacetime

2.1 Introduction

The solution to the vacuum Einstein equations in the context of the theory of general
relativity for the static spherically symmetric scenario [29] leads to the formation
of the Einstein-Rosen bridge. It denotes a non-traversable wormhole. Morris and
Thorne [54] provided a comprehensive discussion on the indispensability of a phan-
tom field or, more generally, some form of unconventional matter that violates the
energy conditions in classical general relativity. Furthermore, they explored the idea
of using wormholes for quick interstellar travel, see also [5,68]. Ellis [30,31] and
Bronnikov [21] independently derived wormhole solutions that can be traversed.
However, the attainment of such traversable wormholes necessitated the utilization
of an unconventional scalar field known as a phantom field. In the text we call them
Ellis-Bronnikov or for simplicity just E-B wormholes.

2.2 The Ellis-BronnikovWormhole Metric

With a massless minimally coupled phantom field φ to the Einstein-Hilbert action
we consider the action

S = 1

16πG

∫
d4x

√−g
(
R + 2∇μφ∇μφ

)
. (1)

The coupled set of equations of motion is obtained by varying the action,

Rμν = −2 ∂μφ ∂νφ, (2)

∇μ∇μφ = 0. (3)

Static and spherically symmetric E-B wormholes can be expressed as

φ = φ(b)(r) = Q

r0

[
tan−1

(
r

r0

)
− π

2

]
, (4)

ds2 = g(b)
μν dx

μdxν = −e f dt2 + 1

e f

[
dr2 + (

r2 + r20
) (
dθ2 + sin2 θdϕ2) ]

, (5)
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with

f = C

r0

[
tan−1

(
r

r0

)
− π

2

]
, (6)

and Q, r0, and C are constants that are discussed below and that satisfy

4Q2 = C2 + 4r20 . (7)

The superscript (b) indicates, that these are the background solutions to be employed
in the perturbation expansions.

Ifwe look at the asymptotic behaviour,when r → +∞, themetric function f goes
to zero, f → 0, and themetric approaches asymptoticallyMinkowski spacetime. On
the other hand, when r → −∞, we need a coordinate transformation to approach
Minkowski spacetime,

t̄ = e
− Cπ

2r0 t , r̄ = e
Cπ
2r0 r , r̄0 = e

Cπ
2r0 r0 . (8)

In the spacetime the two asymptotically flat regions are connected by a throat. where
the circumferential radius R(r),

R2(r) = e− f (r2 + r20 ) , (9)

assumes its minimal value.
The constant Q represents the charge of the phantom field, and the constant C

determines the mass of the wormhole, obtained in the asymptotically flat region as
r tends to infinity. It is defined by

C = 2M . (10)

The constant C represents also a measure of the symmetry of the wormhole. For
C = 0, the wormhole is massless and it is symmetric with respect to the throat, when
considering reflection at r = 0, i.e., the transformation r → −r . On the other hand,
when C �= 0, the wormhole acquires mass and loses its symmetry. In this case, the
throat of the wormhole is situated either in the region r < 0 or in the region r > 0.
Moreover, there exists a symmetry relationship between solutions whenC is positive
and when it is negative,

f (r ,C) = f (−r , −C) − πC

r0
, (11)

φ(r ,C) = −φ(−r , −C) − πQ

r0
. (12)

The above solutions are nowemployed as the background solutions in perturbation
theory. Perturbation theory is a mathematical technique used to study the behavior
of small deviations from a known solution in general relativity. In general relativity
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quasinormal modes are the characteristic modes of freely oscillating black holes,
wormholes or other compact objects.

To calculate the quasinormal modes using perturbation theory, we first start with
a known metric solution, such as the Schwarzschild metric or E-B metric. We then
perturb the metric by adding small fluctuations to it. The quasinormal modes can be
determined by studying the asymptotic behavior of the perturbations.

3 Scalar Perturbations

3.1 Theoretical Set-Up

Before going to the full set of perturbations of the E-B wormhole, it is instructive
to consider a simpler problem. Therefore we here study only the perturbations ψ of
the phantom field φ

φ = φ(b) + ψ, (13)

where the superscript (b) stands for the background field, on the E-B wormhole
background. Thus we assume that the metric is not perturbed. The ψ is then viewed
as a “test” scalar fieldwhose amplitude is small, so thatwe can ignore its backreaction
on the metric.

The variation of the scalar field equation leads to

δ�φ = �ψ = 0. (14)

So we need to calculate

�ψ ≡ ∇μ∇μψ = 0 (15)

where ψ = ψ(t, r , θ, φ) is small. Also ∇μ is the covariant derivative operator and
� is the d’Alembertian operator, i.e.,

∇μ∇μψ = 1√−g
∂μ

(√−g∂μψ
) = 0. (16)

Since the background is spherically symmetric we employ a spherical harmonic
decomposition (m = 0) of the perturbation ψ of the scalar field, yielding

ψ(t, r) =
∑
l

∫
dωe−iωt ul(r) Pl(cos θ) . (17)

For given values of l andω the Laplacian of the scalar field perturbation then becomes

u′′ = − 2r

r2 + r20
u′ +

[ l(l + 1)

r2 + r20
− ω2e−2 f

]
u. (18)



8 B.Azad

Fig. 1 Effective potential
V scalar
l (r) for scalar

perturbations versus radial
coordinate r for C = 0, 0.1,
0.25, 0.5 and 1 (l = 0,
r0 = 1)
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By defining

u(r) = A(r)Z(r∗) (19)

with

A(r) = e f /2√
r2 + r20

(20)

and employing the tortoise coordinate r∗

dr∗

dr
= e− f (21)

we rewrite Eq. (18) as a second order Schrödinger-like equation,

d2Z

dr∗2 +
(
ω2 − V scalar (r)

)
Z = 0, (22)

with the effective potential

V scalar
l (r) = e2 f

(
l (l + 1) + 1

r20 + r2
− (2r − C)2

4
(
r20 + r2

)2
)

. (23)

In Fig. 1 we exhibit the effective potential V scalar
l (r) for C = 0, 0.1, 0.25, 0.5 and

1 (r0 = 1, l = 0).

3.2 Numerical Method

To obtain the damped quasinormal modes for the scalar perturbations, we use the
direct integration method. We solve Eq. (22), the second order Schrödinger-like
equation, with the scalar perturbation potential (23) (see [16]). We have to impose
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that we do not have any incoming waves from infinity. Therefore the modes are
purely outgoing at infinity r∗ → ±∞

Z 
 e±iωr∗
, r∗ → ±∞. (24)

To numerically determine the quasinormal modes of the scalar perturbations, we
divide the space at a specific value rc into two regions. Beyond rc (r > rc), we
describe the asymptotic behavior of the perturbation function Z(r) as r approaches
positive infinity, following the approach presented in [22] as follows,

r > rc, Z+(r) = eiωr∗ ZP (r). (25)

In this case, we obtain the leading terms in the asymptotic expansion of ZP (r)

ZP (r) = a0

(
1 + il(l + 1)

2ω

1

r
+

(−iC(l2 + l − 1)

4ω
− l(l + 2)(l2 − 1)

8ω2

) 1

r2
+ · · ·

)
.

(26)
Here, a0 represents an arbitrary amplitude. In the region rc (r < rc), we describe the
asymptotic behavior as r approaches negative infinity as

r < rc, Z−(r) = e−iωr∗ ZN (r), (27)

and the leading terms in the asymptotic expansion of ZN (r) are

ZN (r) = a0

(
1 − il(l + 1)

2ωeCπ/r0

1

r
+

(−iC(l2 + l − 1)

4ωeCπ/r0
− l(l + 2)(l2 − 1)

8ω2e2Cπ/r0

) 1

r2
+ · · ·

)
.

(28)
For a given value of ω, we generate solutions for the functions ZN (r) and ZP (r)
that satisfy the expansions near infinity, while ensuring ZP (rc) = ZN (rc) = 1. The
quasinormal modes are determined when the matching condition is satisfied,

1

Z−
dZ−

dr

∣∣∣∣
r=rc

− 1

Z+
dZ+

dr

∣∣∣∣
r=rc

= 0. (29)

To numerically integrate the equations with the corresponding boundary conditions,
we employ the package Colsys [8], a collocation method for systems of ordinary
differential equations with error estimation and adaptive mesh selection.

3.3 Spectrum

Let us now examine the spectrum of quasinormal modes for the scalar perturbations.
The quasinormalmodes corresponding to the scalar phantomfield have been obtained
in Ref. [16]. For every value of l, we observe a unique set of fundamental modes.
To put it simply, these modes represent stable disturbances that gradually diminish



10 B.Azad

 0.5

 1.5

 2.5

 3.5

 4.5

 0  0.5  1  1.5  2

ω
I r

0

M/r0

l=0
l=1
l=2
l=3
l=4

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

 0

 0  0.5  1  1.5  2

ω
I r

0

M/r0

l=0
l=1
l=2
l=3
l=4

Fig. 2 Scalar quasinormal modes: dimensionless frequency ωRr0 (left) and dimensionless decay
rate ωI r0 (right) versus dimensionless mass M/r0 (r0 = 1) for multipole numbers l = 0, 1, 2, 3
and 4

over time in a consistent manner, following an exponential trend. Figure 2 presents
the spectrum of quasinormal modes for the scalar perturbations.

Inspecting the figure, we note that as the mass of the wormhole increases, the
frequency decreases while the imaginary component grows. Additionally, when we
increase the value of l, the frequency increases, although the imaginary part remains
relatively stable without significant changes.

4 Metric Perturbations

Now we examine the scenario of the full set of perturbations including those of the
spacetime. As we will see, the method for analyzing this issue bears resemblance to
the one discussed above for the scalar field only. However, it becomes more intricate
because of the tensorial nature of the metric. Employing the metric from Eq. (5), we
decompose the metric and the phantom field as follows

gμν = g(b)
μν + hμν, (30)

φ = φ(b) + ψ, (31)

where the superscript (b) stands again for the background, and the perturbations are
assumed to be small. The variation of the Einstein equations with the phantom field
source term is

δRμν = −2δ(∂μφ ∂νφ) , (32)

where

δRμν = 1

2

(∇ρ∇μ hρ
ν + ∇ρ∇ν hρ

μ − ∇ν∇μ h − �hμν

)
. (33)

From the variation of the scalar field equation we obtain

δ�φ = �ψ + 1

2
∇λh ∂λφ(b) − ∇μ

(
hμν∂νφ

(b)
)

= 0. (34)
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We shall analyze and separate Eqs. (32) and (34) in polar coordinates. Our initial
step is to decompose the perturbations into products of four functions, where each
function depends on only one coordinate. To accomplish this, we employ the widely
used technique of spherical harmonics (which is well-known for scalars and vectors)
also for tensors. For a comprehensive and thorough explanation of spherical har-
monics, please refer to the detailed information provided in [32]. As the background
metric is spherically symmetric such a decomposition will then allow us to solve for
the various multipole numbers separately. For the metric perturbations, we consider
a very general perturbation matrix. Since the background is spherically symmetric it
is sufficient to consider only axisymmetric modes of the perturbations (m = 0). The
non axisymmetric modes can be calculated from the axisymmetric modes as there
is no preferences in choosing the axes. In fact, considering the axisymmetric modes
we see that the equations for the perturbations are separable in all four variables t ,
r , θ and ϕ.

Specializing to m = 0, we use the Regge-Wheeler gauge for simplicity [60]. The
Regge-Wheeler gauge, also known as the Regge-Wheeler coordinate system, is a
specific choice of coordinates. It was introduced by Tullio Regge and John Archibald
Wheeler in their study of the stability properties of the Schwarzschild black hole. In
summary the Regge-Wheeler gauge is a coordinate choice that simplifies the analysis
of the perturbations of the metric. It is helpful when separating the perturbations into
even and odd modes (with respect to parity transformations), making it easier to
analyze their behavior and to determine their frequencies. In the coming sections
we study the perturbations in their canonical form for odd waves and even waves of
multipole number l and projection m = 0.

4.1 Axial Perturbations

4.1.1 Theoretical Set-Up
Employing the Regge-Wheeler gauge [60] the canonical form for an odd wave, i.e.,
an axial perturbation, of multipole number l and projection m = 0 of the metric is
given by

haxialμν (t, r , θ, φ) =
∑
l

∫
dωe−iωt

⎡
⎢⎢⎣

0 0 0 h0S(θ)

0 0 0 h1S(θ)

0 0 0 0
h0S(θ) h1S(θ) 0 0

⎤
⎥⎥⎦ , (35)

where S(θ) is

S(θ) = eimϕ sin(θ)∂θ Pl(cos(θ))

= −(l + 1)

[
cos(θ)P(l + 1, cos θ) − P(l + 1, cos θ)

]
. (36)

From the Einstein equations we obtain one second order equation (δRtϕ) and two
first order equations (δRrϕ and δRθϕ) which are not trivial, the rest of the equations
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are trivially zero. From the two first order equations we obtain the equations for the
first order derivatives of perturbation functions

dh0(r)

dr
= C − 2r

r2 + r20
h0(r) + i

( (l − 1)(l + 2)e2 f

ω(r2 + r20 )
− ω

)
h1(r), (37)

dh1(r)

dr
= −iωe2 f h0(r) − C

r2 + r20
h1(r), (38)

which are consistent with the second order equation. We then reduce the system to
a second order equation for h1(r), and by defining

h1(r) = Ze− 3 f
2 (r2 + r20 )1/2 (39)

and employing the tortoise coordinate r∗

dr∗

dr
= e− f (40)

we obtain a Schrödinger-like master equation

d2Z

dr∗2 + (
ω2 − V (r)

)
Z = 0 (41)

with the effective potential

V axial(r) = e2 f (r)
(
l (l + 1) − 3

r20 + r2
+ 3 (2r − C)2

4
(
r20 + r2

)2
)

. (42)

In Fig. 3 we exhibit the effective potential Vaxial
l (r) for C = 0, 0.1, 0.25, 0.5 and

1 (r0 = 1, l = 2).

Fig. 3 Effective potential
V axial
l (r) for axial

perturbation versus radial
coordinate r for C = 0, 0.1,
0.25, 0.5 and 1 (l = 2,
r0 = 1)
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4.1.2 Numerical Method
After simplification, we are left with a single second-order equation. To calculate the
dampedquasinormalmodes for the axial perturbations,we employ the sameapproach
we used previously for the scalar perturbations, as described in Sect. 3.2. The only
difference lies in the modification of the function, with asymptotic expansions

ZP (r) = a0

(
1 + il(l + 1)

2ω

1

r
+

(−iC(l2 + l + 3)

4ω
− l(l + 2)(l2 − 1)

8ω2

) 1

r2
+ · · ·

)

(43)
and

ZN (r) = a0

(
1 − il(l + 1)

2ωeCπ/r0

1

r
+

(−iC(l2 + l + 3)

4ωeCπ/r0
− l(l + 2)(l2 − 1)

8ω2e2Cπ/r0

) 1

r2
+ · · ·

)
.

(44)
Again the quasinormal modes are determined when the matching condition below
is satisfied

1

Z−
dZ−

dr

∣∣∣∣
r=rc

− 1

Z+
dZ+

dr

∣∣∣∣
r=rc

= 0. (45)

4.1.3 Spectrum
Let us shift our focus now to the spectrum of quasinormal modes for the axial
perturbations. The quasinormal modes corresponding to the axial perturbations have
been calculated in Ref. [16]. Similar to the previous case of scalar perturbations,
these modes represent consistently stable disturbances that gradually fade away over
time, following an exponential damping pattern. The spectrum of the fundamental
quasinormal modes for the axial perturbations is given in Fig. 4. As seen in the
figure, we observe that as the mass increases, both the frequency and the imaginary
component of the mode also increase. Furthermore, when we increase the value of
l, the frequencies also experience an increase whereas the imaginary parts decrease.
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Fig. 4 Axial quasinormal modes: dimensionless frequency ωRr0 (left) and dimensionless decay
rate ωI r0 (right) versus dimensionless mass M/r0 (r0 = 1) for multipole numbers l = 2, 3, 4
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4.2 Polar Perturbations

Utilizing the Regge-Wheeler gauge [60] the canonical form for an even wave, i.e.,
a polar perturbation, of multipole number l and projection m = 0 of the metric is
given by

h pol
μν (t, r , θ, φ) =

∑
l

∫
dωe−iωt Pl(cos θ)×

⎡
⎢⎢⎣
e f (r)H0l(r) H1l(r) 0 0

H1l(r) e− f (r)H2l(r) 0 0
0 0 e− f (r)(r2 + r20 )Kl(r) 0
0 0 0 e− f (r)(r2 + r20 ) sin2 θKl(r)

⎤
⎥⎥⎦ .

(46)

Again, we use a spherical harmonic decomposition (m = 0) of the perturbation ψ

for the scalar field

ψ(t, r) =
∑
l

∫
dωe−iωt ul(r) Pl(cos θ) . (47)

The Laplacian of the phantom field perturbation then becomes

�ψ =
(
ul(r)

e f (r)
ω2 + e f (r)

(
2r

r2 + a2
∂r ul(r) + ∂2r ul(r) − l(l + 1)

r2 + r20
ul(r)

))
×

e−iωt Pl(cos θ) . (48)

We simplify the notation by omitting the index l for the perturbation functions
of the metric and the scalar field. The scalar, vector, and tensor spherical harmonics
are defined for l ≥ 0, l ≥ 1, and l ≥ 2, respectively. In the coming subsections, we
will separately examine the monopole (l = 0) and dipole (l = 1) cases. We here start
with the most general case which is l ≥ 2. In this scenario, wemust analyze the cases
of the wormhole having mass and the cases where it is massless. For each part we
first study the theoretical set-up and then we address the numerical method.

4.2.1 Theoretical Set-Up for l ≥ 2 and C �= 0
We study Eq. (32) and we obtain seven nontrivial equations δRtt , δRtr , δRtθ (δRtϕ),
δRrr , δRrθ (δRrϕ), δRθθ and δRϕϕ . Replacing K ′′, which is extracted from δRθθ ,
in δRϕϕ gives us the equality.

H2 = H0 . (49)

Then we eliminate H2 in the remaining six equations and obtain

δRtt =
[

− e2 f

2
H ′′
0 − e2 f (C + 2r)

2
(
r2 + r20

) H ′
0 +

(
l(l + 1)e2 f

2(r2 + r20 )
+ ω2

2

)
H0,
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+ iωe2 f
(

−H ′
1 + C − 4r

2(r2 + r20 )
H1

)
+ Ce2 f

2(r2 + r20 )
K ′ + ω2K

]
×

e−iωt Pl(cos θ) = 0 , (50)

δRtr =
[

− iω

(
C − 2r

2(r2 + r20 )
H0 + C − r

r2 + r20
K − K ′

)
+ l(l + 1)e2 f

2(r2 + r20 )
H1

]
×

e−iωt Pl(cos θ)

= 2iω e−iωt u(r) Pl(cos θ) ∂rφ
(b) , (51)

δRtθ = 1

2

[
iω(H0 + K ) + e2 f

(
C

r2 + r20
H1 + H ′

1

)]
e−iωt ∂θ Pl(cos θ) = 0 ,

(52)

δRrr =
[
1

2

((
l(l + 1)

r2 + r20
− ω2e2 f

)
H0 + C + 2r

r2 + r20
H ′
0 + H ′′

0

)

+ iωe f

(
C

2(r2 + r20 )
H1 + H ′

1

)
+ C − 4r

2(r2 + r20 )
K ′ − K ′′

]
e−iωt Pl(cos θ)

= − 4 e−iωt ∂r u(r) Pl(cos θ) ∂rφ
(b) , (53)

δRrθ = 1

2

(
C

r2 + r20
H0 + H ′

0 + ωe− f H1 − K ′
)
e−iωt∂θ Pl(cos θ)

= − 2 e−iωt u(r) ∂θ Pl(cos θ) ∂rφ
(b) , (54)

and

δRθθ =
[
H0 − C − 2r

2
H ′
0 + iω

2
(C − 2r)e− f H1

+ 1

2

(
(l − 1)(l + 2) − ω2(r2 + r20 )e−2 f

)
K

+ 1

2
(C − 4r)K ′ − 1

2
(r2 + r20 )K ′′

]
e−iwt Pl(cos θ) = 0 . (55)

The Eqs. (51), (52) and (54) are of first order. We calculate K ′(r) from Eq. (51)
(δRtr ), H ′

1(r) from Eq. (52) (δRtθ ), and H ′
0(r) from Eq. (54) (δRrθ ) after inserting

K ′(r) in the last two equations. This leads to

K ′ = 1

r2 + r20

[
− C − 2r

2
H0 + il(l + 1)

2ω
e f H1 + (C − r)K

+
√
C2 + 4r20 u(r)

]
, (56)

H ′
1 = − iωe− f (H0 + K ) − C

r2 + r20
H1 , (57)
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H ′
0 = 1

r2 + r20

[
2r − 3C

2
H0 + i

2

(
l(l + 1)

ω
e f − 2ω(r2 + r20 )e− f

)
H1

+ (C − r)K −
√
C2 + 4r20 u(r)

]
. (58)

Inserting K ′′(r) that we already extracted from δRθθ , H ′′
0 (r) that we extract from

δRtt and the first derivatives of the metric functions together in δRrr results in the
algebraic relation

√
C2 + 4r20

[
2u′

r2 + r20
− u (C − 4r)(

r2 + r20
)2

]
+

[
2 (l − 1) (l + 2)

r2 + r20
− 3C (C − 2r)(

r2 + r20
)2

]
H0

+ i

[
2ω (C − 2r)

r2 + r20
e− f + l (l + 1)C

ω
(
r2 + r20

)2 e f
]
H1

+ 2

[
2ω2 e−2 f − (l − 1)(l + 2)

r2 + r20
+ C(C − r)

(r2 + r20 )2

]
K = 0. (59)

Considering that we solve the algebraic relation for u′, we end up with four first-
order equations for the four variables. We then obtain the three metric perturbation
functions H0, H1, and K in terms of u and its derivatives.This means that if we
would set u(r) = 0 (we turn off the perturbation of the scalar field), the metric
perturbations would also vanish, indicating that the metric perturbations are coupled
with the phantom field perturbation. So in general we cannot decouple the phantom
field perturbations from the perturbations of the metric.

4.2.2 Numerical Method for l ≥ 2 and C �= 0
As before we need to study the perturbation functions at infinity, and we obtain the
series expansions assuming asymptotic flatness. Employing the tortoise coordinate
r∗

dr∗

dr
= e− f (60)

the expansion for r → +∞ becomes

u(r) = eiωr
∗(u1

r
+ u2

r2
+ u3

r3
+ · · ·

)
, (61)

H0(r) = eiωr
∗(
iωK0r + (3iCω − (l+2)(l−1))

2
K0 + · · ·

)
, (62)

H1(r) = eiωr
∗( − iωK0r − (3iCω − (l+2)(l−1))

2
K0 + · · ·

)
, (63)

K (r) = eiωr
∗(

K0 − ω2(C2 + 4r20 ) + 6iCω − l4 − 2l3 + l2 + 2l

8ω2r2
K0 + · · ·

)
,

(64)
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where u1 = A+
s and K0 = A+

g are free amplitudes, and u2 and u3 are given in terms
of u1

u2 = 1

4ω

( (√
C2 + 4r20K0 − 2u1

)
Cω + 2il(l + 1)u1

)
, (65)

u3 = 1

8ω2

( (
ω2(C2 − 4r20 ) − 2iωC(2l2 + 2l − 1) − l4 − 2l3 + l2 + 2l

)
u1

+ iωC
√
C2 + 4r20 (l + 2)(l − 1)K0

)
. (66)

For r → −∞ the expansion becomes

ū(r) = e−iωr∗( ū1
r

+ ū2
r2

+ ū3
r3

+ · · ·
)

, (67)

H̄0(r) = e−iωr∗( − iωreCπ/r0 K̄0 − 3iCωeCπ/r0 + (l + 2)(l − 1)

2
K̄0 + · · ·

)
,

(68)

H̄1(r) = e−iωr∗( − iωreCπ/r0 K̄0 − 3iCωeCπ/r0 + (l + 2)(l − 1)

2
K̄0 + · · ·

)
,

(69)

K̄ (r) = e−iωr∗(
K̄0 − ω2(C2 + 4r20 ) − 6iCωe−Cπ/r0

8ω2r2
K̄0

− (l4 + 2l3 − l2 − 2l)e−2Cπ/r0

8ω2r2
K̄0 + · · ·

)
, (70)

where again ū1 = A−
s and K̄0 = A−

g are free amplitudes and ū2 and ū3 are given in
terms of ū1

ū2 = 1

4ω

((√
C2 + 4r20 K̄0 − 2ū1

)
Cω − 2il(l + 1)e−Cπ/r0 ū1

)
, (71)

ū3 = 1

8ω2

((
ω2(C2 − 4r20 ) + 2iωe−Cπ/r0C(2l2 + 2l − 1)

− (l4 + 2l3 − l2 − 2l)e−2Cπ/r0
)
ū1

+ iωe−Cπ/r0C
√
C2 + 4r20 (l + 2)(l − 1)K̄0

)
. (72)

To calculate the quasinormal modes with l ≥ 2 numerically we rewrite the system
of Eqs. (56)–(59) as a second order ordinary differential equation (ODE) for u,
which is coupled to the two first order ODEs for the metric functions H1 and K (the
other perturbation functions are then calculated algebraically in terms of these three
functions). We express this set of equations as follows,

d

dr
Z + MZ = 0 . (73)
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Here Z is a column vector with components u, u′, H1 and K , and the matrixM con-
tains the coupling among the perturbation functions and the background functions,

M̄ =

⎡
⎢⎢⎣

u−(I ) u−(I I ) u+(I ) u+(I I )
u′−(I ) u′−(I I ) u′+(I ) u′+(I I )
H−
1 (I ) H−

1 (I I ) H+
1 (I ) H+

1 (I I )
K−(I ) K−(I I ) K+(I ) K+(I I )

⎤
⎥⎥⎦
r=rc

. (74)

As before, to obtain the quasinormal modes we need to solve the coupled set
of Eq. (73) subject to the boundary conditions, and as before we do not have any
incoming waves from infinity and all the modes are purely outgoing at infinity,
r∗ → ±∞ (see Eqs. (61)–(64) and (67)–(70)), with components Zi

Zi ∼
{

eiωr
∗
, r → +∞ ,

e−iωr∗
, r → −∞ .

(75)

As before we divide space at some value rc into two regions. In the region r > rc
the asymptotic behaviour for r → +∞ is [23]

r > rc , Z+
i (r) = eiωr

∗
Z P
i (r) , (76)

and in the region r < rc the asymptotic behaviour for r → −∞ is

r < rc , Z−
i (r) = e−iωr∗

ZN
i (r) . (77)

For some chosen value of ω we now generate independent solutions for the func-
tions ZN

i (r) and Z P
i (r). Then we match these functions at r = rc and calculate the

derivatives of the functions. The quasinormal modes are obtained when a linear com-
bination of the two independent solutions in one region smoothly matches a linear
combination of the solutions in the other region.

In order to combine the two distinct solutions, Z−
i (I ) and Z−

i (I I ), on the left side
in a linear manner, such that the linear combination smoothly matches a combination
of the two distinct solutions, Z+

i (I ) and Z+
i (I I ), on the right side, we require that

the determinant of M̄ is equal to zero at the specific point r = rc,

det M̄ = 0. (78)

In the case when C �= 0, the determinant of the matrix becomes zero at two distinct
values of ω.1 One of these values corresponds to branch 1, while the other belongs
to branch 2. At each of these points where the determinant is zero, there exists a
unique linear combination of perturbation functions that yields a smooth solution
throughout the entire spacetime. For each ω value, the kernel of matrix M̄ has a
dimension of one.

In order to integrate numerically the equations subject to the corresponding bound-
ary conditions, we again use the package Colsys [8].

1We know that the determinant has more than two zeroes, as there are excited modes, with larger
imaginary part of ω, but here we just focus only on the fundamental modes.
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4.2.3 Theoretical Set-Up for l ≥ 2 and C = 0
In the scenario where there is no mass present, the first-order equations simplify to

K ′ = 1

2ω
(
r2 + r20

)(
il (l + 1) H1 − 2ω (r K − r H0 − 2r0u)

)
, (79)

H ′
0 = 1

2ω
(
r2 + r20

)[ (−2iω2 (
r2 + r20

) + il (l + 1)
)
H1

− 2ω (r K − r H0 + 2r0u)
]
, (80)

H ′
1 = −iω (H0 + K ) , (81)

u′ = − 1

4r0

[ (
2ω2 (

r2 + r20
) + (l + 2)(l − 1)

)
K + (l + 2) (l − 1) H0

− 2iωr H1

]
− 2r

r20 + r2
u . (82)

For C = 0 the asymptotic expansions remain the same.
We calculate the derivative of (82) and obtain u′′ in the form of a decoupled

equation for the scalar perturbation,

u′′ = − 2r

r20 + r2
u′ − 1

(r20 + r2)2

(
r40ω2 + (

2r20ω2 − l2 − l + 4
)
r20

+ (
r2ω2 − l2 − l

)
r2

)
u . (83)

Therefore we can solve this equation independent of the metric perturbations, and it
has the non-trivial solution

u(r) = C1 r

r20 + r2
HeunC

(
0,

1

2
,−2,−r20ω2

4
,
1

4

(
r20ω2 − l2 − l + 5

)
,−r2

r20

)

+ C2

r20 + r2
HeunC

(
0,−1

2
,−2,−r20ω2

4
,
1

4

(
r20ω2 − l2 − l + 5

)
,−r2

r20

)
,

(84)

where HeunC is the Heun Confluent function, C1 and C2 are constants.
On the other hand, we obtain a second order equation for the spacetime perturba-

tions for H1,

H ′′
1 = 8iωr0ru′ + 16iωr0r2u/(r2 + r20 ) − 2rω2

(
r2 + r20

)
H ′
1(

l2 + l − 2 − (
r2 + r20

)
ω2

) (
r2 + r20

)
+

[ (
r2 + r20

)2
ω4 + [

6r2 + 2r20 − 2
(
r2 + r20

)
l (l + 1)

]
ω2 + l4 + 2l3

− l2 − 2l
]

× H1 ×
[ (

l2 + l − 2 − (
r2 + r20

)
ω2) (

r2 + r20
) ]−1

. (85)
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We can represent the preceding perturbation equations using a single master equa-
tion, which aligns with the master equation governing the axial perturbations. It is
important to highlight that if we describe the scalar perturbations in terms of the
master variable Z(r) as follows

u = 1√
r2 + r20

Z(r), (86)

then Eq. (83) can be cast as a Schrödinger-like equation

d2Z(r)

dr2
+ (

ω2 − V (r)
)
Z(r) = 0, (87)

with the effective potential

V polar
C=0 (r) = l (l + 1)

r2 + r20
− 3r20

(r2 + r20 )2
. (88)

Note that when C = 0, the tortoise coordinate (21) denoted as r∗ coincides with r
itself. Also, the potential is the same as the axial potential, Eq. (42), when C = 0.

Furthermore, it is feasible to reformulate the equation for the spacetime perturba-
tions (85) as an identical master equation. Nonetheless, the process of transformation
is more intricate. To accomplish this, we introduce the following definition

H1(r) = A(r)Ẑ(r), (89)

u(r) = B(r)Ẑ(r), (90)

where Ẑ(r) is the new master variable and A(r) and B(r) are defined as follows

A(r) = (r2 + r20 )
√
3−3/2

l2 + l − 2 − ω2(r2 + r20 )
×

[
D1r

3HeunG
(

− r20ω2β,−r20ω2β

2
+ 5

√
3

2
+ 3,

5

4
+

√
149

4
+ √

3,

√
3 + 5

4
−

√
149

4
,
5

2
, 0, βω2r2

)

+ D2HeunG
(

− r20ω2β,−r20ω2β

2
−

√
3

2
+ 3

2
,−1

4
+

√
149

4
+ √

3,

√
3 − 1

4
−

√
149

4
,−1

2
, 0, βω2r2

)]
, (91)

B(r) = − iω(r20 + r2)

4r0
A − i(r20 + r2)(l2 + l − 2 − ω2(r20 + r2))

4r0rω
A′ . (92)
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In this case, we have β−1 = l2 + l − 1 − r20ω2, and the functionHeunG corresponds
to the Heun General function. Additionally, D1 and D2 represent two arbitrary con-
stants. Subsequently, it can be demonstrated that Eq. (85) reduces to Eq. (41) when
considering Ẑ(r), resulting in the same potential as for the axial perturbations. As we
will explicitly show in the subsequent analysis, this implies that the spectrum of polar
quasinormal modes for C = 0 wormholes precisely matches the axial spectrum.

4.2.4 Numerical Method for l ≥ 2,C = 0 and Isospectrality
The numerical method for this part is exactly like the one discussed in Sect. 4.2.2.
But in the limit when C approaches zero, a remarkable phenomenon occurs. The
determinant of the equation exhibits a unique double-zero at a specific value of ω.
Consequently, at this particular eigenfrequency, it becomes possible to identify two
distinct linear combinations of the perturbation functions that generate independent,
smooth solutions to the perturbation equations. This is characterized by the fact that
the kernel of matrix M̄ has a dimension of two.

4.2.5 Spectrum
For values of l greater than or equal to 2, we encounter two distinct families of
modes, as, for instance, discussed in Ref. [15]. When it comes to black holes, these
modes can be classified as follows: gravitational-led modes, which are primarily
influenced by gravitational perturbations and possess a dominant amplitude denoted
as A±

g , and scalar-led modes characterized by a dominant amplitude denoted as A±
s .

In the current context, it is challenging to make a clear distinction between these
two families. Consequently, we refer to them as branch 1 and branch 2 for a given
value of l, with our primary focus being on the fundamental branches. However,
it is possible that such a classification could emerge if we were to consider larger
wormhole masses, as in that limit, the wormhole modes are expected to approach
those of a Schwarzschild black hole, as discussed in Ref. [16].

We first obtain the two fundamental branches of polar quadrupole (l = 2) modes.
Figure 5 displays these two primary l = 2 branches. The left figure illustrates the
relationship between the scaled frequency ωRr0 and the scaled mass M/r0, while
the right figure shows the relation between the scaled decay rate ωI r0 and the scaled
mass. It is worthmentioning that the two branches intersect precisely atM = 0 due to
the degeneracy of the eigenvalue ω in the massless scenario. However, as we move
away from this crossing point, the frequencies and decay rates exhibit significant
differences between the two branches.

Figure 6 displays the polar modes with l = 3, while Fig. 7 shows the polar modes
with l = 4.Here again,weobserve the intersectionof the twobranches in themassless
case. However, as we move away from these crossing points, the frequencies ωR of
both branches tend to get closer for l = 3 and even closer for l = 4 than in the case
of the quadrupole mode. Furthermore, the decay rates exhibit a smoother behavior
for higher values of l as compared to the quadrupole mode.

To facilitate a comprehensive comparison among different values of l, we have
gathered the branches for l = 2, l = 3, and l = 4 inFig. 8. The left panel demonstrates
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Fig. 5 Polar l = 2 quasinormal modes: dimensionless frequency ωRr0 (left) and dimensionless
decay rate ωI r0 (right) versus dimensionless mass M/r0 (r0 = 1)
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Fig. 6 Polar l = 3 quasinormal modes: dimensionless frequency ωRr0 (left) and dimensionless
decay rate ωI r0 (right) versus dimensionless mass M/r0 (r0 = 1)
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Fig. 7 Polar l = 4 quasinormal modes: dimensionless frequency ωRr0 (left) and dimensionless
decay rate ωI r0 (right) versus dimensionless mass M/r0 (r0 = 1)
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Fig.9 Comparison of axial and polar l = 2, 3 and 4 quasinormal modes: dimensionless frequency
ωRr0 (left) and dimensionless decay rate ωI r0 (right) versus dimensionless mass M/r0 (r0 = 1)
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a consistent upward trend in frequencies as l increases. In the right panel we observe
an overall pattern of increasing decay rates with higher l. However, it is important to
note that the branches for different l become intertwined. For significantly positive
masses, the decay rate of branch 1 exhibits an increase with l and remains lower than
the decay rate of branch 2, with the decay rate for l = 4 being smaller than that of
l = 3. Conversely, for considerably negative masses, the decay rate of branch 2 rises
with l and remains smaller than the decay rate of branch 1, with the decay rate for
l = 4 being smaller than that of l = 3 once again. Additionally, it is noteworthy that
the decay rates for branch 1 are very similar for l = 3 and l = 4.

When comparing the polar modes of the wormhole solutions with finite mass to
the axial modes for l ≥ 2, we find that the wormhole modes lack isospectrality. This
means that the mode spectra are not identical. However, in the case of a massless
wormhole, the modes exhibit degeneracy, resulting in all three fundamental branches
for a given l sharing the same eigenvalue. This behavior is clearly seen in Fig. 9
for l = 2, l = 3, and l = 4. Isospectrality for C = 0 is also seen in Fig. 10 which
exhibitis a comparison of the fundamental (n = 0) polarmodeswith the first overtone
(n = 1) polar modes for l = 2. (The first overtone for the axial modes has not yet
been obtained.)
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4.2.6 l = 1
Now that we are done with the most general case l ≥ 2, we are going to consider the
cases l = 1 and l = 0, separately. Starting with l = 1 we observe that three of the
Einstein’s equations are identically zero,

δRtϕ = δRrϕ = δRθϕ = 0, (93)

and the following three first order differential equations are obtained,

K ′ = 1

r20 + r2

( ie f

ω
H1 − C − 2r

2
H2 + (C − r) K +

√
C2 + 4r20 u

)
, (94)

H ′
1 = − C

r2 + r20
H1 − iωe− f (H2 + K ) , (95)

H ′
0 = − C − r

r2 + r20
H0 − i

(
ωe− f − e f

ω
(
r2 + r20

))
H1

− C

2
(
r2 + r20

)H2 + C − r

r2 + r20
K −

√
C2 + 4r20

r2 + r20
u . (96)

Furthermore, the algebraic equation reads as follows,

− C2 − 3Cr − 2r20
2(r2 + r20 )

H0 + i

2

(
C

ω(r2 + r20 )2
+ w(C − 2r)e− f

(r2 + r20 )

)
H1

− c2 + 4r20
4(r2 + r20

H2 +
(

ω2e− f + C(C − r)

2(r2 + r20 )2

)
K

+
√
C2 + 4r20

r2 + r20

(
4r − C

2(r2 + r20 )
u + u′

)
= 0. (97)

There is still a gauge freedom present in this set of equations, which allows us to
further simplify the system. Let us explore two possibilities in this regard.

• Fixing the gauge by setting H1 = 0:
If we set H1 = 0, we obtain from δRtθ

K = −H2 . (98)

The remaining perturbation equations lead to the following simplified system of
first-order differential equations

H ′
2 =

(4r − 3C)H2 + 2
√
C2 + 4r20 u

2(r2 + r20 )
, (99)

H ′
0 = 1

r2 + r20

(
(r − C) H0 + 2r − 3C

2
H2 −

√
C2 + 4r20 u

)
, (100)
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and

u′ = C2 − 3Cr − 2r20

2
(
r2 + r20

) √
C2 + 4r20

H0

+ 1√
C2 + 4r20

(
ω2e− f + r20

r2 + r20
+ 3C2 − 2Cr

4
(
r2 + r20

) )
H2

+ C − 4r

2
(
r2 + r20

) u . (101)

To calculate the quasinormal modes, we are thus left with three first order equa-
tions .

• Fixing the gauge by setting H ′
0 + 2iωe− f H1 + H ′

2 − 2K ′ = 0:
If we consider the change in the phantom field (34), this results in a second-order
equation for the function u

u′′ =
√
C2 + 4r20

4(r2 + r20 )

(
H ′
0 + 2iωe− f H1 + H ′

2 − 2K ′)

−
(

ω2e−2 f + 2

r2 + r20

)
u − 2r

r2 + r20
u′ . (102)

When we now choose the gauge

H ′
0 + 2iωe− f H1 + H ′

2 − 2K ′ = 0 , (103)

the equation simplifies to

u′′ = − 2r

r2 + r20
u′ +

[ l(l + 1)

r2 + r20
− ω2e−2 f

]
u. (104)

Notice, that this equation is the same as Eq. (18) for the l = 1 scalar field per-
turbations in the background of the E-B wormhole, from which we obtained the
scalar quasinormal modes.

We obtain the damped quasinormal modes for l = 1 by solving Eq. (104). As
before, we can rewrite these equations as a second-order Schrödinger-like equation.
Since this is the same equation as for the scalar part, the numerical method is the
same as explained in the scalar perturbations section. Therefore the scalar branches
obtained previously [16] correspond to the polar l = 1 quasinormal modes. It is
evident that we only get one fundamental mode branch for l = 1. Moreover, as large
masses are approached, the corresponding Schwarzschild scalar modes are reached.
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4.2.7 l = 0
In this scenario, the function H1 does not have any contribution in the Einstein
equations. Therefore, to simplify the equations, we set H1 to zero. Now, let us revisit
the variation of the phantom field (34), resulting in an equation for u′′,

u′′ =
√
C2 + 4r20

4(r2 + r20 )

(
H ′
0 + H ′

2 − 2K ′) − ω2e−2 f u − 2r

r2 + r20
u′ . (105)

We now choose the following gauge condition

H0 = 2K − H2 . (106)

With this gauge the scalar field equation then decouples from the spacetime pertur-
bations

u′′ = −ω2e−2 f u − 2r

r2 + r20
u′ . (107)

To obtain a second order equation we define

u(r) = A(r)Z(r∗) (108)

with

A(r) = e
C
2r0

arctan( r
r0

)

√
r2 + r20

(109)

and employ the tortoise coordinate r∗

dr∗

dr
= e− f . (110)

We then rewrite Eq. (105) as a second order Schrödinger-like equation,

d2Z

dr∗2 + (
ω2 − V (r)

)
Z = 0, (111)

with the effective potential

V (r) = −C2 − 4Cr − 4r20
4(r2 + r20 )2

e2 f , (112)

which is the same as the effective potential for the scalar perturbations, Eq. (23),when
we set l = 0.The dampedquasinormalmodes are obtained by solvingEq. (107). Thus
the non-trivial solutions of this equation yield the spectrum of scalar quasinormal
modes with l = 0.



Quasinormal Modes of Static Ellis-BronnikovWormholes 27

On the other hand, the perturbations of the spacetime can be expressed in terms
of a second-order differential equation for the variable K ′′.

K ′′ = − (2Cr + 4r20 )K ′

(r2 + r20 )(C − 2r)
+ 2CK

(r2 + r20 )(C − 2r)

− ω2e−2 f K +
4u

√
C2 + 4r20

(r2 + r20 )(C − 2r)
. (113)

Again, we rewrite this equation as a second-order Schrödinger-like equation, and
after obtaining the series expansion of the function at infinity we get one fundamental
mode branch. Although the frequencies of the modes for l = 1 are higher than those
for l = 0, their decay rates do not change much. As large masses are approached,
the corresponding Schwarzschild scalar modes are reached.

It is well-known that E-B wormholes possess an unstable radial (l = 0) mode
[16,26,33,34,63]. For solutions with u = 0 the unstable mode is found. By defining
the function Z ,

K = (C − 2r)√
r2 + r20

e
C
2r0

arctan( r
r0

)
Z , (114)

and the tortoise coordinate r∗ (Eq. (21)) we rewrite the equation into a Schrödinger-
like equation,

d2Z

dr∗ + (
ω2 − Vr (r)

)
Z = 0 (115)

with the effective potential Vr (r)

Vr = −
(
C4 − 8rC3 + 12(r2 − r20 )C2 − 16r(r2 − r20 )C − 16r20 (3r2 + 2r20 )

)
×

e2 f

4(C − 2r)2(r2 + r20 )
. (116)

Given that the effective potential exhibits a singularity at C = 2r , we examine its
behavior in the vicinity of this singularity and find

Vr (r → C

2
) = 2e

2C
r0

(
tan−1( C

2r0
)− π

2

)

(
r − C

2

)2 + 8Ce
2C
r0

(
tan−1( C

2r0
)− π

2

)

(
C + 4r20

) (
r − C

2

) + · · · . (117)

For r → +∞ the effective potential has the expansion

Vr (r → +∞) = C

r3
− − 7C2

4 + 3r20
r4

+ · · · , (118)
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and for r → −∞

Vr (r → −∞) = e
− 2πC

r0 C

r3
− e

− 2πC
r0 C2 + e

− 2πC
r0

(
12C2−48r20

)
16

r4
+ · · · . (119)

For l = 0 Eq. (115) has been used to determine this unstable radial mode of
the E-B wormholes [16]. The strength of this instability decreases as the wormhole
mass increases, resulting in a more stable wormhole. Nevertheless, the wormhole
still retains a radial instability as long as its mass is finite.

5 Conclusions

In conclusion, this chapter has focused on the study of the linear perturbations
of the Ellis-Bronnikov wormholes. The introduction provided an overview of the
research topic, highlighting the significance of investigating perturbations of worm-
holes, while Chap. 2 has delved into the details of the Ellis-Bronnikov wormhole
metric, providing a comprehensive understanding of the spacetime structure.

Subsequently the perturbations of the Ellis-Bronnikov wormhole have been
explored, emphasizing the significance of understanding the behavior of the vari-
ous perturbation modes. Chapter 3 has specifically focused on the scalar perturba-
tions, presenting the theoretical set-up and the numerical methods employed for the
analysis. The obtained spectrum of scalar quasinormal modes has revealed valuable
insights into the behavior of thewormhole under scalar perturbations.We have shown
that in this case there is one fundamental mode branch.

In Chap. 4 we have addressed the full set of perturbations of the Ellis-Bronnikov
wormhole, starting with axial perturbations. First the theoretical framework and the
numerical techniques utilized for obtaining axial modes have been described, which
correspond to purely metric modes. The resulting spectrum of axial quasinormal
modes has provided crucial information about the behavior of the wormhole under
axial perturbations.

The discussion has then turned to polar perturbations, wheremetric and scalar per-
turbations are in general coupled. Here the general cases l ≥ 2 with C �= 0 (massive
wormholes) and l ≥ 2 with C = 0 (massless wormholes) have been addressed first,
and the theoretical set-ups and the numerical methodologies have been discussed in
detail, as well as the obtained spectrum of polar quasinormal modes. In particular, we
have discussed the distinct characteristics of the different branches and highlighted
the isospectrality obtained in the massless case, C = 0. The observed isospectrality
in fact corresponds to a threefold degeneracy, since not only the two polar modes but
also the axial mode are the same for C = 0. The chapter has ended with an explo-
ration of the l = 1 and l = 0 perturbations, where we have seen that in these cases
the polar perturbation can be considered the same as the scalar perturbations.
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StationaryModels of Relativistic
ViscousTorus

Sayantani Lahiri

Abstract

This chapter will be devoted to describing the findings of the study of stationary
configurations of a geometrically thick viscous torus in Schwarzschild spacetime.
A viscous torus is modelled by a relativistic non-ideal fluid. Using the hyper-
bolic theory of relativistic hydrodynamics of non-ideal fluids developed using
the gradient expansion scheme which is discussed at length in this chapter, it is
revealed that morphologies of a viscous torus—both hydrodynamical as well as
the magnetised, are significantly modified by shear viscosity and the curvature of
the Schwarzschild black hole.

1 Introduction

An accretion disk is a cloud of dust or of another substrate orbiting around a central
compact object. As an example, such a disk-like luminous structure may form from
a close binary system consisting of a massive primary compact object, and a less
massive star such that the less massive companion exceeds its Roche lobe initiating
a gaseous outflow towards the compact object. In this sense, accretion disks are
“feeding” the central object. Typically, these astrophysical disks are modelled by
a relativistic hydrodynamical fluid. During the process of accretion, inward mass
transfer takes place towards the central object, for example, the black hole, resulting
into an outward transfer of the orbital angular momentum in the radial direction,
as a consequence, the disk substrate loses energy, part of which contributes to the
luminous appearance of the disk and radiation. The accretion mechanism is also
accompanied by dissipative processes, for example, viscous effects and heat flow.
This process is one of the most efficient processes of energy release in the universe
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and such processes can be observed in various systems as protoplanetary disks, X-ray
binaries, gamma-ray bursts, active galactic nuclei, and quasars [13].

Often an ideal fluid is considered to describe the physics of an accretion disk,
however, it is a crude assumption that can easily be violated in actuality. Moreover,
in realistic accretion flows, dissipative processes cannot be entirely neglected. Most
importantly, during the outward angular momentum transport in a binary system, the
velocity gradients giving rise to underlying differential rotation of the adjacent fluid
layers within an accretion disk can generate shear viscous effects. In this direction,
a common viewpoint of the origin of shear viscosity is turbulence. Such turbulence
in presence of magnetic fields gives rise to the magneto rotational instability which
aids in radially outward angular momentum transport. The standard prescription for
computing the shear viscosity generated due to turbulence is famously known as
α-viscosity prescription developed by Shakura and Sunyeav [33]. This formula is
prescribed for disks obeying Keplar’s rotation law which are usually geometrically
thin accretion disks. However, the exact origin of shear viscosity is not completely
understood in case of geometrically thick disks or torus, also known as Polish dough-
nuts. Hence, it calls for our attention to investigate the origin and consequences of
viscous effects within an accretion disk in the strong gravity regime.

In this chapter, we will restrict ourselves to discussing shear viscosity effects on
stationary solutions of torus. In the following a step-by-step discussion is presented
that illustrates the influences of shear viscosity on non-magnetised and magnetised
torus in theSchwarzschild spacetime.However, for a self-consistency, a brief descrip-
tion of a hydrodynamical torus composed of an ideal fluid will be presented the next
section.

Notations and conventions: The signature of Riemannian geometry is taken as
−,+, +, + and the geometrized units (G = c = 1) are followed throughout the
chapter.

2 Nutshell Description of Thick EquilibriumTorus

2.1 Tori Supported by Ideal Fluid

Out of all accretion disk models, the geometrically thick disks, also known as ‘Polish
doughnuts’ are the simplest, analytical, stationary model of accretion disk rotating in
circularmotion around a central compact object, for example, a blackhole. Thematter
model of such disks are conventionally considered to be the ideal fluid characterised
by energy density ε and fluid pressure p, and is additionally assumed to be stationary
and axially symmetric. These simplest models are pressure-supported, where gravity
and the ideal disk fluid remain in hydrostatic equilibrium and thus are non-accreting.

Undoubtedly, constructing the stationary solutions of geometrically thick tori in
the framework of ideal fluid description is an over-simplified approach. In realistic
astrophysical scenarios, dissipative effects like viscosity, heat flux, vorticity are no
longer completely negligible and therefore it is worthwhile to explore the effects of
the dissipative effects, in particular, the viscosity. While investigations with bulk,
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shear viscosity with resulting heat flux in their full glory is a monumental task to
begin with, specially, if one takes into account of the hyperbolic nature of the cor-
responding hydrodynamical equations of motion, nevertheless, it still makes sense
to include viscous effects in studying stationary solutions of Polish doughnuts, as
a starting point. On the other hand, a rigorous treatment would involve discarding
the circular motion of the fluid around a central compact object, and picking up
a non-zero radial velocity. For example, a very well-known model of viscosity is
the phenomenological α viscosity prescription proposed by Shakura & Sunyeav in
thin-disk models where it was argued that magnetic fields are most likely respon-
sible for generating shear viscosity which enable the angular momentum transport
thereby facilitating the accretion process within a disk. This concept gained further
momentum with the realisation of magnetorotational instability [6].

The simplest model of an accretion disk, developed by Paczyński, Abramowicz
and their collaborators in late 1970 and early 1980, consists of the ideal fluid in equi-
librium undergoes uniform circular motion four-velocity uμ around a rotating black
hole. In a spherical polar coordinate system (t, r , θ,φ), the metric of the stationary,
axially symmetric Kerr black hole (with the mass parameter M and spin parameter
a = J/M) is given by,

ds2 = gt t dt
2 + 2gtφdt dφ + grr dr

2 + gθθdθ2 + gφφdφ2 (1)

and the associated Killing vectors are ημ = (1, 0, 0, 0) and ξμ = (0, 0, 0, 1). Since
the matter model also shares the same symmetries, the energy momentum tensor of
the ideal fluid and the four-velocity are given by,

T μν = (ε + p)uμuν + pgμν, (2)

and with

ur = uθ = 0 (purely circular motion) (3)

uμ = dxμ

dτ
= ut (ημ + Ωξμ), Ω(r , θ) = uφ(r , θ)

ut (r , θ)
, (4)

where τ is the proper time of the observer coming with the fluid. Here ε and p
are functions of radial and polar coordinates only. Using (1) and the normalisation
condition uαuα = −1, ut is determined in the following way,

1

(ut )2
= −(gt t + Ω2gφφ + 2Ωgtφ) (5)

Since the energy momentum tensor is conserved, following the condition ∇νT μν =
0, the momentum conservation law can be recast in terms of ut , Ω and specific
angular momentum l in the following way,

∂μ ln(−ut ) − Ω∂μl

1 − Ωl
= − ∂μ p

ε + p
(6)
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where the specific angular momentum is defined as l = − ut
uφ

. Commonly known as

the relativistic Euler equation, (6) depicts the condition of hydrostatic equilibrium
between the pressure-gradient and gravity. For a barotropic fluid whose equation of
state (EOS) is characterised by p = p(ε), the integrability condition of (6) exists,
which is given by,

Ω = Ω(l). (7)

apart from the other trivial case of rigid rotation. The condition (7) is famously
known as relativistic von-Zeipel theorem [1,7,8]. It states the surfaces of constant
velocity Ω coincide with surfaces of constant specific angular momentum l (known
as von-Zeipel cylinders), provided the ideal fluid undergoing circular motion obeys
a barotropic EOS in a stationary and axisymmetric spacetime. Alternatively stated,
iso-density surfaces coincide with iso-pressure surfaces, provided constant l surfaces
coincide with constant Ω surfaces. The underlying reason for the existence of the
integrability condition can be appreciated from the fact that the term on the right

hand side of (6) i,e.
∂μ p

ε + p
is an exact differential, as a result of which, the integra-

bility condition is obtained in a straightforward way by imposing the compatibility
condition ∂ν∂μ p = ∂μ∂ν p. Due to the existence of integrability condition given by
(7), the integral form of the Euler equation can be easily expressed as follows,

W − Win = ln(−ut ) − ln(−ut )in −
∫ l

lin

Ω

1 − Ωl
∂μl (8)

with the total differential defined in the following way,

W − Win = −
∫ p

0

dp

(ε + p)
(9)

where ‘in’ refers to the inner edge of the disk at the equatorial plane where the
pressure and the corresponding energy density vanish. It is to be noted that W (r),
in the Newtonian limit, represents a total potential of a test particle (centrifugal plus
gravitational).

It is necessary to determine a closed-form relation between l and Ω (which indi-
vidually are functions of spacetime metric of the background geometry) for deter-
mining the shape of a torus. In principle, such a relation is accurately prescribed only
if the dissipative effects are taken into consideration. However, due to an ambiguity in
proposing an accurate closed form relation between l andΩ with inputs fromdissipa-
tive processes, one may consider a simplest assumption of constant specific angular
momentum as l = l0, where l0 is a constant. Such a consideration not only simplifies
the Euler equation considerably but also simplifies the computation of equipoten-
tial surfaces. Moreover, the angular velocity now becomes a plain relation of metric
coefficients. In this simplified approach, the equipotential surfaces are easily com-
puted using the relation, W (r , θ) = ln(−ut ), if one also sets Win = ln(−ut )in for a
given stationary and axially symmetric black hole spacetime. The equilibrium torus
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obtained under this assumption are also known as marginally stable disks as they
are marginally stable under axisymmetric perturbations. In general, Win can either
be closed (W < 0) or open (W > 0) at any point on the (r , θ) plane whereas W = 0
corresponds to an equipotential surface that is closed at infinity. It is worthwhile to
note that closed equipotential surfaces at the equatorial plane are characterised by
two radial positions, namely the cusp rcusp and the centre rcen, whereas the inner
edge rin is the free parameter chosen between the cusp and the centre of the torus. At
the cusp and the at the centre, the gravitational force of the central compact object is
exactly balanced by the pressure gradient forces of the fluid element resulting into
vanishing acceleration. The situation when aμ = 0 implies ∂μ p = 0 = ∂μW , as a
result the fluid does not experience any net force at these locations which further
means the fluid elements undergo geodesic motion. The specific angular momentum
is then given by the Keplarian angular momentum lk . For the case of constant specific
angular momentum distributions, the radial positions of the centre and the cusp at
the equatorial plane can be determined from the following relation,

lk(r) − l0 = 0 (10)

In particular, rcen corresponds to the position of pressure maximum and rcusp corre-
sponds to location of self-crossing equipotentials. In the context of a binary system,
the cusp is viewed as the Roche lobe or Lagrangian point L1 which corresponds to
the last equipotential surface from which mass of the fluid remains in equilibrium
and does not overflow towards the central compact object. If corresponding to the
marginally bound orbit rmb and the marginally stable orbit rms, the respective values
of specific angular momentum are lmb and lms, then torus configurations with closed
equipotential surfaces, marked with distinct radial positions rcusp, rcen, rin, rout, are
obtained provided lms < l < lmb. Note here that rout corresponds to the outer surface
of the torus and can be determined from the condition Win(r) = Wout(r).

Since the specification of inner edge of the torus is somewhat arbitrary, it makes
sense to incorporate the idea of mass transfer of the fluid in assigning the radial
location of rin and thus define the potential barrier �W , also known as the potential
gap between the cusp and the inner edge. The case�W < 0 corresponds to the torus
within its Roche lobe, for which no mass transfer is possible. On the other hand,
�W > 0 corresponds to the case when fluid from the torus overflows the Roche lobe
towards the central compact object in absence of shear viscosity. Finally, �W = 0
corresponds to the situation when the fluid exactly fills the Roche lobe.

Although the assumption of constant specific angular momentum simplifies the
calculations and promotes a detailed understanding of the disk morphology of geo-
metrically thick torus but it is an idealised and oversimplified consideration.

In this direction, a much realistic assumption is considered in Font, where the
distribution of angular momentum of the torus is taken to be the power-law at the
equatorial plane which is given by,

leq(r) = Krα (11)
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The constraining condition α ≥ 0 is supported by Rayleigh stability condition and
also leads to stable configuration of the torus with constant angular momentum
distribution. Nevertheless, the value of α is further constrained in the range 0 ≤ α <
1
2 by demanding the existence of closed configuration of a torus described by its cusp
and centre. The prograde torus corresponds to K > 0 whereas the retrograde torus
corresponds to K < 0. In this case, the potential is found to be,

W (r , θ) = Weq(r0) + ln

( −ut (r , θ)

−ut (r0,
π
2 )

)
(12)

where r0 is the radius at which the von Zeipel’s cylinder passing at (r , θ) intersects
the equatorial plane. Similar to constant angular momentum tori,W can be positive,
negative or zero. Further discussions on torus with non-constant angular momentum
can be found in [9,24].

It should be emphasised here that these simple analytical solutions of thick tori
hold their own importance as these solutions serve as starting point for more com-
plicated numerical studies for describing time-dependent accretion flows.

2.2 Magnetised Tori

In [19], Komissarov extended the equilibrium stationary solution of tori by adding
azimuthalmagnetic field in presence of constant specific angularmomentumdistribu-
tions. It was possible to determine the integrability conditions because the magnetic
field enters the solution as a pressure-like term. In presence of a toroidal magnetic
field bα with br = bθ = 0, the momentum conservation equation becomes,

∂μ ln(−ut ) − Ω∂μl

1 − Ωl
+ ∂μ p

w
+ ∂μ(Lb2)

2Lw
= 0 (13)

where the enthalpy is w = ε + p and L = g2tφ − gt tgφφ. The integral form of the
momentum conservation equation can be written as,

ln(−ut ) +
∫ p

0

dp

w
−
∫ l

0

Ωdl

1 − Ωl
+
∫ p̃m

0

d p̃m
w̃

= constant (14)

such that p̃m = Lpm and w̃ = Lw. In terms of the total potential the above equation
reduces to,

W − Win +
∫ p

0

dp

w
+
∫ p̃m

0

d p̃

w̃
= 0 (15)

In [14] the Komissarov’s solution is extended for non-constant specific angular
momentum in Kerr geometry.
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3 Relativistic Non-ideal Fluids

The angular momentum transport triggered by shear viscosity may typically arise
from differential rotation of adjacent fluid layers within a disk. In that case, the
torus is modelled by relativistic non-ideal fluid with non-zero shear viscosity. In
this chapter, we discuss the findings related to shear viscosity effects on stationary
solutions of a torus by using hyperbolic equation of motion. On a different note, it
is well-known that conservation laws of relativistic non-ideal hydrodynamics, ini-
tially developed by Landau-Lifschitz and Eckart, are not causal and therefore do not
reproduce hyperbolic equations of motion. Furthermore, the equilibrium states are
dynamically unstable under linear perturbations. A relativistic theory plagued with
the drawbacks associated to a causality and unstable equilibrium states is therefore
clearly unacceptable. This limitations of Landau-Eckart’s first order theory was suc-
cessfully evaded by including second-order gradients, a formalism first developed
much later in 1970s, by Müller in the non-relativistic setup and later extended by
Israel and Stewart for relativistic non-ideal fluids.

Next, a brief account of the Muller- Isreal-Stewart formalism is described in self-
consistent fashion by reporting the advantages and disadvantages.

3.1 Causal Theory of Relativistic Hydrodynamics of Non-ideal
Fluids

The well-established theory of relativistic hydrodynamics of ideal fluids is discussed
extensively in the existing literature (cite: Landau, Rezzolla), therefore, in the present
chapter,we include only those aspectswhich are relevant for a self-consistent descrip-
tion of hydrodynamics of relativistic non-ideal fluids.

The ideal fluid hydrodynamics is formulated under thermodynamic equilibrium
configuration of the fluid. Assuming a simple picture, when an ideal fluid is com-
posed of a single species of conserved charge characterized by its number density n,
equilibrium total energy density e and equilibrium fluid pressure p, the constitutive
relations in terms of four-velocity uμ(x) of the fluid are given by,

Nμ
ideal = nuμ, T μν

(0) = e uμuν + p�μν (16)

where the four-velocity is uμ = (γ, γ−→v ) and γ is the Lorentz factor. The variables
p, e and n are slowly varying fields. In the curved spacetime, �μν = gμν + uμuν

is the projection tensor satisfying the condition uμ�μν = 0 and the normalization
condition is given by uρuρ = −1. If the covariant derivative is decomposed as∇μ =
−uμD + Dμ

⊥ where the longitudinal part is D = uα∇α and the transverse parts is
Dμ

⊥ = �μν∇ν , then using (16), the conservation of the particle current and that of the
energy-momentum tensor give rise respectively to the continuity equation, energy
conservation equation and the Euler equation as follows,
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Dn + n∇.u = 0, (17)

De + (e + p)∇.u = 0, (18)

aμ = Duμ = − 1

(e + p)
Dμ

⊥ p (19)

It is worthwhile to note that the constitutive relations of the ideal fluid do not contain
derivatives/gradients of hydrodynamical variables, therefore, the ideal fluid hydro-
dynamics is also known as zeroth order hydrodynamics. However, in presence of
dissipative fluxes, the idea of global thermodynamic equilibrium breaks down and
the hydrodynamic variables are no longer constant anymore. The hydrodynamical
variables namely uμ(x), temperature T (x) and the chemical potential μ(x) are not
uniquely defined in out-of-the equilibrium situations. This leads to a picture, where
one can have several local values of the hydrodynamical variables at every point
in spacetime, each differing by gradients but leads to their respective equilibrium
values in absence of any dissipation, thus gives to ambiguities in the definition of
these variables. To get rid of any ambiguities one brings forth the idea of choice
of frames. In general two choices namely the Eckart frame (no charge diffusion)
and the Landau frame (no heat flow) are the broadly defined frames that exist in the
literature. We will adopt to the Eckart frame where we have uμNμ = n, with n being
identified with the conserved charge in the system. The discussion in presence of
conserved charges on relativistic viscous hydrodynamics can be found in [29].

A non-ideal fluid characterised by a single species of charge n in the Eckart frame
is described by two following conserved currents,

Nμ = nuμ, T μν = euμuν + (p + Π)�μν + qμuν + qνuμ + πμν

= T μν
(0) + T μν

(non−ideal), (20)

where

T μν
(non−ideal) = Π�μν + qμuν + qνuμ + πμν . (21)

The dissipative quantities are given by the heat flow vector qα, bulk viscosity scalar
Π (trace part) and the shear viscosity tensorπμν(symmetric transverse traceless part).
The Eckart frame, where no charge flow takes place, the continuity equation remains
unchanged as that of an ideal fluid and in presence of a single conserved charge and

the four-velocity of the fluid is expressed as, uμ = Nμ

√−NαNα
. The corresponding

conservation laws are then given by,

�λ
ν∇μT

μν = 0 Navier-Stokes equation (momentum conservation), (22)

uν∇μT
μν = 0 energy conservation equation, (23)

∇μN
μ = 0 continuity equation. (24)
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The relativistic Navier-Stokes equation in terms of dissipative quantities is given by,

(ε + p + Π)aμ + Dμ
⊥(p + Π) + πμαaα + �μ

β D⊥
α πβα + �μ

αDqα

+
(

σμ
α + Ωμ

α + 4

3
�μ

α(∇.u)

)
qα = 0 (25)

where the vorticity tensor is defined as Ωμν = 1
2 (∇μuν − ∇νuμ). The general forms

of the dissipative quantities are then determined respecting the second law of ther-
modynamics using the entropy current defined as,

Sμ = nuμ + qμ

T
(26)

Π = −ζ(∇.u), (27)

πμν = −2ησμν = −2η

[
�μα�νβ

(∇αuβ + ∇βuα

2

)
− 1

3
�μν�αβ∇αuβ

]
, (28)

qμ = −κT (Dμ
⊥ ln T + Duμ) (29)

It is noted that the dissipative fluxes are first order gradients of hydro-variables
(i,e. uα, T and μ), as a result, the relativistic hydrodynamics developed by Landau-
Liftshitz and Eckart are known as first-order theory of hydrodynamics or Classical
Irreversible Thermodynamics. The bulk viscosity coefficient ζ, shear viscosity coef-
ficient η and the coefficient of thermal conductivity satisfy the conditions ζ ≥ 0,
η ≥ 0,κ ≥ 0 following the second law of thermodynamics and are also collectively
known as the first order transport coefficients. In this case, as the thermodynamic
fluxes are expressed in terms of first order gradients of hydrodynamical variables
therefore that the energy momentum tensor contains terms only up to first order in
gradients, resulting into the formalism, known called the first order hydrodynamics.

3.1.1 Müller-Isreal-Stewart Approach
The relativistic Navier-Stokes equation and the heat conduction equation both violate
causality due to the parabolic nature of the equations ofmotion allowing superluminal
velocities of propagating signals under linear perturbations [25,31]. In addition, the
associated equilibrium states are also dynamically unstable [15,16].

In order to fix the non-causal behaviour of dissipative fluids, Müller [27], Israel
and Stewart [17,18] (who generalised for relativistic version of the work by [27])
put forward a phenomenological approach. They extended the Grad’s 14-moment
approximation in curved background and successfully cured the causality violating
nature of the conservation laws of relativistic non-ideal fluids by considering second
order gradients of hydrodynamic variables. Then the general structures of fluxes,
i.e. Π , qβ and πμν contain additional coefficients which arise due to second order
gradients terms. The corresponding associated are broadly known as second order
transport coefficients which serve as input parameters of the theory. Essentially, the
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coefficients are determined by using an underlying microscopic theory describing
the system. The first and second order transport coefficients have been extensively
computed in the context of conformal/non-conformal theories and kinetic theory
[11,20,26,28,30,32].

All in all, the MIS approach is based on the assumption that the entropy 4-current
of the non-ideal fluid will be modified by incorporating quadratic terms of dissi-
pative quantities, see also [29]. From the positivity of the new entropy 4-current,
one obtains dynamical equations of dissipative flux quantities and new corrections
terms to constitutive relations and hence to the energymomentum tensor. TheMüller,
Israel-Stewart (MIS) formalism produces an hyperbolic theory, causal formulation
of relativistic dissipative hydrodynamics and is perfectly stable under linear pertur-
bations [15].

3.1.2 Gradient Expansion Scheme in Eckart Frame
Though the MIS formalism theory came up with a hyperbolic theory of non-ideal
hydrodynamics devoid of instabilities, it did not capture the full picture, in the sense
it missed out possible spacetime curvature terms at the second order, all of which are
likely to contribute in a curved background, if all possible combinations of second
order gradients are taken into consideration. In this direction, Baier, Romatschke et
al. [4,32] reformulated MIS theory by incorporating all possible second order terms
including the curvature terms, specifically in the Landau frame for both conformal
and non-conformal theories with the primarymotivation to implement their approach
in the field of relativistic heavy-ion collisions. However, in the astrophysical context,
Eckart frame of reference is more favoured over the Landau frame. For example, an
accretion disk involves radiation transfer processes which may be attributed to shear
viscosity and heat flow. Once again, the effects of non-negligible heat flow can be
addressed only in the context of Eckart frame of reference. Here we describe the for-
malism in which general forms of bulk viscosity, shear viscosity and heat flow vector
are obtained up to second order in gradients by adopting a similar approach taken in
[4,32]. Consequently, the obtained general relativistic hydrodynamical equations in
the Eckart frame are causal in in the Eckart frame.

In the realm of a phenomenological approach, the construction involves system-
atic addition of gradients of second order of hydrodynamical variables where the
corrections to the energy momentum tensor of the ideal fluid, are associated to dissi-
pative fluxes namely the viscosity and heat flow. By systematically writing down all
possible second order terms (and a most general entropy 4- current) one constructs
the most general second order viscosity tensor and other dissipative flux quantities
in both the Landau [4] and Eckart frame [21] descriptions. This procedure is known
as the gradient expansion method and each dissipative flux quantity like the viscos-
ity tensor contain all possible second order terms which are not present in the MIS
formalism. The important consequence is that curvature terms appear in the equa-
tions of motion. Additionally, first and second order transport coefficients are present
together with relaxation time coefficients. These transport coefficients can be deter-
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mined within the framework of a particular microscopic theory under consideration,
for example, using kinetic theory and strongly coupled theories.

This approach has important advantages. First, the resulting conservation laws
are hyperbolic. Second, the existence of curvature terms (one of many second order
terms) in each of dissipative flux quantities allows to study curvature effects which
could be essential for assessing the role of spacetime curvature, particularly in the
early universe or in accretion disks. Based on this method, the most general form of
fluid dynamical equations can be derived in [5,21].

Procedure: To begin with, the conservation laws of an ideal fluid given by (18)
and (19) can be re-expressed using thermodynamical identities e + p = T s + μn,
de = Tds + μdn and Gibbs-Duhem relation dp = sdT + ndμ as follows,

D ln s = −∇.u, (30)

Duμ = −Dμ
⊥ ln T − n

(s + αn)
Dμ

⊥
( μ

T

)
(31)

where s, T ,μ are respectively the entropy density, temperature, the chemical potential

of the fluid and α = μ

T
. Since in the non-relativistic limit, D 	 ∂t andDμ

⊥ 	 ∂i (up

to higher order gradients), (30) and (31) indicate time derivatives can be recast
into space derivatives thus implying all first order gradients are not independent.
To construct a general form of energy momentum tensor, second order gradients
of hydrodynamical variables i,e. uμ, T (x) and μ(x) are then used for constructing
scalars (for bulk viscosity), vectors orthogonal to uμ (for heat flow vector) and
symmetric traceless tensors orthogonal to uμ (for shear tensor) in the Eckart frame
However, in absence of charge diffusion, the particle current is unchanged in the
Eckart frame.

In a non-ideal fluidwith a single conserved charge, the first order linearly indepen-
dent components giving rise to second order corrections to T μν are: a scalar Dα⊥uα,
two vectors Dν⊥μ, Dν⊥ ln T and a tensor D⊥

α uβ . Then all dissipative quantities up
to second order of gradients are constructed out of linearly independent terms con-
sisting of comoving spatial first order gradients namely Dα⊥uα,Dν⊥μ and Dν⊥ ln T
which appear in (30) and (31) of the ideal fluid. Let us mention two important points
here that are considered for obtaining the second order theory using the gradient
expansion. First, the rank-two tensorD⊥

α uβ can be easily expressed in terms of trace
part plus symmetric and antisymmetric trace-less parts orthogonal to uμ as shown
below,

D⊥
α uβ = ∇.u

3
�αβ + 1

2
σαβ + Ωαβ (32)

Second, the curvature tensor term arises as a consequence of non-commutative prop-
erty of covariant derivatives in the curved background. In this case, the Riemann
tensor is obtained when two covariant derivatives acting on the four-velocity vector
do not commute as a result of which one obtains,

Rλ
μαβ uλ = ∇α∇β uμ − ∇β∇αuμ (33)
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where theRiemann tensor is: Ri
jnl = ∂

∂xn
Γ i

l j − ∂

∂xl
Γ i

n j + Γ s
l jΓ

i
ns − Γ s

n jΓ
i
ls . Con-

sidering all possible second order terms, then general forms of the dissipative fluxes
Π , qμ and πμν at the second order can be presumed to be as follows,

Π = −ζ(∇.u) + Σ i=10
i=1 αiMi (34)

qμ = − κnT 2

(e + p)
Dμ

⊥
( μ

T

)
+ Σ i=11

i=1 βiN μ
i (35)

πμν = −2ησμν + Σ i=10
i=1 λiOμν

i (36)

whereαi , βi andλi are coefficients appearing at the second order. Described below is
the method for obtaining Eqs. (34)–(36) using second order gradients. The possible
second gradient order terms are given by,

(∇.u)2, (Dμ
⊥ ln T )(Dν⊥ ln T ), (Dμ

⊥u
α)(Dν⊥ ln T ), (Dμ

⊥u
α)(Dν⊥uβ),

Rλ
μαβ, Dμ

⊥Dν⊥uα, Dμ
⊥Dν⊥ ln T , Dα⊥μDβ

⊥μ,

Dα⊥Dβ
⊥μ, (37)

which are utilised to construct possible scalars, vectors and tensors for constructing
the dissipative flux quantities at the second order . Note that the traceless symmet-

ric part of a tensor is A<μν> = 1

2
�μα�νβ(Aαβ + Aβα) − 1

3
�μν�αβ Aαβ . Further-

more, each scalar is denoted by Mi , each vector by Ni and each tensor by Oμν
i ,

where i labels a particular term. The possible terms corresponding to the scalars
MI , the vectors Ni , and the tensors Oμν

i are

M1 = D⊥
αDα⊥ ln T , M2 = (Dα⊥ ln T )D⊥

α ln T , M3 = (∇.u)2,

M4 = R, M5 = uαuβRαβ, M6 = σαβσαβ,

M7 = ΩαβΩαβ, M8 = (Dα⊥μ)D⊥
α μ, M9 = D⊥

αDα⊥μ,

M10 = (Dα⊥μ)D⊥
α ln T , (38)

N ν
1 = (D⊥

α ln T )
(∇.u)

3
�αν, N ν

2 = (D⊥
α ln T )σαν, N ν

3 = (D⊥
α ln T )Ωαν,

N ν
4 = (D⊥

α μ)
(∇.u)

3
�αν, N ν

5 = (Dν⊥μ)(∇.u), N ν
6 = (D⊥

α μ)σαν,

N ν
7 = �ανuγRαγ, N ν

8 = D⊥
α σαν, N ν

9 = D⊥
α Ωαν,

N ν
10 = (D⊥

α μ)Ωαν, N ν
11 = (D⊥

α μ)Rαν, (39)
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and

Oμν
1 = (D<μ

⊥ ln T )(Dν>⊥ ln T ), Oμν
2 = D<μ

⊥ Dν>⊥ ln T ,

Oμν
3 = (D<μ

⊥ μ)(Dν>⊥ μ), Oμν
4 = D<μ

⊥ Dν>⊥ μ,

Oμν
5 = D<μ

⊥ ln TDν>⊥ μ, Oμν
6 = σγ<μΩν>

γ,

Oμν
7 = σγ<μσν>

γ, Oμν
8 = Ωγ<μΩν>

γ,

Oμν
9 = R<μν>, Oμν

10 = uαuβR
α<μν>β . (40)

Notably, (34)–(36) are of algebraic form responsible for violating causality and lead
to unstable equations. In order to produce a causal as well as a stable theory in the
similar spirit ofMIS formalismdynamical equations for dissipative fluxquantities are
essential. A viableway to facilitate this is, by introducing relaxation-time coefficients
for Π , qμ and πμν . Based on all considerations and requirements, the general form
of the shear viscosity tensor up to second order in gradients is presented as follows,

πμν = −2ησμν − τ<
π D(−2η)σμν > − 2ητ2

[
Dη

η
− (∇.u)

4
+ D ln T

4

]
σμν

+ ξ2 D<μ
⊥ Dν>⊥ ln T + ξ3 (D<μ

⊥ μ)(Dν>⊥ μ) + ξ4D<μ
⊥ Dν>⊥ μ

+ ξ5D<μ
⊥ ln TDν>⊥ μ + ξ6 σγ<μΩν>

γ + ξ7 σγ<μσν>
γ

+ ξ8 Ωγ<μΩν>
γ + κ1 R

<μν> + κ2 uαuβR
α<μν>β . (41)

In fact, (41) constructed using gradient expansion scheme reduces to the relaxation-
type theory first introduced in MIS formalism to combat the acausality aspect of
the first-order theories. It is therefore necessary to express (41) in a form that will
give rise to dynamical equations of πμν while keeping the essence of MIS theory at
the same time. A similar procedure as employed in [10,32] will be considered here.
For constructing a dynamical equation for πμν with a goal to correctly reproduce a
relaxation-type equation, a new basis is chosen (now with coefficients ci ) and the

combined term <Dσμν > + T∇λ

(
uλ

4T

)
σμν1 is expressed in the new basis withOμν

i

as follows,

<Dσμν > + T∇λ

(
uλ

4T

)
σμν = c1Oμν

1 + c2Oμν
2 + ........c9Oμν

9 (42)

where ci ’s are coefficients of the newly chosen basis. Eliminating Oμν
1 from (42)

Oμν
1 = 1

c1

[
<Dσμν > + T∇λ

(
uλ

4T

)
σμν − c2Oμν

2 − ........ − c9Oμν
9

]
(43)

1 The particular combination consisting of second order terms is also present in MIS theory for πμν .
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and thereby substituting (43) in (36), one obtains,

πμν = −2ησμν + λ1

c1
<Dσμν > + λ1

c1
T∇λ

(
uλ

4T

)
σμν + Σ i=9

i=2

(
λi − ci

c1
λ1

)
Oμν

i

(44)
To actually reproduce the relaxation-type equation, finally the first-order solution2

i,e. σμν = − 1
2η πμν is substituted in all second-order terms of Eq. (44) to obtain,

τπ
<Dπμν > + πμν = −2ησμν + τπ

[
Dη

η
− (∇.u)

4
+ D ln T

4

]
πμν

+ ξ2 D<μ
⊥ Dν>⊥ ln T + ξ3 (D<μ

⊥ μ)(Dν>⊥ μ) + ξ4D<μ
⊥ Dν>⊥ μ

+ ξ5D<μ
⊥ ln TDν>⊥ μ − ξ6

2η
πγ<μΩν>

γ + ξ7

4η2
πγ<μπν>

γ

+ ξ8 Ωγ<μΩν>
γ + κ1 R

<μν> + κ2 uαuβR
α<μν>β (45)

where τπ = λ1

2c1η
is the transport coefficient, also known as relaxation-time coef-

ficient for πμν . It preserves causality of the Navier-Stokes equation in absence of
bulk viscosity, heat flux and charge diffusion. By following a similar procedure the
structure of bulk viscosity up to second order with relaxation time coefficient τΠ

becomes,

Π = −ζ(∇.u) − τΠ D(−ζ∇.u)

+ ζ2 (Dα⊥ ln T )D⊥
α ln T + ζ3 (∇.u)2 + ζ4 R + ζ5 u

αuβRαβ

+ ζ6σ
αβσαβ + ζ7 ΩαβΩαβ + ζ8 (Dα⊥μ)D⊥

α μ + ζ9D⊥
αDα⊥μ

+ ζ10 (Dα⊥μ)D⊥
α ln T (46)

and in the same way heat-flow vector may be written as,

qμ = −κ
(Dμ

⊥T + T Duμ
)+ τq D

[Dμ
⊥T + T Duμ

]

+ χ2 (D⊥
α ln T )σαν + χ3 (D⊥

α ln T )Ωαν + χ4 (D⊥
α μ)

(∇.u)

3
�αν

+ χ5 (Dν⊥μ)(∇.u) + χ6 (D⊥
α μ)σαν + χ7 �ανuγRαγ + χ8D⊥

α σαν

+ χ9D⊥
α Ωαν + χ10 (D⊥

α μ)Ωαν + χ11 (D⊥
α μ)Rαν (47)

where τq is the relaxation-time coefficient corresponding to the heat flux. It is worth-
while to note that each of these coefficients measure the time, the hydrodynamical

2 As Dσμν and Dπμν are both second order in gradients, it is possible to substitute the first order
results of dissipative fluxes in second order theories. As a result, one can switch between Dπμν and
D(−2ησμν) thereby connecting to the MIS theory without a loss of accuracy at the second order,
see for eg. [32].
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fluid takes to return to the equilibrium state in absence of dissipative quantities. Here
Eqs. (41), (46) and (47) are respectively the general forms of the shear viscosity
tensor, bulk viscosity and the heat flow vector in the Eckart frame up to second
order in gradients. In total, there are nine second order transport coefficients namely
corresponding to the shear viscosity. Together with τΠ , there are ten second order
transport coefficients corresponding to the bulk viscosity and the heat flow count to
total eleven second order transport coefficients.

4 Stationary Relativistic Viscous Torus

It iswell-known that real-time accretionprocess is accompaniedby anoutwardorbital
angular momentum transport as well as an inward mass-transfer of the accreting
matter towards the central compact object together with radiation transfer processes.
Other than magnetorotational instability, one of the governing factors of the angular
momentum transport due to the differential rotation of the adjacent fluid layers may
be thought to be contributed by the shear viscosity.

Let us therefore investigate the effects of shear viscosity on stationary solutions of
a geometrically thick torus in the context of hyperbolic theory of relativistic hydro-
dynamics. For simplicity, we will only discuss with the Schwarzschild black hole.
The effects of viscosity on the disk morphology is then studied using conservation
laws constructed using the gradient expansion scheme. Apart from hyperbolic nature
of the conservational laws, an interesting feature of (45) is, the curvature of the cen-
tral compact object also takes part and contributes to the shear viscosity tensor. As
a result, the morphology of the torus will be modified in different way for each and
individual geometry of the central compact object, for example, a black hole. In addi-
tion, the information of the transport coefficients will also be crucial for determining
the stationary solutions of the viscous torus.

4.1 Purely Hydrodynamical Viscous Torus

In order to investigate effects of the shear viscosity and the spacetime curvature of the
Schwarzschild black hole on the morphology of a geometrically thick torus, several
simplifying assumptions are adopted and are listed as follows,

(a) Only test-fluid assumptions is considered.
(b) The shear viscosity is assumed to be small in comparison to equilibrium pressure

and energy and acts in the form of perturbation.
(c) With the consideration that shear viscosity only brings about perturbative cor-

rections to the fluid pressure and does not give rise to radial velocity and veloc-
ity perturbations, the fluid within the torus describes circular orbits around the
Schwarzschild black hole. Therefore the four-velocity of the constituents of the
disk fluid has the following form,
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uμ = (ut , 0, 0, uφ) (48)

where ut and uφ are functions of r and θ only with the normalization condition
uαuα = −1. Due to circular motion of the fluid, we have,

Ωμν = 0, σμν 
= 0 (49)

(d) The specific orbital angular momentum distribution of the torus is constant.
(e) In a more generalized framework, the transport coefficients can in principle be

functions of pressure or of space and time co-ordinates. However, these coeffi-
cients are taken as constant parameters of the theory.

(f) In this simple model, the heat flow is also assumed to be small compared to
leading order pressure perturbations and hence the effects are not taken into
consideration.

(g) All non-linear terms in (45) are also neglected.

Thus in the simplified scenario, the shear viscosity tensor consists of the curvature
tensor term and the causality preserving term i,e. 2τ<

2 Dησαβ > and therefore takes
the following form,

πμν =
[
−2ησμν − ητ<

2 D(−2σμν)> + κ2uαuβR
α<μν>β

]
(50)

where R<μν> = 0 in the Schwarzschild background which is then substituted in the
general relativistic causal form of momentum conservation equation given by,

(e + p)aμ + �μρ∇ρ p + πμαaα + �μ
γ�κτ∇τ πγκ = 0 (51)

where the four acceleration is denoted by aμ = uρ∇ρuμ and the angular brackets
have the following definitions,

σμν = �μα�νβ

(∇αuβ + ∇βuα

2

)
− 1

3
�μν�αβ∇αuβ

<D(ησμν) > = �μα�νβ

(
D(ησαβ) + D(ησβα)

2

)
− 1

3
�μν�αβD(ησαβ)

Rα<μν>β = �μρ�νσ

(
Rα

ρσγgβγ + Rα
σργgβγ

2

)
− 1

3
�μν�ρσRα

ρσγgβγ (52)

It is to be noted that the symmetry of the spacetime also implies Dη = uα∇α

η = 0. Restricting up to the first order in perturbation and taking into account of
the symmetries of the background black hole geometry, the fluid pressure and the
energy density in presence of viscosity are expanded in the following way,

e(r , θ) = e(0)(r , θ) + λe(1)(r , θ)

p(r , θ) = p(0)(r , θ) + λp(1)(r , θ) (53)
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where p(0) and e(0) denote the pressure and the energy density of the ideal fluid
whereas p(1) and e(1) denote the respective first-order perturbations that purely arise
due to the shear viscosity. Also, e(1) << e(0) and p(1) << p(0) are always satisfied
in this picture. Note that λ is the perturbation parameter. The regime of vanishing
coefficients where η = κ2 = τ2 = 0 corresponds to the ideal fluid case where (51)
reduces to the Euler equation. As a result, both p(1) = 0 and e(1) = 0 in absence of
viscous effects.

In general, the angular velocity Ω and the specific angular momentum l are
functions of r and θ co-ordinates and in the Schwarzschild spacetime, these two
quantities are related in the following way,

Ω = − gt t

gφφ
l, (54)

For the entire analysis, l will be taken as constant. Furthermore, the internal energy
density is assumed to be very small, therefore, the total energy approximately equals
to the rest-mass density i,e. e ≈ ρ. To finally determine the stationary solutions of
the viscous torus, consider the Schwarzschild spacetime which is described by the
following metric,

ds2 = −
(
1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2 (55)

Then both the temporal and the azimuthal components of (51) give rise to a single
relation given by,

2ηl0r
[
Mr(r − 3M) sin4 θ − l20(1 − 2M/r)2(r − 3M sin2 θ)

]
sin θ

√
r − 2M

(
r3 sin2 θ + l20(2M − r)

)5/2 = 0 (56)

where l(r , θ) = l0 is the constant specific angular momentum distribution and at the
equatorial plane (56) reduces to,

(r − 3M)

[
Mr − l20

(
1 − 2M

r

)2
]

= 0 (57)

consisting of the root l0 = r
√
Mr

(r − 2M)
≡ lk which is the Keplarian angular momen-

tum. The transport coefficients η and κ2 are small and act as perturbations with the
perturbation parameter λ as follows,

η = λm1, κ2 = λm2 (58)

where m1, m2 are constant input parameters and λ = 1 is set without a loss of
generality. Assuming a barotropic equation of state relating p, e and p(1), e(1), the
only undetermined variable to be solved from the radial and polar components of



48 S. Lahiri

(51) then becomes p(1). To find the corresponding relations between pressure and
energy densities, let us expand the barotropic equation of state in the first order of λ
as follows,

p(0) + p(1) = K (e(0) + e(1))
γ (59)

where K is a constant and γ is the constant polytropic exponent. The respective
equation of state at the zeroth order and the first order are as follows,

p(0) = Keγ
(0), p(1) = γKeγ−1

(0) e(1) (60)

Setting the mass of the black hole M = 1 and K = 1, the radial component and the
polar components of (51) are as follows,

(τ2m1)l20(r − 3)

2r2
(
r3 sin2 θ + l20(2 − r)

)3
[
r3 cos 4θ(10r − 21)

+ cos 2θ
{
4r3(2r2 − 14r + 21) − 8l20(r − 3)(r − 2)

}
− r3(2r − 7)(4r − 9) − 8l20(r − 2)(r2 − 3r + 3)

]
+ m2

[
3r6 + r6 cos 4θ + 2r3 cos 2θ

{
l20(r − 2)(5r − 14) − 2r3

}
− 2r3l20(r − 2)(5r − 14) − 4l40(r − 2)3

]× [4r5 (r3 sin2 θ + l20(2 − r)
)2 ]−1

−
{
r3 sin2 θ − l20(2 − r)2

} (
γK + e1−γ

(0)

)

γKr2
(
r3 sin2 θ + l20(2 − r)

) p(1) + (r − 2)

r

∂ p(1)

∂r
= 0 (61)

τ2m1

4l20 cot θ
{
r3(4r − 9) sin2 θ + (r − 2)

(
2l20(4r − 9) − rl20(r − 2) csc2 θ − 2r4

)}

r2
(
r3 sin2 θ + l20(2 − r)

)3

+ m2

2l20(r − 2) cot θ
(
2r3 sin2 θ + l20(r − 2)

)

r3
(
r3 sin2 θ + l20(2 − r)

)2 −
(r − 2)l20 cot θ

(
γK + e1−γ

(0)

)

γK
(
r3 sin2 θ + l20(2 − r)

) p(1)

+ ∂ p(1)

∂θ
= 0 (62)

The energy density and the fluid pressure in a ideal torus can be expressed in terms
of the total potential W (r , θ) as follows (Font & Daigne, 2002),

e(0) =
[

(γ − 1)

γ

(eWin−W (r ,θ) − 1)

K

] 1
γ−1

, (63)

p(0) = K

[
(γ − 1)

γ

(eWin−W (r ,θ) − 1)

K

] γ
γ−1

(64)
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with the boundary condition defined to beWin → 0 as r → ∞. Then from (62), p(1)
is eliminated and substituted back in (61) to obtain a first order partial differential
equation for p(1) involving the coefficients τ2,m1 and m2,

2(τ2m1) cot θ
[
r6(4r − 9) cos 6θ + 2r6(4r(3r − 11) + 45)

+ 32l40(r − 2)2(r − 3)(2r − 3) − cos 2θ
{
r6(4r(8r − 31) + 135)

− 16r3l20(r − 2)(7r2 − 28r + 27) + 32l40(r − 2)2(3r2 − 11r + 9)
}

+ 2r3 cos 4θ
{
r3(4r2 − 20r + 27) − 2l20(r − 2)

(
6r2 − 26r + 27

)}
− 4r3l20(r − 2)

(
22r2 − 86r + 81

) ]+ (r3 cos 2θ − r3 + 2(r − 2)l20
)3

×
[
2r(r − 2)2 cot θ

∂ p(1)

∂r
− r3 cos 2θ − r3 + 2l20(r − 2)2

l20

∂ p(1)

∂θ

]

+ 3m2(r − 2) cot θ
[
r6 cos 6θ − 6r3 cos 4θ

(
r3 − l20(r − 2)2

)
+ cos 2θ

{
15r6 − 24r3l20(r − 2)2 + 16l40(r − 3)(r − 2)2

}
+ 2

{
9r3l20(r − 2)2 − 8l40(r − 3)(r − 2)2 − 8 r l60(1 − 2/r)4 − 5r6

} ]

= 0 (65)

Since τ2 is the relaxation time coefficient in the same spirit of MIS formalism which
preserves causality of the relativistic Navier-Stokes equation. It does not possess
perturbative character while η, κ2 are treated as perturbations. With constant coef-
ficients η, κ2 and τ2 and with l =constant, (65) is solved numerically to determine
p(1) with γ = 5/3, K = 1 and τ2 = 0.2. Moreover, the solutions are obtained when
the potential gap satisfies �Win > 0.

The effects of shear viscosity and the curvature are determined by comparing the
constant pressure contours of the ideal fluid and that of the constant pressure surfaces
in presence of viscosity. As shown in Fig. 2, the comparison is performed between
p(0) of the ideal fluid and p(0) + p(1) of the viscous fluid for l0 = 3.8. To furnish
a comparison, same set of fluid profiles are considered. The Fig. 1 shows that the
locations of the cusps due to viscous effects. In fact, there were no cusps for the ideal
fluid case, whereas with subsequent increase inm1 andm2 results into the formation
of cusps. The shift in the locations of cusps is therefore directly related to cumulative
effects of shear viscosity and the spacetime curvature of the Schwarschild black hole,
all of which appear through p(1).

We now turn our attention to stationary configurations of magnetized tori. Let
us now understand how shear viscosity and curvature affects their morphological
features.
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Fig. 1 The effective potential W (r) and the Keplarian angular momentum distribution lk(r) are
shown on the left panel at the equatorial plane. On the right panel, closed equipressure surfaces
are shown at equilibrium for a constant angular momentum distribution described by its cusp and
centre where the effective acceleration on the fluid vanishes. The cusp is marked with self-crossing
constant pressure surfaces where the centre of the torus is characterised by maximum pressure.
Taken from [2]

Fig.2 Comparison of constant pressure surfaces of ideal fluid and viscous fluid for l0 = 3.8. Taken
from [22]

4.2 MagnetisedViscous Torus

It is a general consensus that both shear viscosity and magnetic fields play a key
roles for angular momentum transport in accretion disks. As a result, it make sense
to understand the impacts of both the magnetic field and shear viscosity on sta-
tionary models of a torus. For this, let us now describe stationary configurations of
magnetized viscous tori by assuming a toroidal distribution of the magnetic field. In
this simple set-up, all the assumptions considered for a purely hydrodynamical vis-
cous torus are also valid. In essence, the purely hydrodynamical solutions presented
in [23] are extended by incorporating toroidal magnetic fields by further assuming
the torus is endowed with constant angular momentum distribution. The new solu-
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tions are built using the second-order gradient expansion scheme in the Eckart frame
description [21].

The energy-momentum tensor of the viscous fluid in the presence of a magnetic
field is given by,

T μν = (w + b2)uμuν +
(
p + 1

2
b2
)

gμν − bμbν + πμν . (66)

where the enthalpy density is given by w = e + p, p is the fluid pressure, e is the
total energy, and πμν denotes the shear viscosity tensor. The dual of the Faraday
tensor relative to an observer with four-velocity uμ is [3] given by,

∗Fμν = bμuν − bνuμ , (67)

where bμ is the magnetic field in that frame, that obeys the relation b2 = bαbα

and gives rise to the conservation law ∇ν
∗Fμν = 0. In the fluid frame, bμ = (0,B)

whereB denotes the three-vector of the magnetic field and satisfies the orthogonality
condition uαbα = 0. In presence of purely toroidal magnetic field distributions, it
follows that

br = bθ = 0, bμ = (bt , 0, 0, bφ) . (68)

From the condition uαbα = 0 one obtains,

bt = lbφ, bt = −Ωbφ , (69)

and

b2 = (1 − Ωl)bφbφ = 2pm , (70)

where themagnetic pressure is defined to be pm ≡ b2/2. Similar to the purely hydro-
dynamical case discussed in the previous section, the general form of the shear
viscosity tensor is [21],

πμν = −2ησμν − τ<
2 D(−2ησμν)> + κ2uαuβR

α<μν>β , (71)

where D ≡ uα∇α, η is the constant shear viscosity coefficient, τ2, κ1 and κ2 are
the second-order transport coefficients. The angular brackets indicate traceless sym-
metric combinations (see (52)). Substituting (66) in �μν∇λT λν = 0, one can easily
obtain the following conservation equation

(e + p)aμ + �ρ
μ∇ρ p + ∂μ(Lb2)

2L + gμρπ
ρνaν + �μγ�κτ∇τ πγκ = 0 , (72)

which is the general form of the momentum conservation equation in the presence of
the toroidal magnetic field. The four-acceleration is given by aμ = uρ∇ρuμ = Duμ

and L ≡ −gt tgφφ.
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Since the magnetised torus is characterised by constant specific angular momen-
tum distributions, let us take again l(r) ≡ l0. Similar to the non-magnetised torus,
the internal energy density is assumed to be very small, so that the total energy is
approximately equal to the rest-mass density. As the shear viscosity is small and
acts as perturbation, as before, the transport coefficients η and κ2 are considered as
perturbations in the disk fluid. For simplicity, once again they are assumed to be
constants and in accordance to (58) are expressed in a similar way,

η = λm1, κ2 = λm2 . (73)

The shear viscosity in the torus fluid generates linear perturbations in the energy
density, pressure, and magnetic field. Each of these quantities expressed up to linear
order become,

e(r , θ) = e(0)(r , θ) + λe(1)(r , θ) , (74)

p(r , θ) = p(0)(r , θ) + λp(1)(r , θ) , (75)

bt (r , θ) = bt(0)(r , θ) + λbt(1)(r , θ) , (76)

bφ(r , θ) = bφ
(0)(r , θ) + λbφ

(1)(r , θ) , (77)

where, as usual, index (0) denotes background quantities (ideal fluid) and index
(1) quantities at linear perturbation order (in presence of viscosity). The magnetic
pressure can be read off using (70) and (77),

p(0)
m = 1

2
(1 − Ωl) bφ

(0)b
(0)
(φ)

, (78)

p(1)
m = 1

2

[
bφ
(0)

(
lb(1)

t + b(1)
φ

)
+ b(0)

φ

(
bφ
(1) − Ωbt(1)

)]
. (79)

Let us nowdefine themagnetization parameter asβm ≡ p/pm . Then the zeroth-order
and first-order changes in this parameter are,

β(0)
m = p(0)

p(0)
m

, β(1)
m = p(1)

p(0)
m

− β(0)
m

p(1)
m

p(0)
m

. (80)

Using the relations for the equation of state involving linear corrections of pressure
and energy density, one obtains p(0), p(1) whereas p(0)

m and p(1)
m are related by,

p(1) = p(0)
γe(1)

e(0)
, (81)

p(1)
m = p(0)

m
γe(1)

e(0)
. (82)

So from themomentumconservation equation (72), there are four unknownquantities
to be determined, namely, p(1), e(1), b

(1)
t and b(1)

φ . Note that the variables p(1) and
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e(1) are not independent under the assumption of a barotropic equation of state. The
equations of state corresponding to the fluid pressure p and the magnetic pressure
pm , with the same polytropic index γ, are given by [14,19],

p = Keγ, (83)

and

pm = KmLγ−1eγ . (84)

After expanding the equations of state up to linear order and substituting in the
definition of magnetization parameter, the linear correction of which reduces to,

β(1)
m = 0 (85)

From the orthogonality relation uαbα = 0 one obtains,

bt(0) = lbφ
(0), bt(1) = lbφ

(1) , (86)

that imply bφ
(1) and bt(1) are not independent variables. Using the relations, b2 =

(1 − lΩ)bφbφ and b2 = 2pm , one can easily write down the zeroth-order and first-
order terms of the magnetic field as,

bφ
(0) =

√
2βm

p(0)(1 − lΩ)gφφ
, bφ

(1) = p(1)

βm

√
p(0)

2βm(1 − Ωl)gφφ
, (87)

Thus the variables p(1)
m , bt(1) and b

φ
(1) are all related to p(1) which is then determined

by solving (72)

(e(1) + p(1))aμ + �ρ
μ∇ρ p(1) +

∂μ

[
L
βm

p(1)

]

L + gμρπ
ρνaν

+ �μγ�κτ∇τ πγκ = 0 (88)

The effects of the shear viscosity on the magnetic pressure p(1)
m can be easily under-

stood with the determination of p(1).
Similar to the pure hydrodynamical case, M = 1 is set for the rest of the analysis.

The temporal and the azimuthal parts give rise to exactly the same condition as is
obtained for the solution of the torus without shear viscosity. For η 
= 0, one obtains
the relation r3 − l20(r − 2)2 = 0 in the equatorial plane where l0 is the constant
angular momentum of the torus in presence of the magnetic field. Correspondingly,
the radial and angular components are
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(τ2m1)l20(r − 3)

2r2 sin6 θ
(
r3 + l20(2 − r) csc2 θ

)3
[
r3 cos 4θ(10r − 21)

+ cos 2θ
{
4r3(2r2 − 14r + 21) − 8l20(r − 3)(r − 2)

}
− r3(2r − 7)(4r − 9) − 8l20(r − 2)(r2 − 3r + 3)

]
+ m2 × [3r6 + r6 cos 4θ + 2r3 cos 2θ

{
l20(r − 2)(5r − 14) − 2r3

}
− 2r3l20(r − 2)(5r − 14) − 4l40(r − 2)3

]
× [4r5 sin4 θ

(
r3 + l20(2 − r) csc2 θ

)2 ]−1

+
(
1 + 1

βm

)
(r − 2)

r

∂ p(1)

∂r

+
⎡
⎣2(r − 1)

r2βm
+
{
r3 − l20(2 − r)2 csc2 θ

} (
γK + e1−γ

(0)

)

γKr2
(
r3 + l20(2 − r) csc2 θ

)
⎤
⎦ p(1) = 0 , (89)

τ2m1

4l20 cot θ
{
r3(4r − 9) sin2 θ + (r − 2)

(
2l20(4r − 9) − rl20(r − 2) csc2 θ − 2r4

)}

r2 sin4 θ
(
r3 + l20(2 − r) csc2 θ

)3

+ m2

2l20(r − 2) cot θ
(
2r3 sin2 θ + l20(r − 2)

)

r3 sin4 θ
(
r3 + l20(2 − r) csc2 θ

)2 +
(
1 + 1

βm

)
∂ p(1)

∂θ

+
⎡
⎣2 cot θ

βm
−

(r − 2)l20 cot θ
(
γK + e1−γ

(0)

)

γK sin2 θ
(
r3 + l20(2 − r) csc2 θ

)
⎤
⎦ p(1) = 0 . (90)

In the limit βm → ∞, (89), (90) reduce to the corresponding equations obtained
in the previous section for a purely hydrodynamical viscous thick disk without the
magnetic field. Finally, using (90) and (89), the differential equation for p(1) is found
as,

2l20 cot θ

(
Ã + B̃k1

C

)
(τ2m1) + 1

2
cot θ

(
f̃1 − f̃2k1

C

)
m2

+ sin6 θ
[
r3 + l20(2 − r) csc2 θ

]3 (1 + βm)

βm

[
r(r − 2) cot θ

∂ p(1)

∂r
− 4k1

C

∂ p(1)

∂θ

]
= 0 ,

(91)

with the following definitions,

Ã = −2(r − 3)
[
r3(10r − 21) cos 4θ

+ cos 2θ
{
4r3(2r2 − 14r + 21) − 8l20(r − 3)(r − 2)

}

− r3(2r − 7)(4r − 9) − 8l20(r − 2)(r2 − 3r + 3)
]
, (92)
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B̃ = 4
[
2rl20(r − 2)2 − sin2 θ

{
r3(2r − 3) + 4l20(4r − 9)(r − 2) − r3 cos 2θ(4r − 9)

}]
,

(93)

k1 = −2βm sin2 θ
(
r3 + l20(2 − r) csc2 θ

)
e(0) + Kγeγ

(0)

{
8l20(1 + βm)

+2r2l20(βm + 2) − 2r4 − r3(βm − 2) − 4l20r(3 + βm) + r3 cos 2θ(2r + βm − 2)
}

,

(94)

C = (r − 2)l20βme(0) + Kγeγ
(0)

[
l30(r − 2)(2 + βm) − 2r3 sin2 θ

]
, (95)

f̃1 =
[
10r6 − 6r3l20(5r − 12)(r − 2) + 32l40(r − 3)(r − 2)2 + 16rl60

(
1 − 2

r

)4

+ cos 2θ
{
8(5r − 12)r3l20 − 15r6 − 32l40(r − 3)(r − 2)2

} ]
, (96)

f̃2 = 4r3
(
1 − 2

r

)[
3r6 − 2r3l20(r − 2) + 4l40(r − 2)2

+2r3 cos 2θ(2r3 − (r − 2)l20) + r6 cos 4θ
]

. (97)

Once the magnitudes of the parameters m1, τ2, l0 and βm are chosen, (91) can be
readily solved using the appropriate boundary conditions.

It is already noted in (85) that magnetization parameter can be completely
expressed in terms of the zeroth-order quantities i,e. βm(r , θ) = p(0)/p

(0)
m . Using

(83) and (84),

βm(r , θ) = K

KmLγ−1(r , θ)
. (98)

In addition, the magnetization parameter at the center of the torus expressed as
βm,c ≡ βm(rc, π/2) is,

βm,c = K

KmLγ−1(rc,π/2)
. (99)

The magnetization parameter for the Schwarzschild metric in terms of βm,c is,

βm(r , θ) = βm,c

(
rc(rc − 2)

r(r − 2) sin2 θ

)γ−1

, (100)

where rc, βm,c and K are constant parameters. In the Schwarzschild geometry, it
is already known that the total potential W (r , θ) for constant angular momentum
distributions is,

W (r , θ) = 1

2
ln

r2(r − 2) sin2 θ

r3 sin2 θ − l20(r − 2)
. (101)

At the equatorial plane, taking ∂rW = 0 leads to,

r3 − l20(r − 2)2 = 0 . (102)
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The largest root of the above equation corresponds to the disk center, rc which is
determined by finding the extrema of the effective (gravitational plus centrifugal)
potential W , as the center of the torus is located at a minimum of the potential
(see, e.g. [12] for details). In the absence of any dissipative terms, the relativistic
momentum conservation equation, with the choices of equation of state, become
[14]

W − Ws + γ

γ − 1

(
p(0)

e(0)
+ p(0)

m

e(0)

)
= 0 , (103)

which is rewritten as

W − Ws + γKeγ−1
(0)

γ − 1

(
1 + 1

βm(r , θ)

)
, (104)

where Ws is the potential at the surface of the disk where p(0) = p(0)
m = e(0) = 0.

Finally, from the above expression, the zeroth-order energy density can be obtained
and it reads as

e(0) =
(
1

K

) 1
γ−1
(

γ(1 + βm(r , θ))

(1 − γ)βm(r , θ)(W − Ws)

) 1
1−γ

, (105)

and the zeroth-order pressure is,

p(0) = K
1

γ−1

⎛
⎜⎜⎝

γ

(
1 + βm,c

(
rc(rc−2)

r(r−2) sin2 θ

)γ−1
)

(1 − γ)βm,c

(
rc(rc−2)

r(r−2) sin2 θ

)γ−1
(W − Ws)

⎞
⎟⎟⎠

γ
1−γ

, (106)

which corresponds to the fluid pressure of the magnetized fluid without viscosity.
Now (91) is solved with the domain of definition set by the conditionsW (r , θ) ≤

Ws, rin ≤ r ≤ rout where rin and rout are the inner and the outer boundary of the torus
at the equatorial plane. Let us focus on the torus with slightly overflowing Roche lobe
(i.e. Ws � W (rcusp,π/2)where rcusp corresponds to the location of the self-crossing
point of the critical equipotential surface). Under this situation, it is crucial to note
that the disks do not possess an inner edge (i.e. the outermost equipotential surface is
attached to the event horizon of the black hole). Here, the value of rin is chosen such
that rin � rcusp thereby allowing to study the cusp region, and exclude the region
closest to the black hole, as it is irrelevant for our study (the reason will become
clear later in this section). Additionally, the funnel region is excluded along the
symmetry axis (θ = 0) by further restricting the domain of investigation containing
equipotential surfaces that cross the equatorial plane at least once.

It can be observed that (91) can be rewritten in a more compact form as shown,

(r , θ) · ∇(r ,θ) p(1) − c̃(r , θ) = 0, (107)
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with the given definitions,

αr (r , θ) = sin6 θ
[
r3 + l20(2 − r) csc2 θ

]3 (1 + βm)

βm
(r(r − 2) cot θ) ,

αθ(r , θ) = r sin6 θ
[
r3 + l20(2 − r) csc2 θ

]3 (1 + βm)

βm

(
−4k1

C

)
,

c̃(r , θ) = −2l20 cot θ

(
Ã + B̃k1

C

)
(τ2m1) − m2

2
cot θ

(
f̃1 − f̃2k1

C

)
.

(108)

A careful examination of the coefficients in (108) reveals that, at the equatorial plane,
(107) reduces to,

∂ p(1)

∂θ
= 0. (109)

The above equation shows that (i) surfaces of constant p(1) are orthogonal to the
equatorial plane, (ii) it is not possible to extract information of the distribution of
p(1) at the equatorial plane directly from (107). Therefore, in order to determine the
values of p(1) at the equatorial plane we must look for the solution p(1)(r , θ) that
belongs to the domain of the θ coordinate. In order to maximize the accuracy of the
solution, (107) will be solved in the Cartesian coordinates. Rewriting this equation
as,

′(x, y) · ∇(x,y) p(1) − c′(x, y) = 0, (110)

in which the change of coordinates are defined by x = r sin θ, y = r cos θ, and the
new expressions for the coefficients reduce to,

α′
x (x(r , θ), y(r , θ)) = αr (r , θ) sin θ + αθ(r , θ) cos θ , (111)

α′
y(x(r , θ), y(r , θ)) = αr (r , θ) cos θ − αθ(r , θ) sin θ , (112)

c′(x(r , θ), y(r , θ)) = c̃(r , θ) , (113)

Here it is noted that α′
x and α′

y denote the x and y components of the vector of coef-
ficients ′(x, y). Considering the fact that α′

y(x, y) 
= 0 in domain of investigation,
all the coefficients can be redefined as,

a(x, y) = α′
x (x, y)/α

′
y(x, y) , (114)

b(x, y) = 1 , (115)

c(x, y) = c′(x, y)/α′
y(x, y) . (116)

Therefore, the final form of the partial differential equation reads as,

a(x, y)
∂ p(1)

∂x
+ ∂ p(1)

∂y
− c(x, y) = 0 . (117)
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The method of characteristics will be employed to solve (117), in which the partial
differential equation (PDE) is reduced to a set of ordinary differential equations
(ODEs), one for each initial value defined at the boundary of the domain. The final
form of the characteristic equations is given by,

dx

dt
= a(x, y) , (118)

dy

dt
= 1 , (119)

dp(1)

dt
= c(x, y) . (120)

Procedure: We start from a point (x0, y0) in the boundary of the domain
(i.e. {(x0, y0) /W (x0, y0) = Ws}), then, the system of ODEs are integrated as fol-
lows. Here, note that the solution of Eq. (119) is trivially y(t) = t + y0 which can
be used to rewrite Eq. (118) as

dx

dy
= a(x, y) . (121)

The above equation can be integrated numerically starting from the selected point
(x0, y0). The solution of the equation (x(y)) gives a characteristic curve of the
problem—a curve along which the solution of the PDE coincides with the solu-
tion of the ODE. Finally, (120) can be rewritten in the same way as the previous
one,

dp(1)

dy
= c(x(y), y) . (122)

Then p(1) is obtained by integrating,

p(1)(y) =
∫ y

y0
c(x(y), y)dy + p(1)0 , (123)

where p(1)(x0, y0) = p(1)0 . It can be immediately observed that p(1)(x, y) can be
recovered by using both (123) and the expression for the characteristic curve x(y).
Repetition of this three-step procedure over a sufficiently large and well-chosen
sample of initial points produces a mapping of the domain and hence, the solution of
the PDE for thewhole domain. Formore details about the numerical implementation,
the readers are referred to [23].

The stationary solutions of magnetized viscous tori are constructed for a set of
values of the parameters τ2, m1, m2 and the magnetization parameter at the center
of the disk, βm,c. Additionally, the polytropic exponent is chosen as γ = 5/3. The
magnitude of the zeroth-order correction to the energy density at the center is taken
as e(0),c = e(0)(rc,π/2) = 1. For the sake of convenience, we have defined a new
parameter s1 = τ2 m1 and have set τ2 = 1 without loss of generality. The solutions
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Fig. 3 The colour gradient in all four panels refers to the distributions of the total fluid pressure
where we have consideredWs = −0.039. The top panels show ideal fluid solutions and the bottom
panels shows viscous solutions for τ2 = 1,m1 = 0.05 andm2 = 0.01. The left panels correspond to
non-magnetized torus for which βm,c = 103 and the right panels correspond to highly-magnetized
torus (βm,c = 10−3). The noticeable difference in the morphology of the torus is associated to a
small decrease in size at the very low pressure region for the viscous cases. Taken from [23]

are constructed for two values of themagnetization parameter at the center of the disk,
namely βm,c = 103 (lowmagnetization, almost a purely hydrodynamical model) and
βm,c = 10−3 (high magnetization) which are sufficient to bring out the effects of a
toroidal magnetic field on the viscous torus.

Then, for a given choice of parameters, the corrections to the pressure p(1) and
to the energy density e(1) are determined by solving (91) numerically, using the
method of characteristics as described earlier. The results reveal that the effects of
the shear viscosity are particularly noticeable only close to the cusp of the torus
leaving the large-scale morphology of the torus remains essentially unaltered which
can be immediately concluded from distribution of the pressure in Fig. 3 obtained
in the entire domain for a set of illustrative stationary models. Note that the physical
solution is attached to the black hole, even though in Fig. 3 there is a gap between
the torus and the event horizon of the Schwarzschild black hole for the reason that
(117) is singular at the event horizon, as a result, the solution cannot be extended
to it.

Figures 4 and 5 present the radial plots showing the zeroth-order and first-order
corrections of the pressure and of the energy density at the equatorial plane, cor-
responding to the low and high value of the magnetization parameter, respectively.
It is to be noted that, in contrary to purely hydrodynamical tori, the location of the
center of a magnetized tori rc does not exactly coincide with the location of the
maximum of the pressure. In fact it is slightly shifted towards the black hole [14].
It can be observed for the highly magnetized case in Fig. 5. Corresponding to both
low and high values of βm,c, the corrections p(1) and e(1) near the cusp due to vis-
cosity remain small in comparison to their respective equilibrium values p(0) and
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Fig. 4 Radial plots of log p(0) and log |p(1)| (top row) and log e(0) and log |e(1)| (bottom row) at
the equatorial plane for Ws = −0.039, s1 = 0.05, βm,c = 103 and m2 = (0, 0.001, 0.01). Each
column corresponds to an increasing value of the parameter m2. The vertical dashed line denotes
the location of the self-crossing pressure isocontour rcusp and the vertical dotted line represents the
location of the maximum of the pressure rcen. Note that rcen coincides to the center of the disk rc
for non-magnetized disks. Taken from [23]

Fig. 5 Same as Fig. 4 but for the parameter βm,c = 10−3. Taken from [23]

e(0). As one approaches the outer edge of the torus, the difference between p(0)
and p(1) diminishes. This tendency is mostly noticeable for low magnetized torus,
as shown in Fig. 4. In addition, by increasing the value of m2, while keeping m1
fixed, the difference between p(0) and p(1) also decreases near the cusp, until when
p(1)/p(0) ∼ O(1) and e(1)/e(0) ∼ O(1) are obtained. Under these situations, neither
m1 norm2 can further be increased. This suggests that we are no longer in the regime
of the validity of near-equilibrium hydrodynamics where gradients are small. Using
this argument, one can set an upper limit on the contributions of curvature effects
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and shear viscosity on stationary solutions of the magnetized viscous torus before
non-equilibrium effects are not ignorable.

Due to shear viscosity and curvature effects, the change in pressure �pcusp at
the newly formed cusp �rcusp in comparison to the inviscid case is computed in the
following way,

�rcusp = rcusp,new − rcusp
rcusp

, (124)

�pcusp = pt,cusp − p(0),cusp

p(0),cusp
, (125)

where the total pressure is pt = p(0) + p(1) and rcusp,new is the new location of the
cusp at the equatorial plane. The new cusp positions are computed by fitting the
values of pt using a third-order order spline interpolation. The values of rcusp,new
and pt (rcusp,new) have also been obtained at the same time using this technique.

A more concrete estimation of the allowed values of the parameters s1 and m2
with βm,c is obtained from the 2D plot of |�pcusp| shown in Fig. 6.

The black contour in some of the plots in Fig. 6 indicates a cut-off value of s1
and m2 for which log10 |Δpcusp| = 0. Corresponding to low magnetized viscous
torus (top panels with βm,c = 103), the permissible values of s1 and m2 are large for
ΔWs > 0 and that the allowed parameter space of (s1,m2) appreciably decreases as
the potential gap ΔWs → 0 indicating that with ΔWs ≈ 0 does not allow for large
shear viscosity and curvature effects in comparison to ΔWs > 0. On the other hand,
for highly magnetized tori (βm,c = 10−3, bottom panels), stationary viscous models
exist over the entire choice of the parameter space and in the considered regions

Fig. 6 2D plots for log10 |Δpcusp|. The first row corresponds to the stationary models with βm,c =
103. The second row corresponds to the models with βm,c = 10−3. From left to right, the columns
correspond to three different values ofWs, namely−0.039,−0.040 and−0.041. The black contour
which appear in some of the plots corresponds to log10 |Δpcusp| = 0. Taken from [23]
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of the potential gap i.e. ΔWs > 0 and ΔWs ≈ 0. Therefore, within the perturbative
approach, the stationary models are restricted up to maximum values of m1 = s1 =
0.05 and m2 = 0.05. For more such values of s1 and m2, the readers are referred to
[23].

Isocontours of the total pressure pt of the stationary viscous tori are shown in
Figs. 7 and 8 for both low and high values of the central magnetization parameter,
respectively.

These figures display the regions close to the cusp as it is in those regions where
the effects of the shear viscosity are most manifest. The self-intersecting contours of
pt possessing a cusp are shown by the blue dashed curves in the figures for the values
of s1 andm2 indicated in the captions. The red isocontours correspond to surfaces of
constant pressure of magnetized ideal fluid tori which would self-intersect, had there
been no shear viscosity. For a given value of s1 and Ws it is observed that when m2
increases, the location of the newly formed cusp moves towards the Schwarzschild
black hole. Also, the thickness of the cusp region in the disk also diminishes which

Fig. 7 Isocontours of p(t) = p(0) + p(1) for Ws = −0.039 and βm,c = 103 in the cusp region.
From top to bottom the rows correspond to m2 = (0, 0.005, 0.01). From left to right the columns
correspond to s1 = (0.005, 0.01, 0.05). Red isocontours denote cusp-generating constant pressure
surfaces without viscosity and blue isocontours represent newly-formed self-intersecting constant
pressure surfaces in presence of viscosity and curvature effects. The two black isocontours depict
the values pt = 2p0,cusp/3 and pt = p0,cusp/3. Taken from [23]
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Fig. 8 Same as Fig. 7 but for the parameter βm,c = 10−3. The three black isocontours in the left
part of all plots correspond values of the total pressure equal to pti = (p(0),maxi − p(0),cusp)/4 for
i = 1, 2, 3, where p(0),max is the value of p(0) at the maximum of the pressure. Taken from [23]

can be observed by looking at the change of location of the black isocontours located
above and below the cusp region in Figs. 7 and 8 respectively. Particularly, Fig. 7
shows that, in the bottom row and in the right column, the isocontour corresponding
to pt = 2p0,cusp/3, changes its position (from above and below the cusp, to the
left and right of the cusp) which implies that for these cases, pt,cusp < 2p0,cusp/3.
Additionally, the isocontour corresponding to pt = p0,cusp/3 moves significantly
closer to the self-crossing surface.

Hence, one can infer that in the framework based on causal relativistic hydrody-
namics, the role of shear viscosity and the curvature of the Schwarzschild black hole
spacetime are apparent through a noticeable rearrangement of the constant pressure
surfaces ofmagnetized viscous disks when compared to the purely inviscid case [23].
In addition, the Figs. 7 and 8 shows that as the magnetic field strength increases, the
shift of the location of the cusp towards the black hole also increases. This might
mitigate the development of the so-called runaway instability that affects inviscid
constant angular momentum tori [12].
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5 Concluding Remarks

This chapter presents the findings associated to stationary solutions of viscous torus.
The results demonstrates the new modifications in the morphology of a geometri-
cally thick torus, both purely hydrodynamical and magnetized in the presence of
shear viscosity as compared to the inviscid case in the context of a simple setup
where stationary viscous disks with constant angular momentum distributions are
built around a Schwarzschild black hole. The shear viscosity is assumed to only
induce perturbative effects on the fluid so that the fluid in the torus can still move in
circular orbits. The analysis of isopressure and isodensity surfaces of this constrained
system provide evidences showing that the shear viscous and curvature effects in the
stationary disk models are only tractable using the causal approach.
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Shadows andAccretionDisk Images of
CompactObjects

Petya Nedkova

Abstract

The black hole shadowwas predicted theoretically already in the 1960s as a strong
gravitational lensing phenomenon. Recently, its observation became feasible and
opened a major experimental channel for probing the gravitational interaction in
the strong field regime. Although considered historically as a property of the black
hole spacetimes, the shadow is not exclusively a black hole effect and does not
require the presence of an event horizon. Other compact objects can also cast a
shadow if their gravitational field is sufficiently strong bringing up the issue of
how we can differentiate between self-gravitating systems based on their shadow
images. In this chapter we discuss the analytical or semi-analytical methods for
obtaining the observable images produced by compact objects in some basic
physical settings such as a uniform spherical distribution of distant light sources
or the presence of a thin accretion disk. We review the calculation of the shadow
boundary for the Kerr black hole and focus on recent research on the images
created by wormholes and naked singularities. These compact objects can look
qualitatively very similar to black holes in some cases, but they can also possess
clear-cut observational signatures.

1 Introduction

General relativity has been tested in theweakfield regimewith a remarkable precision
[93,94], but its validity in strong gravitational fields is still hypothetical. A central
question in this respect is whether the Kerr solution indeed represents the unique
stationary and axisymmetric black hole in vacuum. Testing this statement known as
the Kerr hypothesis is equivalent to confirming whether general relativity describes
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the black holes in our Universe or another more refined gravitational theory takes its
place in the extreme regime.

In the last decade we witnessed a major experimental breakthrough in this direc-
tion with the detection of gravitational waves which opened a new window for
exploring gravity [1,2]. On the other hand, the Event Horizon Telescope (EHT)
collaboration provided the first direct images of the supermassive compact objects in
the nearby galactic targets M87 and Sgr A with a horizon-scale resolution [7,9,10].
These developments launched a new era in fundamental physics allowing to com-
bine information from different observational channels in order to test its predictions.
Thus, the investigation of compact objects turned for the first time from a predomi-
nantly theoretical field into an active area in observational astrophysics.

Black hole imaging experiments such as the Event Horizon Telescope have their
roots in the foundations of general relativity governing the propagation of particles
and light in curved spacetime. These phenomena are described by the theory of
gravitational lensing which explains the observational effects caused by the interplay
of light with extreme curvature. In particular, the strong gravitational field in the
vicinity of black holes gives rise to a specific phenomenon known as the black hole
shadow. This effect arises when the black hole is surrounded by a distribution of light
sources and we observe a dark spot on the luminous sky. It can be easily predicted by
considering the definition of black hole. Assuming a bundle of photon trajectories
with a broad range of initial condition, there will be always such ones that will enter
the black hole region and consequently never come back to us. In this way they leave
dark directions in the observer’s sky, which form the black hole shadow.

The shadow provides a means to map the black hole vicinity into an optical
image which encodes essential information about the properties of the underlying
spacetime. The main observational characteristic is the shadow boundary and its size
and shape determine the black hole spin and other relevant charges [6,44,52,58,86].
Ideally, if the boundary curve is measured with a very high precision, it enables
us to specify the black hole giving rise to it. This correspondence can be further
elaborated and extended into a procedure for testing theKerr hypothesis and imposing
constraints on the modified theories of gravity [17,54,60,75].

The study of the black hole shadow has a long history dating back to the classical
works of general relativity. The phenomenon was described theoretically already
in the 1960s in the early works [82,100], which obtained the viewing angle of the
shadow for the Schwarzschild black hole. In the next decade Bardeen investigated
the shadow of the Kerr black hole and taking advantage of the separability of the
null geodesic equations developed a general formalism for obtaining the shadow
boundary [16]. Although of fundamental importance, these developments considered
the black hole shadow as a purely theoretical phenomenon which is unlikely to be
experimentally detected. The idea that observing the shadow of the black hole at the
center of our galaxy may be feasible was first suggested in [38], where the necessary
experimental conditions were also discussed. This seminal paper put the foundations
for the development of the global interferometer Event Horizon Telescope which
recently produced the first black hole images.



Shadows and Accretion Disk Images of Compact Objects 69

The analytical construction of the black hole shadow boundary has some funda-
mental consequences. Revealing the explicit mechanism for the shadow formation
it became evident that the phenomenon is not limited exclusively to black holes but
a much broader class of compact objects will lead to a similar image [48,64,77,80].
The reason is that the mathematical structure which determines the shadow is not
the event horizon but another fundamental surface called a photon sphere. The pho-
ton sphere represents a separatrix between two families of infalling null geodesics.
The first class consists of trajectories which are reflected by the gravitational field
and manage to reach a distant observer. The second class of trajectories get trapped
in the gravitational potential and fail to scatter away to infinity, thus forming the
shadow. For black holes these are the geodesics which enter the event horizon. In
other spacetimes such behavior can develop for different physical reasons. For exam-
ple, wormhole geometries suggest that part of the geodesics will pass through the
wormhole throat and continue to propagate in another universe. In naked singularity
spacetimes shadows are formed due to the geodesics which end at the singularity.

Most of the classical results in the compact objects astrophysics were developed
considering the Kerr black hole. However, ideas from fundamental physics suggest
that general relativity may not be the final theory of gravity. It will probably need to
be modified in order to explain mysterious phenomena such as the dark energy and
dark matter and describe the gravitational interaction at the Planck scale. In order to
address these issues various alternative theories of gravity were proposed motivated
as a low-energy limit of unification theories or effective theories of quantum gravity.
Modifying the properties of the gravitational interaction they allow for amuch greater
variety of compact objects than general relativity including black holes with different
kinds of hair and wormholes which do not violate the energy conditions. Other
solitonic self-gravitating configurations are also studied such as regular black holes,
boson stars and gravastars. These exotic compact objects from the perspective of
general relativity are no longer purely theoretical ideas. Their experimental detection
has become a solid part of the agenda of the major astrophysical missions both in
the gravitational wave and the electromagnetic spectrum inspiring a range of works
investigating and predicting their observational signatures.

The aim of this review is to describe the theoretical foundations of the black hole
shadow and to demonstrate how the effect can be extended to other compact objects
such as wormholes and naked singularities. We will consider spacetimes with high
degree of symmetries which allow for the integrability of the geodesic equations
and analytical construction of the shadow boundary. The classical calculation of the
black hole shadow assumes a uniform distribution of the light sources around the
compact object. This set-up is a simplified toy-model but it allows to extract the most
essential information about the phenomenon without additional complications from
more restricting initial conditions. In realistic astrophysical scenarios the compact
objects are surrounded by accretion disks which represent the main source of the
electromagnetic emission. Therefore, as a next step we will demonstrate how the
observational picture is modified if we adopt a more realistic light sources distribu-
tion.Wewill consider the basic model of a geometrically thin and optically thick disk
around a spherically symmetric compact object and construct the observable image



70 P.Nedkova

for the Schwarzschild black hole and certain types of naked singularities. Although
simplified, such models provide valuable intuition how the observational signatures
arise and how the properties of the compact object influence the images which can
be useful for interpreting the results of more complicated simulations.

2 Black Hole Shadow in Static Spherically Symmetric
Spacetime

In order to describe the effect of black hole shadow we will discuss initially static
spherically symmetric spacetime in vacuum. This simple geometrical setting allows
to illustrate clearly the theoretical ideas which we will generalize subsequently in
more complicated scenarios. On the relevant scales for gravitational lensing light
propagation is described by the geometric optics approximation. Light follows null
geodesics and the geodesic equations can be derived from the least action principle
by introducing the Lagrangian

L = 1

2
gμν ẋμ ẋν, (1)

where gμν is the metric, xμ are the spacetime coordinates, and the dot denotes dif-
ferentiation with respect to the affine parameter along the geodesics.1 In this way
we obtain a system of four ordinary differential equations and we have in addition
the constraint

gμν ẋμ ẋν = 0, (2)

which ensures that the type of geodesic is preserved for anyvalue of the affine parame-
ter. The geodesic equations can be simplified if the spacetime possesses higher degree
of symmetries. Stationary and axisymmetric spacetimes are particularly important
since they describe the quasi-equilibrium configurations of the astrophysical objects
such as black holes surrounded by an accretion disk or galaxies with a supermassive
central compact object. These symmetries aremanifested by the presence of aKilling
vector associated with time translations ∂/∂t and a Killing vector associated with
rotations with respect to the symmetry axis ∂/∂ϕ which induce conservation laws
on the geodesics. In particular they lead to the conservation of the photon’s specific
energy E and specific angular momentum L .

Spherical symmetry increases the number of constants of motion since it gener-
ates two additional Killing vectors which lead to conservation of the plane of motion.
Thus, geodesics propagate in a single plane θ = const. which we assume for con-
venience to correspond to the equatorial plane. In this way the geodesic equations
become completely integrable and reduce to a one-dimensional problem. The pho-
ton trajectories can be obtained by either integrating the radial geodesic equation, or
more conveniently considering the constraint given by Eq. (2).

1 For convenience we introduce a spherical coordinate system xμ = {t, r , θ,ϕ}.
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Let us introduce a static spherically symmetric metric in the general form

ds2 = −A(r)dt2 + A−1(r)dr2 + r2D(r)(dθ2 + sin2 θdϕ2), (3)

where the metric functions A(r) and D(r) depend only on the radial coordinate.
Then, the constants of motion and the constraint equation take the form

E = A(r)ṫ, L = r2D(r)ϕ̇,

ṙ2 + Veff = E2, Veff = L2 A(r)

r2D(r)
. (4)

We see that the geodesic equations reduce effectively to a familiar problem rep-
resenting the motion in the field of a spherically symmetric potential Veff. Although
this analogy is only formal, we can analyse the qualitative behaviour of the photon
trajectories by taking advantage of our intuition from classical mechanics. In general
we can rescale the affine parameter by the photon’s specific energy E . Thus, we see
than there is a single dynamically important parameter defined by the radio of the
specific energy and angular momentum b = L/E . It is called an impact parameter
and the type of the photon trajectories is determined by its value and the particular
form of the effective potential.

Let’s examine this problem for the Schwarzschild black hole. The effective poten-
tial is given explicitly by

Veff = b2

r2

(
1 − Rs

r

)
, (5)

where Rs = 2M is the Schwarzschild radius and M is the mass of the black hole.
The effective potential tends to zero at the spacetime infinity r → ∞ and behaves
as Veff → −∞ at the curvature singularity r = 0 (see Fig. 1). It possesses a single
maximum in between which determines an unstable circular photon orbit by the
conditions

Veff = 1, V
′
eff = 0, V

′′
eff < 0, (6)

where the primedenotes derivativewith respect to the radial coordinate. Solving these
equations we obtain that the circular orbit is located at r = 3M and corresponds to
the value of the impact parameter bcrit = 3

√
3M . Let us consider photon trajecto-

ries approaching the black hole from infinity. They will separate in two qualitatively
different classes. Photon trajectories with impact parameters larger than that of the
circular orbit b > bcrit will be reflected by the effective potential and scatter away
to infinity, while those with impact parameters b < bcrit will manage to cross the
potential barrier and end up plunging into the black hole. Thus, the unstable circular
orbit serves as a critical curve which separates gravitational scattering from grav-
itational capture. Its impact parameter represents the limiting value for the impact
parameters of infalling trajectories which are capable of reaching back to a distant
observer. Hence, it determines the boundary of the black hole shadow.
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Fig. 1 Effective potential for
the null geodesics for the
Schwarzschild black hole.
Infalling photon trajectories
from large distances scatter
away from the potential if
their impact parameter
satisfies b > bcrit, and plunge
into the black hole if
b < bcrit. Reprinted from
[23]. with the permission of
AIP Publishing

Let’s imagine the collection of all the unstable circular orbits in all the possible
planes of motion for the null geodesics. They will build up a sphere with a radius
r = 3M , which is called a photon sphere. The shadow of the Schwarzschild black
hole represents a lensed image of the photon sphere projected on the observer’s sky.
By the described argument we see that any static spherically symmetric compact
object which allows for both families of scattering and plunging photon trajectories
will possess a photon sphere and therefore cast a shadow. Thus, the shadow is not
exclusively a black hole phenomenon but an observational characteristic of compact
objects possessing a photon sphere. These are also called ultra-compact objects and
include soliton-like self-gravitating configurations of various physical nature like
wormholes, naked singularities, boson stars, gravastars as particular examples.

The photon sphere is a fundamental surface which is important not only for its
association with observational signatures. Compact objects spacetimes can be classi-
fied using this structure similar to the black hole classification based on the properties
of the event horizon. In this way it was demonstrated that the Schwarzschild space-
time is the unique static and asymptotically flat solution to the Einstein equations in
vacuum possessing a photon sphere [21]. This result was extended to electro-vacuum
spacetimes [22,97] and to theEinstein-scalar field theorywhere itwas proven that any
static and asymptotically flat solution which possesses a photon sphere is spherically
symmetric and isometric to the Janis–Newman–Winicour weakly naked singularity
[96]. Further generalizations were developed considering the Einstein–Maxwell-
dilaton theory [98] and multiple scalar fields [99]. These theorems provide a much
broader classification than the black hole uniqueness theorems assuming an analyt-
ical event horizon since they include also horizonless compact objects.

Let us get more intuition about the properties of the photon sphere by considering
some explicit solutions of the geodesic equations for the Schwarzschild black hole.
When our aim is to obtain particular solutions for the trajectories it is convenient to
express the constraint given by Eq. (2) as a differential equation for the variation of
the radial coordinate with respect to the azimuthal angle. Thus, using the constants
of motion we obtain

(
dr

dϕ

)2

= r2D(r) A(r)

(
r2D(r)

b2A(r)
− 1

)
= f (r), (7)
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for a general spherically symmetric spacetime. For the Schwarzschild black hole it is
convenient to make the substitution u = Rs/r . Plugging in the particular form of the
metric functions, we see that the right-hand side of the trajectory equation reduces
to a polynomial in the new variable

(
du

dϕ

)2

= u3 − u2 + R2
s

b2
= f (u). (8)

This form of the equation allows for straightforward qualitative analysis of the
photon motion without introducing an effective potential. The possible types of
photon trajectories are determined by the root structure of the function f (u) at the
right-hand side of the equation since its roots correspond to the possible turning
points of the trajectories. We can demonstrate that the function always possesses a
negative root which is irrelevant for the geodesic motion. In addition it possesses
two distinct positive real roots for large values of the impact parameter b, which
approach each other when b declines, merge into a double real root for a certain
critical value bcrit, and turn into a pair of complex conjugate roots for lower impact
parameters b < bcrit. The first type of root structure containing two distinct real roots
implies that infalling null geodesics from infinity will always possess a turning point
at the smaller root of f (u) and therefore will scatter away from the black hole. On
the contrary, complex roots correspond to the absence of turning points so geodesics
with such impact parameters will always plunge into the black hole.

Let’s examine the marginal case between these two types of behaviour. Having a
double real root implies that the equations

f (u) = 0, f
′
(u) = 0, (9)

are satisfied. Consequently, this case represents a circular orbit. We can further
demonstrate that f

′′
(u) > 0 is satisfied at this point, i.e. the circular orbit is unstable,

and solving Eq. (9) we obtain its position r = 3M and the corresponding impact
parameter bcrit = 3

√
3M . In this way we have obtained the photon sphere from a

different perspective.
The photon sphere consists of unstable circular orbits so photons propagating

on such orbits with either scatter away or fall into the black hole by the slight-
est perturbation. Thus, the photon sphere should be rather interpreted as a limiting
surface for two families of infalling and outgoing geodesics with the impact param-
eter bph = 3

√
3M . We can derive the explicit form of these trajectories by solving

Eq. (8) for the value of the impact parameter b = bph, however requiring that du
dϕ �= 0.

Assuming that we have infalling geodesics with initial conditions r > rph we obtain
[24] (see also [23])

u = −1

3
+ tanh2

1

2
(ϕ − ϕ0), (10)

where ϕ0 is an integration constant, while the solution

u = −1

3
+ coth2

1

2
(ϕ − ϕ0), (11)



74 P.Nedkova

corresponds to outgoing trajectories which originate at radial distances between the
horizon and the photon sphere (Rs < r < rph). Both solutions represent geodesics
which approach the photon sphere either from its exterior or its interior and spiral
infinitely around its surface. We see that when r → 3M , i.e. u → 2/3, the azimuthal
angle tends to infinity, i.e. the trajectory performs an infinite number of turns around
the photon sphere.

In lensing problems we frequently consider the deflection angle defined as the
variation of the azimuthal angle along the photon trajectory. For static spherically
symmetric spacetimes it is given by

ϕ =
∫ robs

rsource

dr

r
√
D(r) A(r)

√(
r2D(r)
b2A(r)

− 1
) , (12)

where we integrate between the radial positions of the light source rsource and the
observer robs. For the Schwarzschild black hole the deflection angle can be expressed
explicitly in terms of elliptic functions for a general value of the impact parameter
(see e.g. [24]). However, the behaviour in the vicinity of the photon sphere can be
represented by the approximate solution [43,59]

ϕ = log
C±

|b − bph | , b → b±
ph, (13)

C± = const .

which is valid for impact parameters approaching the photon spherewith lower values
b → b−

ph or higher ones b → b+
ph. Both solutions for the deflection angle are illus-

trated in Fig. 2. As we already know, the deflection angle diverges logarithmically
at the photon sphere. In addition, we can see that a hierarchy of infalling trajecto-
ries is formed in the neighbourhood of the photon sphere which circle around it an
arbitrary large but finite number of turns n as the winding number n grows when the
trajectory’s impact parameter approaches bph. These trajectories ultimately scatter
away to infinity and carry important information for the observations. Even for com-
paratively low values of the winding number n ∼ 1.25 they probe sufficiently well
the photon sphere and provide a reasonable estimate for its image [43].
Section summary: We introduced the notion of photon sphere in the simplest geo-
metrical set-up of static spherically symmetric spacetimes using the Schwarzschild
black hole as a particular example. We illustrated its role for the light propagation
from different perspectives discussing the effective potential for the null geodesics,
particular explicit solutions for the photon trajectories and the properties of the
deflection angle. These concepts can be generalized and provide intuition in techni-
callymore involved geometries such as stationary axisymmetric spacetimes and light
sources distributions such as accretion disks. We will consider such generalizations
in the next sections.
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Fig.2 Deflection angle for the null geodesics for the Schwarzschild black hole as a function of the
impact parameter. The dashed line represents the exact solution of the integral, while the solid line
corresponds to the approximation given by Eq. (13). The region denoted in red already provides a
good approximation for the photon sphere. Reprinted figure with permission from [43]. Copyright
2019 by the American Physical Society

3 Shadow of Stationary and Axisymmetric Compact Objects

In this section we will reduce the symmetry assumptions and consider the shadow
cast by stationary and axisymmetric compact objects when illuminated by a uni-
form distribution of distant light sources. In this setting we have two Killing vec-
tors associated with the conservation of the photon’s specific energy E and angular
momentum L on the geodesics and the constraint given by Eq. (2) which ensures
that the geodesic’s type is preserved. These integrals of motion are not sufficient
for the complete integrability of the geodesic equations and in general solutions are
obtained numerically. However, there exist particular spacetimes possessing addi-
tional symmetries called hidden symmetries. They are associated with the existence
of irreducible Killing and Killing–Yano tensors which do not generate isometries but
lead to additional integrals of motion along the geodesics. This property allows to
separate the variables in the geodesic equations and reduce formally the problem of
light propagation to a one-dimensional motion in the field of an effective potential.
Then, we can obtain the shadow boundary analytically by analysing the radial motion
similar to the spherically symmetric case.

Black hole solutions in general relativity belong to this type of integrable space-
times since it was proven that the Kerr–Newman-NUT-(A)dS family possesses a
Killing tensor. Its explicit form was derived initially by Carter [20] and the cor-
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responding integral of motion was called a Carter constant. Penrose and Walker
obtained this result simultaneously in an independent way relating the presence of a
Killing tensor to the algebraic type of the spacetime [91].

Let us demonstrate howwe can obtain the shadow boundary in stationary axisym-
metric spacetimes possessing hidden symmetries. In this case it is convenient to con-
sider the Hamilton–Jacobi formulation of the geodesic problem. Due to the presence
of a Killing tensor the Hamilton–Jacobi equation

∂S

∂λ
= −1

2
gμν ∂S

∂xμ

∂S

∂xν
, (14)

is separable, and introducing a spheroidal coordinate system xμ = {t, r , θ,ϕ} there
exists a solution in the form

S = 1

2
μ2λ − Et + Lϕ + Sr (r) + Sθ(θ). (15)

In this expression we denote by μ the mass of the test particle, λ is the affine
parameter on the geodesics, while the functions Sr (r) and Sθ(θ) depend only on the
specified coordinates.The geodesic equations are obtained by the standard procedure
using the fact that the partial derivatives of the Jacobi action S with respect to the
constants of motion should vanish. Setting μ = 0 for null geodesics, we obtain two
decoupled equations for the radial and polar motion in the form

dr

dλ
= R(r , E, L, Q), (16)

dθ

dλ
= T (θ, E, L, Q), (17)

where Q is the integral of motion associated with the hidden symmetries. These
equations combined with the conservation laws associated with the Killing vectors
determine the photon propagation.

In Eqs. (16)–(17) we see that the photon trajectories depend on the conserved
charges {E, L, Q}. However, the number of independent parameters can be reduced
by recognizing that the specific energy E is merely a scale parameter, and can be
eliminated by rescaling the affine parameter as λ → Eλ. Then, the geodesic motion
will depend only on the ratios ξ = L/E and η = Q/E2, which play the role of impact
parameters.

We can obtain the shadow boundary by analysing the radial equation similar to the
spherically symmetric case. In analogy we can transform Eq. (16) into an energy-like
equation for a certain effective potential V (r , η, ξ)

(
dr

dλ

)2

+ Vef f = 1. (18)

Performing the qualitative analysis which we described in Sect. 2 we can deter-
mine the trajectories which scatter away from the gravitational potential and those
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which overcome the potential barrier and plunge into the black hole. The critical
orbits which separate gravitational scattering from gravitational capture correspond
to the highest maximum of Veff. Thus, they satisfy the conditions

Vef f = 1, V
′
e f f = 0, V

′′
e f f < 0. (19)

An important distinction from the spherically symmetric case is that the critical
orbits are in general not circular. They represent unstable spherical orbits, i.e. they
lie on a sphere with a certain radius, but the θ-motion can be very complicated.2 Due
to this distinction we cannot define a photon sphere as in the spherically symmetric
case. However, we can introduce an appropriate generalization. The collection of all
the unstable spherical orbits is now called a photon region and the shadow boundary
arises as its lensed image on the observer’s sky.

We can outline the following general procedure for constructing the shadow
boundary for stationary axisymmetric spacetimes with integrable geodesic equa-
tions.

• From the definition of the unstable spherical orbits given by Eq. (19) we obtain
two algebraic equations for the impact parameters ξ and η. They determine a
curve in the impact parameter space η = η(ξ), which can be also represented in
a parametric form using the radial coordinate, i.e. ξ = ξ(r), η = η(r). This curve
corresponds to the shadow boundary in the impact parameter space.

• The range of the radial coordinate on the curve {ξ(r), η(r)} is constrained by
the geodesic equation for the polar motion. The impact parameters ξ = ξ(r) and
η = η(r) should be such that the function T (r , ξ, η) on the right-hand side of
Eq. (17) is well-defined. This ensures the existence of the unstable spherical orbits
determining the photon region.

• Similar to the spherically symmetric case, for every radial coordinate r = r0
belonging to the photon region there exist ingoing geodesics with the same impact
parameters ξ(r0) and η(r0)which spiral towards the corresponding spherical orbit
as a limit curve. Then, the observable image of the photon region is determined
by the projection of these geodesics on the observer’s sky.

The last step of the procedure is constructing explicitly the projected image. The
projection on the observer’s sky is not defined uniquely and there are different types
of celestial coordinates proposed in the literature. In our approach we will follow
the Bardeen procedure which was applied initially to obtain the Kerr black hole
shadow [16] (see also [28]). For the purpose we should first define the observer’s
frame by introducing a local orthonormal frame (tetrad) at the observer’s position.
Considering the general form of a stationary axisymmetric metric in the spheroidal

2 The spherical orbits for the Kerr black hole are discussed in detail in [84] and illustrated with
particular examples.
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coordinates xμ = {t, r , θ, ϕ} a natural choice of the orthonormal tetrad is given by

e(r) = 1√
grr

∂r , e(θ) = 1√
gθθ

∂θ, e(φ) = 1√
gϕϕ

∂ϕ, (20)

e(t) = ζ ∂t + γ ∂ϕ,

where the quantities ζ and γ are defined as

ζ =
√

gϕϕ

g2tϕ − gt tgϕϕ
, γ = − gtϕ

gϕϕ
ζ. (21)

Then, we can obtain the locally measured 4-momentum p(μ) by projecting the
tangent vector to the geodesics, i.e. the photon’s 4-momentum pμ, in the observer’s
frame

p(r) = pr√
grr

, p(θ) = pθ√
gθθ

, p(φ) = L√
gφφ

, (22)

p(t) = ζE − γL.

The projection is determined by two celestial angles α and β which serve as coordi-
nates on the observer’s sky. They are expressed explicitly by the components of the
local momentum as

α = arcsin
p(θ)

p(t)
, β = arctan

p(φ)

p(r)
. (23)

We can further set p(t) = 1 by rescaling the affine parameter along the geodesics.
In order to obtain the image of the shadow boundary on the observer’s sky we

should select the celestial angles α and β, which correspond to the photon region.
Since the 4-momentum pμ is determined from the geodesic equations, we should
simply substitute in these expressions the relevant values of the impact parameters ξ
and η. Then, using Eq. (23) we can obtain the celestial angles describing the shadow
boundary

α = α(ξ, η, robs, θobs), β = β(ξ, η, robs, θobs), (24)

for a given position of the observer (robs, θobs). Since α and β decrease with the
radial distance of the observer, i.e. α ∼ 1

r , β ∼ 1
r , it is convenient to rescale them as

α → αrobs, β → βrobs introducing celestial coordinates with dimension of mass.
By the described procedure we can obtain the image of the shadow boundary for

any radial position of the observer. However, if we aim at describing the observational
data from the EventHorizonTelescope, we should assume that the observer is located
at spacetime infinity. In the limit robs → ∞ we further obtain simpler expressions
for the celestial coordinates.
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3.1 Example: Kerr Black Hole

As an example we will discuss the shadow of the Kerr black hole. The Kerr solu-
tion is characterized by two parameters representing its ADM mass M and angular
momentum J , which is commonly substituted by the spin parameter a = J/M . Fol-
lowing the outlined procedure we can derive the impact parameters which define the
photon region [16]

ξ(r) = −r3 − 3Mr2 + a2(M + r)

a(r − M)
, (25)

η(r) = r3[4a2M − r(r − 3M)2]
a2(r − M)2

,

where the radial coordinate satisfies the inequality

η + cos2 θ

(
a2 − ξ2

sin2 θ

)
≥ 0. (26)

In this way we obtain the shadow boundary in the impact parameter space. Assum-
ing an asymptotic observer, i.e. robs → ∞, these expressions lead to the following
celestial coordinates

α = − ξ

sin θobs
,

β = [
η + a2 cos2 θobs − ξ2 cot2 θobs

]1/2
, (27)

which determine the observable shadow image. We see that the shadow depends
on the spin of the black hole and the angular position of the observer called also
an inclination angle. In Fig. 3 we illustrate the shadow boundary for the Kerr black
hole for different spin parameters and inclination angles. For static black holes the
shadow is circular as its size depends on the black hole mass. Introducing rotation
leads to characteristic deformation of the boundary curve. The particular shape of
the shadow boundary contains enough information to estimate the black hole spin
if it is restored from the observational data with sufficient resolution [52,58,86]. It
can further determine whether the spacetime is characterized by higher multipole
moments, in this way serving as a means for detecting black hole hair or existence
of more exotic compact objects.

Section summary: We demonstrated how the notion of photon sphere can be gener-
alized for a stationary and axisymmetric spacetime possessing an irreducible Killing
tensor. Due to the ’hidden’ symmetries the geodesic motion becomes completely
integrable. We showed how we can obtain the shadow boundary analytically using
the Hamilton–Jacobi formulation of the geodesic problem. We considered the Kerr
black hole as a particular example.
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Fig.3 Shadowof theKerr black hole for different inclinations angles i and spin parametersa. In each
panel the spin parameter grows continuously from a = 0 (black curve) to the near-extremal value
a = 0.999 (red curve). Increasing the spin and the inclination angle leads to stronger deformation
of the shadow boundary. Reprinted from [102]. © AAS. Reproduced with permission

4 Shadow of TraversableWormholes

One of the most exciting theoretical predictions is that our universe may contain
traversable wormholes which we have not detected so far because they mimic the
observational features of black holes. As we already explained the shadow is such
a strong gravity phenomenon which is common for a range of compact objects of
different physical nature. In this section we will construct explicitly the shadow of a
certain class of traversable wormholes and discuss how closely its boundary curve
resembles the Kerr black hole.

For the purpose we consider the general form of the metric describing stationary
axisymmetric wormholes suggested by Teo [83] as a rotating generalization of the
Morris–Thorne wormhole

ds2 = −N 2dt2 +
(
1 − b

r

)−1

dr2 + r2K 2 [
dθ2 + sin2 θ(dϕ − ωdt)2

]
. (28)

The metric functions depend only on the spherical coordinates r and θ and under
somemild conditions define a completely regular geometrywhich represents a tunnel
connecting two distant regions in spacetime. The wormhole throat corresponds to the
minimal surface located at the constant radius b = r , where the metric function grr
becomes divergent. This behavior reduces to an apparent singularity if ∂θb(r , θ) = 0
at the throat. The spacetime does not contain any curvature singularities or event
horizons, if we require further that the redshift function N is finite and non-zero
in all the coordinate range. In addition, satisfying db

dr < 1 at the throat provides the
characteristic flaring out shape of the embedding of the constant t and θ cross-sections
of the wormhole spacetime into three-dimensional Euclidean space.

Since the spherical coordinates break down at the wormhole throat, we can repre-
sent only one of the asymptotic regions in this coordinate system. However, we can
introduce a global radial coordinate l defined as

dl = ± dr√
1 − b

r

, (29)
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which extends the wormhole metric across the throat. It takes the range −∞ <

l < +∞ and describes smoothly the transition between two asymptotic regions for
positive and negative values of l connected by the wormhole throat at l = 0.

For our purposes we will impose restrictions on the general wormhole geometry
(28) by requiring that the metric functions N , b, ω and K depend only on the radial
coordinate r . In this way we obtain a family of traversable wormholes with inte-
grable geodesic equations and we can calculate the shadow boundary analytically
as described in Sect. 3. Separating the variable in the Hamilton–Jacobi equation we
obtain for the null geodesics [64]

N

(
1 − b

r

)−1/2 dr

dλ
=

[
(1 − ωξ)2 − η

N 2

r2K 2

]1/2
= √

R(r), (30)

r2K 2 dθ

dλ
=

[
η − ξ2

sin2 θ

]1/2
,

dt

dλ
= 1 − ωξ

N 2 ,

dϕ

dλ
= ω(1 − ωξ)

N 2 + ξ

r2 sin2 θK 2
,

where ξ and η are the impact parameters determined by the integrals of motion. The
radial equation can be transformed into an energy-like equation

(
dr

dλ

)2

+ Vef f = 1,

by introducing the effective potential

Vef f = 1 − 1

N 2

(
1 − b

r

)
R(r). (31)

Analysing its behavior we obtain two families of unstable spherical orbits [48,78].
The first family corresponds to maxima of the effective potential lying outside the
wormhole throat and obeys the conditions

R(r) = 0,
dR

dr
= 0,

d2R

dr2
> 0. (32)

Solving these equations for the impact parameters ξ and η we obtain the shadow
boundary in the impact parameter space [64]

η = r2K 2

N 2 (1 − ωξ)2,

ξ = Σ

Σω − ω′ , Σ = 1

2

d

dr
ln

(
N 2

r2K 2

)
. (33)
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The corresponding observable image at the asymptotic infinity is determined by the
celestial coordinates

α = − ξ

sin i
, β =

(
η − ξ2

sin2 i

)1/2

, (34)

where i is the inclination angle of the observer.
In addition, there exists a second type of unstable spherical orbits located at the

wormhole throat. They are described by the conditions

1 − b(r)

r
= 0, R(r) = 0,

dR

dr
> 0. (35)

Using the expressions for the celestial coordinates these conditions reduce to the
implicit relation [78]

(ω2r20K
2 sin2 i − N 2)α2 + 2ωr20K

2 sin iα + r20K
2 − N 2β2 |r0= 0, (36)

where r0 is the location of the wormhole throat. The observable shadow boundary at
large distances and inclination angle i is constructed as the collection of images deter-
mined by the relations given by Eqs. (33) and (36). Thus, both families of spherical
orbits correspond only to certain portions of the boundary curve.

In the following we will illustrate explicitly the shadow boundary for some par-
ticular wormhole geometries. We consider the metric functions

b = r0, K = 1, ω = 2J

r3
, (37)

where r0 is the mass of the wormhole, J is its angular momentum, and two different
choices for the redshift function

N (1) = exp
(
−r0

r

)
, N (2) = exp

(
−r0

r
− r20

r2

)
. (38)

The shadow for the first redshift function N (1) is presented in Fig. 4 in comparison
with the Kerr black hole shadow for the same spin parameter. The shadow boundary
determined by the spherical orbits outside the throat corresponds to positive values
of the celestial coordinate α (orange curve), while the blue curve for negative α
represents the spherical orbits at the throat. Both portions of the boundary curve join
smoothly at α = 0.

In Fig. 5 we illustrate the shadow for the second type of redshift function N (2)

using the same conventions. A major distinction from the previous case is that the
two portions of the shadow boundary defined by the two families of spherical orbits
do not merge smoothly but form a cusp at the intersection. Such features were
also discovered in the shadow of hairy black holes [31,92] and in general they can
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Fig. 4 Wormhole shadow for the redshift function N (1) = exp
(− r0

r

)
and different values of the

spin parameter. The shadow of the Kerr black hole is presented with a dashed line for comparison.
As the spin increases the shadow of the wormholes grows and approaches the Kerr black hole.
Adapted from [48]

a = 0.01 a = 0.06 a = 0.07 a = 0.08

a = 0.25 a = 0.5 a = 0.75 a = 1

Fig.5 Wormhole shadow for the redshift function N (2) = exp

(
− r0

r − r20
r2

)
and different values of

the spin parameter. The shadowof theKerr black hole is presentedwith a dashed line for comparison.
This class of wormholes resembles the shadow of the Kerr black hole more closely. Adapted from
[48]
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serve as observational signatures for refuting the Kerr hypothesis if sufficiently high
resolution is reached.

Comparing the wormhole shadow images with the Kerr black hole, we see that
for the first redshift function the shadow is significantly smaller than for the Kerr
black hole. For the second redshift function the differences decrease and when the
spin parameter grows the shadows of the two types of compact objects approach a
similar size. However, the deformation of the shadow boundary due to rotation is
more pronounced for the wormholes and may be observationally significant.

Despite these deviations the wormholes generally produce qualitatively similar
shadows as the Kerr black hole. Keeping in mind that we examined two particular
examples we can conjecture that the quantitative discrepancies can be minimized
at least for some spin parameters by fine-tuning the wormhole metric. Thus, some
of the wormhole solutions will closely mimic the Kerr black hole. For example, in
[35] we studied a static wormhole geometry leading to a shadow which cannot be
distinguished from the Schwarzschild black hole at the current resolution of EHT.
Section summary: We demonstrated that horizonless spacetimes can cast a shadow
by considering a particular class of traversablewormholes. The geodesic equations in
these geometries are completely integrable andwe calculated explicitly the boundary
of the wormhole shadow by using the Hamilton–Jacobi approach. The wormhole
shadow is qualitatively similar to theKerr black hole and byfine-tuning thewormhole
geometry we can obtain images which resemble so closely black holes that the two
types of compact objects cannot be distinguished at the current resolution of EHT.

5 Image of the Thin Accretion Disk Around Compact Objects

In the previous sections we discussed the images of compact objects when they are
illuminated by a uniform distribution of distant light sources. This physical setting is
useful for obtaining the photon region and its projection on the observer’s sky since
it is independent of the light sources location as long as they reside outside the last
spherical orbit. However, if we are interested in constructing a realistic image of the
compact object’s vicinity we should take into account the accretion disk surrounding
them. The accretion disk is the major source of electromagnetic radiation in most
of the astrophysical scenarios. It produces a bright image on the observer’s sky with
a characteristic shape and intensity which contain information about the compact
object’s spacetime and the properties of the accreting plasma.

In this section we will consider one of the simple analytical models of accretion
representing geometrically thin and optically thick disk [66,68]. It assumes stationary
and axisymmetric fluid distribution such that the disk’s height is negligible compared
to its radial dimension and the fluid motion is Keplerian. Then, the disk can be
approximated by a collection of particles moving on stable circular geodesics in the
equatorial plane and the radiation flux can be calculated by means of their kinematic
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quantities as

F(r) = − Ṁ0

4π
√−g(3)

Ω,r

(E − ΩL)2

∫ r

rI SCO

(E − ΩL)L ,r dr , (39)

where the integration starts from the innermost stable circular orbit (ISCO). In this
expression we denote the accretion rate by Ṁ0, g(3) is the determinant of the induced
metric in the equatorial plane, while E , L and Ω are the specific energy, angular
momentum and angular velocity on the circular orbits. Considering a general station-
ary and axisymmetric metric we can express the kinematic quantities on the circular
orbits in terms of the metric functions as

E = − gt t + gtφΩ√
−gt t − 2gtφΩ − gφφΩ2

, L = gtφ + gφφΩ√
−gt t − 2gtφΩ − gφφΩ2

,

Ω = dφ

dt
=

−gtφ,r +
√

g2tφ,r − gt t,rgφφ,r

gφφ,r
. (40)

where the terms (...),r denote differentiation with respect to the radial coordinate.
The observable image of the thin disk is constructed by obtaining the projection

of the photon trajectories originating from the disk on the observer’s sky. This is
achieved by solving numerically the null geodesic equations with the appropriate
boundary conditions and associating with each geodesic the appropriate celestial
angles α and β according to the procedure described in Sect. 3 (see Eqs. (20)–(23)).
Practically, it ismore convenient to scan all the celestial angles in the rangeα ∈ [0,π]
and β ∈ [−π

2 , π
2 ] and integrate the corresponding photon trajectories backwards

towards their emission point. Then, we select these trajectories which intersect the
disk, i.e. pass through the equatorial plane at a radial distance within the range of
stability of the timelike circular geodesics. The corresponding set of celestial angles
α and β build up the image of the accretion disk on the observer’s sky.

The observable radiation intensity at each point of the image is calculated by
modifying the emitted flux given by Eq. (39) by the gravitational redshift z

Fobs = F

(1 + z)4
, (41)

where the gravitational redshift for a trajectory with an impact parameter b = L/E
can be expressed as

1 + z = 1 + Ωb√
−gt t − 2gtφΩ − Ω2gφφ

, (42)

for a general stationary and axisymmetric spacetime.
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5.1 Thin Accretion Disk Images in Static Spherically Symmetric
Spacetime

In static spherically symmetric spacetime the construction of the accretion disk image
simplifies due to the integrability of the null geodesic equations. Similar to the
calculation of the shadow boundary it reduces to the integration of the radial geodesic
equation or equivalently to the estimation of the deflection angle for the photon
trajectories which originate from the disk and reach the observer [59,62]. Thus, for
the general static spherically symmetric metric

ds2 = −A(r)dt2 + A−1(r)dr2 + r2D(r)(dθ2 + sin2 θdϕ2), (43)

we should calculate the integral

ϕ =
∫ robs

rsource

dr

r
√
D(r) A(r)

√(
r2D(r)
b2A(r)

− 1
) , (44)

where b = L/E is the impact parameter on the geodesic, rsource denotes the radial
coordinate of the photon’s emission point, while robs is the position of the observer.
This reduces the construction of the lensed image of the thin accretion disk to a
semi-analytic procedure and allows to make predictions about the morphology of
the image based on the qualitative behavior of the deflection angle [50].

As we already discussed, if the spacetime possesses a photon sphere, the null
geodesics can perform an arbitrary large number of turns around the compact object
before reaching the observer resulting in a diverging behaviour of the deflection
angle in the vicinity of the photon sphere. Therefore, it is convenient to classify
the trajectories according to the number of half-loops k which they perform. Direct
trajectories are characterizedwith k = 0 anddeflection angles in the rangeφ ∈ [0,π),
while trajectories of higher order k lead to deflection angles φ ∈ [kπ, (k + 1)π). The
images on the observer’s sky are also classified into direct (k = 0) and indirect
(k ≥ 1) according to the order of the null geodesics which give rise to them.

InFig. 6we illustrate the image of the thin accretion disk around theSchwarzschild
black hole for a distant observer located at r = 5000M and inclination angle i = 80◦.
On the left-hand side we present the apparent shape of the disk by constructing its
projection on the observer’s sky without considering its radiation. On this diagram
we can differentiate between the photon trajectories of different order k which build
up the image. Direct trajectories with k = 0 give rise to the main hat-like image
in orange as the images of some particular circular geodesics with radius in the
range r ∈ [rISCO, 30M] are highlighted with solid lines. The image of order k = 1 is
depicted in blue, while the higher order images with k ≥ 2 correspond to the central
black circle. These images are located in a very close neighbourhood of the image
of the photon sphere approaching it asymptotically when k → ∞.

In the right panel of Fig. 6we present the observable radiation associatedwith each
point of the image. We depict the observable flux calculated by Eq. (41) normalized
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Fig. 6 Image of the thin accretion disk around the Schwarzschild black hole as seen by a dis-
tant observer at the inclination angle i = 80◦. The left panel illustrates the disk morphology by
highlighting the images of the particular circular orbits. The right panel represents the observable
radiation from the disk. The most intensive flux is presented in blue, while the dimmest regions are
in red. Adapted from [49]

by the maximal value Fmax
obs reached in the image. We further map continuously this

quantity Fobs/Fmax
obs ∈ [0, 1] to the color spectrum from red to blue, as the highest

values correspond to dark blue.

Section summary: We discussed the Novikov-Thorne model of thin accretion disk.
We demonstrated how we can obtain its observable image giving as a particular
example the Schwarzschild black hole.

6 Images ofThin AccretionDisks AroundNaked Singularities

In this section we will discuss three types of static spherically symmetric naked
singularities which possess qualitatively different behavior of the null geodesics.
The first type is characterized by a single maximum of the effective potential for the
null geodesics which corresponds to a photon sphere similar to the Schwarzschild
black hole. The second spacetime contains no photon sphere but the gravitational field
becomes repulsive in the close vicinity of the singularity which results into reflective
behavior of the effective potential in this region. The third example combines the
presence of a photon sphere with a reflective potential for the null geodesics near
the singularity. These features lead to a different appearance of the thin disk around
the corresponding compact objects. While the first type of naked singularities mimic
closely black holes, the other two cases show distinctive phenomenology.

6.1 Weakly Naked Janis–Newman–Winicour Singularities

Spherically symmetric naked singularities can be classified into weakly and strongly
naked according to their lensing properties. We can consider as an example the
Janis–Newman–Winicour naked singularitywhich arises as a solution to theEinstein-
scalar field equations [39,53,90,95]. In this case spherically symmetric black holes
do not exist and it was proven that the Janis–Newman–Winicour naked singularity
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represents the unique static spherically symmetric solution. It is given by the metric

ds2 = −
(
1 − 2M

γr

)γ

dt2 +
(
1 − 2M

γr

)−γ

dr2

+
(
1 − 2M

γr

)1−γ

r2
(
dθ2 + sin2 θdφ2) , (45)

and the scalar field takes the form

ϕ = qγ

2M
ln

(
1 − 2M

γr

)
, (46)

where the parameter γ is determined by the conserved charges of the solution, i.e. its
ADMmass M and scalar charge q . It takes the range γ ∈ [0, 1] as γ = 1 corresponds
to vanishing scalar charge and the solution reduces to the Schwarzschild black hole.

The Janis–Newman–Winicour class of solutions describes both weakly and
strongly naked singularities depending on the value of the scalar field parameter
γ. The weakly naked regime is realized in the range γ ∈ (0.5, 1). Then, the space-
time contains a photon sphere with radial position determined by the expression

rph = (2γ + 1)M/γ, (47)

while the innermost stable circular orbit for the particle motion corresponds to the
solutions of the equation [49]

r2γ2 − 2rγ(3γ + 1) + 2(2γ2 + 3γ + 1) = 0. (48)

The effective potential for the null geodesics possesses only a single maximum
determining the photon sphere and resembles qualitatively that for the Schwarzschild
black hole. Under these conditions the shadow and the accretion disk images are
expected to mimic the Schwarzschild black hole with only quantitative deviations.
The shadow was calculated in [80] and it was demonstrated in [55] that its apparent
size can become by approximately 20% smaller than for the Schwarzschild black
hole. Still, for most values of the scalar field parameter, i.e. in the range γ ∈ [0.53, 1),
its dimensions are compatible with the EHT observations of the supermassive com-
pact object at the center of the galaxy M87.

The image of the thin accretion disk was obtained in [49] leading to similar con-
clusions. We observe a qualitatively similar apparent shape as for the Schwarzschild
black hole with quantitative deviations in the observable size of the circular orbits
since the naked singularity causes a stronger focussing effect (see Fig. 7). The devi-
ation depends on the radius of the circular orbit as it is stronger in the inner part of
the disk reaching ∼18% for the ISCO for γ = 0.51. It decreases in the regions with
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Fig. 7 Image of the thin accretion disk around the weakly naked Janis–Newman–Winicour singu-
larity (right) compared to the Schwarzschild black hole (left) for the scalar field parameter γ = 0.51.
The disk image for the naked singularity closely resembles the black hole. Direct images are pre-
sented in orange, indirect images of order k = 1 are denoted in blue, while the higher order images
are in black. The observer is located at r = 5000M , while the inclination angle is i = 80◦. Adapted
from [49]

Fig.8 Observable radiation from the thin accretion disk around the weakly naked Janis–Newman–
Winicour singularity for the scalar field parameter γ = 0.51 (right) compared to the Schwarzschild
black hole (left). The flux is normalized to its maximum value for each solution. The observer is
located at r = 5000M , while the inclination angle is i = 80◦. Adapted from [49]

weaker gravitational field as for more distant orbits located in outskirts of the disk
at r = 30M it becomes ∼3% for the same value of the scalar field parameter.3

Theobservable radiation from thedisk also resembles qualitatively the distribution
for the Schwarzschild black hole with a similar position of its maximum (see Fig. 8).
Quantitatively the maximum value of the observable flux for the naked singularity
is higher than for the Schwarzschild black hole reaching approximately two times
difference for the scalar field parameter γ = 0.51. Since we plot the normalized flux
Fobs/Fmax

obs this leads to a dimmer appearance of the outskirts of the naked singularity
thin disk.

We discussed the shadow and accretion disk images for a particular type of naked
singularities represented by the Janis–Newman–Winicour solution. However, quali-
tatively similar phenomenology is expected for any solution with the same behaviour
of the effective potential for the null geodesics, i.e. type of extrema and asymp-

3We adopt as a measure of the deviation of the apparent size of the circular orbits the horizontal
dimension of their direct images at the inclination angle i = 80◦ (see [49]).
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totics, and the same structure of the circular geodesics for the massive particles. This
includes a broad class of compact objects such as black holes in themodified theories
of gravity [51], wormholes [70], and regular back holes [15].

6.2 Strongly Naked Janis–Newman–Winicour Singularities

In the range of the scalar field parameter γ ∈ (0, 0.5) the Janis–Newman–Winicour
singularity classifies as strongly naked. The spacetime contains no photon sphere and
the effective potential for the null geodesics possesses no further extrema (see Fig. 9).
Instead, it diverges in the vicinity of the singularity preventing the null geodesics
from reaching it. In this way, if the naked singularity is illuminated by a uniform
distribution of light sources all the photon trajectories will scatter away to infinity
and no shadow will be observed.

Another important feature of this geometry is that the stable circular geodesics for
themassive particles are located into two disconnected regionswith a gap in between.
Thus, we have an inner disk delimited by two marginally stable orbits and an outer
disk spanning from another marginally stable orbit to infinity. The emission from
both regions gives contribution to the image of the thin accretion disk. The location
of the marginally stable orbits is determined by the roots of Eq. (48). For γ ≤ 1/

√
5

it has no real solutions and the stable circular orbits extend up to the singularity.
In Fig. 10 we present the optical appearance of the thin disk for γ = 0.48 without

taking into account its radiation. For clarity we provide separate images for the
outer and the inner disk as the complete observable image is constructed as their
superposition. As in the previous sections, we denote the parts of the image created
by photon trajectories of different order k by distinct colors. The direct image of the
outer disk only partially resembles the case of the Schwarzschild black hole. On the
one hand, it produces the characteristic hat-like image similar to the Schwarzschild
black hole. However, it contains also a second disconnected part which represents a

Fig. 9 Behavior of the effective potential for the null geodesics for the strongly naked Janis–
Newman–Winicour singularity. The effective potential for the Schwarzschild black hole and the
weakly naked Janis–Newman–Winicour singularity are presented for comparison. We specify the
values of the scalar field parameter γ for each solution and the location of the singularity rcs or the
event horizon rh in the case of black holes. Adapted from [50]
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Fig.10 Image of the outer disk (left) and inner disk (right) for the strongly naked Janis–Newman–
Winicour singularity with scalar field parameter γ = 0.48. Direct images are presented in orange,
indirect images of order k = 1 are denoted in blue, while the higher order images are in black. The
observer is located at r = 5000M , and the inclination angle is i = 80◦. Adapted from [50]

bright ring at the center of the disk. This phenomenon of creating double images of
the disk distinguishes observationally the strongly naked singularities. In addition,
the inner disk gives rise to another central bright ring. This image is further absent
for the Schwarzschild black hole since it does not possess a similar disconnected
region of stable circular orbits.

The properties of the accretion disk image can be predicted by examining the
behavior of the deflection angle on the photon trajectories [50]. In Fig. 11we consider
the photon trajectories emitted by the ISCO for the outer disk for naked singularities
with γ = 0.48. We assume that the observer is located at the radial coordinate r =
5000M and the inclination angle is i = 80◦. Then, we plot the deflection angle of
the trajectories which reach the observer’s position as a function of their impact
parameter b as the solutions for the different order k are outlined in distinct color
strips. The intersection of the curveφ(b)with each color strip corresponds to an image
of the ISCO of the same order. If there exist two disconnected intersections of the
deflection angle with a certain color strip they will produce a couple of disconnected
images of the corresponding order on the observer’s sky.

Since the strongly naked singularities do not possess a photon sphere, the deflec-
tion angle cannot grow arbitrary large. Instead, it is a bounded function in contrast to
the Schwarzschild black hole. We see that it reaches a maximum which corresponds
to photon trajectories of order k = 1 for the ISCO. As a result of this behavior we
obtain two branches of solutions for the observable direct trajectories with k = 0
which correspond to two disconnected intervals for the impact parameter b. Since
the impact parameter is directly related to the celestial coordinates, these solutions
give rise to two disconnected images in the observer’s sky. The solution for larger
b results in the hat-like disk image which is present also in the Schwarzschild case,
while the smaller impact parameters produce the central ring.

Although in Fig. 11 we considered a particular example, the described behavior
of the deflection angle is representative for any circular orbit from the accretion disk.
The deflection angle always possesses a maximum which can be located at most in
the range of photon trajectories of order k = 2. Thus, we obtain an upper limit for the
number of half-turns which the null geodesics originating from the disk can perform
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Fig. 11 Behavior of the deflection angle for photon trajectories originating from the ISCO and
reaching an asymptotic observer at the inclination angle i = 80◦ (left panel). The color strips
correspond to images of different order k. Disconnected intersections of the deflection angle with
a certain color strip give rise to a couple of disconnected images of the corresponding order. The
ISCO possesses a double direct image with k = 0 and an indirect image of order k = 1 presented
in the right panel in orange and blue respectively. We consider the scalar field parameter γ = 0.48.
Adapted from [50]

before reaching infinity. In this case, in addition to the double direct image of the disk
we observe also double image of order k = 1. It is produced by the two disconnected
solutions for the trajectories of order k = 1 which now become possible.

In Fig. 12 we present the observable radiation from the thin disk around the
strongly naked singularity. The central rings are observationally significant within
this model of accretion since the maximum of the radiation flux is reached in the
image of the inner disk. On the other hand, the central rings which result from the
double image of the outer disk emit with around 30% of the maximum radiation.
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Fig. 12 Observable radiation from the thin accretion disk around the strongly naked Janis–
Newman–Winicour singularity with scalar field parameter γ = 0.48 (left panel). The Schwarzschild
black hole is presented for comparison in the right panel. The observable flux is normalized to its
maximum value for each solution. The observer is located at r = 5000M , while the inclination
angle is i = 80◦. Adapted from [50]

6.3 Einstein–Gauss–Bonnet Naked Singularities

The four-dimensional Einstein–Gauss–Bonnet gravity admits a static spherically
symmetric solution in the form [18,25,42,85]

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2(dθ2 + sin2 θφ2),

f (r) = 1 + r2

2γ̂M2

⎛
⎝1 −

√
1 + 8γ̂M3

r3

⎞
⎠ ,

where M is the ADM mass of the solution, while γ̂ is the Gauss–Bonnet coupling
constant. In the range γ̂ ∈ [0, 1] the solution describes black holes while for γ > 1
it represents naked singularities. The naked singularities with coupling constant 1 <

γ̂ < 3
√
3/4 lead to particularly interesting lensing properties [51]. The effective

potential for the null geodesics possesses a stable and unstable photon ring and
diverges in the vicinity of the singularity (see Fig. 13). Thus, it reflects infalling
photon trajectories preventing them from reaching the singularity. Such spacetimes
cannot cast a shadow although they possess a photon sphere. The photon trajectories
which pass through the photon sphere will still be reflected back to infinity due to
the potential barrier in the vicinity of the singularity leaving no dark directions on
the observer’s sky.

The stable circular timelike orbits are located in two disconnected regions consist-
ing of an inner annulus and an outer disk. The limits of these regions are determined
by the marginally stable orbits which are solutions to the equation

r3 − 9M2r + 8M3γ̂ = 0. (49)

Thus, the thin accretion disk consists of two disconnected portions, i.e. inner and
outer disk, similar to the strongly naked Janis–Newman–Winicour singularity.
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Fig. 13 Behavior of the effective potential for the null geodesics for the Gauss–Bonnet naked
singularities with coupling constant in the range 1 < γ̂ < 3

√
3/4. We plot the effective potential

for the representative value γ̂ = 1.15 for several values of the specific angular momentum (red line).
The effective potential for the Schwarzschild black hole is presented for comparison (black line).
Adapted from [51]

Fig.14 Image of the outer disk (left) and inner disk (right) for the Gauss–Bonnet naked singularity
with coupling constant γ̂ = 1.15. The observable flux is normalized to its maximum value for each
image. The observer is located at r = 5000M , while the inclination angle is i = 80◦. Adapted from
[51]

These properties determine the structure of the disk images presented in Fig. 14.
The images of the inner and the outer disks are constructed separately as the observ-
able image represents their superposition. The outer disk possesses a double image
of any order k ≥ 1. One of the images produces an observable structure similar to
the thin disk for the Schwarzschild black hole. The second image represents a nested
multi-ring structure at small inclination angles which is absent for black holes. The
inner disk also leads to double images of any order, however both of them corre-
spond to central bright rings. The central rings represent the brightest part of the
image radiating with intensity ∼103 higher than the hat-like disk image.

Examining the behavior of the deflection angle we can predict the formation of
the qualitatively different morphology of the disk images [51]. In Fig. 15 we present
the deflection angle for photon trajectories originating at the ISCO of the outer disk
and reaching an observer located at r = 5000M and inclination angle i = 80◦. We
see that the deflection angle diverges at the location of the photon sphere. However,
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Fig. 15 Behavior of the deflection angle for photon trajectories originating from the ISCO and
reaching an asymptotic observer at inclination angle i = 80◦ (left panel). The color strips correspond
to images of different order k. Disconnected intersections of the deflection angle with a certain color
strip give rise to a couple of disconnected images of the corresponding order. In the right panel we
present the corresponding images of the ISCO up to order k = 6.We consider the coupling constant
γ̂ = 1.15. Adapted from [51]

in contrast to the Schwarzschild black hole, there exist two families of null geodesics
scattering away to infinity which approach the photon sphere as a limit surface with
higher and lower values of the impact parameters, respectively. The first family gets
reflected from the maximum of the effective potential and gives rise to a similar
image as for the Schwarzschild black hole. The second family gets reflected from
the potential barrier in the vicinity of the singularity and produces the multi-ring
structure at small celestial angles. As a result the ISCO possesses double images of
any order k ≥ 1. The images of lower order are distinguishable butwhen k grows they
converge towards the images of the photon sphere. This behavior is representative
for any orbit from the outer disk, thus demonstrating how the disk image is created.

The multi-ring structure which we described in the thin disk images for the
strongly naked JNW singularities and the Gauss–Bonnet singularities appears in
much more general cases than these particular spacetimes. As we demonstrated it is
governed by the behavior of the deflection angle for the scattering photon trajectories,
which on the other hand depends on the form of the effective potential for the null
geodesics. This implies that any spacetime with a qualitatively similar behavior of
the effective potential will give rise to a qualitatively similar morphology of the disk
images encompassing a large class of compact objects of diverse physical nature.
According to a general theorem [29] any regular compact object with trivial topology
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which possesses a photon sphere should further possess a stable light ring.4 The thin
disk images of these spacetimes would be characterised by the same morphology as
for the Gauss–Bonnet naked singularity although they can describe very different
self-gravitating objects like regular black holes or exotic stars. Some examples of
such compact objects were presented in [19,36,37,47].

Section summary: We discussed the thin accretion disk images for three types
of spherically symmetric naked singularities. The first spacetime produces a very
similar image to the Schwarzschild black hole, while the other two give rise to a
characteristic multi-ring structure at the center of the image. The key concept which
determines themorphology of the image is the behavior of the deflection angle on the
scattering photon trajectories which reach the observer. Since the deflection angle
depends directly on the properties of the effective potential for the null geodesics,
compact objects with similar effective potentials will lead to qualitatively similar
accretion disk images despite their different physical nature.

Further Reading

• On the calculation of the black hole shadow:
The analytical calculation of the shadow boundary for the Kerr black hole is
described in detail in the books [24,40], as well as in the recent reviews [32,74].
The procedure is generalized in the presence of a cosmological constant [73],
NUT charge [5,45], and plasma environment [71,72]. Shadows of black holes
interacting with an external gravitational source are obtained numerically in [3,
4,46,65,81].

• Black hole shadow in the modified theories of gravity:
These exist a large number of works studying the black hole shadow in various
modifications of general relativity. Analytical results include [12–14,56,61,69],
while [26,27,30,87] investigate the problem numerically.

• On the calculation of the thin disk image:
The construction of observable image of the thin accretion disk for the
Schwarzschild black hole is developed in the classical works [33,34,41,59,62,
63]. The procedure can be generalized straightforwardly for a general static spher-
ically symmetric compact objects as demonstrated in [49–51].

• Accretion disk images of exotic compact objects:
Exotic compact objects such as wormholes, naked singularities, boson stars and
regular black holes are considered as viable alternatives of the Kerr black hole
and simulations of their images are used in the interpretation of the EHT results
[8,11,55]. Accretion disk images of exotic compact objects considering different
models of accretion include [57,67,76,79,88,89,101].

4 This light ring structure could be extended to a further number of light rings, but they should
always come in pairs of stable and unstable ones.
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TheOptical Appearanceof Compact
Stars:Shadows andLuminousRings

Merce Guerrero

Abstract

In 2019, the direct imaging of M87* [1] by the Event Horizon Telescope opened
the door to understand the nature of the central object and the underlying theory
of gravity, since it explore the regions where the gravitational field is extremely
strong. In the images obtained by the collaboration, we can observe two distinct
regions: a dark circular center called shadow and an enveloping luminous ring
produced by the hot accretion disk surrounding the astrophysical object. In this
chapter, we want to explain the basic tools to analyse the optical appearance of a
compact object. Starting by the light bending near amassive body and the expected
detected images when a star illuminates a black hole. Finally, we assume different
models of accretions disks as well as the technique to obtain the similar images
as the one obtained by the Einstein telescope.

1 Introduction

The optical appearance of a black hole or any other ultra-compact object (UCO)
is the image one would expect to obtain after processing the data measured by
several telescopes around the world. This technique for acquiring such an image is
called imaging and can be done using different methodology [2,6,24,29]. Indeed
this is currently done by the Event Horizon Telescope (EHT) collaboration, whose
first result of M87∗ on April 10, 2019 [1,2] was a game changer in this field. This
collaboration uses radio telescopes spread in few groups around the globe to collect
the data. Since every measurement needs to be done by a pair of telescopes, which
is linked to the distance between them, there are many gaps on the resulting image
as a consequence of the small number of telescopes. The missing data is filled by an
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Fig. 1 Representation of a shadow and a wide luminous ring using the AI Dall-e

algorithm that generates possible ‘realistic’ solutions. The possible resulting images
that can fit reasonable the small collected data are huge. Nevertheless, by increasing
the number of telescopes, the resolution is going to be better since there are going to
have more image ‘covered with data’ and not by the algorithm.

In the corresponding images obtained by the EHT collaboration, which are sim-
ilar to Fig. 1, we can identify two distinct regions: a nearly circular dark center
called shadow and a wide surrounding luminous ring produced by the extremely hot
accretion disk surrounding the astrophysical object [13].

These types of observations are extraordinarily important, since they explore the
most extreme conditions of matter and spacetime. In fact, they detect photons that
have traveled very close to the horizon of a black hole, where the gravitational
field is extremely strong. It is therefore quite possible that these measurements will
highlight any small discrepancies between theories, since gravitational effects are
more prominent there. Not only black hole images, but also other observations of
strong fields, such as gravitational wave signals, are essential for understanding
gravity. For example, both allow testing the Kerr hypothesis, according to which the
only physically acceptable solution for a rotating, uncharged black hole in General
Relativity (GR) is the Kerr geometry. Therefore, if any signal is detected coming
from a compact rotating and uncharged object inexplicable by Kerr phenomenology,
this would be the signature of the New Physics. This New Physics may come from
considering exotic matter (violating energy conditions) or theories beyond GR.

Now that we know why it is relevant to study the optical appearance of UCOs,
let us explain the phenomenon. First, black holes have a so-called event horizon, for
which if something enters in the region below it, they will never be able to escape,
even photons. Therefore, these objects cannot emit light like other astrophysical
objects such as stars or any kind of dwarfs. The only way we can directly observe
such an object is because it is illuminated by one of the following luminous sources,

• A distant point-like source, for example, a star that is loosely attached to the
compact object.

• An accretion disk emitting around it. Such a possibility could occur in a tighter
binary system or in a dense center of a galaxy.
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Fig. 2 3D plot of the light bending phenomenon in a spacetime created by a static, chargless
(Schwarzschild) black hole in GR

Althoughboth are likely to reveal the presence of a blackhole, the expected brightness
of the ring provided by both sourceswill not be the same, since the number of photons
deflected by the gravitational field differs due to the proximity of the light sources and
the emitting surface. The first case is simpler to analyze, sincewe expect the light rays
to concentrate on the critical curves. However, the brightness of the corresponding
luminous rings may be fainter than those coming from a surrounding accretion disk.
This later scenario is actually the case we have already observed, but it involvesmuch
more arduous machinery to model and study the corresponding luminous rings and
shadow.

We shall also understand the trajectories followed by the observed photons. These
trajectories deviate as they approach amassive body (seeFig. 2 for descriptive image),
giving rise to curved trajectories called geodesics. This phenomenon was predicted
by GR, and was used as a test of this theory. Sir Arthur Eddington first observed this
effect during a solar eclipse in 1919.1 He measured the displacement between the
apparent and real positions of some stars as a consequence of the light deflection
produced by the Sun’s gravitational field. This feature is also the main responsible
for the optical appearance, since the photons emitted or traveling near the object are
deflected as a consequence of the strong gravitational field. Therefore, it is necessary
to analyze the geodesics to know what the image of the object will look like.

The theories of gravity predict the angular size and the shape of the shadow,
which depends on the geometry of the spacetime. For example, in GR, the shadows
are almost circular, but its size and shape depend on the mass and not so strongly on
the spin of the Kerr black hole. However, these and other features in the image are
sensible to astrophysical properties of the plasma near the black hole as it is going
to be shown in Sect. 4.2.

2 Geodesics in GR

Geodesics are those curved trajectories described by the functions xμ = xμ(λ), with
λ being the affine parameter, whose tangent vector, tμ = dxμ/dλ, is invariant under
parallel transport (autoparallels) defined by the connection of a metric. Thus, they

1 Even though there had been two unfruitful expeditions before, in 1912 in Brazil spoiled by the
thick clouds covering the sky and, in 1914, in Crimea for the start of World War I [9].
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are described by the following equations

tμ∇μt
ν = ẍα + �

μ
αβ ẋ

α ẋβ = 0 , (1)

where�
μ
αβ are the Christoffel symbols of the metric, gμν , and dots denote derivatives

with respect to an affine parameter, λ. As one can already imagine, solving the above
equation to find the geodesics can be quite demanding as one has to calculate all the
components of the connection. Thankfully, such an equation can also be obtained
through the variational procedure by considering the Lagrangian,

L = 1

2
gμν ẋ

μ ẋν , (2)

where gμν is a general metric solution of the field equations. Substituting the above
Lagrangian into the Euler-Lagrange equations, one can explicitly check that it leads
to Eq. (1). For any spherically symmetric spacetime with line element defined as

ds2 = −A(r)dt2 + B(r)dr2 + C(r)(dθ2 + sin2 θdϕ2) , (3)

one can assume that the motion takes place in the plane θ = π/2 without loss of
generality, because of the symmetry of the geometry we can always redefine the
coordinates so that the geodesics happen in such a plane. Then, the geodesic equations
become

A(r) ṫ = E , (4)

2B(r)r̈ + B ′(r)ṙ2 + A′(r)ṫ2 − C ′(r)φ̇2 = 0 , (5)

C(r) φ̇ = L . (6)

Since the Lagrangian does not depend on the coordinates t and φ, the first and third
equations are constants of motion, also known as Killing symmetries, where E is
the total energy and L the angular momentum of a particle per unit of mass. Indeed,
if we compute the Hamiltonian, H = pq̇ − L, where q̇ are the derivatives of the
coordinates with respect to the affine parameter,

2H = − E2

A(r)
+ ṙ2 B(r) + L2

C(r)
. (7)

We can also check that it is a constant ofmotion as it does not explicitly depend on the
affine parameter. Actually, we can redefine 2H = k, where k = −1, 0 for timelike
and null observers, respectively. For timelike observers we mean those that travel
slower than light, linked with massive particles. On the contrary, null observers are
those that travel at the speed of light or that are massless. With the redefinition of
the Hamiltonian, we can rewrite the above equation as

ABṙ2 = E2 − V (r) , (8)
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where we have introduced the effective potential

V (r) = A(r)

(
−k + L2

C(r)

)
. (9)

Remember that geodesics are related with the motion of particles on a curved space-
time. In the following subsections, we are going to turn our attention to the main
important aspects of null and timelike geodesics for the study of the optical appear-
ance.

2.1 Null Geodesics and Gravitational Lensing

Aswementioned in the introduction, particles’ trajectories are bent as a consequence
of an ample curvature of spacetime generated by a massive body. This is similar to
what happens to the light when passes through an optical lens, however in this case
the lens is a gravitational source and therefore such a process is called gravitational
lensing. Here, we want to explain the mathematical framework that describes such
an effect by using the geodesic equation for null (massless) observers.

Consider a light ray starting from spatial infinity and approaching to a gravitational
lens. As the photon gets sufficiently close to the gravitational source, due to the
spacetime geometry, it begins to deviate from their initial direction until they get to
the closest radius and subsequently turn back to spatial infinity again.

To comprehend this effect, we should rewrite Eq. (8) in terms of the impact
parameter2 defined as b = L/E ,

A(r)B(r)

L2

(
dr

dλ

)2

= 1

b2
− Vef f (r) ≥ 0 , (10)

where now the effective potential is

Vef f (r) = A(r)

C(r)
. (11)

Equation (10) describes a one-dimensional trajectory of a photonwith impact param-
eter b governed by a potential Vef f . This equation gives us an idea of how close to
the object we are and helps us to classify the trajectories depending on the number of
turns around the center. In order to understand this issue check Fig. 3, where we have
depicted a potential for a static, chargeless black hole (blue curve) and a trajectory
of a photon (black line) with an impact parameter b = 6.5. Note that a light ray only
propagates in those regions fulfilling 1/b2 ≥ Vef f . Additionally, there is a particular
radius where both functions intersect. This is the turning point or the radius of closest
approach, r0, as dr/dλ = 0 there. After reaching this point, the photon is going to
go from reducing the distance with the black hole to grow it again.

2 In the next section we explain why do we need to do it.
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Fig. 3 Schwarzschild effective potential (for a unitary mass, M = 1), a photon trajectory with
impact parameter b = 6.5 and bc depicted in blue black and red, respectively. With this plot, it is
clear why Eq. (10) hints on how close a photon can be from the object’s center and which the radius
of closest approach (given by the intersection between the blue and black lines) depending on the
impact parameter

Going back to the mathematics, one can obtain the impact parameter value for a
particular r0 as

b = V−1/2
e f f (r0) =

√
C0

A0
, (12)

where the subscript 0 means evaluated at r0. If the effective potential has amaximum,
there is a radius of closest approach corresponding to the unstable photon orbit or
photon sphere radius, rps and the impact parameter leading to such curve is

bc =
√
Cps

Aps
, (13)

called critical impact parameter. Since this corresponds to a maximum of the poten-
tial, it effectively splits the space of light rays issued from the observer’s screen into
two classes: those with b > bc are deflected at r0 back towards asymptotic infinity,
while those with b < bc will inspiral down towards the center of the object (thus
meeting the event horizon in a black hole case). Since this orbit is unstable, any
small perturbation will make the photon to eventually fall into the black hole horizon
or escape to the asymptotic infinity. Thus, a photon with an impact parameter arbi-
trarily close to b � bc will turn a large number of times around the compact object.
To calculate rps , we should find the maximum of the potential defined in Eq. (11)

V ′
e f f (rps) = − A(r)

C(r)
D(r)

∣∣∣∣
r=rps

= 0 with D(r) =
(
C ′(r)
C(r)

− A′(r)
A(r)

)
, (14)
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where primes denote derivative respect to radial coordinate. Thus, a photon sphere
exists (critical curve) if D(r) = 0. Since the maxima of the effective potential are
the responsible of the photon spheres, they are a useful tool to study the black hole
shadow. However, when we analyse the non-spherical static case, the concept of the
photon sphere is generalized [8,30].

If one wants to analyze the optical appearance of a compact object illuminated
by the light rays passing close by, one has to suitably rewrite the geodesic Eq. (10)
in order to be able to calculate the deflection angle. Thus, the equation must be
expressed in terms of the variation of the azimuth angle φ with respect to the radial
coordinate. Using Eq. (6), we obtain

A(r)B(r)

C(r)2

(
dr

dφ

)2

= 1

b2
− Vef f (r) . (15)

The above equation is the one we are going to use when we want to get the optical
appearance of a UCO.

2.2 Timelike Geodesics

Remember that timelike geodesics describe the motion of a massive particles. This
will play a role when we want to model the accretion disk composed by plasma,
an ionized gas formed by ions and free electrons, i.e. massive particles. Recall once
again the geodesic Eq. (8), which in this case reduces to

AB

(
dr

dλ

)2

= E2 − A

(
1 + L2

C

)
, (16)

where the last term of the equation is the effective potential for timelike observers.
In this case, the potential usually has a minimum, that is

dV

dr
= − A

C
D(r) − A′ = 0 . (17)

Such a position is known as the Inermost Stable Circular Orbit (ISCO). Conversely
to the photon sphere, the fact that this radius corresponds to a minimum of the
potential instead of a maximum translates to a stable orbit for timelike observers. As
a consequence, one would expect that the inner edge of the orbit is placed here, since
it is stable. However, for supermassive black holes this is not the case, and typically
the inner edge is going to be even closer to the event horizon.

Let us now apply this knowledge to the optical appearance.
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3 Illumination from a Loosely Bounded Star

Remember that the shadow of an UCO can be observed by two different means; the
first one is by a distant orbiting star while the second is by an accretion disk.We begin
by the former case, which is simpler and sets the ground of the main phenomenology
happening in this framework. In this situation, we assume the star to be a punctual
isotropic light emitter.

Figure 4 represent the system star-object with themain photon trajectories coming
out of the star that are able to reach us. Another assumptionmade here is that theUCO
corresponds to a Schwarzschild black hole with unitary mass (M = 1) placed at the
origin of coordinates. The star is located at r = −5 in two different configurations
with respect to the central object and we have also considered our observatory far
away on the right hand side of the plot. The light rays depicted in both figures are
divided into three different colors: blue, red and green. The first one is the typical
example of gravitational lensing since its trajectory is slightly deviated, while the
second and third colors can barely be distinguishable as the initial and final parts of
the trajectories overlap. The red one only does one turn around the massive body,
whereas the green does two. Thus, we can note that, as the radius of the turning
point reduces, the deflection angle increases until reaching the critical distance in
which light is not able to escape from the object. At such a distance, the trajectory
yields a circular orbit around the center depicted in the figures as the yellow dashed
circle. This orbit is the so-called photon sphere which is circular because its radius
corresponds to the maximum of the potential and, consequently, it will not change if
there is no perturbation. If the radius keep reducing, then the light ray will be dragged
into the center of the object.3

After these loops, photons depart from the object recovering its almost straight
paths when they are far away, since the gravitational field of the black hole decreases
with distance. Thus, when they reach us, their trajectories are practically parallel to
each other (see the above figures). Furthermore, we can see that the more turns the
light does around the black hole, the closer they get when they leave. Indeed, the
distance between them gets exponentially small on each turn, so after some loops,
they are going to essentially lead to the critical impact parameter. Let us pay attention
to Fig. 4b. This image corresponds to a case where the system is not exactly aligned,
i.e. the star, black hole and us do not form a straight line. Normally when the system
is slightly unaligned, what we would see is a ‘cross’: four identical images of the
star. This can be seen in the Universe, although the gravitational lens is a galaxy
instead of a black hole (look for Einstein’s cross, for example). For the extreme case
of Fig. 4b, what we would expect to observe is only two identical reproductions of
the source at opposite sites, corresponding to the light rays reaching us from above
the abscissa axis and from below.

3 Note that this is the case for the case of Schwarzschild solution, which corresponds to a rather
simple effective potential. However, if we consider different potentials, this might be different.
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Fig. 4 Representation of the Schwarzschild black hole-star system and photon trajectories in two
different configurations: in a the star his ‘hidden’ behind the black hole while in b the star is above.
We assume that we are at asymptotic infinity to the right of each plot. The black disk symbolizes
the interior of the event horizon, the dashed yellow circle is the photon sphere, while the purple
dashed line is the value of the critical impact parameter for Schwarzschild. The red, green and blue
curves correspond to the trajectories of the photons that completely turn around the center one, two
and zero times, respectively

Fig. 5 Representation of the shadow and the luminous ring surrounding it for the configuration
seen in Fig. 4a
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On the contrary, for the case depicted in Fig. 4a, where the star is completely
aligned with the object and us, the image is going to be completely different. In
this case, if we perform a revolution around the horizontal axis, we will get the
3D version of the trajectories. Once we have this picture in mind, let’s go one step
further. Imagine yourself located at the end of the horizontal axis; what you would
see is shown in Fig. 5, where we can see a luminous ring surrounding a black
circular area. This thick yellowish ring represents the regions where a large number
of photons accumulate and is the one that an observer is expected to see. The radius
of these luminous rings is given by the critical impact parameter since the observed
photons will reach us with a certain impact parameter and, therefore, the radius of the
luminous ring is given by this parameter. This means that the radius of the shadow,
the central black region, in this case is given by the critical impact parameter and not
by the event horizon. However, if the star would have been placed inside the photon
sphere, then a smaller shadow would appear, since photons emitted in that region
can still arrive to us if they are emitter as ‘direct’ as possible, that is without turning
around the object. Therefore, even though the photon sphere and the event horizon
given by the geometry of the spacetime play a main role on determining the size of
the shadow, the position of the photon’s emission is also a meaningful factor on the
optical appearance.

4 Illumination from an Accretion Disk

Let us nowmove to the second case of illumination: the one produced by an accretion
disk, an extremely hot disk formed by plasma. The first question that may arise is:
how is it formed? At the beginning, the black hole is surrounded by a gas that orbits
around the object far from the event horizon. Contrary to the common idea we have
of a black hole, they can have other bodies rotating at a sufficient distance in the
same way as the planets of our Solar System do around the Sun, instead of being
a huge astrophysical object that swallows everything that comes near it. Therefore,
the surrounding gas would be orbiting around it without falling into it. The reason
why we all have the image of a black hole attracting and eating everything is because
there is something else besides gravity that makes the gas approach the black hole:
friction.

Friction heats up the surrounding gas, which means that the gravitational energy
of the system has to be transformed to thermal, causing the gas to fall into the black
hole. As a consequence, the gas becomes a hot disk around the black hole. The
hotter the accreting material becomes, the more energetic light it emits, as happens,
for example, with stars or incandescent light bulbs.

In this scenario, we have to face a more challenging situation. On the one hand,
the accretion disk can certainly be well inside the photon sphere and its shape allows
to emit all along its surface instead of a point-like seen before, requiring a precise
knowledge of the trajectories of light in spacetime. On the other hand, the received
luminosity depends strongly on the emission profile of the disk. This demands a
realistic model of the disk to establish the luminosity profile, which is obtained by
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simulations combining GR and Magnetohydrodynamics. In this section, we intend
to explain in detail both needed ingredients, the geodesic structure analysis as well
as the modelling of the disk itself, and the assumptions we use to simplify the study
of the problem.

4.1 Ray Tracing

The first step is to get under control the trajectories followed by photons passing near
the compact object. Before getting into the mathematics, let’s start by explaining the
fundamental idea of the ray tracing. Its main objective is to classify light rays accord-
ing to the number of turns theymake around the object. This information is necessary
because, after all, when an accretion disk is added, the light rays will intersect with
it at most twice per turn around the object. Depending on the characteristics of the
accretion disk, these could mean additional luminous ‘enhancements’.

Moreover, as we mentioned before, the optical appearance of a compact object is
closely related to the impact parameter. This is so because we are so distant of the
gravitational source that the light rays come almost parallel among themselves and
with a different impact parameters, as we saw in Fig. 4. Using this fact, we assume
that each pixel of the image corresponds to a wave detector that received a light with
an impact parameter b. The responsible geodesic obtained from Eq. (15) is traced
backwards towards the black hole, ending either close to the horizon or when the
geodesic escapes again to a large distance from the black hole. With this, we know
the total number of revolutions around the compact object. This procedure is known
as ray tracing.

To define howwe count the number of turns,we take into account the configuration
of the object-observer system introduced in the previous section. Recall that we place
the observer at asymptotic infinity on the right-hand side, so a photon that was not
deflected at all by the compact object would have turned n = 1/2 times, i.e., it would
have gone directly from the left-hand side to the right-hand side of the plot. In fact,
the total number of orbits made by a single light ray is the (normalized) change
of the azimuth angle, n(b) ≡ φ

2 . Consequently, the number of intersections with
the equatorial plane of a given line is [2n]. Finally, recall that as we approach the
critical impact parameter, b � bc, a light ray will have a longer trajectory around the
neighborhood of a black hole until it is formally there forever at the critical value (or
until a perturbation causes it to fall into or out of the object). The number of orbits
will obviously depend on how close the impact parameter is to the critical one.

Under the above conditions, typical relevant contributions to the total luminosity
on the observer’s screen will be given by three types of trajectories indexed by an
integer m which counts the number of intersections of a particular light ray with the
vertical axis, i.e.

m

4
− 1

4
≤ n <

m

2
+ 1

4
, (18)
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except for the first case, m = 1, for which the lower limit corresponds to n = 1/2
and remember that n is the normalized change of the azimuth angle. We will use this
number to classify the different types of emission4 :

• Direct (m = 1): represents trajectories that intersect just m = 1 times the vertical
axis (1/2 ≤ n < 3/4), meaning that the light rays emitted by the disk go directly
to the observer. This is the dominant contribution to the optical appearance of the
object, in terms of luminosity andwidth of the associated radiation ring. However,
it essentially reproduces the characteristics of the accretion disk rather than those
of the background geometry and its critical curve.

• Lensed (m = 2): corresponds to the light rays crossing the equatorial plane for a
second time, and it is defined by 3/4 < n ≤ 5/4, being the subdominant contri-
bution to the luminosity.

• Photon ring (m = 3): composed by light rays intersecting the equatorial plane at
least three times, and is defined by n > 5/4 .

• Higher order (m > 3): typically contribute negligibly to the total luminosity (see
[15] for a general discussion), as a consequence of the reduction of their impact
parameter range. For this reason, they are usually integrated into the photon ring
emission. These modes are much more sensitive to the characteristics of the
background geometry than the rest of the emission.

The fact that higher order emissions can be neglected was already depicted in
Fig. 4, where the blue curve corresponds to the direct emission, the red to the photon
ring (has three cuts with the vertical axis) and the green to a high order emission of
m = 5, where these two later contributions are indistinguishable when they reach
the observer.

Note that a light ray with lensed emission contains the direct emission and the
photon ring contains both. As mentioned before, the contribution of higher order
emissions is negligible. Indeed, their contribution to the total luminosity can be dis-
missed. Indeed, its contribution exponentially decrease as they approach the critical
curve [3] such that beyond m = 3 all additional emissions are typically accumu-
lated in the m = 3 mode and thus giving the position of the critical curve [11,15].
Although we have said that higher order emission is usually omitted, the shape of
the effective potential plays an important role in the contribution of these lower
order trajectories, for example the geometry studied in [16] is richer compared to
the Schwarzschild case, allowing higher-order emission to contribute significantly
to the total luminosity.

Last but not least, it should be noted that for impact parameters b < bc the light
ray will also perform a series of half turns. These light beams will be emitted near

4 This notation is slightly different from the more canonical one in the community, where m = 0
is reserved for direct emission and m = 1, 2, . . . for photon ring images, see e.g. [35]. Given the
correspondence between m numbers and photon ring images in our case, we find it clearer to use
m for the number of intersections with the disk, which means that our m is always one unit larger
than the usual convention.
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the central region of the object within the photon sphere. However, when calculating
their inner ray-traced trajectories we will see two different cases: if the object has an
event horizon like a black hole, the last trajectory we can detect is emitted very close
to the event horizon, while for those that they do not have, such trajectories continue
their path to the center of the solution. For the case of a black hole, there are light
rays that do not intersect the equatorial plane because they cross the event horizon
before without encountering the accretion disk on their trajectory. These trajectories
form the inner shadow [7], b = bis , and defines the brightness depression of a black
hole independently of the emission properties of the geometrically thin accretion
disk, since we will never detect those photons. However, such an inner shadow may
be missing for a compact object without a horizon.

4.1.1 Schwarzschild Black Hole
Let us start by considering a static, spherically symmetric solution: the Schwarzschild
black hole. Even though we know black holes are rotating objects, this assumption
turns out to be a good approximation since the size and shape of the shadow, as
seen by an asymptotic observer, depend very weekly on the spin of the black hole
in combination with the inclination with respect to the line of sight, with deviations
from circularity lying within ∼ 7% for ultra-fast spinning black holes [31].

As we have already seen, for this case, one needs to calculate first the location of
the horizon, since depending on the position of the horizon, the impact parameters
that belong to the inner shadow are going to be different,

rh = 2M , (19)

with M being the mass of the black hole. Apart from the position of horizon, there is
another main radial distance which plays a role when analyzing the optical appear-
ance of a compact object: the critical curve (for which we shall also reserve the word
‘photon sphere’), which for Schwarzschild is

rps = 3M . (20)

The next step in our analysis is to integrate the geodesic equation for a bunch of
light rays spanning the whole region of impact parameter values. The corresponding
trajectories can be therefore classified according to the number of (half-)orbits around
the solution as follows (Table 1):

We have ordered them from the outermost to the innermost emission. To illus-
trate this general discussion, the trajectories of a bunch of photons are depicted in
Fig. 6 for b ∈ (0, 10). We point out that the observer’s screen is located at the far
right side of this plot in all these cases. In these figures one can see the direct (green),
lensed (orange) and photon ring (red) trajectories outside the photon sphere (dashed
yellow). In addition, we have plotted the photon ring (blue), lensed (purple), and
direct (cyan) emission originated from inside the photon sphere, b < bc, while the
black trajectories correspond to the inner shadow, those light rays that do not cross
at any time the vertical axis.
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Fig. 6 Ray tracing of the Schwarzshild black hole of unitary mass (M=1). The observer’s screen
is located in the far right side of this plot and the type of emission is defined with respect to the
number of intersections with the equatorial plane (vertical line): for b > bc we have direct (green),
lensed (orange) and photon ring (red) emissions reaching to a minimum distance from the photon
sphere (dashed yellow circumference) before running away, while for b < bc we also have direct
(cyan), lensed (purple) and photon ring (blue) emissions. The latter three trajectories intersect the
BH horizon (black central circle) after crossing the photon sphere. The bunch of black curves do
not intersect the equatorial plane and therefore no emission can come out on them no matter the
accretion disk model, therefore corresponding to the inner shadow of the solutions

At this point, we already know which is the impact parameter range for each
type of photon trajectory. Despite with Fig. 6 we can visually reason why we only
classify the null geodesics into these three groups, as we can barely see the photon
ring emissions (red and blue), there is a better way to understand it graphically. This
is Fig. 7 which depict the transfer functions, rm , in terms of the impact parameter.
The transfer functions, rm , account for the location of the m-th intersection between
the light ray and the vertical axis (i.e., the future disk). Therefore, the information
one can subtract about this plot is how demagnified the light ring will be by the
slope of the transfer function; the steeper it is, the lesser the contribution. This is so
because the ring’s width will be continuously shrinking since its thickness depends
on the impact parameter range. Bearing this in mind, the direct emission is the largest
contribution to the total luminosity by far, and the lensed and photon ring are highly
diminished as we expected from the previous section.

Table 1 Impact parameter range for direct, lensed and photon ring emissions for Schwarzschild
black hole

Direct Lensed Photon ring Inner shadow

Above the critical
curve

b > 6.15 b ∈ (5.23, 6.15) b ∈ (5.19, 5.23)

Below the critical
curve

b ∈ (5.19, 5.23) b ∈ (5.02, 5.19) b ∈ (2.85, 5.02) b < 2.85
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Fig.7 The first three transfer functions for the direct (blue), lensed (orange) and photon ring (green)
emissions. bc denotes the location of the corresponding photon sphere. The slope of each curve is
interpreted as the demagnification factor of the corresponding emission

This plot of the transfer is also very useful to understand howmany rings and how
they are going to be distributed depending on the inner edge of the accretion disk.
Imagine that the inner edge is placed at r = 6M , this means that the accretion disk
emits from r ≥ 6M . If we draw an horizontal line in the plot at such a radius,5 we
are only going to receive those light rays above the horizontal line. Thus, for such a
case, we will be able to distinguish three rings, one for each type of emission. The
‘direct’ ring would go from more or less b = 7 to infinity, whereas the lensed would
go from b ∼ [5.5, 6.15] and the photon ring near the critical value, so the shadow
is going to extend up to there. But if we move the inner edge down to r = 2M , we
can see how now all the curves intersect and, therefore, all the rings are going to be
overlapped at some points. For this case, the shadow is going to be the smallest, the
one we have defined as inner shadow. Now that we completely know the trajectories
of the photons and what we can expect of the luminous rings and shadows, we are
able to move to the modelling of the accretion disk.

4.2 Accretion Disk Model

Treating the disk can become a real ordeal very easily, as its modeling requires the
use of General Relativistic Magneto-Hydrodynamic (GRMHD) simulations, requir-
ing the models fully account for relativistic effects, matter dynamics and photon
propagation. Nonetheless, let us begin with a toy model proposed in [15] that will
already show the effects of the gravitational lensing and redshift of the emitted pho-
tons. Therefore, let us itemize the several considerations we have assumed for this
first example:

5 Caution: note that in this section we talk about two different types of radius, one of them is r , the
physical radial distance between the central object and, in this case, the inner edge of the accretion
disk. The second one is the optical radius of the shadow and the luminous rings, which are given
by the impact parameter.
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• Placed on the equatorial plane of the object which is perpendicular to us: the
image seen from the observer will be face-on.

• Optically thin: the disk does not re-absorb the photons. On each intersection with
the equatorial plane the light ray will ‘pick up’ additional brightness, in the sense
that when the photon crosses, a new photon can be emitted. This strongly depends
on the particular assumed emission intensity profile of the disk.

• Geometrically thin: the width of the disk is negligible as compared to the radial
extension of the disk, which means that most of the matter lies close to the radial
plane.6 This property produces an infinite sequence of concentric rings from
photons that have completed n half-orbits in their approach to the critical curve.

• The specific luminosity only depends on the radial coordinate, I em = I (r).
• Isotropic emission in the rest frame of matter: the intensity does not depend on

the frequency, ν, in the static frame.
• Monochromatic emission: the emissivity, jν , depends on the frequency as jν ∼

ν2.
• The intensity profile is higher close to the black hole, where the deflection of the

light is strongest and the emitting plasma velocity is close to those of light.

Note that the last assumptions assume a static frame, this can be done because the
disk is assumed to be face-on, so the effects between the dynamics of the disk are
degenerated by the choice of the radial profile. Additionally, significant progress can
also be made by using analytical models of static accretion disks with a localized
emission starting from a finite-size region of the disk. Here we have assumed the
disk thin, but if it is spherically symmetric, the luminous rings would converge to
the critical curve itself and delimit the outer edge of the shadow [25], instead of the
infinite sequence of concentric rings proper of an infinitely thin disk (or even thicker
[35]).

Oncewe have defined the properties of emission and absorption to the disk,we can
produce a model total intensity image by solving the unpractised radiative transport
equation, governed by the Boltzmann equation for photons. The relativistic Boltz-
mannequation,which iswritten in termsof invariant quantities or frame-independent,
reduces to

d

dλ

(
d Iν
dν3

)
=

(
jν
ν2

)
− (ναν)

(
Iν
ν3

)
. (21)

where Iν is the intensity for a given frequency ν, jν is the emissivity,αν the absorptiv-
ity, and quantities inside parenthesis are frame-independent. The resolution of such
an equation demands precise knowledge of the fluid forming the disk (i.e. number
density, angular momentum, emissivity and absorptivity).

6 This is a good approximation for small compact objects or the rate is sub-Eddington [28], but for
supermassive ones we know that the accreting material is very massive, leading to a geometrically
thick disk whose inner edge can extend inside the Innermost Stable Circular Orbit for timelike
observers [32].
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Model I

Model II

Model III

Fig. 8 Plots of the three different normalized intensity profiles emitted by the accretion disk

For the purpose of simulating different stages in the temporal evolution of such
an accretion disk, we are modelling such a profile by truncating the inner edge of the
disk, rie, at different radius. Also, we assume that there the intensity actually takes
its maximum value, and smoothly falls off outwards until asymptotic infinity (so that
the outer edge of the disk is assumed to be infinitely far away) with a given radial
decay. To simplify the analysis of this aspect, typically in the literature different
decay profiles for the emission are taken ad hoc depending on how close to the
innermost region of the geometry the inner edge of the disk is. Indeed, there are
different possibilities to write the expressions that describe the profiles, but here we
are interested in their shape:
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• Model I: The emission starts at the ISCO for timelike observers, while vanishing
in the region internal to it and falling off asymptotically to zero beyond of it, see
Fig. 8

• Model II: The emission has a sharp peak at the critical curve also known as
photon ring, (20), having a qualitatively similar central and asymptotic behaviour
as Model I, see Fig. 8

• Model III: The emission starts right off the event horizon (in the black hole case7 )
or the innermost region for horizonless UCOs. This profile decays more smoothly
to zero than in the previous two cases, see Fig. 8

Once the emission profile of the accretion disk is set, we can turn our attention
to the observed intensity. If we assume that the photons emitted reach us without
interacting with anything, then the observed intensity is the emitted but altered due to
both gravitational redshift and the optical properties of the accretion disk. The former
phenomena happens when a light ray is emitted close to a gravitational object and
escapes from it, the emitted frequency is going to be affected; in particular, if the
frequency of the photon in the rest frame of the plasma in the disk is given by νe with
associated intensity Iνe , then the photon frequency measured by the distant observer
will be νo with intensity I ob. To relate both intensities we use the assumption of a
geometrically (infinitesimally) thin accretion disk, for which Eq. (21) implies that
Iν/ν3 is conserved along a photon’s trajectory. Since Iν/ν3 is conserved along a
photon’s trajectory, radiation emitted from a radius r and received at any frequency
ν ′ has specific intensity [15]

I obs = g4 Iν(r) , (22)

where g is the square root of the time metric component; for spherically symmet-
ric spacetimes this would be g = A(r)1/2 with A defined in Eq. (3). Thus, in the
spherically symmetric geometry considered in this work I obν ′ = A3/2(r)I (r). On the
contrary, the implications of an optically thin disk are less known. The raw idea
is that each additional intersection of the trajectories with the accretion disk will
contribute to pick up additional luminosities according to the emission profile of the
disk. Therefore, the total observed intensity will be

I obs(b) =
∑
m

A2 I|r=rm (b) , (23)

where remember that the transfer function, rm(b), contains the information about
the radius of the disk where a given light ray with impact parameter b will have its
mth-intersection with the disk (in the coordinate r ).

7 From the point of view of the GRMHD simulations relevant for the EHT observations this is the
most suitable scenario [14].
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Fig. 9 The observed luminosity (top) and the optical appearance (bottom) for the Schwarzschild
BHwith an accretion disk based on theModel I (left), Model II (middle) andModel III (right panel)
depicted in Fig. 8, viewed from a face-on orientation

4.3 The Optical Appearance of an Schwarszchild Black Hole

Thefirstmodel of the accretion disk is extended up to the ISCO for timelike observers.
Its emitted intensity profile is plotted in Fig. 8, and the observed intensity together
with the optical appearance with its intensity legend is depicted in left panel of
Fig. 9. The fact that the emission starts at the ISCO allows to clearly identify the
impact parameter regions on the observed intensity corresponding to (from larger to
smaller b’s) a small reproduction of the emission profile and two spikes representing
the direct, lensing and photon ring emissions, respectively. This is translated into a
clean view of the three kinds of light rings in the optical appearances image (after
zooming in a little bit). The direct emission is largely dominating the total lumi-
nosity with a broad ring very bright at the inner edge and smoothly fading out for
larger impact parameters. This ring encloses a thinner and dimmer ring (the lensed
emission) and inside this latter an even thinner photon ring which is barely visible
at naked eye.

In Model II, depicted in the middle panel of Fig. 9, the direct, lensed, and photon
ring types are overlapped in the observed intensity as a consequence of the inner
edge location of the accretion disk being on the critical curve itself, which enables
the direct emission via the gravitational redshift correction to pierce well inside
the critical impact factor region and become the dominant contribution there, while
for larger impact parameter values the combined lensed and photon ring emissions
occurring roughly at the same location produce a large but narrow spike in the
observed emission. Indeed, if we zoom in, we see a split between the photon ring
(being fainter and closer to the direct peak) and the lensed spikes.After this luminosity
boosts, the direct emission dominates again in a fainter way. The net result is that in
the optical appearance the lensing and photon rings are superimposed with the direct
emission. The lensing ring contribution can be appreciated in this figure, though
the one of the photon ring is highly diluted and barely visible.Lastly, Model III is
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depicted in right panel of Fig. 9. Since the inner edge of the disk extends all the way
down to the event horizon this translates into a much wider region of luminosity
in the observed emission, thanks to the stretching of the direct emission to a larger
distance. As a consequence, the photon ring and lensed emissions appear now as two
separated but superimposed spikes with the direct emission. Another meaningful
feature is the enlargement of the range of lensed emission. At the same time, this
discussion is reflected in the optical appearance which shows a much wider region
of luminosity with the contributions of the direct, lensed and photon ring emission.
However, the second type of light rays encloses a wide ring right on the middle of it,
whereas another (dimmer) one right on the inner boundary comes from the photon
ring emission.

With this we have the basic tools to analyze and understand the techniques used
to obtain the shadows and photon rings of a static and spherically symmetric UCO,
for example [4,16–18,26,27,33,34].

5 Discussion

The simplifications assumed here make the employed methods more accessible, but
in order to compare their results with real data, the models must be improved. The
possibilities for doing so are numerous.On the one hand, in terms of geometry,we can
extend the above framework to rotating case [11,12,36]. In the cases of considering
non-Schawzschild or Kerr geometries, one has to be careful when studies these
kind of objects, since if they present an anti-photon sphere, it can produce a non-
perturbative instability [5,10,19,20,23]. On the other hand, one can also improve
the modeling of the accretion disk. For example, the disk can be considered to be
tilted (e.g. the disk of M87* is likely to have an inclination of 17◦), as well as a larger
profile [35]. For a more realistic model used by the EHT collaboration, see [14], for
example.
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BeyondNewtonianDynamics
of Planar CRTBPwithKerr—Like
Primaries

Suparna Roychowdhury and Roopkatha Banerjee

Abstract

In this article, we shall discuss the dynamics of the classic planar circular restricted
three-body problem (CRTBP) with spinning primaries in the context of a beyond-
Newtonian approximation [27]. We shall begin by discussing the construction
of the beyond-Newtonian potential in the so-called Fodor–Hoenselaers–Perjés
procedurewherewe keep first order non-Newtonian contributions in both themass
and spin. Using this potential, we shall then discuss our model for a test particle of
infinitesimal mass orbiting in the equatorial plane of the two primaries. The talk
shall then discuss the dynamics as the system transitions from theNewtonian to the
beyond-Newtonian regime. We shall then study the evolution and stability of the
fixed points of the system as a function of the parameter εwith the dynamics of the
particle analyzed using the Poincaré map of section and the Maximal Lyapunov
Exponent as indicators of chaos.We shall establish that the intermediate values of ε
seem to be themost chaotic for the two cases of primarymass ratios (= 0.001, 0.5)
examined.We also conclude that the amount of chaos in the system remains higher
than the Newtonian system as well as for the planar circular restricted three-body
problem with Schwarzschild-like primaries for all non-zero values of ε.
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1 Introduction

In the field of modern celestial mechanics and dynamical astronomy, one of the most
intriguing and important problems is the dynamics of few bodies, in particular being
the case of a circularly restricted three body problem [113]. This problem has been
applied in various fields in astronomy, like planetary dynamics, galactic and stellar
cluster dynamics and even molecular dynamics. From Euler first formulating the
CRTBP in a synodic (or rotating) coordinate system to Lagrange demonstrating the
existence of five equilibrium points at which the gravitational forces of the bodies
cancelled out, the CRTBP has been an intensive field of research for almost three
centuries now. Soon after Lagrange, Jacobi introduced his integral of motion, which
was then extensively used by Hill to determine the motion of an asteroid in the three-
body problem and to introduce the so-called zero velocity curves (ZVC), which
establish regions in space where the bodies are allowed to move. In the 19th century,
Poincaré notably studiedHill’s problem andwas able to choose initial conditions that
resulted in periodic orbits in CRTBP. This led to systematic searches for periodic
orbits in the three-body problem which boomed with the advent of modern-day
computers. Currently, with the advent of LIGO and the detection of gravitational
waves from binary black hole mergers [1,2], the investigation of such systems in
strong gravitational fields have become a field of intense research once again. The
black holes involved in these discoveries span a mass range of 10–100 M�, and
are all consistent to have initially formed from the death of massive stars. For an
excellent review on the history of CRTBP and its development through the centuries,
the reader is referred to [83].

There is also strong observational evidence that a different class of super massive
black holes (SMBHs), with masses ranging from 105 to 1010 M�, are residing in
almost all centres of galaxies [7]. It is expected that some of these SMBHs will pair
up as binaries as their host galaxies merge [8]. In fact, there is ample evidence of
several active galaxies with double nucleus [59,81]. It is also speculated that the
eventual inspiral and merger of some of these SMBH binaries constitutes a prime
gravitational wave source for the planned LISA observatory [3]. In addition, there is
also increasing evidence that there are Kerr black hole binaries which are merging
[7,48,93] and are sources of gravitational radiation.

In such binary black hole mergers which also accrete, the investigation of the
chaotic dynamics of test particleswithin accretiondiscs or inside the halo surrounding
these compact objects has become a subject of prime importance [23,24,46,50,
53,55,56,70,72,74,77,95,119,129–134,137]. Some authors have also studied the
numerical schemes and techniques which can be used for such non-linear, chaotic
problems along with the dynamics of these systems [74,134,138]. Investigations
of such dynamics of charged particles moving under the influence of magnetic and
strong gravitational fields of a single compact object have already been studied in
some detail within the general relativistic framework [60–64,115]. Such studies have
been extended to the motion of test particles under the influence of the relativistic
gravitational field of accreting black holes [98–100,118,125] and also for motion
under the influence of gravity produced by an extended body [30,68,117,127].
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On the other hand, escaping particles from dynamical systems has also been
a subject under focus for decades. Especially the issue of escape in Hamiltonian
systems is directly related to the problem of chaotic scattering which has been an
active field of research over the last decade and it still remains an open area [9,10,12–
14,17,20,21,36,79,88,96]. It is well known that some types of Hamiltonian systems
have a finite energy of escape. For lower values of the particle energy, the equi-
potential surfaces of these systems are closed and therefore escape is impossible.
For energies above the escape energy, these surfaces open and exit channels emerge
through which particles can escape to infinity. There is a comprehensive body of
work on such “open” or “leaking” Hamiltonian systems [6,22,38,57,67,87,102–
104,139–144]. However, it is needless to say that this list of citations is neither
complete nor exhaustive. It is just indicative of the body of work that has happened
in these fields and is still continuing.

The restricted three-body problem (RTBP) is an excellent example of such open
Hamiltonian systems with escape [123,124]. Over the last few decades, a large
number of studies have been devoted to the classification of orbits in the RTBP. It all
started with the pioneering works of [85,86] where initial conditions of orbits were
classified as bounded, escaping or collisional.Moreover, bounded orbits were further
classified into orbital families by taking into account the type of motion of the test
particle around the primary sources. Such classifications have also been done in the
context of planetary systems, Earth-Moon system and Saturn-Titan system [29,143].
In this context, it is important to mention that a simplified modification of the RTBP
is the Hill approximation which focuses on the vicinity of the secondary source
[52,91,92,108,109]. This facilitates for the study of themotion of test particles in the
neighborhood of the Lagrange (equilibrium) points L1 and L2. At this point it should
bementioned that theHill approximation is valid onlywhen themass of the secondary
is much smaller than the mass of the primary body. One can directly obtain the Hill
model from the classical RTBP by translating the origin to the center of the secondary
body and also by re-scaling the coordinates suitably. The Hill problem was proved to
be non-integrable by [78], and is chaotic, as shown by [101]. Subsequently, thorough
numerical investigations of this problemwere performed by carrying out a systematic
classification of the initial conditions of the orbits [144]. More precisely, the initial
conditions of the orbits were classified into four categories: (i) non escaping regular
orbits; (ii) trapped chaotic orbits; (iii) escaping orbits; and (iv) collisional orbits. In
addition, the issue of equilibrium points in circular restricted three body problem
(CRTBP) has also been studied widely and in great detail (see [51] and references
there in). The discovery of the Trojan asteroids around the Lagrangian points L4 and
L5 in the Sun-Jupiter system [82], and the recent observations of asteroids around
L4 for the Sun-Earth system [18], has added a great impetus to theoretical studies
on the subject. Moreover, the dynamics of non-conservative RTBP have also been
investigated extensively, like the case of CRTBP with gravitational radiation [94],
an elliptic restricted three-body problem [121] and that of a dissipative CRTBP with
drag forces [122].

One of the first attempts at studying the relativistic CRTBP under the assumptions
of low velocities and weak gravity was made by [65] in the year 1967. He looked at
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the post-Newtonian equations for the first time using the Einstein-Infeld-Hoffmann
(EIH) formalism [37]. Since then this problem has been studied by several authors
where they have attempted to present the Lagrangian explicitly [19]. Some authors
have also tried to explore the deviations to the Lagrangian points due to the post-
Newtonian corrections [75]. In addition, analytical solutions were also attempted in
the GR regime using the EIH approximation up-to the first order [135]. Recently,
as one of the first studies of chaotic orbits in the post-Newtonian CRTBP, [53]
explored the influence of the distance of separation between the two primaries. They
observed that if the primary bodies are close enough, the post-Newtonian dynamics
is qualitatively quite different, particularly where some Newtonian bounded orbits
become unstable.

Inmore recent studies, several authors have formulated this problemusing pseudo-
Newtonian potentials developed for non-rotating Schwarzschild-like (Paczyńsky-
Witta potential) [89] and rotating Kerr-like primaries [4,80,97] to avoid the compli-
cations of a post-Newtonian formulation. Subsequently, detailed studies of orbits and
the dynamics of test particles around a single Schwarzschild primary and a binary
system, as well as Kerr like primaries have been made in recent years with the idea
of investigating the chaotic and unstable nature of orbits in the relativistic regime.
In a very recent study, [33] used the Fodor-Hoenselaers-Perjés (FHP) procedure
[41] (taking into account the corrections made by [107]) to derive an approximate
potential for the gravitational field of two uncharged spin-less particles modeled as
sources with multi-pole moment, m. In this work, they have explored the dynamics
of a massless test particle using the Poincaré section and the Lyapunov exponent as
indicators of chaos. As they have mentioned, this potential is not ad-hoc as other
pseudo-Newtonian potentials but rather it is exactly derived from the multipolar
structure of the sources. In our current study, we also follow a similar route and use
the FHP procedure to derive the multipolar structure of a spinning binary system.
Subsequently, we construct a beyond-Newtonian potential to imitate the gravitational
effects of this system on a test particle in the CRTBP scheme.

The article is organized as follows. In the next section, we present the formulation
of the gravitational beyond-Newtonian potential of each Kerr-like source using the
FHP procedure. Next, we present the Lagrangian and the equations of motion of a
test particle in context to CRTBP. In the subsequent section, we present a detailed
analysis of the Hill curves or the zero velocity surfaces as the systemmakes a gradual
transition from the FHP beyond-Newtonian approximation to the classical regime
through a parameter ε in the beyond-Newtonian potential. Here we also present a
detailed analysis of the orbits and a discussion on the fixed points of this system
along with their stability as a function of the parameter ε. The classification of the
nature of orbits is made using Poincaré surfaces of section and the variational method
for the calculation of the largest Lyapunov exponent, as done by several previous
authors. In the next section, we present a comparison between the dynamics of a test
particle around a binary system of Schwarzchild and spinning primaries. Finally, in
the last section we conclude with a summary of our main results and present certain
new directions that we intend to investigate in the near future.
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2 Formulation of Beyond-Newtonian Potential for Kerr
Binary

The version of CRTBPwe consider consists of two massive, spinning primaries with
masses M1 and M2 and intrinsic angular momenta a1 and a2, at positions X1 and
X2, respectively, describing a circular orbit in the x − y plane about their common
centre of mass (taken to be the originO). The centre-to-centre distance remains fixed
and remains sufficiently far apart, while the orbital angular velocity is ω0. The aim
is to set up the beyond-Newtonian potential (up to the first non-Newtonian term) for
this CRTBP system and consequently write down the Euler-Lagrange equations of
motion of a test particle under the influence of this potential. The schematic of the
configuration is illustrated in Fig. 1.

To simulate the dynamics of the CRTBP at hand, we employ the Fodor-
Hoenselaers-Perjés (FHP) procedure to perform an expansion in the mass and rota-
tion potential of each primary up to the first non-Newtonian term. This essentially
generates first-order general relativistic effects, the dynamics of which is analyzed
at length in the following section. The beyond-Newtonian potential for the system is
then constructed by virtue of a superposition of the potentials corresponding to the
two primaries, modelled to describe circular orbits around their common centre of
mass. We then write down the Lagrangian and consequently the equations of motion
for a test particle under the influence of such a potential.

2.1 Beyond-Newtonian Potential

We shall now briefly outline the steps involved in the FHP procedure leading to the
construction of the beyond-Newtonian potential for the problem at hand. The FHP
algorithm involves the decomposition of the Einstein field equation in the so-called

Fig. 1 The configuration of
the two primaries, M1 and
M2, in the centre-of-mass
frame which is rotating about
the z-axis with angular
frequency ω0 (= 1). A test
particle with infinitesimal
mass P is placed at an
arbitrary position in the
equatorial plane
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Ernst formalism. In this formalism, the field equations of GR are reduced to a pair of
complex equations by virtue of introducing the complex potentials ζ and Ψ . These
complex potentials are further defined in terms of two new potentials ξ and ς through
the relations

ζ = 1 − ξ

1 + ξ
, Ψ = ς

1 + ξ
. (1)

The field potentials satisfy [39,40]

(ξξ∗ − ςς∗ − 1) ∇2ξ = 2(ξ∗∇ξ − ς∗∇ς) · ∇ξ , (2)

(ξξ∗ − ςς∗ − 1) ∇2ς = 2(ξ∗∇ξ − ς∗∇ς) · ∇ς . (3)

The above set of equations are an alternative representation of the Einstein-Maxwell
field equations. As a matter of fact, they could be interpreted as the generalization
of Laplace’s equation for the Papapetrou’s metric describing the space-time around
a stationary and axisymmetric source

ds2 = −F(dt − ωdφ)2 + F−1[e2γ(dρ2 + dz2) + ρ2dφ2] , (4)

where the metric coefficients F , ω, and γ depend only on the Weyl-Papapetrou co-
ordinates ρ and z. These metric functions can be reformulated in terms of the Ernst
complex potentials [107] ζ andΨ and described by the associated Einstein-Maxwell
field equations (2) and (3).

The new set of field potentials ξ and ς are related to the classical gravitational and
electromagnetic potentials in the following way

ξ = ΦM + i ΦJ , ς = ΦE + i ΦH , (5)

where ΦM , ΦJ , ΦE , and ΦH represent the mass, angular momentum, electrostatic
and magnetic potentials, respectively. As our massive, spinning primaries do not
possess electromagnetic fields, we set ΦE = ΦH = 0, which from (1) implies
ς = Ψ = 0. The seminal work of [44,49] allows us to determine the multipolar
moments of asymptotically flat spacetimes. In this prescription, the induced 3-metric
hi j is mapped by virtue of a conformal transformation hi j → h̃i j = Ω2(x)hi j onto
a conformal metric h̃i j . This conformal factor Ω satisfies the conditions

Ω
∣
∣
Λ

= D̃iΩ
∣
∣
Λ

= 0, D̃i D̃ jΩ
∣
∣
Λ

= 2hi j
∣
∣
Λ
, (6)

where D̃ denotes the covariant derivative on the induced surface and Λ denotes
the point added due to conformal compactification. Essentially, Ω transforms the
potential ξ into ξ̃ = Ω−1/2ξ with the explicit transformation beingΩ = r ′2 = ρ′2 +
z′2. The relation between the primed and unprimedWeyl-Papapetrou coordinates are

ρ′ = ρ

ρ2 + z2
, z′ = z

ρ2 + z2
, (7)
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with φ remaining unchanged. This helps in mapping the infinity to the origin of the
primed coordinates (ρ′, z′) = (0, 0). Besides, the potential ξ̃ can be expressed as a
power series expansion in ρ′ and z′ as

ξ̃ =
∞
∑

i, j=0

ai jρ
′ i z′ j (8)

with the coefficients ai j determined by recursive relations presented explicitly in
[107]. Following this procedure, one can deduce approximate relations for the grav-
itational potential ξ, in terms of the parameters of the primary once its gravitational
multiple moments Pi are known. Thus, we apply this outlined prescription to a mas-
sive, spinning primary whose multipolar structure we take to be:

P0 = m , P1 = ima , Pi = 0 for i ≥ 2 , (9)

such thatm and a denote themass and angularmomentum of the source, respectively.
We now aim to set up the beyond-Newtonian potential (up-to the first non-

Newtonian term) for the CRTBP system at hand and consequently write down the
Euler-Lagrange equations of motion of a test particle under the influence of this
potential. For clarity, we restate the conditions and assumptions of the CRTBPmodel
we are trying to construct:

• The two primaries, with masses M1 and M2 and intrinsic angular momenta a1
and a2, at positions X1 and X2, respectively, describe a circular orbit about their
common centre of mass (taken to be the originO). The centre-to-centre distance r
remains fixed and remains sufficiently far apart, while the orbital angular velocity
is ω0.

• A beyond-Newtonian potential describing the primaries is constructed assuming
that the principle of superposition holds: that the total gravitational potential of
the system is a linear sum of the mass and rotation potentials (up to first order
effects) of the individual sources.

• A test particle of mass M, that is very small compared to the primaries, now
moves under the effect of this beyond-Newtonian potential in the z = 0 orbital
plane of the primaries. Themotionof this test particle has no effect on the primaries
whatsoever.

• The convention G = M = ω0 = r = 1 is used throughout the analysis hereon
(further details on this choice of units has been discussed extensively in Sect. 3).

In accordancewith the above conditions and following the precedingdiscussionon
the FHP formalism, we now construct the beyond-Newtonian potentialΩ describing
the primaries of our CRTBP model from the reconstructed potential ξ describing a
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single source. Keeping explicitly the factors of c to show the corresponding order-
wise contributions, we have the beyond-Newtonian potential for our system:

Ω(x, y) = −
2

∑

i=1

Mi

ri
+ 1

2c4

2
∑

i=1

M3
i

r3i

+ 1

c2

2
∑

i=1

Mi ai
r2i

cos θi + 1

2c4

2
∑

i=1

Mi a2i
r3i

(3 cos2 θi − 1) (10)

where the primaries are stationed at positions X1 = (x1, 0) and X2 = (x2, 0) respec-
tively, and r1,2 = √

(x − x1,2)2 + y2. We note that the first two terms of Eq. (10)
describe the mass potential and the next two terms represent the rotation potential of
the binary system upto first order corrections respectively. Also, following the FHP
procedure, we see the potential that is constructed is written in terms of powers of
1/c2. The 1st order corrections to the Newtonian potentials, both in mass as well
as for rotation, are retained and the higher order terms are dropped since their con-
tribution is smaller compared to the leading order (by appropriate factors of 1/c2).
The term ‘beyond-Newtonian’ is designated to these 1st order corrections to the
Newtonian potentials that arise in our final form of the potential, as seen in Eq. (10).

Moreover, in order to observe the transition of the system from the Newtonian
regime to a beyond-Newtonian one, we introduce a parameter ε, such that,

1

c2
→ 1

c2
ε

with ε ∈ [0, 1] using the fact that 1
c2

→ 0 reduces Eq. (10) to the Newtonian case.
That is, the ε = 0 classical limit is essentially the Newtonian problem that models
non-spinning binaries composed of weak gravitational sources as found in say, plan-
etary systems and binary stars which are not in close contact with each other. On
the other hand, the ε = 1 beyond-Newtonian case models departures from Newto-
nian behaviour that can be found in compact spinning binaries constituted of strong
gravitational sources, for example black-hole and compact binaries. The parameter
ε can thereby be thought of as a knob that slowly “turns on” corrections (both in the
mass and rotation potentials as seen from Eq. (10)) to the Newtonian potential as we
gradually go from the classical limit ε = 0 to the beyond-Newtonian regime ε = 1.

3 Dynamics of a Test Particle

In order to simplify the numerical simulation of the three dimensional system
described in the section above, we confine ourselves to the plane of the two primaries.
We adopt a modified version of the Szebehely convention to de-dimensionalize the
problem. Numerous types of scaling transformations have had applications in litera-
ture [53,54,111]. For example, studies of chaotic dynamics of asteroids in planetary
systems scale primaries to the solar mass. However, for our problem, the absolute



Beyond Newtonian Dynamics of Planar CRTBP with Kerr—Like Primaries 131

masses of the twoprimaries are irrelevant and donot reveal any newphysical informa-
tion about the system. Therefore, withM1 + M2 = M and a1 + a2 = a, we define
a dimensionless mass μ1 = M2/M and dimensionless spin μ2 = a2/a. Applying
the scaling relations described above, we enforce the sum of the masses of the two
primaries and the distance between the two to be unity. This has been enforced by
adopting geometrized units, G = 1 and c = 1, with distance and time now having
the dimension of mass (this choice of units has been discussed in detail in the next
paragraph). Additionally, this scaling also ensures that the sum of the spins of the
primaries be unity. Thus, applying the above discussed scaling relations we obtain:

M1 = 1 − μ1 ; M2 = μ1
a1 = 1 − μ2 ; a2 = μ2

(11)

At this point, it is worthwhile to note that different system of units have been used
in literature for simplifying the respective problem, both analytically andnumerically.
The choice of units always mostly depend on the length scales, masses and the time-
scales involved. As a result of this, the speed of light c can assume different values.
For example, in planetary systems, setting G = 1, the unit of mass to be the sum of
masses, the unit of distance to be the semi-major axis of the secondary body (which
is set to unity) and using Kepler’s second law, the speed of light assumes different
values like c = 22946.5 for the case of Sun-Jupiter, and c = 10065.3 in the case
of Sun-Earth [71]. However, while studying the dynamics of test particles around
compact objects under the circular restricted three body scheme (CRTBP) in post-
Newtonian (PN) treatments [37], the speed of light c surfaces as a parameter which
measures the order of the PN contributions. For ease in numerical simulations, c = 1
is later enforced and a, which is the separation between the parent bodies, becomes
an important parameter for the first post-Newtonian (1-PN) order effect. Thus, this
choice of unit and relevant scaling transformations facilitates the study of how the
separation between the primaries affect the dynamics of this system [53]. Another
variation to this post-Newtonian three body scheme was recently studied by [34]
who used c = 10000 in his calculations. To show this, one can use the Sun-Earth
system as an example (for details refer to [58]). It was shown here that this value
of c, the choice of units and relevant scaling transformations, as opposed to c = 1
in an earlier work by [53], facilitates a better conservation of the Jacobi integral of
motion numerically. This is due to the fact that the contributions of the higher order
PN terms vary depending on the formulation and thus a truncation brings about a
non-conservation of the Jacobi integral (discussed in detail later). Recently, [31] used
different values of c to indicate perturbations from the PN contribution, which were
used to find an optimal method for the calculation of eccentric anomaly.

However, in our study, the Jacobi integral ofmotion is a constant. Thus, our choice
of the value of c is to just facilitate the simplification of the system, both algebraically
and numerically. As we had noted earlier, the beyond-Newtonian effects are scaled
by a factor of 1/c2 which is taken care of by the introduction of the parameter ε in
our system of units. Hence, c = 10000 will scale down the beyond-Newtonian terms
by a factor of 10−8, which can be compensated by suitably adjusting the range of ε,
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since it is a free parameter in our system. Thus it can be concluded that the nature
of the dynamics of the system will not be affected by the choice of the value of c, as
has been verified by our simulations too.

The separation between the two primaries is then scaled as,

x1 = −μ1 ; x2 = 1 − μ1 (12)

Thus,μ1, μ2 ∈ [0, 1
2 ] are the only two control parameters for the system.Applying

the earlier described scaling and putting c = 1, the potential becomes:

Ω(x, y) = −
(
1 − μ1

r1
+ μ1

r2

)

+ 1

2
ε2

(
(1 − μ1)

3

r31
+ μ3

1

r32

)

+ ε

(
(1 − μ1)(1 − μ2)

r21
cos θ1 + μ1μ2

r22
cos θ2

)

+ 1

2
ε2

{
(1 − μ1)(1 − μ2)

2

r31

(

3 cos2 θ1 − 1

)

+ μ1μ
2
2

r32

(

3 cos2 θ2 − 1

)}

(13)

The Lagrangian for the system may be constructed as follows:

L = V 2 + 2A + R2

2
− Ω(x, y) (14)

where V = √

ẋ2 + ẏ2 represents the magnitude of the velocity of the test particle,
R = √

x2 + y2 the position of the test particlewith respect to the centre ofmass in the
non-inertial rotating frame and A = ẏx − ẋ y. Thus, the Euler-Lagrange equations
of motion are:

ẍ = 2 ẏ + x −
[
(1 − μ1)

r31

(

x + μ1

)

+ μ1

r32

(

x + μ1 − 1

)]

− ε

{
(1 − μ1)(1 − μ2)

r41

[

y sin θ1 − 2 cos θ1

(

x + μ1

)]

+ μ1μ2

r42

[

y sin θ2 − 2 cos θ2

(

x + μ1 − 1

)]}

− 3

2
ε2

{
(1 − μ1)(1 − μ2)

2

r51

[

y sin 2θ1 −
(

3 cos2 θ1 − 1

)

(

x + μ1

)]

− (1 − μ1)
3

r51

(

x + μ1

)

+ μ1μ
2
2

r52

[

y sin 2θ2

−
(

3 cos2 θ2 − 1

)(

x + μ1 − 1

)]

− μ3
1

r52

(

x + μ1 − 1

)}

(15)
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ÿ = − 2ẋ + y

[

1 −
(
1 − μ1

r31
+ μ1

r32

)]

+ ε

{
(1 − μ1)(1 − μ2)

r41
[(

x + μ1

)

sin θ1 + 2y cos θ1

]

+ μ1μ2

r42

[(

x + μ1 − 1

)

sin θ2 + 2y cos θ2

]}

+ 3

2
ε2

{
(1 − μ1)(1 − μ2)

2

r51

[(

x + μ1

)

sin 2θ1 +
(

3 cos2 θ1 − 1

)

y

]

+ (1 − μ1)
3

r51
y + μ1μ

2
2

r52
[(

x + μ1 − 1

)

sin 2θ2 +
(

3 cos2 θ2 − 1

)

y

]

+ μ3
1

r52
y

}

(16)

where,

r1 =
√

(x + μ1)2 + y2

r2 =
√

(x + μ1 − 1)2 + y2

θ1 = tan−1[y/(x + μ1)]
θ2 = tan−1[y/(x + μ1 − 1)]

The Jacobi integral for the above system is given by,

J (x, y, ẋ, ẏ) = (x2 + y2) − 2Ω(x, y) − (ẋ2 + ẏ2) = C j (17)

where C j is a constant of motion for the given system and is called the Jacobian
constant.

Here we note that the Lagrangian for our system, as stated in Eq. (14), has terms
only up to the quadratic order in velocity V of the test particle as a result of which
the Jacobian constant (Eq. (17)) is exactly derived. This is in contrast to the post-
Newtonian (PN) framework where the Jacobian does not remain conserved and
consequently limits the extent of dynamical studies. The reasoning behind this has
to do with the relations between the PN Lagrangian and Hamiltonian approaches
at the same PN order. Additionally, it also depends on the relations between the
approximately truncated as well as the exactly non-truncated Euler-Lagrange equa-
tions of motion for this PN Lagrangian approach. The equivalence between the
Lagrangian and Hamiltonian approaches at the same PN order was established in
[25,26,28,69]. However, recent contradictions of the same have been discussed in
[16,56,120,133,134]. It has been shown by [72,73] that the approximately truncated
Euler-Lagrange equations of motion for this PN Lagrangian approach have different
dynamical behaviours of order and chaos than its exactly non-truncated counterpart.
As a result, the reasons why the Jacobian constant cannot be conserved in the PN
approach is because (a) some higher-order PN terms are truncated when the Euler-
Lagrange equations ofmotion are derived from this PNLagrangian approach, and (b)
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some higher-order PN terms are still truncated when the Hamiltonian (corresponding
to the Jacobian constant) is derived from this PN Lagrangian approach. If the trun-
cated higher-order PN terms are large, as in the case of strong gravitational fields of
compact objects, the Jacobian constant shows a poor accuracy; while it shows a bet-
ter accuracy if the same truncated terms are comparatively smaller, as in the case of
weak gravitational fields found in our Solar system. It should be expected that for our
potential (Eq. (10)), the Lagrangian andHamiltonian approaches at the same beyond-
Newtonian order are not equivalent in general. This in-equivalence should also be
true for the approximately truncated as well as the exactly non-truncated Euler-
Lagrangian equations of motion for our beyond-Newtonian Lagrangian approach.
However, the equations of motion (15) and (16), the corresponding Hamiltonian and
the Jacobian constant (17) are exactly derived and have no terms truncated from the
beyond-Newtonian Lagrangian (Eq. (14)) because it has no higher-order terms with
respect to the test particle velocity V . As a result, the Jacobian constant, given by
Eq. (17), is said to be exactly derived.

3.1 Hill Curves

TheHill curves or the zero-velocity curves for the system, for a set of chosen values of
C j ,μ1,μ2 and ε, divide the equatorial plane into regionswhere themotion of the body
is energetically allowed and regionswhere themotion is energetically disallowed (for
a discussion on zero-velocity curves refer to [112] for a Newtonian CRTBP system
and [148] for a pseudo-Newtonian CRTBP with Schwarzschild like primaries). All
points, where (x2 + y2) − 2Ω(x, y) − (ẋ + ẏ) > C j , are energetically allowed for
the test particle, while all points, where (x2 + y2) − 2Ω(x, y) − (ẋ + ẏ) < C j are
energetically disallowed. The velocity of the test particle (as we shall calculate from
Eq. (19)) in the disallowed region is imaginary (will be calculated explicitly in the
next subsection). The Hill curves of the system have an equation,

(x2 + y2) − 2Ω(x, y) = C j . (18)

Figures 2 and 3 show the evolution of theHill curves with the introduction of beyond-
Newtonian effects for μ1 = μ2 = 0.001 (or the biased-mass system) and μ1 =
μ2 = 0.5 (or the Copenhagen system) respectively. The beyond-Newtonian effects
are introduced by increasing ε from 0.0 to 1.0 in steps of 0.1. The equatorial plane is
divided into three regions by the Hill curves—a central region where the particle is
energetically allowed but is bounded by the Hill curves, an unbounded energetically
allowed region, and a disallowed region in-between them. Test particles with initial
conditions in the unbound regionmay execute stable orbits around both the primaries
or may escape to infinity, while test particles with initial positions in the enclosed
and energetically allowed regions are ‘trapped’ and cannot escape to infinity since
they cannot cross the Hill curves. The energetically allowed regions are represented
by white in Figs. 2 and 3, while the dotted regions are energetically disallowed for
the test particle. The two black dots represent the positions of the primariesM1 and
M2 respectively.
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Fig. 2 Evolution of the Hill curves for μ1 = μ2 = 0.001 and C j = 4.0 with the parameter ε. The
white regions of the plot represents the points in the X-Y plane are energetically allowed, while
the dotted regions are energetically disallowed, for the test particle whose Jacobian C j = 4.0. The
larger black dot on the left represents the position of the massM1 and the smaller black dot on the
right represents the position of mass M2 in each of the plots

Fig. 3 Evolution of the Hill curves for μ1 = μ2 = 0.5 and C j = 4.0 with the parameter ε. The
white regions of the plot represents the points in the X-Y plane are energetically allowed, while
the dotted regions are energetically disallowed, for the test particle whose Jacobian C j = 4.0. The
black dot on the left represents the position of the massM1 and the black dot on the right represents
the position of mass M2 in each of the plots

For the biased-mass system, the potential due to mass M1 dominates the Hill
curves. The introduction of beyond-Newtonian effects distorts the curves of the
Newtonian system, such that for all values of ε � 0.0865, no trapped circular orbits
exist. For the Copenhagen system, the chosen value of C j corresponds to the energy
at the first Lagrange point L1. As ε increases, the contribution of the spin becomes
apparent and the enclosed allowed region becomes smaller. Circular trapped orbits
around both the primaries exist for small values of ε. For ε > 0.1248, circular orbits
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no longer exist around the primaryM2 while for ε > 0.134, circular orbits no longer
exist around the primaryM1. Thus, for both systems,we choose our initial conditions
in the unbounded energetically allowed region for the sake of consistency of initial
conditions for all values of ε, μ1 and μ2.

3.2 Orbits

Using the six stepped, fifth-order Runge-Kutta method implemented with the
Dortmund-Prince algorithm, the equations of motion equations (15, 16) are inte-
grated using time step τ = 10 for n = 3000 iterations. For a preliminary inves-
tigation of the system, the following initial conditions are considered (similar to
[33] which investigates orbits for a system with Schwarzschild like primaries): x0 =
[3.0, 3.5, 3.75, 4.0, 4.25, 4.5, 4.75, 5.0, 5.25, 5.5, 6.0], y0 = 0.0 and ẋ0 = 0.0, with
C j = 4. The value of ẏ0(x0, y0, ẋ0) is calculated from the following equation:

ẋ0 = y0
r0

√

(x2 + y2) − 2Ω(x, y) − C j

ẏ0 = − x0
r0

√

(x2 + y2) − 2Ω(x, y) − C j (19)

where r0 =
√

x20 + y20 . The orbits for a test particle for the biased mass and Copen-
hagen systems are investigated for ε ∈ [0, 1] and the set of initial conditions men-
tioned in the paragraph above. Since the system is conservative, the Jacobi constant
C j has to remain constant as the equations of motion are integrated.

The integrator used, being non-symplectic in nature, usually does not conserve
the Jacobian. The use of such integrators for conservative systems have been well
studied and multiple corrective methods, such as the velocity correction method
[31,76,121,122], have been developed for better accuracy. In Fig. 4, we have shown
a comparison of the relative error in the Jacobi constantC j with time for both the non-
corrected and velocity corrected integrators. It is observed that the accuracy in the
conservation of C j for the velocity corrected method ranges from 10−16–10−14 for
stable orbits and goes up to 10−8 for chaotic and sticky orbits at large times (>5 × 103

years), as has been pointed out in [121,122]. We also observe that our non-corrected
integrator has a fairly similar accuracy at the start. However, the growth in error is
faster at late times and reaches values of 10−10 for stable orbits and goes up to 10−8

for chaotic and sticky orbits. Hence, we conclude that the non-corrected fifth-order
Runge-Kutta method is also of reasonable accuracy for the relevant time-periods of
our investigation.

By observing their evolution, the orbits may be categorized as regular, sticky or
escaping. Orbits are said to be sticky if they show regular behavior for a long period
of time before their chaotic nature manifest [35] and escaping if the particle directly
escapes from the system without executing any regular orbits [20,21]. We classify
the stability of the initial conditions based on the number of iterations for which
the orbit of the particle is stable. If the test particle executes stable orbits for 3000
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Fig. 4 Plot of the log of the relative error in the Jacobi constant C j with log of time for the non-
corrected Runge-Kutta (4,5) integrator using the Dormand-Prince algorithm (black) and velocity-
corrected 4th order Runge-Kutta integrator (grey). The first plot from the left (μ = 0.001, ε = 0.6,
x0 = 3.0, y0 = 0.0) shows the evolution of C j with time for a sticky initial condition, the centre
plot (μ = 0.5, ε = 0.1, x0 = 5.0, y0 = 0.0) shows the evolution of C j with time for a stable initial
condition, and the plot on the right (μ = 0.5, ε = 0.7, x0 = 5.5, y0 = 0.0) shows the evolution of
C j with time for a chaotic initial condition

iterations, it is classified as regular. If the orbits are stable for at-least 100 iterations
before they escape from the system, they are classified as sticky. If the test particle
reaches a distance of 50 times the separation between the two primaries within 1000
iterations, they are said to be escaping.

For the biased mass system, among the initial conditions considered, orbits for
x0 = [3.5, 3.75, 4.0, 4.25, 4.5] are stable for all values of ε. Most initial conditions
are either sticky or escaping for non-zero values of ε. But the interesting initial
conditions are the ones where the intermediate values of ε are the most chaotic. The
initial conditions x0 = [5.0, 5.25, 5.5, 6.0] show such behavior. For the Copenhagen
system, orbits for x0 = [3.5, 3.75, 4.0, 4.5, 4.75] are stable for all values of ε. The
initial condition x0 = 4.25 destabilizes for ε > 0.4, implying a region of chaotic
initial conditions interjects stable initial conditions in the phase space. Orbits for
x0 = [5.0, 5.25] are either sticky or escaping for all values of ε except ε = [0.0, 0.1].
A stable orbit for x0 = 5.5 exists only for ε = 0.0, while no stable orbits exist for
x0 = 6.0. for any value of ε. This implies that regions of initial conditions allowing
stable orbits shrink as ε increases for the Copenhagen system.

Contrary to expectation, ε = 1.0 does not result in the maximum number of sticky
and escaping initial conditions in either of the systems. Instead, the intermediate val-
ues of ε have the most number of unstable initial conditions. For the biased mass
system, ε = [0.2, 0.4, 0.6, 0.7, 0.8] have the least number of stable initial conditions,
namely 6 out of the 11 investigated. ε = 0.9 has the least number of stable initial con-
ditions for the Copenhagen system, namely 5 out of the 11 investigated. In contrast,
ε = 1.0 has 9 and 6 initial conditions out of 11 for the biased mass and Copenhagen
systems, respectively.
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3.3 Fixed Points andTheir Stability

For a system having equilibrium points (fixed points), the necessary and sufficient
conditions are:

ẋ = ẏ = ẍ = ÿ = 0 (20)

Thus, the co-ordinates of the co-planar fixed points are determined by solving the
following pair of partial differential equations (refer to Eq. (10) for the detailed
expression of Ω(x, y)) [110]:

∂Ω(x, y)

∂x
= ∂Ω(x, y)

∂y
= 0 (21)

The intersection of the curves for Eq. (21) for a set of values of μ1, μ2 and ε gives us
a set of fixed points for the system. Figures 5 and 6 show the positions of the fixed
points for ε = [0.0, 0.3, 0.5, 0.7, 1.0] for the biased-mass and Copenhagen systems
respectively. It is evident that for both systems, the number of fixed points is highly
dependent on the value of ε. A summary of the salient features of the fixed points
with respect to ε is presented below:

• For ε = 0, both the biased-mass and Copenhagen systems reduce to their Newto-
nian counterparts. These systems have five fixed-points each, as expected.

• For ε = 0.3, the biased-mass system has five fixed points while the Copenhagen
system has nine.

• For ε = 0.5, the biased mass system has nine fixed points while the Copenhagen
system has thirteen. The less massive primary in the biased system has three
collinear fixed points.

• For both ε = 0.7 and ε = 1.0, the biased mass system has five fixed points. Only
the collinear fixed points in either of the systems is beyond the less massive
primary. However, the Copenhagen system has nine equilibrium points for both
ε = 0.7 and ε = 1.0.

• Finally, the more massive primary in the biased mass system as well as both the
primaries in the Copenhagen system have two non-collinear equilibrium points
very near to it for values of ε ≥ 0.3 (not shown in Figs. 5 and 6 since they fall
very close to the primaries).

It is thus evident that the number of equilibrium points for both the biased-mass and
the Copenhagen systems become maximum at intermediate values of ε.

Now, moving on to the issue of stability of these fixed points, their linear sta-
bility may be determined by Taylor expanding the system’s equations of motion
around the fixed point (x0 ,y0) upto first order. In the perturbation equations, the
time-independent coefficient matrix of variations is identified as
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Fig.5 Locations of some of the equilibrium points of the biased-mass system (μ1 = μ2 = 0.001),
marked by grey squares, on the intersection of ∂Ω/∂x = 0, marked by the dashed line, and
∂Ω/∂y = 0, marked by the solid line, for ε = [0.0, 0.3, 0.7, 1.0]. For ε 
= 0, there are two non-
collinear equilibrium points on either sides of the more massive primary which could not be shown
on the plots due to their close proximity to it. The smaller primary has three more collinear equi-
librium points, one of which lies between the two primaries. These too could not be marked on the
plots due to their proximity to the primary

A =

⎡

⎢
⎢
⎢
⎣

0 0 1 0
0 0 0 1

∂2Ω0
∂x2

∂2Ω0
∂x∂y 0 2

∂2Ω0
∂y∂x

∂2Ω0
∂y2

−2 0

⎤

⎥
⎥
⎥
⎦

(22)

where the subscript 0, attached to the partial derivatives of second order of Ω ,
denotes evaluation at the position of the equilibrium point (x0 ,y0). The necessary
and sufficient condition that a fixed point is stable is that all the eigenvalues of
matrix A be purely imaginary. Applying this method to the fixed points, obtained by
numerically solving Eq. (21), we can conclude the following:
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Fig. 6 Locations of some of the equilibrium points of the Copenhagen system (μ1 = μ2 = 0.05),
marked by gray squares, on the intersection of ∂Ω/∂x = 0, marked by the dashed line, and
∂Ω/∂y = 0, marked by the solid line, for ε = [0.0, 0.3, 0.7, 1.0]. For ε 
= 0, there are two non-
collinear equilibrium points on either sided of both primaries which could not be shown on the plots
due to their close proximity to them

• For ε = 0, the collinear fixed points for both the biased-mass and the Copenhagen
systems are unstable while the triangular fixed points are stable.

• For ε = 0.3, none of the fixed points are stable for the biased mass system while
two fixed points are stable for the Copenhagen system.

• For ε = 0.5, one fixed point is stable for the biased mass system while two are
stable for the Copenhagen system.

• For ε = 0.7, no fixed point is stable for the biased mass system while one is stable
for the Copenhagen system.

• For ε = 1.0, no fixed point is stable for either of the systems.

Thus, the evolution and stability of the fixed points of the system under consideration
show non-trivial evolution with the parameter ε. However, the knowledge about the
basins of convergence along with the libration points is of prime importance since
the attracting domains reflect some of the most intrinsic properties of the dynamical
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system. This has been a topic of intense research in recent years for many different
dynamical systems such as the Hill problem [32], the four-body problem [5,66,146]
and the pseudo-Newtonian planar circular restricted three body problem [145,147,
149]. We plan to investigate these aspects for our beyond-Newtonian potential in
detail as part of our future work.

4 Poincaré Map of Section

The Poincaré map, or the first return map, is a powerful and conventional tool for
examining the motion of dynamical systems [33,90,114]. In order to construct the
map, we evolve the system for 3000 iterations in time-steps of τ = 10 and plot
the section of the orbit for y = 0.0, ẏ < 0. This is done for 11 initial conditions
x0 = [3.0, 3.5, 3.75, 4.0, 4.25, 4.5, 4.75, 5.0, 5.25, 5.5, 6.0] and y0 = 0.0 for ε =
0.0, 0.4, 0.8 and 1.0. Figures 7 and 8 show the evolution of the Poincaré map for
the biased-mass and and Copenhagen systems respectively. The Poincaré map of
a system primarily shows two types of structures: concentric Kolmogorov-Arnold-
Moser (KAM) tori which represent bounded, quasi-periodic motions and a sea of
chaotic points surrounding such tori. At the centre of each island of concentric tori
is a point which corresponds to a stable, periodic and resonant orbit [15,45,53].
The extent of the sea of scattered points in comparison to islands of the tori pro-
vides a visual representation of the extent of chaos in the system. For the biased-
mass system, the initial conditions x0 = [3.5, 3.75, 4.0, 4.25, 4.5] show KAM tori
on their Poincaré maps for all values of ε, implying quasi-periodic orbits. For
x0 = [4.75, 5.0, 5.25, 5.5, 6.0], the destruction of their KAM tori implies chaotic or
sticky orbits, as was observed in Sect. 3.2. For the Copenhagen system, the Poincaré
maps x0 = [3.5, 3.75, 4.0, 4.5, 4.75] showKAM tori for all values of ε. The torus for
x0 = 3.0 breaks up only for ε = 0.9, while the tori for x0 = 5.5 and x0 = [5.0, 5.25]
break up for ε > 0.0 and ε > 0.1 respectively. No KAM tori appear for x0 = 6.0 for
any value of ε, implying that the initial condition is chaotic for all values of ε. Thus,
the Poincaré maps for both the systems corroborate the observations presented in
Sect. 3.2.

5 Lyapunov Characteristic Exponents

A very popular indicator of chaos in dynamical systems is the calculation of the
Lyapunov Characteristic Exponents (LCE), which has been extensively applied to
the study of chaos in celestial dynamics especially in the context of the three-body
problem [33,34,47,126,128]. It is a measure of the exponential divergence of two
neighbouring trajectories in phase space. The rate of separation of the two trajectories
is dependent on the initial separation vector. For a pair of trajectories, the number
of exponents for the system is equal to dimension of its phase space. However, the
largest exponent dominates in the limit t → ∞. The largest Lyapunov exponent,
called the Maximal Lyapunov Exponent (MLE), is defined by,
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Fig.7 The Poincarémap for orbits with x0=[3.0, 3.5, 3.75, 4.0, 4.25, 4.5, 4.75, 5.0, 5.25, 5.5, 6.0]
and y0 = 0.0 for ε = 0.0, 0.4, 0.8, 1.0. The system is evolved for 3000 iterations in time-steps of
τ = 10 and the Poincaré map of section for y = 0.0, ẏ > 0.0 is plotted for all 11 initial conditions
for the biased-mass system (μ1 = μ2 = 0.001)

Λmax = lim
t→∞

1

t
log

||Υ (t)||
||Υ (0)|| (23)

where Υ (t) is the solution to the variational equations for the potential under con-
sideration [116]. Such a computation mechanism for the MLE is called the varia-
tional method and is the most accurate. However, for systems such as the one under
consideration where computation of the variational equations are cumbersome, an
alternative was introduced in [11]. The Eq. 23 is thus replaced by the following:

Λmax = lim
t→∞

1

t
log

||δx(t)||
||δx(0)|| (24)

where, the deviation vector between the two trajectories is δx(t), with δx(0) → 0.
The mean rate of deviation of the two trajectories is given by:

Λmax = 1

nτ

n
∑

k=1

log
||δx(kτ )||
||δx(0)|| (25)
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Fig.8 The Poincarémap for orbits with x0=[3.0, 3.5, 3.75, 4.0, 4.25, 4.5, 4.75, 5.0, 5.25, 5.5, 6.0]
and y0 = [0.0] for ε = 0.0, 0.4, 0.8 and 1.0. The system is evolved for 3000 iterations in time-steps
of τ = 10 and the Poincaré map of section for y = 0, ẏ < 0 is plotted for all 11 initial conditions
for the Copenhagen system (μ1 = μ2 = 0.5)

Thismethod is called the two-particlemethod and is the onewe utilize to calculate
the MLE for each system. The result is accurate as long as the two trajectories are
in the immediate neighbourhood of each other in phase space and the machine used
for computation has enough precision. As concluded in the work by [116], we have
also taken the initial separation between the two trajectories to be δx(0) = 10−8 and
have integrated the system in double precision for n = 105 iterations, each of time
step τ = 0.1. Numerical integration diverges rapidly unless the deviation vectors are
re-normalized periodically. The two trajectories are evolved separately and the devia-
tion vector is re-normalized using theGram-Schmidt re-normalization after each time
step. To get a quantitative representation of the chaos in the system, the MLE is aver-
aged over the entire phase space. But, as a preliminary investigation of system,we use
the initial conditions: x0 = [3.0, 3.5, 3.75, 4.0, 4.25, 4.5, 4.75, 5.0, 5.25, 5.5, 6.0],
y0 = 0.0 and ẋ0 = 0.0, withC j = 4.0 for the biased-mass and Copenhagen systems.
If trajectories are stable, the value of the MLE remains very small, usually less than
5 × 10−4 (low value of MLE). But for chaotic trajectories, the deviations are expo-
nential and the value of the MLE increases rapidly with time. After 105 iterations,
its value is usually greater than 5 × 10−4 (high value of MLE). The MLE for ini-
tial conditions x0 = [3.0, 3.5, 3.75, 4.0, 4.25, 4.5, 4.75, 5.0, 5.25, 5.5, 6.0] are cal-
culated and averaged for each value of ε and is called the Lyapunov Characteristic
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Fig. 9 Plot of the Lyapunov
Characteristic Exponent
(LCE) versus ε

Exponent (LCE) for the particular value of ε [84]. The LCE provides a qualitative
measure of the amount of chaos in the system, even for the few initial conditions
chosen for the study (see [84] as an example). Figure 9 is the plot of the LCE against
ε for both the biased-mass and Copenhagen systems.

Both for the biased-mass system and the Copenhagen system, the total chaos
in the system for small ε is low. For the biased-mass system, the LCE for all the
initial conditions are <5 × 10−4 for values of ε = 0.0 indicating stable orbits. The
same is true for the Copenhagen system, except for x0 = 6.0 which gives an LCE
of 4.22 × 10−03. For the biased-mass system, the LCE for all initial conditions
are <5 × 10−4 for x0 = [3.5, 3.75, 4.0, 4.5], implying stable orbits. Some initial
conditions, like x0 = [4.25, 4.75, 5.0, 5.25, 6.0] for the biasedmass systemand x0 =
5.5 for theCopenhagen system, the systemshowshigh values ofLCE for intermediate
values of ε, but low values of LCE for higher values of ε. The most interesting among
these is the initial condition x0 = 6.0, which shows low values of LCE only for
ε = 0.0 and 1.0. This reaffirms the conclusion drawn from the Poincaré maps that
the chaos in the system ismaximum for intermediate values of ε. For the Copenhagen
system, values of LCE for x0 = [3.5, 3.75, 4.0, 4.5, 4.75] are low for all values of ε.
The initial condition x0 = 6.0 show high values of LCE for values of ε. The initial
condition x0 = 5.5 shows high values of LCE for all values of ε except for ε = 0.0.

Figure 9 shows that the chaos in the system is low for both the biased-mass system
and theCopenhagen system, as indicated by lowvalues of the averagedLCE. Its value
rises rapidly for the biasedmass system but much slower for the Copenhagen system.
Both the systems showmaximumvalues of the averaged LCE for intermediate values
of epsilon, which for the biased mass system is at ε = 0.825 and ε = 0.525 for the
Copenhagen. This re-iterates the observations made from the orbital evolution and
the Poincaré maps of the systems.
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6 Schwarzschild and Kerr Primaries: A Comparison

In order to examine the effect of the spin of the primaries on the system, we
present a comparison to a system with two Schwarzschild like primaries. Using the
potential described in [33,145], we construct a set of Poincaré maps of section for
ε = [0.1, 0.5, 1.0]. We evolve each orbit for 3000 iterations in time-steps of τ = 10
and plot the section of the orbit for y = 0.0 and ẏ < 0.0. Figures 10 and 11 show
Poincaré maps of the biased-mass and Copenhagen systems respectively. For both

Fig. 10 Poincaré map of section for y = 0 and ẏ < 0.0 for the biased-mass systems (mass ratio
of the primaries equals to 0.001) for different values of ε. The figures on the left are maps for the
system with Schwarzschild-like primaries while those on the right are for the system with Kerr-like
primaries
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Fig. 11 Poincaré map of section for y = 0.0 and ẏ < 0.0 for the Copenhagen systems (mass ratio
of the primaries equals to 0.5) for different values of ε. The figures on the left are maps for the
system with Schwarzschild-like primaries while those on the right are for the system with Kerr-like
primaries

the systems, the plots on the left are for the systemwith Schwarzschild like primaries,
while those on the right are for the system with Kerr like primaries.

While for ε = 0.0 both systems reduce to the Newtonian CRTBP, it is apparent
that even for small perturbations to the Newtonian system, as represented by ε = 0.1,
the introduction of the spin destabilizes a number of initial conditions. For the biased-
mass case, the Schwarzschild system shows all chosen initial conditions to be stable
and quasi-periodic, with the Poincaré map showing KAM tori for all values of ε. The
Poincarémap for theKerr systemdiffers radically from its Schwarzschild counterpart
even for ε = 0.1, showing a large sea of chaotic points surrounding an island of stable
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initial conditions. The island of stability grows smaller as ε is increased, as has already
been discussed in Sect. 4. For the Copenhagen case, the Poincaré maps for both the
Schwarzschild and Kerr systems feature an island of stability surrounded by a sea of
chaos for all three values of ε. The Poincaré maps for both the systems look alike,
implying a similar number of stable initial conditions. As ε is increased, the number
of stable initial conditions for the Kerr system decreases rapidly, as evident from
the smaller islands of stability on the Poincaré maps of the system for ε = 0.5 and
ε = 1.0. However, for the same values of ε, the number of stable initial conditions
for the Schwarzschild system remains approximately the same.

Thus, for both mass ratios, we observe that the introduction of spin in the CRTBP
with Schwarzschild-like primaries destabilizes a number of initial conditions, with
the amount of chaos in the system growing with increase in ε.

7 Conclusions

In the present paper, we present a beyond-Newtonian potential for the planar circular
restricted three-body problem with Kerr like primaries. This is achieved by using
the Fodor-Hoenselaers-Perjés procedure to expand the Kerr metric and by retaining
corrections up to the first non-Newtonian term. The system is conservative, with the
Hamiltonian being time independent. The parameter ε ∈ [0.0, 1.0] is introduced in
order to facilitate the observation of the system as it transitions from the Newtonian
to the beyond-Newtonian regime. The dynamics of a test particle in this potential
for μ1 = μ2 = 0.001 (or the biased-mass system) and for μ1 = μ2 = 0.5 (or the
Copenhagen system), are inspected for a Jacobi constant C j = 4.0. For an initial
investigation of the system, orbits for a few selected initial conditions are plotted. A
short analysis of the fixed points of the systems and their stability is undertaken. A
purely Newtonian CRTBP system is known to have five Lagrange points, as seen for
ε = 0 in our case. However, number of Lagrange points is not constant as the system
transitions from the Newtonian to the beyond-Newtonian regime. It is observed that
the number of fixed points strongly depends on the parameter ε as does their stability.
Next, the stability of the orbits is also examined through the use of the Poincaré map
of section for different values of ε. The Poincaré maps for all non-zero values of
ε show islands of stability constructed of concentric Kolmogorov-Arnold-Moser
(KAM) tori, embedded in a sea of chaos.

Thus we note that the introduction of the parameter ε helps us to conclude that
even small perturbations to the Newtonian CRTBP destabilizes the system for both
the cases. If we track the evolution of the system keeping the Jacobian constant
fixed, a stable orbit in the Newtonian system is observed to become either chaotic or
sometimes even remain regular in the beyond-Newtonian limit. In the limits ε = 0
and ε = 1, the phase space is seen to be filled mostly with periodic orbits, rarely
interspersed with chaotic ones. However, as ε departs even slightly from zero, tra-
jectories that were stable in the Newtonian system become unstable. It is seen that in
most of the cases (for a given set of initial conditions) whose phase space is bounded
in the classical regime, correspond to unbounded trajectories in the non-Newtonian
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regime. This implies that both systems become largely unstable for intermediate
values of ε. The instability of the orbits can possibly be linked to the observed lack
of stable fixed points in both the systems. This is also confirmed by the Lyapunov
Characteristic Exponent, calculated for each value of ε, which is in accordance to
the conclusions made by several authors earlier for different systems [33,53,84]. In
conclusion, we may say that even the smallest corrections to the Newtonian circular
restricted three-body problem could drastically change the stability and the dynamics
of the system.

In addition, we would like to note that an in-depth study of the phase space using
more rapid indicators of chaos, like Fast Lyapunov Indicators (FLI) [42,43,128],
Small Alignment Index (SALI) [105] and General Alignment Index (GALI) [106]
will facilitate a much more detailed analysis of the evolution of the Lagrange points
of the proposed potential. Coupled with this, a detailed linear stability analysis of
the Lagrange points as a function of the parameter ε and an analysis of the basins
of convergence is expected to reveal more information about the attractors of the
system. Further, we would also like to investigate the degree of equivalence of the
potential constructed in our paper with the pseudo-Newtonian potential formulation
of a binary with spinning primaries, for example that of a system modelled by the
superposition of two Artemova potentials [4]. This would allow us to reproduce
features like the Innermost Stable Circular Orbit (ISCO), maximally stable orbits,
and the horizon radius, in our chosen scalings and units. This would in turn facilitate
the calculation of physically relevant distances, for example, the coordinates of fixed
points for different values of ε and primary masses in real physical units, thereby
allowing us to predict real astrophysical scenarios using our present model (for a
recent example refer to [136]). Thus, we would like to explore these issues in greater
depth as part of our future work.

We also note that the current formalism is strictly valid for particles whose motion
is restricted to the plane containing the primaries. However, a more general model
for accreting particles should also include a study of the dynamics of such off-axis
motion. Thus, we would like to direct our future studies to incorporate such effects
for off-axis halo particles in a generalized beyond-Newtonian framework.
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NeutronStars inGeneral Relativity
and inAlternativeGravityTheories:
QuasinormalModes andUniversal
Relations

Fech Scen Khoo

Abstract

We begin by briefly reviewing neutron stars in GR. Next we discuss some recent
results of quasinormal modes of neutron stars in alternative gravity theories such
as the scalar-tensor theories, in particularR2 gravity theory.We present themodes
which are astrophysically relevant, and also new channel of modes arising from
the additional scalar degree of freedom in the alternative theories. We devote our
discussions mainly on polar perturbations. We propose several universal relations
considering equations of statewhich cover nucleons, hyperons and quarks. Finally
we compare the modes and the universal relations that we obtained between GR
and the alternative theories, and discuss their possible signatures.

1 Introduction

Interests in alternative theories of gravity spark from our unsatisfactory understand-
ing of predictions from General Relativity (GR) for dark matter and dark energy.
On the other hand, we are still in the quest for a theory of quantum gravity which
is able to fully describe both quantum mechanics and gravity. Evidently, GR might
not be the ultimate gravitational theory. From an alternative gravity theory, the the-
ory parameter can be studied and constrained according to the current observations.
Predictions from the theory such as the speed of the gravitational waves is one of the
fundamental properties of the theory. Such predictions when compared to observa-
tions can decide the fate of the respective alternative gravity theory proposal [7]. In
2017, the first direct detection of gravitational waves from a neutron star merger sys-
tem (GW170817) was reported by LIGO/Virgo Collaboration [2]. GW170817 signal
came from a low-mass system, and the gravitational waves were shortly followed by
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a γ-ray burst. This detection came about two years after the very first observation of
gravitational waves emitted from a binary black hole system (GW150914) [1]. With
the GW170817 detection, the era of multi-messenger gravitational wave astronomy
was launched. Following the increasing number of detections we are getting, and
many more to follow as more advanced detectors are under development (e.g. [23]),
probing gravity in these strong gravity regimes as in neutron stars, and improving
our understanding in the nature of cosmic acceleration have become possible than
ever before.

We are particularly interested in testing GR and other alternative theories in the
ringdown phase of a binary system, thus in the late part of the signal. This part of the
signal critically carries the characteristics of the final object, and therefore evidences
of the no-hair theorem. That is, we can extract the mass and spin parameters of the
final object. These characteristics are contained in the quasinormal mode (QNM),
which is a composition of a resonant frequency and an exponential damping time.
To make such investigations, perturbation theory is required.

Here we work with a class of alternative gravity theories, a particular scalar-
tensor theory (STT) which adds a dynamical scalar field to the gravity theory. We
will consider cases when the scalar field is massive or massless, where in the massive
case, it is known asR2 gravity.When there are additional fields coupled to gravity, the
speed of the gravitationalwaves can differ from the standardGR’s. FromGW170817,
an almost immediate observation of both gravitational wave and its electromagnetic
counterpart (the burst that occurred about 2s later) places a stringent bound on the
gravitational wave speed. This bound rules out STTs which predict an anomalous
speed for the gravitational wave [17].

In this contribution, we will focus on a static and spherically symmetric neutron
star in alternative gravity theories which belong to a certain class of viable STTs.
Our discussions of the results on the QNMs and universal relations are mainly based
on our previous work in [11–14].

2 Neutron Stars

Neutron star is a compact astrophysical object, and is considered highly compact
when its radius R is less than or equal to three times of its mass M , i.e. R ≤ 3M .
A neutron star can be formed from a supernova, where the iron core of a massive
star collapses and forms the neutron star. The matter density in the center of the
star can exceed 1015gcm−3. At such high densities, neutron stars provide a natural
example of cosmic laboratory to study extreme physics, for instance studies ofmatter
under extreme density and pressure. The most internal structure of a neutron star is
however still not fully understood. There have since been various nuclear physics
models proposed to describe the matter content of the neutron star [18]. In general,
the star has a layered structure from the surface to the center of it, with each layer
of different densities, sizes and particle compositions. Starting from the outermost
layer is the atmosphere dominated by magnetic field, followed by an outer crust, an
inner crust where neutrons are in a superfluid phase, an outer core where many-body
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nucleon interaction occurs, and finally an inner core which is composed of unknown
ultra-dense matter. Temperature has an effect on the behaviour of the external layers,
while the behaviour of matter at high densities influences the stellar structure itself.

To build a neutron star model, an equation of state (EOS) that describes the matter
of the star is required. Basically, the EOS provides the relation of energy density ρ
and pressure p. How these quantities are related depends on the exact matter content
and interactions which are present. The EOS becomes more model dependent at
high densities. For simplicity, we will treat the matter inside the star as a continuous
medium, and the fluid velocity u to be continuous, thus modeling the matter as a
perfect fluid. The stress-energy tensor of a perfect fluid is given by

T μν = (p + ρ)uμuν − pgμν , (1)

where

∇νT
μν = 0 , (2)

with the background metric gμν . A barotropic EOS is simply given by

ρ = ρ(p) . (3)

At the surface of the star, the pressure p vanishes.
Below are some examples of EOS, categorized in different matter contents.

(a) Pure nuclear matter (i.e. neutrons, protons, electrons, and muons): SLy, APR4
(b) Mixed hyperon-nuclear matter: GNH3, H1, H4, BGN1H1, WCS1, WCS2,
BHZBM
(c) Hybrid stars with hyperons and quark color-superconductivity: BS1, BS2, BS3,
BS4
(d) Quark stars: WSPHS1, WSPHS2
Typically, stars composed of hyperon matter have a larger radius than the stars com-
posed of nuclear matter, despite having the same mass [8]. For more discussions on
neutron stars, see e.g. [5,16,20].

2.1 Neutron Stars in GR

From the well-known Einstein-Hilbert action (G = c = 1),

S[g] = 1

16π

∫
d4x

√−gR + Smatter , (4)

whereR is the curvature scalar and Smatter is the contribution from the matter in the
star, the Einstein tensor is given by

Rμν − 1

2
Rgμν = 8π

(
(p + ρ)uμuν − pgμν

)
, (5)
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where a perfect fluid for the matter is assumed. Considering a spherically symmetric
spacetime inside and around a static neutron star, the metric is given by

ds2 = e2ν(r)dt2 − e2λ(r)dr2 − r2(dθ2 + sin2θ dϕ2) . (6)

Inside the star, the metric functions e2ν(r) and e2λ(r) are independent, while outside
of the star, the spacetime is Schwarzschild with a gravitational mass M . The Tolman-
Oppenheimer-Volkov (TOV) equations inside the star are

dm

dr
= 4πr2ρ(r) , (7)

dp

dr
= −(p + ρ)

m + 4πr3 p

(r − 2m)r
, (8)

dν

dr
= − 1

p + ρ

dp

dr
. (9)

IntegratingEq. (7) from the center of the star to its radius r = R gives us the totalmass
of the star M . The parameter m comes from the expression e−2λ(r) = 1 − 2m(r)/r .

Assuming a small pulsation of the star, we can describe the oscillation using the
first-order perturbation theory. The metric is perturbed by,

gμν = g(0)
μν (r) + hμν(t, r , θ, ϕ) . (10)

g(0) is the static configuration, and h is the perturbation where |h| << |g(0)|. The
perturbation function depends on the radial, time, and angular coordinates . We can
decompose these perturbations into a product of temporal-radial part and spherical
harmonics Ylm ,

hμν(t, r , θ, ϕ) =
∑
l,m

hμν(t, r) Ylm(θ, ϕ) . (11)

The components of the stress-energy tensor are also perturbed with

p = p(0) + δ p , ρ = ρ(0) + δρ , u = u(0) + ∂tξ , (12)

where ξ is the Lagrangian displacement of a fluid element.
Based on the angular parts, under the parity transformation θ → π − θ, ϕ →

π + ϕ, the perturbations can be grouped into two types:

(a) Axial perturbations, which transform with a factor of (−1)l+1.
(b) Polar perturbations, which transform with a factor of (−1)l .

These two types of perturbations are completely decoupled when the background is
static. However, this is no longer true if the star is rotating. Axial perturbations are
associated with the spacetime perturbations, while the pressure and density pertur-
bations are polar perturbations.
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The axial and polar perturbations of the metric are given by

haxμν =

⎛
⎜⎜⎜⎜⎜⎝

0 0 hl0S
l
θ hl0S

l
ϕ

0 0 hl1S
l
θ hl1S

l
ϕ

hl0S
l
θ hl1S

l
θ −hl2

Xl

sin θ hl2 sin θ Wl

hl0S
l
ϕ hl1S

l
ϕ hl2 sin θ Wl hl2 sin θ Xl

⎞
⎟⎟⎟⎟⎟⎠

, (13)

and

hpolμν =

⎛
⎜⎜⎜⎜⎝

Hl
0Y

l Hl
1Y

l Ll
0Y

l
,θ Ll

0Y
l
,ϕ

Hl
1Y

l Hl
2Y

l Ll
1Y

l
,θ Ll

1Y
l
,ϕ

Ll
0Y

l
,θ Ll

1Y
l
,θ r2(KlY l + GlWl) r2Gl Xl

Ll
0Y

l
,ϕ Ll

1Y
l
,ϕ r2Gl Xl r2 sin2 θAl

⎞
⎟⎟⎟⎟⎠ , (14)

where Al = KlY l − GlWl , Xl = 2(Y l
,θϕ − Y l

,ϕ cot θ), Wl = Y l
,θθ − Y l

,θ cot θ −
Y l

,ϕϕ/ sin2 θ, Slθ = −Y l
,ϕ/ sin θ, Slϕ = Y l

,θ sin θ, and Y l is the spherical harmonics.
Due to the spherical symmetry, we could drop the angular number m. The functions
hl0, h

l
1, h

l
2 belong to the axial-parity metric perturbations, and Hl

0, H
l
1, H

l
2, K

l ,Gl ,

Ll
0, L

l
1 are the polar-parity metric perturbations. All these functions depend on t and

r . This system of equations can be simplified further by applying the Regge-Wheeler
gauge: Ll

0 = Ll
1 = Gl = hl2 = 0 [24].

Outside the star, as it is vacuum, the solution is simply Schwarzschild. Using the
harmonic time decomposition such that

h(t, r) =
∫

dω e−iωt h(ω, r) , (15)

we obtain the following two coupled first-order axial perturbation equations from
the standard Einstein equation,

d

dr
h0 = − 1

ωr3
(r3h1ω

2 + 2r2h0ω + 2l2Mh1 − l2rh1 + 2Mlh1 − lrh1

−4Mh1 + 2rh1) , (16)

d

dr
h1 = 1

r(2M − r)2
(−r3ωh0 + 4M2h1 − 2Mrh1) . (17)

Formally, we can organize these equations into a single Schrödinger-like equation
of second order. If we define Z = h1

r

(
1 − 2M

r

)
, we arrive at

d2

dr2∗
Z + (ω2 − VRW (r))Z = 0 , (18)
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which is known as the Regge-Wheeler equation. The tortoise coordinate is given by
r∗ = r + 2M log

( r
2M − 1

)
, and the effective potential (Regge-Wheeler potential) is

VRW (r) =
(
1 − 2M

r

)(
l(l + 1)

r2
− 6M

r3

)
. (19)

The polar perturbation master equation also takes the same form as Eq. (18) but with
the effective potential being the Zerilli potential [26],

VZe(r) =
(
1 − 2M

r

) (
2n2(n + 1)r3 + 6n2Mr2 + 18nM2r + 18M3

r3(nr + 3M)2

)
,

where 2n = (l − 1)(l + 2).
Inside the star there is pressure p, density ρ, and four-velocity u, they contribute

to the perturbations as well. The pressure perturbation is

δ p =
∫

dω e−iωt
∑
l

Pl(t, r)Yl(θ, ϕ) , (20)

the energy density perturbation is

δρ =
∫

dω e−iωt
∑
l

El(t, r)Yl(θ,ϕ) , (21)

and the perturbation part of u is given by ∂tξ where

ξ = (
0 , rl−1e−(ν+λ)WlYl ,−rl−2e−νVl

∂Yl
∂θ

, −rle−νVl
r2sin2θ

∂Yl
∂ϕ

)
. (22)

In total, the system of equations consists of four first-order differential equations for
the functions H1, K ,W , V , three algebraic equations for H0, H2, P , and an EOS
for E .

By now, we have transformed the time-dependent problem to a time-independent
problem, through harmonic time decomposition, and the task becomes solving an
eigenvalue equation (such as Eq. (18)). The QNM or eigenvalue ω is a complex
number,

ω = ωR + iωI , (23)

where the real part is the oscillation frequency and the imaginary part produces the
damping time.

At infinity, the solution Z to the perturbation equation contains two components,
incoming and outgoing waves which behave as

limr∗→∞ Zin ∼ e−iωr∗ , limr∗→∞ Zout ∼ eiωr∗ . (24)
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Table 1 Frequency and damping time for some l = 2 QNMs in GR assuming APR1

Mode Frequency ωR Damping time τ

f-mode 2047 Hz 144 ms

p1-mode 6498 Hz 7.9 s

wI-mode 8303 Hz 40.5 µs

A physical solution should have the form of a purely outgoing wave at the infinity,
without any contributions from the ingoing wave. By substituting the damping time,

τ = −1/ωI (25)

in Eq. (24), we get

limr∗→∞ Zin ∼ e−r∗/τ , limr∗→∞ Zout ∼ er∗/τ . (26)

The incomingwaves tend to zero exponentially as the the radial coordinate increases,
while the outgoing waves are divergent at spatial infinity. The imaginary part ωI of
the QNM signifies an exponential damping when it is negative. This can be under-
stood from the factor e−iωt in the perturbation functions (see e.g. Eq. (20)). The
perturbations decay exponentially with time: e−i(i[−ωI ])t = e− t

τ , energy is radiated
away as gravitational radiation. In general, the QNM frequencies are labeled by an
overtone number n. The fundamental mode is at n = 0, it is the least dampedmode or
in another word it is longer lived, and this mode dominates the ringdown waveform.

There are two families of modes in neutron stars. First are the spacetime modes,
known as w-modes. They are found in both axial and polar perturbations. For
instance, the curvature modes (wI-modes) which are the standard spacetime modes.
These modes exist in every neutron star. Second are the fluid modes, which are asso-
ciated with the energy and pressure oscillations (i.e. polar modes). An example of the
fluid mode is the fundamental f-mode. It is a stable mode of non-radial oscillations,
and is nearly independent of the details of the stellar structure. Another example is
the pressure mode (p-mode) resulted from the pressure fluctuations. These modes
on the other hand are sensitive to the EOS.

In Table 1 are some well-known results for l = 2 polar QNM in GR, for a neutron
star with a mass of 2M	, assuming the EOS APR1.

Gravitational waves from the neutron star can be used to infer the mass and radius
of the star, which are useful constraints on the EOS. Assuming we have extracted
both the frequency and damping time from a detected f-mode or a p-mode, we could
in principle deduce the stellar mass and radius [19]. To overcome the dependence
of or the uncertainties in the EOS, we turn to constructing universal relations [3,4].
We can consider universal relations built out of rescaled frequencies and damping
times. In [8], by scaling the real and imaginary part of the w-modes in terms of the
central pressure of the star pc (in cm−2) such that
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ω̄R = 2π
1√
pc

103

c
ω (kHz) , ω̄I = 1√

pc

106

c

1

τ
(µs)−1 , (27)

where c is the speed of light in cm/s, the relation between the scaled quantities ω̄R

and ω̄I becomes quite independent of the considered EOSs.

2.2 Neutron Stars in Alternative Gravity:R2 Gravity

R2 gravity stems from an extension of GR, namely as a special case of f (R) gravity,
f (R) = R + aR2 where a is the parameter of the alternative theory. An equivalence
between f (R) theories and a certain class of STTs was established in [25]. We
consider the following form of the Einstein frame action in STT,

S[g,φ] = 1

16π

∫
d4x

√−g
(R − 2gμν∂μφ∂νφ − V (φ)

)

+ Smatter (A
2(φ)gμν, χ) , (28)

where the potential V (φ) for R2 gravity, and the standard Brans-Dicke coupling
function A(φ) are

V (φ) = 1

4a

(
1 − e

− 2φ√
3

)2

, A(φ) = e
− 1√

3
φ

. (29)

The Einstein and Jordan frames are related by a conformal transformation of themet-
ric. Both frames describe the same physics, and computations can be done in either
frame [22]. The scalar field mass is related to the theory parameter bymφ = 1/

√
6a.

There are two limits which can be taken in the R2 theory, one is approaching GR:
a → 0 (i.e. mφ → ∞), and another is towards the massless Brans-Dicke theories:
a → ∞ (i.e. mφ = 0) which represents a maximal deviation from GR.

We consider a static and spherically symmetric background,

ds2 = −e2νdt2 + e2λdr2 + r2(dθ2 + sin2θdϕ2) . (30)

To obtain the neutron star solutions, we need the field equations from the theory,

Gμν = T (φ)
μν + 8πT (matter)

μν − 1

2
V (φ)gμν , (31)

∇μ∇μφ = −4π
1

A

dA

dφ
T (matter) + 1

4

dV

dφ
, (32)
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in addition to anEOS for thematter in Jordan frame p̄(ρ̄). Inside the star, the equations
for the static functions are

1

r2
d

dr
[r(1 − e−2λ)] = 8πρ + e−2λ

(
dφ

dr

)2

+ 1

2
V , (33)

2

r
e−2λ dν

dr
− 1

r2
(1 − e−2λ) = 8π p + e−2λ

(
dφ

dr

)2

− 1

2
V , (34)

d2φ

dr2
+

(
dν

dr
− dλ

dr
+ 2

r

)
dφ

dr
= 4π(ρ − 3p)

dlnA

dφ
e2λ + 1

4

dV

dφ
e2λ , (35)

dp

dr
= −(ρ + p)

(
dν

dr
+ dlnA

dφ

dφ

dr

)
. (36)

The density and pressure are given by ρ = A4ρ̄ and p = A4 p̄, expressed in the
physical Jordan frame (denoted by an overline).

For boundary conditions, we require regularity at the center of the star (r = 0),
λ(0) = 0, dφ

dr (0) = 0, and ρ̄(0) = ρ̄c where ρ̄c is the central energy density. We also
require asymptotic flatness at the infinity, limr→∞ ν(r) = 0, and limr→∞ φ(r) = 0.

Here we discuss briefly about the axial perturbations of a neutron star. The axial
perturbation equations for h0(t, r) and h1(t, r) are

−e−2ν∂2
t h1 + e−2ν

(
∂r − 2

r

)
∂t h0 − (l − 1)(l + 2)

r2
h1 = 0 , (37)

∂t h0 − eν−λ∂r (e
ν−λh1) = 0 , (38)

which are derived from the field equations, using the metric perturbation Eq. (13)
with the Regge-Wheeler gauge. We can substitute Eq. (38) into Eq. (37) and have a

single equation for h1. Furthermore, if we define X = h1
eν−λ

r , the axial perturbations
are described by the following time-dependent equation,

∂2X

∂t2
− eν−λ ∂

∂r

(
eν−λ ∂X

∂r

)

+e2ν
(
l(l + 1)

r2
− 3

r2
(1 − e−2λ) + 4πA4(ρ̄ − p̄) + 1

2
V

)
X = 0 . (39)

Next we let X(r , t) = X(r)eiωt to obtain a time-independent equation,

eν−λ d

dr

(
eν−λ dX

dr

)
+

(
ω2 − e2ν

(
l(l + 1)

r2
− 3

r2
(1 − e−2λ)

+4πA4(ρ̄ − p̄) + 1

2
V

))
X = 0 . (40)

For detailed discussions and results on the axial perturbations, see [10]. In the next
section, we will focus on the polar perturbations of the star and their corresponding
results.
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Fig. 1 Mass of neutron star M in solar masses versus its radius R in km for six EOSs under GR
and several STTs

Finally we end this section by illustrating in Fig. 1 the profile of the star, given by
its mass-radius relation which yields the compactness of the star M/R. In our work,
we employ six contending EOSs of varying matter contents: SLy and APR4 of plain
nuclear matter, GNH3 and H4 of a nucleon-hyperon mixture, ALF2 and WSPHS3
of a hybrid of nuclear-quark matter. In general, we consider the range of the scalar
field mass mφ from 0.011 to 0.343 neV that falls within the current observational
constraints [15,21]. We can learn from Fig. 1 that a star composed of purely nuclear
matter (SLy and APR4) tends to have a smaller radius than a star of the same mass
with other compositions.

2.2.1 Polar Perturbations of a Neutron Star
We perturb all the dynamical fields in the theory, namely the metric, matter, and
scalar field. The polar perturbations of the metric are,

hpolμν =

⎛
⎜⎜⎝
2Ne2νYlm −FYlm 0 0
−FYlm −2e2λLYlm 0 0

0 0 −2Tr2Ylm 0
0 0 0 −2Tr2 sin2 θ Ylm

⎞
⎟⎟⎠ , (41)

where Ylm are the spherical harmonics, and F, L, N , T are functions of r , l,m, given
by

F = iωrl+1H1 , L = −1

2
rl H2 , N = 1

2
rl H0 , T = −1

2
rl K . (42)
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The form of the matter perturbations is the same as in GR. In addition, we have
perturbations of the scalar field from the theory,

δφ =
∫ ∑

l,m

rlφ1 Ylme
−iωt dω , (43)

where φ1 is a function of r , l,m. Here let us define a perturbation function X in the
following combinations of the functions V ,W , H0,

X = ω2
(
p̄(0) + ρ̄(0)

)
e−νV − 1

r

d p̄(0)

dr
eν−λW + 1

2

(
p̄(0) + ρ̄(0)

)
eνH0 . (44)

Then the system of first-order differential equations is given by

d

dr
� + σ� = 0 , (45)

for � = (K , H1,W ,X ,φ1,
dφ1
dr ) where σ depends on the static functions ν, λ,

φ(0), p̄(0), ρ̄(0), the eigenvalue ω and angular number l.
Note that the asymptotic behaviour of the outgoing perturbation for the scalar field

is Zout
s ∼ ei�r , where � satisfies the dispersion relation, �2 = ω2 − m2

φ. That is,
the scalar field perturbations cannot propagate at the speed of light as the spacetime
perturbations do.

We briefly describe here our numerical procedures in solving for the QNMs, and
refer to [9] for more details. First we need to generate the static background solution.
Nextwe generate an interior solution from the center up to a point outside the star, and
an exterior solution from this point to infinity. QNMs are obtained when the interior
and exterior solutions are continuous at this particular matching point, which can
be changed as a test of the numerical stability. The results should nevertheless be
independent of this auxiliary parameter.

In the next section, we present our main results for l = 2 quadrupole modes,
the fundamental modes which dominate the ringdown spectrum after a merger, in
particular the f-modes which are dominant in neutron stars. On top of that, we also
present the results for l = 2 scalar-ledφ-modes. These will be followed by the results
from l = 0 radial modes which are propagating modes in this theory.

2.2.2 Quasinormal Modes and their Application in Universal Relations
In this section, we present some recent findings on the use of QNMs in the con-
struction of universal relations. Earlier work can be found in [4]. We consider both
scenarios when the scalar field carries a mass or when it is massless, and with a
focus on the QNMs computed for two multipolar numbers, l = 2, 0. The quadrupole
l = 2 modes are most astrophysically relevant and considered most dominant in the
gravitational emissions, while the monopole l = 0 modes are normal modes in GR,
their nature change in STTs as we will see in the following.
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Fig. 2 Real frequency ωR in kHz for l = 2 f-modes versus the mass of neutron star M in solar
masses for six EOSs under GR and four STTs

Fig. 3 Damping time τ in seconds for l = 2 f-modes versus the mass of neutron star M in solar
masses for six EOSs under GR and four STTs

Figures2 and 3 show the spectrum of the fundamental quadrupole l = 2 fluid
f-mode. We show the comparison of the modes ranges from GR to R2 theories
of different scalar field mass mφ. Recall that mφ is inversely proportional to the
parameter a in the R2 theory. GR leads a higher frequency and a longer damping
time for more compact neutron stars, while the modes produced by the theory with
mφ = 0.343 neV closely follow GR. The deviation from GR grows as the mass of
the scalar field decreases.
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Fig. 4 Universal relations for dimensionless real frequency of l = 2 f-mode against compactness
M/R (left) and generalized compactness η of the star (right)

Using these quadrupole modes, we obtain the following universal relations for
neutron stars in the respective R2 theories, shown in Fig. 4. We observe an almost
independence from the various EOSs,whenwe consider the real frequency part of the
modes scaled with a reference frequency ω̂o against the (generalized) compactness
of the star. The reference frequency ω̂o is given by

ω̂o = c

M

√
3

4
η3 , (46)

where c is the speed of light, M is the mass of the star, and generalized compactness
η = √

M3/I where I is the moment of inertia. Under these relations, GR exhibits
the lowest scaled frequency across the (generalized) compactness of the star, and as
the scalar field mass decreases, the corresponding scaled frequency grows.

Next, we turn to another family of modes: the scalar φ-mode which is present due
to the scalar degree of freedom from the alternative theory, coupled to the metric and
matter perturbations. In GR limit this boils down to a minimally coupled scalar field
in the background of the star. We present in Figs. 5 and 6 the massless φ-mode from
a Brans-Dicke type STT, and its GR limit. The real frequencies of the modes show
little dependence on the mass of the star, and the frequencies from GR remain larger
than the massless alternative theory. The damping times for lighter neutron stars in
the massless theory are close to GR but differ more significantly for heavier stars.
These φ-modes possess shorter damping times (in ms) than the previously discussed
f-modes, therefore they decay faster comparatively. Nonetheless, these scalar modes
can provide a new channel of emission [6].

Similarly, with these computed QNMs, we obtain the universal relations shown
in Fig. 7. We notice a good universality with respect to the six EOSs considered, by
scaling the real frequency with the mass of the star against the star compactness, and



168 F. S. Khoo

Fig. 5 Real frequency ωR in kHz for l = 2 φ-modes versus the mass of neutron star M in solar
masses for six EOSs under GR and a massless STT

Fig. 6 Damping time τ in milliseconds for l = 2 φ-modes versus the mass of neutron star M in
solar masses for six EOSs under GR and a massless STT

another by scaling with the physical radius of the star against the generalized com-
pactness. In general, in both relations, GR always exhibits a larger scaled frequency
than the massless theory.

Finally let us discuss the l = 0 perturbations. In GR these modes are normal
modes, confined to the interior of the star. However, in STTs, they propagate outside
the star and are damped, which we can show by computing their QNMs. Therefore in
another word, l = 0 gravitational radiation is permitted in STTs. In Figs. 8 and 9 we
present the pressure-led l = 0 F-mode for SLy EOS, in GR, severalR2 theories, and
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Fig.7 Universal relations for the scaled real frequency of l = 2 φ-mode against compactness M/R
(left) and generalized compactness η of the star (right)

Fig. 8 Real frequency ωR in kHz for l = 0 F-modes versus the mass of neutron star M in solar
masses for SLy EOS under GR and several STTs

a massless Brans-Dicke theory. The real frequencies become zero at the maximal
mass of the star, and the damping times indicate an order of 105 years ormore for stars
below the maximal mass. Thus these stable F-modes are ultra long-lived. Beyond
the maximal mass of the star, the modes become purely imaginary and the star is
unstable. In the limit of mφ → ∞, i.e. reaching the GR limit, the ultra long-lived
modes become normal modes.
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Fig. 9 Inverse damping time τ in milliseconds for l = 0 F-modes versus the mass of neutron star
M in solar masses for SLy EOS under GR and several STTs

3 Conclusions

Neutron stars are compact objects where we can put our understanding in especially
nuclear physics and astrophysics to test. With the unknown matter composition of
the star at the core, universal relations become important tools to study the global
properties of the star, and hence constraints on alternative theories. In regard to the
gravitational waves from the star, its quasinormal mode spectrum is rich with the
coupled perturbations of the spacetime and matter of the star. Here, contrasting GR
with several viable STTs as alternative gravity theories, we present our results for
l = 2 fluid f-mode, l = 2 scalar φ-mode, and l = 0 pressure F-mode, discussing
the effects of the scalar field mass from the STTs on the behaviour of the modes,
and presenting several universal relations for the star in the theories by using the
properties and observables of the star.We find that there exist gravitational radiations
corresponding to l < 2 modes in STTs, unlike GR. For instance, the l = 0 pressure
normal modes of GR turn into propagating and ultra long-lived QNMs in STTs.
The presence of the scalar field in STTs also leads to additional φ-mode emissions.
The scalar field mass gives rise to a dispersion relation between the frequency of
the spacetime and scalar field oscillations at infinity, indicating that the scalar field
perturbations do not propagate at the speed of light.
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Introduction to Stellar andSubstellar
Physics inModifiedGravity

Aneta Wojnar

Abstract

We discuss the standard Lane-Emden formalism as well as the one related to the
slowly rotating objects. It is preceded by a brief introduction of different forms of
the polytropic equation of state. This allows to study a wide class of astrophysical
objects in the framework of a given theory of gravity, as demonstrated in a few
examples. We will discuss light elements burning processes and cooling models
in stars and substellar objects with the use of the Lane-Emden formalism.

1 Introduction

In the spherical symmetric spacetime (hence all physical quantities are dependent
on the radial coordinate r only), the hydrostatic equilibrium equations are given by

dP

dr
= ρ

dΦ

dr
(1)

dm

dr
= 4πr2ρ(r), (2)

whereΦ = Φ(r) is the gravitational potential, P = P(r) and ρ = ρ(r) are pressure
and energy density, respectively, while m = m(r) is mass enclosed in a spherical-
symmetric ball.

In order to solve the above hydrostatic equations, we need to have boundary
conditions which are given by: ρ(0) = ρc, with ρc being the central density,m(0) =
0, and P(R) = 0, where R is the radius of the object. Apart from them, we also need
a relation between the pressure and energy density which is given by an equation of
state (EoS). In the next section, we will discuss some particular forms of EoS’s.
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2 Matter Description in Stellar Interiors

2.1 Equation of State

As briefly discussed before, an equation of state is the crucial ingredient to solve the
set of Eqs. (1) and (2). It cannot be any equation relating thermodynamics quantities
such as pressure P and energy density ρ–it must satisfy a few particular conditions1

such that it can indeed describe matter inside a stellar object. One of them is the
the weak energy condition ρ > 0 and ρ + P > 0. Apart from it, matter must not
spontaneous collapse–it means, it must be microscopically stable (Le Chatelier’s
principle)–which provides the conditions P ≥ 0 and dP/dρ > 0. Moreover, the
speed of perturbations cannot exceed the speed of light cs ≡ (dP/dρ)1/2 ≤ 1.

There are many EoS’s which fulfill those conditions and are used to study various
astrophysical objects. However, we will focus now on two specific ones, given in
analytical forms: ideal gas and polytropic EoS. The ideal gas is often used as an
approximated description of the atmosphere, but also as one of many components of
a mixture of non-interacting gases, described by the Dalton law ptotal = ∑m

i=1 pi .
The ideal gas has a well known form

ρ = μp

NAkBT
. (3)

However, we will mainly focus our attention on the polytropic form of EoS’s:

P = Kρ1+ 1
n , (4)

where K and n are polytropic parameters or functions. Their exact forms depend
on an astrophysical object we are interested in, and, as it will turn out, they also
depend on a lot of physical processes and information which can be incorporated into
their expressions. This EoS is widely used to approximate the matter description in
substellar and stellar objects and also in compact stars, such white dwarfs or neutron
ones. Often, it is an equation of state which one uses to analyze an astrophysical
object in modified theories of gravity [12,44,45,65], to trace eventual problems as
well as to understand the structure of equations.

Before discussing more interesting features of the polytropic EoS, let us just
briefly present the simplest forms, related to the non-relativistic degenerate electron
gas for which n = 3/2, and to relativistic one, given by n = 3. Then, the polytropic
parameters K ’s are constants, given as [34]

Kn=3/2 = 1

20

(
3

π

) 2
3 h2

me

1

(μemu)
5
3

, Kn=3 = hc

8

(
3

π

) 1
3 1

mH (μe)
4
3

, (5)

1We will focus on the barotropic EoS only, that is, when P = P(ρ).
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where

μ−1
e = X + Y

2
+ (1 + X + Y )

〈
Z

A

〉

(6)

with 〈Z/A〉 being the average number of electrons per nucleons in metals, X and
Y the mass fractions of hydrogen and helium, respectively, while the other symbols
have their standard meaning. Usually, one assumes 〈Z/A〉 = 1/2 and that the star
or substellar object consists of 70% of hydrogen (that is, X = 0.7).

However, the above forms do not catch many interesting effects, such as for
example more realistic description of the electron degeneracy and its time evolution,
strongly coupled plasma [66], finite gas temperatures with phase transition points
between metallic hydrogen and molecular state. It turns out that those effects can
be mimicked by the polytropic EoS (or its slight modifications), which significantly
simplify the calculations, especially if we do them in a framework of MG. Let us
now briefly discuss some of them. In most of the cases, if not indicated, we will deal
with the non-relativistic degenerate electron gas, that is, n = 3/2.

The degeneracy parameter Ψ is defined as follows

Ψ = μF

kBT
=

(
3π2

�
3
)2/3

2mekBT

[
ρNA

μe

]2/3
, (7)

where NA is the Avogadro number while the other constants have the standard mean-
ing. Since it is dependent on the density and temperature, which change during an
object’s evolution, for instance, when it gravitationally contracts, its time evolution
can have a non-trivial effect on the stellar and substellar properties. To take it into
account, there have been a few improvements proposed such that the simple forms
(5) acquired additional terms. For example, to cover high densities with low tem-
peratures (degenerated gas, Ψ >> 1) and ideal gas (3) (Ψ << 1), the polytropic
constant (5) is [11]

K = (3π2)2/3�

5mem
5/3
H μ

5/3
e

(
1 + αd

Ψ

)
, (8)

with αd ≡ 5μe/2μ ≈ 4.82, whereμ is the mean molecular weight of ionized hydro-
gen/heliummixtures, and the providedvalue is for X = 0.75 andY = 0.25.However,
this EoS cannot be used for a partially degenerate gas, sinceΨ is considered here as a
constant. Nevertheless, it has been used to get the minimum Main Sequence masses
via obtaining the luminosity produced by the hydrogen burning [11,22,27,46,55,56]
or maximal mass of a fully convective star on the Main Sequence [1,75] in various
theories of gravity. Similar modifications to the polytropic EoS are also used to study
light elements’ burning in fully convective stars [9,70,76].

To consider a mixture of degenerate and ideal gas states at finite temperature as
well as to take into account ionization and phase transition points, the polytropic
parameter K becomes a function, with the following form [3]

K = Cμ
−5/3
e (1 + b + aη), (9)
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where we have redefined the electron degeneracy as η = Ψ −1. The constant C =
1013cm4g−2/3s−2 while a = 5

2μeμ
−1
1 , where μ1 is defined as

1

μ1
= (1 + xH+)X + Y

4
. (10)

It takes into account ionization of hydrogen X , represented by the ionization fraction
xH+ and depends on the phase transition points [16]. On the other hand, the quantity
b reads

b = − 5

16
ηln(1 + e−1/η) + 15

8
η2

(
π2

3
+ Li2[−e−1/η]

)

, (11)

where Li2 denotes the second order polylogarithm function. Such an EoS is used
to described matter properties, in very low-mass stars, brown dwarfs and giant exo-
planets [3,8,38,51].

•? Exercises

1. Show that a combination of pressures p = p1 + p2, where p1 is the simple poly-
tropic EoS with n = 3/2 (5) and p2 is the ideal gas one (3), can be written as a
polytropic EoS with the polytropic index n = 3/2.

2. Show that the polytropic equation of state with (9) in the approximation of neg-
ligible degeneracy reduces to the ideal gas.

Various forms of the polytropic EoS are also used to study terrestrial (exo-)planets.
To describe a complex planets’ interiors, one needs to consider a merger of the third-
order finite strain Birch-Murgnagham equation of state [10] with Thomas-Fermi-
Dirac one [23–25,57,68]. Such a merger is well approximated by the polytropic EoS
up to the pressure range p < 107 GPa [64]

ρ(p) = ρ0 + cpn, (12)

whose best-fit parameters ρ0, c, and n depend on a material the layer is composed of.
The presence of ρ0 in the above EoS allows to include the incompressibility of solids
and liquids at low pressures. One may also make the polytropic index n a variable,
since it is a derivative of the inverse of the compressibility, which is a property of
the layer’s material, to describe rocky and gaseous (exo-)planets [72].
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2.2 Other Properties

Although the equation of state is enough to solve the system of the differential Eqs.
(1) and (2) to get the basic properties of an astrophysical object such as mass and
radius, as well as its core properties if we deal with a polytrope (see the next section),
it is not sufficient to study processes happening in its interior, such us thermonuclear
reactions, cooling and crystallization processes, or its evolution. Let us then discuss
additional equations which are crucial for those physical problems.

If a low-mass star or a brown dwarf is massive enough2 to burn light elements
in its core, the outcome of such an energy generation process is, roughly speaking,
luminosity. It is obtained by the integration of the below expression:

dLburning

dr
= 4πr2ε̇ρ, (13)

where the energy generation rate ε̇ is a function of energy density, temperature, and
stellar composition. It is often approximated as a power-low function of the two
first [26]. Its (analytical) form depends on a given reaction and here we will not
focus on any particular form (see Sect. 4.1 for some examples). Nevertheless of
the type of the reaction, such an energy is transported from the deep interior to the
surface of the object. Depending on the type of the object (which can be translated as
a mass criterion), one deals with the heat transport through object’s interior and its
atmosphere. Themost common criterion determining the class of the energy transport
is provided by the Schwarzschild one [62,62]:

∇rad ≤ ∇ad pure diffusive radiative or conductive transport (14)

∇rad > ∇ad adiabatic convection is present locally, (15)

where the gradient denotes the temperature T variation with depth

∇rad :=
(
d ln T

d ln p

)

rad
, (16)

and ∇ad is the adiabatic temperature gradient, which in case of perfect, monatomic
gas has a constant value ∇ad = 0.4. In the case of Newtonian gravity, the criterion
is given by

∇rad = 3κrclp

16π ācGmT 4 , (17)

where l is the local luminosity, the constant ā = 7.57 × 10−15 erg
cm3K 4 is the radiation

density and κrc is the radiative and/or conductive opacity which we will discuss
later. However it was demonstrated that forMG the Schwarzschild criterion becomes

2 It will turn out that you will find a lot of terms as “critical mass” for something when you go
deeper into some of the branches of the astrophysics.
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modified [75] by additional terms which have a stabilizing or destabilizing effects
(therefore, for instance, one can deal with more massive fully convective stars on the
Main Sequence in comparison to Newtonian gravity.)

When the produced energy reaches the object’s surface, it is radiated away through
it. This process is well described by the Stefan-Boltzmann law (L stands for lumi-
nosity)

L = 4π f σT 4
e f f R

2, (18)

where σ is the Stefan-Boltzmann constant and the factor f ≤ 1 which allows to
include planets since they radiate less than the black-body with the same effective
temperature Tef f .

Unfortunately, the effective temperature as well as other parts of the atmospheric
modelling are not only complicated to determine, but they often carry significant
uncertainties. Moreover, they properties and forms also depend on the interior prop-
erties and matching conditions. However, we can keep them as parameters to be
determined by some particular methods, or we can derive them from scratch. To do
so, we can use for example the optical depth τ , averaged over the object’s atmo-
sphere3 [28,34]:

τ(r) = κ̄

∫ ∞

r
ρdr , (19)

where κ̄ is ameanopacity. For objects possessing atmosphereswith low temperatures,
the most common mean opacity is the Rosseland one. It is given by the Kramers’
law

κ̄ = κ0 p
uTw, (20)

where κ0, u andw are values depending on different opacity regimes [2,43]. Another
useful approximation is the assumption is the atmospheric particles satisfy the ideal
gas relation (3).

Another quantity which is crucial for studying processes in the stellar and sub-
stellar interiors is the thermal energy

U = c̄v

M
Amp

T , (21)

where T is the temperature of the isothermal core and M/(Amp) is the number of
ions with A being the mean atomic weight. The mean specific heat is taken for the
whole stellar configuration since it depends on the density

c̄v = 1

M
∫ M

0
cv(T , ρ)

dm

dr
dr , (22)

3 However, it is useful for analytical studies only when we can assume that the surface gravity
g = Gm(r)

r2
is constant.
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where cv = celv + cionv , with cionv being the specific heats of ions and celv the electrons
per ions depend on density. If the main contribution comes from the ions, for which
the specific heat is cv = (3/2)kB, the thermal energy is reduced to the well-known
form

U = 3

2
kBT

M
Amp

. (23)

However, if onewants to consider amore realistic case, the dependency on the Debye
temperature ΘD and the ratio of Coulomb to thermal energy Γ

Γ = 2.28 × 105
Z2

A1/3

ρ
1/3
s

T
, (24)

with ρs(T ) being the density of the crystallized mass at a temperature T , must be
taken into account. They can be incorporated already in the expression for the specific
heat of ions. The exact forms of the specific heats are as follows

celv = 3

2

kBπ2

3
Z
kBT

εF
, cionv = 9kB

(
T

ΘD

)3 ∫ ΘD/T

0

x4ex

(ex − 1)2
dx, (25)

where Z is the charge and εF is the Fermi energy (pF is the Fermi momentum)

ε2F = p2Fc
2 + m2

ec
4, p3F = 3h3

8π

ρ

μemp
. (26)

As evident from the form of the specific heat of ions cionv , it depends on the crystal-
lization properties of matter. More specifically, it depends on the critical value of the
ratio of Coulomb to thermal energy Γ , denoted by Γm . For Γ < Γm , cionv reduces to
(3/2)kB while above this value, the specific heat of ions is given by the expression
(25), in which the Debye temperature is given by

ΘD = 0.174 × 104
2Z

A

√
ρ. (27)

We see that all those quantities depend on density, which is obtained from the hydro-
static equilibrium equation. Because of that fact, depending on the gravity framework
one works, those matter properties do depend on it. As we will see in the Sect. 4.2.2,
it has an important consequence on the cooling and crystallization processes in white
dwarfs.
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3 Lane-Emden Formalism

Although the Lane-Emden formalism is well-known and it can be find in almost
every standard textbook, let us briefly recall it before moving to its MG counter-
part. Roughly speaking, it is a dimensionless Poisson equation with the hydrostatic
equilibrium equation and polytropic form of the equation of state in the spherical-
symmetric spacetime. As we will see in the further part, it is widely used in many
astrophysical problems.

3.1 Newtonian Case

Let us consider the Poisson equation

∇2Φ = −4πGρ, (28)

whereΦ is the gravitational potential, ρ is energy densitywhileG theNewton’s grav-
itational constant. Considering spherical-symmetric spacetime such that all variables
are thefunctionsof theradialcoordinates, that is,Φ ≡ Φ(r)andρ ≡ ρ(r), thePoisson
Eq. (28) and corresponding hydrostatic equilibrium equation take the following form

1

r2
d

dr

(
r2

dΦ

dr

)
= −4πGρ,

dP

dr
= ρ

dΦ

dr
, (29)

where P ≡ P(r). Applying to both the polytropic equation of state (4), these equa-
tions can be written as one

1

ξ2

d

dξ

(
ξ2

dθ

dξ

)
= −θn, (30)

where θ is a function of ξ . It satisfies the boundary conditions θ(0) = 1, θ ′(0) = 0,
where the prime ′ ≡ d

dξ
. The above equation is the Lane-Emden equation (LEE).

The relations between the dimensionless variables θ and ξ and energy density ρ and
radial coordinate r are like follows:

ρ = ρcθ
n, r = rcξ with r2c = K (n + 1)ρ

( 1n −1)
c

4πG
. (31)

where ρc denotes the central density. Notice that from (4) we have

P = Pcθ
n+1, (32)

where Pc := Kρ
n+1
n

c .
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•? Exercises

1. Derive the Lane-Emden Eq. (30).
2. It turns out that the LEE possesses three exact solutions for some specific values

of the polytropic index n. Find the exact solutions of the LEE (30) for n = 0,
n = 1, and n = 5.

3. In some particular cases, such as for instance studying processes happening in
the stellar core (see the Sect. 4.1), the near-center solution is needed and quite
easy to find with respect to the the general one. Therefore, find the approximated
solution of (30) around ξ ≈ 0, that is, an analytic form of θ(ξ ≈ 0).

Knowing the solution θ of the LEE for the chosen polytropic index n and poly-
tropic (constant or variable) K , one can immediately get the characteristics of a given
astrophysical object. Therefore, the total stellar mass M and its radius R are given
as

M = 4πr3c ρcωn, R = γn

(
K

G

) n
3−n

M
1−n
n−3 , (33)

where

ωn = −ξ21
dθ

dξ

∣
∣
∣
ξ=ξ1

, γn = (4π)
1

n−3 (n + 1)
n

3−n ω
n−1
3−n
n ξ1 (34)

and ξR is a value for which θ(ξR) = 0. Thus, the first zero of θ indicates the radius
of the object.

•? Exercise

Derive the mass and radius given by (33).

The density and pressure profiles are provided by (31) and (4), respectively, while
the temperature profile yields

T = K
mHμ

kB
ρ

1
n
c θ, (35)

with kB being Boltzmann’s constant, mH the mass of Hydrogen atom, and μ the
mean molecular weigh.
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•? Exercise

Derive the temperature profile (35).

Moreover, one can also derive the core quantities, such as the core temperature
Tc, core density ρc, and core pressure Pc:

ρc = δn

(
3M

4πR3

)

, Tc = K
mHμ

kB
ρ

1
n
c , Pc := Kρ

n+1
n

c (36)

where δn = − ξ1

3 dθ
dξ

|ξ=ξ1
.

•? Exercise

Find mass, radius, central temperature and density for a polytropic star with respect
to the solutions of the Lane-Emden equation for n = 1.5 and n = 3.

To knowmore about the LEE, its generalization and further applications, see [29].
Now on, we will focus on its MG form.

3.2 Modified Gravity

If you are interested in modified theories of gravity, you already now that some of
those proposal can alsomodify theNewtonian limit equations. Therefore, the Poisson
and hydrostatic equilibrium equations acquire additional terms whose forms depend
on a particular theory [5,37,47,48,69]. We can then write the first equation in a
generic way for the spherical-symmetric spacetime as

1

r2
d

dr

(
r2

dΦ

dr

)
= −4πGρ + mgt(r), (37)

where the modified gravity term mgt(r) is a general function, characteristic for a
given theory of gravity. Here we also assume that all additional elements of that
function are r−coordinate dependent.

Analogously, employing the polytropic EoS (4) and the hydrostatic equilibrium
Eq. (1), we can rewrite it as the modified Lane-Emden equation (MLEE)

1

ξ2

d

dξ

(
ξ2

dθ

dξ

)
= −θn + gmod0(ξ) (38)

where

gmod0 = mgt(r)

4πGρc
(39)
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is a dimensionless term induced by a given theory. Notice its dependence on ρc. As
you will see in the following examples, usually the core density can be hidden into
a re-scaled theory parameter.

•? Exercise

Derive the MLEE (38).

Examples: Modified Lane-Emden equations

• Scalar-tensor theories (Horndeski and beyond,...) [36,53,54]

1

ξ2

d

dξ

[(
1 + n

4
Υ ξ2θn−1

)
ξ2

dθ

dξ
+ Υ

2
ξ3θn

]

= −θn, (40)

where Υ in the theory parameter.
• Eddington-inspired Born Infeld gravity (EiBI) [49]

d

dξ

(

ξ2
dθ

dξ

[
1 + αθn−1]

)

= −ξ2θn , (41)

where the EiBI corrections are hidden in the dimensionless parameter α = ε n
2 r2c

.

Notice that it depends on the polytropic parameter and also on the star’s central
energy density ρc.

• Palatini f (R) gravity [74]

1

ξ

d2

dξ2

[
√

φξ

(

θ − 2α

n + 1
θn+1

)]

= − (φ + 1
2ξ

dφ
dξ

)2√
φ

θn, (42)

where φ = 1 + 2αθn while α = κc2βρc is the rescaled modifed gravity parame-
ter.

• Metric f (R) gravity has a much more complex form, see [12].

3.3 Slowly Rotating Astrophysical Objects

The formalism presented above turn out to be very useful (see the Sect. 4) in studying
non-relativistic objects in modified gravity. However, everything in the Universe
rotates, therefore if one day you would like to consider a more realistic models to,



184 A.Wojnar

for example, test your model of gravity (or other fundamental interactions) against
observational data, the rotation4 should be included.

Can we however have a similar formalism in modified gravity but for the rotating
polytropes? The answer is yes–we can adopt the derivation presented in [17] and
write down the MLEE for a rotating object, as it was done in [19]. Moreover, it turns
out that one can even provide a generic solution of such an equation. Let us see how
it can be done.

Let us consider then a slowly rotating object along the z-axis with the uniform
angular speed ω. Adopting the polar coordinates {r , μ(= cosϑ), φ}, the equations
of hydrostatic equilibrium in that case are written as

∂P

∂r
= ρ

∂Φ

∂r
+ ρω2r(1 − μ2) ,

∂P

∂μ
= ρ

∂Φ

∂μ
− ρω2r2μ (43)

in which we have neglected φ by assuming the axial symmetry. The gravitational
potential Φ, as previously, carries additional terms introduced by the given theory of
gravity.Moreover, the extra term in thePoissonEq. (37) also gains theμ−dependence
due to the rotation, that is:

∇2Φ = −4πGρ + mgt(r , μ), (44)

where, analogously to the non-rotating case, the termmgt(r , μ) is a general function.
Apart from it, the energy density also depends now on the angular coordinate μ, that
is, ρ = ρ(r , μ) as well as pressure, such that the polytropic EoS is now

P(r , μ) = Kρ1+ 1
n . (45)

Introducing the dimensionless variables, we also need to remember about the
μ−dependence, thus

ρ = ρcΘ
n, r = rcξ with r2c = K (n + 1)ρ

( 1n −1)
c

4πG
(46)

where Θ ≡ (ξ, μ) is a function of both ξ and μ. Then, we can derive the MLEE for
the rotating polytrope of the form:

1

ξ2

∂

∂ξ

(
ξ2

∂Θ

∂ξ

)
+ 1

ξ2

∂

∂μ

(
(1 − μ2)

∂Θ

∂μ

)
= v + gmod(ξ, μ) − Θn (47)

where we have introduced a dimensional parameter v = ω2/2πGρc. It can be inter-
preted as a measure of the outward centrifugal force compared to the self-gravity
of the rotating polytrope. On the other hand, gmod(ξ, μ) = mgt(r , μ)/4πGρc is the
dimensionless modification term whose form is explicit when a gravitational pro-
posal is chosen.

4 As well as magnetic field, energy transport properties, time dependency and many others...
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•? Exercise

Derive the MLEE for the rotating polytrope (47).

As already mentioned, one can find an exact solution Θ(ξ, μ) of (47) in the form
of the solutions of the non-rotatingMLEEwhich is usually much easier to solve than
its rotating counterpart. It turns out that such a solution for a slow rotation has the
following form [19]:

Θ(ξ, μ) = θ(ξ) + v
[
ψ0(ξ) + A2ψ2(ξ)P2(μ)

]
, (48)

where P2(μ) is the Legendre function while the quantity A2 is given by

A2 = −5

6

ξ2R

[3ψ2(ξR) + ξRψ
′
2(ξR)] . (49)

The dimensionless radius ξ1 is the first zero of θ(ξ) and ′ denotes derivative with
respect to ξ . The functions ψ0 and ψ2 satisfy particular differential equations which
depend on modified gravity terms. You may check how they look like in [19]. The
derivation of (48) is quite tedious and technical, and we will skip it here.

Since the differential equations the function ψ0 and ψ2 need to satisfy depend on
a model of gravity, it can happen that one cannot solve those equations to get their
exact form. However, it was shown [19] that for some models of gravity such as

Examples: Modified Poisson equations

• Scalar-tensor theories (Horndeski and beyond,...)

∇2Φ ∼ −κ

2

(
ρ + Υ

4
∇2(r2ρ)

)
(50)

• Eddington-inspired Born Infeld gravity

∇2Φ ∼ −κ

2

(
ρ + ε

2
∇2ρ

)
(51)

• Palatini f (R) gravity [69]

∇2V ∼ −κ

2

(
ρ + 2β∇2ρ

)
(52)

one can indeed solve them. It seems that the formalism presented in that section can
be applied to any theory of gravity of which the additional term appearing in the
Poisson equation is a function of density, its higher order radial-derivatives, or its
Laplacian [19].
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4 Applications

Since an application of the introduced formalism (and its extension to, for instant,
even more general EoS) is plentiful, we will briefly review the existing literature and
have a closer look on three astrophysical processes in which the LE formalism has a
direct use. Therefore, we will focus only on some parts of the stellar and substellar
evolution, with the main focus on the objects with masses not exceeding 0.5M,
where M is the solar mass. The reason for such a limitation is that the interiors of
such objects, even if they are true stars on the Main Sequence, are fully convective.
This means that their interior properties are well described by the polytropic EoS
which we have discussed at the beginning of that chapter, while the LE formalism
presented afterwards allows us to obtain necessary ingredients to study non-trivial
problems in astrophysics.

Roughly speaking, before reaching the Main Sequence, a stellar object, called
pre-Main Sequence (PMS) star, is still contracting. On the HR diagram it follows
the so-called Hayashi track and it decreases its luminosity but does not change
too much its surface temperature. Depending on the core conditions (mainly on its
temperature, but also, as it turns out, a model of gravity), the PMS star can already
burn light elements such as deuterium and lithium. The temperature of the hydrogen
ignition, on the other hand, is much higher than that of the other light elements.
Moreover, when a PMS star starts burning this element stably, it becomes a true star
and enters the Main Sequence phase of the stellar evolution. The energy generated
in the core induces pressure which balances the gravitational pull such that the star
stops contracting. However, if the central temperature and other core conditions are
not enough to enable the stable hydrogen burning, the object further contracts till
the electron degeneracy pressure is high enough to counterbalance the gravitational
attraction. Such an object, called a brown dwarf, radiates its energy away, and since
it does not possess any other energy source apart from the one gained during its
contraction phase, it cools down with time. As we will see, all those process are
gravitymodel dependent. Before however doing it, let us brieflymention other works
in which polytropes and the LE formalism were or can be used.

Since in modified gravity the hydrostatic equilibrium equations [40,48,52] (for
review, see [47]) and matter description [73] are modified, the changes in the astro-
physical object’s internal properties and in its evolution are also expected to hap-
pen. Because of that fact, a few tests with the use of stars, brown dwarfs, (exo-
)planets and white dwarfs have been proposed. The most common feature of those
objects which is affected by these modifications are limited masses, such as the
Chandrasekhar mass-limit of WDs [6,7,18,30–32,60,61,78], the minimum Main
Sequencemass [22,46,55,56],minimummass for deuteriumburning [51], Jeans [13]
and opacity mass [77]. Another tool which is used to constrain different theories of
gravity are seismic data obtained from the helioseismology [58,59] or seismic anal-
ysis from the terrestrial planets [39,41,42]. It turns out that also the light elements’
abundances in stellar atmospheres [76] are affected when the gravitational frame-
work is different from the Newtonian one. The evolutionary phases of such objects
as non-relativistic stars [1,20,21,27,67,75], brown dwarfs [8,38], WDs [33,61], and
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giant planets [77,79] considered in modified gravity also differ with respect to their
Newtonian description. Moreover, those objects can be used to constrain different
theories when more accurate data provided by GAIA, JamesWebb Space Telescope,
or Nancy Grace Roman Space Telescope are available.

4.1 Light Elements’Burning

As an example of the use of the introduced formalism, let us discuss two important
thermonuclear processes which happen in the PMS and stellar interiors. To examine
them, we will need solutions of the LE equation. Since they depend on a model of
gravity, the results one will obtain will differ with respect to Newtonian ones. As
we will also discuss later on, this conclusion carries important consequences and
possibilities.

4.1.1 Lithium
Since we will deal with a low-mass PMS star with mass M as already mentioned,
it is fully convective (apart from the radiative atmosphere). Because of that fact
we can safely assume that it is well-mixed, so we do not need to worry about the
non-homogeneous distribution of various elements. It also means that the matter
properties are well-described by the polytropic EoS and the LE formalism. Denoting
the hydrogen fraction as X , the depletion rate of 7Li is expressed by

M
d f

dt
= − X f

mH

∫ M

0
ρ〈σv〉dM, (53)

where f is the lithium-to-hydrogen ratio. Since we deal with a non-resonant reaction
rate in the temperature range T < 6 × 106 K, it is given by

NA〈σv〉 = S fscr T
−2/3
c6 exp

[

−aT
− 1

3
c6

]
cm3

s g
, (54)

where Tc6 ≡ Tc/106 K is the core temperature and fscr is the screening correction
factor. The dimensionless parameters S = 7.2 × 1010 and a = 84.72 were fitted to
the reaction rate 7Li(p, α) 4He [15,50,70].

Immediately we see from the above formulas that in order to calculate the lithium
depletion rate, we need to find out the central temperature Tc and density ρ. Fortu-
nately, from the Sect. 3.1 and for a given theory of gravity we can write that the core
characteristic are given by

Tc =1.15 × 106
(μeff

0.6

) (
M

0.1M

) (
R
R

)
δ
2
3

ξ
5
3
R (−θ ′(ξR))

1
3

K (55)

ρc =0.141

(
M

0.1M

) (
R
R

)3

δ
g

cm3 , (56)
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where the mean molecular weight μeff with the electron degeneracy taken into
account is given by the expression

1

μeff
= 1

μi
+ 1

μe

2F3/2(η)

3F1/2(η)
(57)

inwhichμi = ρNA/ni is themeanmolecularweight of the gas, η the electron degen-
eracy and Fn(η) the nth order Fermi-Dirac function. We see that the values of the
core quantities are MG dependent via the solutions of the modified LE, represented
here by δ, ξR , and θ ′.

For such a case, the radius of the PMS star is given by [70]

R

R
≈ 7.1 × 10−2γ

μeffμ
2
3
e F

2
3
1/2(η)

(
0.1M
M

) 1
3

. (58)

•? Exercises

1. Find the polytropic function K .
2. Change the integration variable to the spatial ones in (53).
3. Use the LE formalism to rewrite (53) in the form of the LE variables.

Following the steps given in the above exercises, the depletion rate of lithium will
have the following form (u ≡ aT−1/3

c6 )

d

dt
ln f ∼

(u

a

)2 ∫ ξR

0
fscrh(θ, u)dξ

1

s
, (59)

where h(θ, u) is a function of u and the solution of the LE equation, to be deter-
mined in the above exercise. It is very improbable that we will be able to solve the
modified LE equation with n = 3/2 analytically, and to be able to go forward with
our calculations without the need of numerical methods. However, we should notice
that the burning processes in low-mass stars happen in the star’s core, therefore the
near-center approximation θ(ξ ≈ 0), as obtained in one of the exercise in the Sect.
3.1 is sufficient for our purposes. Depending on the theory of gravity, its form can
also depend on the theory parameter.

Integration in the Eq. (59) can be easily performed with the assumption that the
time evolution of the degeneracy parameter η is not significant with respect to the
changes in the star’s size (that is, the radius). Therefore, for the PMS stars with
masses M > 0.2M the lithium depletion F is
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F = ln
f0
f

= 5.6 × 1014T−4
e f f

(
X

0.7

)(
0.1M
M

)3 (
0.6

μe f f

)6

(60)

× S fscr a
16g(u)

(
1 + eventual MG term

)ξ7R(−θ ′(ξR))2

δ2
,

where f0 is the initial abundance,Tef f the effective temperature, g(u) = u−37/2e−u −
29Γ (−37/2, u), and Γ (−37/2, u) is the upper incomplete gamma function. The
effect of MG is clearly visible, even without the eventual MG modification term,
since the last fraction includes the modified LE solutions.

•? Exercises

1. Find the radius and luminosity as functions of time using the Stefan-Boltzmann
equation and the virial theorem.

2. Write down the contraction time:

tcont = − R

dR/dt
(61)

in terms of the central temperature Tc.
3. Assuming that the PMS star depletes its lithium when it reaches the Main

Sequence, such that the contraction time tcont is comparable to the destruction
time tdest , find the central temperature, age, radius, and luminosity of a 0.5M
star. The destruction time is given by

tdest = mP

Xρ < σv >
. (62)

4.1.2 Hydrogen
When the young star reaches the Main Sequence, it means that in its core the tem-
perature is high enough to start the hydrogen ignition. The energy generated by this
process is radiated away through the star’s surface. It turns out that this stable process
happens for sufficiently massive objects. This critical mass, called minimum Main
Sequence mass, we are going to calculate now.

The energy generation rate per unit mass for the hydrogen ignition process has
the power law form [11,26]

ε̇pp = ε̇c

(
T

Tc

)s (
ρ

ρc

)u−1

, ε̇c = ε0T
s
c ρu−1

c , (63)

where the two exponents can be approximated as s ≈ 6.31 and u ≈ 2.28, while ε̇0 ≈
3.4 × 10−9 ergs g−1s−1. Considering again a PMS star with the hydrogen fraction
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X = 0.75, the number of baryons per electron in low-mass stars is μe ≈ 1.143. The
luminosity being an effect of the hydrogen burning reads

LHB =
∫

ε̇pp dM, (64)

in which we can again use the LE formalism. Considering the polytrope with the
polytopic function K given by (8) and the near-zero solution θ(ξ ≈ 0), we find that

LHB

L
= 1.53 × 107Ψ 10.15

(Ψ + αd)16.46

δ5.4873/2 M11.977−1

ω3/2γ
16.46
3/2

, (65)

where L is the solar luminosity while M−1 = M/(0.1M). As previously, the MG
gravity effect is present via the solutions of the modified LE equation.

•? Exercise

Following the similar steps as in the Sect. 4.1.1, derive (65).

To find the minimum Main Sequence mass, we need to write down the Stefan-
Boltzmann Eq. (18) (with f = 1 for the black body approximation) as a function of
mass M−1. Equaling this two luminosities, that is, LHB = L will provide the critical
mass MHB which a PMS star needs to have in order to ignite hydrogen and burn it
in a stable way.

From the LE formalism we have already the radius written as a function of mass
(33) but the effective temperature, which we assume to be the temperature of the
photosphere from which the energy is radiated away, is much more complicated
to be obtained. Usually, one uses the matching procedure of the specific entropies
calculated in the stellar interior and in the photosphere [11]

Tph = 1.8 × 106ρ0.42
ph

Ψ 1.545
. (66)

•? Exercises

Using the definition of the photopshere (for which the optical depth (19) is equaled
to 2/3) and the assumption on the constant surface gravity

1. Find the photosheric pressure pef f .
2. Assuming that the photosphere matter can be approximated by the ideal gas, use

(66) and obtained before pef f to find the photospheric density ρe f f .
3. Write down the Stefan-Boltzmann law as a function of mass M−1.
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4. Show that the minimum Main Sequence mass is given by

MMMSM−1 = 0.290
γ 1.32
3/2 ω0.09

3/2

δ0.513/2

(αd + Ψ )1.509

Ψ 1.325 (1 + eventual MG term) (67)

4.2 Cooling Processes

4.2.1 Brown Dwarfs
Since the conditions occurring in the core are not enough to ignite hydrogen and
to produce radiation pressure to balance the gravitational pull, PMS objects (from
now on called brown dwarfs) with masses lower than MMMSM−1 continue contracting.
There is no stable energy production, thus a brown dwarf radiates the stored energy
away and cools down with time. Because of the ongoing contraction, the degenerate
gas’ contribution starts being relevant andmoreover, it changeswith time as the brown
dwarf is still contracting before reaching the equilibrium, that is, when the electron
degeneracy pressure balances the gravitational one. Therefore, we can still deal with
the polytrope, however with the function K adjusted to the mixture of degenerate
and ideal gas states at finite temperature (and other improvements, see the Sect.
2.1), given by (9). Similarly as in the case of low-mass stars, the biggest challenge
is to derive the effective temperature which appears in the Stefan-Boltzmann Eq.
(18). Again using the entropy matching procedure, the effective temperature Teff
is obtained in terms of the degeneracy parameter η(= Ψ −1) and the photospheric
density ρph as [3]

Teff = b1 × 106ρ0.4
ph ην K, (68)

where the parameters b1 and ν takes different values since they depend on the spe-
cific model adopted for describing the phase transition between a metallic hydrogen
and helium state (the brown dwarf’s interior) and the photosphere (composed of
molecular hydrogen and helium).

•? Exercise

Following the analogous steps from the Sect. 4.1.2, derived the effective temperature
and show that the luminosity is given by

L = 0.0721L
κ1.1424
R γ 0.286

(
M

M

)1.239 η2.856νb2.8561

(1 + b + aη)0.2848
(1 + eventual MG term) .

(69)
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However, the electron degeneracy η is a function of time, hence we need to find
that dependence. This can be done againwith the interior entropy (which is a function
of η) and the thermodynamics laws. The result of this procedure yields

dη

dt
= − 1.1634 × 10−18b2.8561 μ1mod

κ1.1424
R μ

8/3
e

(
M
M

)1.094

(70)

× η2.856ν(1 + b + aη)1.715γ 0.7143 (1 + eventual MG term) ,

where 1
μ1mod

= 1
μ1

+ 3
2
xH+ (1−xH+ )

2−xH+ and μ1 is given by (10). The Eqs. (70) and (69)
with the initial conditions η = 1 at t = 0, provides the model of cooling process for
a brown dwarf star in a given theory of gravity.

4.2.2 White Dwarfs
The final state of a Main Sequence star with mass� (10 ± 2) M is a white dwarf–a
very compact star which mainly consists of a core of the progenitor star. The white
dwarf’s mass ranges from a bit above of the solar mass, but with a much smaller
radius. Since in that stage of the stellar evolution the main energy source is the
energy stored during the previous active phases (that is, when the thermonuclear
reactions were taking place in the stellar interior), such a stellar remnant also cools
down with time. Here, we will focus on the process of cooling in which we take into
account crystallization. When the white dwarf’s core starts crystallizing, latent heat
is released, contributing the thermal energy which is radiated away. This delays the
cooling process. As soon as the star solidifies, the specific heat follows the Debye
law (known as Debye cooling). The simplest model of cooling in which one takes
into account only the radiation of the total thermal energy of the star (23) in modified
gravity was given in [33]. In what follows, we will demonstrate how to include
dependence on the Debye temperature and the ratio of Coulomb to thermal energy
to it, and we will also insert the crystallization process.

Therefore, the luminosity resulting from a decrease in thermal energy (21) of ions
and electrons in time t is given by

L thermal = −dU

dt
= − M

Amp
c̄v

dT

dt
, (71)

where the mean specific heat is given by (22) with (25). However, we need to also
take into account the latent heat which is released during the crystallization process.
Assuming that it is given ∼ kBT (we will take the numerical coefficient equaled 1
later on), the contribution to the luminosity resulting from this energy release is given
by [71]

L latent = kBT
d(ms/Amp)

dt
, (72)
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where ms is the amount of mass that is already crystallized. Let us write it as

L latent = kBT
M
Amp

1

M
dm

dr

dr

dρ

dρs(T )

dT

dT

dt
, (73)

where we have introduced ρs(T ) as the density of the crystallized mass at a temper-
ature T .

•? Exercise

Derive the Eq. (73).

The density of the crystallized mass ρs(T ) is related to the ratio of Coulomb to
thermal energy Γ by [35]

Γ = 2.28 × 105
Z2

A1/3

ρ
1/3
s

T
. (74)

The crystallization process starts when the above ratio reaches the critical value, it
means when Γ = Γm .

•? Exercise

Show that when the crystallization process is taken into account, one has

dρs

dT
= 3ρs

T
. (75)

Using the above relation, the luminosity (73) takes the following form

L latent = 3ρskB
M
Amp

1

M
dm

dr

dr

dρ

dT

dt
. (76)

Let us note that dmdr and dρ
dr are taken at radius r∗ for which ρ(r∗) = ρs(T ) is satisfied.

Therefore, we have finally derived the cooling equation

L = 3kBM
Amp

(

− c̄v

3kB
+ ρs

1

M
dm

dr

dr

dρ

)
dT

dt
, (77)

in which the effect of modified gravity are given by the density profile ρ(r) which
is a solution of the modified equilibrium equation (or the modified LE equation).
Similarly as in the case of brown dwarfs, such an equation allows to obtain the age
of the object. It can be shown that white dwarfs in modified gravity one deals with
younger objects than in Newtonian framework (that is, the stars cool down faster).
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5 Conclusions

We have introduced a standard formalism which is used to provide an hydrostatical
equilibrium of stellar and substellar objects in a framework of modified gravity.
Moreover, we have also briefly discussed other equations, mainly related to the
matter properties, which allow to describe internal processes happening in low-mass
stars, brown dwarfs, giant planets aswell aswhite dwarfs. As examples, we discussed
light elements’ ignition in the stellar cores, such as hydrogen and lithium burning.
Regarding evolutionary phases, we demonstrated how to use the modified Lane-
Emden formalism to examine cooling processes of brown and white dwarf stars.

There is however still a lot to do.We have just read about a fewparticular processes
whose description was undertaken in the framework of modified gravity. As shown
in [4], we do not have too many tests of our models in the curvature regime of stars,
which lies between the problematic one, that is, cosmological scales, and the well
tested, that is, Solar System’s and compact objects’ one. This gap could potentially
hide the onset of corrections to General Relativity, urgely searched by the modified
gravity community.
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ChameleonPerfect Scalar Field as a
Geometric Correction in f (R)Gravity

Laura L. Parrilla and Celia Escamilla-Rivera

Abstract

In thiswork,wederive the analytical form for a f (R)model that describes a perfect
scalar field φ by assuming the existence of a chameleon mechanism. Based on
four statements, at the background and perturbative level, it is possible to relate
the extra terms from this theory as a geometrical perfect fluid term, whose has
been expressed as possible candidates to explain the nature of the dark sector, and
possibly, in the case of a perfect scalar chameleon during inflation, satisfy the big
bang nucleosynthesis (BBN) constraints until late times.

1 Introduction

Since the discovery of the current accelerated cosmic expansion of theUniverse using
observational data from astrophysical objects like Supernovae type Ia independently
by the high-redshift Supernovae Search Team [29] and the Supernovae Cosmology
Project Team [27], has been attributed the source of this phenomena to the so-called
dark energy. However, even with the many efforts to pursue the understanding of the
nature of such a dark component, this has not been observationally identified yet.
One of the main characteristics of dark energy is attributed to a negative pressure,
which leads to an accelerated expansion phenomenon by counteracting the force of
gravity. The fact that the negative pressure leads to the cosmic acceleration may look
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counter-intuitive.1 The time-dependent pressure p(t) in homogeneous and isotropic
spacetimes appears in general relativity (GR) and mechanisms that generate this
negative pressure and cosmic acceleration are one of the main research topics in
Cosmology.

The straightforward candidate proposed for dark energy is the cosmological con-
stant Λ, whose energy density remains constant and allows Einstein field equations
to preserve the conservation of energy. The Λ term can be interpreted as a perfect
fluid by shifting to the right-hand side (r.h.s),2 and if dark energy modelled as Λ, for
which equation-of-state wfld = −1, is interpreted as a perfect fluid with pΛ ∝ −ρΛ.
From the point of view of particle physics, the Cosmological Constant can be related
to a vacuum energy density, where if we sum up zero-point energies of all normal
modes of some field and consider the cut-off of the momentum at Planck scale, the
vacuum energy density is around 10121 times larger than the observed Λ density,
the so-called vacuum catastrophe. On the one hand, if the Cosmological Constant is
truly the consequence of the present current cosmic acceleration, we need to find a
mechanism to obtain the tiny value ofΛwhich could be consistent with observations.

On the other hand, if the origin of dark energy is not the cosmological constant, we
need to search for some alternative (or extended) gravitymodels to explain the current
cosmic acceleration. There are two approaches to building dark energy models other
than using Λ. The first approach is to modify the r.h.s of Einstein field equations,
(Gμν = 8πGTμν), by considering specific forms of the energy-momentum tensor
Tμν that includes the possibility of a fluid with negative pressure. The most popular
models that belong to this class are the so-called quintessence [7], k-essence [28]
and perfect fluid models [19]. On this path, the methodology to follow is to consider
the existence of scalar fields3 with slowly/smooth varying potentials, whereas in
k-essence it is the scalar field kinetic energy that drives the acceleration. The latter
class is based on a perfect fluid of a specific equation-of-state.

The second approach to constructing dark energy models is to modify the l.h.s of
Einstein field equations.We denote the representativemodels that belong to this class
as modified gravity [14]. While scalar field models correspond to a modification of
the energy-momentum tensor, the approach in this path corresponds to the modified
gravity in which the gravitational theory is modified compared to general relativity.
For example, the Lagrangian density for general relativity is given by f (R) = R −
2Λ, where R is the Ricci scalar and the constant allows us to have the acceleration
phenomena required. A possible modification of this scenario can be described by a
non-linear arbitrary function f in terms of R, which is called f (R) theories of gravity.

1 In Newtonian gravity the pressure is related to a force associatedwith a local potential that depends
on the position in space.
2 There are several alternative models of dark energy also on the r.h.s of the field equations,Λ being
the simplest of all of them.
3 In quantum field theory, several species of elementary particles corresponding to a field are pro-
duced. The fields are classified as boson or fermionic depending on the spin of the particle. In the
case of scalar fields, this spin has a value of zero. At the quantum level, each field corresponds to
an operator, however, bosonic fields can be considered classical in a suitable regime.
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Dark energy models based on these kinds of theories have been studied extensively
including metric formalism [8,9], observational test [1,3,20] and modifications to
the spectra of galaxy clustering [10,16].

Historically, Brans-Dicke theory, an important class of scalar-tensor theories,
gives rise to a constant coupling Q between the scalar field φ and the matter
component. In this sense, modified gravity theories can be regarded as a coupled
quintessence scenario in Einstein’s frame. In the absence of a scalar field potential
V (φ), the Solar system tests constraint the strength of this coupling Q to be smaller
than the order of ≈ 10−3. In this case, is not possible to satisfy the local gravity
constraints unless we have a V (φ) with a large mass that can be capable to sup-
press the Q coupling in the regions of high density. Furthermore, if the same field
φ is responsible for the current cosmic acceleration phenomena, the potential V (φ)

needs to be sufficiently flat in the regions of low density. On this line of thought,
these requirements are possible to fulfill for large coupling models that satisfy the
local gravity constraints through the chameleon mechanism [22]. The existence of
a matter coupling gives rise to an extremum of the scalar field potential where the
field can be stabilised. In high-density regions, such as the interiors of astrophysical
objects, the field mass would be sufficiently large to avoid the propagation of the
fifth force. Meanwhile, the field would have a much lighter mass in low-density envi-
ronments, far away from compact objects, so it could be responsible for the present
cosmic acceleration. In this work, we are going to consider a particular class of the
chameleon field with an inverse power-law potential of the form V (φ) = M4+nφ−n ,
with n ≥ 1, so local gravity constraints can be satisfied for M ∼ 10−2eV. Interest-
ingly, these constrictions correspond to the energy scale required for the current
cosmic acceleration observed.

Recently, the correspondence between the modified gravity geometrical terms
inspired by perfect fluid components has been pointed out as a natural way to under-
stand the nature of dark energy, and by extension, the full dark sector [12,33]. In
resume, beyond the Ricci curvature scalar R or any other geometric invariant in a
gravitational action, we canmodelled these extra terms as perfect fluids. As an exten-
sion of these ideas, in this work, we propose to extend the conditions that allow us to
model the scalar field as perfect fluids using a chameleon scalar field. Perfect fluids
play a crucial role in general relativity being the natural sources of Einstein field
equations compatible with Bianchi identities. This characteristic allows any source
of field equations to be reformulated in adequate perfect fluid form, in principle,
to solve the dynamics related to the Cauchy problem. In Cosmology, perfect fluids
can represent, at least in a coarse-grained image Hubble’s effective flow behaviour
ranging from inflation to dark energy epochs. For these reasons, the compatibility
of perfect fluid solutions with modified (or extended) theories of gravity is a crucial
topic to be investigated.

Thiswork is divided as follows: In Sect. 2we discuss the perfect fluid form scheme
for a FLRW spacetime and the three conditions to fulfill in order to have the perfect
fluid description relationship. In Sect. 3we present a fourth condition at a perturbative
level to describe a perfect scalar field. In Sect. 4 it is described the f (R) theory at
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the background and perturbative level. In Sect. 5 we introduce the chameleon scalar
field in f (R) theories and the analytical form of f (R) to obtain a perfect scalar field.
Finally, our discussions are given in Sect. 6.

2 Background Conditions: Perfect Scalar Field in FLRW
Spacetimes

We can define a FLRW spacetime by considering a zero Weyl tensor, C jklm = 0,
with a time-like unit vector field in a covariant configuration as ukuk = −1 [24], as

ds2 = −dt2 + a2(t)

[
dr2

1 − kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (1)

in spherical coordinates and k = 0,−1, +1. Under such a description, we can com-
pute the following covariant derivative

∇ j uk = H(gi j + u juk), ∇ j H = −u ju
k∇k H , (2)

where H ≡ ȧ/a. Here we are considering the notation μ, ν = 1, 2, 3 and
i, j, k, l,m = 0, 1, 2, 3. In a previous analysis [12] was considered the approach
given by h jk = g jk + u juk , as the projection on the vector space locally orthogonal
to uk , therefore, we can compute the Riemann tensor from R jklmum = (∇ j∇k −
∇k∇ j )ul , and its contraction, the Ricci tensor as

Rkl = 1

3
(R − 4ζ) ukul + 1

3
(R − 3ζ) gkl , (3)

where R = Rk Rk is the curvature scalar and ζ = 3ä/a. Notice that this form of the
Ricci tensor has a perfect fluid form since the terms related to the time-like vector
and the shear/vorticity/acceleration-free term are separated.

In order to reach a perfect fluid form like in Eq. (3), we need to consider the
following three geometrical background tests on each of the parameters involved
[12] :

1. If φ is perfect, therefore a function f (φ) is perfect as long as f is smooth. This
characteristic applies also to products and time-derivatives of such functions, e.g.
if H is perfect, H2 and Ḣ are perfect.

2. Considering (1), the derivatives of a perfect scalar field φ, ∇i∇ jφ, also has a
perfect fluid form.

3. Under (1) and (2), we conclude from Eq. (3) that R is a perfect scalar.
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3 Scalar Perturbation Conditions:Non-adiabatic Pressure

While the three conditions described in the latter section restrict us to work with
perfect scalar forms, we need to be sure that such statements are also conserved at
the perturbative level. In this way, we need to consider the FLRW (1) as a perturbed
metric:

ds2 = (1 + 2A)dt2 − 2a(t)(∂i B)dtdxi − a2t
[
(1 − 2ψ)δi j + 2(∂i∂ j E)dxidx j

]
,(4)

where A, B, ψ, and E will be related to the Bardeen functions in the standard
scalar perturbations [4]. From this point forward we are going to consider linear
order perturbations, therefore, we can derive the standard conformal time coordinate
potential equation as:

Ψ ′′ − 3H(1 + c2a)Ψ
′ − c2a∇2Ψ + [2H′ + (1 + 3c2a)H2]Ψ = (4πGa2)δ p, (5)

where the prime denotes conformal time derivatives, H = aH and c2a = p′/ρ′
denotes the adiabatic speed,4 where p andρ are the pressure and density, respectively.
δ p are the perturbations related to the pressure of the matter field. If we consider
Eq. (5) in the standard perturbed Einstein field equations at first order we can recover

Ψ ′′ − 3H(1 + c2a)Ψ
′ − c2a∇2Ψ + [2H′ + (1 + 3c2a)H2]Ψ = (

c2s − c2a
) ∇2Ψ , (6)

where cs is referred to the speed of the perturbations. If we compare Eqs. (5) and (6)
we can derive the expression that relates both speed of the perturbations as:

δ p =
(
c2s − c2a
4πGa2

)
∇2Ψ . (7)

By using the conservation equation ρ′ + 3H(ρ + p) = 0, derived from the energy
momentum tensor T μ

ν = (∂L/∂X)(∂μφ∂νφ) − δ
μ
νL, with X = 1

2∂μφ∂μφ, we can
obtain

c2a =
(
p′

ρ′

)
=

(
ṗ

3H(ρ + p)

)
= −

(
Lφ + φ̈LX

3H φ̇LX

)
. (8)

We performed a change rule to transform to physical time, and the subindex denotes
derivatives with respect to X and φ. And

c2s =
(

∂L
∂X

)
∂L
∂X + 2X

(
∂2L
∂X2

) . (9)

4 This definition is also preserved in physical time units.
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In order to have a perfect fluid described by an equation-of-state in the background,
we need to have a vanishing δ p in the perturbative scheme, therefore, to achieve such
a scenario we notice from Eq. (7) that c2s = c2a , this is the so-called non-adiabatic
condition.

The latter condition implies that [33]

∂

∂X

[ Lφ

XLX

]
= 0, (10)

therefore, to satisfy the condition for a perfect fluid form like we need to consider,
at the perturbative level, the following geometrical perturbed test:

4. If Eq. (10) is satisfied, therefore φ is a perfect scalar field.

4 Geometric Perfect Fluid from f (R)

Our next step is to follow the analogies from the statements 1–4, in the context of
f (R) gravity. First, we need to verify if the high derivatives of R in this scheme
are fulfilled according to 1–3, this will denote that the extra terms rising from the
geometrical part can be associated with a perfect fluid form by comparing them with
the standard matter terms. Second, at the perturbative level, we need to derive the
equations related to the non-adiabatic condition in f (R) and compute the possible
constrictions on a f (R) smooth function in order to satisfy a modified version of
Eq. (10), and therefore fulfill the condition 4.

4.1 Background Conditions: Perfect Fluid in f (R)Gravity

Weneed to consider an effective fluid approach to addfluids in extended theories from
Einstein’s gravity, as f (R) landscape. Many works have been done in this direction
[2,18,26,32], are references cited in there. However, it is standard in all of them, to
begin with, a fluid of the form ρ = ρfld + ρm , where ρfld is usually associated with
dark energy and m already includes the dark matter rate in the baryonic component.
In this context, we specify the modified Einstein-Hilbert action as:

S =
∫

d4x
√−g

[
1

2κ
f (R) + Lm

]
, (11)

where Lm is the matter contribution Lagrangian and κ ≡ 8πG, where G is the New-
ton’s constant. Varying Eq. (11) with respect to the metric gμν , we can derive the
following field equations:

fRGμν − 1

2
[ f − R fR] gμν + (

gμν� − ∇μ∇ν

)
fR = κ T (m)

μν , (12)
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where Gμν is the standard Einstein tensor, fR = ∂ f /∂R, and T (m)
μν is the energy-

momentum tensor of the matter fields, which is one contribution of a general
Tμν = T (m)

μν + T (fld)
μν . According to this latter, we can consider that T (fld)

μν can be
a contribution related to the geometrical part of Eq. (12) as

κT (fld)
μν ≡ [1 − fR]Gμν + 1

2
[ f − R fR]gμν − (

gμν� − ∇μ∇ν

)
fR, (13)

which satisfy the conservation equation∇μT (fld)
μν = 0. The evolution equations asso-

ciated to Eq. (12) considering Eq. (13) are given by

3H2 = κa2 (ρm + ρfld) , (14)

6Ḣ = −κa2
[
(ρm + 3pm) + (ρfld + 3pfld)

]
, (15)

where

κρfld = − f

2
+ 3

H2

a2
− 3

H ḟ R
a2

+ 3
fRḢ
a2

, (16)

κpfld = f

2
− H2

a2
− 2 fRH2

a2
+ H ḟ R

a2
− Ḣ

a2
− fRḢ

a2
+ f̈ R

a2
. (17)

Using Eqs. (16) and (17) we can derive the equation-of-state (EoS) for the fluid as:

wfld = pfld
ρfld

= 2
[
(1 + 2 fR)H2 − H ḟ R + (2 + fR)Ḣ − f̈ R

] − a2 f

a2 f − 6(H2 − H ḟ R + fRḢ)
, (18)

which for f (R) = R, we obtain the standard EoS from Einstein’s gravity [15]. Fur-
thermore, if we consider Ṙ = 0 and a flat space k = 0, we obtain the Eos for a
perfect fluid p = wρ. Following this idea and the conditions from 3–1, Eq. (12)
describe perfect fluids through the contributions from the geometric part in f (R).

4.2 Scalar Perturbation Conditions: Non-adiabatic Pressure in
f (R)

Since the contribution due to T (m)
μν is effectively associated with a standard perfect

fluid, in such case with the standard matter, and we proved that T (fld)
μν can describe

a perfect fluid with respect to the extra geometric contributions, then we are ready
to demonstrate is this condition is fulfilled at the perturbative level. Full analyses
on f (R) scalar perturbations have been presented in [14,17]. In this work, we redo
these calculations in order to obtain the quantities to satisfy the condition 4.
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We start with the gravitational field constraint equations given by

Ψ ′ + HΦ = −1

2
κ2a2

∑
(ρ + p) V , (19)

∇2Ψ − 3H (HΦ + Ψ ′) = 1

2
κ2a2

∑
δρ, (20)

where ρ and p denote the density and pressure of all the fluid/matter components,
in our case, matter (m) and the fluid (fld), and V is the effective velocity potential.
Since we are associated our perfect fluid with the geometrical contribution from a
f (R) gravity, we define in conformal time

κ2(ρfld + pfld)Vfld ≡ a−2 (
Φ f ′

R + Hδ fR − δ f ′
R

) + 2a−2 (
Ψ ′ + HΦ

)
fR, (21)

where ρfld and pfld are given by Eqs. (16) and (17). The fluid density perturbation
can be derived as

κ2δρfld≡2a−2 [
3H(Ψ ′ + HΦ) − ∇2Ψ

]
fR + a−2 (∇2 + 3H′) δ fR − 3a−2Hδ f ′

R

+ 3a−2 (
Ψ ′ + 2HΦ

)
f ′
R . (22)

In order to arrive to an analogous expression as Eq. (7), we can combine Eqs. (19)
and (20) to obtain

∇2Ψ = 1

2
κ2a2

∑
ρξ, (23)

where ξ = Ωmξm + Ωfldξfld, denotes the comoving overdensity with

κ2a2ρfldξfld = 3
(
Ψ ′ + HΦ

)
f ′
R − 2 fR∇2Ψ + [∇2 + 3

(H′ − H2)] δ fR, (24)

by using Eqs. (21) and (22). As in (5), we can establish the relation between Bardeen
potentials through Ψ − Φ = κ2a2

∑
(ρ + p) Π , where Π denotes the anisotropic

stress or anisotropic pressure dimensionless and define the evolution equation for
the fluid as

κ2
[
δ pfld + 2

3
(ρfld + pfld) ∇2Πfld

]
≡ a−2

{
δ f ′′

R + Hδ f ′
R − 2Φ f ′′

R

− (
4∇2 + H2 + a2R

) δ fR
6

− 2 fR
[
Ψ ′′ + 2HΨ ′ + HΦ ′

+ (H2 + 2H′)Φ + 1

3
∇2(Φ − Ψ )

]

− [
Φ ′ + 2(Ψ ′ + HΦ)

]
f ′
R

}
, (25)
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and using (5) we obtain

Ψ ′′ + H (
2 + 3c2a

)
Ψ ′+ HΦ ′ + [

2H′ + (
1 + 3c2a

)H2
]
Φ =

1

3
∇2 (Ψ − Φ) + 3

2
H2c2s ξ, (26)

where

δ p = c2aδρ + (
c2s − c2a

)
ρξ. (27)

Under the non-adiabatic condition we recover from the latter that c2s = c2a , hence-
forth, by assuming pressureless matter (pm = δ pm = 0), the fluid fld comes from
a geometrical f (R) contribution. Furthermore, such scenarios have been directly
related to barotropic perfect fluids, i.e with vanishing non-adiabatic pressure pertur-
bations. Interesting scenarios on this matter have been discussed in [33]. However,
this assumption is restricted to standard gravity models. In this work, we extended
this assumption by coupling minimally a scalar field to the action (11).We will adopt
this analysis from a chameleon scalar field scheme in what follows.

5 Chameleon Perfect Scalar Field in f (R)

In the context of scalar field-driven expansion dynamics, e.g. inflation epoch, a pos-
sible candidate so-called chameleon scalar field [21–23,30,34] has been suggested
as to drive an inflationary expansion. One particular characteristic of this scalar field
is that its mass depends on the matter density effects, i.e a scalar field with a vary-
ing mass in a dense scenario, where the scalar field can acquire a large mass in a
short range. Some observational tests have been performed at CMB scales [31] in
order to associate this scalar field to an early accelerated expansion phase. In the
context of f (R), the chameleon scalar field has been studied in [5,6]. However, if
the chameleon scalar field can have the property a perfect scalar needs to be proved.

To develop the latter, we are going to consider the following action:

S =
∫

d4x
√−g

1

2

[
M2

pl f (R) − ∂μφ∂μφ − 2V (φ) + Lm

]
. (28)

In this landscape, we are going to consider a conformal transformation to relate this
action with a standard one in a scalar-tensor theory through

exp

(
−2βφ

Mpl

)
= f ′(R). (29)

where β =
√

1
6 [5]. In Einstein frame we can write the metric as ḡμν by a conformal

transformation defined as:

ḡμν = e
− 2βφ

Mpl gμν, (30)



208 L. L. Parrilla and C. Escamilla-Rivera

therefore, we can rewrite (28) as

S =
∫

d4x
√−g

(
R

2κ
− 1

2
∂μφ∂νφ − V (φ)

)
+ Sm[e

2βφ
Mpl ], (31)

where

V (φ) = M2
pl

[
R f ′(R) − f (R)

]
2 f ′(R)2

. (32)

Notice that f (R) theories are equivalent to scalar-tensor theories in this chameleon
scheme. Now, from the conditions described in Sect. 4, we can compute the explicit
form for the chameleon geometric scheme in f (R). First, we need to consider a
Lagrangian density of the form

L(X , φ) = f (X) − V (φ). (33)

While a form of f (X) ∝ log(X) satisfies directly the condition 4, in this scheme we
need to verify this condition on the chameleon potential. In a f (R) theory to have a
chameleon mechanism it is required that the derivatives of the potential behave as:
V ′(φ) < 0, V ′′(φ) > 0, and, V ′′′(φ) < 0. From (32) we can derive

V ′(φ) = βMpl

f ′ 2
[
R f ′ − 2 f

]
, (34)

V ′′(φ) = 1

3

[
R

f ′ + 1

f ′′ − 4 f

f ′ 2

]
, (35)

V ′′′(φ) = 2β

3Mpl

[
3

f ′′ + f ′ f ′′′

f ′′ 3 + R

f ′ − 8 f

f ′ 2

]
. (36)

Generally, these functions give tight constraints on the form selected for f (R),
therefore for a specific form of V (φ) we can find a specific f (R). To perform this
calculation, a potential that follows the chameleon mechanism given by Eqs. (34),
(35) and (36) is a power law potential of the form:

V (φ) = M4+nφ−n, (37)

and introduce this expression in Eq. (32) and solve the differential equation to obtain
an exact form for f (R):

f (R) = A + 22/3B − 32Mn+4M4
pl − 32M4

plφ
n + 4R2M8

pl

16M6
pl

, (38)



Chameleon Perfect Scalar Field as a Geometric Correction… 209

where

A =
2 3
√
2RM10

pl

(
R3M6

pl + 2
)

B
, (39)

B = (C − 2R6M24
pl + 10R3M18

pl + M12
pl )

1/3
, (40)

C =
√

−M24
pl

(
4R3M6

pl − 1
)
3. (41)

Equation (38) is the specific f (R) form for a perfect chameleon scalar field. Also,
we can perform the derivation of this latter expression to obtain:

fR = 1

8
M2

pl( f1 + f2 − f3 + f4 + 4R), (42)

where

f1 = 3 3
√
2R3M8

pl

3

√
−2R6M24

pl + 10R3M18
pl +

√
−M24

pl

(
4R3M6

pl − 1
)
3 + M12

pl

, (43)

f2 =
3
√
2M2

pl

(
R3M6

pl + 2
)

3

√
−2R6M24

pl + 10R3M18
pl +

√
−M24

pl

(
4R3M6

pl − 1
)
3 + M12

pl

, (44)

f3 =
2 3
√
2R3M20

pl

(
R3M6

pl + 2
)⎛

⎝−2R3M6
pl −

3

√
−M24

pl

(
4R3M6

pl−1
)
3

M12
pl −4R3M18

pl
+ 5

⎞
⎠

(
−2R6M24

pl + 10R3M18
pl +

√
−M24

pl

(
4R3M6

pl − 1
)
3 + M12

pl

)
4/3

, (45)

f4 =
22/3R2M10

pl

⎛
⎝−2R3M6

pl −
3

√
−M24

pl

(
4R3M6

pl−1
)
3

M12
pl −4R3M18

pl
+ 5

⎞
⎠

(
−2R6M24

pl + 10R3M18
pl +

√
−M24

pl

(
4R3M6

pl − 1
)
3 + M12

pl

)
2/3

. (46)

Introducing Eqs. (38)–(42) in Eq. (13), we obtain for the time-time component:

−6κ (g3 + g4 − g5 + g6 + 4R) M2
pl (3pfld + ρfld) + 32κρfld

=
3
(
g1 + 22/3g2 − 32Mn+4M4

pl − 32M4
plφ

n + 4R2M8
pl

)
M6

pl

, (47)
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where

g1 =
2 3
√
2RM10

pl

(
R3M6

pl + 2
)

3

√
−2R6M24

pl + 10R3M18
pl +

√
−M24

pl

(
4R3M6

pl − 1
)
3 + M12

pl

, (48)

g2 = 3

√
−2R6M24

pl + 10R3M18
pl +

√
−M24

pl

(
4R3M6

pl − 1
)
3 + M12

pl , (49)

g3 = 3 3
√
2R3M8

pl

3

√
−2R6M24

pl + 10R3M18
pl +

√
−M24

pl

(
4R3M6

pl − 1
)
3 + M12

pl

, (50)

g4 =
3
√
2M2

pl

(
R3M6

pl + 2
)

3

√
−2R6M24

pl + 10R3M18
pl +

√
−M24

pl

(
4R3M6

pl − 1
)
3 + M12

pl

, (51)

g5 =
2 3
√
2R3M20

pl

(
R3M6

pl + 2
)⎛

⎝−2R3M6
pl −

3

√
−M24

pl

(
4R3M6

pl−1
)
3

M12
pl −4R3M18

pl
+ 5

⎞
⎠

(
−2R6M24

pl + 10R3M18
pl +

√
−M24

pl

(
4R3M6

pl − 1
)
3 + M12

pl

)
4/3

, (52)

g6 =
22/3R2M10

pl

⎛
⎝−2R3M6

pl −
3

√
−M24

pl

(
4R3M6

pl−1
)
3

M12
pl −4R3M18

pl
+ 5

⎞
⎠

(
−2R6M24

pl + 10R3M18
pl +

√
−M24

pl

(
4R3M6

pl − 1
)
3 + M12

pl

)
2/3

. (53)

Notice that the expression (47) and its second order derivative satisfy the conditions
from 1–3, therefore the chameleon field φ with potential Eq. (32) describe a perfect
fluid through the contributions from the geometric part in f (R).

6 Discussion

In this work, we considered a particular class of chameleon field φ with a power-law
potential of the form V (φ) = M4+nφ−n . Under this assumption, we found that the
chameleon can be associated with a perfect scalar field since its behaviour on the
evolution and conservative background equations satisfy the conditions described
by 1–3. Furthermore, at the perturbative level, φ fulfill directly the condition 4 if
we consider a Lagrangian of the form (33). For n ≥ 1, we notice from Eq. (47) that
local gravity constraints are satisfied for M ∼ 10−2eV. As we mentioned, this is a
restricted condition on the energy scale required for the current cosmic acceleration
observed.While the conditions at the background evolution seem a natural candidate
for dark energy for this kind of potential, it is interesting to notice that at a perturbative
level, a chameleon perfect scalar φ could emerge at first during a phase transition
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during the inflation era and, finally end with a random position within its potential.
Following this evolution, there has been a study on attractors conditions in which
the chameleon φ could satisfy the big bang nucleosynthesis (BBN) constraints until
today [25], which behind the idea of a perfect scalar field at perturbative level can
help to set up an ensemble of initial conditions to study furthermore its behaviour at
the early universe. This study will be reported elsewhere.
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Probing theNature of Cosmic Strings
withGravitationalWaves

Lara Sousa

There is now compelling evidence that the fundamental interactions were once uni-
fied, but that, as the universe expanded and cooled, a series of symmetry-breaking
phase transitions lead to their separation. Many Grand Unified Theories, that attempt
to unify the description of the Standard Model interactions, predict the formation of
line-like topological defects known as cosmic strings as remnants of (some) these
phase transitions [81]—as do several beyond-the-standard-model scenarios. These
cosmic strings are vortex-like configurations of the fields that experience the sym-
metry breaking and correspond to regions in which the fields cannot relax into a
vacuum state. They thus still exhibit the unbroken symmetry at their cores.

The study of cosmic strings may allow us to use the universe as a particle physics
laboratory. Their mass per unit length μ (which in the simplest models is similar
to their tension) is determined by the energy scale η of the phase transition that
originated them, with μ ∼ η2. A detection would then help us reconstruct the series
of phase transitions that happened in the distant past. However, since cosmic strings
are predicted in a large variety of particle physics scenarios—supersymmetric grand
unified theories [49], brane-inflation [50,52], axion models [38] and many others—
there may be more information to be gained in this endeavour, as their properties
and phenomenology should depend on the nature of the fields that constitute them.

Cosmic strings are generally stable and expected to survive throughout cosmic
history and they may leave behind imprints on different observational probes (see
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e.g. [81] for a comprehensive review). Despite this, they have evaded detection
as of yet. The advent of Gravitational Wave Astronomy, however, opens the possi-
bility of probing cosmic strings with unprecedented detail through their stochastic
gravitational wave background [1,79].

Most studies of the gravitational wave signatures of cosmic string networks [1,
9,21,27,69,74,75,79] have focused on the simplest models, in which strings can be
assumed to be infinitely thin, with no internal degrees of freedom. However several
key aspects affecting their stochastic gravitational background—their large-scale
dynamics, their interactions and the main energy loss mechanism—may strongly
depend on the nature of cosmic strings and of the fields that constitute them. The
shape and amplitude of the stochastic gravitational wave background generated by
string networks may then also depend on the underlying particle physics model
and there may then be distinct observational signatures that may allow us to gain
information about the nature of cosmic strings. Here, by considering the illustrative
example of cosmic superstrings—fundamental strings and 1-dimensional D-branes
from string theory thatmay be stretched tomacroscopic sizes and play a cosmological
role akin to that of cosmic strings—I show that this may indeed be the case.

1 Cosmic Strings and GravitationalWaves

Although cosmic strings are created in the early universe, they are in general expected
to survive throughout cosmic history until the present time. As strings evolve, they
move under the effect of their tension and are stretched and damped by cosmolog-
ical expansion. Cosmic strings often collide and interact too and, when this hap-
pens, strings break at the point of collision, exchange partners and reconnect (see
Fig. 1). This process—known as intercommutation—leads to the copious produc-
tion of closed cosmic strings or loops that detach from the Hubble flow and start to
oscillate with ultra relativistic velocities. These loops are expected to emit bursts of
gravitational radiation until they eventually completely evaporate. There are many
such cosmic string loops at any moment in cosmic history, emitting gravitational
wave bursts in different directions, thus giving rise to a stochastic gravitational wave
background [1,79].

The stochastic gravitationalwave background generated by loops provides uswith
a window to probe cosmic strings and to unveil through them the physics of the early
universe. However, in order to maximize this potential, accurately characterizing this
background is crucial. Usually, its amplitude is quantified in terms of the spectral
density of gravitational waves,

�gw( f ) = 1

ρc

dρgw

d log f
, (1)

in units of the critical density of the universe ρc = 3H2
0 /8πG, where G is the grav-

itational constant, H = (da/dt)/a is the Hubble parameter, a is the cosmological
scale factor, t is the physical time and the subscript ‘0’ is used to label the values
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Fig.1 Intercommutation a and loop production in collisions between curved strings b and in string
self-intersections c. Here different colours were used merely for illustration purposes

of the corresponding quantities at the present time. Since, in the case of cosmic
strings, this background has contributions from all loops that have emitted, during
the history of the universe, gravitational waves that reach us at t0 with a frequency f ,
characterizing it involves not only understanding the spectrum of emission of cosmic
string loops, but also knowing howmany loops, and with what length, exist and emit
gravitational waves throughout cosmic history.

1.1 Emission of GravitationalWaves by Cosmic String Loops

The emission spectrum of cosmic string loops was thoroughly studied in the litera-
ture [3,20,25,36,37,43,79]. The frequency of the gravitational waves emitted by a
cosmic string loop is determined by harmonics of its length:

f j = 2 j

�
, (2)

where f j is the frequency corresponding to the j th harmonic mode of emission and
� is the length of the loop. The power emitted in each mode, on average, is roughly
given by

dE j

dt
= � j Gμ2 , with � j = �

ζ(q)
j−q , (3)

where ζ is the Riemann zeta-function, E = μ� is the energy of the cosmic string
loop and the subscript ‘ j’ is used to refer to the contribution of the j th harmonic
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mode. Here, � = ∑+∞
j=1 � j is the total power emitted in gravitational waves in units

of Gμ2, or gravitational radiation emission efficiency, and, for standard cosmic
strings, we expect � ≈ 50 [3–5,20,25,28,65,73]. The spectral index q depends on
the shape of loops and what type of small-scale structure dominates their emission
of gravitational radiation. The intercommutation process introduces discontinuities
in the string tangent known as kinks that travel along the string at the speed of light.1

Loops are also generally expected to have cusps, or points in which the string reaches
the speed of light, which should contribute to their gravitational wave emission as
well.2 For loops with cusps, one should have q = 4/3, while if the loop has kinks,
q = 5/3. Finally, collisions between kinks give rise to a power-law spectrum with
q = 2. In [20], the average power spectrumwas computed using approximately 1000
loops obtained from numerical simulation. They found that, for large enough j , it is
well described by q = 4/3 and thus dominated by the emission of cusps.

1.2 Loop Number Density

Although, in principle, the loop number density n(�, t)d�—describing the number
of loops with lengths between � and � + d� per unit volume—may be measured or
inferred from numerical simulations, this was only possible for the simplest string
models. Nambu-Goto simulations—which, despite approximating cosmic strings as
infinitely-thin 1-dimensional objects, were generally expected to provide a realistic
description of the evolution of these networks—systematically predict a significant
production of large loops [19,23,56]. There is, however, a significant discrepancy
in the number of small loops predicted by the models inferred from simulations
performed by different groups (see [22,23]). Numerical simulations of Abelian-
Higgs string networks (in which the equations of motion of the fields that constitute
the strings are evolved on a lattice), however, paint a significantly different picture:
they show no evidence of a stable population of loops [46]. The loops formed in these
simulations, in fact, decay as fast as causality allows by emitting classical scalar and
gauge radiation (a decay mechanism that is artificially turned off when one uses the
Nambu-Goto approximation). More recently, however, it was shown that, for special
initial conditions, loops can, in fact, be long lived in Abelian-Higgs simulations and
thus decay by emitting gravitational waves [47]. Such loops could only constitute
a fraction of the loops produced by the network, which they estimate to be smaller
than 10% at a 95% confidence level.

Given these disparities in the results of simulations, an alternative approach is to
resort to analytical modeling to describe the loop number density. This was actu-
ally the first approach used to study the stochastic gravitational wave background

1 This only applies to cosmic strings with no internal degrees of freedom. For current-carrying
strings, for instance, the velocity of kinks is expected to be subluminal (see e.g. [66]).
2 It has been argued in [43], however, that kinks may inhibit the formation of cusps. Moreover, if
strings have internal degrees of freedom, cusps may also be weaker and have velocities smaller than
the speed of light.
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generated by cosmic strings [1,27,53,80] and its basic premise is very simple: if
one knows how the energy density of the network evolves, one may infer (or at least
estimate) how much energy is lost as a result of loop production.3 Originally, these
models relied on the simplifying assumption that cosmic string networks maintain
a linear scaling regime throughout their evolution and thus that their energy density
remains a fixed fraction of the background energy density. This analytical approach,
however, was extended in [74,75] to relax this assumption—which actually made it a
semi-analytical approach instead—in order to improve the accuracy of computations
of the stochastic gravitational wave background. The existence of the linear scaling
regime is well established, after being observed in radiation and matter era simu-
lations and shown to be an attractor solution in analytical models for a power-law
evolution of the scale factor a ∝ tβ , where 0 ≤ β < 1 is constant. But, in a realistic
cosmological background, cosmic strings are expected to evolve somewhat differ-
ently. Deep in the radiation era, during which we effectively have that a ∝ t1/2, the
cosmic string network may indeed be assumed to be in a linear scaling regime.4

But, as the radiation-matter transition is triggered, the network is expected to enter
a long-lasting transitional phase during which it is not scaling. Instead the network
has to adapt to the change of the evolution of the cosmological background and starts
to evolve towards the scaling regime of the matter era (which is characterized by a
different energy density) [10]. This transition between the radiation and matter era
scaling regimes is expected to be rather slow and, in fact, dark energy is expected to
become relevant to the dynamics of the universe before the cosmic string network
is able to re-establish scaling. When this happens, the network starts to be diluted
by the accelerated expansion of the universe and experiences a stretching regime
instead. The cosmic string network is then unable to maintain a linear scaling evolu-
tion after the onset of the radiation-matter transition. The assumption that the network
maintains linear scaling (which is usually coupled to the assumption that there is a
sudden shift between the radiation- and matter-era scaling regimes at the time of
the radiation-matter equality) although convenient—since, for instance, it allows for
a complete analytical description of the stochastic gravitational wave background
spectrum [77]—does not paint an accurate picture of the later stages of the evolution
of a cosmic string network in a realistic cosmological background.

To describe the large-scale dynamics of a cosmic string network, the approach
proposed in [74,75] resorts to the Velocity-dependent One-Scale (VOS) model [58,
59], which describes the cosmological evolution of the characteristic length of the
network L and its root-mean-squared (RMS) velocity v̄:

3 This, off course, has the underlying assumption that loop production, and not the direct emission
of radiation (gravitational or otherwise), is the main energy loss mechanism by long strings; this
assumption is relaxed later, but one generally expects this to be the case for standard strings.
4 But, even in this case, it should be temporarily “knocked out” of scaling whenever there is a
decrease of the effective number of relativistic degrees of freedom as the temperature of the universe
decreases.
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d v̄

dt
= (

1 − v̄2
)
[
k(v̄)

L
− 2H v̄

]

, (4)

dL

dt
= (

1 + v̄2
)
HL + c̃

2
v̄ , (5)

where k(v̄) is a momentum parameter describing the average curvature of the strings
and that accounts, to some extent, for the impact of small-scale structure (here, we
shall use the ansatz proposed in [59]). The characteristic length L in these equations
is a measure of the energy density of the cosmic string network, with ρ ≡ μ/L2,
and, for standard cosmic strings, it is also a measure of the average distance between
strings. The last term in (5)—originally proposed in [53]—is a phenomenological
term describing the energy loss caused by loop production and c̃ is a parameter
describing the efficiency of this energy loss mechanism. It was shown in [59] that
c̃ = 0.23 provides a good fit to radiation- and matter-era simulations of standard
cosmic strings. It is through this term that we may describe the amount of energy
that goes into the production of loops throughout cosmic history (which requires
solving (4) and (5) coupled to the Friedmann equation).

Once this is known, the only other ingredient needed to compute the number of
loops produced is the length of the loops that are created. Given the uncertainties
about the length of loops described previously, this approach is often used to study
different loop production scenarios. As a matter of fact, it is usually assumed that all
loops are created equal5 and that their length is a fixed fraction of the characteristic
length of the network at the time of creation:

�b = αL(tb) , with α < 1 , (6)

where the subscript ‘b’ is used to indicate that we are considering the value of these
quantities at the time of birth of loops tb. Note that originally, in the first analytical
approaches developed, it was assumed that �b scaled with physical time t instead of
L—which in a linear scaling regime, during which L ∝ t , is equivalent—since this
behaviour was observed in simulations. However, this was merely a consequence of
the fact that the long string networkwas in a linear scaling regime in these simulations
and, since L is ameasure of the physical length of strings andof the average interstring
distance, it should be the relevant physical quantity determining the length of loops.
A scaling of loop length with L is expected to provide a better description of how
the length of the loops at the time of creation evolves when the network is not in a
linear scaling regime.6

5 Note that this assumption is not as strong as it seems: the results obtained under this assumption
may be used to obtain the spectrum for any distribution of loop lengths at the time of creation [69,74].
6 The results of Nambu-Goto numerical simulations actually support this assumption: the length of
the large loops created both in radiation and matter eras are well described by a single value of α,
while �b/t is different almost by a factor of 2. Thus, the scaling of the length of loops with L instead
of t seems to naturally describe the impact of the radiation-matter transition in the length of loops.
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Under these assumptions, the number of loops produced per unit volume is given
by [74,77]

dn�

dt
= 1

�b

dρ�

dt
= F c̃√

2α

v̄

L4 , (7)

where the last term in (5) was used to compute the energy density lost due to loop
chopping dρ�/dt . Moreover, the factor of

√
2 was introduced in order to account for

the fact that, as a result of the redshifting of their peculiar velocities by cosmological
expansion, part of the energy of loops is lost [81]. Moreover, we have introduced an
additional parameter, F , as a way to relax some of the assumptions of the model, as
several phenomenamay be parameterized thisway. For instance, if the length of loops
follows a peaked distribution at the moment of creation, this factor may be used to, to
some extent, accommodate for this effect [19,77]. Moreover, if not all of the energy
of the loops goes into gravitational radiation and/or only a fraction of the loops decay
by emitting gravitational waves (as is the case of Abelian-Higgs strings [46,47]), this
may be parameterized through this factor as well. In this approach, then, we have
essentially two free parameters, α and F , that may be calibrated to describe the
results of simulations—for instance, the simulations of [19,23] are well described
by α ≈ 0.34 and F = 0.1; the simulations in [56] require an additional contribution
fromvery small loops [8]—or theymaybe left as as free to study a variety of scenarios
with minimal assumptions.

Once one knows the number of loops that are created throughout cosmic history,
the loop number density is simply given by [74]:

n(�, t) =
(

α
dL

dt

∣
∣
∣
∣
t=tb

+ �Gμ

)−1
dn�

dt

∣
∣
∣
∣
t=tb

(
a (tb)

a(t)

)3

, (8)

which takes into account not only loop production, but also the dilution of loops
caused by expansion of the background. So, the problem of finding the number
density of loops with a length � at a time t actually reduces to finding the times
of births tb of these loops. Taking into account that we are considering subhorizon
loops (as larger loops behave effectively as long strings), for which the impact of
expansion is expected to be negligible, we then simply need to find the tb < t that
satisfies

�(t) = αL(tb) + �Gμ(tb − t) , (9)

where the last term takes into account the decrease in the length of loops as it radiates
gravitational waves. If the network is, at the time of creation of the loops, in a linear
scaling regime, this may be obtained analytically, but, in general, this has to be solved
numerically.

1.3 The Stochastic GravitationalWave Background

With all the necessary ingredients set up, the amplitude of the stochastic gravita-
tional wave background generated by the cosmic string loops created throughout the
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realistic evolution of the universe can now be obtained (see e.g. [9,69,74]):

�gw( f ) = 16π

3

(
Gμ0

H0

)2 1

f

∫ t0

ti
dt ′

+∞∑

j=1

j� j n(� j (t
′), t ′)

(
a(t ′)
a(t0)

)5

, (10)

where the integration is carried out from the time inwhich significant loop production
starts ti until t0 and � j ≡ (2 ja(t ′)/( f a(t0)) is the length that a loop should have at
a time t ′ to emit, in the j th harmonic mode, gravitational waves that reach us with a
frequency f .

Figures 2 and 3 show examples of the stochastic gravitational wave background
generated by the cosmic string loops produced throughout the evolution of a string
network for different values of the loop-size parameter α and of cosmic string tension
Gμ (respectively) in a realistic cosmological background. As these figures show,
these spectra share roughly the same shape. They all have a flat region in the high-
frequency range generated by the loops that decay in the radiation era. This plateau,
however, is perturbed by the decrease of the number of relativistic degrees of freedom
as the universe expands, which causes a sudden change in the expansion rate that
knocks strings out of scaling. When this happens, there is a sudden increase in the
amplitude of the plateau, which leads to the appearance of “steps” in the spectrum
(these are more evident for smaller values of α in Fig. 2). On the low-frequency
range, there is a peak generated by the loops that decay in the matter era, be it
loops that were created in radiation and survive into the matter era or those produced
in the matter era. Despite these similarities, the overall amplitude of this spectra,
as well as the location, shape and broadness of the peak are highly dependent on
the value of α and Gμ. Larger loops survive for longer and emit their energy in
the form of gravitational radiation closer to the present time. These gravitational
waves then reach us less diluted by expansion, resulting in a higher amplitude of the
background. As a matter of fact, the amplitude of the background scales roughly as
α1/2 for large enough α, but this decrease slows down as one reaches values closer
to the gravitational backreaction scale �Gμ.7 A decrease of the tension of strings,
however, not only leads to a decrease of the amplitude of the spectrum, but also to a
shift of the peak of the spectrum towards higher frequencies.

This strong dependence on α means that the observational constraints on cos-
mic string tension derived using gravitational wave detectors are—unlike those
resulting from the cosmic microwave background radiation (see however [68])—
are also highly dependent on the size of loops created. As a matter of fact, while the
loop production scenarios inferred from Nambu-Goto simulations (corresponding to
10% of the energy lost by the network going into loops with a size α = 0.34) are
already strongly constrained by pulsar timing data8—which exclude Nambu-Goto

7 For α < �Gμ, in fact, the shape and amplitude of the background is independent of α and a
decrease of this parameter merely causes a shift of the spectrum towards higher frequencies (see
e.g. [75,77].
8 The major pulsar timing arrays have all recently reported a common-spectrum stochastic process
that couldpotentially correspond to a stochastic gravitationalwavebackground [7,30,44].ANambu-
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Fig.2 Stochastic gravitational wave background generated by cosmic string networks for different
values of loop-size parameter α. Here, the emission of loops is assumed to be dominated by cusps
and Gμ = 10−10, � = 50 and F = 1

Fig.3 Stochastic gravitational wave background generated by cosmic string networks for different
values of string tension Gμ. Here, the emission of loops is assumed to be dominated by cusps and
α = 10−8, � = 50 and F = 1

strings with Gμ > 1.5 × 10−11 at a 95% confidence level [21]—more conservative,
α-independent, constraints are much less stringent and set Gμ < 1.3 × 10−7 [55].
However, this dependence also opens the possibility of using a future detection of the
stochastic gravitational wave background to probe the properties of cosmic strings
and cosmic string loops. The upcoming Laser Interferometer Space Antenna (LISA)
is particularly promising as to this regard. It shall be able to probe a wide range

Goto cosmic string networkwithGμ ∼ 10−11 − 10−10 was proposed as a possible explanation [24,
40], but there is still no confirmation that this is an actual physical signal.
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of scenarios—including more than 16 orders of magnitude in loop size—and to
probe the tension of Nambu-Goto strings down to values of Gμ ∼ O(10−17) [9],
(an improvement of about 6 orders of magnitude over current probes). For scenarios
with smaller loop sizes the improvement is also significant: LISA may potentially
increase the constraints on these scenarios by at least four orders of magnitude.

1.4 Going Beyond the Standard

Cosmic strings may be formed in a variety of scenarios and several aspects affecting
their stochastic gravitationalwave backgroundmaydepend on the underlying particle
physics and/or cosmological model. There is, therefore, the prospect of probing
cosmology and particle physics through this spectrum, but, in order to do so, one
needs to be able to accurately characterize the impact that these modifications may
have on the loop number density.

So far, numerical simulations have been of very limited use in this endeavour.
As previously discussed, studying the production of loops was only possible for the
simplest models: the Abelian-Higgs string or the Nambu-Goto string (that neglects
the underlying particle physics model). Simulations have to be performed for a
particular model and in a particular cosmological background, which makes the
study of a large variety of non-standard scenarios time-intensive and computationally
costly. The semi-analytical model in [74,75], however, allows us to depart easily and
quickly from these standard scenarios and to study other relevant models proposed
in the literature.

Ononehand, the fact that the simplifying assumptionof linear scalingwasdropped
enables the study of strings in non-standard cosmological scenarios—such as early
matter domination, kination and models with additional massless degrees of free-
dom [35]—and the study of models in which strings do not undergo the standard
cosmological evolution—for instance, strings created during an inflationary era [45].
In all of these cases it was possible to identify differences in the predicted spectra
that may identify these non-standard scenarios in case of a detection (although the
signatures of early matter domination and of strings created during inflation are very
similar).

On the other hand, the VOS model—although derived from the Nambu-Goto
action—is very versatile and can be extended, through the inclusion of additional
physically- motivated phenomenological terms, to describe the dynamics of a variety
of cosmic string models. A recent such extension was the inclusion of the effect of
currents propagating along the strings [60,61], which resulted in a model to describe
the large-scale dynamics of superconducting cosmic strings. Current-carrying strings
are predicted in several particle physics scenarios (see e.g. [16,41,63,82])—with
some even arguing that all strings should carry currents [39]—which motivates the
interest in probing them through their gravitational wave background. Currents may
have a significant impact on the evolution of a string network during the radiation
era [61] and, as shown in [66], this translates into changes in the number of loops
produced that may also be significant (particularly if currents are large). Besides
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this, currents also lead to a suppression of the gravitational wave emission efficiency
and change the spectrum of emission of loops [66]. The combination of these effects
results in a change in the amplitude of the background generated by the loops created
in the radiation era, with potential changes to the shape of the peak of the spectra (in
some limits) that may signal the existence of this type of string.

The computation of the stochastic gravitational wave background in these non-
standard scenarioswas enabled by the semi-analytical approach in [74,75] and herein
lays its main advantage: this approach actually allows us to find signatures that may
help us uncover the nature of cosmic strings.

2 Probing Cosmic Superstring with GravitationalWaves

To illustrate the potential of the stochastic gravitational wave background to help us
discriminate between different string-forming scenarios, let us consider the case of
cosmic superstrings.

Cosmic strings and String Theory’s superstrings where initially thought to be
unrelated [83]. First of all, macroscopic superstrings were expected to be unstable.
But even if this problem was somehow overcome, superstrings are expected to form
at energy scales close to the Planck scale and, thus, to have very high tensions, which
would either mean that they would generate very strong observational signatures—
that had not been detected—or that they would to have been diluted away during an
inflationary era. In both cases, the possibility of superstrings playing a cosmological
role similar to that of ordinary strings seemed to be ruled out.

This picture, however, was changed by the introduction of the brane-world real-
ization of string theory. In this scenario, our universe is a 3-dimensional Dirichlet
brane, or D3-brane, embedded in a 9 + 1 dimensional universe. An inflationary stage
would naturally arise in this paradigm if the universe had an additional pair of D-
brane and anti-D-brane, since the accelerated expansion could be driven by their
interactions as they move towards each other [2,26,50–52,57]. Inflation would then
end when the pair of branes eventually collided and a part of their energy would
be trapped into branes of lower dimensionality, especially D1 branes. In many such
models, extra-dimensions are compactified and, if the collision of branes happens at
highly curved regions known as throats, the daughter branes would appear to us
4-dimensional observers to have a much smaller tension (see e.g. [52]). Brane-
inflation then provides a way to create strings after inflation with a tension that
is compatible with our bounds. Moreover, in many cases, these were shown to be
stable [50,72], which indicates that superstrings can indeed grow to macroscopic
sizes and play the cosmological role of cosmic strings. These cosmic superstrings
arose a lot of interest in the literature, since they provide us with a rare observational
window into String Theory.
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2.1 Intercommutation and Loop Production in Cosmic
Superstring Networks

Although cosmic superstrings share some of the properties of ordinary strings—
namely that they may also be regarded effectively as 1 + 1-dimensional objects
moving under the effect of their tension—there are fundamental differences that lead
to them forming networks that are significantly more complex. These differences are
mostly related to collisions and interactions between strings, which play a major
role in loop formation, and may therefore have an impact on their gravitational wave
signatures.

Brane-inflationary scenarios predict the production of two types of strings at the
end of inflation: Fundamental strings, or F-strings, and 1-dimensional D-branes,
usually dubbed D-strings [31]. These two types of strings have, in general, different
tensions that are related by the dimensionless string coupling gs :

μF = gsμD , (11)

where gs < 1 and μF and μD are respectively the tensions of F- and D-strings.
A key difference between ordinary strings and superstrings arises from their

quantum nature: their intercommutation probability P is—unlike that of ordinary
strings—expected to be smaller than unity. This means that when a collision occurs,
there is a non-vanishing probability that the strings will simply pass through each
other without interaction. As a matter of fact, the probability of intercommutation in
interactions between D-strings is expected to be such that 10−1 � PDD � 1, while
10−3 � PFF � 1 in F-string crossings [48]. The fact that cosmic superstrings are
less likely to reconnect necessarily affects loop production and these are, in fact, less
likely to be created when an intersection occurs. However, the effect that this has
on the number density of loops produced is not what one would naively expect: if
loop production is reduced, the network of strings loses energy less efficiently and
becomes, as a result, denser. Since there are manymore strings per unit volumewhen
the intercommutation probability is reduced, we actually expect to end up having a
higher loop number density too.

A decrease in the intercommutation probability can be introduced in the VOS
model by reducing the energy-loss parameter c̃. For a weakly-interacting cosmic
string network, with c̃ 
 1, one has, roughly, L ∝ c̃t and v̄2 ∼ 1/2 [10]. As a result,
the number of loops produced indeed increases and so does the amplitude of the
stochastic gravitational wave background [76]:

dn�

dt
∝ 1

c̃3
and �gw ∝ 1

c̃2
. (12)

A key question then is how c̃ is affected by the change in intercommutation prob-
ability. Although one may naively expect that the energy-loss parameter decreases
proportionallywith P [51],Nambu-Goto simulations of string networkswith reduced
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intercommutation probability indicate that this decrease is, in fact, significantly
slower [11]9 :

c̃ ∝ P1/3 . (13)

This is explained by the fact that there is a build up of small-scale structure on the
strings as P is reduced, which counteracts the impact that this reduction would have
on the production of small loops. The amplitude of the stochastic gravitational wave
background is thus expected to increase as

�gw ∝ P−2/3 , (14)

whichmakes gravitationalwave detectors particularly promising as a probe of cosmic
superstrings.

Moreover, the fact that there are two distinct types of cosmic superstrings is also
expected to have an impact on the gravitational wave spectrum. When two strings of
different types collide, they cannot intercommute. Instead, they coalesce along their
length and bind to create a new type of string. This process, illustrated in Fig. 4,
may happen recursively, leading to the formation of (p, q)-strings—bound states of
p F-strings and q D-strings—with a tension

μ(p, q) = μF

√
p2 + q2/g2s , (15)

where p and q are coprime. Cosmic superstring networks then should be composed
of several string species with a hierarchy of tensions that are connected by Y-type
junctions, where three different strings meet. This means that, in general, one should
expect cosmic string networks to have several loop populations with different ten-
sions, all of which may contribute to the background of gravitational radiation.10

One then needs to understand the cosmological evolution of each of the cosmic
superstring species to compute the total loop number density.

In [12,13], the VOS model was extended to allow for the description of multiten-
sion networks with junctions. This was done by considering several string species
with different characteristic lengths Li and RMS velocities v̄i , where the subscript
i labels the i th type of string. The starting point of this model was the standard evo-
lution equations of ordinary cosmic string networks—Eqs. (4) and (5)—as, after all,
the main aspects determining their dynamics are expected to be similar: superstrings
are also expected to be accelerated as a result of curvature and damped and stretched
by expansion and loop chopping is also expected to play a key role. However the
creation of bound states is also expected to have an impact on the dynamics and had
to be included in these equations. When two different strings i and j interact, part of

9 Note that the exponent 1/3 in (13) was observed both in radiation and matter era simulations. In
Minkowski space, the simulations of [70] found that c̃ ∝ P1/2.
10 Note that loops with Y-junctions may also form, however these are expected to unzip and to
separate into loops of different species [42].
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Fig.4 Creation of bound states in collisions between two cosmic superstrings of different species.
Here, different colours were used to represent different superstring types

their length is lost and used to produce a new segment k (which is a bound state of
i and j). There is then a transfer of energy density from the i and j string networks
into the network of k strings. This may be described by a term of the form [12,13]

μk d̃
k
i j

v̄i j

L2
i

li j
L j

≡ μk D
k
i j , (16)

where d̃ki j is a phenomenological parameter describing the efficiency of the junc-

tion creation mechanism in collisions of i and j strings, v̄2i j = v̄2i + v̄2j and l−1
i j =

L−1
i + L−1

j . The self-interaction coefficients c̃i of each string species are, as we dis-
cussed, determined by their respective intercommutation probabilities Pii and (13)
can be used to determine their values. The cross-interaction coefficients d̃ki j have been
computed in [64]. These depend on the microphysical intercommutation probabili-
ties Pi j describing interactions between i and j strings and they are also expected to

scale as d̃ki j ∝ P1/3
i j . The formation of these bound states is also subject to kinematic

constraints [13,32,33,71] that further reduce the value of these coefficients, since
for certain collision parameters their production is forbidden. This aspect was also
taken into consideration in [64]. Moreover, there is an additional aspect that may
affect the values of the coefficients c̃i and d̃ki j : since superstrings are embedded in
a higher dimensional space, this would seem to make string collisions less likely.
Cosmic superstrings, however, may not be free to move in these compact extra-
dimensions and may be to some extent “pinned” to our D3-brane [48]. They may,
however, due to their quantum nature fluctuate around it, thus exploring a fraction
of the compact dimensions. In [64], they introduce a volume suppression param-
eter w, with 0 < w ≤ 1, to parameterize this effect (with w = 1 corresponding to
the limit in which strings are stuck to our brane and w < 1 if strings can penetrate
the compact dimensions). Since, in the latter case, strings are more likely to miss
each other, both self- and cross-interactions parameters are expected to be smaller.
Moreover, there is some excess energy left behind in the junction formation process
because μk �= μi + μ j . It is not yet clear whether this energy is absorbed by the
new segment, as kinetic energy, or radiated away. The possibility that at least part
of this energy is acquired by the segment may be taken into account by adding the
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following acceleration term to the evolution equation of v̄k :

d v̄k

dt

∣
∣
∣
∣
junction

= (
1 − v̄2k

)
BDk

i j
μi + μ j − μk

μk

L2
k

v2k
, (17)

where 0 ≤ B ≤ 1 is a parameter that sets the fraction of the leftover energy that is
absorbed by the segment.

With the addition of the terms describing the energy transfer between string
species in (16) to the evolution equations for Li and of the acceleration term in (17)
to the v̄i equations, and with the values of c̃i and d̃ki j computed in [64], it is now
possible to have a description of the cosmological evolution of cosmic superstring
networks and infer from it the number density of loops for each species following
the approach described in Sect. 1.2.

No simulations of cosmic superstring networks currently exist. Most numeri-
cal studies of this type of string either resort to Nambu-Goto strings with reduced
intercommutation probability (as in [11,70]) or to field theory analogues (see
e.g. [34,54,78]). All these seem to paint a similar picture to that of the VOSmodel for
cosmic superstrings developed in [12,13]. There is clear evidence that the existence
of junctions does not lead to a freezing of the network and that, deep in the radia-
tion and matter eras, cosmic superstring networks also evolve towards linear scaling
regimes. As discussed before, as a result of the reduced intercommutation probabil-
ity, networks of F-strings are expected to be denser than networks of ordinary strings
(or, in other words, to have smaller characteristic lengths), but the energy density is
expected to decrease quickly as we consider string species with higher tensions. As
a matter of fact, it was shown in [13,64] that it is generally enough to consider the
three lightest type of strings—F- and D-strings and bound states of the two (hereafter
referred to as FD-strings). It is then also enough to consider only three distinct loop
populations when computing the stochastic gravitational wave background.

2.2 What to Expect for Cosmic Superstring Loops

Numerical and analytical studies of the evolution of cosmic superstring networks,
unfortunately, tell us little about the sizes of loops that are created in these networks,
which leaves us with a huge parameter space to explore. There are, however, several
studies of cosmic superstrings that may help us shorten it a bit.

The first is related to theNambu-Goto simulations of string networkswith reduced
intercommutation probability in [11]. Therein, as previously discussed, a build up
of small-scale structure is observed as P is reduced, which mitigates the impact
of this reduction on the production of small loops. The production of large loops,
however, is indeed suppressed and, since for P = 1, only about 10% of the energy
lost by the network is in the form of large loops, we should not expect to have
a significant contribution from large loops for small P . It then seems reasonable
to assume that all loops are created at the gravitational backreaction scale, with
α = �Gμ.Moreover, the formation of true cusps is also expected to be suppressed for
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cosmic superstrings [14,62]. Near-cusp events, with a subluminal velocity, may still
occur but, in this case, the gravitational wave bursts are expected to be significantly
weaker. Kinks, on the other hand, are not suppressed at all—since they are created
by the intercommutation process—and they are, in fact, expected to proliferate due
to reflection and transmission when, as they propagate along the string, they collide
with the Y-junctions [17,18]. We may then expect the natural evolution of cosmic
superstring networks to result in three populations of small and kinky loops, whose
length is determined by the gravitational backreaction scale of each string species.

Figure 5 shows the stochastic gravitational wave background generated by cosmic
superstring loops in this “theoretically-favoured” scenario. Therein, we may see that
most of the spectrum looks very similar to that of ordinary cosmic strings, since it is
dominated by the contribution of loops of F-string, the lightest (and densest) type
of string. There are, however, distinct signatures of the loops of the heavier string
species in the low-frequency range. Their contribution leads to significant changes
to the shape of the peak of the spectrum that are prominent enough, in principle, to
be detected directly. These signatures allow us to distinguish the spectrum of cosmic
superstrings from that of ordinary cosmic strings and may then be considered tell-
tale signs of their existence. Compellingly, the signature of D- and FD-strings is
actually dependent on the relative tension of the different species (or, in other words,
on the string coupling gs), thus opening the possibility of probing the details of the
underlying superstring scenario. For gs ∼ 1, F- and D-string have similar tensions
and characteristic lengths and, as a result, the loops they produce have similar lengths.
They then contribute to the gravitational wave background in the same frequency
range and the effect of D-strings is, in some sense, to enhance the contribution of
F-strings. The bound states, however, have a larger tension and characteristic length
and, for this reason, contribute at smaller frequencies, leading to the small bump that
may be seen in the spectrum in the bottom panel of Fig. 5. If gs 
 1, the tension
of D-strings and FD-strings are both significantly larger than that of F-strings and
so their loop populations contribute to the spectra at significantly lower frequencies,
leading to a much more prominent signature that may be regarded as a secondary
peak (upper panel of Fig. 5). For intermediate values of gs , there may be situations in
which each contribution is clearly distinguishable, causing a significant broadening
of the peak (as seen in the middle panel of this figure). Figure 5 also shows that, if
superstrings are allowed to explore the compact extra dimensions, there is an increase
of the amplitude of the spectra. This increase is particularly relevant for F-string since
heavier strings are in general expected to have smaller fluctuations [64]. Changing
w then changes the relative contribution of the different loop populations, which
may also allow us to probe w and to study observationally if cosmic superstrings
can explore the compact dimensions or not. Finally, allowing the bound segments
to acquire the energy left over in their creation does not seem to have a significant
impact on the spectrum. This actually leads to an increase of the RMS velocity of
the string network and to the consequent increase of its characteristic length, leading
to a decrease in the number of loops produced. This decreases the amplitude of the
signatures of heavier string types slightly, but not enough to erase them.
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Fig. 5 Stochastic
gravitational wave
background generated by
cosmic superstring networks
with αi = �Gμi and
assuming that loops have
kinks, for different values of
the string coupling gs . Each
spectrum is plotted for
w = 1 (red lines) and
w = 0.1 (green lines) and for
B = 0 (solid lines) and
B = 1 (dashed lines) Here,
GμF = 10−9, � = 50 and
F = 1. These plotted have
been originally published
in [76]
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Overall, the main conclusion that can be drawn from these results is that the
stochastic gravitational wave background generated by cosmic superstring networks
may come in different shapes, depending on the underlying superstring model, and
that this may allows us, in case of a detection, to extract its details and learn more
about cosmic superstrings. Naturally, one may ask whether this is the case for any
loop size, since we have assumed that the length is determined by the gravitational
backreaction scale for every loop population, but in [76] it was shown that these
signatures are present regardless of loop size (although they may be weaker if the
loops are assumed to be significantly larger). Therein, however, it was assumed that
the loop-size parameters are the same for all species, but relaxing this assumption and
assuming significantly different αi should, except for very fine-tuned choices, lead
to visible signatures as well. In fact, this would mean that the length of loops can be
significantly different between populations, thus contributing to different frequency
ranges to the gravitational wave background.

2.3 Observational Constraints

Although the signatures of heavier string species are prominent and despite the fact
that this is where the superstring physics is, most computations of the stochastic
gravitational wave background generated by cosmic superstrings do not take this
contribution into account. As a matter of fact, this spectrum is usually approximated
using the spectrum of ordinary stringswith reduced intercommutation probability, by
simply using the relation in (13). This necessarily leads to a loss of information about
the cosmic superstrings themselves as, at best, this is simply an approximation to
describe the contribution of F-strings and, at most, this would allow us to reconstruct
the intercommutation probability of this type of string. Note however that PFF

does not unequivocally translate into a value of the string coupling gs , as it is also
affected by howmuch of the compact dimensions the strings can explore. This is well
illustrated by the spectra displayed in Fig. 6, where the predictions for two models
with F-strings with the same intercommutation probability, but different gs and w,
are plotted alongside this simplified prediction obtained by rescaling the spectra of
ordinary strings according to (13). Obviously, in both cases, the simplification fails to
predict the spectrum accurately in the low-frequency range as it neglects the potential
impact ofD- andFD-strings.However,wemay see therein that, although for gs = 0.3
andw = 1, it does provide a goodfit formost of the rest of the spectra, this is no longer
the case for gs = 0.9 and w = 0.1. In the latter case, this simplified prediction leads
to an underestimation over the whole range of the spectrum because the tensions of
F- and D-strings are similar and, thus, the corresponding loop populations contribute
to the spectrum in a similar frequency range. Moreover, the energy lost by F- and
D-strings (caused by the creation of FD-strings) has an impact on the energy density
of these networks and on the number of loops produced, that is not taken into account
when one uses this approximation. This means that inaccuracies are introduced by
approximating only the contribution of the lightest type of string, even when probing
the radiation era plateau, and these inaccuracies should necessarily translate into
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Fig.6 Stochastic gravitational wave background generated by cosmic superstring networks—with
αi = �Gμi and assuming that loops have kinks—for different scenarios in which F-strings have
the same intercommutation probability PFF = 0.03. The green line corresponds to a model with
gs = 0.3 and w = 1, while the purple line represents the stochastic gravitational wave spectra for
gs = 0.9 and w = 0.1. The dashed yellow line corresponds to the spectra of ordinary strings with
an intercommutation probability of P = 0.3. Here, GμF = 10−9, � = 50 and F = 1

uncertainties in the reconstruction of the values of PFF using observational data.
Adding to this the degeneracy between gs andw introduced by considering only, and
approximately, the contribution of F-strings, there is significant loss of information
about the underlying particle physics.

Pulsar timing arrays are currently the gravitational wave experiments that are
most suitable to constrain the tension of cosmic strings and superstrings using their
gravitational wave background, since they probe the low-frequency range of this
spectrum, where the peak is expected to be located. They are also, and for the same
reason, the best candidates to detect the signatures of heavier superstring species and
to distinguish between ordinary strings and cosmic superstrings. In [76], NANOGrav
9-year data [6] was used to derive observational constraints on the tension of funda-
mental strings μF . This data sets an upper limit to the amplitude of the stochastic
gravitational wave background at a reference frequency of f∗ = 1yr−1  32nHz of

�gw( f∗)h2 < 4.15 × 10−10+0.8s , (18)

which depends on the slope of the spectrum s at f∗ (defined by assuming that locally
�gw ∝ f s).11 Assuming the theoretically-motivatedmodel in which loops are kinky
and createdwith a length similar to the gravitational backreaction scale, this bound on

11 Usually, it is assumed that s = −1/3 for cosmic strings and superstrings motivated by the results
of [36] for the gravitational have bursts emitted by cusps. However, as pointed out in [69], the slope
of the spectra clearly cannot be assumed to be constant and, since s < −1/3 in large portions of
the spectrum, this may lead to an overestimation of the constraints.
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the backgroundwas translated into a conservative limit on the tension of fundamental
strings of

GμF < 3.2 × 10−9 , (19)

which is an improvement of about an order of magnitude over those resulting from
primary cosmic microwave background anisotropies [29]. This constraint is conser-
vative in the sense that it corresponds to the values of tension abovewhich the stochas-
tic gravitational wave background would have an amplitude above the NANOGrav
bound at f∗ for all values of gs considered, assuming w = 1. It is also conservative
in the sense that it is assumed that loops are created with a small length: for larger
values of α, the amplitude of the gravitational wave background may, as we have
seen, be significantly larger, which means that these would result in more stringent
constraints.

As Fig. 7—where the exclusion regions of the (gs,GμF )-parameter space derived
using NANOGrav 9-year data are plotted for w = 1 and w = 0.1—illustrates, these
constraints go significantly beyond this conservative limit. Pulsar timing arrays may
be used to detect not only the contribution of F-strings to the stochastic gravitational
wave background but also the contribution of D-strings directly (sometimes in com-
bination with that of FD-strings). There is, in fact, a secondary exclusion region for
small enough gS corresponding to the latter case. This shows that a detection of the
signature of heavier string types with upcoming data is indeed conceivable in the
future, as the sensitivity of the gravitational wave experiments increases. This figure
also shows that the constraints derived using the simplified approximation, in which
one only considers the effect of the intercommutation probability on F-strings, are
safe in the sense that they always underestimate the signal—and thus do not lead
to an exclusion of models that are allowed by the data—but lead to a significant
loss of information about the underlying scenarios that are excluded. This highlights
how important an accurate description of the underlying cosmic string model is for
a precise prediction of their stochastic gravitational wave background and to use
the current and upcoming data of gravitational wave detectors to its full potential
to constrain and discriminate string-forming scenarios. Currently, this can only be
achieved through a semi-analytical approach such as that presented here.

Here, it should be noted that there are several aspects of the dynamics and physical
properties of cosmic superstrings that not entirely understood. A few of these where
already mentioned and are taken into account in the VOS model for cosmic super-
strings (for instance, it is not yet clear what happens to the excess energy left over in
the formation of bound states or if strings can explore the compact dimensions). The
abundance of FD-strings predicted in the VOSmodel [12,13] is also higher than that
observed in simulations [54], which hints at the possibility that they may decay as a
result of the damping of velocities caused by expansion [15,67]. This would result in
a smaller contribution to the gravitational wave background from this type of string
but, since this contribution is already subdominant when compared to that of F- and
D-strings, this would not have a significant impact on the final shape of the spectrum.
More importantly, however, superstrings could possibly be coupled to other fields,
which would give then an additional decay channel besides gravitational waves.
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Fig. 7 Constraints on the tension of fundamental strings, GμF , as a function of gs , for cosmic
superstrings with loops with kinks with αi = �Gμi , derived using NANOGrav 9-year data. The
left panel corresponds to models with w = 1 and the right panel to w = 0.1. Solid lines represent
the constraints derived taking into account the contribution of F-, D- and FD-strings, while dashed
lines to those obtained using the simplified model. The blue shaded area represents the exclusion
region that results from F-strings, while the pink shaded area represents that resulting from heavier
string types. Here, � = 50 and F = 1. This figure was originally published in [76]

3 Conclusions

A comparison of the stochastic gravitational wave background generated by ordinary
cosmic strings and cosmic superstrings reveals that there could be tell-tale signs that
may allows us to distinguish between these two scenarios. These signatures are, as a
matter of fact, highly dependent on the superstring models considered and may then
allow us to also discriminate between different superstring scenarios as well. This
serves as a proof-of-concept of the possibility of using a detection of the gravita-
tional wave background generated by cosmic strings to unveil the very early universe
and probe the underlying particle physics. This work, however, shows that this will
only be possible by making accurate predictions of the stochastic gravitational wave
background for different string-forming scenarios, which in turn requires an under-
standing of the properties and phenomenology of the different types of strings that
are formed. In the absence of results from numerical simulations, the semi-analytical
approach proposed in [74,75], due to its versatility, may prove to be a valuable tool
in this endeavour as it enables the computation of the stochastic gravitational wave
background in non-standard string-forming scenarios.
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Entanglement in Conformal Field
Theory andHolography

Nele Callebaut

Abstract

In these notes we give a pedagogical account of the replica trick derivation of
CFT entanglement and its holographic counterpart, i.e. the Lewkowycz Malda-
cena derivation of the Ryu-Takayanagi formula. The application to an ‘island
set-up’ for the calculation of black hole radiation entropy is briefly discussed.
Further topics focused on are the relation to thermal entropy, thermofield double
constructions and statements about the emergence of gravity from entanglement
through reinterpretations of gravitational first laws.

1 CFT Entanglement

Entanglement entropy in a conformal field theory (CFT) can be defined as the von
Neumann entropy of the reduced densitymatrix.We review in this chapter the replica
trick derivation of CFT entanglement, following the work of Cardy and Calabrese
[17,18,24] in Sect. 1.2 and of Holzhey, Larsen and Wilczek [46] in Sect. 1.3. This
follows an introductory Sect. 1.1 covering the pictorial notation of wave-functionals
and density matrices in the path integral formalism, which is also heavily used in
Sect. 1.4 on the thermofield double construction.

1.1 Wave-Functionals and Density Matrices

We start with reviewing1 some basic pictorial notation for wave-functionals and
density matrices that will be used throughout.

1For more details, see Appendix A of [66] and section 4 of [43].
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In a quantum mechanical system with Hamiltonian H and corresponding
Euclidean action I , the transition amplitude from a position eigenstate at Euclidean
time tE = −T to another position eigenstate at tE = 0 can be written as a Euclidean
path integral

〈q f |e−H T |qi 〉 =
∫ q f ,0

qi ,−T
Dqe−I . (1)

Inserting a complete set of energy eigenstates on the left hand side and taking the
limit T → ∞ picks out the vacuum state contribution |ψ〉, such that thewavefunction
ψ(q f ) is given by path integral evolution from past Euclidean infinity (at a fixed and
unimportant initial position qi )

ψ(q f ) =
∫ q f ,tE=0

qi ,tE=−∞
Dq e−I , (2)

where q f -independent factors have been dropped. The ket |ψ〉 is the function

|ψ〉 =
∫ ·,tE=0

qi ,tE=−∞
Dq e−I (3)

that takes a position q f (at the dot ·) and gives back a complex number ψ(q f ) =
〈q f |ψ〉. On slices of the path integral one recovers the Hilbert space of the theory.

Similarly, in a quantum field theory with field content φ(x, t), the (unnormalized)
vacuum state is prepared by Euclidean evolution

|ψ〉 =
∫ φ(tE=0)= ·

φ(tE=−∞)=φi

Dφ e−I =

tE

x

,

(4)

where we have already for concreteness restricted the pictorial representation to
field theories with one spatial direction x . The state can then further be evolved in
Lorentzian time t , with the wave-functional

ψ(φ f ) =
∫ φ(t f )=φ f

φ(ti )=φi

Dφ eiI =
∫ φ(t f )=φ f

φ(ti )=φi

Dφ ei
∫ t f
ti

L[φ] (5)

shown in [55] to satisfy the Schrödinger evolution equation. Again, the ket for the
vacuum state (4) is a functional with open boundary condition (at the dot ·) where it
can take on a given field configuration φ f and give back
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〈φf |ψ〉 =
∫ φ(tE=0)=φf

φ(tE=−∞)=φi

Dφ e−I =

φf

,

(6)

obtained pictorially by gluing in the bra 〈φ f |.
The corresponding bra 〈ψ| and (unnormalized) density matrix ρ = |ψ〉〈ψ| for the

pure vacuum state can then pictorially be presented as

〈ψ| = , ρ = .

(7)

An upper dashed line can take on a bra, a lower dashed line a ket, and the matrix ρ
both, with matrix elements

〈φ|ρ|φ′〉 ≡ (ρ)φφ′ =
φ′

φ
.

(8)

Its trace tr ρ = ∫ Dφ〈φ|ρ|φ〉, obtained by gluing along the previously dashed lines
to identify and integrate out φ, gives the partition function Z ,

Z = tr ρ =
∫

Dφ
φ

φ
= .

(9)

In some figures of states (4) and density matrices (7) throughout in the text wewill
include field configurations in brackets to indicate how to read off the corresponding
wave-functional (6) and density matrix elements (8).

1.2 CFT Entanglement from Replica Trick

For a given statistical ensemble described by ρ, where ρ is the probability distribution
classically or density matrix quantum mechanically, the von Neumann entropy is
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defined in terms of the normalized density matrix ρ̂ = ρ/ tr ρ = ρ/Z as

S = − tr(ρ̂ log ρ̂). (10)

It provides a fundamental, observer-dependent measure for the indeterminacy or lack
of resolution of the system, e.g. S = kB logΩ(E) in the microcanonical ensemble,
for an observer in a closed system, in which every microstate is equally probable
ρ̂ = 1/Ω(E), or S = (1 − β∂β) log Z(β) for an open system observer in the canon-
ical ensemble with Boltzmann probability distribution ρ̂ = e−βH/Z(β).

The von Neumann entropy can be applied in the context of a conformal field
theory to define the concept of ‘geometric entropy’ or entanglement entropy.

The set-upwe consider is a (1 + 1)-dimensional CFTwith Euclidean path integral

Z =
∫

Dφ e−I [φ], I [φ] =
∫
C

dxdtEL[φ(x, tE )], (11)

prepared in a pure state |ψ〉 as pictured in (4). The corresponding density matrix
ρ = |ψ〉〈ψ| is pictured in (7). We consider a constant time slice and geometrically
bipartition the system, assuming the Hilbert space can be factorized, into a spatial
region A and its complement Ā. An observer that only has access to region A will
measure a different density matrix, called the reduced density matrix

ρA = tr Ā ρ. (12)

It is obtained from ρ by tracing out degrees of freedom in Ā, and in general takes the
form of a density matrix for a mixed state. The observer’s lack of information about
the full system can be quantified by the von Neumann entropy of the normalized
reduced density matrix ρ̂A = ρA/Z ,

SA = − tr(ρ̂A log ρ̂A). (13)

This is by definition the geometric entropy or entanglement entropy associated with
region A. It is a measure for the amount of missing information from the point of
view of the observer in A, vanishing in the limit that the observer has access to the
full system since the von Neumann entropy for a pure density matrix is zero, and
a measure for the amount of entanglement between degrees of freedom in A and
degrees of freedom in Ā, vanishing when the pure state of the CFT is separable,
|ψ〉 = |ψA〉|ψ Ā〉 and ρA = |ψA〉〈ψA|, and there is thus no such entanglement.

From applying l’Hôpital’s rule, the definition for the entanglement entropy SA in
(13) can be rewritten as

SA = (1 − n∂n) log Z(n)|n→1, (14)

Z(n) = tr (ρnA). (15)

A positive integer n factors of ρA construct Z(n), an n-fold replicated description of
the system. Then n needs to be analytically continued to non-integer values of n to



Entanglement in Conformal Field Theory and Holography 243

be able to take the derivative and limit in the definition (14) of SA. This is called the
replica method.

Now consider region A to be an interval x = x1..x2 at tE = 0, with corresponding
reduced density matrix ρA and its square ρ2A given by

ρA = , ρ2A =
∫

Dφ
φ

φ

.

(16)

To calculate the corresponding entanglement SA in (14), we need to construct
Z(n) = tr ρnA for integer n > 1. We can think of the gluing condition (referring to
the identification and integrating out of the field configuration) in the matrix mul-
tiplication ρ2A in two ways: (1) as continuing the coordinates (tE , x) to live on a
connected manifold consisting of two copies of the complex plane glued along the
region A slit, or (2) as a condition on the field content, connecting the fields of two
separate copies of the theory L(φ1) and L(φ2) along A. The first is a ‘worldsheet’
and the second a ‘target space’ perspective, with (tE , x) running over Rn,A and C

respectively. Constructing tr ρnA in the first way gives rise to the replicated worldsheet
Rn,A, path integral integration over which gives Z(n)

tr ρnA = Z(n) =
∫

[Dφ]Rn,A
e
− ∫

Rn,A
dxdtEL[φ(x,tE )]

. (17)

Rn,A is called the replica manifold and is pictured in the left figure of Fig. 1. In
the Z(1) manifold a rotation over 2π will bring you back to the same location, but
in the Z(n) manifold it takes a rotation of 2πn around the boundary points ∂A of
region A to get back to the same location. That is, there are branch points and conical
singularities at ∂A, with a conical excess of 2πn − 2π.

In the second perspective we write (here i = 1 · · · n)

tr ρnA = Z(n) =
∫

[Dφi ]C, bc e
− ∫

C
dxdtEL(n)[φi (x,tE )] (18)

with

L(n)[φ1, ...,φn] = L[φ1(x, tE )] + · · · + L[φn(x, tE )] (19)

bc =

⎧⎪⎪⎨
⎪⎪⎩

φ1(tE = 0+, x ∈ A) = φ2(tE = 0−, x ∈ A)

φ2(tE = 0+, x ∈ A) = φ3(tE = 0−, x ∈ A)

· · ·
φn(tE = 0+, x ∈ A) = φ1(tE = 0−, x ∈ A)

. (20)
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Fig. 1 Z(n) = tr ρnA from the WS perspective (17) (left) and the TS perspective (18) (right). It is
the path integral of the theory L[φ] on the Zn symmetric replica manifold Rn,A, or equivalently
the path integral of the theory L(n)[φi ] over the orbifold manifold C ≡ Rn,A/Zn in the presence of
twist fields. On the right, Z(n) = 〈Tn(x1)T̃n(x2)〉

The boundary conditions bc express a global symmetry of the theoryL(n)[φ1, ...,φn]
under exchange of the fields φi → φi+1, the Zn permutation symmetry. The condi-
tions can be implicitly implemented by placing twist fields at ∂A. These have the
property that when circling a twist field Tn resp. anti twist field T̃n , a field φi mod n is
transformed into φi+1 mod n , resp. to φi−1 mod n . Then,

Z(n) =
∫

[Dφi ]C Tn(x1) T̃n(x2) e
− ∫

C
dxdtEL(n)[φi (x,tE )]

= 〈Tn(x1) T̃n(x2)〉L(n),C (21)

where we used a condensed notation for the locations of the twist fields Tn(x =
x1, tE = 0) and T̃n(x = x2, tE = 0), and in the second line we rewrite the Z(n)

partition function as a 2-point function of twist fields. This interpretation of Z(n) is
pictured on the right of Fig. 1.

1.2.1 Replica Manifold
Wewill proceed first with calculating Z(n) in the replicated worldsheet point of view
of Fig. 1a, following [24], and comment on the twist field correlator perspective later.

For a theory with stress tensor defined via δ I = 1
4π

∫
Tμνδg

μν√g dd x , the par-
tition function satisfies δ log Z = − 1

4π

∫ 〈Tμν〉δgμν√g dd x . This allows us to write
down the behavior of Z(n) under a coordinate transformation xμ → x ′μ = xμ + δxμ

(which induces a metric transformation ∂μδxν + ∂νδxμ)

δ log Z(n) = − 1

2π

∫
〈T μ

ν〉
∂δxν

∂xμ
d2x . (22)

This is for the theory L[φ(x, tE )] on the replica manifold Rn,A spanned by xμ =
(x, tE ), which is everywhere flat except at the branch points ∂A = (x1, x2).
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Fig. 2 Contour for
calculating δ log Z(n) in (24)

tE

x
x1 x2

2πn

We can now consider a coordinate transformation that induces a change δL of the
length L = x2 − x1 of the interval A, and then integrate δ log Z(n) to find the depen-
dence of Z(n) on x1 and x2. We can choose for example the non-conformal trans-
formation x ′ = x + θ(x − x0)δL , where x1 < x0 < x2. This indeed has the effect
L ′ = x ′

2 − x ′
1 = L + δL . Then

δ log Z(n) = −δL

2π

∫
〈Txx 〉δ(x − x0)dxdtE = −δL

2π

∫
〈Txx (x0, tE )〉dtE (23)

= −δL

(∮
x1

dζ

2πi
〈Tζζ(ζ)〉 −

∮
x1

d ζ̄

2πi
〈Tζ̄ ζ̄(ζ̄)〉

)
(24)

In the second line we moved to complex coordinates ζ = x + i tE , deforming the
contour along the full infinite range of tE at x = x0 to ζ encircling x1 (x2 is an equally
good choice), see Fig. 2. Nowwe still need to know 〈Tζζ〉. On a regular complex plane
with coordinate z, the stress tensor expectation value is zero because of rotational
and translation invariance. The replicamanifold can be conformally transformed into
the complex plane, i.e. uniformized, by the conformal transformation

z =
(

ζ − x1
x2 − ζ

)1/n

(25)

which consists of first mapping the branch points to 0 and infinity, and then
going to the Zn orbifold, pictured as ‘pizza slice’ in Fig. 3. Under this confor-
mal transformation, the stress tensor of the CFT transforms anomalously, Tζζ(ζ) =
(∂z/∂ζ)2 Tzz(z) + c

12 {z, ζ}, with c the central charge of the CFT. It follows that 〈Tζζ〉
is determined by the Schwarzian derivative of z(ζ) to be

〈Tζζ(ζ)〉 = c

24

(
1 − 1

n2

)
(x2 − x1)2

(ζ − x1)2(ζ − x2)2
. (26)

2πn

x1 x2

2πn

0 ∞

2π
0 ∞

Fig. 3 Coordinate transformation (25) from ζ on the replica manifold (left) to ζ−x1
x2−ζ (middle) to z

on the orbifold, i.e. the regular complex plane (right). The ‘pizza slice’ representing the orbifold is
drawn here for n = 6
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In evaluating the complex integrals in (24), the residue theorem picks up an extra n.
This is because ζ is a complex coordinate with an argument of range 2πn around x1
or x2. It follows that

δ log Z(n)

δL
= − c

6

n − 1/n

L
(27)

or log Z(n) = − c
6 (n − 1/n) log L + ..., where the dots are L-independent terms.

We have obtained an expression for the L-dependence of Z(n) = tr ρα
A|α=n for inte-

ger values of α = n ≥ 1. The full partition function for complex α is then of the
form Z(α) + sin(πα)g(α) in the Re α > 1 region with g an analytic function. It can
be shown based on the fact that ρ̂A has eigenvalues λ ∈ [0, 1] and using Carlson’s
theorem [69] that g(α) ≡ 0 and therefore the obtained Z(n) is valid beyond inte-
ger n. After substitution in (14), this leads to the famous formula for the vacuum
entanglement of an interval A in a 2-dimensional CFT

SA = c

3
log

L

ε
. (28)

Its scalingwith c shows theWeyl anomalyof theCFTcrucially enters the derivation—
in (26) in this case, as the Schwarzian derivative transformation rule is implied by
the Weyl anomaly. The UV cutoff ε has to be introduced for dimensional reasons,
and regulates the arbitrarily large contributions to the entropy from UV degrees of
freedom arbitrarily close to ∂A.

For the choice of δL-inducing coordinate transformation we could have also
followed [46] and chosen a scale transformation.

1.2.2 Replicated Target Space
Let us also comment on the twist field correlator derivation of log Z(n), i.e. the
perspective of Fig. 1b. Details can be found in [17,18].

The stress tensor expectation value 〈Tζζ(ζ)〉 in (26) corresponds to the insertion
of one stress tensor operator on the replica manifold in Fig. 1a, let’s say on the i-th
sheet. From the point of view of Fig. 1b, it is the insertion of the stress tensor of the
i-th copy of the theory in the presence of twist field operators and thus (normalizing
left and right with the insertion of the unit operator)

〈
Tζζ(ζ)

〉
L,Rn,A

=
〈
T (i)

ζζ (ζ) Tn(x1) T̃n(x2)
〉
L(n),C〈

Tn(x1) T̃n(x2)
〉
L(n),C

, (29)

where x1, x2 are short for the twist field locations (ζ1, ζ̄1), (ζ2, ζ̄2) more generally,
and where we have included for clarity subscripts specifying the theory in which the
expectation values are taken. The denominator of the right hand side is the Z(n) we
are to determine. For primary twist fields [23] it takes the form 1/|x1 − x2|2dn , with



Entanglement in Conformal Field Theory and Holography 247

dn the unknown scaling dimension of Tn and T̃n . The numerator of the right hand
side can then be rewritten in terms of the twist field two-point function,

〈
T (i)

ζζ (ζ) Tn(x1) T̃n(x2)
〉
= 1

n

dn
2

(x1 − x2)2

(ζ − x1)2(x2 − ζ)2

〈
Tn(x1) T̃n(x2)

〉
, (30)

by applying theWard identity for the (L(n),C) theorywith stress tensor T (n)
ζζ = nT (i)

ζζ
(by extensivity of the Lagrangian and thus Hamiltonian density). Then (26), (29)
and (30) impose dn = c

12 (n − 1/n), leading to the same log Z(n) as in the previous
section, and the same result for SA in (28).

One main advantage of this perspective is that the known transformation behavior
of the conformal two-point function (21) under conformal transformations immedi-
ately gives us the formula for log Z(n) and thus the entanglement SA in a conformally
related geometry, as we will now briefly discuss.

In the notation f = x + i tE , f̄ = x − i tE for our current set-up, with met-
ric ds2 = d f d f̄ = dt2E + dx2 and state the vacuum state |0〉 f as measured in
f -coordinates, we have

SA = c

3
log

∣∣∣∣ f1 − f2
ε f

∣∣∣∣ (31)

for

〈 Tn( f1, f̄1)T̃n( f2, f̄2) 〉 = | f1 − f2|− c
6 (n−1/n). (32)

Under a conformal transformation f = f (z), f̄ = f̄ (z̄), themetric transformsds2 =
|∂ f /∂z|2 dzdz̄ ≡ Ω(z, z̄)dzdz̄ with a Weyl factor Ω , and the entanglement in z-
coordinates becomes

SA = c

6
log

( f (z1) − f (z2))( f̄ (z̄1) − f̄ (z̄2))√
f ′(z1) f ′(z2) f̄ ′(z̄1) f̄ ′(z̄2)εzεz̄

. (33)

This follows from

〈 Tn(z1, z̄1)T̃n(z2, z̄2) 〉 =
∣∣∣∣∣
f (z1) − f (z2)√
f ′(z1) f ′(z2)

∣∣∣∣∣
− c

6 (n−1/n)

(34)

= | f ′(z1) f ′(z2)|dn 〈 Tn( f1, f̄1)T̃n( f2, f̄2) 〉 (35)

where we used the transformation behavior of a primary field

O(z, z̄) = (
∂z′/∂z

)h (
∂ z̄′/∂ z̄

)h̄ O′(z′, z̄′) for the twist fields of dimension h = h̄ =
dn/2 under an f (z) transformation.

As can be seen from comparison of (31) and (33), the UV cutoffs as measured in
f or z coordinates are related by [46]

ε f = f ′(z)εz (36)
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u v

φ

u v

τ

Fig. 4 Left: Finite size formula SA = c
3 log

(
Σ
πε sin

π(v−u)
Σ

)
for an interval z1 = z̄1 = u, z2 =

z̄2 = v on the cylinder of size �φ = Σ follows from (33) with f (z) = exp
( 2π

Σ
i z

)
relating the

f -coordinate of the plane to the z-coordinate of the cylinder with compact φ = Re z. Right: Finite

temperature formula SA = c
3 log

(
β
πε sinh

π(v−u)
β

)
for an interval z1 = z̄1 = u, z2 = z̄2 = v on the

cylinder of size�τ = β follows from (33) with f (z) = exp
(
2π
β z

)
relating the f -coordinate of the

plane to the z-coordinate of the cylinder with compact τ = Im z

(and writing ε as
√

ε1ε2). Indeed, from f (z + εz) ≈ f (z) + εz f ′(z) with εz ≡ δz, it
follows that ε f ≡ δ f is given by the above.

The formula (33) can be applied immediately to the cases pictured in Fig. 4 of
intervals in the z-cylinder.

1.3 Relation to Thermal Entropy

There is a ‘short-cut’ for deriving the interval entanglement SA in (28) which will
also be important for the holographic interpretation. It consists of mapping the set-up
of Sect. 1.2 to a thermal system. This section follows [46].

A conformal change of coordinates induces a change of basis among the operators
of the theory and affects the densitymatrix through a unitary transformation, towhich
the trace in (13) is insensitive. Moreover, the anomalous (∼ c) contribution to the
transformed Hamiltonian only affects the unnormalized density matrix (and thus
e.g. log(Z)), but not the normalized density matrix that appears in the von Neumann
entropy (13). This is to say that the entanglement entropy is conformal invariant,
and hence its calculation can be simplified by considering well-chosen conformal
mappings.

We consider the same theory Z ≡ Z(1) of Sect. 1.2, in complex coordinates
ζ = x + i tE , ζ̄ = x − i tE . First we translate the interval A from x = [x1, x2] to
x = [0, L]. The vacuum state of the system is pictured in Fig. 5a. Then we consider
the conformal transformation to w = (ζ − x1)/(x2 − ζ) or

w = ζ

L − ζ
, (37)

which maps the interval to the positive half-line. Keeping track of the UV cutoff, the
more precise statement is that the x = [ε, L − ε] interval is mapped to w = Re w =
[ ε
L , L

ε ]. Then, we further transform to

z = 1

κ
logw, (38)
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Fig.5 Prepared state, with region A in red and complementary region Ā in green, under conformal
mappings between the ζ, w- and z-geometry, in respectively a, b and c. In terms of metrics (for

κ = 1 choice), dτ2 + dR2

R2 = dzdz̄ (cylinder) = d(logw)d(log w̄) = 1
ww̄

dwdw̄ → dwdw̄ (plane)

= R2dτ2 + dR2 with w = R exp(iτ ) and z = xz + iτ = (log R) + iτ . Under these mappings, a
periodic coordinate τ around ∂A becomes the angle on the annulus or the Euclidean time coordinate
of the cylinder. The small blue arrows point in the direction of the Euclidean evolution tE

with κ an arbitrary real number, that should therefore not affect any physics. It maps
the positive half-line to z = Re z = [ 1κ log ε

L , 1
κ log L

ε ] and the negative half-line to
z = [ 1κ log ε

L − iπ
κ , 1

κ log L
ε − iπ

κ ], so that A is now one side of a strip of width π/κ.
The partition function Z(1) = tr ρ is mapped to the w-annulus and the z-cylinder
respectively. The imaginary part of z

Im z ≡ τ (39)

brings forth a periodic coordinate; as the angle of the w-annulus with periodicity
�τ = 2π, and as the compact direction of the z-cylinder with periodicity �τ =
2π/κ. A direct consequence of this is that the reduced density matrix ρA in both
pictures takes the form of, not just any mixed density matrix, but a thermal density
matrix

ρA = e−(�τ )Hτ = ρthermal (40)

as demonstrated in Fig. 6. On the annulus, Hτ is the generator of rotation in the
Euclidean plane, and thus the boost generator in Lorentzian signature. On the cylin-
der, Hτ is the actual Hamiltonian or generator of cylinder (Euclidean) time transla-
tion. The corresponding inverse temperature is denoted β by choosing κ = 2π/β.
It is a fictitious temperature measured by an observer that only has access to half
of the w-plane or only one side of the z-strip. Figure 6b gives us the path integral
derivation of the Bisognano Wichmann theorem (40) [13] (e.g. [45,73]).
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Fig. 6 Reduced density matrix ρA for the state in Fig. 5, under conformal mappings between the
ζ, w- and z-geometry, in respectively a, b and c. In brackets are the field configurations to read off
the matrix elements (ρA)φφ′ = 〈φ|ρA|φ′〉

In the cylinder picture, SA is now equal to the thermal entropy Sthermal of the
strip of width β, which is simply given by the thermodynamic formula Sthermal =
βE + log Z(β) in terms of the energy and free energy, or

Sthermal = (1 − β∂β) log Z(β). (41)

The partition function of the CFT on the strip of width β and length Lz  β was
determined in [1,14], again by making use of the Weyl anomaly, to be (to leading
order in 1/β)

log Z(β) = const β Lz + πc

6β
Lz . (42)

The constant in the first term is non-universal, i.e. CFT-dependent, and drops out of
the formula for Sthermal , which gives

Sthermal = cπ

3β
Lz = c

3
log

L

ε
. (43)

Lz is the full (divergent) length A of the cylinder in Fig. 5c, which is given by
β
π log L

ε ≡ β
π log

Lζ

εζ
, so that in the second equality we find, as we should, SA =

c
3 log

L
ε in (28).

As pointed out in [25], there is an IR/UV quality to the relation Lz ∼ log L/ε
between the cylinder regulator (large Lz) and the plane regulator (small ε), which
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βnβ

Fig. 7 Z(1) and Z(n)

you typically find in a holographic setting.2 A last comment about the derivation
is that the formula for the entanglement of a finite interval on the thermal cylin-
der in Fig. 4b should become the thermal entropy for the state in Fig. 5c in the
limit of Lz  β. This can be easily checked: limLz→∞ log(β/(πεz) sinh(πLz/β)) =
πLz/β + log(β/(2πεz)), with the second term vanishing for εz = β/(2π) � Lz fol-
lowing from (36) with z = β/(2π) log(ζ/(L − ζ)).

In the above paragraph, Z(β) is the Z(1) on the thermal cylinder (where β could
also be taken to be 2π by choosing κ = 1). The replicated manifold tr ρnA, obtained
by gluing n copies of the Z(1) strip along A, is again a cylinder, Z(nβ) ≡ Z(n), only
this time with periodicity nβ (Fig. 7). By the conformal mapping to the cylinder,
the conical singularities at ∂A have been removed from the replica manifold, and
the analytic continuation to non-integer n is immediate, since the periodicity of the
cylinder canbevaried continuously.The replica trick (14) indeedgives SA = Sthermal

Sthermal = (1 − n∂n) log Z(n)|n→1 = cπ

3β
Lz (44)

from the trivial n-dependence in Z(n) ≡ Z(nβ) = πc
6nβ Lz + const nβLz . The trivi-

ality of the thermal replica trick on the cylinder, combined with the argument that SA
is conformal invariant, signals that the replica derivation of the interval entanglement
SA and in particular the question of analytic continuation of n should be well-defined
(Sect. 1.2), as should its holographic interpretation (Sect. 2.2).

The replica manifold in the annulus picture does have a conical singularity at
the origin ε → 0 with conical excess 2π(n − 1). The length of the region A can be
varied by a scale transformation xμ → x ′μ = (1 − 2 δε

ε )xμ, such that Z(n) in (22)
has to satisfy

δ log Z(n) = δ log ε

π

∫
〈T μ

μ〉d2x . (45)

Here, the trace of the stress tensor can be obtained from applying the argument
leading to (26), or by directly making use of the Weyl anomaly 〈T μ

μ〉 = c
12 R which

relates it to the curvature R ∼ (1 − n)(δ(2)(x1) + δ(2)(x2)) of the manifold and its
boundaries (see also [68] e.g.). This procedure for deriving (28), detailed in [46],

2 The difference is in the contractability of the τ -circle (non-contractible on the cylinder, contractible
on the plane), which is also reflected in the holographic description (non-contractible on the cylinder,
contractible in the bulk description, see Fig. 13).
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gives an alternative to the replica trick derivation of Sect. 1.2.1 that makes the coarse
graining physics behind the geometric entropy SA apparent.

1.4 Thermofield Double

In the previous section we encountered the possibility of an observer restricted to a
part of spacetime A measuring a state ρA that is thermal even though the full system
is in the vacuum state. This fits in the general concept of the thermofield double
[60,70], which will be discussed in this section.

A thermofield double (TFD) is a particular vacuum state that is constructed to
reproduce thermal physics of a given QFT. We will focus on a conformal QFT in
particular, with a Hamiltonian HR and Hilbert spaceHR , and on 1 + 1 dimensions.
The Euclidean path integral for compactified Euclidean time with period �τ = β
gives the thermal partition function Z(β) of the theory. In path integral visualization,
Z(β) = tr ρthermal is a cylinder C(β) when the spacelike direction of the theory is
non-compact, and thus ρthermal is the cylinder before tracing, i.e. with open cut

ρthermal = .

(46)

The statement is that the same physics can be described by constructing a state |ψ〉,
called the TFD state, as the state

|ψ〉 =
τ

β/2

(φR)
(φL)

(47)

living in the doubledHilbert spaceHL × HR , with totalHamiltonian H = HR − HL

(as time τ runs downwards in the left copy and upwards in the right copy). We refer
to the left copy as the one where τ starts and the right copy where τ arrives. This
state is constructed such that it satisfies the property that its density matrix

ρ = |ψ〉〈ψ| =

(48)
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reduces to the thermal density matrix of the original ‘right’ system when the left
copy is traced out,3

ρR ≡ trL ρ = = = ρthermal.

(49)

Said otherwise, the TFD state is the answer to the question [54] “is there a state
|ψ〉 ≡ |0(β)〉 forwhich theQFT vacuum expectation value 〈ψ|O|ψ〉 = tr(Oρ) repro-
duces the statistical average tr(Oρthermal) of an operator O?",

〈ψ|O|ψ〉 = tr(Oρthermal)

O
=

O
.

(50)

Of course, for O the identity operator, this is just the statement that

〈ψ|ψ〉 = tr(ρthermal)

= .

(51)

For a compact space dimension,

|ψ〉 =
τ

β/2

(φL) (φR)

(52)

3 In Eq. (49) and in the rest of the section, the pictorial representation of tracing out fields is short
for the notation introduced in (9), leaving out the explicit integration over the fields for conciseness.
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and

ρL ≡ trR ρ = = .

(53)

The above statements are given in path integral language |ψ〉 = ∫ · Dφ e−I [φ] or

ψ(φL ,φR) =
∫ φ(τ0) = φL

φ(τ0 + β/2) = φR Dφ e−I [φ], (54)

as this gives an immediate visual derivation of (49)–(50). It is a simple exercise to
derive (49)–(50) from the explicit formula for the TFD state (47) given by

|ψ〉 =
∑
n

√
pn |En〉L |En〉R, pn = e−βEn

Z(β)
(55)

with |En〉 the energy eigenstates of HL and HR . It is a pure state per construction
(using (48)), and the construction is therefore referred to as purification. That is,
tr(ρ2) = tr ρ and hence its von Neumann entropy is zero, while the von Neumann
entropy of one copy SA = − tr(ρ̂R log ρ̂R) is the thermal entropy

SA = Sthermal , (56)

where we used the notation A for the region the observer of the ‘right’ theory has
access to. The TFD construction thus provides a set-up where the reduced density
matrix is thermal (49), and the entanglement entropy SA is exactly given by a thermal
entropy. As discussed in Sect. 1.3, this can be applied to the calculation of CFT
entanglement of an interval A by conformally mapping the interval to one copy of a
TFD in Fig. 5.

As is apparent from the path integral pictures above, a thermofield double descrip-
tion arises for Euclideanmanifolds that can be divided into two disconnected parts by
the specification of two values of a periodic coordinate τ (the values τ0 and τ0 + β/2
in (54)), such as the cylinder or torus.

Let us discuss two more examples. (For more details, see e.g. [40].) The first is
the Euclidean disk with metric ds2 = dR2 + R2dτ2. In polar coordinates with polar
angle τ , one can consider the TFD state

|ψ〉 = τ

(57)
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with

trL ρ = = = ρthermal

(58)

the thermal density matrix encountered in Fig. 6b, for β = 2π the inverse Unruh
temperature [72] detected by a Rindler observer in Lorentzian signature (Fig. 8a).
Euclidean evolution prepares the vacuum state |ψ〉 on the Minkowski plane ds2 =
−dt2 + dx2, at the spacelike slice located at t = 0 = tE , i.e. the intersection of zero
Lorentzian and Euclidean time tE = i t . A Rindler observer is a boosted observer
(with acceleration set to one below) who only has access to the positive half-line
x > 0 at t = 0, with domain of dependence the Rindler wedge

ds2Rindler = −dt2 + dx2, (x ≥ 0, |t | < x) (59)

= dR2 − R2dt2S , (R ≥ 0, all tS) (60)

which is covered by Rindler coordinates (R, tS) or (xz, tS) with xz = log R. These
are related to Minkowski coordinates by x = R cosh tS , t = R sinh tS . The half-line
A (x > 0) is effectively separated from the half-line Ā (x < 0) by the Rindler horizon
R = 0.

A last example is the cigar manifold, which interpolates between the Euclidean
disk geometry (at the tip of the cigar) and the Euclidean cylinder. It appears in the
Wick-rotated metric of black hole backgrounds, e.g. the Schwarzschild black hole
in Fig. 8b. The associated TFD state |ψ〉 provides the Hartle-Hawking state [41] of
quantum fields on the black hole background, defined by doing the path integral over
half the Euclidean geometry, and trL |ψ〉〈ψ| = ρthermal describes a thermal state at
the Hawking temperature of the black hole. The prepared state at the intersection
of zero Euclidean and Lorentzian time can then be further evolved in Lorentzian
time t .

The holographic dual of the TFD

The extended (2 + 1)-dimensional AdS-Schwarzschild black hole or BTZ solution
[9] is shown in Fig. 8c, with a Hartle-Hawking state prepared by evolution over the
Poincaré disk ds2 = 4dwdw̄/(1 − ww̄)2. This (2 + 1)-dimensional geometry has
two asymptotic boundaries where two dual CFT copies live. It is the holographic
dual of the TFD state of (1 + 1)-dimensional CFT [59]. Indeed, when the suppressed
spacelike coordinate xz of the CFT is added back to the Euclidean half of the Penrose
diagram in Fig. 8c, the AdS TFD state at the conformal boundary becomes the CFT
TFD state of Fig. (47) or (52), depending on whether xz has an infinite or compact
range.
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t

tE
x

τ

tS tS

Fig.8 Penrose diagrams of aMinkowski spacetime, b the extended Schwarzschild black hole, and
c the extendedAdS-Schwarzschild orBTZblack hole, covered by the full range of (t, x) coordinates.
In the case of the black holes, (t, x) are the Kruskal coordinates. Superimposed is the Euclidean
preparation of the TFD state, which provides the Hartle-Hawking state. The state can then be further
evolved in Lorentzian time. To an observer in resp. the Rindler wedge, the (1-sided) Schwarzschild
geometry and the (1-sided) BTZ geometry (all marked in light blue), the state appears thermal. The
(Lorentzian) time coordinate tS that covers these regions is Wick rotated, tS = iτ , to the periodic
coordinate τ of the thermofield double construction

Fig. 9 Region A in red, with
entanglement SA given in
(62)

tbtb

An application of Eq. (33)

To end this section, we focus on the Minkowski geometry of Fig. 8a and determine
the Lorentzian time tb-dependence of the entanglement of the region A pictured in
Fig. 9, following Hartman and Maldacena [42]. The region consists of the half-line
xz > 0 in each Rindler wedge, in cylinder coordinates dx2z − dt2S .

At time tb = 0, the Cauchy slice on which A is defined is simply at t = 0. Then,
point P1 in the left Rindler wedge has Rindler time coordinate τ = 0 and xz = 0,
while point P2 in the right Rindler wedge has coordinates τ = β/2 and xz = 0 or
(z2, z̄2) = (iβ/2, −iβ/2). Next, the Cauchy slice can be pushed upwards, with time
coordinate tb equal to tS in the right Rindler wedge and equal to −tS in the left one.
By analytic continuation, the locations of the interval endpoints ∂A are

(z1, z̄1) = (−tb, tb), (z2, z̄2) = (tb + iβ

2
, −tb − iβ

2
). (61)

Applying Eq. (33) with these values, and with f (z) = exp (2πz/β) the planar coor-
dinate, one obtains

SA = c

3
log

(
β

πεz
cosh(

2π

β
tb)

)
(62)
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for the time-dependence. At large times, the behavior is linear SA ∼ tb.
This is indeed SA = c/3 log(�x/εx )with the relation x = e2πxz/β cosh(2π tS/β)

between planar and Rindler coordinates evaluated at xz = 0 at the interval endpoints,
and εx = 2π

β εz by Eq. (36) with (61). The holographically dual calculation of SA is
also performed in [42].

2 Holographic Entanglement

Holography, in a general sense, posits there is a physically dual description of CFT in
terms of a higher-dimensional theory of gravity. The CFT sets asymptotic boundary
conditions for the gravitational theory, and the duality can be most succinctly stated
as an equality of bulk (gravity) and boundary (CFT) partition functions

Zgrav = ZCFT . (63)

A subscript is included to refer to the partition function of the previous chapter Z
as the CFT theory. No further knowledge of holography or AdS/CFT [56] will be
assumed.

In this chapter we will discuss the holographic interpretation of the log L formula
for the CFT entanglement (28). It famously has a geometric interpretation as a min-
imal area, according to the ‘Ryu-Takayanagi’ (RT) formula [67,68]. The proof of
the RT formula by Lewkowycz and Maldacena [57], involving a bulk replica trick,
is summarized in the first section. It is henceforth referred to as the LM derivation.
In recent years, extensions of their proof have been used to calculate the entropy
of Hawking radiation with the so-called ‘island rule’ and address the black hole
information paradox. We comment on this briefly in Sect. 2.1.1. Then returning to
holography, we discuss in Sect. 2.2 how the RT formula was initially proven for
a special, U(1)-symmetric case by first mapping the CFT entanglement to a ther-
mal entropy, for which a standard holographic dual interpretation is known. This
discussion constitutes the holographic dual of the discussion on CFT entanglement
as thermal entropy in Sect. 1.3. Finally, in Sect. 2.3, the intuition gained from the
U(1) case proof of the RT prescription is used to discuss how gravitational first laws
have interpretations in terms of CFT entanglement, leading to statements on the
emergence of gravity from entanglement. Section 2.3.2 comments briefly on similar
statements about emergent gravity from entanglement in non-holographic set-ups.
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2.1 Lewkowycz Maldacena Derivation of Ryu-Takayanagi
Formula

Here the set-up is a gravitational theory (e.g. [38])

Zgrav =
∫

DgDφe−I [g,φ], (64)

I = − 1

16πG

∫
dd+1x

√
g(R − 2�) + IGHY + Im[g,φ]. (65)

The dynamics of the metric field g with curvature R is described by the Euclidean
action I of Einstein gravity, with negative cosmological constant �, Gibbons-
Hawking-York boundary term IGHY , and the action Im for thematter fieldsφ.Wewill
focus, to begin with, on the d = 2 case, interpreting the gravitational theory as the
3-dimensional, asymptotically AdS dual of the 2-dimensional CFT of chapter 1. By
theAdS/CFT duality (63), the CFT entanglement SA = (1 − n∂n) log ZCFT (n)|n→1
discussed in the previous chapter has a dual interpretation as gravitational entropy

SA = (1 − n∂n) log Zgrav(n)|n→1. (66)

It is this object we are interested in calculating in this section, by employing a bulk
version of the replica trick.

The full, formal quantum gravity path integral Zgrav has a semi-classical approx-
imation Zgrav ≈ exp (−I [g∗,φ∗]) in terms of the on-shell gravitational action, eval-
uated on a classical solution (g∗, φ∗). In this saddle point approximation, the gravi-
tational entropy becomes calculable as

SA = −(1 − n∂n)I [g∗, φ∗](n)|n→1. (67)

The solution has to satisfy boundary conditions set by the CFT replica manifold
partition function ZCFT (n), with g∗ extending asymptotically to the manifold over
which ZCFT (n) path integrates. From here on we will consider pure gravity in the
bulk for simplicity, and at the end of the section mention results on extensions, such
as the inclusion of matter fields φ, higher derivative gravity, etc.

Several incarnations of ZCFT (n) (with integer n > 1) were discussed in the previ-
ous chapter: as the path integral of a replicated theory on the non-replicated orbifold
manifold C (Fig. 1b), as the path integral of the non-replicated theory on the repli-
cated manifoldRn,A (Fig. 1a) or as the path integral of the non-replicated theory on
the replicated cylinder (Fig. 7b). The last one provides the right starting point for
constructing the semi-classical Zgrav(n), because it is a smooth replica manifold,
with a smooth corresponding bulk solution. A bulk geometry that extends the coni-
cal singularity of Rn,A into the bulk is not an acceptable solution of the sourceless
Einstein equations that allows for a saddle point evaluation [44].4 Boundary condi-

4 An interpretation of the bulk configurations considered in [35] is discussed in [30].
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Fig. 10 a Bulk replica manifold Mn (here pictured for n = 4) that on the conformal boundary
∂Mn reduces to the cylinder replica manifold of Fig. 7b (with the spacelike direction of the CFT
suppressed), for the density matrix ρA = exp (−βHτ ) of (40). The uncontractible circle in the
boundary becomes contractible in the bulk at Σ . b Bulk replica manifold Mn for more general,
non-U (1) symmetric case ρA = P exp

∫ 0
β dτH(τ )

tions are imposed at the conformal boundary of the asymptotically AdS theory, thus
allowing to use the replicated cylinder, which is conformally related toRn,A.

The replica cylinder of Fig. 7b extends into the bulk in a (by ansatz)Zn symmetric
solution Mn that smoothly ends in a Zn fixed point, as illustrated in Fig. 10a. With
the boundary replica manifold describing a thermal state, tr ρnA = tr exp (−nβHτ ),
Mn is a black hole solution and the bulk replica method will reduce to the Gibbons-
Hawking path integral derivation of its Bekenstein-Hawking entropy (see Sect. 2.2),
providing the dual of the CFT entanglement SA for τ an angular coordinate going
around the boundary ∂A of the interval A, as in Fig. 6. The relevant conformal
mapping employed there

ds2 = R2dτ2 + dR2 → dτ2 + dR2

R2 (68)

maps the τ -direction on the plane to the uncontractible circle S1 of a hyperbolic
cylinder S1(β) × H1 (easily extended to S1(β) × Hd−1 in the d > 2 case, with cor-
responding replica cylinder S1(nβ) × Hd−1). The hyperbolic cylinder has a U(1)
isometry generated by the Killing vector ∂τ , reflecting the conservation of the Hamil-
tonian Hτ . However, the present discussion crucially is more generally valid: one
can take as boundary conditions a CFT state

ρA = Pe− ∫ β
0 dτH(τ ) (69)

with Euclidean Hamiltonian densityH(τ ) that is not necessarily U(1) invariant, but
instead in general depends on τ . The more general set-up is the following. Consider
a spatial region A in a d-dimensional boundary CFT at time equal to zero. Going
to Euclidean signature, one can locally at the boundary ∂A of A choose an angular
coordinate τ that has the property that it encircles ∂A. For this coordinate, locally
the mapping to a hyperbolic cylinder will be valid, but globally τ -dependence can
appear in the conformally scaled boundary metric, i.e. U(1) invariance is lost. Still,
the τ -dependence has to be consistent with the 2π-periodicity of the circle that τ
parametrizes in the original geometry. That is, the (conformal) boundary metric can
depend on τ through powers of exp (±iτ ). We follow [57] in setting β = 2π.

Themore general set-up is still characterizedby anon-contractible τ -circle S1(2π)

in the boundary metric. The corresponding replica manifold is obtained by gluing
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together n circles to S1(2πn), and is thus Zn symmetric by construction, as a conse-
quence of the periodicity in τ . The bulk replica manifoldMn is then constructed as
the (smooth) solution of the sourceless Einstein’s equations that extends the replica
manifold into the bulk in aZn symmetric way. Its general form,withZn fixed pointΣ
where the boundary τ -circle S1(2πn) becomes contractible, is illustrated in Fig. 10b.
To bemore precise,Σ is a set of points of co-dimension 2 in the (d + 1)-dimensional
bulk.

Now we are ready to evaluate the entropy

SA = −(1 − n∂n)I [Mn]|n→1. (70)

This can be written as SA = n∂n (I [Mn] − nI [M1]) |n→1 in terms of two smooth
manifolds,Mn andM1, with different boundaries ∂Mn �= ∂M1. In order to com-
pare them, they should be brought in a form where each has the same boundary. To
achieve this, periodicity in τ (or said otherwise,Zn symmetry) can be used to rewrite
I [Mn] in the first term5

I [Mn] =
∫ 2πn

0
L[g(n)]dτ (71)

as an integer n times an auxiliary action I [On]smooth defined as

I [On]smooth ≡
∫ 2π

0
L[g(n)]dτ . (72)

Here, L is the Lagrangian density after integrating over all but the τ coordinate,
and On the orbifold manifold On ≡ Mn/Zn obtained from the replica manifold by
quotienting the replica symmetry, with boundary ∂On = ∂M1. The relation

I [Mn] = n I [On]smooth (73)

is well-defined also for non-integer n, and it will be used below to obtain SA in the
n → 1 limit, or ε → 0 for n = 1 + ε.

Let us discuss the orbifold for different values of n. For n = 1, it is equal to
the original dual of the CFT, O1 = M1, which we know is a solution of the I [g]
equations of motion. As it extremizes the action, this implies

I [O1+ε] = I [O1]. (74)

5 Alternatively, one can proceed by rewriting nI [M1] in the second term, into an action evaluated on
amanifold with boundary ∂Mn and conical excess 2π(n − 1) [22,57]. After adding and subtracting
the action evaluated on the manifold with the same boundary but a regulated, rounded off conical
singularity, and using the fact that Mn is a solution of the equations of motion, the remaining
contribution to SA comes from the regulated conical tip and is proportional to its area [34,36].



Entanglement in Conformal Field Theory and Holography 261

For n �= 1, the orbifold has a conical singularity at the location of theZn fixed point in
Mn , with a deficit angle of 2π(n − 1)/n or opening angle 2π/n. The corresponding
curvature singularity, which is proportional to the deficit angle, contributes a term
Ising ∼ ∫

sing
√

gR to the gravitational action evaluated on On ,

I [On] = I [On]smooth + Ising. (75)

The first term contains the regular contribution I [On]smooth ∼ ∫
cone\sing

√
gR. It is

this regulated contribution that appears in (73) as a rewriting of the smooth left hand
side.

Because of the conical singularity, On is not a solution of the I [g] equations of
motion, but of Einstein’s equations in the presence of a source localized at the sin-
gularity. The required source is a co-dimension 2 brane (in the (d + 1)-dimensional
bulk) of tension T = (n − 1)/(4nG) and action Ibrane = T

∫
dd−1y

√
h, for y and h

the induced coordinates and metric on the brane [27]. This means that on-shell,

I [On] + Ibrane = I [On]smooth (76)

or said otherwise, that Ising = −Ibrane, which can be checked explicitly. In evaluating
I [On]smooth one can thus think of it either as integrating the gravitational Lagrangian
over the regulated conewith no contribution of the singularity (75), or alternatively as
adding the brane (76):

∫
cone\sing Ldτdrdx = ∫

cone Ldτdrdx + ∫
Σ
Lbranedx (with

here L the gravitational Lagrangian density).
Next we can write I [M1+ε] in terms of I [On]smooth by (73), and then use (76)

and finally (74) to obtain

I [M1+ε] = (1 + ε)I [M1] + ε
A[Σmin]

4G
. (77)

The last term is Ibrane in the limit of a tensionless brane ε → 0, which does not back-
react and settles in the location Σ that minimizes its Nambu-Goto ‘worldvolume’ or
area A[Σmin]. The entropy SA, with the limit reexpressed for n = 1 + ε,

SA = I [M1+ε] − I [M1]
ε

− I [M1]
∣∣∣∣
ε→0

(78)

finally becomes

SA = A[Σmin]
4G

. (79)

This is the Ryu-Takayanagi (RT) formula for the holographic entanglement of a
spacelike region A. It also includes a homology condition, which has been discussed
in the context of the LM derivation in [39].

For general time-dependent states, the area should be extremized according to
the HRT formula [47]. A derivation of this covariant prescription was given in [28].
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xz xz
I

RR

Fig.11 Left: The set-up for the calculation of radiation entropy, in Lorentzian signature. It consists
of an AdS2 black hole (blue) with a bath region that collects black hole radiation attached (green).
For visualization one can think of the bath regions as extending backwards. Right: Radiation region
R with entropy given by the formula (81), which contains contributions from a possible island
region I

I

R

R

Fig.12 Left: The state is the combined TFD state of the black hole and the bath region, consisting
of the Poincaré disk evolution of Fig. 8c in blue and xz > 0 cylinder evolution of (47) in green.
Right: Orbifold with twist fields (crosses) at boundary ∂R of radiation region R (at tb = 0) and
twist fields as well as branes (blue dots) at boundary ∂ I of possible island region I

The generalization to higher derivative gravity involving Wald entropy [48,75] was
derived in [29].

The inclusion of matter fields—in a semi-classical treatment of the bulk theory—
lead to a first-order correctionO(G0) to the extremal area of bulk matter entropy Sm
[32,57]. It is consistent at that order with the later proposed Engelhardt-Wall formula
[31], at arbitrary orders in the bulk Planck constant,

SA = Sgen[ΣQES] (80)

where the ‘quantum extremal surface’ ΣQES is the minimal co-dimension 2 surface
that extremizes the bulk generalized entropy Sgen ≡ A/4G + Sm(EW ). Here, EW
is short for entanglement wedge, defined as the bulk region confined by A and its RT
surface Σ , and Sm(EW ) is the von Neumann entropy of bulk matter fields in EW .
The QES prescription was derived in [29] and in [5] by inserting twist fields at Σ

for the replicated matter sector in the orbifold On , see also [64].

2.1.1 Islands
The gravitational entropy formula (80) has also been applied beyond the context of
holography in set-ups that exhibit (a version of) a black hole information paradox to
calculate the entropy of Hawking radiation. Without going into detail, we will sketch
the idea.

The set-up considered in [5] is given by a 2-dimensional AdS-black hole solution
of Jackiw-Teitelboim gravity [4,49,71] connected to a non-gravitational bath region
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that collects black hole radiation. There is a matter CFT of large central charge
c  1 that extends over both the gravitational and non-gravitational regions. The
bath consists of an xz > 0 Minkowski geometry attached to the right asymptotic
boundary of AdS and another copy to the left (Fig. 11a). One can prepare the state at
time zero by Euclidean evolution over half the Euclidean AdS2-black hole solution
and half the xz > 0 cylinder, resulting in the combinedTFDstate of the black hole and
the bath region (Fig. 12a). The set-up is entirely 2-dimensional and non-holographic,
but does have a holographic interpretation [2,26] where the AdS2 region forms an
end of the world brane of a 3-dimensional AdS bulk.

Next, one can consider a ‘radiation’ region R extending from spacelike infinity
to a value of xz greater than zero in each copy of the bath. The entanglement Sm of
CFT fields in R can be calculated by the replica trick of Sect. 1.2. Step one is to
construct the replica manifold consisting of n copies of the system with cuts along R
that are glued cyclically, as in Fig. 1a. Upon analytic continuation, the dependence
of Sm on time tb going forward in each copy of the theory can be obtained, as in the
derivation of Eq. (62). The result is a continuously rising Sm(tb) = c

3 log(2 cosh tb),
the Hawking entropy for black hole radiation collected in R. The absence of a Page
curve for this entropy constitutes a black hole information paradox [3].

The gravitational region in the replica manifold is left to dynamically determine
its geometry, given the boundary conditions fixed at its edge. The replica manifold
giving rise to the Hawking entropy only has connections between the n sheets along
R, anddisconnectedgravitational regions.Now the insight of [5]was that connections
between the n sheets in the gravitational region also can arise, when a gravitational
solution is taken into account that represents a (replica symmetric)wormhole between
the replicas.6 The connection between the sheets within the gravitational region
is along a region I called the island. In the orbifold On = Mn/Zn of the replica
manifold Mn , pictured in Fig. 12b, the endpoints ∂R of the radiation region are
smooth and carry twist fields (as in Fig. 1b), while the endpoints ∂ I of the island
region have conical deficits (as in (75)–(76)) and carry both twist fields and branes.
An extension of the Lewkowycz Maldacena argument in Sect. 2.1 leads to the QES
formula (80) for the entropy SR as the minimal generalized entropy [5]

Sgen = Φ(∂ I )

4G
+ Sm(R ∪ I ), (81)

with Φ the Jackiw-Teitelboim dilaton and ∂ I the location extremizing Sgen . The
replica manifold with the island produces a radiation entropy expression SR that
becomes minimal for large tb, giving rise to the sought-after Page curve.

6 For the role of wormholes in replica trick computations, see also [65], reviewed in [61].
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2.2 Holographic Entanglement andThermal Entropy

In this section, we focus on the U(1) symmetric case of the holographic entanglement
of Sect. 2.1, or the Casini Huerta Myers derivation [25] of the Ryu-Takayanagi
formula for the CFT entanglement (28) of an interval. This will provide useful
intuition for the discussion of the entanglement first law and its gravitational dual in
the next section.

The simplification in the U(1) case is that the entanglement maps to a thermal
entropy, and one can construct the direct holographic dual interpretation of the CFT
discussion of Sect. 1.3. This will lead to Fig. 15 presenting the bulk equivalent of
the mapping pictured in Fig. 5, and to the RT formula coinciding with the black hole
entropy formula.

2.2.1 Holographic Thermal Entropy
Let us first consider the (2 + 1)-dimensional BTZ black string solution

ds2 = −(r2 − r2+)dt2S + dr2

r2 − r2+
+ r2dx2z (82)

with horizon at r = r+, AdSboundary at r → ∞ andAdS radius l = 1. The ranges of
the coordinates are tS = −∞..∞, r ≥ r+, and xz = −∞..∞. The conformal bound-
ary in Euclidean signature (tS = iτ ) is the Euclidean cylinder ds2CFT = dτ2 + dx2z ,
with Euclidean time periodicially identified τ ∼ τ + β. The uncontractible τ -circle
in the dual CFT becomes contractible in the bulk at r = r+ (where (r2 − r2+)dτ2 →
0). This typical feature of a solution with a horizon is represented in Fig. 13b by a
cigar geometry in the (r , τ ) directions. Smoothness of the geometry near the tip of
the cigar requires the periodicity of τ to be fixed in terms of r+ to (e.g. [16])

β = 2π

r+
. (83)

This is the inverse Hawking temperature of the black string, and the Euclidean grav-
itational path integral Zgrav(β), shown in Fig. 13 as the solid cylinder, is interpreted
as a thermal partition function tr ρgrav . The corresponding entropy

Sthermal = (1 − β∂β) log Zgrav(β) (84)

is the holographic dual of the thermal entropy (41) of the CFT. It can be calculated in
different ways, as is nicely summarized in e.g. [8]. The original Gibbons-Hawking
method [37] took an ‘on-shell approach’: as β is varied, so is the mass (and thus the
horizon radius r+) of the black hole, in such a way that the on-shell relation (83) is
maintained. Variation of the on-shell action (− log Zgrav(β)) [7,43] then gives rise
to the famous Bekenstein-Hawking entropy of the black hole

Sthermal = A〈
4G

, (85)
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whereAh is the horizon area. Another option is the ‘off-shell approach’: when only
β is varied, the tip of the cigar turns into a conical singularity. As discussed at length
in Sect. 2.1, such a singular geometry does not solve the (sourceless) gravitational
equations of motion. Equation (84) can then be written in terms of the conical excess
ε, with δβ/β = δε [8,62], as

Sthermal = (1 − ∂ε) log tr ρ
1+ε
grav|ε→0 = (1 − n∂n) log tr ρ

n
grav|n→1, (86)

reproducing for n = 1 + ε the replica trick formula (66). Indeed the Gibbons-
Hawking entropy derivation in this approach reduces to a special case of the grav-
itational replica trick7 of Sect. 2.1: the result (79) for the entropy reduces to (85).
It is a special case because the gravitational solution (82) has a U(1) Killing vector
∂tS , describing a system in thermal equilibrium.

2.2.2 Ryu-Takayanagi fromThermal Entropy Argument
The BTZ string spacetime (82) is just a different (namely hyperbolic) slicing of 3-
dimensional AdS. The explicit coordinate transformation to AdS in Poincaré coor-
dinates

ds2 = 1

Z2

(
dZ2 − dt2 + dx2

)
(87)

is given e.g. in the appendix of [6] (via embedding coordinates). It reduces asymptot-
ically to the transformation from Rindler to Minkowski coordinates, x = exz cosh tS
and t = exz sinh tS . InBTZ slicing, the constant time slice ofAdS3 is presented in Fig.
14, with the BTZ string metric (82) covering one half. Asymptotically, this means
the half-space of the plane, which we can call region A as in Fig. 5b, is described
by the full range xz = −∞..∞ of the BTZ string coordinate. This is pictured in Fig.
15b and c. Indeed, each of the conformal transformations depicted in Fig. 5 that are
needed to map an interval A in a 2-dimensional CFT to the full system size at an

a)

r = r+

β

b)

r+ r+

Fig.13 a The thermal CFT partition function of Fig. 7a is equated, by AdS/CFT, to the thermal par-
tition function Zgrav(β) of a black string solution of AdS gravity, represented by the corresponding
solid cylinder. b An (r , τ ) slice of the solid cylinder pictured as a cigar, with U(1) fixed point at
r = r+, or a Poincaré disk ds2 = 4dwdw̄/(1 − ww̄)2 with w = √

(r − r+)/(r + r+) exp (ir+τ )

7 It is more directly related to the Lewkowycz Maldacena derivation following the option in
Footnote 5.
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r
=

r +

xz = −∞

xz = ∞

Fig.14 APoincaré disk constant time slice ofAdS3 in hyperbolic coordinates, with lines of constant
r (solid) and constant xz (dashed). The BTZ string metric (82) covers one half of the disk

auxiliary temperature T is dual to an AdS bulk coordinate transformation. This is
illustrated in Fig. 15, which provides the holographic dual interpretation of Fig. 5,
in Euclidean signature. The explicit bulk coordinate transformation from Fig. 15a to
15b, dual to conformally mapping the interval to the half-line, can also be found in
[25].8

Having arrived at Fig. 15c, the entanglement SA for an interval A is equal to
the thermal entropy Sthermal given by the Bekenstein-Hawking formula (85) for
the BTZ string geometry with Hawking temperature T . That is, SA is calculated
holographically by the area of the BTZ horizon. Under the mappings from Fig.
15c back to the coordinates of Fig. 15a, the horizon is mapped to the RT minimal
surface, and the RT prescription is proven by having found the bulk transformations
dual to the conformal transformations of Holzhey et al. [46] combined with the
holographic prescription (85) for calculating a thermal entropy. The length of the RT
geodesic is divergent because it extends to the boundary, reflecting as it should theUV
divergence of SA. This is consistent with the area of the planar BTZ string geometry
being divergent, as opposed to the finite area of the BTZ black hole (obtained from
a quotient of AdS).

From (86), it is clear that the above sketched Casini Huerta Myers proof of the
RT conjecture forms a special, U(1) symmetric case of the bulk replica proof of
Sect. 2.1, with the RT surface provided by the U(1) fixed point or more generally
the Zn fixed point. By continuity, the RT surface ending on the Zn fixed points ∂A
in the boundary consists of the set of Zn fixed points in the bulk.

For each of the Euclidean bulk pictures in Fig. 15, Fig. 16 shows the corresponding
Lorentzian one. In Lorentzian signature, the Poincaré coordinates (Z , t, x) cover the
region of AdS within the AdS-Poincaré horizon. This horizon intersects the AdS
boundary at the null boundaries of the Minkowski spacetime Penrose diagram of
Fig. 6a, with BTZ string coordinates describing the bulk dual of each of the Rindler
wedges.

8 While we have restricted to the AdS3/CFT2 case for concreteness, the discussion in [25] holds
for any dimension.



Entanglement in Conformal Field Theory and Holography 267

a)

tE = 0
x

b)

x

c)

xz

τ

Fig. 15 The AdS (in a and b) and BTZ string dual (in c) of the 2-dimensional CFT set-ups in
Fig. 5, in Euclidean signature. They are related by conformalmappings in the boundary or coordinate
transformations in the bulk. The CFT region A is in red, the complementary region Ā in green, and
the RT surface r = r+ in blue

a)

t = 0
x

b)

x

c)
tS

r = r+

xz

Fig. 16 The AdS (in a and b) and BTZ string dual (in c) of the 2-dimensional CFT set-ups in
Fig. 5, in Lorentzian signature. The AdS-Poincaré coordinates (t, x) cover the region of the cylinder
inside the Poincaré horizon. The entanglement wedge (light blue shaded) of A (red) maps to the
outside-horizon region of the BTZ string geometry. In the right-most figure, the spatial coordinate
has been compactified for reasons of presentation, because in this way it is most clear visually that
the Bekenstein-Hawking entropy inspiration behind the RT prescription becomes explicit in the
U(1) case. However, in this picture, the coordinate xz should still be considered to run from −∞ to
∞, covering the cylinder infinitely many times, and thus the horizon area in Fig. c is still divergent

2.3 Gravitational EOM from CFT Entanglement

The RT formula gives an intriguing geometric interpretation to CFT entanglement.
Now the bulk geometry has to satisfy Einstein’s equations and we present in this
section the basic ideas behind entanglement interpretations of the gravitational
dynamics. At first we focus on holography, in the last subsection we comment on
similar ideas in non-holographic contexts.

2.3.1 Holographic Emergent Gravity
Bulk Metric Equation of Motion

We can consider the first law of black hole thermodynamics [11] for the BTZ
string black hole of Fig. 16c,

δM = T δSthermal , (88)
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with T = 1/(2π) (corresponding to the choice of κ = 1 in (40)). Equation (88)
expresses how a small change in mass of the black hole is related to its change in
entropy. As it relates two solutions of the Einstein equations (one with mass M and
onewithmassM + δM), the first law is an on-shell expression that is equivalent to the
linearized Einstein equations. This is made precise in the Iyer-Wald formalism [48,
75]. In essence, that formalismwrites the black hole first law (88) as a Stokes equation
δE∞ − δEh = 0, with E∞ and Eh the energy at infinity and the horizon. However,
it is valid far more broadly than the case above, allowing to write a gravitational first
law expressing energy conservation in a chosen region of a solution of the equations
of motion, for any gravitational theory with a diffeomorphism invariant Lagrangian.
For example, the Iyer-Wald formalism can be applied directly to the entanglement
wedge region in Fig. 16a. In fact, wewill shortly interpret the black hole first law (88)
as the gravitational first law for the entanglement wedge of A. We are focusing here
for concreteness on the most intuitive U(1) symmetric case, where the entanglement
wedge maps to a black hole outside-horizon region.

One can now ask what the dual CFT interpretation of the gravitational law (88)
is. By the Bekenstein-Hawking formula (85) and the mappings in Fig. 16, i.e. by the
RT formula of AdS/CFT, the right hand side of (88) is equal to SA/(2π), the vacuum
entanglement entropy of region A. On the left hand side, the mass M is obtained
from integrating the Brown-York stress tensor, which is identified in AdS/CFT with
the expectation value of the CFT stress tensor [7], so that δM = δ〈HtS 〉 in terms
of the boundary Rindler Hamiltonian. Because of the Bisognano Wichmann result
(40) (with τ the Euclidean Rindler time τ = −i tS), the Rindler Hamiltonian is equal
(up to a normalization constant) to 1/(2π) times the ‘modular Hamiltonian’ Hmod,A,
which is an operator defined by writing the positive semi-definite reduced density
matrix ρA of the vacuum CFT state in the form

ρA = e−Hmod,A

tr e−Hmod,A
. (89)

Having used the AdS/CFT dictionary on each side of the black hole first law (88),
it now reads, in terms of CFT entanglement concepts:

δ〈Hmod,A〉 = δSA. (90)

This is a relation known as the ‘first law of entanglement’ [12,56,76], for its close
resemblance, and in this case connection, to the first law of thermodynamics. The
conclusion is that a gravitational first law in the bulk, namely the one associated with
the entanglement wedge region of A, corresponds to an entanglement first law in
the CFT. It follows that from the CFT perspective, the entanglement first law (90)
imposes linearized Einstein equations in the dual bulk theory. In this sense gravity
can be said to emerge from entanglement in AdS/CFT [33,56,74].

Bulk matter can be included in a semi-classical treatment of the bulk theory,
leading to an additional matter energy contribution to the first law (88), δM =
T δS + δEm . The gravitational first law is then still consistent with the first law
of entanglement if the RT prescription is corrected to include a bulk matter entropy



Entanglement in Conformal Field Theory and Holography 269

contribution, which is indeed the proposal of the FLM [32] and QES [31] prescrip-
tions.

Bulk Matter Equation of Motion
We discussed how equations of motion for the geometry in a gravitational theory can
be thought of as having an entropic origin. One can also ask about the equations of
motion for bulkmatter degrees of freedom, and to what extent these can be described
using statements about boundary entanglement. Considering for concreteness a free
bulk scalar field φ, we can consider how it behaves under the action of the total CFT
modular Hamiltonian, defined for a given CFT region A as the difference Htot

mod,A ≡
Hmod,A − Hmod, Ā. It is an operator that can be written as a linear combination of
the CFT conformal generators L0, L1 and L−1 [77]. One obtains what is known as
the JLMS result [52,53]

[Htot
mod,A,φ] = Lξφ (91)

with Lξ the Lie derivative in the direction of ξ, the AdS Killing vector acting in the
entanglement wedge of A and vanishing on the RT surface. One can then argue [20]
that the bulk equation of motion for φ, written in the form EOM = 0, should also
satisfy

[Htot
mod,A, EOM] = Lξ(EOM). (92)

This gives a consistency condition between a modular Hamiltonian condition in the
CFT and the bulk matter equation of motion, strongly constraining the latter. For
electromagnetically or gravitationally interacting bulk scalar fields, the right hand
side of the JLMS condition (91) gets corrected, reflecting the non-locality of such
bulk objects. In particular, the bulk equation ofmotion for a gravitationally interacting
scalar field in three dimensions satisfies (92) with ξ equal to ξBan , the asymptotic
Killing vector of the Bañados geometry [10].

2.3.2 Non-holographic Emergent Gravity
The idea of a connection between Einstein’s equations and entropy laws goes back
to the seminal work of Jacobson [50]. A modern entanglement entropy version of it
is discussed in [51] and describes how a given CFT (in dimensions d > 2) can be
coupled to a theory of gravity in the same number of dimensions by imposing the
‘maximal vacuum entanglement condition’. This statement, similarly to the state-
ments on holographic emergent gravity from entanglement in Sect. 2.3.1, can be
traced back to a reinterpretation of a gravitational first law in terms of entanglement
[15,51]. A 2-dimensional version of Jacobson’s emergent gravity from maximal
vacuum entanglement has been discussed in [19], see also [63,64], and a closely
related account on entropic emergence of Jackiw-Teitelboim gravity for a CFT with
boundary was presented in [21].



270 N.Callebaut

Acknowledgements I would like to thank my collaborators, and more broadly my friends and
colleagues, in the fascinating world of entanglement and holography. Special thanks to Vincent
Callebaut for the figures. Funded, in part, by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – Projektnummer 277101999 – TRR 183 (project A03 and B01).

References

1. I. Affleck, Phys. Rev. Lett. 56, 746–748 (1986)
2. A. Almheiri, R. Mahajan, J. Maldacena, Y. Zhao, JHEP 3, 149 (2020)
3. A. Almheiri, R. Mahajan, J. Maldacena, Islands outside the horizon (2019)
4. A. Almheiri, J. Polchinski, JHEP 11, 014 (2015)
5. A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, A. Tajdini, JHEP 5, 013 (2020)
6. C. Asplund, N. Callebaut, C. Zukowski, JHEP 9, 154 (2016)
7. V. Balasubramanian, P. Kraus, Commun. Math. Phys. 208, 413–428 (1999)
8. V. Balasubramanian, B. Czech, B. Chowdhury, J. Boer, JHEP 10, 220 (2013)
9. M. Banados, C. Teitelboim, J. Zanelli, Phys. Rev. Lett. 69, 1849–1851 (1992)
10. M. Banados, AIP Conf. Proc. 484, 147–169 (1999)
11. J. Bardeen, B. Carter, S. Hawking, Commun. Math. Phys. 31, 161–170 (1973)
12. E. Bianchi, Horizon entanglement entropy and universality of the graviton coupling (2012)
13. J. Bisognano, E. Wichmann, J. Math. Phys. 17, 303–321 (1976)
14. H. Bloete, J. Cardy, M. Nightingale, Phys. Rev. Lett. 56, 742–745 (1986)
15. P. Bueno, V. Min, A. Speranza, M. Visser, Phys. Rev. D 95, 046003 (2017)
16. M. Cadoni, M. Melis, Found. Phys. 40, 638–657 (2010)
17. P. Calabrese, J. Cardy, J. Stat. Mech. 406, P06002 (2004)
18. P. Calabrese, J. Cardy, J. Phys. A 42, 504005 (2009)
19. N. Callebaut, JHEP 2, 153 (2019)
20. N. Callebaut, G. Lifschytz, JHEP 8, 289 (2022)
21. N. Callebaut, H. Verlinde, JHEP 5, 045 (2019)
22. J. Camps, JHEP 3, 070 (2014)
23. J. Cardy, O. Castro-Alvaredo, B. Doyon, J. Statist. Phys. 130, 129–168 (2008)
24. J. Cardy, Conformal Field Theory and Statistical Mechanics, Les Houches Summer School:

Session 89: Exacts Methods In Low-Dimensional Statistical Physics And Quantum Computing
(2008)

25. H. Casini, M. Huerta, R. Myers, JHEP 5, 036 (2011)
26. H. Chen, R. Myers, D. Neuenfeld, I. Reyes, J. Sandor, JHEP 10, 166 (2020)
27. X. Dong, Nature Commun. 7, 12472 (2016)
28. X. Dong, A. Lewkowycz, M. Rangamani, JHEP 11, 028 (2016)
29. X. Dong, A. Lewkowycz, JHEP 1, 081 (2018)
30. X. Dong, D. Harlow, D. Marolf, JHEP 10, 240 (2019)
31. N. Engelhardt, A. Wall, JHEP 1, 073 (2015)
32. T. Faulkner, A. Lewkowycz, J. Maldacena, JHEP 11, 074 (2013)
33. T. Faulkner, M. Guica, T. Hartman, R. Myers, M. Van Raamsdonk, JHEP 3, 051 (2014)
34. D. Fursaev, S. Solodukhin, Phys. Rev. D 52, 2133–2143 (1995)
35. D. Fursaev, JHEP 9, 018 (2006)
36. D. Fursaev, A. Patrushev, S. Solodukhin, Phys. Rev. D 88, 044054 (2013)
37. G. Gibbons, S. Hawking, Phys. Rev. D 15, 2752–2756 (1977)
38. G. Gibbons, S. Hawking, M. Perry, Nucl. Phys. B 138, 141–150 (1978)
39. F. Haehl, T. Hartman, D. Marolf, H. Maxfield, M. Rangamani, JHEP 5, 023 (2015)
40. D. Harlow, Rev. Mod. Phys. 88, 015002 (2016)
41. J. Hartle, S. Hawking, Phys. Rev. D 13, 2188–2203 (1976)
42. T. Hartman, J. Maldacena, JHEP 5, 014 (2013)
43. T. Hartman, Lectures on Quantum Gravity and Black Holes



Entanglement in Conformal Field Theory and Holography 271

44. M. Headrick, Phys. Rev. D 82, 126010 (2010)
45. M. Headrick, Lectures on Entanglement Entropy in Field Theory and Holography (2019)
46. C. Holzhey, F. Larsen, F. Wilczek, Nucl. Phys. B 424, 443–467 (1994)
47. V. Hubeny, M. Rangamani, T. Takayanagi, JHEP 7, 062 (2007)
48. V. Iyer, R. Wald, Phys. Rev. D 50, 846–864 (1994)
49. R. Jackiw, Nucl. Phys. B 252, 343–356 (1985)
50. T. Jacobson, Phys. Rev. Lett. 75, 1260–1263 (1995)
51. T. Jacobson, Phys. Rev. Lett. 116, 201101 (2016)
52. D. Jafferis, A. Lewkowycz, J. Maldacena, S. Suh, JHEP 6, 004 (2016)
53. D. Kabat, G. Lifschytz, JHEP 5, 017 (2019)
54. R. Laflamme, Nucl. Phys. B 324, 233–252 (1989)
55. F. Larsen, F. Wilczek, Ann. Phys. 243, 280–298 (1995)
56. N. Lashkari, M. McDermott, M. Van Raamsdonk, JHEP 4, 195 (2014)
57. A. Lewkowycz, J. Maldacena, JHEP 8, 090 (2013)
58. J. Maldacena, Adv. Theor. Math. Phys. 2, 231–252 (1998)
59. J. Maldacena, JHEP 4, 021 (2003)
60. P. Martin, J. Schwinger, Phys. Rev. 115, 1342–1373 (1959)
61. T. Mertens, G. Turiaci, Solvable Models of Quantum Black Holes: A Review on Jackiw-

Teitelboim Gravity (2022)
62. W. Nelson, Phys. Rev. D 50, 7400–7402 (1994)
63. J. Pedraza, A. Svesko, W. Sybesma, M. Visser, JHEP 12, 134 (2021)
64. J. Pedraza, A. Svesko, W. Sybesma, M. Visser, Phys. Rev. D 105, 126010 (2022)
65. G. Penington, S. Shenker, D. Stanford, Z. Yang, JHEP 3, 205 (2022)
66. J. Polchinski,StringTheory. Vol. 1:An Introduction to theBosonic String (CambridgeUniversity

Press, 2007)
67. S. Ryu, T. Takayanagi, Phys. Rev. Lett. 96, 181602 (2006)
68. S. Ryu, T. Takayanagi, JHEP 8, 045 (2006)
69. S. Solodukhin, Living Rev. Rel. 14, 8 (2011)
70. Y. Takahasi, H. Umezawa, Collect. Phenom. 2, 55–80 (1975)
71. C. Teitelboim, Phys. Lett. B 126, 41–45 (1983)
72. W. Unruh, Phys. Rev. D 14, 870 (1976)
73. W. Unruh, N. Weiss, Phys. Rev. D 29, 1656 (1984)
74. M. Van Raamsdonk, Gen. Rel. Grav. 42, 2323–2329 (2010)
75. R. Wald, Phys. Rev. D 48, R3427–R3431 (1993)
76. G. Wong, I. Klich, L. Pando Zayas, D. Vaman, JHEP 12, 020 (2013)
77. J. Boer, F. Haehl, M. Heller, R. Myers, JHEP 8, 162 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Coordinates areMessy—NotOnly
inGeneral Relativity

Carla Cederbaum and Melanie Graf

Abstract

The coordinate freedom of General Relativity makes it challenging to find math-
ematically rigorous and physically sound definitions for physical quantities such
as the center of mass of an isolated gravitating system.Wewill argue that a similar
phenomenon occurs inNewtonianGravity once one ahistorically drops the restric-
tion that one should only work in Cartesian coordinates when studying Newtonian
Gravity. This will also shed light on the nature of the challenge of defining the
center of mass in General Relativity. Relatedly, we will give explicit examples
of asymptotically Euclidean relativistic initial data sets which do not satisfy the
Regge–Teitelboim parity conditions often used to achieve a satisfactory definition
of center of mass. These originate in our joint work [4] with Jan Metzger. This
will require appealing to Bartnik’s asymptotic harmonic coordinates.

1 Preferred Systems of Coordinates (or not)

As we all know, Euclidean space—the stage of Newtonian Gravity—knows pre-
ferred systems of coordinates, called Cartesian coordinates. In such coordinates, the
Euclidean metric δ takes its canonical form. Similarly, the Minkowski spacetime—
the setting of Special Relativity—carries preferred systems of coordinates in which
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the Minkowski metric η takes its canonical form. In contrast, curved
spacetimes—the mathematical framework of General Relativity—and initial data
sets therein are well-known not to admit any ‘canonical’ or ‘preferred’ coordinates
in general. This freedom in the choice of coordinates makes it challenging to find
mathematically rigorous and physically sound definitions for physical quantities
such as the center of mass of an isolated gravitating system in General Relativity
as is well-known and will be discussed in this article. We will argue that a simi-
lar phenomenon occurs in Newtonian Gravity once one ahistorically and somewhat
unnecessarily drops the restriction that one should only work in Cartesian coordi-
nates when studying Newtonian Gravity. This will also shed light on the nature of
the challenge of defining the center of mass in General Relativity. Relatedly, we will
give explicit examples of asymptotically Euclidean relativistic initial data sets which
do not satisfy the “Regge–Teitelboim (parity) conditions” often used to achieve a
satisfactory definition of center of mass. These originate in our joint work [4] with
Jan Metzger.

2 Isolated Systems at a Given Instant of Time

Let’s begin by recalling the standard definitions of an “isolated system at a given
instant of time” in bothNewtonianGravity andGeneral Relativity.Wewill also recall
the standard definitions of (total) mass of such systems along the way and discuss
the convergence of the involved integrals.

2.1 Isolated Systems at a Given Instant of Time in Newtonian
Gravity

In Newtonian Gravity, we can think of an “isolated system at a given instant of time”
as given by a matter density function ρ : R3 → [0,∞) which has compact support
or at least decays suitably fast towards infinity. For example, one could ask that
ρ = O(r−3−ε) as r → ∞ for some (small) ε > 0, that is, ρ decays to zero at least
as fast as r−3+ε, where r denotes the radial coordinate on R

3. Alternatively but not
equivalently, one could ask that ρ ∈ L1(R3). Both assumptions are independent of
the chosen Cartesian coordinates because any two systems of Cartesian coordinates
on R

3 differ only by a rigid motion. Either of these decay assumptions is sufficient
for the total mass

m =
∫∫∫

R3
ρ(x) dx (1)

to be well-defined and finite. Anticipating the discussion below, let us point out
that the O-assumption suggests computing the integral in (1) as an improper Rie-
mann integral in polar coordinates, while the L1-assumption suggests treating it as a
Lebesgue integral. Of course, the resulting mass m will be the same whatever notion
of integral one refers to, as long as it converges. However, taking the former view-
point, we can take advantage of cancellations in the spherical integrals. Also note
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that the decay assumptions are of course not independent of arbitrary coordinate
changes.

2.2 Isolated Systems at a Given Instant of Time in General
Relativity

In General Relativity, an “isolated system at a given instant of time” is modelled
as an asymptotically Euclidean (or asymptotically flat) relativistic initial data set
(or time-slice): As usual, an initial data set (M, g, K ) consists of a 3-dimensional
Riemannian manifold (M, g) carrying a symmetric (0, 2)-tensor field K playing the
role of second fundamental form (or extrinsic curvature) of the initial data set in the
spacetime modelling the system.

In addition, a relativistic initial data set carries an energy density μ : M → R and
a momentum density one-form J related to g and K via the well-known Einstein
constraint equations

R−|K |2 + (tr K )2 = 2μ (2)

div(K − (tr K )g) = −J . (3)

and derived from the energy-momentum tensor T of the spacetime. Here, R denotes
the scalar curvature of (M, g), and | · |, tr, and div denote the tensor norm, trace,
and divergence with respect to g, respectively. We will adopt the following standard
definition, see also Fig. 1.

Definition 1 (Asymptotically Euclidean Relativistic Initial Data Set) A relativistic
initial data set (M, g, K ) with energy density μ and momentum density J is called
asymptotically Euclidean if there exists a compact set C ⊂ M , a radius R > 0, and
an asymptotic coordinate chart x : M \ C → R

3 \ BR(0) such that

gi j − δi j = O2(r− 1
2−ε) (4)

Ki j = O1(r− 3
2−ε) (5)

μ, Ji = O0(r−3−ε) (6)

Fig. 1 An asymptotically Euclidean relativistic initial data set (M, g, K ) and the image of its
asymptotic end M \ C in R3 under the asymptotic coordinate chart x
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as r = |x | → ∞ for some decay parameter ε > 0, where gi j , Ki j , and Ji denote the
components of g, K , and J in the coordinates x, respectively. Alternatively but not
equivalently, one can replaceAssumption (6) by asking thatμ, Ji ∈ L1(R3 \ BR(0)).

Here, the index k ∈ N0 ∪ {∞} in Ok(rα) for some α < 0 is a shorthand for asking
that derivatives of order up to k decay ‘accordingly’ as r → ∞, that is, first derivatives
decay to zero at least as fast as rα−1, second derivatives decay to zero at least as fast
as rα−2, etc. In what follows, we will slightly abuse notation and extend this to the
‘decay rate’ α = 0, so that f = Ok(r0) will mean that the function f stays bounded
as r → ∞, while its order l derivatives decay to zero at least as fast as r−l as r → ∞
whenever l ≤ k.

The (total) mass mADM of an asymptotically Euclidean relativistic initial data set
(M, g, K ) was defined by Arnowitt, Deser, and Misner in [1] via the (total) energy
EADM and (total) linear momentum PADM and has become the standard definition,
satisfying many desirable properties such as for example positivity ([13,14]):

EADM := 1

16π
lim

R→∞

∫∫
SR(0)

3∑
i, j=1

(∂igi j − ∂ jgi i )
x j

R
d Aδ, (7)

P j
ADM := 1

8π
lim

R→∞

∫∫
SR(0)

3∑
i=1

(
(tr K )gi j − Ki j

) xi

R
d Aδ, (8)

mADM :=
√

E2
ADM − |PADM|2, (9)

where d Aδ denotes the Euclidean area measure on SR(0). In [2], Bartnik uses har-
monic asymptoticallyEuclidean coordinate charts to prove that EADM iswell-defined
and independent of the choice of asymptotically Euclidean coordinate charts, see
Sect. 3. Note that Bartnik uses the weaker L1-decay condition on μ. From this, (8),
(5) and (6), it follows directly that mADM is also well-defined and independent of the
choice of asymptotically Euclidean coordinate chart via the Divergence Theorem.
Again, this argument only uses the weaker L1-condition on J .

You may wonder why one asks for such general decay rates in (4)–(6), and not
just for, say,

gi j − δi j = O2(r
−1) (10)

etc.. This has two reasons: First, the theory of asymptotically Euclidean relativistic
initial data sets does not becomemore complicated if one does so. Second, it actually
becomes richer, i.e., allows for more examples, see [4] and the references cited
therein.

Next, let us discuss how a single relativistic initial data set can carry different
asymptotic coordinate charts and discuss the relationship between different such
charts.
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3 Comparing Different Asymptotic Coordinate Systems

Clearly, if a relativistic initial data set is asymptotically Euclidean for some asymp-
totic coordinate chart x, it will also be asymptotically Euclidean for any asymptotic
coordinate chart y arising from x by a rigid motion,1 for the same decay parameter ε.
Moreover, the class of possible transformations between two asymptotic coordinate
charts x and y with respect to which a given relativistic initial data set (M, g, K ) is
asymptotically Euclidean is much richer than just rigid motions, even when fixing
the decay parameter ε. Here is an example: Let (M, g, K ) be a relativistic initial data
set with energy and momentum densitiesμ and J which is asymptotically Euclidean
with respect to some asymptotic coordinate chart x and for some decay parameter
ε > 0. Then (M, g, K ) will also be asymptotically Euclidean with decay parameter
ε with respect to the asymptotic coordinate chart

y := x + sin(ln r) a (11)

for some non-vanishing a ∈ R
3, with r = |x| as before. This can be seen by a straight-

forward computation. In particular, note that (11) is very similar to amere translation,
differing only in the bounded factor sin(ln r) = O∞(r0) as r → ∞.

On the other hand, it crucially depends on the choice of asymptotic coordinate
chart whether a given relativistic initial data set “is” asymptotically Euclidean: For
example, any relativistic initial data set which is asymptotically Euclidean with
respect to an asymptotic coordinate chart x will not be asymptotically Euclidean
with respect to the chart y := 2x as one easily computes. We will hence refer to an
asymptotic coordinate chart x as an asymptotically Euclidean coordinate chart for
a given relativistic initial data set (M, g, K ) (with energy and momentum densities
μ and J ) if (M, g, K ) is asymptotically Euclidean with respect to x.

Summarizing, the class of asymptotically Euclidean coordinate charts for a given
relativistic initial data set ismuch richer than the class ofCartesian coordinate systems
on Euclidean space. This applies in particular to the Euclidean relativistic initial data
set (M = R

3, g = δ, K = 0) sitting inside theMinkowski spacetime. Here, one sees
that theCartesian coordinate systems are asymptotically Euclidean coordinate charts,
but by far not the only asymptotically Euclidean coordinate charts.

3.1 Divergence of Mass

At this point, it is instructive to recall that the decay condition (4) cannot be relaxed
as was shown by a counter-example by Denissov and Solovyev [8]. Inspired by
their example, let us consider the Euclidean relativistic initial data set (M = R

3,

g = δ, K = 0) in the coordinates

1 The careful reader may note that one may need to change the compact set C and the radius R from
1 for the coordinate chart y; we will ignore such subtleties in this article for the sake of readability.
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y :=
(
1 + a√

r

)
x (12)

for some non-zero a ∈ R which leads to (4) with ε = 0 and the unphysical result
mADM = a2

8 . One can argue similarly for (5) as we will discuss elsewhere; alterna-
tively, one can compute in a lengthy but straightforwardway that the decay conditions
(4) and (5) transform equivariantly under coordinate boosts in the ambient space-
time. From this and the example by Denissov and Solovyev, one can conclude that
(5) is necessary for physicality of the definition of mADM.

In summary, (convergence and coordinate independence of) mass is very well
understood in both Newtonian Gravity and General Relativity and depends crucially
on the decay of the matter variables, as well as, in General Relativity, on the asymp-
totics of the relativistic initial data set itself.

One of the main tools introduced by Bartnik for the study of mass and energy are
the “harmonic asymptotically Euclidean coordinates” we will now explain.

4 A Canonical Choice:Harmonic Coordinates

Cartesian coordinates are not only canonical for the Euclidean metric, they are also
harmonic, that is, they satisfy the system of partial differential equations

	δx = 0, (13)

a shorthand for the system of equations

	δxi = 0 for i = 1, 2, 3, (14)

where 	δ denotes the Euclidean Laplacian.
Exploiting this insight, Bartnik showed in [2] that asymptotically Euclidean rela-

tivistic initial data sets (M, g, K ) always possess harmonic asymptotically Euclidean
coordinate charts, that is, asymptotically Euclidean coordinate charts satisfying the
geometric system of partial differential equations

	x = 0, (15)

where 	 denotes the Laplacian with respect to g. Here, “geometric” means that
the partial differential equations themselves do not depend on a choice of (local or
asymptotic) coordinate chart.

Furthermore, Bartnik showed [2, Theorem 3.1] that two such harmonic asymp-
totically Euclidean coordinate charts x, y are related by a rigid motion up to suitably
lower order terms,

y = Qx + a + O0(r
1
2−ε), (16)

for a special orthogonal matrix Q ∈ R
3×3 and a vector a ∈ R

3. In particular, there
are more harmonic asymptotically Euclidean coordinate charts on Euclidean space
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than just the Cartesian coordinate systems: for example, the coordinates y := x + b
r

for some non-trivial vector b ∈ R
3 are also harmonic.

5 On the Center of Mass of Isolated Systems at a Given
Instant of Time

Let us now move on to the definition of (total) center of mass, where the situation is
somewhat drastically different than for energy, linear momentum, and mass. Again,
we will first take a look at the (total) center of mass of an isolated system at a given
instant of time in Newtonian Gravity.

5.1 On the Center of Mass in Newtonian Gravity

Provided m 
= 0, the center of mass in Newtonian Gravity is naturally defined as the
averaged weighted integral of the position vector x,

C := 1

m

∫∫∫
R3

ρ(x) x dx. (17)

Looking at (17) as a Lebesgue integral, it suggests itself that one should ask that
ρr ∈ L1(R3). Instead, for this to be well-defined and finite as an improper Riemann
integral,

C = lim
R→∞

∫ R

0

∫∫
Sr (0)

ρ(x) x d Aδ dr , (18)

it suggests itself to assume ρ = O0(r−4−ε) for some ε > 0, in analogy with the
choice of decay rate used for ensuring that the mass is well-defined; this of course
settles the convergence issue for Newtonian gravitating systems.

However, let us—ahistorically—take a different approach in analogy with the
standard approach taken to resolve the corresponding issue in General Relativity. To
this end, let us instead make a further parity-based decay assumption, namely

ρodd = O0(r
−4−ε), (19)

where

ρodd(x) := 1

2
(ρ(x) − ρ(−x)) (20)

is the odd part of ρ. This approach relies on the insight that the contribution to (18)
of the even part

ρeven := ρ − ρodd (21)
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vanishes by parity on each sphere Sr (0). In view of the analogous approach taken in
General Relativity, let us take the time to consider the parity condition

ρodd = O0(r
−4−ε) (22)

and its properties in more detail. Importantly, we would like to bring to the reader’s
attention that the parity condition is not independent of the choice of Cartesian
coordinate systems because the reflection x �→ −x involved in the definition of ρodd

does not interact well with translations. However, the desirable invariance under
choice of Cartesian coordinate systems can be restored if one assumes that in some,
and hence all, Cartesian coordinate systems, one has ρ = O1(r−3−ε), by appealing
to the Mean Value Theorem.

5.1.1 Transformation Behavior of the Center of Mass in Newtonian
Gravity

Of course, when well-defined by asking that ρ ∈ L1(R3) or ρ = O0(r−4−ε) for
some ε > 0, the center of massC transforms as expected under changes of Cartesian
coordinate systems, which can suggestively be written as

Cy = QCx + a. (23)

But what happens if one—ahistorically—allows asymptotically Euclidean coordi-
nate charts on the Euclidean stage of Newtonian Gravity? It will be instructive to
study this in an explicit example similar to (11), i.e., y := x + sin(ln r) a, but modi-
fied to obtain a global coordinate chart z on R3,

z := x + σ(r) sin(ln r) a, (24)

where σ : [0,∞) → R is a strictly increasing cut-off function satisfying σ(r) = 0
for r < 2 and σ(r) = 1 for r > 3. Computing the center ofmassCz according to (17)
with respect to the asymptotically Euclidean coordinate chart z, for a point particle
matter density ρ(x) = mδ(x), one finds Cx = 0 but Cz diverges like sin(ln s)a for
s = |z| → ∞.

This can be made mathematically more precise by using a surface integral
approach via the Divergence Theorem and the Poisson equation for the Newtonian
potential as elaborated by Cederbaum and Nerz [5].

Briefly put, once one ahistorically allows more general asymptotically Euclidean
coordinate charts in Newtonian Gravity, the center of mass is not generically a
well-defined quantity even if ρ = O0(r−4−ε) as r → ∞. From the perspective of
Newtonian Gravity arising as the Newtonian limit of General Relativity for slow
speeds and small masses, it thus becomes reasonable to expect a similar phenomenon
to occur in General Relativity. We will now turn to this.
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5.2 On the Center of Mass in General Relativity

In General Relativity, a (total) notion of center of mass CBÓRT of an isolated system
at a given instant of time was put forward by Beig and Ó Murchadha in [3], based
on previous work by Regge and Teitelboim [12] and similar in spirit and derivation
to the ADM-quantities. For an asymptotically Euclidean relativistic initial data set
(M, g, K ) with EADM 
= 0, its components are formally defined by

C

BOM := 1

16π E ADM
limR→∞

{∫∫
SR(0) x


∑3
i, j=1(∂igi j − ∂ jgi i )

x j

R d Aδ

− ∫∫
SR(0)

∑3
i=1

(
gi


xi

R − gi i
x


R

)
d Aδ

}
(25)

with respect to the given asymptotically Euclidean coordinate chart x. Just as in the
Newtonian case, this is a formal definition in the sense that it need not and does not
always converge.

One instance where it diverges2 is the canonical Schwarzschild relativistic initial
data set (R3 \ B2m(0), 1

1− 2m
r

dr2 + r2d�2, K = 0) ofmassm 
= 0,when considered

with respect to the asymptotic coordinate chart y arising from the Cartesian coordi-
nates x computed from the spherical polar Schwarzschild coordinates via (11). As in
theNewtonianGravity case discussed above, one finds via a lengthy computation that(
CBÓRT

)
y diverges like sin(ln s)a for s = |y| → ∞, while of course

(
CBÓRT

)
x=0

and EADM = m. We would like to draw the reader’s attention to the fact that this
initial data set has μ = 0, J = 0, so the divergence problem clearly does not arise
from poor decay of the matter.

A first idea one might have to remedy the divergence problem of CBÓRT could be
to assume the stronger decay condition gi j − δi j = O1(r−2−ε), thereby enforcing
convergence in away similar to remedying the convergence issueof EADM discovered
by Denissov and Solovyev, see Sect. 3.1. However, this implies EADM = 0 which is
undesirable when interested in the center of mass.

Instead, one usually resorts to parity assumptions. Before we do so in Sect. 5.2.2,
let us briefly take a look at the transformation behavior of the center of mass under
changes of asymptotic coordinates.

5.2.1 Transformation Behavior of the Center of Mass in General
Relativity

As in the Newtonian case discussed in Sect. 5.1.1, when CBÓRT is well-defined
(see below), the center of mass CBÓRT transforms as expected under “asymptotic
Euclidean motions”, i.e., under changes of asymptotic coordinate systems that can
be written as

y = Qx + a (26)

with Q and a as before. That is to say that (23) holds also in the relativistic case.

2 For further examples of divergence of the center of mass, see [5] and the references cited therein.
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5.2.2 Introducing the Regge–Teitelboim Parity Conditions
As hinted to in the Newtonian Gravity discussion above, the standard way out of
the divergence dilemma is to assume parity conditions as suggested by Regge and
Teitelboim in [12].

Definition 2 (Regge–Teitelboim Conditions) An initial data set (M, g, K ) with an
asymptotically Euclidean coordinate chart x is said to satisfy the weak (strong)
Regge–Teitelboim conditions if there exists ε > 0 such that, for η = 1

2 (η = 1) and

goddi j = O2(r− 1
2−η−ε) (27)

K even
i j = O1(r− 3

2−η−ε) (28)

μodd, J odd
i = O0(r−3−η−ε) (29)

as r = |x| → ∞, where the even and odd parts are taken with respect to x.

It was shown by Beig and Ó Murchadha in [3] that the strong Regge–Teitelboim
conditions indeed suffice to ensure convergence of CBÓRT. Consistently, the above
Schwarzschild example does not satisfy any Regge–Teitelboim conditions in the
asymptotically Euclidean coordinate chart y introduced in (11), as can be seen by a
tedious computation for which we refer the interested reader to [4].

It is well-known (see [5] and the references cited therein) that the weak Regge–
Teitelboim conditions do not suffice to ensure convergence ofCBÓRT; yet, as we will
see at the end of this article, they are very relevant for analyzing CBÓRT.

Moreover, as in the Newtonian Gravity case, neither the strong nor the weak
Regge–Teitelboim conditions are invariant under changes between different asymp-
totically Euclidean coordinate charts because of the same conflict between reflections
and translations. But they suffer from even more fundamental issues.

6 (In-)Existence of Coordinate Systems Satisfying
the Regge–Teitelboim Conditions

We have just seen that the class of coordinate systems satisfying the Regge–
Teitelboim conditions is not closed under translations. But, more fundamentally, do
all asymptotically Euclidean relativistic initial data sets even possess any asymptoti-
cally Euclidean coordinate charts in which the (strong) Regge–Teitelboim conditions
hold? As we have investigated with Jan Metzger in [4], this turns out not to be the
case; indeed, we will soon give explicit counter-examples.

In order to prove inexistence of such asymptotically Euclidean coordinate charts
on a given relativistic initial data set, we utilize Bartnik’s harmonic asymptotically
Euclidean coordinate charts, see Sect. 4, and methods from [2,10] as well as a boot-
strapping argument to show the following result. We refer the interested reader to
our joint work with Jan Metzger [4] for more details and the proofs of the following
theorems.
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Theorem 1 Let (M, g, K ) be an asymptotically Euclidean relativistic initial data set
and assume it satisfies the weak (strong) Regge–Teitelboim conditions with respect to
an asymptotically Euclidean coordinate chart x. Then there exists a smooth harmonic

asymptotically Euclidean coordinate chart y such that x − y = O3(|x| 12−ε) as |x| →
∞ and

g odd
i j = O1(|y|− 1

2−η−ε) (30)

K
even
i j = O0(|y|− 3

2−η−ε) (31)

as |y| → ∞ for some ε > 0, where η = 1
2 (respectively η = 1), and where the com-

ponents gi j and K i j of g and K as well as their odd and even parts are computed
with respect to y.

In other words, the Regge–Teitelboim conditions are inherited by harmonic asymp-
totically Euclidean coordinate charts up to a potential loss of derivatives. As a
corollary of this analysis, the reduced derivative weak (respectively strong) Regge–
Teitelboim conditions (30), (31) are satisfied for one set of harmonic asymptotically
Euclidean coordinate charts if and only if they are satisfied for all such charts.

We also get the following “converses”, which readily follow from a more careful
analysis of decay rates.

Theorem 2 Let (M, g, K ) be an asymptotically Euclidean relativistic initial data
set with respect to an asymptotically Euclidean coordinate chart x, but assume that

K even
i j 
= O0(|x|−2−ε) (32)

as |x| → ∞ for some decay parameter ε > 0.
Then the harmonic coordinate chart constructed in 1 is asymptotically Euclidean

but cannot satisfy the weak Regge–Teitelboim conditions. More precisely, we get

K
even
i j 
= O0(|y|−2−ε) (33)

as |y| → ∞.
If, in addition, g satisfies additional decay assumptions such as for example

goddi j = O2(|x|−3/2−ε), (34)

while

K even
i j 
= O0(|x|− 5

2−ε) (35)

as |x| → ∞ then the harmonic coordinate chart constructed in 1 is asymptotically
Euclidean but cannot satisfy the strong Regge–Teitelboim conditions. More precisely,
we get

K
even
i j 
= O0(|y|− 5

2−ε) (36)

as |y| → ∞.
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In a nutshell, we have seen that ruling out the existence of asymptotically
Euclidean coordinate charts in which a given relativistic initial data set satisfies the
strong or the weak Regge–Teitelboim conditions can be reduced to asking (almost)
the same question only about harmonic asymptotically Euclidean coordinate charts.
This allows us to give a number of explicit examples of relativistic initial data sets
not allowing for any asymptotically Euclidean coordinate charts satisfying the strong
(respectively weak) Regge–Teitelboim conditions.

6.1 Graphical Counter-Examples to Existence
of Regge–Teitelboim Coordinates

All examples discussed in this section originate from our joint work with Jan
Metzger [4]. Following ideas by Cederbaum and Nerz [5], we focus on relativis-
tic initial data sets in the Schwarzschild spacetime of mass m ∈ R in the Cartesian
coordinates x associated with the Schwarzschild coordinates. These can and will be
described as graphs over the canonical relativistic initial data set {t = 0} of suitable
graph functions T : R3 \ C → R for a suitable compact set C ⊂ R

3. Writing the
Schwarzschild spacetime as

N (r) =
√
1 − 2m

r
, (37)

h = 1

N 2 dr2 + r2d�2, (38)

onR × (rm,∞) × S
2 with d�2 denoting the canonical metric on the sphere S2, one

finds

gT
i j = hi j − N 2∂i T ∂ j T (39)

K T
i j = ∂i T ∂ j N + ∂ j T ∂i N + NHessh(T )i j − N 2∂i T ∂ j T d N (gradh(T ))√

1 − N 2|dT |2h
(40)

on the graph MT = {t = T (x) : x ∈ R
3 \ C}, see Fig. 2.

Choosing

T1(x) = sin(ln r) + u · x
r

(41)

as in [5] for non-trivial u ∈ R
3, one obtains a relativistic initial data set

(MT1 , g
T1, K T1) which satisfies neither the weak nor the strong Regge–Teitelboim

conditions with respect to x; in fact, CBÓRT diverges like sin(ln r)u in this example,
see [4,5]. It is worth noting that the metric gT1 in fact does satisfy the weak (but not
the strong) Regge–Teitelboim conditions with respect to x (see [5]); they fail to hold
only for K T1 .
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Fig. 2 Graphical example in Schwarzschild spacetime for {t = T1}, logarithmic plot

Suitably exploiting Theorems 1 and 2 and the decay of T1, N , and h, one can assert
that (MT1 , g

T1, K T1) does not satisfy the weak nor the strong Regge–Teitelboim
conditions in any asymptotically Euclidean coordinate chart.

Similarly, choosing

T2(x) = sin(ln r)

rβ
(42)

for 0 < β < 1
2 , one finds that (MT2 , g

T2 , K T2) does satisfy the weak Regge–
Teitelboim conditions (for ε < 1

2 ) but does not possess any asymptotically Euclidean
coordinate chart in which the strong Regge–Teitelboim conditions hold. Again, the
problematic (non-)decay occurs in K T2 .

6.2 Why theWeak Regge–Teitelboim Conditions are Relevant
for the Center of Mass

Finally, we still owe the reader a justification of why the weak Regge–Teitelboim
conditions are relevant for the study of the center of mass CBÓRT: Indeed, Huisken
and Yau in [9] developed an alternative definition of center of mass, called CCMC,
via asymptotic Constant Mean Curvature (CMC) foliations. In a series of works
culminating in a paper by Nerz [11], it was shown that, for asymptotically Euclidean
relativistic initial data sets satisfying the weak Regge–Teitelboim conditions, one
has

CBÓRT = CCMC (43)

in the sense that either both centers diverge or both converge to the same limit.
Roughly, Huisken and Yau in [9] and Nerz in [11] prove existence and unique-

ness of a foliation (that is, a smoothly parametrized partition into smooth 2-spheres
parametrized by σ ∈ (0, σ0)) of the asymptotic end of an asymptotically Euclidean
relativistic initial data set, such that the leaves have constant mean (i.e., average
extrinsic) curvature H(σ ) = σ . The leaves (i.e., the 2-spheres) σ of this foli-
ation are indicated as colored curves in Fig. 3. Pushing forward the leaves via the
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Fig. 3 The leaves of a foliation near infinity and their images in R
3 under the asymptotic coordi-

nates x. The crossed positions indicate the Euclidean coordinate centers c (σ ) of the surfaces σ

of the same color (representing the same parameter σ )

asymptotic coordinates x, x(σ ), gives rise to a foliation of a neighborhood of infinity
in R3 and one computes the average position of a point on x(σ ) in R3 as

c(σ ) = 1

|x(σ )|
∫∫

x(σ )

x d Aδ, (44)

where |x(σ )| denotes the surface area of x(σ ) inR3 with respect to the Euclidean
metric δ, see Fig. 3. The center CCMC then arises as the limit

CCMC = lim
σ→0

c(σ ) (45)

outward along this foliation, provided this limit exists. We refer the interested reader
to [5] for more information on this construction and its dependence on the choice of
asymptotic coordinates.

6.2.1 Spacetime Equivariance
It was observed by Cederbaum and Sakovich in [6] that the divergence issue of both
notions of center of mass for (MT1, g

T1, K T1)—i.e., the one defined via a Hamilto-
nian systems approached by Beig and Ó Murchadha in [3] and the one defined via
foliations—is rooted in the lackof dependenceon K in both approaches.Generalizing
the Constant Mean Curvature foliation approach, they construct asymptotic “Space-
time Constant Mean Curvature (STCMC)” foliations in asymptotically Euclidean
relativistic initial data sets, see below. These allow for the definition of a generally
covariant center of mass CSTCMC as well as a correction term Z for CBÓRT such that

CSTCMC = CBÓRT + Z (46)

holds under the weak Regge–Teitelboim conditions in the sense that either both sides
of the equation diverge or both converge to the same limit. The definition ofCSTCMC
mimicks the definition of CCMC, see Fig. 3, based on the Spacetime Constant Mean
Curvature instead of on the (spatial) ConstantMean Curvature foliation. As expected
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from the spacetime symmetry, one finds CSTCMC = 0 in the graphical example for
the graph function T1 in (41).

It is also proved in [6] that CSTCMC evolves in time such that

d

dt
CSTCMC = PADM

EADM
(47)

under the Einstein Evolution Equations, just as a freely falling point particle in
Special Relativity. This applies even when CSTCMC does not converge.

Before we end this section, let us briefly address what it means that a surface 

has “constant spacetime mean curvature”: If one considers a 2-surface  not only
as sitting inside the relativistic initial data set (M, g, K ) but also as sitting inside the
spacetime generated from this relativistic initial data set via the Einstein Evolution
Equations then it can be viewed as a co-dimension 2 surface in this spacetime.
As such, it has co-dimension 2 extrinsic curvature, taking the form of a normal
vector valued symmetric (0, 2)-tensor field. The trace (or average) of this normal
vector valued symmetric (0, 2)-tensor field is called the spacetime mean curvature

vector (field)
−→H of . The Lorentzian length of

−→H ,H, is called the spacetime mean
curvature of . Then, a spacetime constant mean curvature surface is a surface with
H = const. It turns out that one can compute H from the initial data alone, without
any reference to the ambient spacetime, and one finds

H =
√

H2 − (tr K )2, (48)

where tr K is the (partial) trace of K over  and H denotes the (spatial) mean
curvature of  within the initial data set already considered in the Constant Mean
Curvature foliation suggested by Huisken and Yau. On the other hand, taking a more
physical perspective, one finds that

H2 = θ+θ−, (49)

where θ± denote the null expansions of  in the ambient spacetime.

7 Lessons Learned and Current Research

We have seen that coordinates are messy in the following sense: In Newtonian
Gravity, when ahistorically considering general asymptotically Euclidean coordi-
nate charts on R

3 \ C outside some compact set C , convergence of the center of
mass depends not only on suitable decay of the matter density but also on the choice
of coordinate system. Accordingly, in General Relativity, where we generally do not
have preferred systems of coordinates, one cannot hope to have convergence of any
notion of center of mass in all asymptotically Euclidean coordinate charts. It was
suggested to remedy such divergence issues by resorting to asymptotic parity con-
ditions, however, as we showed, not all asymptotically Euclidean relativistic initial
data sets have asymptotic parity.
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It hence remains an open questionwhether, instead of asking for asymptotic parity,
one can find a condition on asymptotic coordinate charts which is geometric (i.e.,
coordinate independent) just as Bartnik’s harmonic coordinates, compatible with
translations (and reflections), and implies convergence of CSTCMC, and of course
such that every asymptotically Euclidean relativistic initial data set carries such a
coordinate system. Coordinate charts satisfying such a condition could then legiti-
mately be considered a natural analog of Cartesian coordinates in General Relativity.
This question is currently studied by the authors and our coauthor Jan Metzger.
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Primordial BlackHoles andHiggs
VacuumDecay

Ruth Gregory

Abstract

Phase transitions are part of everyday life, yet are also believed to be part of the
history of our universe, where the nature of particle interactions change as the
universe settles into its vacuum state. The discovery of the Higgs [1,20], and
measurement of its mass suggests that our vacuum may not be entirely stable,
and that a further phase transition could take place. This article is based on a talk
in the Oldenberg Series, and reviews how we find the probability of these phase
transitions, discussingwork I have performed on howblack holes can dramatically
change the result! Apart from a brief update at the end, this article mostly follows
the content of the talk.

1 Executive Summary

This work was motivated by the observation that phase transitions typically are
seeded by impurities, yet the techniques used by theorists [18,23,24,52] to compute
the probability of decay are extremely idealised–with huge mathematical simplifi-
cations assumed in order to make computations tractable. In the case of the Higgs
vacuum, one intriguing possibility is that the self coupling of theHiggs could become
negative at large Higgs values [7,9,28,31], leading to the conclusion that we live in a
metastable vacuum, so the question of just how accurate these idealised computations
are becomes of very direct relevance! In the work that I review [15–17,40], we take
the simplest possible impurity for seeding vacuum decay: a black hole. This breaks
the symmetry of the standard theoretical description, yet maintains sufficient theo-
retical control that the computations can be done largely analytically. The punchline
of this article is that black holes change the computation....enormously!
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2 The Coleman Computation

In this introductory section, I motivate and review the Euclidean method used to
compute tunnelling amplitudes in field theory. This discussion is based largely on
the series of papers by Coleman [18,23,24].

2.1 Motivation of the EuclideanMethod

The phenomenon of tunnelling is a uniquely quantum mechanical one—classically,
if a particle does not have enough energy to scale a barrier, it will remain forever
on one side; quantum mechanically however there is always a small probability of
it being found across this seemingly unscalable hurdle. Calculating the probability
of this process is one of the first computations we meet in Introductory Quantum
Mechanics—we study the time independent Schrödinger equation in one spatial
dimension

EΨ = − �
2

2m

d2Ψ

dx2
+ V (x)Ψ (1)

for a potential that has a simple, square, barrier:

V (x) =
{
0 x < 0 & x > d

V0 0 < x < d
(2)

where V0 > E . The solution for Ψ is oscillatory outside the barrier, and exponential
underneath it (see Fig. 1).

Ψ (x) =

⎧⎪⎨
⎪⎩
I eiωx + Re−iωx x < 0

AeΩx + Be−Ωx 0 < x < d

T eiωx x > d

(3)

where ω2 = 2mE/�
2, and Ω2 = 2m(V0 − E)/�

2. Continuity of Ψ and it’s deriva-
tive at each side of the barrier gives 4 boundary conditions, allowing thewave function
to be solved completely. The probability that a particle will tunnel through the barrier
is therefore

|T |2
|I |2 =

[
1 + V 2

0 sinh2 Ωd

4E(V0 − E)

]−1

∼ e−2Ωd (4)

Fig. 1 A sketch of the
1+1-dimensional
Schrödinger tunnelling
calculation

I

R
T
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Fig. 2 The “escape” path
from the local false vacuum
is a saddle point in the
inverted potential space

which is strongly dominated by an exponential factor representing the strength of
the barrier the particle has to tunnel through:

Ωd = 1

�

∫ d

0

√
2m(V0 − E)dx (5)

Computing this leading order exponential suppression is the aim of the Euclidean
method.

Now consider the following problem. A classical particle is at the tip of a square
well of depth �V , it falls in, transferring the potential to kinetic energy, transits the
well and goes up the other side. Using 1

2mẋ2 = �V , we have

∫ √
2m�Vdx =

∫ √
2m�V ẋdτ =

∫
2�Vdτ =

∫ (
�V + 1

2
mẋ2

)
dτ = SE

(6)
but this is just the Euclidean action for the motion of said point particle! For more
general potentials, this gives an intuitive visualisation of the tunnelling amplitude
calculation. We invert the potential and consider the classical motion of a “parti-
cle” from the (now unstable) local maximum to an exit point, and back again. This
motion was called the bounce [23], and the one-dimensional tunnelling can readily
be extended to multiple dimensions, with the bounce becoming a saddle trajectory
between the local maximum (of the inverted Euclidean potential) to an exit point.
This most probable escape path picture, developed by Banks, Bender, and Wu [3]
(see Fig. 2) led naturally to the Euclidean field theory approach of Coleman and
others [23,52].

2.2 Tunnelling in Field Theory

InQuantumFieldTheory (QFT)fields typically have an interactionpotential,with the
minimumof the potential representing the vacuumof the theory. Itmight be, however,
that this minimum is not unique, either due to nonlinearly realised symmetry, or
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Fig. 3 A sketch of the type
of potential relevant for the
instanton computation

because there is more than one minimum in the potential separated in field space.
Since the vacua are at distinct values of the field, the process of tunnelling from one
minimum to another with lower overall energy will give rise to a first order phase
transition, which we expect to proceed via bubble nucleation.

To find the probability of nucleation, we can follow the Euclidean prescription,
taking the equations ofmotion and analytically continuing toEuclidean time, t → iτ ,
finding a solution known as an instanton which describes the formation of a bubble
of true vacuum inside the false. For simplicity, I will discuss this process for a simple
scalar field

Lϕ = 1

2
(∂ϕ)2 − V (ϕ) (7)

where ϕ is a real scalar field, and V (ϕ) is a potential with a false (local minimum)
and true (global minimum) vacuum (see Fig. 3), where the difference in energy (ε)
is assumed small relative to the potential barrier to be traversed. As is conventional,
I have set c = � = 1 in the ensuing discussion.

Before outlining the full procedure, it is instructive to consider the physically
motivated simplification of the problem: the Goldilocks Bubble. Consider a bubble
of radius R that fluctuates into existence. The bubble will cost energy to form, as
between the vacua the field has to transit from ϕF to ϕT , passing through a region
with high potential and gradient energy; this gives rise to a wall which will carry
energy momentum, hence “cost” to form. On the other hand, the interior volume
has dropped from energy ε to zero energy. If the bubble is small, the surface area to
volume ratio means the gain from energy will be too small to sustain the bubble and
it will recollapse. If the bubble is large, then the energy budget will allow the bubble
to grow, but it will be “expensive” to form in the first place—there is therefore a
“just right” bubble size where the bubble is initially at rest at formation. Putting the
details in, and writing σ for the energy per unit area of the bubble wall we see that
the energy budget is

δE = 2π2R3σ − π2

2
εR4 (8)

recalling that we are in 4 Euclidean dimensions so that the bubble is a 3-sphere. δE
is stationary at R = 3σ/ε, for which δE = 27π2σ4/2ε3, hence we expect that the
bubble will nucleate at this radius with a probability

P ∼ e−27π2σ4/2ε3� (9)
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It turns out that this thin wall intuition of Coleman is extremely efficient at extracting
the essence of the full computation.

To outline the full computation, one must solve the Euclidean field equations

1

ρ3
d

dρ

[
ρ3

dϕ

dρ

]
+ ∂V

∂ϕ
= 0 (10)

where ρ2 = τ2 + x2 is the distance from the origin in Euclidean R
4. Taking the

potential to have the approximate form

V (ϕ) ≈ λ

4
(ϕ2 − η2)2 − ε

2η
(ϕ − η) (11)

where ε � λη4, then V has two local minima, approximately at ±η, with the vacua
energies separated by ε. To leading order, the equation of motion for ϕ is

ϕ′′ + 3ϕ′

ρ
+ λϕ(ϕ2 − η2) = 0 (12)

which can be solved numerically with the boundary conditions ϕ → −η as ρ → ∞,
ϕ(0) ≈ η. Performing this integration, the solution is well approximated by

ϕ 	 η tanh
[√

λ/2 η(R − ρ)
]

(13)

where R ≈ 3σ/ε, and the energy per unit area of the wall is given by

σ = 1

R3

∫ ∞

0
ρ3
[
1

2
ϕ′2 + V (ϕ)

]
dρ = λη4

2R3

∫ ∞

0
ρ3sech4

[√
λ

2
η(R − ρ)

]
dρ

≈
√

λ

2

4η3

3
(14)

This analytic approximation is excellent for
√

λ/2 ηR 
 1, and even for potentials
that have far thicker bubble walls it gives a very good ballpark estimate for the
tunnelling probability.

2.3 Tunnelling with Gravity

In the previous discussion, a key feature was that the vacuum energywas different for
the true and false vacua, but we know that energy gravitates, hence the false vacuum
will have a different gravitational behaviour than the true vacuum, and the bubble
wall will also have a gravitational signature. The impact of gravity was first worked
out in the paper of Coleman and de Luccia [24] using the thin wall approximation
discussed above. This is based on the seminal work of Israel [51], describing the
gravitational effects of thin shells (in this case, the bubble wall).
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First, it is worth making a few remarks about the Euclidean approach with gravity.
Below the Planck scale, we expect that spacetime is essentially classical, but that
gravity can contribute to quantum effects through the impact of spacetime curvature,
and the back-reaction of quantum fields on the spacetime. Usually, we take some
fixed classical background and quantise around this, an approach used in black hole
thermodynamics and cosmological perturbation theory. There is a broader sense in
which we can use gravity semi-quantum mechanically however, and that is by using
the partition function approach of Gibbons and Hawking [36]. While the philosophy
of this requires somefinessing, the basicmethodology is clear:we extend the partition
function to include the Einstein-Hilbert action,

SGH = − 1

16πG

∫
M

d4x
√

g(R − 2�) +
∫

d4xLmatter

(
+ 1

8πG

∫
∂M

d3x
√
hK

)
(15)

where the Gibbons-Hawking boundary term has been included (in brackets) for
completeness. At finite temperature we have a finite periodicity of Euclidean time,
and typically we integrate over geometries with the same boundary conditions at
∂M. Whereas there is no clear method for dealing with fluctuations, the saddle
points of the path integral are unambiguous—these are solutions of the classical
Euclidean field equations.

First I will give a qualitative picture of the instanton before describing the CDL
calculation in more detail. For pictorial simplicity, consider the case of tunnelling
from afinite vacuumenergy ε to zero vacuumenergy.Afinite positive vacuumenergy
is a positive cosmological constant, which we know to be de Sitter spacetime. This
has a Lorentzian description in terms of the surface of a hyperboloid embedded in a
five-dimensional spacetime:

w2 + x2 + y2 + z2 − t2 = �2 = 3

8πGε
(16)

here, � is the scale of curvature of the de Sitter spacetime, and is related as shown
to the false vacuum energy. On rotation to Euclidean time, this becomes a 4-sphere
embedded in R

5 (see Fig. 4). Zero vacuum energy on the other hand corresponds to
Minkowski spacetime, and is just flat, or planar. Our instanton must therefore cut a
cap off the de Sitter 4-sphere and replace it with a flat surface as illustrated in Fig. 4.

We can play the same “Goldilocks bubble” game as before, but noting from (15)
that there is potentially a gravitational contribution to energy. First, the cost of the
wall, coming from the matter contribution in (15), is the same: Ewall = 2π2R3σ.
Next, the naive energy gain from false to true vacuum depends on the volume of the
cap excised from the sphere, and this is captured by the bulk contribution to (15):

Ecap(R) = 2

3
π2ε�4

⎡
⎣2 − 2

(
1 − R2

�2

) 3
2

+ 3
R2

�2

⎤
⎦ (17)

Using just these two terms gives an approximate answer that includes the curved
geometry of de Sitter space, but it neglects the impact of the (negative) gravitational
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Fig. 4 Left: Lorentzian and Euclidean de Sitter space. Right: the instanton replaces the cap of the
sphere with a flat surface. The kink at the interface represents the energy momentum of the bubble
wall

potential energy due to the gravitational field of the wall. To capture this, we need to
look more closely at the extrinsic curvature of the wall, as this effect is understood
as the contribution from the Gibbons Hawking boundary term in the action.

In the Coleman de Luccia (CDL) approach [24], they describe the instanton in the
thin wall limit, using the Israel conditions [51]. The wall separates the false vacuum,
de Sitter space:

ds2 = dρ2 + �2 sin2(ρ/�)dΩ2
III (18)

from the true, Minkowski, vacuum

ds2 = dr2 + r2dΩ2
III (19)

The Israel equations relate the jump in the extrinsic curvature across the wall to
the energy in the wall. The wall sits at r0 = � sin(ρ0/�) = R, with normal dρ / dr .
The wall is characterised by an energy-momentum tensor that is proportional to the
induced metric on the wall,

hab = gab − nanb (20)

and the wall extrinsic curvature is given by:

Kab = −�c
abnc =

{
cos(ρ0/�)
� sin(ρ0/�)

FV
1
r0

TV
(21)

Substituting into the Israel equations relevant for the Euclidean wall gives

K+
αβ − K−

αβ = − 1

R

⎛
⎝1 −

√
1 − R2

�2

⎞
⎠ hαβ = −4πGσhαβ (22)
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Writing σ̄ = 2πGσ for compactness of notation, this is easily seen to be solved by

R0 = 4σ̄�2

1 + 4σ̄2�2
(23)

We can then substitute this solution into the full Euclidean action

B = 1

16πG

∫
cap

(R − 2�)
√

gd4x +
∫
wall

[
(K+ − K−)

8πG
+ σ

]√
hd3x

= Ecap(R) + Ewall(R) + Egrav(R)

(24)

where we have written the integrals for general R to make connection to the
Goldilocks argument, and identify the gravitational potential energy of the wall
curvature for general R as:

Egrav(R) =
∫
wall

(K+ − K−)

8πG

√
hd3x = −2πR2

4G

⎡
⎣1 −

(
1 − R2

�2

) 1
2

⎤
⎦ (25)

Making this action stationary with respect to R recovers the Coleman de Luccia R0
as expected, and gives the tunnelling exponent

BCDL(R0) = π�2

G

16σ̄4�4

(1 + 4σ̄2�2)2
(26)

Why is this computation important for the Higgs vacuum? In particle physics, we
describe fundamental interactions via the Standard Model (SM) Lagrangian, which
encodes the bosons, fermions, and their interactions.

LSM = − 1

2
TrGμνGμν − 1

2
TrWμνWμν − 1

4
FμνF

μν

+ (DμΦ
)†DμΦ + μ2Φ†Φ − λ

2

(
Φ†Φ

)2 + .....

(27)

A key feature of this is the Higgs scalar field and its self coupling, or the Higgs poten-
tial. The self coupling of theHiggs,λ acquires radiative corrections, and changeswith
energy scale V (Φ) ∼ λ(Φ)|Φ|4/4. As was realised some years ago [54,56,62,68],
this could have implications for the stability of the Higgs vacuum. The calculation
depends on the masses of other fundamental particles, particularly the top quark (see
[2,66] for more recent results) and the values of the mass of the Higgs and the top
quark put us in a region where the self-coupling could potentially become negative
at very high energies [7,9,28,30,31,38,50].

Whether or not we should be concerned at the metastability of the Higgs vacuum
then becomes an issue of computing the probability of decay. If we use this Coleman
de Luccia result, the half life of decay is around 10138 years, well in excess of the
age of the universe! We might therefore think this metastability is not an issue,
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but this would be to ignore the fact that the calculation I have just described is
incredibly idealised—very much a “spherical cow”! It is therefore time to revisit our
understanding of vacuum decay, and to explore whether we can take a step towards
a more realistic set-up, including the effect of an impurity.

3 ThinWall Bubbles with Black Holes

In this section, I review how including a black hole as a seed for false vacuum
decay changes the above picture, and the key results from [15–17,40] (see also
[21,37,59,67]). I will stick with the thin wall approximation, as this allows a largely
analytic approach, and review the numerical work in the next section.

3.1 Bubbles with Black Holes

The Coleman de Luccia bubbles discussed in the last section are incredibly ideal—
the universe is completely smooth and featureless, akin to a supercooled fluid. Since
we are discussing the gravitational effect of the vacuum, we should also think about
what happens if the universe is not featureless and isotropic. The simplest possible
impurity we can think of is a black hole. This is an exact solution to Einstein’s
gravitational equations, and can be added to the picture without adding any further
matter content. We also know how to treat a black hole in Euclidean space—indeed,
this was one of the most dramatic conceptual discoveries of the Gibbons-Hawking
paper [36]: that a Euclidean black hole naturally has a periodic time, and demanding
non-singularity of the Euclidean geometry mandates a periodicity of Euclidean time
�τ = 8πGM (See Fig. 5). Given that the partition function for a field at temperature
T is described by a period (Euclidean) time coordinatewith periodicityβ = 1/T , this
naturally leads to the conclusion that a black hole has temperature T = 1/8πGM—
consistent with Hawking’s breakthrough result just two years earlier [44]. Of course,
there are niggles with this interpretation, not least that a black hole is not in thermal
equilibrium with its surroundings, but the correspondence between this Euclidean
approach and the considerablymore complex Lorentzian computation is compelling,
and to this daywe compute the temperature of a black hole by looking at its Euclidean
continuation.

Now consider the geometrical set-up. The idea is that we have a black hole in the
false vacuum that acts as a seed for vacuum decay. A bubble will therefore nucleate
around the black hole, leaving the same exterior solution, but replacing the interior
with the true vacuum and, potentially, a remnant black hole that will in general have
a different mass to the original seed. We are therefore looking for solutions for a thin
bubble wall that match two different vacuum energies (i.e., cosmological constants)
and two different masses of black hole:

ds2 = f±(r)dτ2± + dr2

f±(r)
+ r2dΩ2

II (28)
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Fig. 5 A sketch of a wall wrapping the periodic Euclidean time direction. Note that this is a very
special solution where the periodicity of the wall motion precisely matches that of the black hole

where

f±(r) = 1 − 2GM±
r

− �±
3

r2 (29)

is the metric potential for a black hole with a cosmological constant. One point
of confusion can be around the meaning of M+ in the instanton space, where the
only black hole is the one at the centre of the solution, with horizon determined by
M−. However, recall that gravity in four dimensions propagates—we experience the
impact of the moon’s gravity here on Earth via the tides, and indeed the sun’s gravity
via the neap and spring differences in tide. In other words, we can deduce locally
the masses of these celestial objects by looking at local tidal forces. It is exactly the
same with the exterior M+ mass–we detect the original seed mass because the tidal
forces outside the bubble are still those of the original seed.

The next remark to make when looking for an exact solution in GR is whether we
are imposing an Ansatz on the geometry, or whether our solution is general. Math-
ematically, introducing a black hole alters the symmetry of the CDL set-up, with
SO(4) symmetry, by breaking the equivalence between spatial and timelike direc-
tions, leaving an SO(3) ×U (1) symmetry: the spherical symmetry of the black
hole we see in space, and the U (1) of the periodic Euclidean time direction. Fortu-
nately, the problem of the exact solution was solved some time ago in the context of
braneworld models, where a general Birkhoff theorem was proven for braneworlds
(a more general case of the thin wall) [10], meaning that the solution described above
in (28) is indeed a fully general solution to the equations of motion of a wall with
the desired symmetry.

Returning to the Goldilocks bubble concept, many of the components are simi-
lar, yet there is a crucial difference. The general bubble will have a trajectory R(τ )

around the Euclidean time circlewhich nowmust be determined from the Israel equa-
tions. There is also another key difference around background subtraction, described
presently, meaning that there is no alternative but to roll up our sleeves and proceed
with the calculation.

The following discussion paraphrases the analysis in [16], picking out the key
calculational steps. The bubble is described by a trajectory in both the plus and
minus Euclidean black hole spacetimes (28)

Xa = (τ±(λ), R(λ), θ,φ) (30)
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where we parametrise the trajectory by the local time, λ on the bubble wall, i.e.,

f±τ̇2± + Ṙ2

f±
= 1 (31)

where dots denote derivatives with respect to λ. Taking normals that point towards
increasing r ,

n± = τ̇± dr± − ṙ dτ±, (32)

(noting τ̇± ≥ 0 for orientability), the Israel junction conditions are

f+τ̇+ − f−τ̇− = −2σ̄R. (33)

We can use (31) to rewrite this as a Friedman-like equation for Ṙ:

Ṙ2 = 1 −
(

σ̄2 + �̄

3
+ (��)2

144σ̄2

)
R2 − 2G

R

(
M̄ + �M��

24σ̄2

)
− (G�M)2

4R4σ̄2 , (34)

where�M = M+ − M− is the black holemass difference, and M̄ = (M+ + M−)/2
the average, with similar expressions for �. There are also two accompanying equa-
tions for the time coordinates on each side of the wall,

f±τ̇± = ��

12σ̄
R + �M

2σ̄R2 ∓ σ̄R (35)

which can be integrated once R(λ) is found.
This gives an effective potential for the motion of the brane that allows us to

quickly characterise the motion, which is easily found numerically. The generic
solution is periodic in λ, therefore we are now in the interesting position of having
to fix the periodicity of Euclidean time not by the black hole mass, but by the wall
trajectory.

3.2 Computing the Bounce Action

Having found this wall trajectory, we then need to compute the Euclidean action of
the thin wall instanton:

IE = − 1

16πG

∫
M+

√
g(R+ − 2�+) − 1

16πG

∫
M−

√
g(R− − 2�−)

+ 1

8πG

∫
∂M+

√
hK+ − 1

8πG

∫
∂M−

√
hK− +

∫
W

σ
√
h

(36)

and subtract the action of the background
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IFV = − 1

16πG

∫
M

√
g(R+ − 2�+) (37)

to find the bounce action for the decay amplitude.
In these expressions, M is the geometry of the background false vacuum seed

space,W is the location of the wall in the instanton geometry, which is a submanifold
ofM.M− is the true vacuum part of the instanton geometry inside the bubble wall,
andM+ the part exterior to the bubble, with ∂M± refers to the boundaries of each
ofM± induced by the wall, each of which have a normal pointing outwards to larger
r , in agreement with the Israel prescription. In general, as described in [16], there
may also be additional boundary or bulk terms required for renormalisation of the
action.

Having noted these expressions, a very important observation is that in order to
perform the background subtraction of the false vacuum geometry, we must have
the same geometries at large r (or outside the wall). This means that M+ must be
identical to the portion ofM that lies outside the wall. We can therefore write

B = 1

16πG

∫
M,r<R

√
g(R+ − 2�+) − 1

16πG

∫
M−

√
g(R− − 2�−)

+ 1

8πG

∫
∂M+

√
hK+ − 1

8πG

∫
∂M−

√
hK− +

∫
W

σ
√
h

(38)

where hopefully the notation is self explanatory.
Now let us consider the implication of the periodicity of the general solution R(λ),

β, versus the natural periodicity of a black hole spacetime

β0 = 4π

f (rh)
= 4πrh

1 − �±r2h
(39)

having used f (rh) = 0 at the horizon to simplify the expression. If β = β0, then
we will have a conical singularity at the centre of the Euclidean space r = rh . In
early work on tunnelling with black holes [4,49], the implication of this mild singu-
larity was neglected, as it was believed to be unimportant, however it is reasonably
straightforward to compute, as explained in Appendix A of [40]. In essence, one
smooths out the conical singularity with a family of regular metrics with curvature
confined to proper distance ρ < ε from the ‘horizon’, the degree of the singularity
in the Ricci scalar is ρ−1, whereas the volume element scales as ρ. The nett result is
that the integral ∫

ρ<ε
d4xR√

g = 2Aδ (40)

is finite, and proportional to the deficit angle δ, and the area of the horizon A =
4πr2h . To compute the deficit angle, note that in the natural black hole geometry, the
angular coordinate θ0 = 2πτ/β0 has a range [0, 2π].With periodicityβ however, this
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changes to [0, 2πβ/β0], hence the deficit angle is δ = 2π − 2πβ/β0. We therefore
see that the contribution to the action coming purely from the conical deficit is

Iconical = − 1

16πG

∫
ρ<ε

d4xR√
g = − (β0 − β)

β0

A
4G

(41)

Returning to the general expression (38), the first line, which is the bulk contribution,
can now be computed as

Bbulk =�+
6G

∫ β

0
dτ+(R3 − r3h,+) − �−

6G

∫ β

0
dτ−(R3 − r3h,−)

+ (β+ − β)

β+
A+
4G

− (β− − β)

β−
A−
4G

= (A+ − A−)

4G
− 1

4G

∫
dλR2 ( f ′+τ̇+ − f ′−τ̇−

)
− β

4G

[A+
β+

− A−
β−

− 2G(M+ − M−) + 2�+
3

r3h,+ − 2�−
3

r3h,−
]

(42)

However, noting that β± = 4π/ f ′±(rh,±), and using the horizon relation f±(rh,±) =
0, the term in square brackets on the final line vanishes.

We are now left with the boundary and wall terms, which can be combined into
an expression dependent on the wall trajectory:

Bwall =
∫
W

√
h

[
(K+ − K−)

8πG
+ σ

]
= −σ

2

∫
W

√
h = 1

2G

∫
dλ R ( f+τ̇+ − f−τ̇−)

(43)
having used f+τ̇+ − f−τ̇− = −2σ̄R.

Putting all of these results together, the action of the bounce is:

B = A+
4G

− A−
4G

+ 1

4G

∮
dλ
{(
2R f+ − R2 f ′+

)
τ̇+ − (2R f− − R2 f ′−

)
τ̇−
}

(44)

This computation was the core result of [15–17,40]. In general, for a given seed
mass, (34) will have bubble solutions for a range of remnant masses M−. However,
evaluating (44) shows that these have different bounce actions, hence different decay
rates. For a given seed mass there will be a unique remnant mass that has the lowest
action. Since the probability of decay is the exponent of the negative of this action, the
decay is dominated by this minimum action value. Figure 6 (Fig. 5 from [40]) shows
how the bounce action depends on the seedmass for tunnelling from a positive to zero
vacuum energy for a value of wall tension σ̄� = 0.2. For each seed mass (expressed
as a ratio of M+ to the maximum allowed mass in de Sitter, the Nariai mass MN )
there is a range of allowed remnant masses. The minimal action configuration is
shown as a dashed red line.

Explicit computation shows that for small seedmasses, theminimal action bounce
removes the seed black hole is altogether but it still τ−dependent. For larger seed
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masses, the minimal action bounce is static, leaving behind a remnant black hole,
with increasing remnantmass as the seedmass is increased. These two branchesmeet
at a critical mass with the lowest action bounce which is both static, and without a
black hole remnant. We can read off from the parameter range discussion in the
appendix of [16] the value of M+ at which this occurs. For example, if �− = 0, we
get:

GM+ = 128σ̄3

3(�+ + 12σ̄2)2
(45)

or,

M+
Mp

= 128π

27

(σ̄�/2)3

(1 + 4σ̄2�2)2

�

L p
(46)

whereMp and L p are thePlanckmass and length scale respectively. In order to remain
well below the Quantum Gravity scale, we require M+/Mp 
 1, and we have the
bound σ̄� < 1/2, hence we require large �/L p with σ̄� not too small. However, both
σ̄ and � are determined by the properties of the scalar potential, and these conditions
are not particularly realistic, and for the Higgs potential, not relevant at all. Hence,
the most likely bounce is one which has seed mass much larger than this critical
value, and is therefore static and with a remnant black hole.

The most important take home message of this section is that adding a black
hole decreases the bounce action, hence enhances decay. The parameters, (M±, �±,
σ̄) used to produce Fig. 6 are all approximately of a similar order, close to unity,
therefore the suppression of the bounce action is not as marked as it will be for more
realistic parameter values. We will see this when exploring the Higgs vacuum in the

Fig. 6 A comparison of the CDL bounce action and the black hole seeded action for tunnelling
from positive to zero vacuum energy. (Fig. 5 from [40].) The seed mass is expressed as a ratio of
M+ to the maximum allowed mass in de Sitter, the Nariai mass MN , and the values of the remnant
mass are labelled. The κ annotations refer to combinations of the seed and remnant parameters and
are given in [40]
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next section. However, before discussing the implications for the Higgs vacuum, I
will present two analytic examples of bubbles, first re-deriving the CDL result from
the perspective of the static patch, which relies crucially on the computation of the
conical singularity integral, then the result for static instantons.

3.2.1 CDL Revisited
The CDL instanton has M+ = M− = 0, and let �− = 0 so that we are tunnelling
from a positive false vacuum energy ε = �+/8πG = 3/8πG�2 to the Minkowski
true vacuum as before. With these parameter values, (34), simplifies considerably,

Ṙ2 = 1 −
(

σ̄ + 1

4σ̄�2

)2
R2 = 1 − ω2R2 (47)

where ω is defined above, together with the equations for τ±(
1 − R2

�2

)
τ̇+ = (ω − 2σ̄) R ; τ̇− = ωR (48)

From which we read off the solution as

R = ω−1 cosωλ

τ− = ω−1 sinωλ

τ+ = �arctan

[
sinωλ

�(ω − 2σ̄)

] (49)

Note that this solution has the size determined by ω−1, which is identical to the
CDL bubble side, (23), found by analytically continuing global de Sitter. In contrast
however, the periodicity of this solution, λ ∈ [− π

2ω , π
2ω ], translates to �τ− = 2/ω

and �τ+ = 2�arccot[�(ω − 2σ̄)]. However, the de Sitter false vacuum in the static
patch has a natural periodicity 2π�. Thus, the instanton computation will take into
account the regularization of the conical deficit integral implicitly, and can therefore
be regarded as a check of this procedure.

Substituting this solution into (44), noting that with M± = 0, f+ = 1 − r2/�2,
f− = 1, and the entropy terms vanish, gives

B =
∮

dλ
R

2G
(τ̇+ − τ̇−) = π

4G

(
� −

√
�2 − 1/ω2

)2
= π�2

G

16σ̄4�4

(1 + 4σ̄2�2)2
(50)

i.e., the CDL result (26). This result would not have been obtained without the cor-
rect evaluation of the Einstein-Hilbert integral over the conical singularity. Clearly,
the result for a physical process should not depend on the choice of coordinates
for the analytic continuation. Here, we have analytically continued the static time
patch,whereas the canonicalCDLcomputation analytically continues the global time
coordinate. These are different analytic continuations, but with the right calculational
method, we get the same result.
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3.2.2 Static Bubbles
Another example where we can find the tunnelling amplitude analytically is when
the instanton is independent of Euclidean time, R(λ) = R0. In this case (31) implies
that f±τ̇2± = 1. Then the individual components of the Israel equations

f+τ̇+ − f−τ̇−
R

= σ = f ′+ − 2R̈

2 f+τ̇+
− f ′− − 2R̈

2 f−τ̇−
(51)

can be seen to imply that the wall integral in (44) vanishes, hence we are led to the
remarkably simple result

B = A+
4G

− A−
4G

(52)

i.e., the probability of tunnelling from a seed to remnant black hole via a static
instanton is simply the Boltzmann suppression due to the entropy difference:

P ∼ e−δS/� (53)

This turns out to be the key result of this work—that black holes can give rise to static
instantons where the tunnelling rate is given by the the Boltzmann factor associated
to the drop in entropy of the configuration.

4 The Fate of the HiggsVacuum

The previous discussion of bubbles used the thin wall approximation. This was a
physically intuitive argument developed by Coleman to get analytic results quickly
in an era of minimal computing power. In reality, the Higgs potential does not have
a form in which thin walls are even a reasonable approximation to a bubble. In this
section I review the thick wall bubbles relevant for Higgs vacuum decay. I then
discuss the ultimate fate of the Higgs vacuum, first comparing the decay rate to
other quantum processes with a black hole, then remarking on the mutual constraint
between vacuum metastability and cosmological primordial black holes.

4.1 FromThin to Thick: HiggsVacuum Bubbles

For shorthand, the Higgs potential is written as a function of the magnitude of the
Higgs, φ = |Φ|, and the potential is expressed in terms of an effective quartic cou-
pling constant λeff ,

V (φ) = 1

4
λeff(φ)φ4 (54)

Radiative corrections have been computed [6,22,28,32,35], and in [16,17], were
approximated by the analytic three-parameter fit

λeff(φ) = λ∗ + b

(
ln

φ

Mp

)2
+ c

(
ln

φ

Mp

)4
. (55)
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Fig. 7 Left: The three parameter fit of the high-energy effective coupling used for vacuum decay
results in [17]. All three parameters can be fixed bymatching to the SM calculation for a givenHiggs
and Top quark mass. The plots show Higgs mass MH = 125GeV and top quark masses 172GeV
(λ∗ = −0.007), 173GeV (λ∗ = −0.013) and 174GeV (λ∗ = −0.00195). A two parameter fit is
shown for comparison. Right: The values of λ∗ and b panned over in the numerical integrations
presented in the branching ratios in Sect. 4.2

which provides a good approximation to the exact results (which have to be computed
individually for given Top andHiggsmasses) over a wide range of energy, and allows
efficient numerical evaluation of the instanton equations of motion. (See Fig. 7.)

This potential does not admit thin wall solutions, so to link Higgs bubbles to
the thin wall bubbles of the previous section, we add a quantum gravity motivated
correction to the scalar potential [5,13,29,39,55,57]:

V (φ) = 1

4
λeff(φ)φ4 + 1

6
λ6

φ6

M2
p

+ . . . (56)

The effect of λ6 is to add a definite minimum to the potential at large values of φ
with sufficient barrier to give an approximate thin wall. Using the observation that
realistic bubbles have static instanton solutions, the Ansatz used in [17] was

ds2 = f (r)e2δ(r)dτ2 + dr2

f (r)
+ r2(dθ2 + sin2 θdϕ2), (57)

where f contains contributions from the black hole, the bubble, and any vacuum
energy

f = 1 − 2Gμ(r)

r
(58)

in the function μ(r). The redshift function δ(r) on the other hand responds purely to
the energy momentum of the bubble. The equations of motion are

f φ′′ + f ′φ′ + 2

r
f φ′ + δ′ f φ′ = Vφ, (59)

μ′ = 4πr2
(
1

2
f φ′2 + V

)
, (60)

δ′ = 4πGrφ′2 (61)
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Fig.8 An illustration of the effect of switching on the λ6 parameter. The thin wall solution is shown
as a solid line, with intermediate values of λ6 shown. Note however the large values of the coupling
that are necessary to produce anything approaching a thin wall

The equations for μ and φ can be decoupled from the δ equation, which can be found
from substituting the solution for φ in (61).

Figure 8 shows the solutions for the bounce, changing λ6 to tune the bubble wall
solutions from the thin wall of the previous section to the thick wall of the SMHiggs
with λ6 = 0. The full details of the process are given in [17].

Having found the solution, the exponent in the bounce amplitude is given by the
entropy shift between the seed and remnant black hole. In this case, considering the
decay of the Higgs vacuum, the false vacuum energy is taken to be zero, therefore
we are tunnelling to a negative vacuum energy.Writing μ(r−) = μ− as the boundary
value of μ at the horizon of the remnant black hole, and μ∞ = M+ as the asymptotic
value of μ we have

B = A+
4G

− A−
4G

= μ2∞ − μ2−
2M2

p
(62)

Thus, having found the numerical bubble solution, the bounce action is easily
extracted in terms of the values of μ at each of the boundaries.

The main output of the numerical work in [17] is that the bubble is diffuse, with
the Higgs gradually varying from the SM value to large φ at the remnant black
hole horizon. Due to the weak coupling of gravity, this profile has a relatively small
effect on the mass function, so (μ∞ − μ−)/Mp � 1. The vacuum decay rate has the
form Ae−B, where A is a pre-factor determined in field theory by the determinant
of fluctuations around the saddle point together with a factor of

√B/2π for each
translational zero mode [18]. Here, we have a single zero mode from the time-
translation symmetry, and estimate the determinant factor (the evaluation of the
determinant is problematic in Euclidean Quantum Gravity) by horizon timescale
(GM+)−1. Putting this together, our estimate for the vacuum decay rate is:

�D ≈
( B
2π

) 1
2

(GM+)−1 e−B (63)

We now turn to the consequences of this result.
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4.2 A Comparison with Hawking Evaporation

Having computed the vacuum decay rate in the presence of a black hole, we note that,
as is characteristic for a tunnelling process, it is exponentially suppressed. However,
no matter how strongly suppressed, if the half life is significantly less than the age of
the universe this is problematic! On the other hand, we also have Hawking’s result
[44], that black holes evaporate, and taking Page’s result for the evaporation rate [60]

�H = Ṁ

M
≈ 3.6 × 10−4(G2M3+)−1 (64)

we find the branching ratio of the tunnelling rate to the evaporation rate is

�D

�H
≈ 44

M2+
M2

p
B1/2e−B (65)

Whether this branching ratio is larger than unity for semi-classical black holes
centres around the comparison between the power law pre-factors ofM+/Mp, which
must be large, and the size of the exponent B for those values. Having already noted
that the difference in the mass function is small for the thick Higgs bubbles, a rough
estimate of the bounce action isB ∼ M+δM/M2

p, hence we can get a quick estimate
of the behaviour of this branching ratio

�D

�H
≈ 44

(
M+
Mp

)5/2 √δM

Mp
e−M+δM/M2

p (66)

Figure 9 shows a plot of this function, and how it depends on this mass difference,
which itself in turn depends on the energy contained in the diffuse Higgs bubble.
While M+ itself is large relative to the Planck mass (so that the spacetime curvature
remains safely below the Planck scale), δM will be much smaller, as it is dependent
on the scale of the Higgs relative to the Planck scale, integrated over the bubble.

As Fig. 9 shows eloquently, as δM drops, the tunnelling rate is not just faster
than evaporation, but becomes strongly dominant (by factors of 1010 or so) for seed
masses around a gram. The lifetime of a black hole of this mass is around 10−25s,
hence if the tunnelling process is strongly dominant, the decay will be essentially
instantaneous.

Fig. 9 The branching ratio
strongly depends on the
difference in the mass
function generated by the
diffuse bubble
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Fig. 10 The branching ratio of vacuum decay to evaporation shown as a function of seed mass for
different values in the 3 parameter fit to the SM potential. On the Left, the impact of varying λ∗ with
b = 1.4 × 10−5. On the Right, the impact of varying b with λ∗ = −0.013. (Note that the value of
the coupling at the SM scale then fixes c in terms of b and λ∗)

Having acquired some intuition on how important the vacuum decay process is
likely to be, we now show the actual results of [17] for the vacuum decay branching
ratios scanning through various fits to the SM potential.

As Fig. 10 shows, there is a wide range of black hole masses for which vacuum
decay is the dominant process. In terms of the three parameter fit to the runningHiggs
coupling, the bare quartic coupling λ∗ has the biggest impact on the branching ratio,
however it is clear that for a wide range of potentials, vacuum decay is inevitable if
a black hole has small enough mass.

From Fig. 10, we see that in order to catalyse vacuum decay a black hole has to
be very light–of order a Kg or less! The only possibility for this type of black hole is
that it is a Primordial Black Hole (PBH), i.e., one that is not formed by gravitational
mass of a star, but rather formed from strong perturbation fluctuations in the very
early universe [19]. Black holes formed at or below a mass of ∼4.5 × 1014g would
have already lost sufficient mass by evaporation to lie within this range of catalysis.
Given that we are in the (presumed) metastable vacuum currently, we can deduce
that there was no PBH with mass lighter than ∼4.5 × 1014g in our past light cone,
however the question of whether black holes lighter than this are incompatible with
a metastable vacuum is a little more subtle, as described in [27], as the black hole
not only has to seed decay, but the true vacuum would have to have percolated to
encompass our current Hubble volume. Figure 11 gives a sketch of how the bubbles
would expand and percolate if formed at a redshift Z = 10. The main outcome of
the cosmological study is that if PBH’s are formed strongly peaked around a mass of
5 × 1014 or less, then this is incompatible with a metastable Higgs vacuum. (See also
[25,58] for constraints from high energy particle collisions and extra dimensions).
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Fig. 11 A sketch of the
bubble percolation process
for black holes reaching the
critical mass range for
vacuum decay at a redshift
of 10

15

20
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0

Z

5 Closing Thoughts

In this presentation, I reviewed my work on vacuum decay catalysis by black holes.
In these examples, decay proceeds via bubble nucleation and is described by a semi-
classical Euclidean approach. One can have concerns that this is not a well-defined
approach for including gravity in quantum processes, but then to be consistent one
should never use the Euclidean method for computing the temperature of a black
hole. My opinion is that one either accepts all the usual compromises for quantum
processes with gravity, or seeks an alternative. Given the success of the inflationary
paradigm in explaining the perturbation spectrum of the microwave background,
this would be a rather extreme point of view! Nonetheless, the result that having an
impurity enhances and catalyses decay is very much in keeping with the way first
order phase transitions manifest in nature.

Other explorations of the impact of black holes on tunnelling processes include the
Hawking Moss instanton [45]—an even more perplexing quantum process in which
the entire universe up-tunnels to a higher cosmological constant before relaxing to
a lower vacuum energy than the initial state. Here, the black hole also enhances the
tunnelling probability [41,42] while at the same time raising interesting questions
around constraints on allowed vacuum transitions. Tunnelling in extended theories
of gravity (e.g., [26,43,61]) both with and without seeds has also been studied, with
broadly similar outcomes.

The use of the regularisation of singular instantons raises questions around ana-
lytic continuation and whether the thermal nature of the environment has fully been
taken into account (see e.g., [14,46,48,53,64,65]).What these results generally indi-
cate is that the Euclidean method is somehow dissatisfying as a description of quan-
tum tunnelling, and that perhaps the time is ripe to consider alternative approaches
to describing tunnelling in both field theory and gravity (see, e.g., [12,33,47]) or
indeed to testing tunnelling, and the implications of seeds, in the lab [8,11,34,69].

Ultimately, whether or not the Standard Model is metastable, the challenge to cri-
tique our set of tools andmethodology in semi-classical gravity and field theory gives
a timely and compelling impetus to re-examine our description of nonperturbative
processes, and hopefully will lead to new and deeper understanding.
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Glossary

Accretion disc: a disc/torus of matter in orbital motion around a compact object
AdS/CFT correspondence: conjectured duality between a gravitational theory in a

d-dimensional Anti-de-Sitter space-time (AdS) and a (d − 1)-dimensional con-
formal field theory (CFT)

Asymptotically flat manifold: a Riemannian manifold such that the complement
of a compact set is diffeomorphic to Rn without a ball and such that in these
coordinates the metric and its partial derivatives up to second order decay to the
Euclidean metric respectively zero sufficiently fast at infinity. The correspoding
coordinates are called asymptotically flat coordinates

Asymptotically flat initial data set: an asymptotically flat manifold with a sym-
metric (0,2)-tensor K decaying to zero sufficiently fast in the asymptotically flat
coordinates. K plays the role of the second fundamental form if the initial data
set is embedded into spacetime.

(Asymptotic) parity conditions: conditions sometimes imposed on asymptotically
flat coordinates demanding a stronger decay on the odd respectively even parts
of g respectively K ensuring convergence of the center of mass integrals. Also
called Regge-Teitelboim conditions.

Axial perturbation: Stellar oscillation of odd-parity according to the spherical har-
monics

Black hole: a solution to the equations of gravity models that possesses a space-
time curvature singularity shielded from observation by an external observer by
an event horizon

Brown dwarfs: substellar objects that are not massive enough to start the nuclear
fusion from Hydrogen to Helium that is typical for ordinary stars

Chameleon scalar field: a scalar field that couples to a matter fluid (i.e. dark energy
candidate)

Center of mass: the center of mass of an asymptotically flat manifold (or initial
data set) is given via the limit of a flux integral through large coordinate spheres,
if this limit exists. An alternative description can be given using the limit of the
coordinate centers of large constant (spacetime) mean curvature surfaces
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Conformal field theory: a quantum field theory with conformal invariance; typi-
cally used to describe systems with scale invariance, e.g. critical points in statis-
tical physics or condensed matter physics

Cosmic string: a line-like topological defect that could have formed during one of
the phase transitions in the early universe whenever a U(1) symmetry remains
unbroken; can intersect and form cosmic string loops

Ellis-Bronnikov wormholes: Specific types ofwormholes describedby static spher-
ically symmetric solutions of general relativity coupled to a phantom scalar field.

Entanglement: a quantum information theoretic concept that is also used in the
context of quantum field theories and captures the degree of inability to factor a
quantum state into a product of states

Equation of state: A relation between the energy density, pressure and temperature
of the dense matter in neutron stars

Event horizon: boundary separating the interior and exterior of a black hole such
that the interior cannot influence the exterior; surface of infinite redshift

Grand Unified Theory: a suggestedmodel that unifies the three fundamental inter-
actions that can be described by a gauge theory, i.e. the electromagnetic, the weak
nuclear and the strong nuclear interaction

Gravitational lensing: phenomenon similar to what happens when a light ray
crosses an optical lens: the trajectory changes, but instead of an optical lens,
a massive body (e.g. a galaxy or a black hole) curves the space-time leading to a
beding of the photons’ path

Harmonic coordinates: coordinates on a Riemannian manifold such that the coor-
dinate functions are harmonic, i.e., satisfy �xi = 0

Higgs boson: quantumexcitation of theHiggs field, a scalar field that plays a crucial
role in the Higgs mechanismwhich—through spontaneous symmetry breaking—
gives mass to the elementary gauge bosons in the Standard Model of Particle
Physics

Holography: collection of conjectured dualities between gravitational theories and
lower-dimensional quantum field theories. It is used as an approach to quantum
gravity. The best studied example of holography is the AdS/CFT correspondence

Hydrodynamics: describes the mechanics of fluids, in particular the dynamics of
fluids

Inflation: a cosmic epoch of exponential expansion of space in the very early uni-
verse

Isospectrality: the property of having identical or degenerate spectra; here, it refers
to the observation that the quasinormal modes of the massless Ellis-Bronnikov
wormhole exhibit a threefold degeneracy, indicating isospectrality among the
axial and polar modes

Kerr space-time: analytically given solution of the vacuumEinstein equation that is
stationary and axisymmetric; describes the exterior of a black hole that possesses
mass and angular momentum

Killing vector: a vector that generates isometries, i.e. moving along the flow gen-
erated by the Killing vector field does not change the metric
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Naked singularity: a space-time singularity that is not shielded from view by an
event horizon (in contrast to the space-time singularity at the centre of black holes)

Neutron star: a compact object with around one to two solar masses; a product of
the collapse of a massive star

Polar perturbation: stellar oscillation of even-parity according to the spherical har-
monics

Quasinormal mode: characteristic frequency and damping time of the gravitational
waves emitted from the ringing object; characteristic features of compact objects
that describe their response to perturbations

Ray tracing: method that traces backward the geodesic equation from our “screen”
to themassive body, recording the number of turns around it with different impact
parameters

Scalar field: associates a scalar value to every point in a space(-time)
Scalar-tensor theory: an alternative gravity theory which extends General Relativ-

ity by introducing scalar field(s)
Schwarzschild space-time: analytically given solution of the vacuum Einstein

equation that is static and spherically symmetric; describes the exterior of a black
hole that possesses mass

Shadow: dark central area of the direct imaging of a black hole, from which we
have not received photons; the inner shadow is the smallest possible shadow we
can observe

Stochastic gravitational wave background: a background of randomgravitational
waves that is suggested to exist in the universe; sources can be cosmological (early
universe) or astrophysical

Transfer functions: obtained using ray tracing procedure; correspond to the radius
of the m-th intersection between the light ray and the accretion disk

Vacuum decay: if a model possesses several local minima (of the energy) it is
possible that the system decays from the false vacuum to the true vacuum; our
universe seems to be currently in such a false vacuum

White dwarfs: Compact objects and end-state of stars in which the gravitational
collapse is prevented by the pressure of degenerate electrons; cannot be more
massive than the so-called Chandrasekhar bound of 1.4 solar masses

Wormhole: a solution to the equations of gravity models that connects one asymp-
totically flat space-time to another one; bridges that connect different regions of
space-time
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